

HTCondor Version 23.0.8 Manual

The HTCondor Software Suite (HTCSS) is a software system that creates a High-Throughput Computing (HTC) environment.
This environment might be a single cluster, a set of related clusters on a campus, cloud resources, or
national or international federations of computers.

If you are a user of HTCondor, and have been given a login or credentials to use a batch scheduler on an
Access Point (sometimes called a scheduler or login node), you may want to read our Quick Start guide
here: Users’ Quick Start Guide

If you are beginning administrator of HTCondor, or want to install it for the first time, please
look at our installation guide here: Downloading and Installing

Otherwise, for users of HTCondor who want more information, a complete user’s reference manual
is here: Users’ Manual, and a similar complete reference for
administrators of HTCondor can be found here: Administrators’ Manual

HTCondor contains many command line tools, each with a traditional Unix “man-page”. These
may be found here: Command Reference Manual (man pages)

Finally, for users writing Python interfaces to HTCondor, our Python API documentation
is here: Python Bindings

A complete table of contents follows.

Manual built on April 11, 2024

Quick start guides

	Users’ Quick Start Guide
	What is a Job?

	A First HTCondor Job

	The science Job Example

	Expanding the science Job and the Organization of Files

	Where to Go from Here

	Downloading and Installing

	Overview
	High-Throughput Computing (HTC) and its Requirements

	HTCondor’s Power

	Exceptional Features

	Availability

	Contributions and Acknowledgments

	Support, Downloads and Bug Reporting

Reference Manuals

	Users’ Manual
	Welcome and Introduction to HTCondor

	Running a Job: the Steps To Take

	Submitting a Job

	Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism

	Managing a Job

	Automatically managing a job

	How To Debug an Always Idle Job

	Services for Running Jobs

	Priorities and Preemption

	Job Sets

	Matchmaking with ClassAds

	Choosing an HTCondor Universe

	Java Applications

	Parallel Applications (Including MPI Applications)

	Virtual Machine Applications

	Docker Universe Applications

	Container Universe Jobs

	Self-Checkpointing Applications

	Submitting a Remote Job

	Time Scheduling for Job Execution

	Special Environment Considerations

	Administrators’ Manual
	Introduction

	Starting Up, Shutting Down and Reconfiguring the System

	Introduction to Configuration

	Configuration Templates

	Configuration Macros

	User Priorities and Negotiation

	Policy Configuration for Execution Points and for Access Points

	Startd Cron and Schedd Cron

	Security

	Networking (includes sections on Port Usage and CCB)

	DaemonCore

	Logging in HTCondor

	Monitoring

	The High Availability of Daemons

	Third Party/Delegated file and credential transfer

	Setting Up the Docker Universe

	Apptainer/Singularity Support

	Power Management

	Hooks

	Directories

	Setting Up for Special Environments

	ClassAds
	HTCondor’s ClassAd Mechanism

	ClassAd Transforms

	Print Formats

	DAGMan Workflows
	DAGMan Introduction

	Scripts

	Node Success/Failure

	File Paths in DAGs

	Running and Managing DAGMan

	DAG Save Point Files

	Resubmitting a Failed DAG

	Node Priorities

	Single Submission of Multiple, Independent DAGs

	Composing workflows from multiple DAG files

	DAGMan Throttling

	Optimization of Submission Time

	Managing Large Numbers of Jobs with DAGMan

	Custom Variables for Nodes

	DAG Manager Job Specifications

	Configuration Specific to a DAG

	INCLUDE

	ALL_NODES Option

	DAGMan and Accounting Groups

	Special Node Types

	Visualizing DAGs

	Capturing the Status of Nodes in a File

	Machine-Readable Event History

	Workflow Metrics

	Python Bindings

Additional Docs

	Chirp: Jobs Writing user data to the AP

	Cloud Computing
	Introduction

	HTCondor Annex User’s Guide

	Using condor_annex for the First Time

	HTCondor Annex Customization Guide

	HTCondor Annex Configuration

	HTCondor in the Cloud

	Google Cloud Marketplace Entry

	Google Cloud HPC Toolkit

	Grid Computing
	Introduction

	Connecting HTCondor Pools with Flocking

	The Grid Universe

	The HTCondor Job Router

	Platform-Specific Information
	Linux

	Microsoft Windows

	Macintosh OS X

	Windows Installer

	Frequently Asked Questions (FAQ)

	Version History and Release Notes
	Introduction to HTCondor Versions

	Upgrading from an 10.0 LTS version to an 23.0 LTS version of HTCondor

	Version 23.0 LTS Releases

	Version 10 Feature Releases

	Version 10.0 LTS Releases

Reference, Glossary and Index

	Command Reference Manual (man pages)
	classad_eval

	ClassAds

	condor_adstash

	condor_advertise

	condor_annex

	condor_check_password

	condor_check_userlogs

	condor_chirp

	condor_configure

	condor_config_val

	condor_continue

	condor_dagman

	condor_drain

	condor_evicted_files

	condor_fetchlog

	condor_findhost

	condor_gather_info

	condor_gpu_discovery

	condor_history

	condor_hold

	condor_install

	condor_job_router_info

	condor_master

	condor_now

	condor_off

	condor_on

	condor_ping

	condor_pool_job_report

	condor_power

	condor_preen

	condor_prio

	condor_procd

	condor_q

	condor_qedit

	condor_qusers

	condor_qsub

	condor_reconfig

	condor_release

	condor_remote_cluster

	condor_reschedule

	condor_restart

	condor_rm

	condor_rmdir

	condor_router_history

	condor_router_q

	condor_router_rm

	condor_run

	condor_set_shutdown

	condor_sos

	condor_ssh_start

	condor_ssh_to_job

	condor_ssl_fingerprint

	condor_stats

	condor_status

	condor_store_cred

	condor_submit

	condor_submit_dag

	condor_suspend

	condor_tail

	condor_test_token

	condor_token_create

	condor_token_fetch

	condor_token_list

	condor_token_request

	condor_token_request_approve

	condor_token_request_auto_approve

	condor_token_request_list

	condor_top

	condor_transfer_data

	condor_transform_ads

	condor_update_machine_ad

	condor_updates_stats

	condor_upgrade_check

	condor_urlfetch

	condor_userlog

	condor_userprio

	condor_vacate

	condor_vacate_job

	condor_version

	condor_wait

	condor_watch_q

	condor_who

	get_htcondor

	gidd_alloc

	htcondor

	procd_ctl

	ClassAd Attributes
	ClassAd Types

	Accounting ClassAd Attributes

	Job ClassAd Attributes

	Machine ClassAd Attributes

	DaemonMaster ClassAd Attributes

	Scheduler ClassAd Attributes

	Negotiator ClassAd Attributes

	Submitter ClassAd Attributes

	Defrag ClassAd Attributes

	Grid ClassAd Attributes

	Collector ClassAd Attributes

	ClassAd Attributes Added by the condor_collector

	DaemonCore Statistics Attributes

	Codes and Other Needed Values
	condor_shadow Exit Codes

	Job Event Log Codes

	Job Universe Numbers

	DaemonCore Command Numbers

	DaemonCore Daemon Exit Codes

	Glossary

	Index

Licensing and Copyright

HTCondor is released under the Apache License, Version 2.0.

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

Licensed under the Apache License, Version 2.0 (the “License”); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

For complete information and additional license notices see
http://htcondor.org/license.html.

Users’ Quick Start Guide

HTCondor [https://htcondor.org] is a system for dynamically sharing
computational resources between competing computational tasks. As an
HTCondor user, you will describe your computational tasks as a series
of independent, asynchronous “jobs.” You access computational resources
managed by HTCondor by submitting (or “placing”) job descriptions at an
HTCondor “access point” (AP), also known as a “submit node.” HTCondor
locates an appropriate machine for each job,
packages up the job and ships it off to that machine for execution.
Machines providing resources to HTCondor are therefore known as execution
points (EP).

This guide covers submitting and observing the successful completion
of a first, example job. It then suggests extensions that you can apply to
your own jobs.

This guide presumes that

	HTCondor is running

	You have access to a machine within the pool that may submit jobs,
termed an Access Point (AP).

	You are logged in to and working on the AP. (If you
just finished getting HTCondor, the one machine
you just installed is this AP.)

	Your program executable, your submit description file, and any needed
input files are all on the file system of the AP.

	Your job (the program executable) is able to run without any
interactive input. Standard input (from the keyboard), standard output
(seen on the display), and standard error (seen on the display) may still
be used, but their contents will be redirected from/to files.

What is a Job?

“Job” is a very specific term in HTCondor. A job is the atomic unit of work.
A job may use multiple cores on one machine, but one job may not (in general)
run across more than one machine. To effectively use HTCondor, you will
need to divide your total work (often called a workflow) into a number
of jobs. These atomic units of work run asynchronously with respect to each other, but
may be connected by input and output files. Each job is described by a
Job ClassAd, which is usually created by the system from a submit description file.
HTCondor is a High Throughput system, which means it has been designed to
effectively manage hundreds of thousands of jobs. Attributes of jobs that
must be defined include the executable or script to run, the amount of memory, CPU
and other machine resources it needs, and descriptions of the file inputs it need.
The set of files used by a job is called the “sandbox”. There is an input sandbox,
the input files that exist before a job starts; the output sandbox, the set of files
created by the job; and a scratch sandbox, the set of files made as the job runs.

A First HTCondor Job

For HTCondor to run a job, it must be given details such as the names
and location of the executable and all needed input files. These details
are specified in a submit description file.

The executable

Before presenting the details of the submit description file, consider this
first HTCondor job. It is a sleep job that waits for 6 seconds and then
exits. While most aspects of HTCondor are identical on Linux (or Mac) and
Windows machines, awareness of the AP’s operating system will lead
to a better understanding of jobs and job submission.

This first executable program is a shell script (Linux or Mac) or batch file
(Windows). The file that represents this differs based on operating
system; the Linux (or Mac) version is shown first, and
the Windows version is shown second. To try this example,
log in to the AP, and use an editor to type in or copy and paste
the file contents. Name the resulting file sleep.sh if the AP
is Linux (or Mac) operating system, and name the resulting file sleep.bat
if the AP is running Windows. Note that you will need to
know whether the operating system on your AP is a Linux (or Mac)
operating system or Windows.

Linux (or Mac) executable, a shell script

#!/bin/bash
file name: sleep.sh

TIMETOWAIT="6"
echo "sleeping for $TIMETOWAIT seconds"
/bin/sleep $TIMETOWAIT

Windows executable, a batch file

:: file name: sleep.bat
@echo off

set TIMETOWAIT=6
echo sleeping for %TIMETOWAIT% seconds
choice /D Y /T %TIMETOWAIT% > NUL

For a Linux (or Mac) AP only, change the sleep.sh file to be
executable by running the following command:

chmod u+x sleep.sh

The contents of the submit description file

The submit description file describes the job. To submit this sample
job, again use an editor to create the file sleep.sub. The submit
description file contents for this job differs on Linux (or Mac) and Windows
machines only in the name of the script or batch file:

Linux (and Mac) submit description file

sleep.sub -- simple sleep job

executable = sleep.sh

log = sleep.log
output = sleep.out
error = sleep.err

should_transfer_files = Yes
when_to_transfer_output = ON_EXIT

request_cpus = 1
request_memory = 512M
request_disk = 1G

queue

Windows submit description file

sleep.sub -- simple sleep job

executable = sleep.bat

log = sleep.log
output = sleep.out
error = sleep.err

should_transfer_files = Yes
when_to_transfer_output = ON_EXIT

request_cpus = 1
request_memory = 512M
request_disk = 1G

queue

The first line of this submit description file is a comment. Comments
begin with the # character. Comments do not span lines.

Each line of the submit description file has the form

command_name = value

The command name is case insensitive and precedes an equals sign. Values
to right of the equals sign are likely to be case sensitive, especially
in the case that they specify paths and file names.

Next in this file is a specification of the executable to run. It
specifies the program that becomes the HTCondor job. For this example, it
is the file name of the Linux (or Mac) script or Windows batch file. A full
path and executable name, or a path and executable relative to the current
working directory may be specified.

The log command causes a job event log file named sleep.log to be
created on the AP once the job is submitted. A log is not
necessary, but it can be incredibly useful in figuring out what happened or
is happening with a job.

HTCondor must be told how many resources your job needs on an Execution
Point in order to run. This allows HTCondor to run as many jobs as
possible on each EP without overloading them. Jobs must declare the
number of CPUs, the amount of memory and disk they need. Special jobs
may need to request other resources, such as GPUs or licenses. Ask your
administrator if your jobs requires such things. The amount of cpus
is unit less, but memory and disk requires can have a “M” for megabyte,
“G” for Gigabyte suffix for legibility. Without the suffix, memory
units are megabytes and disk kilobytes.

request_cpus = 1
request_memory = 512M
request_disk = 1G

If this script/batch file were to be invoked from the command line, and
outside of HTCondor, its single line of output

sleeping for 6 seconds

would be sent to standard output (the display). When submitted as an HTCondor
job, standard output of the job is on that EP, and thus unavailable. HTCondor
captures standard output in a file due to the output command in the submit
description file. This example names the redirected standard output file
sleep.out, and this file is returned to the AP when the job completes. The
same structure is specified for standard error, as specified with the error
command.

The commands

should_transfer_files = Yes
when_to_transfer_output = ON_EXIT

direct HTCondor to explicitly send the needed files, including the executable,
to the machine where the job executes. These commands will likely not be
necessary for jobs in which the AP and the EP (the Execution Point, or worker
node) access a shared file system. However, including these commands
will allow this first sample job to work under a large variety of pool
configurations.

The queue command tells HTCondor to run one instance of this job.

Submitting the job

With this submit description file, all that remains is to hand off the job to
HTCondor. Note that the queue command should be the last command in the
file. Commands after the queue are ignored. Otherwise, the order of
commands with the file does not matter. Assuming the current working directory
contains the sleep.sub submit description file and the executable
(sleep.sh or sleep.bat), the command line

condor_submit sleep.sub

submits the job to the AP. If the submission is successful, the terminal will
display a response that identifies the job, of the form

Submitting job(s).
1 job(s) submitted to cluster 6.

Monitoring the job

Once the job has been submitted, command line tools may help you follow along
with the progress of the job. The condor_q command prints a listing of
all your jobs currently in the queue. For example, a short time after Kris
submits the sleep job from a Linux (or Mac) AP on a pool that has
no other queued jobs, the output may appear as

$ condor_q
-- Submitter: example.wisc.edu : <128.105.14.44:56550> : example.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 6.0 kris 2/13 10:49 0+00:00:03 R 0 97.7 sleep.sh

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

The first column of output from condor_q identifies the job; the
identifier is composed of two integers separated by a period. The first
integer is known as a cluster number, and it will be the same for each of
the potentially many jobs submitted by a single invocation of
condor_submit. The second integer in the identifier is known as a
process ID, and it distinguishes between distinct job instances that have
the same cluster number. These values start at 0.

Of interest in this output, the job is running, and it has used 3 seconds
of time so far.

At job completion, the log file contains

000 (006.000.000) 02/13 10:49:04 Job submitted from host: <128.105.14.44:46062>
...
001 (006.000.000) 02/13 10:49:24 Job executing on host: <128.105.15.5:43051?PrivNet=cs.wisc.edu>
...
006 (006.000.000) 02/13 10:49:30 Image size of job updated: 100000
 0 - MemoryUsage of job (MB)
 0 - ResidentSetSize of job (KB)
...
005 (006.000.000) 02/13 10:49:31 Job terminated.
 (1) Normal termination (return value 0)
 Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage
 23 - Run Bytes Sent By Job
 113 - Run Bytes Received By Job
 23 - Total Bytes Sent By Job
 113 - Total Bytes Received By Job
 Partitionable Resources : Usage Request Allocated
 Cpus : 1 1
 Disk (KB) : 100000 100000 2033496
 Memory (MB) : 0 98 2001
...

Each event in the job event log file is separated by a line containing three
periods. For each event, the first 3-digit value is an event number.

Removing a job

Successfully submitted jobs will occasionally need to be removed from the
queue. The condor_rm command with the job identifier as a command line
argument removes jobs. Kris’ job may be removed from the queue with

condor_rm 6.0

Specification of the cluster number only as with the command

condor_rm 6

will cause all jobs within that cluster to be removed.

The science Job Example

A second example job illustrates aspects of file specification for the
job. Assume that the program executable is called science.exe. This
program does not use standard input or output; instead, the command line
to invoke this program specifies two input files and one output file. For
this example, the command line to invoke science.exe (not as an HTCondor
job) will be

science.exe infile-A.txt infile-B.txt outfile.txt

While the name of the executable is specified in the submit description file
with the executable command, the remainder of the command line will be
specified with the arguments command.

Here is the submit description file for this job:

science1.sub -- run one instance of science.exe
executable = science.exe
arguments = "infile-A.txt infile-B.txt outfile.txt"

transfer_input_files = infile-A.txt,infile-B.txt
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

request_cpus = 1
request_memory = 512M
request_disk = 1G

num_retries = 2
log = science1.log
queue

The input files infile-A.txt and infile-B.txt will need to be
available on the Execution Point within the pool where the job
runs. HTCondor cannot interpret command line arguments, so it cannot know
that these command line arguments for this job specify input and output
files. The submit command transfer_input_files instructs HTCondor to
transfer these input files from the machine where the job is submitted to the
machine chosen to execute the job. The default operation of HTCondor is to
transfer all files created by the job on the EP back to the
AP. Therefore, there is no specification of the outfile.txt
output file.

This example submit description file modifies the commands that direct
the transfer of files from AP to EP and back again.

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

These values are the HTCondor defaults, so are not needed in this example.
They are included to direct attention to the capabilities of HTCondor. The
should_transfer_files command specifies whether HTCondor should assume the
existence of a file system shared by the AP and the EP. Where there is a
shared file system, a correctly configured pool of machines will not need to
transfer the files from one machine to the other, as both can access the shared
file system. Where there is not a shared file system, HTCondor must transfer
the files from one machine to the other. The specification IF_NEEDED asks
HTCondor to use a shared file system when one is detected, but to transfer the
files when no shared file system is detected. When files are to be
transferred, HTCondor automatically sends the executable as well as a file
representing standard input; this file would be specified by the input
submit command, and it is not relevant to this example. Other files are
specified in a comma separated list with transfer_input_files, as they are
in this example.

When the job completes, all files created by the executable as it ran are
transferred back to the AP.

HTCondor assumes that if the job exits of its own accord, with an exit code
of zero, that indicates success, and any non-zero exit code is a failure.
By default, when the job exits, it will leave the queue. If you would
like a job that exits with a non-zero exit code to be restarted some
number of times until it does, set num_retries in the submit file like
so:

num_retries = 2

Expanding the science Job and the Organization of Files

A further example promotes understanding of how HTCondor makes the
submission of lots of jobs easy. Assume that the science.exe job
is to be run 40 times. If the input and output files were exactly the
same for each run, then only the last line of the given submit description
file changes: from

queue

to

queue 40

It is likely that this does not produce the desired outcome, as the output
file created, outfile.txt, has the same name for each queued instance
of the job, and thus this file of results for each run conflicts. Chances
are that the input files also must be distinct for each of the 40 separate
instances of the job. HTCondor offers the use of a macro that can uniquely
name each run’s input and output file names. The $(Process) macro causes
substitution by the process ID from the job identifier. The submit
description file for this proposed solution uniquely names the files:

science2.sub -- run 40 instances of science.exe
executable = science.exe
arguments = "infile-$(Process)A.txt infile-$(Process)B.txt outfile$(Process).txt"

transfer_input_files = infile-$(Process)A.txt,infile-$(Process)B.txt
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

request_cpus = 1
request_memory = 512M
request_disk = 1G

num_retries = 2
log = science2.log
queue 40

The 40 instances of this job will have process ID values that run from 0 to
39. The two input files for process ID 0 are infile-0A.txt and
infile-0B.txt, the ones for process ID 1 will be infile-1A.txt and
infile-1B.txt, and so on, all the way to process ID 39, which will be
files infile-39A.txt and infile-39B.txt. Using this macro for
the output file naming of each of the 40 jobs creates outfile0.txt for
process ID 0; outfile1.txt for process ID 1; and so on, to
outfile39.txt for process ID 39.

This example does not scale well as the number of jobs increases,
because the number of files in the same directory becomes unwieldy. Assume
now that there will be 100 instances of the science.exe job, and each
instance has distinct input files, and produces a distinct output file. A
recommended organization introduces a unique directory for each job
instance. The following submit description file facilitates this organization
by specifying the directory with the initialdir command. The directories
for this example are named run0, run1, etc. all the way to run99
for the 100 instances of the following example submit file:

science3.sub -- run 100 instances of science.exe, with
unique directories named by the $(Process) macro

executable = science.exe
arguments = "infile-A.txt infile-B.txt outfile.txt"

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

initialdir = run$(Process)
transfer_input_files = infile-A.txt,infile-B.txt

request_cpus = 1
request_memory = 512M
request_disk = 1G

num_retries = 2
log = science3.log
queue 100

The input and output files for each job instance can again be the initial
simple names that do not incorporate the $(Process) macro. These files are
distinct for each run due to their placement within a uniquely named
directory. This organization also works well for executables that do not
facilitate command line naming of input or output files.

Here is a listing of the files and directories on the AP within
this suggested directory structure. The files created due to submitting and
running the jobs are shown preceded by an asterisk (*). Only a subset of the
100 directories are shown. Directories are identified using the Linux (and
Mac) convention of appending the directory name with a slash character (/).

science.exe
science3.sub
run0/
 infile-A.txt
 infile-B.txt
 * outfile.txt
 * science3.log
run1/
 infile-A.txt
 infile-B.txt
 * outfile.txt
 * science3.log
run2/
 infile-A.txt
 infile-B.txt
 * outfile.txt
 * science3.log

Where to Go from Here

	Consider watching our
video tutorial [https://www.youtube.com/watch?v=p2X6s_7e51k&list=PLO7gMRGDPNumCuo3pCdRk23GDLNKFVjHn]
for new users.

	Additional tutorials [https://www.youtube.com/playlist?list=PLO7gMRGDPNumCuo3pCdRk23GDLNKFVjHn]
about other aspects of using HTCondor are available
in our YouTube channel [https://www.youtube.com/channel/UCd1UBXmZIgB4p85t2tu-gLw].

	Slides from past HTCondor Weeks [https://htcondor.org/past_condor_weeks.html] – our annual conference – include the tutorials given there.

	The Users’ Manual is a good reference.

	If you like what you’ve seen but want to run more jobs simultaneously, the
administrator’s quick start guide
will help you make more of your machines available to run jobs.

Downloading and Installing

These instructions show how to create a complete HTCondor installation with
all of its components on a single computer, so that you can test HTCondor and
explore its features. We recommend that new users start with the
first set of instructions
here and then continue with the Users’ Quick Start Guide;
that link will appear again at the end of these instructions.

If you know how to use Docker, you may find it easier to start with the
htcondor/mini image; see the Docker Images entry. If you’re familiar
with cloud computing, you may also get HTCondor in the cloud.

Installing HTCondor on a Cluster

Experienced users who want to make an HTCondor pool out of multiple
machines should follow the Administrative Quick Start Guide. If you’re new to
HTCondor administration, you may want to read the Administrators’ Manual.

Installing HTCondor on a Single Machine with Administrative Privileges

If you have administrative privileges on your machine, choose the
instructions corresponding to your operating system:

	Windows.

	Linux. HTCondor supports
Amazon Linux 2023;
Enterprise Linux 7 including Red Hat, CentOS, and Scientific Linux 7;
Enterprise Linux 8 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux;
Enterprise Linux 9 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux;
openSUSE LEAP 15 including SUSE Linux Enterprise Server 15;
Debian 11 and 12; and Ubuntu 20.04 and 22.04.

	macOS. HTCondor supports macOS 10.15 and later.

Hand-Installation of HTCondor on a Single Machine with User Privileges

If you don’t have administrative privileges on your machine, you can still
install HTCondor. An unprivileged installation isn’t able to effectively
limit the resource usage of the jobs it runs, but since it only
works for the user who installed it, at least you know who to blame for
misbehaving jobs.

	Linux. HTCondor supports
Amazon Linux 2023;
Enterprise Linux 7 including Red Hat, CentOS, and Scientific Linux 7;
Enterprise Linux 8 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux;
Enterprise Linux 9 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux;
openSUSE LEAP 15 including SUSE Linux Enterprise Server 15;
Debian 11 and 12; and Ubuntu 20.04 and 22.04.

	macOS. HTCondor supports macOS 10.15 and later.

Docker Images

HTCondor is also available [https://hub.docker.com/u/htcondor] on Docker Hub.

If you’re new to HTCondor, the htcondor/mini image is equivalent to
following any of the instructions above, and once you’ve started the
container, you can proceed directly to the Users’ Quick Start Guide and learn
how to run jobs.

For other options, see our docker image list.

Kubernetes

You can deploy a complete HTCondor pool with the following command:

kubectl apply -f https://github.com/htcondor/htcondor/blob/latest/build/docker/k8s/pool.yaml

If you’re new to HTCondor, you can proceed directly to
the Users’ Quick Start Guide after logging in to the submit pod.

In the Cloud

Although you can use our Docker images (or Kubernetes support) in the cloud,
HTCondor also supports cloud-native distribution.

	For Amazon Web Services, we offer a
minicondor image [https://aws.amazon.com/marketplace/pp/B073WHVRPR]
preconfigured for use with condor_annex,
which allows to easily add cloud resources to your pool.

	The Google Cloud Marketplace Entry lets you construct an entire HTCondor
pool that scales automatically to run submitted jobs. If you’re new to
HTCondor, you can proceed to the Users’ Quick Start Guide immediately after
following those instructions.

	We also have documentation on creating a
HTCondor in the Cloud by hand.

Windows (as Administrator)

Installation of HTCondor must be done by a user with administrator
privileges. We have provided quickstart instructions below to walk
you through a single-node HTCondor installation using the HTCondor
Windows installer GUI.

For more information about the installation options, or how to use
the installer in unattended batch mode, see the complete
Windows Installer guide.

It is possible to manually install HTCondor on Windows, without the
provided MSI program, but we strongly discourage this unless you have
a specific need for this approach and have extensive HTCondor experience.

Quickstart Installation Instructions

To download the latest HTCondor Windows Installer:

	Go to the
current channel [https://research.cs.wisc.edu/htcondor/tarball/current/]
download site.

	Click on the second-latest version. (The latest version should always be
the under-development version and will only have daily builds.)

	Click on the release folder.

	Click on the file ending in .msi (usually the first one).

Start the installer by double clicking on the MSI file once it’s downloaded.
Then follow the directions below for each option.

	If HTCondor is already installed.
	If HTCondor has been previously installed, a dialog box will appear
before the installation of HTCondor proceeds. The question asks if
you wish to preserve your current HTCondor configuration files.
Answer yes or no, as appropriate.

If you answer yes, your configuration files will not be changed, and
you will proceed to the point where the new binaries will be
installed.

If you answer no, then there will be a second question that asks if
you want to use answers given during the previous installation as
default answers.

	STEP 1: License Agreement.
	Agree to the HTCondor license agreement.

	STEP 2: HTCondor Pool Configuration.
	Choose the option to create a new pool and enter a name.

	STEP 3: This Machine’s Roles.
	Check the “submit jobs” box. From the list of execution options,
choose “always run jobs”.

	STEP 4: The Account Domain.
	Skip this entry.

	STEP 5: E-mail Settings.
	Specify the desired email address(es), if any.

	STEP 6: Java Settings.
	If this entry is already set, accept it. Otherwise, skip it.

	STEP 7: Access Permission Settings.
	Accept the default values. You can change these later by modifying the configuration files.

	STEP 8: VM Universe Setting.
	Disable the vm universe.

	STEP 9: Choose Destination Folder
	

Accept the default settings.

This should complete the installation process. The installer will have
automatically started HTCondor in the background and you do not need to
restart Windows for HTCondor to work.

Open a command prompt to follow the next set of instructions.

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The
following commands should complete without errors, producing output that
looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

 Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
 Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

	For a brief introduction to running jobs with HTCondor,
see the Users’ Quick Start Guide.

	If you’re looking to set up a multi-machine pool, go to the
Administrative Quick Start Guide.

Setting Up a Whole Pool with Windows

Follow the instructions above through Step 1. Then, customize the
installation as follows:

	STEP 2: HTCondor Pool Configuration.
	Create a new pool
only on the machine you’ve chosen as their central manager. See
the Administrative Quick Start Guide. Otherwise, choose the option to
join an existing pool and enter the name or IP address of the
central manager.

	STEP 3: This Machine’s Roles.
	Check the “submit jobs”
box to select the submit role, or choose “always run jobs” to select
the execute role.

	STEP 4: The Account Domain.
	Enter the
same name on all submit-role machines. This helps ensure that a
user can’t get more resources by logging in to more than one machine.

	STEP 5: E-mail Settings.
	Specify the desired email address(es), if any.

	STEP 6: Java Settings.
	If this entry is already set, accept it. Otherwise, skip it.

Experienced users who know they want to use the java universe
should instead enter the path to the Java executable on the machine,
if it isn’t already set, or they want to use a different one.

To disable use of the java universe, leave the field blank.

	STEP 7: Access Permission Settings.
	Machines within the HTCondor pool will need various types of access
permission. The three categories of permission that can be set here
are read, write, and administrator. The values can be usernames, hostnames
or IP address ranges, Wild cards and macros are permitted.
It is recommended that you accept the defaults here and change the
values later as needed by modifying the HTCondor configuration files.

	Read
	Read access allows a machine to obtain information about
HTCondor such as the status of machines in the pool and the job
queues. If all of your HTCondor machines and users are in
a single DNS domain or IP Address range, setting this to *.domain
an IP address range with wildcards is a good choice.
See ALLOW_READ

	Write
	Write access is for submitting jobs to the Schedd. Setting this
to * will allow any user that can login to the machine submit jobs.
See ALLOW_WRITE

	Administrator
	Administrator access is for starting and stopping the daemons
and sending administrative commands such as reconfig and drain.
By default the installer will give this permission to the Windows
user that runs the installer and to the Windows Adminstrator account.
See ALLOW_ADMINISTRATOR

For more details on these access permissions, and others that can be
manually changed in your configuration file, please see the section
titled Setting Up Security in HTCondor in the
Authorization section.

	STEP 8: VM Universe Setting.
	Disable the vm universe.

Experienced users with VMWare and Perl already installed may enable
the vm universe.

	STEP 9: Choose Destination Folder
	

Experienced users may change the default installation path
(c:\Condor), but we don’t recommend doing so. Certain jobs may
not run if the installation path has a space in it.

Linux (as root)

For ease of installation on Linux, we provide a script that will automatically
download, install and start HTCondor.

Quickstart Installation Instructions

Warning

	RedHat systems must be attached to a subscription.

	Debian and Ubuntu containers don’t come with curl installed,
so run the following first.

apt-get update && apt-get install -y curl

The command below shows how to download the script and run it immediately;
if you would like to inspect it first, see
Inspecting the Script. The default behavior
will create a complete HTCondor pool with its multiple roles on one computer,
referred to in this manual as a “minicondor.”
Experienced users who are making an HTCondor pool out of multiple machines
should add a flag to select the desired role; see
the Administrative Quick Start Guide for more details.

curl -fsSL https://get.htcondor.org | sudo /bin/bash -s -- --no-dry-run

If you see an error like bash: sudo: command not found, try re-running
the command above without the sudo.

Inspecting the Script

If you would like to inspect the script before you running it on
your system as root, you can:

	read the script [https://get.htcondor.org];

	compare the script to the versions in our GitHub repository [https://github.com/htcondor/htcondor/blob/master/src/condor_scripts/get_htcondor];

	or run the script as user nobody, dropping the --no-dry-run
flag. This will cause the script to print out what it would do if
run for real. You can then inspect the output and copy-and-paste it
to perform the installation.

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The
following commands should complete without errors, producing output that
looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

 Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
 Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

	For a brief introduction to running jobs with HTCondor,
see the Users’ Quick Start Guide.

	If you’re looking to set up a multi-machine pool, go to the
Administrative Quick Start Guide.

Setting Up a Whole Pool

The details of using this installation procedure to create a multi-machine
HTCondor pool are described in the admin quick-start guide:
Administrative Quick Start Guide.

Linux (from our repositories)

If you’re not already familiar with HTCondor, we recommend you follow our
instructions for your first installation.

If you’re looking to automate the installation of HTCondor using your existing
toolchain, the latest information is embedded in the output of the script run
as part of the instructions. This script can
be run as a normal user (or nobody), so we recommend this approach.

Otherwise, this page contains information about the RPM and deb
repositories we offer. These repositories will almost always have more
recent releases than the distributions.

RPM-based Distributions

We support several RPM-based platforms:
Enterprise Linux 7, including Red Hat, CentOS, and Scientific Linux;
Enterprise Linux 8, including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux;
Enterprise Linux 9, including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux;
openSUSE LEAP 15 including SUSE Linux Enterprise Server (SLES) 15.
Binaries are available for x86_64 for all these platforms.
For Enterprise Linux 8, HTCondor also supports ARM (“aarch64”) and Power (“ppc64le”).
For Enterprise Linux 9, HTCondor also supports ARM (“aarch64”).

Repository packages are available for each platform:

	Amazon Linux 2023 [https://research.cs.wisc.edu/htcondor/repo/23.0/htcondor-release-current.amzn2023.noarch.rpm]

	Enterprise Linux 7 [https://research.cs.wisc.edu/htcondor/repo/23.0/htcondor-release-current.el7.noarch.rpm]

	Enterprise Linux 8 [https://research.cs.wisc.edu/htcondor/repo/23.0/htcondor-release-current.el8.noarch.rpm]

	Enterprise Linux 9 [https://research.cs.wisc.edu/htcondor/repo/23.0/htcondor-release-current.el9.noarch.rpm]

	openSUSE LEAP 15 [https://research.cs.wisc.edu/htcondor/repo/23.0/htcondor-release-current.leap15.noarch.rpm]

Except for Amazon Linux, the HTCondor packages on these platforms depend on the corresponding
version of EPEL [https://fedoraproject.org/wiki/EPEL].

Additionally, the following repositories are required for specific platforms:

	On RedHat 7, rhel-*-optional-rpms, rhel-*-extras-rpms, and
rhel-ha-for-rhel-*-server-rpms.

	On RedHat 8, codeready-builder-for-rhel-8-${ARCH}-rpms.

	On CentOS 8, powertools (or PowerTools).

	On RedHat 9, crb.

deb-based Distributions

We support four deb-based platforms: Debian 11 (Bullseye) and Debian 12 (Bookworm); and
Ubuntu 20.04 (Focal Fossa) and 22.04 (Jammy Jellyfish).
Binaries are available for x86_64 for all these platforms.
For Unbuntu 20.04 (Focal Fossa) HTCondor also supports Power PC (ppc64el).
These repositories also include the source packages.

Debian 11, and 12

Add our Debian signing key [https://research.cs.wisc.edu/htcondor/repo/keys/HTCondor-23.0-Key]
with apt-key add before adding the repositories below.

	Debian 11: deb https://research.cs.wisc.edu/htcondor/repo/debian/23.0 bullseye main

	Debian 12: deb https://research.cs.wisc.edu/htcondor/repo/debian/23.0 bookworm main

Ubuntu 20.04, and 22.04

Add our Ubuntu signing key [https://research.cs.wisc.edu/htcondor/repo/keys/HTCondor-23.0-Key]
with apt-key add before adding the repositories below.

	Ubuntu 20.04: deb https://research.cs.wisc.edu/htcondor/repo/ubuntu/23.0 focal main

	Ubuntu 22.04: deb https://research.cs.wisc.edu/htcondor/repo/ubuntu/23.0 jammy main

Linux or macOS (as user)

Installing HTCondor on Linux or macOS as a normal user is a multi-step process. Note
that a user-install of HTCondor is always self-contained on a single
machine; if you want to create a multi-machine HTCondor pool, you will need
to have administrative privileges on the relevant machines and follow the
instructions here: Administrative Quick Start Guide.

Download

The first step is to download HTCondor for your platform. If you know
which platform you’re using, that HTCondor supports it, and which
version you want, you can download the corresponding file from
our website [https://research.cs.wisc.edu/htcondor/tarball/current/];
otherwise, we recommend using our download script, as follows.

cd
curl -fsSL https://get.htcondor.org | /bin/bash -s -- --download

On macOS, If you use a web browser to download a tarball from our web
site, then the OS will mark the file as quarantined. All binaries
extracted from the tarball will be similarly marked. The OS will
refuse to run any binaries that are quarantined. You can remove the
quarantine marking from the tarball before extracting, like so:

xattr -d com.apple.quarantine condor-10.7.1-x86_64_macOS13-stripped.tar.gz

Install

Unpack the tarball and rename the resulting directory:

tar -x -f condor.tar.gz
mv condor-*stripped condor

You won’t need condor.tar.gz again, so you can remove it now if you wish.

Configure

cd condor
./bin/make-personal-from-tarball

Using HTCondor

You’ll need to run the following command now, and every time you log in:

. ~/condor/condor.sh

Then to start HTCondor (if the machine has rebooted since you last logged in):

condor_master

It will finish silently after starting up, if everything went well.

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The
following commands should complete without errors, producing output that
looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

 Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
 Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

	For a brief introduction to running jobs with HTCondor,
see the Users’ Quick Start Guide.

	If you’re looking to set up a multi-machine pool, go to the
Administrative Quick Start Guide.

macOS (as root)

Installing HTCondor on macOS as root user is a multi-step process.
For a multi-machine HTCondor pool, information about the roles each
machine will play can be found here: Administrative Quick Start Guide.
Note that the get_htcondor tool cannot perform the installation
steps on macOS at present. You must follow the instructions below.

Note that all of the following commands must be run as root, except for
downloading and extracting the tarball.

The condor Service Account

The first step is to create a service account under which the HTCondor
daemons will run.
The commands that specify a PrimaryGroupID or UniqueID may fail with an
error that includes eDSRecordAlreadyExists.
If that occurs, you will have to retry the command with a different id number
(other than 300).

dscl . -create /Groups/condor
dscl . -create /Groups/condor PrimaryGroupID 300
dscl . -create /Groups/condor RealName 'Condor Group'
dscl . -create /Groups/condor passwd '*'
dscl . -create /Users/condor
dscl . -create /Users/condor UniqueID 300
dscl . -create /Users/condor passwd '*'
dscl . -create /Users/condor PrimaryGroupID 300
dscl . -create /Users/condor UserShell /usr/bin/false
dscl . -create /Users/condor RealName 'Condor User'
dscl . -create /Users/condor NFSHomeDirectory /var/empty

Download

The next step is to download HTCondor.
If you want to select a specific version of HTCondor, you can download
the corresponding file from
our website [https://research.cs.wisc.edu/htcondor/tarball/].
Otherwise, we recommend using our download script, as follows.

cd
curl -fsSL https://get.htcondor.org | /bin/bash -s -- --download

If you use a web browser to download a tarball from our web site, then
the OS will mark the file as quarantined. All binaries extracted from
the tarball will be similarly marked. The OS will refuse to run any
binaries that are quarantined. You can remove the quarantine marking
from the tarball before extracting it, like so:

xattr -d com.apple.quarantine condor-10.7.1-x86_64_macOS13-stripped.tar.gz

Install

Unpack the tarball.

mkdir /usr/local/condor
tar -x -C /usr/local/condor --strip-components 1 -f condor.tar.gz

You won’t need condor.tar.gz again, so you can remove it now if you wish.

Set up the log directory and default configuration files.

cd /usr/local/condor
mkdir -p local/log
mkdir -p local/config.d
cp etc/examples/condor_config etc/condor_config
cp etc/examples/00-htcondor-9.0.config local/config.d

If you are setting up a single-machine pool, then run the following
command to finish the configuration.

cp etc/examples/00-minicondor local/config.d

If you are setting up part of a multi-machine pool, then you’ll have to
make some other configuration changes, which we don’t cover here.

Next, fix up the permissions of the the installed files.

chown -R root:wheel /usr/local/condor
chown -R condor:condor /usr/local/condor/local/log

Finally, make the configuration file available at one of the well-known
locations for the tools to find.

mkdir -p /etc/condor
ln -s /usr/local/condor/etc/condor_config /etc/condor

Start the Daemons

Now, register HTCondor has a service managed by launchd and start up
the daemons.

cp /usr/local/condor/etc/examples/condor.plist /Library/LaunchDaemons
launchctl load /Library/LaunchDaemons/condor.plist
launchctl start condor

Using HTCondor

You’ll want to add the HTCondor bin and sbin directories to your
PATH environment variable.

export PATH=$PATH:/usr/local/condor/bin:/usr/local/condor/sbin

If you want to use the Python bindings for HTCondor, you’ll want to add
them to your PYTHONPATH.

export PYTHONPATH="/usr/local/condor/lib/python3${PYTHONPATH+":"}${PYTHONPATH-}"

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The
following commands should complete without errors, producing output that
looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

 Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
 Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

	For a brief introduction to running jobs with HTCondor,
see the Users’ Quick Start Guide.

	If you’re looking to set up a multi-machine pool, go to the
Administrative Quick Start Guide.

Docker Images

HTCondor provides images on Docker Hub.

Quickstart Instructions

If you’re just getting started with HTCondor, use htcondor/mini,
a stand-alone HTCondor configuration. The following command will work on
most systems with Docker installed:

docker run -it htcondor/mini

From here, you can proceed to the Users’ Quick Start Guide.

Setting Up a Whole Pool with Docker

If you’re looking to set up a whole pool, the following images correspond
to the three required roles. See the Administrative Quick Start Guide for more
information about the roles and how to configure these images to work together.

	htcondor/cm, an image configured as a central manager

	htcondor/execute, an image configured as an execute node

	htcondor/submit, an image configured as a submit node

All images include the latest version of HTCondor.
If you want to use the latest LTS version, use the docker tag lts.

Administrative Quick Start Guide

This guide does not contain step-by-step instructions for
getting HTCondor. Rather, it is a guide to joining multiple
machines into a single pool of computational resources for use by HTCondor
jobs.

This guide begins by briefly describing the three roles required by every
HTCondor pool, as well as the resources and networking required by each
of those roles. This information will enable you to choose which machine(s)
will perform which role(s). This guide also includes instructions on how to
use the get_htcondor tool to install and configure Linux (or Mac) machines
to perform each of the roles.

If you’re curious, using Windows machines, or you want to automate the
configuration of their pool using a tool like Puppet, the
last section of this guide briefly describes what
the get_htcondor tool does and provides a link to the rest of the details.

Single-machine Installations

If you just finished installing a single-machine (“mini”) HTCondor
using get_htcondor, you can just run get_htcondor again (and
follow its instructions) to reconfigure the machine to be one of
these three roles; this may destroy any other configuration changes
you’ve made.

We don’t recommend trying to add a machine configured as a “mini”
HTCondor to the pool, or trying to add execute machines to an existing
“mini” HTCondor pool. We also don’t recommend creating an entire
pool out of unprivileged installations.

The Three Roles

Even a single-machine installation of HTCondor performs all three roles.

The Execute Role

The most common reason for adding a machine to an HTCondor pool is to make
another machine execute HTCondor jobs; the first major role, therefore, is
the execute role. This role is responsible for the technical aspects of
actually running, monitoring, and managing the job’s executable; transferring
the job’s input and output; and advertising, monitoring, and managing the
resources of the execute machine. HTCondor can manage pools containing
tens of thousands of execute machines, so this is by far the most common role.

The execute role itself uses very few resources, so almost any machine
can contribute to a pool. The execute role can run on a machine with only
outbound network connectivity, but being able to accept inbound connections
from the machine(s) performing the submit role will simplify setup and reduce
overhead. The execute machine does not need to allow user access, or
even share user IDs with other machines in the pool (although this may be
very convenient, especially on Windows).

The Submit Role

We’ll discuss what “advertising” a machine’s resources means in the next
section, but the execute role leaves an obvious question unanswered: where
do the jobs come from? The answer is the submit role. This role is
responsible for accepting, monitoring, managing, and scheduling jobs on its
assigned resources; transferring the input and output of jobs; and requesting
and accepting resource assignments. (A “resource” is some reserved fraction
of an execute machine.) HTCondor allows arbitrarily many submit roles in a
pool, but for administrative convenience, most pools only have one, or a
small number, of machines acting in the submit role.

A submit-role machine requires a bit under a megabyte of RAM for each
running job, and its ability to transfer data to and from the execute-role
machines may become a performance bottleneck. We typically recommend adding
another access point for every twenty thousand simultaneously running
jobs. A access point must have outbound network connectivity, but a submit
machine without inbound network connectivity can’t use execute-role machines
without inbound network connectivity. As execute machines are more numerous,
access points typically allow inbound connections. Although you may allow
users to submit jobs over the network, we recommend allowing users SSH access
to the access point.

The Central Manager Role

Only one machine in each HTCondor pool can perform this role (barring
certain high-availability configurations, where only one machine can
perform this role at a time). A central manager matches resource requests –
generated by the submit role based on its jobs – with the resources described
by the execute machines. We refer to sending these (automatically-generated)
descriptions to the central manager as “advertising” because it’s the
primary way execute machines get jobs to run.

A central manager must accept connections from each execute machine and each
access point in a pool. However, users should never need access to the
central manager. Every machine in the pool updates the central manager every
few minutes, and it answers both system and user queries about the status of
the pool’s resources, so a fast network is important. For very large pools,
memory may become a limiting factor.

Assigning Roles to Machines

The easiest way to assign a role to a machine is when you initially
get HTCondor. You’ll need to supply the same password for
each machine in the same pool; sharing that secret is how the machines
recognize each other as members of the same pool, and connections between
machines are encrypted with it. (HTCondor uses port 9618 to communicate,
so make sure that the machines in your pool accept TCP connections on that
port from each other.) In the command lines below, replace
$htcondor_password with the password you want to use. In addition to the
password, you must specify the name of the central manager, which may be a
host name (which must resolve on all machines in the pool) or an IP address.
In the command lines below, replace $central_manager_name with the host
name or IP address you want to use.

When you get HTCondor, start with the central manager, then add
the access point(s), and then add the execute machine(s). You may
not have sudo installed; you may omit it from the command lines below
if you run them as root.

Central Manager

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /bin/bash -s -- --no-dry-run --central-manager $central_manager_name

Submit

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /bin/bash -s -- --no-dry-run --submit $central_manager_name

Execute

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /bin/bash -s -- --no-dry-run --execute $central_manager_name

At this point, users logged in on the access point should be able to see
execute machines in the pool (using condor_status), submit jobs
(using condor_submit), and see them run (using condor_q).

Creating a Multi-Machine Pool using Windows or Containers

If you are creating a multi-machine HTCondor pool on Windows computers or
using containerization, please see the “Setting Up a Whole Pool” section
of the relevant installation guide:

	Setting Up a Whole Pool with Windows

	Setting Up a Whole Pool with Docker

Where to Go from Here

There are two major directions you can go from here, but before we discuss
them, a warning.

Making Configuration Changes

HTCondor configuration files should generally be owned by root
(or Administrator, on Windows), but readable by all users. We recommend
that you don’t make changes to the configuration files established by the
installation procedure; this avoids conflicts between your changes and any
changes we may have to make to the base configuration in future
updates. Instead, you should add (or edit) files in the configuration
directory; its location can be determined on a given machine by running
condor_config_val LOCAL_CONFIG_DIR there. HTCondor will process files
in this directory in lexicographic order, so we recommend naming files
##-name.config so that, for example, a setting in 00-base.config
will be overridden by a setting in 99-specific.config.

Enabling Features

Some features of HTCondor, for one reason or another, aren’t (or can’t be)
enabled by default. Areas of potentially general interest include:

	Setting Up for Special Environments (particularly
Enabling the Fetching and Use of OAuth2 Credentials and Cgroup-Based Process Tracking),

	Setting Up the Docker Universe

	Apptainer/Singularity Support

Implementing Policies

Although your HTCondor pool should be fully functional at this point, it
may not be behaving precisely as you wish, particularly with respect to
resource allocation. You can tune how HTCondor allocates resources to
users, or groups of users, using the user priority and group quota systems,
described in User Priorities and Negotiation. You
can enforce machine-specific policies – for instance, preferring GPU jobs
on machines with GPUs – using the options described in
Policy Configuration for Execution Points and for Access Points.

Further Reading

	It may be helpful to at least skim the Users’ Manual to get
an idea of what your users might want or expect, particularly the
sections on DAGMan Introduction,
Choosing an HTCondor Universe, and
Self-Checkpointing Applications.

	Understanding HTCondor’s ClassAd Mechanism is essential for
many administrative tasks.

	The rest of the Administrators’ Manual, particularly the section on
Monitoring.

	Slides from
past HTCondor Weeks [https://htcondor.org/past_condor_weeks.html]
– our annual conference – include a number of tutorials and talks on
administrative topics, including monitoring and examples of policies and
their implementations.

What get_htcondor Does to Configure a Role

The configuration files generated by get_htcondor are very similar, and
only two lines long:

	set the HTCondor configuration variable CONDOR_HOST to the name
(or IP address) of your central manager;

	add the appropriate metaknob: use role : get_htcondor_central_manager,
use role : get_htcondor_submit, or use role : get_htcondor_execute.

Putting all of the pool-independent configuration into the metaknobs allows
us to change the metaknobs to fix problems or work with later versions of
HTCondor as you upgrade.

The get_htcondor documentation
describes what the configuration script does and how to determine the exact details.

Overview

	High-Throughput Computing (HTC) and its Requirements

	HTCondor’s Power

	Exceptional Features

	Availability

	Contributions and Acknowledgments

	Support, Downloads and Bug Reporting
	Downloads

	Support

	Reporting Bugs

High-Throughput Computing (HTC) and its Requirements

The quality of many projects is dependent upon the quantity of computing
cycles available. Many problems require years of computation to solve.
These problems demand a computing environment that delivers large amounts
of computational power over a long period of time. Such an environment is
called a High-Throughput Computing (HTC) environment.

In contrast, High Performance Computing (HPC)

environments deliver a tremendous amount of compute power over a short
period of time. HPC environments are often measured in terms of Floating
point Operations Per Second (FLOPS). A growing community is not
concerned about operations per second, but operations per month or per
year (FLOPY). They are more interested in how many jobs they can complete
over a long period of time instead of how fast an individual job can finish.

The key to HTC is to efficiently harness the use of all available
resources. Years ago, the engineering and scientific community relied on
a large, centralized mainframe or a supercomputer to do computational
work. A large number of individuals and groups needed to pool their
financial resources to afford such a machine. Users had to wait for
their turn on the mainframe, and they had a limited amount of time
allocated. While this environment was inconvenient for users, the
utilization of the mainframe was high; it was busy nearly all the time.

As computers became smaller, faster, and cheaper, users moved away from
centralized mainframes. Today, most organizations own or lease many
different kinds of computing resources in many places. Racks of
departmental servers, desktop machines, leased resources from the Cloud,
allocations from national supercomputer centers are all examples
of these resources. This is an environment of distributed ownership,
 where individuals
throughout an organization own their own resources. The total
computational power of the institution as a whole may be enormous,
but because of distributed ownership,
groups have not been able to capitalize on the aggregate institutional
computing power. And, while distributed ownership is more convenient
for the users, the utilization of the computing power is lower. Many
machines sit idle for very long periods of time while their owners
have no work for the machines to do.

HTCondor’s Power

HTCondor is a software system that creates a High-Throughput Computing
(HTC) environment. It effectively uses the computing power of
machines connected over a network, be they a single cluster, a set
of clusters on a campus, cloud resources either stand alone or temporarily
joined to a local cluster, or international grids.
Power comes from the ability to effectively harness shared resources with
distributed ownership.

A user submits jobs to HTCondor. HTCondor finds available machines
and begins running the jobs there. HTCondor has
the capability to detect that a machine running a job is no
longer available (perhaps the machine crashed, or maybe it prefers to
run another job). HTCondor will automatically
restart the job on another machine without intervention from the user.

HTCondor is useful when a job must be run many (thousands
of) times, perhaps
with hundreds of different data sets. With one command, all of the
jobs are submitted to HTCondor. Depending upon the number of
machines in the HTCondor pool, hundreds of otherwise idle
machines can be running the jobs at any given moment.

HTCondor does not require an account (login) on machines where it runs a
job. HTCondor can do this because of its file transfer and split
execution mechanisms.

HTCondor provides powerful resource management by match-making resource
 owners with resource consumers. This is the
cornerstone of a successful HTC environment. Other compute cluster
resource management systems attach properties to the job queues
themselves, resulting in user confusion over which queue to use as well
as administrative hassle in constantly adding and editing queue
properties to satisfy user demands. HTCondor implements ClassAds,
 a clean design that simplifies the user’s
submission of jobs.

ClassAds work in a fashion similar to the newspaper classified
advertising want-ads. All machines in the HTCondor pool advertise their
resource properties, both static and dynamic, such as available RAM
memory, CPU type, CPU speed, virtual memory size, physical location, and
current load average, in a resource offer ad.
 A user specifies a resource request ad
 when submitting a job. The request
defines both the required and a desired set of properties of the
resource to run the job. HTCondor acts as a broker by matching and
ranking resource offer ads with resource request ads, making certain
that all requirements in both ads are satisfied. During this
match-making process, HTCondor also considers several layers of priority
values: the priority the user assigned to the resource request ad, the
priority of the user which submitted the ad, and the desire of machines in
the pool to accept certain types of ads over others.

Exceptional Features

	Reliability
	An HTCondor job “is like money in the bank”. After successful submission,
HTCondor owns the job, and will run it to completion, even if the submit machine
or execute machine crash, and require HTCondor to restart the job elsewhere.

	Scalability
	An HTCondor pool is horizontally scalable to hundreds of thousands
of execute cores running a similar number of running jobs, and an
even larger number of idle jobs. HTCondor is also
scalable down to run an entire pool on a single machine, and
many scales between these two extremes.

	Security
	HTCondor, by default, uses strong authentication and encryption on the wire.
The HTCondor worker node scratch directories can be encrypted,
so that if a node is stolen or broken into, scratch files are unreadable.

	Parallelization without Reimplementation or Redesign
	HTCondor is able to run most programs which researchers can run on their
laptop or their desktop, in any programming language, such as C, Fortran,
Python, Julia, Matlab, R or others, without changing the code. HTCondor
will do the work of running your code as parallel jobs, so it is
not necessary to implement parallelism in your code.

	Portability and Heterogeneity
	HTCondor runs on most Linux distributions and on Windows. A single HTCondor
pool can support machines of different OSes. Worker nodes need not be identically
provisioned – HTCondor detects the memory, CPU cores, GPUs and other machine resources
available on a machine, and only runs jobs that match their needs to the machine’s
capabilities.

	Pools of Machines can be Joined Together
	Flocking allows jobs submitted from one pool of HTCondor machines
to execute on another authorized pool.

	Jobs Can Be Ordered
	A set of jobs where the output of one or more jobs becomes the input of
one or more other jobs, can be defined, such that HTCondor will run
the jobs in the proper order, and organize the inputs and outputs properly.
This is accomplished with a directed acyclic graph, where each job is a
node in the graph.

	HTCondor Can Use Remote Resources, from a Cloud, a Supercomputer Allocation, or a Grid
	Glidein allows jobs submitted to HTCondor to be
executed on machines in remote pools in various locations worldwide. These remote
pools can be in one or more clouds, in an allocation on a HPC site, in a
different HTCondor pool or on a compute grid.

	Sensitive to the Desires of Machine Owners
	The owner of a machine has complete priority over the use of the
machine. HTCondor lets the machine’s owner decide if and how HTCondor
uses the machine. When HTCondor relinquishes the machine, it cleans up
any files created by the jobs that ran on the system.

	Flexible Policy Mechanisms
	HTCondor allows users to specify very flexible policies for
how they want jobs to be run. Conversely, it independently
allows the owners of machines to specify very flexible policies
about what jobs (if any) should be run on their machines. Together,
HTCondor merges and adjudicates these policy requests into one
coherent system.

The ClassAd mechanism in HTCondor provides
an expressive framework for matchmaking resource
requests with resource offers. Users can easily request both job
requirements and job desires. For example, a user can require that
their job must be started on a machine with a
certain amount of memory, but should there be multiple available
machines that meet that criteria, to select the one with the most
memory.

Availability

HTCondor is available for download from the URL
http://htcondor.org/downloads/.

For more platform-specific information about HTCondor’s support for
various operating systems, see the Platform-Specific Information chapter.

Contributions and Acknowledgments

The quality of the HTCondor project is enhanced by the contributions of
external organizations. We gratefully acknowledge the following
contributions.

	The GOZAL Project from the Computer Science Department of the
Technion Israel Institute of Technology
(http://www.technion.ac.il/), for
their enhancements for HTCondor’s High Availability. The
condor_had daemon allows one of multiple machines to function as
the central manager for a HTCondor pool. Therefore, if an acting
central manager fails, another can take its place.

	Micron Corporation
(http://www.micron.com/) for the
MSI-based installer for HTCondor on Windows.

	Paradyn Project
(http://www.paradyn.org/) and the
Universitat Autònoma de Barcelona
(http://www.caos.uab.es/) for work on
the Tool Daemon Protocol (TDP).

The HTCondor project wishes to acknowledge the following:

	This material is based upon work supported by the National Science
Foundation under Grant Numbers MCS-8105904, OCI-0437810, and
OCI-0850745. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation.

Support, Downloads and Bug Reporting

The latest software releases, publications/papers regarding HTCondor and
other High-Throughput Computing research can be found at the official
web site for HTCondor at
http://htcondor.org/.

Downloads

A list of recent HTCondor software releases is available on our downloads page:
https://htcondor.org/downloads.

Selecting a release channel will lead you to the
Downloading and Installing section of the HTCondor Manual, which describes
how to download and install HTCondor.

Support

Mailing Lists

Our users support each other on a community unmoderated mailing list
(htcondor-users@cs.wisc.edu) targeted at solving problems with
HTCondor. HTCondor team members attempt to monitor traffic to
htcondor-users, responding as they can. Follow the instructions at
http://htcondor.org/mail-lists.
If you have a question or potential bug report for HTCondor that
can be asked on a public mailing list, this is the first place to go.

In addition, there is a very low-volume e-mail list at htcondor-world@cs.wisc.edu.
We use this e-mail list to announce new releases of
HTCondor and other major HTCondor-related news items. To subscribe or
unsubscribe from the list, follow the instructions at
http://htcondor.org/mail-lists.
The HTCondor World e-mail list group is moderated, and only
major announcements of wide interest are distributed.

Email Support

You can reach the HTCondor Team directly. The HTCondor Team is
composed of the developers and administrators of HTCondor at the
University of Wisconsin-Madison. HTCondor questions, bug reports,
comments, pleas for help, and requests for commercial contract
consultation or support are all welcome; send e-mail to
htcondor-admin@cs.wisc.edu.
Please include your name, organization, and email in your
message. If you are having trouble with HTCondor, please help us
troubleshoot by including as much pertinent information as you can,
including snippets of HTCondor log files, and the version
of HTCondor you are running.

Finally, we have several options for users who require additional support for
HTCondor beyond the free support listed above. All details are available on
our website: https://htcondor.org/htcondor-support/

Reporting Bugs

We recommend you use the mailing lists or email support listed above to report
bugs. Please provide as much information as possible: detailed information
about the problem, relevant log files, and steps on how to reproduce it.
If it’s a new issue that our team was not aware of, we’ll create a new ticket
in our system.

Ticketing System

Experienced HTCondor users can also request a user account that will allow
them to create tickets directly in our system:

https://htcondor-wiki.cs.wisc.edu/index.cgi/rptview?rn=4

To get an account, send an email to htcondor-admin@cs.wisc.edu explaining why
you want it and how you intend to use it. These are typically reserved for
known collaborators with direct contact to the HTCondor team.

Users’ Manual

	Welcome and Introduction to HTCondor

	Running a Job: the Steps To Take

	Submitting a Job
	Sample submit description files

	Submitting many similar jobs with one queue command

	Variables in the Submit Description File

	Including Submit Commands Defined Elsewhere

	Using Conditionals in the Submit Description File

	Function Macros in the Submit Description File

	About Requirements and Rank

	Submitting Jobs Using a Shared File System

	Jobs That Require Credentials

	Jobs That Require GPUs

	Interactive Jobs

	Submitting Lots of Jobs

	Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism
	Specifying If and When to Transfer Files

	Specifying What Files to Transfer

	File Paths for File Transfer

	Dataflow Jobs

	Public Input Files

	Behavior for Error Cases

	File Transfer Using a URL

	Managing a Job
	Checking on the progress of jobs

	Peeking in on a running job’s output files

	Starting an interactive shell next to a running job on a remote machine

	Removing a job from the queue

	Placing a job on hold

	Changing the priority of jobs

	Why is the job not running?

	Job in the Hold State

	In the Job Event Log File

	Job Termination

	Job Completion

	Summary of all HTCondor users and their jobs

	Automatically managing a job
	Automatically rerunning a failed job

	Automatically removing a job in the queue

	Automatically placing a job on hold

	Automatically releasing a held job

	Holding a completed job

	How To Debug an Always Idle Job
	Jobs that start but are quickly evicted

	Jobs that don’t match any Execution Point

	Not enough priority

	Systemic problems

	Services for Running Jobs
	Environment Variables

	Extra Environment Variables HTCondor sets for Jobs

	Communicating with the Submit machine via Chirp

	When changes to a job made by chirp take effect

	Resource Limitations on a Running Job

	Priorities and Preemption
	Job Priority

	User priority

	Details About How HTCondor Jobs Vacate Machines

	Job Sets
	Submitting a job set

	Listing job sets

	Checking on the progress of job sets

	Removing a job set

	Matchmaking with ClassAds
	Inspecting Machine ClassAds with condor_status

	Choosing an HTCondor Universe
	Vanilla Universe

	Grid Universe

	Java Universe

	Scheduler Universe

	Local Universe

	Parallel Universe

	VM Universe

	Docker Universe

	Container Universe

	Java Applications
	A Simple Example Java Application

	Less Simple Java Specifications

	Chirp I/O

	Parallel Applications (Including MPI Applications)
	How Parallel Jobs Run

	Parallel Jobs and the Dedicated Scheduler

	Submission Examples

	MPI Applications Within HTCondor’s Vanilla Universe

	Virtual Machine Applications
	The Submit Description File

	Checkpoints

	Disk Images

	Job Completion in the vm Universe

	Failures to Launch

	Docker Universe Applications
	Docker and Networking

	Container Universe Jobs

	Self-Checkpointing Applications
	How To Run Self-Checkpointing Jobs

	Requirements

	Using checkpoint_exit_code

	How Frequently to Checkpoint

	Debugging Self-Checkpointing Jobs

	Working Around the Assumptions

	Other Options

	Signals

	Submitting a Remote Job
	Submitting a job to a remote Access Point

	File transfer with remote submission

	Time Scheduling for Job Execution
	Job Deferral

	CronTab Scheduling

	Special Environment Considerations
	AFS

	NFS

	HTCondor Daemons That Do Not Run as root

	Job Leases

	Heterogeneous Submit: Execution on Differing Architectures

Welcome and Introduction to HTCondor

The HTCondor software system is developed by the Center for High Throughput
Computing at the University of Wisconsin-Madison (UW-Madison), and was first
installed as a production system in the UW-Madison Computer Sciences department
in the 1990s. HTCondor pools have since served as a major source of computing
cycles to thousands of campuses, labs, organizations and commercial entities.
For many, it has revolutionized the role computing plays in their research.
Increasing computing throughput by several orders of magnitude may not merely
deliver the same results faster, but may enable qualitatively different avenues
of research.

HTCondor is a specialized batch system for managing
compute-intensive jobs. HTCondor provides a queuing mechanism, scheduling
policy, priority scheme, and resource classifications. Users submit their
compute jobs to HTCondor, HTCondor puts the jobs in a queue, runs them, and
then informs the user as to the result.

Batch systems normally operate only with dedicated machines. Often termed
worker nodes, these dedicated machines are typically owned by one group and
dedicated to the sole purpose of running compute jobs. HTCondor can schedule
jobs on dedicated machines. But unlike traditional batch systems, HTCondor is
also designed to run jobs on machines shared and used by other systems or
people. By running on these shared resources, HTCondor can effectively harness
all machines throughout a campus. This is important because often an
organization has more latent, idle computers than any single department or
group otherwise has access to.

Running a Job: the Steps To Take

Here are the basic steps to run a job with HTCondor.

	Work Decomposition
	Typically, users want High Throughput computing systems when they have
more work than can reasonably run on a single machine. Therefore, the
computation must run concurrently on multiple machines. HTCondor itself
does not help with breaking up a large amount of work to run independently
on many machines. In many cases, such as Monte Carlo simulations, this
may be trivial to do. In other situations, the code must be refactored
or code loops may need to be broken into separate work steps in order to be
suitable for High Throughput computing. Work must be broken down into
a set of jobs whose runtime is neither too short nor too long. HTCondor
is most efficient when running jobs whose runtime is measured in minutes
or hours. There is overhead in scheduling each job, which is why very short
jobs (measured in seconds) do not work well. On the other hand, if a job
takes many days to run, there is the threat of losing work in progress should
the job or the server it runs on crashes.

	Prepare the job for batch execution.
	To run under HTCondor a job must be able to run as a background batch
job. HTCondor runs the program
unattended and in the background. A program that runs in the
background will not be able to do interactive input and output.
Create any needed input files for the program.
Make certain the program will run correctly with these files.

	Create a description file.
	A submit description file controls the all details of a job submission.
This text file tells HTCondor everything it needs to know to run the job
on a remote machine, e.g. how much memory and how many cpu cores are
needed, what input files the job needs, and other aspects of
machine the job might need.

Write a submit description file to go with the job, using the
examples provided in the Submitting a Job
section for guidance. There are many possible options that can be
set in a submit file, but most submit files only use a few. The complete list
of submit file options is in condor_submit.

	Submit the Job.
	Submit the program to HTCondor with the condor_submit command.

HTCondor will assign the job a unique Cluster and Proc identifier
as integers separated by a dot. You use this Cluster and Proc
id to manage the job later.

	Manage the Job.
	After submission, HTCondor manages the job during its lifetime. You
can monitor the job’s progress with the condor_q.
On some platforms, you can ssh to a running job with the
condor_ssh_to_job command, and inspect the job as it runs.

HTCondor can write into a log file describing changes to the state
of your job – when it starts executing, when
it uses more resources, when it completes, or when it is preempted
from a machine. You can remove a running or idle job from the queue
with condor_rm.

	Examine the results of a finished job.
	When your program completes, HTCondor will tell you (by e-mail, if
preferred) the exit status of your program and various statistics about
its performances, including time used and I/O performed. If you are
using a log file for the job, the exit status will
be recorded in there. Output files will be transferred back to the
submitting machine, if a shared filesystem is not used. After the job
completes, it will not be visible to the condor_q command
, but is queryable with the condor_history command.

Submitting a Job

The condor_submit command takes a job description file as input
and submits the job to HTCondor.

In the submit description file, HTCondor finds everything it needs to
know about the job. Items such as the name of the executable to run, the
initial working directory, and command-line arguments to the program all
go into the submit description file. condor_submit creates a job
ClassAd based upon the information, and HTCondor works toward running
the job.

It is easy to submit multiple runs of a program
to HTCondor with a single submit description file. To run the same
program many times with different input data sets, arrange the data files
accordingly so that each run reads its own input, and each run writes
its own output. Each individual run may have its own initial working
directory, files mapped for stdin, stdout, stderr,
command-line arguments, and shell environment.

The condor_submit manual page contains a complete and full
description of how to use condor_submit. It also includes descriptions of
all of the many commands that may be placed into a submit description
file. In addition, the index lists entries for each command under the
heading of Submit Commands.

Sample submit description files

In addition to the examples of submit description files given here,
there are more in the condor_submit manual page.

Example 1

Example 1 is one of the simplest submit description files possible. It
queues the program myexe for execution somewhere in the pool.
As this submit description file does not request a specific operating
system to run on, HTCondor will use the default, which is to run the job
on a machine which has the same architecture and operating system
it was submitted from.

Before submitting a job to HTCondor, it is a good idea to test it
first locally, by running it from a command shell. This example job
might look like this when run from the shell prompt.

$./myexe SomeArgument

The corresponding submit description file might look like the following

Example 1
Simple HTCondor submit description file
Everything with a leading # is a comment

executable = myexe
arguments = SomeArgument

output = outputfile
error = errorfile
log = myexe.log

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

should_transfer_files = yes

queue

The standard output for this job will go to the file
outputfile, as specified by the
output command. Likewise,
the standard error output will go to errorfile.

HTCondor will append events about the job to a log file with the
requested name myexe.log. When the job
finishes, its exit conditions and resource usage will also be noted in the log file.
This file’s contents are an excellent way to figure out what happened to jobs.

HTCondor needs to know how many machine resources to allocate to this job.
The request_ lines describe that this job should be allocated 1 cpu core, 1024
megabytes of memory and 10240 kilobytes of scratch disk space.

Finally, the queue statement tells HTCondor that you are done describing the
job, and to send it to the queue for processing.

Example 2

The submit description file for Example 2 queues 150
 runs of program foo.
This job requires machines which have at least
4 GiB of physical memory, one cpu core and 16 Gb of scratch disk.
Each of the 150 runs of the program is given its own HTCondor process number,
starting with 0. $(Process) is expanded by HTCondor to the actual number
used by each instance of the job. So, stdout, and stderr will refer to
out.0, and err.0 for the first run of the program,
out.1, and err.1 for the second run of the program,
and so forth. A log file containing entries about when and where
HTCondor runs, transfer files, and terminates for all the 150
queued programs will be written into the single file foo.log.
If there are 150 or more available slots in your pool, all 150 instances
might be run at the same time, otherwise, HTCondor will run as many as
it can concurrently.

Each instance of this program works on one input file. The name of this
input file is passed to the program as the only argument. We prepare
150 copies of this input file in the current directory, and name them
input_file.0, input_file.1 … up to input_file.149. Using transfer_input_files,
we tell HTCondor which input file to send to each instance of the program.

Example 2: Show off some fancy features,
including the use of pre-defined macros.

executable = foo
arguments = input_file.$(Process)

request_cpus = 1
request_memory = 4096M
request_disk = 16383K

error = err.$(Process)
output = out.$(Process)
log = foo.log

should_transfer_files = yes
transfer_input_files = input_file.$(Process)

submit 150 instances of this job
queue 150

Submitting many similar jobs with one queue command

A wide variety of job submissions can be specified with extra
information to the queue
submit command. This flexibility eliminates the need for a job wrapper
or Perl script for many submissions.

The form of the queue command defines variables and expands values,
identifying a set of jobs. Square brackets identify an optional item.

queue [<int expr>]

queue [<int expr>] [<varname>] in [slice]
<list of items>

queue [<int expr>] [<varname>] matching [files |
dirs] [slice] <list of items with file globbing>

queue [<int expr>] [<list of varnames>] from
[slice] <file name> | <list of items>

All optional items have defaults:

	If <int expr> is not specified, it defaults to the value 1.

	If <varname> or <list of varnames> is not specified, it
defaults to the single variable called ITEM.

	If slice is not specified, it defaults to all elements within the
list. This is the Python slice [::], with a step value of 1.

	If neither files nor dirs is specified in a specification
using the from key word, then both files and directories are
considered when globbing.

The list of items uses syntax in one of two forms. One form is a comma
and/or space separated list; the items are placed on the same line as
the queue command. The second form separates items by placing each
list item on its own line, and delimits the list with parentheses. The
opening parenthesis goes on the same line as the queue command. The
closing parenthesis goes on its own line. The queue command
specified with the key word from will always use the second form of
this syntax. Example 3 below uses this second form of syntax. Finally,
the key word from accepts a shell command in place of file name,
followed by a pipe | (example 4).

The optional slice specifies a subset of the list of items using the
Python syntax for a slice. Negative step values are not permitted.

Here are a set of examples.

Example 1

transfer_input_files = $(filename)
arguments = -infile $(filename)
queue filename matching files *.dat

The use of file globbing expands the list of items to be all files in
the current directory that end in .dat. Only files, and not
directories are considered due to the specification of files. One
job is queued for each file in the list of items. For this example,
assume that the three files initial.dat, middle.dat, and
ending.dat form the list of items after expansion; macro
filename is assigned the value of one of these file names for each
job queued. That macro value is then substituted into the arguments
and transfer_input_files commands. The queue command expands
to

transfer_input_files = initial.dat
arguments = -infile initial.dat
queue
transfer_input_files = middle.dat
arguments = -infile middle.dat
queue
transfer_input_files = ending.dat
arguments = -infile ending.dat
queue

Example 2

queue 1 input in A, B, C

Variable input is set to each of the 3 items in the list, and one
job is queued for each. For this example the queue command expands
to

input = A
queue
input = B
queue
input = C
queue

Example 3

queue input, arguments from (
 file1, -a -b 26
 file2, -c -d 92
)

Using the from form of the options, each of the two variables
specified is given a value from the list of items. For this example the
queue command expands to

input = file1
arguments = -a -b 26
queue
input = file2
arguments = -c -d 92
queue

Example 4

queue from seq 7 9 |

feeds the list of items to queue with the output of seq 7 9:

item = 7
queue
item = 8
queue
item = 9
queue

Variables in the Submit Description File

There are automatic variables for use within the submit description
file.

	$(Cluster) or $(ClusterId)
	Each set of queued jobs from a specific user, submitted from a
single submit host, sharing an executable have the same value of
$(Cluster) or $(ClusterId). The first cluster of jobs are
assigned to cluster 0, and the value is incremented by one for each
new cluster of jobs. $(Cluster) or $(ClusterId) will have
the same value as the job ClassAd attribute ClusterId.

	$(Process) or $(ProcId)
	Within a cluster of jobs, each takes on its own unique
$(Process) or $(ProcId) value. The first job has value 0.
$(Process) or $(ProcId) will have the same value as the job
ClassAd attribute ProcId.

	$$(a_machine_classad_attribute)
	When the machine is matched to this job for it to run on, any
dollar-dollar expressions are looked up from the machine ad, and then
expanded. This lets you put the value of some machine ad attribute
into your job. For example, if you to pass the actual amount of
memory a slot has provisioned as an argument to the job, you
could add arguments = --mem $$(Memory)

arguments = --mem $$(Memory)

or, if you wanted to put the name of the machine the job ran on
into the output file name, you could add

output = output_file.$$(Name)

	$$([an_evaluated_classad_expression])
	This dollar-dollar-bracket syntax is useful when you need to
perform some math on a value before passing it to your job.
For example, if want to pass 90% of the allocated memory as an
argument to your job, the submit file can have

arguments = --mem $$([Memory * 0.9])

and when the job is matched to a machine, condor will evaluate
this expression in the context of both the job and machine ad

	$(ARCH)
	The Architecture that HTCondor is running on, or the ARCH variable
in the config file. Example might be X86_64.

	$(OPSYS) $(OPSYSVER) $(OPSYSANDVER) $(OPSYSMAJORVER)
	These submit file macros are availle at submit time, and mimic
the classad attributes of the same names.

	$(SUBMIT_FILE)
	The name of the submit_file as passed to the condor_submit command.

	$(SUBMIT_TIME)
	The Unix epoch time submit was run. Note, this may be useful for
naming output files.

	$(Year) $(Month) $(Day)
	These integer values are derived from the $(SUBMIT_TIME) macro above.

	$(Item)
	The default name of the variable when no <varname> is provided
in a queue command.

	$(ItemIndex)
	Represents an index within a list of items. When no slice is
specified, the first $(ItemIndex) is 0. When a slice is
specified, $(ItemIndex) is the index of the item within the
original list.

	$(Step)
	For the <int expr> specified, $(Step) counts, starting at 0.

	$(Row)
	When a list of items is specified by placing each item on its own
line in the submit description file, $(Row) identifies which
line the item is on. The first item (first line of the list) is
$(Row) 0. The second item (second line of the list) is
$(Row) 1. When a list of items are specified with all items on
the same line, $(Row) is the same as $(ItemIndex).

Here is an example of a queue command for which the values of these
automatic variables are identified.

Example 1

This example queues six jobs.

queue 3 in (A, B)

	$(Process) takes on the six values 0, 1, 2, 3, 4, and 5.

	Because there is no specification for the <varname> within this
queue command, variable $(Item) is defined. It has the value
A for the first three jobs queued, and it has the value B for
the second three jobs queued.

	$(Step) takes on the three values 0, 1, and 2 for the three jobs
with $(Item)=A, and it takes on the same three values 0, 1, and 2
for the three jobs with $(Item)=B.

	$(ItemIndex) is 0 for all three jobs with $(Item)=A, and it
is 1 for all three jobs with $(Item)=B.

	$(Row) has the same value as $(ItemIndex) for this example.

Including Submit Commands Defined Elsewhere

Externally defined submit commands can be incorporated into the submit
description file using the syntax

include : <what-to-include>

The <what-to-include> specification may specify a single file, where the
contents of the file will be incorporated into the submit description
file at the point within the file where the include is. Or,
<what-to-include> may cause a program to be executed, where the output
of the program is incorporated into the submit description file. The
specification of <what-to-include> has the bar character (|)
following the name of the program to be executed.

The include key word is case insensitive. There are no requirements
for white space characters surrounding the colon character.

Included submit commands may contain further nested include
specifications, which are also parsed, evaluated, and incorporated.
Levels of nesting on included files are limited, such that infinite
nesting is discovered and thwarted, while still permitting nesting.

Consider the example

include : ./list-infiles.sh |

In this example, the bar character at the end of the line causes the
script list-infiles.sh to be invoked, and the output of the script
is parsed and incorporated into the submit description file. If this
bash script is in the PATH when submit is run, and contains

#!/bin/sh

echo "transfer_input_files = `ls -m infiles/*.dat`"
exit 0

then the output of this script has specified the set of input files to
transfer to the execute host. For example, if directory infiles
contains the three files A.dat, B.dat, and C.dat, then the
submit command

transfer_input_files = infiles/A.dat, infiles/B.dat, infiles/C.dat

is incorporated into the submit description file.

Using Conditionals in the Submit Description File

Conditional if/else semantics are available in a limited form. The
syntax:

if <simple condition>
 <statement>
 . . .
 <statement>
else
 <statement>
 . . .
 <statement>
endif

An else key word and statements are not required, such that simple if
semantics are implemented. The <simple condition> does not permit
compound conditions. It optionally contains the exclamation point
character (!) to represent the not operation, followed by

	the defined keyword followed by the name of a variable. If the
variable is defined, the statement(s) are incorporated into the
expanded input. If the variable is not defined, the statement(s) are
not incorporated into the expanded input. As an example,

if defined MY_UNDEFINED_VARIABLE
 X = 12
else
 X = -1
endif

results in X = -1, when MY_UNDEFINED_VARIABLE is not yet
defined.

	the version keyword, representing the version number of of the daemon
or tool currently reading this conditional. This keyword is followed
by an HTCondor version number. That version number can be of the form
x.y.z or x.y. The version of the daemon or tool is compared to the
specified version number. The comparison operators are

	== for equality. Current version 8.2.3 is equal to 8.2.

	>= to see if the current version number is greater than or equal
to. Current version 8.2.3 is greater than 8.2.2, and current
version 8.2.3 is greater than or equal to 8.2.

	<= to see if the current version number is less than or equal to.
Current version 8.2.0 is less than 8.2.2, and current version
8.2.3 is less than or equal to 8.2.

As an example,

if version >= 8.1.6
 DO_X = True
else
 DO_Y = True
endif

results in defining DO_X as True if the current version of
the daemon or tool reading this if statement is 8.1.6 or a more
recent version.

	True or yes or the value 1. The statement(s) are incorporated.

	False or no or the value 0 The statement(s) are not incorporated.

	$(<variable>) may be used where the immediately evaluated value is a
simple boolean value. A value that evaluates to the empty string is
considered False, otherwise a value that does not evaluate to a
simple boolean value is a syntax error.

The syntax

if <simple condition>
 <statement>
 . . .
 <statement>
elif <simple condition>
 <statement>
 . . .
 <statement>
endif

is the same as syntax

if <simple condition>
 <statement>
 . . .
 <statement>
else
 if <simple condition>
 <statement>
 . . .
 <statement>
 endif
endif

Here is an example use of a conditional in the submit description file.
A portion of the sample.sub submit description file uses the if/else
syntax to define command line arguments in one of two ways:

if defined X
 arguments = -n $(X)
else
 arguments = -n 1 -debug
endif

Submit variable X is defined on the condor_submit command line
with

$ condor_submit X=3 sample.sub

This command line incorporates the submit command X = 3 into the
submission before parsing the submit description file. For this
submission, the command line arguments of the submitted job become

arguments = -n 3

If the job were instead submitted with the command line

$ condor_submit sample.sub

then the command line arguments of the submitted job become

arguments = -n 1 -debug

Function Macros in the Submit Description File

A set of predefined functions increase flexibility. Both submit
description files and configuration files are read using the same
parser, so these functions may be used in both submit description files
and configuration files.

Case is significant in the function’s name, so use the same letter case
as given in these definitions.

	$CHOICE(index, listname) or $CHOICE(index, item1, item2, ...)
	An item within the list is returned. The list is represented by a
parameter name, or the list items are the parameters. The index
parameter determines which item. The first item in the list is at
index 0. If the index is out of bounds for the list contents, an
error occurs.

	$ENV(environment-variable-name[:default-value])
	Evaluates to the value of environment variable
environment-variable-name. If there is no environment variable
with that name, Evaluates to UNDEFINED unless the optional
:default-value is used; in which case it evaluates to default-value.
For example,

A = $ENV(HOME)

binds A to the value of the HOME environment variable.

	$F[fpduwnxbqa](filename)
	One or more of the lower case letters may be combined to form the
function name and thus, its functionality. Each letter operates on
the filename in its own way.

	f convert relative path to full path by prefixing the current
working directory to it. This option works only in
condor_submit files.

	p refers to the entire directory portion of filename,
with a trailing slash or backslash character. Whether a slash or
backslash is used depends on the platform of the machine. The
slash will be recognized on Linux platforms; either a slash or
backslash will be recognized on Windows platforms, and the parser
will use the same character specified.

	d refers to the last portion of the directory within the
path, if specified. It will have a trailing slash or backslash,
as appropriate to the platform of the machine. The slash will be
recognized on Linux platforms; either a slash or backslash will
be recognized on Windows platforms, and the parser will use the
same character specified unless u or w is used. if b is used the
trailing slash or backslash will be omitted.

	u convert path separators to Unix style slash characters

	w convert path separators to Windows style backslash
characters

	n refers to the file name at the end of any path, but without
any file name extension. As an example, the return value from
$Fn(/tmp/simulate.exe) will be simulate (without the
.exe extension).

	x refers to a file name extension, with the associated period
(.). As an example, the return value from
$Fn(/tmp/simulate.exe) will be .exe.

	b when combined with the d option, causes the trailing slash
or backslash to be omitted. When combined with the x option,
causes the leading period (.) to be omitted.

	q causes the return value to be enclosed within quotes.
Double quote marks are used unless a is also specified.

	a When combined with the q option, causes the return value to
be enclosed within single quotes.

$DIRNAME(filename) is the same as $Fp(filename)

$BASENAME(filename) is the same as $Fnx(filename)

	$INT(item-to-convert) or $INT(item-to-convert, format-specifier)
	Expands, evaluates, and returns a string version of
item-to-convert. The format-specifier has the same syntax as
a C language or Perl format specifier. If no format-specifier is
specified, “%d” is used as the format specifier.

	$RANDOM_CHOICE(choice1, choice2, choice3, ...)
	 A random choice
of one of the parameters in the list of parameters is made. For
example, if one of the integers 0-8 (inclusive) should be randomly
chosen:

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)

	$RANDOM_INTEGER(min, max [, step])
	 A random integer
within the range min and max, inclusive, is selected. The optional
step parameter controls the stride within the range, and it defaults
to the value 1. For example, to randomly chose an even integer in
the range 0-8 (inclusive):

$RANDOM_INTEGER(0, 8, 2)

	$REAL(item-to-convert) or $REAL(item-to-convert, format-specifier)
	Expands, evaluates, and returns a string version of
item-to-convert for a floating point type. The
format-specifier is a C language or Perl format specifier. If no
format-specifier is specified, “%16G” is used as a format
specifier.

	$SUBSTR(name, start-index) or $SUBSTR(name, start-index, length)
	Expands name and returns a substring of it. The first character of
the string is at index 0. The first character of the substring is at
index start-index. If the optional length is not specified, then the
substring includes characters up to the end of the string. A
negative value of start-index works back from the end of the string.
A negative value of length eliminates use of characters from the end
of the string. Here are some examples that all assume

Name = abcdef

	$SUBSTR(Name, 2) is cdef.

	$SUBSTR(Name, 0, -2) is abcd.

	$SUBSTR(Name, 1, 3) is bcd.

	$SUBSTR(Name, -1) is f.

	$SUBSTR(Name, 4, -3) is the empty string, as there are no
characters in the substring for this request.

Here are example uses of the function macros in a submit description
file. Note that these are not complete submit description files, but
only the portions that promote understanding of use cases of the
function macros.

Example 1

Generate a range of numerical values for a set of jobs, where values
other than those given by $(Process) are desired.

MyIndex = $(Process) + 1
initial_dir = run-$INT(MyIndex,%04d)

Assuming that there are three jobs queued, such that $(Process) becomes
0, 1, and 2, initial_dir will evaluate to the directories
run-0001, run-0002, and run-0003.

Example 2

This variation on Example 1 generates a file name extension which is a
3-digit integer value.

Values = $(Process) * 10
Extension = $INT(Values,%03d)
input = X.$(Extension)

Assuming that there are four jobs queued, such that $(Process) becomes
0, 1, 2, and 3, Extension will evaluate to 000, 010, 020, and 030,
leading to files defined for input of X.000, X.010,
X.020, and X.030.

Example 3

This example uses both the file globbing of the
queue command and a macro
function to specify a job input file that is within a subdirectory on
the submit host, but will be placed into a single, flat directory on the
execute host.

arguments = $Fnx(FILE)
transfer_input_files = $(FILE)
queue FILE matching (
 samplerun/*.dat
)

Assume that two files that end in .dat, A.dat and B.dat, are
within the directory samplerun. Macro FILE expands to
samplerun/A.dat and samplerun/B.dat for the two jobs queued. The
input files transferred are samplerun/A.dat and samplerun/B.dat
on the submit host. The $Fnx() function macro expands to the
complete file name with any leading directory specification stripped,
such that the command line argument for one of the jobs will be
A.dat and the command line argument for the other job will be
B.dat.

About Requirements and Rank

The requirements and rank commands in the submit description
file are powerful and flexible.

 Using them effectively requires
care, and this section presents those details.

Both requirements and rank need to be specified as valid
HTCondor ClassAd expressions, however, default values are set by the
condor_submit program if these are not defined in the submit
description file. From the condor_submit manual page and the above
examples, you see that writing ClassAd expressions is intuitive,
especially if you are familiar with the programming language C. There
are some pretty nifty expressions you can write with ClassAds. A
complete description of ClassAds and their expressions can be found in
the HTCondor’s ClassAd Mechanism section.

All of the commands in the submit description file are case insensitive,
except for the ClassAd attribute string values. ClassAd attribute names
are case insensitive, but ClassAd string values are case preserving.

Note that the comparison operators (<, >, <=, >=, and ==) compare
strings case insensitively. The special comparison operators =?= and =!=
compare strings case sensitively.

A requirements or
rank command in the submit
description file may utilize attributes that appear in a machine or a
job ClassAd. Within the submit description file (for a job) the prefix
MY. (on a ClassAd attribute name) causes a reference to the job ClassAd
attribute, and the prefix TARGET. causes a reference to a potential
machine or matched machine ClassAd attribute.

The condor_status command displays
 statistics about
machines within the pool. The -l option displays the machine ClassAd
attributes for all machines in the HTCondor pool. The job ClassAds, if
there are jobs in the queue, can be seen with the condor_q -l
command. This shows all the defined attributes for current jobs in the
queue.

A list of defined ClassAd attributes for job ClassAds is given in the
Appendix on the Job ClassAd Attributes page. A
list of defined ClassAd attributes for machine ClassAds is given in the
Appendix on the Machine ClassAd Attributes page.

Rank Expression Examples

When considering the match between a job and a machine, rank is used to
choose a match from among all machines that satisfy the job’s
requirements and are available to the user, after accounting for the
user’s priority and the machine’s rank of the job. The rank expressions,
simple or complex, define a numerical value that expresses preferences.

The job’s Rank expression evaluates to one of three values. It can
be UNDEFINED, ERROR, or a floating point value. If Rank evaluates to
a floating point value, the best match will be the one with the largest,
positive value. If no Rank is given in the submit description file,
then HTCondor substitutes a default value of 0.0 when considering
machines to match. If the job’s Rank of a given machine evaluates to
UNDEFINED or ERROR, this same value of 0.0 is used. Therefore, the
machine is still considered for a match, but has no ranking above any
other.

A boolean expression evaluates to the numerical value of 1.0 if true,
and 0.0 if false.

The following Rank expressions provide examples to follow.

For a job that desires the machine with the most available memory:

Rank = memory

For a job that prefers to run on a friend’s machine on Saturdays and
Sundays:

Rank = ((clockday == 0) || (clockday == 6))
 && (machine == "friend.cs.wisc.edu")

For a job that prefers to run on one of three specific machines:

Rank = (machine == "friend1.cs.wisc.edu") ||
 (machine == "friend2.cs.wisc.edu") ||
 (machine == "friend3.cs.wisc.edu")

For a job that wants the machine with the best floating point
performance (on Linpack benchmarks):

Rank = kflops

This particular example highlights a difficulty with Rank expression
evaluation as currently defined. While all machines have floating point
processing ability, not all machines will have the kflops attribute
defined. For machines where this attribute is not defined, Rank will
evaluate to the value UNDEFINED, and HTCondor will use a default rank of
the machine of 0.0. The Rank attribute will only rank machines where
the attribute is defined. Therefore, the machine with the highest
floating point performance may not be the one given the highest rank.

So, it is wise when writing a Rank expression to check if the
expression’s evaluation will lead to the expected resulting ranking of
machines. This can be accomplished using the condor_status command
with the -constraint argument. This allows the user to see a list of
machines that fit a constraint. To see which machines in the pool have
kflops defined, use

$ condor_status -constraint kflops

Alternatively, to see a list of machines where kflops is not
defined, use

$ condor_status -constraint "kflops=?=undefined"

For a job that prefers specific machines in a specific order:

Rank = ((machine == "friend1.cs.wisc.edu")*3) +
 ((machine == "friend2.cs.wisc.edu")*2) +
 (machine == "friend3.cs.wisc.edu")

If the machine being ranked is friend1.cs.wisc.edu, then the
expression

(machine == "friend1.cs.wisc.edu")

is true, and gives the value 1.0. The expressions

(machine == "friend2.cs.wisc.edu")

and

(machine == "friend3.cs.wisc.edu")

are false, and give the value 0.0. Therefore, Rank evaluates to the
value 3.0. In this way, machine friend1.cs.wisc.edu is ranked higher
than machine friend2.cs.wisc.edu, machine friend2.cs.wisc.edu is
ranked higher than machine friend3.cs.wisc.edu, and all three of
these machines are ranked higher than others.

Submitting Jobs Using a Shared File System

If vanilla, java, or parallel universe jobs are submitted without using
the File Transfer mechanism, HTCondor must use a shared file system to
access input and output files. In this case, the job must be able to
access the data files from any machine on which it could potentially
run.

As an example, suppose a job is submitted from blackbird.cs.wisc.edu,
and the job requires a particular data file called
/u/p/s/psilord/data.txt. If the job were to run on
cardinal.cs.wisc.edu, the file /u/p/s/psilord/data.txt must be
available through either NFS or AFS for the job to run correctly.

HTCondor allows users to ensure their jobs have access to the right
shared files by using the FileSystemDomain and UidDomain machine
ClassAd attributes. These attributes specify which machines have access
to the same shared file systems. All machines that mount the same shared
directories in the same locations are considered to belong to the same
file system domain. Similarly, all machines that share the same user
information (in particular, the same UID, which is important for file
systems like NFS) are considered part of the same UID domain.

The default configuration for HTCondor places each machine in its own
UID domain and file system domain, using the full host name of the
machine as the name of the domains. So, if a pool does have access to a
shared file system, the pool administrator must correctly configure
HTCondor such that all the machines mounting the same files have the
same FileSystemDomain configuration. Similarly, all machines that
share common user information must be configured to have the same
UidDomain configuration.

When a job relies on a shared file system, HTCondor uses the
requirements expression to ensure that the job runs on a machine in
the correct UidDomain and FileSystemDomain. In this case, the
default requirements expression specifies that the job must run on a
machine with the same UidDomain and FileSystemDomain as the
machine from which the job is submitted. This default is almost always
correct. However, in a pool spanning multiple UidDomains and/or
FileSystemDomains, the user may need to specify a different
requirements expression to have the job run on the correct machines.

For example, imagine a pool made up of both desktop workstations and a
dedicated compute cluster. Most of the pool, including the compute
cluster, has access to a shared file system, but some of the desktop
machines do not. In this case, the administrators would probably define
the FileSystemDomain to be cs.wisc.edu for all the machines that
mounted the shared files, and to the full host name for each machine
that did not. An example is jimi.cs.wisc.edu.

In this example, a user wants to submit vanilla universe jobs from her
own desktop machine (jimi.cs.wisc.edu) which does not mount the shared
file system (and is therefore in its own file system domain, in its own
world). But, she wants the jobs to be able to run on more than just her
own machine (in particular, the compute cluster), so she puts the
program and input files onto the shared file system. When she submits
the jobs, she needs to tell HTCondor to send them to machines that have
access to that shared data, so she specifies a different
requirements expression than the default:

Requirements = TARGET.UidDomain == "cs.wisc.edu" && \
 TARGET.FileSystemDomain == "cs.wisc.edu"

WARNING: If there is no shared file system, or the HTCondor pool
administrator does not configure the FileSystemDomain setting
correctly (the default is that each machine in a pool is in its own file
system and UID domain), a user submits a job that cannot use remote
system calls (for example, a vanilla universe job), and the user does
not enable HTCondor’s File Transfer mechanism, the job will only run on
the machine from which it was submitted.

Jobs That Require Credentials

If the HTCondor pool administrator has configured the access point
with one or more credential monitors,
jobs submitted on that machine may automatically be provided with credentials
and/or it may be possible for users to request and obtain credentials for their jobs.

Suppose the administrator has configured the access point
such that users may obtain credentials from a storage service called “CloudBoxDrive.”
A job that needs credentials from CloudBoxDrive
should contain the submit command

use_oauth_services = cloudboxdrive

Upon submitting this job for the first time,
the user will be directed to a webpage hosted on the access point
which will guide the user through the process of obtaining a CloudBoxDrive credential.
The credential is then stored securely on the access point.
(Note: depending on which credential monitor is used, the original
job may have to be re-submitted at this point.)
(Also note that at no point is the user’s password stored on the access point.)
Once a credential is stored on the access point,
as long as it remains valid,
it is transferred securely to all subsequently submitted jobs that contain use_oauth_services = cloudboxdrive.

When a job that contains credentials runs on an execute machine,
the job’s executable will have the environment variable _CONDOR_CREDS set,
which points to the location of all of the credentials inside the job’s sandbox.
For credentials obtained via the use_oauth_services submit file command,
the “access token” is stored under $_CONDOR_CREDS
in a JSON-encoded file
named with the name of the service provider and with the extension .use.
For the “CloudBoxDrive” example,
the access token would be located in $_CONDOR_CREDS/cloudboxdrive.use.

The HTCondor file transfer mechanism has built-in plugins
for using user-obtained credentials
to transfer files from some specific storage providers,
see File Transfer Using a URL.

Some credential providers may require the user to provide
a description of the permissions (often called “scopes”) a user needs for a specific credential.
Credential permission scoping is possible using the <service name>_oauth_permissions
submit file command.
For example, suppose our CloudBoxDrive service has a /public directory,
and the documentation for the service said that users must specify a read:<directory> scope
in order to be able to read data out of <directory>.
The submit file would need to contain

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions = read:/public

Some credential providers may also require the user to provide
the name of the resource (or “audience”) that a credential should allow access to.
Resource naming is done using the <service name>_oauth_resource submit file command.
For example, if our CloudBoxDrive service has servers located at some universities
and the documentation says that we should pick one near us and specify it as the audience,
the submit file might look like

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions = read:/public
cloudboxdrive_oauth_resource = https://cloudboxdrive.myuni.edu

It is possible for a single job to request and/or use credentials from multiple services
by listing each service in the use_oauth_services command.
Suppose the nearby university has a SciTokens service that provides credentials to access the localstorage.myuni.edu machine,
and the HTCondor pool administrator has configured the access point to allow users to obtain credentials from this service,
and that a user has write access to the /foo directory on the storage machine.
A submit file that would result in a job that contains credentials
that can read from CloudBoxDrive and write to the local university storage might look like

use_oauth_services = cloudboxdrive, myuni

cloudboxdrive_oauth_permissions = read:/public
cloudboxdrive_oauth_resource = https://cloudboxdrive.myuni.edu

myuni_oauth_permissions = write:/foo
myuni_oauth_resource = https://localstorage.myuni.edu

A single job can also request multiple credentials from the same service provider
by affixing handles to the <service>_oauth_permissions and (if necessary)
<service>_oauth_resource commands.
For example, if a user wants separate read and write credentials for CloudBoxDrive

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions_readpublic = read:/public
cloudboxdrive_oauth_permissions_writeprivate = write:/private

cloudboxdrive_oauth_resource_readpublic = https://cloudboxdrive.myuni.edu
cloudboxdrive_oauth_resource_writeprivate = https://cloudboxdrive.myuni.edu

Submitting the above would result in a job with respective access tokens located in
$_CONDOR_CREDS/cloudboxdrive_readpublic.use and
$_CONDOR_CREDS/cloudboxdrive_writeprivate.use.

Note that the permissions and resource settings for each handle (and for
no handle) are stored separately from the job so multiple jobs from the
same user running at the same time or for a period of time consecutively
may not use a different set of permissions and resource settings for the
same service and handle. If that is attempted, a new job submission
will fail with instructions on how to resolve the conflict, but the
safest thing is to choose a unique handle.

If a service provider does not require permissions or resources to be specified,
a user can still request multiple credentials by affixing handles to
<service>_oauth_permissions commands with empty values

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions_personal =
cloudboxdrive_oauth_permissions_public =

When the Vault credential monitor is configured, the service name may
optionally be split into two parts with an underscore between them,
where the first part is the issuer and the second part is the role. In
this example the issuer is “dune” and the role is “production”, both
as configured by the administrator of the Vault server:

use_oauth_services = dune_production

Vault does not require permissions or resources to be
set, but they may be set to reduce the default permissions or restrict
the resources that may use the credential. The full service name
including an underscore may be used in an oauth_permissions or
oauth_resource. Avoid using handles that might be confused as
role names. For example, the following will result in a conflict
between two credentials called dune_production.use:

use_oauth_services = dune, dune_production
dune_oauth_permissions_production =
dune_production_oauth_permissions =

Jobs That Require GPUs

HTCondor has built-in support for detecting machines with GPUs, and
matching jobs that need GPUs to machines that have them. If your
job needs a GPU, you’ll first need to tell HTCondor how many GPUs
each job needs with the submit command:

request_GPUs = <n>

where <n> is replaced by the integer quantity of GPUs required for
the job. For example, a job that needs 1 GPU uses

request_GPUs = 1

Because there are different capabilities among GPUs, your job might need
to further qualify which GPU is required. The submit command
require_gpus does this. For example, to request a CUDA GPU whose
CUDA Capability is at least 8, add the following to your submit file:

request_GPUs = 1
require_gpus = Capability >= 8.0

To see which CUDA capabilities are available in your HTCondor pool,
you can run the command

$ condor_status -af Name GPUS_Capability

To see which GPU devices HTCondor has detected on your pool,
you can run the command

$ condor_status -af Name GPUS_DeviceName

Access to GPU resources by an HTCondor job needs special configuration
of the machines that offer GPUs. Details of how to set up the
configuration are in the Policy Configuration for Execution Points and for Access Points section.

Interactive Jobs

An interactive job is a Condor job that is provisioned and scheduled
like any other vanilla universe Condor job onto an execute machine
within the pool. The result of a running interactive job is a shell
prompt issued on the execute machine where the job runs. The user that
submitted the interactive job may then use the shell as desired, perhaps
to interactively run an instance of what is to become a Condor job. This
might aid in checking that the set up and execution environment are
correct, or it might provide information on the RAM or disk space
needed. This job (shell) continues until the user logs out or any other
policy implementation causes the job to stop running. A useful feature
of the interactive job is that the users and jobs are accounted for
within Condor’s scheduling and priority system.

Neither the submit nor the execute host for interactive jobs may be on
Windows platforms.

The current working directory of the shell will be the initial working
directory of the running job. The shell type will be the default for the
user that submits the job. At the shell prompt, X11 forwarding is
enabled.

Each interactive job will have a job ClassAd attribute of

InteractiveJob = True

Submission of an interactive job specifies the option -interactive
on the condor_submit command line.

A submit description file may be specified for this interactive job.
Within this submit description file, a specification of these 5 commands
will be either ignored or altered:

	executable

	transfer_executable

	arguments

	universe . The
interactive job is a vanilla universe job.

	queue <n>. In this
case the value of <n> is ignored; exactly one interactive job is
queued.

The submit description file may specify anything else needed for the
interactive job, such as files to transfer.

If no submit description file is specified for the job, a default one is
utilized as identified by the value of the configuration variable
INTERACTIVE_SUBMIT_FILE .

Here are examples of situations where interactive jobs may be of
benefit.

	An application that cannot be batch processed might be run as an
interactive job. Where input or output cannot be captured in a file
and the executable may not be modified, the interactive nature of the
job may still be run on a pool machine, and within the purview of
Condor.

	A pool machine with specialized hardware that requires interactive
handling can be scheduled with an interactive job that utilizes the
hardware.

	The debugging and set up of complex jobs or environments may benefit
from an interactive session. This interactive session provides the
opportunity to run scripts or applications, and as errors are
identified, they can be corrected on the spot.

	Development may have an interactive nature, and proceed more quickly
when done on a pool machine. It may also be that the development
platforms required reside within Condor’s purview as execute hosts.

Submitting Lots of Jobs

When submitting a lot of jobs with a single submit file, you can dramatically speed up submission
and reduce the load on the condor_schedd by submitting the jobs as a late materialization job factory.

A submission of this form sends a single ClassAd, called the Cluster ad, to the condor_schedd, as
well as instructions to create the individual jobs as variations on that Cluster ad. These instructions
are sent as a submit digest and optional itemdata. The submit digest is the submit file stripped down
to just the statements that vary between jobs. The itemdata is the arguments to the Queue statement
when the arguments are more than just a count of jobs.

The condor_schedd will use the submit digest and the itemdata to create the individual job ClassAds
when they are needed. Materialization is controlled by two values stored in the Cluster classad, and
by optional limits configured in the condor_schedd.

The max_idle limit specifies the maximum number of non-running jobs that should be materialized in the
condor_schedd at any one time. One or more jobs will materialize whenever a job enters the Run state
and the number of non-running jobs that are still in the condor_schedd is less than this limit. This
limit is stored in the Cluster ad in the JobMaterializeMaxIdle attribute.

The max_materialize limit specifies an overall limit on the number of jobs that can be materialized in
the condor_schedd at any one time. One or more jobs will materialize when a job leaves the condor_schedd
and the number of materialized jobs remaining is less than this limit. This limit is stored in the Cluster
ad in the JobMaterializeLimit attribute.

Late materialization can be used as a way for a user to submit millions of jobs without hitting the
MAX_JOBS_PER_OWNER or MAX_JOBS_PER_SUBMISSION limits in the condor_schedd, since
the condor_schedd will enforce these limits by applying them to the max_materialize and max_idle
values specified in the Cluster ad.

To give an example, the following submit file:

executable = foo
arguments = input_file.$(Process)

request_cpus = 1
request_memory = 4096M
request_disk = 16383K

error = err.$(Process)
output = out.$(Process)
log = foo.log

should_transfer_files = yes
transfer_input_files = input_file.$(Process)

submit as a factory with an idle jobs limit
max_idle = 100

submit 15,000 instances of this job
queue 15*1000

When submitted as a late materialization factory, the submit digest for this factory
will contain only the submit statements that vary between jobs, and the collapsed queue statement
like this:

arguments = input_file.$(Process)
error = err.$(Process)
output = out.$(Process)
transfer_input_files = input_file.$(Process)

queue 15000

Materialization log events

When a Late Materialization job factory is submitted to the condor_schedd, a Cluster submitted event
will be written to the UserLog of the Cluster ad. This will be the same log file used by the first job
materialized by the factory. To avoid confusion,
it is recommended that you use the same log file for all jobs in the factory.

When the Late Materialization job factory is removed from the condor_schedd, a Cluster removed event
will be written to the UserLog of the Cluster ad. This event will indicate how many jobs were materialized
before the factory was removed.

If Late Materialization of jobs is paused due to an error in materialization or because condor_hold
was used to hold the cluster id, a Job Materialization Paused event will be written to the UserLog of the
Cluster ad. This event will indicate the reason for the pause.

When condor_release is used to release the the cluster id of a Late Materialization job factory,
and materialization was paused because of a previous use of condor_hold, a Job Materialization Resumed
event will be written to the UserLog of the Cluster ad.

Limitations

Currently, not all features of condor_submit will work with late materialization.
The following limitations apply:

	Only a single Queue statement is allowed, lines from the submit file after the
first Queue statement will be ignored.

	the $RANDOM_INTEGER and $RANDOM_CHOICE macro functions will expand at submit
time to produce the Cluster ad, but these macro functions will not be included in
the submit digest and so will have the same value for all jobs.

	Spooling of input files does not work with late materialization.

Displaying the Factory

condor_q can be use to show late materialization job factories in the condor_schedd by
using the -factory option.

> condor_q -factory
-- Schedd: submit.example.org : <192.168.101.101:9618?... @ 12/01/20 13:35:00
ID OWNER SUBMITTED LIMIT PRESNT RUN IDLE HOLD NEXTID MODE DIGEST
77. bob 12/01 13:30 15000 130 30 80 20 1230 /var/lib/condor/spool/77/condor_submit.77.digest

The factory above shows that 30 jobs are currently running,
80 are idle, 20 are held and that the next job to materialize will
be job 77.1230. The total of Idle + Held jobs is 100,
which is equal to the max_idle value specified in the submit file.

The path to the submit digest file is shown. This file is used to reload the factory
when the condor_schedd is restarted. If the factory is unable to materialize jobs
because of an error, the MODE field will show Held or Errs to indicate
there is a problem. Errs indicates a problem reloading the factory, Held
indicates a problem materializing jobs.

In case of a factory problem, use condor_q -factory -long to see the the factory information
and the JobMaterializePauseReason attribute.

Removing a Factory

The Late materialization job factory will be remove from the schedd automatically once all of the
jobs have materialized and completed. To remove the factory without first completing all of the jobs
use condor_rm with the ClusterId of the factory as the argument.

Editing a Factory

The submit digest for a Late Materialization job factory cannot be changed after submission, but the Cluster ad
for the factory can be edited using condor_qedit. Any condor_qedit command that has the ClusterId as a edit
target will edit all currently materialized jobs, as well as editing the Cluster ad so that all jobs that materialize
in the future will also be edited.

Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism

HTCondor works well without a shared file system between the submit
machines and the worker nodes. The HTCondor file
transfer mechanism allows the user to explicitly select which input files are
transferred to the worker node before the
job starts. HTCondor will transfer these files, potentially
delaying this transfer request, if starting the transfer right away
would overload the access point. Queueing requests like this prevents
the crashes so common with too-busy shared file servers. These input files are placed
into a scratch directory on the worker node, which is the starting current
directory of the job. When the job completes, by default, HTCondor detects any
newly-created files at the top level of this sandbox directory, and
transfers them back to the submitting machine. The input sandbox is
what we call the executable and all the declared input files of a job. The
set of all files created by the job is the output sandbox.

Specifying If and When to Transfer Files

To enable the file transfer mechanism, place this command in the job’s
submit description file:
should_transfer_files

should_transfer_files = YES

Setting the
should_transfer_files
command explicitly enables or disables the file transfer mechanism. The
command takes on one of three possible values:

	YES: HTCondor transfers the input sandbox from
the access point to the execute machine. The output sandbox
is transferred back to the access point. The command
when_to_transfer_output .
controls when the output sandbox is transferred back, and what directory
it is stored in.

	IF_NEEDED: HTCondor only transfers sandboxes when the job is matched with
a machine in a different FileSystemDomain than
the one the access point belongs to, as if
should_transfer_files = YES. If the job is matched with a machine
in the same FileSystemDomain as the submitting machine, HTCondor
will not transfer files and relies on the shared file system.

	NO: HTCondor’s file transfer mechanism is disabled. In this case is
is the responsibility of the user to ensure that all data used by the
job is accessible on the remote worker node.

The when_to_transfer_output command tells HTCondor when output
files are to be transferred back to the access point. The command
takes on one of three possible values:

	ON_EXIT (the default): HTCondor transfers the output sandbox
back to the access point only when the job exits on its own. If the
job is preempted or removed, no files are transferred back.

	ON_EXIT_OR_EVICT: HTCondor behaves the same as described for the
value ON_EXIT when the job exits on its own. However, each
time the job is evicted from a machine, the output sandbox is
transferred back to the access point and placed under the SPOOL directory.
eviction time. Before the job starts running again, the former output
sandbox is copied to the job’s new remote scratch directory.

If transfer_output_files
is specified, this list governs which files are transferred back at eviction
time. If a file listed in transfer_output_files does not exist
at eviction time, the job will go on hold.

The purpose of saving files at eviction time is to allow the job to
resume from where it left off.

	ON_SUCCESS: HTCondor transfers files like ON_EXIT, but only if
the job succeeds, as defined by the success_exit_code submit command.
The success_exit_code command must be used, even for the default
exit code of 0. (See the condor_submit man page.)

The default values for these two submit commands make sense as used
together. If only should_transfer_files is set, and set to the
value NO, then no output files will be transferred, and the value of
when_to_transfer_output is irrelevant. If only
when_to_transfer_output is set, and set to the value
ON_EXIT_OR_EVICT, then the default value for an unspecified
should_transfer_files will be YES.

Note that the combination of

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT_OR_EVICT

would produce undefined file access semantics. Therefore, this
combination is prohibited by condor_submit.

Specifying What Files to Transfer

If the file transfer mechanism is enabled, HTCondor will transfer the
following files before the job is run on a remote machine as the input
sandbox:

	the executable, as defined with the
executable command

	the input, as defined with the
input command

	any jar files, for the java universe, as defined with the
jar_files command

If the job requires other input files, the submit description file
should have the
transfer_input_files
command. This comma-separated list specifies any other files, URLs, or
directories that HTCondor is to transfer to the remote scratch
directory, to set up the execution environment for the job before it is
run. These files are placed in the same directory as the job’s
executable. For example:

executable = my_program
input = my_input
should_transfer_files = YES
transfer_input_files = file1,file2

This example explicitly enables the file transfer mechanism. By default,
HTCondor will transfer the executable (my_program) and the file
specified by the input command (my_input). The files file1
and file2 are also transferred, by explicit user instruction.

If the file transfer mechanism is enabled, HTCondor will transfer the
following files from the execute machine back to the access point
after the job exits, as the output sandbox.

	the output file, as defined with the output command

	the error file, as defined with the error command

	any files created by the job in the remote scratch directory.

A path given for output and error commands represents a path on
the access point. If no path is specified, the directory specified
with initialdir is
used, and if that is not specified, the directory from which the job was
submitted is used. At the time the job is submitted, zero-length files
are created on the access point, at the given path for the files
defined by the output and error commands. This permits job
submission failure, if these files cannot be written by HTCondor.

To restrict the output files or permit entire directory contents to be
transferred, specify the exact list with
transfer_output_files .
When this comma separated list is defined, and any of the files or directories do not
exist as the job exits, HTCondor considers this an error, and places the
job on hold. Setting
transfer_output_files
to the empty string (“”) means no files are to be transferred. When this
list is defined, automatic detection of output files created by the job
is disabled. Paths specified in this list refer to locations on the
execute machine. The naming and placement of files and directories
relies on the term base name. By example, the path a/b/c has the
base name c. It is the file name or directory name with all
directories leading up to that name stripped off. On the access point,
the transferred files or directories are named using only the base name.
Therefore, each output file or directory must have a different name,
even if they originate from different paths.

If only a subset of the output sandbox should be transferred, the subset
is specified by further adding a submit command of the form:

transfer_output_files = file1, file2

Here are examples of file transfer with HTCondor. Assume that the
job produces the following structure within the remote scratch
directory:

o1
o2
d1 (directory)
 o3
 o4

If the submit description file sets

transfer_output_files = o1,o2,d1

then transferred back to the access point will be

o1
o2
d1 (directory)
 o3
 o4

Note that the directory d1 and all its contents are specified, and
therefore transferred. If the directory d1 is not created by the job
before exit, then the job is placed on hold. If the directory d1 is
created by the job before exit, but is empty, this is not an error.

If, instead, the submit description file sets

transfer_output_files = o1,o2,d1/o3

then transferred back to the access point will be

o1
o2
o3

Note that only the base name is used in the naming and placement of the
file specified with d1/o3.

File Paths for File Transfer

The file transfer mechanism specifies file names or URLs on
the file system of the access point and file names on the
execute machine. Care must be taken to know which machine, submit or
execute, is referencing the file.

Files in the
transfer_input_files
command are specified as they are accessed on the access point. The
job, as it executes, accesses files as they are found on the execute
machine.

There are four ways to specify files and paths for
transfer_input_files :

	Relative to the current working directory as the job is submitted, if
the submit command
initialdir is not
specified.

	Relative to the initial directory, if the submit command
initialdir is
specified.

	Absolute file paths.

	As an URL, which should be accessible by the execute machine.

Before executing the program, HTCondor copies the input sandbox
into a remote scratch directory on the
execute machine, where the program runs. Therefore, the executing
program must access input files relative to its working directory.
Because all files and directories listed for transfer are placed into a
single, flat directory, inputs must be uniquely named to avoid collision
when transferred.

A job may instead set preserve_relative_paths (to True), in which
case the relative paths of transferred files are preserved. For example,
although the input list dirA/file1, dirB/file1 would normally result in
a collision, instead HTCondor will create the directories dirA and
dirB in the input sandbox, and each will get its corresponding version
of file1.

Both relative and absolute paths may be used in
transfer_output_files .
Relative paths are relative to the job’s remote scratch directory on the
execute machine. When the files and directories are copied back to the
access point, they are placed in the job’s initial working directory
as the base name of the original path. An alternate name or path may be
specified by using
transfer_output_remaps .

The preserve_relative_paths command also applies to relative paths
specified in transfer_output_files (if not remapped).

A job may create files outside the remote scratch directory but within
the file system of the execute machine, in a directory such as /tmp,
if this directory is guaranteed to exist and be accessible on all
possible execute machines. However, HTCondor will not automatically
transfer such files back after execution completes, nor will it clean up
these files.

Here are several examples to illustrate the use of file transfer. The
program executable is called my_program, and it uses three
command-line arguments as it executes: two input file names and an
output file name. The program executable and the submit description file
for this job are located in directory /scratch/test.

Here is the directory tree as it exists on the access point, for all
the examples:

/scratch/test (directory)
 my_program.condor (the submit description file)
 my_program (the executable)
 files (directory)
 logs2 (directory)
 in1 (file)
 in2 (file)
 logs (directory)

Example 1

This first example explicitly transfers input files. These input
files to be transferred are specified relative to the directory
where the job is submitted. An output file specified in the
arguments command,
out1, is created when the job is executed. It will be
transferred back into the directory /scratch/test.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
transfer_input_files = files/in1,files/in2

arguments = in1 in2 out1

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

The log file is written on the access point, and is not involved
with the file transfer mechanism.

Example 2

This second example is identical to Example 1, except that absolute
paths to the input files are specified, instead of relative paths to
the input files.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/in1,/scratch/test/files/in2

arguments = in1 in2 out1

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Example 3

This third example illustrates the use of the submit command
initialdir , and its
effect on the paths used for the various files. The expected
location of the executable is not affected by the
initialdir command.
All other files (specified by
input ,
output ,
error ,
transfer_input_files ,
as well as files modified or created by the job and automatically
transferred back) are located relative to the specified
initialdir .
Therefore, the output file, out1, will be placed in the files
directory. Note that the logs2 directory exists to make this
example work correctly.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs2/err.$(cluster)
output = logs2/out.$(cluster)
log = logs2/log.$(cluster)

initialdir = files

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = in1,in2

arguments = in1 in2 out1

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Example 4 - Illustrates an Error

This example illustrates a job that will fail. The files specified
using the
transfer_input_files
command work correctly (see Example 1). However, relative paths to
files in the
arguments command
cause the executing program to fail. The file system on the
submission side may utilize relative paths to files, however those
files are placed into the single, flat, remote scratch directory on
the execute machine.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1,files/in2

arguments = files/in1 files/in2 files/out1

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

This example fails with the following error:

err: files/out1: No such file or directory.

Example 5 - Illustrates an Error

As with Example 4, this example illustrates a job that will fail.
The executing program’s use of absolute paths cannot work.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/in1, /scratch/test/files/in2

arguments = /scratch/test/files/in1 /scratch/test/files/in2 /scratch/test/files/out1

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

The job fails with the following error:

err: /scratch/test/files/out1: No such file or directory.

Example 6

This example illustrates a case where the executing program creates
an output file in a directory other than within the remote scratch
directory that the program executes within. The file creation may or
may not cause an error, depending on the existence and permissions
of the directories on the remote file system.

The output file /tmp/out1 is transferred back to the job’s
initial working directory as /scratch/test/out1.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

transfer_input_files = files/in1,files/in2
transfer_output_files = /tmp/out1

arguments = in1 in2 /tmp/out1
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Dataflow Jobs

A dataflow job is a job that might not need to run because its desired
outputs already exist. To skip such a job, add the following line to your
submit file:

skip_if_dataflow = True

A dataflow job meets any of the following criteria:

	Output files exist, are newer than input files

	Execute file is newer than input files

	Standard input file is newer than input files

Skipping dataflow jobs can potentially save large amounts of time in
long-running workflows.

Public Input Files

There are some cases where HTCondor’s file transfer mechanism is
inefficient. For jobs that need to run a large number of times, the
input files need to get transferred for every job, even if those files
are identical. This wastes resources on both the access point and the
network, slowing overall job execution time.

Public input files allow a user to specify files to be transferred over
a publicly-available HTTP web service. A system administrator can then
configure caching proxies, load balancers, and other tools to
dramatically improve performance. Public input files are not available
by default, and need to be explicitly enabled by a system administrator.

To specify files that use this feature, the submit file should include a
public_input_files
command. This comma-separated list specifies files which HTCondor will
transfer using the HTTP mechanism. For example:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = file1,file2
public_input_files = public_data1,public_data2

Similar to the regular
transfer_input_files ,
the files specified in
public_input_files
can be relative to the submit directory, or absolute paths. You can also
specify an initialDir ,
and condor_submit will look for files relative to that directory. The
files must be world-readable on the file system (files with permissions
set to 0644, directories with permissions set to 0755).

Lastly, all files transferred using this method will be publicly
available and world-readable, so this feature should not be used for any
sensitive data.

Behavior for Error Cases

This section describes HTCondor’s behavior for some error cases in
dealing with the transfer of files.

	Disk Full on Execute Machine
	When transferring any files from the access point to the remote
scratch directory, if the disk is full on the execute machine, then
the job is place on hold.

	Error Creating Zero-Length Files on Submit Machine
	As a job is submitted, HTCondor creates zero-length files as
placeholders on the access point for the files defined by
output and
error . If these files
cannot be created, then job submission fails.

This job submission failure avoids having the job run to completion,
only to be unable to transfer the job’s output due to permission
errors.

	Error When Transferring Files from Execute Machine to Submit Machine
	When a job exits, or potentially when a job is evicted from an
execute machine, one or more files may be transferred from the
execute machine back to the machine on which the job was submitted.

During transfer, if any of the following three similar types of
errors occur, the job is put on hold as the error occurs.

	If the file cannot be opened on the access point, for example
because the system is out of inodes.

	If the file cannot be written on the access point, for example
because the permissions do not permit it.

	If the write of the file on the access point fails, for example
because the system is out of disk space.

File Transfer Using a URL

Instead of file transfer that goes only between the access point and
the execute machine, HTCondor has the ability to transfer files from a
location specified by a URL for a job’s input file, or from the execute
machine to a location specified by a URL for a job’s output file(s).
This capability requires administrative set up, as described in
the Third Party/Delegated file and credential transfer section.

URL file transfers work in most HTCondor job universes, but not grid, local
or scheduler. HTCondor’s file transfer mechanism must be enabled.
Therefore, the submit description file for the job will define both
should_transfer_files
and
when_to_transfer_output .
In addition, the URL for any files specified with a URL are given in the
transfer_input_files
command. An example portion of the submit description file for a job
that has a single file specified with a URL:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = http://www.full.url/path/to/filename

The destination file is given by the file name within the URL.

For the transfer of the entire contents of the output sandbox, which are
all files that the job creates or modifies, HTCondor’s file transfer
mechanism must be enabled. In this sample portion of the submit
description file, the first two commands explicitly enable file
transfer, and the added
output_destination
command provides both the protocol to be used and the destination of the
transfer.

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output_destination = urltype://path/to/destination/directory

Note that with this feature, no files are transferred back to the submit
machine. This does not interfere with the streaming of output.

Uploading to URLs using output file remaps

File transfer plugins now support uploads as well as downloads. The
transfer_output_remaps attribute can additionally be used to upload
files to specific URLs when a job completes. To do this, set the
destination for an output file to a URL instead of a filename. For
example:

transfer_output_remaps = "myresults.dat = http://destination-server.com/myresults.dat"

We use a HTTP PUT request to perform the upload, so the user is
responsible for making sure that the destination server accepts PUT
requests (which is usually disabled by default).

Passing a credential for URL file transfers

Some files served over HTTPS will require a credential in order to
download. Each credential cred should be placed in a file in
$_CONDOR_CREDS/cred.use. Then in order to use that credential for a
download, append its name to the beginning of the URL protocol along
with a + symbol. For example, to download the file
https://download.com/bar using the cred credential, specify the
following in the submit file:

transfer_input_files = cred+https://download.com/bar

If your credential file has an underscore in it,
the underscore must be replaced in the transfer_input_files URL
with a “.”, e.g. for $_CONDOR_CREDS/cred_local.use:

transfer_input_files = cred.local+https://download.com/bar

Otherwise, the credential file must have a name that only contains
alphanumeric characters (a-z, A-Z, 0-9) and/or -,
except for the . in the `.use extension.

If you’re using a token from an OAuth service provider,
the credential will be named based on the OAuth provider.
For example, if your submit file has use_oauth_services = mytokens,
you can request files using that token by doing:

use_oauth_services = mytokens

transfer_input_files = mytokens+https://download.com/bar

If you add an optional handle to the token name,
append the handle name to the token name in the URL with a “.”:

use_oauth_services = mytokens
mytokens_oauth_permissions_personal =
mytokens_oauth_permissions_group =

transfer_input_files = mytokens.personal+https://download.com/bar, mytokens.group+https://download.com/foo

Note that in the above token-with-a-handle case,
the token files will be stored in the job
environment at $_CONDOR_CREDS/mytokens_personal.use
and $_CONDOR_CREDS/mytokens_group.use.

Transferring files using file transfer plugins

HTCondor comes with file transfer plugins
that can communicate with Box.com, Google Drive, Stash Cache, OSDF, and Microsoft OneDrive.
Using one of these plugins requires that the HTCondor pool administrator
has set up the mechanism for HTCondor to gather credentials
for the desired service,
and requires that your submit file
contains the proper commands
to obtain credentials
from the desired service (see Jobs That Require Credentials).

To use a file transfer plugin,
substitute https in a transfer URL with the service name
(box for Box.com,
stash for Stash Cache,
osdf for OSDF,
gdrive for Google Drive, and
onedrive for Microsoft OneDrive)
and reference a file path starting at the root directory of the service.
For example, to download bar.txt from a Box.com account
where bar.txt is in the foo folder, use:

use_oauth_services = box
transfer_input_files = box://foo/bar.txt

If your job requests multiple credentials from the same service,
use <handle>+<service>://path/to/file
to reference each specific credential.
For example, for a job that uses Google Drive to
download public_files/input.txt from one account (public)
and to upload output.txt to my_private_files/output.txt on a second account (private):

use_oauth_services = gdrive
gdrive_oauth_permissions_public =
gdrive_oauth_permissions_private =

transfer_input_files = public+gdrive://public_files/input.txt
transfer_output_remaps = "output.txt = private+gdrive://my_private_files/output.txt"

Transferring files using the S3 protocol

HTCondor supports downloading files from and uploading files to
storage servers using the S3 protocol via s3:// URLs. Downloading or
uploading requires
a two-part credential: the “access key ID” and the “secret key ID”. HTCondor
does not transfer these credentials off the submit node; instead, it uses
them to construct “pre-signed” https:// URLs that temporarily allow
the bearer access. (Thus, an execute node needs to support https://
URLs for S3 URLs to work.)

To make use of this feature, you will need to specify the following
information in the submit file:

	a file containing your access key ID (and nothing else)

	a file containing your secret access key (and nothing else)

	one or more S3 URLs as input values or output destinations.

See the subsections below for specific examples.

You may (like any other URL) specify an S3 URL in transfer_input_files,
or as part of a remap in transfer_output_remaps. However, HTCondor does
not currently support transferring entire buckets or directories. If you
specify an s3:// URL as the output_destination, that URL will be
used a prefix for each output file’s location; if you specify a URL ending a
/, it will be treated like a directory.

S3 Transfer Recipes

Transferring files to and from Amazon S3

Specify your credential files in the submit file using the attributes aws_access_key_id_file and
aws_secret_access_key_file. Amazon S3 switched from global buckets
to region-specific buckets; use the first URL form for the older buckets
and the second for newer buckets.

aws_access_key_id_file = /home/example/secrets/accessKeyID
aws_secret_access_key_file = /home/example/secrets/secretAccessKey

For old, non-region-specific buckets.
transfer_input_files = s3://<bucket-name>/<key-name>,
transfer_output_remaps = "output.dat = s3://<bucket-name>/<output-key-name>"

or, for new, region-specific buckets:
transfer_input_files = s3://<bucket-name>.s3.<region>.amazonaws.com/<key>
transfer_output_remaps = "output.dat = s3://<bucket-name>.s3.<region>.amazonaws.com/<output-key-name>"

Optionally, specify a region for S3 URLs which don't include one:
aws_region = <region>

Transferring files to and from Google Cloud Storage

Google Cloud Storage implements an XML API which is interoperable with S3 [https://cloud.google.com/storage/docs/interoperability]. This requires an
extra step of generating HMAC credentials [https://console.cloud.google.com/storage/settings;tab=interoperability]
to access Cloud Storage. Google Cloud best practices are to create a Service
Account with read/write permission to the bucket. Read HMAC keys for Cloud
Storage [https://cloud.google.com/storage/docs/authentication/hmackeys] for
more details.

After generating HMAC credentials, they can be used within a job:

gs_access_key_id_file = /home/example/secrets/bucket_access_key_id
gs_secret_access_key_file = /home/example/secrets/bucket_secret_access_key
transfer_input_files = gs://<bucket-name>/<input-key-name>
transfer_output_remaps = "output.dat = gs://<bucket-name>/<output-key-name>"

If Cloud Storage is configured with Private Service Connect [https://cloud.google.com/vpc/docs/private-service-connect], then use the S3 URL
approach with the private Cloud Storage endpoint. e.g.,

gs_access_key_id_file = /home/example/secrets/bucket_access_key_id
gs_secret_access_key_file = /home/example/secrets/bucket_secret_access_key
transfer_input_files = s3://<cloud-storage-private-endpoint>/<bucket-name>/<input-key-name>
transfer_output_remaps = "output.dat = s3://<cloud-storage-private-endpoint>/<bucket-name>/<output-key-name>"

Transferring files to and from another provider

Many other companies and institutions offer a service compatible with the
S3 protocol. You can access these services using s3:// URLs and the
key files described above.

s3_access_key_id_file = /home/example/secrets/accessKeyID
s3_secret_access_key_file = /home/example/secrets/secretAccessKey
transfer_input_files = s3://some.other-s3-provider.org/my-bucket/large-input.file
transfer_output_remaps = "large-output.file = s3://some.other-s3-provider.org/my-bucket/large-output.file"

If you need to specify a region, you may do so using aws_region,
despite the name.

Managing a Job

This section provides a brief summary of what can be done once jobs are
submitted. The basic mechanisms for monitoring a job are introduced, but
the commands are discussed briefly. You are encouraged to look at the
man pages of the commands referred to (located in Command Reference Manual (man pages))
for more information.

Checking on the progress of jobs

You can check on your jobs with the condor_q
command. This
command has many options, by default, it displays only your jobs
queued in the local scheduler. An example of the output from condor_q is

$ condor_q

-- Schedd: submit.chtc.wisc.edu : <127.0.0.1:9618?... @ 12/31/69 23:00:00
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS
nemo batch23 4/22 20:44 _ _ _ 1 _ 3671850.0
nemo batch24 4/22 20:56 _ _ _ 1 _ 3673477.0
nemo batch25 4/22 20:57 _ _ _ 1 _ 3673728.0
nemo batch26 4/23 10:44 _ _ _ 1 _ 3750339.0
nemo batch27 7/2 15:11 _ _ _ _ _ 7594591.0
nemo batch28 7/10 03:22 4428 3 _ _ 4434 7801943.0 ... 7858552.0
nemo batch29 7/14 14:18 5074 1182 30 19 80064 7859129.0 ... 7885217.0
nemo batch30 7/14 14:18 5172 1088 28 30 58310 7859106.0 ... 7885192.0

2388 jobs; 0 completed, 1 removed, 58 idle, 2276 running, 53 held, 0 suspended

The goal of the HTCondor system is to effectively manage many jobs. As you may have thousands
of jobs in a queue, by default condor_q summarizes many similar jobs on one line. Depending
on the types of your jobs, this output may look a little different.

Often, when you are starting out, and have few jobs, you may want to see one line of output
per job. The -nobatch option to condor_q does this, and output might look something like:

$ condor_q -nobatch

-- Schedd submit.chtc.wisc.edu : <127.0.0.1:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
1297254.0 nemo 5/31 18:05 14+17:40:01 R 0 7.3 condor_dagman
1297255.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1297256.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1297259.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1297261.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1302278.0 nemo 6/4 12:22 1+00:05:37 I 0 390.6 mdrun_1.sh
1304740.0 nemo 6/5 00:14 1+00:03:43 I 0 390.6 mdrun_1.sh
1304967.0 nemo 6/5 05:08 0+00:00:00 I 0 0.0 mdrun_1.sh

14 jobs; 4 idle, 8 running, 2 held

This still only shows your jobs. You can display information about all the users
with jobs in this scheduler by adding the -allusers option to condor_q.

The output contains many columns of information about the queued jobs.
 The
ST column (for status) shows the status of current jobs in the queue:

	R
	The job is currently running.

	I
	The job is idle. It is not running right now, because it is
waiting for a machine to become available.

	H
	The job is the hold state. In the hold state, the job will not be
scheduled to run until it is released. See the condor_hold
and the condor_release manual pages.

The RUN_TIME time reported for a job is the time that has been
committed to the job.

Another useful method of tracking the progress of jobs is through the
job event log. The specification of a log in the submit description
file causes the progress of the job to be logged in a file. Follow the
events by viewing the job event log file. Various events such as
execution commencement, file transfer, eviction and termination are logged
in the file. Also logged is the time at which the event occurred.

When a job begins to run, HTCondor starts up a condor_shadow process

on the access point. The shadow process is the mechanism by which the
remotely executing jobs can access the environment from which it was
submitted, such as input and output files.

It is normal for a machine which has submitted hundreds of jobs to have
hundreds of condor_shadow processes running on the machine. Since the
text segments of all these processes is the same, the load on the submit
machine is usually not significant. If there is degraded performance,
limit the number of jobs that can run simultaneously by reducing the
MAX_JOBS_RUNNING configuration
variable.

You can also find all the machines that are running your job through the
condor_status command.
 For example, to find
all the machines that are running jobs submitted by
breach@cs.wisc.edu, type:

$ condor_status -constraint 'RemoteUser == "breach@cs.wisc.edu"'

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

alfred.cs. INTEL LINUX Claimed Busy 0.980 64 0+07:10:02
biron.cs.w INTEL LINUX Claimed Busy 1.000 128 0+01:10:00
cambridge. INTEL LINUX Claimed Busy 0.988 64 0+00:15:00
falcons.cs INTEL LINUX Claimed Busy 0.996 32 0+02:05:03
happy.cs.w INTEL LINUX Claimed Busy 0.988 128 0+03:05:00
istat03.st INTEL LINUX Claimed Busy 0.883 64 0+06:45:01
istat04.st INTEL LINUX Claimed Busy 0.988 64 0+00:10:00
istat09.st INTEL LINUX Claimed Busy 0.301 64 0+03:45:00
...

To find all the machines that are running any job at all, type:

$ condor_status -run

Name Arch OpSys LoadAv RemoteUser ClientMachine

adriana.cs INTEL LINUX 0.980 hepcon@cs.wisc.edu chevre.cs.wisc.
alfred.cs. INTEL LINUX 0.980 breach@cs.wisc.edu neufchatel.cs.w
amul.cs.wi X86_64 LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
anfrom.cs. X86_64 LINUX 1.023 ashoks@jules.ncsa.ui jules.ncsa.uiuc
anthrax.cs INTEL LINUX 0.285 hepcon@cs.wisc.edu chevre.cs.wisc.
astro.cs.w INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
aura.cs.wi X86_64 WINDOWS 0.996 nice-user.condor@cs. chevre.cs.wisc.
balder.cs. INTEL WINDOWS 1.000 nice-user.condor@cs. chevre.cs.wisc.
bamba.cs.w INTEL LINUX 1.574 dmarino@cs.wisc.edu riola.cs.wisc.e
bardolph.c INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
...

Peeking in on a running job’s output files

When a job is running, you may be curious about any output it has created.
The condor_tail command can copy output files from a running job on a remote
machine back to the access point. condor_tail uses the same networking
stack as HTCondor proper, so it will work if the execute machine is behind a firewall.
Simply run, where xx.yy is the job id of a running job:

$ condor_tail xx.yy

or

$ condor_tail -f xx.yy

to continuously follow the standard output. To copy a different file, run

$ condor_tail xx.yy name_of_output_file

Starting an interactive shell next to a running job on a remote machine

condor_ssh_to_job is a very powerful command, but is not available on
all platforms, or all installations. Some administrators disable it, so check with
your local site if it does not appear to work. condor_ssh_to_job takes the job
id of a running job as an argument, and establishes a shell running on the node
next to the job. The environment of this shell is a similar to the job as possible.
Users of condor_ssh_to_job can look at files, attach to their job with the debugger
and otherwise inspect the job.

Removing a job from the queue

A job can be removed from the queue at any time by using the
condor_rm command. If
the job that is being removed is currently running, the job is killed,
and its queue entry is removed. The following
example shows the queue of jobs before and after a job is removed.

$ condor_q -nobatch

-- Schedd: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
 125.0 raman 4/11 14:37 0+00:00:00 R 0 1.4 sleepy
 132.0 raman 4/11 16:57 0+00:00:00 R 0 1.4 hello

2 jobs; 1 idle, 1 running, 0 held

$ condor_rm 132.0
Job 132.0 removed.

$ condor_q -nobatch

-- Schedd: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
 125.0 raman 4/11 14:37 0+00:00:00 R 0 1.4 sleepy

1 jobs; 1 idle, 0 running, 0 held

Placing a job on hold

A job in the queue may be placed on hold by running the command
condor_hold. A job in the hold state remains in the hold state until
later released for execution by the command condor_release.

Use of the condor_hold command causes a hard kill signal to be sent
to a currently running job (one in the running state).

Jobs that are running when placed on hold will start over from the
beginning when released.

The condor_hold and the condor_release
manual pages contain usage details.

Changing the priority of jobs

In addition to the priorities assigned to each user, HTCondor also
provides each user with the capability of assigning priorities to each
submitted job. These job priorities are local to each queue and can be
any integer value, with higher values meaning better priority.

The default priority of a job is 0, but can be changed using the
condor_prio command.
 For example, to change
the priority of a job to -15,

$ condor_q -nobatch raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
 126.0 raman 4/11 15:06 0+00:00:00 I 0 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

$ condor_prio -p -15 126.0

$ condor_q -nobatch raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
 126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

It is important to note that these job priorities are completely
different from the user priorities assigned by HTCondor. Job priorities
do not impact user priorities. They are only a mechanism for the user to
identify the relative importance of jobs among all the jobs submitted by
the user to that specific queue.

Why is the job not running?

Users occasionally find that their jobs do not run. There are many
possible reasons why a specific job is not running. The following prose
attempts to identify some of the potential issues behind why a job is
not running.

At the most basic level, the user knows the status of a job by using
condor_q to see that the job is not running. By far, the most common
reason (to the novice HTCondor job submitter) why the job is not running
is that HTCondor has not yet been through its periodic negotiation
cycle, in which queued jobs are assigned to machines within the pool and
begin their execution. This periodic event occurs by default once every
5 minutes, implying that the user ought to wait a few minutes before
searching for reasons why the job is not running.

Further inquiries are dependent on whether the job has never run at all,
or has run for at least a little bit.

For jobs that have never run,
 many problems can be
diagnosed by using the -analyze option of the condor_q command.
Here is an example; running condor_q ‘s analyzer provided the
following information:

$ condor_q -analyze 27497829

-- Submitter: s1.chtc.wisc.edu : <128.104.100.43:9618?sock=5557_e660_3> : s1.chtc.wisc.edu
User priority for ei@chtc.wisc.edu is not available, attempting to analyze without it.

27497829.000: Run analysis summary. Of 5257 machines,
 5257 are rejected by your job's requirements
 0 reject your job because of their own requirements
 0 match and are already running your jobs
 0 match but are serving other users
 0 are available to run your job
 No successful match recorded.
 Last failed match: Tue Jun 18 14:36:25 2013

 Reason for last match failure: no match found

WARNING: Be advised:
 No resources matched request's constraints

The Requirements expression for your job is:

 (OpSys == "OSX") && (TARGET.Arch == "X86_64") &&
 (TARGET.Disk >= RequestDisk) && (TARGET.Memory >= RequestMemory) &&
 ((TARGET.HasFileTransfer) || (TARGET.FileSystemDomain == MY.FileSystemDomain))

Suggestions:
 Condition Machines Matched Suggestion
 --------- ---------------- ----------
1 (target.OpSys == "OSX") 0 MODIFY TO "LINUX"
2 (TARGET.Arch == "X86_64") 5190
3 (TARGET.Disk >= 1) 5257
4 (TARGET.Memory >= ifthenelse(MemoryUsage isnt undefined,MemoryUsage,1))
 5257
5 ((TARGET.HasFileTransfer) || (TARGET.FileSystemDomain == "submit-1.chtc.wisc.edu"))
 5257

This example also shows that the job does not run because the platform
requested, Mac OS X, is not available on any of the machines in the
pool. Recall that unless informed otherwise in the
Requirements
expression in the submit description file, the platform requested for an
execute machine will be the same as the platform where condor_submit
is run to submit the job. And, while Mac OS X is a Unix-type operating
system, it is not the same as Linux, and thus will not match with
machines running Linux.

While the analyzer can diagnose most common problems, there are some
situations that it cannot reliably detect due to the instantaneous and
local nature of the information it uses to detect the problem. Thus, it
may be that the analyzer reports that resources are available to service
the request, but the job still has not run. In most of these situations,
the delay is transient, and the job will run following the next
negotiation cycle.

A second class of problems represents jobs that do or did run, for at
least a short while, but are no longer running. The first issue is
identifying whether the job is in this category. The condor_q command
is not enough; it only tells the current state of the job. The needed
information will be in the log
file or the error file, as
defined in the submit description file for the job. If these files are
not defined, then there is little hope of determining if the job ran at
all. For a job that ran, even for the briefest amount of time, the
log file will contain an event
of type 1, which will contain the string Job executing on host.

A job may run for a short time, before failing due to a file permission
problem. The log file used by the condor_shadow daemon will contain
more information if this is the problem. This log file is associated
with the machine on which the job was submitted. The location and name
of this log file may be discovered on the submitting machine, using the
command

$ condor_config_val SHADOW_LOG

Job in the Hold State

Should HTCondor detect something about a job that would prevent it
from ever running successfully, say, because the executable doesn’t
exist, or input files are missing, HTCondor will put the job in Hold state.
A job in the Hold state will remain in the queue, and show up in the
output of the condor_q command, but is not eligible to run.
The job will stay in this state until it is released or removed. Users
may also hold their jobs manually with the condor_hold command.

A table listing the reasons why a job may be held is at the
Job ClassAd Attributes section. A
string identifying the reason that a particular job is in the Hold state
may be displayed by invoking condor_q -hold. For the example job ID 16.0,
use:

$ condor_q -hold 16.0

This command prints information about the job, including the job ClassAd
attribute HoldReason.

In the Job Event Log File

In a job event log file are a listing of events in chronological order
that occurred during the life of one or more jobs. The formatting of the
events is always the same, so that they may be machine readable. Four
fields are always present, and they will most often be followed by other
fields that give further information that is specific to the type of
event.

The first field in an event is the numeric value assigned as the event
type in a 3-digit format. The second field identifies the job which
generated the event. Within parentheses are the job ClassAd attributes
of ClusterId value, ProcId value, and the node number for
parallel universe jobs or a set of zeros (for jobs run under all other
universes), separated by periods. The third field is the date and time
of the event logging. The fourth field is a string that briefly
describes the event. Fields that follow the fourth field give further
information for the specific event type.

A complete list of these values is at Job Event Log Codes section.

Job Termination

From time to time, and for a variety of reasons, HTCondor may terminate
a job before it completes. For instance, a job could be removed (via
condor_rm), preempted (by a user a with higher priority), or killed
(for using more memory than it requested). In these cases, it might be
helpful to know why HTCondor terminated the job. HTCondor calls its
records of these reasons “Tickets of Execution”.

A ticket of execution is usually issued by the condor_startd, and
includes:

	when the condor_startd was told, or otherwise decided, to terminate the job
(the when attribute);

	who made the decision to terminate, usually a Sinful string
(the who attribute);

	and what method was employed to command the termination, as both as
string and an integer (the How and HowCode attributes).

The relevant log events include a human-readable rendition of the ToE,
and the job ad is updated with the ToE after the usual delay.

As of version 8.9.4, HTCondor only issues ToE in three cases:

	when the job terminates of its own accord (issued by the starter,
HowCode 0);

	and when the startd terminates the job because it received a
DEACTIVATE_CLAIM command (HowCode 1)

	or a DEACTIVATE_CLAIM_FORCIBLY command (HowCode 2).

In both cases, HTCondor records the ToE in the job ad. In the event
log(s), event 005 (job completion) includes the ToE for the first case,
and event 009 (job aborted) includes the ToE for the second and third cases.

Future HTCondor releases will issue ToEs in additional cases and include
them in additional log events.

Job Completion

When an HTCondor job completes, either through normal means or by
abnormal termination by signal, HTCondor will remove it from the job
queue. That is, the job will no longer appear in the output of
condor_q, and the job will be inserted into the job history file.
Examine the job history file with the condor_history command. If
there is a log file specified in the submit description file for the
job, then the job exit status will be recorded there as well, along with
other information described below.

By default, HTCondor does not send an email message when the job
completes. Modify this behavior with the
notification command
in the submit description file. The message will include the exit status
of the job, which is the argument that the job passed to the exit system
call when it completed, or it will be notification that the job was
killed by a signal. Notification will also include the following
statistics (as appropriate) about the job:

	Submitted at:
	when the job was submitted with condor_submit

	Completed at:
	when the job completed

	Real Time:
	the elapsed time between when the job was submitted and when it
completed, given in a form of <days> <hours>:<minutes>:<seconds>

	Virtual Image Size:
	memory size of the job

Statistics about just the last time the job ran:

	Run Time:
	total time the job was running, given in the form
<days> <hours>:<minutes>:<seconds>

	Remote User Time:
	total CPU time the job spent executing in user mode on remote
machines; this does not count time spent on run attempts that were
evicted. Given in the form
<days> <hours>:<minutes>:<seconds>

	Remote System Time:
	total CPU time the job spent executing in system mode (the time
spent at system calls); this does not count time spent on run
attempts that were evicted. Given in the form
<days> <hours>:<minutes>:<seconds>

The Run Time accumulated by all run attempts are summarized with the
time given in the form <days> <hours>:<minutes>:<seconds>.

And, statistics about the bytes sent and received by the last run of the
job and summed over all attempts at running the job are given.

The job terminated event includes the following:

	the type of termination (normal or by signal)

	the return value (or signal number)

	local and remote usage for the last (most recent) run
(in CPU-seconds)

	local and remote usage summed over all runs
(in CPU-seconds)

	bytes sent and received by the job’s last (most recent) run,

	bytes sent and received summed over all runs,

	a report on which partitionable resources were used, if any. Resources
include CPUs, disk, and memory; all are lifetime peak values.

Your administrator may have configured HTCondor to report on other resources,
particularly GPUs (lifetime average) and GPU memory usage (lifetime peak).
HTCondor currently assigns all the usage of a GPU to the job running in
the slot to which the GPU is assigned; if the admin allows more than one job
to run on the same GPU, or non-HTCondor jobs to use the GPU, GPU usage will be
misreported accordingly.

When configured to report GPU usage, HTCondor sets the following two
attributes in the job:

	GPUsUsage
	GPU usage over the lifetime of the job, reported as a fraction of the
the maximum possible utilization of one GPU.

	GPUsMemoryUsage
	Peak memory usage over the lifetime of the job, in megabytes.

Summary of all HTCondor users and their jobs

When jobs are submitted, HTCondor will attempt to find resources to run
the jobs. A list of all those with jobs submitted may be obtained
through condor_status
 with the -submitters
option. An example of this would yield output similar to:

$ condor_status -submitters

Name Machine Running IdleJobs HeldJobs

ballard@cs.wisc.edu bluebird.c 0 11 0
nice-user.condor@cs. cardinal.c 6 504 0
wright@cs.wisc.edu finch.cs.w 1 1 0
jbasney@cs.wisc.edu perdita.cs 0 0 5

 RunningJobs IdleJobs HeldJobs

 ballard@cs.wisc.edu 0 11 0
 jbasney@cs.wisc.edu 0 0 5
nice-user.condor@cs. 6 504 0
 wright@cs.wisc.edu 1 1 0

 Total 7 516 5

Automatically managing a job

While a user can manually manage an HTCondor job in ways described
in the previous section, it is often better to give HTCondor policies
with which it can automatically manage a job without user intervention.

Automatically rerunning a failed job

By default, when a job exits, HTCondor considers it completed, removes it from
the job queue and places it in the history file. If a job exits
with a non-zero exit code, this usually means that some error has happened.
If this error is ephemeral, a user might want to re-run the job again, to see
if the job succeeds on a second invocation. HTCondor can does this automatically with the
max_retries option in the submit file, to tell HTCondor the maximum
number of times to restart the job from scratch. In the rare case where some
value other than zero indicates success, a submit file can set success_exit_code
to the integer value that is considered successful.

Example submit description with max_retries

executable = myexe
arguments = SomeArgument

Retry this job 5 times if non-zero exit code
max_retries = 5

output = outputfile
error = errorfile
log = myexe.log

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

should_transfer_files = yes

queue

Automatically removing a job in the queue

HTCondor can automatically remove a job, running or otherwise, from the queue
if a given constraint is true. In the submit description file, set
periodic_remove to a classad expression. When this expression evaluates
to true, the scheduler will remove the job, just as if condor_rm had
run on that job. See Matchmaking with ClassAds for information
about the classad language and ClassAd Attributes for the list of attributes
which can be used in these expressions. For example, to automatically remove a
job which has been in the queue for more than 100 hours, the submit file could have

periodic_remove = (time() - QDate) > (100 * 3600)

or, to remove jobs that have been running for more than two hours:

periodic_remove = (JobStatus == 2) && (time() - EnteredCurrentStatus) > (2 * 3600)

Automatically placing a job on hold

Often, if a job is doing something unexpected, it is more useful to hold the job,
rather than remove it. If the problem with the job can be fixed, the job can then be
released and started again. Much like the periodic_remove command, there is a
periodic_hold command that works in a similar way, but instead of removing the job,
puts the job on hold. Unlike periodic_remove, there are additional commands
that help to tell the user why the job was placed on hold. periodic_hold_reason
is a string which is put into the HoldReason attribute to explain why we put the
job on hold. periodic_hold_subcode is an integer that is put into the
HoldReasonSubCode that is useful for periodic_release to examine. Neither
periodic_hold_subcode nor periodic_hold_reason are required, but are good
practice to include if periodic_hold is defined.

Automatically releasing a held job

In the same way that a job can be automatically held, jobs in the held state
can be released with the periodic_release command. Often, using a periodic_hold with
a paired periodic_release is a good way to restart a stuck job. Jobs can go
into the hold state for many reasons, so best practice, when trying to release
a job that was held with periodic_hold is to include the HoldReasonSubCode
in the periodic_release expression.

periodic_hold = (JobStatus == 2) && (time() - EnteredCurrentStatus) > (2 * 3600)
periodic_hold_reason = "Job ran for more than two hours"
periodic_hold_subcode = 42
periodic_release = (HoldReasonSubCode == 42)

Holding a completed job

A job may exit, and HTCondor consider it completed, even though something has
gone wrong with the job. A submit file may contain a on_exit_hold expression
to tell HTCondor to put the job on hold, instead of moving it to the history. A held
job informs users that there may have been a problem with the job that should be investigated.
For example, if a job should never exit by a signal, the job can be put on hold if it
does with

on_exit_hold = ExitBySignal == true

How To Debug an Always Idle Job

Sometimes, when you submit a job to HTCondor, it sits idle seemingly forever,
condor_q shows it in the idle state, when you expect it should start running.
This can be frustrating, but there are tools to give visibility so you can
debug what is going on.

Jobs that start but are quickly evicted

One possibility is that the job is actually starting, but something goes wrong
very quickly after it starts, so the Execution Point evicts the job, and the
condor_schedd puts it back to idle. condor_q would only show it in the
“R”unning state for a brief moment, so it is likely that even frequent
executions of condor_q will show it in the Idle state.

A quick look at the HTCondor job log will help to verify that this is what is
happening. Assuming your submit file contains a line like:

log = my_job.log

Then you should see a line in my_job.log, assuming that HTCondor assigned the
job id of 781.0 to your job (the job id is in parenthesis):

000 (781.000.000) 2022-01-30 15:15:35 Job submitted from host: <127.0.0.1:45527?addrs=127.0.0.1-45527>
...

Many jobs can share the same job log file, so be sure to find the entries for the job
in question. If there is nothing further in this log, this flapping between
Running and Idle is not the problem, and you can check items further down this list.

However, if you see repeated entries like

001 (781.000.000) 2022-01-30 15:15:36 Job executing on host: <127.0.0.1:42089?addrs=127.0.0.1-42089>
...
007 (781.000.000) 2022-01-30 15:15:37 Shadow exception!
 Error from slot1_2@bat: FATAL: executable file not found in $PATH
 0 - Run Bytes Sent By Job
 0 - Run Bytes Received By Job
 ...
 001 (781.000.000) 2022-01-30 15:15:37 Job executing on host: <127.0.0.1:42089?addrs=127.0.0.1-42089>
 ...
 007 (781.000.000) 2022-01-30 15:15:38 Shadow exception!
 ...

Then this flapping is the problem, and you’ll need to figure out why. Perhaps a
condor_submit -i interactive login, and trying to start the job by hand is
useful, maybe you’ll need to ask a system administrator.

Jobs that don’t match any Execution Point

Another common cause of an always-idle job is that the job doesn’t match any
slot in the pool. Perhaps the memory or disk requested in the submit file is
greater than any slot in the pool has. Perhaps your administrator requires
jobs to set certain custom attributes to identify them, or for accounting.
HTCondor has a tool we call better-analyze that simulates the matching of slots
to jobs. It isn’t perfect, as it doesn’t have full knowledge of the system,
but it is easy to run, and can help to quickly narrow down this kind of
problems.

$ condor_q -better-analyze 781.0

Now, as condor_q -better-analyze by default, tries to simulate matching
this job to all slots in the pool, this can take a while, and generate
a lot of output. Sometimes, you are pretty sure that a job should match one
particular slot, in that case, you can restrict the matching attempt to
that one slot by running

$ condor_q -better-analyze 781.0 -machine machine_in_question

which will emit information only about a potential match to
machine_in_question. If the last few lines of this look like
this:

The Requirements expression for job 781.0 reduces to these conditions:

 Slots
 Step Matched Condition
 ----- -------- ---------
 [0] 1 TARGET.Arch == "X86_64"
 [1] 1 TARGET.OpSys == "LINUX"
 [3] 1 TARGET.Disk >= RequestDisk
 [5] 0 TARGET.Memory >= RequestMemory

 781.007: Run analysis summary ignoring user priority. Of 1 machines,
 1 are rejected by your job's requirements
 0 reject your job because of their own requirements
 0 match and are already running your jobs
 0 match but are serving other users
 0 are able to run your job

 WARNING: Be advised:
 No machines matched the jobs's constraints

In this example, RequestMemory is set too high, so the job won’t match any machines.
Maybe it was a typo. Try setting it lower to see if the job will match.
If condor_q -better-analyze tells you that some machines do match, then
this probably isn’t the problem, or, it could be that very few machines in your
pool match your job, and you’ll just need to wait until they are available.

Not enough priority

Another reason your job isn’t running is that other jobs of yours are running,
but your priority isn’t good enough to allow any more of your jobs running.
If this is a problem, the HTCondor condor_schedd will run your jobs in
the order specified by the Job_Priority submit command. You could
give your more important jobs a higher job priority. The command
condor_userprio -all will show you your current userprio, which
is what HTCondor uses to calculate your fair share.

Systemic problems

The final case is that you have done nothing wrong, but there is some problem
with the system. Maybe a network is down, or a system daemon has crashed,
or there is an overload somewhere. If you are an expert, there may be
information in the debug logs, usually found in /usr/log/condor. In this
case, you may need to consult your system administrator, or ask for
help on the condor-users email list.

Services for Running Jobs

HTCondor provides an environment and certain services
for running jobs. Jobs can use these services to
provide more reliable runs, to give logging and monitoring
data for users, and to synchronize with other jobs. Note
that different HTCondor job universes may provide different
services. The functionality below is available in the vanilla
universe, unless otherwise stated.

Environment Variables

An HTCondor job running on a worker node does not, by default, inherit
the environment variables from the machine it runs on or the machine it
was submitted from. If it did, the environment might change from run
to run, or machine to machine, and create non reproducible, difficult
to debug problems. Rather, HTCondor is deliberate about what environment
variables a job sees, and allows the user to set them in the job description file.

The user may define environment variables for the job with the environment
command in the submit file. See within the condor_submit
manual page for more details about this command.

Instead of defining environment variables individually, the entire set
of environment variables in the condor_submit’s environment
can be copied into the job. The getenv
command does this, as described on the condor_submit manual page.

In general, it is preferable to just declare the minimum set of needed
environment variables with the environment command, as that clearly
declares the needed environment variables. If the needed set is not known,
the getenv command is useful. If the environment is set with both the
environment command
and getenv is also set to true, values specified with
environment override values in the submitter’s environment,
regardless of the order of the environment and getenv commands in the submit file.

Commands within the submit description file may reference the
environment variables of the submitter. Submit
description file commands use $ENV(EnvironmentVariableName) to reference
the value of an environment variable.

Extra Environment Variables HTCondor sets for Jobs

HTCondor sets several additional environment variables for each
executing job that may be useful.

	_CONDOR_SCRATCH_DIR
names the directory where the job may place temporary data files.
This directory is unique for every job that is run, and its contents
are deleted by HTCondor when the job stops running on a machine. When
file transfer is enabled, the job is started in this directory.

	_CONDOR_SLOT

gives the name of the slot (for multicore machines), on which the job is
run. On machines with only a single slot, the value of this variable
will be 1, just like the SlotID attribute in the machine’s
ClassAd. See the Policy Configuration for Execution Points and for Access Points section for more
details about configuring multicore machines.

	_CONDOR_JOB_AD

is the path to a file in the job’s scratch directory which contains
the job ad for the currently running job. The job ad is current as of
the start of the job, but is not updated during the running of the
job. The job may read attributes and their values out of this file as
it runs, but any changes will not be acted on in any way by HTCondor.
The format is the same as the output of the condor_q -l
command. This environment variable may be particularly useful in a
USER_JOB_WRAPPER.

	_CONDOR_MACHINE_AD

is the path to a file in the job’s scratch directory which contains
the machine ad for the slot the currently running job is using. The
machine ad is current as of the start of the job, but is not updated
during the running of the job. The format is the same as the output
of the condor_status -l command. Interesting attributes jobs
may want to look at from this file include Memory and Cpus, the amount
of memory and cpus provisioned for this slot.

	_CONDOR_JOB_IWD

is the path to the initial working directory the job was born with.

	_CONDOR_WRAPPER_ERROR_FILE

is only set when the administrator has installed a
USER_JOB_WRAPPER. If this file exists, HTCondor assumes that the
job wrapper has failed and copies the contents of the file to the
StarterLog for the administrator to debug the problem.

	CUBACORES GOMAXPROCS JULIA_NUM_THREADS MKL_NUM_THREADS
NUMEXPR_NUM_THREADS OMP_NUM_THREADS OMP_THREAD_LIMIT
OPENBLAS_NUM_THREADS ROOT_MAX_THREADS TF_LOOP_PARALLEL_ITERATIONS
TF_NUM_THREADS
are set to the number of cpu cores provisioned to this job. Should be
at least RequestCpus, but HTCondor may match a job to a bigger slot. Jobs should not
spawn more than this number of cpu-bound threads, or their performance will suffer.
Many third party libraries like OpenMP obey these environment variables.

	BATCH_SYSTEM

All job running under a HTCondor starter have the environment variable BATCH_SYSTEM
set to the string HTCondor. Inspecting this variable allows a job to
determine if it is running under HTCondor.

	X509_USER_PROXY
gives the full path to the X.509 user proxy file if one is associated
with the job. Typically, a user will specify
x509userproxy in
the submit description file.

Communicating with the Submit machine via Chirp

HTCondor provides a method for running jobs to read or write information
to or from the access point, called “chirp”. Chirp allows jobs to

	Write to the job ad in the schedd.
This can be used for long-running jobs to write progress information
back to the access point, so that a condor_q query will reveal
how far along a running job is. Or, if a job is listening on a network
port, chirp can write the port number to the job ad, so that others
can connect to this job.

	Read from the job ad in the schedd.
While most information a job needs should be in input files, command line
arguments or environment variables, a job can read dynamic information
from the schedd’s copy of the classad.

	Write a message to the job log.
Another place to put progress information is into the job log file. This
allows anyone with access to that file to see how much progress a running
job has made.

	Read a file from the access point.
This allows a job to read a file from the access point at runtime.
While file transfer is generally a better approach, file transfer requires
the submitter to know the files to be transferred at submit time.

	Write a file to the access point.
Again, while file transfer is usually the better choice, with chirp, a job
can write intermediate results back to the access point before the job exits.

HTCondor ships a command-line tool, called condor_chirp that can do these
actions, and provides python bindings so that they can be done natively in
Python.

When changes to a job made by chirp take effect

When condor_chirp successfully updates a job ad attribute, that change
will be reflected in the copy of the job ad in the condor_schedd on
the access point. However, most job ad attributes are read by the condor_starter
or condor_startd at job start up time, and should chirp change these
attributes at run time, it will not impact the running job. In particular,
the attributes relating to resource requests, such as RequestCpus, RequestMemory,
RequestDisk and RequestGPUS, will not cause any changes to the provisioned
resources for a running job. If the job is evicted, and restarts, these
new requests will then take effect in the new execution of the job. The same
is true for the Requirements expression of a job.

Resource Limitations on a Running Job

Depending on how HTCondor has been configured, the OS platform, and other
factors, HTCondor may configure the system a job runs on to prevent a job
from using all the resources on a machine. This protects other jobs that
may be running on the machine, and the machine itself from being harming
by a running job.

Jobs may see

	A private (non-shared) /tmp and /var/tmp directory

	A private (non-shared) /dev/shm

	A limit on the amount of memory they can allocate, above which the
job may be placed on hold or evicted by the system.

	A limit on the amount of CPU cores the may use, above which the
job may be blocked, and will run very slowly.

	A limit on the amount of scratch disk space the job may use, above
which the job may be placed on hold or evicted by the system.

Priorities and Preemption

HTCondor has two independent priority controls: job priorities and user
priorities.

The HTCondor system calculate a “fair share” of machine slots to allocate to each user.
Whether each user can use all of these slots depends on a number of factors. For example,
if the user’s jobs only match to a small number of machines, perhaps
the user will be running fewer jobs than allocated. This fair share is based on the
user priority. Each user can then specify the order in which each of their jobs
should be matched and run on the fair share, this is based on the job priority.

Job Priority

Job priorities allow a user to sort their own jobs to determine which are
tried to be run first. A job priority can be any integer: larger values
denote better priority. So, 0 is a better job priority than -3, and 6 is a better than 5.

Note that job priorities are computed per user, so that whatever job priorities
one user sets has no impact at all on any other user, in terms of how many jobs
users can run or in what order. Also, unmatchable high priority jobs do not block
lower priority jobs. That is, a priority 10 job will try to be matched before
a priority 9 job, but if the priority 10 job doesn’t match any slots, HTCondor
will keep going, and try the priority 9 job next.

The job priority may be specified in the submit description file by setting

priority = 15

If no priority is set, the default is 0. See the Dagman section for ways that dagman
can automatically set the priority of any or all jobs in a dag.

Each job can be given a distinct priority. For an
already queued job, its priority may be changed with the condor_prio
command; see the example in the Managing a Job section, or
the condor_prio manual page for details. This sets the value
of job ClassAd attribute JobPrio. condor_prio can be called on a running
job, but lowering a job priority will not trigger eviction of the running
job. The condor_vacate_job command can preempt a running job.

A fine-grained categorization of jobs and their ordering is available
for experts by using the job ClassAd attributes: PreJobPrio1,
PreJobPrio2, JobPrio, PostJobPrio1, or PostJobPrio2.

User priority

Slots are allocated to users based upon user priority. A lower
numerical value for user priority means proportionally better priority,
so a user with priority 5 will be allocated 10 times the resources as
someone with user priority 50. User priorities in HTCondor can be
examined with the condor_userprio
command (see the condor_userprio manual page).
 HTCondor
administrators can set and change individual user priorities with the
same utility.

HTCondor continuously calculates the share of available machines that
each user should be allocated. This share is inversely related to the
ratio between user priorities. For example, a user with a priority of 10
will get twice as many machines as a user with a priority of 20. The
priority of each individual user changes according to the number of
resources the individual is using. Each user starts out with the best
possible priority: 0.5. If the number of machines a user currently has
is greater than the user priority, the user priority will worsen by
numerically increasing over time. If the number of machines is less then
the priority, the priority will improve by numerically decreasing over
time. The long-term result is fair-share access across all users. The
speed at which HTCondor adjusts the priorities is controlled with the
configuration variable PRIORITY_HALFLIFE
 , an exponential half-life value. The
default is one day. If a user that has user priority of 100 and is
utilizing 100 machines removes all his/her jobs, one day later that
user’s priority will be 50, and two days later the priority will be 25.

HTCondor enforces that each user gets his/her fair share of machines
according to user priority by allocating available machines.
Optionally, a pool administrator can configure the system to preempt
the running jobs of users who are above their fair share in favor
of users who are below their fair share, but this is not the default.
For instance, if a low priority user is utilizing all available machines
and suddenly a higher priority user submits jobs, HTCondor may
vacate jobs belonging to the lower priority user.

User priorities are keyed on <username>@<domain>, for example
johndoe@cs.wisc.edu. The domain name to use, if any, is configured
by the HTCondor site administrator. Thus, user priority and therefore
resource allocation is not impacted by which machine the user submits
from or even if the user submits jobs from multiple machines.

The user priority system can also support backfill or nice jobs (see
the condor_submit manual page). Nice jobs
artificially boost the user priority by ten million just for the nice
job. This effectively means that nice jobs will only run on machines
that no other HTCondor job (that is, non-niced job) wants. In a similar
fashion, an HTCondor administrator could set the user priority of any
specific HTCondor user very high. If done, for example, with a guest
account, the guest could only use cycles not wanted by other users of
the system.

Details About How HTCondor Jobs Vacate Machines

When HTCondor needs a job to vacate a machine for whatever reason, it
sends the job an operating system signal specified in the KillSig
attribute of the job’s ClassAd. The value of this attribute can be
specified by the user at submit time by placing the kill_sig option
in the HTCondor submit description file.

If a program wanted to do some work when asked to vacate a
machine, the program may set up a signal handler to handle this
signal. This clean up signal is specified with kill_sig. Note that
the clean up work needs to be quick. If the job takes too long to exit
after getting the kill_sig, HTCondor sends a SIGKILL signal
which immediately terminates the process.

The default value for KillSig is SIGTERM, the usual method
to nicely terminate a Unix program.

Job Sets

Multiple jobs that share
a common set of input files and/or arguments and/or index values, etc.,
can be organized and submitted as a job set.
For example, if you have 10 sets of measurements
that you are using as input to two different models,
you might consider submitting a job set
containing two different modeling jobs
that use the same set of input measurement data.

Submitting a job set

Submitting a job set involves creating a job set description file
and then using the htcondor command-line tool
to submit the jobs described in the job set description file
to the job queue.
For example, if your jobs are described in a file named my-jobs.set:

$ htcondor jobset submit my-jobs.set

A job set description file must contain:

	A name,

	An iterator, and

	At least one job.

The name of a job set is used to identify the set.
Job set names are used to check the status of sets or to remove sets.

The iterator of a job set is used to describe the shared values
and the values’ associated variable names
that are used by the jobs in the job set.
Multiple iterator types are planned to be supported by HTCondor.
As of HTCondor 9.4.0, only the table iterator type is available.

The table iterator type works similar
to the queue <list of varnames> from <file name or list of items> syntax
used by condor_submit description files.
A table contains comma-separated columns (one per named variable)
and line-separated rows.
The table data can either be stored in a separate file
and referenced by file name,
or it can be stored inside the job set description file itself
inside curly brackets ({ ... }, see example below).

The job set description file syntax for a table iterator is:

iterator = table <list of variable names> <table file name>

or

iterator = table <list of variable names> {
 <list of items>
}

Suppose you have four input files,
and each input file is associated with two parameters, foo and bar,
needed by your jobs.
An example table in this case could be:

input_A.txt,0,0
input_B.txt,0,1
input_C.txt,1,0
input_D.txt,1,1

If this table is stored in input_description.txt,
your iterator would be:

iterator = table inputfile,foo,bar input_description.txt

Or you could put this table directly inside in the job set description file:

iterator = table inputfile,foo,bar {
 input_A.txt,0,0
 input_B.txt,0,1
 input_C.txt,1,0
 input_D.txt,1,1
}

Each job in a job set is a HTCondor job
and is described using the condor_submit submit description syntax.
A job description can reference one or more
of the variables described by the job set iterator.
Furthermore, each job description in a job set
can have its variables mapped
(e.g. foo=bar will replace $(foo) with $(bar)).
A job description can either be stored in a separate file
and referenced by file name,
or it can be stored inside the job set description file itself
inside curly brackets ({ ... }, see example below).

The job set description file syntax for a job is:

job [<list of mapped variable names>] <submit file name>

or

job [<list of mapped variable names>] {
 <submit file description>
}

Suppose you have two jobs
that you want to have use the inputfile, foo, and bar values
defined in the table iterator example above.
And suppose that one of these jobs already has an existing submit description
in a file named my-job.sub,
and this submit file doesn’t use the foo and bar variable names
but instead uses x and y.
Your job descriptions could look like:

job x=foo,y=bar my-job.sub

job {
 executable = a.out
 arguments = $(inputfile) $(foo) $(bar)
 transfer_input_files = $(inputfile)
}

Note how in the second job above that there is no queue statement.
Job description queue statements
are disregarded when using job sets.
Instead, the number of jobs queued
are based on the iterator of the job set.
For the table iterator, the number of jobs queued
will be the number of rows in the table.

Putting together the examples above,
an entire example job set might look like:

name = MyJobSet

iterator = table inputfile,foo,bar {
 input_A.txt,0,0
 input_B.txt,0,1
 input_C.txt,1,0
 input_D.txt,1,1
}

job x=foo,y=bar my-job.sub

job {
 executable = a.out
 arguments = $(inputfile) $(foo) $(bar)
 transfer_input_files = $(inputfile)
}

Based on this job set description,
with two job descriptions
(which become two job clusters),
you would expect the following output
when submitting this job set:

$ htcondor jobset submit my-jobs.set
Submitted job set MyJobSet containing 2 job clusters.

Listing job sets

You can get a list of your active job sets
(i.e. job sets with jobs that are idle, executing, or held)
with the command htcondor jobset list:

$ htcondor jobset list
JOB_SET_NAME
MyJobSet

The argument --allusers will list active job sets
for all users on the current access point:

$ htcondor jobset list --allusers
OWNER JOB_SET_NAME
alice MyJobSet
bob AnotherJobSet

Checking on the progress of job sets

You can check on your job set with the
htcondor jobset status <job set name> command.

$ htcondor jobset status MyJobSet

MyJobSet currently has 3 jobs idle, 5 jobs running, and 0 jobs completed.
MyJobSet contains:
 Job cluster 1234 with 4 total jobs
 Job cluster 1235 with 4 total jobs

Removing a job set

If you realize that there is a problem with a job set
or you just do not need the job set to finish computing
for whatever reason,
you can remove an entire job set with the
htcondor jobset remove <job set name> command:

$ htcondor jobset remove MyJobSet
Removed 8 jobs matching job set MyJobSet for user alice.

Matchmaking with ClassAds

Before you learn about how to submit a job, it is important to
understand how HTCondor allocates resources.
 Understanding the unique
framework by which HTCondor matches submitted jobs with machines is the
key to getting the most from HTCondor’s scheduling algorithm.

HTCondor simplifies job submission by acting as a matchmaker of
ClassAds. HTCondor’s ClassAds are analogous to
the classified advertising section of the newspaper. Sellers advertise
specifics about what they have to sell, hoping to attract a buyer.
Buyers may advertise specifics about what they wish to purchase. Both
buyers and sellers list constraints that need to be satisfied. For
instance, a buyer has a maximum spending limit, and a seller requires a
minimum purchase price. Furthermore, both want to rank requests to their
own advantage. Certainly a seller would rank one offer of $50 dollars
higher than a different offer of $25. In HTCondor, users submitting jobs
can be thought of as buyers of compute resources and machine owners are
sellers.

All machines in a HTCondor pool advertise their attributes,
 such as available memory, CPU type
and speed, virtual memory size, current load average, along with other
static and dynamic properties. This machine ClassAd
 also advertises under what conditions it
is willing to run a HTCondor job and what type of job it would prefer.
These policy attributes can reflect the individual terms and preferences
by which all the different owners have graciously allowed their machine
to be part of the HTCondor pool. You may advertise that your machine is
only willing to run jobs at night and when there is no keyboard activity
on your machine. In addition, you may advertise a preference (rank) for
running jobs submitted by you or one of your co-workers.

Likewise, when submitting a job, you specify a ClassAd with your
requirements and preferences. The ClassAd
 includes the type of machine you wish to
use. For instance, perhaps you are looking for the fastest floating
point performance available. You want HTCondor to rank available
machines based upon floating point performance. Or, perhaps you care
only that the machine has a minimum of 128 MiB of RAM. Or, perhaps you
will take any machine you can get! These job attributes and requirements
are bundled up into a job ClassAd.

HTCondor plays the role of a matchmaker by continuously reading all the
job ClassAds and all the machine ClassAds, matching and ranking job ads
with machine ads. HTCondor makes certain that all requirements in both
ClassAds are satisfied.

Inspecting Machine ClassAds with condor_status

Once HTCondor is installed, you will get a feel for what a machine
ClassAd does by trying the condor_status command. Try the
condor_status command to get a summary of information from ClassAds
about the resources available in your pool. Type condor_status and
hit enter to see a summary similar to the following:

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

amul.cs.wisc.edu LINUX INTEL Claimed Busy 0.990 1896 0+00:07:04
slot1@amundsen.cs. LINUX INTEL Owner Idle 0.000 1456 0+00:21:58
slot2@amundsen.cs. LINUX INTEL Owner Idle 0.110 1456 0+00:21:59
angus.cs.wisc.edu LINUX INTEL Claimed Busy 0.940 873 0+00:02:54
anhai.cs.wisc.edu LINUX INTEL Claimed Busy 1.400 1896 0+00:03:03
apollo.cs.wisc.edu LINUX INTEL Unclaimed Idle 1.000 3032 0+00:00:04
arragon.cs.wisc.ed LINUX INTEL Claimed Busy 0.980 873 0+00:04:29
bamba.cs.wisc.edu LINUX INTEL Owner Idle 0.040 3032 15+20:10:19
...

The condor_status command has options that summarize machine ads in a
variety of ways. For example,

	condor_status -available
	shows only machines which are willing to run jobs now.

	condor_status -run
	shows only machines which are currently running jobs.

	condor_status -long
	lists the machine ClassAds for all machines in the pool.

Refer to the condor_status command reference page for a
complete description of the condor_status command.

The following shows a portion of a machine ClassAd

for a single machine: turunmaa.cs.wisc.edu. Some of the listed
attributes are used by HTCondor for scheduling. Other attributes are for
information purposes. An important point is that any of the attributes
in a machine ClassAd can be utilized at job submission time as part of a
request or preference on what machine to use. Additional attributes can
be easily added. For example, your site administrator can add a physical
location attribute to your machine ClassAds.

Machine = "turunmaa.cs.wisc.edu"
FileSystemDomain = "cs.wisc.edu"
Name = "turunmaa.cs.wisc.edu"
CondorPlatform = "$CondorPlatform: x86_rhap_5 $"
Cpus = 1
CondorVersion = "$CondorVersion: 7.6.3 Aug 18 2011 BuildID: 361356 $"
Requirements = START
EnteredCurrentActivity = 1316094896
MyAddress = "<128.105.175.125:58026>"
EnteredCurrentState = 1316094896
Memory = 1897
CkptServer = "pitcher.cs.wisc.edu"
OpSys = "LINUX"
State = "Owner"
START = true
Arch = "INTEL"
Mips = 2634
Activity = "Idle"
StartdIpAddr = "<128.105.175.125:58026>"
TargetType = "Job"
LoadAvg = 0.210000
Disk = 92309744
VirtualMemory = 2069476
TotalSlots = 1
UidDomain = "cs.wisc.edu"
MyType = "Machine"

Choosing an HTCondor Universe

A universe in HTCondor
 defines
an execution environment for a job. HTCondor supports several different
universes:

	vanilla

	grid

	java

	scheduler

	local

	parallel

	vm

	container

	docker

The universe under which
a job runs is specified in the submit description file. If a universe is
not specified, the default is vanilla.

 The vanilla universe is a good
default, for it has the fewest restrictions on the job.
 The grid universe allows users to submit
jobs using HTCondor’s interface. These jobs are submitted for execution
on grid resources.
 The java
universe allows users to run jobs written for the Java Virtual Machine
(JVM). The scheduler universe allows users to submit lightweight jobs to
be spawned by the program known as a daemon on the submit host itself.
 The parallel universe is for programs
that require multiple machines for one job. See the
Parallel Applications (Including MPI Applications) section for more
about the Parallel universe. The vm universe
allows users to run jobs where the job is no longer a simple executable,
but a disk image, facilitating the execution of a virtual machine. Container
universe allows the user to specify a container image for one of many possible
container runtimes, just as singularity or docker, and condor will run the job
in the appropriate container runtimes. The docker universe runs a Docker container
as an HTCondor job.

Vanilla Universe

The vanilla universe in HTCondor is intended for most programs.
Shell scripts are another case where the vanilla universe is useful.

Access to the job’s input and output files is a concern for vanilla
universe jobs. One option is for HTCondor to rely on a shared file system,
such as NFS or AFS. Alternatively, HTCondor has a mechanism for
transferring files on behalf of the user. In this case, HTCondor will
transfer any files needed by a job to the execution site, run the job,
and transfer the output back to the submitting machine.

Grid Universe

The Grid universe in HTCondor is intended to provide the standard
HTCondor interface to users who wish to start jobs intended for remote
management systems. The Grid Universe section has details
on using the Grid universe. The manual page for condor_submit
has detailed descriptions of the grid-related attributes.

Java Universe

A program submitted to the Java universe may run on any sort of machine
with a JVM regardless of its location, owner, or JVM version. HTCondor
will take care of all the details such as finding the JVM binary and
setting the classpath.

Scheduler Universe

The scheduler universe allows users to submit lightweight jobs to be run
immediately, alongside the condor_schedd daemon on the submit host
itself. Scheduler universe jobs are not matched with a remote machine,
and will never be preempted. The job’s requirements expression is
evaluated against the condor_schedd ‘s ClassAd.

Originally intended for meta-schedulers such as condor_dagman, the
scheduler universe can also be used to manage jobs of any sort that must
run on the submit host.

However, unlike the local universe, the scheduler universe does not use
a condor_starter daemon to manage the job, and thus offers limited
features and policy support. The local universe is a better choice for
most jobs which must run on the submit host, as it offers a richer set
of job management features, and is more consistent with other universes
such as the vanilla universe. The scheduler universe may be retired in
the future, in favor of the newer local universe.

Local Universe

The local universe allows an HTCondor job to be submitted and executed
with different assumptions for the execution conditions of the job. The
job does not wait to be matched with a machine. It instead executes
right away, on the machine where the job is submitted. The job will
never be preempted. The job’s requirements expression is evaluated
against the condor_schedd ‘s ClassAd.

Parallel Universe

The parallel universe allows parallel programs, such as MPI jobs, to be
run within the opportunistic HTCondor environment. Please see
the Parallel Applications (Including MPI Applications) section for more details.

VM Universe

HTCondor facilitates the execution of KVM and Xen virtual machines
with the vm universe.

Please see the Virtual Machine Applications section for
details.

Docker Universe

The docker universe runs a docker container on an execute host as a job.
Please see the Docker Universe Applications section for
details.

Container Universe

The container universe runs a container on an execute host as a job.
Please see the Container Universe Jobs section for
details.

Java Applications

HTCondor allows users to access a wide variety of machines distributed
around the world. The Java Virtual Machine (JVM)
 provides a
uniform platform on any machine, regardless of the machine’s
architecture or operating system. The HTCondor Java universe brings
together these two features to create a distributed, homogeneous
computing environment.

Compiled Java programs can be submitted to HTCondor, and HTCondor can
execute the programs on any machine in the pool that will run the Java
Virtual Machine.

The condor_status command can be used to see a list of machines in
the pool for which HTCondor can use the Java Virtual Machine.

$ condor_status -java

Name JavaVendor Ver State Activity LoadAv Mem ActvtyTime

adelie01.cs.wisc.e Sun Micros 1.6.0_ Claimed Busy 0.090 873 0+00:02:46
adelie02.cs.wisc.e Sun Micros 1.6.0_ Owner Idle 0.210 873 0+03:19:32
slot10@bio.cs.wisc Sun Micros 1.6.0_ Unclaimed Idle 0.000 118 7+03:13:28
slot2@bio.cs.wisc. Sun Micros 1.6.0_ Unclaimed Idle 0.000 118 7+03:13:28
...

If there is no output from the condor_status command, then HTCondor
does not know the location details of the Java Virtual Machine on
machines in the pool, or no machines have Java correctly installed.

A Simple Example Java Application

Here is a complete, if simple, example. Start with a simple Java
program, Hello.java:

public class Hello {
 public static void main(String [] args) {
 System.out.println("Hello, world!\n");
 }
}

Build this program using your Java compiler. On most platforms, this is
accomplished with the command

$ javac Hello.java

Submission to HTCondor requires a submit description file. If submitting
where files are accessible using a shared file system, this simple
submit description file works:

####################
#
Example 1
Execute a single Java class
#
####################

universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

The Java universe must be explicitly selected.

The main class of the program is given in the
executable statement.
This is a file name which contains the entry point of the program. The
name of the main class (not a file name) must be specified as the first
argument to the program.

If submitting the job where a shared file system is not accessible, the
submit description file becomes:

####################
#
Example 2
Execute a single Java class,
not on a shared file system
#
####################

universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error
should_transfer_files = YES
when_to_transfer_output = ON_EXIT

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

For more information about using HTCondor’s file transfer mechanisms,
see the Submitting a Job section.

To submit the job, where the submit description file is named
Hello.cmd, execute

$ condor_submit Hello.cmd

To monitor the job, the commands condor_q and condor_rm are used
as with all jobs.

Less Simple Java Specifications

	Specifying more than 1 class file.
	 For programs that
consist of more than one .class file, identify the files in the
submit description file:

executable = Stooges.class
transfer_input_files = Larry.class,Curly.class,Moe.class

The executable
command does not change. It still identifies the class file that
contains the program’s entry point.

	JAR files.
	 If the program consists of a
large number of class files, it may be easier to collect them all
together into a single Java Archive (JAR) file. A JAR can be created
with:

$ jar cvf Library.jar Larry.class Curly.class Moe.class Stooges.class

HTCondor must then be told where to find the JAR as well as to use
the JAR. The JAR file that contains the entry point is specified
with the executable
command. All JAR files are specified with the
jar_files command.
For this example that collected all the class files into a single
JAR file, the submit description file contains:

executable = Library.jar
jar_files = Library.jar

Note that the JVM must know whether it is receiving JAR files or
class files. Therefore, HTCondor must also be informed, in order to
pass the information on to the JVM. That is why there is a
difference in submit description file commands for the two ways of
specifying files
(transfer_input_files
and jar_files).

If there are multiple JAR files, the executable command
specifies the JAR file that contains the program’s entry point. This
file is also listed with the jar_files command:

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar

	Using a third-party JAR file.
	As HTCondor requires that all JAR files (third-party or not) be
available, specification of a third-party JAR file is no different
than other JAR files. If the sortmerge example above also relies on
version 2.1 from http://jakarta.apache.org/commons/lang/, and this
JAR file has been placed in the same directory with the other JAR
files, then the submit description file contains

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar,commons-lang-2.1.jar

	An executable JAR file.
	When the JAR file is an executable, specify the program’s entry
point in the
arguments command:

executable = anexecutable.jar
jar_files = anexecutable.jar
arguments = some.main.ClassFile

	Discovering the main class within a JAR file.
	As of Java version 1.4, Java virtual machines have a -jar
option, which takes a single JAR file as an argument. With this
option, the Java virtual machine discovers the main class to run
from the contents of the Manifest file, which is bundled within the
JAR file. HTCondor’s java universe does not support this
discovery, so before submitting the job, the name of the main class
must be identified.

For a Java application which is run on the command line with

$ java -jar OneJarFile.jar

the equivalent version after discovery might look like

$ java -classpath OneJarFile.jar TheMainClass

The specified value for TheMainClass can be discovered by unjarring
the JAR file, and looking for the MainClass definition in the
Manifest file. Use that definition in the HTCondor submit
description file. Partial contents of that file Java universe submit
file will appear as

universe = java
executable = OneJarFile.jar
jar_files = OneJarFile.jar
Arguments = TheMainClass More-Arguments
queue

	Packages.
	 An example of a Java class that
is declared in a non-default package is

package hpc;

public class CondorDriver
{
 // class definition here
}

The JVM needs to know the location of this package. It is passed as
a command-line argument, implying the use of the naming convention
and directory structure.

Therefore, the submit description file for this example will contain

arguments = hpc.CondorDriver

	JVM-version specific features.
	If the program uses Java features found only in certain JVMs, then
the Java application submitted to HTCondor must only run on those
machines within the pool that run the needed JVM. Inform HTCondor by
adding a requirements statement to the submit description file.
For example, to require version 3.2, add to the submit description
file:

requirements = (JavaVersion=="3.2")

	JVM options.
	Options to the JVM itself are specified in the submit description
file:

java_vm_args = -DMyProperty=Value -verbose:gc -Xmx1024m

These options are those which go after the java command, but before
the user’s main class. Do not use this to set the classpath, as
HTCondor handles that itself. Setting these options is useful for
setting system properties, system assertions and debugging certain
kinds of problems.

Chirp I/O

If a job has more sophisticated I/O requirements that cannot be met by
HTCondor’s file transfer mechanism, then the Chirp facility may provide
a solution. Chirp has two advantages over simple, whole-file transfers.
First, it permits the input files to be decided upon at run-time rather
than submit time, and second, it permits partial-file I/O with results
than can be seen as the program executes. However, small changes to the
program are required in order to take advantage of Chirp. Depending on
the style of the program, use either Chirp I/O streams or UNIX-like I/O
functions.

Chirp I/O streams are the easiest way to get started. Modify the program
to use the objects ChirpInputStream and ChirpOutputStream
instead of FileInputStream and FileOutputStream. These classes
are completely documented

in the HTCondor Software Developer’s Kit (SDK). Here is a simple code
example:

import java.io.*;
import edu.wisc.cs.condor.chirp.*;

public class TestChirp {

 public static void main(String args[]) {

 try {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(
 new ChirpInputStream("input")));

 PrintWriter out = new PrintWriter(
 new OutputStreamWriter(
 new ChirpOutputStream("output")));

 while(true) {
 String line = in.readLine();
 if(line==null) break;
 out.println(line);
 }
 out.close();
 } catch(IOException e) {
 System.out.println(e);
 }
 }
}

To perform UNIX-like I/O with Chirp, create a ChirpClient object.
This object supports familiar operations such as open, read,
write, and close. Exhaustive detail of the methods may be found
in the HTCondor SDK, but here is a brief example:

import java.io.*;
import edu.wisc.cs.condor.chirp.*;

public class TestChirp {

 public static void main(String args[]) {

 try {
 ChirpClient client = new ChirpClient();
 String message = "Hello, world!\n";
 byte [] buffer = message.getBytes();

 // Note that we should check that actual==length.
 // However, skip it for clarity.

 int fd = client.open("output","wct",0777);
 int actual = client.write(fd,buffer,0,buffer.length);
 client.close(fd);

 client.rename("output","output.new");
 client.unlink("output.new");

 } catch(IOException e) {
 System.out.println(e);
 }
 }
}

Regardless of which I/O style, the Chirp library must be specified and
included with the job. The Chirp JAR (Chirp.jar) is found in the
lib directory of the HTCondor installation. Copy it into your
working directory in order to compile the program after modification to
use Chirp I/O.

$ condor_config_val LIB
/usr/local/condor/lib
$ cp /usr/local/condor/lib/Chirp.jar .

Rebuild the program with the Chirp JAR file in the class path.

$ javac -classpath Chirp.jar:. TestChirp.java

The Chirp JAR file must be specified in the submit description file.
Here is an example submit description file that works for both of the
given test programs:

universe = java
executable = TestChirp.class
arguments = TestChirp
jar_files = Chirp.jar
want_io_proxy = True
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Parallel Applications (Including MPI Applications)

HTCondor’s parallel universe supports jobs that span multiple machines,
where the multiple processes within a job must be running concurrently
on these multiple machines, perhaps communicating with each other. The
parallel universe provides machine scheduling, but does not enforce a
particular programming paradigm for the underlying applications. Thus,
parallel universe jobs may run under various MPI implementations as well
as under other programming environments.

The parallel universe supersedes the mpi universe. The mpi universe
eventually will be removed from HTCondor.

How Parallel Jobs Run

Parallel universe jobs are submitted from the machine running the
dedicated scheduler. The dedicated scheduler matches and claims a fixed
number of machines (slots) for the parallel universe job, and when a
sufficient number of machines are claimed, the parallel job is started
on each claimed slot.

Each invocation of condor_submit assigns a single ClusterId for
what is considered the single parallel job submitted. The
machine_count
submit command identifies how many machines (slots) are to be allocated.
Each instance of the queue
submit command acquires and claims the number of slots specified by
machine_count. Each of these slots shares a common job ClassAd and
will have the same ProcId job ClassAd attribute value.

Once the correct number of machines are claimed, the
executable is started
at more or less the same time on all machines. If desired, a
monotonically increasing integer value that starts at 0 may be provided
to each of these machines. The macro $(Node) is similar to the MPI
rank construct. This macro may be used within the submit description
file in either the
arguments or
environment command.
Thus, as the executable runs, it may discover its own $(Node) value.

Node 0 has special meaning and consequences for the parallel job. The
completion of a parallel job is implied and taken to be when the Node 0
executable exits. All other nodes that are part of the parallel job and
that have not yet exited on their own are killed. This default behavior
may be altered by placing the line

+ParallelShutdownPolicy = "WAIT_FOR_ALL"

in the submit description file. It causes HTCondor to wait until every
node in the parallel job has completed to consider the job finished.

Parallel Jobs and the Dedicated Scheduler

To run parallel universe jobs, HTCondor must be configured such that
 machines running parallel jobs are
dedicated. Note that dedicated has a very specific meaning in HTCondor:
while dedicated machines can run serial jobs, they prefer to run
parallel jobs, and dedicated machines never preempt a parallel job once
it starts running.

A machine becomes a dedicated machine when an administrator configures
it to accept parallel jobs from one specific dedicated scheduler. Note
the difference between parallel and serial jobs. While any scheduler in
a pool can send serial jobs to any machine, only the designated
dedicated scheduler may send parallel universe jobs to a dedicated
machine. Dedicated machines must be specially configured. See
the Setting Up for Special Environments section
for a description of the necessary configuration, as well as examples.
Usually, a single dedicated scheduler is configured for a pool which can
run parallel universe jobs, and this condor_schedd daemon becomes the
single machine from which parallel universe jobs are submitted.

The following command line will list the execute machines in the local
pool which have been configured to use a dedicated scheduler, also
printing the name of that dedicated scheduler. In order to run parallel
jobs, this name will be defined to be the string
"DedicatedScheduler@", prepended to the name of the scheduler host.

$ condor_status -const '!isUndefined(DedicatedScheduler)' \
 -format "%s\t" Machine -format "%s\n" DedicatedScheduler

 execute1.example.com DedicatedScheduler@submit.example.com
 execute2.example.com DedicatedScheduler@submit.example.com

If this command emits no lines of output, then then pool is not
correctly configured to run parallel jobs. Make sure that the name of
the scheduler is correct. The string after the @ sign should match
the name of the condor_schedd daemon, as returned by the command

$ condor_status -schedd

Submission Examples

Simplest Example

Here is a submit description file for a parallel universe job example
that is as simple as possible:

###
submit description file for a parallel universe job
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
log = log
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

This job specifies the universe as parallel, letting HTCondor
know that dedicated resources are required. The
machine_count
command identifies that eight machines are required for this job.

Because no
requirements are
specified, the dedicated scheduler claims eight machines with the same
architecture and operating system as the access point. When all the
machines are ready, it invokes the /bin/sleep command, with a command
line argument of 30 on each of the eight machines more or less
simultaneously. Job events are written to the log specified in the
log command.

The file transfer mechanism is enabled for this parallel job, such that
if any of the eight claimed execute machines does not share a file
system with the access point, HTCondor will correctly transfer the
executable. This /bin/sleep example implies that the access point is
running a Unix operating system, and the default assumption for
submission from a Unix machine would be that there is a shared file
system.

Example with Operating System Requirements

Assume that the pool contains Linux machines installed with either a
RedHat or an Ubuntu operating system. If the job should run only on
RedHat platforms, the requirements expression may specify this:

###
submit description file for a parallel program
targeting RedHat machines
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
log = log
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
requirements = (OpSysName == "RedHat")
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

The machine selection may be further narrowed, instead using the
OpSysAndVer attribute.

###
submit description file for a parallel program
targeting RedHat 6 machines
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
log = log
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
requirements = (OpSysAndVer == "RedHat6")
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Using the $(Node) Macro

######################################
submit description file for a parallel program
showing the $(Node) macro
######################################
universe = parallel
executable = /bin/cat
log = logfile
input = infile.$(Node)
output = outfile.$(Node)
error = errfile.$(Node)
machine_count = 4
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
queue

The $(Node) macro is expanded to values of 0-3 as the job instances
are about to be started. This assigns unique names to the input and
output files to be transferred or accessed from the shared file system.
The $(Node) value is fixed for the entire length of the job.

Differing Requirements for the Machines

Sometimes one machine’s part in a parallel job will have specialized
needs. These can be handled with a
Requirements submit
command that also specifies the number of needed machines.

######################################
Example submit description file
with 4 total machines and differing requirements
######################################
universe = parallel
executable = special.exe
machine_count = 1
requirements = (machine == "machine1@example.com")
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

machine_count = 3
requirements = (machine =!= "machine1@example.com")
queue

The dedicated scheduler acquires and claims four machines. All four
share the same value of ClusterId, as this value is associated with
this single parallel job. The existence of a second
queue command causes a total
of two ProcId values to be assigned for this parallel job. The
ProcId values are assigned based on ordering within the submit
description file. Value 0 will be assigned for the single executable
that must be executed on machine1@example.com, and the value 1 will be
assigned for the other three that must be executed elsewhere.

Requesting multiple cores per slot

If the parallel program has a structure that benefits from running on
multiple cores within the same slot, multi-core slots may be specified.

######################################
submit description file for a parallel program
that needs 8-core slots
######################################
universe = parallel
executable = foo.sh
log = logfile
input = infile.$(Node)
output = outfile.$(Node)
error = errfile.$(Node)
machine_count = 2
request_cpus = 8
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

This parallel job causes the scheduler to match and claim two machines,
where each of the machines (slots) has eight cores. The parallel job is
assigned a single ClusterId and a single ProcId, meaning that
there is a single job ClassAd for this job.

The executable, foo.sh, is started at the same time on a single core
within each of the two machines (slots). It is presumed that the
executable will take care of invoking processes that are to run on the
other seven CPUs (cores) associated with the slot.

Potentially fewer machines are impacted with this specification, as
compared with the request that contains

machine_count = 16
request_cpus = 1

The interaction of the eight cores within the single slot may be
advantageous with respect to communication delay or memory access. But,
8-core slots must be available within the pool.

MPI Applications

MPI applications use a single executable, invoked on one or more
machines (slots), executing in parallel. The various implementations of
MPI such as Open MPI and MPICH require further framework. HTCondor
supports this necessary framework through a user-modified script. This
implementation-dependent script becomes the HTCondor executable. The
script sets up the framework, and then it invokes the MPI application’s
executable.

The scripts are located in the $(RELEASE_DIR)/etc/examples
directory. The script for the Open MPI implementation is
openmpiscript. The scripts for MPICH implementations are
mp1script and mp2script. An MPICH3 script is not available at
this time. These scripts rely on running ssh for communication between
the nodes of the MPI application. The ssh daemon on Unix platforms
restricts connections to the approved shells listed in the
/etc/shells file.

Here is a sample submit description file for an MPICH MPI application:

######################################
Example submit description file
for MPICH 1 MPI
works with MPICH 1.2.4, 1.2.5 and 1.2.6
######################################
universe = parallel
executable = mp1script
arguments = my_mpich_linked_executable arg1 arg2
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_mpich_linked_executable
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

The executable is the
mp1script script that will have been modified for this MPI
application. This script is invoked on each slot or core. The script, in
turn, is expected to invoke the MPI application’s executable. To know
the MPI application’s executable, it is the first in the list of
arguments . And, since
HTCondor must transfer this executable to the machine where it will run,
it is listed with the
transfer_input_files
command, and the file transfer mechanism is enabled with the
should_transfer_files
command.

Here is the equivalent sample submit description file, but for an Open
MPI application:

######################################
Example submit description file
for Open MPI
######################################
universe = parallel
executable = openmpiscript
arguments = my_openmpi_linked_executable arg1 arg2
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_openmpi_linked_executable
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Most MPI implementations require two system-wide prerequisites. The
first prerequisite is the ability to run a command on a remote machine
without being prompted for a password. ssh is commonly used. The
second prerequisite is an ASCII file containing the list of machines
that may utilize ssh. These common prerequisites are implemented in a
further script called sshd.sh. sshd.sh generates ssh keys to
enable password-less remote execution and starts an sshd daemon. Use
of the sshd.sh script requires the definition of two HTCondor
configuration variables. Configuration variable CONDOR_SSHD
 is an absolute path to an implementation of
sshd. sshd.sh has been tested with openssh version 3.9, but should
work with more recent versions. Configuration variable
CONDOR_SSH_KEYGEN points to the
corresponding ssh-keygen executable.

mp1script and mp2script require the PATH to the MPICH
installation to be set. The variable MPDIR may be modified in the
scripts to indicate its proper value. This directory contains the MPICH
mpirun executable.

openmpiscript also requires the PATH to the Open MPI installation.
Either the variable MPDIR can be set manually in the script, or the
administrator can define MPDIR using the configuration variable
OPENMPI_INSTALL_PATH . When using
Open MPI on a multi-machine HTCondor cluster, the administrator may also
want to consider tweaking the OPENMPI_EXCLUDE_NETWORK_INTERFACES
 configuration variable
as well as set MOUNT_UNDER_SCRATCH = /tmp.

MPI Applications Within HTCondor’s Vanilla Universe

The vanilla universe may be preferred over the parallel universe for
parallel applications which can run entirely on one machine. The
request_cpus command
causes a claimed slot to have the required number of CPUs (cores).

There are two ways to ensure that the MPI job can run on any machine
that it lands on:

	Statically build an MPI library and statically compile the MPI code.

	Bundle all the MPI libraries into a docker container and run MPI in the container

Here is a submit description file example assuming that MPI is installed
on all machines on which the MPI job may run, or that the code was built
using static libraries and a static version of mpirun is available.

##
submit description file for
static build of MPI under the vanilla universe
##
universe = vanilla
executable = /path/to/mpirun
request_cpus = 2
arguments = -np 2 my_mpi_linked_executable arg1 arg2 arg3
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_mpi_linked_executable
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Any additional input files that will be needed for the executable that
are not already in the tarball should be included in the list in
transfer_input_files
command. The corresponding script should then also be updated to move
those files into the directory where the executable will be run.

Virtual Machine Applications

The vm universe facilitates an HTCondor job that matches and then
lands a disk image on an execute machine within an HTCondor pool. This
disk image is intended to be a virtual machine. In this manner, the
virtual machine is the job to be executed.

This section describes this type of HTCondor job. See
Configuration File Entries Relating to Virtual Machines for details of configuration variables.

The Submit Description File

Different than all other universe jobs, the vm universe job
specifies a disk image, not an executable. Therefore, the submit
commands input ,
output , and
error do not apply. If
specified, condor_submit rejects the job with an error. The
executable command
changes definition within a vm universe job. It no longer specifies
an executable file, but instead provides a string that identifies the
job for tools such as condor_q. Other commands specific to the type
of virtual machine software identify the disk image.

Xen and KVM virtual machine software are supported. As these
differ from each other, the submit description file specifies one of

vm_type = xen

or

vm_type = kvm

The job is required to specify its memory needs for the disk image with
vm_memory , which is
given in Mbytes. HTCondor uses this number to assure a match with a
machine that can provide the needed memory space.

Virtual machine networking is enabled with the command

vm_networking = true

And, when networking is enabled, a definition of
vm_networking_type
as bridge matches the job only with a machine that is configured to
use bridge networking. A definition of
vm_networking_type
as nat matches the job only with a machine that is configured to use
NAT networking. When no definition of
vm_networking_type
is given, HTCondor may match the job with a machine that enables
networking, and further, the choice of bridge or NAT networking is
determined by the machine’s configuration.

Modified disk images are transferred back to the machine from which the
job was submitted as the vm universe job completes. Job completion
for a vm universe job occurs when the virtual machine is shut down,
and HTCondor notices (as the result of a periodic check on the state of
the virtual machine). Should the job not want any files transferred back
(modified or not), for example because the job explicitly transferred
its own files, the submit command to prevent the transfer is

vm_no_output_vm = true

The required disk image must be identified for a virtual machine. This
vm_disk command specifies
a list of comma-separated files. Each disk file is specified by
colon-separated fields. The first field is the path and file name of the
disk file. The second field specifies the device. The third field
specifies permissions, and the optional fourth specifies the format.
Here is an example that identifies a single file:

vm_disk = swap.img:sda2:w:raw

If HTCondor will be transferring the disk file, then the file name given
in vm_disk should not
contain any path information. Otherwise, the full path to the file
should be given.

Setting values in the submit description file for some commands have
consequences for the virtual machine description file. These commands
are

	vm_memory

	vm_macaddr

	vm_networking

	vm_networking_type

	vm_disk

HTCondor uses these values when it
produces the description file.

If any files need to be transferred from the
access point to the machine where the vm universe job will
execute, HTCondor must be explicitly told to do so with the standard
file transfer attributes:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /myxen/diskfile.img,/myxen/swap.img

Any and all needed files that will not accessible directly from the
machines where the job may execute must be listed.

Further commands specify information that is specific to the virtual
machine type targeted.

Xen-Specific Submit Commands

A Xen vm universe job requires specification of the guest kernel.
The xen_kernel command
accomplishes this, utilizing one of the following definitions.

	xen_kernel = included implies that the kernel is to be found in
disk image given by the definition of the single file specified in
vm_disk .

	xen_kernel = path-to-kernel gives the file name of the required
kernel. If this kernel must be transferred to machine on which the
vm universe job will execute, it must also be included in the
transfer_input_files
command.

This form of the
xen_kernel command
also requires further definition of the
xen_root command.
xen_root defines the device containing files needed by root.

Checkpoints

Creating a checkpoint is straightforward for a virtual machine, as a
checkpoint is a set of files that represent a snapshot of both disk
image and memory. The checkpoint is created and all files are
transferred back to the $(SPOOL) directory on the machine from which
the job was submitted. The submit command to create checkpoints is

vm_checkpoint = true

Without this command, no checkpoints are created (by default). With the
command, a checkpoint is created any time the vm universe jobs is
evicted from the machine upon which it is executing. This occurs as a
result of the machine configuration indicating that it will no longer
execute this job.

Periodic creation of checkpoints is not supported at this time.

Enabling both networking and checkpointing for a vm universe job can
cause networking problems when the job restarts, particularly if the job
migrates to a different machine. condor_submit will normally reject
such jobs. To enable both, then add the command

when_to_transfer_output = ON_EXIT_OR_EVICT

Take care with respect to the use of network connections within the
virtual machine and their interaction with checkpoints. Open network
connections at the time of the checkpoint will likely be lost when the
checkpoint is subsequently used to resume execution of the virtual
machine. This occurs whether or not the execution resumes on the same
machine or a different one within the HTCondor pool.

Disk Images

Xen and KVM

While the following web page contains instructions specific to Fedora on
how to create a virtual guest image, it should provide a good starting
point for other platforms as well.

http://fedoraproject.org/wiki/Virtualization_Quick_Start

Job Completion in the vm Universe

Job completion for a vm universe job occurs when the virtual machine
is shut down, and HTCondor notices (as the result of a periodic check on
the state of the virtual machine). This is different from jobs executed
under the environment of other universes.

Shut down of a virtual machine occurs from within the virtual machine
environment. A script, executed with the proper authorization level, is
the likely source of the shut down commands.

Under a Windows 2000, Windows XP, or Vista virtual machine, an
administrator issues the command

> shutdown -s -t 01

Under a Linux virtual machine, the root user executes

$ /sbin/poweroff

The command /sbin/halt will not completely shut down some Linux
distributions, and instead causes the job to hang.

Since the successful completion of the vm universe job requires the
successful shut down of the virtual machine, it is good advice to try
the shut down procedure outside of HTCondor, before a vm universe
job is submitted.

Failures to Launch

It is not uncommon for a vm universe job to fail to launch because
of a problem with the execute machine. In these cases, HTCondor will
reschedule the job and note, in its user event log (if requested), the
reason for the failure and that the job will be rescheduled. The reason
is unlikely to be directly useful to you as an HTCondor user, but may
help your HTCondor administrator understand the problem.

If the VM fails to launch for other reasons, the job will be placed on
hold and the reason placed in the job ClassAd’s HoldReason
attribute. The following table may help in understanding such reasons.

	VMGAHP_ERR_JOBCLASSAD_NO_VM_MEMORY_PARAM
	The attribute JobVMMemory was not set in the job ad sent to the
VM GAHP. HTCondor will usually prevent you from submitting a VM universe job
without JobVMMemory set. Examine your job and verify that JobVMMemory is set.
If it is, please contact your administrator.

	VMGAHP_ERR_JOBCLASSAD_KVM_NO_DISK_PARAM
	The attribute VMPARAM_vm_Disk was not set in the job ad sent to the
VM GAHP. HTCondor will usually set this attribute when you submit a valid
KVM job (it is derived from vm_disk). Examine your job and verify that
VMPARAM_vm_Disk is set. If it is, please contact your administrator.

	VMGAHP_ERR_JOBCLASSAD_KVM_INVALID_DISK_PARAM
	The attribute vm_disk was invalid. Please consult the manual,
or the condor_submit man page, for information about the syntax of
vm_disk. A syntactically correct value may be invalid if the
on-disk permissions of a file specified in it do not match the requested
permissions. Presently, files not transferred to the root of the working
directory must be specified with full paths.

	VMGAHP_ERR_JOBCLASSAD_KVM_MISMATCHED_CHECKPOINT
	KVM jobs can not presently checkpoint if any of their disk files are not
on a shared filesystem. Files on a shared filesystem must be specified in
vm_disk with full paths.

	VMGAHP_ERR_JOBCLASSAD_XEN_NO_KERNEL_PARAM
	The attribute VMPARAM_Xen_Kernel was not set in the job ad sent to the
VM GAHP. HTCondor will usually set this attribute when you submit a valid
Xen job (it is derived from xen_kernel). Examine your job and verify that
VMPARAM_Xen_Kernel is set. If it is, please contact your administrator.

	VMGAHP_ERR_JOBCLASSAD_MISMATCHED_HARDWARE_VT
	Don’t use ‘vmx’ as the name of your kernel image. Pick something else and
change xen_kernel to match.

	VMGAHP_ERR_JOBCLASSAD_XEN_KERNEL_NOT_FOUND
	HTCondor could not read from the file specified by xen_kernel.
Check the path and the file’s permissions. If it’s on a shared filesystem,
you may need to alter your job’s requirements expression to ensure the
filesystem’s availability.

	VMGAHP_ERR_JOBCLASSAD_XEN_INITRD_NOT_FOUND
	HTCondor could not read from the file specified by xen_initrd.
Check the path and the file’s permissions. If it’s on a shared filesystem,
you may need to alter your job’s requirements expression to ensure the
filesystem’s availability.

	VMGAHP_ERR_JOBCLASSAD_XEN_NO_ROOT_DEVICE_PARAM
	The attribute VMPARAM_Xen_Root was not set in the job ad sent to the
VM GAHP. HTCondor will usually set this attribute when you submit a valid
Xen job (it is derived from xen_root). Examine your job and verify that
VMPARAM_Xen_Root is set. If it is, please contact your administrator.

	VMGAHP_ERR_JOBCLASSAD_XEN_NO_DISK_PARAM
	The attribute VMPARAM_vm_Disk was not set in the job ad sent to the
VM GAHP. HTCondor will usually set this attribute when you submit a valid
Xen job (it is derived from vm_disk). Examine your job and verify that
VMPARAM_vm_Disk is set. If it is, please contact your administrator.

	VMGAHP_ERR_JOBCLASSAD_XEN_INVALID_DISK_PARAM
	The attribute vm_disk was invalid. Please consult the manual,
or the condor_submit man page, for information about the syntax of
vm_disk. A syntactically correct value may be invalid if the
on-disk permissions of a file specified in it do not match the requested
permissions. Presently, files not transferred to the root of the working
directory must be specified with full paths.

	VMGAHP_ERR_JOBCLASSAD_XEN_MISMATCHED_CHECKPOINT
	Xen jobs can not presently checkpoint if any of their disk files are not
on a shared filesystem. Files on a shared filesystem must be specified in
vm_disk with full paths.

Docker Universe Applications

A docker universe job instantiates a Docker container from a Docker
image, and HTCondor manages the running of that container as an HTCondor
job, on an execute machine. This running container can then be managed
as any HTCondor job. For example, it can be scheduled, removed, put on
hold, or be part of a workflow managed by DAGMan.

The docker universe job will only be matched with an execute host that
advertises its capability to run docker universe jobs. When an execute
machine with docker support starts, the machine checks to see if the
docker command is available and has the correct settings for HTCondor.
Docker support is advertised if available and if it has the correct
settings.

The image from which the container is instantiated is defined by
specifying a Docker image with the submit command
docker_image . This
image must be pre-staged on a docker hub that the execute machine can
access.

The submit file command universe can either be optionally set to docker
or not declared at all. If universe is declared and set to anything but
docker then the job submission will fail. Regardless, the submit file
command docker_image must be declared and set to a docker image.

After submission, the job is treated much the same way as a vanilla
universe job. Details of file transfer are the same as applied to the
vanilla universe. One of the benefits of Docker containers is the file
system isolation they provide. Each container has a distinct file
system, from the root on down, and this file system is completely
independent of the file system on the host machine. The container does
not share a file system with either the execute host or the submit host,
with the exception of the scratch directory, which is volume mounted to
the host, and is the initial working directory of the job. Optionally,
the administrator may configure other directories from the host machine
to be volume mounted, and thus visible inside the container. See the
docker section of the administrator’s manual for details.

In Docker universe (as well as vanilla), HTCondor never allows a
containerized process to run as root inside the container, it always
runs as a non-root user. It will run as the same non-root user that a
vanilla job will. If a Docker Universe job fails in an obscure way, but
runs fine in a docker container on a desktop, try running the job as a
non-root user on the desktop to try to duplicate the problem.

HTCondor creates a per-job scratch directory on the execute machine,
transfers any input files to that directory, bind-mounts that directory
to a directory of the same name inside the container, and sets the IWD
of the contained job to that directory. The assumption is that the job
will look in the cwd for input files, and drop output files in the same
directory. In docker terms, we docker run with the -v
/some_scratch_directory -w /some_scratch_directory -user
non-root-user command line options (along with many others).

The executable file can come from one of two places: either from within
the container’s image, or it can be a script transferred from the submit
machine to the scratch directory of the execute machine. To specify the
former, use an absolute path (starting with a /) for the executable. For
the latter, use a relative path.

Therefore, the submit description file should contain the submit command

should_transfer_files = YES

With this command, all input and output files will be transferred as
required to and from the scratch directory mounted as a Docker volume.

If no executable is
specified in the submit description file, it is presumed that the Docker
container has a default command to run.

When the job completes, is held, evicted, or is otherwise removed from
the machine, the container will be removed.

Here is a complete submit description file for a sample docker universe
job:

#universe = docker is optional
universe = docker
docker_image = debian
executable = /bin/cat
arguments = /etc/hosts
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output = out.$(Process)
error = err.$(Process)
log = log.$(Process)

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue 1

A debian container is the HTCondor job, and it runs the /bin/cat
program on the /etc/hosts file before exiting.

Docker and Networking

By default, docker universe jobs will be run with a private, NATed
network interface.

In the job submit file, if the user specifies

docker_network_type = none

then no networking will be available to the job.

In the job submit file, if the user specifies

docker_network_type = host

then, instead of a NATed interface, the job will use the host’s
network interface, just like a vanilla universe job.
If an administrator has defined additional, custom docker
networks, they will be advertised in the slot attribute
DockerNetworks, and any value in that list can be
a valid argument for this keyword.

If the host network type is unavailable, you can ask Docker to forward one
or more ports on the host into the container. In the following example, we
assume that the ‘centos7_with_htcondor’ image has HTCondor set up and ready
to go, but doesn’t turn it on by default.

#universe = docker is optional
universe = docker
docker_image = centos7_with_htcondor
executable = /usr/sbin/condor_master
arguments = -f
container_service_names = condor
condor_container_port = 9618
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output = out.$(Process)
error = err.$(Process)
log = log.$(Process)

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue 1

The container_service_names submit command accepts a comma- or space-
separated list of service names; each service name must have a corresponding
<service-name>_container_port submit command specifying an integer
between 0 and 65535. Docker will automatically select a port on the host
to forward to that port in the container; HTCondor will report that port
in the job ad attribute <service-name>_HostPort after it becomes
available, which will be (several seconds) after the job starts. HTCondor
will update the job ad in the sandbox (.job.ad) at that time.

Container Universe Jobs

In addition to Docker, many competing container runtimes
have been developed, some of which are mostly compatible with
Docker, and others which provide their own feature sets. Many
HTCondor users and administrators want to run jobs inside containers,
but don’t care which runtime is used.

HTCondor’s container universe provides an abstraction where the user
does not specify exactly which container runtime to use, but just
aspects of their contained job, and HTCondor will select an appropriate
runtime. To do this, set the job submit file command container_image
to a specified container image.

The submit file command universe can either be optionally set to
container or not declared at all. If universe is declared and set
to anything but container then the job submission will fail.

Note that the container may specify the executable to run, either in
the runfile option of a singularity image, or in the entrypoint
option of a Dockerfile. If this is set, the executable command in the
HTCondor submit file is optional, and the default command in the container
will be run.

This container image may describe an image in a docker-style repo if it
is prefixed with docker://, or a Singularity .sif image on disk, or a
Singularity sandbox image (an exploded directory). condor_submit
will parse this image and advertise what type of container image it
is, and match with startds that can support that image.

The container image may also be specified with an URL syntax that tells
HTCondor to use a file transfer plugin to transfer the image. For example
with

container_image = http://example.com/dir/image.sif

A container image that would otherwise be transferred can be forced
to never be transferred by setting

should_transfer_container = no

HTCondor knows that “docker://” and “oras://” (for apptainer) are special, and
are never transferred by HTCondor plugins.

Here is a complete submit description file for a sample container universe
job:

#universe = container is optional
universe = container
container_image = ./image.sif

executable = /bin/cat
arguments = /etc/hosts

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

output = out.$(Process)
error = err.$(Process)
log = log.$(Process)

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue 1

Self-Checkpointing Applications

This section is about writing jobs for an executable which periodically
saves checkpoint information, and how to make HTCondor store that
information safely, in case it’s needed to continue the job on another
machine or at a later time.

This section is not about how to checkpoint a given executable; that’s
up to you or your software provider.

How To Run Self-Checkpointing Jobs

The best way to run self-checkpointing code is to set checkpoint_exit_code
in your submit file. (Any exit code will work, but if you can choose,
consider error code 85. On Linux systems, this is ERESTART, which
seems appropriate.) If the executable exits
with checkpoint_exit_code, HTCondor will transfer the checkpoint to
the submit node, and then immediately restart the executable in the
same sandbox on the same machine, with the same arguments. This
immediate transfer makes the checkpoint available for continuing the job
even if the job is interrupted in a way that doesn’t allow for files to
be transferred (e.g., power failure), or if the file transfer doesn’t
complete in the time allowed.

For a job to use checkpoint_exit_code successfully, its executable
must meet a number of requirements.

Requirements

Your self-checkpointing code may not meet all of the following
requirements. In many cases, however, you will be able to add a wrapper
script, or modify an existing one, to meet these requirements. (Thus,
your executable may be a script, rather than the code that’s writing
the checkpoint.) If you can not, consult Working Around the
Assumptions and/or the Other Options.

	Your executable exits after taking a checkpoint with an exit code it
does not otherwise use.

	If your executable does not exit when it takes a checkpoint,
HTCondor will not transfer its checkpoint. If your executable
exits normally when it takes a checkpoint, HTCondor will not be
able to tell the difference between taking a checkpoint and
actually finishing; that is, if the checkpoint code and the
terminal exit code are the same, your job will never finish.

	When restarted, your executable determines on its own if a checkpoint
is available, and if so, uses it.

	If your job does not look for a checkpoint each time it starts up,
it will start from scratch each time; HTCondor does not run a
different command line when restarting a job which has taken a
checkpoint.

	Starting your executable up from a checkpoint is relatively quick.

	If starting your executable up from a checkpoint is relatively
slow, your job may not run efficiently enough to be useful,
depending on the frequency of checkpoints and interruptions.

Using checkpoint_exit_code

The following Python script (example.py) is a toy example of code that
checkpoints itself. It counts from 0 to 10 (exclusive), sleeping for 10
seconds at each step. It writes a checkpoint file (containing the next number)
after each nap, and exits with code 85 at count 3, 6, and 9. It exits
with code 0 when complete.

#!/usr/bin/env python

import sys
import time

value = 0
try:
 with open('example.checkpoint', 'r') as f:
 value = int(f.read())
except IOError:
 pass

print("Starting from {0}".format(value))
for i in range(value,10):
 print("Computing timestamp {0}".format(value))
 time.sleep(10)
 value += 1
 with open('example.checkpoint', 'w') as f:
 f.write("{0}".format(value))
 if value%3 == 0:
 sys.exit(85)

print("Computation complete")
sys.exit(0)

The following submit file (example.submit) commands HTCondor to transfer the
file example.checkpoint to the submit node whenever the script exits with code
85. If interrupted, the job will resume from the most recent of those
checkpoints. Before version 8.9.8, you must include your checkpoint file(s)
in transfer_output_files; otherwise HTCondor will not transfer it
(them). Starting with version 8.9.8, you may instead use
transfer_checkpoint_files, as documented on
the condor_submit man page.

checkpoint_exit_code = 85
transfer_output_files = example.checkpoint
should_transfer_files = yes

executable = example.py
arguments =

output = example.out
error = example.err
log = example.log

request_cpus = 1
request_memory = 512M
request_disk = 1G

queue 1

This example does not remove the “checkpoint file” generated for
timestep 9 when the executable completes. This could be done in
example.py immediately before it exits, but that would cause the
final file transfer to fail, if you specified the file in
transfer_output_files. The script could instead remove the file
and then re-create it empty, it desired.

How Frequently to Checkpoint

Obviously, the longer the code spends writing checkpoints, and the
longer your job spends transferring them, the longer it will take for
you to get the job’s results. Conversely, the more frequently the job
transfers new checkpoints, the less time the job loses if it’s
interrupted. For most users and for most jobs, taking a checkpoint about
once an hour works well, and it’s not a bad duration to start
experimenting with. A number of factors will skew this interval up or
down:

	If your job(s) usually run on resources with strict time limits, you
may want to adjust how often your job checkpoints to minimize wasted
time. For instance, if your job writes a checkpoint after each hour,
and each checkpoint takes five minutes to write out and then
transfer, your fifth checkpoint will finish twenty-five minutes into
the fifth hour, and you won’t gain any benefit from the next
thirty-five minutes of computation. If you instead write a checkpoint
every eighty-four minutes, your job will only waste four minutes.

	If a particular code writes larger checkpoints, or writes smaller
checkpoints unusually slowly, you may want to take a checkpoint less
frequently than you would for other jobs of a similar length, to keep
the total overhead (delay) the same. The opposite is also true: if
the job can take checkpoints particularly quickly, or the checkpoints
are particularly small, the job could checkpoint more often for the
same amount of overhead.

	Some code naturally checkpoints at longer or shorter intervals. If a
code writes a checkpoint every five minutes, it may make sense for
the executable to wait for the code to write ten or more
checkpoints before exiting (which asks HTCondor to transfer the
checkpoint file(s)). If a job is a sequence of steps, the natural (or
only possible) checkpoint interval may be between steps.

	How long it takes to restart from a checkpoint. It should never take
longer to restart from a checkpoint than to recompute from the
beginning, but the restart process is part of the overhead of taking
a checkpoint. The longer a code takes to restart, the less often the
executable should exit.

Measuring how long it takes to make checkpoints is left as an exercise
for the reader. Since version 8.9.1, however, HTCondor will report in
the job’s log (if a log is enabled for that job) how long file
transfers, including checkpoint transfers, took.

Debugging Self-Checkpointing Jobs

Because a job may be interrupted at any time, it’s valid to interrupt
the job at any time and see if a valid checkpoint is transferred. To do
so, use condor_vacate_job to evict the job. When that’s done (watch
the user log), use condor_hold to put it on hold, so that it can’t
restart while you’re looking at the checkpoint (and potentially,
overwrite it). Finally, to obtain the checkpoint file(s) themselves, use
the somewhat mis-named condor_evicted_files to ask where they are.

For example, if your job is ID 635.0, and is logging to the file
job.log, you can copy the files in the checkpoint to a subdirectory of
the current as follows:

$ condor_vacate_job 635.0

Wait for the job to finish being evicted;
hit CTRL-C when you see ‘Job was evicted.’
and immediately hold the job.

$ tail --follow job.log
$ condor_hold 635.0

Copy the checkpoint files from the spool.
Note that _condor_stderr and _condor_stdout are the files corresponding
to the job’s output and error submit commands; they aren’t named
correctly until the the job finishes.

$ condor_evicted_files get 635.0
Copied to '635.0'.
$ cd 635.0

Now examine the checkpoint files to see if they look right.
When you’re done, release the job to see if it actually works right.

$ condor_release 635.0
$ condor_ssh_to_job 635.0

You may also want to remove your copy of checkpoint files:

$ cd ..; rm -fr 635.0

Working Around the Assumptions

The basic technique here is to write a wrapper script (or modify an
existing one), so that the executable has the necessary behavior,
even if the code does not.

	Your executable exits after taking a checkpoint with an exit code it
does not otherwise use.

	If your code exits when it takes a checkpoint, but not with a
unique code, your wrapper script will have to determine, when the
executable exits, if it did so because it took a checkpoint. If
so, the wrapper script will have to exit with a unique code. If
the code could usefully exit with any code, and the wrapper script
therefore can not exit with a unique code, you can instead
instruct HTCondor to consider being killed by a particular signal as
a sign of successful checkpoint; set
+SuccessCheckpointExitBySignal to TRUE and
+SuccessCheckpointExitSignal to the particular signal. (If you
do not set checkpoint_exit_code, you must set
+WantFTOnCheckpoint.)

	If your code does not exit when it takes a checkpoint, the wrapper
script will have to determine when a checkpoint has been made,
kill the program, and then exit with a unique code.

	When restarted, your executable determines on its own if a
checkpoint is available, and if so, uses it.

	If your code requires different arguments to start from a
checkpoint, the wrapper script must check for the presence of a
checkpoint and start the executable with correspondingly modified
arguments.

	Starting your executable up from a checkpoint is relatively quick.

	The longer the start-up delay, the slower the job’s overall
progress. If your job’s progress is too slow as a result of
start-up delay, and your code can take checkpoints without
exiting, read the ‘Delayed Transfers’ and ‘Manual Transfers’
sections below.

Other Options

The preceding sections of this HOWTO explain how a job meeting the
requirements can take checkpoints at arbitrary intervals and transfer
them back to the submit node. Although this is the method of operation
most likely to result in an interrupted job continuing from a valid
checkpoint, other, less reliable options exist.

Delayed Transfers

This method is risky, because it does not allow your job to recover from
any failure mode other than an eviction (and sometimes not even then).
It may also require changes to your executable. The advantage of
this method is that it doesn’t require your code to restart, or even a
recent version of HTCondor.

The basic idea is to take checkpoints as the job runs, but not transfer
them back to the submit node until the job is evicted. This implies that
your executable doesn’t exit until the job is complete (which is the
normal case). If your code has long start-up delays, you’ll naturally
not want it to exit after it writes a checkpoint; otherwise, the wrapper
script could restart the code as necessary.

To use this method, set when_to_transfer_output to
ON_EXIT_OR_EVICT instead of setting checkpoint_exit_code. This
will cause HTCondor to transfer your checkpoint file(s) (which you
listed in transfer_output_files, as noted above) when the job is
evicted. Of course, since this is the only time your checkpoint file(s)
will be transferred, if the transfer fails, your job has to start over
from the beginning. One reason file transfer on eviction fails is if it
takes too long, so this method may not work if your
transfer_output_files contain too much data.

Furthermore, eviction can happen at any time, including while the code
is updating its checkpoint file(s). If the code does not update its
checkpoint file(s) atomically, HTCondor will transfer the
partially-updated checkpoint file(s), potentially overwriting the
previous, complete one(s); this will probably prevent the code from
picking up where it left off.

In some cases, you can work around this problem by using a wrapper
script. The idea is that renaming a file is an atomic operation, so if
your code writes checkpoints to one file, call it checkpoint, your
wrapper script – when it detects that the checkpoint is complete –
would rename that file checkpoint.atomic. That way,
checkpoint.atomic always has a complete checkpoint in it. With a
such a script, instead of putting checkpoint in
transfer_output_files, you would put checkpoint.atomic, and
HTCondor would never see a partially-complete checkpoint file. (The
script would also, of course, have to copy checkpoint.atomic to
checkpoint before running the code.)

Manual Transfers

If you’re comfortable with programming, instead of running a job with
checkpoint_exit_code, you could use condor_chirp, or other tools,
to manage your checkpoint file(s). Your executable would be
responsible for downloading the checkpoint file(s) on start-up, and
periodically uploading the checkpoint file(s) during execution. We don’t
recommend you do this for the same reasons we recommend against managing
your own input and output file transfers.

Early Checkpoint Exits

If your executable’s natural checkpoint interval is half or more of your
pool’s max job runtime, it may make sense to checkpoint and then
immediately ask to be rescheduled, rather than lower your user priority
doing work you know will be thrown away. In this case, you can use the
OnExitRemove job attribute to determine if your job should be
rescheduled after exiting. Don’t set ON_EXIT_OR_EVICT, and don’t set
+WantFTOnCheckpoint; just have the job exit with a unique code after
its checkpoint.

Signals

Signals offer additional options for running self-checkpointing jobs. If
you’re not familiar with signals, this section may not make sense to
you.

Periodic Signals

HTCondor supports transferring checkpoint file(s) for an executable
which takes a checkpoint when sent a particular signal, if the executable
then exits in a unique way. Set +WantCheckpointSignal to TRUE to
periodically receive checkpoint signals, and +CheckpointSig to
specify which one. (The interval is specified by the administrator of
the execute machine.) The unique way may be a specific exit code, for which
you would set checkpoint_exit_code, or a signal, for which you would
set +SuccessCheckpointExitBySignal to TRUE and
+SuccessCheckpointExitSignal to the particular signal. (If you do
not set checkpoint_exit_code, you must set +WantFTOnCheckpoint.)

Delayed Transfer with Signals

This method is very similar to but riskier than delayed transfers,
because in addition to delaying the transfer of the checkpoint files(s),
it also delays their creation. Thus, this option should almost never be
used; if taking and transferring your checkpoint file(s) is fast enough
to reliably complete during an eviction, you’re not losing much by doing
so periodically, and it’s unlikely that a code which takes small
checkpoints quickly takes a long time to start up. However, this method
will work even with very old version of HTCondor.

To use this method, set when_to_transfer_output to
ON_EXIT_OR_EVICT and KillSig to the particular signal that
causes your job to checkpoint.

Submitting a Remote Job

Submitting a job to a remote Access Point

Usually, when you run the condor_submit` command, you are logged into an Access Point (AP)
which is running a condor_schedd, and your submit defaults to sending the job to the
condor_schedd running on that same AP. However, it is possible to have condor_submit
send the job to a condor_schedd running on some other machine. Maybe you want to run
condor_submit from your laptop and send the job to an AP on some server. Maybe
you are building a web portal, and you want the portal to run on one machine,
and the condor_schedd running on some other machine.

The first concern is security. When you submit locally, the condor_schedd
can easily determine who is submitting the job, and thus what system
account it should run the condor_shadow as. This is much more difficult
with a remote, over-the-network submit. For this to work, some additional
setup must happen. While this authentication can be setup with SSL, Kerberos
or Windows native methods, for Linux systems, we recommend HTCondor’s
ID tokens, as it is easy for a user to setup, and secure.

Why remote submission?

While it isn’t the usual case, there are several reasons you might want to
submit from one machine to another. Maybe you want to run condor_submit
from your laptop and send the job to an AP on some other server, because you
have input data on your laptop, and don’t want to manually copy it to your
Access Point. Maybe you are building a web portal, and you want the portal
to run on one machine, and the condor_schedd process running on some other
machine to balance load.

Assuming that an administrator has set up signing keys
(see Token Authentication),
to create a token that can authenticate you for remote
submission, login to the access point and run the command

$ condor_token_fetch -token name_of_your_ap

Note that name_of_your_ap is merely a filename, but if you have more than one
AP, it is good to name the file containing the token clearly. When this
command succeeds, there is no output but the access token is place into the
file with that name in the tokens.d subdirectory of your personal .condor
directory in your home directory.

If you copy this directory and contents from the AP (the machine
you want to submit to, and place the directory in the same
place on the machine you want to submit from, then
condor_submit can submit remotely. To do so, you’ll
need to tell condor_submit the name of the pool (i.e. the
name of the machine running the central manager), and the name
of the Access Point that you ran condor_token_fetch on. If you
don’t know the name of the central manager, running the command
condor_config_val COLLECTOR_HOST will tell you.

Then, to submit the job, on the remote machine, simple run

$ condor_submit -name name-of-ap -pool cm-name submit_file

and perhaps any other options you might want to pass to condor_submit
After condor_submit reports the cluster id of your new job, it
has been successfully submitted to the AP, and the AP is responsible
for the management of the job thereafter. You can query the
job with

$ condor_q -name name-of-ap -pool cm-name

and run all the related commands like condor_rm, condor_hold
and condor_release in a similar way.

File transfer with remote submission

After condor_submit successfully completes a remote submission,
the machine you ran condor_submit on is not involved at all in the
management of the job; the remote AP manages it. Therefore, you can
disconnect that machine from the network, turn it off, or hibernate it.
Even if this machine is turned off, the AP will find a matching Execution
Point to run the job on, and run it to completion.

This means that any input files specified in transfer_input_files
are copied off of this access point as part of the submit process
and stored in a safe place on the Access Point. This safe place is
the spool directory. While a user can force spooling to happen
by adding the -spool option to condor_submit, any remote
submit (with the -name option) automatically turns on spooling.
Note that files transferred via file transfer plugins are never spooled,
they are always pulled by the worker node immediately before job execution.

Correspondingly, when the jobs complete, output files cannot be
transferred to the submitting machine, as it may be off, or disconnected
from the network. These files are also stored in the spool directory
of the AP machine. To indicate that a completed job still has
spool files it is holding on the AP machine, a remotely submitted
job remained in the AP’s, and is visible with the condor_q command
after completion, and is in the ‘C’ompleted state. Jobs will
stay in this state for three days by default, or until you have
fetched the output files off of the machine.

You can fetch the output sandbox from the AP back to your submitting
machine (or anywhere that has permissions), by running the
condor_transfer_data command. This also takes a -name and
-pool option like condor_submit. You can specify a job or jobs
in the usual way, often just with the cluster.proc syntax. When run,
it copies the job’s output sandbox from the spool on the AP back to
the current directory of the machine condor_transfer_data is run.

Time Scheduling for Job Execution

Jobs may be scheduled to begin execution at a specified time in the
future with HTCondor’s job deferral functionality. All specifications
are in a job’s submit description file. Job deferral functionality is
expanded to provide for the periodic execution of a job, known as the
CronTab scheduling.

Job Deferral

Job deferral allows the specification of the exact date and time at
which a job is to begin executing. HTCondor attempts to match the job to
an execution machine just like any other job, however, the job will wait
until the exact time to begin execution. A user can define the job to
allow some flexibility in the execution of jobs that miss their
execution time.

Deferred Execution Time

A job’s deferral time is the exact time that HTCondor should attempt to
execute the job. The deferral time attribute is defined as an expression
that evaluates to a Unix Epoch timestamp (the number of seconds elapsed
since 00:00:00 on January 1, 1970, Coordinated Universal Time). This is
the time that HTCondor will begin to execute the job.

After a job is matched and all of its files have been transferred to an
execution machine, HTCondor checks to see if the job’s ClassAd contains
a deferral time. If it does, HTCondor calculates the number of seconds
between the execution machine’s current system time and the job’s
deferral time. If the deferral time is in the future, the job waits to
begin execution. While a job waits, its job ClassAd attribute
JobStatus indicates the job is in the Running state. As the deferral
time arrives, the job begins to execute. If a job misses its execution
time, that is, if the deferral time is in the past, the job is evicted
from the execution machine and put on hold in the queue.

The specification of a deferral time does not interfere with HTCondor’s
behavior. For example, if a job is waiting to begin execution when a
condor_hold command is issued, the job is removed from the execution
machine and is put on hold. If a job is waiting to begin execution when
a condor_suspend command is issued, the job continues to wait. When
the deferral time arrives, HTCondor begins execution for the job, but
immediately suspends it.

The deferral time is specified in the job’s submit description file with
the command
deferral_time .

Deferral Window

If a job arrives at its execution machine after the deferral time has
passed, the job is evicted from the machine and put on hold in the job
queue. This may occur, for example, because the transfer of needed files
took too long due to a slow network connection. A deferral window
permits the execution of a job that misses its deferral time by
specifying a window of time within which the job may begin.

The deferral window is the number of seconds after the deferral time,
within which the job may begin. When a job arrives too late, HTCondor
calculates the difference in seconds between the execution machine’s
current time and the job’s deferral time. If this difference is less
than or equal to the deferral window, the job immediately begins
execution. If this difference is greater than the deferral window, the
job is evicted from the execution machine and is put on hold in the job
queue.

The deferral window is specified in the job’s submit description file
with the command
deferral_window .

Preparation Time

When a job defines a deferral time far in the future and then is matched
to an execution machine, potential computation cycles are lost because
the deferred job has claimed the machine, but is not actually executing.
Other jobs could execute during the interval when the job waits for its
deferral time. To make use of the wasted time,
 a job defines a
deferral_prep_time
with an integer expression that evaluates to a number of seconds. At
this number of seconds before the deferral time, the job may be matched
with a machine.

Deferral Usage Examples

Here are examples of how the job deferral time, deferral window, and the
preparation time may be used.

The job’s submit description file specifies that the job is to begin
execution on January 1st, 2006 at 12:00 pm:

deferral_time = 1136138400

The Unix date program may be used to calculate a Unix epoch time. The
syntax of the command to do this depends on the options provided within
that flavor of Unix. In some, it appears as

$ date --date "MM/DD/YYYY HH:MM:SS" +%s

and in others, it appears as

$ date -d "YYYY-MM-DD HH:MM:SS" +%s

MM is a 2-digit month number, DD is a 2-digit day of the month number,
and YYYY is a 4-digit year. HH is the 2-digit hour of the day, MM is the
2-digit minute of the hour, and SS are the 2-digit seconds within the
minute. The characters +%s tell the date program to give the output as
a Unix epoch time.

The job always waits 60 seconds after submission before beginning
execution:

deferral_time = (QDate + 60)

In this example, assume that the deferral time is 45 seconds in the past
as the job is available. The job begins execution, because 75 seconds
remain in the deferral window:

deferral_window = 120

In this example, a job is scheduled to execute far in the future, on
January 1st, 2010 at 12:00 pm. The
deferral_prep_time
attribute delays the job from being matched until 60 seconds before the
job is to begin execution.

deferral_time = 1262368800
deferral_prep_time = 60

Deferral Limitations

There are some limitations to HTCondor’s job deferral feature.

	Job deferral is not available for scheduler universe jobs. A
scheduler universe job defining the deferral_time produces a
fatal error when submitted.

	The time that the job begins to execute is based on the execution
machine’s system clock, and not the submission machine’s system
clock. Be mindful of the ramifications when the two clocks show
dramatically different times.

	A job’s JobStatus attribute is always in the Running state when
job deferral is used. There is currently no way to distinguish
between a job that is executing and a job that is waiting for its
deferral time.

CronTab Scheduling

HTCondor’s CronTab scheduling functionality allows jobs to be scheduled
to execute periodically. A job’s execution schedule is defined by
commands within the submit description file. The notation is much like
that used by the Unix cron daemon. As such, HTCondor developers are
fond of referring to CronTab scheduling as
Crondor. The scheduling of jobs using HTCondor’s CronTab feature
calculates and utilizes the DeferralTime ClassAd attribute.

Also, unlike the Unix cron daemon, HTCondor never runs more than one
instance of a job at the same time.

The capability for repetitive or periodic execution of the job is
enabled by specifying an
on_exit_remove
command for the job, such that the job does not leave the queue until
desired.

Semantics for CronTab Specification

A job’s execution schedule is defined by a set of specifications within
the submit description file. HTCondor uses these to calculate a
DeferralTime for the job.

Table 2.3 lists the submit commands and acceptable
values for these commands. At least one of these must be defined in
order for HTCondor to calculate a DeferralTime for the job. Once one
CronTab value is defined, the default for all the others uses all the
values in the allowed values ranges.

	cron_minute

	0 - 59

	cron_hour

	0 - 23

	cron_day_of_month

	1 - 31

	cron_month

	1 - 12

	cron_day_of_week

	0 - 7 (Sunday is 0 or 7)

Table 2.3: The list of submit commands and their value ranges.

The day of a job’s execution can be specified by both the
cron_day_of_month and the cron_day_of_week attributes. The
day will be the logical or of both.

The semantics allow more than one value to be specified by using the *
operator, ranges, lists, and steps (strides) within ranges.

	The asterisk operator
	The * (asterisk) operator specifies that all of the allowed values
are used for scheduling. For example,

cron_month = *

becomes any and all of the list of possible months:
(1,2,3,4,5,6,7,8,9,10,11,12). Thus, a job runs any month in the
year.

	Ranges
	A range creates a set of integers from all the allowed values
between two integers separated by a hyphen. The specified range is
inclusive, and the integer to the left of the hyphen must be less
than the right hand integer. For example,

cron_hour = 0-4

represents the set of hours from 12:00 am (midnight) to 4:00 am, or
(0,1,2,3,4).

	Lists
	A list is the union of the values or ranges separated by commas.
Multiple entries of the same value are ignored. For example,

cron_minute = 15,20,25,30
cron_hour = 0-3,9-12,15

where this cron_minute example represents (15,20,25,30) and
cron_hour represents (0,1,2,3,9,10,11,12,15).

	Steps
	Steps select specific numbers from a range, based on an interval. A
step is specified by appending a range or the asterisk operator with
a slash character (/), followed by an integer value. For example,

cron_minute = 10-30/5
cron_hour = */3

where this cron_minute example specifies every five minutes
within the specified range to represent (10,15,20,25,30), and
cron_hour specifies every three hours of the day to represent
(0,3,6,9,12,15,18,21).

Preparation Time and Execution Window

The
cron_prep_time
command is analogous to the deferral time’s
deferral_prep_time
command. It specifies the number of seconds before the deferral time
that the job is to be matched and sent to the execution machine. This
permits HTCondor to make necessary preparations before the deferral time
occurs.

Consider the submit description file example that includes

cron_minute = 0
cron_hour = *
cron_prep_time = 300

The job is scheduled to begin execution at the top of every hour. Note
that the setting of cron_hour in this example is not required, as
the default value will be *, specifying any and every hour of the day.
The job will be matched and sent to an execution machine no more than
five minutes before the next deferral time. For example, if a job is
submitted at 9:30am, then the next deferral time will be calculated to
be 10:00am. HTCondor may attempt to match the job to a machine and send
the job once it is 9:55am.

As the CronTab scheduling calculates and uses deferral time, jobs may
also make use of the deferral window. The submit command
cron_window is
analogous to the submit command
deferral_window .
Consider the submit description file example that includes

cron_minute = 0
cron_hour = *
cron_window = 360

As the previous example, the job is scheduled to begin execution at the
top of every hour. Yet with no preparation time, the job is likely to
miss its deferral time. The 6-minute window allows the job to begin
execution, as long as it arrives and can begin within 6 minutes of the
deferral time, as seen by the time kept on the execution machine.

Scheduling

When a job using the CronTab functionality is submitted to HTCondor, use
of at least one of the submit description file commands beginning with
cron_ causes HTCondor to calculate and set a deferral time for when
the job should run. A deferral time is determined based on the current
time rounded later in time to the next minute. The deferral time is the
job’s DeferralTime attribute. A new deferral time is calculated when
the job first enters the job queue, when the job is re-queued, or when
the job is released from the hold state. New deferral times for all jobs
in the job queue using the CronTab functionality are recalculated when a
condor_reconfig or a condor_restart command that affects the job
queue is issued.

A job’s deferral time is not always the same time that a job will
receive a match and be sent to the execution machine. This is because
HTCondor operates on the job queue at times that are independent of job
events, such as when job execution completes. Therefore, HTCondor may
operate on the job queue just after a job’s deferral time states that it
is to begin execution. HTCondor attempts to start a job when the
following pseudo-code boolean expression evaluates to True:

(time() + SCHEDD_INTERVAL) >= (DeferralTime - CronPrepTime)

If the time() plus the number of seconds until the next time
HTCondor checks the job queue is greater than or equal to the time that
the job should be submitted to the execution machine, then the job is to
be matched and sent now.

Jobs using the CronTab functionality are not automatically re-queued by
HTCondor after their execution is complete. The submit description file
for a job must specify an appropriate
on_exit_remove
command to ensure that a job remains in the queue. This job maintains
its original ClusterId and ProcId.

Submit Commands Usage Examples

Here are some examples of the submit commands necessary to schedule jobs
to run at multifarious times. Please note that it is not necessary to
explicitly define each attribute; the default value is *.

Run 23 minutes after every two hours, every day of the week:

on_exit_remove = false
cron_minute = 23
cron_hour = 0-23/2
cron_day_of_month = *
cron_month = *
cron_day_of_week = *

Run at 10:30pm on each of May 10th to May 20th, as well as every
remaining Monday within the month of May:

on_exit_remove = false
cron_minute = 30
cron_hour = 20
cron_day_of_month = 10-20
cron_month = 5
cron_day_of_week = 2

Run every 10 minutes and every 6 minutes before noon on January 18th
with a 2-minute preparation time:

on_exit_remove = false
cron_minute = */10,*/6
cron_hour = 0-11
cron_day_of_month = 18
cron_month = 1
cron_day_of_week = *
cron_prep_time = 120

Submit Commands Limitations

The use of the CronTab functionality has all of the same limitations of
deferral times, because the mechanism is based upon deferral times.

	It is impossible to schedule vanilla universe jobs at
intervals that are smaller than the interval at which HTCondor
evaluates jobs. This interval is determined by the configuration
variable SCHEDD_INTERVAL . As a
vanilla universe job completes execution and is placed
back into the job queue, it may not be placed in the idle state in
time. This problem does not afflict local universe jobs.

	HTCondor cannot guarantee that a job will be matched in order to make
its scheduled deferral time. A job must be matched with an execution
machine just as any other HTCondor job; if HTCondor is unable to find
a match, then the job will miss its chance for executing and must
wait for the next execution time specified by the CronTab schedule.

Special Environment Considerations

AFS

The HTCondor daemons do not run authenticated to AFS; they do not
possess AFS tokens. Therefore, no child process of HTCondor will be AFS
authenticated. The implication of this is that you must set file
permissions so that your job can access any necessary files residing on
an AFS volume without relying on having your AFS permissions.

If a job you submit to HTCondor needs to access files residing in AFS,
you have the following choices:

	If the files must be kept on AFS, then set a host ACL (using the AFS
fs setacl command) on the subdirectory to serve as the current
working directory for the job. Set the ACL such that any host in
the pool can access the files without being authenticated. If you
do not know how to use an AFS host ACL, ask the person at your site
responsible for the AFS configuration.

The Center for High Throughput Computing hopes to improve upon how
HTCondor deals with AFS authentication in a subsequent release.

Please see the Using HTCondor with AFS section for further discussion of this problem.

NFS

If the current working directory when a job is submitted is accessed via
an NFS automounter, HTCondor may have problems if the automounter later
decides to unmount the volume before the job has completed. This is
because condor_submit likely has stored the dynamic mount point as
the job’s initial current working directory, and this mount point could
become automatically unmounted by the automounter.

There is a simple work around. When submitting the job, use the submit
command initialdir to
point to the stable access point. For example, suppose the NFS
automounter is configured to mount a volume at mount point
/a/myserver.company.com/vol1/johndoe whenever the directory
/home/johndoe is accessed. Adding the following line to the submit
description file solves the problem.

initialdir = /home/johndoe

HTCondor attempts to flush the NFS cache on a access point in order to
refresh a job’s initial working directory. This allows files written by
the job into an NFS mounted initial working directory to be immediately
visible on the access point. Since the flush operation can require
multiple round trips to the NFS server, it is expensive. Therefore, a
job may disable the flushing by setting

+IwdFlushNFSCache = False

in the job’s submit description file. See the
Job ClassAd Attributes page for a definition of the
job ClassAd attribute.

HTCondor Daemons That Do Not Run as root

HTCondor is normally installed such that the HTCondor daemons have root
permission. This allows HTCondor to run the condor_shadow

daemon and the job with the submitting user’s UID and file access
rights. When HTCondor is started as root, HTCondor jobs can access
whatever files the user that submits the jobs can.

However, it is possible that the HTCondor installation does not have
root access, or has decided not to run the daemons as root. That is
unfortunate, since HTCondor is designed to be run as root. To see if
HTCondor is running as root on a specific machine, use the command

$ condor_status -master -l <machine-name>

where <machine-name> is the name of the specified machine. This command
displays the full condor_master ClassAd; if the attribute RealUid
equals zero, then the HTCondor daemons are indeed running with root
access. If the RealUid attribute is not zero, then the HTCondor
daemons do not have root access.

NOTE: The Unix program ps is not an effective method of determining if
HTCondor is running with root access. When using ps, it may often
appear that the daemons are running as the condor user instead of root.
However, note that the ps command shows the current effective owner of
the process, not the real owner. (See the getuid (2) and
geteuid (2) Unix man pages for details.) In Unix, a process running
under the real UID of root may switch its effective UID. (See the
seteuid (2) man page.) For security reasons, the daemons only set the
effective UID to root when absolutely necessary, as it will be to
perform a privileged operation.

If daemons are not running with root access, make any and all files
and/or directories that the job will touch readable and/or writable by
the UID (user id) specified by the RealUid attribute. Often this may
mean using the Unix command chmod 777 on the directory from which the
HTCondor job is submitted.

Job Leases

A job lease specifies how long a given job will attempt to run on a
remote resource, even if that resource loses contact with the submitting
machine. Similarly, it is the length of time the submitting machine will
spend trying to reconnect to the (now disconnected) execution host,
before the submitting machine gives up and tries to claim another
resource to run the job. The goal aims at run only once semantics, so
that the condor_schedd daemon does not allow the same job to run on
multiple sites simultaneously.

If the submitting machine is alive, it periodically renews the job
lease, and all is well. If the submitting machine is dead, or the
network goes down, the job lease will no longer be renewed. Eventually
the lease expires. While the lease has not expired, the execute host
continues to try to run the job, in the hope that the access point
will come back to life and reconnect. If the job completes and the lease
has not expired, yet the submitting machine is still dead, the
condor_starter daemon will wait for a condor_shadow daemon to
reconnect, before sending final information on the job, and its output
files. Should the lease expire, the condor_startd daemon kills off
the condor_starter daemon and user job.

A default value equal to 40 minutes exists for a job’s ClassAd attribute
JobLeaseDuration, or this attribute may be set in the submit
description file, using
job_lease_duration ,
to keep a job running in the case that the submit side no longer renews
the lease. There is a trade off in setting the value of
job_lease_duration .
Too small a value, and the job might get killed before the submitting
machine has a chance to recover. Forward progress on the job will be
lost. Too large a value, and an execute resource will be tied up waiting
for the job lease to expire. The value should be chosen based on how
long the user is willing to tie up the execute machines, how quickly
access points come back up, and how much work would be lost if the
lease expires, the job is killed, and the job must start over from its
beginning.

As a special case, a submit description file setting of

job_lease_duration = 0

as well as utilizing submission other than condor_submit that do not
set JobLeaseDuration (such as using the web services interface)
results in the corresponding job ClassAd attribute to be explicitly
undefined. This has the further effect of changing the duration of a
claim lease, the amount of time that the execution machine waits before
dropping a claim due to missing keep alive messages.

Heterogeneous Submit: Execution on Differing Architectures

If executables are available for the different platforms of machines in
the HTCondor pool, HTCondor can be allowed the choice of a larger number
of machines when allocating a machine for a job. Modifications to the
submit description file allow this choice of platforms.

A simplified example is a cross submission. An executable is available
for one platform, but the submission is done from a different platform.
Given the correct executable, the requirements command in the submit
description file specifies the target architecture. For example, an
executable compiled for a 32-bit Intel processor running Windows Vista,
submitted from an Intel architecture running Linux would add the
requirement

requirements = Arch == "INTEL" && OpSys == "WINDOWS"

Without this requirement, condor_submit will assume that the
program is to be executed on a machine with the same platform as the
machine where the job is submitted.

Vanilla Universe Example for Execution on Differing Architectures

A more complex example of a heterogeneous submission occurs when a job
may be executed on many different architectures to gain full use of a
diverse architecture and operating system pool. If the executables are
available for the different architectures, then a modification to the
submit description file will allow HTCondor to choose an executable
after an available machine is chosen.

A special-purpose Machine Ad substitution macro can be used in string
attributes in the submit description file. The macro has the form

$$(MachineAdAttribute)

The $$() informs HTCondor to substitute the requested
MachineAdAttribute from the machine where the job will be executed.

An example of the heterogeneous job submission has executables available
for two platforms: RHEL 3 on both 32-bit and 64-bit Intel processors.
This example uses povray to render images using a popular free
rendering engine.

The substitution macro chooses a specific executable after a platform
for running the job is chosen. These executables must therefore be named
based on the machine attributes that describe a platform. The
executables named

povray.LINUX.INTEL
povray.LINUX.X86_64

will work correctly for the macro

povray.$$(OpSys).$$(Arch)

The executables or links to executables with this name are placed into
the initial working directory so that they may be found by HTCondor. A
submit description file that queues three jobs for this example:

Example of heterogeneous submission

universe = vanilla
executable = povray.$$(OpSys).$$(Arch)
log = povray.log
output = povray.out.$(Process)
error = povray.err.$(Process)

request_cpus = 1
request_memory = 512M
request_disk = 1G

requirements = (Arch == "INTEL" && OpSys == "LINUX") || \
 (Arch == "X86_64" && OpSys =="LINUX")

arguments = +W1024 +H768 +Iimage1.pov
queue

arguments = +W1024 +H768 +Iimage2.pov
queue

arguments = +W1024 +H768 +Iimage3.pov
queue

These jobs are submitted to the vanilla universe to assure that once a
job is started on a specific platform, it will finish running on that
platform. Switching platforms in the middle of job execution cannot work
correctly.

There are two common errors made with the substitution macro. The first
is the use of a non-existent MachineAdAttribute. If the specified
MachineAdAttribute does not exist in the machine’s ClassAd, then
HTCondor will place the job in the held state until the problem is
resolved.

The second common error occurs due to an incomplete job set up. For
example, the submit description file given above specifies three
available executables. If one is missing, HTCondor reports back that an
executable is missing when it happens to match the job with a resource
that requires the missing binary.

Vanilla Universe Example for Execution on Differing Operating Systems

The addition of several related OpSys attributes assists in selection of
specific operating systems and versions in heterogeneous pools.

Example targeting only RedHat platforms

universe = vanilla
Executable = /bin/date
Log = distro.log
Output = distro.out
Error = distro.err

Requirements = (OpSysName == "RedHat")

request_cpus = 1
request_memory = 512M
request_disk = 1G

Queue

Example targeting RedHat 6 platforms in a heterogeneous Linux pool

universe = vanilla
executable = /bin/date
log = distro.log
output = distro.out
error = distro.err

requirements = (OpSysName == "RedHat" && OpSysMajorVer == 6)

request_cpus = 1
request_memory = 512M
request_disk = 1G

queue

Here is a more compact way to specify a RedHat 6 platform.

Example targeting RedHat 6 platforms in a heterogeneous Linux pool

universe = vanilla
executable = /bin/date
log = distro.log
output = distro.out
error = distro.err

request_cpus = 1
request_memory = 512M
request_disk = 1G

requirements = (OpSysAndVer == "RedHat6")

queue

Administrators’ Manual

	Introduction
	The Different Roles a Machine Can Play

	The HTCondor Daemons

	Starting Up, Shutting Down and Reconfiguring the System
	Using HTCondor’s Remote Management Features

	Introduction to Configuration
	HTCondor Configuration Files

	Ordered Evaluation to Set the Configuration

	Configuration File Macros

	Comments and Line Continuations

	Multi-Line Values

	Executing a Program to Produce Configuration Macros

	Including Configuration from Elsewhere

	Reporting Errors and Warnings

	Conditionals in Configuration

	Function Macros in Configuration

	Macros That Will Require a Restart When Changed

	Pre-Defined Macros

	Configuration Templates
	Configuration Templates: Using Predefined Sets of Configuration

	Available Configuration Templates

	Configuration Template Transition Syntax

	Configuration Template Examples

	Configuration Macros
	HTCondor-wide Configuration File Entries

	Daemon Logging Configuration File Entries

	DaemonCore Configuration File Entries

	Network-Related Configuration File Entries

	Shared File System Configuration File Macros

	condor_master Configuration File Macros

	condor_startd Configuration File Macros

	condor_schedd Configuration File Entries

	condor_shadow Configuration File Entries

	condor_starter Configuration File Entries

	condor_submit Configuration File Entries

	condor_preen Configuration File Entries

	condor_collector Configuration File Entries

	condor_negotiator Configuration File Entries

	condor_procd Configuration File Macros

	condor_credd Configuration File Macros

	condor_gridmanager Configuration File Entries

	condor_job_router Configuration File Entries

	condor_lease_manager Configuration File Entries

	Configuration File Entries for DAGMan

	Configuration File Entries Relating to Security

	Configuration File Entries Relating to Virtual Machines

	Configuration File Entries Relating to High Availability

	Configuration File Entries Relating to condor_ssh_to_job

	condor_rooster Configuration File Macros

	condor_shared_port Configuration File Macros

	Configuration File Entries Relating to Job Hooks

	Configuration File Entries Relating to Daemon ClassAd Hooks: Startd Cron and Schedd Cron

	Configuration File Entries Only for Windows Platforms

	condor_defrag Configuration File Macros

	condor_gangliad Configuration File Macros

	condor_annex Configuration File Macros

	User Priorities and Negotiation
	Real User Priority (RUP)

	Effective User Priority (EUP)

	Priorities in Negotiation and Preemption

	Priority Calculation

	Negotiation

	The Layperson’s Description of the Pie Spin and Pie Slice

	Group Accounting

	Accounting Groups with Hierarchical Group Quotas

	Setting Accounting Group automatically per user

	Running Multiple Negotiators in One Pool

	Policy Configuration for Execution Points and for Access Points
	condor_startd Policy Configuration

	condor_schedd Policy Configuration

	Startd Cron and Schedd Cron
	Daemon ClassAd Hooks

	Security
	Security Overview

	Security Terms

	Quick Configuration of Security

	HTCondor’s Security Model

	Security Negotiation

	Authentication

	The Unified Map File for Authentication

	Encryption

	Integrity

	Authorization

	FIPS

	Security Sessions

	Host-Based Security in HTCondor

	Examples of Security Configuration

	Changing the Security Configuration

	User Accounts in HTCondor on Unix Platforms

	Networking (includes sections on Port Usage and CCB)
	Port Usage in HTCondor

	Reducing Port Usage with the condor_shared_port Daemon

	Configuring HTCondor for Machines With Multiple Network Interfaces

	HTCondor Connection Brokering (CCB)

	Using TCP to Send Updates to the condor_collector

	Running HTCondor on an IPv6 Network Stack

	DaemonCore
	DaemonCore and Unix signals

	DaemonCore and Command-line Arguments

	Logging in HTCondor
	Job and Daemon Logs

	DAGMan Logs

	Monitoring
	Ganglia

	Absent ClassAds

	GPUs

	Elasticsearch

	The High Availability of Daemons
	High Availability of the Job Queue

	High Availability of the Central Manager

	Third Party/Delegated file and credential transfer
	Enabling the Transfer of Files Specified by a URL

	Enabling the Transfer of Public Input Files over HTTP

	Enabling the Fetching and Use of OAuth2 Credentials

	Setting Up the Docker Universe
	The Docker Universe

	Apptainer/Singularity Support

	Power Management
	Entering a Low Power State

	Returning From a Low Power State

	Keeping a ClassAd for a Hibernating Machine

	Linux Platform Details

	Windows Platform Details

	Hooks
	Job Hooks That Fetch Work

	Job Hooks That Modify and Monitor Execution

	Hooks for the Job Router

	Directories
	Directories used by More than One Role

	Directories use by the Submit Role

	Directories use by the Execute Role

	Setting Up for Special Environments
	Configuring HTCondor for Multiple Platforms

	The condor_kbdd

	Configuring The HTCondorView Server

	HTCondor’s Dedicated Scheduling

	Configuring HTCondor for Running Backfill Jobs

	Per Job PID Namespaces

	Group ID-Based Process Tracking

	Cgroup-Based Process Tracking

	Limiting Resource Usage Using Cgroups

	Concurrency Limits

	The VM Universe

	Using HTCondor with AFS

Introduction

This is the HTCondor Administrator’s Manual. Its purpose is to aid in
the installation and administration of an HTCondor pool. For help on
using HTCondor, see the HTCondor User’s Manual.

An HTCondor pool is comprised of a single machine which serves as the central manager,
 and an arbitrary number of other machines. Machines
intended to run work are called Execution Points (EP)s, also known as worker
nodes. Machines that hold a queue of jobs ready to run, or the results of jobs
that have run are called Access Points (AP)s, also known as submit machines.
The role of HTCondor is to match waiting requests with available resources.
Every part of HTCondor sends periodic updates to the central manager, the
centralized repository of information about the state of the pool.
Periodically, the central manager assesses the current state of the pool and
tries to match pending requests with the appropriate resources.

Each resource has an owner,
 the one who
sets the policy for the use of the machine. This person has absolute
power over the use of the machine, and HTCondor goes out of its way to
minimize the impact on this owner caused by HTCondor. It is up to the
resource owner to define a policy for when HTCondor requests will
serviced and when they will be denied.

Each resource request has an owner as well: the user who submitted the
job. These people want HTCondor to provide as many CPU cycles as
possible for their work. Often the interests of the resource owners are
in conflict with the interests of the resource requesters. The job of
the HTCondor administrator is to configure the HTCondor pool to find the
happy medium that keeps both resource owners and users of resources
satisfied. The purpose of this manual is to relate the mechanisms that
HTCondor provides to enable the administrator to find this happy medium.

The Different Roles a Machine Can Play

Every machine in an HTCondor pool can serve a variety of roles. Most
machines serve more than one role simultaneously. Certain roles can only
be performed by a single machine in the pool. The following list
describes what these roles are and what resources are required on the
machine that is providing that service:

	Central Manager
	There can be only one central manager for the pool. This machine is
the collector of information, and the negotiator between resources
and resource requests. These two halves of the central manager’s
responsibility are performed by separate daemons, so it would be
possible to have different machines providing those two services.
However, normally they both live on the same machine. This machine
plays a very important part in the HTCondor pool and should be
reliable. If this machine crashes, no further matchmaking can be
performed within the HTCondor system, although all current matches
remain in effect until they are broken by either party involved in
the match. Therefore, choose for central manager a machine that is
likely to be up and running all the time, or at least one that will
be rebooted quickly if something goes wrong. The central manager
will ideally have a good network connection to all the machines in
the pool, since these pool machines all send updates over the
network to the central manager.

Note

 flowchart TD
 condor_master --> condor_collector & condor_negotiator

Daemons for Central Manager, both managed by a condor_master

	Execution Point
	Any machine in the pool, including the central manager, can be
configured as to whether or not it should execute HTCondor jobs.
Obviously, some of the machines will have to serve this function, or
the pool will not be useful. Being an execute machine does not
require lots of resources. About the only resource that might matter
is disk space. In general the more resources a machine has in terms
of swap space, memory, number of CPUs, the larger variety of
resource requests it can serve.

Note

 flowchart TD
 condor_master --> condor_startd
 condor_startd --> condor_starter_for_slot1
 condor_startd --> condor_starter_for_slot2
 condor_starter_for_slot1 --> job_in_slot1
 condor_starter_for_slot2 --> job_in_slot2

Daemons for a Execution Point, one condor_starter per running job.

	Access Point
	Any machine in the pool, including the central manager, can be
configured as to whether or not it should allow HTCondor jobs to be
submitted. The resource requirements for an access point are
actually much greater than the resource requirements for an execute
machine. Every submitted job that is currently running on a
remote machine runs a process on the access point. As a result,
lots of running jobs will need a fair amount of swap space and/or
real memory. HTCondor pools can scale out horizontally by adding
additional access points. Older terminology called these submit
machines or scheduler machine.

Note

 flowchart TD
 condor_master --> condor_schedd
 condor_schedd --> condor_shadow_for_job1
 condor_schedd --> condor_shadow_for_job2

Daemons for an Access Point, one condor_shadow per running job.

The HTCondor Daemons

The following list describes all the daemons and programs that could be
started under HTCondor and what they do:

	condor_master
	This daemon is responsible for keeping all the rest of the HTCondor
daemons running on each machine in the pool. It spawns the other
daemons, and it periodically checks to see if there are new binaries
installed for any of them. If there are, the condor_master daemon
will restart the affected daemons. In addition, if any daemon
crashes, the condor_master will send e-mail to the HTCondor
administrator of the pool and restart the daemon. The
condor_master also supports various administrative commands that
enable the administrator to start, stop or reconfigure daemons
remotely. The condor_master will run on every machine in the
pool, regardless of the functions that each machine is performing.

	condor_startd
	This daemon represents a given resource to the HTCondor pool, as a
machine capable of running jobs. It advertises certain attributes
about machine that are used to match it with pending resource
requests. The condor_startd will run on any machine in the pool
that is to be able to execute jobs. It is responsible for enforcing
the policy that the resource owner configures, which determines
under what conditions jobs will be started, suspended, resumed,
vacated, or killed. When the condor_startd is ready to execute an
HTCondor job, it spawns the condor_starter.

	condor_starter
	This daemon is the entity that actually spawns the HTCondor job on a
given machine. It sets up the execution environment and monitors the
job once it is running. When a job completes, the condor_starter
notices this, sends back any status information to the submitting
machine, and exits.

	condor_schedd
	This daemon represents resource requests to the HTCondor pool. Any
machine that is to be an access point needs to have a
condor_schedd running. When users submit jobs, the jobs go to the
condor_schedd, where they are stored in the job queue. The
condor_schedd manages the job queue. Various tools to view and
manipulate the job queue, such as condor_submit, condor_q, and
condor_rm, all must connect to the condor_schedd to do their
work. If the condor_schedd is not running on a given machine,
none of these commands will work.

The condor_schedd advertises the number of waiting jobs in its
job queue and is responsible for claiming available resources to
serve those requests. Once a job has been matched with a given
resource, the condor_schedd spawns a condor_shadow daemon to
serve that particular request.

	condor_shadow
	This daemon runs on the machine where a given request was submitted
and acts as the resource manager for the request.

	condor_collector
	This daemon is responsible for collecting all the information about
the status of an HTCondor pool. All other daemons periodically send
ClassAd updates to the condor_collector. These ClassAds contain
all the information about the state of the daemons, the resources
they represent or resource requests in the pool. The
condor_status command can be used to query the
condor_collector for specific information about various parts of
HTCondor. In addition, the HTCondor daemons themselves query the
condor_collector for important information, such as what address
to use for sending commands to a remote machine.

	condor_negotiator
	This daemon is responsible for all the match making within the
HTCondor system. Periodically, the condor_negotiator begins a
negotiation cycle, where it queries the condor_collector for the
current state of all the resources in the pool. It contacts each
condor_schedd that has waiting resource requests in priority
order, and tries to match available resources with those requests.
The condor_negotiator is responsible for enforcing user
priorities in the system, where the more resources a given user has
claimed, the less priority they have to acquire more resources. If a
user with a better priority has jobs that are waiting to run, and
resources are claimed by a user with a worse priority, the
condor_negotiator can preempt that resource and match it with the
user with better priority.

Note

A higher numerical value of the user priority in HTCondor
translate into worse priority for that user. The best priority is
0.5, the lowest numerical value, and this priority gets worse as
this number grows.

	condor_kbdd
	This daemon is used on both Linux and Windows platforms. On those
platforms, the condor_startd frequently cannot determine console
(keyboard or mouse) activity directly from the system, and requires
a separate process to do so. On Linux, the condor_kbdd connects
to the X Server and periodically checks to see if there has been any
activity. On Windows, the condor_kbdd runs as the logged-in user
and registers with the system to receive keyboard and mouse events.
When it detects console activity, the condor_kbdd sends a command
to the condor_startd. That way, the condor_startd knows the
machine owner is using the machine again and can perform whatever
actions are necessary, given the policy it has been configured to
enforce.

	condor_gridmanager
	This daemon handles management and execution of all grid
universe jobs. The condor_schedd invokes the
condor_gridmanager when there are grid universe jobs in the
queue, and the condor_gridmanager exits when there are no more
grid universe jobs in the queue.

	condor_credd
	This daemon runs on Windows platforms to manage password storage in
a secure manner.

	condor_had
	This daemon implements the high availability of a pool’s central
manager through monitoring the communication of necessary daemons.
If the current, functioning, central manager machine stops working,
then this daemon ensures that another machine takes its place, and
becomes the central manager of the pool.

	condor_replication
	This daemon assists the condor_had daemon by keeping an updated
copy of the pool’s state. This state provides a better transition
from one machine to the next, in the event that the central manager
machine stops working.

	condor_transferer
	This short lived daemon is invoked by the condor_replication
daemon to accomplish the task of transferring a state file before
exiting.

	condor_procd
	This daemon controls and monitors process families within HTCondor.
Its use is optional in general, but it must be used if group-ID
based tracking (see the
Setting Up for Special Environments section)
is enabled.

	condor_job_router
	This daemon transforms vanilla universe jobs into grid
universe jobs, such that the transformed jobs are capable of running
elsewhere, as appropriate.

	condor_lease_manager
	This daemon manages leases in a persistent manner. Leases are
represented by ClassAds.

	condor_rooster
	This daemon wakes hibernating machines based upon configuration
details.

	condor_defrag
	This daemon manages the draining of machines with fragmented
partitionable slots, so that they become available for jobs
requiring a whole machine or larger fraction of a machine.

	condor_shared_port
	This daemon listens for incoming TCP packets on behalf of HTCondor
daemons, thereby reducing the number of required ports that must be
opened when HTCondor is accessible through a firewall.

Starting Up, Shutting Down and Reconfiguring the System

If you installed HTCondor with administrative privileges, HTCondor will
start up when the machine boots and shut down when the machine does, using
the usual mechanism for the machine’s operating system. You can generally
use those mechanisms in the usual way if you need to manually control
whether or not HTCondor is running. There are two situations in
which you might want to run condor_master,
condor_on, or condor_off from the
command line.

	If you installed HTCondor without administrative privileges, you’ll
have to run condor_master from the command line to turn on HTCondor:

$ condor_master

Then run the following command to turn HTCondor completely off:

$ condor_off -master

	If the usual OS-specific method of controlling HTCondor is inconvenient
to use remotely, you may be able to use the condor_on and condor_off
tools instead.

Using HTCondor’s Remote Management Features

All of the commands described in this section are subject to the
security policy chosen for the HTCondor pool. As such, the commands must
be either run from a machine that has the proper authorization, or run
by a user that is authorized to issue the commands.
The Security section details the
implementation of security in HTCondor.

	Shutting Down HTCondor
	There are a variety of ways to shut down all or parts of an HTCondor
pool. All utilize the condor_off tool.

To stop a single execute machine from running jobs, the
condor_off command specifies the machine by host name.

$ condor_off -startd <hostname>

Jobs will be killed. If it is instead desired that the machine
stops running jobs only after the currently executing job completes,
the command is

$ condor_off -startd -peaceful <hostname>

Note that this waits indefinitely for the running job to finish,
before the condor_startd daemon exits.

Th shut down all execution machines within the pool,

$ condor_off -all -startd

To wait indefinitely for each machine in the pool to finish its
current HTCondor job, shutting down all of the execute machines as
they no longer have a running job,

$ condor_off -all -startd -peaceful

To shut down HTCondor on a machine from which jobs are submitted,

$ condor_off -schedd <hostname>

If it is instead desired that the access point (which runs the
condor_schedd) shuts down only after all jobs that are currently in the
queue are finished, first disable new submissions to the queue by setting
the configuration variable

MAX_JOBS_SUBMITTED = 0

See instructions below in Reconfiguring an HTCondor Pool
for how to reconfigure a pool. After the reconfiguration,
the command to wait for all jobs to complete and shut down the submission of
jobs is

$ condor_off -schedd -peaceful <hostname>

Substitute the option -all for the host name, if all submit
machines in the pool are to be shut down.

	Restarting HTCondor, If HTCondor Daemons Are Not Running
	If HTCondor is not running, perhaps because one of the condor_off
commands was used, then starting HTCondor daemons back up depends on
which part of HTCondor is currently not running.

If no HTCondor daemons are running, then starting HTCondor is a
matter of executing the condor_master daemon. The
condor_master daemon will then invoke all other specified daemons
on that machine. The condor_master daemon executes on every
machine that is to run HTCondor.

If a specific daemon needs to be started up, and the
condor_master daemon is already running, then issue the command
on the specific machine with

$ condor_on -subsystem <subsystemname>

where <subsystemname> is replaced by the daemon’s subsystem name.
Or, this command might be issued from another machine in the pool
(which has administrative authority) with

$ condor_on <hostname> -subsystem <subsystemname>

where <subsystemname> is replaced by the daemon’s subsystem name,
and <hostname> is replaced by the host name of the machine where
this condor_on command is to be directed.

	Restarting HTCondor, If HTCondor Daemons Are Running
	If HTCondor daemons are currently running, but need to be killed and
newly invoked, the condor_restart tool does this. This would be
the case for a new value of a configuration variable for which using
condor_reconfig is inadequate.

To restart all daemons on all machines in the pool,

$ condor_restart -all

To restart all daemons on a single machine in the pool,

$ condor_restart <hostname>

where <hostname> is replaced by the host name of the machine to be
restarted.

	Reconfiguring an HTCondor Pool
	

To change a global configuration variable and have all the machines
start to use the new setting, change the value within the file, and send
a condor_reconfig command to each host. Do this with a single
command,

$ condor_reconfig -all

If the global configuration file is not shared among all the machines,
as it will be if using a shared file system, the change must be made to
each copy of the global configuration file before issuing the
condor_reconfig command.

Issuing a condor_reconfig command is inadequate for some
configuration variables. For those, a restart of HTCondor is required.
Those configuration variables that require a restart are listed in
the Macros That Will Require a Restart When Changed section. You can also refer to the
condor_restart manual page.

Introduction to Configuration

This section of the manual contains general information about HTCondor
configuration, relating to all parts of the HTCondor system. If you’re
setting up an HTCondor pool, you should read this section before you
read the other configuration-related sections:

	The Configuration Templates section contains
information about configuration templates, which are now the
preferred way to set many configuration macros.

	The Configuration Macros section contains
information about the hundreds of individual configuration macros. In
general, it is best to try to achieve your desired configuration
using configuration templates before resorting to setting individual
configuration macros, but it is sometimes necessary to set individual
configuration macros.

	The settings that control the policy under which HTCondor will start,
suspend, resume, vacate or kill jobs are described in
the Policy Configuration for Execution Points and for Access Points section on Policy
Configuration for the condor_startd.

HTCondor Configuration Files

The HTCondor configuration files are used to customize how HTCondor
operates at a given site. The basic configuration as shipped with
HTCondor can be used as a starting point, but most likely you will want
to modify that configuration to some extent.

Each HTCondor program will, as part of its initialization process,
configure itself by calling a library routine which parses the various
configuration files that might be used, including pool-wide,
platform-specific, and machine-specific configuration files. Environment
variables may also contribute to the configuration.

The result of configuration is a list of key/value pairs. Each key is a
configuration variable name, and each value is a string literal that may
utilize macro substitution (as defined below). Some configuration
variables are evaluated by HTCondor as ClassAd expressions; some are
not. Consult the documentation for each specific case. Unless otherwise
noted, configuration values that are expected to be numeric or boolean
constants can be any valid ClassAd expression of operators on constants.
Example:

MINUTE = 60
HOUR = (60 * $(MINUTE))
SHUTDOWN_GRACEFUL_TIMEOUT = ($(HOUR)*24)

Ordered Evaluation to Set the Configuration

Multiple files, as well as a program’s environment variables, determine
the configuration. The order in which attributes are defined is
important, as later definitions override earlier definitions. The order
in which the (multiple) configuration files are parsed is designed to
ensure the security of the system. Attributes which must be set a
specific way must appear in the last file to be parsed. This prevents
both the naive and the malicious HTCondor user from subverting the
system through its configuration. The order in which items are parsed
is:

	a single initial configuration file, which has historically been
known as the global configuration file (see below);

	other configuration files that are referenced and parsed due to
specification within the single initial configuration file (these
files have historically been known as local configuration files);

	if HTCondor daemons are not running as root on Unix platforms, the
file $(HOME)/.condor/user_config if it exists, or the file
defined by configuration variable USER_CONFIG_FILE
 ;

if HTCondor daemons are not running as Local System on Windows
platforms, the file %USERPROFILE\.condor\user_config if it exists,
or the file defined by configuration variable USER_CONFIG_FILE
 ;

	specific environment variables whose names are prefixed with
CONDOR (note that these environment variables directly define
macro name/value pairs, not the names of configuration files).

Some HTCondor tools utilize environment variables to set their
configuration; these tools search for specifically-named environment
variables. The variable names are prefixed by the string _CONDOR_ or
condor. The tools strip off the prefix, and utilize what remains
as configuration. As the use of environment variables is the last within
the ordered evaluation, the environment variable definition is used. The
security of the system is not compromised, as only specific variables
are considered for definition in this manner, not any environment
variables with the _CONDOR_ prefix.

The location of the single initial configuration file differs on Windows
from Unix platforms. For Unix platforms, the location of the single
initial configuration file starts at the top of the following list. The
first file that exists is used, and then remaining possible file
locations from this list become irrelevant.

	the file specified by the CONDOR_CONFIG environment variable. If
there is a problem reading that file, HTCondor will print an error
message and exit right away.

	/etc/condor/condor_config

	/usr/local/etc/condor_config

	~condor/condor_config

For Windows platforms, the location of the single initial configuration
file is determined by the contents of the environment variable
CONDOR_CONFIG. If this environment variable is not defined, then the
location is the registry value of
HKEY_LOCAL_MACHINE/Software/Condor/CONDOR_CONFIG.

The single, initial configuration file may contain the specification of
one or more other configuration files, referred to here as local
configuration files. Since more than one file may contain a definition
of the same variable, and since the last definition of a variable sets
the value, the parse order of these local configuration files is fully
specified here. In order:

	The value of configuration variable LOCAL_CONFIG_DIR
 lists one or more directories which
contain configuration files. The list is parsed from left to right.
The leftmost (first) in the list is parsed first. Within each
directory, a lexicographical ordering by file name determines the
ordering of file consideration.

	The value of configuration variable LOCAL_CONFIG_FILE
 lists one or more configuration
files. These listed files are parsed from left to right. The leftmost
(first) in the list is parsed first.

	If one of these steps changes the value (right hand side) of
LOCAL_CONFIG_DIR, then LOCAL_CONFIG_DIR is processed for a
second time, using the changed list of directories.

The parsing and use of configuration files may be bypassed by setting
environment variable CONDOR_CONFIG with the string ONLY_ENV.
With this setting, there is no attempt to locate or read configuration
files. This may be useful for testing where the environment contains all
needed information.

Configuration File Macros

Macro definitions are of the form:

<macro_name> = <macro_definition>

The macro name given on the left hand side of the definition is a case
insensitive identifier. There may be white space between the macro name,
the equals sign (=), and the macro definition. The macro definition is a
string literal that may utilize macro substitution.

Macro invocations are of the form:

$(macro_name[:<default if macro_name not defined>])

The colon and default are optional in a macro invocation. Macro
definitions may contain references to other macros, even ones that are
not yet defined, as long as they are eventually defined in the
configuration files. All macro expansion is done after all configuration
files have been parsed, with the exception of macros that reference
themselves.

A = xxx
C = $(A)

is a legal set of macro definitions, and the resulting value of C is
xxx. Note that C is actually bound to $(A), not its value.

As a further example,

A = xxx
C = $(A)
A = yyy

is also a legal set of macro definitions, and the resulting value of
C is yyy.

A macro may be incrementally defined by invoking itself in its
definition. For example,

A = xxx
B = $(A)
A = $(A)yyy
A = $(A)zzz

is a legal set of macro definitions, and the resulting value of A is
xxxyyyzzz. Note that invocations of a macro in its own definition
are immediately expanded. $(A) is immediately expanded in line 3 of
the example. If it were not, then the definition would be impossible to
evaluate.

Recursively defined macros such as

A = $(B)
B = $(A)

are not allowed. They create definitions that HTCondor refuses to parse.

A macro invocation where the macro name is not defined results in a
substitution of the empty string. Consider the example

MAX_ALLOC_CPUS = $(NUMCPUS)-1

If NUMCPUS is not defined, then this macro substitution becomes

MAX_ALLOC_CPUS = -1

The default value may help to avoid this situation. The default value
may be a literal

MAX_ALLOC_CPUS = $(NUMCPUS:4)-1

such that if NUMCPUS is not defined, the result of macro
substitution becomes

MAX_ALLOC_CPUS = 4-1

The default may be another macro invocation:

MAX_ALLOC_CPUS = $(NUMCPUS:$(DETECTED_CPUS_LIMIT))-1

These default specifications are restricted such that a macro invocation
with a default can not be nested inside of another default. An
alternative way of stating this restriction is that there can only be
one colon character per line. The effect of nested defaults can be
achieved by placing the macro definitions on separate lines of the
configuration.

All entries in a configuration file must have an operator, which will be
an equals sign (=). Identifiers are alphanumerics combined with the
underscore character, optionally with a subsystem name and a period as a
prefix. As a special case, a line without an operator that begins with a
left square bracket will be ignored. The following two-line example
treats the first line as a comment, and correctly handles the second
line.

[HTCondor Settings]
my_classad = [foo=bar]

To simplify pool administration, any configuration variable name may be
prefixed by a subsystem (see the $(SUBSYSTEM) macro in
Pre-Defined Macros for the
list of subsystems) and the period (.) character. For configuration variables
defined this way, the value is applied to the specific subsystem. For example,
the ports that HTCondor may use can be restricted to a range using the
HIGHPORT and LOWPORT configuration variables.

MASTER.LOWPORT = 20000
MASTER.HIGHPORT = 20100

Note that all configuration variables may utilize this syntax, but
nonsense configuration variables may result. For example, it makes no
sense to define

NEGOTIATOR.MASTER_UPDATE_INTERVAL = 60

since the condor_negotiator daemon does not use the
MASTER_UPDATE_INTERVAL variable.

It makes little sense to do so, but HTCondor will configure correctly
with a definition such as

MASTER.MASTER_UPDATE_INTERVAL = 60

The condor_master uses this configuration variable, and the prefix of
MASTER. causes this configuration to be specific to the
condor_master daemon.

As of HTCondor version 8.1.1, evaluation works in the expected manner
when combining the definition of a macro with use of a prefix that gives
the subsystem name and a period. Consider the example

FILESPEC = A
MASTER.FILESPEC = B

combined with a later definition that incorporates FILESPEC in a
macro:

USEFILE = mydir/$(FILESPEC)

When the condor_master evaluates variable USEFILE, it evaluates
to mydir/B. Previous to HTCondor version 8.1.1, it evaluated to
mydir/A. When any other subsystem evaluates variable USEFILE, it
evaluates to mydir/A.

This syntax has been further expanded to allow for the specification of
a local name on the command line using the command line option

-local-name <local-name>

This allows multiple instances of a daemon to be run by the same
condor_master daemon, each instance with its own local configuration
variable.

The ordering used to look up a variable, called <parameter name>:

	<subsystem name>.<local name>.<parameter name>

	<local name>.<parameter name>

	<subsystem name>.<parameter name>

	<parameter name>

If this local name is not specified on the command line, numbers 1 and 2
are skipped. As soon as the first match is found, the search is
completed, and the corresponding value is used.

This example configures a condor_master to run 2 condor_schedd
daemons. The condor_master daemon needs the configuration:

XYZZY = $(SCHEDD)
XYZZY_ARGS = -local-name xyzzy
DAEMON_LIST = $(DAEMON_LIST) XYZZY
DC_DAEMON_LIST = + XYZZY
XYZZY_LOG = $(LOG)/SchedLog.xyzzy

Using this example configuration, the condor_master starts up a
second condor_schedd daemon, where this second condor_schedd
daemon is passed -local-name xyzzy on the command line.

Continuing the example, configure the condor_schedd daemon named
xyzzy. This condor_schedd daemon will share all configuration
variable definitions with the other condor_schedd daemon, except for
those specified separately.

SCHEDD.XYZZY.SCHEDD_NAME = XYZZY
SCHEDD.XYZZY.SCHEDD_LOG = $(XYZZY_LOG)
SCHEDD.XYZZY.SPOOL = $(SPOOL).XYZZY

Note that the example SCHEDD_NAME and SPOOL are specific to the
condor_schedd daemon, as opposed to a different daemon such as the
condor_startd. Other HTCondor daemons using this feature will have
different requirements for which parameters need to be specified
individually. This example works for the condor_schedd, and more
local configuration can, and likely would be specified.

Also note that each daemon’s log file must be specified individually,
and in two places: one specification is for use by the condor_master,
and the other is for use by the daemon itself. In the example, the
XYZZY condor_schedd configuration variable
SCHEDD.XYZZY.SCHEDD_LOG definition references the condor_master
daemon’s XYZZY_LOG.

Comments and Line Continuations

An HTCondor configuration file may contain comments and line
continuations. A comment is any line beginning with a pound character
(#). A continuation is any entry that continues across multiples lines.
Line continuation is accomplished by placing the backslash character (\)
at the end of any line to be continued onto another. Valid examples of
line continuation are

START = (KeyboardIdle > 15 * $(MINUTE)) && \
((LoadAvg - CondorLoadAvg) <= 0.3)

and

ADMIN_MACHINES = condor.cs.wisc.edu, raven.cs.wisc.edu, \
stork.cs.wisc.edu, ostrich.cs.wisc.edu, \
bigbird.cs.wisc.edu
ALLOW_ADMINISTRATOR = $(ADMIN_MACHINES)

Where a line continuation character directly precedes a comment, the
entire comment line is ignored, and the following line is used in the
continuation. Line continuation characters within comments are ignored.

Both this example

A = $(B) \
$(C)
$(D)

and this example

A = $(B) \
$(C) \
$(D)

result in the same value for A:

A = $(B) $(D)

Multi-Line Values

As of version 8.5.6, the value for a macro can comprise multiple lines
of text. The syntax for this is as follows:

<macro_name> @=<tag>
<macro_definition lines>
@<tag>

For example:

modify routed job attributes:
remove it if it goes on hold or stays idle for over 6 hours
JOB_ROUTER_DEFAULTS @=jrd
 [
 requirements = target.WantJobRouter is true;
 MaxIdleJobs = 10;
 MaxJobs = 200;

 set_PeriodicRemove = JobStatus == 5 || (JobStatus == 1 && (time() - QDate) > 3600*6);
 delete_WantJobRouter = true;
 set_requirements = true;
]
 @jrd

Note that in this example, the square brackets are part of the
JOB_ROUTER_DEFAULTS value.

Executing a Program to Produce Configuration Macros

Instead of reading from a file, HTCondor can run a program to obtain
configuration macros. The vertical bar character (|) as the last
character defining a file name provides the syntax necessary to tell
HTCondor to run a program. This syntax may only be used in the
definition of the CONDOR_CONFIG environment variable, or the
LOCAL_CONFIG_FILE configuration
variable.

The command line for the program is formed by the characters preceding
the vertical bar character. The standard output of the program is parsed
as a configuration file would be.

An example:

LOCAL_CONFIG_FILE = /bin/make_the_config|

Program /bin/make_the_config is executed, and its output is the set
of configuration macros.

Note that either a program is executed to generate the configuration
macros or the configuration is read from one or more files. The syntax
uses space characters to separate command line elements, if an executed
program produces the configuration macros. Space characters would
otherwise separate the list of files. This syntax does not permit
distinguishing one from the other, so only one may be specified.

(Note that the include command
syntax (see below) is now the preferred way to execute a program to
generate configuration macros.)

Including Configuration from Elsewhere

Externally defined configuration can be incorporated using the following
syntax:

include [ifexist] : <file>
include : <cmdline>|
include [ifexist] command [into <cache-file>] : <cmdline>

(Note that the ifexist and into options were added in version 8.5.7.
Also note that the command option must be specified in order to use the
into option - just using the bar after <cmdline> will not work.)

In the file form of the include command, the <file> specification
must describe a single file, the contents of which will be parsed and
incorporated into the configuration. Unless the ifexist option is
specified, the non-existence of the file is a fatal error.

In the command line form of the include command (specified with
either the command option or by appending a bar (|) character after the
<cmdline> specification), the <cmdline> specification must describe a
command line (program and arguments); the command line will be executed,
and the output will be parsed and incorporated into the configuration.

If the into option is not used, the command line will be executed every
time the configuration file is referenced. This may well be undesirable,
and can be avoided by using the into option. The into keyword must be
followed by the full pathname of a file into which to write the output
of the command line. If that file exists, it will be read and the
command line will not be executed. If that file does not exist, the
output of the command line will be written into it and then the cache
file will be read and incorporated into the configuration. If the
command line produces no output, a zero length file will be created. If
the command line returns a non-zero exit code, configuration will abort
and the cache file will not be created unless the ifexist keyword is
also specified.

The include key word is case insensitive. There are no requirements
for white space characters surrounding the colon character.

Consider the example

FILE = config.$(FULL_HOSTNAME)
include : $(LOCAL_DIR)/$(FILE)

Values are acquired for configuration variables FILE, and
LOCAL_DIR by immediate evaluation, causing variable
FULL_HOSTNAME to also be immediately evaluated. The resulting value
forms a full path and file name. This file is read and parsed. The
resulting configuration is incorporated into the current configuration.
This resulting configuration may contain further nested include
specifications, which are also parsed, evaluated, and incorporated.
Levels of nested include are limited, such that infinite nesting
is discovered and thwarted, while still permitting nesting.

Consider the further example

SCRIPT_FILE = script.$(IP_ADDRESS)
include : $(RELEASE_DIR)/$(SCRIPT_FILE) |

In this example, the bar character at the end of the line causes a
script to be invoked, and the output of the script is incorporated into
the current configuration. The same immediate parsing and evaluation
occurs in this case as when a file’s contents are included.

For pools that are transitioning to using this new syntax in
configuration, while still having some tools and daemons with HTCondor
versions earlier than 8.1.6, special syntax in the configuration will
cause those daemons to fail upon startup, rather than continuing, but
incorrectly parsing the new syntax. Newer daemons will ignore the extra
syntax. Placing the @ character before the include key word causes
the older daemons to fail when they attempt to parse this syntax.

Here is the same example, but with the syntax that causes older daemons
to fail when reading it.

FILE = config.$(FULL_HOSTNAME)
@include : $(LOCAL_DIR)/$(FILE)

A daemon older than version 8.1.6 will fail to start. Running an older
condor_config_val identifies the @include line as being bad. A
daemon of HTCondor version 8.1.6 or more recent sees:

FILE = config.$(FULL_HOSTNAME)
include : $(LOCAL_DIR)/$(FILE)

and starts up successfully.

Here is an example using the new ifexist and into options:

stuff.pl writes "STUFF=1" to stdout
include ifexist command into $(LOCAL_DIR)/stuff.config : perl $(LOCAL_DIR)/stuff.pl

Reporting Errors and Warnings

As of version 8.5.7, warning and error messages can be included in
HTCondor configuration files.

The syntax for warning and error messages is as follows:

warning : <warning message>
error : <error message>

The warning and error messages will be printed when the configuration
file is used (when almost any HTCondor command is run, for example).
Error messages (unlike warnings) will prevent the successful use of the
configuration file. This will, for example, prevent a daemon from
starting, and prevent condor_config_val from returning a value.

Here’s an example of using an error message in a configuration file
(combined with some of the new include features documented above):

stuff.pl writes "STUFF=1" to stdout
include command into $(LOCAL_DIR)/stuff.config : perl $(LOCAL_DIR)/stuff.pl
if ! defined stuff
 error : stuff is needed!
endif

Conditionals in Configuration

Conditional if/else semantics are available in a limited form. The
syntax:

if <simple condition>
 <statement>
 . . .
 <statement>
else
 <statement>
 . . .
 <statement>
endif

An else key word and statements are not required, such that simple if
semantics are implemented. The <simple condition> does not permit
compound conditions. It optionally contains the exclamation point
character (!) to represent the not operation, followed by

	the defined keyword followed by the name of a variable. If the
variable is defined, the statement(s) are incorporated into the
expanded input. If the variable is not defined, the statement(s) are
not incorporated into the expanded input. As an example,

if defined MY_UNDEFINED_VARIABLE
 X = 12
else
 X = -1
endif

results in X = -1, when MY_UNDEFINED_VARIABLE is not yet
defined.

	the version keyword, representing the version number of of the daemon
or tool currently reading this conditional. This keyword is followed
by an HTCondor version number. That version number can be of the form
x.y.z or x.y. The version of the daemon or tool is compared to the
specified version number. The comparison operators are

	== for equality. Current version 8.2.3 is equal to 8.2.

	>= to see if the current version number is greater than or equal
to. Current version 8.2.3 is greater than 8.2.2, and current
version 8.2.3 is greater than or equal to 8.2.

	<= to see if the current version number is less than or equal to.
Current version 8.2.0 is less than 8.2.2, and current version
8.2.3 is less than or equal to 8.2.

As an example,

if version >= 8.1.6
 DO_X = True
else
 DO_Y = True
endif

results in defining DO_X as True if the current version of
the daemon or tool reading this if statement is 8.1.6 or a more
recent version.

	True or yes or the value 1. The statement(s) are incorporated.

	False or no or the value 0 The statement(s) are not incorporated.

	$(<variable>) may be used where the immediately evaluated value is a
simple boolean value. A value that evaluates to the empty string is
considered False, otherwise a value that does not evaluate to a
simple boolean value is a syntax error.

The syntax

if <simple condition>
 <statement>
 . . .
 <statement>
elif <simple condition>
 <statement>
 . . .
 <statement>
endif

is the same as syntax

if <simple condition>
 <statement>
 . . .
 <statement>
else
 if <simple condition>
 <statement>
 . . .
 <statement>
 endif
endif

Function Macros in Configuration

A set of predefined functions increase flexibility. Both submit
description files and configuration files are read using the same
parser, so these functions may be used in both submit description files
and configuration files.

Case is significant in the function’s name, so use the same letter case
as given in these definitions.

	$CHOICE(index, listname) or $CHOICE(index, item1, item2, ...)
	An item within the list is returned. The list is represented by a
parameter name, or the list items are the parameters. The index
parameter determines which item. The first item in the list is at
index 0. If the index is out of bounds for the list contents, an
error occurs.

	$ENV(environment-variable-name[:default-value])
	Evaluates to the value of environment variable
environment-variable-name. If there is no environment variable
with that name, Evaluates to UNDEFINED unless the optional
:default-value is used; in which case it evaluates to default-value.
For example,

A = $ENV(HOME)

binds A to the value of the HOME environment variable.

	$F[fpduwnxbqa](filename)
	One or more of the lower case letters may be combined to form the
function name and thus, its functionality. Each letter operates on
the filename in its own way.

	f convert relative path to full path by prefixing the current
working directory to it. This option works only in
condor_submit files.

	p refers to the entire directory portion of filename,
with a trailing slash or backslash character. Whether a slash or
backslash is used depends on the platform of the machine. The
slash will be recognized on Linux platforms; either a slash or
backslash will be recognized on Windows platforms, and the parser
will use the same character specified.

	d refers to the last portion of the directory within the
path, if specified. It will have a trailing slash or backslash,
as appropriate to the platform of the machine. The slash will be
recognized on Linux platforms; either a slash or backslash will
be recognized on Windows platforms, and the parser will use the
same character specified unless u or w is used. if b is used the
trailing slash or backslash will be omitted.

	u convert path separators to Unix style slash characters

	w convert path separators to Windows style backslash
characters

	n refers to the file name at the end of any path, but without
any file name extension. As an example, the return value from
$Fn(/tmp/simulate.exe) will be simulate (without the
.exe extension).

	x refers to a file name extension, with the associated period
(.). As an example, the return value from
$Fn(/tmp/simulate.exe) will be .exe.

	b when combined with the d option, causes the trailing slash
or backslash to be omitted. When combined with the x option,
causes the leading period (.) to be omitted.

	q causes the return value to be enclosed within quotes.
Double quote marks are used unless a is also specified.

	a When combined with the q option, causes the return value to
be enclosed within single quotes.

$DIRNAME(filename) is the same as $Fp(filename)

$BASENAME(filename) is the same as $Fnx(filename)

	$INT(item-to-convert) or $INT(item-to-convert, format-specifier)
	Expands, evaluates, and returns a string version of
item-to-convert. The format-specifier has the same syntax as
a C language or Perl format specifier. If no format-specifier is
specified, “%d” is used as the format specifier. The format
is everything after the comma, including spaces. It can include other text.

X = 2
Y = 6
XYArea = $(X) * $(Y)

	$INT(XYArea) is 12

	$INT(XYArea,%04d) is 0012

	$INT(XYArea,Area=%d) is Area=12

	$RANDOM_CHOICE(choice1, choice2, choice3, ...)
	 A random choice
of one of the parameters in the list of parameters is made. For
example, if one of the integers 0-8 (inclusive) should be randomly
chosen:

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)

	$RANDOM_INTEGER(min, max [, step])
	 A random integer
within the range min and max, inclusive, is selected. The optional
step parameter controls the stride within the range, and it defaults
to the value 1. For example, to randomly chose an even integer in
the range 0-8 (inclusive):

$RANDOM_INTEGER(0, 8, 2)

	$REAL(item-to-convert) or $REAL(item-to-convert, format-specifier)
	Expands, evaluates, and returns a string version of
item-to-convert for a floating point type. The
format-specifier is a C language or Perl format specifier. If no
format-specifier is specified, “%16G” is used as a format
specifier.

	$SUBSTR(name, start-index) or $SUBSTR(name, start-index, length)
	Expands name and returns a substring of it. The first character of
the string is at index 0. The first character of the substring is at
index start-index. If the optional length is not specified, then the
substring includes characters up to the end of the string. A
negative value of start-index works back from the end of the string.
A negative value of length eliminates use of characters from the end
of the string. Here are some examples that all assume

Name = abcdef

	$SUBSTR(Name, 2) is cdef.

	$SUBSTR(Name, 0, -2) is abcd.

	$SUBSTR(Name, 1, 3) is bcd.

	$SUBSTR(Name, -1) is f.

	$SUBSTR(Name, 4, -3) is the empty string, as there are no
characters in the substring for this request.

	$STRING(item-to-convert) or $STRING(item-to-convert, format-specifier)
	Expands, evaluates, and returns a string version of
item-to-convert for a string type. The
format-specifier is a C language or Perl format specifier. If no
format-specifier is specified, “%s” is used as a format specifier. The format
is everything after the comma, including spaces. It can include other text
besides %s.

FULL_HOSTNAME = host.DOMAIN
LCFullHostname = toLower("$(FULL_HOSTNAME)")

	$STRING(LCFullHostname) is host.domain

	$STRING(LCFullHostname,Name: %s) is Name: host.domain

	$EVAL(item-to-convert)
	Expands, evaluates, and returns an classad unparsed version of
item-to-convert for any classad type, the resulting value is
formatted using the equivalent of the “%v” format specifier - If it
is a string it is printed without quotes, otherwise it is unparsed
as a classad value. Due to the way the parser works, you must use
a variable to hold the expression to be evaluated if the expression
has a close brace ‘)’ character.

slist = "a,B,c"
lcslist = tolower($(slist))
list = split($(slist))
clist = size($(list)) * 10
semilist = join(";",split($(lcslist)))

	$EVAL(slist) is a,B,c

	$EVAL(lcslist) is a,b,c

	$EVAL(list) is {"a", "B", "c"}

	$EVAL(clist) is 30

	$EVAL(semilist) is a;b;c

Environment references are not currently used in standard HTCondor
configurations. However, they can sometimes be useful in custom
configurations.

Macros That Will Require a Restart When Changed

The HTCondor daemons will generally not undo any work they have already done when the configuration changes
so any change that would require undoing of work will require a restart before it takes effect. There a very
few exceptions to this rule. The condor_master will pick up changes to DAEMON_LIST on a reconfig.
Although it may take hours for a condor_startd to drain and exit when it is removed from the daemon list.

Examples of changes requiring a restart would any change to how HTCondor uses the network. A configuration change
to NETWORK_INTERFACE, NETWORK_HOSTNAME, ENABLE_IPV4 and ENABLE_IPV6 require a restart. A change in the
way daemons locate each other, such as PROCD_ADDRESS, BIND_ALL_INTERFACES, USE_SHARED_PORT or SHARED_PORT_PORT
require a restart of the condor_master and all of the daemons under it.

The condor_startd requires a restart to make any change to the slot resource configuration, This would include MEMORY,
NUM_CPUS and NUM_SLOTS_TYPE_<n>. It would also include resource detection like GPUs and Docker support.
A general rule of thumb is that changes to the condor_startd require a restart, but there are a few exceptions.
STARTD_ATTRS as well as START, PREEMPT, and other policy expressions take effect on reconfig.

For more information about specific configuration variables and whether a restart is required, refer to the documentation
of the individual variables.

Pre-Defined Macros

HTCondor provides pre-defined macros that help configure HTCondor.
Pre-defined macros are listed as $(macro_name).

This first set are entries whose values are determined at run time and
cannot be overwritten. These are inserted automatically by the library
routine which parses the configuration files. This implies that a change
to the underlying value of any of these variables will require a full
restart of HTCondor in order to use the changed value.

	$(FULL_HOSTNAME)
	The fully qualified host name of the local machine, which is host
name plus domain name.

	$(HOSTNAME)
	The host name of the local machine, without a domain name.

	$(IP_ADDRESS)
	The ASCII string version of the local machine’s “most public” IP
address. This address may be IPv4 or IPv6, but the macro will always
be set.

HTCondor selects the “most public” address heuristically. Your
configuration should not depend on HTCondor picking any particular
IP address for this macro; this macro’s value may not even be one of
the IP addresses HTCondor is configured to advertise.

	$(IPV4_ADDRESS)
	The ASCII string version of the local machine’s “most public” IPv4
address; unset if the local machine has no IPv4 address.

See IP_ADDRESS about “most public”.

	$(IPV6_ADDRESS)
	The ASCII string version of the local machine’s “most public” IPv6
address; unset if the local machine has no IPv6 address.

See IP_ADDRESS about “most public”.

	$(IP_ADDRESS_IS_V6)
	A boolean which is true if and only if IP_ADDRESS
 is an IPv6 address. Useful for conditional
configuration.

	$(TILDE)
	The full path to the home directory of the Unix user condor, if such
a user exists on the local machine.

	$(SUBSYSTEM)
	The subsystem name of the daemon or tool that is evaluating the
macro. This is a unique string which identifies a given daemon
within the HTCondor system. The possible subsystem names are:

	GAHPs

	C_GAHP

	C_GAHP_WORKER_THREAD

	EC2_GAHP

	GCE_GAHP

	Daemons

	MASTER

	SHARED_PORT

	COLLECTOR

	NEGOTIATOR

	SCHEDD

	SHADOW

	STARTD

	STARTER

	HAD

	GRIDMANAGER

	KBDD

	DEFRAG

	GANGLIAD

	DAGMAN

	ROOSTER

	

	Other

	REPLICATION

	JOB_ROUTER

	SUBMIT

	TOOL

	$(DETECTED_CPUS)
	The integer number of hyper-threaded CPUs, as given by
$(DETECTED_CORES), when COUNT_HYPERTHREAD_CPUS is True.
The integer number of physical (non hyper-threaded) CPUs, as given
by $(DETECTED_PHYSICAL_CPUS), when COUNT_HYPERTHREAD_CPUS
 is False.

	$(DETECTED_PHYSICAL_CPUS)
	The integer number of physical (non hyper-threaded) CPUs. This will
be equal the number of unique CPU IDs.

	$(DETECTED_CPUS_LIMIT)
	An integer value which is set to the minimum of $(DETECTED_CPUS)
and values from the environment variables OMP_THREAD_LIMIT and
SLURM_CPUS_ON_NODE. It intended for use as the value of
NUM_CPUS to insure that the number of CPUS that a condor_startd will
provision does not exceed the limits indicated by the environment.
Defaults to $(DETECTED_CPUS) when there is no environment variable that sets a lower value.

This second set of macros are entries whose default values are
determined automatically at run time but which can be overwritten.

	$(ARCH)
	Defines the string used to identify the architecture of the local
machine to HTCondor. The condor_startd will advertise itself with
this attribute so that users can submit binaries compiled for a
given platform and force them to run on the correct machines.
condor_submit will append a requirement to the job ClassAd that
it must run on the same ARCH and OPSYS of the machine where
it was submitted, unless the user specifies ARCH and/or
OPSYS explicitly in their submit file. See the condor_submit
manual page (doc:/man-pages/condor_submit) for details.

	$(OPSYS)
	Defines the string used to identify the operating system of the
local machine to HTCondor. If it is not defined in the configuration
file, HTCondor will automatically insert the operating system of
this machine as determined by uname.

	$(OPSYS_VER)
	Defines the integer used to identify the operating system version
number.

	$(OPSYS_AND_VER)
	Defines the string used prior to HTCondor version 7.7.2 as
$(OPSYS).

	$(UNAME_ARCH)
	The architecture as reported by uname (2)’s machine field.
Always the same as ARCH on Windows.

	$(UNAME_OPSYS)
	The operating system as reported by uname (2)’s sysname
field. Always the same as OPSYS on Windows.

	$(DETECTED_MEMORY)
	The amount of detected physical memory (RAM) in MiB.

	$(DETECTED_CORES)
	The number of CPU cores that the operating system schedules. On
machines that support hyper-threading, this will be the number of
hyper-threads.

	$(PID)
	The process ID for the daemon or tool.

	$(PPID)
	The process ID of the parent process for the daemon or tool.

	$(USERNAME)
	The user name of the UID of the daemon or tool. For daemons started
as root, but running under another UID (typically the user condor),
this will be the other UID.

	$(FILESYSTEM_DOMAIN)
	Defaults to the fully qualified host name of the machine it is
evaluated on. See the Configuration Macros section, Shared File
System Configuration File Entries for the full description of its
use and under what conditions it could be desirable to change it.

	$(UID_DOMAIN)
	Defaults to the fully qualified host name of the machine it is
evaluated on. See the Configuration Macros section for the full
description of this configuration variable.

	$(CONFIG_ROOT)
	Set to the directory where the the main config file will be read prior to reading any
config files. The value will usually be /etc/condor for an RPM install,
C:\Condor for a Windows MSI install and the directory part of the CONDOR_CONFIG environment
variable for a tarball install. This variable will not be set when CONDOR_CONFIG is
set to ONLY_ENV so that no configuration files are read.

Since $(ARCH) and $(OPSYS) will automatically be set to the
correct values, we recommend that you do not overwrite them.

Configuration Templates

Achieving certain behaviors in an HTCondor pool often requires setting
the values of a number of configuration macros in concert with each
other. We have added configuration templates as a way to do this more
easily, at a higher level, without having to explicitly set each
individual configuration macro.

Configuration templates are pre-defined; users cannot define their own
templates.

Note that the value of an individual configuration macro that is set by
a configuration template can be overridden by setting that configuration
macro later in the configuration.

Detailed information about configuration templates (such as the macros
they set) can be obtained using the condor_config_val use option
(see the condor_config_val manual page). (This
document does not contain such information because the
condor_config_val command is a better way to obtain it.)

Configuration Templates: Using Predefined Sets of Configuration

Predefined sets of configuration can be identified and incorporated into
the configuration using the syntax

use <category name> : <template name>

The use key word is case insensitive. There are no requirements for
white space characters surrounding the colon character. More than one
<template name> identifier may be placed within a single use
line. Separate the names by a space character. There is no mechanism by
which the administrator may define their own custom <category name>
or <template name>.

Each predefined <category name> has a fixed, case insensitive name
for the sets of configuration that are predefined. Placement of a
use line in the configuration brings in the predefined configuration
it identifies.

As of version 8.5.6, some of the configuration templates take arguments
(as described below).

Available Configuration Templates

There are four <category name> values. Within a category, a
predefined, case insensitive name identifies the set of configuration it
incorporates.

	ROLE category
	Describes configuration for the various roles that a machine might
play within an HTCondor pool. The configuration will identify which
daemons are running on a machine.

	Personal

Settings needed for when a single machine is the entire pool.

	Submit

Settings needed to allow this machine to submit jobs to the pool.
May be combined with Execute and CentralManager roles.

	Execute

Settings needed to allow this machine to execute jobs. May be
combined with Submit and CentralManager roles.

	CentralManager

Settings needed to allow this machine to act as the central
manager for the pool. May be combined with Submit and
Execute roles.

	FEATURE category
	Describes configuration for implemented features.

	Remote_Runtime_Config

Enables the use of condor_config_val -rset to the machine
with this configuration. Note that there are security
implications for use of this configuration, as it potentially
permits the arbitrary modification of configuration. Variable
SETTABLE_ATTRS_CONFIG
must also be defined.

	Remote_Config

Enables the use of condor_config_val -set to the machine
with this configuration. Note that there are security
implications for use of this configuration, as it potentially
permits the arbitrary modification of configuration. Variable
SETTABLE_ATTRS_CONFIG
must also be defined.

	GPUs([discovery_args])

Sets configuration based on detection with the
condor_gpu_discovery tool, and defines a custom resource
using the name GPUs. Supports both OpenCL and CUDA, if
detected. Automatically includes the GPUsMonitor feature.
Optional discovery_args are passed to condor_gpu_discovery

	GPUsMonitor

Also adds configuration to report the usage of NVidia GPUs.

	Monitor(resource_name, mode, period, executable, metric[, metric]+)

Configures a custom machine resource monitor with the given name,
mode, period, executable, and metrics. See
Startd Cron and Schedd Cron for the definitions of
these terms.

	PartitionableSlot(slot_type_num [, allocation])

Sets up a partitionable slot of the specified slot type number
and allocation (defaults for slot_type_num and allocation are 1
and 100% respectively). See the
condor_startd Policy Configuration for information on partitionable slot policies.

	StaticSlots(slot_type_num [, num_slots, [, allocation]])

Sets up a number of static slots of the specified slot type number
(defaults for slot_type_num and num_slots are 1 and $(NUM_CPUS) respectively).
The number of slots will be equal to num_slots. If no value is provided for the allocation,
the default is to divide 100% of the machine resources evenly across the slots.

	AssignAccountingGroup(map_filename [, check_request]) Sets up a
condor_schedd job transform that assigns an accounting group
to each job as it is submitted. The accounting group is determined by
mapping the Owner attribute of the job using the given map file, which
should specify the allowed accounting groups each Owner is permitted to use.
If the submitted job has an accounting group, that is treated as a requested
accounting group and validated against the map. If the optional
check_request argument is true or not present submission will
fail if the requested accounting group is present and not valid. If the argument
is false, the requested accounting group will be ignored if it is not valid.

	ScheddUserMapFile(map_name, map_filename) Defines a
condor_schedd usermap named map_name using the given map
file.

	SetJobAttrFromUserMap(dst_attr, src_attr, map_name [, map_filename])
Sets up a condor_schedd job transform that sets the dst_attr
attribute of each job as it is submitted. The value of dst_attr
is determined by mapping the src_attr of the job using the
usermap named map_name. If the optional map_filename argument
is specified, then this metaknob also defines a condor_schedd
usermap named map_Name using the given map file.

	StartdCronOneShot(job_name, exe [, hook_args])

Create a one-shot condor_startd job hook.
(See Startd Cron and Schedd Cron for more information
about job hooks.)

	StartdCronPeriodic(job_name, period, exe [, hook_args])

Create a periodic-shot condor_startd job hook.
(See Startd Cron and Schedd Cron for more information
about job hooks.)

	StartdCronContinuous(job_name, exe [, hook_args])

Create a (nearly) continuous condor_startd job hook.
(See Startd Cron and Schedd Cron for more information
about job hooks.)

	ScheddCronOneShot(job_name, exe [, hook_args])

Create a one-shot condor_schedd job hook.
(See Startd Cron and Schedd Cron for more information
about job hooks.)

	ScheddCronPeriodic(job_name, period, exe [, hook_args])

Create a periodic-shot condor_schedd job hook.
(See Startd Cron and Schedd Cron for more information
about job hooks.)

	ScheddCronContinuous(job_name, exe [, hook_args])

Create a (nearly) continuous condor_schedd job hook.
(See Startd Cron and Schedd Cron for more information
about job hooks.)

	OneShotCronHook(STARTD_CRON | SCHEDD_CRON, job_name, hook_exe [,hook_args])

Create a one-shot job hook.
(See Startd Cron and Schedd Cron for more information
about job hooks.)

	PeriodicCronHook(STARTD_CRON | SCHEDD_CRON , job_name, period, hook_exe [,hook_args])

Create a periodic job hook.
(See Startd Cron and Schedd Cron for more information
about job hooks.)

	ContinuousCronHook(STARTD_CRON | SCHEDD_CRON , job_name, hook_exe [,hook_args])

Create a (nearly) continuous job hook.
(See Startd Cron and Schedd Cron for more information
about job hooks.)

	OAuth

Sets configuration that enables the condor_credd and condor_credmon_oauth daemons,
which allow for the automatic renewal of user-supplied OAuth2 credentials.
See section Enabling the Fetching and Use of OAuth2 Credentials for more information.

	Adstash

Sets configuration that enables condor_adstash to run as a daemon.
condor_adstash polls job history ClassAds and pushes them to an
Elasticsearch index, see section
Elasticsearch for more information.

	UWCS_Desktop_Policy_Values

Configuration values used in the UWCS_DESKTOP policy. (Note
that these values were previously in the parameter table;
configuration that uses these values will have to use the
UWCS_Desktop_Policy_Values template. For example,
POLICY : UWCS_Desktop uses the
FEATURE : UWCS_Desktop_Policy_Values template.)

	CommonCloudAttributesAWS

	CommonCloudAttributesGoogle

Sets configuration that will put some common cloud-related attributes
in the slot ads. Use the version which specifies the cloud you’re
using. See Common Cloud Attributes for details.

	JobsHaveInstanceIDs

Sets configuration that will cause job ads to track the instance IDs
of slots that they ran on (if available).

	POLICY category
	Describes configuration for the circumstances under which machines
choose to run jobs.

	Always_Run_Jobs

Always start jobs and run them to completion, without
consideration of condor_negotiator generated preemption or
suspension. This is the default policy, and it is intended to be
used with dedicated resources. If this policy is used together
with the Limit_Job_Runtimes policy, order the specification
by placing this Always_Run_Jobs policy first.

	UWCS_Desktop

This was the default policy before HTCondor version 8.1.6. It is
intended to be used with desktop machines not exclusively running
HTCondor jobs. It injects UWCS into the name of some
configuration variables.

	Desktop

An updated and re-implementation of the UWCS_Desktop policy,
but without the UWCS naming of some configuration variables.

	Limit_Job_Runtimes(limit_in_seconds)

Limits running jobs to a maximum of the specified time using
preemption. (The default limit is 24 hours.) This policy does not
work while the machine is draining; use the following policy
instead.

If this policy is used together with the Always_Run_Jobs
policy, order the specification by placing this
Limit_Job_Runtimes policy second.

	Preempt_if_Runtime_Exceeds(limit_in_seconds)

Limits running jobs to a maximum of the specified time using
preemption. (The default limit is 24 hours).

	Hold_if_Runtime_Exceeds(limit_in_seconds)

Limits running jobs to a maximum of the specified time by placing
them on hold immediately (ignoring any job retirement time). (The
default limit is 24 hours).

	Preempt_If_Cpus_Exceeded

If the startd observes the number of CPU cores used by the job
exceed the number of cores in the slot by more than 0.8 on
average over the past minute, preempt the job immediately
ignoring any job retirement time.

	Hold_If_Cpus_Exceeded

If the startd observes the number of CPU cores used by the job
exceed the number of cores in the slot by more than 0.8 on
average over the past minute, immediately place the job on hold
ignoring any job retirement time. The job will go on hold with a
reasonable hold reason in job attribute HoldReason and a
value of 101 in job attribute HoldReasonCode. The hold reason
and code can be customized by specifying
HOLD_REASON_CPU_EXCEEDED and HOLD_SUBCODE_CPU_EXCEEDED
respectively.

	Preempt_If_Disk_Exceeded

If the startd observes the amount of disk space used by the job
exceed the disk in the slot, preempt the job immediately
ignoring any job retirement time.

	Hold_If_Disk_Exceeded

If the startd observes the amount of disk space used by the job
exceed the disk in the slot, immediately place the job on hold
ignoring any job retirement time. The job will go on hold with a
reasonable hold reason in job attribute HoldReason and a
value of 104 in job attribute HoldReasonCode. The hold reason
and code can be customized by specifying
HOLD_REASON_DISK_EXCEEDED and HOLD_SUBCODE_DISK_EXCEEDED
respectively.

	Preempt_If_Memory_Exceeded

If the startd observes the memory usage of the job exceed the
memory provisioned in the slot, preempt the job immediately
ignoring any job retirement time.

	Hold_If_Memory_Exceeded

If the startd observes the memory usage of the job exceed the
memory provisioned in the slot, immediately place the job on hold
ignoring any job retirement time. The job will go on hold with a
reasonable hold reason in job attribute HoldReason and a
value of 102 in job attribute HoldReasonCode. The hold reason
and code can be customized by specifying
HOLD_REASON_MEMORY_EXCEEDED and
HOLD_SUBCODE_MEMORY_EXCEEDED respectively.

	Preempt_If(policy_variable)

Preempt jobs according to the specified policy.
policy_variable must be the name of a configuration macro
containing an expression that evaluates to True if the job
should be preempted.

See an example here:
Configuration Template Examples.

	Want_Hold_If(policy_variable, subcode, reason_text)

Add the given policy to the WANT_HOLD expression; if the
WANT_HOLD expression is defined, policy_variable is
prepended to the existing expression; otherwise WANT_HOLD is
simply set to the value of the policy_variable macro.

See an example here:
Configuration Template Examples.

	Startd_Publish_CpusUsage

Publish the number of CPU cores being used by the job into the
slot ad as attribute CpusUsage. This value will be the
average number of cores used by the job over the past minute,
sampling every 5 seconds.

	SECURITY category
	Describes configuration for an implemented security model.

	Host_Based

The default security model (based on IPs and DNS names). Do not
combine with User_Based security.

	User_Based

Grants permissions to an administrator and uses
With_Authentication. Do not combine with Host_Based
security.

	With_Authentication

Requires both authentication and integrity checks.

	Strong

Requires authentication, encryption, and integrity checks.

Configuration Template Transition Syntax

For pools that are transitioning to using this new syntax in
configuration, while still having some tools and daemons with HTCondor
versions earlier than 8.1.6, special syntax in the configuration will
cause those daemons to fail upon start up, rather than use the new, but
misinterpreted, syntax. Newer daemons will ignore the extra syntax.
Placing the @ character before the use key word causes the older
daemons to fail when they attempt to parse this syntax.

As an example, consider the condor_startd as it starts up. A
condor_startd previous to HTCondor version 8.1.6 fails to start when
it sees:

@use feature : GPUs

Running an older condor_config_val also identifies the @use line
as being bad. A condor_startd of HTCondor version 8.1.6 or more
recent sees

use feature : GPUs

Configuration Template Examples

	Preempt a job if its memory usage exceeds the requested memory:

MEMORY_EXCEEDED = (isDefined(MemoryUsage) && MemoryUsage > RequestMemory)
use POLICY : PREEMPT_IF(MEMORY_EXCEEDED)

	Put a job on hold if its memory usage exceeds the requested memory:

MEMORY_EXCEEDED = (isDefined(MemoryUsage) && MemoryUsage > RequestMemory)
use POLICY : WANT_HOLD_IF(MEMORY_EXCEEDED, 102, memory usage exceeded request_memory)

	Update dynamic GPU information every 15 minutes:

use FEATURE : StartdCronPeriodic(DYNGPU, 15*60, $(LOCAL_DIR)\dynamic_gpu_info.pl, $(LIBEXEC)\condor_gpu_discovery -dynamic)

where dynamic_gpu_info.pl is a simple perl script that strips off
the DetectedGPUs line from condor_gpu_discovery:

#!/usr/bin/env perl
my @attrs = `@ARGV`;
for (@attrs) {
 next if ($_ =~ /^Detected/i);
 print $_;
}

Configuration Macros

The section contains a list of the individual configuration macros for
HTCondor. Before attempting to set up HTCondor configuration, you should
probably read the Introduction to Configuration section
and possibly the Configuration Templates section.

The settings that control the policy under which HTCondor will start,
suspend, resume, vacate or kill jobs are described in
condor_startd Policy Configuration,
not in this section.

HTCondor-wide Configuration File Entries

This section describes settings which affect all parts of the HTCondor
system. Other system-wide settings can be found in
Network-Related Configuration File Entries
and Shared File System Configuration File Macros.

	SUBSYSTEM
	Various configuration macros described below may include <SUBSYS> in the macro name.
This allows for one general macro name to apply to specific subsystems via a common
pattern. Just replace the <SUBSYS> part of the given macro with a valid HTCondor
subsystem name to apply that macro. Note that some configuration macros with <SUBSYS>
only work for select subsystems. List of HTCondor Subsystems:

	GAHPs

	C_GAHP

	C_GAHP_WORKER_THREAD

	EC2_GAHP

	GCE_GAHP

	Daemons

	MASTER

	SHARED_PORT

	COLLECTOR

	NEGOTIATOR

	SCHEDD

	SHADOW

	STARTD

	STARTER

	HAD

	GRIDMANAGER

	KBDD

	DEFRAG

	GANGLIAD

	DAGMAN

	ROOSTER

	

	Other

	REPLICATION

	JOB_ROUTER

	SUBMIT

	TOOL

	CONDOR_HOST
	This macro is used to define the $(COLLECTOR_HOST) macro.
Normally the condor_collector and condor_negotiator would run
on the same machine. If for some reason they were not run on the
same machine, $(CONDOR_HOST) would not be needed. Some of the
host-based security macros use $(CONDOR_HOST) by default. See the
Host-Based Security in HTCondor section on
Setting up IP/host-based security in HTCondor for details.

	COLLECTOR_HOST
	The host name of the machine where the condor_collector is
running for your pool. Normally, it is defined relative to the
$(CONDOR_HOST) macro. There is no default value for this macro;
COLLECTOR_HOST must be defined for the pool to work properly.

In addition to defining the host name, this setting can optionally
be used to specify the network port of the condor_collector. The
port is separated from the host name by a colon (‘:’). For example,

COLLECTOR_HOST = $(CONDOR_HOST):1234

If no port is specified, the default port of 9618 is used. Using the
default port is recommended for most sites. It is only changed if
there is a conflict with another service listening on the same
network port. For more information about specifying a non-standard
port for the condor_collector daemon, see
Port Usage in HTCondor.

Multiple condor_collector daemons may be running simultaneously,
if COLLECTOR_HOST is defined with a comma separated list of
hosts. Multiple condor_collector daemons may run for the
implementation of high availability; see The High Availability of Daemons
for details. With more than one running, updates are sent to all.
With more than one running, queries are sent to one of the
condor_collector daemons, chosen at random.

	COLLECTOR_PORT
	The default port used when contacting the condor_collector and
the default port the condor_collector listens on if no port is
specified. This variable is referenced if no port is given and there
is no other means to find the condor_collector port. The default
value is 9618.

	NEGOTIATOR_HOST
	This configuration variable is no longer used. It previously defined
the host name of the machine where the condor_negotiator is
running. At present, the port where the condor_negotiator is
listening is dynamically allocated.

	CONDOR_VIEW_HOST
	A list of HTCondorView servers, separated by commas and/or spaces.
Each HTCondorView server is denoted by the host name of the machine
it is running on, optionally appended by a colon and the port
number. This service is optional, and requires additional
configuration to enable it. There is no default value for
CONDOR_VIEW_HOST. If CONDOR_VIEW_HOST is not defined, no
HTCondorView server is used. See
Configuring The HTCondorView Server for more details.

	SCHEDD_HOST
	The host name of the machine where the condor_schedd is running
for your pool. This is the host that queues submitted jobs. If the
host specifies SCHEDD_NAME or
MASTER_NAME , that name must be
included in the form name@hostname. In most condor installations,
there is a condor_schedd running on each host from which jobs are
submitted. The default value of SCHEDD_HOST
 is the current host with the optional
name included. For most pools, this macro is not defined, nor does
it need to be defined..

	RELEASE_DIR
	The full path to the HTCondor release directory, which holds the
bin, etc, lib, and sbin directories. Other macros
are defined relative to this one. There is no default value for
RELEASE_DIR .

	BIN
	This directory points to the HTCondor directory where user-level
programs are installed. The default value is $(RELEASE_DIR)/bin.

	LIB
	This directory points to the HTCondor directory containing its
libraries. On Windows, libraries are located in BIN.

	LIBEXEC
	This directory points to the HTCondor directory where support
commands that HTCondor needs will be placed. Do not add this
directory to a user or system-wide path.

	INCLUDE
	This directory points to the HTCondor directory where header files
reside. The default value is $(RELEASE_DIR)/include. It can make
inclusion of necessary header files for compilation of programs
(such as those programs that use libcondorapi.a) easier through
the use of condor_config_val.

	SBIN
	This directory points to the HTCondor directory where HTCondor’s
system binaries (such as the binaries for the HTCondor daemons) and
administrative tools are installed. Whatever directory
$(SBIN) points to ought to be in the
PATH of users acting as HTCondor administrators. The default
value is $(BIN) in Windows and $(RELEASE_DIR)/sbin on all
other platforms.

	LOCAL_DIR
	The location of the local HTCondor directory on each machine in your
pool. The default value is $(RELEASE_DIR) on Windows and
$(RELEASE_DIR)/hosts/$(HOSTNAME) on all other platforms.

Another possibility is to use the condor user’s home directory,
which may be specified with $(TILDE). For example:

LOCAL_DIR = $(tilde)

	LOG
	Used to specify the directory where each HTCondor daemon writes its
log files. The names of the log files themselves are defined with
other macros, which use the $(LOG) macro by default. The log
directory also acts as the current working directory of the HTCondor
daemons as the run, so if one of them should produce a core file for
any reason, it would be placed in the directory defined by this
macro. The default value is $(LOCAL_DIR)/log.

Do not stage other files in this directory; any files not created by
HTCondor in this directory are subject to removal.

	RUN
	A path and directory name to be used by the HTCondor init script to
specify the directory where the condor_master should write its
process ID (PID) file. The default if not defined is $(LOG).

	SPOOL
	The spool directory is where certain files used by the
condor_schedd are stored, such as the job queue file. The
spool also stores all input and output files for
remotely-submitted jobs and all intermediate or checkpoint
files. Therefore,
you will want to ensure that the spool directory is located on a
partition with enough disk space. If a given machine is only set up
to execute HTCondor jobs and not submit them, it would not need a
spool directory (or this macro defined). The default value is
$(LOCAL_DIR)/spool. The condor_schedd will not function if
SPOOL is not defined.

Do not stage other files in this directory; any files not created by
HTCondor in this directory are subject to removal.

	EXECUTE
	This directory acts as a place to create the scratch directory of
any HTCondor job that is executing on the local machine. The scratch
directory is the destination of any input files that were specified
for transfer. It also serves as the job’s working directory if the
job is using file transfer mode and no other working directory was
specified. If a given machine is set up to only submit jobs and not
execute them, it would not need an execute directory, and this macro
need not be defined. The default value is $(LOCAL_DIR)/execute.
The condor_startd will not function if EXECUTE is undefined.
To customize the execute directory independently for each batch
slot, use SLOT<N>_EXECUTE.

Do not stage other files in this directory; any files not created by
HTCondor in this directory are subject to removal.

Ideally, this directory should not be placed under /tmp or /var/tmp, if
it is, HTCondor loses the ability to make private instances of /tmp and /var/tmp
for jobs.

	TMP_DIR
	A directory path to a directory where temporary files are placed by
various portions of the HTCondor system. The daemons and tools that
use this directory are the condor_gridmanager,
condor_config_val when using the -rset option, systems that
use lock files when configuration variable
CREATE_LOCKS_ON_LOCAL_DISK
 is True, the Web
Service API, and the condor_credd daemon. There is no default
value.

If both TMP_DIR and TEMP_DIR are defined, the value set for
TMP_DIR is used and TEMP_DIR is ignored.

	TEMP_DIR
	A directory path to a directory where temporary files are placed by
various portions of the HTCondor system. The daemons and tools that
use this directory are the condor_gridmanager,
condor_config_val when using the -rset option, systems that
use lock files when configuration variable
CREATE_LOCKS_ON_LOCAL_DISK
 is True, the Web
Service API, and the condor_credd daemon. There is no default
value.

If both TMP_DIR and TEMP_DIR are defined, the value set for
TMP_DIR is used and TEMP_DIR is ignored.

	SLOT<N>_EXECUTE
	Specifies an execute directory for use by a specific batch slot.
<N> represents the number of the batch slot, such as 1, 2, 3,
etc. This execute directory serves the same purpose as EXECUTE
 , but it allows the configuration of the
directory independently for each batch slot. Having slots each using
a different partition would be useful, for example, in preventing
one job from filling up the same disk that other jobs are trying to
write to. If this parameter is undefined for a given batch slot, it
will use EXECUTE as the default. Note that each slot will
advertise TotalDisk and Disk for the partition containing
its execute directory.

	LOCAL_CONFIG_FILE
	Identifies the location of the local, machine-specific configuration
file for each machine in the pool. The two most common choices would
be putting this file in the $(LOCAL_DIR), or putting all local
configuration files for the pool in a shared directory, each one
named by host name. For example,

LOCAL_CONFIG_FILE = $(LOCAL_DIR)/condor_config.local

or,

LOCAL_CONFIG_FILE = $(release_dir)/etc/$(hostname).local

or, not using the release directory

LOCAL_CONFIG_FILE = /full/path/to/configs/$(hostname).local

The value of LOCAL_CONFIG_FILE is treated as a list of files,
not a single file. The items in the list are delimited by either
commas or space characters. This allows the specification of
multiple files as the local configuration file, each one processed
in the order given (with parameters set in later files overriding
values from previous files). This allows the use of one global
configuration file for multiple platforms in the pool, defines a
platform-specific configuration file for each platform, and uses a
local configuration file for each machine. If the list of files is
changed in one of the later read files, the new list replaces the
old list, but any files that have already been processed remain
processed, and are removed from the new list if they are present to
prevent cycles. See
Executing a Program to Produce Configuration Macros
for directions on using a program to generate the configuration
macros that would otherwise reside in one or more files as described
here. If LOCAL_CONFIG_FILE is not defined, no local
configuration files are processed. For more information on this, see
Configuring HTCondor for Multiple Platforms.

If all files in a directory are local configuration files to be
processed, then consider using LOCAL_CONFIG_DIR.

	REQUIRE_LOCAL_CONFIG_FILE
	A boolean value that defaults to True. When True, HTCondor
exits with an error, if any file listed in LOCAL_CONFIG_FILE
cannot be read. A value of False allows local configuration
files to be missing. This is most useful for sites that have both
large numbers of machines in the pool and a local configuration file
that uses the $(HOSTNAME) macro in its definition. Instead of
having an empty file for every host in the pool, files can simply be
omitted.

	LOCAL_CONFIG_DIR
	A directory may be used as a container for local configuration
files. The files found in the directory are sorted into
lexicographical order by file name, and then each file is treated as
though it was listed in LOCAL_CONFIG_FILE. LOCAL_CONFIG_DIR
is processed before any files listed in LOCAL_CONFIG_FILE, and
is checked again after processing the LOCAL_CONFIG_FILE list. It
is a list of directories, and each directory is processed in the
order it appears in the list. The process is not recursive, so any
directories found inside the directory being processed are ignored.
See also LOCAL_CONFIG_DIR_EXCLUDE_REGEXP.

	USER_CONFIG_FILE
	The file name of a configuration file to be parsed after other local
configuration files and before environment variables set
configuration. Relevant only if HTCondor daemons are not run as root
on Unix platforms or Local System on Windows platforms. The default
is $(HOME)/.condor/user_config on Unix platforms. The default is
%USERPROFILE\.condor\user_config on Windows platforms. If a fully
qualified path is given, that is used. If a fully qualified path is
not given, then the Unix path $(HOME)/.condor/ prefixes the file
name given on Unix platforms, or the Windows path
%USERPROFILE\.condor\ prefixes the file name given on Windows
platforms.

The ability of a user to use this user-specified configuration file
can be disabled by setting this variable to the empty string:

USER_CONFIG_FILE =

	LOCAL_CONFIG_DIR_EXCLUDE_REGEXP
	A regular expression that specifies file names to be ignored when
looking for configuration files within the directories specified via
LOCAL_CONFIG_DIR. The default expression ignores files with
names beginning with a ‘.’ or a ‘#’, as well as files with names
ending in ‘˜’. This avoids accidents that can be caused by treating
temporary files created by text editors as configuration files.

	CONDOR_IDS
	The User ID (UID) and Group ID (GID) pair that the HTCondor daemons
should run as, if the daemons are spawned as root.

This value can also be specified in the CONDOR_IDS environment
variable. If the HTCondor daemons are not started as root, then
neither this CONDOR_IDS configuration macro nor the
CONDOR_IDS environment variable are used. The value is given by
two integers, separated by a period. For example,
CONDOR_IDS = 1234.1234. If this pair is not specified in either the
configuration file or in the environment, and the HTCondor daemons
are spawned as root, then HTCondor will search for a condor user on
the system, and run as that user’s UID and GID. See
User Accounts in HTCondor on Unix Platforms
on UIDs in HTCondor for more details.

	CONDOR_ADMIN
	The email address that HTCondor will send mail to if something goes
wrong in the pool. For example, if a daemon crashes, the
condor_master can send an obituary to this address with the last
few lines of that daemon’s log file and a brief message that
describes what signal or exit status that daemon exited with. The
default value is root@$(FULL_HOSTNAME).

	<SUBSYS>_ADMIN_EMAIL
	The email address that HTCondor
will send mail to if something goes wrong with the named
<SUBSYS>. Identical to CONDOR_ADMIN, but done on a per
subsystem basis. There is no default value.

List of possible subsystems to set <SUBSYS> can be found at SUBSYSTEM.

	CONDOR_SUPPORT_EMAIL
	The email address to be included at the bottom of all email HTCondor
sends out under the label “Email address of the local HTCondor
administrator:”. This is the address where HTCondor users at your
site should send their questions about HTCondor and get technical
support. If this setting is not defined, HTCondor will use the
address specified in CONDOR_ADMIN (described above).

	EMAIL_SIGNATURE
	Every e-mail sent by HTCondor includes a short signature line
appended to the body. By default, this signature includes the URL to
the global HTCondor project website. When set, this variable defines
an alternative signature line to be used instead of the default.
Note that the value can only be one line in length. This variable
could be used to direct users to look at local web site with
information specific to the installation of HTCondor.

	MAIL
	The full path to a mail sending program that uses -s to specify
a subject for the message. On all platforms, the default shipped
with HTCondor should work. Only if you installed things in a
non-standard location on your system would you need to change this
setting. The default value is $(BIN)/condor_mail.exe on Windows
and /usr/bin/mail on all other platforms. The condor_schedd
will not function unless MAIL is defined. For security reasons,
non-Windows platforms should not use this setting and should use
SENDMAIL instead.

	SENDMAIL
	The full path to the sendmail executable. If defined, which it is
by default on non-Windows platforms, sendmail is used instead of
the mail program defined by MAIL.

	MAIL_FROM
	The e-mail address that notification e-mails appear to come from.
Contents is that of the From header. There is no default value;
if undefined, the From header may be nonsensical.

	SMTP_SERVER
	For Windows platforms only, the host name of the server through
which to route notification e-mail. There is no default value; if
undefined and the debug level is at FULLDEBUG, an error message
will be generated.

	RESERVED_SWAP
	The amount of swap space in MiB to reserve for this machine.
HTCondor will not start up more condor_shadow processes if the
amount of free swap space on this machine falls below this level.
The default value is 0, which disables this check. It is anticipated
that this configuration variable will no longer be used in the near
future. If RESERVED_SWAP is not set to 0, the value of
SHADOW_SIZE_ESTIMATE is
used.

	DISK
	Tells HTCondor how much disk space (in kB) to advertise as being available
for use by jobs. If DISK is not specified, HTCondor will advertise the
amount of free space on your execute partition, minus RESERVED_DISK.

	RESERVED_DISK
	Determines how much disk space (in MB) you want to reserve for your own
machine. When HTCondor is reporting the amount of free disk space in
a given partition on your machine, it will always subtract this
amount. An example is the condor_startd, which advertises the
amount of free space in the $(EXECUTE) directory. The default
value of RESERVED_DISK is zero.

	LOCK
	HTCondor needs to create lock files to synchronize access to various
log files. Because of problems with network file systems and file
locking over the years, we highly recommend that you put these lock
files on a local partition on each machine. If you do not have your
$(LOCAL_DIR) on a local partition, be sure to change this entry.

Whatever user or group HTCondor is running as needs to have write
access to this directory. If you are not running as root, this is
whatever user you started up the condor_master as. If you are
running as root, and there is a condor account, it is most likely
condor.

Otherwise, it is whatever you set in the CONDOR_IDS environment
variable, or whatever you define in the CONDOR_IDS setting in
the HTCondor config files. See
User Accounts in HTCondor on Unix Platforms
on UIDs in HTCondor for details.

If no value for LOCK is provided, the value of LOG is used.

	HISTORY
	Defines the location of the HTCondor history file, which stores
information about all HTCondor jobs that have completed on a given
machine. This macro is used by both the condor_schedd which
appends the information and condor_history, the user-level
program used to view the history file. This configuration macro is
given the default value of $(SPOOL)/history in the default
configuration. If not defined, no history file is kept.

	ENABLE_HISTORY_ROTATION
	If this is defined to be true, then the history file will be
rotated. If it is false, then it will not be rotated, and it will
grow indefinitely, to the limits allowed by the operating system. If
this is not defined, it is assumed to be true. The rotated files
will be stored in the same directory as the history file.

	MAX_HISTORY_LOG
	Defines the maximum size for the history file, in bytes. It defaults
to 20MB. This parameter is only used if history file rotation is
enabled.

	MAX_HISTORY_ROTATIONS
	When history file rotation is turned on, this controls how many
backup files there are. It default to 2, which means that there may
be up to three history files (two backups, plus the history file
that is being currently written to). When the history file is
rotated, and this rotation would cause the number of backups to be
too large, the oldest file is removed.

	HISTORY_CONTAINS_JOB_ENVIRONMENT
	This parameter defaults to true. When set to false, the job’s
environment attribute (which can be very large) is not written to
the history file. This may allow many more jobs to be kept in the
history before rotation.

	HISTORY_HELPER_MAX_CONCURRENCY
	Specifies the maximum number of concurrent remote condor_history
queries allowed at a time; defaults to 50. When this maximum is
exceeded, further queries will be queued in a non-blocking manner.
Setting this option to 0 disables remote history access. A remote
history access is defined as an invocation of condor_history that
specifies a -name option to query a condor_schedd running on
a remote machine.

	HISTORY_HELPER_MAX_HISTORY
	Specifies the maximum number of ClassAds to parse on behalf of
remote history clients. The default is 10,000. This allows the
system administrator to indirectly manage the maximum amount of CPU
time spent on each client. Setting this option to 0 disables remote
history access.

	MAX_JOB_QUEUE_LOG_ROTATIONS
	The condor_schedd daemon periodically rotates the job queue
database file, in order to save disk space. This option controls how
many rotated files are saved. It defaults to 1, which means there
may be up to two history files (the previous one, which was rotated
out of use, and the current one that is being written to). When the
job queue file is rotated, and this rotation would cause the number
of backups to be larger the the maximum specified, the oldest file
is removed.

	CLASSAD_LOG_STRICT_PARSING
	A boolean value that defaults to True. When True, ClassAd
log files will be read using a strict syntax checking for ClassAd
expressions. ClassAd log files include the job queue log and the
accountant log. When False, ClassAd log files are read without
strict expression syntax checking, which allows some legacy ClassAd
log data to be read in a backward compatible manner. This
configuration variable may no longer be supported in future
releases, eventually requiring all ClassAd log files to pass strict
ClassAd syntax checking.

	DEFAULT_DOMAIN_NAME
	The value to be appended to a machine’s host name, representing a
domain name, which HTCondor then uses to form a fully qualified host
name. This is required if there is no fully qualified host name in
file /etc/hosts or in NIS. Set the value in the global
configuration file, as HTCondor may depend on knowing this value in
order to locate the local configuration file(s). The default value
as given in the sample configuration file of the HTCondor download
is bogus, and must be changed. If this variable is removed from the
global configuration file, or if the definition is empty, then
HTCondor attempts to discover the value.

	NO_DNS
	A boolean value that defaults to False. When True, HTCondor
constructs host names using the host’s IP address together with the
value defined for DEFAULT_DOMAIN_NAME.

	CM_IP_ADDR
	If neither COLLECTOR_HOST nor COLLECTOR_IP_ADDR macros are
defined, then this macro will be used to determine the IP address of
the central manager (collector daemon). This macro is defined by an
IP address.

	EMAIL_DOMAIN
	By default, if a user does not specify notify_user in the submit
description file, any email HTCondor sends about that job will go to
“username@UID_DOMAIN”. If your machines all share a common UID
domain (so that you would set UID_DOMAIN to be the same across
all machines in your pool), but email to user@UID_DOMAIN is not the
right place for HTCondor to send email for your site, you can define
the default domain to use for email. A common example would be to
set EMAIL_DOMAIN to the fully qualified host name of each
machine in your pool, so users submitting jobs from a specific
machine would get email sent to user@machine.your.domain, instead of
user@your.domain. You would do this by setting EMAIL_DOMAIN to
$(FULL_HOSTNAME). In general, you should leave this setting
commented out unless two things are true: 1) UID_DOMAIN is set
to your domain, not $(FULL_HOSTNAME), and 2) email to
user@UID_DOMAIN will not work.

	CREATE_CORE_FILES
	Defines whether or not HTCondor daemons are to create a core file in
the LOG directory if something really bad
happens. It is used to set the resource limit for the size of a core
file. If not defined, it leaves in place whatever limit was in
effect when the HTCondor daemons (normally the condor_master)
were started. This allows HTCondor to inherit the default system
core file generation behavior at start up. For Unix operating
systems, this behavior can be inherited from the parent shell, or
specified in a shell script that starts HTCondor. If this parameter
is set and True, the limit is increased to the maximum. If it is
set to False, the limit is set at 0 (which means that no core
files are created). Core files greatly help the HTCondor developers
debug any problems you might be having. By using the parameter, you
do not have to worry about tracking down where in your boot scripts
you need to set the core limit before starting HTCondor. You set the
parameter to whatever behavior you want HTCondor to enforce. This
parameter defaults to undefined to allow the initial operating
system default value to take precedence, and is commented out in the
default configuration file.

	ABORT_ON_EXCEPTION
	When HTCondor programs detect a fatal internal exception, they
normally log an error message and exit. If you have turned on
CREATE_CORE_FILES , in some
cases you may also want to turn on ABORT_ON_EXCEPTION
 so that core files are generated
when an exception occurs. Set the following to True if that is what
you want.

	Q_QUERY_TIMEOUT
	Defines the timeout (in seconds) that condor_q uses when trying
to connect to the condor_schedd. Defaults to 20 seconds.

	DEAD_COLLECTOR_MAX_AVOIDANCE_TIME
	Defines the interval of time (in seconds) between checks for a
failed primary condor_collector daemon. If connections to the
dead primary condor_collector take very little time to fail, new
attempts to query the primary condor_collector may be more
frequent than the specified maximum avoidance time. The default
value equals one hour. This variable has relevance to flocked jobs,
as it defines the maximum time they may be reporting to the primary
condor_collector without the condor_negotiator noticing.

	PASSWD_CACHE_REFRESH
	HTCondor can cause NIS servers to become overwhelmed by queries for
uid and group information in large pools. In order to avoid this
problem, HTCondor caches UID and group information internally. This
integer value allows pool administrators to specify (in seconds) how
long HTCondor should wait until refreshes a cache entry. The default
is set to 72000 seconds, or 20 hours, plus a random number of
seconds between 0 and 60 to avoid having lots of processes
refreshing at the same time. This means that if a pool administrator
updates the user or group database (for example, /etc/passwd or
/etc/group), it can take up to 6 minutes before HTCondor will
have the updated information. This caching feature can be disabled
by setting the refresh interval to 0. In addition, the cache can
also be flushed explicitly by running the command
condor_reconfig. This configuration variable has no effect on
Windows.

	SYSAPI_GET_LOADAVG
	If set to False, then HTCondor will not attempt to compute the load
average on the system, and instead will always report the system
load average to be 0.0. Defaults to True.

	NETWORK_MAX_PENDING_CONNECTS
	This specifies a limit to the maximum number of simultaneous network
connection attempts. This is primarily relevant to condor_schedd,
which may try to connect to large numbers of startds when claiming
them. The negotiator may also connect to large numbers of startds
when initiating security sessions used for sending MATCH messages.
On Unix, the default for this parameter is eighty percent of the
process file descriptor limit. On windows, the default is 1600.

	WANT_UDP_COMMAND_SOCKET
	This setting, added in version 6.9.5, controls if HTCondor daemons
should create a UDP command socket in addition to the TCP command
socket (which is required). The default is True, and modifying
it requires restarting all HTCondor daemons, not just a
condor_reconfig or SIGHUP.

Normally, updates sent to the condor_collector use UDP, in
addition to certain keep alive messages and other non-essential
communication. However, in certain situations, it might be desirable
to disable the UDP command port.

Unfortunately, due to a limitation in how these command sockets are
created, it is not possible to define this setting on a per-daemon
basis, for example, by trying to set
STARTD.WANT_UDP_COMMAND_SOCKET. At least for now, this setting
must be defined machine wide to function correctly.

If this setting is set to true on a machine running a
condor_collector, the pool should be configured to use TCP
updates to that collector (see
Using TCP to Send Updates to the condor_collector
for more information).

	ALLOW_SCRIPTS_TO_RUN_AS_EXECUTABLES
	A boolean value that, when True, permits scripts on Windows
platforms to be used in place of the
executable in a job
submit description file, in place of a condor_dagman pre or post
script, or in producing the configuration, for example. Allows a
script to be used in any circumstance previously limited to a
Windows executable or a batch file. The default value is True.
See Using Windows Scripts as Job Executables
for further description.

	OPEN_VERB_FOR_<EXT>_FILES
	A string that defines a Windows verb for use in a root hive registry
look up. <EXT> defines the file name extension, which represents a
scripting language, also needed for the look up. See
Using Windows Scripts as Job Executables
for a more complete description.

	ENABLE_CLASSAD_CACHING
	A boolean value that controls the caching of ClassAds. Caching saves
memory when an HTCondor process contains many ClassAds with the same
expressions. The default value is True for all daemons other
than the condor_shadow, condor_starter, and condor_master.
A value of True enables caching.

	STRICT_CLASSAD_EVALUATION
	A boolean value that controls how ClassAd expressions are evaluated.
If set to True, then New ClassAd evaluation semantics are used.
This means that attribute references without a MY. or
TARGET. prefix are only looked up in the local ClassAd. If set
to the default value of False, Old ClassAd evaluation semantics
are used. See
ClassAds: Old and New
for details.

	CLASSAD_USER_LIBS
	A comma separated list of paths to shared libraries that contain
additional ClassAd functions to be used during ClassAd evaluation.

	CLASSAD_USER_PYTHON_MODULES
	A comma separated list of python modules to load, which are to be
used during ClassAd evaluation. If module foo is in this list,
then function bar can be invoked in ClassAds via the expression
python_invoke("foo", "bar", ...). Any further arguments are
converted from ClassAd expressions to python; the function return
value is converted back to ClassAds. The python modules are loaded
at configuration time, so any module-level statements are executed.
Module writers can invoke classad.register at the module-level
in order to use python functions directly.

Functions executed by ClassAds should be non-blocking and have no
side-effects; otherwise, unpredictable HTCondor behavior may occur.

	CLASSAD_USER_PYTHON_LIB
	Specifies the path to the python libraries, which is needed when
CLASSAD_USER_PYTHON_MODULES
 is set. Defaults to
$(LIBEXEC)/libclassad_python_user.so, and would rarely be
changed from the default value.

	CONDOR_FSYNC
	A boolean value that controls whether HTCondor calls fsync() when
writing the user job and transaction logs. Setting this value to
False will disable calls to fsync(), which can help performance
for condor_schedd log writes at the cost of some durability of
the log contents, should there be a power or hardware failure. The
default value is True.

	STATISTICS_TO_PUBLISH
	A comma and/or space separated list that identifies which statistics
collections are to place attributes in ClassAds. Additional
information specifies a level of verbosity and other identification
of which attributes to include and which to omit from ClassAds. The
special value NONE disables all publishing, so no statistics
will be published; no option is included. For other list items that
define this variable, the syntax defines the two aspects by
separating them with a colon. The first aspect defines a collection,
which may specify which daemon is to publish the statistics, and the
second aspect qualifies and refines the details of which attributes
to publish for the collection, including a verbosity level. If the
first aspect is ALL, the option is applied to all collections.
If the first aspect is DEFAULT, the option is applied to all
collections, with the intent that further list items will specify
publishing that is to be different than the default. This first
aspect may be SCHEDD or SCHEDULER to publish Statistics
attributes in the ClassAd of the condor_schedd. It may be
TRANSFER to publish file transfer statistics. It may be
STARTER to publish Statistics attributes in the ClassAd of the
condor_starter. Or, it may be DC or DAEMONCORE to publish
DaemonCore statistics. One or more options are specified after the
colon.

	Option

	Description

	0

	turns off the publishing of any statistics attributes

	1

	the default level, where some statistics attributes are
and others are omitted

	2

	the verbose level, where all statistics attributes are
published

	3

	the super verbose level, which is currently unused, but
intended to be all statistics attributes published at
the verbose level plus extra information

	R

	include attributes from the most recent time interval;
the default

	!R

	omit attributes from the most recent time interval

	D

	include attributes for debugging

	!D

	omit attributes for debugging; the default

	Z

	include attributes even if the attribute’s value is 0

	!Z

	omit attributes when the attribute’s value is 0

	L

	include attributes that represent the lifetime value;
the default

	!L

	omit attributes that represent the lifetime value

If this variable is not defined, then the default for each
collection is used. If this variable is defined, and the definition
does not specify each possible collection, then no statistics are
published for those collections not defined. If an option specifies
conflicting possibilities, such as R!R, then the last one takes
precedence and is applied.

As an example, to cause a verbose setting of the publication of
Statistics attributes only for the condor_schedd, and do not
publish any other Statistics attributes:

STATISTICS_TO_PUBLISH = SCHEDD:2

As a second example, to cause all collections other than those for
DAEMONCORE to publish at a verbosity setting of 1, and omit
lifetime values, where the DAEMONCORE includes all statistics at
the verbose level:

STATISTICS_TO_PUBLISH = DEFAULT:1!L, DC:2RDZL

	STATISTICS_TO_PUBLISH_LIST
	A comma and/or space separated list of statistics attribute names
that should be published in updates to the condor_collector
daemon, even though the verbosity specified in
STATISTICS_TO_PUBLISH would not normally send them. This setting
has the effect of redefining the verbosity level of the statistics
attributes that it mentions, so that they will always match the
current statistics publication level as specified in
STATISTICS_TO_PUBLISH.

	STATISTICS_WINDOW_SECONDS
	An integer value that controls the time window size, in seconds, for
collecting windowed daemon statistics. These statistics are, by
convention, those attributes with names that are of the form
Recent<attrname>. Any data contributing to a windowed statistic
that is older than this number of seconds is dropped from the
statistic. For example, if STATISTICS_WINDOW_SECONDS = 300, then
any jobs submitted more than 300 seconds ago are not counted in the
windowed statistic RecentJobsSubmitted. Defaults to 1200
seconds, which is 20 minutes.

The window is broken into smaller time pieces called quantum. The
window advances one quantum at a time.

	STATISTICS_WINDOW_SECONDS_<collection>
	The same as STATISTICS_WINDOW_SECONDS, but used to override the
global setting for a particular statistic collection. Collection
names currently implemented are DC or DAEMONCORE and
SCHEDD or SCHEDULER.

	STATISTICS_WINDOW_QUANTUM
	For experts only, an integer value that controls the time
quantization that form a time window, in seconds, for the data
structures that maintain windowed statistics. Defaults to 240
seconds, which is 6 minutes. This default is purposely set to be
slightly smaller than the update rate to the condor_collector.
Setting a smaller value than the default increases the memory
requirement for the statistics. Graphing of statistics at the level
of the quantum expects to see counts that appear like a saw tooth.

	STATISTICS_WINDOW_QUANTUM_<collection>
	The same as STATISTICS_WINDOW_QUANTUM, but used to override the
global setting for a particular statistic collection. Collection
names currently implemented are DC or DAEMONCORE and
SCHEDD or SCHEDULER.

	TCP_KEEPALIVE_INTERVAL
	The number of seconds specifying a keep alive interval to use for
any HTCondor TCP connection. The default keep alive interval is 360
(6 minutes); this value is chosen to minimize the likelihood that
keep alive packets are sent, while still detecting dead TCP
connections before job leases expire. A smaller value will consume
more operating system and network resources, while a larger value
may cause jobs to fail unnecessarily due to network disconnects.
Most users will not need to tune this configuration variable. A
value of 0 will use the operating system default, and a value of -1
will disable HTCondor’s use of a TCP keep alive.

	ENABLE_IPV4
	A boolean with the additional special value of auto. If true,
HTCondor will use IPv4 if available, and fail otherwise. If false,
HTCondor will not use IPv4. If auto, which is the default,
HTCondor will use IPv4 if it can find an interface with an IPv4
address, and that address is (a) public or private, or (b) no
interface’s IPv6 address is public or private. If HTCondor finds
more than one address of each protocol, only the most public address
is considered for that protocol.

	ENABLE_IPV6
	A boolean with the additional special value of auto. If true,
HTCondor will use IPv6 if available, and fail otherwise. If false,
HTCondor will not use IPv6. If auto, which is the default,
HTCondor will use IPv6 if it can find an interface with an IPv6
address, and that address is (a) public or private, or (b) no
interface’s IPv4 address is public or private. If HTCondor finds
more than one address of each protocol, only the most public address
is considered for that protocol.

	PREFER_IPV4
	A boolean which will cause HTCondor to prefer IPv4 when it is able
to choose. HTCondor will otherwise prefer IPv6. The default is
True.

	ADVERTISE_IPV4_FIRST
	A string (treated as a boolean). If ADVERTISE_IPV4_FIRST
evaluates to True, HTCondor will advertise its IPv4 addresses
before its IPv6 addresses; otherwise the IPv6 addresses will come
first. Defaults to $(PREFER_IPV4).

	IGNORE_TARGET_PROTOCOL_PREFERENCE
	A string (treated as a boolean). If
IGNORE_TARGET_PROTOCOL_PREFERENCE evaluates to True, the
target’s listed protocol preferences will be ignored; otherwise
they will not. Defaults to $(PREFER_IPV4).

	IGNORE_DNS_PROTOCOL_PREFERENCE
	A string (treated as a boolean). IGNORE_DNS_PROTOCOL_PREFERENCE
evaluates to True, the protocol order returned by the DNS will
be ignored; otherwise it will not. Defaults to $(PREFER_IPV4).

	PREFER_OUTBOUND_IPV4
	A string (treated as a boolean). PREFER_OUTBOUND_IPV4 evaluates
to True, HTCondor will prefer IPv4; otherwise it will not.
Defaults to $(PREFER_IPV4).

	<SUBSYS>_CLASSAD_USER_MAP_NAMES
	A string defining a list of names for username-to-accounting group
mappings for the specified daemon. Names must be separated by spaces
or commas.

List of possible subsystems to set <SUBSYS> can be found at SUBSYSTEM.

	CLASSAD_USER_MAPFILE_<name>
	A string giving the name of a file to parse to initialize the map
for the given username. Note that this macro is only used if
<SUBSYS>_CLASSAD_USER_MAP_NAMES is defined for the relevant
daemon.

The format for the map file is the same as the format for
CLASSAD_USER_MAPDATA_<name>, below.

	CLASSAD_USER_MAPDATA_<name>
	A string containing data to be used to initialize the map for the
given username. Note that this macro is only used if
<SUBSYS>_CLASSAD_USER_MAP_NAMES is defined for the relevant
daemon, and CLASSAD_USER_MAPFILE_<name>
 is not defined for the
given name.

The format for the map data is the same as the format
for the security unified map file (see
The Unified Map File for Authentication
for details).

The first field must be * (or a subset name - see below), the
second field is a regex that we will match against the input, and
the third field will be the output if the regex matches, the 3 and 4
argument form of the ClassAd userMap() function (see
ClassAd Syntax) expect
that the third field will be a comma separated list of values. For
example:

file: groups.mapdata
* John chemistry,physics,glassblowing
* Juan physics,chemistry
* Bob security
* Alice security,math

Here is simple example showing how to configure CLASSAD_USER_MAPDATA_<name>
for testing and experimentation.

configuration statements to create a simple userMap that
can be used by the Schedd as well as by tools like condor_q
#
SCHEDD_CLASSAD_USER_MAP_NAMES = Trust $(SCHEDD_CLASSAD_USER_MAP_NAMES)
TOOL_CLASSAD_USER_MAP_NAMES = Trust $(TOOL_CLASSAD_USER_MAP_NAMES)
CLASSAD_USER_MAPDATA_Trust @=end
 * Bob User
 * Alice Admin
 * /.*/ Nobody
@end
#
test with
condor_q -af:j 'Owner' 'userMap("Trust",Owner)'

Optional submaps: If the first field of the mapfile contains
something other than *, then a submap is defined. To select a
submap for lookup, the first argument for userMap() should be
“mapname.submap”. For example:

mapdata 'groups' with submaps
* Bob security
* Alice security,math
alt Alice math,hacking

	SIGN_S3_URLS
	A boolean value that, when True, tells HTCondor to convert s3://
URLs into pre-signed https:// URLs. This allows execute nodes to
download from or upload to secure S3 buckets without access to the user’s
API tokens, which remain on the submit node at all times. This value
defaults to TRUE but can be disabled if the administrator has already
provided an s3:// plug-in. This value must be set on both the submit
node and on the execute node.

Daemon Logging Configuration File Entries

These entries control how and where the HTCondor daemons write to log
files. Many of the entries in this section represents multiple macros.
There is one for each subsystem (listed in SUBSYSTEM).
The macro name for each substitutes <SUBSYS> with the name of the
subsystem corresponding to the daemon.

	<SUBSYS>_LOG
	Defines the path and file name of the
log file for a given subsystem. For example, $(STARTD_LOG) gives
the location of the log file for the condor_startd daemon. The
default value for most daemons is the daemon’s name in camel case,
concatenated with Log. For example, the default log defined for
the condor_master daemon is $(LOG)/MasterLog. The default
value for other subsystems is $(LOG)/<SUBSYS>LOG. The special
value SYSLOG causes the daemon to log via the syslog facility on
Linux. If the log file cannot be written to, then the daemon will
attempt to log this into a new file of the name
$(LOG)/dprintf_failure.<SUBSYS> before the daemon exits.

List of possible subsystems to set <SUBSYS> can be found at SUBSYSTEM.

	LOG_TO_SYSLOG
	A boolean value that is False by default. When True, all
daemon logs are routed to the syslog facility on Linux.

	MAX_<SUBSYS>_LOG
	Controls the maximum size in bytes or amount of time that a log will
be allowed to grow. For any log not specified, the default is
$(MAX_DEFAULT_LOG) , which
currently defaults to 10 MiB in size. Values are specified with the
same syntax as MAX_DEFAULT_LOG .

Note that a log file for the condor_procd does not use this
configuration variable definition. Its implementation is separate.
See MAX_PROCD_LOG.

List of possible subsystems to set <SUBSYS> can be found at SUBSYSTEM.

	MAX_DEFAULT_LOG
	Controls the maximum size in bytes or amount of time that any log
not explicitly specified using MAX_<SUBSYS>_LOG
 will be allowed to grow. When it is
time to rotate a log file, it will be saved to a file with an ISO
timestamp suffix. The oldest rotated file receives the ending
.old. The .old files are overwritten each time the maximum
number of rotated files (determined by the value of
MAX_NUM_<SUBSYS>_LOG) is exceeded. The default value is 10 MiB
in size. A value of 0 specifies that the file may grow without
bounds. A single integer value is specified; without a suffix, it
defaults to specifying a size in bytes. A suffix is case
insensitive, except for Mb and Min; these both start with
the same letter, and the implementation attaches meaning to the
letter case when only the first letter is present. Therefore, use
the following suffixes to qualify the integer:
Bytes for bytes
Kb for KiB, 210 numbers of bytes
Mb for MiB, 220 numbers of bytes
Gb for GiB, 230 numbers of bytes
Tb for TiB, 240 numbers of bytes
Sec for seconds
Min for minutes
Hr for hours
Day for days
Wk for weeks

	MAX_NUM_<SUBSYS>_LOG
	An integer that controls the maximum number of rotations a log file
is allowed to perform before the oldest one will be rotated away.
Thus, at most MAX_NUM_<SUBSYS>_LOG + 1 log files of the same
program coexist at a given time. The default value is 1.

List of possible subsystems to set <SUBSYS> can be found at SUBSYSTEM.

	TRUNC_<SUBSYS>_LOG_ON_OPEN
	If this macro is defined and set to True, the affected log will
be truncated and started from an empty file with each invocation of
the program. Otherwise, new invocations of the program will append
to the previous log file. By default this setting is False for
all daemons.

List of possible subsystems to set <SUBSYS> can be found at SUBSYSTEM.

	<SUBSYS>_LOG_KEEP_OPEN
	A boolean value that controls
whether or not the log file is kept open between writes. When
True, the daemon will not open and close the log file between
writes. Instead the daemon will hold the log file open until the log
needs to be rotated. When False, the daemon reverts to the
previous behavior of opening and closing the log file between
writes. When the $(<SUBSYS>_LOCK) macro is defined, setting
$(<SUBSYS>_LOG_KEEP_OPEN) has no effect, as the daemon will
unconditionally revert back to the open/close between writes
behavior. On Windows platforms, the value defaults to True for
all daemons. On Linux platforms, the value defaults to True for
all daemons, except the condor_shadow, due to a global file
descriptor limit.

List of possible subsystems to set <SUBSYS> can be found at SUBSYSTEM.

	<SUBSYS>_LOCK
	This macro specifies the lock file used
to synchronize append operations to the log file for this subsystem.
It must be a separate file from the $(<SUBSYS>_LOG) file, since
the $(<SUBSYS>_LOG) file may be rotated and you want to be able
to synchronize access across log file rotations. A lock file is only
required for log files which are accessed by more than one process.
Currently, this includes only the SHADOW subsystem. This macro
is defined relative to the $(LOCK) macro.

List of possible subsystems to set <SUBSYS> can be found at SUBSYSTEM.

	JOB_QUEUE_LOG
	A full path and file name, specifying the job queue log. The default
value, when not defined is $(SPOOL)/job_queue.log. This
specification can be useful, if there is a solid state drive which
is big enough to hold the frequently written to job_queue.log,
but not big enough to hold the whole contents of the spool
directory.

	FILE_LOCK_VIA_MUTEX
	This macro setting only works on Win32 - it is ignored on Unix. If
set to be True, then log locking is implemented via a kernel
mutex instead of via file locking. On Win32, mutex access is FIFO,
while obtaining a file lock is non-deterministic. Thus setting to
True fixes problems on Win32 where processes (usually shadows)
could starve waiting for a lock on a log file. Defaults to True
on Win32, and is always False on Unix.

	LOCK_DEBUG_LOG_TO_APPEND
	A boolean value that defaults to False. This variable controls
whether a daemon’s debug lock is used when appending to the log.
When False, the debug lock is only used when rotating the log
file. This is more efficient, especially when many processes share
the same log file. When True, the debug lock is used when
writing to the log, as well as when rotating the log file. This
setting is ignored under Windows, and the behavior of Windows
platforms is as though this variable were True. Under Unix, the
default value of False is appropriate when logging to file
systems that support the POSIX semantics of O_APPEND. On
non-POSIX-compliant file systems, it is possible for the characters
in log messages from multiple processes sharing the same log to be
interleaved, unless locking is used. Since HTCondor does not support
sharing of debug logs between processes running on different
machines, many non-POSIX-compliant file systems will still avoid
interleaved messages without requiring HTCondor to use a lock. Tests
of AFS and NFS have not revealed any problems when appending to the
log without locking.

	ENABLE_USERLOG_LOCKING
	A boolean value that defaults to False on Unix platforms and
True on Windows platforms. When True, a user’s job event log
will be locked before being written to. If False, HTCondor will
not lock the file before writing.

	ENABLE_USERLOG_FSYNC
	A boolean value that is True by default. When True, writes
to the user’s job event log are sync-ed to disk before releasing the
lock.

	USERLOG_FILE_CACHE_MAX
	The integer number of job event log files that the condor_schedd
will keep open for writing during an interval of time (specified by
USERLOG_FILE_CACHE_CLEAR_INTERVAL). The default value is 0,
causing no files to remain open; when 0, each job event log is
opened, the event is written, and then the file is closed.
Individual file descriptors are removed from this count when the
condor_schedd detects that no jobs are currently using them.
Opening a file is a relatively time consuming operation on a
networked file system (NFS), and therefore, allowing a set of files
to remain open can improve performance. The value of this variable
needs to be set low enough such that the condor_schedd daemon
process does not run out of file descriptors by leaving these job
event log files open. The Linux operating system defaults to
permitting 1024 assigned file descriptors per process; the
condor_schedd will have one file descriptor per running job for
the condor_shadow.

	USERLOG_FILE_CACHE_CLEAR_INTERVAL
	The integer number of seconds that forms the time interval within
which job event logs will be permitted to remain open when
USERLOG_FILE_CACHE_MAX is greater than zero. The default is 60
seconds. When the interval has passed, all job event logs that the
condor_schedd has permitted to stay open will be closed, and the
interval within which job event logs may remain open between writes
of events begins anew. This time interval may be set to a longer
duration if the administrator determines that the condor_schedd
will not exceed the maximum number of file descriptors; a longer
interval may yield higher performance due to fewer files being
opened and closed.

	CREATE_LOCKS_ON_LOCAL_DISK
	A boolean value utilized only for Unix operating systems, that
defaults to True. This variable is only relevant if
ENABLE_USERLOG_LOCKING is True. When True, lock files
are written to a directory named condorLocks, thereby using a
local drive to avoid known problems with locking on NFS. The
location of the condorLocks directory is determined by

	The value of TEMP_DIR, if defined.

	The value of TMP_DIR, if defined and TEMP_DIR is not
defined.

	The default value of /tmp, if neither TEMP_DIR nor
TMP_DIR is defined.

	TOUCH_LOG_INTERVAL
	The time interval in seconds between when daemons touch their log
files. The change in last modification time for the log file is
useful when a daemon restarts after failure or shut down. The last
modification date is printed, and it provides an upper bound on the
length of time that the daemon was not running. Defaults to 60
seconds.

	LOGS_USE_TIMESTAMP
	This macro controls how the current time is formatted at the start
of each line in the daemon log files. When True, the Unix time
is printed (number of seconds since 00:00:00 UTC, January 1, 1970).
When False (the default value), the time is printed like so:
<Month>/<Day> <Hour>:<Minute>:<Second> in the local timezone.

	DEBUG_TIME_FORMAT
	This string defines how to format the current time printed at the
start of each line in the daemon log files. The value is a format
string is passed to the C strftime() function, so see that manual
page for platform-specific details. If not defined, the default
value is

"%m/%d/%y %H:%M:%S"

	<SUBSYS>_DEBUG
	All of the HTCondor daemons can produce different levels of output depending
on how much information is desired. The various levels of verbosity for a
given daemon are determined by this macro. Settings are a
comma, vertical bar, or space-separated list of categories and options. Each
category can be followed by a colon and a single digit indicating the verbosity
for that category :1 is assumed if there is no verbosity modifier.
Permitted verbosity values are :1 for
normal, :2 for extra messages, and :0 to disable logging of that
category of messages. The primary daemon log will always include category and verbosity
D_ALWAYS:1, unless D_ALWAYS:0 is added to this list. Category and option names are:

	D_ANY
	This flag turns on all cagetories of messages Be
warned: this will generate about a HUGE amount of output. To
obtain a higher level of output than the default, consider using
D_FULLDEBUG before using this option.

	D_ALL
	
This is equivalent to D_ANY D_PID D_FDS D_CAT Be
warned: this will generate about a HUGE amount of output. To
obtain a higher level of output than the default, consider using
D_FULLDEBUG before using this option.

	D_FAILURE
	This category is used for messages that indicate the daemon is unable
to continue running. These message are “always” printed unless
D_FAILURE:0 is added to the list

	D_STATUS
	This category is used for messages that indicate what task the
daemon is currently doing or progress. Messages of this category will
be always printed unless D_STATUS:0 is added to the list

	D_ALWAYS
	This category is used for messages that are “always” printed unless
D_ALWAYS:0 is configured. These can be progress or status
message, as well as failures that do not prevent the daemon from
continuing to operate such as a failure to start a job. At verbosity
2 this category is equivalent to D_FULLDEBUG below.

	D_FULLDEBUG
	This level provides verbose output of a general nature into the
log files. Frequent log messages for very specific debugging
purposes would be excluded. In those cases, the messages would
be viewed by having that other flag and D_FULLDEBUG both
listed in the configuration file. This is equivalent to D_ALWAYS:2

	D_DAEMONCORE
	Provides log file entries specific to DaemonCore, such as timers
the daemons have set and the commands that are registered. If
D_DAEMONCORE:2 is set, expect very verbose output.

	D_PRIV
	This flag provides log messages about the privilege state
switching that the daemons do. See
User Accounts in HTCondor on Unix Platforms
on UIDs in HTCondor for details.

	D_COMMAND
	With this flag set, any daemon that uses DaemonCore will print
out a log message whenever a command comes in. The name and
integer of the command, whether the command was sent via UDP or
TCP, and where the command was sent from are all logged. Because
the messages about the command used by condor_kbdd to
communicate with the condor_startd whenever there is activity
on the X server, and the command used for keep-alives are both
only printed with D_FULLDEBUG enabled, it is best if this
setting is used for all daemons.

	D_LOAD
	The condor_startd keeps track of the load average on the
machine where it is running. Both the general system load
average, and the load average being generated by HTCondor’s
activity there are determined. With this flag set, the
condor_startd will log a message with the current state of
both of these load averages whenever it computes them. This flag
only affects the condor_startd.

	D_KEYBOARD
	With this flag set, the condor_startd will print out a log
message with the current values for remote and local keyboard
idle time. This flag affects only the condor_startd.

	D_JOB
	When this flag is set, the condor_startd will send to its log
file the contents of any job ClassAd that the condor_schedd
sends to claim the condor_startd for its use. This flag
affects only the condor_startd.

	D_MACHINE
	When this flag is set, the condor_startd will send to its log
file the contents of its resource ClassAd when the
condor_schedd tries to claim the condor_startd for its
use. This flag affects only the condor_startd.

	D_SYSCALLS
	This flag is used to make the condor_shadow log remote
syscall requests and return values. This can help track down
problems a user is having with a particular job by providing the
system calls the job is performing. If any are failing, the
reason for the failure is given. The condor_schedd also uses
this flag for the server portion of the queue management code.
With D_SYSCALLS defined in SCHEDD_DEBUG there will be
verbose logging of all queue management operations the
condor_schedd performs.

	D_MATCH
	When this flag is set, the condor_negotiator logs a message
for every match.

	D_NETWORK
	When this flag is set, all HTCondor daemons will log a message
on every TCP accept, connect, and close, and on every UDP send
and receive. This flag is not yet fully supported in the
condor_shadow.

	D_HOSTNAME
	When this flag is set, the HTCondor daemons and/or tools will
print verbose messages explaining how they resolve host names,
domain names, and IP addresses. This is useful for sites that
are having trouble getting HTCondor to work because of problems
with DNS, NIS or other host name resolving systems in use.

	D_SECURITY
	This flag will enable debug messages pertaining to the setup of
secure network communication, including messages for the
negotiation of a socket authentication mechanism, the management
of a session key cache. and messages about the authentication
process itself. See
HTCondor’s Security Model
for more information about secure communication configuration.
D_SECURITY:2 logging is highly verbose and should be used only
when actively debugging security configuration problems.

	D_PROCFAMILY
	HTCondor often times needs to manage an entire family of
processes, (that is, a process and all descendants of that
process). This debug flag will turn on debugging output for the
management of families of processes.

	D_ACCOUNTANT
	When this flag is set, the condor_negotiator will output
debug messages relating to the computation of user priorities
(see User Priorities and Negotiation).

	D_PROTOCOL
	Enable debug messages relating to the protocol for HTCondor’s
matchmaking and resource claiming framework.

	D_STATS
	Enable debug messages relating to the TCP statistics for file
transfers. Note that the shadow and starter, by default, log
these statistics to special log files (see SHADOW_STATS_LOG
 and STARTER_STATS_LOG
 . Note that, as of version 8.5.6,
C_GAHP_DEBUG defaults to D_STATS.

	D_PID
	This flag is different from the other flags, because it is used
to change the formatting of all log messages that are printed,
as opposed to specifying what kinds of messages should be
printed. If D_PID is set, HTCondor will always print out the
process identifier (PID) of the process writing each line to the
log file. This is especially helpful for HTCondor daemons that
can fork multiple helper-processes (such as the condor_schedd
or condor_collector) so the log file will clearly show which
thread of execution is generating each log message.

	D_FDS
	This flag is different from the other flags, because it is used
to change the formatting of all log messages that are printed,
as opposed to specifying what kinds of messages should be
printed. If D_FDS is set, HTCondor will always print out the
file descriptor that the open of the log file was allocated by
the operating system. This can be helpful in debugging
HTCondor’s use of system file descriptors as it will generally
track the number of file descriptors that HTCondor has open.

	D_CAT or D_CATEGORY
	This flag is different from the other flags, because it is used
to change the formatting of all log messages that are printed,
as opposed to specifying what kinds of messages should be
printed. If D_CAT or D_CATEGORY is set, Condor will include the
debugging level flags that were in effect for each line of
output. This may be used to filter log output by the level or
tag it, for example, identifying all logging output at level
D_SECURITY, or D_ACCOUNTANT.

	D_TIMESTAMP
	This flag is different from the other flags, because it is used
to change the formatting of all log messages that are printed,
as opposed to specifying what kinds of messages should be
printed. If D_TIMESTAMP is set, the time at the beginning of
each line in the log file with be a number of seconds since the
start of the Unix era. This form of timestamp can be more
convenient for tools to process.

	D_SUB_SECOND
	This flag is different from the other flags, because it is used
to change the formatting of all log messages that are printed,
as opposed to specifying what kinds of messages should be
printed. If D_SUB_SECOND is set, the time at the beginning
of each line in the log file will contain a fractional part to
the seconds field that is accurate to the millisecond.

List of possible subsystems to set <SUBSYS> can be found at SUBSYSTEM.

	ALL_DEBUG
	Used to make all subsystems share a debug flag. Set the parameter
ALL_DEBUG instead of changing all of the individual parameters.
For example, to turn on all debugging in all subsystems, set
ALL_DEBUG = D_ALL.

	TOOL_DEBUG
	Uses the same values (debugging levels) as <SUBSYS>_DEBUG to
describe the amount of debugging information sent to stderr for
HTCondor tools.

Log files may optionally be specified per debug level as follows:

	<SUBSYS>_<LEVEL>_LOG
	The name of a log file for
messages at a specific debug level for a specific subsystem. <LEVEL>
is defined by any debug level, but without the D_ prefix. See

 User Priorities and Negotiation

User Priorities and Negotiation

HTCondor uses priorities to determine machine allocation for jobs. This
section details the priorities and the allocation of machines
(negotiation).

For accounting purposes, each user is identified by
username@uid_domain. Each user is assigned a priority value even if
submitting jobs from different machines in the same domain, or even if
submitting from multiple machines in the different domains.

The numerical priority value assigned to a user is inversely related to
the goodness of the priority. A user with a numerical priority of 5 gets
more resources than a user with a numerical priority of 50. There are
two priority values assigned to HTCondor users:

	Real User Priority (RUP), which measures resource usage of the user.

	Effective User Priority (EUP), which determines the number of
resources the user can get.

This section describes these two priorities and how they affect resource
allocations in HTCondor. Documentation on configuring and controlling
priorities may be found in the
condor_negotiator Configuration File Entries section.

Real User Priority (RUP)

A user’s RUP reports a smoothed average of the number of cores a user
has used over some recent period of time. Every user begins with a RUP of
one half (0.5), which is the lowest possible value. At steady state, the RUP
of a user equilibrates to the number of cores currently used.
So, if a specific user continuously uses exactly ten cores
for a long period of time, the RUP of that user asymptotically
approaches ten.

However, if the user decreases the number of cores used, the RUP asymptotically
lowers to the new value. The rate at which the priority value decays can be set
by the macro PRIORITY_HALFLIFE, a time period defined in seconds.
Intuitively, if the PRIORITY_HALFLIFE in a pool is set to the default
of 86400 seconds (one day), and a user with a RUP of 10 has no running jobs,
that user’s RUP would be 5 one day later, 2.5 two days later, and so on.

For example, if a new user has no historical usage, their RUP will start
at 0.5 If that user then has 100 cores running, their RUP will grow
as the graph below show:

[image: User Priority]

Or, if a new user with no historical usage has 100 cores running
for 24 hours, then removes all the jobs, so has no cores running,
their RUP will grow and shrink as shown below:

[image: User Priority]

Effective User Priority (EUP)

The effective user priority (EUP) of a user is used to determine how many cores
a user should receive. The EUP is simply the RUP multiplied by a priority
factor the administrator can set per-user. The default initial priority factor
for all new users as they first submit jobs is set by the configuration
variable DEFAULT_PRIO_FACTOR, and defaults to 1000.0. An administrator
can change this priority factor using the condor_userprio command. For
example, setting the priority factor of some user to 2,000 will grant that user
twice as many cores as a user with the default priority factor of 1,000,
assuming they both have the same historical usage.

The number of resources that a user may receive is inversely related to
the ratio between the EUPs of submitting users. User A with
EUP=5 will receive twice as many resources as user B with EUP=10 and
four times as many resources as user C with EUP=20. However, if A does
not use the full number of resources that A may be given, the available
resources are repartitioned and distributed among remaining users
according to the inverse ratio rule.

Assume two users with no history, named A and B, using a pool with 100 cores. To
simplify the math, also assume both users have an equal priority factor of 1.0.
User A submits a very large number of short-running jobs at time t = 0 zero. User
B waits until 48 hours later, and also submits an infinite number of short jobs.
At the beginning, the EUP doesn’t matter, as there is only one user with jobs,
and so user A gets the whole pool. At the 48 hour mark, both users compete for
the pool. Assuming the default PRIORITY_HALFLIFE of 24 hours, user A’s RUP
should be about 75.0 at the 48 hour mark, and User B will still be the minimum of
.5. At that instance, User B deserves 150 times User A. However, this ratio will
decay quickly. User A’s share of the pool will drop from all 100 cores to less than
one core immediately, but will quickly rebound to a handful of cores, and will
asymptotically approach half of the pool as User B gets the inverse. A graph
of these two users might look like this:

[image: Fair Share]

HTCondor supplies mechanisms to directly support two policies in which
EUP may be useful:

	Nice users
	A job may be submitted with the submit command
nice_user set to
True. This nice user job will have its RUP boosted by the
NICE_USER_PRIO_FACTOR
priority factor specified in the configuration, leading to a very
large EUP. This corresponds to a low priority for resources,
therefore using resources not used by other HTCondor users.

	Remote Users
	HTCondor’s flocking feature (see the Connecting HTCondor Pools with Flocking section)
allows jobs to run in a pool other than the local one. In addition,
the submit-only feature allows a user to submit jobs to another
pool. In such situations, submitters from other domains can submit
to the local pool. It may be desirable to have HTCondor treat local
users preferentially over these remote users. If configured,
HTCondor will boost the RUPs of remote users by
REMOTE_PRIO_FACTOR specified
in the configuration, thereby lowering their priority for resources.

The priority boost factors for individual users can be set with the
setfactor option of condor_userprio. Details may be found in the
condor_userprio manual page.

Priorities in Negotiation and Preemption

Priorities are used to ensure that users get their fair share of
resources. The priority values are used at allocation time, meaning
during negotiation and matchmaking. Therefore, there are ClassAd
attributes that take on defined values only during negotiation, making
them ephemeral. In addition to allocation, HTCondor may preempt a
machine claim and reallocate it when conditions change.

Too many preemptions lead to thrashing, a condition in which negotiation
for a machine identifies a new job with a better priority most every
cycle. Each job is, in turn, preempted, and no job finishes. To avoid
this situation, the PREEMPTION_REQUIREMENTS configuration variable is defined
for and used only by the condor_negotiator daemon to specify the
conditions that must be met for a preemption to occur. When preemption
is enabled, it is usually defined to deny preemption if a current
running job has been running for a relatively short period of time. This
effectively limits the number of preemptions per resource per time
interval. Note that PREEMPTION_REQUIREMENTS only applies to
preemptions due to user priority. It does not have any effect if the
machine’s RANK expression prefers a different job, or if the
machine’s policy causes the job to vacate due to other activity on the
machine. See the condor_startd Policy Configuration section for the current default policy on preemption.

The following ephemeral attributes may be used within policy
definitions. Care should be taken when using these attributes, due to
their ephemeral nature; they are not always defined, so the usage of an
expression to check if defined such as

(RemoteUserPrio =?= UNDEFINED)

is likely necessary.

Within these attributes, those with names that contain the string Submitter
refer to characteristics about the candidate job’s user; those with names that
contain the string Remote refer to characteristics about the user currently
using the resource. Further, those with names that end with the string
ResourcesInUse have values that may change within the time period
associated with a single negotiation cycle. Therefore, the configuration
variables PREEMPTION_REQUIREMENTS_STABLE and
PREEMPTION_RANK_STABLE exist to inform the condor_negotiator daemon
that values may change. See the
condor_negotiator Configuration File Entries section for definitions of these configuration variables.

	 SubmitterUserPrio
	A floating point value representing the user priority of the
candidate job.

	 SubmitterUserResourcesInUse
	The integer number of slots currently utilized by the user
submitting the candidate job.

	 RemoteUserPrio
	A floating point value representing the user priority of the job
currently running on the machine. This version of the attribute,
with no slot represented in the attribute name, refers to the
current slot being evaluated.

	 Slot<N>_RemoteUserPrio
	A floating point value representing the user priority of the job
currently running on the particular slot represented by <N> on the
machine.

	 RemoteUserResourcesInUse
	The integer number of slots currently utilized by the user of the
job currently running on the machine.

	 SubmitterGroupResourcesInUse
	If the owner of the candidate job is a member of a valid accounting
group, with a defined group quota, then this attribute is the
integer number of slots currently utilized by the group.

	 SubmitterGroup
	The accounting group name of the requesting submitter.

	 SubmitterGroupQuota
	If the owner of the candidate job is a member of a valid accounting
group, with a defined group quota, then this attribute is the
integer number of slots defined as the group’s quota.

	 RemoteGroupResourcesInUse
	If the owner of the currently running job is a member of a valid
accounting group, with a defined group quota, then this attribute is
the integer number of slots currently utilized by the group.

	 RemoteGroup
	The accounting group name of the owner of the currently running job.

	 RemoteGroupQuota
	If the owner of the currently running job is a member of a valid
accounting group, with a defined group quota, then this attribute is
the integer number of slots defined as the group’s quota.

	 SubmitterNegotiatingGroup
	The accounting group name that the candidate job is negotiating
under.

	 RemoteNegotiatingGroup
	The accounting group name that the currently running job negotiated
under.

	 SubmitterAutoregroup
	Boolean attribute is True if candidate job is negotiated via
autoregroup.

	 RemoteAutoregroup
	Boolean attribute is True if currently running job negotiated
via autoregroup.

Priority Calculation

This section may be skipped if the reader so feels, but for the curious,
here is HTCondor’s priority calculation algorithm.

The RUP of a user \(u\) at time \(t\), \(\pi_{r}(u,t)\), is calculated every
time interval \(\delta t\) using the formula

\[\pi_r(u,t) = \beta × \pi_r(u, t - \delta t) + (1 - \beta) × \rho(u, t)\]

where \(\rho (u,t)\) is the number of resources used by user \(u\) at time \(t\),
and \(\beta = 0.5^{\delta t / h}\).
\(h\) is the half life period set by PRIORITY_HALFLIFE.

The EUP of user \(u\) at time \(t\), \(\pi_{e}(u,t)\) is calculated by

\[\pi_e(u,t) = \pi_r(u,t) \times f(u,t)\]

where \(f(u,t)\) is the priority boost factor for user \(u\) at time \(t\).

As mentioned previously, the RUP calculation is designed so that at
steady state, each user’s RUP stabilizes at the number of resources used
by that user. The definition of \(\beta\) ensures that the calculation of
\(\pi_{r}(u,t)\) can be calculated over non-uniform time intervals \(\delta t\)
without affecting the calculation. The time interval \(\delta t\) varies due to
events internal to the system, but HTCondor guarantees that unless the
central manager machine is down, no matches will be unaccounted for due
to this variance.

Negotiation

Negotiation is the method HTCondor undergoes periodically to match
queued jobs with resources capable of running jobs. The
condor_negotiator daemon is responsible for negotiation.

During a negotiation cycle, the condor_negotiator daemon accomplishes
the following ordered list of items.

	Build a list of all possible resources, regardless of the state of
those resources.

	Obtain a list of all job submitters (for the entire pool).

	Sort the list of all job submitters based on EUP (see
The Layperson’s Description of the Pie Spin and Pie Slice for an explanation of EUP). The
submitter with the best priority is first within the sorted list.

	Iterate until there are either no more resources to match, or no more
jobs to match.

For each submitter (in EUP order):

For each submitter, get each job. Since jobs may be submitted
from more than one machine (hence to more than one
condor_schedd daemon), here is a further definition of the
ordering of these jobs. With jobs from a single
condor_schedd daemon, jobs are typically returned in job
priority order. When more than one condor_schedd daemon is
involved, they are contacted in an undefined order. All jobs
from a single condor_schedd daemon are considered before
moving on to the next. For each job:

	For each machine in the pool that can execute jobs:

	If machine.requirements evaluates to False or
job.requirements evaluates to False, skip this
machine

	If the machine is in the Claimed state, but not running
a job, skip this machine.

	If this machine is not running a job, add it to the
potential match list by reason of No Preemption.

	If the machine is running a job

	If the machine.RANK on this job is better than
the running job, add this machine to the potential
match list by reason of Rank.

	If the EUP of this job is better than the EUP of the
currently running job, and
PREEMPTION_REQUIREMENTS is True, and the
machine.RANK on this job is not worse than the
currently running job, add this machine to the
potential match list by reason of Priority.
See example below.

	Of machines in the potential match list, sort by
NEGOTIATOR_PRE_JOB_RANK, job.RANK,
NEGOTIATOR_POST_JOB_RANK, Reason for claim (No
Preemption, then Rank, then Priority), PREEMPTION_RANK

	The job is assigned to the top machine on the potential
match list. The machine is removed from the list of
resources to match (on this negotiation cycle).

As described above, the condor_negotiator tries to match each job
to all slots in the pool. Assume that five slots match one request for
three jobs, and that their NEGOTIATOR_PRE_JOB_RANK, Job.Rank,
and NEGOTIATOR_POST_JOB_RANK expressions evaluate (in the context
of both the slot ad and the job ad) to the following values.

	Slot Name

	NEGOTIATOR_PRE_JOB_RANK

	Job.Rank

	NEGOTIATOR_POST_JOB_RANK

	slot1

	100

	1

	10

	slot2

	100

	2

	20

	slot3

	100

	2

	30

	slot4

	0

	1

	40

	slot5

	200

	1

	50

Table 3.1: Example of slots before sorting

These slots would be sorted first on NEGOTIATOR_PRE_JOB_RANK, then
sorting all ties based on Job.Rank and any remaining ties sorted by
NEGOTIATOR_POST_JOB_RANK. After that, the first three slots would be
handed to the condor_schedd. This means that
NEGOTIATOR_PRE_JOB_RANK is very strong, and overrides any ranking
expression by the submitter of the job. After sorting, the slots would look
like this, and the schedd would be given slot5, slot3 and slot2:

	Slot Name

	NEGOTIATOR_PRE_JOB_RANK

	Job.Rank

	NEGOTIATOR_POST_JOB_RANK

	slot5

	200

	1

	50

	slot3

	100

	2

	30

	slot2

	100

	2

	20

	slot1

	100

	1

	10

	slot4

	0

	1

	40

Table 3.2: Example of slots after sorting

The condor_negotiator asks the condor_schedd for the “next job” from a
given submitter/user. Typically, the condor_schedd returns jobs in the order
of job priority. If priorities are the same, job submission time is used; older
jobs go first. If a cluster has multiple procs in it and one of the jobs cannot
be matched, the condor_schedd will not return any more jobs in that cluster
on that negotiation pass. This is an optimization based on the theory that the
cluster jobs are similar. The configuration variable
NEGOTIATE_ALL_JOBS_IN_CLUSTER disables the cluster-skipping
optimization. Use of the configuration variable SIGNIFICANT_ATTRIBUTES
will change the definition of what the condor_schedd considers a cluster from
the default definition of all jobs that share the same ClusterId.

The Layperson’s Description of the Pie Spin and Pie Slice

The negotiator first finds all users who
have submitted jobs and calculates their priority. Then, it totals the
SlotWeight (by default, cores) of all currently available slots, and
using the ratios of the user priorities, it calculates the number of
cores each user could get. This is their pie slice.
(See: SLOT_WEIGHT in condor_startd Configuration File Macros)

If any users have a floor defined via condor_userprio -set-floor
, and their current allocation of cores is below the floor, a
special round of the below-floor users goes first, attempting to
allocate up to the defined number of cores for their floor level.
These users are negotiated for in user priority order. This allows
an admin to give users some “guaranteed” minimum number of cores, no
matter what their previous usage or priority is.

After the below-floor users are negotiated for, all users
are negotiated for, in user priority order.
The condor_negotiator contacts each schedd where the user’s job lives, and asks for job
information. The condor_schedd daemon (on behalf of
a user) tells the matchmaker about a job, and the matchmaker looks at
available slots to create a list that match the requirements expression.
It then sorts the matching slots by the rank expressions within ClassAds.
If a slot prefers a job via the slot RANK expression, the job
is assigned to that slot, potentially preempting an already running job.
Otherwise, give the slot to the job that the job ranks highest. If
the highest ranked slot is already running a job, the negotiator may preempt
the running job for the new job.

This matchmaking cycle continues until the user has received all of the
machines in their pie slice. If there is a per-user ceiling defined
with the condor_userprio -setceil command, and this ceiling is smaller
than the pie slice, the user gets only up to their ceiling number of
cores. The matchmaker then contacts the next
highest priority user and offers that user their pie slice worth of
machines. After contacting all users, the cycle is repeated with any
still available resources and recomputed pie slices. The matchmaker
continues spinning the pie until it runs out of machines or all the
condor_schedd daemons say they have no more jobs.

Group Accounting

By default, HTCondor does all accounting on a per-user basis.
This means that HTCondor keeps track of the historical usage per-user,
calculates a priority and fair-share per user, and allows the
administrator to change this fair-share per user. In HTCondor
terminology, the accounting principal is called the submitter.

The name of this submitter is, by default, the name the schedd authenticated
when the job was first submitted to the schedd. Usually, this is
the operating system username. However, the submitter can override
the username selected by setting the submit file option

accounting_group_user = ishmael

This means this job should be treated, for accounting purposes only, as
“ishamel”, but “ishmael” will not be the operating system id the shadow
or job uses. Note that HTCondor trusts the user to set this
to a valid value. The administrator can use schedd requirements or transforms
to validate such settings, if desired. accounting_group_user is frequently used
in web portals, where one trusted operating system process submits jobs on
behalf of different users.

Note that if many people submit jobs with identical accounting_group_user values,
HTCondor treats them as one set of jobs for accounting purposes. So, if
Alice submits 100 jobs as accounting_group_user ishmael, and so does Bob
a moment later, HTCondor will not try to fair-share between them,
as it would do if they had not set accounting_group_user. If all these
jobs have identical requirements, they will be run First-In, First-Out,
so whoever submitted first makes the subsequent jobs wait until the
last one of the first submit is finished.

Accounting Groups with Hierarchical Group Quotas

With additional configuration, it is possible to create accounting
groups, where the submitters within the group maintain their distinct
identity, and fair-share still happens within members of that group.

An upper limit on the number of slots allocated to a group of users can
be specified with group quotas.

Consider an example pool with thirty slots: twenty slots are owned by
the physics group and ten are owned by the chemistry group. The desired
policy is that no more than twenty concurrent jobs are ever running from
the physicists, and only ten from the chemists. These machines are
otherwise identical, so it does not matter which machines run which
group’s jobs. It only matters that the proportions of allocated slots
are correct.

Group quotas may implement this policy. Define the groups and set their
quotas in the configuration of the central manager:

GROUP_NAMES = group_physics, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_chemistry = 10

The implementation of quotas is hierarchical, such that quotas may be
described for the tree of groups, subgroups, sub subgroups, etc. Group
names identify the groups, such that the configuration can define the
quotas in terms of limiting the number of cores allocated for a group or
subgroup. Group names do not need to begin with "group_", but that
is the convention, which helps to avoid naming conflicts between groups
and subgroups. The hierarchy is identified by using the period (‘.’)
character to separate a group name from a subgroup name from a sub
subgroup name, etc. Group names are case-insensitive for negotiation.

At the root of the tree that defines the hierarchical groups is the
“<none>” group. The implied quota of the “<none>” group will be
all available slots. This string will appear in the output of
condor_status.

If the sum of the child quotas exceeds the parent, then the child quotas
are scaled down in proportion to their relative sizes. For the given
example, there were 30 original slots at the root of the tree. If a
power failure removed half of the original 30, leaving fifteen slots,
physics would be scaled back to a quota of ten, and chemistry to five.
This scaling can be disabled by setting the condor_negotiator
configuration variable
NEGOTIATOR_ALLOW_QUOTA_OVERSUBSCRIPTION to True. If
the sum of the child quotas is less than that of the parent, the child
quotas remain intact; they are not scaled up. That is, if somehow the
number of slots doubled from thirty to sixty, physics would still be
limited to 20 slots, and chemistry would be limited to 10. This example
in which the quota is defined by absolute values is called a static
quota.

Each job must state which group it belongs to. By default, this is opt-in,
and the system trusts each user to put the correct group in the submit
description file. See “Setting Accounting Groups Automatically below”
to configure the system to set them without user input and to prevent
users from opting into the wrong groups. Jobs that do not identify
themselves as a group member are negotiated for as part of the “<none>”
group. Note that this requirement is per job, not per user. A given user
may be a member of many groups. Jobs identify which group they are in by setting the
accounting_group
and
accounting_group_user
commands within the submit description file, as specified in the
Group Accounting section.
For example:

accounting_group = group_physics
accounting_group_user = einstein

The size of the quotas may instead be expressed as a proportion. This is
then referred to as a dynamic group quota, because the size of the quota
is dynamically recalculated every negotiation cycle, based on the total
available size of the pool. Instead of using static quotas, this example
can be recast using dynamic quotas, with one-third of the pool allocated
to chemistry and two-thirds to physics. The quotas maintain this ratio
even as the size of the pool changes, perhaps because of machine
failures, because of the arrival of new machines within the pool, or
because of other reasons. The job submit description files remain the
same. Configuration on the central manager becomes:

GROUP_NAMES = group_physics, group_chemistry
GROUP_QUOTA_DYNAMIC_group_chemistry = 0.33
GROUP_QUOTA_DYNAMIC_group_physics = 0.66

The values of the quotas must be less than 1.0, indicating fractions of
the pool’s machines. As with static quota specification, if the sum of
the children exceeds one, they are scaled down proportionally so that
their sum does equal 1.0. If their sum is less than one, they are not
changed.

Extending this example to incorporate subgroups, assume that the physics
group consists of high-energy (hep) and low-energy (lep) subgroups. The
high-energy sub-group owns fifteen of the twenty physics slots, and the
low-energy group owns the remainder. Groups are distinguished from
subgroups by an intervening period character (.) in the group’s name.
Static quotas for these subgroups extend the example configuration:

GROUP_NAMES = group_physics, group_physics.hep, group_physics.lep, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_physics.hep = 15
GROUP_QUOTA_group_physics.lep = 5
GROUP_QUOTA_group_chemistry = 10

This hierarchy may be more useful when dynamic quotas are used. Here is
the example, using dynamic quotas:

GROUP_NAMES = group_physics, group_physics.hep, group_physics.lep, group_chemistry
GROUP_QUOTA_DYNAMIC_group_chemistry = 0.33334
GROUP_QUOTA_DYNAMIC_group_physics = 0.66667
GROUP_QUOTA_DYNAMIC_group_physics.hep = 0.75
GROUP_QUOTA_DYNAMIC_group_physics.lep = 0.25

The fraction of a subgroup’s quota is expressed with respect to its
parent group’s quota. That is, the high-energy physics subgroup is
allocated 75% of the 66% that physics gets of the entire pool, however
many that might be. If there are 30 machines in the pool, that would be
the same 15 machines as specified in the static quota example.

High-energy physics users indicate which group their jobs should go in
with the submit description file identification:

accounting_group = group_physics.hep
accounting_group_user = higgs

In all these examples so far, the hierarchy is merely a notational
convenience. Each of the examples could be implemented with a flat
structure, although it might be more confusing for the administrator.
Surplus is the concept that creates a true hierarchy.

If a given group or sub-group accepts surplus, then that given group is
allowed to exceed its configured quota, by using the leftover, unused
quota of other groups. Surplus is disabled for all groups by default.
Accepting surplus may be enabled for all groups by setting
GROUP_ACCEPT_SURPLUS to
True. Surplus may be enabled for individual groups by setting

 Policy Configuration for Execution Points and for Access Points

Policy Configuration for Execution Points and for Access Points

Note

Configuration templates make it easier to implement certain
policies; see information on policy templates here:
Available Configuration Templates.

condor_startd Policy Configuration

This section describes the configuration of machines, such that they,
through the condor_startd daemon, implement a desired policy for when
remote jobs should start, be suspended, (possibly) resumed, vacate
or be killed. This policy is the heart of HTCondor’s
balancing act between the needs and wishes of resource owners (machine
owners) and resource users (people submitting their jobs to HTCondor).
Please read this section carefully before changing any of the settings
described here, as a wrong setting can have a severe impact on either
the owners of machines in the pool or the users of the pool.

condor_startd Terminology

Understanding the configuration requires an understanding of ClassAd
expressions, which are detailed in the HTCondor’s ClassAd Mechanism
section.

Each machine runs one condor_startd daemon. Each machine may contain
one or more cores (or CPUs). The HTCondor construct of a slot describes
the unit which is matched to a job. Each slot may contain one or more
integer number of cores. Each slot is represented by its own machine
ClassAd, distinguished by the machine ClassAd attribute Name, which
is of the form slot<N>@hostname. The value for <N> will also be
defined with machine ClassAd attribute SlotID.

Each slot has its own machine ClassAd, and within that ClassAd, its own
state and activity. Other policy expressions are propagated or inherited
from the machine configuration by the condor_startd daemon, such that
all slots have the same policy from the machine configuration. This
requires configuration expressions to incorporate the SlotID
attribute when policy is intended to be individualized based on a slot.
So, in this discussion of policy expressions, where a machine is
referenced, the policy can equally be applied to a slot.

The condor_startd daemon represents the machine on which it is
running to the HTCondor pool. The daemon publishes characteristics about
the machine in the machine’s ClassAd to aid matchmaking with resource
requests. The values of these attributes may be listed by using the
command:

$ condor_status -l hostname

The START Expression

The most important expression to the condor_startd is the
START expression. This expression describes the
conditions that must be met for a machine or slot to run a job. This
expression can reference attributes in the machine’s ClassAd (such as
KeyboardIdle and LoadAvg) and attributes in a job ClassAd (such
as Owner, Imagesize, and Cmd, the name of the executable the
job will run). The value of the START expression plays a crucial
role in determining the state and activity of a machine.

The Requirements expression is used for matching machines with jobs.

In situations where a machine wants to make itself unavailable for
further matches, the Requirements expression is set to False.
When the START expression locally evaluates to True, the machine
advertises the Requirements expression as True and does not
publish the START expression.

Normally, the expressions in the machine ClassAd are evaluated against
certain request ClassAds in the condor_negotiator to see if there is
a match, or against whatever request ClassAd currently has claimed the
machine. However, by locally evaluating an expression, the machine only
evaluates the expression against its own ClassAd. If an expression
cannot be locally evaluated (because it references other expressions
that are only found in a request ClassAd, such as Owner or
Imagesize), the expression is (usually) undefined. See
theh HTCondor’s ClassAd Mechanism section for specifics on
how undefined terms are handled in ClassAd expression evaluation.

A note of caution is in order when modifying the START expression to
reference job ClassAd attributes. When using the POLICY : Desktop
configuration template, the IS_OWNER expression is a function of the
START expression:

START =?= FALSE

See a detailed discussion of the IS_OWNER expression in
condor_startd Policy Configuration.
However, the machine locally evaluates the IS_OWNER expression to determine
if it is capable of running jobs for HTCondor. Any job ClassAd attributes
appearing in the START expression, and hence in the IS_OWNER expression,
are undefined in this context, and may lead to unexpected behavior. Whenever
the START expression is modified to reference job ClassAd
attributes, the IS_OWNER expression should also be modified to
reference only machine ClassAd attributes.

Note

If you have machines with lots of real memory and swap space such
that the only scarce resource is CPU time, consider defining
JOB_RENICE_INCREMENT so that
HTCondor starts jobs on the machine with low priority. Then, further
configure to set up the machines with:

START = True
SUSPEND = False
PREEMPT = False
KILL = False

In this way, HTCondor jobs always run and can never be kicked off from
activity on the machine. However, because they would run with the low
priority, interactive response on the machines will not suffer. A
machine user probably would not notice that HTCondor was running the
jobs, assuming you had enough free memory for the HTCondor jobs such
that there was little swapping.

The RANK Expression

A machine may be configured to prefer certain jobs over others using the
RANK expression. It is an expression, like any other in a machine
ClassAd. It can reference any attribute found in either the machine
ClassAd or a job ClassAd. The most common use of this expression is
likely to configure a machine to prefer to run jobs from the owner of
that machine, or by extension, a group of machines to prefer jobs from
the owners of those machines.

For example, imagine there is a small research group with 4 machines
called tenorsax, piano, bass, and drums. These machines are owned by the
4 users coltrane, tyner, garrison, and jones, respectively.

Assume that there is a large HTCondor pool in the department, and this
small research group has spent a lot of money on really fast machines
for the group. As part of the larger pool, but to implement a policy
that gives priority on the fast machines to anyone in the small research
group, set the RANK expression on the machines to reference the
Owner attribute and prefer requests where that attribute matches one
of the people in the group as in

RANK = Owner == "coltrane" || Owner == "tyner" \
 || Owner == "garrison" || Owner == "jones"

The RANK expression is evaluated as a floating point number.
However, like in C, boolean expressions evaluate to either 1 or 0
depending on if they are True or False. So, if this expression
evaluated to 1, because the remote job was owned by one of the preferred
users, it would be a larger value than any other user for whom the
expression would evaluate to 0.

A more complex RANK expression has the same basic set up, where
anyone from the group has priority on their fast machines. Its
difference is that the machine owner has better priority on their own
machine. To set this up for Garrison’s machine (bass), place the
following entry in the local configuration file of machine bass:

RANK = (Owner == "coltrane") + (Owner == "tyner") \
 + ((Owner == "garrison") * 10) + (Owner == "jones")

Note that the parentheses in this expression are important, because the
+ operator has higher default precedence than ==.

The use of + instead of || allows us to distinguish which terms
matched and which ones did not. If anyone not in the research group
quartet was running a job on the machine called bass, the RANK
would evaluate numerically to 0, since none of the boolean terms
evaluates to 1, and 0+0+0+0 still equals 0.

Suppose Elvin Jones submits a job. His job would match the bass
machine, assuming START evaluated to True for him at that time.
The RANK would numerically evaluate to 1. Therefore, the Elvin Jones
job could preempt the HTCondor job currently running. Further assume
that later Jimmy Garrison submits a job. The RANK evaluates to 10 on
machine bass, since the boolean that matches gets multiplied by 10.
Due to this, Jimmy Garrison’s job could preempt Elvin Jones’ job on the
bass machine where Jimmy Garrison’s jobs are preferred.

The RANK expression is not required to reference the Owner of
the jobs. Perhaps there is one machine with an enormous amount of
memory, and others with not much at all. Perhaps configure this
large-memory machine to prefer to run jobs with larger memory
requirements:

RANK = ImageSize

That’s all there is to it. The bigger the job, the more this machine
wants to run it. It is an altruistic preference, always servicing the
largest of jobs, no matter who submitted them. A little less altruistic
is the RANK on Coltrane’s machine that prefers John Coltrane’s jobs
over those with the largest Imagesize:

RANK = (Owner == "coltrane" * 1000000000000) + Imagesize

This RANK does not work if a job is submitted with an image size of
more 1012 Kbytes. However, with that size, this RANK
expression preferring that job would not be HTCondor’s only problem!

Machine States

A machine is assigned a state by HTCondor. The state depends on whether
or not the machine is available to run HTCondor jobs, and if so, what
point in the negotiations has been reached. The possible states are

	Owner
	The machine is being used by the machine owner, and/or is not
available to run HTCondor jobs. When the machine first starts up, it
begins in this state.

	Unclaimed
	The machine is available to run HTCondor jobs, but it is not
currently doing so.

	Matched
	The machine is available to run jobs, and it has been matched by the
negotiator with a specific schedd. That schedd just has not yet
claimed this machine. In this state, the machine is unavailable for
further matches.

	Claimed
	The machine has been claimed by a schedd.

	Preempting
	The machine was claimed by a schedd, but is now preempting that
claim for one of the following reasons.

	the owner of the machine came back

	another user with higher priority has jobs waiting to run

	another request that this resource would rather serve was found

	Backfill
	The machine is running a backfill computation while waiting for
either the machine owner to come back or to be matched with an
HTCondor job. This state is only entered if the machine is
specifically configured to enable backfill jobs.

	Drained
	The machine is not running jobs, because it is being drained. One
reason a machine may be drained is to consolidate resources that
have been divided in a partitionable slot. Consolidating the
resources gives large jobs a chance to run.

 stateDiagram-v2
 direction LR
 [*]--> Owner
 Owner --> Unclaimed: A
 Unclaimed --> Matched: C
 Unclaimed --> Owner: B
 Unclaimed --> Drained: P
 Unclaimed --> Backfill: E
 Unclaimed --> Claimed: D
 Backfill --> Owner: K
 Backfill --> Matched: L
 Backfill --> Claimed: M
 Matched --> Claimed: G
 Matched --> Owner: F
 Claimed --> Preempting: H
 Preempting --> Owner: J
 Preempting --> Claimed: I
 Owner --> Drained: N
 Drained --> Owner: O

Machine states and the possible transitions between the states

Each transition is labeled with a letter. The cause of each transition
is described below.

	Transitions out of the Owner state

	A
	The machine switches from Owner to Unclaimed whenever the
START expression no longer locally evaluates to FALSE. This
indicates that the machine is potentially available to run an
HTCondor job.

	N
	The machine switches from the Owner to the Drained state whenever
draining of the machine is initiated, for example by
condor_drain or by the condor_defrag daemon.

	Transitions out of the Unclaimed state

	B
	The machine switches from Unclaimed back to Owner whenever the
START expression locally evaluates to FALSE. This indicates
that the machine is unavailable to run an HTCondor job and is in
use by the resource owner.

	C
	The transition from Unclaimed to Matched happens whenever the
condor_negotiator matches this resource with an HTCondor job.

	D
	The transition from Unclaimed directly to Claimed also happens if
the condor_negotiator matches this resource with an HTCondor
job. In this case the condor_schedd receives the match and
initiates the claiming protocol with the machine before the
condor_startd receives the match notification from the
condor_negotiator.

	E
	The transition from Unclaimed to Backfill happens if the machine
is configured to run backfill computations (see
the Setting Up for Special Environments section)
and the START_BACKFILL expression evaluates to TRUE.

	P
	The transition from Unclaimed to Drained happens if draining of
the machine is initiated, for example by condor_drain or by
the condor_defrag daemon.

	Transitions out of the Matched state

	F
	The machine moves from Matched to Owner if either the START
expression locally evaluates to FALSE, or if the
MATCH_TIMEOUT timer expires.
This timeout is used to ensure that if a machine is matched with
a given condor_schedd, but that condor_schedd does not
contact the condor_startd to claim it, that the machine will
give up on the match and become available to be matched again. In
this case, since the START expression does not locally
evaluate to FALSE, as soon as transition F is complete, the
machine will immediately enter the Unclaimed state again (via
transition A). The machine might also go from Matched to
Owner if the condor_schedd attempts to perform the claiming
protocol but encounters some sort of error. Finally, the machine
will move into the Owner state if the condor_startd receives a
condor_vacate command while it is in the Matched state.

	G
	The transition from Matched to Claimed occurs when the
condor_schedd successfully completes the claiming protocol
with the condor_startd.

	Transitions out of the Claimed state

	H
	From the Claimed state, the only possible destination is the
Preempting state. This transition can be caused by many reasons:

	The condor_schedd that has claimed the machine has no more
work to perform and releases the claim

	The PREEMPT expression evaluates to True (which
usually means the resource owner has started using the machine
again and is now using the keyboard, mouse, CPU, etc.)

	The condor_startd receives a condor_vacate command

	The condor_startd is told to shutdown (either via a signal
or a condor_off command)

	The resource is matched to a job with a better priority
(either a better user priority, or one where the machine rank
is higher)

	Transitions out of the Preempting state

	I
	The resource will move from Preempting back to Claimed if the
resource was matched to a job with a better priority.

	J
	The resource will move from Preempting to Owner if the
PREEMPT expression had evaluated to TRUE, if condor_vacate
was used, or if the START expression locally evaluates to
FALSE when the condor_startd has finished evicting whatever
job it was running when it entered the Preempting state.

	Transitions out of the Backfill state

	K
	The resource will move from Backfill to Owner for the following
reasons:

	The EVICT_BACKFILL expression evaluates to TRUE

	The condor_startd receives a condor_vacate command

	The condor_startd is being shutdown

	L
	The transition from Backfill to Matched occurs whenever a
resource running a backfill computation is matched with a
condor_schedd that wants to run an HTCondor job.

	M
	The transition from Backfill directly to Claimed is similar to
the transition from Unclaimed directly to Claimed. It only occurs
if the condor_schedd completes the claiming protocol before
the condor_startd receives the match notification from the
condor_negotiator.

	Transitions out of the Drained state

	O
	The transition from Drained to Owner state happens when draining
is finalized or is canceled. When a draining request is made, the
request either asks for the machine to stay in a Drained state
until canceled, or it asks for draining to be automatically
finalized once all slots have finished draining.

The Claimed State and Leases

When a condor_schedd claims a condor_startd, there is a claim
lease. So long as the keep alive updates from the condor_schedd to
the condor_startd continue to arrive, the lease is reset. If the
lease duration passes with no updates, the condor_startd drops the
claim and evicts any jobs the condor_schedd sent over.

The alive interval is the amount of time between, or the frequency at
which the condor_schedd sends keep alive updates to all
condor_schedd daemons. An alive update resets the claim lease at the
condor_startd. Updates are UDP packets.

Initially, as when the condor_schedd starts up, the alive interval
starts at the value set by the configuration variable
ALIVE_INTERVAL. It may be modified when a job is started.
The job’s ClassAd attribute JobLeaseDuration is checked. If the
value of JobLeaseDuration/3 is less than the current alive interval,
then the alive interval is set to either this lower value or the imposed
lowest limit on the alive interval of 10 seconds. Thus, the alive
interval starts at ALIVE_INTERVAL and goes down, never up.

If a claim lease expires, the condor_startd will drop the claim. The
length of the claim lease is the job’s ClassAd attribute
JobLeaseDuration. JobLeaseDuration defaults to 40 minutes time,
except when explicitly set within the job’s submit description file. If
JobLeaseDuration is explicitly set to 0, or it is not set as may be
the case for a Web Services job that does not define the attribute, then
JobLeaseDuration is given the Undefined value. Further, when
undefined, the claim lease duration is calculated with
MAX_CLAIM_ALIVES_MISSED * alive interval. The alive interval is the
current value, as sent by the condor_schedd. If the condor_schedd
reduces the current alive interval, it does not update the
condor_startd.

Machine Activities

Within some machine states, activities of the machine are defined. The
state has meaning regardless of activity. Differences between activities
are significant. Therefore, a “state/activity” pair describes a machine.
The following list describes all the possible state/activity pairs.

	Owner

	Idle
	This is the only activity for Owner state. As far as HTCondor is
concerned the machine is Idle, since it is not doing anything for
HTCondor.

	Unclaimed

	Idle
	This is the normal activity of Unclaimed machines. The machine is
still Idle in that the machine owner is willing to let HTCondor
jobs run, but HTCondor is not using the machine for anything.

	Benchmarking
	The machine is running benchmarks to determine the speed on this
machine. This activity only occurs in the Unclaimed state. How
often the activity occurs is determined by the RUNBENCHMARKS
expression.

	Matched

	Idle
	When Matched, the machine is still Idle to HTCondor.

	Claimed

	Idle
	In this activity, the machine has been claimed, but the schedd
that claimed it has yet to activate the claim by requesting a
condor_starter to be spawned to service a job. The machine
returns to this state (usually briefly) when jobs (and therefore
condor_starter) finish.

	Busy
	Once a condor_starter has been started and the claim is
active, the machine moves to the Busy activity to signify that it
is doing something as far as HTCondor is concerned.

	Suspended
	If the job is suspended by HTCondor, the machine goes into the
Suspended activity. The match between the schedd and machine has
not been broken (the claim is still valid), but the job is not
making any progress and HTCondor is no longer generating a load
on the machine.

	Retiring
	When an active claim is about to be preempted for any reason, it
enters retirement, while it waits for the current job to finish.
The MaxJobRetirementTime expression determines how long to
wait (counting since the time the job started). Once the job
finishes or the retirement time expires, the Preempting state is
entered.

	Preempting The Preempting state is used for evicting an HTCondor job
from a given machine. When the machine enters the Preempting state,
it checks the WANT_VACATE expression to determine its activity.

	Vacating
	In the Vacating activity, the job is given a chance to exit
cleanly. This may include uploading intermediate files. As
soon as the job finishes exiting,
the machine moves into either the Owner state or the
Claimed state, depending on the reason for its preemption.

	Killing
	Killing means that the machine has requested the running job to
exit the machine immediately.

	Backfill

	Idle
	The machine is configured to run backfill jobs and is ready to do
so, but it has not yet had a chance to spawn a backfill manager
(for example, the BOINC client).

	Busy
	The machine is performing a backfill computation.

	Killing
	The machine was running a backfill computation, but it is now
killing the job to either return resources to the machine owner,
or to make room for a regular HTCondor job.

	Drained

	Idle
	All slots have been drained.

	Retiring
	This slot has been drained. It is waiting for other slots to
finish draining.

The following diagram gives the overall view of all machine states and
activities and shows the possible transitions from one to another within the
HTCondor system. Each transition is labeled with a number on the diagram, and
transition numbers referred to in this manual will be bold.

[image: Machine States and Activities]

Machine States and Activities

Various expressions are used to determine when and if many of these
state and activity transitions occur. Other transitions are initiated by
parts of the HTCondor protocol (such as when the condor_negotiator
matches a machine with a schedd). The following section describes the
conditions that lead to the various state and activity transitions.

State and Activity Transitions

This section traces through all possible state and activity transitions
within a machine and describes the conditions under which each one
occurs. Whenever a transition occurs, HTCondor records when the machine
entered its new activity and/or new state. These times are often used to
write expressions that determine when further transitions occurred. For
example, enter the Killing activity if a machine has been in the
Vacating activity longer than a specified amount of time.

Owner State

When the startd is first spawned, the machine it represents enters the
Owner state. The machine remains in the Owner state while the expression
IS_OWNER evaluates to TRUE. If the
IS_OWNER expression evaluates to FALSE, then the machine transitions
to the Unclaimed state. The default value of IS_OWNER is FALSE,
which is intended for dedicated resources. But when the
POLICY : Desktop configuration template is used, the IS_OWNER
expression is optimized for a shared resource

START =?= FALSE

So, the machine will remain in the Owner state as long as the START
expression locally evaluates to FALSE.
The condor_startd Policy Configuration
section provides more detail on the
START expression. If the START locally evaluates to TRUE or
cannot be locally evaluated (it evaluates to UNDEFINED), transition
1 occurs and the machine enters the Unclaimed state. The
IS_OWNER expression is locally evaluated by the machine, and should
not reference job ClassAd attributes, which would be UNDEFINED.

The Owner state represents a resource that is in use by its interactive
owner (for example, if the keyboard is being used). The Unclaimed state
represents a resource that is neither in use by its interactive user,
nor the HTCondor system. From HTCondor’s point of view, there is little
difference between the Owner and Unclaimed states. In both cases, the
resource is not currently in use by the HTCondor system. However, if a
job matches the resource’s START expression, the resource is
available to run a job, regardless of if it is in the Owner or Unclaimed
state. The only differences between the two states are how the resource
shows up in condor_status and other reporting tools, and the fact
that HTCondor will not run benchmarking on a resource in the Owner
state. As long as the IS_OWNER expression is TRUE, the machine is in
the Owner State. When the IS_OWNER expression is FALSE, the machine
goes into the Unclaimed State.

Here is an example that assumes that the POLICY : Desktop
configuration template is in use. If the START expression is

START = KeyboardIdle > 15 * $(MINUTE) && Owner == "coltrane"

and if KeyboardIdle is 34 seconds, then the machine would remain in
the Owner state. Owner is undefined, and anything && FALSE is FALSE.

If, however, the START expression is

START = KeyboardIdle > 15 * $(MINUTE) || Owner == "coltrane"

and KeyboardIdle is 34 seconds, then the machine leaves the Owner
state and becomes Unclaimed. This is because FALSE || UNDEFINED is
UNDEFINED. So, while this machine is not available to just anybody, if
user coltrane has jobs submitted, the machine is willing to run them.
Any other user’s jobs have to wait until KeyboardIdle exceeds 15
minutes. However, since coltrane might claim this resource, but has not
yet, the machine goes to the Unclaimed state.

While in the Owner state, the startd polls the status of the machine
every UPDATE_INTERVAL to see if
anything has changed that would lead it to a different state. This
minimizes the impact on the Owner while the Owner is using the machine.
Frequently waking up, computing load averages, checking the access times
on files, computing free swap space take time, and there is nothing time
critical that the startd needs to be sure to notice as soon as it
happens. If the START expression evaluates to TRUE and five minutes
pass before the startd notices, that’s a drop in the bucket of
high-throughput computing.

The machine can only transition to the Unclaimed state from the Owner
state. It does so when the IS_OWNER expression no longer evaluates
to TRUE. With the POLICY : Desktop configuration template, that
happens when START no longer locally evaluates to FALSE.

Whenever the machine is not actively running a job, it will transition
back to the Owner state if IS_OWNER evaluates to TRUE. Once a job is
started, the value of IS_OWNER does not matter; the job either runs
to completion or is preempted. Therefore, you must configure the
preemption policy if you want to transition back to the Owner state from
Claimed Busy.

If draining of the machine is initiated while in the Owner state, the
slot transitions to Drained/Retiring (transition 36).

Unclaimed State

If the IS_OWNER expression becomes TRUE, then the machine returns to
the Owner state. If the IS_OWNER expression becomes FALSE, then the
machine remains in the Unclaimed state. The default value of
IS_OWNER is FALSE (never enter Owner state). If the
POLICY : Desktop configuration template is used, then the
IS_OWNER expression is changed to

START =?= FALSE

so that while in the Unclaimed state, if the START expression
locally evaluates to FALSE, the machine returns to the Owner state by
transition 2.

When in the Unclaimed state, the RUNBENCHMARKS
 expression is relevant. If
RUNBENCHMARKS evaluates to TRUE while the machine is in the
Unclaimed state, then the machine will transition from the Idle activity
to the Benchmarking activity (transition 3) and perform benchmarks
to determine MIPS and KFLOPS. When the benchmarks complete, the
machine returns to the Idle activity (transition 4).

The startd automatically inserts an attribute, LastBenchmark,
whenever it runs benchmarks, so commonly RunBenchmarks is defined in
terms of this attribute, for example:

RunBenchmarks = (time() - LastBenchmark) >= (4 * $(HOUR))

This macro calculates the time since the last benchmark, so when this
time exceeds 4 hours, we run the benchmarks again. The startd keeps a
weighted average of these benchmarking results to try to get the most
accurate numbers possible. This is why it is desirable for the startd to
run them more than once in its lifetime.

Note

LastBenchmark is initialized to 0 before benchmarks have ever
been run. To have the condor_startd run benchmarks as soon as the
machine is Unclaimed (if it has not done so already), include a term
using LastBenchmark as in the example above.

Note

If RUNBENCHMARKS is defined and set to something other than
FALSE, the startd will automatically run one set of benchmarks when it
first starts up. To disable benchmarks, both at startup and at any time
thereafter, set RUNBENCHMARKS to FALSE or comment it out of the
configuration file.

From the Unclaimed state, the machine can go to four other possible
states: Owner (transition 2), Backfill/Idle, Matched, or
Claimed/Idle.

Once the condor_negotiator matches an Unclaimed machine with a
requester at a given schedd, the negotiator sends a command to both
parties, notifying them of the match. If the schedd receives that
notification and initiates the claiming procedure with the machine
before the negotiator’s message gets to the machine, the Match state is
skipped, and the machine goes directly to the Claimed/Idle state
(transition 5). However, normally the machine will enter the Matched
state (transition 6), even if it is only for a brief period of time.

If the machine has been configured to perform backfill jobs (see the
Setting Up for Special Environments section), while it is in
Unclaimed/Idle it will evaluate the START_BACKFILL expression. Once
START_BACKFILL evaluates to TRUE, the machine will enter the Backfill/Idle
state (transition 7) to begin the process of running backfill jobs.

If draining of the machine is initiated while in the Unclaimed state,
the slot transitions to Drained/Retiring (transition 37).

Matched State

The Matched state is not very interesting to HTCondor. Noteworthy in
this state is that the machine lies about its START expression while
in this state and says that Requirements are False to prevent
being matched again before it has been claimed. Also interesting is that
the startd starts a timer to make sure it does not stay in the Matched
state too long. The timer is set with the
MATCH_TIMEOUT configuration file macro. It is specified
in seconds and defaults to 120 (2 minutes). If the schedd that was
matched with this machine does not claim it within this period of time,
the machine gives up, and goes back into the Owner state via transition
8. It will probably leave the Owner state right away for the
Unclaimed state again and wait for another match.

At any time while the machine is in the Matched state, if the START
expression locally evaluates to FALSE, the machine enters the Owner
state directly (transition 8).

If the schedd that was matched with the machine claims it before the
MATCH_TIMEOUT expires, the machine goes into the Claimed/Idle state
(transition 9).

Claimed State

The Claimed state is certainly the most complex state. It has the most
possible activities and the most expressions that determine its next
activities. In addition, the condor_vacate
command affects the machine when it is in the Claimed state.

In general, there are two sets of expressions that might take effect,
depending on the universe of the job running on the claim: vanilla,
and all others. The normal expressions look like the following:

WANT_SUSPEND = True
WANT_VACATE = $(ActivationTimer) > 10 * $(MINUTE)
SUSPEND = $(KeyboardBusy) || $(CPUBusy)
...

The vanilla expressions have the string”_VANILLA” appended to their
names. For example:

WANT_SUSPEND_VANILLA = True
WANT_VACATE_VANILLA = True
SUSPEND_VANILLA = $(KeyboardBusy) || $(CPUBusy)
...

Without specific vanilla versions, the normal versions will be used for
all jobs, including vanilla jobs. In this manual, the normal expressions
are referenced.

While Claimed, the POLLING_INTERVAL
takes effect, and the startd polls the machine much more frequently to
evaluate its state.

If the machine owner starts typing on the console again, it is best to
notice this as soon as possible to be able to start doing whatever the
machine owner wants at that point. For multi-core machines, if any slot
is in the Claimed state, the startd polls the machine frequently. If
already polling one slot, it does not cost much to evaluate the state of
all the slots at the same time.

There are a variety of events that may cause the startd to try to get
rid of or temporarily suspend a running job. Activity on the machine’s
console, load from other jobs, or shutdown of the startd via an
administrative command are all possible sources of interference. Another
one is the appearance of a higher priority claim to the machine by a
different HTCondor user.

Depending on the configuration, the startd may respond quite differently
to activity on the machine, such as keyboard activity or demand for the
cpu from processes that are not managed by HTCondor. The startd can be
configured to completely ignore such activity or to suspend the job or
even to kill it. A standard configuration for a desktop machine might be
to go through successive levels of getting the job out of the way. The
first and least costly to the job is suspending it.
If suspending the job for a short while does
not satisfy the machine owner (the owner is still using the machine
after a specific period of time), the startd moves on to vacating the
job. Vanilla jobs are sent a
soft kill signal so that they can gracefully shut down if necessary; the
default is SIGTERM. If vacating does not satisfy the machine owner
(usually because it is taking too long and the owner wants their machine
back now), the final, most drastic stage is reached: killing. Killing is
a quick death to the job, using a hard-kill signal that cannot be
intercepted by the application. For vanilla jobs that do no special
signal handling, vacating and killing are equivalent.

The WANT_SUSPEND expression determines if the machine will evaluate
the SUSPEND expression to consider entering the Suspended activity.
The WANT_VACATE expression determines what happens when the machine
enters the Preempting state. It will go to the Vacating activity or
directly to Killing. If one or both of these expressions evaluates to
FALSE, the machine will skip that stage of getting rid of the job and
proceed directly to the more drastic stages.

When the machine first enters the Claimed state, it goes to the Idle
activity. From there, it has two options. It can enter the Preempting
state via transition 10 (if a condor_vacate arrives, or if the
START expression locally evaluates to FALSE), or it can enter the
Busy activity (transition 11) if the schedd that has claimed the
machine decides to activate the claim and start a job.

From Claimed/Busy, the machine can transition to three other
state/activity pairs. The startd evaluates the WANT_SUSPEND
expression to decide which other expressions to evaluate. If
WANT_SUSPEND is TRUE, then the startd evaluates the SUSPEND
expression. If WANT_SUSPEND is any value other than TRUE, then the
startd will evaluate the PREEMPT expression and skip the Suspended
activity entirely. By transition, the possible state/activity
destinations from Claimed/Busy:

	Claimed/Idle
	If the starter that is serving a given job exits (for example
because the jobs completes), the machine will go to Claimed/Idle
(transition 12).
Claimed/Retiring
If WANT_SUSPEND is FALSE and the PREEMPT expression is
True, the machine enters the Retiring activity (transition
13). From there, it waits for a configurable amount of time for
the job to finish before moving on to preemption.

Another reason the machine would go from Claimed/Busy to
Claimed/Retiring is if the condor_negotiator matched the machine
with a “better” match. This better match could either be from the
machine’s perspective using the startd RANK expression, or it
could be from the negotiator’s perspective due to a job with a
higher user priority.

Another case resulting in a transition to Claimed/Retiring is when
the startd is being shut down. The only exception is a “fast”
shutdown, which bypasses retirement completely.

	Claimed/Suspended
	If both the WANT_SUSPEND and SUSPEND expressions evaluate to
TRUE, the machine suspends the job (transition 14).

From the Claimed/Suspended state, the following transitions may occur:

	Claimed/Busy
	If the CONTINUE expression evaluates to TRUE, the machine
resumes the job and enters the Claimed/Busy state (transition
15) or the Claimed/Retiring state (transition 16), depending
on whether the claim has been preempted.

	Claimed/Retiring
	If the PREEMPT expression is TRUE, the machine will enter the
Claimed/Retiring activity (transition 16).

	Preempting
	If the claim is in suspended retirement and the retirement time
expires, the job enters the Preempting state (transition 17).
This is only possible if MaxJobRetirementTime decreases during
the suspension.

For the Claimed/Retiring state, the following transitions may occur:

	Preempting
	If the job finishes or the job’s run time exceeds the value defined
for the job ClassAd attribute MaxJobRetirementTime, the
Preempting state is entered (transition 18). The run time is
computed from the time when the job was started by the startd minus
any suspension time. When retiring due to condor_startd daemon
shutdown or restart, it is possible for the administrator to issue a
peaceful shutdown command, which causes MaxJobRetirementTime to
effectively be infinite, avoiding any killing of jobs. It is also
possible for the administrator to issue a fast shutdown command,
which causes MaxJobRetirementTime to be effectively 0.

	Claimed/Busy
	If the startd was retiring because of a preempting claim only and
the preempting claim goes away, the normal Claimed/Busy state is
resumed (transition 19). If instead the retirement is due to
owner activity (PREEMPT) or the startd is being shut down, no
unretirement is possible.

	Claimed/Suspended
	In exactly the same way that suspension may happen from the
Claimed/Busy state, it may also happen during the Claimed/Retiring
state (transition 20). In this case, when the job continues from
suspension, it moves back into Claimed/Retiring (transition 16)
instead of Claimed/Busy (transition 15).

Preempting State

The Preempting state is less complex than the Claimed state. There are
two activities. Depending on the value of WANT_VACATE, a machine
will be in the Vacating activity (if True) or the Killing activity
(if False).

While in the Preempting state (regardless of activity) the machine
advertises its Requirements expression as False to signify that
it is not available for further matches, either because it is about to
transition to the Owner state, or because it has already been matched
with one preempting match, and further preempting matches are disallowed
until the machine has been claimed by the new match.

The main function of the Preempting state is to get rid of the
condor_starter associated with the resource. If the condor_starter
associated with a given claim exits while the machine is still in the
Vacating activity, then the job successfully completed a graceful
shutdown. For other jobs, this means the application was given an
opportunity to do a graceful shutdown, by intercepting the soft kill
signal.

If the machine is in the Vacating activity, it keeps evaluating the
KILL expression. As soon as this expression evaluates to TRUE, the
machine enters the Killing activity (transition 21). If the Vacating
activity lasts for as long as the maximum vacating time, then the
machine also enters the Killing activity. The maximum vacating time is
determined by the configuration variable
MachineMaxVacateTime. This may be adjusted by the setting
of the job ClassAd attribute JobMaxVacateTime.

When the starter exits, or if there was no starter running when the
machine enters the Preempting state (transition 10), the other
purpose of the Preempting state is completed: notifying the schedd that
had claimed this machine that the claim is broken.

At this point, the machine enters either the Owner state by transition
22 (if the job was preempted because the machine owner came back) or
the Claimed/Idle state by transition 23 (if the job was preempted
because a better match was found).

If the machine enters the Killing activity, (because either
WANT_VACATE was False or the KILL expression evaluated to
True), it attempts to force the condor_starter to immediately
kill the underlying HTCondor job. Once the machine has begun to hard
kill the HTCondor job, the condor_startd starts a timer, the length
of which is defined by the KILLING_TIMEOUT macro
(condor_startd Configuration File Macros). This macro is defined in seconds and defaults to 30. If this timer
expires and the machine is still in the Killing activity, something has gone
seriously wrong with the condor_starter and the startd tries to vacate the job
immediately by sending SIGKILL to all of the condor_starter ‘s
children, and then to the condor_starter itself.

Once the condor_starter has killed off all the processes associated
with the job and exited, and once the schedd that had claimed the
machine is notified that the claim is broken, the machine will leave the
Preempting/Killing state. If the job was preempted because a better
match was found, the machine will enter Claimed/Idle (transition
24). If the preemption was caused by the machine owner (the
PREEMPT expression evaluated to TRUE, condor_vacate was used,
etc), the machine will enter the Owner state (transition 25).

Backfill State

The Backfill state is used whenever the machine is performing low
priority background tasks to keep itself busy. For more information
about backfill support in HTCondor, see the
Configuring HTCondor for Running Backfill Jobs section. This state is only used if the machine has been
configured to enable backfill computation, if a specific backfill manager has
been installed and configured, and if the machine is otherwise idle (not being
used interactively or for regular HTCondor computations). If the machine
meets all these requirements, and the START_BACKFILL expression
evaluates to TRUE, the machine will move from the Unclaimed/Idle state
to Backfill/Idle (transition 7).

Once a machine is in Backfill/Idle, it will immediately attempt to spawn
whatever backfill manager it has been configured to use (currently, only
the BOINC client is supported as a backfill manager in HTCondor). Once
the BOINC client is running, the machine will enter Backfill/Busy
(transition 26) to indicate that it is now performing a backfill
computation.

Note

On multi-core machines, the condor_startd will only spawn a
single instance of the BOINC client, even if multiple slots are
available to run backfill jobs. Therefore, only the first machine to
enter Backfill/Idle will cause a copy of the BOINC client to start
running. If a given slot on a multi-core enters the Backfill state and a
BOINC client is already running under this condor_startd, the slot
will immediately enter Backfill/Busy without waiting to spawn another
copy of the BOINC client.

If the BOINC client ever exits on its own (which normally wouldn’t
happen), the machine will go back to Backfill/Idle (transition 27)
where it will immediately attempt to respawn the BOINC client (and
return to Backfill/Busy via transition 26).

As the BOINC client is running a backfill computation, a number of
events can occur that will drive the machine out of the Backfill state.
The machine can get matched or claimed for an HTCondor job, interactive
users can start using the machine again, the machine might be evicted
with condor_vacate, or the condor_startd might be shutdown. All of
these events cause the condor_startd to kill the BOINC client and all
its descendants, and enter the Backfill/Killing state (transition
28).

Once the BOINC client and all its children have exited the system, the
machine will enter the Backfill/Idle state to indicate that the BOINC
client is now gone (transition 29). As soon as it enters
Backfill/Idle after the BOINC client exits, the machine will go into
another state, depending on what caused the BOINC client to be killed in
the first place.

If the EVICT_BACKFILL expression evaluates to TRUE while a machine
is in Backfill/Busy, after the BOINC client is gone, the machine will go
back into the Owner/Idle state (transition 30). The machine will
also return to the Owner/Idle state after the BOINC client exits if
condor_vacate was used, or if the condor_startd is being shutdown.

When a machine running backfill jobs is matched with a requester that
wants to run an HTCondor job, the machine will either enter the Matched
state, or go directly into Claimed/Idle. As with the case of a machine
in Unclaimed/Idle (described above), the condor_negotiator informs
both the condor_startd and the condor_schedd of the match, and the
exact state transitions at the machine depend on what order the various
entities initiate communication with each other. If the condor_schedd
is notified of the match and sends a request to claim the
condor_startd before the condor_negotiator has a chance to notify
the condor_startd, once the BOINC client exits, the machine will
immediately enter Claimed/Idle (transition 31). Normally, the
notification from the condor_negotiator will reach the
condor_startd before the condor_schedd attempts to claim it. In
this case, once the BOINC client exits, the machine will enter
Matched/Idle (transition 32).

Drained State

The Drained state is used when the machine is being drained, for example
by condor_drain or by the condor_defrag daemon, and the slot has
finished running jobs and is no longer willing to run new jobs.

Slots initially enter the Drained/Retiring state. Once all slots have
been drained, the slots transition to the Idle activity (transition
33).

If draining is finalized or canceled, the slot transitions to Owner/Idle
(transitions 34 and 35).

State/Activity Transition Expression Summary

This section is a summary of the information from the previous sections.
It serves as a quick reference.

	START
	When TRUE, the machine is willing to spawn a remote HTCondor job.

	RUNBENCHMARKS
	While in the Unclaimed state, the machine will run benchmarks
whenever TRUE.

	MATCH_TIMEOUT
	If the machine has been in the Matched state longer than this value,
it will transition to the Owner state.

	WANT_SUSPEND
	If True, the machine evaluates the SUSPEND expression to see
if it should transition to the Suspended activity. If any value
other than True, the machine will look at the PREEMPT
expression.

	SUSPEND
	If WANT_SUSPEND is True, and the machine is in the
Claimed/Busy state, it enters the Suspended activity if SUSPEND
is True.

	CONTINUE
	If the machine is in the Claimed/Suspended state, it enter the Busy
activity if CONTINUE is True.

	PREEMPT
	If the machine is either in the Claimed/Suspended activity, or is in
the Claimed/Busy activity and WANT_SUSPEND is FALSE, the machine
enters the Claimed/Retiring state whenever PREEMPT is TRUE.

	CLAIM_WORKLIFE
	This expression specifies the number of seconds after which a claim
will stop accepting additional jobs. This configuration macro is
fully documented here: condor_startd Configuration File Macros.

	MachineMaxVacateTime
	When the machine enters the Preempting/Vacating state, this
expression specifies the maximum time in seconds that the
condor_startd will wait for the job to finish. The job may adjust
the wait time by setting JobMaxVacateTime. If the job’s setting
is less than the machine’s, the job’s is used. If the job’s setting
is larger than the machine’s, the result depends on whether the job
has any excess retirement time. If the job has more retirement time
left than the machine’s maximum vacate time setting, then retirement
time will be converted into vacating time, up to the amount of
JobMaxVacateTime. Once the vacating time expires, the job is
hard-killed. The KILL expression may be used
to abort the graceful shutdown of the job at any time.

	MAXJOBRETIREMENTTIME
	If the machine is in the Claimed/Retiring state, jobs which have run
for less than the number of seconds specified by this expression
will not be hard-killed. The condor_startd will wait for the job
to finish or to exceed this amount of time, whichever comes sooner.
Time spent in suspension does not count against the job. If the job
vacating policy grants the job X seconds of vacating time, a
preempted job will be soft-killed X seconds before the end of its
retirement time, so that hard-killing of the job will not happen
until the end of the retirement time if the job does not finish
shutting down before then. The job may provide its own expression
for MaxJobRetirementTime, but this can only be used to take less
than the time granted by the condor_startd, never more. For
convenience, nice_user jobs are submitted
with a default retirement time of 0, so they will never wait in
retirement unless the user overrides the default.

The machine enters the Preempting state with the goal of finishing
shutting down the job by the end of the retirement time. If the job
vacating policy grants the job X seconds of vacating time, the
transition to the Preempting state will happen X seconds before the
end of the retirement time, so that the hard-killing of the job will
not happen until the end of the retirement time, if the job does not
finish shutting down before then.

This expression is evaluated in the context of the job ClassAd, so
it may refer to attributes of the current job as well as machine
attributes.

By default the condor_negotiator will not match jobs to a slot
with retirement time remaining. This behavior is controlled by
NEGOTIATOR_CONSIDER_EARLY_PREEMPTION
 .

	WANT_VACATE
	This is checked only when the PREEMPT expression is True and
the machine enters the Preempting state. If WANT_VACATE is
True, the machine enters the Vacating activity. If it is
False, the machine will proceed directly to the Killing
activity.

	KILL
	If the machine is in the Preempting/Vacating state, it enters
Preempting/Killing whenever KILL is True.

	KILLING_TIMEOUT
	If the machine is in the Preempting/Killing state for longer than
KILLING_TIMEOUT seconds, the condor_startd sends a SIGKILL to
the condor_starter and all its children to try to kill the job as
quickly as possible.

	RANK
	If this expression evaluates to a higher number for a pending
resource request than it does for the current request, the machine
may preempt the current request (enters the Preempting/Vacating
state). When the preemption is complete, the machine enters the
Claimed/Idle state with the new resource request claiming it.

	START_BACKFILL
	When TRUE, if the machine is otherwise idle, it will enter the
Backfill state and spawn a backfill computation (using BOINC).

	EVICT_BACKFILL
	When TRUE, if the machine is currently running a backfill
computation, it will kill the BOINC client and return to the
Owner/Idle state.

Examples of Policy Configuration

This section describes various policy configurations, including the
default policy.

Default Policy

These settings are the default as shipped with HTCondor. They have been
used for many years with no problems. The vanilla expressions are
identical to the regular ones. (They are not listed here. If not
defined, the standard expressions are used for vanilla jobs as well).

The following are macros to help write the expressions clearly.

	StateTimer
	Amount of time in seconds in the current state.

	ActivityTimer
	Amount of time in seconds in the current activity.

	ActivationTimer
	Amount of time in seconds that the job has been running on this
machine.

	NonCondorLoadAvg
	The difference between the system load and the HTCondor load (the
load generated by everything but HTCondor).

	BackgroundLoad
	Amount of background load permitted on the machine and still start
an HTCondor job.

	HighLoad
	If the $(NonCondorLoadAvg) goes over this, the CPU is considered
too busy, and eviction of the HTCondor job should start.

	StartIdleTime
	Amount of time the keyboard must to be idle before HTCondor will
start a job.

	ContinueIdleTime
	Amount of time the keyboard must to be idle before resumption of a
suspended job.

	MaxSuspendTime
	Amount of time a job may be suspended before more drastic measures
are taken.

	KeyboardBusy
	A boolean expression that evaluates to TRUE when the keyboard is
being used.

	CPUIdle
	A boolean expression that evaluates to TRUE when the CPU is idle.

	CPUBusy
	A boolean expression that evaluates to TRUE when the CPU is busy.

	MachineBusy
	The CPU or the Keyboard is busy.

	CPUIsBusy
	A boolean value set to the same value as CPUBusy.

	CPUBusyTime
	The value 0 if CPUBusy is False; the time in seconds since
CPUBusy became True.

These variable definitions exist in the example configuration file in
order to help write legible expressions. They are not required, and
perhaps will go unused by many configurations.

These macros are here to help write legible expressions:
MINUTE = 60
HOUR = (60 * $(MINUTE))
StateTimer = (time() - EnteredCurrentState)
ActivityTimer = (time() - EnteredCurrentActivity)
ActivationTimer = (time() - JobStart)

NonCondorLoadAvg = (LoadAvg - CondorLoadAvg)
BackgroundLoad = 0.3
HighLoad = 0.5
StartIdleTime = 15 * $(MINUTE)
ContinueIdleTime = 5 * $(MINUTE)
MaxSuspendTime = 10 * $(MINUTE)

KeyboardBusy = KeyboardIdle < $(MINUTE)
ConsoleBusy = (ConsoleIdle < $(MINUTE))
CPUIdle = $(NonCondorLoadAvg) <= $(BackgroundLoad)
CPUBusy = $(NonCondorLoadAvg) >= $(HighLoad)
KeyboardNotBusy = ($(KeyboardBusy) == False)
MachineBusy = ($(CPUBusy) || $(KeyboardBusy)

Preemption is disabled as a default. Always desire to start jobs.

WANT_SUSPEND = False
WANT_VACATE = False
START = True
SUSPEND = False
CONTINUE = True
PREEMPT = False
Kill jobs that take too long leaving gracefully.
MachineMaxVacateTime = 10 * $(MINUTE)
KILL = False

Test-job Policy Example

This example shows how the default macros can be used to set up a
machine for running test jobs from a specific user. Suppose we want the
machine to behave normally, except if user coltrane submits a job. In
that case, we want that job to start regardless of what is happening on
the machine. We do not want the job suspended, vacated or killed. This
is reasonable if we know coltrane is submitting very short running
programs for testing purposes. The jobs should be executed right away.
This works with any machine (or the whole pool, for that matter) by
adding the following 5 expressions to the existing configuration:

START = ($(START)) || Owner == "coltrane"
SUSPEND = ($(SUSPEND)) && Owner != "coltrane"
CONTINUE = $(CONTINUE)
PREEMPT = ($(PREEMPT)) && Owner != "coltrane"
KILL = $(KILL)

Notice that there is nothing special in either the CONTINUE or
KILL expressions. If Coltrane’s jobs never suspend, they never look
at CONTINUE. Similarly, if they never preempt, they never look at
KILL.

Time of Day Policy

HTCondor can be configured to only run jobs at certain times of the day.
In general, we discourage configuring a system like this, since there
will often be lots of good cycles on machines, even when their owners
say “I’m always using my machine during the day.” However, if you submit
mostly jobs that cannot produce checkpoints, it
might be a good idea to only allow the jobs to run when you know the
machines will be idle and when they will not be interrupted.

To configure this kind of policy, use the ClockMin and ClockDay
attributes. These are special attributes which are automatically
inserted by the condor_startd into its ClassAd, so you can always
reference them in your policy expressions. ClockMin defines the
number of minutes that have passed since midnight. For example, 8:00am
is 8 hours after midnight, or 8 * 60 minutes, or 480. 5:00pm is 17
hours after midnight, or 17 * 60, or 1020. ClockDay defines the day
of the week, Sunday = 0, Monday = 1, and so on.

To make the policy expressions easy to read, we recommend using macros
to define the time periods when you want jobs to run or not run. For
example, assume regular work hours at your site are from 8:00am until
5:00pm, Monday through Friday:

WorkHours = ((ClockMin >= 480 && ClockMin < 1020) && \
 (ClockDay > 0 && ClockDay < 6))
AfterHours = ((ClockMin < 480 || ClockMin >= 1020) || \
 (ClockDay == 0 || ClockDay == 6))

Of course, you can fine-tune these settings by changing the definition
of AfterHours and WorkHours
 for your site.

To force HTCondor jobs to stay off of your machines during work hours:

Only start jobs after hours.
START = $(AfterHours)

Consider the machine busy during work hours, or if the keyboard or
CPU are busy.
MachineBusy = ($(WorkHours) || $(CPUBusy) || $(KeyboardBusy))

This MachineBusy macro is convenient if other than the default
SUSPEND and PREEMPT expressions are used.

Desktop/Non-Desktop Policy

Suppose you have two classes of machines in your pool: desktop machines
and dedicated cluster machines. In this case, you might not want
keyboard activity to have any effect on the dedicated machines. For
example, when you log into these machines to debug some problem, you
probably do not want a running job to suddenly be killed. Desktop
machines, on the other hand, should do whatever is necessary to remain
responsive to the user.

There are many ways to achieve the desired behavior. One way is to make
a standard desktop policy and a standard non-desktop policy and to copy
the desired one into the local configuration file for each machine.
Another way is to define one standard policy (in the global
configuration file) with a simple toggle that can be set in the local
configuration file. The following example illustrates the latter
approach.

For ease of use, an entire policy is included in this example. Some of
the expressions are just the usual default settings.

If "IsDesktop" is configured, make it an attribute of the machine ClassAd.
STARTD_ATTRS = IsDesktop

Only consider starting jobs if:
1) the load average is low enough OR the machine is currently
running an HTCondor job
2) AND the user is not active (if a desktop)
START = (($(CPUIdle) || (State != "Unclaimed" && State != "Owner")) \
 && (IsDesktop =!= True || (KeyboardIdle > $(StartIdleTime))))

Suspend (instead of vacating/killing) for the following cases:
WANT_SUSPEND = ($(SmallJob) || $(JustCpu) \
 || $(IsVanilla))

When preempting, vacate (instead of killing) in the following cases:
WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) \
 || $(IsVanilla))

Suspend jobs if:
1) The CPU has been busy for more than 2 minutes, AND
2) the job has been running for more than 90 seconds
3) OR suspend if this is a desktop and the user is active
SUSPEND = (((CpuBusyTime > 2 * $(MINUTE)) && ($(ActivationTimer) > 90)) \
 || (IsDesktop =?= True && $(KeyboardBusy)))

Continue jobs if:
1) the CPU is idle, AND
2) we've been suspended more than 5 minutes AND
3) the keyboard has been idle for long enough (if this is a desktop)
CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 300) \
 && (IsDesktop =!= True || (KeyboardIdle > $(ContinueIdleTime))))

Preempt jobs if:
1) The job is suspended and has been suspended longer than we want
2) OR, we don't want to suspend this job, but the conditions to
suspend jobs have been met (someone is using the machine)
PREEMPT = (((Activity == "Suspended") && \
 ($(ActivityTimer) > $(MaxSuspendTime))) \
 || (SUSPEND && (WANT_SUSPEND == False)))

Replace 0 in the following expression with whatever amount of
retirement time you want dedicated machines to provide. The other part
of the expression forces the whole expression to 0 on desktop
machines.
MAXJOBRETIREMENTTIME = (IsDesktop =!= True) * 0

Kill jobs if they have taken too long to vacate gracefully
MachineMaxVacateTime = 10 * $(MINUTE)
KILL = False

With this policy in the global configuration, the local configuration
files for desktops can be easily configured with the following line:

IsDesktop = True

In all other cases, the default policy described above will ignore
keyboard activity.

Disabling and Enabling Preemption

Preemption causes a running job to be suspended or killed, such that
another job can run. As of HTCondor version 8.1.5, preemption is
disabled by the default configuration. Previous versions of HTCondor had
configuration that enabled preemption. Upon upgrade, the previous
behavior will continue, if the previous configuration files are used.
New configuration file examples disable preemption, but contain
directions for enabling preemption.

Job Suspension

As new jobs are submitted that receive a higher priority than currently
executing jobs, the executing jobs may be preempted. If the preempted
jobs are not capable of writing checkpoints, they lose whatever forward
progress they have made, and are sent back to the job queue to await
starting over again as another machine becomes available. An alternative
to this is to use suspension to freeze the job while some other task
runs, and then unfreeze it so that it can continue on from where it left
off. This does not require any special handling in the job, unlike most
strategies that take checkpoints. However, it does require a special
configuration of HTCondor. This example implements a policy that allows
the job to decide whether it should be evicted or suspended. The jobs
announce their choice through the use of the invented job ClassAd
attribute IsSuspendableJob, that is also utilized in the
configuration.

The implementation of this policy utilizes two categories of slots,
identified as suspendable or nonsuspendable. A job identifies which
category of slot it wishes to run on. This affects two aspects of the
policy:

	Of two jobs that might run on a slot, which job is chosen. The four
cases that may occur depend on whether the currently running job
identifies itself as suspendable or nonsuspendable, and whether the
potentially running job identifies itself as suspendable or
nonsuspendable.

	If the currently running job is one that identifies itself as
suspendable, and the potentially running job identifies itself as
nonsuspendable, the currently running job is suspended, in favor
of running the nonsuspendable one. This occurs independent of the
user priority of the two jobs.

	If both the currently running job and the potentially running job
identify themselves as suspendable, then the relative priorities
of the users and the preemption policy determines whether the new
job will replace the existing job.

	If both the currently running job and the potentially running job
identify themselves as nonsuspendable, then the relative
priorities of the users and the preemption policy determines
whether the new job will replace the existing job.

	If the currently running job is one that identifies itself as
nonsuspendable, and the potentially running job identifies itself
as suspendable, the currently running job continues running.

	What happens to a currently running job that is preempted. A job that
identifies itself as suspendable will be suspended, which means it is
frozen in place, and will later be unfrozen when the preempting job
is finished. A job that identifies itself as nonsuspendable is
evicted, giving it a chance to write a checkpoint, and then is killed. The
job will return to the idle state in the job queue,
and it can try to run again in the future.

Lie to HTCondor, to achieve 2 slots for each real slot
NUM_CPUS = $(DETECTED_CORES)*2
There is no good way to tell HTCondor that the two slots should be treated
as though they share the same real memory, so lie about how much
memory we have.
MEMORY = $(DETECTED_MEMORY)*2

Slots 1 through DETECTED_CORES are nonsuspendable and the rest are
suspendable
IsSuspendableSlot = SlotID > $(DETECTED_CORES)

If I am a suspendable slot, my corresponding nonsuspendable slot is
my SlotID plus $(DETECTED_CORES)
NonSuspendableSlotState = eval(strcat("slot",SlotID-$(DETECTED_CORES),"_State")

The above expression looks at slotX_State, so we need to add
State to the list of slot attributes to advertise.
STARTD_SLOT_ATTRS = $(STARTD_SLOT_ATTRS) State

For convenience, advertise these expressions in the machine ad.
STARTD_ATTRS = $(STARTD_ATTRS) IsSuspendableSlot NonSuspendableSlotState

MyNonSuspendableSlotIsIdle = \
 (NonSuspendableSlotState =!= "Claimed" && NonSuspendableSlotState =!= "Preempting")

NonSuspendable slots are always willing to start jobs.
Suspendable slots are only willing to start if the NonSuspendable slot is idle.
START = \
 IsSuspendableSlot!=True && IsSuspendableJob=!=True || \
 IsSuspendableSlot && IsSuspendableJob==True && $(MyNonSuspendableSlotIsIdle)

Suspend the suspendable slot if the other slot is busy.
SUSPEND = \
 IsSuspendableSlot && $(MyNonSuspendableSlotIsIdle)!=True

WANT_SUSPEND = $(SUSPEND)

CONTINUE = ($(SUSPEND)) != True

Note that in this example, the job ClassAd attribute
IsSuspendableJob has no special meaning to HTCondor. It is an
invented name chosen for this example. To take advantage of the policy,
a job that wishes to be suspended must submit the job so that this
attribute is defined. The following line should be placed in the job’s
submit description file:

+IsSuspendableJob = True

Configuration for Interactive Jobs

Policy may be set based on whether a job is an interactive one or not.
Each interactive job has the job ClassAd attribute

InteractiveJob = True

and this may be used to identify interactive jobs, distinguishing them
from all other jobs.

As an example, presume that slot 1 prefers interactive jobs. Set the
machine’s RANK to show the preference:

RANK = ((MY.SlotID == 1) && (TARGET.InteractiveJob =?= True))

Or, if slot 1 should be reserved for interactive jobs:

START = ((MY.SlotID == 1) && (TARGET.InteractiveJob =?= True))

Multi-Core Machine Terminology

Machines with more than one CPU or core may be configured to run more
than one job at a time. As always, owners of the resources have great
flexibility in defining the policy under which multiple jobs may run,
suspend, vacate, etc.

Multi-core machines are represented to the HTCondor system as shared
resources broken up into individual slots. Each slot can be matched and
claimed by users for jobs. Each slot is represented by an individual
machine ClassAd. In this way, each multi-core machine will appear to the
HTCondor system as a collection of separate slots. As an example, a
multi-core machine named vulture.cs.wisc.edu would appear to
HTCondor as the multiple machines, named slot1@vulture.cs.wisc.edu,
slot2@vulture.cs.wisc.edu, slot3@vulture.cs.wisc.edu, and so on.

The way that the condor_startd breaks up the shared system resources
into the different slots is configurable. All shared system resources,
such as RAM, disk space, and swap space, can be divided evenly among all
the slots, with each slot assigned one core. Alternatively, slot types
are defined by configuration, so that resources can be unevenly divided.
Regardless of the scheme used, it is important to remember that the goal
is to create a representative slot ClassAd, to be used for matchmaking
with jobs.

HTCondor does not directly enforce slot shared resource allocations, and
jobs are free to over subscribe to shared resources. Consider an example
where two slots are each defined with 50% of available RAM. The
resultant ClassAd for each slot will advertise one half the available
RAM. Users may submit jobs with RAM requirements that match these slots.
However, jobs run on either slot are free to consume more than 50% of
available RAM. HTCondor will not directly enforce a RAM utilization
limit on either slot. If a shared resource enforcement capability is
needed, it is possible to write a policy that will evict a job that
over subscribes to shared resources, as described in
condor_startd Policy Configuration.

Dividing System Resources in Multi-core Machines

Within a machine the shared system resources of cores, RAM, swap space
and disk space will be divided for use by the slots. There are two main
ways to go about dividing the resources of a multi-core machine:

	Evenly divide all resources.
	Prior to HTCondor 23.0 the condor_startd will automatically divide the
machine into multiple slots by default, placing one core in each slot, and evenly
dividing all shared resources among the slots. Beginning with HTCondor 23.0
the condor_startd will create a single partitionable slot by default.

In HTCondor 23.0 you can use the configuration template use FEATURE : StaticSlots
to configure a number of static slots. If used without arguments this
configuration template will define a number of single core static slots equal to
the number of detected cpu cores.

To simply configure static slots in any version, configure NUM_SLOTS to the
integer number of slots desired. NUM_SLOTS may not be used to make HTCondor advertise
more slots than there are cores on the machine. The number of cores
is defined by NUM_CPUS.

	Define slot types.
	Instead of the default slot configuration, the machine may
have definitions of slot types, where each type is provided with a
fraction of shared system resources. Given the slot type definition,
control how many of each type are reported at any given time with
further configuration.

Configuration variables define the slot types, as well as variables
that list how much of each system resource goes to each slot type.

Configuration variable

 Startd Cron and Schedd Cron

Startd Cron and Schedd Cron

Daemon ClassAd Hooks

Overview

The Startd Cron and Schedd Cron Daemon ClassAd Hooks mechanism are
used to run executables (called jobs) directly from the condor_startd and condor_schedd daemons.
The output from these jobs is incorporated into the machine ClassAd
generated by the respective daemon. This mechanism and associated jobs
have been identified by various names, including the Startd Cron,
dynamic attributes, and a distribution of executables collectively known
as Hawkeye.

Pool management tasks can be enhanced by using a daemon’s ability to
periodically run executables. The executables are expected to generate
ClassAd attributes as their output; these ClassAds are then incorporated
into the machine ClassAd. Policy expressions can then reference dynamic
attributes (created by the ClassAd hook jobs) in the machine ClassAd.

Job output

The output of the job is incorporated into one or more ClassAds when the
job exits. When the job outputs the special line:

- update:true

the output of the job is merged into all proper ClassAds, and an update
goes to the condor_collector daemon.

As of version 8.3.0, it is possible for a Startd Cron job (but not a
Schedd Cron job) to define multiple ClassAds, using the mechanism
defined below:

	An output line starting with '-' has always indicated
end-of-ClassAd. The '-' can now be followed by a uniqueness tag
to indicate the name of the ad that should be replaced by the new ad.
This name is joined to the name of the Startd Cron job to produced a
full name for the ad. This allows a single Startd Cron job to return
multiple ads by giving each a unique name, and to replace multiple
ads by using the same unique name as a previous invocation. The
optional uniqueness tag can also be followed by the optional keyword
update:<bool>, which can be used to override the Startd Cron
configuration and suppress or force immediate updates.

In other words, the syntax is:

	[name] [update: bool]

	Each ad can contain one of four possible attributes to control what
slot ads the ad is merged into when the condor_startd sends
updates to the collector. These attributes are, in order of highest
to lower priority (in other words, if SlotMergeConstraint
matches, the other attributes are not considered, and so on):

	SlotMergeConstraint expression: the current ad is merged
into all slot ads for which this expression is true. The
expression is evaluated with the slot ad as the TARGET ad.

	SlotName|Name string: the current ad is merged into all
slots whose Name attributes match the value of SlotName up
to the length of SlotName.

	SlotTypeId integer: the current ad is merged into all ads
that have the same value for their SlotTypeId attribute.

	SlotId integer: the current ad is merged into all ads that
have the same value for their SlotId attribute.

For example, if the Startd Cron job returns:

Value=1
SlotId=1
-s1
Value=2
SlotId=2
-s2
Value=10
- update:true

it will set Value=10 for all slots except slot1 and slot2. On those
slots it will set Value=1 and Value=2 respectively. It will also
send updates to the collector immediately.

Configuration

Configuration variables related to Daemon ClassAd Hooks are defined in
Configuration File Entries Relating to Daemon ClassAd Hooks: Startd Cron and Schedd Cron

Here is a complete configuration example. It defines all three of the
available types of jobs: ones that use the condor_startd, benchmark
jobs, and ones that use the condor_schedd.

#
Startd Cron Stuff
#
auxiliary variable to use in identifying locations of files
MODULES = $(ROOT)/modules

STARTD_CRON_CONFIG_VAL = $(RELEASE_DIR)/bin/condor_config_val
STARTD_CRON_MAX_JOB_LOAD = 0.2
STARTD_CRON_JOBLIST =

Test job
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) test
STARTD_CRON_TEST_MODE = OneShot
STARTD_CRON_TEST_RECONFIG_RERUN = True
STARTD_CRON_TEST_PREFIX = test_
STARTD_CRON_TEST_EXECUTABLE = $(MODULES)/test
STARTD_CRON_TEST_KILL = True
STARTD_CRON_TEST_ARGS = abc 123
STARTD_CRON_TEST_SLOTS = 1
STARTD_CRON_TEST_JOB_LOAD = 0.01

job 'date'
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) date
STARTD_CRON_DATE_MODE = Periodic
STARTD_CRON_DATE_EXECUTABLE = $(MODULES)/date
STARTD_CRON_DATE_PERIOD = 15s
STARTD_CRON_DATE_JOB_LOAD = 0.01

Job 'foo'
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) foo
STARTD_CRON_FOO_EXECUTABLE = $(MODULES)/foo
STARTD_CRON_FOO_PREFIX = Foo
STARTD_CRON_FOO_MODE = Periodic
STARTD_CRON_FOO_PERIOD = 10m
STARTD_CRON_FOO_JOB_LOAD = 0.2

#
Benchmark Stuff
#
BENCHMARKS_JOBLIST = mips kflops

MIPS benchmark
BENCHMARKS_MIPS_EXECUTABLE = $(LIBEXEC)/condor_mips
BENCHMARKS_MIPS_JOB_LOAD = 1.0

KFLOPS benchmark
BENCHMARKS_KFLOPS_EXECUTABLE = $(LIBEXEC)/condor_kflops
BENCHMARKS_KFLOPS_JOB_LOAD = 1.0

#
Schedd Cron Stuff. Unlike the Startd,
a restart of the Schedd is required for changes to take effect
#
SCHEDD_CRON_CONFIG_VAL = $(RELEASE_DIR)/bin/condor_config_val
SCHEDD_CRON_JOBLIST =

Test job
SCHEDD_CRON_JOBLIST = $(SCHEDD_CRON_JOBLIST) test
SCHEDD_CRON_TEST_MODE = OneShot
SCHEDD_CRON_TEST_RECONFIG_RERUN = True
SCHEDD_CRON_TEST_PREFIX = test_
SCHEDD_CRON_TEST_EXECUTABLE = $(MODULES)/test
SCHEDD_CRON_TEST_PERIOD = 5m
SCHEDD_CRON_TEST_KILL = True
SCHEDD_CRON_TEST_ARGS = abc 123

 Security

Security

Security Overview

Beginning in HTCondor version 9, a main goal is to make all condor
installations easier to secure. In previous versions, a default installation
typically required additional steps after setup to enable end-to-end security
for all users and daemons in the system. Configuring various different types
of authentication and security policy could also involve setting quite a number
of different configuration parameters and a fairly deep foray into the manual
to understand how they all work together.

This overview will explain the high-level concepts involved in securing an
HTCondor pool. If possible, we recommend performing a clean installation “from
scratch” and then migrating over pieces of your old configuration as needed.
Here are some quick links for getting started if you want to jump right in:

	Quick Links:
	If you are upgrading an existing pool from 8.9.X to 9.0.X, please visit
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=UpgradingFromEightNineToNineZero

If you are installing a new HTCondor pool from scratch, please read
about Downloading and Installing

General Security Flow

Establishing a secure connection in HTCondor goes through four major steps,
which are very briefly enumerated here for reference.

	Negotiation: In order for a client and server to communicate, they need to
agree on which security mechanisms will be used for the connection. This
includes whether or not the connection will be authenticated, which types of
authentication methods can be used, whether the connection will be encrypted,
and which different types of encryption algorithms can be used. The client
sends its capabilities, preferences, and requirements; the server compares
those against its own, decides what to do, and tells the client; if a
connection is possible, they both then work to enact it. We call the decisions
the server makes during negotiation the “security policy” for that connection;
see Security Negotiation for details on policy
configuration.

	Authentication/Mapping: If the server decides to authenticate (and we
strongly recommend that it almost always either do so or reject the
connection), the methods allowed are tried in the order decided by the server
until one of them succeeds. After a successful authentication, the server
decides the canonical name of the user based on the credentials used by the
client. For SSL, this involves mapping the DN to a user@domain.name format.
For most other methods the result is already in user@domain.name format. For
details on different types of supported authentication methods, please see
Authentication.

	Encryption and Integrity: If the server decided that encryption would be
used, both sides now enable encryption and integrity checks using the method
preferred by the server. AES is now the preferred method and enabled by
default. The overhead of doing the encryption and integrity checks is minimal
so we have decided to simplify configuration by requiring changes to disable it
rather than enable it. For details on different types of supported
authentication methods, see Encryption.

	Authorization: The canonical user is now checked to see if they are allowed
to send the command to the server that they wish to send. Commands are
“registered” at different authorization levels, and there is an ALLOW/DENY list
for each level. If the canonical user is authorized, HTCondor performs the
requested action. If authorization fails, the permission is DENIED and the
network connection is closed. For list of authorization levels and more
information on configuring ALLOW and DENY lists, please see
Authorization.

Highlights of New Features In Version 9.0.0

Introducing: IDTOKENS

In 9.0.0, we have introduced a new authentication mechanism called
IDTOKENS. These tokens are easy for the administrator to issue, and in
many cases users can also acquire their own tokens on a machine used to submit
jobs (running the condor_schedd). An IDTOKEN is a relatively lightweight
credential that can be used to prove an identity. The contents of the token
are actually a JWT (https://jwt.io/) that is signed by a “Token Signing Key”
that establishes the trustworthiness of the token. Typically, this signing key
is something accessible only to HTCondor (and owned by the “root” user of the
system) and not users, and by default lives in /etc/condor/passwords.d/POOL.
To make configuration easier, this signing key is generated automatically by
HTCondor if it does not exist on the machine that runs the Central Manager, or
the condor_collector daemon in particular. So after installing the central
manager and starting it up for the first time, you should as the administrator
be all set to start issuing tokens. That said, you will need to copy the
signing key to all other machines in your pool that you want to be able to
receive and validate the IDTOKEN credentials that you issue.

Documentation for the command line tools used for creating and managing
IDTOKENS is available in the Token Authentication section.

Introducing: AES

In version 9.0.0 we have also added support for AES, a widely-used encryption
method that has hardware support in most modern CPUS. Because the overhead of
encryption is so much lower, we have turned it on by default. We use AES in
such a way (called AESGCM mode) that it provides integrity checks (checksums)
on transmitted data, and this method is now on by default and is the preferred
method to be used if both sides support it.

Types of Network Connections

We generally consider user-to-daemon and daemon-to-daemon connections
distinctly. User-to-daemon connections almost always issue READ or
WRITE level commands, and the vast majority of those connections are to the
schedd or the collector; many of those connections will be between processes on
the same machine. Conversely, daemon-to-daemon connections are typically
between two different machines, and use commands registered at all levels.

User-to-Daemon Connections (User Authentication)

In order for users to submit jobs to the HTCondor system, they will need to
authenticate to the condor_schedd daemon. They also need to authenticate to
the SchedD to modify, remove, hold, or release jobs. When users are
interacting with the condor_schedd, they issue commands that need to be
authorized at either the “READ” or “WRITE” level. (Unless the user is an
administrator, in which case they might also issue “ADMINISTRATOR”-level
commands).

Authenticating using FS

On a Linux system this is typically done by logging into the machine that is
running the condor_schedd daemon and authentication using a method called
FS (on Linux see Windows note below this paragraph). FS stands for
“File System” and the method works by having the user create a file in /tmp
that the condor_schedd can then examine to determine who the owner is.
Because this operates in /tmp, this only works for connections to daemons on
the same machine. FS is enabled by default so the administrator does not
need to do anything to allow users to interact with the job queue this way.
(There are other methods, mentioned below, that can work over a network
connection.)

[Windows note: HTCondor on Windows does not use FS, but rather a method
specific to Windows called NTSSPI. See the section on
Authentication for more more info.]

If it is necessary to do a “remote submit” – that is, run condor_submit on a
different machine than is running the condor_schedd – then the administrator
will need to configure another method. FS_REMOTE works similarly to FS
but uses a shared directory other than /tmp. Mechanisms such as KERBEROS,
SSL, and MUNGE can also be configured. However, with the addition of
IDTOKENS in 9.0.0, it is easy to configure and deploy this mechanism and we
would suggest you do so unless you have a specific need to use one of the
alternatives.

Authenticating using IDTOKENS

If a user is able to log in to the machine running the condor_schedd, and the
SchedD has been set up with the Token Signing Key (see above for how that is
created and deployed) then the user can simply run condor_token_fetch and
retrieve their own token. This token can then be (securely) moved to another
machine and used to interact with the job queue, including submission, edits,
hold, release, and removing the job.

If the user cannot log in to the machine running the condor_schedd, they
should ask their administrator to create tokens for them using the
condor_token_create command line tool. Once again, more info can be found in
the Token Authentication section.

Daemon-to-Daemon Connections (Daemon Authentication)

HTCondor daemons need to trust each other to pass information security from one
to the other. This information may contain important attributes about a job to
run, such as which executable to run, the arguments, and which user to run the
job as. Obviously, being able to tamper those could allow an impersonator to
perform all sorts of nefarious tasks.

For daemons that run on the same machine, for example a condor_master,
condor_schedd, and the condor_shadow daemons launched by the
condor_schedd, this authentication is performed using a secret that is shared
with each condor daemon when it is launched. These are called “family
sessions”, since the processes sharing the secret are all part of the same unix
process family. This allows the HTCondor daemons to contact one another
locally without having to use another type of authentication. So essentially,
when we are discussing daemon-to-daemon communication, we are talking about
HTCondor daemons on two different physical machines. In those cases, they need
to establish trust using some mechanism that works over a network. The FS
mechanism used for user job submission typically doesn’t work here because it
relies on sharing a directory between the two daemons, typically /tmp.
However, IDTOKENS are able to work here as long as the server has a copy of
the Signing Key that was used to issue the token that the client is using. The
daemon will authenticate as condor@$(TRUST_DOMAIN) where the trust domain
is the string set by the token issuer, and is usually equal to the
$(UID_DOMAIN) setting on the central manager. (Note that setting
UID_DOMAIN has other consequences.)

Once HTCondor has determined the authenticate principal, it checks the
authorization lists as mentioned above in
General Security Flow. For daemon-to-daemon
authorization, there are a few lists that may be consulted.

If the condor daemon receiving the connection is the condor_collector, it first
checks to see if there are specific authorization lists for daemons advertising
to the collector (i.e. joining the pool). If the incoming command is
advertising a submit node (i.e. a condor_schedd daemon), it will check
ALLOW_ADVERTISE_SCHEDD. If the incoming command is for an execute node (a
condor_startd daemon), it will check ALLOW_ADVERTISE_STARTD. And if the
incoming command is for a condor_master (which runs on all HTCondor nodes) it
will check ALLOW_ADVERTISE_MASTER. If the list it checks is undefined, it will
then check ALLOW_DAEMON instead.

If the condor daemon receiving the connection is not a condor_collector, the
ALLOW_DAEMON is the only list that is looked at.

It is notable that many daemon-to-daemon connections have been optimized to not
need to authenticate using one of the standard methods. Similar to the
“family” sessions that work internally on one machine, there are sessions
called “match” sessions that can be used internally within one POOL of
machines. Here, trust is established by the negotiator when matching a job to
a resource – the Negotiator takes a secret generated by the condor_startd and
securely passes it to the condor_schedd when a match is made. The submit and
execute machines can now use this secret to establish a secure channel.
Because of this, you do not necessarily need to have authentication from one to
the other configured; it is enough to have secure channels from the SchedD to
the Collector and from the StartD to the collector. Likewise, a Negotiator can
establish trust with a SchedD in the same way: the SchedD trusts the Collector
to tell only trustworthy Negotiators its secret. However, some features such
as condor_ssh_to_job and condor_tail will not work unless the access point
can authenticate directly to the execute point, which is why we mentioned
needing to distribute the signing key earlier – if the server does not have
the signing key, it cannot directly validate the incoming IDTOKEN used for
authentication.

Security Terms

Security in HTCondor is a broad issue, with many aspects to consider.
Because HTCondor’s main purpose is to allow users to run arbitrary code
on large numbers of computers, it is important to try to limit who can
access an HTCondor pool and what privileges they have when using the
pool. This section covers these topics.

There is a distinction between the kinds of resource attacks HTCondor
can defeat, and the kinds of attacks HTCondor cannot defeat. HTCondor
cannot prevent security breaches of users that can elevate their
privilege to the root or administrator account. HTCondor does not run
user jobs in sandboxes (possibly excepting Docker or Singularity jobs)
so HTCondor cannot defeat all malicious actions by user jobs.
An example of a malicious job is one that launches a distributed denial
of service attack. HTCondor assumes that users are trustworthy. HTCondor
can prevent unauthorized access to the HTCondor pool, to help ensure
that only trusted users have access to the pool. In addition, HTCondor
provides encryption and integrity checking, to ensure that network
transmissions are not examined or tampered with while in transit.

Broadly speaking, the aspects of security in HTCondor may be categorized
and described:

	Users
	Authorization or capability in an operating system is based on a
process owner. Both those that submit jobs and HTCondor daemons
become process owners. The HTCondor system prefers that HTCondor
daemons are run as the user root, while other common operations are
owned by a user of HTCondor. Operations that do not belong to either
root or an HTCondor user are often owned by the condor user. See
User Accounts in HTCondor on Unix Platforms
for more detail.

	Authentication
	Proper identification of a user is accomplished by the process of
authentication. It attempts to distinguish between real users and
impostors. By default, HTCondor’s authentication uses the user id
(UID) to determine identity, but HTCondor can choose among a variety
of authentication mechanisms, including the stronger authentication
methods Kerberos and SSL.

	Authorization
	Authorization specifies who is allowed to do what. Some users are
allowed to submit jobs, while other users are allowed administrative
privileges over HTCondor itself. HTCondor provides authorization on
either a per-user or on a per-machine basis.

	Privacy
	HTCondor may encrypt data sent across the network, which prevents
others from viewing the data. With persistence and sufficient
computing power, decryption is possible. HTCondor can encrypt the
data sent for internal communication, as well as user data, such as
files and executables. Encryption operates on network transmissions:
unencrypted data is stored on disk by default. However, see the
ENCRYPT_EXECUTE_DIRECTORY setting for how to encrypt
job data on the disk of an execute node.

	Integrity
	The man-in-the-middle attack tampers with data without the awareness
of either side of the communication. HTCondor’s integrity check
sends additional cryptographic data to verify that network data
transmissions have not been tampered with. Note that the integrity
information is only for network transmissions: data stored on disk
does not have this integrity information. Also note that integrity
checks are not performed upon job data files that are transferred by
HTCondor via the File Transfer Mechanism described in
the Submitting a Job section.

Quick Configuration of Security

Note: This method of configuring security is experimental.
Many tools and daemons that send administrative commands between machines
(e.g. condor_off, condor_drain, or condor_defrag)
won’t work without further setup.
We plan to remove this limitation in future releases.

While pool administrators with complex configurations or application developers may need to
understand the full security model described in this chapter, HTCondor
strives to make it easy to enable reasonable security settings for new pools.

When installing a new pool, assuming you are on a trusted network and there
are no unprivileged users logged in to the submit hosts:

	Start HTCondor on your central manager host (containing the condor_collector daemon) first.
For a fresh install, this will automatically generate a random key in
the file specified by SEC_TOKEN_POOL_SIGNING_KEY_FILE
(defaulting to /etc/condor/passwords.d/POOL on Linux and $(RELEASE_DIR)\tokens.sk\POOL on Windows).

	Install an auto-approval rule on the central manager using condor_token_request_auto_approve.
This automatically approves any daemons starting on a specified network for
a fixed period of time. For example, to auto-authorize any daemon on the network 192.168.0.0/24
for the next hour (3600 seconds), run the following command from the central manager:

$ condor_token_request_auto_approve -netblock 192.168.0.0/24 -lifetime 3600

	Within the auto-approval rule’s lifetime, start the submit and execute
hosts inside the appropriate network. The token requests for the corresponding daemons (the condor_master, condor_startd, and condor_schedd)
will be automatically approved and installed into /etc/condor/tokens.d/;
this will authorize the daemon to advertise to the collector. By default,
auto-generated tokens do not have an expiration.

This quick-configuration requires no configuration changes beyond the default settings. More
complex cases, such as those where the network is not trusted, are covered in the
Token Authentication section.

HTCondor’s Security Model

At the heart of HTCondor’s security model is the notion that
communications are subject to various security checks. A request from
one HTCondor daemon to another may require authentication to prevent
subversion of the system. A request from a user of HTCondor may need to
be denied due to the confidential nature of the request. The security
model handles these example situations and many more.

Requests to HTCondor are categorized into groups of access levels, based
on the type of operation requested. The user of a specific request must
be authorized at the required access level. For example, executing the
condor_status command requires the READ access level. Actions
that accomplish management tasks, such as shutting down or restarting of
a daemon require an ADMINISTRATOR access level. See
the Authorization section for a full list of
HTCondor’s access levels and their meanings.

There are two sides to any communication or command invocation in
HTCondor. One side is identified as the client, and the other side is
identified as the daemon. The client is the party that initiates the
command, and the daemon is the party that processes the command and
responds. In some cases it is easy to distinguish the client from the
daemon, while in other cases it is not as easy. HTCondor tools such as
condor_submit and condor_config_val are clients. They send
commands to daemons and act as clients in all their communications. For
example, the condor_submit command communicates with the
condor_schedd. Behind the scenes, HTCondor daemons also communicate
with each other; in this case the daemon initiating the command plays
the role of the client. For instance, the condor_negotiator daemon
acts as a client when contacting the condor_schedd daemon to initiate
matchmaking. Once a match has been found, the condor_schedd daemon
acts as a client and contacts the condor_startd daemon.

HTCondor’s security model is implemented using configuration. Commands
in HTCondor are executed over TCP/IP network connections. While network
communication enables HTCondor to manage resources that are distributed
across an organization (or beyond), it also brings in security
challenges. HTCondor must have ways of ensuring that communications are
being sent by trustworthy users and not tampered with in transit. These
issues can be addressed with HTCondor’s authentication, encryption, and
integrity features.

Access Level Descriptions

Authorization is granted based on specified access levels. This list
describes each access level, and provides examples of their usage. The
levels implement a partial hierarchy; a higher level often implies a
READ or both a WRITE and a READ level of access as
described.

	READ
	This access level can obtain or read information about HTCondor.
Examples that require only READ access are viewing the status of
the pool with condor_status, checking a job queue with
condor_q, or viewing user priorities with condor_userprio.
READ access does not allow any changes, and it does not allow
job submission.

	WRITE
	This access level is required to send (write) information to
HTCondor. Examples that require WRITE access are job submission
with condor_submit and advertising a machine so it appears in the
pool (this is usually done automatically by the condor_startd
daemon). The WRITE level of access implies READ access.

	ADMINISTRATOR
	This access level has additional HTCondor administrator rights to
the pool. It includes the ability to change user priorities with the
command condor_userprio, as well as the ability to turn HTCondor
on and off (as with the commands condor_on and condor_off).
The condor_fetchlog tool also requires an ADMINISTRATOR
access level. The ADMINISTRATOR level of access implies both
READ and WRITE access.

	CONFIG
	This access level is required to modify a daemon’s configuration
using the condor_config_val command. By default, this level of
access can change any configuration parameters of an HTCondor pool,
except those specified in the condor_config.root configuration
file. The CONFIG level of access implies READ access.

	DAEMON
	This access level is used for commands that are internal to the
operation of HTCondor. An example of this internal operation is when
the condor_startd daemon sends its ClassAd updates to the
condor_collector daemon (which may be more specifically
controlled by the ADVERTISE_STARTD access level). Authorization
at this access level should only be given to the user account under
which the HTCondor daemons run. The DAEMON level of access
implies both READ and WRITE access.

	NEGOTIATOR
	This access level is used specifically to verify that commands are
sent by the condor_negotiator daemon. The condor_negotiator
daemon runs on the central manager of the pool. Commands requiring
this access level are the ones that tell the condor_schedd daemon
to begin negotiating, and those that tell an available
condor_startd daemon that it has been matched to a
condor_schedd with jobs to run. The NEGOTIATOR level of
access implies READ access.

	ADVERTISE_MASTER
	This access level is used specifically for commands used to
advertise a condor_master daemon to the collector. Any setting
for this access level that is not defined will default to the
corresponding setting in the DAEMON access level.
The ADVERTISE_MASTER level of access implies READ access.

	ADVERTISE_STARTD
	This access level is used specifically for commands used to
advertise a condor_startd daemon to the collector. Any setting
for this access level that is not defined will default to the
corresponding setting in the DAEMON access level.
The ADVERTISE_STARTD level of access implies READ access.

	ADVERTISE_SCHEDD
	This access level is used specifically for commands used to
advertise a condor_schedd daemon to the collector. Any setting
for this access level that is not defined will default to the
corresponding setting in the DAEMON access level.
The ADVERTISE_SCHEDD level of access implies READ access.

	CLIENT
	This access level is different from all the others. Whereas all of
the other access levels refer to the security policy for accepting
connections from others, the CLIENT access level applies when an
HTCondor daemon or tool is connecting to some other HTCondor daemon.
In other words, it specifies the policy of the client that is
initiating the operation, rather than the server that is being
contacted.

The following is a list of registered commands that daemons will accept.
The list is ordered by daemon. For each daemon, the commands are grouped
by the access level required for a daemon to accept the command from a
given machine.

ALL DAEMONS:

	WRITE
	The command sent as a result of condor_reconfig to reconfigure a
daemon.

STARTD:

	WRITE
	All commands that relate to a condor_schedd daemon claiming a
machine, starting jobs there, or stopping those jobs.

	READ
	The command that condor_preen sends to request the current state
of the condor_startd daemon.

	NEGOTIATOR
	The command that the condor_negotiator daemon sends to match a
machine’s condor_startd daemon with a given condor_schedd
daemon.

NEGOTIATOR:

	WRITE
	The command that initiates a new negotiation cycle. It is sent by
the condor_schedd when new jobs are submitted or a
condor_reschedule command is issued.

	READ
	The command that can retrieve the current state of user priorities
in the pool, sent by the condor_userprio command.

	ADMINISTRATOR
	The command that can set the current values of user priorities, sent
as a result of the condor_userprio command.

COLLECTOR:

	ADVERTISE_MASTER
	Commands that update the condor_collector daemon with new
condor_master ClassAds.

	ADVERTISE_SCHEDD
	Commands that update the condor_collector daemon with new
condor_schedd ClassAds.

	ADVERTISE_STARTD
	Commands that update the condor_collector daemon with new
condor_startd ClassAds.

	DAEMON
	All other commands that update the condor_collector daemon with
new ClassAds. Note that the specific access levels such as
ADVERTISE_STARTD default to the DAEMON settings, which in
turn defaults to WRITE.

	READ
	All commands that query the condor_collector daemon for ClassAds.

SCHEDD:

	NEGOTIATOR
	The command that the condor_negotiator sends to begin negotiating
with this condor_schedd to match its jobs with available
condor_startds.

	WRITE
	The command which condor_reschedule sends to the condor_schedd
to get it to update the condor_collector with a current ClassAd
and begin a negotiation cycle.

The commands which write information into the job queue (such as
condor_submit and condor_hold). Note that for most commands
which attempt to write to the job queue, HTCondor will perform an
additional user-level authentication step. This additional
user-level authentication prevents, for example, an ordinary user
from removing a different user’s jobs.

	READ
	The command from any tool to view the status of the job queue.

The commands that a condor_startd sends to the condor_schedd
when the condor_schedd daemon’s claim is being preempted and also
when the lease on the claim is renewed. These operations only
require READ access, rather than DAEMON in order to limit
the level of trust that the condor_schedd must have for the
condor_startd. Success of these commands is only possible if the
condor_startd knows the secret claim id, so effectively,
authorization for these commands is more specific than HTCondor’s
general security model implies. The condor_schedd automatically
grants the condor_startd READ access for the duration of the
claim. Therefore, if one desires to only authorize specific execute
machines to run jobs, one must either limit which machines are
allowed to advertise themselves to the pool (most common) or
configure the condor_schedd ‘s
ALLOW_CLIENT setting to only allow connections from
the condor_schedd to the trusted execute machines.

MASTER: All commands are registered with ADMINISTRATOR access:

	restart
	Master restarts itself (and all its children)

	off
	Master shuts down all its children

	off -master
	Master shuts down all its children and exits

	on
	Master spawns all the daemons it is configured to spawn

Security Negotiation

Because of the wide range of environments and security demands
necessary, HTCondor must be flexible. Configuration provides this
flexibility. The process by which HTCondor determines the security
settings that will be used when a connection is established is called
security negotiation. Security negotiation’s primary purpose is to
determine which of the features of authentication, encryption, and
integrity checking will be enabled for a connection. In addition, since
HTCondor supports multiple technologies for authentication and
encryption, security negotiation also determines which technology is
chosen for the connection.

Security negotiation is a completely separate process from matchmaking,
and should not be confused with any specific function of the
condor_negotiator daemon. Security negotiation occurs when one
HTCondor daemon or tool initiates communication with another HTCondor
daemon, to determine the security settings by which the communication
will be ruled. The condor_negotiator daemon does negotiation, whereby
queued jobs and available machines within a pool go through the process
of matchmaking (deciding out which machines will run which jobs).

Configuration

The configuration macro names that determine what features will be used
during client-daemon communication follow the pattern:

SEC_<context>_<feature>

The <feature> portion of the macro name determines which security
feature’s policy is being set. <feature> may be any one of

AUTHENTICATION
ENCRYPTION
INTEGRITY
NEGOTIATION

The <context> component of the security policy macros can be used to
craft a fine-grained security policy based on the type of communication
taking place. <context> may be any one of

CLIENT
READ
WRITE
ADMINISTRATOR
CONFIG
DAEMON
NEGOTIATOR
ADVERTISE_MASTER
ADVERTISE_STARTD
ADVERTISE_SCHEDD
DEFAULT

Any of these constructed configuration macros may be set to any of the
following values:

REQUIRED
PREFERRED
OPTIONAL
NEVER

Security negotiation resolves various client-daemon combinations of
desired security features in order to set a policy.

As an example, consider Frida the scientist. Frida wants to avoid
authentication when possible. She sets

SEC_DEFAULT_AUTHENTICATION = OPTIONAL

The machine running the condor_schedd to which Frida will remotely
submit jobs, however, is operated by a security-conscious system
administrator who dutifully sets:

SEC_DEFAULT_AUTHENTICATION = REQUIRED

When Frida submits her jobs, HTCondor’s security negotiation determines
that authentication will be used, and allows the command to continue.
This example illustrates the point that the most restrictive security
policy sets the levels of security enforced. There is actually more to
the understanding of this scenario. Some HTCondor commands, such as the
use of condor_submit to submit jobs always require authentication of
the submitter, no matter what the policy says. This is because the
identity of the submitter needs to be known in order to carry out the
operation. Others commands, such as condor_q, do not always require
authentication, so in the above example, the server’s policy would force
Frida’s condor_q queries to be authenticated, whereas a different
policy could allow condor_q to happen without any authentication.

Whether or not security negotiation occurs depends on the setting at
both the client and daemon side of the configuration variable(s) defined
by SEC_*_NEGOTIATION. SEC_DEFAULT_NEGOTIATION is a variable
representing the entire set of configuration variables for
NEGOTIATION. For the client side setting, the only definitions that
make sense are REQUIRED and NEVER. For the daemon side setting,
the PREFERRED value makes no sense. Table 3.2
shows how security negotiation resolves various client-daemon
combinations of security negotiation policy settings. Within the table,
Yes means the security negotiation will take place. No means it will
not. Fail means that the policy settings are incompatible and the
communication cannot continue.

	
	Daemon Setting

	NEVER

	OPTIONAL

	REQUIRED

	Client
Setting

	NEVER

	No

	No

	Fail

	REQUIRED

	Fail

	Yes

	Yes

Table 3.2: Resolution of security negotiation.

Enabling authentication, encryption, and integrity checks is dependent
on security negotiation taking place. The enabled security negotiation
further sets the policy for these other features.
Table 3.3 shows how security features are resolved
for client-daemon combinations of security feature policy settings. Like
Table 3.2, Yes means the feature will be utilized.
No means it will not. Fail implies incompatibility and the feature
cannot be resolved.

	
	Daemon Setting

	NEVER

	OPTIONAL

	PREFERRED

	REQUIRED

	Client
Setting

	NEVER

	No

	No

	No

	Fail

	OPTIONAL

	No

	No

	Yes

	Yes

	PREFERRED

	No

	Yes

	Yes

	Yes

	REQUIRED

	Fail

	Yes

	Yes

	Yes

Table 3.3: Resolution of security features.

The enabling of encryption and/or integrity checks is dependent on
authentication taking place. The authentication provides a key exchange.
The key is needed for both encryption and integrity checks.

Setting SEC_CLIENT_<feature> determines the policy for all outgoing
commands. The policy for incoming commands (the daemon side of the
communication) takes a more fine-grained approach that implements a set
of access levels for the received command. For example, it is desirable
to have all incoming administrative requests require authentication.
Inquiries on pool status may not be so restrictive. To implement this,
the administrator configures the policy:

SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_READ_AUTHENTICATION = OPTIONAL

The DEFAULT value for <context> provides a way to set a policy for all
access levels (READ, WRITE, etc.) that do not have a specific
configuration variable defined. In addition, some access levels will
default to the settings specified for other access levels. For example,
ADVERTISE_STARTD defaults to DAEMON, and DAEMON defaults to
WRITE, which then defaults to the general DEFAULT setting.

Configuration for Security Methods

Authentication and encryption can each be accomplished by a variety of
methods or technologies. Which method is utilized is determined during
security negotiation.

The configuration macros that determine the methods to use for
authentication and/or encryption are

SEC_<context>_AUTHENTICATION_METHODS
SEC_<context>_CRYPTO_METHODS

These macros are defined by a comma or space delimited list of possible
methods to use. The Authentication section
lists all implemented authentication methods. The
Encryption section lists all implemented
encryption methods.

Authentication

The client side of any communication uses one of two macros to specify
whether authentication is to occur:

	SEC_DEFAULT_AUTHENTICATION

	SEC_CLIENT_AUTHENTICATION

For the daemon side, there are a larger number of macros to specify
whether authentication is to take place, based upon the necessary access
level:

	SEC_DEFAULT_AUTHENTICATION

	SEC_READ_AUTHENTICATION

	SEC_WRITE_AUTHENTICATION

	SEC_ADMINISTRATOR_AUTHENTICATION

	SEC_CONFIG_AUTHENTICATION

	SEC_DAEMON_AUTHENTICATION

	SEC_NEGOTIATOR_AUTHENTICATION

	SEC_ADVERTISE_MASTER_AUTHENTICATION

	SEC_ADVERTISE_STARTD_AUTHENTICATION

	SEC_ADVERTISE_SCHEDD_AUTHENTICATION

As an example, the macro defined in the configuration file for a daemon
as

SEC_WRITE_AUTHENTICATION = REQUIRED

signifies that the daemon must authenticate the client for any
communication that requires the WRITE access level. If the daemon’s
configuration contains

SEC_DEFAULT_AUTHENTICATION = REQUIRED

and does not contain any other security configuration for
AUTHENTICATION, then this default defines the daemon’s needs for
authentication over all access levels. Where a specific macro is
defined, the more specific value takes precedence over the default
definition.

If authentication is to be done, then the communicating parties must
negotiate a mutually acceptable method of authentication to be used. A
list of acceptable methods may be provided by the client, using the
macros

	SEC_DEFAULT_AUTHENTICATION_METHODS

	SEC_CLIENT_AUTHENTICATION_METHODS

A list of acceptable methods may be provided by the daemon, using the
macros

	SEC_DEFAULT_AUTHENTICATION_METHODS

	SEC_READ_AUTHENTICATION_METHODS

	SEC_WRITE_AUTHENTICATION_METHODS

	SEC_ADMINISTRATOR_AUTHENTICATION_METHODS

	SEC_DAEMON_AUTHENTICATION_METHODS

	SEC_CONFIG_AUTHENTICATION_METHODS

	SEC_NEGOTIATOR_AUTHENTICATION_METHODS

	SEC_ADVERTISE_MASTER_AUTHENTICATION_METHODS

	SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS

	SEC_ADVERTISE_SCHEDD_AUTHENTICATION_METHODS

The methods are given as a comma-separated list of acceptable values.
These variables list the authentication methods that are available to be
used. The ordering of the list defines preference; the first item in the
list indicates the highest preference. As not all of the authentication
methods work on Windows platforms, which ones do not work on Windows are
indicated in the following list of defined values:

SSL
KERBEROS
PASSWORD
FS (not available on Windows platforms)
FS_REMOTE (not available on Windows platforms)
IDTOKENS
SCITOKENS
NTSSPI
MUNGE
CLAIMTOBE
ANONYMOUS

For example, a client may be configured with:

SEC_CLIENT_AUTHENTICATION_METHODS = FS, SSL

and a daemon the client is trying to contact with:

SEC_DEFAULT_AUTHENTICATION_METHODS = SSL

Security negotiation will determine that SSL authentication is the only
compatible choice. If there are multiple compatible authentication
methods, security negotiation will make a list of acceptable methods and
they will be tried in order until one succeeds.

As another example, the macro

SEC_DEFAULT_AUTHENTICATION_METHODS = KERBEROS, NTSSPI

indicates that either Kerberos or Windows authentication may be used,
but Kerberos is preferred over Windows. Note that if the client and
daemon agree that multiple authentication methods may be used, then they
are tried in turn. For instance, if they both agree that Kerberos or
NTSSPI may be used, then Kerberos will be tried first, and if there is a
failure for any reason, then NTSSPI will be tried.

An additional specialized method of authentication exists for
communication between the condor_schedd and condor_startd, as
well as communication between the condor_schedd and the condor_negotiator.
It is
especially useful when operating at large scale over high latency
networks or in situations where it is inconvenient to set up one of the
other methods of authentication between the submit and execute
daemons. See the description of
SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION in
Configuration File Entries Relating to Security for details.

If the configuration for a machine does not define any variable for
SEC_<access-level>_AUTHENTICATION, then HTCondor uses a default
value of OPTIONAL. Authentication will be required for any operation
which modifies the job queue, such as condor_qedit and condor_rm.
If the configuration for a machine does not define any variable for
SEC_<access-level>_AUTHENTICATION_METHODS, the default value for a
Unix machine is FS, IDTOKENS, KERBEROS. This default value for a Windows
machine is NTSSPI, IDTOKENS, KERBEROS.

SSL Authentication

SSL authentication utilizes X.509 certificates to establish trust between
a client and a server.

SSL authentication may be mutual or server-only.
That is, the server always needs a certificate that can be verified by
the client, but a certificate for the client may be optional.
Whether a client certificate is required is controlled by
configuration variable
AUTH_SSL_REQUIRE_CLIENT_CERTIFICATE, a boolean value
that defaults to False.
If the value is False, then the client may present a certificate
to be verified by the server.
If the client doesn’t have a certificate, then its identity is set to
unauthenticated by the server.
If the value is True and the client doesn’t have a certificate, then
the SSL authentication fails (other authentication methods may then be
tried).

The names and locations of keys and certificates for clients, servers,
and the files used to specify trusted certificate authorities (CAs) are
defined by settings in the configuration files. The contents of the
files are identical in format and interpretation to those used by other
systems which use SSL, such as Apache httpd.

The configuration variables AUTH_SSL_CLIENT_CERTFILE and
AUTH_SSL_SERVER_CERTFILE specify the file location for the certificate
file for the initiator and recipient of connections, respectively. Similarly,
the configuration variables
AUTH_SSL_CLIENT_KEYFILE and
AUTH_SSL_SERVER_KEYFILE specify the locations for keys. If no client
certificate is used, the client will authenticate as user anonymous@ssl.

The configuration variables AUTH_SSL_SERVER_CAFILE and
AUTH_SSL_CLIENT_CAFILE each specify a path and file name, providing
the location of a file containing one or more certificates issued by trusted
certificate authorities. Similarly, AUTH_SSL_SERVER_CADIR and
AUTH_SSL_CLIENT_CADIR each specify a directory with one or more files,
each which may contain a single CA certificate. The directories must be
prepared using the OpenSSL c_rehash utility.

Bootstrapping SSL Authentication

HTCondor daemons exposed to the Internet may utilize server certificates provided
by well-known authorities; however, SSL can be difficult to bootstrap for non-public
hosts.

Accordingly, on first startup, if COLLECTOR_BOOTSTRAP_SSL_CERTIFICATE
is True, the condor_collector generates a new CA and key in the locations
pointed to by TRUST_DOMAIN_CAFILE and TRUST_DOMAIN_CAKEY,
respectively. If AUTH_SSL_SERVER_CERTFILE or
AUTH_SSL_SERVER_KEYFILE do not exist, the collector will generate a
host certificate and key using the generated CA and write them to the
respective locations.

The first time an unknown CA is encountered by tool such as condor_status, the tool
will prompt the user on whether it should trust the CA; the prompt looks like the following:

$ condor_status
The remote host collector.wisc.edu presented an untrusted CA certificate with the following fingerprint:
SHA-256: 781b:1d:1:ca:b:f7:ab:b6:e4:a3:31:80:ae:28:9d:b0:a9:ee:1b:c1:63:8b:62:29:83:1f:e7:88:29:75:6:
Subject: /O=condor/CN=hcc-briantest7.unl.edu
Would you like to trust this server for current and future communications?
Please type 'yes' or 'no':

The result will be persisted in a file at .condor/known_hosts inside the user’s home directory.

Similarly, a daemon authenticating as a client against a remote server will
record the result of the authentication in a system-wide trust whose location
is kept in the configuration variable SEC_SYSTEM_KNOWN_HOSTS. Since a
daemon cannot prompt the administrator for a decision, it will always deny
unknown CAs _unless_ BOOTSTRAP_SSL_SERVER_TRUST is set to true.

The first time any daemon is authenticated, even if it’s not through SSL, it will be noted in the
known_hosts file.

The format of the known_hosts file is line-oriented and has three fields,

HOSTNAME METHOD CERTIFICATE_DATA

Any blank line or line prefixed with # will be ignored.
Any line prefixed with ! will result in the CA certificate to _not_ be trusted. To easily switch
an untrusted CA to be trusted, simply delete the ! prefix.

For example, collector.wisc.edu would be trusted with this file entry using SSL:

collector.wisc.edu SSL MIIBvjCCAWSgAwIBAgIJAJRheVnN5ZDyMAoGCCqGSM49BAMCMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTAeFw0yMTA1MTcxOTQ3MjRaFw0zMTA1MTUxOTQ3MjNaMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABPN7qu+qdsfP6WR++UucrZYvMhssre8jvgWsnPBdzCYU/EqHYp+wri/aAKyDrLM5R1lWX44jSykgIpTOCLJUS/ajYzBhMB0GA1UdDgQWBBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAfBgNVHSMEGDAWgBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAPBgNVHRMBAf8EBTADAQH/MA4GA1UdDwEB/wQEAwICBDAKBggqhkjOPQQDAgNIADBFAiARfW+suELxSzSdi9u20hFs/aSXpd+gwJ6Ne8jjG+y/2AIhAO6f3ff9nnYRmesFbvt1lv+LosOMbeiUdVoaKFOGIyuJ

The following line would cause collector.wisc.edu to _not_ be trusted:

!collector.wisc.edu SSL MIIBvjCCAWSgAwIBAgIJAJRheVnN5ZDyMAoGCCqGSM49BAMCMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTAeFw0yMTA1MTcxOTQ3MjRaFw0zMTA1MTUxOTQ3MjNaMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABPN7qu+qdsfP6WR++UucrZYvMhssre8jvgWsnPBdzCYU/EqHYp+wri/aAKyDrLM5R1lWX44jSykgIpTOCLJUS/ajYzBhMB0GA1UdDgQWBBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAfBgNVHSMEGDAWgBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAPBgNVHRMBAf8EBTADAQH/MA4GA1UdDwEB/wQEAwICBDAKBggqhkjOPQQDAgNIADBFAiARfW+suELxSzSdi9u20hFs/aSXpd+gwJ6Ne8jjG+y/2AIhAO6f3ff9nnYRmesFbvt1lv+LosOMbeiUdVoaKFOGIyuJ

Kerberos Authentication

If Kerberos is used for authentication, then a mapping from a Kerberos domain
(called a realm) to an HTCondor UID domain is necessary. There are two ways to
accomplish this mapping. For a first way to specify the mapping, see
The Unified Map File for Authentication to use
HTCondor’s unified map file. A second way to specify the mapping is to set the
configuration variable KERBEROS_MAP_FILE to the path of an
administrator-maintained Kerberos-specific map file. The configuration syntax
is

KERBEROS_MAP_FILE = /path/to/etc/condor.kmap

Lines within this map file have the syntax

KERB.REALM = UID.domain.name

Here are two lines from a map file to use as an example:

CS.WISC.EDU = cs.wisc.edu
ENGR.WISC.EDU = ee.wisc.edu

If a KERBEROS_MAP_FILE configuration variable is defined and set,
then all permitted realms must be explicitly mapped. If no map file is
specified, then HTCondor assumes that the Kerberos realm is the same as
the HTCondor UID domain.

The configuration variable KERBEROS_SERVER_PRINCIPAL defines the name
of a Kerberos principal, to override the default host/<hostname>@<realm>.
A principal specifies a unique name to which a set of credentials may be
assigned.

The configuration variable KERBEROS_SERVER_SERVICE defines a Kerberos
service to override the default host. HTCondor prefixes this to
/<hostname>@<realm> to obtain the default Kerberos principal.
Configuration variable KERBEROS_SERVER_PRINCIPAL overrides
KERBEROS_SERVER_SERVICE.

For example, the configuration

KERBEROS_SERVER_SERVICE = condor-daemon

results in HTCondor’s use of

condor-daemon/the.host.name@YOUR.KERB.REALM

as the server principal.

Here is an example of configuration settings that use Kerberos for
authentication and require authentication of all communications of the
write or administrator access level.

SEC_WRITE_AUTHENTICATION = REQUIRED
SEC_WRITE_AUTHENTICATION_METHODS = KERBEROS
SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS = KERBEROS

Kerberos authentication on Unix platforms requires access to various
files that usually are only accessible by the root user. At this time,
the only supported way to use KERBEROS authentication on Unix platforms
is to start daemons HTCondor as user root.

Password Authentication

The password method provides mutual authentication through the use of a
shared secret. This is often a good choice when strong security is
desired, but an existing Kerberos or X.509 infrastructure is not in
place. Password authentication is available on both Unix and Windows. It
currently can only be used for daemon-to-daemon authentication. The
shared secret in this context is referred to as the pool password.

Before a daemon can use password authentication, the pool password must
be stored on the daemon’s local machine. On Unix, the password will be
placed in a file defined by the configuration variable
SEC_PASSWORD_FILE. This file will
be accessible only by the UID that HTCondor is started as. On Windows,
the same secure password store that is used for user passwords will be
used for the pool password (see the
Secure Password Storage section).

Under Unix, the password file can be generated by using the following
command to write directly to the password file:

$ condor_store_cred -f /path/to/password/file

Under Windows (or under Unix), storing the pool password is done with
the -c option when using to condor_store_cred add. Running

$ condor_store_cred -c add

prompts for the pool password and store it on the local machine, making
it available for daemons to use in authentication. The condor_master
must be running for this command to work.

In addition, storing the pool password to a given machine requires
CONFIG-level access. For example, if the pool password should only be
set locally, and only by root, the following would be placed in the
global configuration file.

ALLOW_CONFIG = root@mydomain/$(IP_ADDRESS)

It is also possible to set the pool password remotely, but this is
recommended only if it can be done over an encrypted channel. This is
possible on Windows, for example, in an environment where common
accounts exist across all the machines in the pool. In this case,
ALLOW_CONFIG can be set to allow the HTCondor administrator (who in
this example has an account condor common to all machines in the pool)
to set the password from the central manager as follows.

ALLOW_CONFIG = condor@mydomain/$(CONDOR_HOST)

The HTCondor administrator then executes

$ condor_store_cred -c -n host.mydomain add

from the central manager to store the password to a given machine. Since
the condor account exists on both the central manager and host.mydomain,
the NTSSPI authentication method can be used to authenticate and encrypt
the connection. condor_store_cred will warn and prompt for
cancellation, if the channel is not encrypted for whatever reason
(typically because common accounts do not exist or HTCondor’s security
is misconfigured).

When a daemon is authenticated using a pool password, its security
principle is condor_pool@$(UID_DOMAIN), where $(UID_DOMAIN) is taken
from the daemon’s configuration. The ALLOW_DAEMON and ALLOW_NEGOTIATOR
configuration variables for authorization should restrict access using
this name. For example,

ALLOW_DAEMON = condor_pool@mydomain/*, condor@mydomain/$(IP_ADDRESS)
ALLOW_NEGOTIATOR = condor_pool@mydomain/$(CONDOR_HOST)

This configuration allows remote DAEMON-level and NEGOTIATOR-level
access, if the pool password is known. Local daemons authenticated as
condor@mydomain are also allowed access. This is done so local
authentication can be done using another method such as FS.

If there is no pool password available on Linux, the condor_collector will
automatically generate one. This is meant to ease the configuration of
freshly-installed clusters; for POOL authentication, the HTCondor administrator
only needs to copy this file to each host in the cluster.

Example Security Configuration Using Pool Password

The following example configuration uses pool password
authentication and network message integrity checking for all
communication between HTCondor daemons.

SEC_PASSWORD_FILE = $(LOCK)/pool_password
SEC_DAEMON_AUTHENTICATION = REQUIRED
SEC_DAEMON_INTEGRITY = REQUIRED
SEC_DAEMON_AUTHENTICATION_METHODS = PASSWORD
SEC_NEGOTIATOR_AUTHENTICATION = REQUIRED
SEC_NEGOTIATOR_INTEGRITY = REQUIRED
SEC_NEGOTIATOR_AUTHENTICATION_METHODS = PASSWORD
SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS
ALLOW_DAEMON = condor_pool@$(UID_DOMAIN)/*.cs.wisc.edu, \
 condor@$(UID_DOMAIN)/$(IP_ADDRESS)
ALLOW_NEGOTIATOR = condor_pool@$(UID_DOMAIN)/negotiator.machine.name

Example Using Pool Password for condor_startd Advertisement

One problem with the pool password method of authentication is that
it involves a single, shared secret. This does not scale well with
the addition of remote users who flock to the local pool. However,
the pool password may still be used for authenticating portions of
the local pool, while others (such as the remote condor_schedd
daemons involved in flocking) are authenticated by other means.

In this example, only the condor_startd daemons in the local pool
are required to have the pool password when they advertise
themselves to the condor_collector daemon.

SEC_PASSWORD_FILE = $(LOCK)/pool_password
SEC_ADVERTISE_STARTD_AUTHENTICATION = REQUIRED
SEC_ADVERTISE_STARTD_INTEGRITY = REQUIRED
SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS = PASSWORD
SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS
ALLOW_ADVERTISE_STARTD = condor_pool@$(UID_DOMAIN)/*.cs.wisc.edu

Token Authentication

Password authentication requires both parties (client and server) in
an authenticated session to have access to the same password file. Further,
both client and server authenticate the remote side as the user condor_pool
which, by default, has a high level of privilege to the entire pool. Hence,
it is only reasonable for daemon-to-daemon authentication. Further, as
only one password is allowed, it is impossible to use PASSWORD
authentication to flock to a remote pool.

Token-based authentication is a newer extension to PASSWORD authentication
that allows the pool administrator to generate new, low-privilege tokens
using one of several pool signing keys.
It also allows a daemon or tool to authenticate to a remote pool
without having that pool’s password.
As tokens are derived from a specific signing key,
if an administrator removes a signing key from the directory specified in SEC_PASSWORD_DIRECTORY,
then all derived tokens are immediately invalid. Most simple installs will
utilize a single signing key, named POOL.

While most token signing keys are placed in the directory specified by
SEC_PASSWORD_DIRECTORY, with the filename within the directory determining
the key’s name, the POOL token signing key can be located elsewhere by
setting SEC_TOKEN_POOL_SIGNING_KEY_FILE to the full pathname of the
desired file. On Linux the same file can be both the pool signing key and the
pool password if SEC_PASSWORD_FILE and SEC_TOKEN_POOL_SIGNING_KEY_FILE
refer to the same file. However this is not preferred because in order to
properly interoperate with older versions of HTCondor the pool password will be
read as a text file and truncated at the first NUL character. This differs
from the pool signing key which is read as binary in HTCondor 9.0. Some 8.9
releases used the pool password as the pool signing key for tokens, those
versions will not interoperate with 9.0 if the pool signing key file contains
NUL characters.

The condor_collector
process will automatically generate the pool signing key named POOL on startup
if that file does not exist.

To generate a token, the administrator may utilize the condor_token_create
command-line utility:

$ condor_token_create -identity frida@pool.example.com

The resulting token may be given to Frida and appended to a file in the directory
specified by SEC_TOKEN_DIRECTORY (defaults to ~/.condor/tokens.d). Subsequent
authentications to the pool will utilize this token and cause Frida to be authenticated
as the identity frida@pool.example.com. For daemons, tokens are stored in
SEC_TOKEN_SYSTEM_DIRECTORY; on Unix platforms, this defaults to
/etc/condor/tokens.d which should be a directory with permissions that only allow
read and write access by user root.

Note that each pool signing key is named (the pool signing key defaults to
the special name POOL) by its corresponding filename in
SEC_PASSWORD_DIRECTORY; HTCondor will assume that, for all daemons in
the same trust domain (defaulting to the HTCondor pool) will have the same
signing key for the same name. That is, the signing key contained in key1
in host pool.example.com is identical to the signing key contained in
key1 in host submit.example.com.

Unlike pool passwords, tokens can have a limited lifetime and can limit the
authorizations allowed to the client. For example,

$ condor_token_create -identity condor@pool.example.com \
 -lifetime 3600 \
 -authz ADVERTISE_STARTD

will create a new token that maps to user condor@pool.example.com. However,
this token is only valid for the ADVERTISE_STARTD authorization, regardless
of what the server has configured for the condor user (the intersection of
the identity’s configured authorization and the token’s authorizations, if specified,
are used). Further, the token will only be valid for 3600 seconds (one hour).

In many cases, it is difficult or awkward for the administrator to securely
provide the new token to the user; an email or text message from
administrator to user is typically insufficiently secure to send the token (especially
as old emails are often archived for many years). In such a case, the user
may instead anonymously request a token from the administrator. The user
will receive a request ID, which the administrator will need in order to approve
the request. The ID (typically, a 7 digit number) is easier to communicate
over the phone (compared to the token, which is hundreds of characters long).
Importantly, neither user nor administrator is responsible
for securely moving the token - e.g., there is no chance it will be leaked into
an email archive.

If a condor_master, condor_startd, or condor_schedd daemon cannot
authenticate with the collector, it will automatically perform a token request
from the collector.

To use the token request workflow, the user needs a confidential channel to
the server or an appropriate auto-approval rule needs to be in place. The simplest
way to establish a confidential channel is using SSL Authentication
without a client certificate; configure the collector using a host certificate.

Using the SSL authentication, the client can request a new authentication token:

$ condor_token_request
Token request enqueued. Ask an administrator to please approve request 9235785.

This will enqueue a request for a token corresponding to the superuser condor;
the HTCondor pool administrator will subsequently need to approve request 9235785 using the
condor_token_request_approve tool.

If the host trusts requests coming from a specific network (i.e., the same
administrator manages the network and no unprivileged users are currently on
the network), then the auto-approval mechanism may be used. When in place, auto-approval
allows any token authentication request on an approved network to be automatically
approved by HTCondor on behalf of the pool administrator - even when requests do not come over
confidential connections.

When a daemon issues a token for a client (e.g. for
condor_token_fetch or condor_token_request), the signing key it
uses must appear in the list SEC_TOKEN_FETCH_ALLOWED_SIGNING_KEYS.
If the client doesn’t request a specific signing key to use, then the
key given by SEC_TOKEN_ISSUER_KEY is used.
The default for both of these configuration parameters is POOL.

If there are multiple tokens in files in the SEC_TOKEN_SYSTEM_DIRECTORY, then
the daemon will search for tokens in that directory based on lexicographical order;
the exception is that the file $(SUBSYS)_auto_generated_token will be searched first for
daemons of type $(SUBSYS). For example, if SEC_TOKEN_SYSTEM_DIRECTORY is set to
/etc/condor/tokens.d, then the condor_schedd will search at
/etc/condor/tokens.d/SCHEDD_auto_generated_token by default.

Users may create their own tokens with condor_token_fetch. This command-line
utility will contact the default condor_schedd and request a new
token given the user’s authenticated identity. Unlike condor_token_create,
the condor_token_fetch has no control over the mapped identity (but does not
need to read the files in SEC_PASSWORD_DIRECTORY).

If no security authentication methods specified by the administrator - and the
daemon or user has access to at least one token - then IDTOKENS authentication
is automatically added to the list of valid authentication methods. Otherwise,
to setup IDTOKENS authentication, enable it in the list of authentication methods:

SEC_DEFAULT_AUTHENTICATION_METHODS=$(SEC_DEFAULT_AUTHENTICATION_METHODS), IDTOKENS
SEC_CLIENT_AUTHENTICATION_METHODS=$(SEC_CLIENT_AUTHENTICATION_METHODS), IDTOKENS

Revoking Token: If a token is lost, stolen, or accidentally exposed,
then the system administrator may use the token revocation mechanism in order
to prevent unauthorized use. Revocation can be accomplished by setting the
SEC_TOKEN_REVOCATION_EXPR configuration parameter;
when set, the value of this parameter will be
evaluated as a ClassAd expression against the token’s contents.

For example, consider the following token:

eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.eyJpYXQiOjE1ODg0NzQ3MTksImlzcyI6ImhjYy1icmlhbnRlc3Q3LnVubC5lZHUiLCJqdGkiOiJjNzYwYzJhZjE5M2ExZmQ0ZTQwYmM5YzUzYzk2ZWU3YyIsInN1YiI6ImJib2NrZWxtQGhjYy1icmlhbnRlc3Q3LnVubC5lZHUifQ.fiqfgwjyTkxMSdxwm84xxMTVcGfearddEDj_rhiIbi4ummU

When printed using condor_token_list, the human-readable form is as follows
(line breaks added for readability):

$ condor_token_list
Header: {"alg":"HS256","kid":"POOL"}
Payload: {
 "iat": 1588474719,
 "iss": "pool.example.com",
 "jti": "c760c2af193a1fd4e40bc9c53c96ee7c",
 "sub": "alice@pool.example.com"
}

If we would like to revoke this token, we could utilize any of the following
values for SEC_TOKEN_REVOCATION_EXPR, depending on the desired breadth of
the revocation:

Revokes all tokens from the user Alice:
SEC_TOKEN_REVOCATION_EXPR = sub =?= "alice@pool.example.com"

Revokes all tokens from Alice issued before or after this one:
SEC_TOKEN_REVOCATION_EXPR = sub =?= "alice@pool.example.com" && \
 iat <= 1588474719

Revokes *only* this token:
SEC_TOKEN_REVOCATION_EXPR = jti =?= "c760c2af193a1fd4e40bc9c53c96ee7c"

The revocation only works on the daemon where
SEC_TOKEN_REVOCATION_EXPR is set; to revoke a token across the entire
pool, set SEC_TOKEN_REVOCATION_EXPR on every host.

In order to invalidate all tokens issued by a given master password in
SEC_PASSWORD_DIRECTORY, simply remove the file from the directory.

File System Authentication

This form of authentication utilizes the ownership of a file in the
identity verification of a client. A daemon authenticating a client
requires the client to write a file in a specific location (/tmp).
The daemon then checks the ownership of the file. The file’s ownership
verifies the identity of the client. In this way, the file system
becomes the trusted authority. This authentication method is only
appropriate for clients and daemons that are on the same computer.

File System Remote Authentication

Like file system authentication, this form of authentication utilizes
the ownership of a file in the identity verification of a client. In
this case, a daemon authenticating a client requires the client to write
a file in a specific location, but the location is not restricted to
/tmp. The location of the file is specified by the configuration
variable FS_REMOTE_DIR.

Windows Authentication

This authentication is done only among Windows machines using a
proprietary method. The Windows security interface SSPI is used to
enforce NTLM (NT LAN Manager). The authentication is based on challenge
and response, using the user’s password as a key. This is similar to
Kerberos. The main difference is that Kerberos provides an access token
that typically grants access to an entire network, whereas NTLM
authentication only verifies an identity to one machine at a time.
NTSSPI is best-used in a way similar to file system authentication in
Unix, and probably should not be used for authentication between two
computers.

SciTokens Authentication

A SciToken is a form of JSON Web Token (JWT) that the client can present
that the server can verify. Authentication of the server by the client
is done via an SSL host certificate (the same as with SSL authentication).
More information about SciTokens can be found at
https://scitokens.org.

Some other JWT token types can be used with the SciTokens authentication
method. WLCG tokens are accepted automatically. Other token types, such as EGI
CheckIn tokens, require some relaxation of the SciTokens validation checks.
Configuration parameter SEC_SCITOKENS_ALLOW_FOREIGN_TOKEN_TYPES
determines whether any tokens will be accepted under these relaxed checks. It’s
a boolean value that defaults to True. Configuration parameter
SEC_SCITOKENS_FOREIGN_TOKEN_ISSUERS determines which issuers’ tokens
will be accepted under these relaxed checks. It’s a list of issuer URLs that
defaults to the EGI CheckIn issuer. These parameters should be used with
caution, as they disable some security checks.

Ask MUNGE for Authentication

Ask the MUNGE service to validate both sides of the authentication. See:
https://dun.github.io/munge/ for instructions on installing.

Claim To Be Authentication

Claim To Be authentication accepts any identity claimed by the client.
As such, it does not authenticate. It is included in HTCondor and in the
list of authentication methods for testing purposes only.

Anonymous Authentication

Anonymous authentication causes authentication to be skipped entirely.
As such, it does not authenticate. It is included in HTCondor and in the
list of authentication methods for testing purposes only.

The Unified Map File for Authentication

HTCondor’s unified map file allows the mappings from authenticated names to an
HTCondor canonical user name to be specified as a single list within a single
file. The location of the unified map file is defined by the configuration
variable CERTIFICATE_MAPFILE; it specifies the path and file name of
the unified map file. Each mapping is on its own line of the unified map file.
Each line contains either an @include directive, or 3 fields, separated by
white space (space or tab characters):

	The name of the authentication method to which the mapping applies.

	A name or a regular expression representing the authenticated name to
be mapped.

	The canonical HTCondor user name.

Allowable authentication method names are the same as used to define any
of the configuration variables SEC_*_AUTHENTICATION_METHODS, as
repeated here:

SSL
KERBEROS
PASSWORD
FS
FS_REMOTE
IDTOKENS
SCITOKENS
NTSSPI
MUNGE
CLAIMTOBE
ANONYMOUS

The fields that represent an authenticated name and the canonical HTCondor user
name may utilize regular expressions as defined by PCRE2 (Perl-Compatible
Regular Expressions). Due to this, more than one line (mapping) within the
unified map file may match. Look ups are therefore defined to use the first
mapping that matches.

For HTCondor version 8.5.8 and later, the authenticated name field will be
interpreted as a regular expression or as a simple string based on the value of
the CERTIFICATE_MAPFILE_ASSUME_HASH_KEYS configuration variable. If
this configuration variable is true, then the authenticated name field is a
regular expression only when it begins and ends with the / character. If this
configuration variable is false, or on HTCondor versions older than 8.5.8, the
authenticated name field is always a regular expression.

A regular expression may need to contain spaces, and in this case the
entire expression can be surrounded by double quote marks. If a double
quote character also needs to appear in such an expression, it is
preceded by a backslash.

If the first field is the special value @include, it should be
followed by a file or directory path in the second field. If a
file is specified, it will be read and parsed as map file. If
a directory is specified, then each file in the directory is read
as a map file unless the name of the file matches the pattern
specified in the LOCAL_CONFIG_DIR_EXCLUDE_REGEXP configuration variable.
Files in the directory are read in lexical order. When a map file
is read as a result of an @include statement, any @include statements
that it contains will be ignored. If the file or directory path specified
with an @include statement is a relative path, it will be treated as relative to
the file currently being read.

The default behavior of HTCondor when no map file is specified is to do
the following mappings, with some additional logic noted below:

FS (.*) \1
FS_REMOTE (.*) \1
SSL (.*) ssl@unmapped
KERBEROS ([^/]*)/?[^@]*@(.*) \1@\2
NTSSPI (.*) \1
MUNGE (.*) \1
CLAIMTOBE (.*) \1
PASSWORD (.*) \1
SCITOKENS .* PLUGIN:*

For SciTokens, the authenticated name is the iss and sub
claims of the token, separated by a comma.

For Kerberos, if KERBEROS_MAP_FILE
is specified, the domain portion of the name is obtained by mapping the
Kerberos realm to the value specified in the map file, rather than just
using the realm verbatim as the domain portion of the condor user name.
See the Authentication section for details.

If authentication did not happen or failed and was not required, then
the user is given the name unauthenticated@unmapped.

SciTokens Mapping Plugins

For SciTokens, the iss and sub claims of the token may not be
sufficient to map the token to the appropriate canonical HTCondor user
name.
For these situations, a series of plugins can be employed to perform
the mapping based on the full token payload.
Each plugin can accept the token and provide a mapped identity or
decline the token.
If the plugin declines, then additional plugins are consulted.
If all plugins decline the token, then the mapped identity
scitokens@unmapped is used.

Each plugin is given a name consisting of alphanumeric characters.
To use a set of plugins to perform a mapping, the third field of the
matching line in the map file (the canonical name) should be the text
PLUGIN: followed by a comma-separated list of plugin names. Note
that no spaces should be used within the list.

For each plugin, the configuration parameter

 Networking (includes sections on Port Usage and CCB)

Networking (includes sections on Port Usage and CCB)

This section on network communication in HTCondor discusses which
network ports are used, how HTCondor behaves on machines with multiple
network interfaces and IP addresses, and how to facilitate functionality
in a pool that spans firewalls and private networks.

The security section of the manual contains some information that is
relevant to the discussion of network communication which will not be
duplicated here, so please see
the Security section as well.

Firewalls, private networks, and network address translation (NAT) pose
special problems for HTCondor. There are currently two main mechanisms
for dealing with firewalls within HTCondor:

	Restrict HTCondor to use a specific range of port numbers, and allow
connections through the firewall that use any port within the range.

	Use HTCondor Connection Brokering (CCB).

Each method has its own advantages and disadvantages, as described
below.

Port Usage in HTCondor

IPv4 Port Specification

The general form for IPv4 port specification is

<IP:port?param1name=value1¶m2name=value2¶m3name=value3&...>

These parameters and values are URL-encoded. This means any special
character is encoded with %, followed by two hexadecimal digits
specifying the ASCII value. Special characters are any non-alphanumeric
character.

HTCondor currently recognizes the following parameters with an IPv4 port
specification:

	CCBID
	Provides contact information for forming a CCB connection to a
daemon, or a space separated list, if the daemon is registered with
more than one CCB server. Each contact information is specified in
the form of IP:port#ID. Note that spaces between list items will be
URL encoded by %20.

	PrivNet
	Provides the name of the daemon’s private network. This value is
specified in the configuration with PRIVATE_NETWORK_NAME.

	sock
	Provides the name of condor_shared_port daemon named socket.

	PrivAddr
	Provides the daemon’s private address in form of IP:port.

Default Port Usage

Every HTCondor daemon listens on a network port for incoming commands.
(Using condor_shared_port, this port may be shared between multiple
daemons.) Most daemons listen on a dynamically assigned port. In order
to send a message, HTCondor daemons and tools locate the correct port to
use by querying the condor_collector, extracting the port number from
the ClassAd. One of the attributes included in every daemon’s ClassAd is
the full IP address and port number upon which the daemon is listening.

To access the condor_collector itself, all HTCondor daemons and tools
must know the port number where the condor_collector is listening.
The condor_collector is the only daemon with a well-known, fixed
port. By default, HTCondor uses port 9618 for the condor_collector
daemon. However, this port number can be changed (see below).

As an optimization for daemons and tools communicating with another
daemon that is running on the same host, each HTCondor daemon can be
configured to write its IP address and port number into a well-known
file. The file names are controlled using the <SUBSYS>_ADDRESS_FILE
configuration variables, as described in the
DaemonCore Configuration File Entries
section.

NOTE: In the 6.6 stable series, and HTCondor versions earlier than
6.7.5, the condor_negotiator also listened on a fixed, well-known
port (the default was 9614). However, beginning with version 6.7.5, the
condor_negotiator behaves like all other HTCondor daemons, and
publishes its own ClassAd to the condor_collector which includes the
dynamically assigned port the condor_negotiator is listening on. All
HTCondor tools and daemons that need to communicate with the
condor_negotiator will either use the
NEGOTIATOR_ADDRESS_FILE or will query the
condor_collector for the condor_negotiator ‘s ClassAd.

Using a Non Standard, Fixed Port for the condor_collector

By default, HTCondor uses port 9618 for the condor_collector daemon.
To use a different port number for this daemon, the configuration
variables that tell HTCondor these communication details are modified.
Instead of

CONDOR_HOST = machX.cs.wisc.edu
COLLECTOR_HOST = $(CONDOR_HOST)

the configuration might be

CONDOR_HOST = machX.cs.wisc.edu
COLLECTOR_HOST = $(CONDOR_HOST):9650

If a non standard port is defined, the same value of COLLECTOR_HOST
(including the port) must be used for all machines in the HTCondor pool.
Therefore, this setting should be modified in the global configuration
file (condor_config file), or the value must be duplicated across
all configuration files in the pool if a single configuration file is
not being shared.

When querying the condor_collector for a remote pool that is running
on a non standard port, any HTCondor tool that accepts the -pool
argument can optionally be given a port number. For example:

$ condor_status -pool foo.bar.org:1234

Using a Dynamically Assigned Port for the condor_collector

On single machine pools, it is permitted to configure the
condor_collector daemon to use a dynamically assigned port, as given
out by the operating system. This prevents port conflicts with other
services on the same machine. However, a dynamically assigned port is
only to be used on single machine HTCondor pools, and only if the
COLLECTOR_ADDRESS_FILE
configuration variable has also been defined. This mechanism allows all
of the HTCondor daemons and tools running on the same machine to find
the port upon which the condor_collector daemon is listening, even
when this port is not defined in the configuration file and is not known
in advance.

To enable the condor_collector daemon to use a dynamically assigned
port, the port number is set to 0 in the
COLLECTOR_HOST variable. The COLLECTOR_ADDRESS_FILE
configuration variable must also be defined, as it provides a known file
where the IP address and port information will be stored. All HTCondor
clients know to look at the information stored in this file. For
example:

COLLECTOR_HOST = $(CONDOR_HOST):0
COLLECTOR_ADDRESS_FILE = $(LOG)/.collector_address

Configuration definition of COLLECTOR_ADDRESS_FILE is in the
DaemonCore Configuration File Entries
section and COLLECTOR_HOST is in the
HTCondor-wide Configuration File Entries
section.

Restricting Port Usage to Operate with Firewalls

If an HTCondor pool is completely behind a firewall, then no special
consideration or port usage is needed. However, if there is a firewall
between the machines within an HTCondor pool, then configuration
variables may be set to force the usage of specific ports, and to
utilize a specific range of ports.

By default, HTCondor uses port 9618 for the condor_collector daemon,
and dynamic (apparently random) ports for everything else. See
Port Usage in HTCondor, if a dynamically
assigned port is desired for the condor_collector daemon.

All of the HTCondor daemons on a machine may be configured to share a
single port. See the condor_shared_port Configuration File Macros section for more information.

The configuration variables HIGHPORT and
LOWPORT facilitate setting a restricted range
of ports that HTCondor will use. This may be useful when some machines
are behind a firewall. The configuration macros HIGHPORT and
LOWPORT will restrict dynamic ports to the range specified. The
configuration variables are fully defined in the
Network-Related Configuration File Entries section. All of these ports must be greater than 0 and less than 65,536.
Note that both HIGHPORT and LOWPORT must be at least 1024 for HTCondor
version 6.6.8. In general, use ports greater than 1024, in order to avoid port
conflicts with standard services on the machine. Another reason for
using ports greater than 1024 is that daemons and tools are often not
run as root, and only root may listen to a port lower than 1024. Also,
the range must include enough ports that are not in use, or HTCondor
cannot work.

The range of ports assigned may be restricted based on incoming
(listening) and outgoing (connect) ports with the configuration
variables IN_HIGHPORT, IN_LOWPORT, OUT_HIGHPORT,
and OUT_LOWPORT See
the Network-Related Configuration File Entries section for complete definitions of these configuration variables.
A range of ports lower than 1024 for daemons running as root is appropriate for
incoming ports, but not for outgoing ports. The use of ports below 1024
(versus above 1024) has security implications; therefore, it is inappropriate to
assign a range that crosses the 1024 boundary.

NOTE: Setting HIGHPORT and LOWPORT will not automatically force
the condor_collector to bind to a port within the range. The only way
to control what port the condor_collector uses is by setting the
COLLECTOR_HOST (as described above).

The total number of ports needed depends on the size of the pool, the
usage of the machines within the pool (which machines run which
daemons), and the number of jobs that may execute at one time. Here we
discuss how many ports are used by each participant in the system. This
assumes that condor_shared_port is not being used. If it is being
used, then all daemons can share a single incoming port.

The central manager of the pool needs
5 + number of condor_schedd daemons ports for outgoing connections
and 2 ports for incoming connections for daemon communication.

Each execute machine (those machines running a condor_startd daemon)
requires `` 5 + (5 * number of slots advertised by that machine)``
ports. By default, the number of slots advertised will equal the number
of physical CPUs in that machine.

Submit machines (those machines running a condor_schedd daemon)
require `` 5 + (5 * MAX_JOBS_RUNNING``) ports. The configuration
variable MAX_JOBS_RUNNING limits (on
a per-machine basis, if desired) the maximum number of jobs. Without
this configuration macro, the maximum number of jobs that could be
simultaneously executing at one time is a function of the number of
reachable execute machines.

Also be aware that HIGHPORT and LOWPORT only impact dynamic port
selection used by the HTCondor system, and they do not impact port
selection used by jobs submitted to HTCondor. Thus, jobs submitted to
HTCondor that may create network connections may not work in a port
restricted environment. For this reason, specifying HIGHPORT and
LOWPORT is not going to produce the expected results if a user
submits MPI applications to be executed under the parallel universe.

Where desired, a local configuration for machines not behind a firewall
can override the usage of HIGHPORT and LOWPORT, such that the
ports used for these machines are not restricted. This can be
accomplished by adding the following to the local configuration file of
those machines not behind a firewall:

HIGHPORT = UNDEFINED
LOWPORT = UNDEFINED

If the maximum number of ports allocated using HIGHPORT and
LOWPORT is too few, socket binding errors of the form

failed to bind any port within <$LOWPORT> - <$HIGHPORT>

are likely to appear repeatedly in log files.

Multiple Collectors

This section has not yet been written

Port Conflicts

This section has not yet been written

Reducing Port Usage with the condor_shared_port Daemon

The condor_shared_port is an optional daemon responsible for
creating a TCP listener port shared by all of the HTCondor daemons.

The main purpose of the condor_shared_port daemon is to reduce the
number of ports that must be opened. This is desirable when HTCondor
daemons need to be accessible through a firewall. This has a greater
security benefit than simply reducing the number of open ports. Without
the condor_shared_port daemon, HTCondor can use a range of ports,
but since some HTCondor daemons are created dynamically, this full range
of ports will not be in use by HTCondor at all times. This implies that
other non-HTCondor processes not intended to be exposed to the outside
network could unintentionally bind to ports in the range intended for
HTCondor, unless additional steps are taken to control access to those
ports. While the condor_shared_port daemon is running, it is
exclusively bound to its port, which means that other non-HTCondor
processes cannot accidentally bind to that port.

A second benefit of the condor_shared_port daemon is that it helps
address the scalability issues of a access point. Without the
condor_shared_port daemon, more than 2 ephemeral ports per running
job are often required, depending on the rate of job completion. There
are only 64K ports in total, and most standard Unix installations only
allocate a subset of these as ephemeral ports. Therefore, with long
running jobs, and with between 11K and 14K simultaneously running jobs,
port exhaustion has been observed in typical Linux installations. After
increasing the ephemeral port range to its maximum, port exhaustion
occurred between 20K and 25K running jobs. Using the
condor_shared_port daemon dramatically reduces the required number
of ephemeral ports on the submit node where the submit node connects
directly to the execute node. If the submit node connects via CCB to the
execute node, no ports are required per running job; only the one port
allocated to the condor_shared_port daemon is used.

When CCB is enabled, the condor_shared_port daemon registers with
the CCB server on behalf of all daemons sharing the port. This means
that it is not possible to individually enable or disable CCB
connectivity to daemons that are using the shared port; they all
effectively share the same setting, and the condor_shared_port
daemon handles all CCB connection requests on their behalf.

HTCondor’s authentication and authorization steps are unchanged by the
use of a shared port. Each HTCondor daemon continues to operate
according to its configured policy. Requests for connections to the
shared port are not authenticated or restricted by the
condor_shared_port daemon. They are simply passed to the requested
daemon, which is then responsible for enforcing the security policy.

When the condor_master is configured to use the shared port by
setting the configuration variable

USE_SHARED_PORT = True

the condor_shared_port daemon is treated specially.
SHARED_PORT is automatically added to
DAEMON_LIST. A command such as condor_off, which shuts
down all daemons except for the condor_master, will also leave the
condor_shared_port running. This prevents the condor_master from
getting into a state where it can no longer receive commands.

Also when USE_SHARED_PORT = True, the condor_collector needs to
be configured to use a shared port, so that connections to the shared
port that are destined for the condor_collector can be forwarded. As
an example, the shared port socket name of the condor_collector with
shared port number 11000 is

COLLECTOR_HOST = cm.host.name:11000?sock=collector

This example assumes that the socket name used by the
condor_collector is collector, and it runs on cm.host.name.
This configuration causes the condor_collector to automatically
choose this socket name. If multiple condor_collector daemons are
started on the same machine, the socket name can be explicitly set in
the daemon’s invocation arguments, as in the example:

COLLECTOR_ARGS = -sock collector

When the condor_collector address is a shared port, TCP updates will
be automatically used instead of UDP, because the condor_shared_port
daemon does not work with UDP messages. Under Unix, this means that the
condor_collector daemon should be configured to have enough file
descriptors. See Using TCP to Send Updates to the condor_collector for more information on using TCP within HTCondor.

SOAP commands cannot be sent through the condor_shared_port daemon.
However, a daemon may be configured to open a fixed, non-shared port, in
addition to using a shared port. This is done both by setting
USE_SHARED_PORT = True and by specifying a fixed port for the daemon
using <SUBSYS>_ARGS = -p <portnum>.

Configuring HTCondor for Machines With Multiple Network Interfaces

HTCondor can run on machines with multiple network interfaces. Starting
with HTCondor version 6.7.13 (and therefore all HTCondor 6.8 and more
recent versions), new functionality is available that allows even better
support for multi-homed machines, using the configuration variable
BIND_ALL_INTERFACES. A
multi-homed machine is one that has more than one NIC (Network Interface
Card). Further improvements to this new functionality will remove the
need for any special configuration in the common case. For now, care
must still be given to machines with multiple NICs, even when using this
new configuration variable.

Using BIND_ALL_INTERFACES

Machines can be configured such that whenever HTCondor daemons or tools
call bind(), the daemons or tools use all network interfaces on the
machine. This means that outbound connections will always use the
appropriate network interface to connect to a remote host, instead of
being forced to use an interface that might not have a route to the
given destination. Furthermore, sockets upon which a daemon listens for
incoming connections will be bound to all network interfaces on the
machine. This means that so long as remote clients know the right port,
they can use any IP address on the machine and still contact a given
HTCondor daemon.

This functionality is on by default. To disable this functionality, the
boolean configuration variable BIND_ALL_INTERFACES is defined and
set to False:

BIND_ALL_INTERFACES = FALSE

This functionality has limitations. Here are descriptions of the
limitations.

	Using all network interfaces does not work with Kerberos.
	Every Kerberos ticket contains a specific IP address within it.
Authentication over a socket (using Kerberos) requires the socket to
also specify that same specific IP address. Use of
BIND_ALL_INTERFACES causes outbound connections from a
multi-homed machine to originate over any of the interfaces.
Therefore, the IP address of the outbound connection and the IP
address in the Kerberos ticket will not necessarily match, causing
the authentication to fail. Sites using Kerberos authentication on
multi-homed machines are strongly encouraged not to enable
BIND_ALL_INTERFACES, at least until HTCondor’s Kerberos
functionality supports using multiple Kerberos tickets together with
finding the right one to match the IP address a given socket is
bound to.

	There is a potential security risk.
	Consider the following example of a security risk. A multi-homed
machine is at a network boundary. One interface is on the public
Internet, while the other connects to a private network. Both the
multi-homed machine and the private network machines comprise an
HTCondor pool. If the multi-homed machine enables
BIND_ALL_INTERFACES, then it is at risk from hackers trying to
compromise the security of the pool. Should this multi-homed machine
be compromised, the entire pool is vulnerable. Most sites in this
situation would run an sshd on the multi-homed machine so that
remote users who wanted to access the pool could log in securely and
use the HTCondor tools directly. In this case, remote clients do not
need to use HTCondor tools running on machines in the public network
to access the HTCondor daemons on the multi-homed machine.
Therefore, there is no reason to have HTCondor daemons listening on
ports on the public Internet, causing a potential security threat.

	Up to two IP addresses will be advertised.
	At present, even though a given HTCondor daemon will be listening to
ports on multiple interfaces, each with their own IP address, there
is currently no mechanism for that daemon to advertise all of the
possible IP addresses where it can be contacted. Therefore, HTCondor
clients (other HTCondor daemons or tools) will not necessarily able
to locate and communicate with a given daemon running on a
multi-homed machine where BIND_ALL_INTERFACES has been enabled.

Currently, HTCondor daemons can only advertise two IP addresses in
the ClassAd they send to their condor_collector. One is the
public IP address and the other is the private IP address. HTCondor
tools and other daemons that wish to connect to the daemon will use
the private IP address if they are configured with the same private
network name, and they will use the public IP address otherwise. So,
even if the daemon is listening on 3 or more different interfaces,
each with a separate IP, the daemon must choose which two IP
addresses to advertise so that other daemons and tools can connect
to it.

By default, HTCondor advertises the most public IP address available on the
machine. The NETWORK_INTERFACE configuration variable can be used
to specify the public IP address HTCondor should advertise, and
PRIVATE_NETWORK_INTERFACE, along with
PRIVATE_NETWORK_NAME can be used to specify the private IP address
to advertise.

Sites that make heavy use of private networks and multi-homed machines
should consider if using the HTCondor Connection Broker, CCB, is right
for them. More information about CCB and HTCondor can be found in
the HTCondor Connection Brokering (CCB) section.

Central Manager with Two or More NICs

Often users of HTCondor wish to set up compute farms where there is one
machine with two network interface cards (one for the public Internet,
and one for the private net). It is convenient to set up the head node
as a central manager in most cases and so here are the instructions
required to do so.

Setting up the central manager on a machine with more than one NIC can
be a little confusing because there are a few external variables that
could make the process difficult. One of the biggest mistakes in getting
this to work is that either one of the separate interfaces is not
active, or the host/domain names associated with the interfaces are
incorrectly configured.

Given that the interfaces are up and functioning, and they have good
host/domain names associated with them here is how to configure
HTCondor:

In this example, farm-server.farm.org maps to the private interface.
In the central manager’s global (to the cluster) configuration file:

CONDOR_HOST = farm-server.farm.org

In the central manager’s local configuration file:

NETWORK_INTERFACE = <IP address of farm-server.farm.org>
NEGOTIATOR = $(SBIN)/condor_negotiator
COLLECTOR = $(SBIN)/condor_collector
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, SCHEDD, STARTD

Now, if the cluster is set up so that it is possible for a machine name
to never have a domain name (for example, there is machine name but no
fully qualified domain name in /etc/hosts), configure
DEFAULT_DOMAIN_NAME to be the
domain that is to be added on to the end of the host name.

A Client Machine with Multiple Interfaces

If client machine has two or more NICs, then there might be a specific
network interface on which the client machine desires to communicate
with the rest of the HTCondor pool. In this case, the local
configuration file for the client should have

NETWORK_INTERFACE = <IP address of desired interface>

HTCondor Connection Brokering (CCB)

HTCondor Connection Brokering, or CCB, is a way of allowing HTCondor
components to communicate with each other when one side is in a private
network or behind a firewall. Specifically, CCB allows communication
across a private network boundary in the following scenario: an HTCondor
tool or daemon (process A) needs to connect to an HTCondor daemon
(process B), but the network does not allow a TCP connection to be
created from A to B; it only allows connections from B to A. In this
case, B may be configured to register itself with a CCB server that both
A and B can connect to. Then when A needs to connect to B, it can send a
request to the CCB server, which will instruct B to connect to A so that
the two can communicate.

As an example, consider an HTCondor execute node that is within a
private network. This execute node’s condor_startd is process B. This
execute node cannot normally run jobs submitted from a machine that is
outside of that private network, because bi-directional connectivity
between the submit node and the execute node is normally required.
However, if both execute and access point can connect to the CCB
server, if both are authorized by the CCB server, and if it is possible
for the execute node within the private network to connect to the submit
node, then it is possible for the submit node to run jobs on the execute
node.

To effect this CCB solution, the execute node’s condor_startd within
the private network registers itself with the CCB server by setting the
configuration variable CCB_ADDRESS. The
submit node’s condor_schedd communicates with the CCB server,
requesting that the execute node’s condor_startd open the TCP
connection. The CCB server forwards this request to the execute node’s
condor_startd, which opens the TCP connection. Once the connection is
open, bi-directional communication is enabled.

If the location of the execute and submit nodes is reversed with respect
to the private network, the same idea applies: the submit node within
the private network registers itself with a CCB server, such that when a
job is running and the execute node needs to connect back to the submit
node (for example, to transfer output files), the execute node can
connect by going through CCB to request a connection.

If both A and B are in separate private networks, then CCB alone cannot
provide connectivity. However, if an incoming port or port range can be
opened in one of the private networks, then the situation becomes
equivalent to one of the scenarios described above and CCB can provide
bi-directional communication given only one-directional connectivity.
See Port Usage in HTCondor for information on
opening port ranges. Also note that CCB works nicely with
condor_shared_port.

Any condor_collector may be used as a CCB server. There is no
requirement that the condor_collector acting as the CCB server be the
same condor_collector that a daemon advertises itself to (as with
COLLECTOR_HOST). However, this is often a convenient choice.

Example Configuration

This example assumes that there is a pool of machines in a private
network that need to be made accessible from the outside, and that the
condor_collector (and therefore CCB server) used by these machines is
accessible from the outside. Accessibility might be achieved by a
special firewall rule for the condor_collector port, or by being on a
dual-homed machine in both networks.

The configuration of variable CCB_ADDRESS on machines in the private
network causes registration with the CCB server as in the example:

CCB_ADDRESS = $(COLLECTOR_HOST)
PRIVATE_NETWORK_NAME = cs.wisc.edu

The definition of PRIVATE_NETWORK_NAME ensures that all
communication between nodes within the private network continues to
happen as normal, and without going through the CCB server. The name
chosen for PRIVATE_NETWORK_NAME should be different from the private
network name chosen for any HTCondor installations that will be
communicating with this pool.

Under Unix, and with large HTCondor pools, it is also necessary to give
the condor_collector acting as the CCB server a large enough limit of
file descriptors. This may be accomplished with the configuration
variable MAX_FILE_DESCRIPTORS or
an equivalent. Each HTCondor process configured to use CCB with
CCB_ADDRESS requires one persistent TCP connection to the CCB
server. A typical execute node requires one connection for the
condor_master, one for the condor_startd, and one for each running
job, as represented by a condor_starter. A typical access point
requires one connection for the condor_master, one for the
condor_schedd, and one for each running job, as represented by a
condor_shadow. If there will be no administrative commands required
to be sent to the condor_master from outside of the private network,
then CCB may be disabled in the condor_master by assigning
MASTER.CCB_ADDRESS to nothing:

MASTER.CCB_ADDRESS =

Completing the count of TCP connections in this example: suppose the
pool consists of 500 8-slot execute nodes and CCB is not disabled in the
configuration of the condor_master processes. In this case, the count
of needed file descriptors plus some extra for other transient
connections to the collector is 500*(1+1+8)=5000. Be generous, and give
it twice as many descriptors as needed by CCB alone:

COLLECTOR.MAX_FILE_DESCRIPTORS = 10000

Security and CCB

The CCB server authorizes all daemons that register themselves with it
(using CCB_ADDRESS) at the DAEMON
authorization level (these are playing the role of process A in the
above description). It authorizes all connection requests (from process
B) at the READ authorization level. As usual, whether process B
authorizes process A to do whatever it is trying to do is up to the
security policy for process B; from the HTCondor security model’s point
of view, it is as if process A connected to process B, even though at
the network layer, the reverse is true.

Troubleshooting CCB

Errors registering with CCB or requesting connections via CCB are logged
at level D_ALWAYS in the debugging log. These errors may be
identified by searching for “CCB” in the log message. Command-line tools
require the argument -debug for this information to be visible. To
see details of the CCB protocol add D_FULLDEBUG to the debugging
options for the particular HTCondor subsystem of interest. Or, add
D_FULLDEBUG to ALL_DEBUG to get extra debugging from all
HTCondor components.

A daemon that has successfully registered itself with CCB will advertise
this fact in its address in its ClassAd. The ClassAd attribute
MyAddress will contain information about its "CCBID".

Scalability and CCB

Any number of CCB servers may be used to serve a pool of HTCondor
daemons. For example, half of the pool could use one CCB server and half
could use another. Or for redundancy, all daemons could use both CCB
servers and then CCB connection requests will load-balance across them.
Typically, the limit of how many daemons may be registered with a single
CCB server depends on the authentication method used by the
condor_collector for DAEMON-level and READ-level access, and on the
amount of memory available to the CCB server. We are not able to provide
specific recommendations at this time, but to give a very rough idea, a
server class machine should be able to handle CCB service plus normal
condor_collector service for a pool containing a few thousand slots
without much trouble.

Using TCP to Send Updates to the condor_collector

TCP sockets are reliable, connection-based sockets that guarantee the
delivery of any data sent. However, TCP sockets are fairly expensive to
establish, and there is more network overhead involved in sending and
receiving messages.

UDP sockets are datagrams, and are not reliable. There is very little
overhead in establishing or using a UDP socket, but there is also no
guarantee that the data will be delivered. The lack of guaranteed
delivery of UDP will negatively affect some pools, particularly ones
comprised of machines across a wide area network (WAN) or
highly-congested network links, where UDP packets are frequently
dropped.

By default, HTCondor daemons will use TCP to send updates to the
condor_collector, with the exception of the condor_collector
forwarding updates to any condor_collector daemons specified in
CONDOR_VIEW_HOST, where UDP is used. These configuration variables
control the protocol used:

	UPDATE_COLLECTOR_WITH_TCP
	When set to False, the HTCondor daemons will use UDP to update
the condor_collector, instead of the default TCP. Defaults to
True.

	UPDATE_VIEW_COLLECTOR_WITH_TCP
	When set to True, the HTCondor collector will use TCP to forward
updates to condor_collector daemons specified by
CONDOR_VIEW_HOST, instead of the default UDP. Defaults to
False.

	TCP_UPDATE_COLLECTORS
	A list of condor_collector daemons which will be updated with TCP
instead of UDP, when UPDATE_COLLECTOR_WITH_TCP or
UPDATE_VIEW_COLLECTOR_WITH_TCP is set to False.

When there are sufficient file descriptors, the condor_collector
leaves established TCP sockets open, facilitating better performance.
Subsequent updates can reuse an already open socket.

Each HTCondor daemon that sends updates to the condor_collector will
have 1 socket open to it. So, in a pool with N machines, each of them
running a condor_master, condor_schedd, and condor_startd, the
condor_collector would need at least 3*N file descriptors. If the
condor_collector is also acting as a CCB server, it will require an
additional file descriptor for each registered daemon. In the default
configuration, the number of file descriptors available to the
condor_collector is 10240. For very large pools, the number of
descriptor can be modified with the configuration:

COLLECTOR_MAX_FILE_DESCRIPTORS = 40960

If there are insufficient file descriptors for all of the daemons
sending updates to the condor_collector, a warning will be printed in
the condor_collector log file. The string
"file descriptor safety level exceeded" identifies this warning.

Running HTCondor on an IPv6 Network Stack

HTCondor supports using IPv4, IPv6, or both.

To require IPv4, you may set ENABLE_IPV4
to true; if the machine does not have an interface with an IPv4 address,
HTCondor will not start. Likewise, to require IPv6, you may set
ENABLE_IPV6 to true.

If you set ENABLE_IPV4 to false, HTCondor
will not use IPv4, even if it is available; likewise for ENABLE_IPV6
ENABLE_IPV6 and IPv6.

The default setting for ENABLE_IPV4 and
ENABLE_IPV6 is auto. If HTCondor does
not find an interface with an address of the corresponding protocol,
that protocol will not be used. Additionally, if only one of the
protocols has a private or public address, the other protocol will be
disabled. For instance, a machine with a private IPv4 address and a
loopback IPv6 address will only use IPv4; there’s no point trying to
contact some other machine via IPv6 over a loopback interface.

If both IPv4 and IPv6 networking are enabled, HTCondor runs in mixed
mode. In mixed mode, HTCondor daemons have at least one IPv4 address and
at least one IPv6 address. Other daemons and the command-line tools
choose between these addresses based on which protocols are enabled for
them; if both are, they will prefer the first address listed by that
daemon.

A daemon may be listening on one, some, or all of its machine’s
addresses. NETWORK_INTERFACE
Daemons may presently list at most two addresses, one IPv6 and one IPv4.
Each address is the “most public” address of its protocol; by default,
the IPv6 address is listed first. HTCondor selects the “most public”
address heuristically.

Nonetheless, there are two cases in which HTCondor may not use an IPv6
address when one is available:

	When given a literal IP address, HTCondor will use that IP address.

	When looking up a host name using DNS, HTCondor will use the first
address whose protocol is enabled for the tool or daemon doing the
look up.

You may force HTCondor to prefer IPv4 in all three of these situations
by setting the macro PREFER_IPV4 to true;
this is the default. With PREFER_IPV4
set, HTCondor daemons will list their “most public” IPv4 address first;
prefer the IPv4 address when choosing from another’s daemon list; and
prefer the IPv4 address when looking up a host name in DNS.

In practice, both an HTCondor pool’s central manager and any submit
machines within a mixed mode pool must have both IPv4 and IPv6 addresses
for both IPv4-only and IPv6-only condor_startd daemons to function
properly.

IPv6 and Host-Based Security

You may freely intermix IPv6 and IPv4 address literals. You may also
specify IPv6 netmasks as a legal IPv6 address followed by a slash
followed by the number of bits in the mask; or as the prefix of a legal
IPv6 address followed by two colons followed by an asterisk. The latter
is entirely equivalent to the former, except that it only allows you to
(implicitly) specify mask bits in groups of sixteen. For example,
fe8f:1234::/60 and fe8f:1234::* specify the same network mask.

The HTCondor security subsystem resolves names in the ALLOW and DENY
lists and uses all of the resulting IP addresses. Thus, to allow or deny
IPv6 addresses, the names must have IPv6 DNS entries (AAAA records), or
NO_DNS must be enabled.

IPv6 Address Literals

When you specify an IPv6 address and a port number simultaneously, you
must separate the IPv6 address from the port number by placing square
brackets around the address. For instance:

COLLECTOR_HOST = [2607:f388:1086:0:21e:68ff:fe0f:6462]:5332

If you do not (or may not) specify a port, do not use the square
brackets. For instance:

NETWORK_INTERFACE = 1234:5678::90ab

IPv6 without DNS

When using the configuration variable NO_DNS ,
IPv6 addresses are turned into host names by taking the IPv6 address,
changing colons to dashes, and appending $(DEFAULT_DOMAIN_NAME). So,

2607:f388:1086:0:21b:24ff:fedf:b520

becomes

2607-f388-1086-0-21b-24ff-fedf-b520.example.com

assuming

DEFAULT_DOMAIN_NAME=example.com

 DaemonCore

DaemonCore

This section is a brief description of DaemonCore. DaemonCore is a
library that is shared among most of the HTCondor daemons which provides
common functionality. Currently, the following daemons use DaemonCore:

	condor_master

	condor_startd

	condor_schedd

	condor_collector

	condor_negotiator

	condor_kbdd

	condor_gridmanager

	condor_credd

	condor_had

	condor_replication

	condor_transferer

	condor_job_router

	condor_lease_manager

	condor_rooster

	condor_shared_port

	condor_defrag

	condor_c-gahp

	condor_c-gahp_worker_thread

	condor_dagman

	condor_ft-gahp

	condor_rooster

	condor_shadow

	condor_shared_port

	condor_transferd

	condor_vm-gahp

Most of DaemonCore’s details are not interesting for administrators.
However, DaemonCore does provide a uniform interface for the daemons to
various Unix signals, and provides a common set of command-line options
that can be used to start up each daemon.

DaemonCore and Unix signals

One of the most visible features that DaemonCore provides for
administrators is that all daemons which use it behave the same way on
certain Unix signals. The signals and the behavior DaemonCore provides
are listed below:

	SIGHUP
	Causes the daemon to reconfigure itself.

	SIGTERM
	Causes the daemon to gracefully shutdown.

	SIGQUIT
	Causes the daemon to quickly shutdown.

Exactly what gracefully and quickly means varies from daemon to daemon.
For daemons with little or no state (the condor_kbdd,
condor_collector and condor_negotiator) there is no difference,
and both SIGTERM and SIGQUIT signals result in the daemon
shutting itself down quickly. For the condor_master, a graceful
shutdown causes the condor_master to ask all of its children to
perform their own graceful shutdown methods. The quick shutdown causes
the condor_master to ask all of its children to perform their own
quick shutdown methods. In both cases, the condor_master exits after
all its children have exited. In the condor_startd, if the machine is
not claimed and running a job, both the SIGTERM and SIGQUIT
signals result in an immediate exit. In the condor_schedd, if
there are no jobs currently running, there will be no condor_shadow
processes, and both signals result in an immediate exit. However, with
jobs running, a graceful shutdown causes the condor_schedd to ask
each condor_shadow to gracefully vacate the job it is serving, while
a quick shutdown results in a hard kill of every condor_shadow.

For all daemons, a reconfigure results in the daemon re-reading its
configuration file(s), causing any settings that have changed to take
effect. See the Introduction to Configuration section for
full details on what settings are in the configuration files and what they do.

DaemonCore and Command-line Arguments

The second visible feature that DaemonCore provides to administrators is
a common set of command-line arguments that all daemons understand.
These arguments and what they do are described below:

	-a string
	Append a period character (‘.’) concatenated with string to the
file name of the log for this daemon, as specified in the
configuration file.

	-b
	Causes the daemon to start up in the background. When a DaemonCore
process starts up with this option, it disassociates itself from the
terminal and forks itself, so that it runs in the background. This
is the default behavior for the condor_master. Prior to 8.9.7 it
was the default for all HTCondor daemons.

	-c filename
	Causes the daemon to use the specified filename as a full path
and file name as its global configuration file. This overrides the
CONDOR_CONFIG environment variable and the regular locations
that HTCondor checks for its configuration file.

	-d
	Use dynamic directories. The $(LOG), $(SPOOL), and
$(EXECUTE) directories are all created by the daemon at run
time, and they are named by appending the parent’s IP address and
PID to the value in the configuration file. These values are then
inherited by all children of the daemon invoked with this -d
argument. For the condor_master, all HTCondor processes will use
the new directories. If a condor_schedd is invoked with the -d
argument, then only the condor_schedd daemon and any
condor_shadow daemons it spawns will use the dynamic directories
(named with the condor_schedd daemon’s PID).

Note that by using a dynamically-created spool directory named by
the IP address and PID, upon restarting daemons, jobs submitted to
the original condor_schedd daemon that were stored in the old
spool directory will not be noticed by the new condor_schedd
daemon, unless you manually specify the old, dynamically-generated
SPOOL directory path in the configuration of the new
condor_schedd daemon.

	-f
	Causes the daemon to start up in the foreground. Instead of forking,
the daemon runs in the foreground. Since 8.9.7, this has been the default
for all daemons other than the condor_master.

NOTE: Before 8.9.7, When the condor_master started up daemons, it would do so with
the -f option, as it has already forked a process for the new
daemon. There will be a -f in the argument list for all HTCondor
daemons that the condor_master spawns.

	-k filename
	For non-Windows operating systems, causes the daemon to read out a
PID from the specified filename, and send a SIGTERM to that
process. The daemon started with this optional argument waits until
the daemon it is attempting to kill has exited.

	-l directory
	Overrides the value of LOG as specified in
the configuration files. Primarily, this option is used with the
condor_kbdd when it needs to run as the individual user logged
into the machine, instead of running as root. Regular users would
not normally have permission to write files into HTCondor’s log
directory. Using this option, they can override the value of LOG
and have the condor_kbdd write its log file into a directory that
the user has permission to write to.

	-local-name name
	Specify a local name for this instance of the daemon. This local
name will be used to look up configuration parameters.
The Configuration File Macros section contains details on how this local name will be used in the
configuration.

	-p port
	Causes the daemon to bind to the specified port as its command
socket. The condor_master daemon uses this option to ensure that
the condor_collector and condor_negotiator start up using
well-known ports that the rest of HTCondor depends upon them using.

	-pidfile filename
	Causes the daemon to write out its PID (process id number) to the
specified filename. This file can be used to help shutdown the
daemon without first searching through the output of the Unix ps
command.

Since daemons run with their current working directory set to the
value of LOG, if a full path (one that begins with a slash
character, /) is not specified, the file will be placed in the
LOG directory.

	-q
	Quiet output; write less verbose error messages to stderr when
something goes wrong, and before regular logging can be initialized.

	-r minutes
	Causes the daemon to set a timer, upon expiration of which, it sends
itself a SIGTERM for graceful shutdown.

	-t
	Causes the daemon to print out its error message to stderr
instead of its specified log file. This option forces the -f
option.

	-v
	Causes the daemon to print out version information and exit.

 Logging in HTCondor

Logging in HTCondor

HTCondor records many types of information in a variety of logs.
Administration may require locating and using the contents of a log to
debug issues. Listed here are details of the logs, to aid in
identification.

Job and Daemon Logs

	job event log
	The job event log is an optional, chronological list of events that
occur as a job runs. The job event log is written on the submit
machine. The submit description file for the job requests a job
event log with the submit command
log . The log is created
on and remains on the access point. Contents of the log are detailed
in the In the Job Event Log File section.
Examples of events are that the job is running, that the job is placed on
hold, or that the job completed.

	daemon logs
	Each daemon configured to have a log writes events relevant to that
daemon. Each event written consists of a timestamp and message. The
name of the log file is set by the value of configuration variable
<SUBSYS>_LOG , where <SUBSYS> is
replaced by the name of the daemon. The log is not permitted to grow
without bound; log rotation takes place after a configurable maximum
size or length of time is encountered. This maximum is specified by
configuration variable MAX_<SUBSYS>_LOG
 .

Which events are logged for a particular daemon are determined by
the value of configuration variable <SUBSYS>_DEBUG
 . The possible values for
<SUBSYS>_DEBUG categorize events, such that it is possible to
control the level and quantity of events written to the daemon’s
log.

Configuration variables that affect daemon logs are

MAX_NUM_<SUBSYS>_LOG
TRUNC_<SUBSYS>_LOG_ON_OPEN
<SUBSYS>_LOG_KEEP_OPEN
<SUBSYS>_LOCK
FILE_LOCK_VIA_MUTEX
TOUCH_LOG_INTERVAL
LOGS_USE_TIMESTAMP
LOG_TO_SYSLOG

Daemon logs are often investigated to accomplish administrative
debugging. condor_config_val can be used to determine the
location and file name of the daemon log. For example, to display
the location of the log for the condor_collector daemon, use

$ condor_config_val COLLECTOR_LOG

	job queue log
	The job queue log is a transactional representation of the current
job queue. If the condor_schedd crashes, the job queue can be
rebuilt using this log. The file name is set by configuration
variable JOB_QUEUE_LOG, and defaults to $(SPOOL)/job_queue.log.

Within the log, each transaction is identified with an integer value
and followed where appropriate with other values relevant to the
transaction. To reduce the size of the log and remove any
transactions that are no longer relevant, a copy of the log is kept
by renaming the log at each time interval defined by configuration
variable QUEUE_CLEAN_INTERVAL, and then a new log is written
with only current and relevant transactions.

Configuration variables that affect the job queue log are

SCHEDD_BACKUP_SPOOL
QUEUE_CLEAN_INTERVAL
MAX_JOB_QUEUE_LOG_ROTATIONS

	condor_schedd audit log
	The optional condor_schedd audit log records user-initiated
events that modify the job queue, such as invocations of
condor_submit, condor_rm, condor_hold and
condor_release. Each event has a time stamp and a message that
describes details of the event.

This log exists to help administrators track the activities of pool
users.

The file name is set by configuration variable SCHEDD_AUDIT_LOG
 .

Configuration variables that affect the audit log are

MAX_SCHEDD_AUDIT_LOG
MAX_NUM_SCHEDD_AUDIT_LOG

	condor_shared_port audit log
	The optional condor_shared_port audit log records connections
made through the DAEMON_SOCKET_DIR
 . Each record includes the source
address, the socket file name, and the target process’s PID, UID,
GID, executable path, and command line.

This log exists to help administrators track the activities of pool
users.

The file name is set by configuration variable
SHARED_PORT_AUDIT_LOG .

Configuration variables that affect the audit log are

MAX_SHARED_PORT_AUDIT_LOG
MAX_NUM_SHARED_PORT_AUDIT_LOG

	event log
	The event log is an optional, chronological list of events that
occur for all jobs and all users. The events logged are the same as
those that would go into a job event log. The file name is set by
configuration variable EVENT_LOG. The
log is created only if this configuration variable is set.

Configuration variables that affect the event log, setting details
such as the maximum size to which this log may grow and details of
file rotation and locking are

EVENT_LOG_MAX_SIZE
EVENT_LOG_MAX_ROTATIONS
EVENT_LOG_LOCKING
EVENT_LOG_FSYNC
EVENT_LOG_ROTATION_LOCK
EVENT_LOG_JOB_AD_INFORMATION_ATTRS
EVENT_LOG_USE_XML

	accountant log
	The accountant log is a transactional representation of the
condor_negotiator daemon’s database of accounting information,
which are user priorities. The file name of the accountant log is
$(SPOOL)/Accountantnew.log. Within the log, users are identified
by username@uid_domain.

To reduce the size and remove information that is no longer
relevant, a copy of the log is made when its size hits the number of
bytes defined by configuration variable
MAX_ACCOUNTANT_DATABASE_SIZE, and then a new log is written in a
more compact form.

Administrators can change user priorities kept in this log by using
the command line tool condor_userprio.

	negotiator match log
	The negotiator match log is a second daemon log from the
condor_negotiator daemon. Events written to this log are those
with debug level of D_MATCH. The file name is set by
configuration variable NEGOTIATOR_MATCH_LOG
 , and defaults to
$(LOG)/MatchLog.

	history log
	This optional log contains information about all jobs that have been
completed. It is written by the condor_schedd daemon. The file
name is $(SPOOL)/history.

Administrators can change view this historical information by using
the command line tool condor_history.

Configuration variables that affect the history log, setting details
such as the maximum size to which this log may grow are

ENABLE_HISTORY_ROTATION
MAX_HISTORY_LOG
MAX_HISTORY_ROTATIONS
ROTATE_HISTORY_DAILY
ROTATE_HISTORY_MONTHLY

DAGMan Logs

	default node log
	A job event log of all node jobs within a single DAG. It is used to
enforce the dependencies of the DAG.

The file name is set by configuration variable
DAGMAN_DEFAULT_NODE_LOG,
and the full path name of this file must be unique while any and all
submitted DAGs and other jobs from the submit host run. The syntax
used in the definition of this configuration variable is different
to enable the setting of a unique file name. See
the Configuration File Entries for DAGMan section for the complete definition.

Configuration variables that affect this log are

DAGMAN_ALWAYS_USE_NODE_LOG

	the .dagman.out file
	A log created or appended to for each DAG submitted with timestamped
events and extra information about the configuration applied to the
DAG. The name of this log is formed by appending .dagman.out to
the name of the DAG input file. The file remains after the DAG
completes.

This log may be helpful in debugging what has happened in the
execution of a DAG, as well as help to determine the final state of
the DAG.

Configuration variables that affect this log are

DAGMAN_VERBOSITY
DAGMAN_PENDING_REPORT_INTERVAL

	the jobstate.log file
	This optional, machine-readable log enables automated monitoring of
DAG. The page Machine-Readable Event History
details this log.

 Monitoring

Monitoring

Information that the condor_collector collects can be used to monitor
a pool. The condor_status command can be used to display snapshot of
the current state of the pool. Monitoring systems can be set up to track
the state over time, and they might go further, to alert the system
administrator about exceptional conditions.

Ganglia

Support for the Ganglia monitoring system
(http://ganglia.info/) is integral to
HTCondor. Nagios (http://www.nagios.org/)
is often used to provide alerts based on data from the Ganglia
monitoring system. The condor_gangliad daemon provides an efficient
way to take information from an HTCondor pool and supply it to the
Ganglia monitoring system.

The condor_gangliad gathers up data as specified by its
configuration, and it streamlines getting that data to the Ganglia
monitoring system. Updates sent to Ganglia are done using the Ganglia
shared libraries for efficiency.

If Ganglia is already deployed in the pool, the monitoring of HTCondor
is enabled by running the condor_gangliad daemon on a single machine
within the pool. If the machine chosen is the one running Ganglia’s
gmetad, then the HTCondor configuration consists of adding
GANGLIAD to the definition of configuration variable DAEMON_LIST
on that machine. It may be advantageous to run the condor_gangliad
daemon on the same machine as is running the condor_collector daemon,
because on a large pool with many ClassAds, there is likely to be less
network traffic. If the condor_gangliad daemon is to run on a
different machine than the one running Ganglia’s gmetad, modify
configuration variable GANGLIA_GSTAT_COMMAND
 to get the list of monitored hosts
from the master gmond program.

If the pool does not use Ganglia, the pool can still be monitored by a
separate server running Ganglia.

By default, the condor_gangliad will only propagate metrics to hosts
that are already monitored by Ganglia. Set configuration variable
GANGLIA_SEND_DATA_FOR_ALL_HOSTS to True to set up a
Ganglia host to monitor a pool not monitored by Ganglia or have a
heterogeneous pool where some hosts are not monitored. In this case,
default graphs that Ganglia provides will not be present. However, the
HTCondor metrics will appear.

On large pools, setting configuration variable
GANGLIAD_PER_EXECUTE_NODE_METRICS to False will reduce the amount
of data sent to Ganglia. The execute node data is the least important to
monitor. One can also limit the amount of data by setting configuration
variable GANGLIAD_REQUIREMENTS Be aware that aggregate sums over the
entire pool will not be accurate if this variable limits the ClassAds queried.

Metrics to be sent to Ganglia are specified in all files within the
directory specified by configuration variable
GANGLIAD_METRICS_CONFIG_DIR. Each file in the directory
is read, and the format within each file is that of New ClassAds. Here
is an example of a single metric definition given as a New ClassAd:

[
 Name = "JobsSubmitted";
 Desc = "Number of jobs submitted";
 Units = "jobs";
 TargetType = "Scheduler";
]

A nice set of default metrics is in file:
$(GANGLIAD_METRICS_CONFIG_DIR)/00_default_metrics.

Recognized metric attribute names and their use:

	Name
	The name of this metric, which corresponds to the ClassAd attribute
name. Metrics published for the same machine must have unique names.

	Value
	A ClassAd expression that produces the value when evaluated. The
default value is the value in the daemon ClassAd of the attribute
with the same name as this metric.

	Desc
	A brief description of the metric. This string is displayed when the
user holds the mouse over the Ganglia graph for the metric.

	Verbosity
	The integer verbosity level of this metric. Metrics with a higher
verbosity level than that specified by configuration variable
GANGLIA_VERBOSITY will not be published.

	TargetType
	A string containing a comma-separated list of daemon ClassAd types
that this metric monitors. The specified values should match the
value of MyType of the daemon ClassAd. In addition, there are
special values that may be included. “Machine_slot1” may be
specified to monitor the machine ClassAd for slot 1 only. This is
useful when monitoring machine-wide attributes. The special value
“ANY” matches any type of ClassAd.

	Requirements
	A boolean expression that may restrict how this metric is
incorporated. It defaults to True, which places no restrictions
on the collection of this ClassAd metric.

	Title
	The graph title used for this metric. The default is the metric
name.

	Group
	A string specifying the name of this metric’s group. Metrics are
arranged by group within a Ganglia web page. The default is
determined by the daemon type. Metrics in different groups must have
unique names.

	Cluster
	A string specifying the cluster name for this metric. The default
cluster name is taken from the configuration variable
GANGLIAD_DEFAULT_CLUSTER.

	Units
	A string describing the units of this metric.

	Scale
	A scaling factor that is multiplied by the value of the Value
attribute. The scale factor is used when the value is not in the
basic unit or a human-interpretable unit. For example, duty cycle is
commonly expressed as a percent, but the HTCondor value ranges from
0 to 1. So, duty cycle is scaled by 100. Some metrics are reported
in KiB. Scaling by 1024 allows Ganglia to pick the appropriate
units, such as number of bytes rather than number of KiB. When
scaling by large values, converting to the “float” type is
recommended.

	Derivative
	A boolean value that specifies if Ganglia should graph the
derivative of this metric. Ganglia versions prior to 3.4 do not
support this.

	Type
	A string specifying the type of the metric. Possible values are
“double”, “float”, “int32”, “uint32”, “int16”, “uint16”, “int8”,
“uint8”, and “string”. The default is “string” for string values,
the default is “int32” for integer values, the default is “float”
for real values, and the default is “int8” for boolean values.
Integer values can be coerced to “float” or “double”. This is
especially important for values stored internally as 64-bit values.

	Regex
	This string value specifies a regular expression that matches
attributes to be monitored by this metric. This is useful for
dynamic attributes that cannot be enumerated in advance, because
their names depend on dynamic information such as the users who are
currently running jobs. When this is specified, one metric per
matching attribute is created. The default metric name is the name
of the matched attribute, and the default value is the value of that
attribute. As usual, the Value expression may be used when the
raw attribute value needs to be manipulated before publication.
However, since the name of the attribute is not known in advance, a
special ClassAd attribute in the daemon ClassAd is provided to allow
the Value expression to refer to it. This special attribute is
named Regex. Another special feature is the ability to refer to
text matched by regular expression groups defined by parentheses
within the regular expression. These may be substituted into the
values of other string attributes such as Name and Desc.
This is done by putting macros in the string values. “\\1” is
replaced by the first group, “\\2” by the second group, and so on.

	Aggregate
	This string value specifies an aggregation function to apply,
instead of publishing individual metrics for each daemon ClassAd.
Possible values are “sum”, “avg”, “max”, and “min”.

	AggregateGroup
	When an aggregate function has been specified, this string value
specifies which aggregation group the current daemon ClassAd belongs
to. The default is the metric Name. This feature works like
GROUP BY in SQL. The aggregation function produces one result per
value of AggregateGroup. A single aggregate group would
therefore be appropriate for a pool-wide metric. As an example, to
publish the sum of an attribute across different types of slot
ClassAds, make the metric name an expression that is unique to each
type. The default AggregateGroup would be set accordingly. Note
that the assumption is still that the result is a pool-wide metric,
so by default it is associated with the condor_collector daemon’s
host. To group by machine and publish the result into the Ganglia
page associated with each machine, make the AggregateGroup
contain the machine name and override the default Machine
attribute to be the daemon’s machine name, rather than the
condor_collector daemon’s machine name.

	Machine
	The name of the host associated with this metric. If configuration
variable GANGLIAD_DEFAULT_MACHINE is not specified, the
default is taken from the Machine attribute of the daemon
ClassAd. If the daemon name is of the form name@hostname, this may
indicate that there are multiple instances of HTCondor running on
the same machine. To avoid the metrics from these instances
overwriting each other, the default machine name is set to the
daemon name in this case. For aggregate metrics, the default value
of Machine will be the name of the condor_collector host.

	IP
	A string containing the IP address of the host associated with this
metric. If GANGLIAD_DEFAULT_IP is not specified, the default is
extracted from the MyAddress attribute of the daemon ClassAd.
This value must be unique for each machine published to Ganglia. It
need not be a valid IP address. If the value of Machine contains
an “@” sign, the default IP value will be set to the same value as
Machine in order to make the IP value unique to each instance of
HTCondor running on the same host.

	Lifetime
	A positive integer value representing the max number of seconds
without updating a metric will be kept before deletion. This is
represented in ganglia as DMAX. If no Lifetime is defined for a
metric then the default value will be set to a calculated value
based on the ganglia publish interval with a minimum value set by
GANGLIAD_MIN_METRIC_LIFETIME.

Absent ClassAds

By default, HTCondor assumes that resources are transient: the
condor_collector will discard ClassAds older than
CLASSAD_LIFETIME seconds. Its
default configuration value is 15 minutes, and as such, the default
value for UPDATE_INTERVAL will pass
three times before HTCondor forgets about a resource. In some pools,
especially those with dedicated resources, this approach may make it
unnecessarily difficult to determine what the composition of the pool
ought to be, in the sense of knowing which machines would be in the
pool, if HTCondor were properly functioning on all of them.

This assumption of transient machines can be modified by the use of
absent ClassAds. When a machine ClassAd would otherwise expire, the
condor_collector evaluates the configuration variable
ABSENT_REQUIREMENTS against the
machine ClassAd. If True, the machine ClassAd will be saved in a
persistent manner and be marked as absent; this causes the machine to
appear in the output of condor_status -absent. When the machine
returns to the pool, its first update to the condor_collector will
invalidate the absent machine ClassAd.

Absent ClassAds, like offline ClassAds, are stored to disk to ensure
that they are remembered, even across condor_collector crashes. The
configuration variable COLLECTOR_PERSISTENT_AD_LOG defines the file in which the
ClassAds are stored. Absent ClassAds are retained on disk as maintained by
the condor_collector for a length of time in seconds defined by the
configuration variable ABSENT_EXPIRE_ADS_AFTER. A value of 0 for this variable
means that the ClassAds are never discarded, and the default value is
thirty days.

Absent ClassAds are only returned by the condor_collector and
displayed when the -absent option to condor_status is specified,
or when the absent machine ClassAd attribute is mentioned on the
condor_status command line. This renders absent ClassAds invisible to
the rest of the HTCondor infrastructure.

A daemon may inform the condor_collector that the daemon’s ClassAd
should not expire, but should be removed right away; the daemon asks for
its ClassAd to be invalidated. It may be useful to place an invalidated
ClassAd in the absent state, instead of having it removed as an
invalidated ClassAd. An example of a ClassAd that could benefit from
being absent is a system with an uninterruptible power supply that shuts
down cleanly but unexpectedly as a result of a power outage. To cause
all invalidated ClassAds to become absent instead of invalidated, set
EXPIRE_INVALIDATED_ADS to
True. Invalidated ClassAds will instead be treated as if they
expired, including when evaluating ABSENT_REQUIREMENTS.

GPUs

HTCondor supports monitoring GPU utilization for NVidia GPUs. This feature
is enabled by default if you set use feature : GPUs in your configuration
file.

Doing so will cause the startd to run the condor_gpu_utilization tool.
This tool polls the (NVidia) GPU device(s) in the system and records their
utilization and memory usage values. At regular intervals, the tool reports
these values to the condor_startd, assigning them to each device’s usage
to the slot(s) to which those devices have been assigned.

Please note that condor_gpu_utilization can not presently assign GPU
utilization directly to HTCondor jobs. As a result, jobs sharing a GPU
device, or a GPU device being used by from outside HTCondor, will result
in GPU usage and utilization being misreported accordingly.

However, this approach does simplify monitoring for the owner/administrator
of the GPUs, because usage is reported by the condor_startd in addition
to the jobs themselves.

	DeviceGPUsAverageUsage
	The number of seconds executed by GPUs assigned to this slot,
divided by the number of seconds since the startd started up.

	DeviceGPUsMemoryPeakUsage
	The largest amount of GPU memory used GPUs assigned to this slot,
since the startd started up.

Elasticsearch

HTCondor supports pushing condor_schedd and condor_startd job
history ClassAds to Elasticsearch (and other targets) via the
condor_adstash tool/daemon.
condor_adstash collects job history ClassAds as specified by its
configuration, either querying specified daemons’ histories
or reading job history ClassAds from a specified file,
converts each ClassAd to a JSON document,
and pushes each doc to the configured Elasticsearch index.
The index is automatically created if it does not exist, and fields
are added and configured based on well known job ClassAd attributes.
(Custom attributes are also pushed, though always as keyword fields.)

condor_adstash is a Python 3.6+ script that uses the
HTCondor Python Bindings
and the
Python Elasticsearch Client [https://elasticsearch-py.readthedocs.io/],
both of which must be available to the system Python 3 installation
if using the daemonized version of condor_adstash.
condor_adstash can also be run as a standalone tool (e.g. in a
Python 3 virtual environment containing the necessary libraries).

Running condor_adstash as a daemon (i.e. under the watch of the
condor_master) can be enabled by adding
use feature : adstash
to your HTCondor configuration.
By default, this configuration will poll all condor_schedds that
report to the $(CONDOR_HOST) condor_collector every 20 minutes
and push the contents of the job history ClassAds to an Elasticsearch
instance running on localhost to an index named
htcondor-000001.
Your situation and monitoring needs are likely different!
See the condor_config.local.adstash example configuration file in
the examples/ directory for detailed information on how to modify
your configuration.

If you prefer to run condor_adstash in standalone mode, or are
curious about other ClassAd sources or targets, see the
condor_adstash man page for more
details.

Configuring a Pool to Report to the HTCondorView Server

For the HTCondorView server to function, configure the existing
collector to forward ClassAd updates to it. This configuration is only
necessary if the HTCondorView collector is a different collector from
the existing condor_collector for the pool. All the HTCondor daemons
in the pool send their ClassAd updates to the regular
condor_collector, which in turn will forward them on to the
HTCondorView server.

Define the following configuration variable:

CONDOR_VIEW_HOST = full.hostname[:portnumber]

where full.hostname is the full host name of the machine running the
HTCondorView collector. The full host name is optionally followed by a
colon and port number. This is only necessary if the HTCondorView
collector is configured to use a port number other than the default.

Place this setting in the configuration file used by the existing
condor_collector. It is acceptable to place it in the global
configuration file. The HTCondorView collector will ignore this setting
(as it should) as it notices that it is being asked to forward ClassAds
to itself.

Once the HTCondorView server is running with this change, send a
condor_reconfig command to the main condor_collector for the
change to take effect, so it will begin forwarding updates. A query to
the HTCondorView collector will verify that it is working. A query
example:

$ condor_status -pool condor.view.host[:portnumber]

A condor_collector may also be configured to report to multiple
HTCondorView servers. The configuration variable
CONDOR_VIEW_HOST can be given as a list of HTCondorView
servers separated by commas and/or spaces.

The following demonstrates an example configuration for two HTCondorView
servers, where both HTCondorView servers (and the condor_collector)
are running on the same machine, localhost.localdomain:

VIEWSERV01 = $(COLLECTOR)
VIEWSERV01_ARGS = -f -p 12345 -local-name VIEWSERV01
VIEWSERV01_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog01"
VIEWSERV01.POOL_HISTORY_DIR = $(LOCAL_DIR)/poolhist01
VIEWSERV01.KEEP_POOL_HISTORY = TRUE
VIEWSERV01.CONDOR_VIEW_HOST =

VIEWSERV02 = $(COLLECTOR)
VIEWSERV02_ARGS = -f -p 24680 -local-name VIEWSERV02
VIEWSERV02_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog02"
VIEWSERV02.POOL_HISTORY_DIR = $(LOCAL_DIR)/poolhist02
VIEWSERV02.KEEP_POOL_HISTORY = TRUE
VIEWSERV02.CONDOR_VIEW_HOST =

CONDOR_VIEW_HOST = localhost.localdomain:12345 localhost.localdomain:24680
DAEMON_LIST = $(DAEMON_LIST) VIEWSERV01 VIEWSERV02

Note that the value of CONDOR_VIEW_HOST for VIEWSERV01 and VIEWSERV02
is unset, to prevent them from inheriting the global value of
CONDOR_VIEW_HOST and attempting to report to themselves or each other. If
the HTCondorView servers are running on different machines where there is no
global value for CONDOR_VIEW_HOST, this precaution is not required.

 The High Availability of Daemons

The High Availability of Daemons

In the case that a key machine no longer functions, HTCondor can be
configured such that another machine takes on the key functions. This is
called High Availability. While high availability is generally
applicable, there are currently two specialized cases for its use: when
the central manager (running the condor_negotiator and
condor_collector daemons) becomes unavailable, and when the machine
running the condor_schedd daemon (maintaining the job queue) becomes
unavailable.

High Availability of the Job Queue

For a pool where all jobs are submitted through a single machine in the
pool, and there are lots of jobs, this machine becoming nonfunctional
means that jobs stop running. The condor_schedd daemon maintains the
job queue. No job queue due to having a nonfunctional machine implies
that no jobs can be run. This situation is worsened by using one machine
as the single submission point. For each HTCondor job (taken from the
queue) that is executed, a condor_shadow process runs on the machine
where submitted to handle input/output functionality. If this machine
becomes nonfunctional, none of the jobs can continue. The entire pool
stops running jobs.

The goal of High Availability in this special case is to transfer the
condor_schedd daemon to run on another designated machine. Jobs
caused to stop without finishing can be restarted from the beginning, or
can continue execution using the most recent checkpoint. New jobs can
enter the job queue. Without High Availability, the job queue would
remain intact, but further progress on jobs would wait until the machine
running the condor_schedd daemon became available (after fixing
whatever caused it to become unavailable).

HTCondor uses its flexible configuration mechanisms to allow the
transfer of the condor_schedd daemon from one machine to another. The
configuration specifies which machines are chosen to run the
condor_schedd daemon. To prevent multiple condor_schedd daemons
from running at the same time, a lock (semaphore-like) is held over the
job queue. This synchronizes the situation in which control is
transferred to a secondary machine, and the primary machine returns to
functionality. Configuration variables also determine time intervals at
which the lock expires, and periods of time that pass between polling to
check for expired locks.

To specify a single machine that would take over, if the machine running
the condor_schedd daemon stops working, the following additions are
made to the local configuration of any and all machines that are able to
run the condor_schedd daemon (becoming the single pool submission
point):

MASTER_HA_LIST = SCHEDD
SPOOL = /share/spool
HA_LOCK_URL = file:/share/spool
VALID_SPOOL_FILES = $(VALID_SPOOL_FILES) SCHEDD.lock

Configuration macro MASTER_HA_LIST
identifies the condor_schedd daemon as the daemon that is to be
watched to make sure that it is running. Each machine with this
configuration must have access to the lock (the job queue) which
synchronizes which single machine does run the condor_schedd daemon.
This lock and the job queue must both be located in a shared file space,
and is currently specified only with a file URL. The configuration
specifies the shared space (SPOOL), and the URL of the lock.
condor_preen is not currently aware of the lock file and will delete
it if it is placed in the SPOOL directory, so be sure to add file
SCHEDD.lock to VALID_SPOOL_FILES
 .

As HTCondor starts on machines that are configured to run the single
condor_schedd daemon, the condor_master daemon of the first
machine that looks at (polls) the lock and notices that no lock is held.
This implies that no condor_schedd daemon is running. This
condor_master daemon acquires the lock and runs the condor_schedd
daemon. Other machines with this same capability to run the
condor_schedd daemon look at (poll) the lock, but do not run the
daemon, as the lock is held. The machine running the condor_schedd
daemon renews the lock periodically.

If the machine running the condor_schedd daemon fails to renew the
lock (because the machine is not functioning), the lock times out
(becomes stale). The lock is released by the condor_master daemon if
condor_off or condor_off -schedd is executed, or when the
condor_master daemon knows that the condor_schedd daemon is no
longer running. As other machines capable of running the
condor_schedd daemon look at the lock (poll), one machine will be the
first to notice that the lock has timed out or been released. This
machine (correctly) interprets this situation as the condor_schedd
daemon is no longer running. This machine’s condor_master daemon then
acquires the lock and runs the condor_schedd daemon.

See the condor_master Configuration File Macros section for details relating to the configuration variables used
to set timing and polling intervals.

Working with Remote Job Submission

Remote job submission requires identification of the job queue,
submitting with a command similar to:

$ condor_submit -remote condor@example.com myjob.submit

This implies the identification of a single condor_schedd daemon,
running on a single machine. With the high availability of the job
queue, there are multiple condor_schedd daemons, of which only one at
a time is acting as the single submission point. To make remote
submission of jobs work properly, set the configuration variable
SCHEDD_NAME in the local configuration to
have the same value for each potentially running condor_schedd
daemon. In addition, the value chosen for the variable SCHEDD_NAME
will need to include the at symbol (@), such that HTCondor will not
modify the value set for this variable. See the description of
MASTER_NAME in the condor_master Configuration File Macros section for defaults and composition of valid values
for SCHEDD_NAME. As an example, include in each local configuration a value
similar to:

SCHEDD_NAME = had-schedd@

Then, with this sample configuration, the submit command appears as:

$ condor_submit -remote had-schedd@ myjob.submit

High Availability of the Central Manager

Interaction with Flocking

The HTCondor high availability mechanisms discussed in this section
currently do not work well in configurations involving flocking. The
individual problems listed listed below interact to make the situation
worse. Because of these problems, we advise against the use of flocking
to pools with high availability mechanisms enabled.

	The condor_schedd has a hard configured list of
condor_collector and condor_negotiator daemons, and does not
query redundant collectors to get the current condor_negotiator,
as it does when communicating with its local pool. As a result, if
the default condor_negotiator fails, the condor_schedd does not
learn of the failure, and thus, talk to the new condor_negotiator.

	When the condor_negotiator is unable to communicate with a
condor_collector, it utilizes the next condor_collector within
the list. Unfortunately, it does not start over at the top of the
list. When combined with the previous problem, a backup
condor_negotiator will never get jobs from a flocked
condor_schedd.

Introduction

The condor_negotiator and condor_collector daemons are the heart
of the HTCondor matchmaking system. The availability of these daemons is
critical to an HTCondor pool’s functionality. Both daemons usually run
on the same machine, most often known as the central manager. The
failure of a central manager machine prevents HTCondor from matching new
jobs and allocating new resources. High availability of the
condor_negotiator and condor_collector daemons eliminates this
problem.

Configuration allows one of multiple machines within the pool to
function as the central manager. While there are may be many active
condor_collector daemons, only a single, active condor_negotiator
daemon will be running. The machine with the condor_negotiator daemon
running is the active central manager. The other potential central
managers each have a condor_collector daemon running; these are the
idle central managers.

All submit and execute machines are configured to report to all
potential central manager machines.

Each potential central manager machine runs the high availability
daemon, condor_had. These daemons communicate with each other,
constantly monitoring the pool to ensure that one active central manager
is available. If the active central manager machine crashes or is shut
down, these daemons detect the failure, and they agree on which of the
idle central managers is to become the active one. A protocol determines
this.

In the case of a network partition, idle condor_had daemons within
each partition detect (by the lack of communication) a partitioning, and
then use the protocol to chose an active central manager. As long as the
partition remains, and there exists an idle central manager within the
partition, there will be one active central manager within each
partition. When the network is repaired, the protocol returns to having
one central manager.

Through configuration, a specific central manager machine may act as the
primary central manager. While this machine is up and running, it
functions as the central manager. After a failure of this primary
central manager, another idle central manager becomes the active one.
When the primary recovers, it again becomes the central manager. This is
a recommended configuration, if one of the central managers is a
reliable machine, which is expected to have very short periods of
instability. An alternative configuration allows the promoted active
central manager (in the case that the central manager fails) to stay
active after the failed central manager machine returns.

This high availability mechanism operates by monitoring communication
between machines. Note that there is a significant difference in
communications between machines when

	a machine is down

	a specific daemon (the condor_had daemon in this case) is not
running, yet the machine is functioning

The high availability mechanism distinguishes between these two, and it
operates based only on first (when a central manager machine is down). A
lack of executing daemons does not cause the protocol to choose or use a
new active central manager.

The central manager machine contains state information, and this
includes information about user priorities. The information is kept in a
single file, and is used by the central manager machine. Should the
primary central manager fail, a pool with high availability enabled
would lose this information (and continue operation, but with
re-initialized priorities). Therefore, the condor_replication daemon
exists to replicate this file on all potential central manager machines.
This daemon promulgates the file in a way that is safe from error, and
more secure than dependence on a shared file system copy.

The condor_replication daemon runs on each potential central manager
machine as well as on the active central manager machine. There is a
unidirectional communication between the condor_had daemon and the
condor_replication daemon on each machine. To properly do its job,
the condor_replication daemon must transfer state files. When it
needs to transfer a file, the condor_replication daemons at both the
sending and receiving ends of the transfer invoke the
condor_transferer daemon. These short lived daemons do the task of
file transfer and then exit. Do not place TRANSFERER into
DAEMON_LIST, as it is not a daemon that the condor_master should
invoke or watch over.

Configuration

The high availability of central manager machines is enabled through
configuration. It is disabled by default. All machines in a pool must be
configured appropriately in order to make the high availability
mechanism work. See the Configuration File Entries Relating to High Availability section, for definitions
of these configuration variables.

The condor_had and condor_replication daemons use the
condor_shared_port daemon by default. If you want to use more than
one condor_had or condor_replication daemon with the
condor_shared_port daemon under the same master, you must configure
those additional daemons to use nondefault socket names. (Set the
-sock option in <NAME>_ARGS.) Because the condor_had daemon
must know the condor_replication daemon’s address a priori, you will
also need to set <NAME>.REPLICATION_SOCKET_NAME appropriately.

The stabilization period is the time it takes for the condor_had
daemons to detect a change in the pool state such as an active central
manager failure or network partition, and recover from this change. It
may be computed using the following formula:

stabilization period = 12 * (number of central managers) *
 $(HAD_CONNECTION_TIMEOUT)

To disable the high availability of central managers mechanism, it is
sufficient to remove HAD, REPLICATION, and NEGOTIATOR from
the DAEMON_LIST configuration variable on all machines, leaving only
one condor_negotiator in the pool.

To shut down a currently operating high availability mechanism, follow
the given steps. All commands must be invoked from a host which has
administrative permissions on all central managers. The first three
commands kill all condor_had, condor_replication, and all running
condor_negotiator daemons. The last command is invoked on the host
where the single condor_negotiator daemon is to run.

	condor_off -all -neg

	condor_off -all -subsystem -replication

	condor_off -all -subsystem -had

	condor_on -neg

When configuring condor_had to control the condor_negotiator, if
the default backoff constant value is too small, it can result in a
churning of the condor_negotiator, especially in cases in which the
primary negotiator is unable to run due to misconfiguration. In these
cases, the condor_master will kill the condor_had after the
condor_negotiator exists, wait a short period, then restart
condor_had. The condor_had will then win the election, so the
secondary condor_negotiator will be killed, and the primary will be
restarted, only to exit again. If this happens too quickly, neither
condor_negotiator will run long enough to complete a negotiation
cycle, resulting in no jobs getting started. Increasing this value via
MASTER_HAD_BACKOFF_CONSTANT
 to be larger than a typical
negotiation cycle can help solve this problem.

To run a high availability pool without the replication feature, do the
following operations:

	Set the HAD_USE_REPLICATION
configuration variable to False, and thus disable the replication
on configuration level.

	Remove REPLICATION from both DAEMON_LIST and
DC_DAEMON_LIST in the configuration file.

Sample Configuration

This section provides sample configurations for high availability.

We begin with a sample configuration using shared port, and then include
a sample configuration for not using shared port. Both samples relate to
the high availability of central managers.

Each sample is split into two parts: the configuration for the central
manager machines, and the configuration for the machines that will not
be central managers.

The following shared-port configuration is for the central manager
machines.

THE FOLLOWING MUST BE IDENTICAL ON ALL CENTRAL MANAGERS

CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
CONDOR_HOST = $(CENTRAL_MANAGER1), $(CENTRAL_MANAGER2)

Since we're using shared port, we set the port number to the shared
port daemon's port number. NOTE: this assumes that each machine in
the list is using the same port number for shared port. While this
will be true by default, if you've changed it in configuration any-
where, you need to reflect that change here.

HAD_USE_SHARED_PORT = TRUE
HAD_LIST = \
$(CENTRAL_MANAGER1):$(SHARED_PORT_PORT), \
$(CENTRAL_MANAGER2):$(SHARED_PORT_PORT)

REPLICATION_USE_SHARED_PORT = TRUE
REPLICATION_LIST = \
$(CENTRAL_MANAGER1):$(SHARED_PORT_PORT), \
$(CENTRAL_MANAGER2):$(SHARED_PORT_PORT)

The recommended setting.
HAD_USE_PRIMARY = TRUE

If you change which daemon(s) you're making highly-available, you must
change both of these values.
HAD_CONTROLLEE = NEGOTIATOR
MASTER_NEGOTIATOR_CONTROLLER = HAD

THE FOLLOWING MAY DIFFER BETWEEN CENTRAL MANAGERS

The daemon list may contain additional entries.
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION

Using replication is optional.
HAD_USE_REPLICATION = TRUE

This is the default location for the state file.
STATE_FILE = $(SPOOL)/Accountantnew.log

See note above the length of the negotiation cycle.
MASTER_HAD_BACKOFF_CONSTANT = 360

The following shared-port configuration is for the machines which that
will not be central managers.

CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
CONDOR_HOST = $(CENTRAL_MANAGER1), $(CENTRAL_MANAGER2)

The following configuration sets fixed port numbers for the central
manager machines.

##
A sample configuration file for central managers, to enable the
the high availability mechanism.
##

###
THE FOLLOWING MUST BE IDENTICAL ON ALL POTENTIAL CENTRAL MANAGERS.
###
For simplicity in writing other expressions, define a variable
for each potential central manager in the pool.
These are samples.
CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
A list of all potential central managers in the pool.
CONDOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

Define the port number on which the condor_had daemon will
listen. The port must match the port number used
for when defining HAD_LIST. This port number is
arbitrary; make sure that there is no port number collision
with other applications.
HAD_PORT = 51450
HAD_ARGS = -f -p $(HAD_PORT)

The following macro defines the port number condor_replication will listen
on on this machine. This port should match the port number specified
for that replication daemon in the REPLICATION_LIST
Port number is arbitrary (make sure no collision with other applications)
This is a sample port number
REPLICATION_PORT = 41450
REPLICATION_ARGS = -p $(REPLICATION_PORT)

The following list must contain the same addresses in the same order
as CONDOR_HOST. In addition, for each hostname, it should specify
the port number of condor_had daemon running on that host.
The first machine in the list will be the PRIMARY central manager
machine, in case HAD_USE_PRIMARY is set to true.
HAD_LIST = \
$(CENTRAL_MANAGER1):$(HAD_PORT), \
$(CENTRAL_MANAGER2):$(HAD_PORT)

The following list must contain the same addresses
as HAD_LIST. In addition, for each hostname, it should specify
the port number of condor_replication daemon running on that host.
This parameter is mandatory and has no default value
REPLICATION_LIST = \
$(CENTRAL_MANAGER1):$(REPLICATION_PORT), \
$(CENTRAL_MANAGER2):$(REPLICATION_PORT)

The following is the name of the daemon that the HAD controls.
This must match the name of a daemon in the master's DAEMON_LIST.
The default is NEGOTIATOR, but can be any daemon that the master
controls.
HAD_CONTROLLEE = NEGOTIATOR

HAD connection time.
Recommended value is 2 if the central managers are on the same subnet.
Recommended value is 5 if Condor security is enabled.
Recommended value is 10 if the network is very slow, or
to reduce the sensitivity of HA daemons to network failures.
HAD_CONNECTION_TIMEOUT = 2

##If true, the first central manager in HAD_LIST is a primary.
HAD_USE_PRIMARY = true

###
THE PARAMETERS BELOW ARE ALLOWED TO BE DIFFERENT ON EACH
CENTRAL MANAGER
THESE ARE MASTER SPECIFIC PARAMETERS
###

the master should start at least these four daemons
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION

Enables/disables the replication feature of HAD daemon
Default: false
HAD_USE_REPLICATION = true

Name of the file from the SPOOL directory that will be replicated
Default: $(SPOOL)/Accountantnew.log
STATE_FILE = $(SPOOL)/Accountantnew.log

Period of time between two successive awakenings of the replication daemon
Default: 300
REPLICATION_INTERVAL = 300

Period of time, in which transferer daemons have to accomplish the
downloading/uploading process
Default: 300
MAX_TRANSFER_LIFETIME = 300

Period of time between two successive sends of classads to the collector by HAD
Default: 300
HAD_UPDATE_INTERVAL = 300

The HAD controls the negotiator, and should have a larger
backoff constant
MASTER_NEGOTIATOR_CONTROLLER = HAD
MASTER_HAD_BACKOFF_CONSTANT = 360

The configuration for machines that will not be central managers is
identical for the fixed- and shared- port cases.

##
Sample configuration relating to high availability for machines
that DO NOT run the condor_had daemon.
##

For simplicity define a variable for each potential central manager
in the pool.
CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
List of all potential central managers in the pool
CONDOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

 Third Party/Delegated file and credential transfer

Third Party/Delegated file and credential transfer

Enabling the Transfer of Files Specified by a URL

HTCondor permits input files to be directly transferred from a location specified
by a URL to the EP; likewise, output files may be transferred to a location
specified by a URL. All transfers (both input and output) are
accomplished by invoking a file transfer plugin: an executable or shell
script that handles the task of file transfer.

This URL specification works for most HTCondor job universes, but not grid,
local or scheduler. The execute machine directly retrieves the files from
their source. Each URL-transferred file, is
separately listed in the job submit description file with the command
transfer_input_files;

see Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism for details.

For transferring output files, either the entire output sandbox, or a
subset of these files, as specified by the submit description file
command transfer_output_files

are transferred to the directory specified by the URL. The URL itself is
specified in the separate submit description file command
output_destination;

see Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism for details. The plug-in
is invoked once for each output file to be transferred.

Configuration identifies the availability of the one or more plug-in(s).
The plug-ins must be installed and available on every execute machine
that may run a job which might specify a URL, for either direction.

URL transfers are enabled by default in the configuration of execute
machines. To Disable URL transfers, set

ENABLE_URL_TRANSFERS = FALSE

A comma separated list giving the absolute path and name of all
available plug-ins is specified as in the example:

FILETRANSFER_PLUGINS = /opt/condor/plugins/wget-plugin, \
 /opt/condor/plugins/hdfs-plugin, \
 /opt/condor/plugins/custom-plugin

The condor_starter invokes all listed plug-ins to determine their
capabilities. Each may handle one or more protocols (scheme names). The
plug-in’s response to invocation identifies which protocols it can
handle. When a URL transfer is specified by a job, the condor_starter
invokes the proper one to do the transfer. If more than one plugin is
capable of handling a particular protocol, then the last one within the
list given by FILETRANSFER_PLUGINS is used.

HTCondor assumes that all plug-ins will respond in specific ways. To
determine the capabilities of the plug-ins as to which protocols they
handle, the condor_starter daemon invokes each plug-in giving it the
command line argument -classad. In response to invocation with this
command line argument, the plug-in must respond with an output of four
ClassAd attributes. The first three are fixed:

MultipleFileSupport = true
PluginVersion = "0.1"
PluginType = "FileTransfer"

The fourth ClassAd attribute is SupportedMethods. This attribute is a
string containing a comma separated list of the protocols that the
plug-in handles. So, for example

SupportedMethods = "http,ftp,file"

would identify that the three protocols described by http, ftp, and file
are supported. These strings will match the protocol specification as
given within a URL in a
transfer_input_files
command or within a URL in an
output_destination
command in a submit description file for a job.

When a job specifies a URL transfer, the plug-in is invoked, without the
command line argument -classad. It will instead be given two other
command line arguments. For the transfer of input file(s), the first
will be the URL of the file to retrieve and the second will be the
absolute path identifying where to place the transferred file. For the
transfer of output file(s), the first will be the absolute path on the
local machine of the file to transfer, and the second will be the URL of
the directory and file name at the destination.

The plug-in is expected to do the transfer, exiting with status 0 if the
transfer was successful, and a non-zero status if the transfer was not
successful. When not successful, the job is placed on hold, and the job
ClassAd attribute HoldReason will be set as appropriate for the job.
The job ClassAd attribute HoldReasonSubCode will be set to the exit
status of the plug-in.

As an example of the transfer of a subset of output files, assume that
the submit description file contains

output_destination = url://server/some/directory/
transfer_output_files = foo, bar, qux

HTCondor invokes the plug-in that handles the url protocol with
input classads describing all the files to be transferred and their
destinations. The directory delimiter (/ on Unix, and \ on Windows) is
appended to the destination URL, such that the input will look like the
following:

[LocalFileName = "/path/to/local/copy/of/foo"; Url = "url://server/some/directory//foo"]
[LocalFileName = "/path/to/local/copy/of/bar"; Url = "url://server/some/directory//bar"]
[LocalFileName = "/path/to/local/copy/of/qux"; Url = "url://server/some/directory//qux"]

HTCondor also expects the plugin to exit with one of the following standardized
exit codes:

	0: Transfer successful

	Any other value: Transfer failed

Custom File Transfer Plugins

This functionality is not limited to a predefined set of protocols or plugins.
New ones can be invented. As an invented example, the zkm
transfer type writes random bytes to a file. The plug-in that handles
zkm transfers would respond to invocation with the -classad command
line argument with:

MultipleFileSupport = true
PluginVersion = "0.1"
PluginType = "FileTransfer"
SupportedMethods = "zkm"

And, then when a job requested that this plug-in be invoked, for the
invented example:

transfer_input_files = zkm://128/r-data

the plug-in will be invoked with a first command line argument of
zkm://128/r-data and a second command line argument giving the full path
along with the file name r-data as the location for the plug-in to
write 128 bytes of random data.

By default, HTCondor includes plugins for standard file protocols http://...,
https://... and ftp://.... Additionally, URL plugins exist
for transferring files to/from Box.com accounts (box://...),
Google Drive accounts (gdrive://...),
OSDF accounts (osdf://...),
Stash accounts (stash://...),
and Microsoft OneDrive accounts (onedrive://...).
These plugins require users to have obtained OAuth2 credentials
for the relevant service(s) before they can be used.
See Enabling the Fetching and Use of OAuth2 Credentials for how to enable users
to fetch OAuth2 credentials.

An example template for a file transfer plugin is available in our
source repository under /src/condor_examples/filetransfer_example_plugin.py [https://github.com/htcondor/htcondor/blob/master/src/condor_examples/filetransfer_example_plugin.py].
This provides most of the functionality required in the plugin, except for
the transfer logic itself, which is clearly indicated in the comments.

Sending File Transfer Plugins With Your Job

You can also use custom protocols on machines that do not have the necessary
plugin installed. This is achieved by sending the file transfer plugin along
with your job, using the transfer_plugins submit attribute described
on the condor_submit man page.

Assume you want to transfer some URLs that use the custommethod://
protocol, and you also have a plugin script called
custommethod_plugin.py that knows how to handle these URLs. Since this
plugin is not available on any of the execution points in your pool, you can
send it along with your job by including the following in the submit file:

transfer_plugins = custommethod=custommethod_plugin.py
transfer_output_files = custommethod://path/to/file1, custommethod://path/to/file2

When the job arrives at an exeuction point, it will know to use the plugin
script provided to transfer these URLs. If your custommethod:// protocol
is already supported at your execution point, the plugin provided in your
submit file will take precedence.

Enabling the Transfer of Public Input Files over HTTP

Another option for transferring files over HTTP is for users to specify
a list of public input files. These are specified in the submit file as
follows:

public_input_files = file1,file2,file3

HTCondor will automatically convert these files into URLs and transfer
them over HTTP using plug-ins. The advantage to this approach is that
system administrators can leverage Squid caches or load-balancing
infrastructure, resulting in improved performance. This also allows us
to gather statistics about file transfers that were not previously
available.

When a user submits a job with public input files, HTCondor generates a
hash link for each file in the root directory for the web server. Each
of these links points back to the original file on local disk. Next,
HTCondor replaces the names of the files in the submit job with web
links to their hashes. These get sent to the execute node, which
downloads the files using our curl_plugin tool, and are then remapped
back to their original names.

In the event of any errors or configuration problems, HTCondor will fall
back to a regular (non-HTTP) file transfer.

To enable HTTP public file transfers, a system administrator must
perform several steps as described below.

Install a web service for public input files

An HTTP service must be installed and configured on the submit node. Any
regular web server software such as Apache
(https://httpd.apache.org/) or nginx
(https://nginx.org) will do. The submit node
must be running a Linux system.

Configuration knobs for public input files

Several knobs must be set and configured correctly for this
functionality to work:

	ENABLE_HTTP_PUBLIC_FILES:
Must be set to true (default: false)
HTTP_PUBLIC_FILES_ADDRESS: The full web address
(hostname + port) where your web server is serving files (default:
127.0.0.1:8080)
HTTP_PUBLIC_FILES_ROOT_DIR: Absolute path to the local
directory where the web service is serving files from.

	HTTP_PUBLIC_FILES_USER:
User security level used to write links to the directory specified by
HTTP_PUBLIC_FILES_ROOT_DIR. There are three valid options for
this knob:

	<user>: Links will be written as user who submitted the job.

	<condor>: Links will be written as user running condor
daemons. By default this is the user condor unless you have
changed this by setting the configuration parameter CONDOR_IDS.

	<%username%>: Links will be written as the user %username% (ie. httpd,
nobody) If using this option, make sure the directory is writable
by this particular user.

The default setting is <condor>.

Additional HTTP infrastructure for public input files

The main advantage of using HTTP for file transfers is that system
administrators can use additional infrastructure (such as Squid caching)
to improve file transfer performance. This is outside the scope of the
HTCondor configuration but is still worth mentioning here. When
curl_plugin is invoked, it checks the environment variable http_proxy
for a proxy server address; by setting this appropriately on execute
nodes, a system can dramatically improve transfer speeds for commonly
used files.

Enabling the Fetching and Use of OAuth2 Credentials

HTCondor supports two distinct methods for using OAuth2 credentials.
One uses its own native OAuth client and credential monitor, and one uses
a separate Hashicorp Vault server as the OAuth client and secure refresh
token storage. Each method uses a separate credmon implementation and rpm
and have their own advantages and disadvantages.

If the native OAuth client is used with a remote token issuer, then each
time a new refresh token is needed the user has to re-authorize it through
a web browser. An hour after all jobs of a user are stopped (by default),
the refresh tokens are deleted. The resulting access tokens are only
available inside HTCondor jobs.

If on the other hand a Vault server is used as the OAuth client, it
stores the refresh token long term (typically about a month since last
use) for multiple use cases. It can be used both by multiple HTCondor
access points and by other client commands that need access tokens.
Submit machines keep a medium term vault token (typically about a week)
so at most users have to authorize in their web browser once a week. If
Kerberos is also available, new vault tokens can be obtained automatically
without any user intervention. The HTCondor vault credmon also stores a
longer lived vault token for use as long as jobs might run.

Using the native OAuth client

HTCondor can be configured to allow users to request and securely store
credentials from most OAuth2 service providers. Users’ jobs can then request
these credentials to be securely transferred to job sandboxes, where they can
be used by file transfer plugins or be accessed by the users’ executable(s).

There are three steps to fully setting up HTCondor to enable users to be able
to request credentials from OAuth2 services:

	Enabling the condor_credd and condor_credmon_oauth daemons,

	Optionally enabling the companion OAuth2 credmon WSGI application, and

	Setting up API clients and related configuration.

First, to enable the condor_credd and condor_credmon_oauth daemons,
the easiest way is to install the condor-credmon-oauth rpm. This
installs the condor_credmon_oauth daemon and enables both it and
condor_credd with reasonable defaults via the use feature: oauth
configuration template.

Second, a token issuer, an HTTPS-enabled web server running on the submit
machine needs to be configured to execute its wsgi script as the user
condor. An example configuration is available at the path found with
rpm -ql condor-credmon-oauth|grep "condor_credmon_oauth\.conf" which
you can copy to an apache webserver’s configuration directory.

Third, for each OAuth2 service that one wishes to configure, an OAuth2 client
application should be registered for each access point on each service’s API
console. For example, for Box.com, a client can be registered by logging in to
https://app.box.com/developers/console, creating a new “Custom App”, and
selecting “Standard OAuth 2.0 (User Authentication).”

For each client, store the client ID in the HTCondor configuration under

 Setting Up the Docker Universe

Setting Up the Docker Universe

The Docker Universe

The execution of a docker universe job causes the instantiation of a
Docker container on an execute host.

The docker universe job is mapped to a vanilla universe job, and the
submit description file must specify the submit command
docker_image to
identify the Docker image. The job’s requirement ClassAd attribute
is automatically appended, such that the job will only match with an
execute machine that has Docker installed.

The Docker service must be pre-installed on each execute machine that
can execute a docker universe job. Upon start up of the condor_startd
daemon, the capability of the execute machine to run docker universe
jobs is probed, and the machine ClassAd attribute HasDocker is
advertised for a machine that is capable of running Docker universe
jobs.

When a docker universe job is matched with a Docker-capable execute
machine, HTCondor invokes the Docker CLI to instantiate the
image-specific container. The job’s scratch directory tree is mounted as
a Docker volume. When the job completes, is put on hold, or is evicted,
the container is removed.

An administrator of a machine can optionally make additional directories
on the host machine readable and writable by a running container. To do
this, the admin must first give an HTCondor name to each directory with
the DOCKER_VOLUMES parameter. Then, each volume must be configured with
the path on the host OS with the DOCKER_VOLUME_DIR_XXX parameter.
Finally, the parameter DOCKER_MOUNT_VOLUMES tells HTCondor which of
these directories to always mount onto containers running on this
machine.

For example,

DOCKER_VOLUMES = SOME_DIR, ANOTHER_DIR
DOCKER_VOLUME_DIR_SOME_DIR = /path1
DOCKER_VOLUME_DIR_ANOTHER_DIR = /path/to/no2
DOCKER_MOUNT_VOLUMES = SOME_DIR, ANOTHER_DIR

The condor_startd will advertise which docker volumes it has
available for mounting with the machine attributes
HasDockerVolumeSOME_NAME = true so that jobs can match to machines with
volumes they need.

Optionally, if the directory name is two directories, separated by a
colon, the first directory is the name on the host machine, and the
second is the value inside the container. If a “:ro” is specified after
the second directory name, the volume will be mounted read-only inside
the container.

These directories will be bind-mounted unconditionally inside the
container. If an administrator wants to bind mount a directory only for
some jobs, perhaps only those submitted by some trusted user, the
setting DOCKER_VOLUME_DIR_xxx_MOUNT_IF may be used. This is a
class ad expression, evaluated in the context of the job ad and the
machine ad. Only when it evaluted to TRUE, is the volume mounted.
Extending the above example,

DOCKER_VOLUMES = SOME_DIR, ANOTHER_DIR
DOCKER_VOLUME_DIR_SOME_DIR = /path1
DOCKER_VOLUME_DIR_SOME_DIR_MOUNT_IF = WantSomeDirMounted && Owner == "smith"
DOCKER_VOLUME_DIR_ANOTHER_DIR = /path/to/no2
DOCKER_MOUNT_VOLUMES = SOME_DIR, ANOTHER_DIR

In this case, the directory /path1 will get mounted inside the container
only for jobs owned by user “smith”, and who set +WantSomeDirMounted =
true in their submit file.

In addition to installing the Docker service, the single configuration
variable DOCKER must be set. It defines the
location of the Docker CLI and can also specify that the
condor_starter daemon has been given a password-less sudo permission
to start the container as root. Details of the DOCKER configuration
variable are in the condor_startd Configuration File Macros section.

Docker must be installed as root by following these steps on an
Enterprise Linux machine.

	Acquire and install the docker-engine community edition by following
the installations instructions from docker.com

	Set up the groups:

$ usermod -aG docker condor

	Invoke the docker software:

$ systemctl start docker
$ systemctl enable docker

	Reconfigure the execute machine, such that it can set the machine
ClassAd attribute HasDocker:

$ condor_reconfig

	Check that the execute machine properly advertises that it is
docker-capable with:

$ condor_status -l | grep -i docker

The output of this command line for a correctly-installed and
docker-capable execute host will be similar to

HasDocker = true
DockerVersion = "Docker Version 1.6.0, build xxxxx/1.6.0"

By default, HTCondor will keep the 8 most recently used Docker images on the
local machine. This number may be controlled with the configuration variable
DOCKER_IMAGE_CACHE_SIZE, to increase or decrease the number of images,
and the corresponding disk space, used by Docker.

By default, Docker containers will be run with all rootly capabilities dropped,
and with setuid and setgid binaries disabled, for security reasons. If you need
to run containers with root privilege, you may set the configuration parameter
DOCKER_DROP_ALL_CAPABILITIES to an expression that evaluates to false.
This expression is evaluted in the context of the machine ad (my) and the job
ad (target).

Docker support an enormous number of command line options when creating
containers. While HTCondor tries to map as many useful options from submit
files and machine descriptions to command line options, an administrator may
want additional options passed to the docker container create command. To do
so, the parameter DOCKER_EXTRA_ARGUMENTS can be set, and condor will
append these to the docker container create command.

Docker universe jobs may fail to start on certain Linux machines when
SELinux is enabled. The symptom is a permission denied error when
reading or executing from the condor scratch directory. To fix this
problem, an administrator will need to run the following command as root
on the execute directories for all the startd machines:

$ chcon -Rt svirt_sandbox_file_t /var/lib/condor/execute

All docker universe jobs can request either host-based networking
or no networking at all. The latter might be for security reasons.
If the worker node administrator has defined additional custom docker
networks, perhaps a VPN or other custom type, those networks can be
defined for HTCondor jobs to opt into with the docker_network_type
submit command. Simple set

DOCKER_NETWORKS = some_virtual_network, another_network

And these two networks will be advertised by the startd, and
jobs that request these network type will only match to machines
that support it. Note that HTCondor cannot test the validity
of these networks, and merely trusts that the administrator has
correctly configured them.

To deal with a potentially user influencing option, there is an optional knob that
can be configured to adapt the --shm-size Docker container create argument
taking the machine’s and job’s classAds into account.
Exemplary, setting the /dev/shm size to half the requested memory is achieved by:

DOCKER_SHM_SIZE = Memory * 1024 * 1024 / 2

or, using a user provided value DevShmSize if available and within the requested
memory limit:

DOCKER_SHM_SIZE = ifThenElse(DevShmSize isnt Undefined && isInteger(DevShmSize) && int(DevShmSize) <= (Memory * 1024 * 1024), int(DevShmSize), 2 * 1024 * 1024 * 1024)

Note: Memory is in MB, thus it needs to be scaled to bytes.

 Apptainer/Singularity Support

Apptainer/Singularity Support

Singularity (https://sylabs.io/singularity/) is a container runtime system
popular in scientific and HPC communities. Apptainer (https://apptainer.org)
is an open source fork of Singularity that is API and CLI compatible with
singularity. Everything in this document that pertains to Singularity also is
true for the Apptainer container runtime. HTCondor can run jobs inside
Singularity containers either in a transparent way, where the job does not know
that it is being contained, or, the HTCondor administrator can configure the
HTCondor startd so that a job can opt into running inside a container. This
allows the operating system that the job sees to be different than the one on
the host system, and provides more isolation between processes running in one
job and another.

The decision to run a job inside Singularity
ultimately resides on the worker node, although it can delegate that to the job.

By default, jobs will not be run in Singularity.

For Singularity to work, the administrator must install Singularity
on the worker node. The HTCondor startd will detect this installation
at startup. When it detects a usable installation, it will
advertise two attributes in the slot ad:

HasSingularity = true
SingularityVersion = "singularity version 3.7.0-1.el7"

If the detected Singularity installation fails to run test containers
at startd startup, HasSingularity will be set to false, and
the slot ad attribute SingularityOfflineReason will contain an error string.

HTCondor will run a job under Singularity when the startd configuration knob
SINGULARITY_JOB evaluates to true. This is evaluated in the context of the
slot ad and the job ad. If it evaluates to false or undefined, the job will
run as normal, without singularity.

When SINGULARITY_JOB evaluates to true, a second HTCondor knob is required
to name the singularity image that must be run, SINGULARITY_IMAGE_EXPR.
This also is evaluated in the context of the machine and the job ad, and must
evaluate to a string. This image name is passed to the singularity exec
command, and can be any valid value for a singularity image name. So, it
may be a path to file on a local file system that contains an singularity
image, in any format that singularity supports. It may be a string that
begins with docker://, and refer to an image located on docker hub,
or other repository. It can begin with http://, and refer to an image
to be fetched from an HTTP server. In this case, singularity will fetch
the image into the job’s scratch directory, convert it to a .sif file and
run it from there. Note this may require the job to request more disk space
that it otherwise would need. It can be a relative path, in which
case it refers to a file in the scratch directory, so that the image
can be transferred by HTCondor’s file transfer mechanism.

Here’s the simplest possible configuration file. It will force all
jobs on this machine to run under Singularity, and to use an image
that it located in the file system in the path /cvfms/cernvm-prod.cern.ch/cvm3:

Forces _all_ jobs to run inside singularity.
SINGULARITY_JOB = true

Forces all jobs to use the CernVM-based image.
SINGULARITY_IMAGE_EXPR = "/cvmfs/cernvm-prod.cern.ch/cvm3"

Another common configuration is to allow the job to select whether
to run under Singularity, and if so, which image to use. This looks like:

SINGULARITY_JOB = !isUndefined(TARGET.SingularityImage)
SINGULARITY_IMAGE_EXPR = TARGET.SingularityImage

Then, users would add the following to their submit file (note the
quoting):

+SingularityImage = "/cvmfs/cernvm-prod.cern.ch/cvm3"

or maybe

+SingularityImage = "docker://ubuntu:20"

By default, singularity will bind mount the scratch directory that
contains transferred input files, working files, and other per-job
information into the container, and make this the initial working
directory of the job. Thus, file transfer for singularity jobs works
just like with vanilla universe jobs. Any new files the job
writes to this directory will be copied back to the submit node,
just like any other sandbox, subject to transfer_output_files,
as in vanilla universe.

Assuming singularity is configured on the startd as described
above, A complete submit file that uses singularity might look like

executable = /usr/bin/sleep
arguments = 30
+SingularityImage = "docker://ubuntu"

Requirements = HasSingularity

Request_Disk = 1024
Request_Memory = 1024
Request_cpus = 1

should_transfer_files = yes
transfer_input_files = some_input
when_to_transfer_output = on_exit

log = log
output = out.$(PROCESS)
error = err.$(PROCESS)

queue 1

HTCondor can also transfer the whole singularity image, just like
any other input file, and use that as the container image. Given
a singularity image file in the file named “image” in the submit
directory, the submit file would look like:

executable = /usr/bin/sleep
arguments = 30
+SingularityImage = "image"

Requirements = HasSingularity

Request_Disk = 1024
Request_Memory = 1024
Request_cpus = 1

should_transfer_files = yes
transfer_input_files = image
when_to_transfer_output = on_exit

log = log
output = out.$(PROCESS)
error = err.$(PROCESS)

queue 1

The administrator can optionally
specify additional directories to be bind mounted into the container.
For example, if there is some common shared input data located on a
machine, or on a shared file system, this directory can be bind-mounted
and be visible inside the container. This is controlled by the
configuration parameter SINGULARITY_BIND_EXPR. This is an expression,
which is evaluated in the context of the machine and job ads, and which
should evaluated to a string which contains a space separated list of
directories to mount.

So, to always bind mount a directory named /nfs into the image, and
administrator could set

SINGULARITY_BIND_EXPR = "/nfs"

Or, if a trusted user is allowed to bind mount anything on the host, an
expression could be

SINGULARITY_BIND_EXPR = (Target.Owner == "TrustedUser") ? SomeExpressionFromJob : ""

If the source directory for the bind mount is missing on the host machine,
HTCondor will skip that mount and run the job without it. If the image is
an exploded file directory, and the target directory is missing inside
the image, and the configuration parameter SINGULARITY_IGNORE_MISSING_BIND_TARGET
is set to true (the default is false), then this mount attempt will also
be skipped. Otherwise, the job will return an error when run.

In general, HTCondor will try to set as many Singularity command line
options as possible from settings in the machine ad and job ad, as
make sense. For example, if the slot the job runs in is provisioned with GPUs,
perhaps in response to a request_GPUs line in the submit file, the
Singularity flag -nv will be passed to Singularity, which should make
the appropriate nvidia devices visible inside the container.
If the submit file requests environment variables to be set for the job,
HTCondor passes those through Singularity into the job.

Before the condor_starter runs a job with singularity, it first
runs singularity test on that image. If no test is defined inside
the image, it runs /bin/sh /bin/true. If the test returns non-zero,
for example if the image is missing, or malformed, the job is put
on hold. This is controlled by the condor knob
SINGULARITY_RUN_TEST_BEFORE_JOB, which defaults to true.

If an administrator wants to pass additional arguments to the singularity exec
command instead of the defaults used by HTCondor, several parameters exist to
do this - see the condor_starter configuration parameters that begin with the
prefix SINGULARITY in defined in section
condor_starter Configuration File Entries. There you will find parameters to customize things such as the use
of PID namespaces, cache directory, and several other options. However, should
an administrator need to customize Singularity behavior that HTCondor does not
currently support, the parameter SINGULARITY_EXTRA_ARGUMENTS allows
arbitrary additional parameters to be passed to the singularity exec command.
Note that this can be a classad expression, evaluated in the context of the
slot ad and the job ad, where the slot ad can be referenced via “MY.”, and the
job ad via the “TARGET.” reference. In this way, the admin could set different
options for different kinds of jobs. For example, to pass the -w argument,
to make the image writable, an administrator could set

SINGULARITY_EXTRA_ARGUMENTS = "-w"

There are some rarely-used settings that some administrators may
need to set. By default, HTCondor looks for the Singularity runtime
in /usr/bin/singularity, but this can be overridden with the SINGULARITY
parameter:

SINGULARITY = /opt/singularity/bin/singularity

By default, the initial working directory of the job will be the
scratch directory, just like a vanilla universe job. This directory
probably doesn’t exist in the image’s file system. Usually,
Singularity will be able to create this directory in the image, but
unprivileged versions of singularity with certain image types may
not be able to do so. If this is the case, the current directory
on the inside of the container can be set via a knob. This will
still map to the scratch directory outside the container.

Maps $_CONDOR_SCRATCH_DIR on the host to /srv inside the image.
SINGULARITY_TARGET_DIR = /srv

If SINGULARITY_TARGET_DIR is not specified by the admin,
it may be specified in the job submit file via the submit command
container_target_dir. If both are set, the config knob
version takes precedence.

When the HTCondor starter runs a job under Singularity, it always
prints to the log the exact command line used. This can be helpful
for debugging or for the curious. An example command line printed
to the StarterLog might look like the following:

About to exec /usr/bin/singularity -s exec -S /tmp -S /var/tmp --pwd /execute/dir_462373 -B /execute/dir_462373 --no-home -C /images/debian /execute/dir_462373/demo 3

In this example, no GPUs have been requested, so there is no -nv option.
MOUNT_UNDER_SCRATCH is set to the default of /tmp,/var/tmp, so condor
translates those into -S (scratch directory) requests in the command line.
The --pwd is set to the scratch directory, -B bind mounts the scratch
directory with the same name on the inside of the container, and the
-C option is set to contain all namespaces. Then the image is named,
and the executable, which in this case has been transferred by HTCondor
into the scratch directory, and the job’s argument (3). Not visible
in the log are any environment variables that HTCondor is setting for the job.

All of the singularity container runtime’s logging, warning and error messages
are written to the job’s stderr. This is an unfortunate aspect of the runtime
we hope to fix in the future. By default, HTCondor passes “-s” (silent) to
the singularity runtime, so that the only messages it writes to the job’s
stderr are fatal error messages. If a worker node administrator needs more
debugging information, they can change the value of the worker node config
parameter SINGULARITY_VERBOSITY and set it to -d or -v to increase
the debugging level.

 Power Management

Power Management

HTCondor supports placing machines in low power states. A machine in the
low power state is identified as being offline. Power setting decisions
are based upon HTCondor configuration.

Power conservation is relevant when machines are not in heavy use, or
when there are known periods of low activity within the pool.

Entering a Low Power State

By default, HTCondor does not do power management. When desired, the
ability to place a machine into a low power state is accomplished
through configuration. This occurs when all slots on a machine agree
that a low power state is desired.

A slot’s readiness to hibernate is determined by the evaluating the
HIBERNATE configuration variable (see
the condor_startd Configuration File Macros section) within the context of the slot. Readiness is evaluated at
fixed intervals, as determined by the
HIBERNATE_CHECK_INTERVAL configuration variable. A
non-zero value of this variable enables the power management facility.
It is an integer value representing seconds, and it need not be a small
value. There is a trade off between the extra time not at a low power
state and the unnecessary computation of readiness.

To put the machine in a low power state rapidly after it has become
idle, consider checking each slot’s state frequently, as in the example
configuration:

HIBERNATE_CHECK_INTERVAL = 20

This checks each slot’s readiness every 20 seconds. A more common value
for frequency of checks is 300 (5 minutes). A value of 300 loses some
degree of granularity, but it is more reasonable as machines are likely
to be put in to a low power state after a few hours, rather than
minutes.

A slot’s readiness or willingness to enter a low power state is
determined by the HIBERNATE expression. Because this expression is
evaluated in the context of each slot, and not on the machine as a
whole, any one slot can veto a change of power state. The HIBERNATE
expression may reference a wide array of variables. Possibilities
include the change in power state if none of the slots are claimed, or
if the slots are not in the Owner state.

Here is a concrete example. Assume that the START expression is not
set to always be True. This permits an easy determination whether or
not the machine is in an Unclaimed state through the use of an auxiliary
macro called ShouldHibernate.

TimeToWait = (2 * $(HOUR))
ShouldHibernate = ((KeyboardIdle > $(StartIdleTime)) \
 && $(CPUIdle) \
 && ($(StateTimer) > $(TimeToWait)))

This macro evaluates to True if the following are all True:

	The keyboard has been idle long enough.

	The CPU is idle.

	The slot has been Unclaimed for more than 2 hours.

The sample HIBERNATE expression that enters the power state called
“RAM”, if ShouldHibernate evaluates to True, and remains in its
current state otherwise is

HibernateState = "RAM"
HIBERNATE = ifThenElse($(ShouldHibernate), $(HibernateState), "NONE")

If any slot returns “NONE”, that slot vetoes the decision to enter a low
power state. Only when values returned by all slots are all non-zero is
there a decision to enter a low power state. If all agree to enter the
low power state, but differ in which state to enter, then the largest
magnitude value is chosen.

Returning From a Low Power State

The HTCondor command line tool condor_power may wake a machine from a
low power state by sending a UDP Wake On LAN (WOL) packet. See the
condor_power manual page.

To automatically call condor_power under specific conditions,
condor_rooster may be used. The configuration options for
condor_rooster are described in the
condor_rooster Configuration File Macros section.

Keeping a ClassAd for a Hibernating Machine

A pool’s condor_collector daemon can be configured to keep a
persistent ClassAd entry for each machine, once it has entered
hibernation. This is required by condor_rooster so that it can
evaluate the UNHIBERNATE expression of
the offline machines.

To do this, define a log file using the
COLLECTOR_PERSISTENT_AD_LOG configuration variable. See
the condor_startd Configuration File Macros section for the definition. An optional expiration time for each
ClassAd can be specified with
OFFLINE_EXPIRE_ADS_AFTER. The timing begins from the time
the hibernating machine’s ClassAd enters the condor_collector daemon.
See the condor_startd Configuration File Macros section for the definition.

Linux Platform Details

Depending on the Linux distribution and version, there are three methods
for controlling a machine’s power state. The methods:

	pm-utils is a set of command line tools which can be used to detect
and switch power states. In HTCondor, this is defined by the string
“pm-utils”.

	The directory in the virtual file system /sys/power contains
virtual files that can be used to detect and set the power states. In
HTCondor, this is defined by the string “/sys”.

	The directory in the virtual file system /proc/acpi contains
virtual files that can be used to detect and set the power states. In
HTCondor, this is defined by the string “/proc”.

By default, the HTCondor attempts to detect the method to use in the
order shown. The first method detected as usable on the system is
chosen.

This ordered detection may be bypassed, to use a specified method
instead by setting the configuration variable
LINUX_HIBERNATION_METHOD with one of the defined strings. This
variable is defined in the condor_startd Configuration File Macros section. If no usable methods are detected or the
method specified by LINUX_HIBERNATION_METHOD is either not detected or
invalid, hibernation is disabled.

The details of this selection process, and the final method selected can
be logged via enabling D_FULLDEBUG in the relevant subsystem’s log
configuration.

Windows Platform Details

If after a suitable amount of time, a Windows machine has not entered
the expected power state, then HTCondor is having difficulty exercising
the operating system’s low power capabilities. While the cause will be
specific to the machine’s hardware, it may also be due to improperly
configured software. For hardware difficulties, the likely culprit is
the configuration within the machine’s BIOS, for which HTCondor can
offer little guidance. For operating system difficulties, the powercfg
tool can be used to discover the available power states on the machine.
The following command demonstrates how to list all of the supported
power states of the machine:

> powercfg -A
The following sleep states are available on this system:
Standby (S3) Hibernate Hybrid Sleep
The following sleep states are not available on this system:
Standby (S1)
 The system firmware does not support this standby state.
Standby (S2)
 The system firmware does not support this standby state.

Note that the HIBERNATE expression is written in terms of the Sn
state, where n is the value evaluated from the expression.

This tool can also be used to enable and disable other sleep states.
This example turns hibernation on.

> powercfg -h on

If this tool is insufficient for configuring the machine in the manner
required, the Power Options control panel application offers the full
extent of the machine’s power management abilities. Windows 2000 and XP
lack the powercfg program, so all configuration must be done via the
Power Options control panel application.

 Hooks

Hooks

A hook is an external program or script invoked by an HTCondor
daemon to change its behavior or implement some policy.
There are three kinds of Job hooks in HTCondor: Fetch work job hooks,
Prepare Job hooks, and Job Router hooks.

Job Hooks That Fetch Work

In the past, HTCondor has always sent work to the execute machines by
pushing jobs to the condor_startd daemon from the
condor_schedd daemon. Beginning with the
HTCondor version 7.1.0, the condor_startd daemon now has the ability
to pull work by fetching jobs via a system of plug-ins or hooks. Any
site can configure a set of hooks to fetch work, completely outside of
the usual HTCondor matchmaking system.

A projected use of the hook mechanism implements what might be termed a
glide-in factory, especially where the factory is behind a firewall.
Without using the hook mechanism to fetch work, a glide-in
condor_startd daemon behind a firewall depends on CCB to help it
listen and eventually receive work pushed from elsewhere. With the hook
mechanism, a glide-in condor_startd daemon behind a firewall uses the
hook to pull work. The hook needs only an outbound network connection to
complete its task, thereby being able to operate from behind the
firewall, without the intervention of CCB.

Periodically, each execution slot managed by a condor_startd will
invoke a hook to see if there is any work that can be fetched. Whenever
this hook returns a valid job, the condor_startd will evaluate the
current state of the slot and decide if it should start executing the
fetched work. If the slot is unclaimed and the Start expression
evaluates to True, a new claim will be created for the fetched job.
If the slot is claimed, the condor_startd will evaluate the Rank
expression relative to the fetched job, compare it to the value of
Rank for the currently running job, and decide if the existing job
should be preempted due to the fetched job having a higher rank. If the
slot is unavailable for whatever reason, the condor_startd will
refuse the fetched job and ignore it. Either way, once the
condor_startd decides what it should do with the fetched job, it will
invoke another hook to reply to the attempt to fetch work, so that the
external system knows what happened to that work unit.

If the job is accepted, a claim is created for it and the slot moves
into the Claimed state. As soon as this happens, the condor_startd
will spawn a condor_starter to manage the execution of the job. At
this point, from the perspective of the condor_startd, this claim is
just like any other. The usual policy expressions are evaluated, and if
the job needs to be suspended or evicted, it will be. If a higher-ranked
job being managed by a condor_schedd is matched with the slot, that
job will preempt the fetched work.

The condor_starter itself can optionally invoke additional hooks to
help manage the execution of the specific job. There are hooks to
prepare or validate the execution environment for the job, periodically update
information about the job as it runs, notify when the job exits, and to
take special actions when the job is being evicted.

Assuming there are no interruptions, the job completes, and the
condor_starter exits, the condor_startd will invoke the hook to
fetch work again. If another job is available, the existing claim will
be reused and a new condor_starter is spawned. If the hook returns
that there is no more work to perform, the claim will be evicted, and
the slot will return to the Owner state.

To aid with the development and debugging of hooks, output sent to stderr
by the hooks will be preserved in daemon logs of either the condor_starter or
condor_startd as appropriate.

Work Fetching Hooks Invoked by HTCondor

There are a handful of hooks invoked by HTCondor related to fetching
work, some of which are called by the condor_startd and others by the
condor_starter. Each hook is described, including when it is invoked,
what task it is supposed to accomplish, what data is passed to the hook,
what output is expected, and, when relevant, the exit status expected.

	The hook defined by the configuration variable
<Keyword>_HOOK_FETCH_WORK
 is invoked whenever the
condor_startd wants to see if there is any work to fetch. There is
a related configuration variable called FetchWorkDelay
 which determines how long the
condor_startd will wait between attempts to fetch work, which is
described in detail in Job Hooks That Fetch Work.
<Keyword>_HOOK_FETCH_WORK is the most important hook in the whole system,
and is the only hook that must be defined for any of the other
condor_startd hooks to operate.

	Command-line arguments passed to the hook
	None.

	Standard input given to the hook
	ClassAd of the slot that is looking for work.

	Expected standard output from the hook
	ClassAd of a job that can be run. If there is no work, the hook
should return no output.

	User id that the hook runs as
	The <Keyword>_HOOK_FETCH_WORK
 hook runs with the same
privileges as the condor_startd. When Condor was started as
root, this is usually the condor user, or the user specified in
the CONDOR_IDS configuration
variable.

	Exit status of the hook
	Ignored.

The job ClassAd returned by the hook needs to contain enough
information for the condor_starter to eventually spawn the work.
The required and optional attributes in this ClassAd are listed here:

Attributes for a FetchWork application are either required or optional. The
following attributes are required:

	Cmd
	This attribute defines the
full path to the executable program to be run as a FetchWork application.
Since HTCondor does not currently provide any mechanism to transfer
files on behalf of FetchWork applications, this path should be a valid
path on the machine where the application will be run. It is a
string attribute, and must therefore be enclosed in quotation marks
(“). There is no default.

	Owner
	If the condor_startd daemon is executing as root on
 the resource where a FetchWork
application will run, the user must also define Owner to specify
what user name the application will run as. On Windows, the
condor_startd daemon always runs as an Administrator service,
which is equivalent to running as root on Unix platforms.
Owner must contain a valid user name on the given FetchWork resource.
It is a string attribute, and must therefore be enclosed in
quotation marks (“).

	RequestCpus
	Required when running on a condor_startd
 that uses
partitionable slots. It specifies the number of CPU cores from the
partitionable slot allocated for this job.

	RequestDisk
	Required when running on a condor_startd
 that uses
partitionable slots. It specifies the disk space, in Megabytes, from
the partitionable slot allocated for this job.

	RequestMemory
	Required when running on a condor_startd
 that uses
partitionable slots. It specifies the memory, in Megabytes, from the
partitionable slot allocated for this job.

The following list of attributes are optional:

	JobUniverse
	This attribute defines what HTCondor job
 universe to use
for the given FetchWork application. The only tested universes are vanilla
and java. This attribute must be an integer, with vanilla using the
value 5, and java using the value 10.

	IWD
	IWD is an acronym for Initial Working Directory.
 It defines the full path
to the directory where a given FetchWork application are to be run. Unless
the application changes its current working directory, any relative
path names used by the application will be relative to the IWD. If
any other attributes that define file names (for example, In,
Out, and so on) do not contain a full path, the IWD will
automatically be pre-pended to those file names. It is a string
attribute, and must therefore be enclosed in quotation marks (“). If
the IWD is not specified, the temporary execution sandbox
created by the condor_starter will be used as the initial working
directory.

	In
	This string defines the path to the file on the
 FetchWork resource that should be
used as standard input (stdin) for the FetchWork application. This
file (and all parent directories) must be readable by whatever user
the FetchWork application will run as. If not specified, the default is
/dev/null. It is a string attribute, and must therefore be
enclosed in quotation marks (“).

	Out
	This string defines the path to the file on the
 FetchWork resource that should
be used as standard output (stdout) for the FetchWork application.
This file must be writable (and all parent directories readable) by
whatever user the FetchWork application will run as. If not specified, the
default is /dev/null. It is a string attribute, and must
therefore be enclosed in quotation marks (“).

	Err
	This string defines the path to the file on the
 FetchWork resource that should
be used as standard error (stderr) for the FetchWork application. This
file must be writable (and all parent directories readable) by
whatever user the FetchWork application will run as. If not specified, the
default is /dev/null. It is a string attribute, and must
therefore be enclosed in quotation marks (“).

	Env
	This string defines environment variables to
 set for a given FetchWork
application. Each environment variable has the form NAME=value.
Multiple variables are delimited with a semicolon. An example:
Env = “PATH=/usr/local/bin:/usr/bin;TERM=vt100” It is a string
attribute, and must therefore be enclosed in quotation marks (“).

	Args
	This string attribute defines the list of
 arguments to be supplied
to the program on the command-line. The arguments are delimited
(separated) by space characters. There is no default. If the
JobUniverse corresponds to the Java universe, the first argument
must be the name of the class containing main. It is a string
attribute, and must therefore be enclosed in quotation marks (“).

	JarFiles
	This string attribute is only used if
 JobUniverse is 10
(the Java universe). If a given FetchWork application is a Java program,
specify the JAR files that the program requires with this attribute.
There is no default. It is a string attribute, and must therefore be
enclosed in quotation marks (“). Multiple file names may be
delimited with either commas or white space characters, and
therefore, file names can not contain spaces.

	KillSig
	This attribute specifies what signal should be
 sent whenever the
HTCondor system needs to gracefully shutdown the FetchWork application. It
can either be specified as a string containing the signal name (for
example KillSig = “SIGQUIT”), or as an integer (KillSig = 3) The
default is to use SIGTERM.

	StarterUserLog
	This string specifies a file name for a
 log file that
the condor_starter daemon can write with entries for relevant
events in the life of a given FetchWork application. It is similar to the
job event log file specified for regular HTCondor jobs with the
Log command in a submit
description file. However, certain attributes that are placed in a
job event log do not make sense in the FetchWork environment, and are
therefore omitted. The default is not to write this log file. It is
a string attribute, and must therefore be enclosed in quotation
marks (“).

	StarterUserLogUseXML
	If the StarterUserLog
 attribute
is defined, the default format is a human-readable format. However,
HTCondor can write out this log in an XML representation, instead.
To enable the XML format for this job event log, the
StarterUserLogUseXML boolean is set to TRUE. The default if not
specified is FALSE.

If any attribute that specifies a path (Cmd, In,
Out,Err, StarterUserLog) is not a full path name, HTCondor
automatically prepends the value of IWD.

	The hook defined by the configuration variable
<Keyword>_HOOK_REPLY_FETCH
 is invoked whenever
<Keyword>_HOOK_FETCH_WORK
 returns data and the
condor_startd decides if it is going to accept the fetched job or
not.

The condor_startd will not wait for this hook to return before
taking other actions, and it ignores all output. The hook is simply
advisory, and it has no impact on the behavior of the
condor_startd.

	Command-line arguments passed to the hook
	Either the string accept or reject.

	Standard input given to the hook
	A copy of the job ClassAd and the slot ClassAd (separated by the
string —– and a new line).

	Expected standard output from the hook
	None.

	User id that the hook runs as
	The <Keyword>_HOOK_REPLY_FETCH
 hook runs with the same
privileges as the condor_startd. When Condor was started as
root, this is usually the condor user, or the user specified in
the CONDOR_IDS configuration
variable.

	Exit status of the hook
	Ignored.

	The hook defined by the configuration variable
<Keyword>_HOOK_EVICT_CLAIM
 is invoked whenever the
condor_startd needs to evict a claim representing fetched work.

The condor_startd will not wait for this hook to return before
taking other actions, and ignores all output. The hook is simply
advisory, and has no impact on the behavior of the condor_startd.

	Command-line arguments passed to the hook
	None.

	Standard input given to the hook
	A copy of the job ClassAd and the slot ClassAd (separated by the
string —– and a new line).

	Expected standard output from the hook
	None.

	User id that the hook runs as
	The <Keyword>_HOOK_EVICT_CLAIM
 hook runs with the same
privileges as the condor_startd. When Condor was started as
root, this is usually the condor user, or the user specified in
the CONDOR_IDS configuration
variable.

	Exit status of the hook
	Ignored.

Keywords to Define Job Fetch Hooks in the HTCondor Configuration files

Hooks are defined in the HTCondor configuration files by prefixing the
name of the hook with a keyword. This way, a given machine can have
multiple sets of hooks, each set identified by a specific keyword.

Each slot on the machine can define a separate keyword for the set of
hooks that should be used with SLOT<N>_JOB_HOOK_KEYWORD
 . For example, on slot 1, the
variable name will be called SLOT1_JOB_HOOK_KEYWORD. If the
slot-specific keyword is not defined, the condor_startd will use a
global keyword as defined by STARTD_JOB_HOOK_KEYWORD
 .

Once a job is fetched via <Keyword>_HOOK_FETCH_WORK
 , the condor_startd will
insert the keyword used to fetch that job into the job ClassAd as
HookKeyword. This way, the same keyword will be used to select the
hooks invoked by the condor_starter during the actual execution of
the job.
The STARTER_DEFAULT_JOB_HOOK_KEYWORD
 config knob can define a default
hook keyword to use in the event that keyword defined by the job is invalid
or not specified.
Alternatively, the STARTER_JOB_HOOK_KEYWORD
 can be defined to force the
condor_starter to always use a given keyword for its own hooks,
regardless of the value in the job ClassAd for the HookKeyword attribute.

For example, the following configuration defines two sets of hooks, and
on a machine with 4 slots, 3 of the slots use the global keyword for
running work from a database-driven system, and one of the slots uses a
custom keyword to handle work fetched from a web service.

Most slots fetch and run work from the database system.
STARTD_JOB_HOOK_KEYWORD = DATABASE

Slot4 fetches and runs work from a web service.
SLOT4_JOB_HOOK_KEYWORD = WEB

The database system needs to both provide work and know the reply
for each attempted claim.
DATABASE_HOOK_DIR = /usr/local/condor/fetch/database
DATABASE_HOOK_FETCH_WORK = $(DATABASE_HOOK_DIR)/fetch_work.php
DATABASE_HOOK_REPLY_FETCH = $(DATABASE_HOOK_DIR)/reply_fetch.php

The web system only needs to fetch work.
WEB_HOOK_DIR = /usr/local/condor/fetch/web
WEB_HOOK_FETCH_WORK = $(WEB_HOOK_DIR)/fetch_work.php

The keywords "DATABASE" and "WEB" are completely arbitrary, so
each site is encouraged to use different (more specific) names as
appropriate for their own needs.

Defining the FetchWorkDelay Expression

There are two events that trigger the condor_startd to attempt to
fetch new work:

	the condor_startd evaluates its own state

	the condor_starter exits after completing some fetched work

Even if a given compute slot is already busy running other work, it is
possible that if it fetched new work, the condor_startd would prefer
this newly fetched work (via the Rank expression) over the work it
is currently running. However, the condor_startd frequently evaluates
its own state, especially when a slot is claimed. Therefore,
administrators can define a configuration variable which controls how
long the condor_startd will wait between attempts to fetch new work.
This variable is called FetchWorkDelay
 .

The FetchWorkDelay expression must evaluate to an integer, which
defines the number of seconds since the last fetch attempt completed
before the condor_startd will attempt to fetch more work. However, as
a ClassAd expression (evaluated in the context of the ClassAd of the
slot considering if it should fetch more work, and the ClassAd of the
currently running job, if any), the length of the delay can be based on
the current state the slot and even the currently running job.

For example, a common configuration would be to always wait 5 minutes
(300 seconds) between attempts to fetch work, unless the slot is
Claimed/Idle, in which case the condor_startd should fetch
immediately:

FetchWorkDelay = ifThenElse(State == "Claimed" && Activity == "Idle", 0, 300)

If the condor_startd wants to fetch work, but the time since the last
attempted fetch is shorter than the current value of the delay
expression, the condor_startd will set a timer to fetch as soon as
the delay expires.

If this expression is not defined, the condor_startd will default to
a five minute (300 second) delay between all attempts to fetch work.

Job Hooks That Modify and Monitor Execution

The Job ClassAd can be modified before execution, and the progress of the job can be modified
using hooks. These hooks are executed by the condor_starter and can be used with or without
using Fetch Work hooks.

	The hook defined by the configuration variable
<Keyword>_HOOK_PREPARE_JOB_BEFORE_TRANSFER
 is invoked by the
condor_starter immediately before transferring the job’s input files. This hook provides
a chance to execute commands to set up or validate the job environment,
and/or edit the job classad that is used by the condor_starter.

The condor_starter waits until this hook returns before attempting
to transfer the input files for the job. If the hook returns a non-zero exit status, the
condor_starter will assume an error was reached while attempting
to set up the job environment and abort the job.

	Command-line arguments passed to the hook
	None.

	Standard input given to the hook
	A copy of the job ClassAd.

	Expected standard output from the hook
	A set of attributes to insert or update into the job ad. For
example, changing the Cmd attribute to a quoted string
changes the executable to be run.
Two special attributes can also
be specified: HookStatusCode and HookStatusMessage.
HookStatusCode, if specified and is not a negative number, will be used instead of the
exit status of the hook unless the hook process exited due to a signal. A status code of
0 is success, and a positive integer indicates failure. A status code between 1 and 299 (inclusive)
will result in the job going on hold; 300 or greater will result in the job going back to the Idle state.
The HookStatusMessage will be echoed into the job’s event log file, and also be used as the
Hold Reason string if the job is placed on hold.

	User id that the hook runs as
	The <Keyword>_HOOK_PREPARE_JOB
 hook runs with the same
privileges as the job itself. If slot users are defined, the hook
runs as the slot user, just as the job does.

	Exit status of the hook
	0 for success preparing the job, any non-zero value on failure.

	The hook defined by the configuration variable
<Keyword>_HOOK_PREPARE_JOB
 is invoked by the
condor_starter before a job is going to be run but after the job’s input files
have been transferred. This hook provides
a chance to execute commands to set up or validate the job environment,
and/or edit the job classad that is used by the condor_starter.

The condor_starter waits until this hook returns before attempting
to execute the job. If the hook returns a non-zero exit status, the
condor_starter will assume an error was reached while attempting
to set up the job environment and abort the job.

	Command-line arguments passed to the hook
	None.

	Standard input given to the hook
	A copy of the job ClassAd.

	Expected standard output from the hook
	A set of attributes to insert or update into the job ad. For
example, changing the Cmd attribute to a quoted string
changes the executable to be run.
Two special attributes can also
be specified: HookStatusCode and HookStatusMessage.
HookStatusCode, if specified and is not a negative number, will be used instead of the
exit status of the hook unless the hook process exited due to a signal. A status code of
0 is success, and a positive integer indicates failure. A status code between 1 and 299 (inclusive)
will result in the job going on hold; 300 or greater will result in the job going back to the Idle state.
The HookStatusMessage will be echoed into the job’s event log file, and also be used as the
Hold Reason string if the job is placed on hold.

	User id that the hook runs as
	The <Keyword>_HOOK_PREPARE_JOB
 hook runs with the same
privileges as the job itself. If slot users are defined, the hook
runs as the slot user, just as the job does.

	Exit status of the hook
	0 for success preparing the job, any non-zero value on failure.

	The hook defined by the configuration variable
<Keyword>_HOOK_UPDATE_JOB_INFO
 is invoked periodically
during the life of the job to update information about the status of
the job. When the job is first spawned, the condor_starter will
invoke this hook after STARTER_INITIAL_UPDATE_INTERVAL
 seconds (defaults to
8). Thereafter, the condor_starter will invoke the hook every
STARTER_UPDATE_INTERVAL
seconds (defaults to 300, which is 5 minutes).

The condor_starter will not wait for this hook to return before
taking other actions, and ignores all output. The hook is simply
advisory, and has no impact on the behavior of the condor_starter.

	Command-line arguments passed to the hook
	None.

	Standard input given to the hook
	A copy of the job ClassAd that has been augmented with additional
attributes describing the current status and execution behavior
of the job.

The additional attributes included inside the job ClassAd are:

	JobState
	The current state of the job. Can be either "Running" or
"Suspended".

	JobPid
	The process identifier for the initial job directly spawned
by the condor_starter.

	NumPids
	The number of processes that the job has currently spawned.

	JobStartDate
	The epoch time when the job was first spawned by the
condor_starter.

	RemoteSysCpu
	The total number of seconds of system CPU time (the time
spent at system calls) the job has used.

	RemoteUserCpu
	The total number of seconds of user CPU time the job has
used.

	ImageSize
	The memory image size of the job in Kbytes.

	Expected standard output from the hook
	None.

	User id that the hook runs as
	The <Keyword>_HOOK_UPDATE_JOB_INFO
 hook runs with the
same privileges as the job itself.

	Exit status of the hook
	Ignored.

	The hook defined by the configuration variable
<Keyword>_HOOK_JOB_EXIT is
invoked by the condor_starter whenever a job exits, either on its
own or when being evicted from an execution slot.

The condor_starter will wait for this hook to return before taking
any other actions. In the case of jobs that are being managed by a
condor_shadow, this hook is invoked before the condor_starter
does its own optional file transfer back to the submission machine,
writes to the local job event log file, or notifies the
condor_shadow that the job has exited.

	Command-line arguments passed to the hook
	A string describing how the job exited:

	exit The job exited or died with a signal on its own.

	remove The job was removed with condor_rm or as the result
of user job policy expressions (for example,
PeriodicRemove).

	hold The job was held with condor_hold or the user job
policy expressions (for example, PeriodicHold).

	evict The job was evicted from the execution slot for any
other reason (PREEMPT evaluated to
TRUE in the condor_startd, condor_vacate, condor_off,
etc).

	Standard input given to the hook
	A copy of the job ClassAd that has been augmented with additional
attributes describing the execution behavior of the job and its
final results.

The job ClassAd passed to this hook contains all of the extra
attributes described above for <Keyword>_HOOK_UPDATE_JOB_INFO
 , and the following
additional attributes that are only present once a job exits:

	ExitReason
	A human-readable string describing why the job exited.

	ExitBySignal
	A boolean indicating if the job exited due to being killed by
a signal, or if it exited with an exit status.

	ExitSignal
	If ExitBySignal is true, the signal number that killed
the job.

	ExitCode
	If ExitBySignal is false, the integer exit code of the
job.

	JobDuration
	The number of seconds that the job ran during this
invocation.

	Expected standard output from the hook
	None.

	User id that the hook runs as
	The <Keyword>_HOOK_JOB_EXIT
 hook runs with the same
privileges as the job itself.

	Exit status of the hook
	Ignored.

Example Hook: Specifying the Executable at Execution Time

The availability of multiple versions of an application leads to the
need to specify one of the versions. As an example, consider that the
java universe utilizes a single, fixed JVM. There may be multiple JVMs
available, and the HTCondor job may need to make the choice of JVM
version. The use of a job hook solves this problem. The job does not use
the java universe, and instead uses the vanilla universe in combination
with a prepare job hook to overwrite the Cmd attribute of the job
ClassAd. This attribute is the name of the executable the
condor_starter daemon will invoke, thereby selecting the specific JVM
installation.

In the configuration of the execute machine:

JAVA5_HOOK_PREPARE_JOB = $(LIBEXEC)/java5_prepare_hook

With this configuration, a job that sets the HookKeyword attribute
with

+HookKeyword = "JAVA5"

in the submit description file causes the condor_starter will run the
hook specified by JAVA5_HOOK_PREPARE_JOB
 before running this job. Note that
the double quote marks are required to correctly define the attribute.
Any output from this hook is an update to the job ClassAd. Therefore,
the hook that changes the executable may be

#!/bin/sh

Read and discard the job ClassAd
cat > /dev/null
echo 'Cmd = "/usr/java/java5/bin/java"'

If some machines in your pool have this hook and others do not, this
fact should be advertised. Add to the configuration of every execute
machine that has the hook:

HasJava5PrepareHook = True
STARTD_ATTRS = HasJava5PrepareHook $(STARTD_ATTRS)

The submit description file for this example job may be

universe = vanilla
executable = /usr/bin/java
arguments = Hello
match with a machine that has the hook
requirements = HasJava5PrepareHook

should_transfer_files = always
when_to_transfer_output = on_exit
transfer_input_files = Hello.class

output = hello.out
error = hello.err
log = hello.log

+HookKeyword="JAVA5"

queue

Note that the
requirements command
ensures that this job matches with a machine that has
JAVA5_HOOK_PREPARE_JOB defined.

Hooks for the Job Router

Job Router Hooks allow for an alternate transformation and/or monitoring
than the condor_job_router daemon implements. Routing is still
managed by the condor_job_router daemon, but if the Job Router Hooks
are specified, then these hooks will be used to transform and monitor
the job instead.

Job Router Hooks are similar in concept to Fetch Work Hooks, but they
are limited in their scope. A hook is an external program or script
invoked by the condor_job_router daemon at various points during the
life cycle of a routed job.

The following sections describe how and when these hooks are used, what
hooks are invoked at various stages of the job’s life, and how to
configure HTCondor to use these Hooks.

Hooks Invoked for Job Routing

The Job Router Hooks allow for replacement of the transformation engine
used by HTCondor for routing a job. Since the external transformation
engine is not controlled by HTCondor, additional hooks provide a means
to update the job’s status in HTCondor, and to clean up upon exit or
failure cases. This allows one job to be transformed to just about any
other type of job that HTCondor supports, as well as to use execution
nodes not normally available to HTCondor.

It is important to note that if the Job Router Hooks are utilized, then
HTCondor will not ignore or work around a failure in any hook execution.
If a hook is configured, then HTCondor assumes its invocation is
required and will not continue by falling back to a part of its internal
engine. For example, if there is a problem transforming the job using
the hooks, HTCondor will not fall back on its transformation
accomplished without the hook to process the job.

There are 2 ways in which the Job Router Hooks may be enabled. A job’s
submit description file may cause the hooks to be invoked with

+HookKeyword = "HOOKNAME"

Adding this attribute to the job’s ClassAd causes the
condor_job_router daemon on the access point to invoke hooks
prefixed with the defined keyword. HOOKNAME is a string chosen as an
example; any string may be used.

The job’s ClassAd attribute definition of HookKeyword takes
precedence, but if not present, hooks may be enabled by defining on the
access point the configuration variable

JOB_ROUTER_HOOK_KEYWORD = HOOKNAME

Like the example attribute above, HOOKNAME represents a chosen name
for the hook, replaced as desired or appropriate.

There are 4 hooks that the Job Router can be configured to use. Each
hook will be described below along with data passed to the hook and
expected output. All hooks must exit successfully.

	The hook defined by the configuration variable
<Keyword>_HOOK_TRANSLATE_JOB
 is invoked when the Job
Router has determined that a job meets the definition for a route.
This hook is responsible for doing the transformation of the job and
configuring any resources that are external to HTCondor if
applicable.

	Command-line arguments passed to the hook
	None.

	Standard input given to the hook
	The first line will be the information on route that the job matched
including the route name. This information will be formatted as a classad.
If the route has a TargetUniverse or GridResource they will be
included in the classad. The route information classad will be followed
by a separator line of dashes like ------ followed by a newline.
The remainder of the input will be the job ClassAd.

	Expected standard output from the hook
	The transformed job.

	Exit status of the hook
	0 for success, any non-zero value on failure.

	The hook defined by the configuration variable
<Keyword>_HOOK_UPDATE_JOB_INFO
 is invoked to provide
status on the specified routed job when the Job Router polls the
status of routed jobs at intervals set by
JOB_ROUTER_POLLING_PERIOD
 .

	Command-line arguments passed to the hook
	None.

	Standard input given to the hook
	The routed job ClassAd that is to be updated.

	Expected standard output from the hook
	The job attributes to be updated in the routed job, or nothing,
if there was no update. To prevent clashing with HTCondor’s
management of job attributes, only attributes that are not
managed by HTCondor should be output from this hook.

	Exit status of the hook
	0 for success, any non-zero value on failure.

	The hook defined by the configuration variable
<Keyword>_HOOK_JOB_FINALIZE
 is invoked when the Job
Router has found that the job has completed. Any output from the hook
is treated as an update to the source job.

	Command-line arguments passed to the hook
	None.

	Standard input given to the hook
	The source job ClassAd, followed by the routed copy Classad that
completed, separated by the string “——” and a new line.

	Expected standard output from the hook
	An updated source job ClassAd, or nothing if there was no update.

	Exit status of the hook
	0 for success, any non-zero value on failure.

	The hook defined by the configuration variable
<Keyword>_HOOK_JOB_CLEANUP
 is invoked when the Job
Router finishes managing the job. This hook will be invoked
regardless of whether the job completes successfully or not, and must
exit successfully.

	Command-line arguments passed to the hook
	None.

	Standard input given to the hook
	The job ClassAd that the Job Router is done managing.

	Expected standard output from the hook
	None.

	Exit status of the hook
	0 for success, any non-zero value on failure.

 Directories

Directories

HTCondor uses a few different directories, some of which are role-specific.
Do not use these directories for any other purpose, and do not share these
directories between machines. The directories are listed in here by the
name of the configuration option used to tell HTCondor where they are; you
will not normally need to change these.

Directories used by More than One Role

	LOG
	Each HTCondor daemon writes its own log file, and each log file
is placed in the LOG directory. You can configure the name
of each daemon’s log by setting

 Setting Up for Special Environments

Setting Up for Special Environments

The following sections describe how to set up HTCondor for use in
special environments or configurations.

Configuring HTCondor for Multiple Platforms

A single, initial configuration file may be used for all platforms in an
HTCondor pool, with platform-specific settings placed in separate files. This
greatly simplifies administration of a heterogeneous pool by allowing
specification of platform-independent, global settings in one place, instead of
separately for each platform. This is made possible by treating the
LOCAL_CONFIG_FILE configuration variable as a list of files, instead
of a single file. Of course, this only helps when using a shared file system
for the machines in the pool, so that multiple machines can actually share a
single set of configuration files.

With multiple platforms, put all platform-independent settings (the vast
majority) into the single initial configuration file, which will be
shared by all platforms. Then, set the LOCAL_CONFIG_FILE
configuration variable from that global configuration file to specify
both a platform-specific configuration file and optionally, a local,
machine-specific configuration file.

The name of platform-specific configuration files may be specified by
using $(ARCH) and $(OPSYS), as defined automatically by
HTCondor. For example, for 32-bit Intel Windows 7 machines and 64-bit
Intel Linux machines, the files ought to be named:

$ condor_config.INTEL.WINDOWS
condor_config.X86_64.LINUX

Then, assuming these files are in the directory defined by the ETC
configuration variable, and machine-specific configuration files are in
the same directory, named by each machine’s host name,
LOCAL_CONFIG_FILE becomes:

LOCAL_CONFIG_FILE = $(ETC)/condor_config.$(ARCH).$(OPSYS), \
 $(ETC)/$(HOSTNAME).local

Alternatively, when using AFS, an @sys link may be used to specify
the platform-specific configuration file, which lets AFS resolve this
link based on platform name. For example, consider a soft link named
condor_config.platform that points to condor_config.@sys. In
this case, the files might be named:

$ condor_config.i386_linux2
condor_config.platform -> condor_config.@sys

and the LOCAL_CONFIG_FILE configuration variable would be set to

LOCAL_CONFIG_FILE = $(ETC)/condor_config.platform, \
 $(ETC)/$(HOSTNAME).local

Platform-Specific Configuration File Settings

The configuration variables that are truly platform-specific are:

	RELEASE_DIR
	Full path to the installed HTCondor binaries. While the
configuration files may be shared among different platforms, the
binaries certainly cannot. Therefore, maintain separate release
directories for each platform in the pool.

	MAIL
	The full path to the mail program.

	CONSOLE_DEVICES
	Which devices in /dev should be treated as console devices.

	DAEMON_LIST
	Which daemons the condor_master should start up. The reason this
setting is platform-specific is to distinguish the condor_kbdd.
It is needed on many Linux and Windows machines, and it is not
needed on other platforms.

Reasonable defaults for all of these configuration variables will be
found in the default configuration files inside a given platform’s
binary distribution (except the RELEASE_DIR, since the location of
the HTCondor binaries and libraries is installation specific). With
multiple platforms, use one of the condor_config files from either
running condor_configure or from the
$(RELEASE_DIR)/etc/examples/condor_config.generic file, take these
settings out, save them into a platform-specific file, and install the
resulting platform-independent file as the global configuration file.
Then, find the same settings from the configuration files for any other
platforms to be set up, and put them in their own platform-specific
files. Finally, set the LOCAL_CONFIG_FILE configuration variable to
point to the appropriate platform-specific file, as described above.

Not even all of these configuration variables are necessarily going to
be different. For example, if an installed mail program understands the
-s option in /usr/local/bin/mail on all platforms, the MAIL
macro may be set to that in the global configuration file, and not
define it anywhere else. For a pool with only Linux or Windows machines,
the DAEMON_LIST will be the same for each, so there is no reason not
to put that in the global configuration file.

Other Uses for Platform-Specific Configuration Files

An installation may want other configuration variables to be platform-specific.
Perhaps a different policy is desired for one of the platforms. Perhaps
different people should get the e-mail about problems with the different
platforms. There is nothing hard-coded about any of this. What is shared and
what should not shared is entirely configurable.

Since the LOCAL_CONFIG_FILE macro
can be an arbitrary list of files, an installation can even break up the
global, platform-independent settings into separate files. In fact, the
global configuration file might only contain a definition for
LOCAL_CONFIG_FILE, and all other configuration variables would be
placed in separate files.

Different people may be given different permissions to change different
HTCondor settings. For example, if a user is to be able to change
certain settings, but nothing else, those settings may be placed in a
file which was early in the LOCAL_CONFIG_FILE list, to give that
user write permission on that file. Then, include all the other files
after that one. In this way, if the user was attempting to change
settings that the user should not be permitted to change, the settings
would be overridden.

This mechanism is quite flexible and powerful. For very specific
configuration needs, they can probably be met by using file permissions,
the LOCAL_CONFIG_FILE configuration variable, and imagination.

The condor_kbdd

The HTCondor keyboard daemon, condor_kbdd, monitors X events on
machines where the operating system does not provide a way of monitoring
the idle time of the keyboard or mouse. On Linux platforms, it is needed
to detect USB keyboard activity. Otherwise, it is not needed. On Windows
platforms, the condor_kbdd is the primary way of monitoring the idle
time of both the keyboard and mouse.

The condor_kbdd on Windows Platforms

Windows platforms need to use the condor_kbdd to monitor the idle
time of both the keyboard and mouse. By adding KBDD to configuration
variable DAEMON_LIST, the condor_master daemon invokes the
condor_kbdd, which then does the right thing to monitor activity
given the version of Windows running.

With Windows Vista and more recent version of Windows, user sessions are
moved out of session 0. Therefore, the condor_startd service is no
longer able to listen to keyboard and mouse events. The condor_kbdd
will run in an invisible window and should not be noticeable by the
user, except for a listing in the task manager. When the user logs out,
the program is terminated by Windows. This implementation also appears
in versions of Windows that predate Vista, because it adds the
capability of monitoring keyboard activity from multiple users.

To achieve the auto-start with user login, the HTCondor installer adds a
condor_kbdd entry to the registry key at
HKLM\Software\Microsoft\Windows\CurrentVersion\Run. On 64-bit
versions of Vista and more recent Windows versions, the entry is
actually placed in
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Run.

In instances where the condor_kbdd is unable to connect to the
condor_startd, it is likely because an exception was not properly
added to the Windows firewall.

The condor_kbdd on Linux Platforms

On Linux platforms, great measures have been taken to make the
condor_kbdd as robust as possible, but the X window system was not
designed to facilitate such a need, and thus is not as efficient on
machines where many users frequently log in and out on the console.

In order to work with X authority, which is the system by which X
authorizes processes to connect to X servers, the condor_kbdd needs
to run with super user privileges. Currently, the condor_kbdd assumes
that X uses the HOME environment variable in order to locate a file
named .Xauthority. This file contains keys necessary to connect to
an X server. The keyboard daemon attempts to set HOME to various
users’ home directories in order to gain a connection to the X server
and monitor events. This may fail to work if the keyboard daemon is not
allowed to attach to the X server, and the state of a machine may be
incorrectly set to idle when a user is, in fact, using the machine.

In some environments, the condor_kbdd will not be able to connect to
the X server because the user currently logged into the system keeps
their authentication token for using the X server in a place that no
local user on the current machine can get to. This may be the case for
files on AFS, because the user’s .Xauthority file is in an AFS home
directory.

There may also be cases where the condor_kbdd may not be run with
super user privileges because of political reasons, but it is still
desired to be able to monitor X activity. In these cases, change the XDM
configuration in order to start up the condor_kbdd with the
permissions of the logged in user. If running X11R6.3, the files to edit
will probably be in /usr/X11R6/lib/X11/xdm. The .xsession file
should start up the condor_kbdd at the end, and the .Xreset file
should shut down the condor_kbdd. The -l option can be used to
write the daemon’s log file to a place where the user running the daemon
has permission to write a file. The file’s recommended location will be
similar to $HOME/.kbdd.log, since this is a place where every user
can write, and the file will not get in the way. The -pidfile and
-k options allow for easy shut down of the condor_kbdd by storing
the process ID in a file. It will be necessary to add lines to the XDM
configuration similar to

$ condor_kbdd -l $HOME/.kbdd.log -pidfile $HOME/.kbdd.pid

This will start the condor_kbdd as the user who is currently logged
in and write the log to a file in the directory $HOME/.kbdd.log/.
This will also save the process ID of the daemon to ˜/.kbdd.pid, so
that when the user logs out, XDM can do:

$ condor_kbdd -k $HOME/.kbdd.pid

This will shut down the process recorded in file ˜/.kbdd.pid and
exit.

To see how well the keyboard daemon is working, review the log for the
daemon and look for successful connections to the X server. If there are
none, the condor_kbdd is unable to connect to the machine’s X server.

Configuring The HTCondorView Server

The HTCondorView server is an alternate use of the condor_collector
that logs information on disk, providing a persistent, historical
database of pool state. This includes machine state, as well as the
state of jobs submitted by users.

An existing condor_collector may act as the HTCondorView collector
through configuration. This is the simplest situation, because the only
change needed is to turn on the logging of historical information. The
alternative of configuring a new condor_collector to act as the
HTCondorView collector is slightly more complicated, while it offers the
advantage that the same HTCondorView collector may be used for several
pools as desired, to aggregate information into one place.

The following sections describe how to configure a machine to run a
HTCondorView server and to configure a pool to send updates to it.

Configuring a Machine to be a HTCondorView Server

To configure the HTCondorView collector, a few configuration variables
are added or modified for the condor_collector chosen to act as the
HTCondorView collector. These configuration variables are described in
condor_collector Configuration File Entries. Here are brief explanations of the entries that must be customized:

	POOL_HISTORY_DIR
	The directory where historical data will be stored. This directory
must be writable by whatever user the HTCondorView collector is
running as (usually the user condor). There is a configurable limit
to the maximum space required for all the files created by the
HTCondorView server called (POOL_HISTORY_MAX_STORAGE).

NOTE: This directory should be separate and different from the
spool or log directories already set up for HTCondor. There
are a few problems putting these files into either of those
directories.

	KEEP_POOL_HISTORY
	A boolean value that determines if the HTCondorView collector should
store the historical information. It is False by default, and
must be specified as True in the local configuration file to
enable data collection.

Once these settings are in place in the configuration file for the
HTCondorView server host, create the directory specified in
POOL_HISTORY_DIR and make it writable by the user the HTCondorView
collector is running as. This is the same user that owns the
CollectorLog file in the log directory. The user is usually
condor.

If using the existing condor_collector as the HTCondorView collector,
no further configuration is needed. To run a different
condor_collector to act as the HTCondorView collector, configure
HTCondor to automatically start it.

If using a separate host for the HTCondorView collector, to start it, add the
value macro:COLLECTOR to macro:DAEMON_LIST, and restart HTCondor on that
host. To run the HTCondorView collector on the same host as another
condor_collector, ensure that the two condor_collector daemons use
different network ports. Here is an example configuration in which the main
condor_collector and the HTCondorView collector are started up by the same
condor_master daemon on the same machine. In this example, the HTCondorView
collector uses port 12345.

VIEW_SERVER = $(COLLECTOR)
VIEW_SERVER_ARGS = -f -p 12345
VIEW_SERVER_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog"
DAEMON_LIST = MASTER, NEGOTIATOR, COLLECTOR, VIEW_SERVER

For this change to take effect, restart the condor_master on this
host. This may be accomplished with the condor_restart command, if
the command is run with administrator access to the pool.

HTCondor’s Dedicated Scheduling

The dedicated scheduler is a part of the condor_schedd that handles
the scheduling of parallel jobs that require more than one machine
concurrently running per job. MPI applications are a common use for the
dedicated scheduler, but parallel applications which do not require MPI
can also be run with the dedicated scheduler. All jobs which use the
parallel universe are routed to the dedicated scheduler within the
condor_schedd they were submitted to. A default HTCondor installation
does not configure a dedicated scheduler; the administrator must
designate one or more condor_schedd daemons to perform as dedicated
scheduler.

Selecting and Setting Up a Dedicated Scheduler

We recommend that you select a single machine within an HTCondor pool to
act as the dedicated scheduler. This becomes the machine from upon which
all users submit their parallel universe jobs. The perfect choice for
the dedicated scheduler is the single, front-end machine for a dedicated
cluster of compute nodes. For the pool without an obvious choice for a
access point, choose a machine that all users can log into, as well as
one that is likely to be up and running all the time. All of HTCondor’s
other resource requirements for a access point apply to this machine,
such as having enough disk space in the spool directory to hold jobs.
See Directories for more information.

Configuration Examples for Dedicated Resources

Each execute machine may have its own policy for the execution of jobs,
as set by configuration. Each machine with aspects of its configuration
that are dedicated identifies the dedicated scheduler. And, the ClassAd
representing a job to be executed on one or more of these dedicated
machines includes an identifying attribute. An example configuration
file with the following various policy settings is
/etc/examples/condor_config.local.dedicated.resource.

Each execute machine defines the configuration variable
DedicatedScheduler, which identifies the dedicated scheduler it is
managed by. The local configuration file contains a modified form of

DedicatedScheduler = "DedicatedScheduler@full.host.name"
STARTD_ATTRS = $(STARTD_ATTRS), DedicatedScheduler

Substitute the host name of the dedicated scheduler machine for the
string “full.host.name”.

If running personal HTCondor, the name of the scheduler includes the
user name it was started as, so the configuration appears as:

DedicatedScheduler = "DedicatedScheduler@username@full.host.name"
STARTD_ATTRS = $(STARTD_ATTRS), DedicatedScheduler

All dedicated execute machines must have policy expressions which allow
for jobs to always run, but not be preempted. The resource must also be
configured to prefer jobs from the dedicated scheduler over all other
jobs. Therefore, configuration gives the dedicated scheduler of choice
the highest rank. It is worth noting that HTCondor puts no other
requirements on a resource for it to be considered dedicated.

Job ClassAds from the dedicated scheduler contain the attribute
Scheduler. The attribute is defined by a string of the form

Scheduler = "DedicatedScheduler@full.host.name"

The host name of the dedicated scheduler substitutes for the string
full.host.name.

Different resources in the pool may have different dedicated policies by
varying the local configuration.

	Policy Scenario: Machine Runs Only Jobs That Require Dedicated Resources
	One possible scenario for the use of a dedicated resource is to only
run jobs that require the dedicated resource. To enact this policy,
configure the following expressions:

START = Scheduler =?= $(DedicatedScheduler)
SUSPEND = False
CONTINUE = True
PREEMPT = False
KILL = False
WANT_SUSPEND = False
WANT_VACATE = False
RANK = Scheduler =?= $(DedicatedScheduler)

The START expression specifies that a job
with the Scheduler attribute must match the string corresponding
DedicatedScheduler attribute in the machine ClassAd. The
RANK expression specifies that this same job
(with the Scheduler attribute) has the highest rank. This
prevents other jobs from preempting it based on user priorities. The
rest of the expressions disable any other of the condor_startd
daemon’s pool-wide policies, such as those for evicting jobs when
keyboard and CPU activity is discovered on the machine.

	Policy Scenario: Run Both Jobs That Do and Do Not Require Dedicated Resources
	While the first example works nicely for jobs requiring dedicated
resources, it can lead to poor utilization of the dedicated
machines. A more sophisticated strategy allows the machines to run
other jobs, when no jobs that require dedicated resources exist. The
machine is configured to prefer jobs that require dedicated
resources, but not prevent others from running.

To implement this, configure the machine as a dedicated resource as
above, modifying only the START expression:

START = True

	Policy Scenario: Adding Desktop Resources To The Mix
	A third policy example allows all jobs. These desktop machines use a
preexisting START expression that takes the machine owner’s
usage into account for some jobs. The machine does not preempt jobs
that must run on dedicated resources, while it may preempt other
jobs as defined by policy. So, the default pool policy is used for
starting and stopping jobs, while jobs that require a dedicated
resource always start and are not preempted.

The START, SUSPEND, PREEMPT, and macro:RANK policies are
set in the global configuration. Locally, the configuration is
modified to this hybrid policy by adding a second case.

SUSPEND = Scheduler =!= $(DedicatedScheduler) && ($(SUSPEND))
PREEMPT = Scheduler =!= $(DedicatedScheduler) && ($(PREEMPT))
RANK_FACTOR = 1000000
RANK = (Scheduler =?= $(DedicatedScheduler) * $(RANK_FACTOR)) \
 + $(RANK)
START = (Scheduler =?= $(DedicatedScheduler)) || ($(START))

Define RANK_FACTOR to be a larger
value than the maximum value possible for the existing rank
expression. RANK is a floating point value,
so there is no harm in assigning a very large value.

Preemption with Dedicated Jobs

The dedicated scheduler can be configured to preempt running parallel
universe jobs in favor of higher priority parallel universe jobs. Note
that this is different from preemption in other universes, and parallel
universe jobs cannot be preempted either by a machine’s user pressing a
key or by other means.

By default, the dedicated scheduler will never preempt running parallel
universe jobs. Two configuration variables control preemption of these
dedicated resources: SCHEDD_PREEMPTION_REQUIREMENTS and
SCHEDD_PREEMPTION_RANK. These
variables have no default value, so if either are not defined,
preemption will never occur. SCHEDD_PREEMPTION_REQUIREMENTS must
evaluate to True for a machine to be a candidate for this kind of
preemption. If more machines are candidates for preemption than needed
to satisfy a higher priority job, the machines are sorted by
SCHEDD_PREEMPTION_RANK, and only the highest ranked machines are
taken.

Note that preempting one node of a running parallel universe job
requires killing the entire job on all of its nodes. So, when preemption
occurs, it may end up freeing more machines than are needed for the new
job. Also, preempted jobs will be re-run, starting again from the
beginning. Thus, the administrator should be careful when enabling
preemption of these dedicated resources. Enable dedicated preemption
with the configuration:

STARTD_JOB_ATTRS = JobPrio
SCHEDD_PREEMPTION_REQUIREMENTS = (My.JobPrio < Target.JobPrio)
SCHEDD_PREEMPTION_RANK = 0.0

In this example, preemption is enabled by user-defined job priority. If
a set of machines is running a job at user priority 5, and the user
submits a new job at user priority 10, the running job will be preempted
for the new job. The old job is put back in the queue, and will begin
again from the beginning when assigned to a newly acquired set of
machines.

Grouping Dedicated Nodes into Parallel Scheduling Groups

In some parallel environments, machines are divided into groups, and
jobs should not cross groups of machines. That is, all the nodes of a
parallel job should be allocated to machines within the same group. The
most common example is a pool of machine using InfiniBand switches. For
example, each switch might connect 16 machines, and a pool might have
160 machines on 10 switches. If the InfiniBand switches are not routed
to each other, each job must run on machines connected to the same
switch. The dedicated scheduler’s Parallel Scheduling Groups feature
supports this operation.

Each condor_startd must define which group it belongs to by setting the
ParallelSchedulingGroup variable in the configuration file, and
advertising it into the machine ClassAd. The value of this variable is a
string, which should be the same for all condor_startd daemons within a given
group. The property must be advertised in the condor_startd ClassAd by
appending ParallelSchedulingGroup to the STARTD_ATTRS
configuration variable.

The submit description file for a parallel universe job which must not
cross group boundaries contains

+WantParallelSchedulingGroups = True

The dedicated scheduler enforces the allocation to within a group.

Configuring HTCondor for Running Backfill Jobs

HTCondor can be configured to run backfill jobs whenever the
condor_startd has no other work to perform. These jobs are considered
the lowest possible priority, but when machines would otherwise be idle,
the resources can be put to good use.

Currently, HTCondor only supports using the Berkeley Open Infrastructure
for Network Computing (BOINC) to provide the backfill jobs. More
information about BOINC is available at
http://boinc.berkeley.edu.

The rest of this section provides an overview of how backfill jobs work
in HTCondor, details for configuring the policy for when backfill jobs
are started or killed, and details on how to configure HTCondor to spawn
the BOINC client to perform the work.

Overview of Backfill jobs in HTCondor

Whenever a resource controlled by HTCondor is in the Unclaimed/Idle
state, it is totally idle; neither the interactive user nor an HTCondor
job is performing any work. Machines in this state can be configured to
enter the Backfill state, which allows the resource to attempt a
background computation to keep itself busy until other work arrives
(either a user returning to use the machine interactively, or a normal
HTCondor job). Once a resource enters the Backfill state, the
condor_startd will attempt to spawn another program, called a
backfill client, to launch and manage the backfill computation. When
other work arrives, the condor_startd will kill the backfill client
and clean up any processes it has spawned, freeing the machine resources
for the new, higher priority task. More details about the different
states an HTCondor resource can enter and all of the possible
transitions between them are described in
Policy Configuration for Execution Points and for Access Points, especially the
condor_startd Policy Configuration
and
condor_schedd Policy Configuration
sections.

At this point, the only backfill system supported by HTCondor is BOINC.
The condor_startd has the ability to start and stop the BOINC client
program at the appropriate times, but otherwise provides no additional
services to configure the BOINC computations themselves. Future versions
of HTCondor might provide additional functionality to make it easier to
manage BOINC computations from within HTCondor. For now, the BOINC
client must be manually installed and configured outside of HTCondor on
each backfill-enabled machine.

Defining the Backfill Policy

There are a small set of policy expressions that determine if a
condor_startd will attempt to spawn a backfill client at all, and if
so, to control the transitions in to and out of the Backfill state. This
section briefly lists these expressions. More detail can be found in
condor_startd Configuration File Macros.

	ENABLE_BACKFILL
	A boolean value to determine if any backfill functionality should be
used. The default value is False.

	BACKFILL_SYSTEM
	A string that defines what backfill system to use for spawning and
managing backfill computations. Currently, the only supported string
is "BOINC".

	START_BACKFILL
	A boolean expression to control if an HTCondor resource should start
a backfill client. This expression is only evaluated when the
machine is in the Unclaimed/Idle state and the ENABLE_BACKFILL
expression is True.

	EVICT_BACKFILL
	A boolean expression that is evaluated whenever an HTCondor resource
is in the Backfill state. A value of True indicates the machine
should immediately kill the currently running backfill client and
any other spawned processes, and return to the Owner state.

The following example shows a possible configuration to enable backfill:

Turn on backfill functionality, and use BOINC
ENABLE_BACKFILL = TRUE
BACKFILL_SYSTEM = BOINC

Spawn a backfill job if we've been Unclaimed for more than 5
minutes
START_BACKFILL = $(StateTimer) > (5 * $(MINUTE))

Evict a backfill job if the machine is busy (based on keyboard
activity or cpu load)
EVICT_BACKFILL = $(MachineBusy)

Overview of the BOINC system

The BOINC system is a distributed computing environment for solving
large scale scientific problems. A detailed explanation of this system
is beyond the scope of this manual. Thorough documentation about BOINC
is available at their website:
http://boinc.berkeley.edu. However, a
brief overview is provided here for sites interested in using BOINC with
HTCondor to manage backfill jobs.

BOINC grew out of the relatively famous SETI@home computation, where
volunteers installed special client software, in the form of a screen
saver, that contacted a centralized server to download work units. Each
work unit contained a set of radio telescope data and the computation
tried to find patterns in the data, a sign of intelligent life elsewhere
in the universe, hence the name: “Search for Extra Terrestrial
Intelligence at home”. BOINC is developed by the Space Sciences Lab at
the University of California, Berkeley, by the same people who created
SETI@home. However, instead of being tied to the specific radio
telescope application, BOINC is a generic infrastructure by which many
different kinds of scientific computations can be solved. The current
generation of SETI@home now runs on top of BOINC, along with various
physics, biology, climatology, and other applications.

The basic computational model for BOINC and the original SETI@home is
the same: volunteers install BOINC client software, called the
boinc_client, which runs whenever the machine would otherwise be
idle. However, the BOINC installation on any given machine must be
configured so that it knows what computations to work for instead of
always working on a hard coded computation. The BOINC terminology for a
computation is a project. A given BOINC client can be configured to
donate all of its cycles to a single project, or to split the cycles
between projects so that, on average, the desired percentage of the
computational power is allocated to each project. Once the
boinc_client starts running, it attempts to contact a centralized
server for each project it has been configured to work for. The BOINC
software downloads the appropriate platform-specific application binary
and some work units from the central server for each project. Whenever
the client software completes a given work unit, it once again attempts
to connect to that project’s central server to upload the results and
download more work.

BOINC participants must register at the centralized server for each
project they wish to donate cycles to. The process produces a unique
identifier so that the work performed by a given client can be credited
to a specific user. BOINC keeps track of the work units completed by
each user, so that users providing the most cycles get the highest
rankings, and therefore, bragging rights.

Because BOINC already handles the problems of distributing the
application binaries for each scientific computation, the work units,
and compiling the results, it is a perfect system for managing backfill
computations in HTCondor. Many of the applications that run on top of
BOINC produce their own application-specific checkpoints, so even if the
boinc_client is killed, for example, when an HTCondor job arrives at
a machine, or if the interactive user returns, an entire work unit will
not necessarily be lost.

Installing the BOINC client software

In HTCondor Version 23.0.8, the boinc_client must be manually
downloaded, installed and configured outside of HTCondor. Download the
boinc_client executables at
http://boinc.berkeley.edu/download.php.

Once the BOINC client software has been downloaded, the boinc_client
binary should be placed in a location where the HTCondor daemons can use
it. The path will be specified with the HTCondor configuration variable
BOINC_Executable.

Additionally, a local directory on each machine should be created where
the BOINC system can write files it needs. This directory must not be
shared by multiple instances of the BOINC software. This is the same
restriction as placed on the spool or execute directories used
by HTCondor. The location of this directory is defined by
BOINC_InitialDir. The directory must
be writable by whatever user the boinc_client will run as. This user
is either the same as the user the HTCondor daemons are running as, if
HTCondor is not running as root, or a user defined via the
BOINC_Owner configuration variable.

Finally, HTCondor administrators wishing to use BOINC for backfill jobs
must create accounts at the various BOINC projects they want to donate
cycles to. The details of this process vary from project to project.
Beware that this step must be done manually, as the boinc_client can
not automatically register a user at a given project, unlike the more
fancy GUI version of the BOINC client software which many users run as a
screen saver. For example, to configure machines to perform work for the
Einstein@home project (a physics experiment run by the University of
Wisconsin at Milwaukee), HTCondor administrators should go to
http://einstein.phys.uwm.edu/create_account_form.php,
fill in the web form, and generate a new Einstein@home identity. This
identity takes the form of a project URL (such as
http://einstein.phys.uwm.edu) followed by an account key, which is a
long string of letters and numbers that is used as a unique identifier.
This URL and account key will be needed when configuring HTCondor to use
BOINC for backfill computations.

Configuring the BOINC client under HTCondor

After the boinc_client has been installed on a given machine, the
BOINC projects to join have been selected, and a unique project account
key has been created for each project, the HTCondor configuration needs
to be modified.

Whenever the condor_startd decides to spawn the boinc_client to
perform backfill computations, it will spawn a condor_starter to
directly launch and monitor the boinc_client program. This
condor_starter is just like the one used to invoke any other HTCondor
jobs.

This condor_starter reads values out of the HTCondor configuration
files to define the job it should run, as opposed to getting these
values from a job ClassAd in the case of a normal HTCondor job. All of
the configuration variables names for variables to control things such
as the path to the boinc_client binary to use, the command-line
arguments, and the initial working directory, are prefixed with the
string "BOINC_". Each of these variables is described as either a
required or an optional configuration variable.

Required configuration variables:

	BOINC_Executable
	The full path and executable name of the boinc_client binary to
use.

	BOINC_InitialDir
	The full path to the local directory where BOINC should run.

	BOINC_Universe
	The HTCondor universe used for running the boinc_client program.
This must be set to vanilla for BOINC to work under HTCondor.

	BOINC_Owner
	What user the boinc_client program should be run as. This
variable is only used if the HTCondor daemons are running as root.
In this case, the condor_starter must be told what user identity
to switch to before invoking the boinc_client. This can be any
valid user on the local system, but it must have write permission in
whatever directory is specified by BOINC_InitialDir.

Optional configuration variables:

	BOINC_Arguments
	Command-line arguments that should be passed to the boinc_client
program. For example, one way to specify the BOINC project to join
is to use the -attach_project argument to specify a project URL
and account key. For example:

BOINC_Arguments = --attach_project http://einstein.phys.uwm.edu [account_key]

	BOINC_Environment
	Environment variables that should be set for the boinc_client.

	BOINC_Output
	Full path to the file where stdout from the boinc_client
should be written. If this variable is not defined, stdout will
be discarded.

	BOINC_Error
	Full path to the file where stderr from the boinc_client
should be written. If this macro is not defined, stderr will be
discarded.

The following example shows one possible usage of these settings:

Define a shared macro that can be used to define other settings.
This directory must be manually created before attempting to run
any backfill jobs.
BOINC_HOME = $(LOCAL_DIR)/boinc

Path to the boinc_client to use, and required universe setting
BOINC_Executable = /usr/local/bin/boinc_client
BOINC_Universe = vanilla

What initial working directory should BOINC use?
BOINC_InitialDir = $(BOINC_HOME)

Where to place stdout and stderr
BOINC_Output = $(BOINC_HOME)/boinc.out
BOINC_Error = $(BOINC_HOME)/boinc.err

If the HTCondor daemons reading this configuration are running as root,
an additional variable must be defined:

Specify the user that the boinc_client should run as:
BOINC_Owner = nobody

In this case, HTCondor would spawn the boinc_client as nobody, so the
directory specified in $(BOINC_HOME) would have to be writable by
the nobody user.

A better choice would probably be to create a separate user account just
for running BOINC jobs, so that the local BOINC installation is not
writable by other processes running as nobody. Alternatively, the
BOINC_Owner could be set to daemon.

Attaching to a specific BOINC project

There are a few ways to attach an HTCondor/BOINC installation to a given
BOINC project:

	Use the -attach_project argument to the boinc_client program,
defined via the BOINC_Arguments variable. The boinc_client
will only accept a single -attach_project argument, so this
method can only be used to attach to one project.

	The boinc_cmd command-line tool can perform various BOINC
administrative tasks, including attaching to a BOINC project. Using
boinc_cmd, the appropriate argument to use is called
-project_attach. Unfortunately, the boinc_client must be
running for boinc_cmd to work, so this method can only be used
once the HTCondor resource has entered the Backfill state and has
spawned the boinc_client.

	Manually create account files in the local BOINC directory. Upon
start up, the boinc_client will scan its local directory (the
directory specified with BOINC_InitialDir) for files of the form
account_[URL].xml, for example,
account_einstein.phys.uwm.edu.xml. Any files with a name that
matches this convention will be read and processed. The contents of
the file define the project URL and the authentication key. The
format is:

<account>
 <master_url>[URL]</master_url>
 <authenticator>[key]</authenticator>
</account>

For example:

<account>
 <master_url>http://einstein.phys.uwm.edu</master_url>
 <authenticator>aaaa1111bbbb2222cccc3333</authenticator>
</account>

Of course, the <authenticator> tag would use the real authentication
key returned when the account was created at a given project.

These account files can be copied to the local BOINC directory on all
machines in an HTCondor pool, so administrators can either distribute
them manually, or use symbolic links to point to a shared file
system.

In the two cases of using command-line arguments for boinc_client or
running the boinc_cmd tool, BOINC will write out the resulting
account file to the local BOINC directory on the machine, and then
future invocations of the boinc_client will already be attached to
the appropriate project(s).

BOINC on Windows

The Windows version of BOINC has multiple installation methods. The
preferred method of installation for use with HTCondor is the Shared
Installation method. Using this method gives all users access to the
executables. During the installation process

	Deselect the option which makes BOINC the default screen saver

	Deselect the option which runs BOINC on start up.

	Do not launch BOINC at the conclusion of the installation.

There are three major differences from the Unix version to keep in mind
when dealing with the Windows installation:

	The Windows executables have different names from the Unix versions.
The Windows client is called boinc.exe. Therefore, the
configuration variable BOINC_Executable is written:

BOINC_Executable = C:\PROGRA~1\BOINC\boinc.exe

The Unix administrative tool boinc_cmd is called boinccmd.exe on
Windows.

	When using BOINC on Windows, the configuration variable
BOINC_InitialDir will not be
respected fully. To work around this difficulty, pass the BOINC home
directory directly to the BOINC application via the
BOINC_Arguments configuration
variable. For Windows, rewrite the argument line as:

BOINC_Arguments = --dir $(BOINC_HOME) \
 --attach_project http://einstein.phys.uwm.edu [account_key]

As a consequence of setting the BOINC home directory, some projects
may fail with the authentication error:

Scheduler request failed: Peer
certificate cannot be authenticated
with known CA certificates.

To resolve this issue, copy the ca-bundle.crt file from the BOINC
installation directory to $(BOINC_HOME). This file appears to be
project and machine independent, and it can therefore be distributed
as part of an automated HTCondor installation.

	The BOINC_Owner configuration variable
behaves differently on Windows than it does on Unix. Its value may
take one of two forms:

	domain\user

	user This form assumes that the user exists in the local domain
(that is, on the computer itself).

Setting this option causes the addition of the job attribute

RunAsUser = True

to the backfill client. This further implies that the configuration
variable
STARTER_ALLOW_RUNAS_OWNER be set to True to insure
that the local condor_starter be able to run jobs in this manner.
For more information on the RunAsUser attribute, see
Executing Jobs as the Submitting User. For more information on the the STARTER_ALLOW_RUNAS_OWNER
configuration variable, see
Shared File System Configuration File Macros.

Per Job PID Namespaces

Per job PID namespaces provide enhanced isolation of one process tree
from another through kernel level process ID namespaces. HTCondor may
enable the use of per job PID namespaces for Linux RHEL 6, Debian 6, and
more recent kernels.

Read about per job PID namespaces
http://lwn.net/Articles/531419/.

The needed isolation of jobs from the same user that execute on the same
machine as each other is already provided by the implementation of slot
users as described in
User Accounts in HTCondor on Unix Platforms. This
is the recommended way to implement the prevention of interference between more
than one job submitted by a single user. However, the use of a shared
file system by slot users presents issues in the ownership of files
written by the jobs.

The per job PID namespace provides a way to handle the ownership of
files produced by jobs within a shared file system. It also isolates the
processes of a job within its PID namespace. As a side effect and
benefit, the clean up of processes for a job within a PID namespace is
enhanced. When the process with PID = 1 is killed, the operating system
takes care of killing all child processes.

To enable the use of per job PID namespaces, set the configuration to
include

USE_PID_NAMESPACES = True

This configuration variable defaults to False, thus the use of per
job PID namespaces is disabled by default.

Group ID-Based Process Tracking

One function that HTCondor often must perform is keeping track of all
processes created by a job. This is done so that HTCondor can provide
resource usage statistics about jobs, and also so that HTCondor can
properly clean up any processes that jobs leave behind when they exit.

In general, tracking process families is difficult to do reliably. By
default HTCondor uses a combination of process parent-child
relationships, process groups, and information that HTCondor places in a
job’s environment to track process families on a best-effort basis. This
usually works well, but it can falter for certain applications or for
jobs that try to evade detection.

Jobs that run with a user account dedicated for HTCondor’s use can be
reliably tracked, since all HTCondor needs to do is look for all
processes running using the given account. Administrators must specify
in HTCondor’s configuration what accounts can be considered dedicated
via the DEDICATED_EXECUTE_ACCOUNT_REGEXP setting. See
User Accounts in HTCondor on Unix Platforms for
further details.

Ideally, jobs can be reliably tracked regardless of the user account
they execute under. This can be accomplished with group ID-based
tracking. This method of tracking requires that a range of dedicated
group IDs (GID) be set aside for HTCondor’s use. The number of GIDs that
must be set aside for an execute machine is equal to its number of
execution slots. GID-based tracking is only available on Linux, and it
requires that HTCondor daemons run as root.

GID-based tracking works by placing a dedicated GID in the supplementary
group list of a job’s initial process. Since modifying the supplementary
group ID list requires root privilege, the job will not be able to
create processes that go unnoticed by HTCondor.

Once a suitable GID range has been set aside for process tracking,
GID-based tracking can be enabled via the
USE_GID_PROCESS_TRACKING parameter. The minimum and
maximum GIDs included in the range are specified with the
MIN_TRACKING_GID and MAX_TRACKING_GID settings. For
example, the following would enable GID-based tracking for an execute
machine with 8 slots.

USE_GID_PROCESS_TRACKING = True
MIN_TRACKING_GID = 750
MAX_TRACKING_GID = 757

If the defined range is too small, such that there is not a GID
available when starting a job, then the condor_starter will fail as
it tries to start the job. An error message will be logged stating that
there are no more tracking GIDs.

GID-based process tracking requires use of the condor_procd. If
USE_GID_PROCESS_TRACKING is true, the condor_procd will be used
regardless of the USE_PROCD setting.
Changes to MIN_TRACKING_GID and MAX_TRACKING_GID require a full
restart of HTCondor.

Cgroup-Based Process Tracking

A new feature in Linux version 2.6.24 allows HTCondor to more accurately
and safely manage jobs composed of sets of processes. This Linux feature
is called Control Groups, or cgroups for short, and it is available
starting with RHEL 6, Debian 6, and related distributions. Documentation
about Linux kernel support for cgroups can be found in the Documentation
directory in the kernel source code distribution. Another good reference
is
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html

The interface between the kernel cgroup functionality is via a (virtual)
file system, usually mounted at /sys/fs/cgroup.

If your Linux distribution uses systemd, it will mount the cgroup file
system, and the only remaining item is to set configuration variable
BASE_CGROUP, as described below.

When cgroups are correctly configured and running, the virtual file
system mounted on /sys/fs/cgroup should have several subdirectories under
it, and there should an htcondor subdirectory under the directory
/sys/fs/cgroup/cpu, /sys/fs/cgroup/memory and some others.

The condor_starter daemon uses cgroups by default on Linux systems to
accurately track all the processes started by a job, even when
quickly-exiting parent processes spawn many child processes. As with the
GID-based tracking, this is only implemented when a condor_procd
daemon is running.

Kernel cgroups are named in a virtual file system hierarchy. HTCondor
will put each running job on the execute node in a distinct cgroup. The
name of this cgroup is the name of the execute directory for that
condor_starter, with slashes replaced by underscores, followed by the
name and number of the slot. So, for the memory controller, a job
running on slot1 would have its cgroup located at
/sys/fs/cgroup/memory/htcondor/condor_var_lib_condor_execute_slot1/. The
tasks file in this directory will contain a list of all the
processes in this cgroup, and many other files in this directory have
useful information about resource usage of this cgroup. See the kernel
documentation for full details.

Once cgroup-based tracking is configured, usage should be invisible to
the user and administrator. The condor_procd log, as defined by
configuration variable PROCD_LOG, will mention that it is using this
method, but no user visible changes should occur, other than the
impossibility of a quickly-forking process escaping from the control of
the condor_starter, and the more accurate reporting of memory usage.

A cgroup-enabled HTCondor will install and handle a per-job (not per-process)
Linux Out of Memory killer (OOM-Killer). When a job exceeds the memory
provisioned by the condor_startd, the Linux kernel will send an OOM
message to the condor_starter, and HTCondor will evict the job, and
put it on hold. Sometimes, even when the job’s memory usage is below
the provisioned amount, if other, non-HTCondor processes, on the system
are using too much memory, the linux kernel may choose to OOM-kill the
job. In this case, HTCondor will log a message and evict the job, mark
it as idle, so it can start again somewhere else.

Limiting Resource Usage Using Cgroups

While the method described to limit a job’s resource usage is portable,
and it should run on any Linux or BSD or Unix system, it suffers from
one large flaw. The flaw is that resource limits imposed are per
process, not per job. An HTCondor job is often composed of many Unix
processes. If the method of limiting resource usage with a user job
wrapper is used to impose a 2 Gigabyte memory limit, that limit applies
to each process in the job individually. If a job created 100 processes,
each using just under 2 Gigabytes, the job would continue without the
resource limits kicking in. Clearly, this is not what the machine owner
intends. Moreover, the memory limit only applies to the virtual memory
size, not the physical memory size, or the resident set size. This can
be a problem for jobs that use the mmap system call to map in a
large chunk of virtual memory, but only need a small amount of memory at
one time. Typically, the resource the administrator would like to
control is physical memory, because when that is in short supply, the
machine starts paging, and can become unresponsive very quickly.

The condor_starter can, using the Linux cgroup capability, apply
resource limits collectively to sets of jobs, and apply limits to the
physical memory used by a set of processes. The main downside of this
technique is that it is only available on relatively new Unix
distributions such as RHEL 6 and Debian 6. This technique also may
require editing of system configuration files.

To enable cgroup-based limits, first ensure that cgroup-based tracking
is enabled, as it is by default on supported systems, as described in
section 3.14.13. Once set, the
condor_starter will create a cgroup for each job, and set
attributes in that cgroup to control memory and cpu usage. These
attributes are the cpu.shares attribute in the cpu controller, and
two attributes in the memory controller, both
memory.limit_in_bytes, and memory.soft_limit_in_bytes. The
configuration variable CGROUP_MEMORY_LIMIT_POLICY controls this.
If CGROUP_MEMORY_LIMIT_POLICY is set to the string hard, the hard
limit will be set to the slot size, and the soft limit to 90% of the
slot size.. If set to soft, the soft limit will be set to the slot
size and the hard limit will be set to the memory size of the whole startd.
By default, this whole size is the detected memory the size, minus
RESERVED_MEMORY. Or, if MEMORY is defined, that value is used..

No limits will be set if the value is none. The default is
none. If the hard limit is in force, then the total amount of
physical memory used by the sum of all processes in this job will not be
allowed to exceed the limit. If the process goes above the hard
limit, the job will be put on hold.

The memory size used in both cases is the machine ClassAd
attribute Memory. Note that Memory is a static amount when using
static slots, but it is dynamic when partitionable slots are used. That
is, the limit is whatever the “Mem” column of condor_status reports for
that slot.

If CGROUP_MEMORY_LIMIT_POLICY is set, HTCondor will also also use
cgroups to limit the amount of swap space used by each job. By default,
the maximum amount of swap space used by each slot is the total amount
of Virtual Memory in the slot, minus the amount of physical memory. Note
that HTCondor measures virtual memory in kbytes, and physical memory in
megabytes. To prevent jobs with high memory usage from thrashing and
excessive paging, and force HTCondor to put them on hold instead, you
can tell condor that a job should never use swap, by setting
DISABLE_SWAP_FOR_JOB to true (the default is false).

In addition to memory, the condor_starter can also control the total
amount of CPU used by all processes within a job. To do this, it writes
a value to the cpu.shares attribute of the cgroup cpu controller. The
value it writes is copied from the Cpus attribute of the machine
slot ClassAd multiplied by 100. Again, like the Memory attribute,
this value is fixed for static slots, but dynamic under partitionable
slots. This tells the operating system to assign cpu usage
proportionally to the number of cpus in the slot. Unlike memory, there
is no concept of soft or hard, so this limit only applies when
there is contention for the cpu. That is, on an eight core machine, with
only a single, one-core slot running, and otherwise idle, the job
running in the one slot could consume all eight cpus concurrently with
this limit in play, if it is the only thing running. If, however, all
eight slots where running jobs, with each configured for one cpu, the
cpu usage would be assigned equally to each job, regardless of the
number of processes or threads in each job.

Concurrency Limits

Concurrency limits allow an administrator to limit the number of
concurrently running jobs that declare that they use some pool-wide
resource. This limit is applied globally to all jobs submitted from all
schedulers across one HTCondor pool; the limits are not applied to
scheduler, local, or grid universe jobs. This is useful in the case of a
shared resource, such as an NFS or database server that some jobs use,
where the administrator needs to limit the number of jobs accessing the
server.

The administrator must predefine the names and capacities of the
resources to be limited in the negotiator’s configuration file. The job
submitter must declare in the submit description file which resources
the job consumes.

The administrator chooses a name for the limit. Concurrency limit names
are case-insensitive. The names are formed from the alphabet letters ‘A’
to ‘Z’ and ‘a’ to ‘z’, the numerical digits 0 to 9, the underscore
character ‘_’ , and at most one period character. The names cannot
start with a numerical digit.

For example, assume that there are 3 licenses for the X software, so
HTCondor should constrain the number of running jobs which need the X
software to 3. The administrator picks XSW as the name of the resource
and sets the configuration

XSW_LIMIT = 3

where XSW is the invented name of this resource, and this name is
appended with the string _LIMIT. With this limit, a maximum of 3
jobs declaring that they need this resource may be executed
concurrently.

In addition to named limits, such as in the example named limit XSW,
configuration may specify a concurrency limit for all resources that are
not covered by specifically-named limits. The configuration variable
CONCURRENCY_LIMIT_DEFAULT sets this value. For example,

CONCURRENCY_LIMIT_DEFAULT = 1

will enforce a limit of at most 1 running job that declares a usage of
an unnamed resource. If CONCURRENCY_LIMIT_DEFAULT is omitted from
the configuration, then no limits are placed on the number of
concurrently executing jobs for which there is no specifically-named
concurrency limit.

The job must declare its need for a resource by placing a command in its
submit description file or adding an attribute to the job ClassAd. In
the submit description file, an example job that requires the X software
adds:

concurrency_limits = XSW

This results in the job ClassAd attribute

ConcurrencyLimits = "XSW"

Jobs may declare that they need more than one type of resource. In this
case, specify a comma-separated list of resources:

concurrency_limits = XSW, DATABASE, FILESERVER

The units of these limits are arbitrary. This job consumes one unit of
each resource. Jobs can declare that they use more than one unit with
syntax that follows the resource name by a colon character and the
integer number of resources. For example, if the above job uses three
units of the file server resource, it is declared with

concurrency_limits = XSW, DATABASE, FILESERVER:3

If there are sets of resources which have the same capacity for each
member of the set, the configuration may become tedious, as it defines
each member of the set individually. A shortcut defines a name for a
set. For example, define the sets called LARGE and SMALL:

CONCURRENCY_LIMIT_DEFAULT = 5
CONCURRENCY_LIMIT_DEFAULT_LARGE = 100
CONCURRENCY_LIMIT_DEFAULT_SMALL = 25

To use the set name in a concurrency limit, the syntax follows the set
name with a period and then the set member’s name. Continuing this
example, there may be a concurrency limit named LARGE.SWLICENSE,
which gets the capacity of the default defined for the LARGE set,
which is 100. A concurrency limit named LARGE.DBSESSION will also
have a limit of 100. A concurrency limit named OTHER.LICENSE will
receive the default limit of 5, as there is no set named OTHER.

A concurrency limit may be evaluated against the attributes of a matched
machine. This allows a job to vary what concurrency limits it requires
based on the machine to which it is matched. To implement this, the job
uses submit command
concurrency_limits_expr
instead of
concurrency_limits .
Consider an example in which execute machines are located on one of two
local networks. The administrator sets a concurrency limit to limit the
number of network intensive jobs on each network to 10. Configuration of
each execute machine advertises which local network it is on. A machine
on "NETWORK_A" configures

NETWORK = "NETWORK_A"
STARTD_ATTRS = $(STARTD_ATTRS) NETWORK

and a machine on "NETWORK_B" configures

NETWORK = "NETWORK_B"
STARTD_ATTRS = $(STARTD_ATTRS) NETWORK

The configuration for the negotiator sets the concurrency limits:

NETWORK_A_LIMIT = 10
NETWORK_B_LIMIT = 10

Each network intensive job identifies itself by specifying the limit
within the submit description file:

concurrency_limits_expr = TARGET.NETWORK

The concurrency limit is applied based on the network of the matched
machine.

An extension of this example applies two concurrency limits. One limit
is the same as in the example, such that it is based on an attribute of
the matched machine. The other limit is of a specialized application
called "SWX" in this example. The negotiator configuration is
extended to also include

SWX_LIMIT = 15

The network intensive job that also uses two units of the SWX
application identifies the needed resources in the single submit
command:

concurrency_limits_expr = strcat("SWX:2 ", TARGET.NETWORK)

Submit command concurrency_limits_expr may not be used together
with submit command concurrency_limits.

Note that it is possible, under unusual circumstances, for more jobs to
be started than should be allowed by the concurrency limits feature. In
the presence of preemption and dropped updates from the condor_startd
daemon to the condor_collector daemon, it is possible for the limit
to be exceeded. If the limits are exceeded, HTCondor will not kill any
job to reduce the number of running jobs to meet the limit.

The VM Universe

vm universe jobs may be executed on any execution site with
Xen (via libvirt) or KVM. To do this, HTCondor must be informed of
some details of the virtual machine installation, and the execution
machines must be configured correctly.

What follows is not a comprehensive list of the options that help set up
to use the vm universe; rather, it is intended to serve as a
starting point for those users interested in getting vm universe
jobs up and running quickly. Details of configuration variables are in
the Configuration File Entries Relating to Virtual Machines section.

Begin by installing the virtualization package on all execute machines,
according to the vendor’s instructions. We have successfully used
Xen and KVM.

For Xen, there are three things that must exist on an execute machine to
fully support vm universe jobs.

	A Xen-enabled kernel must be running. This running Xen kernel acts as
Dom0, in Xen terminology, under which all VMs are started, called
DomUs Xen terminology.

	The libvirtd daemon must be available, and Xend services must be
running.

	The pygrub program must be available, for execution of VMs whose
disks contain the kernel they will run.

For KVM, there are two things that must exist on an execute machine to
fully support vm universe jobs.

	The machine must have the KVM kernel module installed and running.

	The libvirtd daemon must be installed and running.

Configuration is required to enable the execution of vm universe
jobs. The type of virtual machine that is installed on the execute
machine must be specified with the VM_TYPE
variable. For now, only one type can be utilized per machine. For
instance, the following tells HTCondor to use KVM:

VM_TYPE = kvm

The location of the condor_vm-gahp and its log file must also be
specified on the execute machine. On a Windows installation, these
options would look like this:

VM_GAHP_SERVER = $(SBIN)/condor_vm-gahp.exe
VM_GAHP_LOG = $(LOG)/VMGahpLog

Xen-Specific and KVM-Specific Configuration

Once the configuration options have been set, restart the
condor_startd daemon on that host. For example:

$ condor_restart -startd leovinus

The condor_startd daemon takes a few moments to exercise the VM
capabilities of the condor_vm-gahp, query its properties, and then
advertise the machine to the pool as VM-capable. If the set up
succeeded, then condor_status will reveal that the host is now
VM-capable by printing the VM type and the version number:

$ condor_status -vm leovinus

After a suitable amount of time, if this command does not give any
output, then the condor_vm-gahp is having difficulty executing the VM
software. The exact cause of the problem depends on the details of the
VM, the local installation, and a variety of other factors. We can offer
only limited advice on these matters:

For Xen and KVM, the vm universe is only available when root starts
HTCondor. This is a restriction currently imposed because root
privileges are required to create a virtual machine on top of a
Xen-enabled kernel. Specifically, root is needed to properly use the
libvirt utility that controls creation and management of Xen and KVM
guest virtual machines. This restriction may be lifted in future
versions, depending on features provided by the underlying tool
libvirt.

When a vm Universe Job Fails to Start

If a vm universe job should fail to launch, HTCondor will attempt to
distinguish between a problem with the user’s job description, and a
problem with the virtual machine infrastructure of the matched machine.
If the problem is with the job, the job will go on hold with a reason
explaining the problem. If the problem is with the virtual machine
infrastructure, HTCondor will reschedule the job, and it will modify the
machine ClassAd to prevent any other vm universe job from matching. vm
universe configuration is not slot-specific, so this change is applied
to all slots.

When the problem is with the virtual machine infrastructure, these
machine ClassAd attributes are changed:

	HasVM will be set to False

	VMOfflineReason will be set to a somewhat explanatory string

	VMOfflineTime will be set to the time of the failure

	OfflineUniverses will be adjusted to include "VM" and 13

Since condor_submit adds HasVM == True to a vm universe job’s
requirements, no further vm universe jobs will match.

Once any problems with the infrastructure are fixed, to change the
machine ClassAd attributes such that the machine will once again match
to vm universe jobs, an administrator has three options. All have the
same effect of setting the machine ClassAd attributes to the correct
values such that the machine will not reject matches for vm universe
jobs.

	Restart the condor_startd daemon.

	Submit a vm universe job that explicitly matches the machine. When
the job runs, the code detects the running job and causes the
attributes related to the vm universe to be set indicating that vm
universe jobs can match with this machine.

	Run the command line tool condor_update_machine_ad to set
machine ClassAd attribute HasVM to True, and this will cause
the other attributes related to the vm universe to be set indicating
that vm universe jobs can match with this machine. See the
condor_update_machine_ad manual page for examples and details.

Using HTCondor with AFS

Configuration variables that allow machines to interact with and use a
shared file system are given at the
Shared File System Configuration File Macros section.

Limitations with AFS occur because HTCondor does not currently have a
way to authenticate itself to AFS. This is true of the HTCondor daemons
that would like to authenticate as the AFS user condor, and of the
condor_shadow which would like to authenticate as the user who
submitted the job it is serving. Since neither of these things can
happen yet, there are special things to do when interacting with AFS.
Some of this must be done by the administrator(s) installing HTCondor.
Other things must be done by HTCondor users who submit jobs.

AFS and HTCondor for Users

The condor_shadow daemon runs on the machine where jobs are
submitted. It performs all file system access on behalf of the jobs.
Because the condor_shadow daemon is not authenticated to AFS as the
user who submitted the job, the condor_shadow daemon will not
normally be able to write any output. Therefore the directories in which
the job will be creating output files will need to be world writable;
they need to be writable by non-authenticated AFS users. In addition,
the program’s stdout, stderr, log file, and any file the program
explicitly opens will need to be in a directory that is world-writable.

An administrator may be able to set up special AFS groups that can make
unauthenticated access to the program’s files less scary. For example,
there is supposed to be a way for AFS to grant access to any
unauthenticated process on a given host. If set up, write access need
only be granted to unauthenticated processes on the access point, as
opposed to any unauthenticated process on the Internet. Similarly,
unauthenticated read access could be granted only to processes running
on the access point.

A solution to this problem is to not use AFS for output files. If disk
space on the access point is available in a partition not on AFS,
submit the jobs from there. While the condor_shadow daemon is not
authenticated to AFS, it does run with the effective UID of the user who
submitted the jobs. So, on a local (or NFS) file system, the
condor_shadow daemon will be able to access the files, and no special
permissions need be granted to anyone other than the job submitter. If
the HTCondor daemons are not invoked as root however, the
condor_shadow daemon will not be able to run with the submitter’s
effective UID, leading to a similar problem as with files on AFS.

AFS and HTCondor for Administrators

The largest result from the lack of authentication with AFS is that the
directory defined by the configuration variable LOCAL_DIR and its
subdirectories log and spool on each machine must be either
writable to unauthenticated users, or must not be on AFS. Making these
directories writable a very bad security hole, so it is not a viable
solution. Placing LOCAL_DIR onto NFS is acceptable. To avoid AFS,
place the directory defined for LOCAL_DIR on a local partition on
each machine in the pool. This implies running condor_configure to
install the release directory and configure the pool, setting the
LOCAL_DIR variable to a local partition. When that is complete, log
into each machine in the pool, and run condor_init to set up the
local HTCondor directory.

The directory defined by RELEASE_DIR, which holds all the HTCondor
binaries, libraries, and scripts, can be on AFS. None of the HTCondor
daemons need to write to these files. They only need to read them. So,
the directory defined by RELEASE_DIR only needs to be world readable
in order to let HTCondor function. This makes it easier to upgrade the
binaries to a newer version at a later date, and means that users can
find the HTCondor tools in a consistent location on all the machines in
the pool. Also, the HTCondor configuration files may be placed in a
centralized location.

Finally, consider setting up some targeted AFS groups to help users deal
with HTCondor and AFS better. This is discussed in the following manual
subsection. In short, create an AFS group that contains all users,
authenticated or not, but which is restricted to a given host or subnet.
These should be made as host-based ACLs with AFS, but here at
UW-Madison, we have had some trouble getting that working. Instead, we
have a special group for all machines in our department. The users here
are required to make their output directories on AFS writable to any
process running on any of our machines, instead of any process on any
machine with AFS on the Internet.

 ClassAds

ClassAds

This chapter presents HTCondor’s ClassAd mechanism in three parts.

The first part may be of interest to advanced job submitters as
well as HTCondor administrators: it
describes how to write ClassAds and ClassAd expressions, including
details of the ClassAd language syntax, evaluation semantics, and
its built-in functions.

The second part is likely only of interest to HTCondor
administrators: it describes the generic mechanism
provided by HTCondor to transform ClassAds, as used in the schedd
and the job routers, and as available via a command-line tool.

The third part describes how to format ClassAds for printing from
command-line tools like condor_q, condor_history, and condor_status.
Advanced users may specify their own custom formats, or adminstrators
may set custom defaults.

	HTCondor’s ClassAd Mechanism
	ClassAds: Old and New

	ClassAd Syntax

	ClassAd Evaluation Semantics

	Old ClassAds in the HTCondor System

	Extending ClassAds with User-written Functions

	ClassAd Transforms
	General Concepts

	Transform Commands

	Print Formats
	Syntax

	Examples

	PRINTAS functions for condor_q

	PRINTAS functions for condor_status

 HTCondor’s ClassAd Mechanism

HTCondor’s ClassAd Mechanism

ClassAds are a flexible mechanism for representing the characteristics
and constraints of machines and jobs in the HTCondor system. ClassAds
are used extensively in the HTCondor system to represent jobs,
resources, submitters and other HTCondor daemons. An understanding of
this mechanism is required to harness the full flexibility of the
HTCondor system.

A ClassAd is a set of uniquely named expressions. Each named
expression is called an attribute. The following shows
ten attributes, a portion of an example ClassAd.

MyType = "Machine"
TargetType = "Job"
Machine = "froth.cs.wisc.edu"
Arch = "INTEL"
OpSys = "LINUX"
Disk = 35882
Memory = 128
KeyboardIdle = 173
LoadAvg = 0.1000
Requirements = TARGET.Owner=="smith" || LoadAvg<=0.3 && KeyboardIdle>15*60

ClassAd expressions look very much like expressions in C, and are
composed of literals and attribute references composed with operators
and functions. The difference between ClassAd expressions and C
expressions arise from the fact that ClassAd expressions operate in a
much more dynamic environment. For example, an expression from a
machine’s ClassAd may refer to an attribute in a job’s ClassAd, such as
TARGET.Owner in the above example. The value and type of the attribute
is not known until the expression is evaluated in an environment which
pairs a specific job ClassAd with the machine ClassAd.

ClassAd expressions handle these uncertainties by defining all operators
to be total operators, which means that they have well defined behavior
regardless of supplied operands. This functionality is provided through
two distinguished values, UNDEFINED and ERROR, and defining all
operators so that they can operate on all possible values in the ClassAd
system. For example, the multiplication operator which usually only
operates on numbers, has a well defined behavior if supplied with values
which are not meaningful to multiply. Thus, the expression
10 * “A string” evaluates to the value ERROR. Most operators are
strict with respect to ERROR, which means that they evaluate to
ERROR if any of their operands are ERROR. Similarly, most
operators are strict with respect to UNDEFINED.

ClassAds: Old and New

ClassAds have existed for quite some time in two forms: Old and New. Old
ClassAds were the original form and were used in HTCondor until HTCondor
version 7.5.0. They were heavily tied to the HTCondor development
libraries. New ClassAds added new features and were designed as a
stand-alone library that could be used apart from HTCondor.

In HTCondor version 7.5.1, HTCondor switched to using the New ClassAd
library for all use of ClassAds within HTCondor. The library is placed
into a compatibility mode so that HTCondor 7.5.1 is still able to
exchange ClassAds with older versions of HTCondor.

All user interaction with tools (such as condor_q) as well as output
of tools is still compatible with Old ClassAds. Before HTCondor version
7.5.1, New ClassAds were used only in the Job Router. There are some
syntax and behavior differences between Old and New ClassAds, all of
which should remain invisible to users of HTCondor.

A complete description of New ClassAds can be found at
http://htcondor.org/classad/classad.html,
and in the ClassAd Language Reference Manual found on that web page.

Some of the features of New ClassAds that are not in Old ClassAds are
lists, nested ClassAds, time values, and matching groups of ClassAds.
HTCondor has avoided using these features, as using them makes it
difficult to interact with older versions of HTCondor. But, users can
start using them if they do not need to interact with versions of
HTCondor older than 7.5.1.

The syntax varies slightly between Old and New ClassAds. Here is an
example ClassAd presented in both forms. The Old form:

Foo = 3
Bar = "ab\"cd\ef"
Moo = Foo =!= Undefined

The New form:

[
Foo = 3;
Bar = "ab\"cd\\ef";
Moo = Foo isnt Undefined;
]

HTCondor will convert to and from Old ClassAd syntax as needed.

New ClassAd Attribute References

Expressions often refer to ClassAd attributes. These attribute
references work differently in Old ClassAds as compared with New
ClassAds. In New ClassAds, an unscoped reference is looked for only in
the local ClassAd. An unscoped reference is an attribute that does not
have a MY. or TARGET. prefix. The local ClassAd may be described
by an example. Matchmaking uses two ClassAds: the job ClassAd and the
machine ClassAd. The job ClassAd is evaluated to see if it is a match
for the machine ClassAd. The job ClassAd is the local ClassAd.
Therefore, in the Requirements attribute of the job ClassAd, any
attribute without the prefix TARGET. is looked up only in the job
ClassAd. With New ClassAd evaluation, the use of the prefix MY. is
eliminated, as an unscoped reference can only refer to the local
ClassAd.

The MY. and TARGET. scoping prefixes only apply when evaluating
an expression within the context of two ClassAds. Two examples that
exemplify this are matchmaking and machine policy evaluation. When
evaluating an expression within the context of a single ClassAd, MY.
and TARGET. are not defined. Using them within the context of a
single ClassAd will result in a value of Undefined. Two examples
that exemplify evaluating an expression within the context of a single
ClassAd are during user job policy evaluation, and with the
-constraint option to command-line tools.

New ClassAds have no CurrentTime attribute. If needed, use the
time() function instead. In order to mimic Old ClassAd semantics in
current versions of HTCondor, all ClassAds have an implicit
CurrentTime attribute, with a value of time().

In current versions of HTCondor, New ClassAds will mimic the evaluation
behavior of Old ClassAds. No configuration variables or submit
description file contents should need to be changed. To eliminate this
behavior and use only the semantics of New ClassAds, set the
configuration variable STRICT_CLASSAD_EVALUATION
 to True. This permits
testing expressions to see if any adjustment is required, before a
future version of HTCondor potentially makes New ClassAds evaluation
behavior the default or the only option.

ClassAd Syntax

ClassAd expressions are formed by composing literals, attribute
references and other sub-expressions with operators and functions.

Composing Literals

Literals in the ClassAd language may be of integer, real, string,
undefined or error types. The syntax of these literals is as follows:

	Integer
	A sequence of continuous digits (i.e., [0-9]). Additionally, the
keywords TRUE and FALSE (case insensitive) are syntactic
representations of the integers 1 and 0 respectively.

	Real
	Two sequences of continuous digits separated by a period (i.e.,
[0-9]+.[0-9]+).

	String
	A double quote character, followed by a list of characters
terminated by a double quote character. A backslash character inside
the string causes the following character to be considered as part
of the string, irrespective of what that character is.

	Undefined
	The keyword UNDEFINED (case insensitive) represents the
UNDEFINED value.

	Error
	The keyword ERROR (case insensitive) represents the ERROR
value.

Attributes

Every expression in a ClassAd is named by an attribute name. Together,
the (name,expression) pair is called an attribute. An attribute may be
referred to in other expressions through its attribute name.

Attribute names are sequences of alphabetic characters, digits and
underscores, and may not begin with a digit. All characters in the name
are significant, but case is not significant. Thus, Memory, memory and
MeMoRy all refer to the same attribute.

An attribute reference consists of the name of the attribute being
referenced, and an optional scope resolution prefix. The prefixes that
may be used are MY. and TARGET.. The case used for these
prefixes is not significant. The semantics of supplying a prefix are
discussed in ClassAd Evaluation Semantics.

Expression Operators

The operators that may be used in ClassAd expressions are similar to
those available in C. The available operators and their relative
precedence is shown in the following example:

- (unary negation) (high precedence)
* / %
+ - (addition, subtraction)
< <= >= >
== != =?= is =!= isnt
&&
|| (low precedence)

The operator with the highest precedence is the unary minus operator.
The only operators which are unfamiliar are the =?=, is, =!= and isnt
operators, which are discussed in
ClassAd Evaluation Semantics.

Predefined Functions

Any ClassAd expression may utilize predefined functions. Function names
are case insensitive. Parameters to functions and a return value from a
function may be typed (as given) or not. Nested or recursive function
calls are allowed.

Here are descriptions of each of these predefined functions. The
possible types are the same as itemized in
ClassAd Syntax. Where the type may
be any of these literal types, it is called out as AnyType. Where the type is
Integer, but only returns the value 1 or 0 (implying True or
False), it is called out as Boolean. The format of each function is
given as

ReturnType FunctionName(ParameterType parameter1, ParameterType parameter2, ...)

Optional parameters are given within square brackets.

	AnyType eval(AnyType Expr)
	Evaluates Expr as a string and then returns the result of
evaluating the contents of the string as a ClassAd expression. This
is useful when referring to an attribute such as slotX_State
where X, the desired slot number is an expression, such as
SlotID+10. In such a case, if attribute SlotID is 5, the
value of the attribute slot15_State can be referenced using the
expression eval(strcat("slot", SlotID+10,"_State")). Function
strcat() calls function string() on the second parameter, which
evaluates the expression, and then converts the integer result 15 to
the string "15". The concatenated string returned by strcat() is
"slot15_State", and this string is then evaluated.

Note that referring to attributes of a job from within the string
passed to eval() in the Requirements or Rank expressions
could cause inaccuracies in HTCondor’s automatic auto-clustering of
jobs into equivalent groups for matchmaking purposes. This is
because HTCondor needs to determine which ClassAd attributes are
significant for matchmaking purposes, and indirect references from
within the string passed to eval() will not be counted.

	String unparse(Attribute attr)
	This function looks up the value of the provided attribute and
returns the unparsed version as a string. The attribute’s value is
not evaluated. If the attribute’s value is x + 3, then the
function would return the string "x + 3". If the provided
attribute cannot be found, an empty string is returned.

This function returns ERROR if other than exactly 1 argument is
given or the argument is not an attribute reference.

	String unresolved(Attribute attr)
	This function returns the external attribute references and unresolved
attribute references of the expression that is the value of the provided attribute.
If the provided attribute cannot be found, then undefined is returned.

For example, in a typical job ClassAd if the Requirements expression has the value
OpSys == "LINUX" && TARGET.Arch == "ARM" && Cpus >= RequestCpus, then
unresolved(Requirements) will return "Arch,Cpus,OpSys" because those will not
be attributes of the job ClassAd.

	Boolean unresolved(Attribute attr, String pattern)
	This function returns True when at least one of the external or unresolved attribute
references of the expression that is the value of the provided attribute matches the
given Perl regular expression pattern. If none of the references match the pattern, then
False is returned. If the provided attribute cannot be found, then undefined is returned.

For example, in a typical job ClassAd if the Requirements expression has the value
OpSys == "LINUX" && Arch == "ARM", then unresolved(Requirements, "^OpSys") will
return True, and unresolved(Requirements, "OpSys.+") will return False.

The intended use of this function is to make it easier to apply a submit transform to
a job only when the job does not already reference a certain attribute. For instance

JOB_TRANSFORM_DefPlatform @=end
 # Apply this transform only when the job requirements does not reference OpSysAndver or OpSysName
 REQUIREMENTS ! unresolved(Requirements, "OpSys.+")
 # Add a clause to the job requirements to match only CentOs7 machines
 SET Requirements $(MY.Requirements) && OpSysAndVer == "CentOS7"
@end

	AnyType ifThenElse(AnyType IfExpr,AnyType ThenExpr, AnyType ElseExpr)
	A conditional expression is described by IfExpr. The following
defines return values, when IfExpr evaluates to

	True. Evaluate and return the value as given by ThenExpr.

	False. Evaluate and return the value as given by
ElseExpr.

	UNDEFINED. Return the value UNDEFINED.

	ERROR. Return the value ERROR.

	0.0. Evaluate, and return the value as given by ElseExpr.

	non-0.0 Real values. Evaluate, and return the value as given
by ThenExpr.

Where IfExpr evaluates to give a value of type String, the
function returns the value ERROR. The implementation uses lazy
evaluation, so expressions are only evaluated as defined.

This function returns ERROR if other than exactly 3 arguments
are given.

	Boolean isUndefined(AnyType Expr)
	Returns True, if Expr evaluates to UNDEFINED. Returns
False in all other cases.

This function returns ERROR if other than exactly 1 argument is
given.

	Boolean isError(AnyType Expr)
	Returns True, if Expr evaluates to ERROR. Returns
False in all other cases.

This function returns ERROR if other than exactly 1 argument is
given.

	Boolean isString(AnyType Expr)
	Returns True, if the evaluation of Expr gives a value of
type String. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is
given.

	Boolean isInteger(AnyType Expr)
	Returns True, if the evaluation of Expr gives a value of
type Integer. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is
given.

	Boolean isReal(AnyType Expr)
	Returns True, if the evaluation of Expr gives a value of
type Real. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is
given.

	Boolean isList(AnyType Expr)
	Returns True, if the evaluation of Expr gives a value of
type List. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is
given.

	Boolean isClassAd(AnyType Expr)
	Returns True, if the evaluation of Expr gives a value of
type ClassAd. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is
given.

	Boolean isBoolean(AnyType Expr)
	Returns True, if the evaluation of Expr gives the integer
value 0 or 1. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is
given.

	Boolean isAbstime(AnyType Expr)
	Returns True, if the evaluation of Expr returns an abstime
type. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is
given.

	Boolean isReltime(AnyType Expr)
	Returns True, if the evaluation of Expr returns an relative time
type. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is
given.

	Boolean member(AnyType m, ListType l)
	Returns error if m does not evalute to a scalar, or l does not
evaluate to a list. Otherwise the elements of l are evaluted
in order, and if an element is equal to m in the sense of ==
the result of the function is True. Otherwise the function
returns false.

	Boolean anyCompare(string op, list l, AnyType t)
	Returns error if op does not evalute to one of <, <=,
==, >, >=, !-, is or isnt. Returns error
if l isn’t a list, or t isn’t a scalar
Otherwise the elements of l are evaluted and compared to t
using the corresponding operator defined by op. If any of
the members of l evaluate to true, the result is True.
Otherwise the function returns False.

	Boolean allCompare(string op, list l, AnyType t)
	Returns error if op does not evalute to one of <, <=,
==, >, >=, !-, is or isnt. Returns error
if l isn’t a list, or t isn’t a scalar
Otherwise the elements of l are evaluted and compared to t
using the corresponding operator defined by op. If all of
the members of l evaluate to true, the result is True.
Otherwise the function returns False.

	Boolean IdenticalMember(AnyType m, ListType l)
	Returns error if m does not evalute to a scalar, or l does not
evaluate to a list. Otherwise the elements of l are evaluted
in order, and if an element is equal to m in the sense of =?=
the result of the function is True. Otherwise the function
returns false.

	Integer int(AnyType Expr)
	Returns the integer value as defined by Expr. Where the type of
the evaluated Expr is Real, the value is truncated (round
towards zero) to an integer. Where the type of the evaluated
Expr is String, the string is converted to an integer using
a C-like atoi() function. When this result is not an integer,
ERROR is returned. Where the evaluated Expr is ERROR or
UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is
given.

	Real real(AnyType Expr)
	Returns the real value as defined by Expr. Where the type of the
evaluated Expr is Integer, the return value is the converted
integer. Where the type of the evaluated Expr is String, the
string is converted to a real value using a C-like atof() function.
When this result is not a real, ERROR is returned. Where the
evaluated Expr is ERROR or UNDEFINED, ERROR is
returned.

This function returns ERROR if other than exactly 1 argument is
given.

	String string(AnyType Expr)
	Returns the string that results from the evaluation of Expr.
Converts a non-string value to a string. Where the evaluated
Expr is ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is
given.

	Bool bool(AnyType Expr)
	Returns the boolean that results from the evaluation of Expr.
Converts a non-boolean value to a bool. A string expression
that evaluates to the string “true” yields true, and “false” returns

This function returns ERROR if other than exactly 1 argument is
given.

	AbsTime absTime(AnyType t [, int z])
	Creates an AbsTime value corresponding to time t an time-zone offset z.
If t is a String, then z must be omitted, and t is parsed as a specification as follows.

The operand t is parsed as a specification of an instant in time (date and time).
This function accepts the canonical native representation of AbsTime values, but
minor variations in format are allowed.
The default format is yyyy-mm-ddThh:mm:sszzzzz where zzzzz is a time zone in the
format +hh:mm or -hh:mm

If t and z are both omitted, the result is an AbsTime value representing the time and
place where the function call is evaluated. Otherwise, t is converted to a Real by the function “real”,
and treated as a number of seconds from the epoch, Midnight January 1, 1970 UTC. If z is
specified, it is treated as a number of seconds east of Greenwich. Otherwise, the offset is calculated
from t according to the local rules for the place where the function is evaluated.

	RelTime relTime(AnyType t)
	
If the operand t is a String, it is parsed as a specification of a
time interval. This function accepts the canonical native representation of RelTime values, but minor
variations in format are allowed.

Otherwise, t is converted to a Real by the function real, and treated as a number of seconds.
The default string format is [-]days+hh:mm:ss.fff, where leading components and the fraction .fff
are omitted if they are zero. In the default syntax, days is a sequence of digits starting with a non-zero
digit, hh, mm, and ss are strings of exactly two digits (padded on the left with zeros if necessary) with
values less than 24, 60, and 60, respectively and fff is a string of exactly three digits.

	Integer floor(AnyType Expr)
	Returns the integer that results from the evaluation of Expr,
where the type of the evaluated Expr is Integer. Where the
type of the evaluated Expr is not Integer, function
real(Expr) is called. Its return value is then used to return
the largest magnitude integer that is not larger than the returned
value. Where real(Expr) returns ERROR or UNDEFINED,
ERROR is returned.

This function returns ERROR if other than exactly 1 argument is
given.

	Integer ceiling(AnyType Expr)
	Returns the integer that results from the evaluation of Expr,
where the type of the evaluated Expr is Integer. Where the
type of the evaluated Expr is not Integer, function
real(Expr) is called. Its return value is then used to return
the smallest magnitude integer that is not less than the returned
value. Where real(Expr) returns ERROR or UNDEFINED,
ERROR is returned.

This function returns ERROR if other than exactly 1 argument is
given.

	Integer pow(Integer base, Integer exponent) OR Real pow(Integer base, Integer exponent) OR Real pow(Real base, Real exponent)
	Calculates base raised to the power of exponent. If
exponent is an integer value greater than or equal to 0, and
base is an integer, then an integer value is returned. If
exponent is an integer value less than 0, or if either base
or exponent is a real, then a real value is returned. An
invocation with exponent=0 or exponent=0.0, for any value of
base, including 0 or 0.0, returns the value 1 or 1.0, type
appropriate.

	Integer quantize(AnyType a, Integer b) OR Real quantize(AnyType a, Real b) OR AnyType quantize(AnyType a, AnyType list b)
	quantize() computes the quotient of a/b, in order to further
compute `` ceiling(quotient) * b``. This computes and returns an
integral multiple of b that is at least as large as a. So,
when b >= a, the return value will be b. The return type is
the same as that of b, where b is an Integer or Real.

When b is a list, quantize() returns the first value in the
list that is greater than or equal to a. When no value in the
list is greater than or equal to a, this computes and returns an
integral multiple of the last member in the list that is at least as
large as a.

This function returns ERROR if a or b, or a member of
the list that must be considered is not an Integer or Real.

Here are examples:

8 = quantize(3, 8)
4 = quantize(3, 2)
0 = quantize(0, 4)
6.8 = quantize(1.5, 6.8)
7.2 = quantize(6.8, 1.2)
10.2 = quantize(10, 5.1)

4 = quantize(0, {4})
2 = quantize(2, {1, 2, "A"})
3.0 = quantize(3, {1, 2, 0.5})
3.0 = quantize(2.7, {1, 2, 0.5})
ERROR = quantize(3, {1, 2, "A"})

	Integer round(AnyType Expr)
	Returns the integer that results from the evaluation of Expr,
where the type of the evaluated Expr is Integer. Where the
type of the evaluated Expr is not Integer, function
real(Expr) is called. Its return value is then used to return
the integer that results from a round-to-nearest rounding method.
The nearest integer value to the return value is returned, except in
the case of the value at the exact midpoint between two integer
values. In this case, the even valued integer is returned. Where
real(Expr) returns ERROR or UNDEFINED, or the integer
value does not fit into 32 bits, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is
given.

	Integer random([AnyType Expr])
	Where the optional argument Expr evaluates to type Integer
or type Real (and called x), the return value is the integer
or real r randomly chosen from the interval 0 <= r < x. With
no argument, the return value is chosen with random(1.0).
Returns ERROR in all other cases.

This function returns ERROR if greater than 1 argument is given.

	Number sum([List l])
	The elements of l are evaluated, producing a list l of values. Undefined values
are removed. If the resulting l is composed only of numbers, the result is the sum of the values,
as a Real if any value is Real, and as an Integer otherwise. If the
list is empty, the result is 0. If the list has only Undefined values, the result
is UNDEFINED. In other cases, the result is ERROR.

This function returns ERROR if greater than 1 argument is given.

	Number avg([List l])
	The elements of l are evaluated, producing a list l of values. Undefined values
are removed. If the resulting l is composed only of numbers, the result is the average of the values,
as a Real. If the list is empty, the result is 0.
If the list has only Undefined values, the result is UNDEFINED.
In other cases, the result is ERROR.

	Number min([List l])
	The elements of l are evaluated, producing a list l of values.
Undefined values are removed.
If the resulting l is composed only of numbers, the result is the minimum of the values,
as a Real if any value is Real, and as an Integer otherwise. If the list
is empty, the result is UNDEFINED. In other cases, the result is ERROR.

	Number max([List l])
	The elements of l are evaluated, producing a list l of values.
Undefined values are removed.
If the resulting l is composed only of numbers, the result is the maximum of the values,
as a Real if any value is Real, and as an Integer otherwise. If the list
is empty, the result is UNDEFINED. In other cases, the result is ERROR.

	String strcat(AnyType Expr1 [, AnyType Expr2 ...])
	Returns the string which is the concatenation of all arguments,
where all arguments are converted to type String by function
string(Expr). Returns ERROR if any argument evaluates to
UNDEFINED or ERROR.

	String join(String sep, AnyType Expr1 [, AnyType Expr2 ...]) OR String join(String sep, List list OR String join(List list
	Returns the string which is the concatenation of all arguments after
the first one. The first argument is the separator, and it is
inserted between each of the other arguments during concatenation.
All arguments which are not undefined are converted to type String by function
string(Expr) before concatenation. Undefined arguments are skipped.
When there are exactly two arguments, If the second argument is a List, all members of the list
are converted to strings and then joined using the separator. When
there is only one argument, and the argument is a List, all members
of the list are converted to strings and then concatenated.

Returns ERROR if any argument evaluates to UNDEFINED or
ERROR.

For example:

"a, b, c" = join(", ", "a", "b", "c")
"abc" = join(split("a b c"))
"a;b;c" = join(";", split("a b c"))

	String substr(String s, Integer offset [, Integer length])
	Returns the substring of s, from the position indicated by
offset, with (optional) length characters. The first
character within s is at offset 0. If the optional length
argument is not present, the substring extends to the end of the
string. If offset is negative, the value (length - offset)
is used for the offset. If length is negative, an initial
substring is computed, from the offset to the end of the string.
Then, the absolute value of length characters are deleted from
the right end of the initial substring. Further, where characters of
this resulting substring lie outside the original string, the part
that lies within the original string is returned. If the substring
lies completely outside of the original string, the null string is
returned.

This function returns ERROR if greater than 3 or less than 2
arguments are given.

	Integer strcmp(AnyType Expr1, AnyType Expr2)
	Both arguments are converted to type String by function
string(Expr). The return value is an integer that will be

	less than 0, if Expr1 is lexicographically less than
Expr2

	equal to 0, if Expr1 is lexicographically equal to Expr2

	greater than 0, if Expr1 is lexicographically greater than
Expr2

Case is significant in the comparison. Where either argument
evaluates to ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than 2 arguments are given.

	Integer stricmp(AnyType Expr1, AnyType Expr2)
	This function is the same as strcmp, except that letter case is
not significant.

	Integer versioncmp(String left, String right)
	This function version-compares two strings. It returns an integer

	less than zero if left is an earlier version than right

	zero if the strings are identical

	more than zero if left is a later version than right.

A version comparison is a lexicographic comparison unless the first
difference between the two strings occurs in a string of digits, in
which case, sort by the value of that number (assuming that more
leading zeroes mean smaller numbers). Thus 7.x is earlier than
7.y, 7.9 is earlier than 7.10, and the following sequence
is in order: 000, 00, 01, 010, 09, 0, 1, 9, 10.

Boolean versionGT(String left, String right)
Boolean versionLT(String left, String right)
Boolean versionGE(String left, String right)
Boolean versionLE(String left, String right)
Boolean versionEQ(String left, String right)

As versioncmp() (above), but for a specific comparison and returning
a boolean. The two letter codes stand for “Greater Than”, “Less Than”,
“Greater than or Equal”, “Less than or Equal”, and “EQual”, respectively.

Boolean version_in_range(String version, String min, String max)

Equivalent to versionLE(min, version) && versionLE(version, max).

	String toUpper(AnyType Expr)
	The single argument is converted to type String by function
string(Expr). The return value is this string, with all lower
case letters converted to upper case. If the argument evaluates to
ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is
given.

	String toLower(AnyType Expr)
	The single argument is converted to type String by function
string(Expr). The return value is this string, with all upper
case letters converted to lower case. If the argument evaluates to
ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is
given.

	Integer size(AnyType Expr)
	If Expr evaluates to a string, return the number of characters in the string.
If Expr evaluate to a list, return the number of elements in the list.
If Expr evaluate to a classad, return the number of entries in the ad.
Otherwise, ERROR is returned.

	List split(String s [, String tokens])
	Returns a list of the substrings of s that have been split up by
using any of the characters within string tokens. If tokens
is not specified, then all white space characters are used to
delimit the string.

	List splitUserName(String Name)
	Returns a list of two strings. Where Name includes an @
character, the first string in the list will be the substring that
comes before the @ character, and the second string in the list
will be the substring that comes after. Thus, if Name is
"user@domain", then the returned list will be
{“user”, “domain”}. If there is no @ character in Name, then
the first string in the list will be Name, and the second string
in the list will be the empty string. Thus, if Name is
"username", then the returned list will be {“username”, “”}.

	List splitSlotName(String Name)
	Returns a list of two strings. Where Name includes an @
character, the first string in the list will be the substring that
comes before the @ character, and the second string in the list
will be the substring that comes after. Thus, if Name is
"slot1@machine", then the returned list will be
{“slot1”, “machine”}. If there is no @ character in Name,
then the first string in the list will be the empty string, and the
second string in the list will be Name, Thus, if Name is
"machinename", then the returned list will be
{“”, “machinename”}.

	Integer time()
	Returns the current coordinated universal time. This is the time, in
seconds, since midnight of January 1, 1970.

	String formatTime([Integer time] [, String format])
	Returns a formatted string that is a representation of time. The
argument time is interpreted as coordinated universal time in
seconds, since midnight of January 1, 1970. If not specified,
time will default to the current time.

The argument format is interpreted similarly to the format
argument of the ANSI C strftime function. It consists of arbitrary
text plus placeholders for elements of the time. These placeholders
are percent signs (%) followed by a single letter. To have a percent
sign in the output, use a double percent sign (%%). If format is
not specified, it defaults to %c.

Because the implementation uses strftime() to implement this, and
some versions implement extra, non-ANSI C options, the exact options
available to an implementation may vary. An implementation is only
required to implement the ANSI C options, which are:

	%a
	abbreviated weekday name

	%A
	full weekday name

	%b
	abbreviated month name

	%B
	full month name

	%c
	local date and time representation

	%d
	day of the month (01-31)

	%H
	hour in the 24-hour clock (0-23)

	%I
	hour in the 12-hour clock (01-12)

	%j
	day of the year (001-366)

	%m
	month (01-12)

	%M
	minute (00-59)

	%p
	local equivalent of AM or PM

	%S
	second (00-59)

	%U
	week number of the year (Sunday as first day of week) (00-53)

	%w
	weekday (0-6, Sunday is 0)

	%W
	week number of the year (Monday as first day of week) (00-53)

	%x
	local date representation

	%X
	local time representation

	%y
	year without century (00-99)

	%Y
	year with century

	%Z
	time zone name, if any

	String interval(Integer seconds)
	Uses seconds to return a string of the form days+hh:mm:ss.
This represents an interval of time. Leading values that are zero
are omitted from the string. For example, seconds of 67 becomes
“1:07”. A second example, seconds of 1472523 = 17*24*60*60 +
1*60*60 + 2*60 + 3, results in the string “17+1:02:03”.

	String evalInEachContext(Expression expr, List contexts)
	This function evaluates its first argument as an expression in the context of
each Classad in the second argument and returns a list that is the result of
each evaluation. The first argument should be an expression.
If the second argument does not evaluate to a list of ClassAds, ERROR is returned.

For example:

{true, false} = evalInEachContext(Prio > 2, { [Prio=3;], [Prio=1;] })
{3, 1} = evalInEachContext(Prio, { [Prio=3;], [Prio=1;] })
ERROR = evalInEachContext(Prio > 2, { [Prio=3;], UNDEFINED })
ERROR = evalInEachContext(Prio > 2, UNDEFINED)

	String countMatches(Expression expr, List contexts)
	This function evaluates its first argument as an expression in the context of
each Classad in the second argument and returns a count of the results that
evaluated to True. The first argument should be an expression. The second argument
should be a list of ClassAds or a list of attribute references to classAds, or
should evaluate to a list of ClassAds. This function will always return a integer
value when the first argument is defined and the second argument is not ERROR.

For example:

1 = countMatches(Prio > 2, { [Prio=3;], [Prio=1;] })
1 = countMatches(Prio > 2, { [Prio=3;], UNDEFINED })
0 = countMatches(Prio > 2, UNDEFINED)

	AnyType debug(AnyType expression)
	This function evaluates its argument, and it returns the result.
Thus, it is a no-operation. However, a side-effect of the function
is that information about the evaluation is logged to the evaluating
program’s log file, at the D_FULLDEBUG debug level. This is
useful for determining why a given ClassAd expression is evaluating
the way it does. For example, if a condor_startd START
expression is unexpectedly evaluating to UNDEFINED, then
wrapping the expression in this debug() function will log
information about each component of the expression to the log file,
making it easier to understand the expression.

	String envV1ToV2(String old_env)
	This function converts a set of environment variables from the old
HTCondor syntax to the new syntax. The single argument should
evaluate to a string that represents a set of environment variables
using the old HTCondor syntax (usually stored in the job ClassAd
attribute Env). The result is the same set of environment
variables using the new HTCondor syntax (usually stored in the job
ClassAd attribute Environment). If the argument evaluates to
UNDEFINED, then the result is also UNDEFINED.

	String mergeEnvironment(String env1 [, String env2, ...])
	This function merges multiple sets of environment variables into a
single set. If multiple arguments include the same variable, the one
that appears last in the argument list is used. Each argument should
evaluate to a string which represents a set of environment variables
using the new HTCondor syntax or UNDEFINED, which is treated
like an empty string. The result is a string that represents the
merged set of environment variables using the new HTCondor syntax
(suitable for use as the value of the job ClassAd attribute
Environment).

For the following functions, a delimiter is represented by a string.
Each character within the delimiter string delimits individual strings
within a list of strings that is given by a single string. The default
delimiter contains the comma and space characters. A string within the
list is ended (delimited) by one or more characters within the delimiter
string.

	Integer stringListSize(String list [, String delimiter])
	Returns the number of elements in the string list, as delimited
by the optional delimiter string. Returns ERROR if either
argument is not a string.

This function returns ERROR if other than 1 or 2 arguments are
given.

	Integer stringListSum(String list [, String delimiter]) OR Real stringListSum(String list [, String delimiter])
	Sums and returns the sum of all items in the string list, as
delimited by the optional delimiter string. If all items in the
list are integers, the return value is also an integer. If any item
in the list is a real value (noninteger), the return value is a
real. If any item does not represent an integer or real value, the
return value is ERROR.

	Real stringListAvg(String list [, String delimiter])
	Sums and returns the real-valued average of all items in the string
list, as delimited by the optional delimiter string. If any
item does not represent an integer or real value, the return value
is ERROR. A list with 0 items (the empty list) returns the value
0.0.

	Integer stringListMin(String list [, String delimiter]) OR Real stringListMin(String list [, String delimiter])
	Finds and returns the minimum value from all items in the string
list, as delimited by the optional delimiter string. If all
items in the list are integers, the return value is also an integer.
If any item in the list is a real value (noninteger), the return
value is a real. If any item does not represent an integer or real
value, the return value is ERROR. A list with 0 items (the empty
list) returns the value UNDEFINED.

	Integer stringListMax(String list [, String delimiter]) OR Real stringListMax(String list [, String delimiter])
	Finds and returns the maximum value from all items in the string
list, as delimited by the optional delimiter string. If all
items in the list are integers, the return value is also an integer.
If any item in the list is a real value (noninteger), the return
value is a real. If any item does not represent an integer or real
value, the return value is ERROR. A list with 0 items (the empty
list) returns the value UNDEFINED.

	Boolean stringListMember(String x, String list [, String delimiter])
	Returns TRUE if item x is in the string list, as
delimited by the optional delimiter string. Returns FALSE if
item x is not in the string list. Comparison is done with
strcmp(). The return value is ERROR, if any of the arguments
are not strings.

	Boolean stringListIMember(String x, String list [, String delimiter])
	Same as stringListMember(), but comparison is done with
stricmp(), so letter case is not relevant.

	Integer stringListsIntersect(String list1, String list2 [, String delimiter])
	Returns TRUE if the lists contain any matching elements, and
returns FALSE if the lists do not contain any matching elements.
Returns ERROR if either argument is not a string or if an
incorrect number of arguments are given.

	Boolean stringListSubsetMatch(String list1, String list2 [, String delimiter])
	Returns TRUE if all item in the string list1 are also in the string list2, as
delimited by the optional delimiter string. Returns FALSE if
list1 has any items that are not in list2. Both lists are treated as sets. Empty items
and duplicate items are ignored. The return value is TRUE if list1 is UNDEFINED or empty
and list2 is any string value. The return value is FALSE if list1 is any string vlaue and list2 is
UNDEFINED. The return value is UNDEFINED if both list1 and list2 are UNDEFINED.
The return value is ERROR, if any of the arguments are not either strings or UNDEFINED

	Boolean stringListISubsetMatch(String list1, String list2 [, String delimiter])
	Same as stringListSubsetMatch(), but the sets are case-insensitive.

The following three functions utilize regular expressions as defined and
supported by the PCRE library. See
http://www.pcre.org for complete documentation
of regular expressions.

The options argument to these functions is a string of special
characters that modify the use of the regular expressions. Inclusion of
characters other than these as options are ignored.

	I or i
	Ignore letter case.

	M or m
	Modifies the interpretation of the caret (^) and dollar sign ($)
characters. The caret character matches the start of a string, as
well as after each newline character. The dollar sign character
matches before a newline character.

	S or s
	The period matches any character, including the newline character.

	F or f
	When doing substitution, return the full target string with
substitutions applied. Normally, only the substitute text is
returned.

	G or g
	When doing substitution, apply the substitution for every matching
portion of the target string (that doesn’t overlap a previous
match).

	Boolean regexp(String pattern, String target [, String options])
	Uses the regular expression given by string pattern to scan
through the string target. Returns TRUE when target
matches the regular expression given by pattern. Returns
FALSE otherwise. If any argument is not a string, or if
pattern does not describe a valid regular expression, returns
ERROR.

	Boolean regexpMember(String pattern, List targetStrings [, String options])
	Uses the description of a regular expression given by string pattern
to scan through a List of string n targetStrings. Returns TRUE when target
matches a regular expression given by pattern. If no strings match,
and at least one item in targetString evaluated to undefined, returns
undefined. If any item in targetString before a match evaluated to neither
a string nor undefined, returns ERROR.

	String regexps
	(String pattern, String target, String substitute [, String options])
Uses the regular expression given by string pattern to scan
through the string target. When target matches the regular
expression given by pattern, the string substitute is
returned, with backslash expansion performed. If any argument is not
a string, returns ERROR.

	String replace
	(String pattern, String target, String substitute [, String options])
Uses the regular expression given by string pattern to scan
through the string target. Returns a modified version of
target, where the first substring that matches pattern is
replaced by the string substitute, with backslash expansion
performed. Equivalent to regexps() with the f option. If any
argument is not a string, returns ERROR.

	String replaceall
	(String pattern, String target, String substitute [, String options])
Uses the regular expression given by string pattern to scan
through the string target. Returns a modified version of
target, where every substring that matches pattern is
replaced by the string substitute, with backslash expansion
performed. Equivalent to regexps() with the fg options. If
any argument is not a string, returns ERROR.

	Boolean stringList_regexpMember
	(String pattern, String list [, String delimiter] [, String options])
Uses the description of a regular expression given by string
pattern to scan through the list of strings in list. Returns
TRUE when one of the strings in list is a regular expression
as described by pattern. The optional delimiter describes
how the list is delimited, and string options modifies how the
match is performed. Returns FALSE if pattern does not match
any entries in list. The return value is ERROR, if any of
the arguments are not strings, or if pattern is not a valid
regular expression.

	String userHome(String userName [, String default])
	Returns the home directory of the given user as configured on the
current system (determined using the getpwdnam() call). (Returns
default if the default argument is passed and the home
directory of the user is not defined.)

	List userMap(String mapSetName, String userName)
	Map an input string using the given mapping set. Returns a string containing
the list of groups to which the user belongs separated by commas or undefined
if the user was not found in the map file.

	String userMap(String mapSetName, String userName, String preferredGroup)
	Map an input string using the given mapping set. Returns a string,
which is the preferred group if the user is in that group; otherwise
it is the first group to which the user belongs, or undefined if the
user belongs to no groups.

	String userMap(String mapSetName, String userName, String preferredGroup, String defaultGroup)
	Map an input string using the given mapping set. Returns a string,
which is the preferred group if the user is in that group; the first
group to which the user belongs, if any; and the default group if
the user belongs to no groups.

The maps for the userMap() function are defined by the following
configuration macros: <SUBSYS>_CLASSAD_USER_MAP_NAMES,
CLASSAD_USER_MAPFILE_<name> and CLASSAD_USER_MAPDATA_<name>
(see the HTCondor-wide Configuration File Entries section).

ClassAd Evaluation Semantics

The ClassAd mechanism’s primary purpose is for matching entities that
supply constraints on candidate matches. The mechanism is therefore
defined to carry out expression evaluations in the context of two
ClassAds that are testing each other for a potential match. For example,
the condor_negotiator evaluates the Requirements expressions of
machine and job ClassAds to test if they can be matched. The semantics
of evaluating such constraints is defined below.

Evaluating Literals

Literals are self-evaluating, Thus, integer, string, real, undefined and
error values evaluate to themselves.

Attribute References

Since the expression evaluation is being carried out in the context of
two ClassAds, there is a potential for name space ambiguities. The
following rules define the semantics of attribute references made by
ClassAd A that is being evaluated in a context with another ClassAd B:

	If the reference is prefixed by a scope resolution prefix,

	If the prefix is MY., the attribute is looked up in ClassAd A.
If the named attribute does not exist in A, the value of the
reference is UNDEFINED. Otherwise, the value of the reference
is the value of the expression bound to the attribute name.

	Similarly, if the prefix is TARGET., the attribute is looked
up in ClassAd B. If the named attribute does not exist in B, the
value of the reference is UNDEFINED. Otherwise, the value of
the reference is the value of the expression bound to the
attribute name.

	If the reference is not prefixed by a scope resolution prefix,

	If the attribute is defined in A, the value of the reference is
the value of the expression bound to the attribute name in A.

	Otherwise, if the attribute is defined in B, the value of the
reference is the value of the expression bound to the attribute
name in B.

	Otherwise, if the attribute is defined in the ClassAd environment,
the value from the environment is returned. This is a special
environment, to be distinguished from the Unix environment.
Currently, the only attribute of the environment is
CurrentTime, which evaluates to the integer value returned by
the system call time(2).

	Otherwise, the value of the reference is UNDEFINED.

	Finally, if the reference refers to an expression that is itself in
the process of being evaluated, there is a circular dependency in the
evaluation. The value of the reference is ERROR.

ClassAd Operators

All operators in the ClassAd language are total, and thus have well
defined behavior regardless of the supplied operands. Furthermore, most
operators are strict with respect to ERROR and UNDEFINED, and
thus evaluate to ERROR or UNDEFINED if either of their operands
have these exceptional values.

	Arithmetic operators:

	The operators *, /, + and - operate arithmetically only on
integers and reals.

	Arithmetic is carried out in the same type as both operands, and
type promotions from integers to reals are performed if one
operand is an integer and the other real.

	The operators are strict with respect to both UNDEFINED and
ERROR.

	If either operand is not a numerical type, the value of the
operation is ERROR.

	Comparison operators:

	The comparison operators ==, !=, <=, <, >= and > operate on
integers, reals and strings.

	String comparisons are case insensitive for most operators. The
only exceptions are the operators =?= and =!=, which do case
sensitive comparisons assuming both sides are strings.

	Comparisons are carried out in the same type as both operands, and
type promotions from integers to reals are performed if one
operand is a real, and the other an integer. Strings may not be
converted to any other type, so comparing a string and an integer
or a string and a real results in ERROR.

	The operators ==, !=, <=, <, >=, and > are strict with respect to
both UNDEFINED and ERROR.

	In addition, the operators =?=, is, =!=, and isnt behave similar to
== and !=, but are not strict. Semantically, the =?= and is test
if their operands are “identical,” i.e., have the same type and
the same value. For example, 10 == UNDEFINED and
UNDEFINED == UNDEFINED both evaluate to UNDEFINED, but
10 =?= UNDEFINED and UNDEFINED is UNDEFINED evaluate to FALSE
and TRUE respectively. The =!= and isnt operators test for the
“is not identical to” condition.

=?= and is have the same behavior as each other. And isnt and =!=
behave the same as each other. The ClassAd unparser will always
use =?= in preference to is and =!= in preference to isnt when
printing out ClassAds.

	Logical operators:

	The logical operators && and || operate on integers and reals.
The zero value of these types are considered FALSE and
non-zero values TRUE.

	The operators are not strict, and exploit the “don’t care”
properties of the operators to squash UNDEFINED and ERROR
values when possible. For example, UNDEFINED && FALSE evaluates to
FALSE, but UNDEFINED || FALSE evaluates to UNDEFINED.

	Any string operand is equivalent to an ERROR operand for a
logical operator. In other words, TRUE && "foobar" evaluates to
ERROR.

	The Ternary operator:

	The Ternary operator (expr1 ? expr2 : expr3) operate
with expressions. If all three expressions are given, the
operation is strict.

	However, if the middle expression is missing, eg. expr1 ?:
expr3, then, when expr1 is defined, that defined value is
returned. Otherwise, when expr1 evaluated to UNDEFINED, the
value of expr3 is evaluated and returned. This can be a convenient
shortcut for writing what would otherwise be a much longer classad
expression.

Expression Examples

The =?= operator is similar to the == operator. It checks if the
left hand side operand is identical in both type and value to the the
right hand side operand, returning TRUE when they are identical.

Caution

For strings, the comparison is case-insensitive with the == operator and
case-sensitive with the =?= operator. A key point in understanding is that
the =?= operator only produces evaluation results of TRUE and
FALSE, where the == operator may produce evaluation results TRUE,
FALSE, UNDEFINED, or ERROR.

Table 4.1 presents examples that define the outcome of the == operator.
Table 4.2 presents examples that define the outcome of the =?= operator.

	expression

	evaluated result

	(10 == 10)

	TRUE

	(10 == 5)

	FALSE

	(10 == "ABC")

	ERROR

	"ABC" == "abc"

	TRUE

	(10 == UNDEFINED)

	UNDEFINED

	(UNDEFINED == UNDEFINED)

	UNDEFINED

Table 4.1: Evaluation examples for the == operator

	expression

	evaluated result

	(10 =?= 10)

	TRUE

	(10 =?= 5)

	FALSE

	(10 =?= "ABC")

	FALSE

	"ABC" =?= "abc"

	FALSE

	(10 =?= UNDEFINED)

	FALSE

	(UNDEFINED =?= UNDEFINED)

	TRUE

Table 4.2: Evaluation examples for the =?= operator

The =!= operator is similar to the != operator. It checks if the
left hand side operand is not identical in both type and value to the
the right hand side operand, returning FALSE when they are
identical.

Caution

For strings, the comparison is case-insensitive with the !=
operator and case-sensitive with the =!= operator. A key point in
understanding is that the =!= operator only produces evaluation results
of TRUE and FALSE, where the != operator may produce evaluation
results TRUE, FALSE, UNDEFINED, or ERROR.

Table 4.3 presents examples that define the outcome of the != operator.
Table 4.4 presents examples that define the outcome of the =!= operator.

	expression

	evaluated result

	(10 != 10)

	FALSE

	(10 != 5)

	TRUE

	(10 != "ABC")

	ERROR

	"ABC" != "abc"

	FALSE

	(10 != UNDEFINED)

	UNDEFINED

	(UNDEFINED != UNDEFINED)

	UNDEFINED

Table 4.3: Evaluation examples for the != operator

	expression

	evaluated result

	(10 =!= 10)

	FALSE

	(10 =!= 5)

	TRUE

	(10 =!= "ABC")

	TRUE

	"ABC" =!= "abc"

	TRUE

	(10 =!= UNDEFINED)

	TRUE

	(UNDEFINED =!= UNDEFINED)

	FALSE

Table 4.4: Evaluation examples for the =!= operator

Old ClassAds in the HTCondor System

The simplicity and flexibility of ClassAds is heavily exploited in the
HTCondor system. ClassAds are not only used to represent machines and
jobs in the HTCondor pool, but also other entities that exist in the
pool such as submitters of jobs and master daemons.
Since arbitrary expressions may be supplied and evaluated over these
ClassAds, users have a uniform and powerful mechanism to specify
constraints over these ClassAds. These constraints can take the form of
Requirements expressions in resource and job ClassAds, or queries
over other ClassAds.

Constraints and Preferences

The requirements and rank expressions within the submit
description file are the mechanism by which users specify the
constraints and preferences of jobs. For machines, the configuration
determines both constraints and preferences of the machines.

For both machine and job, the rank expression specifies the
desirability of the match (where higher numbers mean better matches).
For example, a job ClassAd may contain the following expressions:

Requirements = (Arch == "INTEL") && (OpSys == "LINUX")
Rank = TARGET.Memory + TARGET.Mips

In this case, the job requires a 32-bit Intel processor running a Linux
operating system. Among all such computers, the customer prefers those
with large physical memories and high MIPS ratings. Since the Rank
is a user-specified metric, any expression may be used to specify the
perceived desirability of the match. The condor_negotiator daemon
runs algorithms to deliver the best resource (as defined by the rank
expression), while satisfying other required criteria.

Similarly, the machine may place constraints and preferences on the jobs
that it will run by setting the machine’s configuration. For example,

Friend = Owner == "tannenba" || Owner == "wright"
ResearchGroup = Owner == "jbasney" || Owner == "raman"
Trusted = Owner != "rival" && Owner != "riffraff"
START = Trusted && (ResearchGroup || LoadAvg < 0.3 && KeyboardIdle > 15*60)
RANK = Friend + ResearchGroup*10

The above policy states that the computer will never run jobs owned by
users rival and riffraff, while the computer will always run a job
submitted by members of the research group. Furthermore, jobs submitted
by friends are preferred to other foreign jobs, and jobs submitted by
the research group are preferred to jobs submitted by friends.

Note: Because of the dynamic nature of ClassAd expressions, there is
no a priori notion of an integer-valued expression, a real-valued
expression, etc. However, it is intuitive to think of the
Requirements and Rank expressions as integer-valued and
real-valued expressions, respectively. If the actual type of the
expression is not of the expected type, the value is assumed to be zero.

Querying with ClassAd Expressions

The flexibility of this system may also be used when querying ClassAds
through the condor_status and condor_q tools which allow users to
supply ClassAd constraint expressions from the command line.

Needed syntax is different on Unix and Windows platforms, due to the
interpretation of characters in forming command-line arguments. The
expression must be a single command-line argument, and the resulting
examples differ for the platforms. For Unix shells, single quote marks
are used to delimit a single argument. For a Windows command window,
double quote marks are used to delimit a single argument. Within the
argument, Unix escapes the double quote mark by prepending a backslash
to the double quote mark. Windows escapes the double quote mark by
prepending another double quote mark. There may not be spaces in
between.

Here are several examples. To find all computers which have had their
keyboards idle for more than 60 minutes and have more than 4000 MB of
memory, the desired ClassAd expression is

KeyboardIdle > 60*60 && Memory > 4000

On a Unix platform, the command appears as

$ condor_status -const 'KeyboardIdle > 60*60 && Memory > 4000'

Name OpSys Arch State Activity LoadAv Mem ActvtyTime
100
slot1@altair.cs.wi LINUX X86_64 Owner Idle 0.000 8018 13+00:31:46
slot2@altair.cs.wi LINUX X86_64 Owner Idle 0.000 8018 13+00:31:47
...
...
slot1@athena.stat. LINUX X86_64 Unclaimed Idle 0.000 7946 0+00:25:04
slot2@athena.stat. LINUX X86_64 Unclaimed Idle 0.000 7946 0+00:25:05
...
...

The Windows equivalent command is

> condor_status -const "KeyboardIdle > 60*60 && Memory > 4000"

Here is an example for a Unix platform that utilizes a regular
expression ClassAd function to list specific information. A file
contains ClassAd information. condor_advertise is used to inject this
information, and condor_status constrains the search with an
expression that contains a ClassAd function.

$ cat ad
MyType = "Generic"
FauxType = "DBMS"
Name = "random-test"
Machine = "f05.cs.wisc.edu"
MyAddress = "<128.105.149.105:34000>"
DaemonStartTime = 1153192799
UpdateSequenceNumber = 1

$ condor_advertise UPDATE_AD_GENERIC ad

$ condor_status -any -constraint 'FauxType=="DBMS" && regexp("random.*", Name, "i")'

MyType TargetType Name

Generic None random-test

The ClassAd expression describing a machine that advertises a Windows
operating system:

OpSys == "WINDOWS"

Here are three equivalent ways on a Unix platform to list all machines
advertising a Windows operating system. Spaces appear in these examples
to show where they are permitted.

$ condor_status -constraint ' OpSys == "WINDOWS" '

$ condor_status -constraint OpSys==\"WINDOWS\"

$ condor_status -constraint "OpSys==\"WINDOWS\""

The equivalent command on a Windows platform to list all machines
advertising a Windows operating system must delimit the single argument
with double quote marks, and then escape the needed double quote marks
that identify the string within the expression. Spaces appear in this
example where they are permitted.

> condor_status -constraint " OpSys == ""WINDOWS"" "

Extending ClassAds with User-written Functions

The ClassAd language provides a rich set of functions. It is possible to
add new functions to the ClassAd language without recompiling the
HTCondor system or the ClassAd library. This requires implementing the
new function in the C++ programming language, compiling the code into a
shared library, and telling HTCondor where in the file system the shared
library lives.

While the details of the ClassAd implementation are beyond the scope of
this document, the ClassAd source distribution ships with an example
source file that extends ClassAds by adding two new functions, named
todays_date() and double(). This can be used as a model for users to
implement their own functions. To deploy this example extension, follow
the following steps on Linux:

	Download the ClassAd source distribution from
http://www.cs.wisc.edu/condor/classad.

	Unpack the tarball.

	Inspect the source file shared.cpp. This one file contains the
whole extension.

	Build shared.cpp into a shared library. On Linux, the command
line to do so is

$ g++ -DWANT_CLASSAD_NAMESPACE -I. -shared -o shared.so \
 -Wl,-soname,shared.so -o shared.so -fPIC shared.cpp

	Copy the file shared.so to a location that all of the HTCondor
tools and daemons can read.

$ cp shared.so `condor_config_val LIBEXEC`

	Tell HTCondor to load the shared library into all tools and daemons,
by setting the CLASSAD_USER_LIBS
configuration variable to the full name of the shared library. In
this case,

CLASSAD_USER_LIBS = $(LIBEXEC)/shared.so

	Restart HTCondor.

	Test the new functions by running

$ condor_status -format "%s\n" todays_date()

 ClassAd Transforms

ClassAd Transforms

HTCondor has a general purpose language for transforming ClassAds,
this language is used by the condor_schedd for submit transforms,
and as of version 8.9.7 by the job router for routes and pre and post route transforms.

There is also a stand alone tool condor_transform_ads than can
read ClassAds from a file or pipe, transform them, and write the
resulting ClassAds to a file or pipe.

The transform language is build on the same basic macro expansion
engine use by HTCondor configuration and by condor_submit and
shares many of the same features such as $() macro expansion
and if statements.

This transform language is a superset of an earlier transform language
based on New ClassAds. The condor_schedd and condor_job_router will
still allow the earlier transform language, and they will automatically
convert configuration from earlier New ClassAds style transforms
to the to the native transform language when they read the configuration.

General Concepts

Transforms consists of a sequence of lines containing key=value pairs or
transform commands such as SET. Transform commands execute in order from
top to bottom and may make use of macro values set by earlier statements using
$(var) macro substitution. Unlike configuration files, Transform commands
will use the value of $(var) defined at the time, rather than the last value
defined in the configuration file.

If/else statements and macro functions such as $INT(var) can be used in transforms,
but include may not be used.

A macro expansion of the form $(MY.<attr>) will expand as the value of the attribute
<attr> of the ClassAd that is being transformed. Expansion will expand simple string values without
quotes but will not evaluate expressions. Use $STRING(MY.<attr>) or $INT(MY.<attr>) if
you need to evaluate the ClassAd attribute before expanding it.

The existence of an attribute in the ClassAd being transformed can be tested by using if defined MY.<attr>

In the definitions below.

<attr> must be a valid ClassAd attribute name

<newattr> must be a valid ClassAd attribute name

<expr> must be a valid ClassAd expression after $() macro expansion. Don’t forget to quote string values!

<var> must be a valid macro name

<regex> is a regular expression

<attrpat> is a regular expression substitution pattern, which may include capture groups \0, \1, etc.

Transform Commands

	<var> = <value>
	Sets the temporary macro variable <var> to <value>. This is the same sort of macro assignment used
in configuration and submit files, the value is everything after the = until then end of the line
with leading and trailing whitespace removed. Variables set in this way do not directly affect the
resulting transformed ClassAd, but they can be used later in the transform by $(var) macro expansion.
In the condor_job_router some macro variable names will affect the way the router behaves. For a list
of macro variable names have have special meaning to the condor_job_router see the
Routing Table Entry Commands and Macro values section.

	REQUIREMENTS <expr>
	Apply the transform only if the expression given by <expr> evaluates to true when evaluated against
the untransformed ClassAd.

	SET <attr> <expr>
	Sets the ClassAd value of <attr> to <expr> in the ClassAd being transformed.

	DEFAULT <attr> <expr>
	Sets the ClassAd value of <attr> to <expr> in the ClassAd being transformed if
that ClassAd does not currently have <attr> or if it is currently set to undefined. This
is equivalent to

if ! defined MY.<Attr>
 SET <Attr> <value>
endif

	EVALSET <attr> <expr>
	Evaluate <expr> and set the ClassAd value of <attr> to the result of the evaluation.
Use this when the ClassAd value of <attr> must be a simple value rather than expression,
or when you need to capture the result of evaluating at transform time. Note that it is
usually better to use SET with macro expansions when you want to modify a ClassAd attribute
as part of a transform.

	EVALMACRO <var> <expr>
	Evaluate <expr> and set the temporary macro variable <var> to the result of evaluation.
$(var) can the be used in later transform statements such as SET or if.

	COPY <attr> <newattr>
	Copies the ClassAd value of <attr> to a new ClassAd attribute <newattr>. This will result
in two attributes that have the same value at this step of the transform.

	COPY /<regex>/ <attrpat>
	Copies all ClassAd attributes that have names matching the regular expression <regex> to new attribute names.
The new attribute names are defined by <attrpat> which may have regular expression capture groups to substitute
portions of the original attribute name. \0 Is the entire attribute name, and \1 is the first capture, etc.
For example

copy all attributes whose names begin with Resource to new attribute with names that begin with OriginalResource
COPY /Resource(.+)/ OriginalResource\1

	RENAME <attr> <newattr>
	Renames the attribute <attr> to a new attribute name <newattr>. This is the equivalent of
a COPY statement followed by a DELETE statement.

	RENAME /<regex>/ <attrpat>
	Renames all ClassAd attributes that match the regular expression <regex> to new attribute names given by
the substitution pattern <attrpat>.

	DELETE <attr>
	Deletes the ClassAd attribute <attr> from the transformed ClassAd.

	DELETE /<regex>/
	Deletes all ClassAd attributes whose names match the regular expression <regex> from the transformed ClassAd.

 Print Formats

Print Formats

Many HTCondor tools that work with ClassAds use a formatting engine
called the ClassAd pretty printer. Tools that have a -format
or -autoformat argument use those arguments to configure the
ClassAd pretty printer, and then use the pretty printer to produce output
from ClassAds.

The condor_q, condor_history and condor_status tools, as well as others
that have a -print-format or -pr argument can configure the ClassAd pretty
using a file. The syntax of this file is described below.

Not all tools support all of the print format options.

Syntax

A print format file consists of a heading line and
zero or more formatting lines
followed by optional constraint, sort and summary lines.
These sections of the format file begin with the keywords
SELECT, WHERE, GROUP, or SUMMARY which must be in that order if they appear.
These keywords must be all uppercase and must be the first word on the line.

A line beginning with # is treated as a comment

A custom print format file must begin with the SELECT keyword.
The SELECT keyword can be followed by options to qualify the type of
query, the global formatting options and whether or not there will be column
headings. The prototype for the SELECT line is:

SELECT [FROM AUTOCLUSTER | UNIQUE] [BARE | NOTITLE | NOHEADER | NOSUMMARY] [LABEL [SEPARATOR <string>]] [<separators>]

The first two optional keywords indicate the query type. These options work only in condor_q.

	FROM AUTOCLUSTER
	Used with condor_q to query the schedd’s default autocluster set.

	UNIQUE
	Used with condor_q to ask the condor_schedd to count unique values.
This option tells the schedd to building a new FROM AUTOCLUSTER set using the given attributes

The next set of optional keywords enable or disable various things that are normally printed before
or after the classad output.

	NOTITLE
	Disables the title on tools that have a title, like the Schedd name from condor_q.

	NOHEADER
	Disables column headers.

	NOSUMMARY
	Disables the summary output such as the totals by job stats at the bottom of normal condor_q output.

	BARE
	Shorthand for NOTITLE NOHEADER NOSUMMARY

In the descriptions below <string> is text. If the text starts with a single quote, then it continues to
the next single quote. If it starts with a doublequote, it continues to the next doublequote. If it
starts with neither, then it continues until the next space or tab. a n, r or t inside the string will
be converted into a newline, carriage return or tab character respectively.

	LABEL [SEPARATOR <string>]
	Use item labels rather than column headers. The separator between the label and the value will
be = unless the SEPARATOR is used to define a different one.

	RECORDPREFIX <string>
	The value of <string> will be printed before each ClassAd. The default is to print nothing.

	RECORDSUFFIX <string>
	The value of <string> will be printed after each ClassAd. The default is to print the newline character.

	FIELDPREFIX <string>
	The value of <string> will be printed before each attribute or expression. The default is to print nothing.

	FIELDSUFFIX <string>
	The value of <string> will be printed after each attribute or expression. The default is to print a single space.

After the SELECT line, there should be zero or more formatting lines one line for each field in the output.
Each formatting line is a ClassAd attribute or expression followed by zero or more keywords that control formatting,
the first valid keyword ends the expression. Keywords are all uppercase and space delimited.
The prototype for each formatting line is:

<expr> [AS <label>] [PRINTF <format-string> | PRINTAS <function-name> [ALWAYS] | WIDTH [AUTO | [-]<INT>]] [FIT | TRUNCATE] [LEFT | RIGHT] [NOPREFIX] [NOSUFFIX]

	AS <string>
	defines the label or column heading.
if the formatting line has no AS keyword, then <expr> will be used as the label or column heading

	PRINTF <string>
	<string> should be a c++ printf format string, the same as used by the -format command line arguments for tools

	PRINTAS <function>
	Format using the built-in function. The Valid function names for PRINTAS are defined by the code and differ between the various tools,
refer to the table at the end of this page.

	WIDTH [-]<int>
	Align the data to the given width, negative values left align.

	WIDTH AUTO
	Use a width sized to fit the largest item.

	FIT
	Adjust column width to fit the data, normally used with WIDTH AUTO

	TRUNCATE
	If the data is larger than the given width, truncate it

	LEFT
	Left align the data to the given width

	RIGHT
	Rigth align the data to the given width

	NOPREFIX
	Do not include the FIELDPREFIX string for this field

	NOSUFFIX
	Do not include the FIELDSUFFIX string for this field

	OR <char>[<char>]
	if the field data is undefined, print <char>, if <char> is doubled, fill the column with <char>.
Allowed values for <char> are space or one of the following ?*.-_#0

After the field formatting lines, there may be sections in the file that define a query constraint, sorting and grouping
and the summary line. These sections can be multiple lines, but must begin with a keyword.

	WHERE <constraint-expr>
	Display only ClassAds where the expression <constraint-expr> evaluates to true.

	GROUP BY <sort-expr> [ASCENDING | DECENDING]
	Sort the ClassAds by evaluating <sort-expr>. If multiple sort keys are desired, the GROUP BY line
can be followed by lines containing additional expressions, for example

GROUP BY
 Owner
 ClusterId DECENDING

	SUMMARY [STANDARD | NONE]
	Enable or disable the summary totals.
The summary can also be disabled using NOSUMMARY or BARE keywords on the SELECT line.

Examples

This print format file produces the default -nobatch output of condor_q

queue.cpf
produce the standard output of condor_q
SELECT
 ClusterId AS " ID" NOSUFFIX WIDTH AUTO
 ProcId AS " " NOPREFIX PRINTF ".%-3d"
 Owner AS "OWNER" WIDTH -14 PRINTAS OWNER
 QDate AS " SUBMITTED" WIDTH 11 PRINTAS QDATE
 RemoteUserCpu AS " RUN_TIME" WIDTH 12 PRINTAS CPU_TIME
 JobStatus AS ST PRINTAS JOB_STATUS
 JobPrio AS PRI
 ImageSize AS SIZE WIDTH 6 PRINTAS MEMORY_USAGE
 Cmd AS CMD PRINTAS JOB_DESCRIPTION
SUMMARY STANDARD

This print format file produces only totals

q_totals.cpf
show only totals with condor_q
SELECT NOHEADER NOTITLE
SUMMARY STANDARD

This print format file shows typical fields of the Schedd autoclusters.

negotiator_autocluster.cpf
SELECT FROM AUTOCLUSTER
 Owner AS OWNER WIDTH -14 PRINTAS OWNER
 JobCount AS COUNT PRINTF %5d
 AutoClusterId AS " ID" WIDTH 3
 JobUniverse AS UNI PRINTF %3d
 RequestMemory AS REQ_MEMORY WIDTH 10 PRINTAS READABLE_MB
 RequestDisk AS REQUEST_DISK WIDTH 12 PRINTAS READABLE_KB
 JobIDs AS JOBIDS
GROUP BY Owner

This print format file shows the use of SELECT UNIQUE

count_jobs_by_owner.cpf
aggregate by the given attributes, return unique values plus count and jobids.
This query builds an autocluster set in the schedd on the fly using all of the displayed attributes
And all of the GROUP BY attributes (except JobCount and JobIds)
SELECT UNIQUE NOSUMMARY
 Owner AS OWNER WIDTH -20
 JobUniverse AS "UNIVERSE " PRINTAS JOB_UNIVERSE
 JobStatus AS STATUS PRINTAS JOB_STATUS_RAW
 RequestCpus AS CPUS
 RequestMemory AS MEMORY
 JobCount AS COUNT PRINTF %5d
 JobIDs
GROUP BY
 Owner

PRINTAS functions for condor_q

Some of the tools that interpret a print format file have specialized formatting functions for certain
ClassAd attributes. These are selected by using the PRINTAS keyword followed
by the function name. Available function names depend on the tool. Some functions implicitly use the
value of certain attributes, often multiple attributes. The list for condor_q is.

	BATCH_NAME
	Used for the BATCH_NAME column of the default output of condor_q.
This function constructs a batch name string using value of the JobBatchName
attribute if it exists, otherwise it constructs a batch name from
JobUniverse, ClusterId, DAGManJobId, and DAGNodeName.

	BUFFER_IO_MISC
	Used for the MISC column of the -io output of condor_q.
This function constructs an IO string that varies by JobUniverse.
The output for Standard universe jobs refers to FileSeekCount, BufferSize and BufferBlockSize.
For all other jobs it refers to TransferrringInput, TransferringOutput and TransferQueued.

	CPU_TIME
	Used for the RUN_TIME or CPU_TIME column of the default condor_q output.
The result of the function depends on wether the -currentrun argument is used with condor_q.
If RemoteUserCpu is undefined, this function returns undefined. It returns the value of RemoteUserCpu
if it is non-zero. Otherwise it reports the amount of time that the condor_shadow has been alive.
If the -currentrun argument is used with condor_q, this will be the shadow lifetime for the current run only.
If it is not, then the result is the sum of RemoteWallClockTime and the current shadow lifetime.
The result is then formatted using the %T format.

	CPU_UTIL
	Used for the CPU_UTIL column of the default condor_q output.
This function returns RemoteUserCpu divided by CommittedTime if
CommittedTime is non-zero. It returns undefined if CommittedTime is undefined, zero or negative.
The result is then formatted using the %.1f format.

	DAG_OWNER
	Used for the OWNER column of default condor_q output.
This function returns the value of the Owner attribute when the -dag option is
not passed to condor_q. When the -dag option is passed,
it returns the value of DAGNodeName for jobs that have a DAGManJobId defined, and Owner for all other jobs.

	GRID_JOB_ID
	Used for the GRID_JOB_ID column of the -grid output of condor_q.
This function extracts and returns the job id from the GridJobId attribute.

	GRID_RESOURCE
	Used for the GRID->MANAGER HOST column of the -grid output of condor_q.
This funciton extracts and returns the manager and host from the GridResource attribute.
For ec2 jobs the host will be the value of EC2RemoteVirtualMachineName attribute.

	GRID_STATUS
	Used for the STATUS column of the -grid output of condor_q.
This function renders the status of grid jobs from the GridJobStatus attribute.
If the attribute has a string value it is reported unmodified.
Otherwise, if GridJobStatus is an integer, it is presumed to be a condor job status
and converted to a string.

	JOB_DESCRIPTION
	Used for the CMD column of the default output of condor_q.
This function renders a job description from the MATCH_EXP_JobDescription,
JobDescription or Cmd and Args or Arguments job attributes.

	JOB_FACTORY_MODE
	Used for the MODE column of the -factory output of condor_q.
This function renders an integer value into a string value using the conversion for JobMaterializePaused modes.

	JOB_ID
	Used for the ID column of the default output of condor_q.
This function renders a string job id from the ClusterId and ProcId attributes of the job.

	JOB_STATUS
	Used for the ST column of the default output of condor_q.
This function renders a one or two character job status from the
JobStatus, TransferringInput, TransferringOutput, TransferQueued and LastSuspensionTime attributes of the job.

	JOB_STATUS_RAW
	This function converts an integer to a string using the conversion for JobStatus values.

	JOB_UNIVERSE
	Used for the UNIVERSE column of the -idle and -autocluster output of condor_q.
This funciton converts an integer to a string using the conversion for JobUniverse values.
Values that are outside the range of valid universes are rendered as Unknown.

	MEMORY_USAGE
	Used for the SIZE column of the default output of condor_q.
This function renders a memory usage value in megabytes the MemoryUsage or ImageSize attributes of the job.

	OWNER
	Used for the OWNER column of the default output of condor_q.
This function renders an Owner string from the Owner attribute of the job. Prior to 8.9.9, this function would
modify the result based on the NiceUser attribute of the job, but it no longer does so.

	QDATE
	Used for the SUBMITTED column of the default output of condor_q.
This function converts a Unix timestamp to a string date and time with 2 digit month, day, hour and minute values.

	READABLE_BYTES
	Used for the INPUT and OUTPUT columns of the -io output of condor_q
This function renders a numeric byte value into a string with an appropriate B, KB, MB, GB, or TB suffix.

	READABLE_KB
	This function renders a numeric Kibibyte value into a string with an appropriate B, KB, MB, GB, or TB suffix.
Use this for Job attributes that are valued in Kb, such as DiskUsage.

	READABLE_MB
	This function renders a numeric Mibibyte value into a string with an appropriate B, KB, MB, GB, or TB suffix.
Use this for Job attributes that are valued in Mb, such as MemoryUsage.

	REMOTE_HOST
	Used for the HOST(S) column of the -run output of condor_q.
This function extracts the host name from a job attribute appropriate to the JobUniverse value of the job.
For Local and Scheduler universe jobs, the Schedd that was queried is used using a variable internal to condor_q.
For grid uiniverse jobs, the EC2RemoteVirtualMachineName or GridResources attributes are used.
for all other universes the RemoteHost job attribute is used.

	STDU_GOODPUT
	Used for the GOODPUT column of the -goodput output of condor_q.
This function renders a floating point goodput time in seconds from the
JobStatus, CommittedTime, ShadowBDay, LastCkptTime, and RemoteWallClockTime attributes.

	STDU_MPBS
	Used for the Mb/s column of the -goodput output of condor_q.
This function renders a Megabytes per second goodput value from the
BytesSent, BytesRecvd job attributes and total job execution time as calculated by the STDU_GOODPUT output.

PRINTAS functions for condor_status

	ACTIVITY_CODE
	Render a two character machine state and activity code from the State and Activity attributes of the machine ad.
The letter codes for State are:

	~

	None

	O

	Owner

	U

	Unclaimed

	M

	Matched

	C

	Claimed

	P

	Preempting

	S

	Shutdown

	X

	Delete

	F

	Backfill

	D

	Drained

	#

	<undefined>

	?

	<error>

The letter codes for Activity are:

	0

	None

	i

	Idle

	b

	Busy

	r

	Retiring

	v

	Vacating

	s

	Suspended

	b

	Benchmarking

	k

	Killing

	#

	<undefined>

	?

	<error>

For example if State is Claimed and Activity is Idle, then this function returns Ci.

	ACTIVITY_TIME
	Used for the ActvtyTime column of the default output of condor_status.
The funciton renders the given Unix timestamp as an elapsed time since the MyCurrentTime or LastHeardFrom attribute.

	CONDOR_PLATFORM
	Used for the optional Platform column of the -master output of condor_status.
This function extracts the Arch and Opsys information from the given string.

	CONDOR_VERSION
	Used for the Version column of the -master output of condor_status.
This function extract the version number and build id from the given string.

	DATE
	This function converts a Unix timestamp to a string date and time with 2 digit month, day, hour and minute values.

	DUE_DATE
	This function converts an elapsed time to a Unix timestamp by adding the LastHeardFrom attribute to it, and then
converts it to a string date and time with 2 digit month, day, hour and minute values.

	ELAPSED_TIME
	Used in multiple places, for insance the Uptime column of the -master output of condor_status.
This function converts a Unix timestamp to an elapsed time by subtracting it from the LastHeardFrom attribute,
then formats it as a human readable elapsed time.

	LOAD_AVG
	Used for the LoadAv column of the default output of condor_status
Render the given floating point value using %.3f format.

	PLATFORM
	Used for the Platform column of the -compact output of condor_status.
Render a compact platform name from the value of the OpSys, OpSysAndVer, OpSysShortName and Arch attributes.

	READABLE_KB
	This function renders a numeric Kibibyte value into a string with an appropriate B, KB, MB, GB, or TB suffix.
Use this for Job attributes that are valued in Kb, such as DiskUsage.

	READABLE_MB
	This function renders a numeric Mibibyte value into a string with an appropriate B, KB, MB, GB, or TB suffix.
Use this for Job attributes that are valued in Mb, such as MemoryUsage.

	STRINGS_FROM_LIST
	Used for the Offline Universes column of the -offline output of condor_status.
This function converts a ClassAd list into a string containing a comma separated list of items.

	TIME
	Used for the KbdIdle column of the default output of condor_status.
This function converts a numeric time in seconds into a string time including number of days, hours, minutes and seconds.

	UNIQUE
	Used for the Users column of the compact -claimed output of condor_status
This function converts a classad list into a string containing a comma separate list of unique items.

 DAGMan Workflows

DAGMan Workflows

	DAGMan Introduction
	Describing Workflows with DAGMan

	Example: Diamond DAG

	JOB

	PARENT/CHILD Relationships

	Node Job Submit File Contents

	Scripts
	PRE and POST scripts

	HOLD scripts

	DEFER retries

	Scripts as part of a DAG workflow

	Examples that use PRE or POST scripts

	Special script argument macros

	Node Success/Failure
	PRE_SKIP

	Retrying Failed Nodes

	Stopping the DAG on Node Failure

	File Paths in DAGs

	Running and Managing DAGMan
	DAG Submission

	DAG Monitoring

	Editing a Running DAG

	Removing a DAG

	Suspending a Running DAG

	DAG Save Point Files

	Resubmitting a Failed DAG
	The Rescue DAG

	DAG Recovery

	Node Priorities
	Setting Priorities for Nodes

	Effective node priorities

	Single Submission of Multiple, Independent DAGs

	Composing workflows from multiple DAG files
	A DAG Within a DAG Is a SUBDAG

	DAG Splicing

	DAGMan Throttling
	Throttling at DAG Submission

	Throttling Nodes by Category

	Optimization of Submission Time

	Managing Large Numbers of Jobs with DAGMan

	Custom Variables for Nodes
	Variable Values Associated with Nodes

	Prepend or Append Variables to Node

	Multiple macroname definitions

	Special characters within VARS string definitions

	Using special macros within a definition

	Using VARS to define ClassAd attributes

	DAG Manager Job Specifications
	Classad Attributes in the DAG Manager Job

	Environment Variables in the DAG Manager Job

	Configuration Specific to a DAG

	INCLUDE
	Example: Using INCLUDE to simplify multiple similar workflows

	ALL_NODES Option

	DAGMan and Accounting Groups

	Special Node Types
	FINAL Node

	PROVISIONER Node

	SERVICE Node

	Visualizing DAGs

	Capturing the Status of Nodes in a File

	Machine-Readable Event History

	Workflow Metrics

 DAGMan Introduction

DAGMan Introduction

DAGMan is a HTCondor tool that allows multiple jobs to be organized in
workflows, represented as a directed acyclic graph (DAG). A DAGMan workflow
automatically submits jobs in a particular order, such that certain jobs need
to complete before others start running. This allows the outputs of some jobs
to be used as inputs for others, and makes it easy to replicate a workflow
multiple times in the future.

Describing Workflows with DAGMan

A DAGMan workflow is described in a DAG input file. The input file specifies
the nodes of the DAG as well as the dependencies that order the DAG.

A node within a DAG represents a unit of work. It contains the following:

	Job: An HTCondor job, defined in a submit file.

	PRE script (optional): A script that runs before the job starts.
Typically used to verify that all inputs are valid.

	POST script (optional): A script that runs after the job finishes.
Typically used to verify outputs and clean up temporary files.

The following diagram illustrates the elements of a node – every
node must contain a job, with an optional pre and an optional
post script.

 flowchart LR
 Start((Start)) --> Job
 Start --> PREscript
 subgraph DAG Node
 PREscript --> Job
 Job --> POSTscript
 end
 Job --> End((End))
 POSTscript --> End((End))

An edge in DAGMan describes a dependency between two nodes. DAG edges are
directional; each has a parent and a child, where the parent node must
finish running before the child starts. Any node can have an unlimited number
of parents and children.

Example: Diamond DAG

A simple diamond-shaped DAG, as shown in the following image is presented as a
starting point for examples. This diamond DAG contains 4 nodes.

 flowchart TD
 A --> B & C
 B & C --> D

A very simple DAG input file for this diamond-shaped DAG is:

File name: diamond.dag

JOB A A.sub
JOB B B.sub
JOB C C.sub
JOB D D.sub
PARENT A CHILD B C
PARENT B C CHILD D

A set of basic commands appearing in a DAG input file is described
below.

JOB

The JOB command specifies an HTCondor job. The syntax used for each
JOB command is:

JOB JobName SubmitDescriptionFileName [DIR directory] [NOOP] [DONE]

A JOB entry maps a JobName to an HTCondor submit description file.
The JobName uniquely identifies nodes within the DAG input file and in
output messages. Each node name, given by JobName, within the DAG must
be unique.

The values defined for JobName and SubmitDescriptionFileName are case
sensitive, as file names in a file system are case sensitive. The
JobName can be any string that contains no white space, except for the
strings PARENT and CHILD (in upper, lower, or mixed case). JobName
also cannot contain special characters (‘.’, ‘+’) which are reserved
for system use.

The optional DIR keyword specifies a working directory for this node,
from which the HTCondor job will be submitted, and from which a PRE
and/or POST script will be run. If a relative directory is specified,
it is relative to the current working directory as the DAG is submitted.
Note that a DAG containing DIR specifications cannot be run in
conjunction with the -usedagdir command-line argument to
condor_submit_dag.

The optional NOOP keyword identifies that the HTCondor job within the
node is not to be submitted to HTCondor. This is useful for
debugging a complex DAG structure, by marking jobs as NOOP to verify
that the control flow through the DAG is correct. The NOOP keywords
are then removed before submitting the DAG. Any PRE and POST scripts for
jobs specified with NOOP are executed; to avoid running the PRE and
POST scripts, comment them out. Even though the job specified with NOOP
is not submitted, its submit description file must still exist.

The optional DONE keyword identifies a node as being already
completed. This is mainly used by Rescue DAGs generated by DAGMan
itself, in the event of a failure to complete the workflow. Users should
generally not use the DONE keyword. The NOOP keyword is more
flexible in avoiding the execution of a job within a node.

PARENT/CHILD Relationships

The PARENT … CHILD … command specifies the dependencies within the DAG.
 Nodes are parents
and/or children within the DAG. A parent node must be completed
successfully before any of its children may be started. A child node may
only be started once all its parents have successfully completed.

The syntax used for each dependency (PARENT/CHILD) command is

PARENT ParentJobName [ParentJobName2 ...] CHILD ChildJobName [ChildJobName2 ...]

The PARENT keyword is followed by one or more ParentJobName(s). The
CHILD keyword is followed by one or more ChildJobName(s). Each child
job depends on every parent job within the line. A single line in the
input file can specify the dependencies from one or more parents to one
or more children. The diamond-shaped DAG example may specify the
dependencies with

PARENT A CHILD B C
PARENT B C CHILD D

An alternative specification for the diamond-shaped DAG may specify some
or all of the dependencies on separate lines:

PARENT A CHILD B C
PARENT B CHILD D
PARENT C CHILD D

As a further example, the line

PARENT p1 p2 CHILD c1 c2

produces four dependencies:

	p1 to c1

	p1 to c2

	p2 to c1

	p2 to c2

Node Job Submit File Contents

SUBMIT-DESCRIPTION command

In addition to declaring inline submit descriptions as part of a job, they
can be declared independently of jobs using the SUBMIT-DESCRIPTION command.
This can be helpful to reduce the size and readability of a .dag file when
many nodes are running the same job.

A SUBMIT-DESCRIPTION can be defined using the following syntax:

SUBMIT-DESCRIPTION DescriptionName {
 # submit attributes go here
}

An independently declared submit description must have a unique name that is
not used by any of the jobs. It can then be linked to a job as follows:

JOB JobName DescriptionName

For example, the previous diamond.dag example could be written as follows:

File name: diamond.dag

SUBMIT-DESCRIPTION DiamondDesc {
 executable = /path/diamond.exe
 output = diamond.out.$(cluster)
 error = diamond.err.$(cluster)
 log = diamond_condor.log
 universe = vanilla
}

JOB A DiamondDesc
JOB B DiamondDesc
JOB C DiamondDesc
JOB D DiamondDesc

PARENT A CHILD B C
PARENT B C CHILD D

Inline Submit Descriptions

Instead of using a submit description file, you can alternatively include an
inline submit description directly inside the .dag file. An inline submit
description should be wrapped in { and } braces, with each argument
appearing on a separate line, just like the contents of a regular submit file.
Using the previous diamond-shaped DAG example, the diamond.dag file would look
like this:

File name: diamond.dag

JOB A {
 executable = /path/diamond.exe
 output = diamond.out.$(cluster)
 error = diamond.err.$(cluster)
 log = diamond_condor.log
 universe = vanilla
}
JOB B {
 executable = /path/diamond.exe
 output = diamond.out.$(cluster)
 error = diamond.err.$(cluster)
 log = diamond_condor.log
 universe = vanilla
}
JOB C {
 executable = /path/diamond.exe
 output = diamond.out.$(cluster)
 error = diamond.err.$(cluster)
 log = diamond_condor.log
 universe = vanilla
}
JOB D {
 executable = /path/diamond.exe
 output = diamond.out.$(cluster)
 error = diamond.err.$(cluster)
 log = diamond_condor.log
 universe = vanilla
}
PARENT A CHILD B C
PARENT B C CHILD D

This can be helpful when trying to manage lots of submit descriptions, so they
can all be described in the same file instead of needed to regularly shift
between many files.

The main drawback of using inline submit descriptions is that they do not
support the queue statement or any variations thereof. Any job described
inline in the .dag file will only have a single instance submitted.

External File Descriptions

Each node in a DAG may use a unique submit description file. A key
limitation is that each HTCondor submit description file must submit
jobs described by a single cluster number; DAGMan cannot deal with a
submit description file producing multiple job clusters.

Consider again the diamond-shaped DAG example, where each node job uses
the same submit description file.

File name: diamond.dag

JOB A diamond_job.sub
JOB B diamond_job.sub
JOB C diamond_job.sub
JOB D diamond_job.sub
PARENT A CHILD B C
PARENT B C CHILD D

Here is a sample HTCondor submit description file for this DAG:

File name: diamond_job.sub

executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Since each node uses the same HTCondor submit description file, this
implies that each node within the DAG runs the same job. The
$(Cluster) macro produces unique file names for each job’s output.

The job ClassAd attribute DAGParentNodeNames is also available for
use within the submit description file. It defines a comma separated
list of each JobName which is a parent node of this job’s node. This
attribute may be used in the arguments
command for all but scheduler universe jobs. For example, if the job has two
parents, with JobNames B and C, the submit description file command

arguments = $$([DAGParentNodeNames])

will pass the string "B,C" as the command line argument when
invoking the job.

DAGMan supports jobs with queues of multiple procs, so for example:

queue 500

will queue 500 procs as expected.

 Scripts

Scripts

The optional SCRIPT command specifies processing that is done either
before a job within a node is submitted, after a job within a node
completes its execution, or when a job goes on hold. All scripts run
on the Access Point and not the Execution Point where the node job
is likely to run.

PRE and POST scripts

 Processing
done before a job is submitted is called a PRE script. Processing done
after a job completes its execution is
 called a POST script. Note that
the executable specified does not necessarily have to be a shell script
(Unix) or batch file (Windows); but it should be relatively light weight
because it will be run directly on the access point, not submitted as
an HTCondor job.

The syntax used for PRE or POST commands is

SCRIPT [DEFER status time] PRE <JobName | ALL_NODES> ExecutableName [arguments]

SCRIPT [DEFER status time] POST <JobName | ALL_NODES> ExecutableName [arguments]

The SCRIPT command can use the PRE or POST keyword, which specifies
the relative timing of when the script is to be run. The JobName
identifies the node to which the script is attached. The
ExecutableName specifies the executable (e.g., shell script or batch
file) to be executed, and may not contain spaces. The optional
arguments are command line arguments to the script, and spaces delimiting
the arguments. Both ExecutableName and optional arguments are case
sensitive.

A PRE script is commonly used to place files in a staging area for the
jobs to use. A POST script is commonly used to clean up or remove files
once jobs are finished running. An example uses PRE and POST scripts to
stage files that are stored on tape. The PRE script reads compressed
input files from the tape drive, uncompresses them, and places the
resulting files in the current directory. The HTCondor jobs can then use
these files, producing output files. The POST script compresses the
output files, writes them out to the tape, and then removes both the
staged files and the output files.

HOLD scripts

Additionally, the SCRIPT command can take a HOLD keyword, which indicates an
executable to be run when a job goes on hold. These are typically used to
notify a user when something goes wrong with their jobs.

The syntax used for a HOLD command is

SCRIPT [DEFER status time] HOLD <JobName | ALL_NODES> ExecutableName [arguments]

Unlike PRE and POST scripts, HOLD scripts are not considered part of the
DAG workflow and are run on a best-effort basis. If one does not complete
successfully, it has no effect on the overall workflow and no error will be
reported.

DEFER retries

The optional DEFER keyword causes a retry of only the script, if the
execution of the script exits with the exit code given by status. The
retry occurs after at least time seconds, rather than being considered
failed. While waiting for the retry, the script does not count against a
maxpre or maxpost limit. The ordering of the DEFER keyword within
the SCRIPT specification is fixed. It must come directly after the
SCRIPT keyword; this is done to avoid backward compatibility issues
for any DAG with a JobName of DEFER.

Scripts as part of a DAG workflow

Scripts are executed on the access point; the access point is not
necessarily the same machine upon which the node’s job is run. Further,
a single cluster of HTCondor jobs may be spread across several machines.

If the PRE script fails, then the HTCondor job associated with the node
is not submitted, and (as of version 8.5.4) the POST script is not run
either (by default). However, if the job is submitted, and there is a
POST script, the POST script is always run once the job finishes. (The
behavior when the PRE script fails may be changed to run the POST
script by setting configuration variable DAGMAN_ALWAYS_RUN_POST to
True or by passing the -AlwaysRunPost argument to
condor_submit_dag.)

Examples that use PRE or POST scripts

Examples use the diamond-shaped DAG. A first example uses a PRE script
to expand a compressed file needed as input to each of the HTCondor jobs
of nodes B and C. The DAG input file:

File name: diamond.dag

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
SCRIPT PRE B pre.sh $JOB .gz
SCRIPT PRE C pre.sh $JOB .gz
PARENT A CHILD B C
PARENT B C CHILD D

The script pre.sh uses its command line arguments to form the file
name of the compressed file. The script contains

#!/bin/sh
gunzip ${1}${2}

Therefore, the PRE script invokes

gunzip B.gz

for node B, which uncompresses file B.gz, placing the result in file B.

A second example uses the $RETURN macro. The DAG input file contains
the POST script specification:

SCRIPT POST A stage-out job_status $RETURN

If the HTCondor job of node A exits with the value -1, the POST script
is invoked as

stage-out job_status -1

The slightly different example POST script specification in the DAG
input file

SCRIPT POST A stage-out job_status=$RETURN

invokes the POST script with

stage-out job_status=$RETURN

This example shows that when there is no space between the = sign
and the variable $RETURN, there is no substitution of the macro’s
value.

Special script argument macros

The five macros $JOB, $RETRY, $MAX_RETRIES, $DAG_STATUS
and $FAILED_COUNT can be used within the DAG input file as arguments
passed to a PRE or POST script. An additional three macros $JOBID,
$RETURN, and $PRE_SCRIPT_RETURN can be used as arguments to POST
scripts. The use of these variables is limited to being used as an
individual command line argument to the script, surrounded by spaces,
in order to cause the substitution of the variable’s value.

The special macros are as follows:

	$JOB evaluates to the (case sensitive) string defined for
JobName.

	$RETRY evaluates to an integer value set to 0 the first time a
node is run, and is incremented each time the node is retried. See
Retrying Failed Nodes for
the description of how to cause nodes to be retried.

	$MAX_RETRIES evaluates to an integer value set to the maximum
number of retries for the node. See
Retrying Failed Nodes for the
description of how to cause nodes to be retried. If no retries are set for
the node, $MAX_RETRIES will be set to 0.

	$JOBID (for POST scripts only) evaluates to a representation of
the HTCondor job ID of the node job. It is the value of the job
ClassAd attribute ClusterId, followed by a period, and then
followed by the value of the job ClassAd attribute ProcId. An
example of a job ID might be 1234.0. For nodes with multiple jobs in
the same cluster, the ProcId value is the one of the last job
within the cluster.

	$RETURN (for POST scripts only) variable evaluates to the return
value of the HTCondor job, if there is a single job within a cluster.
With multiple jobs within the same cluster, there are two cases to
consider. In the first case, all jobs within the cluster are
successful; the value of $RETURN will be 0, indicating success.
In the second case, one or more jobs from the cluster fail. When
condor_dagman sees the first terminated event for a job that
failed, it assigns that job’s return value as the value of
$RETURN, and it attempts to remove all remaining jobs within the
cluster. Therefore, if multiple jobs in the cluster fail with
different exit codes, a race condition determines which exit code
gets assigned to $RETURN.

A job that dies due to a signal is reported with a $RETURN value
representing the additive inverse of the signal number. For example,
SIGKILL (signal 9) is reported as -9. A job whose batch system
submission fails is reported as -1001. A job that is externally
removed from the batch system queue (by something other than
condor_dagman) is reported as -1002.

	$PRE_SCRIPT_RETURN (for POST scripts only) variable evaluates to
the return value of the PRE script of a node, if there is one. If
there is no PRE script, this value will be -1. If the node job was
skipped because of failure of the PRE script, the value of
$RETURN will be -1004 and the value of $PRE_SCRIPT_RETURN
will be the exit value of the PRE script; the POST script can use
this to see if the PRE script exited with an error condition, and
assign success or failure to the node, as appropriate.

	$DAG_STATUS is the status of the DAG. Note that this macro’s
value and definition is unrelated to the attribute named
DagStatus as defined for use in a node status file. This macro’s
value is the same as the job ClassAd attribute DAG_Status that is
defined within the condor_dagman job’s ClassAd. This macro may
have the following values:

	0: OK

	1: error; an error condition different than those listed here

	2: one or more nodes in the DAG have failed

	3: the DAG has been aborted by an ABORT-DAG-ON specification

	4: removed; the DAG has been removed by condor_rm

	5: cycle; a cycle was found in the DAG

	6: halted; the DAG has been halted
(see Suspending a Running DAG)

	$FAILED_COUNT is defined by the number of nodes that have failed
in the DAG.

 Node Success/Failure

Node Success/Failure

Progress towards completion of the DAG is based upon the success of the
nodes within the DAG. The success of a node is based upon the success of
the job(s), PRE script, and POST script. A job, PRE script, or POST
script with an exit value not equal to 0 is considered failed. The
exit value of whatever component of the node was run last determines the
success or failure of the node.

Table 2.1 lists the definition of node success and failure for all variations
of script and job success and failure, when DAGMAN_ALWAYS_RUN_POST is set
to False. In this table, a dash (-) represents the case where a script
does not exist for the DAG, S represents success, and F represents
failure.

	PRE

	JOB

	POST

	Node

	-

	S

	-

	S

	-

	F

	-

	F

	-

	S

	S

	S

	-

	S

	F

	F

	-

	F

	S

	S

	-

	F

	F

	F

	S

	S

	-

	S

	S

	F

	-

	F

	S

	S

	S

	S

	S

	S

	F

	F

	S

	F

	S

	S

	S

	F

	F

	F

	F

	not run

	-

	F

	F

	not run

	not run

	F

Table 2.1: Node Success or Failure definition with
DAGMAN_ALWAYS_RUN_POST = False (the default).

Table 2.2 lists the definition of node success and failure only for the cases
where the PRE script fails, when DAGMAN_ALWAYS_RUN_POST is set to True.

	PRE

	JOB

	POST

	Node

	F

	not run

	-

	F

	F

	not run

	S

	S

	F

	not run

	F

	F

Table 2.2: Node Success or Failure definition with
DAGMAN_ALWAYS_RUN_POST = True.

PRE_SKIP

The behavior of DAGMan with respect to node success or failure can be
changed with the addition of a PRE_SKIP command. A PRE_SKIP line
within the DAG input file uses the syntax:

PRE_SKIP <JobName | ALL_NODES> non-zero-exit-code

The PRE script of a node identified by JobName that exits with the
value given by non-zero-exit-code skips the remainder of the node
entirely. Neither the job associated with the node nor the POST script
will be executed, and the node will be marked as successful.

Retrying Failed Nodes

DAGMan can retry any failed node in a DAG by specifying the node in the
DAG input file with the RETRY command. The use of retry is optional.
The syntax for retry is

RETRY <JobName | ALL_NODES> NumberOfRetries [UNLESS-EXIT value]

where JobName identifies the node. NumberOfRetries is an integer
number of times to retry the node after failure. The implied number of
retries for any node is 0, the same as not having a retry line in the
file. Retry is implemented on nodes, not parts of a node.

The diamond-shaped DAG example may be modified to retry node C:

File name: diamond.dag

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
RETRY C 3

If node C is marked as failed for any reason, then it is started over as
a first retry. The node will be tried a second and third time, if it
continues to fail. If the node is marked as successful, then further
retries do not occur.

Retry of a node may be short circuited using the optional keyword
UNLESS-EXIT, followed by an integer exit value. If the node exits with
the specified integer exit value, then no further processing will be
done on the node.

The macro $(RETRY) evaluates to an integer value, set to 0 first time
a node is run, and is incremented each time for each time the node is
retried. The macro $(MAX_RETRIES) is the value set for
NumberOfRetries. These macros may be used as arguments passed to a PRE
or POST script.

Stopping the DAG on Node Failure

The ABORT-DAG-ON command provides a way to abort the entire DAG if a
given node returns a specific exit code. The syntax for ABORT-DAG-ON
is

ABORT-DAG-ON <JobName | ALL_NODES> AbortExitValue [RETURN DAGReturnValue]

If the return value of the node specified by JobName matches
AbortExitValue, the DAG is immediately aborted. A DAG abort differs
from a node failure, in that a DAG abort causes all nodes within the DAG
to be stopped immediately. This includes removing the jobs in nodes that
are currently running. A node failure differs, as it would allow the DAG
to continue running, until no more progress can be made due to
dependencies.

The behavior differs based on the existence of PRE and/or POST scripts.
If a PRE script returns the AbortExitValue value, the DAG is
immediately aborted. If the HTCondor job within a node returns the
AbortExitValue value, the DAG is aborted if the node has no POST
script. If the POST script returns the AbortExitValue value, the DAG
is aborted.

An abort overrides node retries. If a node returns the abort exit value,
the DAG is aborted, even if the node has retry specified.

When a DAG aborts, by default it exits with the node return value that
caused the abort. This can be changed by using the optional RETURN
keyword along with specifying the desired DAGReturnValue. The DAG
abort return value can be used for DAGs within DAGs, allowing an inner
DAG to cause an abort of an outer DAG.

A DAG return value other than 0, 1, or 2 will cause the condor_dagman
job to stay in the queue after it exits and get retried, unless the
on_exit_remove expression in the .condor.sub file is manually
modified.

Adding ABORT-DAG-ON for node C in the diamond-shaped DAG

File name: diamond.dag

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
RETRY C 3
ABORT-DAG-ON C 10 RETURN 1

causes the DAG to be aborted, if node C exits with a return value of 10.
Any other currently running nodes, of which only node B is a possibility
for this particular example, are stopped and removed. If this abort
occurs, the return value for the DAG is 1.

 File Paths in DAGs

File Paths in DAGs

condor_dagman assumes that all relative paths in a DAG input file and
the associated HTCondor submit description files are relative to the
current working directory when condor_submit_dag is run. This works
well for submitting a single DAG. It presents problems when multiple
independent DAGs are submitted with a single invocation of
condor_submit_dag. Each of these independent DAGs would logically be
in its own directory, such that it could be run or tested independent of
other DAGs. Thus, all references to files will be designed to be
relative to the DAG’s own directory.

Consider an example DAG within a directory named dag1. There would
be a DAG input file, named one.dag for this example. Assume the
contents of this DAG input file specify a node job with

JOB A A.submit

Further assume that partial contents of submit description file
A.submit specify

executable = programA
input = A.input

Directory contents are

dag1/
├── A.input
├── A.submit
├── one.dag
└── programA

All file paths are correct relative to the dag1 directory.
Submission of this example DAG sets the current working directory to
dag1 and invokes condor_submit_dag:

$ cd dag1
$ condor_submit_dag one.dag

Expand this example such that there are now two independent DAGs, and
each is contained within its own directory. For simplicity, assume that
the DAG in dag2 has remarkably similar files and file naming as the
DAG in dag1. Assume that the directory contents are

parent/
├── dag1
│ ├── A.input
│ ├── A.submit
│ ├── one.dag
│ └── programA
└── dag2
 ├── B.input
 ├── B.submit
 ├── programB
 └── two.dag

The goal is to use a single invocation of condor_submit_dag to run
both dag1 and dag2. The invocation

$ cd parent
$ condor_submit_dag dag1/one.dag dag2/two.dag

does not work. Path names are now relative to parent, which is not
the desired behavior.

The solution is the -usedagdir command line argument to
condor_submit_dag. This feature runs each DAG as if
condor_submit_dag had been run in the directory in which the
relevant DAG file exists. A working invocation is

$ cd parent
$ condor_submit_dag -usedagdir dag1/one.dag dag2/two.dag

Output files will be placed in the correct directory, and the
.dagman.out file will also be in the correct directory. A Rescue DAG
file will be written to the current working directory, which is the
directory when condor_submit_dag is invoked. The Rescue DAG should
be run from that same current working directory. The Rescue DAG includes
all the path information necessary to run each node job in the proper
directory.

Use of -usedagdir does not work in conjunction with a JOB node
specification within the DAG input file using the DIR keyword. Using
both will be detected and generate an error.

 Running and Managing DAGMan

Running and Managing DAGMan

Once once a workflow has been setup in a .dag file, all that
is left is to submit the prepared workflow. A key concept to understand
regarding the submission and management of a DAGMan workflow is
that the DAGMan process itself is ran as a HTCondor job (often referred
to as the DAGMan proper job) that will in turn manage and submit
all the various jobs and scripts defined in the workflow.

DAG Submission

A DAG is submitted using the tool condor_submit_dag. The manual
page for condor_submit_dag details the
command. The simplest of DAG submissions has the syntax

$ condor_submit_dag DAGInputFileName

and the current working directory contains the DAG input file.

The diamond-shaped DAG example may be submitted with

$ condor_submit_dag diamond.dag

Do not submit the same DAG, with same DAG input file, from within the
same directory, such that more than one of this same DAG is running at
the same time. It will fail in an unpredictable manner, as each instance
of this same DAG will attempt to use the same file to enforce
dependencies.

To increase robustness and guarantee recoverability, the
condor_dagman process is run as an HTCondor job. As such, it needs a
submit description file. condor_submit_dag generates this needed
submit description file, naming it by appending .condor.sub to the
name of the DAG input file. This submit description file may be edited
if the DAG is submitted with

$ condor_submit_dag -no_submit diamond.dag

causing condor_submit_dag to create the submit description file, but
not submit condor_dagman to HTCondor. To submit the DAG, once the
submit description file is edited, use

$ condor_submit diamond.dag.condor.sub

Since the condor_dagman process is an actual HTCondor job, the job
Cluster Id produced for this DAGMan proper job is used to help mark
all jobs ran by DAGMan. This is done by adding the job classad attribute
DAGManJobId for all submitted jobs to the produced Job Id.

DAG Monitoring

After submission, the progress of the DAG can be monitored by looking at
the job event log file(s), observing the e-mail that job submission to
HTCondor causes, or by using condor_q.

Using just condor_q while a DAGMan workflow is running will display
condensed information regarding the overall workflow progress under the
DAGMan proper job as follows:

$ condor_q
$ OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
$ Cole diamond.dag+1024 1/1 12:34 1 2 - 4 1025.0 ... 1026.0

Using condor_q with the -dag and -nobatch flags will display information
about the DAGMan proper job and all jobs currently submitted/running as
part of the DAGMan workflow as follows:

$ condor_q -dag -nobatch
$ ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
$ 1024.0 Cole 1/1 12:34 0+01:13:19 R 0 0.4 condor_dagman ...
$ 1025.0 |-Node_B 1/1 13:44 0+00:03:19 R 0 0.4 diamond.sh ...
$ 1026.0 |-Node_C 1/1 13:45 0+00:02:19 R 0 0.4 diamond.sh ...

In addition to basic job management, the DAGMan proper job holds a lot of extra
information within its job classad that can queried with the -l or the more
recommended -af <Attributes> flags for condor_q in association with the
DAGMan proper Job Id.

$ condor_q <dagman-job-id> -af Attribute-1 ... Attribute-N
$ condor_q -l <dagman-job-id>

There is also a large amount of information logged in an extra file. The
name of this extra file is produced by appending .dagman.out to the
name of the DAG input file; for example, if the DAG input file is
diamond.dag, this extra file is named diamond.dag.dagman.out. The
.dagman.out file is an important resource for debugging; save this
file if a problem occurs. The dagman.out is appended to, rather than
overwritten, with each new DAGMan run.

Status Information for the DAG in a ClassAd

The condor_dagman job places information about the status of the DAG
into its own job ClassAd. The attributes are fully described in
Job ClassAd Attributes. The attributes are

	DAG Info

	DAG_Status

	DAG_InRecovery

	DAG_AdUpdateTime

	

	Node Info

	DAG_NodesTotal

	DAG_NodesDone

	DAG_NodesPrerun

	DAG_NodesPostrun

	DAG_NodesReady

	DAG_NodesUnready

	DAG_NodesFailed

	DAG_NodesFutile

	DAG_NodesQueued

	

	DAG Process Info

	DAG_JobsSubmitted

	DAG_JobsCompleted

	DAG_JobsIdle

	DAG_JobsRunning

	DAG_JobsHeld

	

Note that most of this information is also available in the
dagman.out file.

Editing a Running DAG

Certain properties of a running DAG can be changed after the workflow has been
started. The values of these properties are published in the condor_dagman
job ad; changing any of these properties using condor_qedit will also update
the internal DAGMan value.

Currently, you can change the following attributes:

	Attribute Name

	Attribute Description

	DAGMan_MaxJobs

	Maximum number of running jobs

	DAGMan_MaxIdle

	Maximum number of idle jobs

	DAGMan_MaxPreScripts

	Maximum number of running PRE scripts

	DAGMan_MaxPostScripts

	Maximum number of running POST scripts

To edit one of these properties, use the condor_qedit tool with the job ID of
the condor_dagman job, for example:

$ condor_qedit <dagman-job-id> DAGMan_MaxJobs 1000

To view all the properties of a condor_dagman job:

$ condor_q -l <dagman-job-id> | grep DAG

Removing a DAG

To remove an entire DAG, consisting of the condor_dagman job, plus
any jobs submitted to HTCondor, remove the condor_dagman job by
running condor_rm. For example,

$ condor_q -nobatch
-- Submitter: user.cs.wisc.edu : <128.105.175.125:36165> : user.cs.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 9.0 taylor 10/12 11:47 0+00:01:32 R 0 8.7 condor_dagman -f ...
 11.0 taylor 10/12 11:48 0+00:00:00 I 0 3.6 B.out
 12.0 taylor 10/12 11:48 0+00:00:00 I 0 3.6 C.out

 3 jobs; 2 idle, 1 running, 0 held

$ condor_rm 9.0

When a condor_dagman job is removed, all node jobs (including
sub-DAGs) of that condor_dagman will be removed by the
condor_schedd. As of version 8.5.8, the default is that
condor_dagman itself also removes the node jobs (to fix a race
condition that could result in “orphaned” node jobs). (The
condor_schedd has to remove the node jobs to deal with the case of
removing a condor_dagman job that has been held.)

The previous behavior of condor_dagman itself not removing the node
jobs can be restored by setting the DAGMAN_REMOVE_NODE_JOBS
configuration macro to False. This will decrease the load on the
condor_schedd, at the cost of allowing the possibility of “orphaned”
node jobs.

A removed DAG will be considered failed unless the DAG has a FINAL node
that succeeds.

In the case where a machine is scheduled to go down, DAGMan will clean
up memory and exit. However, it will leave any submitted jobs in the
HTCondor queue.

Suspending a Running DAG

It may be desired to temporarily suspend a running DAG. For example, the
load may be high on the access point, and therefore it is desired to
prevent DAGMan from submitting any more jobs until the load goes down.
There are two ways to suspend (and resume) a running DAG.

	Use condor_hold/condor_release on the condor_dagman job.

After placing the condor_dagman job on hold, no new node jobs will
be submitted, and no PRE or POST scripts will be run. Any node jobs
already in the HTCondor queue will continue undisturbed. Any running
PRE or POST scripts will be killed. If the condor_dagman job is
left on hold, it will remain in the HTCondor queue after all of the
currently running node jobs are finished. To resume the DAG, use
condor_release on the condor_dagman job.

Note that while the condor_dagman job is on hold, no updates will
be made to the dagman.out file.

	Use a DAG halt file.

The second way of suspending a DAG uses the existence of a
specially-named file to change the state of the DAG. When in this
halted state, no PRE scripts will be run, and no node jobs will be
submitted. Running node jobs will continue undisturbed. A halted DAG
will still run POST scripts, and it will still update the
dagman.out file. This differs from behavior of a DAG that is
held. Furthermore, a halted DAG will not remain in the queue
indefinitely; when all of the running node jobs have finished, DAGMan
will create a Rescue DAG and exit.

To resume a halted DAG, remove the halt file.

The specially-named file must be placed in the same directory as the
DAG input file. The naming is the same as the DAG input file
concatenated with the string .halt. For example, if the DAG input
file is test1.dag, then test1.dag.halt will be the required
name of the halt file.

As any DAG is first submitted with condor_submit_dag, a check is
made for a halt file. If one exists, it is removed.

Note that neither condor_hold nor a DAG halt is propagated to sub-DAGs.
In other words, if you condor_hold or create a halt file for a
DAG that has sub-DAGs, any sub-DAGs that are already in the queue will
continue to submit node jobs.

A condor_hold or DAG halt does, however, apply to splices, because
they are merged into the parent DAG and controlled by a single
condor_dagman instance.

 DAG Save Point Files

DAG Save Point Files

A DAG can be set up to write the current progress of the DAG at specified
nodes to a save point file. These files are written the first time the
designated node starts running. Meaning any retries won’t save the DAG
progress again. The save point file is written in the exact same format
as a partial Rescue DAG except that all node retry values will be reset
to their max value. The DAG save point file can then be specified when
re-running a DAG to start the DAG at a certain point of progress.

To specify a save point file use the DAG submit description keyword
SAVE_POINT_FILE followed by the name of the node designated as the save
point to write a save file, and optionally a filename. If a filename is not
specified the file will be written as [Node Name]-[DAG filename].save
where the DAG filename is the DAG file that the save file declaration was
read from.

If the specified save point filename includes a path then DAGMan will attempt
to write the file to that location. If the condor_submit_dag useDagDir
flag is used and a path is specified for a save point then the file will be
written to that path relative to a DAG’s working directory. Any save point
files without a specified path will be written to a sub-directory called
save_files created near all other DAGMan procuded files (i.e. .condor.sub,
.dagman.out, etc.).

File: savepointEx.dag
JOB A node.sub
JOB B node.sub
JOB C node.sub
JOB D node.sub

PARENT A B C CHILD D

#SAVE_POINT_FILE NodeName Filename
SAVE_POINT_FILE A
SAVE_POINT_FILE B Node-B_custom.save
SAVE_POINT_FILE C ../example/subdir/Node-C_custom.save
SAVE_POINT_FILE D ./Node-D_custom.save

Given the above example DAG file, if condor_submit_dag savepointEx.dag was ran
from the below directory my_work then the produced files appear in the
directory tree as follows:

Directory Tree Visualized
└─Home
 ├─example
 │ └─subdir
 │ └─Node-C_custom.save
 └─my_work
 ├─savepointEx.dag
 ├─savepointEx.dag.condor.sub
 ├─savepointEx.dag.dagman.out
 ├─...
 ├─Node-D_custom.save
 └─save_files
 ├─ A-savepointEx.dag.save
 └─ Node-B_custom.save

Once a DAG has ran and produce save point files, the DAG can then be re-run from
a save file by passing a filename via the -load_save flag for condor_submit_dag.
If the save point file is passed with a specified path then DAGMan will attempt to
read the file from that path. If just a save point filename is given then DAGMan will
assume the file is located in the``save_files`` directory. The path to save point
files will be checked relative to the current working directory that condor_submit_dag
was ran from.

When DAGMan writes save point files, if a save file with the same name already exists
then DAGMan will rotate the file to [filename].old before writing the new save.
Any already existing “old” save files will be removed prior to rotation and saving.
So, if the above example DAG was re-run with condor_submit_dag -load_save
./Node-D_custom.save savepointEx.dag from the same directory then once node D starts
the previous save would become Node-D_custom.save.old. This behavior does not just
effect save point files when re-running a DAG. If a DAG was set up as follows:

File: progressSavefile.dag
JOB A node.sub
JOB B node.sub
JOB C node.sub
...
SAVE_POINT_FILE A dag-progress.save
SAVE_POINT_FILE B dag-progress.save
SAVE_POINT_FILE C dag-progress.save

Then assuming the parent/child relationships is A->B->C, the first save written at
the start of node A will be written to dag-progress.save. Then when node B starts
the present dag-progress.save will become dag-progress.save.old and a new
dag-progress.save will be written. Finally, once node C starts dag-progress.save.old
will be deleted, the present dag-progress.save will become dag-progress.save.old
and a new dag-progress.save will be written. Allowing a single save file that progresses
with the DAG to be created.

 Resubmitting a Failed DAG

Resubmitting a Failed DAG

When debugging a DAG in which something has gone wrong, a first
determination is whether a resubmission will use a Rescue DAG or benefit
from recovery. The existence of a Rescue DAG means that recovery would
be inappropriate. A Rescue DAG is has a file name ending in
.rescue<XXX>, where <XXX> is replaced by a 3-digit number.

Determine if a DAG ever completed (independent of whether it was
successful or not) by looking at the last lines of the .dagman.out
file. If there is a line similar to

(condor_DAGMAN) pid 445 EXITING WITH STATUS 0

then the DAG completed. This line explains that the condor_dagman job
finished normally. If there is no line similar to this at the end of the
.dagman.out file, and output from condor_q shows that the
condor_dagman job for the DAG being debugged is not in the queue,
then recovery is indicated.

The Rescue DAG

Any time a DAG exits unsuccessfully, DAGMan generates a Rescue DAG. The
Rescue DAG records the state of the DAG, with information such as which
nodes completed successfully, and the Rescue DAG will be used when the
DAG is again submitted. With the Rescue DAG, nodes that have already
successfully completed are not re-run.

There are a variety of circumstances under which a Rescue DAG is
generated. If a node in the DAG fails, the DAG does not exit
immediately; the remainder of the DAG is continued until no more forward
progress can be made based on the DAG’s dependencies. At this point,
DAGMan produces the Rescue DAG and exits. A Rescue DAG is produced on
Unix platforms if the condor_dagman job itself is removed with
condor_rm. On Windows, a Rescue DAG is not generated in this
situation, but re-submitting the original DAG will invoke a lower-level
recovery functionality, and it will produce similar behavior to using a
Rescue DAG. A Rescue DAG is produced when a node sets and triggers an
ABORT-DAG-ON event with a non-zero return value. A zero return value
constitutes successful DAG completion, and therefore a Rescue DAG is not
generated.

By default, if a Rescue DAG exists, it will be used when the DAG is
submitted specifying the original DAG input file. If more than one
Rescue DAG exists, the newest one will be used. By using the Rescue DAG,
DAGMan will avoid re-running nodes that completed successfully in the
previous run. Note that passing the -force option to condor_submit_dag
or condor_dagman will cause condor_dagman to not use any existing rescue
DAG. This means that previously-completed node jobs will be re-run.

The granularity defining success or failure in the Rescue DAG is the
node. For a node that fails, all parts of the node will be re-run, even
if some parts were successful the first time. For example, if a node’s
PRE script succeeds, but then the node’s HTCondor job cluster fails, the
entire node, including the PRE script, will be re-run. A job cluster may
result in the submission of multiple HTCondor jobs. If one of the jobs
within the cluster fails, the node fails. Therefore, the Rescue DAG will
re-run the entire node, implying the submission of the entire cluster of
jobs, not just the one(s) that failed.

Statistics about the failed DAG execution are presented as comments at
the beginning of the Rescue DAG input file.

Rescue DAG Naming

The file name of the Rescue DAG is obtained by appending the string
.rescue<XXX> to the original DAG input file name. Values for <XXX> start
at 001 and continue to 002, 003, and beyond. The configuration variable
DAGMAN_MAX_RESCUE_NUM sets a maximum value for <XXX>. If you hit the
DAGMAN_MAX_RESCUE_NUM limit, the last Rescue DAG file is overwritten
if the DAG fails again.

If a Rescue DAG exists when the original DAG is re-submitted, the Rescue
DAG with the largest magnitude value for <XXX> will be used, and its
usage is implied.

Example

Here is an example showing file naming and DAG submission for the case
of a failed DAG. The initial DAG is submitted with

$ condor_submit_dag my.dag

A failure of this DAG results in the Rescue DAG named
my.dag.rescue001. The DAG is resubmitted using the same command:

$ condor_submit_dag my.dag

This resubmission of the DAG uses the Rescue DAG file
my.dag.rescue001, because it exists. Failure of this Rescue DAG
results in another Rescue DAG called my.dag.rescue002. If the DAG is
again submitted, using the same command as with the first two
submissions, but not repeated here, then this third submission uses the
Rescue DAG file my.dag.rescue002, because it exists, and because the
value 002 is larger in magnitude than 001.

Using an Older Rescue DAG

To explicitly specify a particular Rescue DAG, use the optional
command-line argument -dorescuefrom with condor_submit_dag. Note
that this will have the side effect of renaming existing Rescue DAG
files with larger magnitude values of <XXX>. Each renamed file has its
existing name appended with the string .old. For example, assume
that my.dag has failed 4 times, resulting in the Rescue DAGs named
my.dag.rescue001, my.dag.rescue002, my.dag.rescue003, and
my.dag.rescue004. A decision is made to re-run using
my.dag.rescue002. The submit command is

$ condor_submit_dag -dorescuefrom 2 my.dag

The DAG specified by the DAG input file my.dag.rescue002 is
submitted. The existing Rescue DAG my.dag.rescue003 is renamed
to be my.dag.rescue003.old, while the existing Rescue DAG
my.dag.rescue004 is renamed to be my.dag.rescue004.old.

Special Cases

Note that if multiple DAG input files are specified on the
condor_submit_dag command line, a single Rescue DAG encompassing all
of the input DAGs is generated. A DAG file containing splices also
produces a single Rescue DAG file. On the other hand, a DAG containing
sub-DAGs will produce a separate Rescue DAG for each sub-DAG that is
queued (and for the top-level DAG).

If the Rescue DAG file is generated before all retries of a node are
completed, then the Rescue DAG file will also contain RETRY entries.
The number of retries will be set to the appropriate remaining number of
retries. The configuration variable DAGMAN_RESET_RETRIES_UPON_RESCUE
controls whether or not node retries are reset in a Rescue DAG.

Partial versus Full Rescue DAGs

As of HTCondor version 7.7.2, the Rescue DAG file is a partial DAG file,
not a complete DAG input file as in the past.

A partial Rescue DAG file contains only information about which nodes
are done and the number of retries remaining for nodes with retries. It
does not contain information such as the actual DAG structure and the
specification of the submit description file for each node job. Partial
Rescue DAGs are automatically parsed in combination with the original
DAG input file, which contains information about the DAG structure. This
updated implementation means that a change in the original DAG input
file, such as specifying a different submit description file for a node
job, will take effect when running the partial Rescue DAG. In other
words, you can fix mistakes in the original DAG file while still gaining
the benefit of using the Rescue DAG.

To use a partial Rescue DAG, you must re-run condor_submit_dag on
the original DAG file, not the Rescue DAG file.

Note that the existence of a DONE specification in a partial Rescue DAG
for a node that no longer exists in the original DAG input file is a
warning, as opposed to an error, unless the DAGMAN_USE_STRICT
configuration variable is set to a value of 1 or higher
(which is now the default). Comment out the line with DONE in the
partial Rescue DAG file to avoid a warning or error.

The previous (prior to version 7.7.2) behavior of producing full DAG
input file as the Rescue DAG is obtained by setting the configuration
variable DAGMAN_WRITE_PARTIAL_RESCUE to False. Note that
the option to generate full Rescue DAGs is likely to disappear some
time during the 8.3 series.

To run a full Rescue DAG, either one left over from an older version of
DAGMan, or one produced by setting DAGMAN_WRITE_PARTIAL_RESCUE
to False, directly specify the full Rescue DAG file on the command
line instead of the original DAG file. For example:

$ condor_submit_dag my.dag.rescue002

Attempting to re-submit the original DAG file, if the Rescue DAG file is
a complete DAG, will result in a parse failure.

Rescue for Parse Failure

Starting in HTCondor version 7.5.5, passing the -DumpRescue option
to either condor_dagman or condor_submit_dag causes
condor_dagman to output a Rescue DAG file, even if the parsing of a
DAG input file fails. In this parse failure case, condor_dagman
produces a specially named Rescue DAG containing whatever it had
successfully parsed up until the point of the parse error. This Rescue
DAG may be useful in debugging parse errors in complex DAGs, especially
ones using splices. This incomplete Rescue DAG is not meant to be used
when resubmitting a failed DAG. Note that this incomplete Rescue DAG
generated by the -DumpRescue option is a full DAG input file, as
produced by versions of HTCondor prior to HTCondor version 7.7.2. It is
not a partial Rescue DAG file, regardless of the value of the
configuration variable DAGMAN_WRITE_PARTIAL_RESCUE.

To avoid confusion between this incomplete Rescue DAG generated in the
case of a parse failure and a usable Rescue DAG, a different name is
given to the incomplete Rescue DAG. The name appends the string
.parse_failed to the original DAG input file name. Therefore, if the
submission of a DAG with

$ condor_submit_dag my.dag

has a parse failure, the resulting incomplete Rescue DAG will be named
my.dag.parse_failed.

To further prevent one of these incomplete Rescue DAG files from being
used, a line within the file contains the single command REJECT. This
causes condor_dagman to reject the DAG, if used as a DAG input file.
This is done because the incomplete Rescue DAG may be a syntactically
correct DAG input file. It will be incomplete relative to the original
DAG, such that if the incomplete Rescue DAG could be run, it could
erroneously be perceived as having successfully executed the desired
workflow, when, in fact, it did not.

DAG Recovery

DAG recovery restores the state of a DAG upon resubmission. Recovery is
accomplished by reading the .nodes.log file that is used to enforce
the dependencies of the DAG. The DAG can then continue towards
completion.

Recovery is different than a Rescue DAG. Recovery is appropriate when no
Rescue DAG has been created. There will be no Rescue DAG if the machine
running the condor_dagman job crashes, or if the condor_schedd
daemon crashes, or if the condor_dagman job crashes, or if the
condor_dagman job is placed on hold.

Much of the time, when a not-completed DAG is re-submitted, it will
automatically be placed into recovery mode due to the existence and
contents of a lock file created as the DAG is first run. In recovery
mode, the .nodes.log is used to identify nodes that have completed
and should not be re-submitted.

DAGMan can be told to work in recovery mode by including the
-DoRecovery option on the command line, as in the example

$ condor_submit_dag diamond.dag -DoRecovery

where diamond.dag is the name of the DAG input file.

 Node Priorities

Node Priorities

Setting Priorities for Nodes

The PRIORITY command assigns a priority to a DAG node (and to the
HTCondor job(s) associated with the node). The syntax for PRIORITY is

PRIORITY <JobName | ALL_NODES> PriorityValue

The priority value is an integer (which can be negative). A larger
numerical priority is better. The default priority is 0.

The node priority affects the order in which nodes that are ready (all
of their parent nodes have finished successfully) at the same time will
be submitted. The node priority also sets the node job’s priority in the
queue (that is, its JobPrio attribute), which affects the order in
which jobs will be run once they are submitted (see
Job Priority for more
information). The node priority only affects the
order of job submission within a given DAG; but once jobs are submitted,
their JobPrio value affects the order in which they will be run
relative to all jobs submitted by the same user.

Sub-DAGs can have priorities, just as “regular” nodes can. (The priority
of a sub-DAG will affect the priorities of its nodes: see “effective
node priorities” below.) Splices cannot be assigned a priority, but
individual nodes within a splice can be assigned priorities.

Note that node priority does not override the DAG dependencies. Also
note that node priorities are not guarantees of the relative order in
which nodes will be run, even among nodes that become ready at the same
time - so node priorities should not be used as a substitute for
parent/child dependencies. In other words, priorities should be used
when it is preferable, but not required, that some jobs run before
others. (The order in which jobs are run once they are submitted can be
affected by many things other than the job’s priority; for example,
whether there are machines available in the pool that match the job’s
requirements.)

PRE scripts can affect the order in which jobs run, so DAGs containing
PRE scripts may not submit the nodes in exact priority order, even if
doing so would satisfy the DAG dependencies.

Node priority is most relevant if node submission is throttled (via the
-maxjobs or -maxidle command-line arguments or the
DAGMAN_MAX_JOBS_SUBMITTED or DAGMAN_MAX_JOBS_IDLE
configuration variables), or if there are not enough resources in the pool to
immediately run all submitted node jobs. This is often the case for DAGs
with large numbers of “sibling” nodes, or DAGs running on heavily-loaded
pools.

Example

Adding PRIORITY for node C in the diamond-shaped DAG:

File name: diamond.dag

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
RETRY C 3
PRIORITY C 1

This will cause node C to be submitted (and, mostly likely, run) before
node B. Without this priority setting for node C, node B would be
submitted first because the “JOB” statement for node B comes earlier in
the DAG file than the “JOB” statement for node C.

Effective node priorities

The “effective” priority for a node (the priority controlling the order
in which nodes are actually submitted, and which is assigned to JobPrio)
is the sum of the explicit priority (specified in the DAG file) and the
priority of the DAG itself. DAG priorities also default to 0, so they
are most relevant for sub-DAGs (although a top-level DAG can be submitted
with a non-zero priority by specifying a -priority value on the
condor_submit_dag command line). This algorithm for calculating
effective priorities is a simplification introduced in version 8.5.7 (a
node’s effective priority is no longer dependent on the priorities of
its parents).

Here is an example to clarify:

File name: priorities.dag

JOB A A.sub
SUBDAG EXTERNAL B SD.dag
PARENT A CHILD B
PRIORITY A 60
PRIORITY B 100

File name: SD.dag

JOB SA SA.sub
JOB SB SB.sub
PARENT SA CHILD SB
PRIORITY SA 10
PRIORITY SB 20

In this example (assuming that priorities.dag is submitted with the
default priority of 0), the effective priority of node A will be 60, and
the effective priority of sub-DAG B will be 100. Therefore, the
effective priority of node SA will be 110 and the effective priority of
node SB will be 120.

The effective priorities listed above are assigned by DAGMan. There is
no way to change the priority in the submit description file for a job,
as DAGMan will override any
priority command placed
in a submit description file (unless the effective node priority is 0;
in this case, any priority specified in the submit file will take
effect).

 Single Submission of Multiple, Independent DAGs

Single Submission of Multiple, Independent DAGs

A single use of condor_submit_dag may execute multiple, independent
DAGs. Each independent DAG has its own, distinct DAG input file. These
DAG input files are command-line arguments to condor_submit_dag.

Internally, all of the independent DAGs are combined into a single,
larger DAG, with no dependencies between the original independent DAGs.
As a result, any generated Rescue DAG file represents all of the
original independent DAGs with a single DAG. The file name of this
Rescue DAG is based on the DAG input file listed first within the
command-line arguments. For example, assume that three independent DAGs
are submitted with

$ condor_submit_dag A.dag B.dag C.dag

The first listed is A.dag. The remainder of the specialized file
name adds a suffix onto this first DAG input file name, A.dag. The
suffix is _multi.rescue<XXX>, where <XXX> is substituted by the
3-digit number of the Rescue DAG created as defined in
The Rescue DAG section. The first
time a Rescue DAG is created for the example, it will have the file name
A.dag_multi.rescue001.

Other files such as dagman.out and the lock file also have names
based on this first DAG input file.

The success or failure of the independent DAGs is well defined. When
multiple, independent DAGs are submitted with a single command, the
success of the composite DAG is defined as the logical AND of the
success of each independent DAG. This implies that failure is defined as
the logical OR of the failure of any of the independent DAGs.

By default, DAGMan internally renames the nodes to avoid node name
collisions. If all node names are unique, the renaming of nodes may be
disabled by setting the configuration variable DAGMAN_MUNGE_NODE_NAMES to
False

 Composing workflows from multiple DAG files

Composing workflows from multiple DAG files

The organization and dependencies of the jobs within a DAG are the keys
to its utility. Some workflows are naturally constructed hierarchically,
such that a node within a DAG is also a DAG (instead of a “simple”
HTCondor job). HTCondor DAGMan handles this situation easily, and allows
DAGs to be nested to any depth.

	There are two ways that DAGs can be nested within other DAGs:
	
	Sub-DAGs

	Splices.

With Sub-DAGs, each DAG has its own condor_dagman job, which then
becomes a node job within the higher-level DAG. With splices, on the
other hand, the nodes of the spliced DAG are directly incorporated into
the higher-level DAG. Therefore, splices do not result in additional
condor_dagman instances.

A weakness in scalability exists when submitting external Sub-DAGs,
because each executing independent DAG requires its own instance of
condor_dagman to be running. The outer DAG has an instance of
condor_dagman, and each named SUBDAG has an instance of
condor_dagman while it is in the HTCondor queue. The scaling issue
presents itself when a workflow contains hundreds or thousands of
Sub-DAGs that are queued at the same time. (In this case, the resources
(especially memory) consumed by the multiple condor_dagman instances
can be a problem.) Further, there may be many Rescue DAGs created if a
problem occurs. (Note that the scaling issue depends only on how many
Sub-DAGs are queued at any given time, not the total number of Sub-DAGs
in a given workflow; division of a large workflow into sequential
Sub-DAGs can actually enhance scalability.) To alleviate these concerns,
the DAGMan language introduces the concept of graph splicing.

Because splices are simpler in some ways than sub-DAGs, they are
generally preferred unless certain features are needed that are only
available with Sub-DAGs. This document:
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=SubDagsVsSplices
explains the pros and cons of splices and external sub-DAGs, and should
help users decide which alternative is better for their application.

Note that Sub-DAGs and splices can be combined in a single workflow, and
can be nested to any depth (but be sure to avoid recursion, which will
cause problems!).

A DAG Within a DAG Is a SUBDAG

As stated above, the SUBDAG EXTERNAL command causes the specified DAG
file to be run by a separate instance of condor_dagman, with the
condor_dagman job becoming a node job within the higher-level DAG.

The syntax for the SUBDAG command is

SUBDAG EXTERNAL JobName DagFileName [DIR directory] [NOOP] [DONE]

The optional specifications of DIR, NOOP, and DONE, if used,
must appear in this order within the entry. NOOP and DONE for
SUBDAG nodes have the same effect that they do for JOB nodes.

A SUBDAG node is essentially the same as any other node, except that
the DAG input file for the inner DAG is specified, instead of the
HTCondor submit file. The keyword EXTERNAL means that the SUBDAG is
run within its own instance of condor_dagman.

Since more than one DAG is being discussed, here is terminology
introduced to clarify which DAG is which. Reuse the example
diamond-shaped DAG as given in previous examples. Assume that node
B of this diamond-shaped DAG will itself be a DAG. The DAG of
node B is called a SUBDAG, inner DAG, or lower-level DAG. The
diamond-shaped DAG is called the outer or top-level DAG.

Work on the inner DAG first. Here is a very simple linear DAG input file
used as an example of the inner DAG.

File name: inner.dag

JOB X X.sub
JOB Y Y.sub
JOB Z Z.sub
PARENT X CHILD Y
PARENT Y CHILD Z

The HTCondor submit description file, used by condor_dagman,
corresponding to inner.dag will be named inner.dag.condor.sub.
The DAGMan submit description file is always named
<DAG file name>.condor.sub. Each DAG or SUBDAG results in the
submission of condor_dagman as an HTCondor job, and
condor_submit_dag creates this submit description file.

The preferred specification of the DAG input file for the outer DAG is

File name: diamond.dag

JOB A A.submit
SUBDAG EXTERNAL B inner.dag
JOB C C.submit
JOB D D.submit
PARENT A CHILD B C
PARENT B C CHILD D

Within the outer DAG’s input file, the SUBDAG command specifies a
special case of a JOB node, where the job is itself a DAG.

One of the benefits of using the SUBDAG feature is that portions of the
overall workflow can be constructed and modified during the execution of
the DAG (a SUBDAG file doesn’t have to exist until just before it is
submitted). A drawback can be that each SUBDAG causes its own distinct
job submission of condor_dagman, leading to a larger number of jobs,
together with their potential need of carefully constructed policy
configuration to throttle node submission or execution (because each
SUBDAG has its own throttles).

Here are details that affect SUBDAGs:

	Nested DAG Submit Description File Generation

There are three ways to generate the <DAG file name>.condor.sub
file of a SUBDAG:

	Lazily (the default in HTCondor version 7.5.2 and later
versions)

	Eagerly (the default in HTCondor versions 7.4.1 through 7.5.1)

	Manually (the only way prior to version HTCondor version
7.4.1)

When the <DAG file name>.condor.sub file is generated lazily,
this file is generated immediately before the SUBDAG job is
submitted. Generation is accomplished by running

$ condor_submit_dag -no_submit

on the DAG input file specified in the SUBDAG entry. This is the
default behavior. There are advantages to this lazy mode of submit
description file creation for the SUBDAG:

	The DAG input file for a SUBDAG does not have to exist until the
SUBDAG is ready to run, so this file can be dynamically created by
earlier parts of the outer DAG or by the PRE script of the node
containing the SUBDAG.

	It is now possible to have SUBDAGs within splices. That is not
possible with eager submit description file creation, because
condor_submit_dag does not understand splices.

The main disadvantage of lazy submit file generation is that a syntax
error in the DAG input file of a SUBDAG will not be discovered until
the outer DAG tries to run the inner DAG.

When <DAG file name>.condor.sub files are generated eagerly,
condor_submit_dag runs itself recursively (with the -no_submit
option) on each SUBDAG, so all of the <DAG file name>.condor.sub
files are generated before the top-level DAG is actually submitted.
To generate the <DAG filename>.condor.sub files eagerly,
pass the -do_recurse flag to condor_submit_dag; also set the
DAGMAN_GENERATE_SUBDAG_SUBMITS configuration variable to
False, so that condor_dagman does not re-run
condor_submit_dag at run time thereby regenerating the submit
description files.

To generate the .condor.sub files manually, run

$ condor_submit_dag -no_submit

on each lower-level DAG file, before running condor_submit_dag on
the top-level DAG file; also set the DAGMAN_GENERATE_SUBDAG_SUBMITS
configuration variable to False, so that condor_dagman does not
re-run condor_submit_dag at run time. The main reason for generating
the <DAG file name>.condor.sub files manually is to set options for
the lower-level DAG that one would not otherwise be able to set An
example of this is the -insert_sub_file option. For instance,
using the given example do the following to manually generate
HTCondor submit description files:

$ condor_submit_dag -no_submit -insert_sub_file fragment.sub inner.dag
$ condor_submit_dag diamond.dag

Note that most condor_submit_dag command-line flags have
corresponding configuration variables, so we encourage the use of
per-DAG configuration files, especially in the case of nested DAGs.
This is the easiest way to set different options for different DAGs
in an overall workflow.

It is possible to combine more than one method of generating the
<DAG file name>.condor.sub files. For example, one might pass the
-do_recurse flag to condor_submit_dag, but leave the
DAGMAN_GENERATE_SUBDAG_SUBMITS configuration variable set to the
default of True. Doing this would provide the benefit of an
immediate error message at submit time, if there is a syntax error in
one of the inner DAG input files, but the lower-level
<DAG file name>.condor.sub files would still be regenerated
before each nested DAG is submitted.

The values of the following command-line flags are passed from the
top-level condor_submit_dag instance to any lower-level
condor_submit_dag instances. This occurs whether the lower-level
submit description files are generated lazily or eagerly:

	-verbose

	-force

	-notification

	-allowlogerror

	-dagman

	-usedagdir

	-outfile_dir

	-oldrescue

	-autorescue

	-dorescuefrom

	-allowversionmismatch

	-no_recurse/do_recurse

	-update_submit

	-import_env

	-include_env

	-insert_env

	-suppress_notification

	-priority

	-dont_use_default_node_log

The values of the following command-line flags are preserved in any
already-existing lower-level DAG submit description files:

	-maxjobs

	-maxidle

	-maxpre

	-maxpost

	-debug

Other command-line arguments are set to their defaults in any
lower-level invocations of condor_submit_dag.

The -force option will cause existing DAG submit description
files to be overwritten without preserving any existing values.

	Submission of the outer DAG

The outer DAG is submitted as before, with the command

$ condor_submit_dag diamond.dag

	Interaction with Rescue DAGs

The use of new-style Rescue DAGs is now the default. With new-style
rescue DAGs, the appropriate rescue DAG(s) will be run automatically
if there is a failure somewhere in the workflow. For example (given
the DAGs in the example at the beginning of the SUBDAG section), if
one of the nodes in inner.dag fails, this will produce a Rescue
DAG for inner.dag (named inner.dag.rescue.001). Then, since
inner.dag failed, node B of diamond.dag will fail, producing
a Rescue DAG for diamond.dag (named diamond.dag.rescue.001,
etc.). If the command

$ condor_submit_dag diamond.dag

is re-run, the most recent outer Rescue DAG will be run, and this
will re-run the inner DAG, which will in turn run the most recent
inner Rescue DAG.

	File Paths

Remember that, unless the DIR keyword is used in the outer DAG, the
inner DAG utilizes the current working directory when the outer DAG
is submitted. Therefore, all paths utilized by the inner DAG file
must be specified accordingly.

DAG Splicing

As stated above, the SPLICE command causes the nodes of the spliced DAG
to be directly incorporated into the higher-level DAG (the DAG
containing the SPLICE command).

The syntax for the SPLICE command is

SPLICE SpliceName DagFileName [DIR directory]

A splice is a named instance of a subgraph which is specified in a
separate DAG file. The splice is treated as an entity for dependency
specification in the including DAG. (Conceptually, a splice is treated
as a node within the DAG containing the SPLICE command, although there
are some limitations, which are discussed below. This means, for
example, that splices can have parents and children.) A splice can also
be incorporated into an including DAG without any dependencies; it is
then considered a disjoint DAG within the including DAG.

The same DAG file can be reused as differently named splices, each one
incorporating a copy of the dependency graph (and nodes therein) into
the including DAG.

The nodes within a splice are scoped according to a hierarchy of names
associated with the splices, as the splices are parsed from the top
level DAG file. The scoping character to describe the inclusion
hierarchy of nodes into the top level dag is ‘+’. (In other words, if a
splice named “SpliceX” contains a node named “NodeY”, the full node name
once the DAGs are parsed is “SpliceX+NodeY”. This character is chosen
due to a restriction in the allowable characters which may be in a file
name across the variety of platforms that HTCondor supports. In any DAG
input file, all splices must have unique names, but the same splice name
may be reused in different DAG input files.

HTCondor does not detect nor support splices that form a cycle within
the DAG. A DAGMan job that causes a cyclic inclusion of splices will
eventually exhaust available memory and crash.

The SPLICE command in a DAG input file creates a named instance of a
DAG as specified in another file as an entity which may have PARENT
and CHILD dependencies associated with other splice names or node
names in the including DAG file.

The following series of examples illustrate potential uses of splicing.
To simplify the examples, presume that each and every job uses the same,
simple HTCondor submit description file:

BEGIN SUBMIT FILE simple-job.sub
executable = /bin/echo
arguments = OK
universe = vanilla
output = $(jobname).out
error = $(jobname).err
log = submit.log
notification = NEVER

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue
END SUBMIT FILE simple-job.sub

Simple SPLICE Example

This first simple example splices a diamond-shaped DAG in between the
two nodes of a top level DAG. Here is the DAG input file for the
diamond-shaped DAG:

BEGIN DAG FILE diamond.dag
JOB A simple-job.sub
VARS A jobname="$(JOB)"

JOB B simple-job.sub
VARS B jobname="$(JOB)"

JOB C simple-job.sub
VARS C jobname="$(JOB)"

JOB D simple-job.sub
VARS D jobname="$(JOB)"

PARENT A CHILD B C
PARENT B C CHILD D
END DAG FILE diamond.dag

The top level DAG incorporates the diamond-shaped splice:

BEGIN DAG FILE toplevel.dag
JOB X simple-job.sub
VARS X jobname="$(JOB)"

JOB Y simple-job.sub
VARS Y jobname="$(JOB)"

This is an instance of diamond.dag, given the symbolic name DIAMOND
SPLICE DIAMOND diamond.dag

Set up a relationship between the nodes in this dag and the splice

PARENT X CHILD DIAMOND
PARENT DIAMOND CHILD Y

END DAG FILE toplevel.dag

The following example illustrates the resulting top level DAG
and the dependencies produced. Notice the naming of nodes scoped with
the splice name. This hierarchy of splice names assures unique names
associated with all nodes.

 flowchart TD
 X --> Diamond+A
 Diamond+A --> Diamond+B & Diamond+C
 Diamond+B & Diamond+C --> Diamond+D
 Diamond+D --> Y

The diamond-shaped DAG spliced between two nodes.

SPLICING one DAG Twice Example

The next example illustrates the starting point for a
more complex example. The DAG input file X.dag describes this
X-shaped DAG. The completed example displays more of the spatial
constructs provided by splices. Pay particular attention to the notion
that each named splice creates a new graph, even when the same DAG input
file is specified.

BEGIN DAG FILE X.dag

JOB A simple-job.sub
VARS A jobname="$(JOB)"

JOB B simple-job.sub
VARS B jobname="$(JOB)"

JOB C simple-job.sub
VARS C jobname="$(JOB)"

JOB D simple-job.sub
VARS D jobname="$(JOB)"

JOB E simple-job.sub
VARS E jobname="$(JOB)"

JOB F simple-job.sub
VARS F jobname="$(JOB)"

JOB G simple-job.sub
VARS G jobname="$(JOB)"

Make an X-shaped dependency graph
PARENT A B C CHILD D
PARENT D CHILD E F G

END DAG FILE X.dag

 flowchart TD
 A & B & C --> D
 D --> E & F & G

The X-shaped DAG.

File s1.dag continues the example, presenting the DAG input file
that incorporates two separate splices of the X-shaped DAG.
The next description illustrates the resulting DAG.

BEGIN DAG FILE s1.dag

JOB A simple-job.sub
VARS A jobname="$(JOB)"

JOB B simple-job.sub
VARS B jobname="$(JOB)"

name two individual splices of the X-shaped DAG
SPLICE X1 X.dag
SPLICE X2 X.dag

Define dependencies
A must complete before the initial nodes in X1 can start
PARENT A CHILD X1
All final nodes in X1 must finish before
the initial nodes in X2 can begin
PARENT X1 CHILD X2
All final nodes in X2 must finish before B may begin.
PARENT X2 CHILD B

END DAG FILE s1.dag

 flowchart TD
 A((A)) --> X1+A & X1+B & X1+C
 X1+A & X1+B & X1+C --> X1+D
 X1+D --> X1+E & X1+F & X1+G
 X1+E & X1+F & X1+G --> X2+A
 X1+E & X1+F & X1+G --> X2+B
 X1+E & X1+F & X1+G --> X2+C
 X2+A & X2+B & X2+C --> X2+D
 X2+D --> X2+E & X2+F & X2+G
 X2+E & X2+F & X2+G --> B

The DAG described by s1.dag.

Disjointed SPLICE Example

The top level DAG in the hierarchy of this complex example is described
by the DAG input file toplevel.dag, which illustrates the final DAG.
Notice that the DAG has two disjoint graphs in it as a result of splice S3 not
having any dependencies associated with it in this top level DAG.

BEGIN DAG FILE toplevel.dag

JOB A simple-job.sub
VARS A jobname="$(JOB)"

JOB B simple-job.sub
VARS B jobname="$(JOB)"

JOB C simple-job.sub
VARS C jobname="$(JOB)"

JOB D simple-job.sub
VARS D jobname="$(JOB)"

a diamond-shaped DAG
PARENT A CHILD B C
PARENT B C CHILD D

This splice of the X-shaped DAG can only run after
the diamond dag finishes
SPLICE S2 X.dag
PARENT D CHILD S2

Since there are no dependencies for S3,
the following splice is disjoint
SPLICE S3 s1.dag

END DAG FILE toplevel.dag

 flowchart TD
 A --> B & C
 B & C --> D
 D --> S2+A & S2+B & S2+C
 S2+A & S2+B & S2+C --> S2+D
 S2+D --> S2+E & S2+F & S2+G

 S3+A --> S3+X1+A & S3+X1+B & S3+X1+C
 S3+X1+A & S3+X1+B & S3+X1+C --> S3+X1+D
 S3+X1+D --> S3+X1+E & S3+X1+F & S3+X1+G
 S3+X1+E & S3+X1+F & S3+X1+G --> S3+X2+A & S3+X2+B & S3+X2+C
 S3+X2+A & S3+X2+B & S3+X2+C --> S3+X2+D
 S3+X2+D --> S3+X2+E & S3+X2+F & S3+X3+G
 S3+X2+E & S3+X2+F & S3+X3+G --> S3+B

The complex splice example DAG.

Splice DIR option

The DIR option specifies a working directory for a splice, from which
the splice will be parsed and the jobs within the splice submitted. The
directory associated with the splice’s DIR specification will be
propagated as a prefix to all nodes in the splice and any included
splices. If a node already has a DIR specification, then the splice’s
DIR specification will be a prefix to the node’s, separated by a
directory separator character. Jobs in included splices with an absolute
path for their DIR specification will have their DIR specification
untouched. Note that a DAG containing DIR specifications cannot be run
in conjunction with the -usedagdir command-line argument to
condor_submit_dag.

A “full” rescue DAG generated by a DAG run with the -usedagdir
argument will contain DIR specifications, so such a rescue DAG must be
run without the -usedagdir argument. (Note that “full” rescue DAGs are
no longer the default.)

Splice Limitations

Limitation: splice DAGS do not produce rescue DAGs

Because the nodes of a splice are directly incorporated into the DAG
containing the SPLICE command, splices do not generate their own rescue
DAGs, unlike SUBDAG EXTERNALs. However, all progress for nodes in the splice
DAG will be written in the parent DAGs rescue DAG file.

Limitation: splice DAGs must exist at submit time

Unlike the DAG files referenced in a SUBDAG EXTERNAL command, DAG files
referenced in a SPLICE command must exist when the DAG containing the
SPLICE command is submitted. (Note that, if a SPLICE is contained within
a sub-DAG, the splice DAG must exist at the time that the sub-DAG is
submitted, not when the top-most DAG is submitted, so the splice DAG can
be created by a part of the workflow that runs before the relevant
sub-DAG.)

Limitation: Splices and PRE or POST Scripts

A PRE or POST script may not be specified for a splice (however, nodes
within a spliced DAG can have PRE and POST scripts). The reason for
this is that, when the DAG is parsed, the splices are also parsed and
the splice nodes are directly incorporated into the DAG containing the
SPLICE command. Therefore, once parsing is complete, there are no actual
nodes corresponding to the splice itself to which to “attach” the PRE or
POST scripts.

To achieve the desired effect of having a PRE script associated with a
splice, introduce a new NOOP node into the DAG with the splice as a
dependency. Attach the PRE script to the NOOP node.

BEGIN DAG FILE example1.dag

Names a node with no associated node job, a NOOP node
Note that the file noop.submit does not need to exist
JOB OnlyPreNode noop.sub NOOP

Attach a PRE script to the NOOP node
SCRIPT PRE OnlyPreNode prescript.sh

Define the splice
SPLICE TheSplice thenode.dag

Define the dependency
PARENT OnlyPreNode CHILD TheSplice

END DAG FILE example1.dag

The same technique is used to achieve the effect of having a POST script
associated with a splice. Introduce a new NOOP node into the DAG as a
child of the splice, and attach the POST script to the NOOP node.

BEGIN DAG FILE example2.dag

Names a node with no associated node job, a NOOP node
Note that the file noop.submit does not need to exist.
JOB OnlyPostNode noop.sub NOOP

Attach a POST script to the NOOP node
SCRIPT POST OnlyPostNode postscript.sh

Define the splice
SPLICE TheSplice thenode.dag

Define the dependency
PARENT TheSplice CHILD OnlyPostNode

END DAG FILE example2.dag

Limitation: Splices and the RETRY of a Node, use of VARS, or use of PRIORITY

A RETRY, VARS or PRIORITY command cannot be specified for a SPLICE;
however, individual nodes within a spliced DAG can have a RETRY, VARS or
PRIORITY specified.

Here is an example showing a DAG that will not be parsed successfully:

top level DAG input file
JOB A a.sub
SPLICE B b.dag
PARENT A CHILD B

cannot work, as B is not a node in the DAG once
splice B is incorporated
RETRY B 3
VARS B dataset="10"
PRIORITY B 20

The following example will work:

top level DAG input file
JOB A a.sub
SPLICE B b.dag
PARENT A CHILD B

file: b.dag
JOB X x.sub
RETRY X 3
VARS X dataset="10"
PRIORITY X 20

When RETRY is desired on an entire subgraph of a workflow, sub-DAGs (see
above) must be used instead of splices.

Here is the same example, now defining job B as a SUBDAG, and effecting
RETRY on that SUBDAG.

top level DAG input file
JOB A a.sub
SUBDAG EXTERNAL B b.dag
PARENT A CHILD B

RETRY B 3

Limitation: The Interaction of Categories and MAXJOBS with Splices

Categories normally refer only to nodes within a given splice. All of
the assignments of nodes to a category, and the setting of the category
throttle, should be done within a single DAG file. However, it is now
possible to have categories include nodes from within more than one
splice. To do this, the category name is prefixed with the + (plus)
character. This tells DAGMan that the category is a cross-splice
category. Towards deeper understanding, what this really does is prevent
renaming of the category when the splice is incorporated into the
upper-level DAG. The MAXJOBS specification for the category can appear
in either the upper-level DAG file or one of the splice DAG files. It
probably makes the most sense to put it in the upper-level DAG file.

Here is an example which applies a single limitation on submitted jobs,
identifying the category with +init.

relevant portion of file name: upper.dag

SPLICE A splice1.dag
SPLICE B splice2.dag

MAXJOBS +init 2

relevant portion of file name: splice1.dag

JOB C C.sub
CATEGORY C +init
JOB D D.sub
CATEGORY D +init

relevant portion of file name: splice2.dag

JOB X X.sub
CATEGORY X +init
JOB Y Y.sub
CATEGORY Y +init

For both global and non-global category throttles, settings at a higher
level in the DAG override settings at a lower level. In this example:

relevant portion of file name: upper.dag

SPLICE A lower.dag

MAXJOBS A+catX 10
MAXJOBS +catY 2

relevant portion of file name: lower.dag

MAXJOBS catX 5
MAXJOBS +catY 1

the resulting throttle settings are 2 for the +catY category and 10
for the A+catX category in splice. Note that non-global category
names are prefixed with their splice name(s), so to refer to a
non-global category at a higher level, the splice name must be included.

 DAGMan Throttling

DAGMan Throttling

Submit machines with limited resources are supported by command line
options that place limits on the submission and handling of HTCondor
jobs and PRE and POST scripts. Presented here are descriptions of the
command line options to condor_submit_dag. These same limits can be
set in configuration. Each limit is applied within a single DAG.

Throttling at DAG Submission

	Total nodes/clusters: The -maxjobs option specifies the maximum
number of clusters that condor_dagman can submit at one time. Since
each node corresponds to a single cluster, this limit restricts the
number of nodes that can be submitted (in the HTCondor queue) at a time.
It is commonly used when there is a limited amount of input file staging
capacity. As a specific example, consider a case where each node
represents a single HTCondor proc that requires 4 MB of input files, and
the proc will run in a directory with a volume of 100 MB of free space.
Using the argument -maxjobs 25 guarantees that a maximum of 25
clusters, using a maximum of 100 MB of space, will be submitted to
HTCondor at one time. (See the condor_submit_dag manual
page) for more information. Also see the equivalent
DAGMAN_MAX_JOBS_SUBMITTED configuration option.

	Idle procs: The number of idle procs within a given DAG can be
limited with the optional command line argument -maxidle.
condor_dagman will not submit any more node jobs until the number of
idle procs in the DAG goes below this specified value, even if there are
ready nodes in the DAG. This allows condor_dagman to submit jobs in a
way that adapts to the load on the HTCondor pool at any given time. If
the pool is lightly loaded, condor_dagman will end up submitting more
jobs; if the pool is heavily loaded, condor_dagman will submit fewer
jobs. (See the condor_submit_dag manual page for more
information.) Also see the equivalent DAGMAN_MAX_JOBS_IDLE
configuration option.

	PRE/POST scripts: Since PRE and POST scripts run on the submit
machine, it may be desirable to limit the number of PRE or POST scripts
running at one time. The optional -maxpre command line argument
limits the number of PRE scripts that may be running at one time, and
the optional -maxpost command line argument limits the number of
POST scripts that may be running at one time. (See the
condor_submit_dag manual page for more information.)
Also see the equivalent DAGMAN_MAX_PRE_SCRIPTS and
DAGMAN_MAX_POST_SCRIPTS configuration options.

Throttling Nodes by Category

In order to limit the number of submitted job clusters within a DAG, the
nodes may be placed into categories by assignment of a name. Then, a
maximum number of submitted clusters may be specified for each category.

The CATEGORY command assigns a category name to a DAG node. The syntax
for CATEGORY is

CATEGORY <JobName | ALL_NODES> CategoryName

Category names cannot contain white space.

The MAXJOBS command limits the number of submitted job clusters on a
per category basis. The syntax for MAXJOBS is

MAXJOBS CategoryName MaxJobsValue

If the number of submitted job clusters for a given category reaches the
limit, no further job clusters in that category will be submitted until
other job clusters within the category terminate. If MAXJOBS is not set
for a defined category, then there is no limit placed on the number of
submissions within that category.

Note that a single invocation of condor_submit results in one job
cluster. The number of HTCondor jobs within a cluster may be greater
than 1.

The configuration variable DAGMAN_MAX_JOBS_SUBMITTED and the
condor_submit_dag -maxjobs command-line option are still enforced
if these CATEGORY and MAXJOBS throttles are used.

Please see Splice Limitations
for a description of the interaction between categories and DAG splices.

 Optimization of Submission Time

Optimization of Submission Time

condor_dagman works by watching log files for events, such as
submission, termination, and going on hold. When a new job is ready to
be run, it is submitted to the condor_schedd, which needs to acquire
a computing resource. Acquisition requires the condor_schedd to
contact the central manager and get a claim on a machine, and this claim
cycle can take many minutes.

Configuration variable DAGMAN_HOLD_CLAIM_TIME avoids the wait
for a negotiation cycle. When set to a non zero value, the condor_schedd
keeps a claim idle, such that the condor_startd delays in shifting from
the Claimed to the Preempting state (see Policy Configuration for Execution Points and for Access Points).
Thus, if another job appears that is suitable for the claimed resource,
then the condor_schedd will submit the job directly to the
condor_startd, avoiding the wait and overhead of a negotiation cycle.
This results in a speed up of job completion, especially for linear DAGs
in pools that have lengthy negotiation cycle times.

By default, DAGMAN_HOLD_CLAIM_TIME is 20, causing a claim to remain
idle for 20 seconds, during which time a new job can be submitted
directly to the already-claimed condor_startd. A value of 0 means
that claims are not held idle for a running DAG. If a DAG node has no
children, the value of DAGMAN_HOLD_CLAIM_TIME will be ignored; the
KeepClaimIdle attribute will not be defined in the job ClassAd of
the node job, unless the job requests it using the submit command
keep_claim_idle .

 Managing Large Numbers of Jobs with DAGMan

Managing Large Numbers of Jobs with DAGMan

Using DAGMan is recommended when submitting large numbers of jobs. The
recommendation holds whether the jobs are represented by a DAG due to
dependencies, or all the jobs are independent of each other, such as
they might be in a parameter sweep. DAGMan offers:

	
	Throttling
	Throttling limits the number of submitted jobs at any point in time.

	
	Retry of jobs that fail
	This is a useful tool when an intermittent error may cause a job to
fail or may cause a job to fail to run to completion when attempted
at one point in time, but not at another point in time. The
conditions under which retry occurs are user-defined. In addition,
the administrative support that facilitates the rerunning of only
those jobs that fail is automatically generated.

	
	Scripts associated with node jobs
	PRE and POST scripts run on the submit host before and/or after the
execution of specified node jobs.

Each of these capabilities is described in detail within this manual
section about DAGMan. To make effective use of DAGMan, there is no way
around reading the appropriate subsections.

To run DAGMan with large numbers of independent jobs, there are
generally two ways of organizing and specifying the files that control
the jobs. Both ways presume that programs or scripts will generate
needed files, because the file contents are either large and repetitive,
or because there are a large number of similar files to be generated
representing the large numbers of jobs. The two file types needed are
the DAG input file and the submit description file(s) for the HTCondor
jobs represented. Each of the two ways is presented separately:

	
	A unique submit description file for each of the many jobs.
	A single DAG input file lists each of the jobs and specifies a
distinct submit description file for each job. The DAG input file is
simple to generate, as it chooses an identifier for each job and
names the submit description file. For example, the simplest DAG
input file for a set of 1000 independent jobs, as might be part of a
parameter sweep, appears as

file sweep.dag
JOB job0 job0.sub
JOB job1 job1.sub
JOB job2 job2.sub
...
JOB job999 job999.sub

There are 1000 submit description files, with a unique one for each
of the job<N> jobs. Assuming that all files associated with this set
of jobs are in the same directory, and that files continue the same
naming and numbering scheme, the submit description file for
job6.sub might appear as

file job6.sub
universe = vanilla
executable = /path/to/executable
log = job6.log
input = job6.in
output = job6.out
arguments = "-file job6.out"
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Submission of the entire set of jobs uses the command line:

$ condor_submit_dag sweep.dag

A benefit to having unique submit description files for each of the
jobs is that they are available if one of the jobs needs to be
submitted individually. A drawback to having unique submit
description files for each of the jobs is that there are lots of
submit description files.

	
	Single submit description file.
	A single HTCondor submit description file might be used for all the
many jobs of the parameter sweep. To distinguish the jobs and their
associated distinct input and output files, the DAG input file
assigns a unique identifier with the VARS command.

file sweep.dag
JOB job0 common.sub
VARS job0 runnumber="0"
JOB job1 common.sub
VARS job1 runnumber="1"
JOB job2 common.sub
VARS job2 runnumber="2"
...
JOB job999 common.sub
VARS job999 runnumber="999"

The single submit description file for all these jobs utilizes the
runnumber variable value in its identification of the job’s
files. This submit description file might appear as

file common.sub
universe = vanilla
executable = /path/to/executable
log = wholeDAG.log
input = job$(runnumber).in
output = job$(runnumber).out
arguments = "-$(runnumber)"
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

The job with runnumber="8" expects to find its input file
job8.in in the single, common directory, and it sends its output
to job8.out. The single log for all job events of the entire DAG
is wholeDAG.log. Using one file for the entire DAG meets the
limitation that no macro substitution may be specified for the job
log file, and it is likely more efficient as well. This node’s
executable is invoked with

/path/to/executable -8

These examples work well with respect to file naming and file location
when there are less than several thousand jobs submitted as part of a
DAG. The large numbers of files per directory becomes an issue when
there are greater than several thousand jobs submitted as part of a DAG.
In this case, consider a more hierarchical structure for the files
instead of a single directory. Introduce a separate directory for each
run. For example, if there were 10,000 jobs, there would be 10,000
directories, one for each of these jobs. The directories are presumed to
be generated and populated by programs or scripts that, like the
previous examples, utilize a run number. Each of these directories named
utilizing the run number will be used for the input, output, and log
files for one of the many jobs.

As an example, for this set of 10,000 jobs and directories, assume that
there is a run number of 600. The directory will be named dir600,
and it will hold the 3 files called in, out, and log,
representing the input, output, and HTCondor job log files associated
with run number 600.

The DAG input file sets a variable representing the run number, as in
the previous example:

file biggersweep.dag
JOB job0 bigger.sub
VARS job0 runnumber="0"
JOB job1 bigger.sub
VARS job1 runnumber="1"
JOB job2 bigger.sub
VARS job2 runnumber="2"
...
JOB job9999 bigger.sub
VARS job9999 runnumber="9999"

A single HTCondor submit description file may be written. It resides in
the same directory as the DAG input file.

file bigger.sub
universe = vanilla
executable = /path/to/executable
log = log
input = in
output = out
arguments = "-$(runnumber)"
initialdir = dir$(runnumber)
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

One item to care about with this set up is the underlying file system
for the pool. The transfer of files (or not) when using
initialdir differs
based upon the job
universe and whether or
not there is a shared file system. See the condor_submit
manual page for the details on the submit command.

Submission of this set of jobs is no different than the previous
examples. With the current working directory the same as the one
containing the submit description file, the DAG input file, and the
subdirectories:

$ condor_submit_dag biggersweep.dag

 Custom Variables for Nodes

Custom Variables for Nodes

Jobs may be set up in a way that require a submit time key=value macros
of information to be used in the jobs submit description dictating various
behaviors for how the job can run. This allows a single submit description
file for a job to be versatile for many different job runs. However, for a
normal job submission (one not automated) the user must pass this extra
information at job submit time. To mimic this behavior of passing information
at job submit time within a DAGMan workflow, the VARS command can be utilized.

Variable Values Associated with Nodes

Macros defined for DAG nodes can be used within the submit description
file of the node job. The VARS command provides a method for defining
a macro. Macros are defined on a per-node basis, using the syntax

VARS <JobName | ALL_NODES> [PREPEND | APPEND] macroname="string" [macroname2="string2" ...]

The macro may be used within the submit description file of the relevant
node. A macroname may contain alphanumeric characters (a-z, A-Z, and
0-9) and the underscore character. The space character delimits macros,
such that there may be more than one macro defined on a single line.
Multiple lines defining macros for the same node are permitted.

Correct syntax requires that the string must be enclosed in double
quotes. To use a double quote mark within a string, escape the double
quote mark with the backslash character (\). To add the backslash
character itself, use two backslashes (\\).

A restriction is that the macroname itself cannot begin with the
string queue, in any combination of upper or lower case letters.

Examples

If the DAG input file contains

File name: diamond.dag

JOB A A.submit
JOB B B.submit
JOB C C.submit
JOB D D.submit
VARS A state="Wisconsin"
PARENT A CHILD B C
PARENT B C CHILD D

then the submit description file A.submit may use the macro state.
Consider this submit description file A.submit:

file name: A.submit
executable = A.exe
log = A.log
arguments = "$(state)"
queue

The macro value expands to become a command-line argument in the
invocation of the job. The job is invoked with

A.exe Wisconsin

The use of macros may allow a reduction in the number of distinct submit
description files. A separate example shows this intended use of VARS.
In the case where the submit description file for each node varies only
in file naming, macros reduce the number of submit description files to
one.

This example references a single submit description file for each of the
nodes in the DAG input file, and it uses the VARS entry to name files
used by each job.

The relevant portion of the DAG input file appears as

JOB A theonefile.sub
JOB B theonefile.sub
JOB C theonefile.sub

VARS A filename="A"
VARS B filename="B"
VARS C filename="C"

The submit description file appears as

submit description file called: theonefile.sub
executable = progX
output = $(filename)
error = error.$(filename)
log = $(filename).log
queue

For a DAG such as this one, but with thousands of nodes, the ability to
write and maintain a single submit description file together with a
single, yet more complex, DAG input file is worthwhile.

Prepend or Append Variables to Node

After JobName the word PREPEND or APPEND can be added to specify how
a variable is passed to a node at job submission time. APPEND will add
the variable after the submit description file is read. Resulting in the
passed variable being added as a macro or overwriting any already existing
variable values. PREPEND will add the variable before the submit
description file is read. This allows the variable to be used in submit
description file conditionals.

The relevant portion of the DAG input file appears as

JOB A theotherfile.sub

VARS A PREPEND var1="A"
VARS A APPEND var2="B"

The submit description file appears as

submit description file called: theotherfile.sub
executable = progX

if defined var1
 # This will occur due to PREPEND
 Arguments = "$(var1) was prepended"
else
 # This will occur due to APPEND
 Arguments = "No variables prepended"
endif

var2 = "C"

output = results-$(var2).out
error = error.txt
log = job.log
queue

For a DAG such as this one, Arguments will become “A was prepended” and the
output file will be named results-B.out. If instead var1 used APPEND
and var2 used PREPEND then Arguments will become “No variables prepended”
and the output file will be named results-C.out.

If neither PREPEND nor APPEND is used in the VARS line then the variable
will either be prepended or appended based on the configuration variable
DAGMAN_DEFAULT_APPEND_VARS.

Multiple macroname definitions

If a macro name for a specific node in a DAG is defined more than once,
as it would be with the partial file contents

JOB job1 job1.submit
VARS job1 a="foo"
VARS job1 a="bar"

a warning is written to the log, of the format

Warning: VAR <macroname> is already defined in job <JobName>
Discovered at file "<DAG input file name>", line <line number>

The behavior of DAGMan is such that all definitions for the macro exist,
but only the last one defined is used as the variable’s value. Using
this example, if the job1.submit submit description file contains

arguments = "$(a)"

then the argument will be bar.

Special characters within VARS string definitions

The value defined for a macro may contain spaces and tabs. It is also
possible to have double quote marks and backslashes within a value. In
order to have spaces or tabs within a value specified for a command line
argument, use the New Syntax format for the arguments submit
command, as described in condor_submit. Escapes for double
quote marks depend on whether the New Syntax or Old Syntax format is
used for the arguments submit command. Note that in both syntaxes,
double quote marks require two levels of escaping: one level is for the
parsing of the DAG input file, and the other level is for passing the
resulting value through condor_submit.

As of HTCondor version 8.3.7, single quotes are permitted within the
value specification. For the specification of command line
arguments, single quotes can be used in three ways:

	in Old Syntax, within a macro’s value specification

	in New Syntax, within a macro’s value specification

	in New Syntax only, to delimit an argument containing white space

There are examples of all three cases below. In New Syntax, to pass a
single quote as part of an argument, escape it with another single quote
for condor_submit parsing as in the example’s NodeA fourth macro.

As an example that shows uses of all special characters, here are only
the relevant parts of a DAG input file. Note that the NodeA value for
the macro second contains a tab.

VARS NodeA first="Alberto Contador"
VARS NodeA second="\"\"Andy Schleck\"\""
VARS NodeA third="Lance\\ Armstrong"
VARS NodeA fourth="Vincenzo ''The Shark'' Nibali"
VARS NodeA misc="!@#$%^&*()_-=+=[]{}?/"

VARS NodeB first="Lance_Armstrong"
VARS NodeB second="\\\"Andreas_Kloden\\\""
VARS NodeB third="Ivan_Basso"
VARS NodeB fourth="Bernard_'The_Badger'_Hinault"
VARS NodeB misc="!@#$%^&*()_-=+=[]{}?/"

VARS NodeC args="'Nairo Quintana' 'Chris Froome'"

Consider an example in which the submit description file for NodeA uses
the New Syntax for the arguments command:

arguments = "'$(first)' '$(second)' '$(third)' '($fourth)' '$(misc)'"

The single quotes around each variable reference are only necessary if
the variable value may contain spaces or tabs. The resulting values
passed to the NodeA executable are:

Alberto Contador
"Andy Schleck"
Lance\ Armstrong
Vincenzo 'The Shark' Nibali
!@#$%^&*()_-=+=[]{}?/

Consider an example in which the submit description file for NodeB uses
the Old Syntax for the arguments command:

arguments = $(first) $(second) $(third) $(fourth) $(misc)

The resulting values passed to the NodeB executable are:

Lance_Armstrong
"Andreas_Kloden"
Ivan_Basso
Bernard_'The_Badger'_Hinault
!@#$%^&*()_-=+=[]{}?/

Consider an example in which the submit description file for NodeC uses
the New Syntax for the arguments command:

arguments = "$(args)"

The resulting values passed to the NodeC executable are:

Nairo Quintana
Chris Froome

Using special macros within a definition

The $(JOB) and $(RETRY) macros may be used within a definition of the
string that defines a variable. This usage requires parentheses, such
that proper macro substitution may take place when the macro’s value is
only a portion of the string.

	$(JOB) expands to the node JobName. If the VARS line appears in a
DAG file used as a splice file, then $(JOB) will be the fully scoped
name of the node.

For example, the DAG input file lines

JOB NodeC NodeC.submit
VARS NodeC nodename="$(JOB)"

set nodename to NodeC, and the DAG input file lines

JOB NodeD NodeD.submit
VARS NodeD outfilename="$(JOB)-output"

set outfilename to NodeD-output.

	$(RETRY) expands to 0 the first time a node is run; the value is
incremented each time the node is retried. For example:

VARS NodeE noderetry="$(RETRY)"

Using VARS to define ClassAd attributes

The macroname may also begin with a My., in which case it
names a ClassAd attribute. For example, the VARS specification

VARS NodeF My.A="\"bob\""

results in the the NodeF job ClassAd attribute

A = "bob"

Continuing this example, it allows the HTCondor submit description file
for NodeF to use the following line:

arguments = "$$([My.A])"

Note that while the old behavior of using the + character to signify classad
attributes does work, it is not recommended over using My.

VARS NodeF +A="\"bob\""

will also result in

A = "bob"

 DAG Manager Job Specifications

DAG Manager Job Specifications

Some DAG file commands can be used to alter information about the
DAG manager job itself such as adding custom classad attributes and
setting information in the job environment.

Classad Attributes in the DAG Manager Job

The SET_JOB_ATTR keyword within the DAG input file specifies an
attribute/value pair to be set in the DAGMan proper job’s ClassAd.
The syntax for SET_JOB_ATTR is

SET_JOB_ATTR AttributeName = AttributeValue

As an example, if the DAG input file contains:

SET_JOB_ATTR TestNumber = 17

the ClassAd of the DAGMan job itself will have an attribute
TestNumber with the value 17.

The attribute set by the SET_JOB_ATTR command is set only in the
ClassAd of the DAGMan job itself - it is not propagated to node jobs of
the DAG.

Values with spaces can be set by surrounding the string containing a
space with single or double quotes. (Note that the quote marks
themselves will be part of the value.)

Only a single attribute/value pair can be specified per SET_JOB_ATTR
command. If the same attribute is specified multiple times in the DAG
(or in multiple DAGs run by the same DAGMan instance) the last-specified
value is the one that will be utilized. An attribute set in the DAG file
can be overridden by specifying

-append 'My.<attribute> = <value>'

on the condor_submit_dag command line.

Environment Variables in the DAG Manager Job

The ENV keyword within the DAG input file can be used to specify
environment variables to set into the DAGMan jobs environment or get
from the environment that the DAGMan job was submitted from. It is
important to know that the environment variables in the DAG manager
jobs environment effect scripts and node jobs that rely environment
variables since scripts and node jobs are submitted from the DAGMan
jobs environment. The syntax is:

ENV GET VAR-1 VAR-2 ... VAR-N
or
ENV SET Key=Value;Key=Value; ...

The GET keyword takes a list of environment variables names to be added
to the DAGMan jobs getenv command in the .condor.sub file for the DAG.

The SET keyword takes a semi-colon delimited list of key=value pairs of
information to add into DAGMan jobs environment command in the .condor.sub
file for the DAG. These added key=value must follow the normal HTCondor
job environment rules.

 Configuration Specific to a DAG

Configuration Specific to a DAG

All configuration variables and their definitions that relate to DAGMan
may be found in Configuration File Entries for DAGMan.

Configuration variables for condor_dagman can be specified in several
ways, as given within the ordered list:

	In an HTCondor configuration file.

	With an environment variable. Prepend the string _CONDOR_ to the
configuration variable’s name.

	With a line in the DAG input file using the keyword CONFIG, such
that there is a configuration file specified that is specific to an
instance of condor_dagman. The configuration file specification
may instead be specified on the condor_submit_dag command line
using the -config option.

	For some configuration variables, condor_submit_dag command line
argument specifies a configuration variable. For example, the
configuration variable DAGMAN_MAX_JOBS_SUBMITTED has the
corresponding command line argument -maxjobs.

For this ordered list, configuration values specified or parsed later in
the list override ones specified earlier. For example, a value specified
on the condor_submit_dag command line overrides corresponding values
in any configuration file. And, a value specified in a DAGMan-specific
configuration file overrides values specified in a general HTCondor
configuration file.

The CONFIG command within the DAG input file specifies a configuration
file to be used to set configuration variables related to condor_dagman
when running this DAG. The syntax for CONFIG is

CONFIG dagman.config

then the configuration values in file dagman.config will be used for
this DAG. If the contents of file dagman.config is

DAGMAN_MAX_JOBS_IDLE = 10

then this configuration is defined for this DAG.

Only a single configuration file can be specified for a given
condor_dagman run. For example, if one file is specified within a DAG
input file, and a different file is specified on the
condor_submit_dag command line, this is a fatal error at submit
time. The same is true if different configuration files are specified in
multiple DAG input files and referenced in a single
condor_submit_dag command.

If multiple DAGs are run in a single condor_dagman run, the
configuration options specified in the condor_dagman configuration
file, if any, apply to all DAGs, even if some of the DAGs specify no
configuration file.

Configuration variables that are not for condor_dagman and not
utilized by DaemonCore, yet are specified in a condor_dagman-specific
configuration file are ignored.

 INCLUDE

INCLUDE

The INCLUDE command allows the contents of one DAG file to be parsed
as if they were physically included in the referencing DAG file. The
syntax for INCLUDE is

INCLUDE FileName

For example, if we have two DAG files like this:

File name: foo.dag

JOB A A.sub
INCLUDE bar.dag

File name: bar.dag

JOB B B.sub
JOB C C.sub

this is equivalent to the single DAG file:

JOB A A.sub
JOB B B.sub
JOB C C.sub

Note that the included file must be in proper DAG syntax. Also, there
are many cases where a valid included DAG file will cause a parse error,
such as the included files defining nodes with the same name.

INCLUDEs can be nested to any depth (be sure not to create a cycle
of includes!).

Example: Using INCLUDE to simplify multiple similar workflows

One use of the INCLUDE command is to simplify the DAG files when we
have a single workflow that we want to run on a number of data sets. In
that case, we can do something like this:

File name: workflow.dag
Defines the structure of the workflow

JOB Split split.sub
JOB Process00 process.sub
...
JOB Process99 process.sub
JOB Combine combine.sub
PARENT Split CHILD Process00 ... Process99
PARENT Process00 ... Process99 CHILD Combine

File name: split.sub

executable = my_split
input = $(dataset).phase1
output = $(dataset).phase2
...

File name: data57.vars

VARS Split dataset="data57"
VARS Process00 dataset="data57"
...
VARS Process99 dataset="data57"
VARS Combine dataset="data57"

File name: run_dataset57.dag

INCLUDE workflow.dag
INCLUDE data57.vars

Then, to run our workflow on dataset 57, we run the following command:

$ condor_submit_dag run_dataset57.dag

This avoids having to duplicate the JOB and PARENT/CHILD commands
for every dataset - we can just re-use the workflow.dag file, in
combination with a dataset-specific vars file.

 ALL_NODES Option

ALL_NODES Option

In the following commands, a specific node name can be replaced by the
option ALL_NODES:

	SCRIPT

	PRE_SKIP

	RETRY

	ABORT-DAG-ON

	VARS

	PRIORITY

	CATEGORY

This will cause the given command to apply to all nodes (except any
FINAL node) in that DAG.

The ALL_NODES never applies to a FINAL node. If the ALL_NODES
option is used in a DAG that has a FINAL node, the dagman.out file
will contain messages noting that the FINAL node is skipped when parsing
the relevant commands.

The ALL_NODES option is case-insensitive.

It is important to note that the ALL_NODES option does not apply
across splices and sub-DAGs. In other words, an ALL_NODES option
within a splice or sub-DAG will apply only to nodes within that splice
or sub-DAG; also, an ALL_NODES option in a parent DAG will PRIORITY DAG (again,
except any FINAL node).

As of version 8.5.8, the ALL_NODES option cannot be used when
multiple DAG files are specified on the condor_submit_dag command
line. Hopefully this limitation will be fixed in a future release.

When multiple commands (whether using the ALL_NODES option or not)
set a given property of a DAG node, the last relevant command overrides
earlier commands, as shown in the following examples:

For example, in this DAG:

JOB A node.sub
VARS A name="A"
VARS ALL_NODES name="X"

the value of name for node A will be “X”.

In this DAG:

JOB A node.sub
VARS A name="A"
VARS ALL_NODES name="X"
VARS A name="foo"

the value of name for node A will be “foo”.

Here is an example DAG using the ALL_NODES option:

File: all_ex.dag
JOB A node.sub
JOB B node.sub
JOB C node.sub

SCRIPT PRE ALL_NODES my_script $JOB

VARS ALL_NODES name="$(JOB)"

This overrides the above VARS command for node B.
VARS B name="nodeB"

RETRY all_nodes 3

 DAGMan and Accounting Groups

DAGMan and Accounting Groups

As of version 8.5.6, condor_dagman propagates
accounting_group
and
accounting_group_user
values specified for condor_dagman itself to all jobs within the DAG
(including sub-DAGs).

The
accounting_group
and
accounting_group_user
values can be specified using the -append flag to
condor_submit_dag, for example:

$ condor_submit_dag -append accounting_group=group_physics -append \
 accounting_group_user=albert relativity.dag

See Group Accounting
for a discussion of group accounting and
Accounting Groups with Hierarchical Group Quotas for a discussion of accounting groups with
hierarchical group quotas.

As of version 10.0.0, any explicitly set accounting group information
within a DAGMan nodes job description will take precedence over the
accounting information propagated down through DAGMan. This allows
for easy setting of accounting information for all DAG jobs while
giving a way for specific jobs to run with different accounting information.

 Special Node Types

Special Node Types

While most DAGMan nodes are the standard JOB type that run a job and possibly
a PRE or POST script, special nodes can be specified in the DAG submit description
to help manage the DAG and its resources in various ways.

FINAL Node

A FINAL node is a single and special node that is always run at the end
of the DAG, even if previous nodes in the DAG have failed. A FINAL node
can be used for tasks such as cleaning up intermediate files and
checking the output of previous nodes. The FINAL command in the DAG
input file specifies a node job to be run at the end of the DAG.

The syntax used for the FINAL command is

FINAL JobName SubmitDescriptionFileName [DIR directory] [NOOP]

The FINAL node within the DAG is identified by JobName, and the
HTCondor job is described by the contents of the HTCondor submit
description file given by SubmitDescriptionFileName.

The keywords DIR and NOOP are as detailed in
JOB command documentation.
If both DIR and NOOP are used, they must appear in the order shown within
the syntax specification.

There may only be one FINAL node in a DAG. A parse error will be logged
by the condor_dagman job in the dagman.out file, if more than one
FINAL node is specified.

The FINAL node is virtually always run. It is run if the
condor_dagman job is removed with condor_rm. The only case in
which a FINAL node is not run is if the configuration variable
DAGMAN_STARTUP_CYCLE_DETECT is set to True, and a
cycle is detected at start up time. If DAGMAN_STARTUP_CYCLE_DETECT
is set to False and a cycle is detected during the course of
the run, the FINAL node will be run.

The success or failure of the FINAL node determines the success or
failure of the entire DAG, overriding the status of all previous nodes.
This includes any status specified by any ABORT-DAG-ON specification
that has taken effect. If some nodes of a DAG fail, but the FINAL node
succeeds, the DAG will be considered successful. Therefore, it is
important to be careful about setting the exit status of the FINAL node.

The $DAG_STATUS and $FAILED_COUNT macros can be used both as PRE
and POST script arguments, and in node job submit description files. As
an example of this, here are the partial contents of the DAG input file,

FINAL final_node final_node.sub
SCRIPT PRE final_node final_pre.pl $DAG_STATUS $FAILED_COUNT

and here are the partial contents of the submit description file,
final_node.sub

arguments = "$(DAG_STATUS) $(FAILED_COUNT)"

If there is a FINAL node specified for a DAG, it will be run at the end
of the workflow. If this FINAL node must not do anything in certain
cases, use the $DAG_STATUS and $FAILED_COUNT macros to take
appropriate actions. Here is an example of that behavior. It uses a PRE
script that aborts if the DAG has been removed with condor_rm, which,
in turn, causes the FINAL node to be considered failed without actually
submitting the HTCondor job specified for the node. Partial contents of
the DAG input file:

FINAL final_node final_node.sub
SCRIPT PRE final_node final_pre.pl $DAG_STATUS

and partial contents of the Perl PRE script, final_pre.pl:

#!/usr/bin/env perl

if ($ARGV[0] eq 4) {
 exit(1);
}

There are restrictions on the use of a FINAL node. The DONE option is
not allowed for a FINAL node. And, a FINAL node may not be referenced in
any of the following specifications:

	PARENT, CHILD

	RETRY

	ABORT-DAG-ON

	PRIORITY

	CATEGORY

As of HTCondor version 8.3.7, DAGMan allows at most two submit attempts
of a FINAL node, if the DAG has been removed from the queue with
condor_rm.

PROVISIONER Node

A PROVISIONER node is a single and special node that is always run at the
beginning of a DAG. It can be used to provision resources (ie. Amazon EC2
instances, in-memory database servers) that can then be used by the remainder
of the nodes in the workflow.

The syntax used for the PROVISIONER command is

PROVISIONER JobName SubmitDescriptionFileName

When a PROVISIONER is defined in a DAG, it gets run at the beginning of the
DAG, and no other nodes are run until the PROVISIONER has advertised that it
is ready. It does this by setting the ProvisionerState attribute in its
job classad to the enumerated value ProvisionerState::PROVISIONING_COMPLETE
(currently: 2). Once DAGMan sees that it is ready, it will start running
other nodes in the DAG as usual. At this point the PROVISIONER job continues
to run, typically sleeping and waiting while other nodes in the DAG use its
resources.

A PROVISIONER runs for a set amount of time defined in its job. It does not
get terminated automatically at the end of a DAG workflow. The expectation
is that it needs to explicitly deprovision any resources, such as expensive
cloud computing instances that should not be allowed to run indefinitely.

SERVICE Node

A SERVICE node is a special type of node that is always run at the
beginning of a DAG. These are typically used to run tasks that need to run
alongside a DAGMan workflow (ie. progress monitoring) without any direct
dependencies to the other nodes in the workflow.

The syntax used for the SERVICE command is

SERVICE ServiceName SubmitDescriptionFileName

When a SERVICE is defined in a DAG, it gets started at the beginning of the
workflow. There is no guarantee that it will start running before any of the
other nodes, although running it directly from the access point using
universe = local or universe = scheduler will almost always make this
go first.

A SERVICE node runs on a best-effort basis. If this node fails to submit
correctly, this will not register as an error and the DAG workflow
will continue normally.

If a DAGMan workflow finishes while there are SERVICE nodes still running,
it will shut these down and then exit the workflow successfully.

 Visualizing DAGs

Visualizing DAGs

It can be helpful to see a picture of a DAG. DAGMan can assist you in
visualizing a DAG by creating the input files used by the AT&T Research
Labs graphviz package. dot is a program within this package,
available from http://www.graphviz.org/,
and it is used to draw pictures of DAGs.

DAGMan produces one or more dot files as the result of an extra line in
a DAG input file. The line appears as

DOT dag.dot

This creates a file called dag.dot which contains a specification
of the DAG before any jobs within the DAG are submitted to HTCondor. The
dag.dot file is used to create a visualization of the DAG by using
this file as input to dot. This example creates a Postscript file,
with a visualization of the DAG:

$ dot -Tps dag.dot -o dag.ps

Within the DAG input file, the DOT command can take several optional
parameters:

	UPDATE This will update the dot file every time a significant
update happens.

	DONT-UPDATE Creates a single dot file, when the DAGMan begins
executing. This is the default if the parameter UPDATE is not
used.

	OVERWRITE Overwrites the dot file each time it is created. This
is the default, unless DONT-OVERWRITE is specified.

	DONT-OVERWRITE Used to create multiple dot files, instead of
overwriting the single one specified. To create file names, DAGMan
uses the name of the file concatenated with a period and an integer.
For example, the DAG input file line

DOT dag.dot DONT-OVERWRITE

causes files dag.dot.0, dag.dot.1, dag.dot.2, etc. to be
created. This option is most useful when combined with the UPDATE
option to visualize the history of the DAG after it has finished
executing.

	INCLUDE path-to-filename Includes the contents of a file
given by path-to-filename in the file produced by the DOT
command. The include file contents are always placed after the line
of the form label=. This may be useful if further editing of the
created files would be necessary, perhaps because you are
automatically visualizing the DAG as it progresses.

If conflicting parameters are used in a DOT command, the last one listed
is used.

 Capturing the Status of Nodes in a File

Capturing the Status of Nodes in a File

DAGMan can capture the status of the overall DAG and all DAG nodes in a
node status file, such that the user or a script can monitor this
status. This file is periodically rewritten while the DAG runs. To
enable this feature, the DAG input file must contain a line with the
NODE_STATUS_FILE command.

The syntax for a NODE_STATUS_FILE command is

NODE_STATUS_FILE statusFileName [minimumUpdateTime] [ALWAYS-UPDATE]

The status file is written on the machine on which the DAG is submitted;
its location is given by statusFileName, and it may be a full path and
file name.

The optional minimumUpdateTime specifies the minimum number of seconds
that must elapse between updates to the node status file. This setting
exists to avoid having DAGMan spend too much time writing the node
status file for very large DAGs. If no value is specified, this value
defaults to 60 seconds (as of version 8.5.8; previously, it defaulted to
0). The node status file can be updated at most once per
DAGMAN_USER_LOG_SCAN_INTERVAL no matter how small the
minimumUpdateTime value. Also, the node status file will be updated
when the DAG finishes, whether successfully or not, even if
minimumUpdateTime seconds have not elapsed since the last update.

Normally, the node status file is only updated if the status of some
nodes has changed since the last time the file was written. However, the
optional ALWAYS-UPDATE keyword specifies that the node status file
should be updated every time the minimum update time (and
DAGMAN_USER_LOG_SCAN_INTERVAL), has passed, even if no
nodes have changed status since the last time the file was updated. The
file will change slightly, because timestamps will be updated. For
performance reasons, large DAGs with approximately 10,000 or more nodes
are poor candidates for using the ALWAYS-UPDATE option.

As an example, if the DAG input file contains the line

NODE_STATUS_FILE my.dag.status 30

the file my.dag.status will be rewritten at intervals of 30 seconds
or more.

This node status file is overwritten each time it is updated. Therefore,
it only holds information about the current status of each node; it does
not provide a history of the node status.

Changed in version 8.1.6: HTCondor version 8.1.6 changes the format of the node status file.

The node status file is a collection of ClassAds in New ClassAd format.
There is one ClassAd for the overall status of the DAG, one ClassAd for
the status of each node, and one ClassAd with the time at which the node
status file was completed as well as the time of the next update.

Here is an example portion of a node status file:

[
 Type = "DagStatus";
 DagFiles = {
 "job_dagman_node_status.dag"
 };
 Timestamp = 1399674138;
 DagStatus = 3;
 NodesTotal = 12;
 NodesDone = 11;
 NodesPre = 0;
 NodesQueued = 1;
 NodesPost = 0;
 NodesReady = 0;
 NodesUnready = 0;
 NodesFailed = 0;
 JobProcsHeld = 0;
 JobProcsIdle = 1;
]
[
 Type = "NodeStatus";
 Node = "A";
 NodeStatus = 5;
 StatusDetails = "";
 RetryCount = 0;
 JobProcsQueued = 0;
 JobProcsHeld = 0;
]
...
[
 Type = "NodeStatus";
 Node = "C";
 NodeStatus = 3;
 StatusDetails = "idle";
 RetryCount = 0;
 JobProcsQueued = 1;
 JobProcsHeld = 0;
]
[
 Type = "StatusEnd";
 EndTime = 1399674138;
 NextUpdate = 1399674141;
]

Possible DagStatus and NodeStatus attribute values are:

	0 (STATUS_NOT_READY): At least one parent has not yet finished or
the node is a FINAL node.

	1 (STATUS_READY): All parents have finished, but the node is not yet
running.

	2 (STATUS_PRERUN): The node’s PRE script is running.

	3 (STATUS_SUBMITTED): The node’s HTCondor job(s) are in the queue.

	4 (STATUS_POSTRUN): The node’s POST script is running.

	5 (STATUS_DONE): The node has completed successfully.

	6 (STATUS_ERROR): The node has failed.

	7 (STATUS_FUTILE): The node will never run because ancestor node failed.

An ancestor is a node that a another node depends on either directly or indirectly
through a chain of PARENT/CHILD relationships. For example, the DAG shown below
would result in node G’s ancestors to be nodes A, B, D, and F
because the PARENT to CHILD relationships appear as A & B -> D -> F -> G

Example DAG Visualized
 A B
 └──┬──┘
 C──┴──D
 E─┴─F
 │
 G

A NODE_STATUS_FILE command inside any splice is ignored. If multiple
DAG files are specified on the condor_submit_dag command line, and
more than one specifies a node status file, the first specification
takes precedence.

 Machine-Readable Event History

Machine-Readable Event History

DAGMan can produce a machine-readable history of events. The
jobstate.log file is designed for use by the Pegasus Workflow
Management System, which operates as a layer on top of DAGMan. Pegasus
uses the jobstate.log file to monitor the state of a workflow. The
jobstate.log file can used by any automated tool for the monitoring
of workflows.

DAGMan produces this file when the command JOBSTATE_LOG is in the DAG
input file. The syntax for JOBSTATE_LOG is

JOBSTATE_LOG JobstateLogFileName

No more than one jobstate.log file can be created by a single
instance of condor_dagman. If more than one jobstate.log file is
specified, the first file name specified will take effect, and a warning
will be printed in the dagman.out file when subsequent
JOBSTATE_LOG specifications are parsed. Multiple specifications may
exist in the same DAG file, within splices, or within multiple,
independent DAGs run with a single condor_dagman instance.

The jobstate.log file can be considered a filtered version of the
dagman.out file, in a machine-readable format. It contains the
actual node job events that from condor_dagman, plus some additional
meta-events.

The jobstate.log file is different from the node status file, in
that the jobstate.log file is appended to, rather than being
overwritten as the DAG runs. Therefore, it contains a history of the
DAG, rather than a snapshot of the current state of the DAG.

There are 5 line types in the jobstate.log file. Each line begins
with a Unix timestamp in the form of seconds since the Epoch. Fields
within each line are separated by a single space character.

	DAGMan start: This line identifies the condor_dagman job.
The formatting of the line is

timestamp INTERNAL *** DAGMAN_STARTED dagmanCondorID ***

The dagmanCondorID field is the condor_dagman job’s
ClusterId attribute, a period, and the ProcId attribute.

	DAGMan exit: This line identifies the completion of the condor_dagman
job. The formatting of the line is

timestamp INTERNAL *** DAGMAN_FINISHED exitCode ***

The exitCode field is value the condor_dagman job returns upon
exit.

	Recovery started: If the condor_dagman job goes into recovery mode,
this meta-event is printed. During recovery mode, events will only be
printed in the file if they were not already printed before recovery mode
started. The formatting of the line is

timestamp INTERNAL *** RECOVERY_STARTED ***

	Recovery finished or Recovery failure: At the end of recovery mode,
either a RECOVERY_FINISHED or RECOVERY_FAILURE meta-event will be printed,
as appropriate. The formatting of the line is

timestamp INTERNAL *** RECOVERY_FINISHED ***

or

timestamp INTERNAL *** RECOVERY_FAILURE ***

	Normal: This line is used for all other event and meta-event types.
The formatting of the line is

timestamp JobName eventName condorID jobTag - sequenceNumber

The JobName is the name given to the node job as defined in the
DAG input file with the command JOB. It identifies the node within
the DAG.

The eventName is one of the many defined event or meta-events
given in the lists below.

The condorID field is the job’s ClusterId attribute, a period,
and the ProcId attribute. There is no condorID assigned yet
for some meta-events, such as PRE_SCRIPT_STARTED. For these, the
dash character (‘-’) is printed.

The jobTag field is defined for the Pegasus workflow manager. Its
usage is generalized to be useful to other workflow managers.
Pegasus-managed jobs add a line of the following form to their
HTCondor submit description file:

+pegasus_site = "local"

This defines the string local as the jobTag field.

Generalized usage adds a set of 2 commands to the HTCondor submit
description file to define a string as the jobTag field:

+job_tag_name = "+job_tag_value"
+job_tag_value = "viz"

This defines the string viz as the jobTag field. Without any
of these added lines within the HTCondor submit description file,
the dash character (‘-’) is printed for the jobTag field.

The sequenceNumber is a monotonically-increasing number that
starts at one. It is associated with each attempt at running a node.
If a node is retried, it gets a new sequence number; a submit
failure does not result in a new sequence number. When a Rescue DAG
is run, the sequence numbers pick up from where they left off within
the previous attempt at running the DAG. Note that this only applies
if the Rescue DAG is run automatically or with the -dorescuefrom
command-line option.

Here is an example of a very simple Pegasus jobstate.log file,
assuming the example jobTag field of local:

1292620511 INTERNAL *** DAGMAN_STARTED 4972.0 ***
1292620523 NodeA PRE_SCRIPT_STARTED - local - 1
1292620523 NodeA PRE_SCRIPT_SUCCESS - local - 1
1292620525 NodeA SUBMIT 4973.0 local - 1
1292620525 NodeA EXECUTE 4973.0 local - 1
1292620526 NodeA JOB_TERMINATED 4973.0 local - 1
1292620526 NodeA JOB_SUCCESS 0 local - 1
1292620526 NodeA POST_SCRIPT_STARTED 4973.0 local - 1
1292620531 NodeA POST_SCRIPT_TERMINATED 4973.0 local - 1
1292620531 NodeA POST_SCRIPT_SUCCESS 4973.0 local - 1
1292620535 INTERNAL *** DAGMAN_FINISHED 0 ***

 Workflow Metrics

Workflow Metrics

For every DAG, a metrics file is created.
This metrics file is named <dag_file_name>.metrics,
where <dag_file_name> is the name of the DAG input file. In a
workflow with nested DAGs, each nested DAG will create its own metrics
file.

Here is an example metrics output file:

{
 "client":"condor_dagman",
 "version":"8.1.0",
 "planner":"/lfs1/devel/Pegasus/pegasus/bin/pegasus-plan",
 "planner_version":"4.3.0cvs",
 "type":"metrics",
 "wf_uuid":"htcondor-test-job_dagman_metrics-A-subdag",
 "root_wf_uuid":"htcondor-test-job_dagman_metrics-A",
 "start_time":1375313459.603,
 "end_time":1375313491.498,
 "duration":31.895,
 "exitcode":1,
 "dagman_id":"26",
 "parent_dagman_id":"11",
 "rescue_dag_number":0,
 "jobs":4,
 "jobs_failed":1,
 "jobs_succeeded":3,
 "dag_jobs":0,
 "dag_jobs_failed":0,
 "dag_jobs_succeeded":0,
 "total_jobs":4,
 "total_jobs_run":4,
 "total_job_time":0.000,
 "dag_status":2
}

Here is an explanation of each of the items in the file:

	client: the name of the client workflow software; in the example,
it is "condor_dagman"

	version: the version of the client workflow software

	planner: the workflow planner, as read from the braindump.txt
file

	planner_version: the planner software version, as read from the
braindump.txt file

	type: the type of data, "metrics"

	wf_uuid: the workflow ID, generated by pegasus-plan, as read
from the braindump.txt file

	root_wf_uuid: the root workflow ID, which is relevant for nested
workflows. It is generated by pegasus-plan, as read from the
braindump.txt file.

	start_time: the start time of the client, in epoch seconds, with
millisecond precision

	end_time: the end time of the client, in epoch seconds, with
millisecond precision

	duration: the duration of the client, in seconds, with
millisecond precision

	exitcode: the condor_dagman exit code

	dagman_id: the value of the ClusterId attribute of the
condor_dagman instance

	parent_dagman_id: the value of the ClusterId attribute of the
parent condor_dagman instance of this DAG; empty if this DAG is
not a SUBDAG

	rescue_dag_number: the number of the Rescue DAG being run, or 0
if not running a Rescue DAG

	jobs: the number of nodes in the DAG input file, not including
SUBDAG nodes

	jobs_failed: the number of failed nodes in the workflow, not
including SUBDAG nodes

	jobs_succeeded: the number of successful nodes in the workflow,
not including SUBDAG nodes; this includes jobs that succeeded after
retries

	dag_jobs: the number of SUBDAG nodes in the DAG input file

	dag_jobs_failed: the number of SUBDAG nodes that failed

	dag_jobs_succeeded: the number of SUBDAG nodes that succeeded

	total_jobs: the total number of jobs in the DAG input file

	total_jobs_run: the total number of nodes executed in a DAG. It
should be equal to
jobs_succeeded + jobs_failed + dag_jobs_succeeded + dag_jobs_failed

	total_job_time: the sum of the time between the first execute
event and the terminated event for all jobs that are not SUBDAGs

	dag_status: the final status of the DAG, with values

	0: OK

	1: error; an error condition different than those listed here

	2: one or more nodes in the DAG have failed

	3: the DAG has been aborted by an ABORT-DAG-ON specification

	4: removed; the DAG has been removed by condor_rm

	5: a cycle was found in the DAG

	6: the DAG has been halted; see the
Suspending a Running DAG section.
for an explanation of halting a DAG

Note that any dag_status other than 0 corresponds to a non-zero
exit code.

The braindump.txt file is generated by pegasus-plan; the name of
the braindump.txt file is specified with the PEGASUS_BRAINDUMP_FILE
environment variable. If not specified, the file name defaults to
braindump.txt, and it is placed in the current directory.

Note that the total_job_time value is always zero, because the
calculation of that value has not yet been implemented.

 Python Bindings

Python Bindings

The HTCondor Python bindings expose a Pythonic interface to the HTCondor client libraries.
They utilize the same C++ libraries as HTCondor itself, meaning they have nearly the same behavior as the command line tools.

	Installing the Bindings
	Instructions on installing the HTCondor Python bindings.

	HTCondor Python Bindings Tutorials
	Learn how to use the HTCondor Python bindings.

	classad API Reference
	Documentation for classad.

	htcondor API Reference
	Documentation for htcondor.

	htcondor.htchirp API Reference
	Documentation for htcondor.htchirp.

	htcondor.dags API Reference
	Documentation for htcondor.dags.

	htcondor.personal API Reference
	Documentation for htcondor.personal.

 Installing the Bindings

Installing the Bindings

The HTCondor Python bindings are available from a variety of sources,
depending on what platform you are on and what tool you want to use
to do the installation.

Linux System Packages

Availability: RHEL; CentOS; Debian; Ubuntu

The bindings are available as a package in various Linux system package repositories.
The packages will automatically be installed if you install HTCondor itself from our
repositories [https://htcondor.org/downloads/htcondor].
This method will let you use the Python bindings in your system Python installation.

Windows Installer

Availability: Windows

The bindings are packaged in the Windows installer.
Download the .msi for the version of your choice from
the table here [https://htcondor.org/downloads/htcondor]
and run it.
After installation, the bindings packages will be in
lib\python in your install directory (e.g., C:\condor\lib\python).
Add this directory to your
PYTHONPATH environment variable [https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH]
to use the bindings.

PyPI

[image: PyPI]
 [https://pypi.org/project/htcondor/]Availability: Linux

The bindings are available
on PyPI [https://pypi.org/project/htcondor/].
To install from PyPI using pip, run

python -m pip install htcondor

Conda

[image: Conda Forge]
 [https://anaconda.org/conda-forge/htcondor][image: Conda Forge]
 [https://anaconda.org/conda-forge/htcondor]Availability: Linux

The bindings are available
on conda-forge [https://anaconda.org/conda-forge/python-htcondor].
To install using conda, run

conda install -c conda-forge python-htcondor

 HTCondor Python Bindings Tutorials

HTCondor Python Bindings Tutorials

These tutorials are also available as a series of runnable Jupyter notebooks via Binder: [image: Binder] [https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/index.ipynb]

If Binder is not working for some reason, you can also try running them using the instructions in the GitHub repository [https://github.com/htcondor/htcondor-python-bindings-tutorials].

The HTCondor Python bindings provide a powerful mechanism to interact with HTCondor from a Python program. They utilize the same C++ libraries as HTCondor itself, meaning they have nearly the same behavior as the command line tools.

In these tutorials you will learn the basics of the Python bindings and how to use them. They are broken down into a few major sections:

	Introductory Topics, quick overviews of the major features of the bindings.

	Advanced Topics, in-depth examinations of the nooks and crannies of the system.

Introductory Tutorials

These tutorials cover the basics of the Python bindings and how to use them through a quick overview of the major components.

	Submitting and Managing Jobs - How to submit and manage HTCondor jobs from Python.

	ClassAds Introduction - The essentials of the ClassAd language.

	HTCondor Introduction - How to interact with the individual HTCondor daemons.

Advanced Tutorials

The advanced tutorials are in-depth looks at specific pieces of the Python bindings. Each is meant to be stand-alone and should only require knowledge from the introductory tutorials.

	Advanced Job Submission and Management - More details on submitting and managing jobs from Python.

	Advanced Schedd Interaction - Performing transactions in the schedd and querying history.

	Interacting with Daemons - Generic commands that work with any HTCondor daemon.

	Scalable Job Tracking - Techniques for keeping close track of many jobs without overloading the schedd.

	DAG Creation and Submission - Using htcondor.dags to create and submit a DAG.

	Personal Pools - Using htcondor.personal to create and manage a “personal” HTCondor pool.

[]:

 Submitting and Managing Jobs

Submitting and Managing Jobs

Launch this tutorial in a Jupyter Notebook on Binder: [image: Binder] [https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Submitting-and-Managing-Jobs.ipynb]

What is HTCondor?

An HTCondor pool provides a way for you (as a user) to submit units of work, called jobs, to be executed on a distributed network of computing resources. HTCondor provides tools to monitor your jobs as they run, and make certain kinds of changes to them after submission, which we call “managing” jobs.

In this tutorial, we will learn how to submit and manage jobs from Python. We will see how to submit jobs with various toy executables, how to ask HTCondor for information about them, and how to tell HTCondor to do things with them. All of these things are possible from the command line as well, using tools like condor_submit, condor_qedit, and condor_hold. However, working from Python instead of the command line gives us access to the full power of Python to do things like
generate jobs programmatically based on user input, pass information consistently from submission to management, or even expose an HTCondor pool to a web application.

We start by importing the HTCondor Python bindings modules, which provide the functions we will need to talk to HTCondor.

[1]:

import htcondor # for submitting jobs, querying HTCondor daemons, etc.
import classad # for interacting with ClassAds, HTCondor's internal data format

Submitting a Simple Job

To submit a job, we must first describe it. A submit description is held in a Submit object. Submit objects consist of key-value pairs, and generally behave like Python dictionaries. If you’re familiar with HTCondor’s submit file syntax, you should think of each line in the submit file as a single key-value pair in the Submit object.

Let’s start by writing a Submit object that describes a job that executes the hostname command on an execute node, which prints out the “name” of the node. Since hostname prints its results to standard output (stdout), we will capture stdout and bring it back to the submit machine so we can see the name.

[2]:

hostname_job = htcondor.Submit({
 "executable": "/bin/hostname", # the program to run on the execute node
 "output": "hostname.out", # anything the job prints to standard output will end up in this file
 "error": "hostname.err", # anything the job prints to standard error will end up in this file
 "log": "hostname.log", # this file will contain a record of what happened to the job
 "request_cpus": "1", # how many CPU cores we want
 "request_memory": "128MB", # how much memory we want
 "request_disk": "128MB", # how much disk space we want
})

print(hostname_job)

executable = /bin/hostname
output = hostname.out
error = hostname.err
log = hostname.log
request_cpus = 1
request_memory = 128MB
request_disk = 128MB

The available descriptors are documented in the `condor_submit manual page <https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html>`__. The keys of the Python dictionary you pass to htcondor.Submit should be the same as for the submit descriptors, and the values should be strings containing exactly what would go on the right-hand side.

Note that we gave the Submit object several relative filepaths. These paths are relative to the directory containing this Jupyter notebook (or, more generally, the current working directory). When we run the job, you should see those files appear in the file browser on the left as HTCondor creates them.

Now that we have a job description, let’s submit a job. The htcondor.Schedd.submit method returns a SubmitResult object that contains information about the job, such as its ClusterId.

[3]:

schedd = htcondor.Schedd() # get the Python representation of the scheduler
submit_result = schedd.submit(hostname_job) # submit the job
print(submit_result.cluster()) # print the job's ClusterId

13

The job’s ClusterId uniquely identifies this submission. Later in this module, we will use it to ask the HTCondor scheduler for information about our jobs.

For now, our job will hopefully have finished running. You should be able to see the files in the file browser on the left. Try opening one of them and seeing what’s inside.

We can also look at the output from inside Python:

[4]:

import os
import time

output_path = "hostname.out"

this is a crude way to wait for the job to finish
see the Advanced tutorial "Scalable Job Tracking" for better methods!
while not os.path.exists(output_path):
 print("Output file doesn't exist yet; sleeping for one second")
 time.sleep(1)

with open(output_path, mode = "r") as f:
 print(f.read())

2ca25178243f

If you got some text, it worked!

If the file never shows up, it means your job didn’t run. You might try looking at the log or error files specified in the submit description to see if there is any useful information in them about why the job failed.

Submitting Multiple Jobs

By default, each submit will submit a single job. A more common use case is to submit many jobs at once, often sharing some base submit description. Let’s write a new submit description which runs sleep.

When we have multiple jobs in a single cluster, each job will be identified not just by its ClusterId but also by a ProcID. We can use the ProcID to separate the output and error files for each individual job. Anything that looks like $(...) in a submit description is a macro, a placeholder which will be “expanded” later by HTCondor into a real value for that particular job. The ProcID expands to a series of incrementing integers, starting at 0. So the first job in a
cluster will have ProcID 0, the next will have ProcID 1, etc.

[5]:

sleep_job = htcondor.Submit({
 "executable": "/bin/sleep",
 "arguments": "10s", # sleep for 10 seconds
 "output": "sleep-$(ProcId).out", # output and error for each job, using the $(ProcId) macro
 "error": "sleep-$(ProcId).err",
 "log": "sleep.log", # we still send all of the HTCondor logs for every job to the same file (not split up!)
 "request_cpus": "1",
 "request_memory": "128MB",
 "request_disk": "128MB",
})

print(sleep_job)

executable = /bin/sleep
arguments = 10s
output = sleep-$(ProcId).out
error = sleep-$(ProcId).err
log = sleep.log
request_cpus = 1
request_memory = 128MB
request_disk = 128MB

We will submit 10 of these jobs. All we need to change from our previous submit call is to add the count keyword argument.

[6]:

schedd = htcondor.Schedd()
submit_result = schedd.submit(sleep_job, count=10) # submit 10 jobs

print(submit_result.cluster())

14

Now that we have a bunch of jobs in flight, we might want to check how they’re doing. We can ask the HTCondor scheduler about jobs by using its query method. We give it a constraint, which tells it which jobs to look for, and a projection, which tells it what information to return.

[7]:

schedd.query(
 constraint=f"ClusterId == {submit_result.cluster()}",
 projection=["ClusterId", "ProcId", "Out"],
)

[7]:

[[ClusterId = 14; ProcId = 0; Out = "sleep-0.out"; ServerTime = 1631798183],
 [ClusterId = 14; ProcId = 1; Out = "sleep-1.out"; ServerTime = 1631798183],
 [ClusterId = 14; ProcId = 2; Out = "sleep-2.out"; ServerTime = 1631798183],
 [ClusterId = 14; ProcId = 3; Out = "sleep-3.out"; ServerTime = 1631798183],
 [ClusterId = 14; ProcId = 4; Out = "sleep-4.out"; ServerTime = 1631798183],
 [ClusterId = 14; ProcId = 5; Out = "sleep-5.out"; ServerTime = 1631798183],
 [ClusterId = 14; ProcId = 6; Out = "sleep-6.out"; ServerTime = 1631798183],
 [ClusterId = 14; ProcId = 7; Out = "sleep-7.out"; ServerTime = 1631798183],
 [ClusterId = 14; ProcId = 8; Out = "sleep-8.out"; ServerTime = 1631798183],
 [ClusterId = 14; ProcId = 9; Out = "sleep-9.out"; ServerTime = 1631798183]]

There are a few things to notice here: - Depending on how long it took you to run the cell, you may only get a few of your 10 jobs in the query. Jobs that have finished leave the queue, and will no longer show up in queries. To see those jobs, you must use the history method instead, which behaves like query, but only looks at jobs that have left the queue. - The results may not have come back in ProcID-sorted order. If you want to guarantee the order of the results, you must do
so yourself. - Attributes are often renamed between the submit description and the actual job description in the queue. See the manual [https://htcondor.readthedocs.io/en/latest/classad-attributes/job-classad-attributes.html] for a description of the job attribute names. - The objects returned by the query are instances of ClassAd. ClassAds are the common data exchange format used by HTCondor. In Python, they mostly behave like dictionaries.

Using Itemdata to Vary Over Parameters

By varying some part of the submit description using the ProcID, we can change how each individual job behaves. Perhaps it will use a different input file, or a different argument. However, we often want more flexibility than that. Perhaps our input files are named after different cities, or by timestamp, or some other naming scheme that already exists.

To use such information in the submit description, we need to use itemdata. Itemdata lets us pass arbitrary extra information when we queue, which we can reference with macros inside the submit description. This lets use the full power of Python to generate the submit descriptions for our jobs.

Let’s mock this situation out by generating some files with randomly-chosen names. We’ll also switch to using pathlib.Path, Python’s more modern file path manipulation library.

[8]:

from pathlib import Path
import random
import string
import shutil

def random_string(length):
 """Produce a random lowercase ASCII string with the given length."""
 return "".join(random.choices(string.ascii_lowercase, k = length))

make a directory to hold the input files, clearing away any existing directory
input_dir = Path.cwd() / "inputs"
shutil.rmtree(input_dir, ignore_errors = True)
input_dir.mkdir()

make 5 input files
for idx in range(5):
 rs = random_string(5)
 input_file = input_dir / "{}.txt".format(rs)
 input_file.write_text("Hello from job {}".format(rs))

Now we’ll get a list of all the files we just created in the input directory. This is precisely the kind of situation where Python affords us a great deal of flexibility over a submit file: we can use Python instead of the HTCondor submit language to generate and inspect the information we’re going to put into the submit description.

[9]:

input_files = list(input_dir.glob("*.txt"))

for path in input_files:
 print(path)

/home/jovyan/tutorials/inputs/juvsl.txt
/home/jovyan/tutorials/inputs/lyitt.txt
/home/jovyan/tutorials/inputs/pnzjh.txt
/home/jovyan/tutorials/inputs/qyeet.txt
/home/jovyan/tutorials/inputs/uhmiu.txt

Now we’ll make our submit description. Our goal is just to print out the text held in each file, which we can do using cat.

We will tell HTCondor to transfer the input file to the execute location by including it in transfer_input_files. We also need to call cat on the right file via arguments. Keep in mind that HTCondor will move the files in transfer_input_files directly to the scratch directory on the execute machine, so instead of the full path, we just need the file’s “name”, the last component of its path. pathlib will make it easy to extract this information.

[10]:

cat_job = htcondor.Submit({
 "executable": "/bin/cat",
 "arguments": "$(input_file_name)", # we will pass in the value for this macro via itemdata
 "transfer_input_files": "$(input_file)", # we also need HTCondor to move the file to the execute node
 "should_transfer_files": "yes", # force HTCondor to transfer files even though we're running entirely inside a container (and it normally wouldn't need to)
 "output": "cat-$(ProcId).out",
 "error": "cat-$(ProcId).err",
 "log": "cat.log",
 "request_cpus": "1",
 "request_memory": "128MB",
 "request_disk": "128MB",
})

print(cat_job)

executable = /bin/cat
arguments = $(input_file_name)
transfer_input_files = $(input_file)
should_transfer_files = yes
output = cat-$(ProcId).out
error = cat-$(ProcId).err
log = cat.log
request_cpus = 1
request_memory = 128MB
request_disk = 128MB

The itemdata should be passed as a list of dictionaries, where the keys are the macro names to replace in the submit description. In our case, the keys are input_file and input_file_name, so should have a list of 10 dictionaries, each with two entries. HTCondor expects the input file list to be a comma-separated list of POSIX-style paths, so we explicitly convert our Path to a POSIX string.

[11]:

itemdata = [{"input_file": path.as_posix(), "input_file_name": path.name} for path in input_files]

for item in itemdata:
 print(item)

{'input_file': '/home/jovyan/tutorials/inputs/juvsl.txt', 'input_file_name': 'juvsl.txt'}
{'input_file': '/home/jovyan/tutorials/inputs/lyitt.txt', 'input_file_name': 'lyitt.txt'}
{'input_file': '/home/jovyan/tutorials/inputs/pnzjh.txt', 'input_file_name': 'pnzjh.txt'}
{'input_file': '/home/jovyan/tutorials/inputs/qyeet.txt', 'input_file_name': 'qyeet.txt'}
{'input_file': '/home/jovyan/tutorials/inputs/uhmiu.txt', 'input_file_name': 'uhmiu.txt'}

Now we’ll submit the jobs, adding the itemdata parameter to the submit call:

[12]:

schedd = htcondor.Schedd()
submit_result = schedd.submit(cat_job, itemdata = iter(itemdata)) # submit one job for each item in the itemdata

print(submit_result.cluster())

15

Let’s do a query to make sure we got the itemdata right (these jobs run fast, so you might need to re-run the jobs if your first run has already left the queue):

[13]:

schedd.query(
 constraint=f"ClusterId == {submit_result.cluster()}",
 projection=["ClusterId", "ProcId", "Out", "Args", "TransferInput"],
)

[13]:

[[Args = "juvsl.txt"; ClusterId = 15; ProcId = 0; Out = "cat-0.out"; TransferInput = "/home/jovyan/tutorials/inputs/juvsl.txt"; ServerTime = 1631798183],
 [Args = "lyitt.txt"; ClusterId = 15; ProcId = 1; Out = "cat-1.out"; TransferInput = "/home/jovyan/tutorials/inputs/lyitt.txt"; ServerTime = 1631798183],
 [Args = "pnzjh.txt"; ClusterId = 15; ProcId = 2; Out = "cat-2.out"; TransferInput = "/home/jovyan/tutorials/inputs/pnzjh.txt"; ServerTime = 1631798183],
 [Args = "qyeet.txt"; ClusterId = 15; ProcId = 3; Out = "cat-3.out"; TransferInput = "/home/jovyan/tutorials/inputs/qyeet.txt"; ServerTime = 1631798183],
 [Args = "uhmiu.txt"; ClusterId = 15; ProcId = 4; Out = "cat-4.out"; TransferInput = "/home/jovyan/tutorials/inputs/uhmiu.txt"; ServerTime = 1631798183]]

And let’s take a look at all the output:

[14]:

again, this is very crude - see the advanced tutorials!
while not len(list(Path.cwd().glob("cat-*.out"))) == len(itemdata):
 print("Not all output files exist yet; sleeping for one second")
 time.sleep(1)

for output_file in Path.cwd().glob("cat-*.out"):
 print(output_file, "->", output_file.read_text())

/home/jovyan/tutorials/cat-0.out -> Hello from job ilmzj
/home/jovyan/tutorials/cat-1.out -> Hello from job lddhl
/home/jovyan/tutorials/cat-2.out -> Hello from job nsxcj
/home/jovyan/tutorials/cat-3.out -> Hello from job rycnn
/home/jovyan/tutorials/cat-4.out -> Hello from job veamy

Managing Jobs

Once a job is in queue, the scheduler will try its best to execute it to completion. There are several cases where you may want to interrupt the normal flow of jobs. Perhaps the results are no longer needed; perhaps the job needs to be edited to correct a submission error. These actions fall under the purview of job management.

There are two Schedd methods dedicated to job management:

	edit(): Change an attribute for a set of jobs.

	act(): Change the state of a job (remove it from the queue, hold it, suspend it, etc.).

The act method takes an argument from the JobAction enum. Commonly-used values include:

	Hold: put a job on hold, vacating a running job if necessary. A job will stay in the hold state until told otherwise.

	Release: Release a job from the hold state, returning it to Idle.

	Remove: Remove a job from the queue. If it is running, it will stop running. This requires the execute node to acknowledge it has successfully vacated the job, so Remove may not be instantaneous.

	Vacate: Cause a running job to be killed on the remote resource and return to the Idle state. With Vacate, jobs may be given significant time to cleanly shut down.

To play with this, let’s bring back our sleep submit description, but increase the sleep time significantly so that we have time to interact with the jobs.

[15]:

long_sleep_job = htcondor.Submit({
 "executable": "/bin/sleep",
 "arguments": "10m", # sleep for 10 minutes
 "output": "sleep-$(ProcId).out",
 "error": "sleep-$(ProcId).err",
 "log": "sleep.log",
 "request_cpus": "1",
 "request_memory": "128MB",
 "request_disk": "128MB",
})

print(long_sleep_job)

executable = /bin/sleep
arguments = 10m
output = sleep-$(ProcId).out
error = sleep-$(ProcId).err
log = sleep.log
request_cpus = 1
request_memory = 128MB
request_disk = 128MB

[16]:

schedd = htcondor.Schedd()
submit_result = schedd.submit(long_sleep_job, count=5)

As an experiment, let’s set an arbitrary attribute on the jobs and check that it worked. When we’re really working, we could do things like change the amount of memory a job has requested by editing its RequestMemory attribute. The job attributes that are built-in to HTCondor are described here [https://htcondor.readthedocs.io/en/latest/classad-attributes/job-classad-attributes.html], but your site may specify additional, custom attributes as well.

[17]:

sets attribute foo to the string "bar" for all of our jobs
note the nested quotes around bar! The outer "" make it a Python string; the inner "" make it a ClassAd string.
schedd.edit(f"ClusterId == {submit_result.cluster()}", "foo", "\"bar\"")

do a query to check the value of attribute foo
schedd.query(
 constraint=f"ClusterId == {submit_result.cluster()}",
 projection=["ClusterId", "ProcId", "JobStatus", "foo"],
)

[17]:

[[ClusterId = 16; ProcId = 0; foo = "bar"; JobStatus = 1; ServerTime = 1631798184],
 [ClusterId = 16; ProcId = 1; foo = "bar"; JobStatus = 1; ServerTime = 1631798184],
 [ClusterId = 16; ProcId = 2; foo = "bar"; JobStatus = 1; ServerTime = 1631798184],
 [ClusterId = 16; ProcId = 3; foo = "bar"; JobStatus = 1; ServerTime = 1631798184],
 [ClusterId = 16; ProcId = 4; foo = "bar"; JobStatus = 1; ServerTime = 1631798184]]

Although the job status appears to be an attribute, we cannot edit it directly. As mentioned above, we must instead act on the job. Let’s hold the first two jobs so that they stop running, but leave the others going.

[18]:

hold the first two jobs
schedd.act(htcondor.JobAction.Hold, f"ClusterId == {submit_result.cluster()} && ProcID <= 1")

check the status of the jobs
ads = schedd.query(
 constraint=f"ClusterId == {submit_result.cluster()}",
 projection=["ClusterId", "ProcId", "JobStatus"],
)

for ad in ads:
 # the ClassAd objects returned by the query act like dictionaries, so we can extract individual values out of them using []
 print(f"ProcID = {ad['ProcID']} has JobStatus = {ad['JobStatus']}")

ProcID = 0 has JobStatus = 5
ProcID = 1 has JobStatus = 5
ProcID = 2 has JobStatus = 1
ProcID = 3 has JobStatus = 1
ProcID = 4 has JobStatus = 1

The various job statuses are represented by numbers. 1 means Idle, 2 means Running, and 5 means Held. If you see JobStatus = 5 above for ProcID = 0 and ProcID = 1, then we succeeded!

The opposite of JobAction.Hold is JobAction.Release. Let’s release those jobs and let them go back to Idle.

[19]:

schedd.act(htcondor.JobAction.Release, f"ClusterId == {submit_result.cluster()}")

ads = schedd.query(
 constraint=f"ClusterId == {submit_result.cluster()}",
 projection=["ClusterId", "ProcId", "JobStatus"],
)

for ad in ads:
 # the ClassAd objects returned by the query act like dictionaries, so we can extract individual values out of them using []
 print(f"ProcID = {ad['ProcID']} has JobStatus = {ad['JobStatus']}")

ProcID = 0 has JobStatus = 1
ProcID = 1 has JobStatus = 1
ProcID = 2 has JobStatus = 1
ProcID = 3 has JobStatus = 1
ProcID = 4 has JobStatus = 1

Note that we simply released all the jobs in the cluster. Releasing a job that is not held doesn’t do anything, so we don’t have to be extremely careful.

Finally, let’s clean up after ourselves:

[20]:

schedd.act(htcondor.JobAction.Remove, f"ClusterId == {submit_result.cluster()}")

[20]:

[TotalJobAds = 0; TotalPermissionDenied = 0; TotalAlreadyDone = 0; TotalNotFound = 0; TotalSuccess = 5; TotalChangedAds = 1; TotalBadStatus = 0; TotalError = 0]

Exercises

Now let’s practice what we’ve learned.

	In each exercise, you will be given a piece of code and a test that does not yet pass.

	The exercises are vaguely in order of increasing difficulty.

	Modify the code, or add new code to it, to pass the test. Do whatever it takes!

	You can run the test by running the block it is in.

	Feel free to look at the test for clues as to how to modify the code.

	Many of the exercises can be solved either by using Python to generate inputs, or by using advanced features of the ClassAd language [https://htcondor.readthedocs.io/en/latest/classads/classad-mechanism.html#htcondor-s-classad-mechanism]. Either way is valid!

	Don’t modify the test. That’s cheating!

Exercise 1: Incrementing Sleeps

Submit five jobs which sleep for 5, 6, 7, 8, and 9 seconds, respectively.

[21]:

MODIFY OR ADD TO THIS BLOCK...

incrementing_sleep = htcondor.Submit({
 "executable": "/bin/sleep",
 "arguments": "1",
 "output": "ex1-$(ProcId).out",
 "error": "ex1-$(ProcId).err",
 "log": "ex1.log",
 "request_cpus": "1",
 "request_memory": "128MB",
 "request_disk": "128MB",
})

schedd = htcondor.Schedd()
submit_result = schedd.submit(incrementing_sleep)

[22]:

... TO MAKE THIS TEST PASS

expected = [str(i) for i in range(5, 10)]
print("Expected ", expected)

ads = schedd.query(f"ClusterId == {submit_result.cluster()}", projection = ["Args"])
arguments = sorted(ad["Args"] for ad in ads)
print("Got ", arguments)

assert arguments == expected, "Arguments were not what we expected!"
print("The test passed. Good job!")

Expected ['5', '6', '7', '8', '9']
Got ['1']

AssertionError Traceback (most recent call last)
/tmp/ipykernel_454/3067880786.py in <module>
 8 print("Got ", arguments)
 9
---> 10 assert arguments == expected, "Arguments were not what we expected!"
 11 print("The test passed. Good job!")

AssertionError: Arguments were not what we expected!

Exercise 2: Echo to Target

Run a job that makes the text Echo to Target appear in a file named ex3.txt.

[23]:

MODIFY OR ADD TO THIS BLOCK...

echo = htcondor.Submit({
 "request_cpus": "1",
 "request_memory": "128MB",
 "request_disk": "128MB",
})

schedd = htcondor.Schedd()
submit_result = schedd.submit(echo)

HTCondorInternalError Traceback (most recent call last)
/tmp/ipykernel_454/2917236442.py in <module>
 8
 9 schedd = htcondor.Schedd()
---> 10 submit_result = schedd.submit(echo)

/opt/conda/lib/python3.9/site-packages/htcondor/_lock.py in wrapper(*args, **kwargs)
 67 acquired = LOCK.acquire()
 68
---> 69 rv = func(*args, **kwargs)
 70
 71 # if the function returned a context manager,

HTCondorInternalError: No 'executable' parameter was provided

[24]:

... TO MAKE THIS TEST PASS

does_file_exist = os.path.exists("ex3.txt")
assert does_file_exist, "ex3.txt does not exist!"

expected = "Echo to Target"
print("Expected ", expected)

contents = open("ex3.txt", mode = "r").read().strip()
print("Got ", contents)

assert expected in contents, "Contents were not what we expected!"

print("The test passed. Good job!")

AssertionError Traceback (most recent call last)
/tmp/ipykernel_454/1707749984.py in <module>
 2
 3 does_file_exist = os.path.exists("ex3.txt")
----> 4 assert does_file_exist, "ex3.txt does not exist!"
 5
 6 expected = "Echo to Target"

AssertionError: ex3.txt does not exist!

Exercise 3: Holding Odds

Hold all of the odd-numbered jobs in this large cluster.

	Note that the test block removes all of the jobs you own when it runs, to prevent these long-running jobs from corrupting other tests!

[25]:

MODIFY OR ADD TO THIS BLOCK...

long_sleep = htcondor.Submit({
 "executable": "/bin/sleep",
 "arguments": "10m",
 "output": "ex2-$(ProcId).out",
 "error": "ex2-$(ProcId).err",
 "log": "ex2.log",
 "request_cpus": "1",
 "request_memory": "128MB",
 "request_disk": "128MB",
})

schedd = htcondor.Schedd()
submit_result = schedd.submit(long_sleep, count=100)

[26]:

... TO MAKE THIS TEST PASS

import getpass

try:
 ads = schedd.query(f"ClusterId == {submit_result.cluster()}", projection = ["ProcID", "JobStatus"])
 proc_to_status = {int(ad["ProcID"]): ad["JobStatus"] for ad in sorted(ads, key = lambda ad: ad["ProcID"])}

 for proc, status in proc_to_status.items():
 print("Proc {} has status {}".format(proc, status))

 assert len(proc_to_status) == 100, "Wrong number of jobs (perhaps you need to resubmit them?)."
 assert all(status == 5 for proc, status in proc_to_status.items() if proc % 2 != 0), "Not all odd jobs were held."
 assert all(status != 5 for proc, status in proc_to_status.items() if proc % 2 == 0), "An even job was held."

 print("The test passed. Good job!")
finally:
 schedd.act(htcondor.JobAction.Remove, f'Owner=="{getpass.getuser()}"')

Proc 0 has status 1
Proc 1 has status 1
Proc 2 has status 1
Proc 3 has status 1
Proc 4 has status 1
Proc 5 has status 1
Proc 6 has status 1
Proc 7 has status 1
Proc 8 has status 1
Proc 9 has status 1
Proc 10 has status 1
Proc 11 has status 1
Proc 12 has status 1
Proc 13 has status 1
Proc 14 has status 1
Proc 15 has status 1
Proc 16 has status 1
Proc 17 has status 1
Proc 18 has status 1
Proc 19 has status 1
Proc 20 has status 1
Proc 21 has status 1
Proc 22 has status 1
Proc 23 has status 1
Proc 24 has status 1
Proc 25 has status 1
Proc 26 has status 1
Proc 27 has status 1
Proc 28 has status 1
Proc 29 has status 1
Proc 30 has status 1
Proc 31 has status 1
Proc 32 has status 1
Proc 33 has status 1
Proc 34 has status 1
Proc 35 has status 1
Proc 36 has status 1
Proc 37 has status 1
Proc 38 has status 1
Proc 39 has status 1
Proc 40 has status 1
Proc 41 has status 1
Proc 42 has status 1
Proc 43 has status 1
Proc 44 has status 1
Proc 45 has status 1
Proc 46 has status 1
Proc 47 has status 1
Proc 48 has status 1
Proc 49 has status 1
Proc 50 has status 1
Proc 51 has status 1
Proc 52 has status 1
Proc 53 has status 1
Proc 54 has status 1
Proc 55 has status 1
Proc 56 has status 1
Proc 57 has status 1
Proc 58 has status 1
Proc 59 has status 1
Proc 60 has status 1
Proc 61 has status 1
Proc 62 has status 1
Proc 63 has status 1
Proc 64 has status 1
Proc 65 has status 1
Proc 66 has status 1
Proc 67 has status 1
Proc 68 has status 1
Proc 69 has status 1
Proc 70 has status 1
Proc 71 has status 1
Proc 72 has status 1
Proc 73 has status 1
Proc 74 has status 1
Proc 75 has status 1
Proc 76 has status 1
Proc 77 has status 1
Proc 78 has status 1
Proc 79 has status 1
Proc 80 has status 1
Proc 81 has status 1
Proc 82 has status 1
Proc 83 has status 1
Proc 84 has status 1
Proc 85 has status 1
Proc 86 has status 1
Proc 87 has status 1
Proc 88 has status 1
Proc 89 has status 1
Proc 90 has status 1
Proc 91 has status 1
Proc 92 has status 1
Proc 93 has status 1
Proc 94 has status 1
Proc 95 has status 1
Proc 96 has status 1
Proc 97 has status 1
Proc 98 has status 1
Proc 99 has status 1

AssertionError Traceback (most recent call last)
/tmp/ipykernel_454/4042351238.py in <module>
 11
 12 assert len(proc_to_status) == 100, "Wrong number of jobs (perhaps you need to resubmit them?)."
---> 13 assert all(status == 5 for proc, status in proc_to_status.items() if proc % 2 != 0), "Not all odd jobs were held."
 14 assert all(status != 5 for proc, status in proc_to_status.items() if proc % 2 == 0), "An even job was held."
 15

AssertionError: Not all odd jobs were held.

 ClassAds Introduction

ClassAds Introduction

Launch this tutorial in a Jupyter Notebook on Binder: [image: Binder] [https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/ClassAds-Introduction.ipynb]

In this tutorial, we will learn the basics of the ClassAd language [https://htcondor.org/classad/classad.html], the policy and data exchange language that underpins all of HTCondor. ClassAds are fundamental in the HTCondor ecosystem, so understanding them will be good preparation for future tutorials.

The Python implementation of the ClassAd language is in the classad module:

[1]:

import classad

Expressions

The ClassAd language is built around values and expressions. If you know Python, both concepts are familiar. Examples of familiar values include: - Integers (1, 2, 3), - Floating point numbers (3.145, -1e-6) - Booleans (true and false).

Examples of expressions are: - Attribute references: foo - Boolean expressions: a && b - Arithmetic expressions: 123 + c - Function calls: ifThenElse(foo == 123, 3.14, 5.2)

Expressions can be evaluated to values. Unlike many programming languages, expressions are lazily-evaluated: they are kept in memory as expressions until a value is explicitly requested. ClassAds holding expressions to be evaluated later are how many internal parts of HTCondor, like job requirements, are expressed.

Expressions are represented in Python with ExprTree objects. The desired ClassAd expression is passed as a string to the constructor:

[2]:

arith_expr = classad.ExprTree("1 + 4")
print(f"ClassAd arithemetic expression: {arith_expr} (of type {type(arith_expr)})")

ClassAd arithemetic expression: 1 + 4 (of type <class 'classad.classad.ExprTree'>)

Expressions can be evaluated on-demand:

[3]:

print(arith_expr.eval())

5

Here’s an expression that includes a ClassAd function:

[4]:

function_expr = classad.ExprTree("ifThenElse(4 > 6, 123, 456)")
print(f"Function expression: {function_expr}")

value = function_expr.eval()
print(f"Corresponding value: {value} (of type {type(value)})")

Function expression: ifThenElse(4 > 6,123,456)
Corresponding value: 456 (of type <class 'int'>)

Notice that, when possible, we convert ClassAd values to Python values. Hence, the result of evaluating the expression above is the Python int 456.

There are two important values in the ClassAd language that have no direct equivalent in Python: Undefined and Error.

Undefined occurs when a reference occurs to an attribute that is not defined; it is analogous to a NameError exception in Python (but there is no concept of an exception in ClassAds). For example, evaluating an unset attribute produces Undefined:

[5]:

print(classad.ExprTree("foo").eval())

Undefined

Error occurs primarily when an expression combines two different types or when a function call occurs with the incorrect arguments. Note that even in this case, no Python exception is raised!

[6]:

print(classad.ExprTree('5 + "bar"').eval())
print(classad.ExprTree('ifThenElse(1, 2, 3, 4, 5)').eval())

Error
Error

ClassAds

The concept that makes the ClassAd language special is, of course, the ClassAd!

The ClassAd is analogous to a Python or JSON dictionary. Unlike a dictionary, which is a set of unique key-value pairs, the ClassAd object is a set of key-expression pairs. The expressions in the ad can contain attribute references to other keys in the ad, which will be followed when evaluated.

There are two common ways to represent ClassAds in text. The “new ClassAd” format:

[
 a = 1;
 b = "foo";
 c = b
]

And the “old ClassAd” format:

a = 1
b = "foo"
c = b

Despite the “new” and “old” monikers, “new” is over a decade old. HTCondor command line tools utilize the “old” representation. The Python bindings default to “new”.

A ClassAd object may be initialized via a string in either of the above representation. As a ClassAd is so similar to a Python dictionary, they may also be constructed from a dictionary.

Let’s construct some ClassAds!

[7]:

ad1 = classad.ClassAd("""
[
 a = 1;
 b = "foo";
 c = b;
 d = a + 4;
]""")
print(ad1)

 [
 a = 1;
 b = "foo";
 c = b;
 d = a + 4
]

We can construct the same ClassAd from a dictionary:

[8]:

ad_from_dict = classad.ClassAd(
{
 "a": 1,
 "b": "foo",
 "c": classad.ExprTree("b"),
 "d": classad.ExprTree("a + 4"),
})
print(ad_from_dict)

 [
 d = a + 4;
 c = b;
 b = "foo";
 a = 1
]

ClassAds are quite similar to dictionaries; in Python, the ClassAd object behaves similarly to a dictionary and has similar convenience methods:

[9]:

print(ad1["a"])
print(ad1["not_here"])

1

KeyError Traceback (most recent call last)
/tmp/ipykernel_116/3690994919.py in <module>
 1 print(ad1["a"])
----> 2 print(ad1["not_here"])

KeyError: 'not_here'

[10]:

print(ad1.get("not_here", 5))

5

[11]:

ad1.update({"e": 8, "f": True})
print(ad1)

 [
 f = true;
 e = 8;
 a = 1;
 b = "foo";
 c = b;
 d = a + 4
]

Remember our example of an Undefined attribute above? We now can evaluate references within the context of the ad:

[12]:

print(ad1.eval("d"))

5

Note that an expression is still not evaluated until requested, even if it is invalid:

[13]:

ad1["g"] = classad.ExprTree("b + 5")
print(ad1["g"])
print(type(ad1["g"]))
print(ad1.eval("g"))

b + 5
<class 'classad.classad.ExprTree'>
Error

Onto HTCondor!

ClassAds and expressions are core concepts in interacting with HTCondor. Internally, machines and jobs are represented as ClassAds; expressions are used to filter objects and to define policy.

There’s much more to learn in ClassAds! For now, you have enough background to continue to the next tutorial - HTCondor Introduction.

 HTCondor Introduction

HTCondor Introduction

Launch this tutorial in a Jupyter Notebook on Binder: [image: Binder] [https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/HTCondor-Introduction.ipynb]

Let’s start interacting with the HTCondor daemons!

We’ll cover the basics of two daemons, the Collector and the Schedd:

	The Collector maintains an inventory of all the pieces of the HTCondor pool. For example, each machine that can run jobs will advertise a ClassAd describing its resources and state. In this module, we’ll learn the basics of querying the collector for information and displaying results.

	The Schedd maintains a queue of jobs and is responsible for managing their execution. We’ll learn the basics of querying the schedd.

There are several other daemons - particularly, the Startd and the Negotiator - that the Python bindings can interact with. We’ll cover those in the advanced modules.

If you are running these tutorials in the provided Docker container or on Binder, a local HTCondor pool has been started in the background for you to interact with.

To get start, let’s import the htcondor modules.

[1]:

import htcondor
import classad

Collector

We’ll start with the Collector, which gathers descriptions of the states of all the daemons in your HTCondor pool. The collector provides both service discovery and monitoring for these daemons.

Let’s try to find the Schedd information for your HTCondor pool. First, we’ll create a Collector object, then use the locate method:

[2]:

coll = htcondor.Collector() # create the object representing the collector
schedd_ad = coll.locate(htcondor.DaemonTypes.Schedd) # locate the default schedd

print(schedd_ad)

 [
 CondorPlatform = "$CondorPlatform: X86_64-CentOS_5.11 $";
 CondorVersion = "$CondorVersion: 9.1.3 Aug 19 2021 BuildID: UW_Python_Wheel_Build $";
 Machine = "abae0fbbde81";
 MyType = "Scheduler";
 Name = "jovyan@abae0fbbde81";
 MyAddress = "<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=abae0fbbde81&noUDP&sock=schedd_19_eccb>"
]

The locate method takes a type of daemon and (optionally) a name, returning a ClassAd that describes how to contact the daemon.

A few interesting points about the above example: - Because we didn’t provide the collector with a constructor, we used the default collector in the container’s configuration file. If we wanted to instead query a non-default collector, we could have done htcondor.Collector("collector.example.com"). - We used the DaemonTypes enumeration to pick the kind of daemon to return. - If there were multiple schedds in the pool, the locate query would have failed. In such a case, we need to
provide an explicit name to the method. E.g., coll.locate(htcondor.DaemonTypes.Schedd, "schedd.example.com"). - The MyAddress field in the ad is the actual address information. You may be surprised that this is not simply a hostname:port; to help manage addressing in the today’s complicated Internet (full of NATs, private networks, and firewalls), a more flexible structure was needed. HTCondor developers sometimes refer to this as the sinful string; here, sinful is a play on a
Unix data structure, not a moral judgement.

The locate method often returns only enough data to contact a remote daemon. Typically, a ClassAd records significantly more attributes. For example, if we wanted to query for a few specific attributes, we would use the query method instead:

[3]:

coll.query(htcondor.AdTypes.Schedd, projection=["Name", "MyAddress", "DaemonCoreDutyCycle"])

[3]:

[[DaemonCoreDutyCycle = 1.486565213627500E-02; Name = "jovyan@abae0fbbde81"; MyAddress = "<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=abae0fbbde81&noUDP&sock=schedd_19_eccb>"]]

Here, query takes an AdType (slightly more generic than the DaemonTypes, as many kinds of ads are in the collector) and several optional arguments, then returns a list of ClassAds.

We used the projection keyword argument; this indicates what attributes you want returned. The collector may automatically insert additional attributes (here, only MyType); if an ad is missing a requested attribute, it is simply not set in the returned ClassAd object. If no projection is specified, then all attributes are returned.

WARNING: when possible, utilize the projection to limit the data returned. Some ads may have hundreds of attributes, making returning the entire ad an expensive operation.

The projection filters the returned keys; to filter out unwanted ads, utilize the constraint option. Let’s do the same query again, but specify our hostname explicitly:

[4]:

import socket # We'll use this to automatically fill in our hostname

name = classad.quote(f"jovyan@{socket.getfqdn()}")
coll.query(
 htcondor.AdTypes.Schedd,
 constraint=f"Name =?= {name}",
 projection=["Name", "MyAddress", "DaemonCoreDutyCycle"],
)

[4]:

[[DaemonCoreDutyCycle = 1.486565213627500E-02; Name = "jovyan@abae0fbbde81"; MyAddress = "<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=abae0fbbde81&noUDP&sock=schedd_19_eccb>"]]

Notes: - constraint accepts either an ExprTree or string object; the latter is automatically parsed as an expression. - We used the classad.quote function to properly quote the hostname string. In this example, we’re relatively certain the hostname won’t contain quotes. However, it is good practice to use the quote function to avoid possible SQL-injection-type attacks. Consider what would happen if the host’s FQDN contained spaces and doublequotes, such as
foo.example.com" || true!

Schedd

Let’s try our hand at querying the schedd!

First, we’ll need a schedd object. You may either create one out of the ad returned by locate above or use the default in the configuration file:

[5]:

schedd = htcondor.Schedd(schedd_ad)
print(schedd)

<htcondor.htcondor.Schedd object at 0x7f36ee8158b0>

Unfortunately, as there are no jobs in our personal HTCondor pool, querying the schedd will be boring. Let’s submit a few jobs (note the API used below will be covered by the next module; it’s OK if you don’t understand it now):

[6]:

sub = htcondor.Submit(
 executable = "/bin/sleep",
 arguments = "5m",
)
schedd.submit(sub, count=10)

[6]:

<htcondor.htcondor.SubmitResult at 0x7f36ec0aab30>

We should now have 10 jobs in queue, each of which should take 5 minutes to complete.

Let’s query for the jobs, paying attention to the jobs’ ID and status:

[7]:

for job in schedd.xquery(projection=['ClusterId', 'ProcId', 'JobStatus']):
 print(repr(job))

[ServerTime = 1631798120; JobStatus = 1; ProcId = 3; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 4; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 5; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 6; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 7; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 8; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 9; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 2; ProcId = 0; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 1; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 2; ClusterId = 12]

The JobStatus is an integer; the integers map into the following states: - 1: Idle (I) - 2: Running (R) - 3: Removed (X) - 4: Completed (C) - 5: Held (H) - 6: Transferring Output - 7: Suspended

Depending on how quickly you executed the above cell, you might see all jobs idle (JobStatus = 1) or some jobs running (JobStatus = 2) above.

As with the Collector’s query method, we can also filter out jobs using xquery:

[8]:

for ad in schedd.xquery(constraint = 'ProcId >= 5', projection=['ProcId']):
 print(ad.get('ProcId'))

5
6
7
8
9

Astute readers may notice that the Schedd object has both xquery and query methods. The difference between them is primarily how memory is managed: - query returns a list of ClassAds, meaning all objects are held in memory at once. This utilizes more memory, but the results are immediately available. - xquery returns an iterator that produces ClassAds. This only requires one ClassAd to be in memory at once.

Finally, let’s clean up after ourselves (this will remove all of the jobs you own from the queue).

[9]:

import getpass

schedd.act(htcondor.JobAction.Remove, f'Owner == "{getpass.getuser()}"')

[9]:

[TotalJobAds = 0; TotalPermissionDenied = 0; TotalAlreadyDone = 0; TotalNotFound = 0; TotalSuccess = 10; TotalChangedAds = 1; TotalBadStatus = 0; TotalError = 0]

On Job Submission

Congratulations! You can now perform simple queries against the collector for worker and submit hosts, as well as simple job queries against the submit host!

It is now time to move on to advanced job submission and management.

 Advanced Job Submission and Management

Advanced Job Submission and Management

Launch this tutorial in a Jupyter Notebook on Binder: [image: Binder] [https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Advanced-Job-Submission-And-Management.ipynb]

The two most common HTCondor command line tools are condor_q and condor_submit. In the previous module, we learned about the xquery() method that corresponds to condor_q. Here, we will learn the Python binding equivalent of condor_submit in greater detail.

We start by importing the relevant modules:

[1]:

import htcondor

Submitting Jobs

We will submit jobs utilizing the dedicated Submit object.

Submit objects consist of key-value pairs. Unlike ClassAds, the values do not have an inherent type (such as strings, integers, or booleans); they are evaluated with macro expansion at submit time. Where reasonable, they behave like Python dictionaries:

[2]:

sub = htcondor.Submit({"foo": "1", "bar": "2", "baz": "$(foo)"})
print(sub)

foo = 1
bar = 2
baz = $(foo)

[3]:

sub["qux"] = 3
print(sub)

foo = 1
bar = 2
baz = $(foo)
qux = 3

[4]:

print(sub.expand("baz"))

1

The available attributes and their semantics are documented in the condor_submit manual [https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html], sowe won’t repeat them here. A minimal realistic submit object may look like the following:

[5]:

sub = htcondor.Submit({
 "executable": "/bin/sleep",
 "arguments": "5m"
})

To go from a submit object to job in a schedd, one must use the submit method of a htcondor.Schedd:

[6]:

schedd = htcondor.Schedd() # create a schedd object connected to the local schedd
submit_result = schedd.submit(sub) # queue one job
print(submit_result.cluster()) # print the job's ClusterId

1

By default, each invocation of submit will submit a single job. A more common use case is to submit many jobs at once - often identical. Suppose we don’t want to submit a single “sleep” job, but 10; instead of writing a for-loop around the submit method, we can use the count argument:

[7]:

submit_result = schedd.submit(sub, count=10)

print(submit_result.cluster())

2

We can now query for those jobs in the queue:

[8]:

schedd.query(
 constraint='ClusterId =?= {}'.format(submit_result.cluster()),
 projection=["ClusterId", "ProcId", "JobStatus", "EnteredCurrentStatus"],
)

[8]:

[[ClusterId = 2; ProcId = 0; EnteredCurrentStatus = 1631798050; JobStatus = 1; ServerTime = 1631798050],
 [ClusterId = 2; ProcId = 1; EnteredCurrentStatus = 1631798050; JobStatus = 1; ServerTime = 1631798050],
 [ClusterId = 2; ProcId = 2; EnteredCurrentStatus = 1631798050; JobStatus = 1; ServerTime = 1631798050],
 [ClusterId = 2; ProcId = 3; EnteredCurrentStatus = 1631798050; JobStatus = 1; ServerTime = 1631798050],
 [ClusterId = 2; ProcId = 4; EnteredCurrentStatus = 1631798050; JobStatus = 1; ServerTime = 1631798050],
 [ClusterId = 2; ProcId = 5; EnteredCurrentStatus = 1631798050; JobStatus = 1; ServerTime = 1631798050],
 [ClusterId = 2; ProcId = 6; EnteredCurrentStatus = 1631798050; JobStatus = 1; ServerTime = 1631798050],
 [ClusterId = 2; ProcId = 7; EnteredCurrentStatus = 1631798050; JobStatus = 1; ServerTime = 1631798050],
 [ClusterId = 2; ProcId = 8; EnteredCurrentStatus = 1631798050; JobStatus = 1; ServerTime = 1631798050],
 [ClusterId = 2; ProcId = 9; EnteredCurrentStatus = 1631798050; JobStatus = 1; ServerTime = 1631798050]]

It’s not entirely useful to submit many identical jobs – but rather each one needs to vary slightly based on its ID (the “process ID”) within the job cluster. For this, the Submit object in Python behaves similarly to submit files: references within the submit command are evaluated as macros at submit time.

For example, suppose we want the argument to sleep to vary based on the process ID:

[9]:

sub = htcondor.Submit({"executable": "/bin/sleep", "arguments": "$(Process)s"})

Here, the $(Process) string will be substituted with the process ID at submit time.

[10]:

submit_result = schedd.submit(sub, count=10)

print(submit_result.cluster())

schedd.query(
 constraint='ClusterId=?={}'.format(submit_result.cluster()),
 projection=["ClusterId", "ProcId", "JobStatus", "Args"],
)

3

[10]:

[[Args = "0s"; ClusterId = 3; ProcId = 0; JobStatus = 1; ServerTime = 1631798050],
 [Args = "1s"; ClusterId = 3; ProcId = 1; JobStatus = 1; ServerTime = 1631798050],
 [Args = "2s"; ClusterId = 3; ProcId = 2; JobStatus = 1; ServerTime = 1631798050],
 [Args = "3s"; ClusterId = 3; ProcId = 3; JobStatus = 1; ServerTime = 1631798050],
 [Args = "4s"; ClusterId = 3; ProcId = 4; JobStatus = 1; ServerTime = 1631798050],
 [Args = "5s"; ClusterId = 3; ProcId = 5; JobStatus = 1; ServerTime = 1631798050],
 [Args = "6s"; ClusterId = 3; ProcId = 6; JobStatus = 1; ServerTime = 1631798050],
 [Args = "7s"; ClusterId = 3; ProcId = 7; JobStatus = 1; ServerTime = 1631798050],
 [Args = "8s"; ClusterId = 3; ProcId = 8; JobStatus = 1; ServerTime = 1631798050],
 [Args = "9s"; ClusterId = 3; ProcId = 9; JobStatus = 1; ServerTime = 1631798050]]

The macro evaluation behavior (and the various usable tricks and techniques) are identical between the python bindings and the condor_submit executable.

Managing Jobs

Once a job is in queue, the schedd will try its best to execute it to completion. There are several cases where a user may want to interrupt the normal flow of jobs. Perhaps the results are no longer needed; perhaps the job needs to be edited to correct a submission error. These actions fall under the purview of job management.

There are two Schedd methods dedicated to job management:

	edit(): Change an attribute for a set of jobs to a given expression. If invoked within a transaction, multiple calls to edit are visible atomically.

	The set of jobs to change can be given as a ClassAd expression. If no jobs match the filter, then an exception is thrown.

	act(): Change the state of a job to a given state (remove, hold, suspend, etc).

Both methods take a job specification: either a ClassAd expression (such as Owner =?= "janedoe") or a list of job IDs (such as ["1.1", "2.2", "2.3"]). The act method takes an argument from the JobAction enum. The commonly-used values are:

	Hold: put a job on hold, vacating a running job if necessary. A job will stay in the hold state until explicitly acted upon by the admin or owner.

	Release: Release a job from the hold state, returning it to Idle.

	Remove: Remove a job from the Schedd’s queue, cleaning it up first on the remote host (if running). This requires the remote host to acknowledge it has successfully vacated the job, meaning Remove may not be instantaneous.

	Vacate: Cause a running job to be killed on the remote resource and return to idle state. With Vacate, jobs may be given significant time to cleanly shut down.

Here’s an example of job management in action:

[11]:

submit_result = schedd.submit(sub, count=5) # queues 5 copies of this job
schedd.edit([f"{submit_result.cluster()}.{idx}" for idx in range(2)], "foo", '"bar"') # sets attribute foo to the string "bar" for the first two jobs

for ad in schedd.xquery(
 constraint=f"ClusterId == {submit_result.cluster()}",
 projection=["ProcId", "JobStatus", "foo"],
):
 print(repr(ad))

[ServerTime = 1631798050; ProcId = 0; JobStatus = 1; foo = "bar"]
[ServerTime = 1631798050; ProcId = 1; JobStatus = 1; foo = "bar"]
[ServerTime = 1631798050; ProcId = 2; JobStatus = 1]
[ServerTime = 1631798050; ProcId = 3; JobStatus = 1]
[ServerTime = 1631798050; ProcId = 4; JobStatus = 1]

[12]:

schedd.act(htcondor.JobAction.Hold, f"ClusterId == {submit_result.cluster()} && ProcId >= 2")

for ad in schedd.xquery(
 constraint=f"ClusterId == {submit_result.cluster()}",
 projection=["ProcId", "JobStatus", "foo"],
):
 print(repr(ad))

[ServerTime = 1631798050; ProcId = 0; JobStatus = 1; foo = "bar"]
[ServerTime = 1631798050; ProcId = 1; JobStatus = 1; foo = "bar"]
[ServerTime = 1631798051; ProcId = 2; JobStatus = 5]
[ServerTime = 1631798051; ProcId = 3; JobStatus = 5]
[ServerTime = 1631798051; ProcId = 4; JobStatus = 5]

Finally, let’s clean up after ourselves (this will remove all of the jobs you own from the queue).

[13]:

import getpass

schedd.act(htcondor.JobAction.Remove, f'Owner == "{getpass.getuser()}"')

[13]:

[TotalJobAds = 26; TotalPermissionDenied = 0; TotalAlreadyDone = 0; TotalNotFound = 0; TotalSuccess = 26; TotalChangedAds = 1; TotalBadStatus = 0; TotalError = 0]

That’s It!

You’ve made it through the very basics of the Python bindings. While there are many other features the Python module has to offer, we have covered enough to replace the command line tools of condor_q, condor_submit, condor_status, condor_rm and others.

 Advanced Schedd Interaction

Advanced Schedd Interaction

Launch this tutorial in a Jupyter Notebook on Binder: [image: Binder] [https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Advanced-Schedd-Interactions.ipynb]

The introductory tutorial only scratches the surface of what the Python bindings can do with the condor_schedd; this module focuses on covering a wider range of functionality:

	Job and history querying.

	Advanced job submission.

	Python-based negotiation with the Schedd.

As usual, we start by importing the relevant modules:

[1]:

import htcondor
import classad

Job and History Querying

In HTCondor Introduction, we covered the Schedd.xquery method and its two most important keywords:

	requirements: Filters the jobs the schedd should return.

	projection: Filters the attributes returned for each job.

For those familiar with SQL queries, requirements performs the equivalent as the WHERE clause while projection performs the equivalent of the column listing in SELECT.

There are two other keywords worth mentioning:

	limit: Limits the number of returned ads; equivalent to SQL’s LIMIT.

	opts: Additional flags to send to the schedd to alter query behavior. The only flag currently defined is QueryOpts.AutoCluster; this groups the returned results by the current set of “auto-cluster” attributes used by the pool. It’s analogous to GROUP BY in SQL, except the columns used for grouping are controlled by the schedd.

To illustrate these additional keywords, let’s first submit a few jobs:

[2]:

schedd = htcondor.Schedd()
sub = htcondor.Submit({
 "executable": "/bin/sleep",
 "arguments": "5m",
 "hold": "True",
})
submit_result = schedd.submit(sub, count=10)
print(submit_result.cluster())

5

Note: In this example, we used the hold submit command to indicate that the jobs should start out in the condor_schedd in the Hold state; this is used simply to prevent the jobs from running to completion while you are running the tutorial.

We now have 10 jobs running under cluster_id; they should all be identical:

[3]:

print(len(schedd.query(projection=["ProcID"], constraint=f"ClusterId=={submit_result.cluster()}")))

10

The sum(1 for _ in ...) syntax is a simple way to count the number of items produced by an iterator without buffering all the objects in memory.

Querying many Schedds

On larger pools, it’s common to write Python scripts that interact with not one but many schedds. For example, if you want to implement a “global query” (equivalent to condor_q -g; concatenates all jobs in all schedds), it might be tempting to write code like this:

[4]:

jobs = []
for schedd_ad in htcondor.Collector().locateAll(htcondor.DaemonTypes.Schedd):
 schedd = htcondor.Schedd(schedd_ad)
 jobs += schedd.xquery()
print(len(jobs))

10

This is sub-optimal for two reasons:

	xquery is not given any projection, meaning it will pull all attributes for all jobs - much more data than is needed for simply counting jobs.

	The querying across all schedds is serialized: we may wait for painfully long on one or two “bad apples.”

We can instead begin the query for all schedds simultaneously, then read the responses as they are sent back. First, we start all the queries without reading responses:

[5]:

queries = []
coll_query = htcondor.Collector().locateAll(htcondor.DaemonTypes.Schedd)
for schedd_ad in coll_query:
 schedd_obj = htcondor.Schedd(schedd_ad)
 queries.append(schedd_obj.xquery())

The iterators will yield the matching jobs; to return the autoclusters instead of jobs, use the AutoCluster option (schedd_obj.xquery(opts=htcondor.QueryOpts.AutoCluster)). One auto-cluster ad is returned for each set of jobs that have identical values for all significant attributes. A sample auto-cluster looks like:

[
 RequestDisk = DiskUsage;
 Rank = 0.0;
 FileSystemDomain = "hcc-briantest7.unl.edu";
 MemoryUsage = ((ResidentSetSize + 1023) / 1024);
 ImageSize = 1000;
 JobUniverse = 5;
 DiskUsage = 1000;
 JobCount = 1;
 Requirements = (TARGET.Arch == "X86_64") && (TARGET.OpSys == "LINUX") && (TARGET.Disk >= RequestDisk) && (TARGET.Memory >= RequestMemory) && ((TARGET.HasFileTransfer) || (TARGET.FileSystemDomain == MY.FileSystemDomain));
 RequestMemory = ifthenelse(MemoryUsage isnt undefined,MemoryUsage,(ImageSize + 1023) / 1024);
 ResidentSetSize = 0;
 ServerTime = 1483758177;
 AutoClusterId = 2
]

We use the poll function, which will return when a query has available results:

[6]:

job_counts = {}
for query in htcondor.poll(queries):
 schedd_name = query.tag()
 job_counts.setdefault(schedd_name, 0)
 count = len(query.nextAdsNonBlocking())
 job_counts[schedd_name] += count
 print("Got {} results from {}.".format(count, schedd_name))
print(job_counts)

Got 10 results from jovyan@abae0fbbde81.
{'jovyan@abae0fbbde81': 10}

The QueryIterator.tag method is used to identify which query is returned; the tag defaults to the Schedd’s name but can be manually set through the tag keyword argument to Schedd.xquery.

History Queries

After a job has finished in the Schedd, it moves from the queue to the history file. The history can be queried (locally or remotely) with the Schedd.history method:

[7]:

schedd = htcondor.Schedd()
for ad in schedd.history(
 constraint='true',
 projection=['ProcId', 'ClusterId', 'JobStatus'],
 match=2, # limit to 2 returned results
):
 print(ad)

 [
 JobStatus = 3;
 ProcId = 0;
 ClusterId = 1
]

 [
 JobStatus = 3;
 ProcId = 9;
 ClusterId = 3
]

[]:

 Interacting With Daemons

Interacting With Daemons

Launch this tutorial in a Jupyter Notebook on Binder: [image: Binder] [https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Interacting-With-Daemons.ipynb]

In this module, we’ll look at how the HTCondor Python bindings can be used to interact with running daemons.

As usual, we start by importing the relevant modules:

[1]:

import htcondor

Configuration

The HTCondor configuration is exposed to Python in two ways:

	The local process’s configuration is available in the module-level param object.

	A remote daemon’s configuration may be queried using a RemoteParam

The param object emulates a Python dictionary:

[2]:

print(htcondor.param["SCHEDD_LOG"]) # prints the schedd's current log file
print(htcondor.param.get("TOOL_LOG")) # print None, since TOOL_LOG isn't set by default

/home/jovyan/.condor/local/log/SchedLog
None

[3]:

htcondor.param["TOOL_LOG"] = "/tmp/log" # sets TOOL_LOG to /tmp/log
print(htcondor.param["TOOL_LOG"]) # prints /tmp/log, as set above

/tmp/log

Note that assignments to param will persist only in memory; if we use reload_config to re-read the configuration files from disk, our change to TOOL_LOG disappears:

[4]:

print(htcondor.param.get("TOOL_LOG"))
htcondor.reload_config()
print(htcondor.param.get("TOOL_LOG"))

/tmp/log
None

In HTCondor, a configuration prefix may indicate that a setting is specific to that daemon. By default, the Python binding’s prefix is TOOL. If you would like to use the configuration of a different daemon, utilize the set_subsystem function:

[5]:

htcondor.param["TEST_FOO"] = "foo" # sets the default value of TEST_FOO to foo
htcondor.param["SCHEDD.TEST_FOO"] = "bar" # the schedd has a special setting for TEST_FOO

[6]:

print(htcondor.param['TEST_FOO']) # default access; should be 'foo'

foo

[7]:

htcondor.set_subsystem('SCHEDD') # changes the running process to identify as a schedd and sets subsytem to be trusted with root privileges.
print(htcondor.param['TEST_FOO']) # since we now identify as a schedd, should use the special setting of 'bar'

bar

Between param, reload_config, and set_subsystem, we can explore the configuration of the local host.

Remote Configuration

What happens if we want to test the configuration of a remote daemon? For that, we can use the RemoteParam class.

The object is first initialized from the output of the Collector.locate method:

[8]:

master_ad = htcondor.Collector().locate(htcondor.DaemonTypes.Master)
print(master_ad['MyAddress'])
master_param = htcondor.RemoteParam(master_ad)

<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=abae0fbbde81&noUDP&sock=master_19_eccb>

Once we have the master_param object, we can treat it like a local dictionary to access the remote daemon’s configuration.

NOTE that the htcondor.param object attempts to infer type information for configuration values from the compile-time metadata while the RemoteParam object does not:

[9]:

print(repr(master_param['UPDATE_INTERVAL'])) # returns a string
print(repr(htcondor.param['UPDATE_INTERVAL'])) # returns an integer

'5'
5

In fact, we can even set the daemon’s configuration using the RemoteParam object… if we have permission. By default, this is disabled for security reasons:

[10]:

master_param['UPDATE_INTERVAL'] = '500'

HTCondorReplyError Traceback (most recent call last)
/tmp/ipykernel_252/743935840.py in <module>
----> 1 master_param['UPDATE_INTERVAL'] = '500'

/opt/conda/lib/python3.9/site-packages/htcondor/_lock.py in wrapper(*args, **kwargs)
 67 acquired = LOCK.acquire()
 68
---> 69 rv = func(*args, **kwargs)
 70
 71 # if the function returned a context manager,

HTCondorReplyError: Failed to set remote daemon parameter.

Logging Subsystem

The logging subsystem is available to the Python bindings; this is often useful for debugging network connection issues between the client and server.

NOTE Jupyter notebooks discard output from library code; hence, you will not see the results of enable_debug below.

[11]:

htcondor.set_subsystem("TOOL")
htcondor.param['TOOL_DEBUG'] = 'D_FULLDEBUG'
htcondor.param['TOOL_LOG'] = '/tmp/log'
htcondor.enable_log() # Send logs to the log file (/tmp/foo)
htcondor.enable_debug() # Send logs to stderr; this is ignored by the web notebook.
print(open("/tmp/log").read()) # Print the log's contents.

Sending Daemon Commands

An administrator can send administrative commands directly to the remote daemon. This is useful if you’d like a certain daemon restarted, drained, or reconfigured.

Because we have a personal HTCondor instance, we are the administrator - and we can test this out!

To send a command, use the top-level send_command function, provide a daemon location, and provide a specific command from the DaemonCommands enumeration. For example, we can reconfigure:

[12]:

print(master_ad['MyAddress'])

htcondor.send_command(master_ad, htcondor.DaemonCommands.Reconfig)

<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=abae0fbbde81&noUDP&sock=master_19_eccb>

09/16/21 13:15:27 SharedPortClient: sent connection request to <172.17.0.2:9618> for shared port id master_19_eccb

[13]:

import time

time.sleep(1)

log_lines = open(htcondor.param['MASTER_LOG']).readlines()
print(log_lines[-4:])

['09/16/21 13:15:27 Sent SIGHUP to NEGOTIATOR (pid 23)\n', '09/16/21 13:15:27 Sent SIGHUP to SCHEDD (pid 24)\n', '09/16/21 13:15:27 Sent SIGHUP to SHARED_PORT (pid 21)\n', '09/16/21 13:15:27 Sent SIGHUP to STARTD (pid 27)\n']

We can also instruct the master to shut down a specific daemon:

[14]:

htcondor.send_command(master_ad, htcondor.DaemonCommands.DaemonOff, "SCHEDD")

time.sleep(1)

log_lines = open(htcondor.param['MASTER_LOG']).readlines()
print(log_lines[-1])

09/16/21 13:15:28 SharedPortClient: sent connection request to <172.17.0.2:9618> for shared port id master_19_eccb
09/16/21 13:15:28 Can't open directory "/etc/condor/passwords.d" as PRIV_ROOT, errno: 13 (Permission denied)
09/16/21 13:15:28 Can't open directory "/etc/condor/passwords.d" as PRIV_ROOT, errno: 13 (Permission denied)

09/16/21 13:15:28 The SCHEDD (pid 24) exited with status 0

Or even turn off the whole HTCondor instance:

[15]:

htcondor.send_command(master_ad, htcondor.DaemonCommands.OffFast)

time.sleep(10)

log_lines = open(htcondor.param['MASTER_LOG']).readlines()
print(log_lines[-1])

09/16/21 13:15:29 SharedPortClient: sent connection request to <172.17.0.2:9618> for shared port id master_19_eccb

09/16/21 13:15:30 **** condor_master (condor_MASTER) pid 19 EXITING WITH STATUS 0

Let’s turn HTCondor back on for future tutorials:

[16]:

import os
os.system("condor_master")
time.sleep(10) # give condor a few seconds to get started

 Scalable Job Tracking

Scalable Job Tracking

Launch this tutorial in a Jupyter Notebook on Binder: [image: Binder] [https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Scalable-Job-Tracking.ipynb]

The Python bindings provide two scalable mechanisms for tracking jobs:

	Poll-based tracking: The Schedd can be periodically polled through the use of Schedd.xquery to get job status information.

	Event-based tracking: Using the job’s user log, Python can see all job events and keep an in-memory representation of the job status.

Both poll- and event-based tracking have their strengths and weaknesses; the intrepid user can even combine both methodologies to have extremely reliable, low-latency job status tracking.

In this module, we outline the important design considerations behind each approach and walk through examples.

Poll-based Tracking

Poll-based tracking involves periodically querying the schedd(s) for jobs of interest. We have covered the technical aspects of querying the Schedd in prior tutorials. Beside the technical means of polling, important aspects to consider are how often the poll should be performed and how much data should be retrieved.

Note: When Schedd.xquery is used, the query will cause the schedd to fork up to SCHEDD_QUERY_WORKERS simultaneous workers. Beyond that point, queries will be handled in a non-blocking manner inside the main condor_schedd process. Thus, the memory used by many concurrent queries can be reduced by decreasing SCHEDD_QUERY_WORKERS.

A job tracking system should not query the Schedd more than once a minute. Aim to minimize the data returned from the query through the use of the projection; minimize the number of jobs returned by using a query constraint. Better yet, use the AutoCluster flag to have Schedd.xquery return a list of job summaries instead of individual jobs.

Advantages:

	A single entity can poll all condor_schedd instances in a pool; using htcondor.poll, multiple Schedds can be queried simultaneously.

	The tracking is resilient to bugs or crashes. All tracked state is replaced at the next polling cycle.

Disadvantages:

	The amount of work to do is a function of the number of jobs in the schedd; may scale poorly once more than 100,000 simultaneous jobs are tracked.

	Each job state transition is not seen; only snapshots of the queue in time.

	If a job disappears from the Schedd, it may be difficult to determine why (Did it finish? Was it removed?)

	Only useful for tracking jobs at the minute-level granularity.

Event-based Tracking

Each job in the Schedd can specify the UserLog attribute; the Schedd will atomically append a machine-parseable event to the specified file for every state transition the job goes through. By keeping track of the events in the logs, we can build an in-memory representation of the job queue state.

Advantages:

	No interaction with the condor_schedd process is needed to read the event logs; the job tracking effectively places no burden on the Schedd.

	In most cases, the Schedd writes to the log synchronously after the event occurs. Hence, the latency of receiving an update can be sub-second.

	The job tracking scales as a function of the event rate, not the total number of jobs.

	Each job state is seen, even after the job has left the queue.

Disadvantages:

	Only the local condor_schedd can be tracked; there is no mechanism to receive the event log remotely.

	Log files must be processed from the beginning, with no rotations or truncations possible. Large files can take a large amount of CPU time to process.

	If every job writes to a separate log file, the job tracking software may have to keep an enormous number of open file descriptors. If every job writes to the same log file, the log file may grow to many gigabytes.

	If the job tracking software misses an event (or an unknown bug causes the condor_schedd to fail to write the event), then the job tracker may believe a job incorrectly is stuck in the wrong state.

At a technical level, event tracking is implemented with the htcondor.JobEventLog [https://htcondor.readthedocs.io/en/latest/apis/python-bindings/api/htcondor.html#htcondor.JobEventLog] class.

>>> jel = htcondor.JobEventLog("/tmp/job_one.log")
>>> for event in jel.events(stop_after=0):
... print event

The return value of JobEventLog.events() is an iterator over htcondor.JobEvent [https://htcondor.readthedocs.io/en/latest/apis/python-bindings/api/htcondor.html#htcondor.JobEvent] objects. The example above does not block.

 DAG Creation and Submission

DAG Creation and Submission

Launch this tutorial in a Jupyter Notebook on Binder: [image: Binder] [https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/DAG-Creation-And-Submission.ipynb]

In this tutorial, we will learn how to use htcondor.dags to create and submit an HTCondor DAGMan workflow. Our goal will be to create an image of the Mandelbrot set. This is a perfect problem for high-throughput computing because each point in the image can be calculated completely independently of any other point, so we are free to divide the image creation up into patches, each created by a single HTCondor job. DAGMan will enter the picture to coordinate stitching the image patches we
create back into a single image.

Making a Mandelbrot set image locally

We’ll use goatbrot (https://github.com/beejjorgensen/goatbrot) to make the image. goatbrot can be run from the command line, and takes a series of options to specify which part of the Mandelbrot set to draw, as well as the properties of the image itself.

goatbrot options: - -i 1000 The number of iterations. - -c 0,0 The center point of the image region. - -w 3 The width of the image region. - -s 1000,1000 The pixel dimensions of the image. - -o test.ppm The name of the output file to generate.

We can run a shell command from Jupyter by prefixing it with a !:

[1]:

! ./goatbrot -i 10 -c 0,0 -w 3 -s 500,500 -o test.ppm
! convert test.ppm test.png

Complex image:
 Center: 0 + 0i
 Width: 3
 Height: 3
 Upper Left: -1.5 + 1.5i
 Lower Right: 1.5 + -1.5i

Output image:
 Filename: test.ppm
 Width, Height: 500, 500
 Theme: beej
 Antialiased: no

Mandelbrot:
 Max Iterations: 10
 Continuous: no

Goatbrot:
 Multithreading: not supported in this build

Completed: 100.0%

Let’s take a look at the test image. It won’t be very good, because we didn’t run for very many iterations. We’ll use HTCondor to produce a better image!

[2]:

from IPython.display import Image

Image('test.png')

[2]:

[image: ../../../_images/apis_python-bindings_tutorials_DAG-Creation-And-Submission_5_0.png]

What is the workflow?

We can parallelize this calculation by drawing rectangular sub-regions of the full region (“tiles”) we want and stitching them together into a single image using montage. Let’s draw this out as a graph, showing how data (image patches) will flow through the system. (Don’t worry about this code, unless you want to know how to make dot diagrams in Python!)

[3]:

from graphviz import Digraph
import itertools

num_tiles_per_side = 2

dot = Digraph()

dot.node('montage')
for x, y in itertools.product(range(num_tiles_per_side), repeat = 2):
 n = f'tile_{x}-{y}'
 dot.node(n)
 dot.edge(n, 'montage')

dot

[3]:

[image: ../../../_images/apis_python-bindings_tutorials_DAG-Creation-And-Submission_8_0.svg]

Since we can chop the image up however we’d like, we have as many tiles per side as we’d like (try changing num_tiles_per_side above). The “shape” of the DAG is the same: there is a “layer” of goatbrot jobs that calculate tiles, which all feed into montage. Now that we know the structure of the problem, we can start describing it to HTCondor.

Describing goatbrot as an HTCondor job

We describe a job using a Submit object. It corresponds to the submit file used by the command line tools. It mostly behaves like a standard Python dictionary, where the keys and values correspond to submit descriptors.

[4]:

import htcondor

tile_description = htcondor.Submit(
 executable = 'goatbrot', # the program we want to run
 arguments = '-i 10000 -c $(x),$(y) -w $(w) -s 500,500 -o tile_$(tile_x)-$(tile_y).ppm', # the arguments to pass to the executable
 log = 'mandelbrot.log', # the HTCondor job event log
 output = 'goatbrot.out.$(tile_x)_$(tile_y)', # stdout from the job goes here
 error = 'goatbrot.err.$(tile_x)_$(tile_y)', # stderr from the job goes here
 request_cpus = '1', # resource requests; we don't need much per job for this problem
 request_memory = '128MB',
 request_disk = '1GB',
)

print(tile_description)

executable = goatbrot
arguments = -i 10000 -c $(x),$(y) -w $(w) -s 500,500 -o tile_$(tile_x)-$(tile_y).ppm
log = mandelbrot.log
output = goatbrot.out.$(tile_x)_$(tile_y)
error = goatbrot.err.$(tile_x)_$(tile_y)
request_cpus = 1
request_memory = 128MB
request_disk = 1GB

Notice the heavy use of macros like $(x) to specify the tile. Those aren’t built-in submit macros; instead, we will plan on passing their values in through vars. Vars will let us customize each individual job in the tile layer by filling in those macros individually. Each job will recieve a dictionary of macro values; our next goal is to make a list of those dictionaries.

We will do this using a function that takes the number of tiles per side as an argument. As mentioned above, the structure of the DAG is the same no matter how “wide” the tile layer is. This is why we define a function to produce the tile vars instead of just calculating them once: we can vary the width of the DAG by passing different arguments to make_tile_vars. More customizations could be applied to make different images (for example, you could make it possible to set the center point
of the image).

[5]:

def make_tile_vars(num_tiles_per_side, width = 3):
 width_per_tile = width / num_tiles_per_side

 centers = [
 width_per_tile * (n + 0.5 - (num_tiles_per_side / 2))
 for n in range(num_tiles_per_side)
]

 vars = []
 for (tile_y, y), (tile_x, x) in itertools.product(enumerate(centers), repeat = 2):
 var = dict(
 w = width_per_tile,
 x = x,
 y = -y, # image coordinates vs. Cartesian coordinates
 tile_x = str(tile_x).rjust(5, '0'),
 tile_y = str(tile_y).rjust(5, '0'),
)

 vars.append(var)

 return vars

[6]:

tile_vars = make_tile_vars(2)
for var in tile_vars:
 print(var)

{'w': 1.5, 'x': -0.75, 'y': 0.75, 'tile_x': '00000', 'tile_y': '00000'}
{'w': 1.5, 'x': 0.75, 'y': 0.75, 'tile_x': '00001', 'tile_y': '00000'}
{'w': 1.5, 'x': -0.75, 'y': -0.75, 'tile_x': '00000', 'tile_y': '00001'}
{'w': 1.5, 'x': 0.75, 'y': -0.75, 'tile_x': '00001', 'tile_y': '00001'}

If we want to increase the number of tiles per side, we just pass in a larger number. Because the tile_description is parameterized in terms of these variables, it will work the same way no matter what we pass in as vars.

[7]:

tile_vars = make_tile_vars(4)
for var in tile_vars:
 print(var)

{'w': 0.75, 'x': -1.125, 'y': 1.125, 'tile_x': '00000', 'tile_y': '00000'}
{'w': 0.75, 'x': -0.375, 'y': 1.125, 'tile_x': '00001', 'tile_y': '00000'}
{'w': 0.75, 'x': 0.375, 'y': 1.125, 'tile_x': '00002', 'tile_y': '00000'}
{'w': 0.75, 'x': 1.125, 'y': 1.125, 'tile_x': '00003', 'tile_y': '00000'}
{'w': 0.75, 'x': -1.125, 'y': 0.375, 'tile_x': '00000', 'tile_y': '00001'}
{'w': 0.75, 'x': -0.375, 'y': 0.375, 'tile_x': '00001', 'tile_y': '00001'}
{'w': 0.75, 'x': 0.375, 'y': 0.375, 'tile_x': '00002', 'tile_y': '00001'}
{'w': 0.75, 'x': 1.125, 'y': 0.375, 'tile_x': '00003', 'tile_y': '00001'}
{'w': 0.75, 'x': -1.125, 'y': -0.375, 'tile_x': '00000', 'tile_y': '00002'}
{'w': 0.75, 'x': -0.375, 'y': -0.375, 'tile_x': '00001', 'tile_y': '00002'}
{'w': 0.75, 'x': 0.375, 'y': -0.375, 'tile_x': '00002', 'tile_y': '00002'}
{'w': 0.75, 'x': 1.125, 'y': -0.375, 'tile_x': '00003', 'tile_y': '00002'}
{'w': 0.75, 'x': -1.125, 'y': -1.125, 'tile_x': '00000', 'tile_y': '00003'}
{'w': 0.75, 'x': -0.375, 'y': -1.125, 'tile_x': '00001', 'tile_y': '00003'}
{'w': 0.75, 'x': 0.375, 'y': -1.125, 'tile_x': '00002', 'tile_y': '00003'}
{'w': 0.75, 'x': 1.125, 'y': -1.125, 'tile_x': '00003', 'tile_y': '00003'}

Describing montage as an HTCondor job

Now we can write the montage job description. The problem is that the arguments and input files depend on how many tiles we have, which we don’t know ahead-of-time. We’ll take the brute-force approach of just writing a function that takes the tile vars we made in the previous section and using them to build the montage job description.

Not that some of the work of building up the submit description is done in Python. This is a major advantage of communicating with HTCondor via Python: you can do the hard work in Python instead of in submit language!

One area for possible improvement here is to remove the duplication of the format of the input file names, which is repeated here from when it was first used in the goatbrot submit object. When building a larger, more complicated workflow, it is important to reduce duplication of information to make it easier to modify the workflow in the future.

[8]:

def make_montage_description(tile_vars):
 num_tiles_per_side = int(len(tile_vars) ** .5)

 input_files = [f'tile_{d["tile_x"]}-{d["tile_y"]}.ppm' for d in tile_vars]

 return htcondor.Submit(
 executable = '/usr/bin/montage',
 arguments = f'{" ".join(input_files)} -mode Concatenate -tile {num_tiles_per_side}x{num_tiles_per_side} mandelbrot.png',
 transfer_input_files = ', '.join(input_files),
 log = 'mandelbrot.log',
 output = 'montage.out',
 error = 'montage.err',
 request_cpus = '1',
 request_memory = '128MB',
 request_disk = '1GB',
)

[9]:

montage_description = make_montage_description(make_tile_vars(2))

print(montage_description)

executable = /usr/bin/montage
arguments = tile_00000-00000.ppm tile_00001-00000.ppm tile_00000-00001.ppm tile_00001-00001.ppm -mode Concatenate -tile 2x2 mandelbrot.png
transfer_input_files = tile_00000-00000.ppm, tile_00001-00000.ppm, tile_00000-00001.ppm, tile_00001-00001.ppm
log = mandelbrot.log
output = montage.out
error = montage.err
request_cpus = 1
request_memory = 128MB
request_disk = 1GB

Describing the DAG using htcondor.dags

Now that we have the job descriptions, all we have to do is use htcondor.dags to tell DAGMan about the dependencies between them. htcondor.dags is a subpackage of the HTCondor Python bindings that lets you write DAG descriptions using a higher-level language than raw DAG description file syntax. Incidentally, it also lets you use Python to drive the creation process, increasing your flexibility.

Important Concept: the code from dag = dags.DAG() onwards only defines the topology (or structure) of the DAG. The tile layer can be flexibly grown or shrunk by adjusting the tile_vars without changing the topology, and this can be clearly expressed in the code. The tile_vars are driving the creation of the DAG. Try changing num_tiles_per_side to some other value!

[10]:

from htcondor import dags

num_tiles_per_side = 2

create the tile vars early, since we need to pass them to multiple places later
tile_vars = make_tile_vars(num_tiles_per_side)

dag = dags.DAG()

create the tile layer, passing in the submit description for a tile job and the tile vars
tile_layer = dag.layer(
 name = 'tile',
 submit_description = tile_description,
 vars = tile_vars,
)

create the montage "layer" (it only has one job in it, so no need for vars)
note that the submit description is created "on the fly"!
montage_layer = tile_layer.child_layer(
 name = 'montage',
 submit_description = make_montage_description(tile_vars),
)

We can get a textual description of the DAG structure by calling the describe method:

[11]:

print(dag.describe())

Type Name # Nodes # Children Parents
Layer tile 4 1
Layer montage 1 0 tile[ManyToMany]

Write the DAG to disk

We still need to write the DAG to disk to get DAGMan to work with it. We also need to move some files around so that the jobs know where to find them.

[12]:

from pathlib import Path
import shutil

dag_dir = (Path.cwd() / 'mandelbrot-dag').absolute()

blow away any old files
shutil.rmtree(dag_dir, ignore_errors = True)

make the magic happen!
dag_file = dags.write_dag(dag, dag_dir)

the submit files are expecting goatbrot to be next to them, so copy it into the dag directory
shutil.copy2('goatbrot', dag_dir)

print(f'DAG directory: {dag_dir}')
print(f'DAG description file: {dag_file}')

DAG directory: /home/jovyan/tutorials/mandelbrot-dag
DAG description file: /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag

Submit the DAG via the Python bindings

Now that we have written out the DAG description file, we can submit it for execution using the standard Python bindings submit mechanism. The Submit class has a static method which can read a DAG description and generate a corresponding Submit object:

[13]:

dag_submit = htcondor.Submit.from_dag(str(dag_file), {'force': 1})

print(dag_submit)

universe = scheduler
executable = /usr/bin/condor_dagman
getenv = True
output = /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.lib.out
error = /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.lib.err
log = /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.dagman.log
remove_kill_sig = SIGUSR1
MY.OtherJobRemoveRequirements = "DAGManJobId =?= $(cluster)"
on_exit_remove = (ExitSignal =?= 11 || (ExitCode =!= UNDEFINED && ExitCode >=0 && ExitCode <= 2))
arguments = "-p 0 -f -l . -Lockfile /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.lock -AutoRescue 1 -DoRescueFrom 0 -Dag /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag -Suppress_notification -CsdVersion $CondorVersion:' '9.1.3' 'Aug' '19' '2021' 'BuildID:' 'UW_Python_Wheel_Build' '$ -Dagman /usr/bin/condor_dagman"
environment = _CONDOR_MAX_DAGMAN_LOG=0;_CONDOR_DAGMAN_LOG=/home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.dagman.out

Now we can enter the DAG directory and submit the DAGMan job, which will execute the graph:

[14]:

import os
os.chdir(dag_dir)

schedd = htcondor.Schedd()
with schedd.transaction() as txn:
 cluster_id = dag_submit.queue(txn)

print(f"DAGMan job cluster is {cluster_id}")

os.chdir('..')

DAGMan job cluster is 6

Let’s wait for the DAGMan job to complete by reading it’s event log:

[15]:

dag_job_log = f"{dag_file}.dagman.log"
print(f"DAG job log file is {dag_job_log}")

DAG job log file is /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.dagman.log

[16]:

read events from the log, waiting forever for the next event
dagman_job_events = htcondor.JobEventLog(str(dag_job_log)).events(None)

this event stream only contains the events for the DAGMan job itself, not the jobs it submits
for event in dagman_job_events:
 print(event)

 # stop waiting when we see the terminate event
 if event.type is htcondor.JobEventType.JOB_TERMINATED and event.cluster == cluster_id:
 break

000 (006.000.000) 2021-09-16 13:14:29 Job submitted from host: <172.17.0.2:9618?addrs=172.17.0.2-9618&alias=abae0fbbde81&noUDP&sock=schedd_19_eccb>

001 (006.000.000) 2021-09-16 13:14:32 Job executing on host: <172.17.0.2:9618?addrs=172.17.0.2-9618&alias=abae0fbbde81&noUDP&sock=schedd_19_eccb>

005 (006.000.000) 2021-09-16 13:15:10 Job terminated.
 (1) Normal termination (return value 0)
 Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage
 0 - Run Bytes Sent By Job
 0 - Run Bytes Received By Job
 0 - Total Bytes Sent By Job
 0 - Total Bytes Received By Job

Let’s look at the final image!

[17]:

Image(dag_dir / "mandelbrot.png")

[17]:

[image: ../../../_images/apis_python-bindings_tutorials_DAG-Creation-And-Submission_34_0.png]

[]:

 Personal Pools

Personal Pools

Launch this tutorial in a Jupyter Notebook on Binder: [image: Binder] [https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Personal-Pools.ipynb]

A Personal HTCondor Pool is an HTCondor Pool that has a single owner, who is: - The pool’s administrator. - The only submitter who is allowed to submit jobs to the pool. - The owner of all resources managed by the pool.

The HTCondor Python bindings provide a submodule, htcondor.personal, which allows you to manage personal pools from Python. Personal pools are useful for: - Utilizing local computational resources (i.e., all of the cores on a lab server). - Created an isolated testing/development environment for HTCondor workflows. - Serving as an entrypoint to other computational resources, like annexes or flocked pools (not yet implemented).

We can start a personal pool by instantiating a PersonalPool. This object represents the personal pool and lets us manage its “lifecycle”: start up and shut down. We can also use the PersonalPool to interact with the HTCondor pool once it has been started up.

Each Personal Pool must have a unique “local directory”, corresponding to the HTCondor configuration parameter LOCAL_DIR. For this tutorial, we’ll put it in the current working directory so that it’s easy to find.

Advanced users can configure the personal pool using the PersonalPool constructor. See the documentation for details on the available options.

[1]:

import htcondor
from htcondor.personal import PersonalPool
from pathlib import Path

[2]:

pool = PersonalPool(local_dir = Path.cwd() / "personal-condor")
pool

[2]:

PersonalPool(local_dir=./personal-condor, state=INITIALIZED)

To tell the personal pool to start running, call the start() method:

[3]:

pool.start()

[3]:

PersonalPool(local_dir=./personal-condor, state=READY)

start() doesn’t return until the personal pool is READY, which means that it can accept commands (e.g., job submission).

Schedd and Collector objects for the personal pool are available as properties on the PersonalPool:

[4]:

pool.schedd

[4]:

<htcondor.htcondor.Schedd at 0x7f2c08111ea0>

[5]:

pool.collector

[5]:

<htcondor.htcondor.Collector at 0x7f2c08197400>

For example, we can submit jobs using pool.schedd:

[6]:

sub = htcondor.Submit(
 executable = "/bin/sleep",
 arguments = "$(ProcID)s",
)

schedd = pool.schedd
submit_result = schedd.submit(sub, count=10)

print(f"ClusterID is {submit_result.cluster()}")

ClusterID is 2

And we can query for the state of those jobs:

[7]:

for ad in pool.schedd.query(
 constraint = f"ClusterID == {submit_result.cluster()}",
 projection = ["ClusterID", "ProcID", "JobStatus"]
):
 print(repr(ad))

[ClusterID = 2; ProcID = 0; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 1; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 2; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 3; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 4; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 5; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 6; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 7; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 8; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 9; JobStatus = 1; ServerTime = 1631798161]

We can use the collector to query the state of pool:

[8]:

get 3 random ads from the daemons in the pool
for ad in pool.collector.query()[:3]:
 print(ad)

 [
 UpdateSequenceNumber = 1;
 TargetType = "none";
 AuthenticationMethod = "FAMILY";
 Name = "jovyan@abae0fbbde81";
 AccountingGroup = "<none>";
 WeightedUnchargedTime = 0.0;
 DaemonStartTime = 1631798156;
 WeightedResourcesUsed = 2.000000000000000E+00;
 LastHeardFrom = 1631798160;
 Priority = 5.000000000000000E+02;
 LastUpdate = 1631798160;
 SubmitterLimit = 2.000000000000000E+00;
 MyType = "Accounting";
 PriorityFactor = 1.000000000000000E+03;
 IsAccountingGroup = false;
 Ceiling = -1;
 ResourcesUsed = 1;
 DaemonLastReconfigTime = 1631798156;
 AuthenticatedIdentity = "condor@family";
 NegotiatorName = "jovyan@abae0fbbde81";
 UnchargedTime = 0;
 SubmitterShare = 1.000000000000000E+00
]

 [
 AuthenticatedIdentity = "condor@family";
 EffectiveQuota = 0.0;
 GroupSortKey = 0.0;
 ResourcesUsed = 1;
 PriorityFactor = 1.000000000000000E+03;
 NegotiatorName = "jovyan@abae0fbbde81";
 Name = "<none>";
 AccumulatedUsage = 0.0;
 ConfigQuota = 0.0;
 LastHeardFrom = 1631798160;
 SubtreeQuota = 0.0;
 DaemonStartTime = 1631798156;
 LastUsageTime = 0;
 SurplusPolicy = "byquota";
 TargetType = "none";
 AuthenticationMethod = "FAMILY";
 LastUpdate = 1631798160;
 WeightedAccumulatedUsage = 0.0;
 Priority = 5.000000000000000E+02;
 MyType = "Accounting";
 IsAccountingGroup = true;
 BeginUsageTime = 0;
 AccountingGroup = "<none>";
 UpdateSequenceNumber = 3;
 DaemonLastReconfigTime = 1631798156;
 WeightedResourcesUsed = 2.000000000000000E+00;
 Requested = 0.0
]

 [
 CCBReconnects = 0;
 MachineAdsPeak = 0;
 DetectedCpus = 2;
 UpdatesInitial_Accouting = 1;
 CurrentJobsRunningLinda = 0;
 StatsLifetime = 1;
 MaxJobsRunningAll = 0;
 CondorPlatform = "$CondorPlatform: X86_64-Ubuntu_20.04 $";
 MaxJobsRunningJava = 0;
 MaxJobsRunningGrid = 0;
 MaxJobsRunningPVMD = 0;
 RecentUpdatesLostMax = 0;
 UpdatesLost = 0;
 RecentUpdatesLostRatio = 0.0;
 MonitorSelfRegisteredSocketCount = 2;
 UpdatesTotal_Collector = 1;
 MonitorSelfTime = 1631798156;
 RecentUpdatesTotal_Collector = 1;
 CondorAdmin = "root@abae0fbbde81";
 MaxJobsRunningLinda = 0;
 CurrentJobsRunningPVM = 0;
 UpdatesLost_Collector = 0;
 CCBRequests = 0;
 CurrentJobsRunningPipe = 0;
 RecentUpdatesLost_Negotiator = 0;
 RecentUpdatesTotal = 3;
 RecentCCBRequestsFailed = 0;
 MaxJobsRunningVM = 0;
 CCBEndpointsConnected = 0;
 UpdatesLost_Accouting = 0;
 CurrentJobsRunningScheduler = 0;
 CurrentJobsRunningVanilla = 0;
 IdleJobs = 0;
 RecentUpdatesInitial_Accouting = 1;
 PendingQueriesPeak = 0;
 RecentUpdatesLost_Accouting = 0;
 ActiveQueryWorkersPeak = 2;
 MonitorSelfAge = 1;
 MonitorSelfCPUUsage = 1.800000000000000E+01;
 PendingQueries = 0;
 ActiveQueryWorkers = 0;
 DetectedMemory = 1988;
 CurrentJobsRunningMPI = 0;
 UpdateInterval = 21600;
 CurrentJobsRunningPVMD = 0;
 DroppedQueries = 0;
 RecentCCBRequestsSucceeded = 0;
 CCBEndpointsConnectedPeak = 0;
 StatsLastUpdateTime = 1631798157;
 CondorVersion = "$CondorVersion: 8.9.11 Dec 29 2020 BuildID: Debian-8.9.11-1.2 PackageID: 8.9.11-1.2 Debian-8.9.11-1.2 $";
 MaxJobsRunningPipe = 0;
 CurrentJobsRunningParallel = 0;
 CCBEndpointsRegisteredPeak = 0;
 UpdatesInitial_Collector = 1;
 RecentDaemonCoreDutyCycle = 3.488135394901704E-02;
 SubmitterAdsPeak = 0;
 RecentUpdatesTotal_Accouting = 1;
 DaemonCoreDutyCycle = 3.488135394901704E-02;
 UpdatesTotal_Accouting = 1;
 MaxJobsRunningParallel = 0;
 UpdatesTotal = 3;
 RecentStatsLifetime = 1;
 MonitorSelfSecuritySessions = 2;
 CCBEndpointsRegistered = 0;
 LastHeardFrom = 1631798157;
 ForkQueriesFromCOLLECTOR = 2;
 HostsTotal = 0;
 CurrentJobsRunningJava = 0;
 RecentUpdatesTotal_Negotiator = 1;
 RecentForkQueriesFromCOLLECTOR = 2;
 CurrentJobsRunningAll = 0;
 RecentCCBRequestsNotFound = 0;
 Name = "My Pool - 127.0.0.1@abae0fbbde81";
 HostsOwner = 0;
 TargetType = "";
 CCBRequestsNotFound = 0;
 CurrentJobsRunningStandard = 0;
 SubmitterAds = 0;
 UpdatesLost_Negotiator = 0;
 MonitorSelfResidentSetSize = 11084;
 CCBRequestsSucceeded = 0;
 RecentUpdatesLost_Collector = 0;
 RecentUpdatesInitial_Collector = 1;
 RecentUpdatesLost = 0;
 RecentCCBRequests = 0;
 UpdatesTotal_Negotiator = 1;
 UpdatesInitial_Negotiator = 1;
 RecentDroppedQueries = 0;
 CurrentJobsRunningUnknown = 0;
 RecentUpdatesInitial_Negotiator = 1;
 HostsUnclaimed = 0;
 MachineAds = 0;
 RecentCCBReconnects = 0;
 UpdatesLostMax = 0;
 CollectorIpAddr = "<172.17.0.2:46143?addrs=172.17.0.2-46143&alias=abae0fbbde81&noUDP&sock=collector>";
 UpdatesInitial = 3;
 HostsClaimed = 0;
 MaxJobsRunningLocal = 0;
 AddressV1 = "{[p=\"primary\"; a=\"172.17.0.2\"; port=46143; n=\"Internet\"; alias=\"abae0fbbde81\"; spid=\"collector\"; noUDP=true;], [p=\"IPv4\"; a=\"172.17.0.2\"; port=46143; n=\"Internet\"; alias=\"abae0fbbde81\"; spid=\"collector\"; noUDP=true;]}";
 MaxJobsRunningUnknown = 0;
 MyAddress = "<172.17.0.2:46143?addrs=172.17.0.2-46143&alias=abae0fbbde81&noUDP&sock=collector>";
 Machine = "abae0fbbde81";
 CurrentJobsRunningGrid = 0;
 RunningJobs = 0;
 MyType = "Collector";
 MaxJobsRunningMPI = 0;
 MaxJobsRunningScheduler = 0;
 MyCurrentTime = 1631798156;
 RecentUpdatesInitial = 3;
 UpdatesLostRatio = 0.0;
 MaxJobsRunningVanilla = 0;
 CurrentJobsRunningLocal = 0;
 CCBRequestsFailed = 0;
 CurrentJobsRunningVM = 0;
 MaxJobsRunningStandard = 0;
 MonitorSelfImageSize = 16224;
 MaxJobsRunningPVM = 0
]

When you’re done using the personal pool, you can stop() it:

[9]:

pool.stop()

[9]:

PersonalPool(local_dir=./personal-condor, state=STOPPED)

stop(), like start() will not return until the personal pool has actually stopped running. The personal pool will also automatically be stopped if the PersonalPool object is garbage-collected, or when the Python interpreter stops running.

To prevent the pool from being automatically stopped in these situations, call the detach() method. The corresponding attach() method can be used to “re-connect” to a detached personal pool.

When working with a personal pool in a script, you may want to use it as a context manager. This pool will automatically start and stop at the beginning and end of the context:

[10]:

with PersonalPool(local_dir = Path.cwd() / "another-personal-condor") as pool: # note: no need to call start()
 print(pool.get_config_val("LOCAL_DIR"))

/home/jovyan/tutorials/another-personal-condor

 classad API Reference

classad API Reference

This page is an exhaustive reference of the API exposed by the classad
module. It is not meant to be a tutorial for new users but rather a helpful
guide for those who already understand the basic usage of the module.

ClassAd Representation

ClassAds are individually represented by the ClassAd class.
Their attribute are key-value pairs, as in a standard Python dictionary.
The keys are strings, and the values may be either Python primitives
corresponding to ClassAd data types (string, bool, etc.) or ExprTree
objects, which correspond to un-evaluated ClassAd expressions.

	
class classad.ClassAd(input)

	The ClassAd object is the Python representation of a ClassAd.
Where possible, ClassAd attempts to mimic a Python dict [https://docs.python.org/3/library/stdtypes.html#dict].
When attributes are referenced, they are converted to Python values if possible;
otherwise, they are represented by a ExprTree object.

New ClassAd objects can be initialized via a string (which is
parsed as an ad) or a dictionary-like object containing
attribute-value pairs.

The ClassAd object is iterable (returning the attributes) and implements
the dictionary protocol. The items, keys, values, get, setdefault,
and update methods have the same semantics as a dictionary.

Note

Where possible, we recommend using the dedicated parsing functions
(parseOne(), parseNext(), or parseAds()) instead of using
the constructor.

	Parameters

	input (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A string or dictionary which will be interpreted as a classad.

	
eval(attr) → object :

	Evaluate an attribute to a Python object. The result will not be an ExprTree
but rather an built-in type such as a string, integer, boolean, etc.

	Parameters

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attribute to evaluate.

	Returns

	The Python object corresponding to the evaluated ClassAd attribute

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if unable to evaluate the object.

	
lookup(attr) → ExprTree :

	Look up the ExprTree object associated with attribute.

No attempt will be made to convert to a Python object.

	Parameters

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attribute to evaluate.

	Returns

	The ExprTree object referenced by attr.

	
printOld() → str :

	Serialize the ClassAd in the old ClassAd format.

	Returns

	The ‘old ClassAd’ representation of the ad.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
printJson(arg1) → str :

	Serialize the ClassAd as a string in JSON format.

	Returns

	The JSON representation of the ad.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
flatten(expr) → object :

	Given ExprTree object expression, perform a partial evaluation.
All the attributes in expression and defined in this ad are evaluated and expanded.
Any constant expressions, such as 1 + 2, are evaluated; undefined attributes
are not evaluated.

	Parameters

	expr (ExprTree) – The expression to evaluate in the context of this ad.

	Returns

	The partially-evaluated expression.

	Return type

	ExprTree

	
matches(ad) → bool :

	Lookup the Requirements attribute of given ad return True if the
Requirements evaluate to True in our context.

	Parameters

	ad (ClassAd) – ClassAd whose Requirements we will evaluate.

	Returns

	True if we satisfy ad’s requirements; False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
symmetricMatch(ad) → bool :

	Check for two-way matching between given ad and ourselves.

Equivalent to self.matches(ad) and ad.matches(self).

	Parameters

	ad (ClassAd) – ClassAd to check for matching.

	Returns

	True if both ads’ requirements are satisfied.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
externalRefs(expr) → list :

	Returns a Python list of external references found in expr.

An external reference is any attribute in the expression which is not defined
by the ClassAd object.

	Parameters

	expr (ExprTree) – Expression to examine.

	Returns

	A list of external attribute references.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
internalRefs(expr) → list :

	Returns a Python list of internal references found in expr.

An internal reference is any attribute in the expression which is defined by the
ClassAd object.

	Parameters

	expr (ExprTree) – Expression to examine.

	Returns

	A list of internal attribute references.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
__eq__(arg1, arg2) → bool :

	One ClassAd is equivalent to another if they have the same number
of attributes, and each attribute is the sameAs() the other.

	
__ne__(arg1, arg2) → bool :

	The opposite of __eq__().

	
class classad.ExprTree(expr)

	The ExprTree class represents an expression in the ClassAd language.

The ExprTree constructor takes an ExprTree, or a string, which it will attempt to
parse into a ClassAd expression.
str(expr) will turn the ExprTree back into its string representation.
int, float, and bool behave similarly, evaluating as necessary.

As with typical ClassAd semantics, lazy-evaluation is used. So, the expression 'foo' + 1
does not produce an error until it is evaluated with a call to bool() or the ExprTree.eval()
method.

Note

The Python operators for ExprTree have been overloaded so, if e1 and e2 are ExprTree objects,
then e1 + e2 is also an ExprTree object. However, Python short-circuit evaluation semantics
for e1 && e2 cause e1 to be evaluated. In order to get the ‘logical and’ of the two expressions without
evaluating, use e1.and_(e2). Similarly, e1.or_(e2) results in the ‘logical or’.

	
and_(expr) → ExprTree :

	Return a new expression, formed by self && expr.

	Parameters

	expr (ExprTree) – Right-hand-side expression to ‘and’

	Returns

	A new expression, defined to be self && expr.

	Return type

	ExprTree

	
or_(expr) → ExprTree :

	Return a new expression, formed by self || expr.

	Parameters

	expr (ExprTree) – Right-hand-side expression to ‘or’

	Returns

	A new expression, defined to be self || expr.

	Return type

	ExprTree

	
is_(expr) → ExprTree :

	Logical comparison using the ‘meta-equals’ operator.

	Parameters

	expr (ExprTree) – Right-hand-side expression to =?= operator.

	Returns

	A new expression, formed by self =?= expr.

	Return type

	ExprTree

	
isnt_(expr) → ExprTree :

	Logical comparison using the ‘meta-not-equals’ operator.

	Parameters

	expr (ExprTree) – Right-hand-side expression to =!= operator.

	Returns

	A new expression, formed by self =!= expr.

	Return type

	ExprTree

	
sameAs(expr) → bool :

	Returns True if given ExprTree is same as this one.

	Parameters

	expr (ExprTree) – Expression to compare against.

	Returns

	True if and only if expr is equivalent to this object.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
eval(scope) → object :

	Evaluate the expression and return as a ClassAd value,
typically a Python object.

Warning

If scope is passed and is not the ClassAd this ExprTree
might belong to, this method is not thread-safe.

	Parameters

	scope (ClassAd) – Optionally, the ClassAd context in which to evaluate.
Unnecessary if the ExprTree comes from its own ClassAd,
in which case it will be evaluated in the scope of that ad,
or if the ExprTree can be evaluated without a context.

If passed, scope must be a classad.ClassAd.

	Returns

	The evaluated expression as a Python object.

	
simplify(scope, target) → ExprTree :

	Evaluate the expression and return as a ExprTree.

Warning

If scope is passed and is not the ClassAd this ExprTree
might belong to, this method is not thread-safe.

Warning

It is erroneous for scope to be a temporary; the
lifetime of the returned object may depend on the lifetime
of the scope object.

	Parameters

	
	scope (ClassAd) – Optionally, the ClassAd context in which to evaluate.
Unnecessary if the ExprTree comes from its own ClassAd,
in which case it will be evaluated in the scope of that ad,
or if the ExprTree can be evaluated without a context.

If passed, scope must be a classad.ClassAd.

	target (ClassAd) – Optionally, the ClassAd TARGET ad.

If passed, target must be a classAd.ClassAd.

	Returns

	The evaluated expression as an ExprTree.

	
class classad.Value

	An enumeration of the two special ClassAd values Undefined and Error.

The values of the enumeration are:

	
Undefined

	

	
Error

	

Parsing and Creating ClassAds

classad provides a variety of utility functions that can help you
construct ClassAd expressions and parse string representations of ClassAds.

	
classad.parseAds(input, parser=classad.classad.Parser.Auto) → object :

	Parse the input as a series of ClassAds.

	Parameters

	
	input (str [https://docs.python.org/3/library/stdtypes.html#str] or file) – Serialized ClassAd input; may be a file-like object.

	parser (Parser) – Controls behavior of the ClassAd parser.

	Returns

	An iterator that produces ClassAd.

	
classad.parseNext(input, parser=classad.classad.Parser.Auto) → object :

	Parse the next ClassAd in the input string.
Advances the input to point after the consumed ClassAd.

	Parameters

	
	input (str [https://docs.python.org/3/library/stdtypes.html#str] or file) – Serialized ClassAd input; may be a file-like object.

	parser (Parser) – Controls behavior of the ClassAd parser.

	Returns

	An iterator that produces ClassAd.

	
classad.parseOne(input, parser=classad.classad.Parser.Auto) → ClassAd :

	Parse the entire input into a single ClassAd object.

In the presence of multiple ClassAds or blank lines in the input,
continue to merge ClassAds together until the entire input is
consumed.

	Parameters

	
	input (str [https://docs.python.org/3/library/stdtypes.html#str] or file) – Serialized ClassAd input; may be a file-like object.

	parser (Parser) – Controls behavior of the ClassAd parser.

	Returns

	Corresponding ClassAd object.

	Return type

	ClassAd

	
classad.quote(input) → str :

	Converts the Python string into a ClassAd string literal; this
handles all the quoting rules for the ClassAd language. For example:

>>> classad.quote('hello'world')
''hello\\'world''

This allows one to safely handle user-provided strings to build expressions.
For example:

>>> classad.ExprTree('Foo =?= %s' % classad.quote('hello'world'))
Foo is 'hello\'world'

	Parameters

	input (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input string to quote.

	Returns

	The corresponding string literal as a Python string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classad.unquote(input) → str :

	Converts a ClassAd string literal, formatted as a string, back into
a Python string. This handles all the quoting rules for the ClassAd language.

	Parameters

	input (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input string to unquote.

	Returns

	The corresponding Python string for a string literal.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classad.Attribute(name) → ExprTree :

	Given an attribute name, construct an ExprTree object
which is a reference to that attribute.

Note

This may be used to build ClassAd expressions easily from python.
For example, the ClassAd expression foo == 1 can be constructed by the
Python code Attribute('foo') == 1.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of attribute to reference.

	Returns

	Corresponding expression consisting of an attribute reference.

	Return type

	ExprTree

	
classad.Function()

	Given function name name, and zero-or-more arguments, construct an
ExprTree which is a function call expression. The function is
not evaluated.

For example, the ClassAd expression strcat('hello ', 'world') can
be constructed by the Python expression Function('strcat', 'hello ', 'world').

	Returns

	Corresponding expression consisting of a function call.

	Return type

	ExprTree

	
classad.Literal(obj) → ExprTree :

	Convert a given Python object to a ClassAd literal.

Python strings, floats, integers, and booleans have equivalent literals in the
ClassAd language.

	Parameters

	obj – Python object to convert to an expression.

	Returns

	Corresponding expression consising of a literal.

	Return type

	ExprTree

	
classad.lastError() → str :

	Return the string representation of the last error to occur in the ClassAd library.

As the ClassAd language has no concept of an exception, this is the only mechanism
to receive detailed error messages from functions.

	
classad.register(function, name=None) → None :

	Given the Python function, register it as a function in the ClassAd language.
This allows the invocation of the Python function from within a ClassAd
evaluation context.

	Parameters

	
	function – A callable object to register with the ClassAd runtime.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Provides an alternate name for the function within the ClassAd library.
The default, None, indicates to use the built-in function name.

	
classad.registerLibrary(arg1) → None :

	Given a file system path, attempt to load it as a shared library of ClassAd
functions. See the upstream documentation for configuration variable
CLASSAD_USER_LIBS for more information about loadable libraries for ClassAd functions.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The library to load.

Parser Control

The behavior of parseAds(), parseNext(), and parseOne()
can be controlled by giving them different values of the Parser
enumeration.

	
class classad.Parser

	An enumeration that controls the behavior of the ClassAd parser.
The values of the enumeration are…

	
Auto

	The parser should automatically determine the ClassAd representation.

	
Old

	The parser should only accept the old ClassAd format.

	
New

	The parser should only accept the new ClassAd format.

Utility Functions

	
classad.version() → str :

	Return the version of the linked ClassAd library.

Exceptions

For backwards-compatibility, the exceptions in this module inherit
from the built-in exceptions raised in earlier (pre-v8.9.9) versions.

	
class classad.ClassAdException

	Never raised. The parent class of all exceptions raised by this module.

	
class classad.ClassAdEnumError

	Raised when a value must be in an enumeration, but isn’t.

	
class classad.ClassAdEvaluationError

	Raised when the ClassAd library fails to evaluate an expression.

	
class classad.ClassAdInternalError

	Raised when the ClassAd library encounters an internal error.

	
class classad.ClassAdOSError

	Raised instead of OSError [https://docs.python.org/3/library/exceptions.html#OSError] for backwards compatibility.

	
class classad.ClassAdParseError

	Raised when the ClassAd library fails to parse a (putative) ClassAd.

	
class classad.ClassAdTypeError

	Raised instead of TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] for backwards compatibility.

	
class classad.ClassAdValueError

	Raised instead of ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] for backwards compatibility.

Deprecated Functions

The functions in this section are deprecated; new code should not use them
and existing code should be rewritten to use their replacements.

	
classad.parse(input) → ClassAd :

	
Warning

This function is deprecated.

Parse input, in the new ClassAd format, into a ClassAd object.

	Parameters

	input (str [https://docs.python.org/3/library/stdtypes.html#str] or file) – A string-like object or a file pointer.

	Returns

	Corresponding ClassAd object.

	Return type

	ClassAd

	
classad.parseOld(input) → ClassAd :

	
Warning

This function is deprecated.

Parse input, in the old ClassAd format, into a ClassAd object.

	Parameters

	input (str [https://docs.python.org/3/library/stdtypes.html#str] or file) – A string-like object or a file pointer.

	Returns

	Corresponding ClassAd object.

	Return type

	ClassAd

 htcondor API Reference

htcondor API Reference

This page is an exhaustive reference of the API exposed by the htcondor
module. It is not meant to be a tutorial for new users but rather a helpful
guide for those who already understand the basic usage of the module.

Interacting with Collectors

	
class htcondor.Collector(pool)

	Client object for a remote condor_collector.
The Collector can be used to:

	Locate a daemon.

	Query the condor_collector for one or more specific ClassAds.

	Advertise a new ad to the condor_collector.

	Parameters

	pool (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A host:port pair specified for the remote collector
(or a list of pairs for HA setups). If omitted, the value of
configuration parameter COLLECTOR_HOST is used.

	
locate(daemon_type, name) → object :

	Query the condor_collector for a particular daemon.

	Parameters

	
	daemon_type (DaemonTypes) – The type of daemon to locate.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of daemon to locate. If not specified, it searches for the local daemon.

	Returns

	a minimal ClassAd of the requested daemon, sufficient only to contact the daemon;
typically, this limits to the MyAddress attribute.

	Return type

	ClassAd

	
locateAll(daemon_type) → object :

	Query the condor_collector daemon for all ClassAds of a particular type. Returns a list of matching ClassAds.

	Parameters

	daemon_type (DaemonTypes) – The type of daemon to locate.

	Returns

	Matching ClassAds

	Return type

	list[ClassAd]

	
query(ad_type=htcondor.htcondor.AdTypes.Any, constraint='', projection=[], statistics='') → object :

	Query the contents of a condor_collector daemon. Returns a list of ClassAds that match the constraint parameter.

	Parameters

	
	ad_type (AdTypes) – The type of ClassAd to return. If not specified, the type will be ANY_AD.

	constraint (str or ExprTree) – A constraint for the collector query; only ads matching this constraint are returned.
If not specified, all matching ads of the given type are returned.

	projection (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of attributes to use for the projection. Only these attributes, plus a few server-managed,
are returned in each ClassAd.

	statistics (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Statistics attributes to include, if they exist for the specified daemon.

	Returns

	A list of matching ads.

	Return type

	list[ClassAd]

	
directQuery(daemon_type, name='', projection=[], statistics='') → object :

	Query the specified daemon directly for a ClassAd, instead of using the ClassAd from the condor_collector daemon.
Requires the client library to first locate the daemon in the collector, then querying the remote daemon.

	Parameters

	
	daemon_type (DaemonTypes) – Specifies the type of the remote daemon to query.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the daemon’s name. If not specified, the local daemon is used.

	projection (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – is a list of attributes requested, to obtain only a subset of the attributes from the daemon’s ClassAd.

	statistics (str [https://docs.python.org/3/library/stdtypes.html#str]) – Statistics attributes to include, if they exist for the specified daemon.

	Returns

	The ad of the specified daemon.

	Return type

	ClassAd

	
advertise(ad_list, command='UPDATE_AD_GENERIC', use_tcp=True) → None :

	Advertise a list of ClassAds into the condor_collector.

	Parameters

	
	ad_list (list[ClassAds]) – ClassAds to advertise.

	command (str [https://docs.python.org/3/library/stdtypes.html#str]) – An advertise command for the remote condor_collector.
It defaults to UPDATE_AD_GENERIC.
Other commands, such as UPDATE_STARTD_AD, may require different authorization levels with the remote daemon.

	use_tcp (bool [https://docs.python.org/3/library/functions.html#bool]) – When set to True, updates are sent via TCP. Defaults to True.

	
class htcondor.DaemonTypes

	An enumeration of different types of daemons available to HTCondor.

The values of the enumeration are:

	
None

	

	
Any

	Any type of daemon; useful when specifying queries where all matching
daemons should be returned.

	
Master

	Ads representing the condor_master.

	
Schedd

	Ads representing the condor_schedd.

	
Startd

	Ads representing the resources on a worker node.

	
Collector

	Ads representing the condor_collector.

	
Negotiator

	Ads representing the condor_negotiator.

	
HAD

	Ads representing the high-availability daemons (condor_had).

	
Generic

	All other ads that are not categorized as above.

	
Credd

	

	
class htcondor.AdTypes

	A list of different types of ads that may be kept in the condor_collector.

The values of the enumeration are:

	
None

	

	
Any

	Type representing any matching ad. Useful for queries that match everything
in the collector.

	
Generic

	Generic ads, associated with no particular daemon.

	
Startd

	Startd ads, produced by the condor_startd daemon. Represents the
available slots managed by the startd.

	
StartdPrivate

	The “private” ads, containing the claim IDs associated with a particular
slot. These require additional authorization to read as the claim ID
may be used to run jobs on the slot.

	
Schedd

	Schedd ads, produced by the condor_schedd daemon.

	
Master

	Master ads, produced by the condor_master daemon.

	
Collector

	Ads from the condor_collector daemon.

	
Negotiator

	Negotiator ads, produced by the condor_negotiator daemon.

	
Submitter

	Ads describing the submitters with available jobs to run; produced by
the condor_schedd and read by the condor_negotiator to determine
which users need a new negotiation cycle.

	
Grid

	Ads associated with the grid universe.

	
HAD

	Ads produced by the condor_had.

	
License

	License ads. These do not appear to be used by any modern HTCondor daemon.

	
Credd

	

	
Defrag

	

	
Accounting

	

Interacting with Schedulers

	
class htcondor.Schedd(location_ad)

	Client object for a condor_schedd.

	Parameters

	location_ad (ClassAd or DaemonLocation) – A ClassAd describing the location of the remote condor_schedd
daemon, as returned by the Collector.locate() method, or a tuple
of type DaemonLocation as returned by Schedd.location(). If the parameter is omitted,
the local condor_schedd daemon is used.

	
transaction()

	
Warning

Schedd.transaction() was deprecated in version 10.7.0 and will be removed in a future release. Use Schedd.submit() instead.

transaction((Schedd)self [, (TransactionFlags)flags=0 [, (bool)continue_txn=False]]) -> Transaction :

This method is DEPRECATED. Use Schedd.submit() instead.

Start a transaction with the condor_schedd.

Starting a new transaction while one is ongoing is an error unless the continue_txn
flag is set.

	param flags

	Flags controlling the behavior of the transaction, defaulting to 0.

	type flags

	TransactionFlags

	param bool continue_txn

	Set to True if you would like this transaction to extend any
pre-existing transaction; defaults to False. If this is not set, starting a transaction
inside a pre-existing transaction will cause an exception to be thrown.

	return

	A Transaction object.

	
query(constraint='true', projection=[], callback=None, limit=-1, opts=htcondor.htcondor.QueryOpts.Default) → object :

	Query the condor_schedd daemon for job ads.

Warning

This returns a list of ClassAd objects,
meaning all results must be held in memory simultaneously.
This may be memory-intensive for queries that return
many and/or large jobs ads.
If you are retrieving many large ads, consider using
xquery() instead to reduce memory requirements.

	Parameters

	
	constraint (str or ExprTree) – A query constraint.
Only jobs matching this constraint will be returned.
Defaults to 'true', which means all jobs will be returned.

	projection (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Attributes that will be returned for each job in the query.
At least the attributes in this list will be returned, but additional ones may be returned as well.
An empty list (the default) returns all attributes.

	callback – A callable object; if provided, it will be invoked for each ClassAd.
The return value (if not None) will be added to the returned list instead of the ad.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of ads to return; the default (-1) is to return all ads.

	opts (QueryOpts.) – Additional flags for the query; these may affect the behavior of the condor_schedd.

	Returns

	ClassAds representing the matching jobs.

	Return type

	list[ClassAd]

	
xquery()

	
Warning

Schedd.xquery() was deprecated in version 10.7.0 and will be removed in a future release.

xquery((Schedd)self [, (object)constraint=’true’ [, (list)projection=[] [, (int)limit=-1 [, (QueryOpts)opts=htcondor.htcondor.QueryOpts.Default [, (object)name=None]]]]]) -> QueryIterator :

Warning

This function is deprecated.

Query the condor_schedd daemon for job ads.

Warning

This returns an iterator of ClassAd objects,
which means you may not need to hold all of the ads returned by
the query in memory simultaneously.
However, this method holds a connection open to the schedd,
and a fork of the schedd will remain active, until you finish
iterating.
If you are not retrieving many large ads, consider using
query() instead to reduce load on the schedd.

	param constraint

	A query constraint.
Only jobs matching this constraint will be returned.
Defaults to 'true', which means all jobs will be returned.

	type constraint

	str or ExprTree

	param projection

	Attributes that will be returned for each job in the query.
At least the attributes in this list will be returned, but additional ones may be returned as well.
An empty list (the default) returns all attributes.

	type projection

	list[str]

	param int limit

	A limit on the number of matches to return. The default (-1) indicates all
matching jobs should be returned.

	param opts

	Additional flags for the query, from QueryOpts.

	type opts

	QueryOpts

	param str name

	A tag name for the returned query iterator. This string will always be
returned from the QueryIterator.tag() method of the returned iterator.
The default value is the condor_schedd’s name. This tag is useful to identify
different queries when using the poll() function.

	return

	An iterator for the matching job ads

	rtype

	QueryIterator

	
act(action, job_spec, reason=None) → object :

	Change status of job(s) in the condor_schedd daemon. The return value is a ClassAd object
describing the number of jobs changed.

This will throw an exception if no jobs are matched by the constraint.

	Parameters

	
	action (JobAction) – The action to perform; must be of the enum JobAction.

	job_spec (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or str [https://docs.python.org/3/library/stdtypes.html#str]) – The job specification. It can either be a list of job IDs, or an ExprTree or string specifying a constraint.
Only jobs matching this description will be acted upon.

	reason (str [https://docs.python.org/3/library/stdtypes.html#str]) – The reason for the action.
If omitted, the reason will be “Python-initiated action”.

	
edit(job_spec, attr, value, flags=0) → EditResult :

	Edit one or more jobs in the queue.

This will throw an exception if no jobs are matched by the job_spec constraint.

	Parameters

	
	job_spec (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or str [https://docs.python.org/3/library/stdtypes.html#str]) – The job specification. It can either be a list of job IDs or a string specifying a constraint.
Only jobs matching this description will be acted upon.

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute to edit.

	value (str or ExprTree) – The new value of the attribute. It should be a string, which will
be converted to a ClassAd expression, or an ExprTree object. Be mindful of quoting
issues; to set the value to the string foo, one would set the value to ''foo''

	flags (TransactionFlags) – Flags controlling the behavior of the transaction, defaulting to 0.

	Returns

	An EditResult containing the number of jobs that were edited.

	Return type

	EditResult

	
history(constraint, projection, match=-1, since=None) → HistoryIterator :

	Fetch history records from the condor_schedd daemon.

	Parameters

	
	constraint (str or ExprTree) – A query constraint.
Only jobs matching this constraint will be returned.
None will return all jobs.

	projection (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Attributes that will be returned for each job
in the query. At least the attributes in this list will be
returned, but additional ones may be returned as well.
An empty list returns all attributes.

	match (int [https://docs.python.org/3/library/functions.html#int]) – A limit on the number of jobs to include; the
default (-1) indicates to return all matching jobs.
The schedd may return fewer than match jobs because of its
setting of HISTORY_HELPER_MAX_HISTORY (default 10,000).

	since (int, str, or ExprTree) – A cluster ID, job ID, or expression. If a cluster ID
(passed as an int) or job ID (passed a str in the format
{clusterID}.{procID}), only jobs recorded in the history
file after (and not including) the matching ID will be
returned. If an expression (passed as a str or
ExprTree), jobs will be returned,
most-recently-recorded first, until the expression becomes
true; the job making the expression become true will not be
returned. Thus, 1038 and clusterID == 1038 return the
same set of jobs.

	Returns

	All matching ads in the Schedd history, with attributes according to the
projection keyword.

	Return type

	HistoryIterator

	
jobEpochHistory(constraint, projection, match=-1, since=None) → HistoryIterator :

	Fetch per job run instance (epoch) history records from the condor_schedd daemon.

	Parameters

	
	constraint (str or ExprTree) – A query constraint.
Only jobs matching this constraint will be returned.
None will return all jobs.

	projection (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Attributes that will be returned for each job
in the query. At least the attributes in this list will be
returned, but additional ones may be returned as well.
An empty list returns all attributes.

	match (int [https://docs.python.org/3/library/functions.html#int]) – A limit on the number of jobs to include; the
default (-1) indicates to return all matching jobs.
The schedd may return fewer than match jobs because of its
setting of HISTORY_HELPER_MAX_HISTORY (default 10,000).

	since (int, str, or ExprTree) – A cluster ID, job ID, or expression. If a cluster ID
(passed as an int) or job ID (passed a str in the format
{clusterID}.{procID}), only jobs recorded in the history
file after (and not including) the matching ID will be
returned. If an expression (passed as a str or
ExprTree), jobs will be returned,
most-recently-recorded first, until the expression becomes
true; the job making the expression become true will not be
returned. Thus, 1038 and clusterID == 1038 return the
same set of jobs.

	Returns

	All matching ads in the Schedd history, with attributes according to the
projection keyword.

	Return type

	HistoryIterator

	
submit(description, count=1, spool=False, ad_results=None, itemdata=None) → object :

	Submit one or more jobs to the condor_schedd daemon.

This method requires the invoker to provide a Submit object that
describes the jobs to submit. The return value will be a SubmitResult
that contains the cluster ID and ClassAd of the submitted jobs.

For backward compatibility, this method will also accept a ClassAd
that describes a single job to submit, but use of this form of is DEPRECATED.
If the deprecated form is used
the return value will be the cluster ID, and ad_results will optionally be the
actual job ClassAds that were submitted.

	Parameters

	
	description (Submit (or DEPRECATED ClassAd)) – The Submit description or ClassAd describing the job cluster.

	count (int [https://docs.python.org/3/library/functions.html#int]) – The number of jobs to submit to the job cluster. Defaults to 1.

	spool (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, jobs will be submitted in a spooling hold mode
so that input files can be spooled to a remote condor_schedd daemon before starting the jobs.
This parameter is necessary for jobs submitted to a remote condor_schedd that use HTCondor file transfer.
When True, job will be left in the HOLD state until the spool() method is called.

	ad_results (list[ClassAd]) – DEPRECATED. If set to a list and a raw job ClassAd is passed as the first argument, the list object will contain the job ads
that were submitted.

	Returns

	a SubmitResult, containing the cluster ID, cluster ClassAd and
range of Job ids of the submitted job(s). If using the deprecated first argument, the return value
will be an int and ad_results may contain submitted jobs ClassAds.

	Return type

	SubmitResult or int

	
submitMany(cluster_ad, proc_ads, spool=False, ad_results=None) → int :

	Submit multiple jobs to the condor_schedd daemon, possibly including
several distinct processes.

	Parameters

	
	cluster_ad (ClassAd) – The base ad for the new job cluster; this is the same format
as in the submit() method.

	proc_ads (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of 2-tuples; each tuple has the format of (proc_ad, count).
For each list entry, this will result in count jobs being submitted inheriting from
both cluster_ad and proc_ad.

	spool (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the client inserts the necessary attributes
into the job for it to have the input files spooled to a remote
condor_schedd daemon. This parameter is necessary for jobs submitted
to a remote condor_schedd that use HTCondor file transfer.
When True, job will be left in the HOLD state until the spool() method is called.

	ad_results (list[ClassAd]) – If set to a list, the list object will contain the job ads
resulting from the job submission.

	Returns

	The newly created cluster ID.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
spool(ad_list) → None :

	Spools the files specified in a list of job ClassAds
to the condor_schedd.

	Parameters

	ad_list (list[ClassAds]) – A list of job descriptions; typically, this is the list
returned by the jobs() method on the submit result object.

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if there are any errors.

	
retrieve(arg1, arg2) → None :

	Retrieve the output sandbox from one or more jobs.

	Parameters

	job_spec (str or list[ClassAd]) – An expression matching the list of job output sandboxes to retrieve.

	
refreshGSIProxy(cluster, proc, proxy_filename, lifetime) → int :

	Refresh the GSI proxy of a job; the job’s proxy will be replaced the contents
of the provided proxy_filename.

Note

Depending on the lifetime of the proxy in proxy_filename, the resulting lifetime
may be shorter than the desired lifetime.

	Parameters

	
	cluster (int [https://docs.python.org/3/library/functions.html#int]) – Cluster ID of the job to alter.

	proc (int [https://docs.python.org/3/library/functions.html#int]) – Process ID of the job to alter.

	proxy_filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the file containing the new proxy for the job.

	lifetime (int [https://docs.python.org/3/library/functions.html#int]) – Indicates the desired lifetime (in seconds) of the delegated proxy.
A value of 0 specifies to not shorten the proxy lifetime.
A value of -1 specifies to use the value of configuration variable
DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME.

	
reschedule() → None :

	Send reschedule command to the schedd.

	
export_jobs(job_spec, export_dir, new_spool_dir) → object :

	Export one or more job clusters from the queue to put those jobs into the externally managed state.

	Parameters

	
	job_spec (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or str [https://docs.python.org/3/library/stdtypes.html#str] or ExprTree) – The job specification. It can either be a list of job IDs or a string specifying a constraint.
Only jobs matching this description will be acted upon.

	export_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the directory that exported jobs will be written into.

	new_spool_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the base directory that exported jobs will use as IWD while they are exported

	Returns

	A ClassAd containing information about the export operation.

	Return type

	ClassAd

	
import_exported_job_results(import_dir) → object :

	Import results from previously exported jobs, and take those jobs back out of the externally managed state.

	Parameters

	import_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the modified form of a previously-exported directory.

	Returns

	A ClassAd containing information about the import operation.

	Return type

	ClassAd

	
unexport_jobs(job_spec) → object :

	Unexport one or more job clusters that were previously exported from the queue.

	Parameters

	job_spec (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or str [https://docs.python.org/3/library/stdtypes.html#str] or ExprTree) – The job specification. It can either be a list of job IDs or a string specifying a constraint.
Only jobs matching this description will be acted upon.

	Returns

	A ClassAd containing information about the unexport operation.

	Return type

	ClassAd

	
class htcondor.JobAction

	An enumeration describing the actions that may be performed on a job in queue.

The values of the enumeration are:

	
Hold

	Put a job on hold, vacating a running job if necessary. A job will stay in the hold state
until explicitly acted upon by the admin or owner.

	
Release

	Release a job from the hold state, returning it to Idle.

	
Suspend

	Suspend the processes of a running job (on Unix platforms, this triggers a SIGSTOP).
The job’s processes stay in memory but no longer get scheduled on the CPU.

	
Continue

	Continue a suspended jobs (on Unix, SIGCONT).
The processes in a previously suspended job will be scheduled to get CPU time again.

	
Remove

	Remove a job from the Schedd’s queue, cleaning it up first on the remote host (if running).
This requires the remote host to acknowledge it has successfully vacated the job, meaning Remove may not be instantaneous.

	
RemoveX

	Immediately remove a job from the schedd queue, even if it means the job is left running on the remote resource.

	
Vacate

	Cause a running job to be killed on the remote resource and return to idle state.
With Vacate, jobs may be given significant time to cleanly shut down.

	
VacateFast

	Vacate a running job as quickly as possible, without providing time for the job to cleanly terminate.

	
class htcondor.Transaction

	
Warning

Transaction was deprecated in version 10.7.0 and will be removed in a future release.

DEPRECATED. An ongoing transaction in the HTCondor schedd.

	
class htcondor.TransactionFlags

	Enumerated flags affecting the characteristics of a transaction.

The values of the enumeration are:

	
NonDurable

	Non-durable transactions are changes that may be lost when the condor_schedd
crashes. NonDurable is used for performance, as it eliminates extra fsync() calls.

	
SetDirty

	This marks the changed ClassAds as dirty, causing an update notification to be sent
to the condor_shadow and the condor_gridmanager, if they are managing the job.

	
ShouldLog

	Causes any changes to the job queue to be logged in the relevant job event log.

	
class htcondor.QueryOpts

	Enumerated flags sent to the condor_schedd during a query to alter its behavior.

The values of the enumeration are:

	
Default

	Queries should use default behaviors, and return jobs for all users.

	
AutoCluster

	Instead of returning job ads, return an ad per auto-cluster.

	
GroupBy

	Instead of returning job ads, return an ad for each unique combination of values for the attributes in the projection.
Similar to AutoCluster, but using the projection as the significant attributes for auto-clustering.

	
DefaultMyJobsOnly

	Queries should use all default behaviors, and return jobs only for the current user.

	
SummaryOnly

	Instead of returning job ads, return only the final summary ad.

	
IncludeClusterAd

	Query should return raw cluster ads as well as job ads if the cluster ads match the query constraint.

	
class htcondor.BlockingMode

	An enumeration that controls the behavior of query iterators once they are out of data.

The values of the enumeration are:

	
Blocking

	Sets the iterator to block until more data is available.

	
NonBlocking

	Sets the iterator to return immediately if additional data is not available.

	
class htcondor.HistoryIterator

	An iterator over ads in the history produced by Schedd.history().

	
class htcondor.QueryIterator

	An iterator class for managing results of the Schedd.query() and
Schedd.xquery() methods.

	
nextAdsNonBlocking() → list :

	Retrieve as many ads are available to the iterator object.

If no ads are available, returns an empty list. Does not throw
an exception if no ads are available or the iterator is finished.

	Returns

	Zero-or-more job ads.

	Return type

	list[ClassAd]

	
tag() → str :

	Retrieve the tag associated with this iterator; when using the poll() method,
this is useful to distinguish multiple iterators.

	Returns

	The query’s tag.

	
done() → bool :

	
	Returns

	True if the iterator is finished; False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
watch() → int :

	Returns an inotify-based file descriptor; if this descriptor is given
to a select() instance, select will indicate this file descriptor is ready
to read whenever there are more jobs ready on the iterator.

If inotify is not available on this platform, this will return -1.

	Returns

	A file descriptor associated with this query.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
htcondor.poll(queries, timeout_ms=20000) → BulkQueryIterator :

	Wait on the results of multiple query iterators.

This function returns an iterator which yields the next ready query iterator.
The returned iterator stops when all results have been consumed for all iterators.

	Parameters

	active_queries (list[QueryIterator]) – Query iterators as returned by xquery().

	Returns

	An iterator producing the ready QueryIterator.

	Return type

	BulkQueryIterator

	
class htcondor.BulkQueryIterator

	Returned by poll(), this iterator produces a sequence of QueryIterator
objects that have ads ready to be read in a non-blocking manner.

Once there are no additional available iterators, poll() must be called again.

	
class htcondor.JobStatus(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	An enumeration of HTCondor job status values.

	
IDLE

	

	
RUNNING

	

	
REMOVED

	

	
COMPLETED

	

	
HELD

	

	
TRANSFERRING_OUTPUT

	

	
SUSPENDED

	

Submitting Jobs

	
class htcondor.Submit

	An object representing a job submit description. It uses the same submit
language as condor_submit.

The submit description contains key = value pairs and implements the python
dictionary protocol, including the get, setdefault, update, keys,
items, and values methods. Values in the submit discription language have
no data type; they are all stored as strings.

object __init__(tuple args, dict kwds) :

	param input

	Submit descriptors as
a string containing the text of a submit file
or as key = value pairs in a dictionary,
or as keyword arguments.

Only the single multi-line string form can contain a QUEUE statement.

For example, these calls all produce identical
submit descriptions:

from_file = htcondor.Submit(
 """
 executable = /bin/sleep
 arguments = 5s
 log = $(ClusterId).log
 My.CustomAttribute = "foobar"
 """
)

create an empty submit object, then populate it as a dict
use of classad.quote here insures that the value is properly escaped as a classad string
submit_dict = htcondor.Submit()
submit_dict["executable"] = "/bin/sleep"
submit_dict["arguments"] = "5s"
submit_dict["log"] = "$(ClusterId).log"
submit_dict["My.CustomAttribute"] = classad.quote("foobar")

initialize a submit object from a python dict
note that values should be strings
mydict = {
 "executable": "/bin/sleep",
 "arguments": "5s",
 "log": "$(ClusterId).log",
 "My.CustomAttribute": classad.quote("foobar"),
}
from_dict = htcondor.Submit(mydict)

initialize a submit object from keyword arguments
the **{} is a trick to get a keyword argument that contains a .
from_kwargs = htcondor.Submit(
 executable="/bin/sleep",
 arguments="5s",
 log="$(ClusterId).log",
 **{ "My.CustomAttribute": classad.quote("foobar") }
)

If a string initalizer is used, it may include a single condor_submit QUEUE
statement at the end. If omitted, the submit description is initially empty.

The arguments to the QUEUE statement will be stored
in the QArgs member of this class and can be passed to schedd.Submit()
as the itemdata iterator like this

sub = htcondor.Submit(
 """
 executable = /bin/sleep
 QUEUE arguments in (1s, 10s, 5m)
 """
)
schedd.Submit(sub, count=1, itemdata=sub.itemdata())

	type input

	dict or str

	
queue()

	
Warning

Submit.queue() was deprecated in version 10.7.0 and will be removed in a future release. Use Schedd.submit() instead.

queue((Submit)self, (Transaction)txn [, (int)count=0 [, (object)ad_results=None]]) -> int :

This method is DEPRECATED. Use Schedd.submit() instead.

Submit the current object to a remote queue.

	param txn

	An active transaction object (see Schedd.transaction()).

	type txn

	Transaction

	param int count

	The number of jobs to create (defaults to 0).
If not specified, or a value of 0 is given the QArgs member
of this class is used to determine the number of procs to submit.
If no QArgs were specified, one job is submitted.

	param ad_results

	A list to receive the ClassAd resulting from this submit.
As with Schedd.submit(), this is often used to later spool the input
files.

	return

	The ClusterID of the submitted job(s).

	rtype

	int

	raises RuntimeError

	if the submission fails.

	
queue_with_itemdata()

	
Warning

Submit.queue_with_itemdata() was deprecated in version 10.7.0 and will be removed in a future release. Use Schedd.submit() instead.

queue_with_itemdata((Submit)self, (Transaction)txn [, (int)count=1 [, (object)itemdata=None [, (bool)spool=False]]]) -> SubmitResult :

This method is DEPRECATED. Use Schedd.submit() instead.

Submit the current object to a remote queue.

	param txn

	An active transaction object (see Schedd.transaction()).

	type txn

	Transaction

	param int count

	A queue count for each item from the iterator, defaults to 1.

	param from

	an iterator of strings or dictionaries containing the itemdata
for each job as in queue in or queue from.

	param bool spool

	Modify the job ClassAds to indicate that it should wait for input before starting. defaults to false.

	return

	a SubmitResult, containing the cluster ID, cluster ClassAd and
range of Job ids Cluster ID of the submitted job(s).

	rtype

	SubmitResult

	raises RuntimeError

	if the submission fails.

	
expand(attr) → str :

	Expand all macros for the given attribute.

	Parameters

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the relevant attribute.

	Returns

	The value of the given attribute; all macros are expanded.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
jobs(count=0, itemdata=None, clusterid=1, procid=0, qdate=0, owner='') → SubmitJobsIterator :

	Turn the current object into a sequence of simulated job ClassAds

	Parameters

	
	count (int [https://docs.python.org/3/library/functions.html#int]) – the queue count for each item in the from list, defaults to 1

	from – a iterator of strings or dictionaries containing the itemdata for each job e.g. ‘queue in’ or ‘queue from’

	clusterid (int [https://docs.python.org/3/library/functions.html#int]) – the value to use for ClusterId when making job ads, defaults to 1

	procid (int [https://docs.python.org/3/library/functions.html#int]) – the initial value for ProcId when making job ads, defaults to 0

	qdate (str [https://docs.python.org/3/library/stdtypes.html#str]) – a UNIX timestamp value for the QDATE attribute of the jobs, 0 means use the current time.

	owner (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string value for the Owner attribute of the job

	Returns

	An iterator for the resulting job ads.

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if valid job ads cannot be made

	
procs(count=0, itemdata=None, clusterid=1, procid=0, qdate=0, owner='') → SubmitJobsIterator :

	Turn the current object into a sequence of simulated job proc ClassAds.
The first ClassAd will be the cluster ad plus a ProcId attribute

	Parameters

	
	count (int [https://docs.python.org/3/library/functions.html#int]) – the queue count for each item in the from list, defaults to 1

	from – a iterator of strings or dictionaries containing the foreach data e.g. ‘queue in’ or ‘queue from’

	clusterid (int [https://docs.python.org/3/library/functions.html#int]) – the value to use for ClusterId when making job ads, defaults to 1

	procid (int [https://docs.python.org/3/library/functions.html#int]) – the initial value for ProcId when making job ads, defaults to 0

	qdate (str [https://docs.python.org/3/library/stdtypes.html#str]) – a UNIX timestamp value for the QDATE attribute of the jobs, 0 means use the current time.

	owner (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string value for the Owner attribute of the job

	Returns

	An iterator for the resulting job ads.

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if valid job ads cannot be made

	
itemdata(qargs='') → QueueItemsIterator :

	Create an iterator over itemdata derived from a queue statement.

For example itemdata("matching *.dat") would return an iterator
of filenames that end in .dat from the current directory.
This is the same iterator used by condor_submit when processing
QUEUE statements.

	Parameters

	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) – a submit file queue statement, or the arguments to a submit file queue statement.

	Returns

	An iterator for the resulting items

	
getQArgs() → str :

	Returns arguments specified in the QUEUE statement passed to the constructor.
These are the arguments that will be used by the Submit.itemdata()
method if not overridden.

	
setQArgs(args) → None :

	Sets the arguments to be used by
subsequent calls to the Submit.itemdata().

	Parameters

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) – The arguments to pass to the QUEUE statement.

	
static from_dag(filename, options={}) → Submit :

	Constructs a new Submit that could be used to submit the
DAG described by the file found at filename.

This static method essentially does the first half of the work
that condor_submit_dag does: it produces the submit description
for the DAGMan job that will execute the DAG. However, in addition
to writing this submit description to disk, it also produces a
Submit object with the same information that can be
submitted via the normal Python bindings submit machinery.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the DAG description file.

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional arguments to condor_submit_dag.
Supports dagman (str), force (bool),
schedd-daemon-ad-file (str),
schedd-address-file (str), AlwaysRunPost (bool),
maxidle (int), maxjobs (int), MaxPre (int),
MaxPost (int), UseDagDir (bool), debug (int),
outfile_dir (str), config (str), batch-name (str),
load_save (str), AutoRescue (bool),
DoRescueFrom (int), AllowVersionMismatch (bool),
do_recurse (bool), update_submit (bool),
import_env (bool), include_env (str),
insert_env (str), DumpRescue (bool),
valgrind (bool), priority (int),
suppress_notification (bool), DoRecov (bool)

	Returns

	A Submit description for the DAG described in filename

	Return type

	Submit

	
setSubmitMethod(method_value=-1, allow_reserved_values=False) → None :

	Sets the Job Ad attribute JobSubmitMethod to passed over number. method_value
is recommended to be set to a value of 100 or greater to avoid confusion
to pre-set values. Negative numbers will result in JobSubmitMethod to not be defined
in the Job Ad. If wanted, any number can be set by passing True to
allow_reserved_values. This allows any positive number to be set to JobSubmitMethod.
This includes all reserved numbers. Note~ Setting of JobSubmitMethod must occur
before job is submitted to Schedd.

	Parameters

	
	method_value (int [https://docs.python.org/3/library/functions.html#int]) – Value set to JobSubmitMethod.

	allow_reserved_values (bool [https://docs.python.org/3/library/functions.html#bool]) – Boolean that allows any number to be set to
JobSubmitMethod.

	
getSubmitMethod() → int :

	
	Returns

	JobSubmitMethod attribute value. See table or use condor_q -help Submit for values.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
class htcondor.QueueItemsIterator

	An iterator over itemdata produced by Submit.itemdata().

	
class htcondor.SubmitResult

	
	
cluster() → int :

	
	Returns

	the ClusterID of the submitted jobs.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
clusterad() → ClassAd :

	
	Returns

	the cluster Ad of the submitted jobs.

	Return type

	classad.ClassAd

	
first_proc() → int :

	
	Returns

	the first ProcID of the submitted jobs.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
num_procs() → int :

	
	Returns

	the number of submitted jobs.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Interacting with Negotiators

	
class htcondor.Negotiator(ad)

	This class provides a query interface to the condor_negotiator.
It primarily allows one to query and set various parameters in the fair-share accounting.

	Parameters

	location_ad (ClassAd or DaemonLocation) – A ClassAd or DaemonLocation describing the condor_negotiator
location and version. If omitted, the default pool negotiator is assumed.

	
deleteUser(user) → None :

	Delete all records of a user from the Negotiator’s fair-share accounting.

	Parameters

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – A fully-qualified user name (USER@DOMAIN).

	
getPriorities(rollup) → list :

	Retrieve the pool accounting information, one per entry.
Returns a list of accounting ClassAds.

	Parameters

	rollup (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if accounting information, as applied to
hierarchical group quotas, should be summed for groups and subgroups.

	Returns

	A list of accounting ads, one per entity.

	Return type

	list[ClassAd]

	
getResourceUsage(user) → list :

	Get the resources (slots) used by a specified user.

	Parameters

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – A fully-qualified user name (USER@DOMAIN).

	Returns

	List of ads describing the resources (slots) in use.

	Return type

	list[ClassAd]

	
resetAllUsage() → None :

	Reset all usage accounting. All known user records in the negotiator are deleted.

	
resetUsage(user) → None :

	Reset all usage accounting of the specified user.

	Parameters

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – A fully-qualified user name (USER@DOMAIN).

	
setBeginUsage(user, value) → None :

	Manually set the time that a user begins using the pool.

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – A fully-qualified user name (USER@DOMAIN).

	value (int [https://docs.python.org/3/library/functions.html#int]) – The Unix timestamp of initial usage.

	
setCeiling(user, ceiling) → None :

	Set the submitter ceiling of a specified user.

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – A fully-qualified user name (USER@DOMAIN).

	ceiling (float [https://docs.python.org/3/library/functions.html#float]) – The ceiling t be set for the submitter; must be greater-than or equal-to -1.0.

	
setLastUsage(user, value) → None :

	Manually set the time that a user last used the pool.

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – A fully-qualified user name (USER@DOMAIN).

	value (int [https://docs.python.org/3/library/functions.html#int]) – The Unix timestamp of last usage.

	
setFactor(user, factor) → None :

	Set the priority factor of a specified user.

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – A fully-qualified user name (USER@DOMAIN).

	factor (float [https://docs.python.org/3/library/functions.html#float]) – The priority factor to be set for the user; must be greater-than or equal-to 1.0.

	
setPriority(user, prio) → None :

	Set the real priority of a specified user.

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – A fully-qualified user name (USER@DOMAIN).

	prio (float [https://docs.python.org/3/library/functions.html#float]) – The priority to be set for the user; must be greater-than 0.0.

	
setUsage(user, usage) → None :

	Set the accumulated usage of a specified user.

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – A fully-qualified user name (USER@DOMAIN).

	usage (float [https://docs.python.org/3/library/functions.html#float]) – The usage, in hours, to be set for the user.

Managing Starters and Claims

	
class htcondor.Startd(ad=None)

	A class that represents a Startd.

	Parameters

	locaton_ad – A ClassAd or DaemonLocation describing the the startd location and version.
If omitted, the local startd is assumed.

	
drainJobs(drain_type=0, on_completion=0, check_expr='true', start_expr='false', reason='by command') → str :

	Begin draining jobs from the startd.

	Parameters

	
	drain_type (DrainTypes) – How fast to drain the jobs. Defaults to DRAIN_GRACEFUL if not specified.

	on_completion (int [https://docs.python.org/3/library/functions.html#int]) – Whether the startd should start accepting jobs again
once draining is complete. Otherwise, it will remain in the drained state.
Values are 0 for Nothing, 1 for Resume, 2 for Exit, 3 for Restart. Defaults to 0.

	check_expr (str or ExprTree) – An expression string that must evaluate to true for all slots for
draining to begin. Defaults to 'true'.

	start_expr (str or ExprTree) – The expression that the startd should use while draining.

	reason (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string describing the reason for draining. defaults to “by command”

	Returns

	An opaque request ID that can be used to cancel draining via Startd.cancelDrainJobs()

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
cancelDrainJobs(request_id='') → None :

	Cancel a draining request.

	Parameters

	request_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies a draining request to cancel. If not specified, all
draining requests for this startd are canceled.

	
class htcondor.DrainTypes

	Draining policies that can be sent to a condor_startd.

The values of the enumeration are:

	
Fast

	

	
Graceful

	

	
Quick

	

	
class htcondor.VacateTypes

	Vacate policies that can be sent to a condor_startd.

The values of the enumeration are:

	
Fast

	

	
Graceful

	

Security Management

	
class htcondor.Credd(ad=None)

	A class for sending Credential commands to a Credd, Schedd or Master.

	Parameters

	location_ad (ClassAd or DaemonLocation) – A ClassAd or DaemonLocation describing the Credd, Schedd or Master location.
If omitted, the local schedd is assumed.

	
add_password(password, user='') → None :

	Store the password in the Credd for the current user (or for the given user).

	Parameters

	
	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – The password.

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which user to store the credential for (defaults to the current user).

	
delete_password(user='') → None :

	Delete the password in the Credd for the current user (or for the given user).

	Parameters

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which user to store the credential for (defaults to the current user).

	
query_password(user='') → bool :

	Check to see if the current user (or the given user) has a password stored in the Credd.

	Parameters

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which user to store the credential for (defaults to the current user).

	Returns

	bool

	
add_user_cred(credtype, credential, user='') → None :

	Store a credential in the Credd for the current user (or for the given user).

	Parameters

	
	credtype (CredTypes) – The type of credential to store.

	credential (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The credential to store.

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which user to store the credential for (defaults to the current user).

	
delete_user_cred(credtype, user='') → None :

	Delete a credential of the given credtype for the current user (or for the given user).

	Parameters

	
	credtype (CredTypes) – The type of credential to delete.

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which user to store the credential for (defaults to the current user).

	
query_user_cred(credtype, user='') → int :

	Query whether the current user (or the given user) has a credential of the given type stored.

	Parameters

	
	credtype (CredTypes) – The type of credential to query for.

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which user to store the credential for (defaults to the current user).

	Returns

	The time that the user credential was last updated, or None if there is no credential

	
add_user_service_cred(credtype, credential, service, handle='', user='') → None :

	Store a credential in the Credd for the current user, or for the given user.

To specify multiple credential for the same service (e.g., you want to transfer
files from two different accounts that are on the same service),
give each a unique handle.

	Parameters

	
	credtype (CredTypes) – The type of credential to store.

	credential (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The credential to store.

	service (str [https://docs.python.org/3/library/stdtypes.html#str]) – The service name.

	handle (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional service handle (defaults to no handle).

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which user to store the credential for (defaults to the current user).

	
delete_user_service_cred(credtype, service, handle='', user='') → None :

	Delete a credential of the given credtype for service service for the current user (or for the given user).

	Parameters

	
	credtype (CredTypes) – The type of credential to delete.

	service (str [https://docs.python.org/3/library/stdtypes.html#str]) – The service name.

	handle (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional service handle (defaults to no handle).

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which user to store the credential for (defaults to the current user).

	
query_user_service_cred(credtype, service, handle='', user='') → CredStatus :

	Query whether the current user (or the given user) has a credential of the given credtype stored.

	Parameters

	
	credtype (CredTypes) – The type of credential to check storage for.

	service (str [https://docs.python.org/3/library/stdtypes.html#str]) – The service name.

	handle (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional service handle (defaults to no handle).

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which user to store the credential for (defaults to the current user).

	Returns

	CredStatus

	
check_user_service_creds(credtype, services, user='') → CredCheck :

	Check to see if the current user (or the given user) has a given set of service credentials, and if
any credentials are missing, create a temporary URL that can be used to acquire the missing service credentials.

	Parameters

	
	credtype (CredTypes) – The type of credentials to check for.

	services (List[classad.ClassAd]) – The list of services that are needed.

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which user to store the credential for (defaults to the current user).

	Returns

	CredCheck

	
class htcondor.CredTypes

	The types of credentials that can be managed by a condor_credd.

The values of the enumeration are:

	
Password

	

	
Kerberos

	

	
OAuth

	

	
class htcondor.CredCheck

	

	
class htcondor.CredStatus

	

	
class htcondor.SecMan(arg1)

	A class that represents the internal HTCondor security state.

If a security session becomes invalid, for example, because the remote daemon restarts,
reuses the same port, and the client continues to use the session, then all future
commands will fail with strange connection errors. This is the only mechanism to
invalidate in-memory sessions.

The SecMan can also behave as a context manager; when created, the object can
be used to set temporary security configurations that only last during the lifetime
of the security object.

	
invalidateAllSessions() → None :

	Invalidate all security sessions. Any future connections to a daemon will
cause a new security session to be created.

	
ping(ad, command='DC_NOP') → ClassAd :

	Perform a test authorization against a remote daemon for a given command.

	Parameters

	
	ad (str or ClassAd) – The ClassAd of the daemon as returned by Collector.locate();
alternately, the sinful string can be given directly as the first parameter.

	command – The DaemonCore command to try; if not given, 'DC_NOP' will be used.

	Returns

	An ad describing the results of the test security negotiation.

	Return type

	ClassAd

	
getCommandString(command_int) → str :

	Return the string name corresponding to a given integer command.

	Parameters

	command_int (int [https://docs.python.org/3/library/functions.html#int]) – The integer command to get the string name of.

	
setConfig(key, value) → None :

	Set a temporary configuration variable; this will be kept for all security
sessions in this thread for as long as the SecMan object is alive.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Configuration key to set.

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Temporary value to set.

	
setPoolPassword(new_pass) → None :

	Set the pool password.

	Parameters

	new_pass (str [https://docs.python.org/3/library/stdtypes.html#str]) – Updated pool password to use for new
security negotiations.

	
setTag(tag) → None :

	Set the authentication context tag for the current thread.

All security sessions negotiated with the same tag will only
be utilized when that tag is active.

For example, if thread A has a tag set to 'Joe' and thread B
has a tag set to 'Jane', then all security sessions negotiated
for thread A will not be used for thread B.

	Parameters

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – New tag to set.

	
setToken(token) → None :

	Set the token used for auth.

	Parameters

	token (Token) – The object representing the token contents

	
class htcondor.Token(contents)

	A class representing a generated HTCondor authentication token.

	Parameters

	contents (str [https://docs.python.org/3/library/stdtypes.html#str]) – The contents of the token.

	
write(tokenfile=None) → None :

	Write the contents of the token into the appropriate token directory on disk.

	Parameters

	tokenfile – Filename inside the user token directory where the token will be written.

	
class htcondor.TokenRequest(identity='', bounding_set=None, lifetime=-1)

	A class representing a request for a HTCondor authentication token.

	Parameters

	
	identity (str [https://docs.python.org/3/library/stdtypes.html#str]) – Requested identity from the remote daemon (the empty string implies condor user).

	bounding_set (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of authorizations that the token is restricted to.

	lifetime (int [https://docs.python.org/3/library/functions.html#int]) – Requested lifetime, in seconds, that the token will be valid for.

	
done() → bool :

	Check to see if the token request has completed.

	Returns

	True if the request is complete; False otherwise.
May throw an exception.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property request_id

	The ID of the request at the remote daemon.

	
result(timeout=0) → Token :

	Return the result of the token request. Will block until the token request is approved
or the timeout is hit (a timeoute of 0, the default, indicates this method may block
indefinitely).

	Returns

	The token resulting from this request.

	Return type

	Token

	
submit(ad=None) → None :

	Submit the token request to a remote daemon.

	Parameters

	ad (ClassAd) – ClassAd describing the location of the remote daemon.

Reading Job Events

The following is a complete example of submitting a job and waiting (forever)
for it to finish. The next example implements a time-out.

#!/usr/bin/env python3

import htcondor

Create a job description. It _must_ set `log` to create a job event log.
logFileName = "sleep.log"
submit = htcondor.Submit(
 f"""
 executable = /bin/sleep
 transfer_executable = false
 arguments = 5

 log = {logFileName}
 """
)

Submit the job description, creating the job.
result = htcondor.Schedd().submit(submit, count=1)
clusterID = result.cluster()

Wait (forever) for the job to finish.
jel = htcondor.JobEventLog(logFileName)
for event in jel.events(stop_after=None):
 # HTCondor appends to job event logs by default, so if you run
 # this example more than once, there will be more than one job
 # in the log. Make sure we have the right one.
 if event.cluster != clusterID or event.proc != 0:
 continue

 if event.type == htcondor.JobEventType.JOB_TERMINATED:
 if(event["TerminatedNormally"]):
 print(f"Job terminated normally with return value {event['ReturnValue']}.")
 else:
 print(f"Job terminated on signal {event['TerminatedBySignal']}.");
 break

 if event.type in { htcondor.JobEventType.JOB_ABORTED,
 htcondor.JobEventType.JOB_HELD,
 htcondor.JobEventType.CLUSTER_REMOVE }:
 print("Job aborted, held, or removed.")
 break

 # We expect to see the first three events in this list, and allow
 # don't consider the others to be terminal.
 if event.type not in { htcondor.JobEventType.SUBMIT,
 htcondor.JobEventType.EXECUTE,
 htcondor.JobEventType.IMAGE_SIZE,
 htcondor.JobEventType.JOB_EVICTED,
 htcondor.JobEventType.JOB_SUSPENDED,
 htcondor.JobEventType.JOB_UNSUSPENDED }:
 print(f"Unexpected job event: {event.type}!");
 break

The following example includes a deadline for the job to finish. To
make it quick to run the example, the deadline is only ten seconds;
real jobs will almost always take considerably longer. You can change
arguments = 20 to arguments = 5 to verify that this example
correctly detects the job finishing. For the same reason, we check
once a second to see if the deadline has expired. In practice, you
should check much less frequently, depending on how quickly your
script needs to react and how long you expect the job to last. In
most cases, even once a minute is more frequent than necessary or
appropriate on shared resources; every five minutes is better.

#!/usr/bin/env python3

import time
import htcondor

Create a job description. It _must_ set `log` to create a job event log.
logFileName = "sleep.log"
submit = htcondor.Submit(
 f"""
 executable = /bin/sleep
 transfer_executable = false
 arguments = 20

 log = {logFileName}
 """
)

Submit the job description, creating the job.
result = htcondor.Schedd().submit(submit, count=1)
clusterID = result.cluster()

def waitForJob(deadline):
 jel = htcondor.JobEventLog(logFileName)
 while time.time() < deadline:
 # In real code, this should be more like stop_after=300; see above.
 for event in jel.events(stop_after=1):
 # HTCondor appends to job event logs by default, so if you run
 # this example more than once, there will be more than one job
 # in the log. Make sure we have the right one.
 if event.cluster != clusterID or event.proc != 0:
 continue
 if event.type == htcondor.JobEventType.JOB_TERMINATED:
 if(event["TerminatedNormally"]):
 print(f"Job terminated normally with return value {event['ReturnValue']}.")
 else:
 print(f"Job terminated on signal {event['TerminatedBySignal']}.");
 return True
 if event.type in { htcondor.JobEventType.JOB_ABORTED,
 htcondor.JobEventType.JOB_HELD,
 htcondor.JobEventType.CLUSTER_REMOVE }:
 print("Job aborted, held, or removed.")
 return True
 # We expect to see the first three events in this list, and allow
 # don't consider the others to be terminal.
 if event.type not in { htcondor.JobEventType.SUBMIT,
 htcondor.JobEventType.EXECUTE,
 htcondor.JobEventType.IMAGE_SIZE,
 htcondor.JobEventType.JOB_EVICTED,
 htcondor.JobEventType.JOB_SUSPENDED,
 htcondor.JobEventType.JOB_UNSUSPENDED }:
 print(f"Unexpected job event: {event.type}!");
 return True
 else:
 print("Deadline expired.")
 return False

Wait no more than 10 seconds for the job finish.
waitForJob(time.time() + 10);

Note that which job events are terminal, expected, or allowed may vary
somewhat from job to job; for instance, it’s possible to submit a job
which releases itself from certain hold conditions.

	
class htcondor.JobEventLog(filename)

	Reads user job event logs from filename.

By default, it blocks waiting for new events, but it may be
used to poll for them:

import htcondor

jel = htcondor.JobEventLog("file.log")

Read all currently-available events without blocking.
for event in jel.events(stop_after=0):
 print(event)

print("We found the the end of file")

A pickled JobEventLog resumes iterating over events
where it left off if and only if, after being unpickled, the
job event log file is identical except for appended events.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – A file containing a user job event log.

	
events(stop_after) → object :

	Return an iterator over JobEvent objects from the
filename given in the constructor. By default, the iterator
blocks forever waiting for new events.

	Parameters

	stop_after (int [https://docs.python.org/3/library/functions.html#int]) – After how many seconds should the iterator
stop waiting for new events?

If None (the default), wait forever.

If 0, never wait. Does not block.

For any other value, wait (block) for that many seconds
for a new event, raising StopIteration [https://docs.python.org/3/library/exceptions.html#StopIteration] if one
does not appear. (This does not invalidate the iterator.)

	
close() → None :

	Closes any open underlying file. This object will no longer iterate.

	
class htcondor.JobEvent

	Represents a single job event from the job event log.
Use JobEventLog to get an iterator over the job events from a file.

Because all events have type, cluster, proc, and timestamp,
those are accessed via attributes (see below).

The rest of the information in the JobEvent can be accessed by key.
JobEvent behaves like a read-only Python dict [https://docs.python.org/3/library/stdtypes.html#dict], with
get, keys, items, and values methods, and supports len
and in (if "attribute" in job_event, for example).

Attention

Although the attribute type is a JobEventType type,
when acting as dictionary, a JobEvent object returns types
as if it were a ClassAd, so comparisons to enumerated
values must use the == operator. (No current event type has
ExprTree values.)

	
type

	The event type.

	Return type

	JobEventType

	
cluster

	The clusterid of the job the event is for.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
proc

	The procid of the job the event is for.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
timestamp

	The timestamp of the event.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get(key, default=None) → object :

	As dict.get() [https://docs.python.org/3/library/stdtypes.html#dict.get].

	
keys() → list :

	As dict.keys() [https://docs.python.org/3/library/stdtypes.html#dict.keys].

	
values() → list :

	As dict.values() [https://docs.python.org/3/library/stdtypes.html#dict.values].

	
items() → list :

	As dict.items() [https://docs.python.org/3/library/stdtypes.html#dict.items].

	
class htcondor.JobEventType

	The type event of a user log event; corresponds to ULogEventNumber
in the C++ source.

The values of the enumeration are:

	
SUBMIT

	

	
EXECUTE

	

	
EXECUTABLE_ERROR

	

	
CHECKPOINTED

	

	
JOB_EVICTED

	

	
JOB_TERMINATED

	

	
IMAGE_SIZE

	

	
SHADOW_EXCEPTION

	

	
GENERIC

	

	
JOB_ABORTED

	

	
JOB_SUSPENDED

	

	
JOB_UNSUSPENDED

	

	
JOB_HELD

	

	
JOB_RELEASED

	

	
NODE_EXECUTE

	

	
NODE_TERMINATED

	

	
POST_SCRIPT_TERMINATED

	

	
GLOBUS_SUBMIT

	

	
GLOBUS_SUBMIT_FAILED

	

	
GLOBUS_RESOURCE_UP

	

	
GLOBUS_RESOURCE_DOWN

	

	
REMOTE_ERROR

	

	
JOB_DISCONNECTED

	

	
JOB_RECONNECTED

	

	
JOB_RECONNECT_FAILED

	

	
GRID_RESOURCE_UP

	

	
GRID_RESOURCE_DOWN

	

	
GRID_SUBMIT

	

	
JOB_AD_INFORMATION

	

	
JOB_STATUS_UNKNOWN

	

	
JOB_STATUS_KNOWN

	

	
JOB_STAGE_IN

	

	
JOB_STAGE_OUT

	

	
ATTRIBUTE_UPDATE

	

	
PRESKIP

	

	
CLUSTER_SUBMIT

	

	
CLUSTER_REMOVE

	

	
FACTORY_PAUSED

	

	
FACTORY_RESUMED

	

	
NONE

	

	
FILE_TRANSFER

	

	
RESERVE_SPACE

	

	
RELEASE_SPACE

	

	
FILE_COMPLETE

	

	
FILE_USED

	

	
FILE_REMOVED

	

	
class htcondor.FileTransferEventType

	The event type for file transfer events; corresponds to
FileTransferEventType in the C++ source.

The values of the enumeration are:

	
IN_QUEUED

	

	
IN_STARTED

	

	
IN_FINISHED

	

	
OUT_QUEUED

	

	
OUT_STARTED

	

	
OUT_FINISHED

	

HTCondor Configuration

	
htcondor.param = <htcondor.htcondor._Param object>

	Provides dictionary-like access the HTCondor configuration.

An instance of _Param. Upon importing the htcondor module, the
HTCondor configuration files are parsed and populate this dictionary-like object.

	
htcondor.reload_config() → None :

	Reload the HTCondor configuration from disk.

	
class htcondor._Param

	A dictionary-like object for the local HTCondor configuration; the keys and
values of this object are the keys and values of the HTCondor configuration.

The get, setdefault, update, keys, items, and values
methods of this class have the same semantics as a Python dictionary.

Writing to a _Param object will update the in-memory HTCondor configuration.

	
class htcondor.RemoteParam(ad)

	The RemoteParam class provides a dictionary-like interface to the configuration of an HTCondor daemon.
The get, setdefault, update, keys, items, and values
methods of this class have the same semantics as a Python dictionary.

	Parameters

	ad (ClassAd) – An ad containing the location of the remote daemon.

	
refresh() → None :

	Rebuilds the dictionary based on the current configuration of the daemon.

	
htcondor.platform() → str :

	Returns the platform of HTCondor this module is running on.

	
htcondor.version() → str :

	Returns the version of HTCondor this module is linked against.

HTCondor Logging

	
htcondor.enable_debug() → None :

	Enable debugging output from HTCondor, where output is sent to stderr.
The logging level is controlled by the TOOL_DEBUG parameter.

	
htcondor.enable_log() → None :

	Enable debugging output from HTCondor, where output is sent to a file.
The log level is controlled by the parameter TOOL_DEBUG, and the
file used is controlled by TOOL_LOG.

	
htcondor.log(level, msg) → None :

	Log a message using the HTCondor logging subsystem.

	Parameters

	
	level (LogLevel) – The log category and formatting indicator. Multiple LogLevel enum attributes may be OR’d together.

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – A message to log.

	
class htcondor.LogLevel

	The log level attribute to use with log(). Note that HTCondor
mixes both a class (debug, network, all) and the header format (Timestamp,
PID, NoHeader) within this enumeration.

The values of the enumeration are:

	
Always

	

	
Audit

	

	
Config

	

	
DaemonCore

	

	
Error

	

	
FullDebug

	

	
Hostname

	

	
Job

	

	
Machine

	

	
Network

	

	
NoHeader

	

	
PID

	

	
Priv

	

	
Protocol

	

	
Security

	

	
Status

	

	
SubSecond

	

	
Terse

	

	
Timestamp

	

	
Verbose

	

Esoteric Functionality

	
htcondor.send_command(ad, dc, target) → None :

	Send a command to an HTCondor daemon specified by a location ClassAd.

	Parameters

	
	ad (ClassAd) – Specifies the location of the daemon (typically, found by using Collector.locate()).

	dc (DaemonCommands) – A command type

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – An additional command to send to a daemon. Some commands
require additional arguments; for example, sending DaemonOff to a
condor_master requires one to specify which subsystem to turn off.

	
class htcondor.DaemonCommands

	An enumeration of various state-changing commands that can be sent to a HTCondor daemon using send_command().

The values of the enumeration are:

	
DaemonOn

	

	
DaemonOff

	

	
DaemonOffFast

	

	
DaemonOffPeaceful

	

	
DaemonsOn

	

	
DaemonsOff

	

	
DaemonsOffFast

	

	
DaemonsOffPeaceful

	

	
OffFast

	

	
OffForce

	

	
OffGraceful

	

	
OffPeaceful

	

	
Reconfig

	

	
Restart

	

	
RestartPeacful

	

	
SetForceShutdown

	

	
SetPeacefulShutdown

	

	
htcondor.send_alive([ad=None, pid=None, timeout=None) → None :

	Send a keep alive message to an HTCondor daemon.

This is used when the python process is run as a child daemon under
the condor_master.

	Parameters

	
	ad (ClassAd) – A ClassAd specifying the location of the daemon.
This ad is typically found by using Collector.locate().

	pid (int [https://docs.python.org/3/library/functions.html#int]) – The process identifier for the keep alive. The default value of
None uses the value from os.getpid() [https://docs.python.org/3/library/os.html#os.getpid].

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The number of seconds that this keep alive is valid. If a
new keep alive is not received by the condor_master in time, then the
process will be terminated. The default value is controlled by configuration
variable NOT_RESPONDING_TIMEOUT.

	
htcondor.set_subsystem(subsystem, type=htcondor.htcondor.SubsystemType(15)) → None :

	Set the subsystem name for the object.

The subsystem is primarily used for the parsing of the HTCondor configuration file.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The subsystem name.

	daemon_type (SubsystemType) – The HTCondor daemon type. The default value of Auto infers the type from the name parameter.

	
class htcondor.SubsystemType

	An enumeration of known subsystem names.

The values of the enumeration are:

	
Collector

	

	
Daemon

	

	
Dagman

	

	
GAHP

	

	
Job

	

	
Master

	

	
Negotiator

	

	
Schedd

	

	
Shadow

	

	
SharedPort

	

	
Startd

	

	
Starter

	

	
Submit

	

	
Tool

	

Exceptions

For backwards-compatibility, the exceptions in this module inherit
from the built-in exceptions raised in earlier (pre-v8.9.9) versions.

	
class htcondor.HTCondorException

	Never raised. The parent class of all exceptions raised by this module.

	
class htcondor.HTCondorEnumError

	Raised when a value must be in an enumeration, but isn’t.

	
class htcondor.HTCondorInternalError

	Raised when HTCondor encounters an internal error.

	
class htcondor.HTCondorIOError

	Raised instead of IOError [https://docs.python.org/3/library/exceptions.html#IOError] for backwards compatibility.

	
class htcondor.HTCondorLocateError

	Raised when HTCondor cannot locate a daemon.

	
class htcondor.HTCondorReplyError

	Raised when HTCondor received an invalid reply from a daemon, or the daemon’s reply indicated that it encountered an error.

	
class htcondor.HTCondorTypeError

	Raised instead of TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] for backwards compatibility.

	
class htcondor.HTCondorValueError

	Raised instead of ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] for backwards compatibility.

Thread Safety

Most of the htcondor module is protected by a lock that prevents multiple
threads from executing locked functions at the same time.
When two threads both want to call locked functions or methods, they will wait
in line to execute them one at a time
(the ordering between threads is not guaranteed beyond “first come first serve”).
Examples of locked functions include:
Schedd.query(), Submit.queue(), and Schedd.edit().

Threads that are not trying to execute locked htcondor functions will
be allowed to proceed normally.

This locking may cause unexpected slowdowns when using htcondor from
multiple threads simultaneously.

 htcondor.htchirp API Reference

htcondor.htchirp API Reference

htcondor.htchirp is a Python Chirp client compatible with the
condor_starter Chirp proxy server. It is intended for use inside a running
HTCondor job to access files on the submit machine or to query and modify job
ClassAd attributes. Files can be read, written, or removed. Job attributes can
be read, and most attributes can be updated.

Jobs that use htcondor.htchirp module must have the attribute
WantIOProxy set to true in the job ClassAd
(want_io_proxy = true in the submit description).
htcondor.htchirp only works for jobs run in the
vanilla, paralllel, and java universes.

htcondor.htchirp provides two objects for interacting with the
condor_starter Chirp proxy server, HTChirp and
condor_chirp().

We recommend using HTChirp as a context manager,
which automatically handles openining and closing the connection
to the condor_starter Chirp proxy server:

from htcondor.htchirp import HTChirp

with HTChirp() as chirp:
 # inside this block, the connection is open
 i = chirp.get_job_attr("IterationNum")
 chirp.set_job_attr("IterationNum") = i + 1

The connection may be manually opened and closed using
HTChirp.connect() and HTChirp.disconnect().

condor_chirp() is a wrapper around HTChirp that takes a
string containing a condor_chirp command (with
arguments) and returns the value from the relevant HTChirp method.

	
class htcondor.htchirp.HTChirp(host=None, port=None, auth=['cookie'], cookie=None, timeout=10)

	Chirp client for HTCondor

A Chirp client compatible with the HTCondor Chirp implementation.

If the host and port of a Chirp server are not specified, you are assumed
to be running in a HTCondor job with $_CONDOR_CHIRP_CONFIG that
contains the host, port, and cookie for connecting to the embedded chirp
proxy.

	Parameters

	
	host – the hostname or ip of the Chirp server

	port – the port of the Chirp server

	auth – a list of authentication methods to try

	cookie – the cookie string, if trying cookie authentication

	timeout – socket timeout, in seconds

	
connect(auth_method=None)

	Connect to and authenticate with the Chirp server

	Parameters

	auth_method – If set, try the specific authentication method

	
is_connected()

	Check if Chirp client is connected.

	
disconnect()

	Close connection with the Chirp server

	
fetch(remote_file, local_file)

	Copy a file from the submit machine to the execute machine.

	Parameters

	
	remote_file – Path to file to be sent from the submit machine

	local_file – Path to file to be written to on the execute machine

	Returns

	Bytes written

	
put(local_file, remote_file, flags='wct', mode=None)

	Copy a file from the execute machine to the submit machine.

Specifying flags other than ‘wct’ (i.e. ‘create or truncate file’) when
putting large files is not recommended as the entire file must be read
into memory.

To put individual bytes into a file on the submit machine instead of
an entire file, see the write() method.

	Parameters

	
	local_file – Path to file to be sent from the execute machine

	remote_file – Path to file to be written to on the submit machine

	flags – File open modes (one or more of ‘rwatcx’) [default: ‘wct’]

	mode – Permission mode to set [default: 0777]

	Returns

	Size of written file

	
remove(remote_file)

	Remove a file from the submit machine.

	Parameters

	remote_file – Path to file on the submit machine

	
get_job_attr(job_attribute)

	Get the value of a job ClassAd attribute.

	Parameters

	job_attribute – The job attribute to query

	Returns

	The value of the job attribute as a string

	
set_job_attr(job_attribute, attribute_value)

	Set the value of a job ClassAd attribute.

	Parameters

	
	job_attribute – The job attribute to set

	attribute_value – The job attribute’s new value

	
get_job_attr_delayed(job_attribute)

	Get the value of a job ClassAd attribute from the local Starter.

This may differ from the value in the Schedd.

	Parameters

	job_attribute – The job attribute to query

	Returns

	The value of the job attribute as a string

	
set_job_attr_delayed(job_attribute, attribute_value)

	Set the value of a job ClassAd attribute.

This variant of set_job_attr will not push the update immediately, but
rather as a non-durable update during the next communication between
starter and shadow.

	Parameters

	
	job_attribute – The job attribute to set

	attribute_value – The job attribute’s new value

	
ulog(text)

	Log a generic string to the job log.

	Parameters

	text – String to log

	
read(remote_path, length, offset=None, stride_length=None, stride_skip=None)

	Read up to ‘length’ bytes from a file on the remote machine.

Optionally, start at an offset and/or retrieve data in strides.

	Parameters

	
	remote_path – Path to file

	length – Number of bytes to read

	offset – Number of bytes to offset from beginning of file

	stride_length – Number of bytes to read per stride

	stride_skip – Number of bytes to skip per stride

	Returns

	Data read from file

	
write(data, remote_path, flags='w', mode=None, length=None, offset=None, stride_length=None, stride_skip=None)

	Write bytes to a file on the remote matchine.

Optionally, specify the number of bytes to write,
start at an offset, and/or write data in strides.

	Parameters

	
	data – Bytes to write

	remote_path – Path to file

	flags – File open modes (one or more of ‘rwatcx’) [default: ‘w’]

	mode – Permission mode to set [default: 0777]

	length – Number of bytes to write [default: len(data)]

	offset – Number of bytes to offset from beginning of file

	stride_length – Number of bytes to write per stride

	stride_skip – Number of bytes to skip per stride

	Returns

	Number of bytes written

	
rename(old_path, new_path)

	Rename (move) a file on the remote machine.

	Parameters

	
	old_path – Path to file to be renamed

	new_path – Path to new file name

	
unlink(remote_file)

	Delete a file on the remote machine.

	Parameters

	remote_file – Path to file

	
rmdir(remote_path, recursive=False)

	Delete a directory on the remote machine.

The directory must be empty unless recursive is set to True.

	Parameters

	
	remote_path – Path to directory

	recursive – If set to True, recursively delete remote_path

	
rmall(remote_path)

	Recursively delete an entire directory on the remote machine.

	Parameters

	remote_path – Path to directory

	
mkdir(remote_path, mode=None)

	Create a new directory on the remote machine.

	Parameters

	
	remote_path – Path to new directory

	mode – Permission mode to set [default: 0777]

	
getfile(remote_file, local_file)

	Retrieve an entire file efficiently from the remote machine.

	Parameters

	
	remote_file – Path to file to be sent from remote machine

	local_file – Path to file to be written to on local machine

	Returns

	Bytes written

	
putfile(local_file, remote_file, mode=None)

	Store an entire file efficiently to the remote machine.

This method will create or overwrite the file on the remote machine. If
you want to append to a file, use the write() method.

	Parameters

	
	local_file – Path to file to be sent from local machine

	remote_file – Path to file to be written to on remote machine

	mode – Permission mode to set [default: 0777]

	Returns

	Size of written file

	
getdir(remote_path, stat_dict=False)

	List a directory on the remote machine.

	Parameters

	
	remote_path – Path to directory

	stat_dict – If set to True, return a dict of file metadata

	Returns

	List of files, unless stat_dict is True

	
getlongdir(remote_path)

	List a directory and all its file metadata on the remote machine.

	Parameters

	remote_path – Path to directory

	Returns

	A dict of file metadata

	
whoami()

	Get the user’s current identity with respect to this server.

	Returns

	The user’s identity

	
whoareyou(remote_host)

	Get the server’s identity with respect to the remote host.

	Parameters

	remote_host – Remote host

	Returns

	The server’s identity

	
link(old_path, new_path, symbolic=False)

	Create a link on the remote machine.

	Parameters

	
	old_path – File path to link from on the remote machine

	new_path – File path to link to on the remote machine

	symbolic – If set to True, use a symbolic link

	
symlink(old_path, new_path)

	Create a symbolic link on the remote machine.

	Parameters

	
	old_path – File path to symlink from on the remote machine

	new_path – File path to symlink to on the remote machine

	
readlink(remote_path)

	Read the contents of a symbolic link.

	Parameters

	remote_path – File path on the remote machine

	Returns

	Contents of the link

	
stat(remote_path)

	Get metadata for file on the remote machine.

If remote_path is a symbolic link, examine its target.

	Parameters

	remote_path – Path to file

	Returns

	Dict of file metadata

	
lstat(remote_path)

	Get metadata for file on the remote machine.

If remote path is a symbolic link, examine the link.

	Parameters

	remote_path – Path to file

	Returns

	Dict of file metadata

	
statfs(remote_path)

	Get metadata for a file system on the remote machine.

	Parameters

	remote_path – Path to examine

	Returns

	Dict of filesystem metadata

	
access(remote_path, mode_str)

	Check access permissions.

	Parameters

	
	remote_path – Path to examine

	mode_str – Mode to check (one or more of ‘frwx’)

	Raises

	NotAuthorized – If any access mode is not authorized

	
chmod(remote_path, mode)

	Change permission mode of a path on the remote machine.

	Parameters

	
	remote_path – Path

	mode – Permission mode to set

	
chown(remote_path, uid, gid)

	Change the UID and/or GID of a path on the remote machine.

If remote_path is a symbolic link, change its target.

	Parameters

	
	remote_path – Path

	uid – UID

	gid – GID

	
lchown(remote_path, uid, gid)

	Changes the ownership of a file or directory.

If the path is a symbolic link, change the link.

	Parameters

	
	remote_path – Path

	uid – UID

	gid – GID

	
truncate(remote_path, length)

	Truncates a file on the remote machine to a given number of bytes.

	Parameters

	
	remote_path – Path to file

	length – Truncated length

	
utime(remote_path, actime, mtime)

	Change the access and modification times of a file
on the remote machine.

	Parameters

	
	remote_path – Path to file

	actime – Access time, in seconds (Unix epoch)

	mtime – Modification time, in seconds (Unix epoch)

	
htcondor.htchirp.condor_chirp(chirp_args, return_exit_code=False)

	Call HTChirp methods using condor_chirp-style commands

See https://htcondor.readthedocs.io/en/latest/man-pages/condor_chirp.html
for a list of commands, or use a Python interpreter to run htchirp.py --help.

	Parameters

	
	chirp_args – List or string of arguments as would be passed to condor_chirp

	return_exit_code – If True, format and print return value in condor_chirp-style,
and return 0 (success) or 1 (failure) (defaults to False).

	Returns

	Return value from the HTChirp method called,
unless return_exit_code=True (see above).

 htcondor.dags API Reference

htcondor.dags API Reference

Attention

This is not documentation for DAGMan itself! If you run into DAGMan jargon
that isn’t explained here, see DAGMan Introduction.

Creating DAGs

	
class htcondor.dags.DAG(dagman_config=None, dagman_job_attributes=None, max_jobs_by_category=None, dot_config=None, jobstate_log=None, node_status_file=None)

	This object represents the entire DAGMan workflow, including both the
execution graph and miscellaneous configuration options.

It contains the individual NodeLayer and SubDAG that are
the “logical” nodes in the graph, created by the layer() and
subdag() methods respectively.

	Parameters

	
	dagman_config (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], None [https://docs.python.org/3/library/constants.html#None]]) – A mapping of DAGMan configuration options.

	dagman_job_attributes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], None [https://docs.python.org/3/library/constants.html#None]]) – A mapping that describes additional HTCondor JobAd attributes for
the DAGMan job itself.

	max_jobs_by_category (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]], None [https://docs.python.org/3/library/constants.html#None]]) – A mapping that describes the maximum number of jobs (values) that
should be run simultaneously from each category (keys).

	dot_config (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DotConfig, None [https://docs.python.org/3/library/constants.html#None]]) – Configuration options for writing a DOT file,
as a DotConfig.

	jobstate_log (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], None [https://docs.python.org/3/library/constants.html#None]]) – The path to the jobstate log. If not given, the jobstate log will
not be written.

	node_status_file (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NodeStatusFile, None [https://docs.python.org/3/library/constants.html#None]]) – Configuration options for the node status file,
as a NodeStatusFile.

	
describe()

	Return a tabular description of the DAG’s structure.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property edges: Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][BaseNode, BaseNode], BaseEdge]]

	Iterate over ((parent, child), edge) tuples,
for every edge in the graph.

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][BaseNode, BaseNode], BaseEdge]]

	
final(**kwargs)

	Create the FINAL node of the DAG.
A DAG can only have one FINAL node; if you call this method multiple
times, it will override any previous calls.
To customize the FINAL node after creation,
modify the FinalNode instance that it returns.

	Return type

	FinalNode

	
glob(pattern)

	Return a Nodes of the nodes in the DAG
whose names match the glob pattern.

	Return type

	Nodes

	
layer(**kwargs)

	Create a new NodeLayer in the graph with no parents or children.
Keyword arguments are forwarded to NodeLayer.

	Return type

	NodeLayer

	
property leaves: Nodes

	A Nodes of the nodes in the DAG that have no children.

	Return type

	Nodes

	
property node_to_children: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][BaseNode, Nodes]

	Return a dictionary that maps each node to a Nodes
containing its children.
The Nodes will be empty if the node has no children.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][BaseNode, Nodes]

	
property node_to_parents: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][BaseNode, Nodes]

	Return a dictionary that maps each node to a Nodes
containing its parents.
The Nodes will be empty if the node has no parents.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][BaseNode, Nodes]

	
property nodes: Nodes

	Iterate over all of the nodes in the DAG, in no particular order.

	Return type

	Nodes

	
property roots: Nodes

	A Nodes of the nodes in the DAG that have no parents.

	Return type

	Nodes

	
select(selector)

	Return a Nodes of the nodes in the DAG that satisfy selector.
selector should be a function which takes a single BaseNode
and returns True (will be included) or False (will not be included).

	Return type

	Nodes

	
subdag(**kwargs)

	Create a new SubDAG in the graph with no parents or children.
Keyword arguments are forwarded to SubDAG.

	Return type

	SubDAG

	
walk(order=WalkOrder.DEPTH_FIRST)

	Iterate over all of the nodes in the DAG, starting from the roots
(i.e., the nodes with no parents),
in either depth-first or breadth-first order.

Sibling order is not specified,
and may be different in different calls to this method.

	Parameters

	order (WalkOrder) – Walk depth-first (children before siblings)
or breadth-first (siblings before children).

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][BaseNode]

	
walk_ancestors(node, order=WalkOrder.DEPTH_FIRST)

	Iterate over all of the ancestors
(i.e., parents, parents of parents, etc.)
of some node,
in either depth-first or breadth-first order.

Sibling order is not specified,
and may be different in different calls to this method.

	Parameters

	
	node (BaseNode) – The node to begin walking from.
It will not be included in the results.

	order (WalkOrder) – Walk depth-first (parents before siblings)
or breadth-first (siblings before parents).

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][BaseNode]

	
walk_descendants(node, order=WalkOrder.DEPTH_FIRST)

	Iterate over all of the descendants
(i.e., children, children of children, etc.)
of some node,
in either depth-first or breadth-first order.

Sibling order is not specified,
and may be different in different calls to this method.

	Parameters

	
	node (BaseNode) – The node to begin walking from.
It will not be included in the results.

	order (WalkOrder) – Walk depth-first (children before siblings)
or breadth-first (siblings before children).

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][BaseNode]

	
class htcondor.dags.WalkOrder(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	An enumeration for keeping track of which order to walk through a graph.
Depth-first means that parents/children will be visited before siblings.
Breadth-first means that siblings will be visited before parents/children.

	
BREADTH_FIRST = 'BREADTH'

	

	
DEPTH_FIRST = 'DEPTH'

	

Nodes and Node-likes

	
class htcondor.dags.BaseNode(dag, *, name, dir=None, noop=False, done=False, retries=None, retry_unless_exit=None, pre=None, post=None, pre_skip_exit_code=None, priority=0, category=None, abort=None)

	This is the superclass for all node-like objects
(things that can be the logical nodes in a DAG,
like NodeLayer and SubDAG).

Generally, you do not need to construct nodes yourself; instead, they are
created by calling methods like DAG.layer(), DAG.subdag(),
BaseNode.child_layer(), and so forth. These methods automatically
attach the new node to the same DAG as the node you called the
method on.

	Parameters

	
	dag (DAG) – Which DAG to attach this node to.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The human-readable name of this node.

	dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], None [https://docs.python.org/3/library/constants.html#None]]) – The directory to submit from. If None, it will be the directory
the DAG itself was submitted from.

	noop (Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][int [https://docs.python.org/3/library/functions.html#int], bool [https://docs.python.org/3/library/functions.html#bool]]]) – If this is True, this node will be skipped and marked as completed,
no matter what it says it does.
For a NodeLayer, this can be dictionary mapping individual
underlying node indices to their desired value.

	done (Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][int [https://docs.python.org/3/library/functions.html#int], bool [https://docs.python.org/3/library/functions.html#bool]]]) – If this is True, this node will be considered already completed.
For a NodeLayer, this can be dictionary mapping individual
underlying node indices to their desired value.

	retries (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]]) – The number of times to retry the node if it fails
(defined by retry_unless_exit).

	retry_unless_exit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]]) – If the node exits with this code, it will not be retried.

	pre (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Script, None [https://docs.python.org/3/library/constants.html#None]]) – A Script to run before the node itself.

	post (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Script, None [https://docs.python.org/3/library/constants.html#None]]) – A Script to run after the node itself.

	pre_skip_exit_code (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]]) – If the pre-script exits with this code, the node will be skipped.

	priority (int [https://docs.python.org/3/library/functions.html#int]) – The internal priority for DAGMan to run this node.

	category (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]]) – Which CATEGORY this node belongs to.

	abort (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DAGAbortCondition, None [https://docs.python.org/3/library/constants.html#None]]) – A DAGAbortCondition which may cause the entire DAG to stop
if this node exits in a certain way.

	
add_children(*nodes, edge=None)

	Makes all of the nodes children of this node.

	Parameters

	
	nodes – The nodes to make children of this node.

	edge (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseEdge, None [https://docs.python.org/3/library/constants.html#None]]) – The type of edge to use; an instance of a concrete subclass of
BaseEdge. If None, a ManyToMany edge will be
used.

	Returns

	self – This method returns self.

	Return type

	BaseNode

	
add_parents(*nodes, edge=None)

	Makes all of the nodes parents of this node.

	Parameters

	
	nodes – The nodes to make parents of this node.

	edge (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseEdge, None [https://docs.python.org/3/library/constants.html#None]]) – The type of edge to use; an instance of a concrete subclass of
BaseEdge. If None, a ManyToMany edge will be
used.

	Returns

	self – This method returns self.

	Return type

	BaseNode

	
child_layer(edge=None, **kwargs)

	Create a new NodeLayer which is a child of this node.

	Parameters

	
	edge (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseEdge, None [https://docs.python.org/3/library/constants.html#None]]) – The type of edge to use; an instance of a concrete subclass of
BaseEdge. If None, a ManyToMany edge will be
used.

	kwargs – Additional keyword arguments are passed to the NodeLayer
constructor.

	Returns

	node_layer – The newly-created node layer.

	Return type

	NodeLayer

	
child_subdag(edge=None, **kwargs)

	Create a new SubDAG which is a child of this node.

	Parameters

	
	edge (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseEdge, None [https://docs.python.org/3/library/constants.html#None]]) – The type of edge to use; an instance of a concrete subclass of
BaseEdge. If None, a ManyToMany edge will be
used.

	kwargs – Additional keyword arguments are passed to the SubDAG
constructor.

	Returns

	subdag – The newly-created sub-DAG.

	Return type

	SubDAG

	
property children: Nodes

	Return a Nodes containing all of the children of this node.

	Return type

	Nodes

	
parent_layer(edge=None, **kwargs)

	Create a new NodeLayer which is a parent of this node.

	Parameters

	
	edge (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseEdge, None [https://docs.python.org/3/library/constants.html#None]]) – The type of edge to use; an instance of a concrete subclass of
BaseEdge. If None, a ManyToMany edge will be
used.

	kwargs – Additional keyword arguments are passed to the NodeLayer
constructor.

	Returns

	node_layer – The newly-created node layer.

	Return type

	NodeLayer

	
parent_subdag(edge=None, **kwargs)

	Create a new SubDAG which is a parent of this node.

	Parameters

	
	edge (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseEdge, None [https://docs.python.org/3/library/constants.html#None]]) – The type of edge to use; an instance of a concrete subclass of
BaseEdge. If None, a ManyToMany edge will be
used.

	kwargs – Additional keyword arguments are passed to the SubDAG
constructor.

	Returns

	subdag – The newly-created sub-DAG.

	Return type

	SubDAG

	
property parents: Nodes

	Return a Nodes containing all of the parents of this node.

	Return type

	Nodes

	
remove_children(*nodes)

	Makes sure that the nodes are not children of this node.

	Parameters

	nodes – The nodes to remove edges from.

	Returns

	self – This method returns self.

	Return type

	BaseNode

	
remove_parents(*nodes)

	Makes sure that the nodes are not parents of this node.

	Parameters

	nodes – The nodes to remove edges from.

	Returns

	self – This method returns self.

	Return type

	BaseNode

	
walk_ancestors(order=WalkOrder.DEPTH_FIRST)

	Walk over all of the ancestors of this node, in the given order.

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][BaseNode]

	
walk_descendants(order=WalkOrder.DEPTH_FIRST)

	Walk over all of the descendants of this node, in the given order.

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][BaseNode]

	
class htcondor.dags.NodeLayer(dag, *, submit_description=None, vars=None, **kwargs)

	Bases: BaseNode

Represents a “layer” of actual JOB nodes that share a submit description
and edge relationships.
Each underlying actual node’s attributes may be customized using vars.

	Parameters

	
	dag (DAG) – The DAG to connect this node to.

	submit_description (Union [https://docs.python.org/3/library/typing.html#typing.Union][Submit, None [https://docs.python.org/3/library/constants.html#None], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) – The HTCondor submit description for this node. Can be either an
htcondor.Submit object or a Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] to an
existing submit file on disk.

	vars (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]], None [https://docs.python.org/3/library/constants.html#None]]) – The VARS for this logical node; one actual node will be created
for each dictionary in the vars.

	kwargs – Additional keyword arguments are passed to the BaseNode
constructor.

	
class htcondor.dags.SubDAG(dag, *, dag_file, **kwargs)

	Bases: BaseNode

Represents a SUBDAG in the graph.

See SUBDAG EXTERNAL for more information on sub-DAGs.

	Parameters

	
	dag (DAG) – The DAG to connect this node to.

	dag_file (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] to where the sub-DAG’s DAG description file
is (or will be).

	kwargs – Additional keyword arguments are passed to the BaseNode
constructor.

	
class htcondor.dags.FinalNode(dag, submit_description=None, **kwargs)

	Bases: BaseNode

Represents the FINAL node in a DAG.

See Final Node for more information on the FINAL node.

	Parameters

	
	dag (DAG) – The DAG to connect this node to.

	submit_description (Union [https://docs.python.org/3/library/typing.html#typing.Union][Submit, None [https://docs.python.org/3/library/constants.html#None], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) – The HTCondor submit description for this node. Can be either an
htcondor.Submit object or a Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] to an
existing submit file on disk.

	kwargs – Additional keyword arguments are passed to the BaseNode
constructor.

	
class htcondor.dags.Nodes(*nodes)

	This class represents an arbitrary collection of BaseNode.
In many cases, especially when manipulating the structure of the graph,
it can be used as a replacement for directly iterating over
collections of nodes.

	Parameters

	nodes (Union [https://docs.python.org/3/library/typing.html#typing.Union][BaseNode, Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][BaseNode]]) – The logical nodes that will be in this Nodes.

	
add_children(*nodes, type=None)

	Makes all of the nodes children of all of the nodes
in this Nodes.

	Parameters

	
	nodes – The nodes to make children of this Nodes.

	type (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseEdge, None [https://docs.python.org/3/library/constants.html#None]]) – The type of edge to use; an instance of a concrete subclass of
BaseEdge. If None, a ManyToMany edge will be
used.

	Returns

	self – This method returns self.

	Return type

	Nodes

	
add_parents(*nodes, type=None)

	Makes all of the nodes parents of all of the nodes in this
Nodes.

	Parameters

	
	nodes – The nodes to make parents of this Nodes.

	type (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseEdge, None [https://docs.python.org/3/library/constants.html#None]]) – The type of edge to use; an instance of a concrete subclass of
BaseEdge. If None, a ManyToMany edge will be
used.

	Returns

	self – This method returns self.

	Return type

	Nodes

	
child_layer(type=None, **kwargs)

	Create a new NodeLayer which is a child of all of the nodes in
this Nodes.

	Parameters

	
	type (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseEdge, None [https://docs.python.org/3/library/constants.html#None]]) – The type of edge to use; an instance of a concrete subclass of
BaseEdge. If None, a ManyToMany edge will be
used.

	kwargs – Additional keyword arguments are passed to the NodeLayer
constructor.

	Returns

	node_layer – The newly-created node layer.

	Return type

	NodeLayer

	
child_subdag(type=None, **kwargs)

	Create a new SubDAG which is a child of all of the nodes in
this Nodes.

	Parameters

	
	type (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseEdge, None [https://docs.python.org/3/library/constants.html#None]]) – The type of edge to use; an instance of a concrete subclass of
BaseEdge. If None, a ManyToMany edge will be
used.

	kwargs – Additional keyword arguments are passed to the SubDAG
constructor.

	Returns

	subdag – The newly-created sub-DAG.

	Return type

	SubDAG

	
parent_layer(type=None, **kwargs)

	Create a new NodeLayer which is a parent of all of the nodes in
this Nodes.

	Parameters

	
	type (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseEdge, None [https://docs.python.org/3/library/constants.html#None]]) – The type of edge to use; an instance of a concrete subclass of
BaseEdge. If None, a ManyToMany edge will be
used.

	kwargs – Additional keyword arguments are passed to the NodeLayer
constructor.

	Returns

	node_layer – The newly-created node layer.

	Return type

	NodeLayer

	
parent_subdag(type=None, **kwargs)

	Create a new SubDAG which is a parent of all of the nodes in
this Nodes.

	Parameters

	
	type (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseEdge, None [https://docs.python.org/3/library/constants.html#None]]) – The type of edge to use; an instance of a concrete subclass of
BaseEdge. If None, a ManyToMany edge will be
used.

	kwargs – Additional keyword arguments are passed to the SubDAG
constructor.

	Returns

	subdag – The newly-created sub-DAG.

	Return type

	SubDAG

	
remove_children(*nodes)

	Makes sure that the nodes are not children of all of the nodes
in this Nodes.

	Parameters

	nodes – The nodes to remove edges from.

	Returns

	self – This method returns self.

	Return type

	Nodes

	
remove_parents(*nodes)

	Makes sure that the nodes are not parents of any of the nodes
in this Nodes.

	Parameters

	nodes – The nodes to remove edges from.

	Returns

	self – This method returns self.

	Return type

	Nodes

	
walk_ancestors(order=WalkOrder.DEPTH_FIRST)

	Walk over all of the ancestors of all of the nodes in this Nodes, in the given order.

	
walk_descendants(order=WalkOrder.DEPTH_FIRST)

	Walk over all of the descendants of all of the nodes in this Nodes, in the given order.

Edges

	
class htcondor.dags.BaseEdge

	An abstract class that represents the edge between two logical nodes
in the DAG.

	
abstract get_edges(parent, child, join_factory)

	This abstract method is used by the writer to figure out which nodes
in the parent and child should be connected by an actual DAGMan
edge. It should yield (or simply return an iterable of)
individual edge specifications.

Each edge specification is a tuple containing two elements: the first is
a group of parent node indices, the second is a group of child node indices.
Either (but not both) may be replaced by a special JoinNode object
provided by JoinFactory.get_join_node(). An instance of this class
is passed into this function by the writer; you should not create one
yourself.

You may yield any number of edge specifications, but the more compact
you can make the representation
(i.e., fewer edge specifications, each with fewer elements), the better.
This is where join nodes are helpful: they can turn “many-to-many”
relationships into a significantly smaller number of actual edges
(\(2N\) instead of \(N^2\)).

A SubDAG or a zero-vars NodeLayer both implicitly
have a single node index, 0. See the source code of ManyToMany
for a simple pattern for dealing with this.

	Parameters

	
	parent (BaseNode) – The parent, a concrete subclass of BaseNode.

	child (BaseNode) – The child, a concrete subclass of BaseNode.

	join_factory (JoinFactory) – An instance of JoinFactory that will be provided by the
writer.

	Return type

	Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Union [https://docs.python.org/3/library/typing.html#typing.Union][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int]]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int]], JoinNode], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][JoinNode, Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int]]]]]

	
class htcondor.dags.OneToOne

	This edge connects two layers “linearly”: each underlying node in the child
layer is a child of the corresponding underlying node with the same index
in the parent layer.
The parent and child layers must have the same number of underlying nodes.

	
class htcondor.dags.ManyToMany

	This edge connects two layers “densely”: every node in the child layer
is a child of every node in the parent layer.

	
class htcondor.dags.Grouper(parent_chunk_size=1, child_chunk_size=1)

	This edge connects two layers in “chunks”. The nodes in each layer are
divided into chunks based on their respective chunk sizes (given in the
constructor). Chunks are then connected like a OneToOne edge.

The number of chunks in each layer must be the same, and each layer must be
evenly-divided into chunks (no leftover underlying nodes).

When both chunk sizes are 1 this is identical to a OneToOne
edge, and you should use that edge instead because it produces a more
compact representation.

	Parameters

	
	parent_chunk_size (int [https://docs.python.org/3/library/functions.html#int]) – The number of nodes in each chunk in the parent layer.

	child_chunk_size (int [https://docs.python.org/3/library/functions.html#int]) – The number of nodes in each chunk in the child layer.

	
class htcondor.dags.Slicer(parent_slice=slice(None, None, None), child_slice=slice(None, None, None))

	This edge connects individual nodes in the layers, selected by slices.
Each node from the parent layer that is in the parent slice is joined,
one-to-one, with the matching node from the child layer that is in the child
slice.

	Parameters

	
	parent_slice (slice [https://docs.python.org/3/library/functions.html#slice]) – The slice to use for the parent layer.

	child_slice (slice [https://docs.python.org/3/library/functions.html#slice]) – The slice to use for the child layer.

Node Configuration

	
class htcondor.dags.Script(executable, arguments=None, retry=False, retry_status=1, retry_delay=0)

	
	Parameters

	
	executable (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) – The path to the executable to run.

	arguments (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], None [https://docs.python.org/3/library/constants.html#None]]) – The individual arguments to the executable. Keep in mind that these
are evaluated as soon as the Script is created!

	retry (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the script can be retried on failure.

	retry_status (int [https://docs.python.org/3/library/functions.html#int]) – If the script exits with this status, the script run will be
considered a failure for the purposes of retrying.

	retry_delay (int [https://docs.python.org/3/library/functions.html#int]) – The number of seconds to wait after a script failure before
retrying.

	
class htcondor.dags.DAGAbortCondition(node_exit_value, dag_return_value=None)

	Represents the configuration of a node’s DAG abort condition.

See ABORT-DAG-ON for more information about DAG aborts.

	Parameters

	
	node_exit_value (int [https://docs.python.org/3/library/functions.html#int]) – If the underlying node exits with this value, the DAG will be aborted.

	dag_return_value (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]]) – If the DAG is aborted via this condition, it will exit with this code, if given.
If not given, it will exit with the same return value that the node did.

Writing a DAG to Disk

	
htcondor.dags.write_dag(dag, dag_dir, dag_file_name='dagfile.dag', node_name_formatter=None)

	Write out the given DAG to the given directory.
This includes the DAG description file itself, as well as any associated
submit descriptions.

	Parameters

	
	dag (DAG) – The DAG to write the description for.

	dag_dir (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The directory to write the DAG files to.

	dag_file_name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]]) – The name of the DAG description file itself.

	node_name_formatter (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NodeNameFormatter, None [https://docs.python.org/3/library/constants.html#None]]) – The NodeNameFormatter to use for generating underlying node names.
If not provided, the default is SimpleFormatter.

	Returns

	dag_file_path – The path to the DAG description file;
can be passed to htcondor.Submit.from_dag() if you convert it to
a string, like Submit.from_dag(str(write_dag(...))).

	Return type

	pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	
class htcondor.dags.NodeNameFormatter

	An abstract base class that represents a certain way of formatting and
parsing underlying node names.

	
abstract generate(layer_name, node_index)

	This method should generate a single node name,
given the name of the layer and the index of the underlying node
inside the layer.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract parse(node_name)

	This method should convert a single node name back into a layer name
and underlying node index.
Node names must be invertible for rescue() to work.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]

	
class htcondor.dags.SimpleFormatter(separator=':', index_format='{:d}', offset=0)

	A no-frills NodeNameFormatter
that produces underlying node names like LayerName-5.

DAG Configuration

	
class htcondor.dags.DotConfig(path, update=False, overwrite=True, include_file=None)

	A DotConfig holds the configuration options for whether and how
DAGMan will produce a DOT file representing its execution graph.

See Visualizing DAGs for more information.

	Parameters

	
	path (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The path to write the DOT file to.

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the DOT file will be updated as the DAG executes.
If False, it will be written once at startup.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the DOT file will be updated in-place.
If False, new DOT files will be created next to the original.

	include_file (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], None [https://docs.python.org/3/library/constants.html#None]]) – Include the contents of the file at this path in the DOT file.

	
class htcondor.dags.NodeStatusFile(path, update_time=None, always_update=False)

	A NodeStatusFile holds the configuration options for whether and how
DAGMan will write a file containing node status information.

See Capturing the Status of Nodes in a File for more information.

	Parameters

	
	path (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The path to write the node status file to.

	update_time (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]]) – The minimum interval to write new information to the node status file.

	always_update (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool], None [https://docs.python.org/3/library/constants.html#None]]) – Always update the node status file after the update_time, even
if there are no changes from the previous update.

Rescue DAGs

htcondor.dags can read information from a DAGMan rescue file and apply
it to your DAG as it is being constructed.

See The Rescue DAG for more information on Rescue DAGs.

	
htcondor.dags.rescue(dag, rescue_file, formatter=None)

	Applies state recorded in a DAGMan rescue file to the dag.
The dag will be modified in-place.

Warning

Running this function on a DAG replaces any existing
DONE information on all of its nodes.
Every node will have a dictionary for its done attribute.
If you want to edit this information manually, always run this function
first, then make the desired changes on top.

Warning

This function cannot detect changes in node names. If node names are
different in the rescue file compared to the DAG, this function
will not behave as expected.

	Parameters

	
	dag (DAG) – The DAG to apply the rescue state to.

	rescue_file (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The file to get rescue state from.
Use the find_rescue_file() helper function to find the right rescue
file.

	formatter (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NodeNameFormatter, None [https://docs.python.org/3/library/constants.html#None]]) – The node name formatter that was used to write out the original DAG.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
htcondor.dags.find_rescue_file(dag_dir, dag_file_name='dagfile.dag')

	Finds the latest rescue file in a DAG directory
(just like DAGMan itself would).

	Parameters

	
	dag_dir (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The directory to search in.

	dag_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The base name of the DAG description file;
the same name you would pass to write_dag().

	Returns

	rescue_file – The path to the latest rescue file found in the dag_dir.

	Return type

	pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

 htcondor.personal API Reference

htcondor.personal API Reference

	
class htcondor.personal.PersonalPool(local_dir=None, config=None, raw_config=None, detach=False, use_config=True)

	A PersonalPool is responsible for managing the lifecycle of a
personal HTCondor pool. It can be used to start and stop a personal pool,
and can also “attach” to an existing personal pool that is already running.

	Parameters

	
	local_dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], None [https://docs.python.org/3/library/constants.html#None]]) – The local directory for the personal HTCondor pool.
All configuration and state for the personal pool
will be stored in this directory.

	config (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – HTCondor configuration parameters to inject,
as a mapping of key-value pairs.

	raw_config (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]]) – Raw HTCondor configuration language to inject,
as a string.

	detach (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the personal HTCondor pool will not be shut down
when this object is destroyed (e.g., by stopping Python).
Defaults to False.

	use_config (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the environment variable CONDOR_CONFIG will be
set during initialization, such that this personal pool appears to
be the local HTCondor pool for all operations in this Python session,
even ones that don’t go through the PersonalPool object.
The personal pool will also be initialized.
Defaults to True.

	
classmethod attach(local_dir=None)

	Make a new PersonalPool attached to an existing personal pool
that is already running in local_dir.

	Parameters

	local_dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], None [https://docs.python.org/3/library/constants.html#None]]) – The local directory for the existing personal pool.

	Returns

	self – This method returns self.

	Return type

	PersonalPool

	
property collector

	The htcondor.Collector for the personal pool’s collector.

	
detach()

	Detach the personal pool
(as in the constructor argument),
and return self.

	Return type

	PersonalPool

	
get_config_val(macro, default=None)

	Get the value of a configuration macro.
The value will be “evaluated”, meaning that other configuration macros
or functions inside it will be expanded.

	Parameters

	
	macro (str [https://docs.python.org/3/library/stdtypes.html#str]) – The configuration macro to look up the value for.

	default (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]]) – If not None, and the config macro has no value, return this instead.
If None, a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] will be raised instead.

	Returns

	value – The evaluated value of the configuration macro.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
initialize(overwrite_config=True)

	Initialize the personal pool by creating its local directory and writing
out configuration files.

The contents of the local directory
(except for the configuration file if overwrite_config=True)
will not be overridden.

	Parameters

	overwrite_config – If True, the existing configuration file will be overwritten
with the configuration set up in the constructor.
If False and there is an existing configuration file, an
exception will be raised.
Defaults to True.

	Returns

	self – This method returns self.

	Return type

	PersonalPool

	
run_command(args, stdout=-1, stderr=-1, universal_newlines=True, **kwargs)

	Execute a command in a subprocess against this personal pool,
using subprocess.run() [https://docs.python.org/3/library/subprocess.html#subprocess.run] with good defaults for executing
HTCondor commands.
All of the keyword arguments of this function are passed directly to
subprocess.run() [https://docs.python.org/3/library/subprocess.html#subprocess.run].

	Parameters

	
	args (List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The command to run, and its arguments, as a list of strings.

	kwargs – All keyword arguments
(including stdout, stderr, and universal_newlines)
are passed to subprocess.run() [https://docs.python.org/3/library/subprocess.html#subprocess.run].

	Returns

	completed_process

	Return type

	subprocess.CompletedProcess [https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess]

	
property schedd

	The htcondor.Schedd for the personal pool’s schedd.

	
start()

	Start the personal condor (bringing it to the READY state from
either UNINITIALIZED or INITIALIZED).

	Returns

	self – This method returns self.

	Return type

	PersonalPool

	
property state

	The current PersonalPoolState of the personal pool.

	
stop()

	Stop the personal condor, bringing it from the READY state to
STOPPED.

	Returns

	self – This method returns self.

	Return type

	PersonalPool

	
use_config()

	Returns a SetCondorConfig context manager that sets
CONDOR_CONFIG to point to the configuration file for this personal pool.

	
who()

	Return the result of condor_who -quick,
as a classad.ClassAd.
If condor_who -quick fails, or the output can’t be parsed into
a sensible who ad, this method returns an empty ad.

	Return type

	ClassAd

	
class htcondor.personal.PersonalPoolState(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: str [https://docs.python.org/3/library/stdtypes.html#str], Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration of the possible states that a PersonalPool can be in.

	
UNINITIALIZED = 'UNINITIALIZED'

	

	
INITIALIZED = 'INITIALIZED'

	

	
STARTING = 'STARTING'

	

	
READY = 'READY'

	

	
STOPPING = 'STOPPING'

	

	
STOPPED = 'STOPPED'

	

	
class htcondor.personal.SetCondorConfig(config_file)

	A context manager. Inside the block, the Condor config file is the one given
to the constructor. After the block, it is reset to whatever it was before
the block was entered.

	Parameters

	config_file (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The path to an HTCondor configuration file.

 Chirp: Jobs Writing user data to the AP

Chirp: Jobs Writing user data to the AP

Chirp is a set of commands that a running job can invoke on the EP to send or
receive custom user data to or from the AP. It is one of the few HTCondor
features that only runs in a running job on the EP.

Common uses for chirp include appending to the job event log to log on the AP
the completion percentage of the job. Or, say, a job has three different
phases: preparation, activity, and cleanup. With chirp, the job can ask
HTCondor to append an event to the job event log informing the AP and the user
there what phase the job has entered. For example, a running job could run the
command line tool:

$ /usr/libexec/condor_chirp ulog "I have reached stage 3"

In addition to the user log, with chirp, the job can read from or write to the
job’s classad as it exists in the schedd. Note that a static copy of the job
ad, in the state that it existed at job startup is dropped into the job’s
scratch directory. You can find this file by inspecting the environment
variable $_CONDOR_JOB_AD. But to see attributes which have been updated on the
AP after the job has started, including attributes which may have been changed
with the condor_qedit command, you will need to use chirp:

$ /usr/libexec/condor_chirp set_job_ad_attr MyCurrentStatus '"Stage 3"'

As always with passing classad expressions or values through the shell, be
careful with quoting. Also note that these commands don’t need to, and
indeed can not pass the job cluster or proc id as an argument – the job
is implicitly the one that is running, and chirp cannot write to any other
job.

As there is some cost to writing to the instance of the job ad inside the
schedd, chirp also supports delayed job ad updates. This is on by default, and
any job ad attribute whose name begins with “Chirp” is considered a delayed
updated. Any updates to these attributes will be batched together and send
when the starter needs to send another update to the shadow, for any reasons,
or when there are 100 (by default) pending delayed updates.

Chirp may be used from a command line tool, see the
condor_chirp man page for full details.

Alternatively, python programs can natively run chirp commands, see the htchirp
bindings for more details on this method.

This service is off by default; it may be enabled by placing in the submit
description file:

want_io_proxy = True

This places the needed attribute into the job ClassAd.

The Chirp wire protocol used by the starter is fully documented at
http://ccl.cse.nd.edu/software/chirp/.

 Cloud Computing

Cloud Computing

Although HTCondor has long supported accessing cloud resources as though
they were part of the Grid, the differences between clouds and the Grid
have made it difficult to convert access into utility; a job in the Grid
universe starts a virtual machine, rather than the user’s executable.

We offer two solutions to this problem. The first, a tool called
condor_annex, helps users or administrators extend an existing HTCondor
pool with cloud resources. The second is an easy way to create an
entire HTCondor pool from scratch on the cloud,
using our Google Cloud Marketplace Entry.

The rest of this chapter is concerned with using the condor_annex tool
to add nodes to an existing HTCondor pool; it includes instructions on
how to create a single-node HTCondor installation as a normal user so
that you can expand it with cloud resources. It also discusses how to
manually construct a HTCondor in the Cloud using condor_annex.

	Introduction
	Use Case: Deadlines

	Use Case: Capabilities

	Use Case: Capacities

	Use Case: Experimental Convenience

	HTCondor Annex User’s Guide
	Considerations and Limitations

	Basic Usage

	Start an Annex

	Monitor your Annex

	Run a Job

	Stop an Annex

	Using Different or Multiple AWS Regions

	Advanced Usage

	Using condor_annex for the First Time
	Install a Personal HTCondor

	Prepare your AWS account

	Configure condor_annex

	HTCondor Annex Customization Guide
	Amazon Web Services

	HTCondor Annex Configuration
	User Settings

	Logging

	Expert Settings

	Developer Settings

	HTCondor in the Cloud
	The HTCondor in the Cloud Seed

	Security

	Making a HTCondor in the Cloud

	Creating a Seed

	Google Cloud Marketplace Entry

	Google Cloud HPC Toolkit

 Introduction

Introduction

To be clear, our concern throughout this chapter is with commercial
services which rent computational resources over the Internet at short
notice and charge in small increments (by the minute or the hour).
Currently, the condor_annex tool supports only AWS. AWS can start booting
a new virtual machine as quickly as a few seconds after the request;
barring hardware failure, you will be able to continue renting that VM
until you stop paying the hourly charge. The other cloud services are
broadly similar.

If you already have access to the Grid, you may wonder why you would
want to begin cloud computing. The cloud services offer two major
advantages over the Grid: first, cloud resources are typically available
more quickly and in greater quantity than from the Grid; and second,
because cloud resources are virtual machines, they are considerably more
customizable than Grid resources. The major disadvantages are, of
course, cost and complexity (although we hope that condor_annex
reduces the latter).

We illustrate these advantages with what we anticipate will be the most
common uses for condor_annex.

Use Case: Deadlines

With the ability to acquire computational resources in seconds or
minutes and retain them for days or weeks, it becomes possible to
rapidly adjust the size - and cost - of an HTCondor pool. Giving this
ability to the end-user avoids the problems of deciding who will pay for
expanding the pool and when to do so. We anticipate that the usual cause
for doing so will be deadlines; the end-user has the best knowledge of
their own deadlines and how much, in monetary terms, it’s worth to
complete their work by that deadline.

Use Case: Capabilities

Cloud services may offer (virtual) hardware in configurations
unavailable in the local pool, or in quantities that it would be
prohibitively expensive to provide on an on-going basis. Examples (from
2017) may include GPU-based computation, or computations requiring a
terabyte of main memory. A cloud service may also offer fast and
cloud-local storage for shared data, which may have substantial
performance benefits for some workflows. Some cloud providers (for
example, AWS) have pre-populated this storage with common public
datasets, to further ease adoption.

By using cloud resources, an HTCondor pool administrator may also
experiment with or temporarily offer different software and
configurations. For example, a pool may be configured with a maximum job
runtime, perhaps to reduce the latency of fair-share adjustments or to
protect against hung jobs. Adding cloud resources which permit
longer-running jobs may be the least-disruptive way to accomodate a user
whose jobs need more time.

Use Case: Capacities

It may be possible for an HTCondor administrator to lower the cost of
their pool by increasing utilization and meeting peak demand with cloud
computing.

Use Case: Experimental Convenience

Although you can experiment with many different HTCondor configurations using
condor_annex and HTCondor running as a normal user, some configurations may
require elevated privileges. In other situations, you may not be to create
an unprivileged HTCondor pool on a machine because that would violate the
acceptable-use policies, or because you can’t change the firewall, or
because you’d use too much bandwidth. In those cases, you can instead
“seed” the cloud with a single-node HTCondor installation and expand it using
condor_annex. See HTCondor in the Cloud for instructions.

 HTCondor Annex User’s Guide

HTCondor Annex User’s Guide

A user of condor_annex may be a regular job submitter, or she may be
an HTCondor pool administrator. This guide will cover basic
condor_annex usage first, followed by advanced usage that may be of
less interest to the submitter. Users interested in customizing
condor_annex should consult the
HTCondor Annex Customization Guide.

Considerations and Limitations

When you run condor_annex, you are adding (virtual) machines to an
HTCondor pool. As a submitter, you probably don’t have permission to add
machines to the HTCondor pool you’re already using; generally speaking,
security concerns will forbid this. If you’re a pool administrator, you
can of course add machines to your pool as you see fit. By default,
however, condor_annex instances will only start jobs submitted by the
user who started the annex, so pool administrators using condor_annex
on their users’ behalf will probably want to use the -owners option
or -no-owner flag; see the condor_annex man page.
Once the new machines join the pool, they will run jobs as normal.

Submitters, however, will have to set up their own personal HTCondor
pool, so that condor_annex has a pool to join, and then work with
their pool administrator if they want to move their existing jobs to
their new pool. Otherwise, jobs will have to be manually divided
(removed from one and resubmitted to the other) between the pools. For
instructions on creating a personal HTCondor pool, preparing an AWS
account for use by condor_annex, and then configuring condor_annex
to use that account, see the Using condor_annex for the First Time
section.

Starting in v8.7.1, condor_annex will check for inbound access to the
collector (usually port 9618) before starting an annex (it does not
support other network topologies). When checking connectivity from AWS,
the IP(s) used by the AWS Lambda function implementing this check may
not be in the same range(s) as those used by AWS instance; please
consult AWS’s list of all their IP 2 when configuring your firewall.

Starting in v8.7.2, condor_annex requires that the AWS secret
(private) key file be owned by the submitting user and not readable by
anyone else. This helps to ensure proper attribution.

Basic Usage

This section assumes you’re logged into a Linux machine an that you’ve
already configured condor_annex. If you haven’t, see the
Using condor_annex for the First Time section.

All the terminal commands (shown in a box without a title) and file
edits (shown in a box with an emphasized filename for a title) in this
section take place on the Linux machine. In this section, we follow the
common convention that the commands you type are preceded by by ‘$’ to
distinguish them from any expected output; don’t copy that part of each
of the following lines. (Lines which end in a ‘\’ continue on the
following line; be sure to copy both lines. Don’t copy the ‘\’ itself.)

What You’ll Need to Know

To create a HTCondor annex with on-demand instances, you’ll need to know
two things:

	A name for it. “MyFirstAnnex” is a fine name for your first annex.

	How many instances you want. For your first annex, when you’re
checking to make sure things work, you may only want one instance.

Start an Annex

Entering the following command will start an annex named “MyFirstAnnex”
with one instance. condor_annex will print out what it’s going to do,
and then ask you if that’s OK. You must type ‘yes’ (and hit enter) at
the prompt to start an annex; if you do not, condor_annex will print
out instructions about how to change whatever you may not like about
what it said it was going to do, and then exit.

$ condor_annex -count 1 -annex-name MyFirstAnnex
Will request 1 m4.large on-demand instance for 0.83 hours. Each instance will
terminate after being idle for 0.25 hours.
Is that OK? (Type 'yes' or 'no'): yes
Starting annex...
Annex started. Its identity with the cloud provider is
'TestAnnex0_f2923fd1-3cad-47f3-8e19-fff9988ddacf'. It will take about three
minutes for the new machines to join the pool.

You won’t need to know the annex’s identity with the cloud provider
unless something goes wrong.

Before starting the annex, condor_annex (v8.7.1 and later) will check
to make sure that the instances will be able to contact your pool.
Contact the Linux machine’s administrator if condor_annex reports a
problem with this step.

Instance Types

Each instance type provides a different number (and/or type) of CPU
cores, amount of RAM, local storage, and the like. We recommend starting
with ‘m4.large’, which has 2 CPU cores and 8 GiB of RAM, but you can see
the complete list of instance types at the following URL:

https://aws.amazon.com/ec2/instance-types/

You can specify an instance type with the -aws-on-demand-instance-type
flag.

Leases

By default, condor_annex arranges for your annex’s instances to be
terminated after 0.83 hours (50 minutes) have passed. Once it’s in
place, this lease doesn’t depend on the Linux machine, but it’s only
checked every five minutes, so give your deadlines a lot of cushion to
make you don’t get charged for an extra hour. The lease is intended to
help you conserve money by preventing the annex instances from
accidentally running forever. You can specify a lease duration (in
decimal hours) with the -duration flag.

If you need to adjust the lease for a particular annex, you may do so by
specifying an annex name and a duration, but not a count. When you do
so, the new duration is set starting at the current time. For example,
if you’d like “MyFirstAnnex” to expire eight hours from now:

$ condor_annex -annex-name MyFirstAnnex -duration 8
Lease updated.

Idle Time

By default, condor_annex will configure your annex’s instances to
terminate themselves after being idle for 0.25 hours (fifteen minutes).
This is intended to help you conserve money in case of problems or an
extended shortage of work. As noted in the example output above, you can
specify a max idle time (in decimal hours) with the -idle flag.
condor_annex considers an instance idle if it’s unclaimed (see
condor_startd Policy Configuration
for a definition), so it won’t get tricked by jobs with long quiescent
periods.

Tagging your Annex’s Instances

By default, condor_annex adds a tag, htcondor:AnnexName, to each
instance in the annex; its value is the annex’s name (as entered on the
command line). You may add additional tags via the command-line option
-tag, which must be followed by a tag name and a value for that tag
(as separate arguments). You may specify any number of tags (up to the
maximum supported by the cloud provider) by adding additional -tag
options to the command line.

Starting Multiple Annexes

You may have up to fifty (or fewer, depending what else you’re doing
with your AWS account) differently-named annexes running at the same
time. Running condor_annex again with the same annex name before
stopping that annex will both add instances to it and change its
duration. Only instances which start up after an invocation of
condor_annex will respect that invocation’s max idle time. That may
include instances still starting up from your previous (first)
invocation of condor_annex, so be sure your instances have all joined
the pool before running condor_annex again with the same annex name
if you’re changing the max idle time. Each invocation of condor_annex
requests a certain number of instances of a given type; you may specify
the instance type, the count, or both with each invocation, but doing so
does not change the instance type or count of any previous request.

Monitor your Annex

You can find out if an instance has successfully joined the pool in the
following way:

$ condor_annex status
Name OpSys Arch State Activity Load

slot1@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Benchmarking 0.0
slot2@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.0

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 2 0 0 2 0 0 0 0
Total 2 0 0 2 0 0 0 0

This example shows that the annex instance you requested has joined your
pool. (The default annex image configures one static slot for each CPU
it finds on start-up.)

You may instead use condor_status:

$ condor_status -annex MyFirstAnnex
slot1@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767
slot2@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767

 Total Owner Claimed Unclaimed Matched Preempting Backfill Drain
X86_64/LINUX 2 0 0 2 0 0 0 0
Total 2 0 0 2 0 0 0 0

You can also get a report about the instances which have not joined your
pool:

$ condor_annex -annex MyFirstAnnex -status
STATE COUNT
pending 1
TOTAL 1
Instances not in the pool, grouped by state:
pending i-06928b26786dc7e6e

Monitoring Multiple Annexes

The following command reports on all annex instance which have joined
the pool, regardless of which annex they’re from:

$ condor_status -annex
slot1@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767
slot2@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767
slot1@ip-111-48-85-13.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767
slot2@ip-111-48-85-13.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain
X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0

The following command reports about instance which have not joined the
pool, regardless of which annex they’re from:

$ condor_annex -status
NAME TOTAL running
NamelessTestA 2 2
NamelessTestB 3 3
NamelessTestC 1 1

NAME STATUS INSTANCES...
NamelessTestA running i-075af9ccb40efb162 i-0bc5e90066ed62dd8
NamelessTestB running i-02e69e85197f249c2 i-0385f59f482ae6a2e
 i-06191feb755963edd
NamelessTestC running i-09da89d40cde1f212

The ellipsis in the last column (INSTANCES…) is to indicate that it’s
a very wide column and may wrap (as it has in the example), not that it
has been truncated.

The following command combines these two reports:

$ condor_annex status
Name OpSys Arch State Activity Load

slot1@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Benchmarking 0.0
slot2@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.0

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 2 0 0 2 0 0 0 0
Total 2 0 0 2 0 0 0 0

Instance ID not in Annex Status Reason (if known)
i-075af9ccb40efb162 NamelessTestA running -
i-0bc5e90066ed62dd8 NamelessTestA running -
i-02e69e85197f249c2 NamelessTestB running -
i-0385f59f482ae6a2e NamelessTestB running -
i-06191feb755963edd NamelessTestB running -
i-09da89d40cde1f212 NamelessTestC running -

Run a Job

Starting in v8.7.1, the default behaviour for an annex instance is to
run only jobs submitted by the user who ran the condor_annex command.
If you’d like to allow other users to run jobs, list them (separated by
commas; don’t forget to include yourself) as arguments to the -owner
flag when you start the instance. If you’re creating an annex for
general use, use the -no-owner flag to run jobs from anyone.

Also starting in v8.7.1, the default behaviour for an annex instance is
to run only jobs which have the MayUseAWS attribute set (to true). To
submit a job with MayUseAWS set to true, add +MayUseAWS = TRUE to the
submit file somewhere before the queue command. To allow an existing job
to run in the annex, use condor_q_edit. For instance, if you’d like
cluster 1234 to run on AWS:

$ condor_qedit 1234 "MayUseAWS = TRUE"
Set attribute "MayUseAWS" for 21 matching jobs.

Stop an Annex

The following command shuts HTCondor off on each instance in the annex;
if you’re using the default annex image, doing so causes each instance
to shut itself down. HTCondor does not provide a direct method
terminating condor_annex instances.

$ condor_off -annex MyFirstAnnex
Sent "Kill-Daemon" command for "master" to master ip-172-31-48-84.ec2.internal

Stopping Multiple Annexes

The following command turns off all annex instances in your pool,
regardless of which annex they’re from:

$ condor_off -annex
Sent "Kill-Daemon" command for "master" to master ip-172-31-48-84.ec2.internal
Sent "Kill-Daemon" command for "master" to master ip-111-48-85-13.ec2.internal

Using Different or Multiple AWS Regions

It sometimes advantageous to use multiple AWS regions, or convenient to
use an AWS region other than the default, which is us-east-1. To change
the default, set the configuration macro ANNEX_DEFAULT_AWS_REGION
 to the new default. (If you used
the condor_annex automatic setup, you can edit the user_config file
in .condor directory in your home directory; this file uses the normal
HTCondor configuration file syntax. (See
Ordered Evaluation to Set the Configuration.) Once you do this, you’ll
have to re-do the setup, as setup is region-specific.

If you’d like to use multiple AWS regions, you can specify which reason
to use on the command line with the -aws-region flag. Each region
may have zero or more annexes active simultaneously.

Advanced Usage

The previous section covered using what AWS calls “on-demand” instances.
(An “instance” is “a single occurrence of something,” in this case, a
virtual machine. The intent is to distinguish between the active process
that’s pretending to be a real piece of hardware - the “instance” - and
the template it used to start it up, which may also be called a virtual
machine.) An on-demand instance has a price fixed by AWS; once acquired,
AWS will let you keep it running as long as you continue to pay for it.

In constrast, a “Spot” instance has a price determined by an (automated)
auction; when you request a “Spot” instance, you specify the most (per
hour) you’re willing to pay for that instance. If you get an instance,
however, you pay only what the spot price is for that instance; in
effect, AWS determines the spot price by lowering it until they run out
of instances to rent. AWS advertises savings of up to 90% over on-demand
instances.

There are two drawbacks to this cheaper type of instance: first, you may
have to wait (indefinitely) for instances to become available at your
preferred price-point; the second is that your instances may be taken
away from you before you’re done with them because somebody else will
pay more for them. (You won’t be charged for the hour in which AWS kicks
you off an instance, but you will still owe them for all of that
instance’s previous hours.) Both drawbacks can be mitigated (but not
eliminated) by bidding the on-demand price for an instance; of course,
this also minimizes your savings.

Determining an appropriate bidding strategy is outside the purview of
this manual.

Using AWS Spot Fleet

condor_annex supports Spot instances via an AWS technology called
“Spot Fleet”. Normally, when you request instances, you request a
specific type of instance (the default on-demand instance is, for
instance, ‘m4.large’.) However, in many cases, you don’t care too much
about how many cores an intance has - HTCondor will automatically
advertise the right number and schedule jobs appropriately, so why would
you? In such cases - or in other cases where your jobs will run
acceptably on more than one type of instance - you can make a Spot Fleet
request which says something like “give me a thousand cores as cheaply
as possible”, and specify that an ‘m4.large’ instance has two cores,
while ‘m4.xlarge’ has four, and so on. (The interface actually allows
you to assign arbitrary values - like HTCondor slot weights - to each
instance type 1, but the default value
is core count.) AWS will then divide the current price for each instance
type by its core count and request spot instances at the cheapest
per-core rate until the number of cores (not the number of instances!)
has reached a thousand, or that instance type is exhausted, at which
point it will request the next-cheapest instance type.

(At present, a Spot Fleet only chooses the cheapest price within each
AWS region; you would have to start a Spot Fleet in each AWS region you
were willing to use to make sure you got the cheapest possible price.
For fault tolerance, each AWS region is split into independent zones,
but each zone has its own price. Spot Fleet takes care of that detail
for you.)

In order to create an annex via a Spot Fleet, you’ll need a file
containing a JSON blob which describes the Spot Fleet request you’d like
to make. (It’s too complicated for a reasonable command-line interface.)
The AWS web console can be used to create such a file; the button to
download that file is (currently) in the upper-right corner of the last
page before you submit the Spot Fleet request; it is labeled ‘JSON
config’. You may need to create an IAM role the first time you make a
Spot Fleet request; please do so before running condor_annex.

	You must select the instance role profile used by your on-demand
instances for condor_annex to work. This value will have been stored
in the configuration macro ANNEX_DEFAULT_ODI_INSTANCE_PROFILE_ARN
 by the setup
procedure.

	You must select a security group which allows inbound access on HTCondor’s
port (9618) for condor_annex to work. You may use the value stored in
the configuration macro ANNEX_DEFAULT_ODI_SECURITY_GROUP_IDS by the
setup procedure; this security group also allows inbound SSH access.

	If you wish to be able to SSH to your instances, you must select an SSH
key pair (for which you have the corresponding private key); this is
not required for condor_ssh_to_job. You may use the value stored in
the configuration macro ANNEX_DEFAULT_ODI_KEY_NAME by the setup
procedure.

Specify the JSON configuration file using
-aws-spot-fleet-config-file, or set the configuration macro
ANNEX_DEFAULT_SFR_CONFIG_FILE
 to the full path of the
file you just downloaded, if you’d like it to become your default
configuration for Spot annexes. Be aware that condor_annex does not
alter the validity period if one is set in the Spot Fleet configuration
file. You should remove the references to ‘ValidFrom’ and ‘ValidTo’ in
the JSON file to avoid confusing surprises later.

Additionally, be aware that condor_annex uses the Spot Fleet API in
its “request” mode, which means that an annex created with Spot Fleet
has the same semantics with respect to replacement as it would
otherwise: if an instance terminates for any reason, including AWS
taking it away to give to someone else, it is not replaced.

You must specify the number of cores (total instance weight; see above)
using -slots. You may also specify -aws-spot-fleet, if you wish;
doing so may make this condor_annex invocation more self-documenting.
You may use other options as normal, excepting those which begin with
-aws-on-demand, which indicates an option specific to on-demand
instances.

Custom HTCondor Configuration

When you specify a custom configuration, you specify the full path to a
configuration directory which will be copied to the instance. The
customizations performed by condor_annex will be applied to a
temporary copy of this directory before it is uploaded to the instance.
Those customizations consist of creating two files: password_file.pl
(named that way to ensure that it isn’t ever accidentally treated as
configuration), and 00ec2-dynamic.config. The former is a password file
for use by the pool password security method, which if configured, will
be used by condor_annex automatically. The latter is an HTCondor
configuration file; it is named so as to sort first and make it easier
to over-ride with whatever configuration you see fit.

AWS Instance User Data

HTCondor doesn’t interfere with this in any way, so if you’d like to set
an instance’s user data, you may do so. However, as of v8.7.2, the
-user-data options don’t work for on-demand instances (the default
type). If you’d like to specify user data for your Spot Fleet -driven
annex, you may do so in four different ways: on the command-line or from
a file, and for all launch specifications or for only those launch
specifications which don’t already include user data. These two choices
correspond to the absence or presence of a trailing -file and the
absence or presence of -default immediately preceding
-user-data.

A “launch specification,” in this context, means one of the virtual
machine templates you told Spot Fleet would be an acceptable way to
accomodate your resource request. This usually corresponds one-to-one
with instance types, but this is not required.

Expert Mode

The condor_annex manual page lists the “expert mode” options.

Four of the “expert mode” options set the URLs used to access AWS
services, not including the CloudFormation URL needed by the -setup
flag. You may change the CloudFormation URL by changing the HTCondor
configuration macro ANNEX_DEFAULT_CF_URL
 , or by supplying the URL as the
third parameter after the -setup flag. If you change any of the
URLs, you may need to change all of the URLs - Lambda functions and
CloudWatch events in one region don’t work with instances in another
region.

You may also temporarily specify a different AWS account by using the
access (-aws-access-key-file) and secret key
(-aws-secret-key-file) options. Regular users may have an accounting
reason to do this.

The options labeled “developers only” control implementation details and
may change without warning; they are probably best left unused unless
you’re a developer.

Footnotes

	1

	Strictly speaking, to each “launch specification”; see the explanation below, in the section AWS Instance User Data.

	2

	https://ip-ranges.amazonaws.com/ip-ranges.json

 Using condor_annex for the First Time

Using condor_annex for the First Time

This guide assumes that you already have an AWS account, as well as a
log-in account on a Linux machine with a public address and a system
administrator who’s willing to open a port for you. All the terminal
commands (shown in a box) and file edits (show in a box whose first line
begins with a # and names a file) take place on the Linux machine. You can
perform the web-based steps from wherever is convenient, although it
will save you some copying if you run the browser on the Linux machine.

If your Linux machine will be an EC2 instance, read
Using Instance Credentials first; by taking some care in how you start
the instance, you can save yourself some drudgery.

Before using condor_annex for the first time, you’ll have to do three
things:

	install a personal HTCondor

	prepare your AWS account

	configure condor_annex

Instructions for each follow.

Install a Personal HTCondor

We recommend that you install a personal HTCondor to make use of
condor_annex; it’s simpler to configure that way. Follow the
Hand-Installation of HTCondor on a Single Machine with User Privileges instructions. Make sure
you install HTCondor version 8.7.8 or later.

Once you have a working personal HTCondor installation, continue with
the additional setup instructions below, that are specific to
using condor_annex.

In the following instructions, it is assumed that the local installation
has been done in the folder ~/condor-8.7.8. Change this path depending
on your HTCondor version and how you followed the installation
instructions.

Configure Public Interface

The default personal HTCondor uses the “loopback” interface, which
basically just means it won’t talk to anyone other than itself. For
condor_annex to work, your personal HTCondor needs to use the Linux
machine’s public interface. In most cases, that’s as simple as adding
the following lines:

~/condor-8.7.8/local/condor_config.local

NETWORK_INTERFACE = *
CONDOR_HOST = $(FULL_HOSTNAME)

Restart HTCondor to force the changes to take effect:

$ condor_restart
Sent "Restart" command to local master

To verify that this change worked, repeat the steps under the
Install a Personal HTCondor
section. Then proceed onto the next section.

Configure a Pool Password

In this section, you’ll configure your personal HTCondor to use a pool
password. This is a simple but effective method of securing HTCondor’s
communications to AWS.

Add the following lines:

~/condor-8.7.8/local/condor_config.local

SEC_PASSWORD_FILE = $(LOCAL_DIR)/condor_pool_password

SEC_DAEMON_INTEGRITY = REQUIRED
SEC_DAEMON_AUTHENTICATION = REQUIRED
SEC_DAEMON_AUTHENTICATION_METHODS = PASSWORD
SEC_NEGOTIATOR_INTEGRITY = REQUIRED
SEC_NEGOTIATOR_AUTHENTICATION = REQUIRED
SEC_NEGOTIATOR_AUTHENTICATION_METHODS = PASSWORD
SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD
ALLOW_DAEMON = condor_pool@*

You also need to run the following command, which prompts you to enter a
password:

$ condor_store_cred -c add -f `condor_config_val SEC_PASSWORD_FILE`
Enter password:

Enter a password.

Tell HTCondor about the Open Port

By default, HTCondor will use port 9618. If the Linux machine doesn’t
already have HTCondor installed, and the admin is willing to open that
port, then you don’t have to do anything. Otherwise, you’ll need to add
a line like the following, replacing ‘9618’ with whatever port the
administrator opened for you.

~/condor-8.7.8/local/condor_config.local

COLLECTOR_HOST = $(FULL_HOSTNAME):9618

Activate the New Configuration

Force HTCondor to read the new configuration by restarting it:

$ condor_restart

Prepare your AWS account

Since v8.7.1, the condor_annex tool has included a -setup command
which will prepare your AWS account.

Using Instance Credentials

If you will not be running condor_annex on an EC2 instance, skip
to Obtaining an Access Key.

When you start an instance on EC2 1, you can grant it some of your AWS
privileges, for instance, for starting instances. This (usually) means that
any user logged into the instance can, for instance, start instances (as
you). A given collection of privileges is called an “instance profile”; a
full description of them is outside the scope of this document. If, however,
you’ll be the only person who can log into the instance you’re creating and
on which you will be running condor_annex, it may be simpler to start an
instance with your privileges than to deal with Obtaining an Access Key.

You will need a privileged instance profile; if you don’t already have one,
you will only need to create it once. When launching an instance with
the EC2 console [https://console.aws.amazon.com/ec2/], step 3
(labelled ‘Configure Instance Details’) includes an entry for ‘IAM role’;
the AWS web interface creates the corresponding instance profile for you
automatically. If you’ve already created a privileged role, select it here
and carry on launching your instance as usual. If you haven’t:

	Follow the ‘Create new IAM role’ link.

	Click the ‘Create Role’ button.

	Select ‘EC2’ under “the service that will use this role”.

	Click the ‘Next: Permissions’ button.

	Select ‘Administrator Access’ and click the ‘Next: Tags’ button.

	Click the ‘Next: Review’ button.

	Enter a role name; ‘HTCondorAnnexRole’ is fine.

	Click the ‘Create role’ button.

When you switch back to the previous tab, you may need to click the circular
arrow (refresh) icon before you can select the role name you entered in the
second-to-last step.

If you’d like step-by-step instructions for creating a HTCondor-in-the-Cloud,
see HTCondor in the Cloud.

You can skip to Configure condor_annex once you’ve completed these steps.

Obtaining an Access Key

In order to use AWS, condor_annex needs a pair of security tokens
(like a user name and password). Like a user name, the “access key” is
(more or less) public information; the corresponding “secret key” is
like a password and must be kept a secret. To help keep both halves
secret, condor_annex (and HTCondor) are never told these keys
directly; instead, you tell HTCondor which file to look in to find each
one.

Create those two files now; we’ll tell you how to fill them in shortly.
By convention, these files exist in your ~/.condor directory, which is
where the -setup command will store the rest of the data it needs.

$ mkdir ~/.condor
$ cd ~/.condor
$ touch publicKeyFile privateKeyFile
$ chmod 600 publicKeyFile privateKeyFile

The last command ensures that only you can read or write to those files.

To donwload a new pair of security tokens for condor_annex to use,
go to the IAM console at the following URL; log in if you need to:

https://console.aws.amazon.com/iam/home?region=us-east-1#/users

The following instructions assume you are logged in as a user with the
privilege to create new users. (The ‘root’ user for any account has this
privilege; other accounts may as well.)

	Click the “Add User” button.

	Enter name in the User name box; “annex-user” is a fine choice.

	Click the check box labelled “Programmatic access”.

	Click the button labelled “Next: Permissions”.

	Select “Attach existing policies directly”.

	Type “AdministratorAccess” in the box labelled “Filter”.

	Click the check box on the single line that will appear below
(labelled “AdministratorAccess”).

	Click the “Next: review” button (you may need to scroll down).

	Click the “Create user” button.

	From the line labelled “annex-user”, copy the value in the column
labelled “Access key ID” to the file publicKeyFile.

	On the line labelled “annex-user”, click the “Show” link in the
column labelled “Secret access key”; copy the revealed value to the
file privateKeyFile.

	Hit the “Close” button.

The ‘annex-user’ now has full privileges to your account.

Configure condor_annex

The following command will setup your AWS account. It will create a
number of persistent components, none of which will cost you anything to
keep around. These components can take quite some time to create;
condor_annex checks each for completion every ten seconds and prints
an additional dot (past the first three) when it does so, to let you
know that everything’s still working.

$ condor_annex -setup
Creating configuration bucket (this takes less than a minute)....... complete.
Creating Lambda functions (this takes about a minute)........ complete.
Creating instance profile (this takes about two minutes)................... complete.
Creating security group (this takes less than a minute)..... complete.
Setup successful.

Checking the Setup

You can verify at this point (or any later time) that the setup
procedure completed successfully by running the following command.

$ condor_annex -check-setup
Checking for configuration bucket... OK.
Checking for Lambda functions... OK.
Checking for instance profile... OK.
Checking for security group... OK.

You’re ready to run condor_annex!

Undoing the Setup Command

There is not as yet a way to undo the setup command automatically, but
it won’t cost you anything extra to leave your account setup for
condor_annex indefinitely. If, however, you want to be tidy, you may
delete the components setup created by going to the CloudFormation
console at the following URL and deleting the entries whose names begin
with ‘HTCondorAnnex-‘:

https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks?filter=active

The setup procedure also creates an SSH key pair which may be useful
for debugging; the private key was stored in
~/.condor/HTCondorAnnex-KeyPair.pem. To remove the corresponding public
key from your AWS account, go to the key pair console at the following
URL and delete the ‘HTCondorAnnex-KeyPair’ key:

https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#KeyPairs:sort=keyName

Footnotes

	1

	You may assign an intance profile to an EC2 instance when you launch it,
or at any subsequent time, through the AWS web console (or other interfaces
with which you may be familiar). If you start the instance using HTCondor’s
EC2 universe, you may specify the IAM instance profile with the
ec2_iam_profile_name or ec2_iam_profile_arn submit commands.

 HTCondor Annex Customization Guide

HTCondor Annex Customization Guide

Aside from the configuration macros (see the
HTCondor Annex Configuration section), the major way to
ustomize condor_annex is my customizing the default disk image. Because
the implementation of condor_annex varies from service to service, and that
implementation determines the constraints on the disk image, the this section
is divided by service.

Amazon Web Services

Requirements for an Annex-compatible AMI are driven by how
condor_annex securely transports HTCondor configuration and security
tokens to the instances; we will discuss that implementation briefly, to
help you understand the requirements, even though it will hopefully
never matter to you.

Resource Requests

For on-demand or Spot instances, we begin by making a single resource
request whose client token is the annex name concatenated with an
underscore and then a newly-generated GUID. This construction allows us
to terminate on-demand instances belonging to a particular annex (by its
name), as well as discover the annex name from inside an instance.

An on-demand instance may obtain its instance ID directly from the AWS
metadata server, and then ask another AWS API for that instance ID’s
client token. Since GUIDs do not contain underscores, we can be certain
that anything to the left of the last underscore is the annex’s name.

An instance started by a Spot Fleet has a client token generated by the
Spot Fleet. Instead of performing a direct lookup, a Spot Fleet instance
must therefore determine which Spot Fleet started it, and then obtain
that Spot Fleet’s client token. A Spot Fleet will tag an instance with
the Spot Fleet’s identity after the instance starts up. This usually
only takes a few minutes, but the default image waits for up to 50
minutes, since you’re already paying for the first hour anyway.

Secure Transport

At this point, the instance knows its annex’s name. This allows the
instance to construct the name of the tarball it should download
(config-AnnexName.tar.gz), but does not tell it from where a file with
that name should be downloaded.

(Because the user data associated with resource request is not secure,
and because we want to leave the user data available for its normal
usage, we can’t just encode the tarball or its location in the user
data.)

The instance determines from which S3 bucket to download by asking the
metadata server which role the instance is playing. (An instance without
a role is unable to make use of any AWS services without acquiring valid
AWS tokens through some other method.) The instance role created by the
setup procedure includes permission to read files matching the pattern
config-*.tar.gz from a particular private S3 bucket. If the instance
finds permissions matching that pattern, it assumes that the
corresponding S3 bucket is the one from which it should download, and
does so; if successful, it untars the file in /etc/condor/config.d.

In v8.7.1, the script executing these steps is named 49ec2-instance.sh,
and is called during configuration when HTCondor first starts up.

In v8.7.2, the script executing these steps is named condor-annex-ec2,
and is called during system start-up.

The HTCondor configuration and security tokens are at this point
protected on the instance’s disk by the usual filesystem permissions. To
prevent HTCondor jobs from using the instance’s permissions to do
anything, but in particular download their own copy of the security
tokens, the last thing the script does is use the Linux kernel firewall
to forbid any non-root process from accessing the metadata server.

Image Requirements

Thus, to work with condor_annex, an AWS AMI must:

	Fetch the HTCondor configuration and security tokens from S3;

	configure HTCondor to turn off after it’s been idle for too long;

	and turn off the instance when the HTCondor master daemon exits.

The second item could be construed as optional, but if left
unimplemented, will disable the -idle command-line option.

The default disk image implements the above as follows:

	with a configuration script (/etc/condor/49ec2-instance.sh);

	with a single configuration item (STARTD_NOCLAIM_SHUTDOWN
);

	with a configuration item (DEFAULT_MASTER_SHUTDOWN_SCRIPT
) and the corresponding
script (/etc/condor/master_shutdown.sh), which just turns around and
runs shutdown -h now.

We also strongly recommend that every condor_annex disk image:

	Advertise, in the master and startd, the instance ID.

	Use the instance’s public IP, by setting TCP_FORWARDING_HOST
 .

	Turn on communications integrity and encryption.

	Encrypt the run directories.

	Restrict access to the EC2 meta-data server to root.

The default disk image is configured to do all of this.

Instance Roles

To explain the last point immediately above, EC2 stores (temporary)
credentials for the role, if any, associated with an instance on that
instance’s meta-data server, which may be accessed via HTTP at a well-known
address (currently 169.254.169.254). Unless otherwise configured,
any process in the instance can access the meta-data server and thereby
make use of the instance’s credentials.

Until version 8.9.0, there was no HTCondor-based reason to run an EC2
instance with an instance role. Starting in 8.9.0, however, HTCondor
gained the ability to use the instance role’s credentials to run EC2
universe jobs and condor_annex commands. This has several advantages
over copying credentials into the instance: it may be more convenient,
and if you’re the only user of the instance, it’s more secure, because
the instance’s credentials expire when the instance does.

However, wanting to allow (other) users to run jobs on or submit jobs to
your instance may not mean you want them to able to act with the
instance’s privileges (e.g., starting more instances on your account).
Although securing your instances ultimately remains your responsibility,
the default images we provide for condor_annex, and the
condor-annex-ec2 package, both use the kernel-level firewall to prevent
access to the metadata server by any process not owned by root. Because
this firewall rule is added during the boot sequence, it will be in
place before HTCondor can start any user jobs, and should therefore be
effective in preventing access to the instance’s credentials by normal
users or their jobs.

 HTCondor Annex Configuration

HTCondor Annex Configuration

While the configuration macros in this section may be set by the
HTCondor administrator, they are intended for the user-specific HTCondor
configuration file (usually ~/.condor/user_config). Although we
document every macro, we expect that users will generally only want to
change a few of them, listed in the
User Settings section;
the entries required in by condor_annex in other sections will be
generated by its setup procedure.

Subsequent sections deal with logging
(Logging), are for expert users
(Expert Settings), or for HTCondor
developers (Developer Settings).

User Settings

	ANNEX_DEFAULT_AWS_REGION
	The default region when using AWS. Defaults to ‘us-east-1’.

	ANNEX_DEFAULT_LEASE_DURATION
	The duration of an annex if not specified on the command-line;
specified in seconds. Defaults to 50 minutes.

	ANNEX_DEFAULT_UNCLAIMED_TIMEOUT
	How long an annex instances should stay idle before shutting down;
specified in seconds. Defaults to 15 minutes.

	ANNEX_DEFAULT_ODI_KEY_NAME
	The name of the SSH key pair condor_annex should use by default.
No default.

	ANNEX_DEFAULT_ODI_INSTANCE_TYPE
	The AWS instance type to use for on-demand instances if not
specified. No default, but the condor_annex setup procedure sets
this to ‘m4.large’.

	ANNEX_DEFAULT_ODI_IMAGE_ID
	The AWS AMI to use for on-demand instance if not specified. No
default, but the condor_annex setup procedure sets this to
‘ami-35b13223’.

	ANNEX_DEFAULT_SFR_CONFIG_FILE
	The JSON configuration file use by condor_annex when creating a
Spot-based annex. No default.

Logging

By default, running condor_annex creates three logs: the
condor_annex log, the annex GAHP log, and the annex audit log. The
default location for these logs is the same directory as the
user-specific HTCondor configuration file (usually
~/.condor/user_config). condor_annex sets the LOG
 macro to this directory when reading its
configuration.

The condor_annex log is a daemon-style log. It is configured as if
condor_annex were a daemon with subsystem type ANNEX; see
Daemon Logging Configuration File Entries for details.

condor_annex uses special helper programs, called GAHPs, to interact
with the different cloud services. These programs do their own logging,
writing to the annex GAHP log. The annex GAHP log is configured as if it
were a daemon, but with subsystem type ANNEX_GAHP; see
Daemon Logging Configuration File Entries for details.

The annex audit log records two lines for each invocation of
condor_annex: the command as issued and the results as returned. The
location of the audit log is set by ANNEX_AUDIT_LOG
 , which is the AUDIT-level log for the
ANNEX subsystem; see <SUBSYS>_<LEVEL>_LOG (in
Daemon Logging Configuration File Entries) for details. Because annex creation commands typically make extensive
use of values set in configuration, condor_annex will write the configuration
it used for annex creation commands into the audit log if ANNEX_DEBUG
includes D_AUDIT:2.

Expert Settings

	ANNEX_DEFAULT_EC2_URL
	The AWS EC2 endpoint that condor_annex should use. Defaults to
‘https://ec2.us-east-1.amazonaws.com’.

	ANNEX_DEFAULT_CWE_URL
	The AWS CloudWatch Events endpoint that condor_annex should use.
Defaults to ‘https://events.us-east-1.amazonaws.com’.

	ANNEX_DEFAULT_LAMBDA_URL
	The AWS Lambda endpoint that condor_annex should use. Defaults to
‘https://lambda.us-east-1.amazonaws.com’.

	ANNEX_DEFAULT_S3_URL
	The AWS S3 endpoint that condor_annex should use. Defaults to
‘https://s3.amazonaws.com’.

	ANNEX_DEFAULT_CF_URL
	The AWS CloudFormation endpoint that condor_annex should use.
Defaults to ‘https://cloudformation.us-east-1.amazonaws.com’.

	ANNEX_DEFAULT_ACCESS_KEY_FILE
	The full path to the AWS access key file condor_annex should use.
No default. If “FROM INSTANCE”, condor_annex will assume it’s
running on an EC2 instance and try to use that instance’s
credentials.

	ANNEX_DEFAULT_SECRET_KEY_FILE
	The full path to the AWS secret key file condor_annex should use.
No default. If “FROM INSTANCE”, condor_annex will assume it’s
running on an EC2 instance and try to use that instance’s
credentials.

	ANNEX_DEFAULT_S3_BUCKET
	A private S3 bucket that the ANNEX_DEFAULT_ACCESS_KEY_FILE and
ANNEX_DEFAULT_SECRET_KEY_FILE may write to. No default.

	ANNEX_DEFAULT_ODI_SECURITY_GROUP_IDS
	The default security group for on-demand annexes. Must permit
inbound HTCondor (port 9618).

Developer Settings

	ANNEX_DEFAULT_CONNECTIVITY_FUNCTION_ARN
	The name (or ARN) of the Lambda function on AWS which
condor_annex should use to check if the configured collector can
be contacted from AWS.

	ANNEX_DEFAULT_ODI_INSTANCE_PROFILE_ARN
	The ARN of the instance profile condor_annex should use. No
default.

	ANNEX_DEFAULT_ODI_LEASE_FUNCTION_ARN
	The Lambda function which implements the lease (duration) for
on-demand instances. No default.

	ANNEX_DEFAULT_SFR_LEASE_FUNCTION_ARN
	The Lambda function which implements the lease (duration) for Spot
instances. No default.

 HTCondor in the Cloud

HTCondor in the Cloud

Although any HTCondor pool for which each node was running on a cloud resource
could fairly be described as a “HTCondor in the Cloud”, in this section we
concern ourselves with creating such pools using condor_annex. The basic
idea is start only a single instance manually – the “seed” node – which
constitutes all of the HTCondor infrastructure required to run both
condor_annex and jobs.

The HTCondor in the Cloud Seed

A seed node hosts the HTCondor pool infrastructure (the parts that aren’t
execute nodes). While HTCondor will try to reconnect to running jobs if
the instance hosting the schedd shuts down, you would need to take additional
precautions – making sure the seed node is automatically restarted, that it
comes back quickly (faster than the job reconnect timeout), and that it
comes back with the same IP address(es), among others – to minimize the
amount of work-in-progress lost. We therefore recommend against using an
interruptible instance for the seed node.

Security

Your cloud provider may allow you grant an instance privileges (e.g., the
privilege of starting new instances). This can be more convenient (because
you don’t have to manually copy credentials into the instance), but may be
risky if you allow others to log into the instance (possibly allowing them
to take advantage of the instance’s privileges). Conversely, copying
credentials into the instance makes it easy to forget to remove them before
creating an image of that instance (if you do).

Making a HTCondor in the Cloud

The general instructions are simple:

	Start an instance from a seed image. Grant it privileges if you want. (See above).

	If you did not grant the instance privileges, copy your credentials to the instance.

	Run condor_annex.

AWS-Specific Instructions

The following instructions create a HTCondor-in-the-Cloud using the default
seed image.

	Go to the EC2 console [https://console.aws.amazon.com/ec2/?region=us-east-1].

	Click the ‘Launch Instance’ button.

	Click on ‘Community AMIs’.

	Search for Condor-in-the-Cloud Seed. (The AMI ID is
ami-00eeb25291cfad66f.) Click the ‘Select’ button.

	Choose an instance type. (Select m5.large if you have no preference.)

	Click the ‘Next: Configure Instance Details’ button.

	For ‘IAM Role’, select the role you created in
Using Instance Credentials, or follow those instructions now.

	Click ‘6. Configure Security Group’. This creates a firewall rule to allow
you to log into your instance.

	Click the ‘Review and Launch’ button.

	Click the ‘Launch’ button.

	Select an existing key pair if you have one; you will need the corresponding
private key file to log in to your instance. If you don’t have one,
select ‘Create a new key pair’ and enter a name; ‘HTCondor Annex’ is fine.
Click ‘Download key pair’. Save the file some place you can access
easily but others can’t; you’ll need it later.

	Click through, then click the button labelled ‘View Instances’.

	The IPv4 address of your seed instance will be display. Use SSH to
connect to that address as the ‘ec2-user’ with the key pair from two
steps ago.

To grow your new HTCondor-in-the-Cloud from this seed, follow the instructions
for using condor_annex for the first time, starting with
Configure condor_annex. You can than proceed to
Start an Annex.

Creating a Seed

A seed image is simply an image with:

	HTCondor installed

	HTCondor configured to:

	be a central manager

	be a submit node

	allow condor_annex can add nodes

	a small script to set TCP_FORWARDING_HOST to the instance’s public
IP adress when the instance starts up.

More-detailed instructions [https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=CondorInTheCloudSeedConstruction]
for constructing a seed node on AWS are available. A RHEL 7.6 image built
according to those instructions is available as public AMI
ami-00eeb25291cfad66f.

 Google Cloud Marketplace Entry

Google Cloud Marketplace Entry

A solution for provisioning a pool using HTCondor 8.8 was made available on
the Google Cloud Marketplace. It has been deprecated and will be removed at a
future date.

Google Cloud HPC Toolkit

The Cloud HPC Toolkit [https://goo.gle/hpc-toolkit-docs] is an Open Source
solution for provisioning HPC and HTC solutions on Google Cloud Platform
(GCP) [https://cloud.google.com]. Please consult the following resources for
using the Toolkit to provision HTCondor on GCP:

	Cloud HPC Toolkit HTCondor Tutorial [https://github.com/GoogleCloudPlatform/hpc-toolkit/tree/main/docs/tutorials#htcondor-tutorial]

	Cloud HPC Toolkit source code [https://goo.gle/hpc-toolkit]

 Grid Computing

Grid Computing

	Introduction

	Connecting HTCondor Pools with Flocking
	Flocking Configuration

	Job Considerations

	The Grid Universe
	HTCondor-C, The condor Grid Type

	The arc Grid Type

	The batch Grid Type (for SLURM, PBS, LSF, and SGE)

	The EC2 Grid Type

	The GCE Grid Type

	The Azure Grid Type

	The HTCondor Job Router
	Routing Mechanism

	Job Submission with Job Routing Capability

	An Example Configuration

	Routing Table Entry Commands and Macro values

	Deprecated router configuration

	Deprecated Routing Table Entry ClassAd Attributes

 Introduction

Introduction

A goal of grid computing is to allow an authorized batch scheduler to send
jobs to run on some remote pool, even when that remote pool is running
a non-HTCondor system.

There are several mechanisms in HTCondor to do this.

Flocking allows HTCondor jobs submitted from one pool to execute on another,
separate HTCondor pool. Flocking is enabled by configuration on both of
the pools. An advantage to flocking is that jobs migrate from one pool
to another based on the availability of machines to execute jobs. When
the local HTCondor pool is not able to run the job (due to a lack of
currently available machines), the job flocks to another pool. A second
advantage to using flocking is that the submitting user does not need to be
concerned with any aspects of the job. The user’s submit description
file (and the job’s
universe) are independent
of the flocking mechanism. Flocking only works when the remote pool is
also an HTCondor pool.

Glidein is the technique where condor_startds are submitted as jobs to
some remote batch systems, and configured with report to, and expand the
local HTCondor batch system. We call these jobs that run startds “pilot
jobs”, to distinguish them from the “payload jobs” which run the real user’s
domain work. HTCondor itself does not provide an implementation of glidein,
there is a very complete implementation the HEP community has built, named
GlideinWMS, and several HTCondor users have written their own glidein
systems.

Other forms of grid computing are enabled by using the grid
universe and further specified with the grid_type. For any
HTCondor job, the job is submitted on a machine in the local HTCondor
pool. The location where it is executed is identified as the remote
machine or remote resource. These various grid computing mechanisms
offered by HTCondor are distinguished by the software running on the
remote resource. Often implementations of Glidein use grid universe
to send the pilot jobs to a remote system.

When HTCondor is running on the remote resource, and the desired grid
computing mechanism is to move the job from the local pool’s job queue
to the remote pool’s job queue, it is called HTCondor-C. The job is
submitted using the grid universe, and the grid_type is
condor. HTCondor-C jobs have the advantage that once the job has
moved to the remote pool’s job queue, a network partition does not
affect the execution of the job. A further advantage of HTCondor-C jobs
is that the universe of the job at the remote resource is not
restricted.

One disadvantage of grid universe is the destination must be declared
in the submit file when condor_submit is run, locking the job to that
remote site. The condor job router is a condor daemon which can
periodically scan the scheduler’s job queue, and change a vanilla universe
job intended to run on the local cluster into a grid job, destined for
a remote cluster. It can also be configured so that if this grid job is
idle for too long, it can undo the transformation, so that the job isn’t
stuck forever in a remote queue.

Further specification of a grid universe job is done within the
grid_resource
command in a submit description file.

 Connecting HTCondor Pools with Flocking

Connecting HTCondor Pools with Flocking

Flocking is HTCondor’s way of allowing jobs that cannot immediately run
within the pool of machines where the job was submitted to instead run
on a different HTCondor pool. If a machine within HTCondor pool A can
send jobs to be run on HTCondor pool B, then we say that jobs from
machine A flock to pool B. Flocking can occur in a one way manner, such
as jobs from machine A flocking to pool B, or it can be set up to flock
in both directions. Configuration variables allow the condor_schedd
daemon (which runs on each machine that may submit jobs) to implement
flocking.

NOTE: Flocking to pools which use HTCondor’s high availability
mechanisms is not advised. See
High Availability of the Central Manager
for a discussion of the issues.

Flocking Configuration

The simplest flocking configuration sets a few configuration variables.
If jobs from machine A are to flock to pool B, then in machine A’s
configuration, set the following configuration variables:

	FLOCK_TO
	is a comma separated list of the central manager machines of the
pools that jobs from machine A may flock to.

	FLOCK_COLLECTOR_HOSTS
	is the list of condor_collector daemons within the pools that
jobs from machine A may flock to. In most cases, it is the same as
FLOCK_TO, and it would be defined with

FLOCK_COLLECTOR_HOSTS = $(FLOCK_TO)

	FLOCK_NEGOTIATOR_HOSTS
	is the list of condor_negotiator daemons within the pools that
jobs from machine A may flock to. In most cases, it is the same as
FLOCK_TO, and it would be defined with

FLOCK_NEGOTIATOR_HOSTS = $(FLOCK_TO)

	ALLOW_NEGOTIATOR_SCHEDD
	provides an access level and authorization list for the
condor_schedd daemon to allow negotiation (for security reasons)
with the machines within the pools that jobs from machine A may
flock to. This configuration variable will not likely need to change
from its default value as given in the sample configuration:

Now, with flocking we need to let the SCHEDD trust the other
negotiators we are flocking with as well. You should normally
not have to change this either.
ALLOW_NEGOTIATOR_SCHEDD = $(CONDOR_HOST), $(FLOCK_NEGOTIATOR_HOSTS), $(IP_ADDRESS)

This example configuration presumes that the condor_collector and
condor_negotiator daemons are running on the same machine. See
the Authorization section for a discussion
of security macros and their use.

The configuration macros that must be set in pool B are ones that
authorize jobs from machine A to flock to pool B.

The configuration variables are more easily set by introducing a list of
machines where the jobs may flock from. FLOCK_FROM
 is a comma separated list of machines, and it
is used in the default configuration setting of the security macros that
do authorization:

ALLOW_WRITE_COLLECTOR = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_WRITE_STARTD = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_READ_COLLECTOR = $(ALLOW_READ), $(FLOCK_FROM)
ALLOW_READ_STARTD = $(ALLOW_READ), $(FLOCK_FROM)

Wild cards may be used when setting the FLOCK_FROM configuration
variable. For example, *.cs.wisc.edu specifies all hosts from the
cs.wisc.edu domain.

Further, if using Kerberos or SSL authentication, then the setting
becomes:

ALLOW_NEGOTIATOR = condor@$(UID_DOMAIN)/$(COLLECTOR_HOST)

To enable flocking in both directions, consider each direction
separately, following the guidelines given.

Job Considerations

A particular job will only flock to another pool when it cannot
currently run in the current pool.

The submission of jobs must consider
the location of input, output and error files. The common case will be
that machines within separate pools do not have a shared file system.
Therefore, when submitting jobs, the user will need to enable file
transfer mechanisms. These mechanisms are discussed in
the Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism section.

 The Grid Universe

The Grid Universe

HTCondor-C, The condor Grid Type

HTCondor-C allows jobs in one machine’s job queue to be moved to another
machine’s job queue. These machines may be far removed from each other,
providing powerful grid computation mechanisms, while requiring only
HTCondor software and its configuration.

HTCondor-C is highly resistant to network disconnections and machine
failures on both the submission and remote sides. An expected usage sets
up Personal HTCondor on a laptop, submits some jobs that are sent to an
HTCondor pool, waits until the jobs are staged on the pool, then turns
off the laptop. When the laptop reconnects at a later time, any results
can be pulled back.

HTCondor-C scales gracefully when compared with HTCondor’s flocking
mechanism. The machine upon which jobs are submitted maintains a single
process and network connection to a remote machine, without regard to
the number of jobs queued or running.

HTCondor-C Configuration

There are two aspects to configuration to enable the submission and
execution of HTCondor-C jobs. These two aspects correspond to the
endpoints of the communication: there is the machine from which jobs are
submitted, and there is the remote machine upon which the jobs are
placed in the queue (executed).

Configuration of a machine from which jobs are submitted requires a few
extra configuration variables:

CONDOR_GAHP = $(SBIN)/condor_c-gahp
C_GAHP_LOG = /tmp/CGAHPLog.$(USERNAME)
C_GAHP_WORKER_THREAD_LOG = /tmp/CGAHPWorkerLog.$(USERNAME)
C_GAHP_WORKER_THREAD_LOCK = /tmp/CGAHPWorkerLock.$(USERNAME)

The acronym GAHP stands for Grid ASCII Helper Protocol. A GAHP server
provides grid-related services for a variety of underlying middle-ware
systems. The configuration variable CONDOR_GAHP
 gives a full path to the GAHP server utilized
by HTCondor-C. The configuration variable C_GAHP_LOG
 defines the location of the log that the
HTCondor GAHP server writes. The log for the HTCondor GAHP is written as
the user on whose behalf it is running; thus the C_GAHP_LOG
 configuration variable must point to a
location the end user can write to.

A submit machine must also have a condor_collector daemon to which
the condor_schedd daemon can submit a query. The query is for the
location (IP address and port) of the intended remote machine’s
condor_schedd daemon. This facilitates communication between the two
machines. This condor_collector does not need to be the same
collector that the local condor_schedd daemon reports to.

The machine upon which jobs are executed must also be configured
correctly. This machine must be running a condor_schedd daemon.
Unless specified explicitly in a submit file, CONDOR_HOST must point
to a condor_collector daemon that it can write to, and the machine
upon which jobs are submitted can read from. This facilitates
communication between the two machines.

An important aspect of configuration is the security configuration
relating to authentication. HTCondor-C on the remote machine relies on
an authentication protocol to know the identity of the user under which
to run a job. The following is a working example of the security
configuration for authentication. This authentication method, CLAIMTOBE,
trusts the identity claimed by a host or IP address.

SEC_DEFAULT_NEGOTIATION = OPTIONAL
SEC_DEFAULT_AUTHENTICATION_METHODS = CLAIMTOBE

Other working authentication methods are SSL, KERBEROS, and FS.

HTCondor-C Job Submission

Job submission of HTCondor-C jobs is the same as for any HTCondor job.
The universe is grid. The submit command
grid_resource
specifies the remote condor_schedd daemon to which the job should be
submitted, and its value consists of three fields. The first field is
the grid type, which is condor. The second field is the name of the
remote condor_schedd daemon. Its value is the same as the
condor_schedd ClassAd attribute Name on the remote machine. The
third field is the name of the remote pool’s condor_collector.

The following represents a minimal submit description file for a job.

minimal submit description file for an HTCondor-C job
universe = grid
executable = myjob
output = myoutput
error = myerror
log = mylog

grid_resource = condor joe@remotemachine.example.com remotecentralmanager.example.com
+remote_jobuniverse = 5
+remote_requirements = True
+remote_ShouldTransferFiles = "YES"
+remote_WhenToTransferOutput = "ON_EXIT"
queue

The remote machine needs to understand the attributes of the job. These
are specified in the submit description file using the ‘+’ syntax,
followed by the string remote_. At a minimum, this will be the
job’s universe and the job’s requirements. It is likely that
other attributes specific to the job’s universe (on the remote pool)
will also be necessary. Note that attributes set with ‘+’ are inserted
directly into the job’s ClassAd. Specify attributes as they must appear
in the job’s ClassAd, not the submit description file. For example, the
universe is specified
using an integer assigned for a job ClassAd JobUniverse. Similarly,
place quotation marks around string expressions. As an example, a submit
description file would ordinarily contain

when_to_transfer_output = ON_EXIT

This must appear in the HTCondor-C job submit description file as

+remote_WhenToTransferOutput = "ON_EXIT"

For convenience, the specific entries of universe and
remote_grid_resource may be
specified as remote_ commands without the leading ‘+’. Instead of

+remote_universe = 5

the submit description file command may appear as

remote_universe = vanilla

Similarly, the command

+remote_gridresource = "condor schedd.example.com cm.example.com"

may be given as

remote_grid_resource = condor schedd.example.com cm.example.com

For the given example, the job is to be run as a vanilla
universe job at the remote pool. The (remote pool’s)
condor_schedd daemon is likely to place its job queue data on a local
disk and execute the job on another machine within the pool of machines.
This implies that the file systems for the resulting submit machine (the
machine specified by remote_schedd) and the execute machine (the
machine that runs the job) will not be shared. Thus, the two inserted
ClassAd attributes

+remote_ShouldTransferFiles = "YES"
+remote_WhenToTransferOutput = "ON_EXIT"

are used to invoke HTCondor’s file transfer mechanism.

For communication between condor_schedd daemons on the submit and
remote machines, the location of the remote condor_schedd daemon is
needed. This information resides in the condor_collector of the
remote machine’s pool. The third field of the
grid_resource
command in the submit description file says which condor_collector
should be queried for the remote condor_schedd daemon’s location. An
example of this submit command is

grid_resource = condor schedd.example.com machine1.example.com

If the remote condor_collector is not listening on the standard port
(9618), then the port it is listening on needs to be specified:

grid_resource = condor schedd.example.com machine1.example.com:12345

File transfer of a job’s executable, stdin, stdout, and
stderr are automatic. When other files need to be transferred using
HTCondor’s file transfer mechanism (see the
Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism section), the mechanism is applied
based on the resulting job universe on the remote machine.

HTCondor-C Jobs Between Differing Platforms

HTCondor-C jobs given to a remote machine running Windows must specify
the Windows domain of the remote machine. This is accomplished by
defining a ClassAd attribute for the job. Where the Windows domain is
different at the submit machine from the remote machine, the submit
description file defines the Windows domain of the remote machine with

+remote_NTDomain = "DomainAtRemoteMachine"

A Windows machine not part of a domain defines the Windows domain as the
machine name.

The arc Grid Type

NorduGrid is a project to develop free grid middleware named the
Advanced Resource Connector (ARC). See the NorduGrid web page
(http://www.nordugrid.org) for more
information about NorduGrid software.

NorduGrid ARC supports multiple job submission interfaces.
The arc grid type uses their new REST interface.

HTCondor jobs may be submitted to ARC CE resources using the grid
universe. The
grid_resource
command specifies the name of the ARC CE service as follows:

grid_resource = arc https://arc.example.com:443/arex/rest/1.0

Only the hostname portion of the URL is required.
Appropriate defaults will be used for the other components.

ARC accepts X.509 credentials and SciTokens for authentication.
You must specify one of these two credential types for your arc
grid jobs.
The submit description file command
x509userproxy may be
used to give the full path name of an X.509 proxy file.
The submit description file command
scitokens_file
may be used to give the full path name of a SciTokens file.
If both an X.509 proxy and a SciTokens file are provided, then only
the SciTokens file is used for authentication.
Whenever an X.509 proxy is provided, it is delegated to the ARC CE for
use by the job.

ARC CE allows sites to define Runtime Environment (RTE) labels that alter
the environment in which a job runs.
Jobs can request one or move of these labels.
For example, the ENV/PROXY label makes the user’s X.509 proxy
available to the job when it executes.
Some of these labels have optional parameters for customization.
The submit description file command
arc_rte
can be used to request one of more of these labels.
It is a comma-delimited list. If a label supports optional parameters, they
can be provided after the label separated by spaces.
Here is an example showing use of two standard RTE labels, one with
an optional parameter:

arc_rte = ENV/RTE,ENV/PROXY USE_DELEGATION_DB

ARC CE uses ADL (Activity Description Language) syntax to describe jobs.
The specification of the language can be found
here [https://www.nordugrid.org/documents/EMI-ES-Specification_v1.16.pdf].
HTCondor constructs an ADL description of the job based on attributes in
the job ClassAd, but some ADL elements don’t have an equivalent job ClassAd
attribute.
The submit description file command
arc_resources
can be used to specify these elements if they fall under the <Resources>
element of the ADL.
The value should be a chunk of XML text that could be inserted inside the
<Resources> element. For example:

arc_resources = <NetworkInfo>gigabitethernet</NetworkInfo>

Similarly, submit description file command
arc_application
can be used to specify these elements if they fall under the <Application>
element of the ADL.

The batch Grid Type (for SLURM, PBS, LSF, and SGE)

The batch grid type is used to submit to a local SLURM, PBS, LSF, or
SGE system using the grid universe and the
grid_resource
command by placing a variant of the following into the submit
description file.

grid_resource = batch slurm

The second argument on the right hand side will be one of slurm,
pbs, lsf, or sge.

Submission to a batch system on a remote machine using SSH is also
possible. This is described below.

The batch GAHP server is a piece of software called the blahp.
The configuration parameters BATCH_GAHP and BLAHPD_LOCATION
specify the locations of the main blahp binary and its dependent
files, respectively.
The blahp has its own configuration file, located at /etc/blah.config
($(RELEASE_DIR)/etc/blah.config for a tarball release).

The batch GAHP supports translating certain job ClassAd attributes into the corresponding batch system submission parameters. However, note that not all parameters are supported.

The following table summarizes how job ClassAd attributes will be translated into the corresponding Slurm job parameters.

	Job ClassAd

	Slurm

	RequestMemory

	--mem

	BatchRuntime

	--time

	BatchProject

	--account

	Queue

	--partition

	Queue

	--clusters

	Unsupported

	--cpus-per-task

Note that for Slurm, Queue is used for both --partition and --clusters. If you use the partition@cluster syntax, the partition will be set to whatever is before the @, and the cluster to whatever is after the @. If you only wish to set the cluster, leave out the partition (e.g. use @cluster).

You can specify batch system parameters that HTCondor doesn’t have
translations for using the batch_extra_submit_args command in the
submit description file.

batch_extra_submit_args = --cpus-per-task=4 --qos=fast

The condor_qsub command line tool will take PBS/SGE style batch files
or command line arguments and submit the job to HTCondor instead. See
the condor_qsub manual page for details.

Remote batch Job Submission via SSH

HTCondor can submit jobs to a batch system on a remote machine via SSH.
This requires an initial setup step that installs some binaries under
your home directory on the remote machine and creates an SSH key that
allows SSH authentication without the user typing a password.
The setup command is condor_remote_cluster, which you should run at
the command line.

condor_remote_cluster --add alice@login.example.edu slurm

Once this setup command finishes successfully, you can submit jobs for the
remote batch system by including the username and hostname in the
grid_resource command in your submit description file.

grid_resource = batch slurm alice@login.example.edu

Remote batch Job Submission via Reverse SSH

Submission to a batch system on a remote machine requires that HTCondor
be able to establish an SSH connection using just an ssh key for
authentication.
If the remote machine doesn’t allow ssh keys or requires Multi-Factor
Authentication (MFA), then the SSH connection can be established in the
reverse connection using the Reverse GAHP.
This requires some extra setup and maintenance, and is not recommended if
the normal SSH connection method can be made to work.

For the Reverse GAHP to work, your local machine must be reachable on
the network from the remote machine on the SSH and HTCondor ports
(22 and 9618, respectively).
Also, your local machine must allow SSH logins using just an ssh key
for authentication.

First, run the condor_remote_cluster as you would for a regular
remote SSH setup.

condor_remote_cluster --add alice@login.example.edu slurm

Second, create an ssh key that’s authorized to login to your account on
your local machine and save the private key on the remote machine.
The private key should not be protected with a passphrase.
In the following examples, we’ll assume the ssh private key is named
~/.ssh/id_rsa_rvgahp.

Third, select a pathname on your local machine for a unix socket file
that will be used by the Reverse GAHP components to communicate with
each other.
The Reverse GAHP programs will create the file as your user identity,
so we suggest using a location under your home directory or /tmp.
In the following examples, we’ll use /tmp/alice.rvgahp.socket.

Fourth, on the remote machine, create a ~/bosco/glite/bin/rvgahp_ssh
shell script like this:

#!/bin/bash
exec ssh -o "ServerAliveInterval 60" -o "BatchMode yes" -i ~/.ssh/id_rsa_rvgahp alice@submithost "/usr/sbin/rvgahp_proxy /tmp/alice.rvgahp.sock"

Run this script manually to ensure it works.
It should print a couple messages from the rvgahp_proxy started on your
local machine.
You can kill the program once it’s working correctly.

2022-03-23 13:06:08.304520 rvgahp_proxy[8169]: rvgahp_proxy starting...
2022-03-23 13:06:08.304766 rvgahp_proxy[8169]: UNIX socket: /tmp/alice.rvgahp.sock

Finally, run the rvgahp_server program on the remote machine.
You must ensure it remains running during the entire time you are
submitting and running jobs on the batch system.

~/bosco/glite/bin/rvgahp_server -b ~/bosco/glite

Now, you can submit jobs for the remote batch system.
Adding the –rvgahp-socket option to your grid_resource submit
command tells HTCondor to use the Reverse GAHP for the SSH connection.

grid_resource = batch slurm alice@login.example.edu --rvgahp-socket /tmp/alice.rvgahp.sock

The EC2 Grid Type

HTCondor jobs may be submitted to clouds supporting Amazon’s Elastic
Compute Cloud (EC2) interface. The EC2 interface permits on-line
commercial services that provide the rental of computers by the hour to
run computational applications. They run virtual machine images that
have been uploaded to Amazon’s online storage service (S3 or EBS). More
information about Amazon’s EC2 service is available at
http://aws.amazon.com/ec2.

The ec2 grid type uses the EC2 Query API, also called the EC2 REST
API.

EC2 Job Submission

HTCondor jobs are submitted to an EC2 service with the grid
universe, setting the
grid_resource
command to ec2, followed by the service’s URL. For example, partial
contents of the submit description file may be

grid_resource = ec2 https://ec2.us-east-1.amazonaws.com/

(Replace ‘us-east-1’ with the AWS region you’d like to use.)

Since the job is a virtual machine image, most of the submit description
file commands specifying input or output files are not applicable. The
executable command is
still required, but its value is ignored. It can be used to identify
different jobs in the output of condor_q.

The VM image for the job must already reside in one of Amazon’s storage
service (S3 or EBS) and be registered with EC2. In the submit
description file, provide the identifier for the image using
ec2_ami_id .

This grid type requires access to user authentication information, in
the form of path names to files containing the appropriate keys, with
one exception, described below.

The ec2 grid type has two different authentication methods. The
first authentication method uses the EC2 API’s built-in authentication.
Specify the service with expected http:// or https:// URL, and
set the EC2 access key and secret access key as follows:

ec2_access_key_id = /path/to/access.key
ec2_secret_access_key = /path/to/secret.key

The euca3:// and euca3s:// protocols must use this
authentication method. These protocols exist to work correctly when the
resources do not support the InstanceInitiatedShutdownBehavior
parameter.

The second authentication method for the EC2 grid type is X.509. Specify
the service with an x509:// URL, even if the URL was given in
another form. Use
ec2_access_key_id
to specify the path to the X.509 public key (certificate), which is not
the same as the built-in authentication’s access key.
ec2_secret_access_key
specifies the path to the X.509 private key, which is not the same as
the built-in authentication’s secret key. The following example
illustrates the specification for X.509 authentication:

grid_resource = ec2 x509://service.example
ec2_access_key_id = /path/to/x.509/public.key
ec2_secret_access_key = /path/to/x.509/private.key

If using an X.509 proxy, specify the proxy in both places.

The exception to both of these cases applies when submitting EC2 jobs to
an HTCondor running in an EC2 instance. If that instance has been
configured with sufficient privileges, you may specify FROM INSTANCE
for either ec2_access_key_id or ec2_secret_access_key, and
HTCondor will use the instance’s credentials. (AWS grants an EC2
instance access to temporary credentials, renewed over the instance’s
lifetime, based on the instance’s assigned IAM (instance) profile and
the corresponding IAM role. You may specify the this information when
launching an instance or later, during its lifetime.)

HTCondor can use the EC2 API to create an SSH key pair that allows
secure log in to the virtual machine once it is running. If the command
ec2_keypair_file
is set in the submit description file, HTCondor will write an SSH
private key into the indicated file. The key can be used to log into the
virtual machine. Note that modification will also be needed of the
firewall rules for the job to incoming SSH connections.

An EC2 service uses a firewall to restrict network access to the virtual
machine instances it runs. Typically, no incoming connections are
allowed. One can define sets of firewall rules and give them names. The
EC2 API calls these security groups. If utilized, tell HTCondor what set
of security groups should be applied to each VM using the
ec2_security_groups
submit description file command. If not provided, HTCondor uses the
security group default. This command specifies security group names;
to specify IDs, use
ec2_security_ids .
This may be necessary when specifying a Virtual Private Cloud (VPC)
instance.

To run an instance in a VPC, set
ec2_vpc_subnet to
the the desired VPC’s specification string. The instance’s IP address
may also be specified by setting
ec2_vpc_id .

The EC2 API allows the choice of different hardware configurations for
instances to run on. Select which configuration to use for the ec2
grid type with the
ec2_instance_type
submit description file command. HTCondor provides no default.

Certain instance types provide additional block devices whose names must
be mapped to kernel device names in order to be used. The
ec2_block_device_mapping
submit description file command allows specification of these maps. A
map is a device name followed by a colon, followed by kernel name; maps
are separated by a commas, and/or spaces. For example, to specify that
the first ephemeral device should be /dev/sdb and the second
/dev/sdc:

ec2_block_device_mapping = ephemeral0:/dev/sdb, ephemeral1:/dev/sdc

Each virtual machine instance can be given up to 16 KiB of unique data,
accessible by the instance by connecting to a well-known address. This
makes it easy for many instances to share the same VM image, but perform
different work. This data can be specified to HTCondor in one of two
ways. First, the data can be provided directly in the submit description
file using the
ec2_user_data
command. Second, the data can be stored in a file, and the file name is
specified with the
ec2_user_data_file
submit description file command. This second option allows the use of
binary data. If both options are used, the two blocks of data are
concatenated, with the data from ec2_user_data occurring first.
HTCondor performs the base64 encoding that EC2 expects on the data.

Amazon also offers an Identity and Access Management (IAM) service. To
specify an IAM (instance) profile for an EC2 job, use submit commands
ec2_iam_profile_name
or
ec2_iam_profile_arn .

Termination of EC2 Jobs

A protocol defines the shutdown procedure for jobs running as EC2
instances. The service is told to shut down the instance, and the
service acknowledges. The service then advances the instance to a state
in which the termination is imminent, but the job is given time to shut
down gracefully.

Once this state is reached, some services other than Amazon cannot be
relied upon to actually terminate the job. Thus, HTCondor must check
that the instance has terminated before removing the job from the queue.
This avoids the possibility of HTCondor losing track of a job while it
is still accumulating charges on the service.

HTCondor checks after a fixed time interval that the job actually has
terminated. If the job has not terminated after a total of four checks,
the job is placed on hold.

Using Spot Instances

EC2 jobs may also be submitted to clouds that support spot instances. A
spot instance differs from a conventional, or dedicated, instance in two
primary ways. First, the instance price varies according to demand.
Second, the cloud provider may terminate the instance prematurely. To
start a spot instance, the submitter specifies a bid, which represents
the most the submitter is willing to pay per hour to run the VM.
 Within HTCondor, the
submit command
ec2_spot_price
specifies this floating point value. For example, to bid 1.1 cents per
hour on Amazon:

ec2_spot_price = 0.011

Note that the EC2 API does not specify how the cloud provider should
interpret the bid. Empirically, Amazon uses fractional US dollars.

Other submission details for a spot instance are identical to those for
a dedicated instance.

A spot instance will not necessarily begin immediately. Instead, it will
begin as soon as the price drops below the bid. Thus, spot instance jobs
may remain in the idle state for much longer than dedicated instance
jobs, as they wait for the price to drop. Furthermore, if the price
rises above the bid, the cloud service will terminate the instance.

More information about Amazon’s spot instances is available at
http://aws.amazon.com/ec2/spot-instances/.

EC2 Advanced Usage

Additional control of EC2 instances is available in the form of
permitting the direct specification of instance creation parameters. To
set an instance creation parameter, first list its name in the submit
command
ec2_parameter_names ,
a space or comma separated list. The parameter may need to be properly
capitalized. Also tell HTCondor the parameter’s value, by specifying it
as a submit command whose name begins with ec2_parameter_; dots
within the parameter name must be written as underscores in the submit
command name.

For example, the submit description file commands to set parameter
IamInstanceProfile.Name to value ExampleProfile are

ec2_parameter_names = IamInstanceProfile.Name
ec2_parameter_IamInstanceProfile_Name = ExampleProfile

EC2 Configuration Variables

The configuration variables EC2_GAHP and EC2_GAHP_LOG must be
set, and by default are equal to $(SBIN)/ec2_gahp and
/tmp/EC2GahpLog.$(USERNAME), respectively.

The configuration variable EC2_GAHP_DEBUG is optional and defaults
to D_PID; we recommend you keep D_PID if you change the default, to
disambiguate between the logs of different resources specified by the
same user.

Communicating with an EC2 Service

The ec2 grid type does not presently permit the explicit use of an
HTTP proxy.

By default, HTCondor assumes that EC2 services are reliably available.
If an attempt to contact a service during the normal course of operation
fails, HTCondor makes a special attempt to contact the service. If this
attempt fails, the service is marked as down, and normal operation for
that service is suspended until a subsequent special attempt succeeds.
The jobs using that service do not go on hold. To place jobs on hold
when their service becomes unavailable, set configuration variable
EC2_RESOURCE_TIMEOUT to the
number of seconds to delay before placing the job on hold. The default
value of -1 for this variable implements an infinite delay, such that
the job is never placed on hold. When setting this value, consider the
value of configuration variable GRIDMANAGER_RESOURCE_PROBE_INTERVAL
 , which sets the
number of seconds that HTCondor will wait after each special contact
attempt before trying again.

By default, the EC2 GAHP enforces a 100 millisecond interval between
requests to the same service. This helps ensure reliable service. You
may configure this interval with the configuration variable
EC2_GAHP_RATE_LIMIT, which must be an integer number of
milliseconds. Adjusting the interval may result in higher or lower
throughput, depending on the service. Too short of an interval may
trigger rate-limiting by the service; while HTCondor will react
appropriately (by retrying with an exponential back-off), it may be more
efficient to configure a longer interval.

Secure Communication with an EC2 Service

The specification of a service with an https://, an x509://, or
an euca3s:// URL validates that service’s certificate, checking that
a trusted certificate authority (CA) signed it. Commercial EC2 service
providers generally use certificates signed by widely-recognized CAs.
These CAs will usually work without any additional configuration. For
other providers, a specification of trusted CAs may be needed. Without,
errors such as the following will be in the EC2 GAHP log:

06/13/13 15:16:16 curl_easy_perform() failed (60):
'Peer certificate cannot be authenticated with given CA certificates'.

Specify trusted CAs by including their certificates in a group of
trusted CAs either in an on disk directory or in a single file. Either
of these alternatives may contain multiple certificates. Which is used
will vary from system to system, depending on the system’s SSL
implementation. HTCondor uses libcurl; information about the libcurl
specification of trusted CAs is available at

http://curl.haxx.se/libcurl/c/curl_easy_setopt.html

The behavior when specifying both a directory and a file is undefined,
although the EC2 GAHP allows it.

The EC2 GAHP will set the CA file to whichever variable it finds first,
checking these in the following order:

	The environment variable X509_CERT_FILE, set when the
condor_master starts up.

	The HTCondor configuration variable GAHP_SSL_CAFILE
 .

The EC2 GAHP supplies no default value, if it does not find a CA file.

The EC2 GAHP will set the CA directory given whichever of these
variables it finds first, checking in the following order:

	The environment variable X509_CERT_DIR, set when the
condor_master starts up.

	The HTCondor configuration variable GAHP_SSL_CADIR
 .

The EC2 GAHP supplies no default value, if it does not find a CA
directory.

EC2 GAHP Statistics

The EC2 GAHP tracks, and reports in the corresponding grid resource ad,
statistics related to resource’s rate limit.

	NumRequests:
	The total number of requests made by HTCondor to this resource.

	NumDistinctRequests:
	The number of distinct requests made by HTCondor to this resource.
The difference between this and NumRequests is the total number of
retries. Retries are not unusual.

	NumRequestsExceedingLimit:
	The number of requests which exceeded the service’s rate limit. Each
such request will cause a retry, unless the maximum number of
retries is exceeded, or if the retries have already taken so long
that the signature on the original request has expired.

	NumExpiredSignatures:
	The number of requests which the EC2 GAHP did not even attempt to
send to the service because signature expired. Signatures should
not, generally, expire; a request’s retries will usually -
eventually - succeed.

The GCE Grid Type

HTCondor jobs may be submitted to the Google Compute Engine (GCE) cloud
service. GCE is an on-line commercial service that provides the rental
of computers by the hour to run computational applications. Its runs
virtual machine images that have been uploaded to Google’s servers. More
information about Google Compute Engine is available at
http://cloud.google.com/Compute.

GCE Job Submission

HTCondor jobs are submitted to the GCE service with the grid
universe, setting the
grid_resource
command to gce, followed by the service’s URL, your GCE project, and
the desired GCE zone to be used. The submit description file command
will be similar to:

grid_resource = gce https://www.googleapis.com/compute/v1 my_proj us-central1-a

Since the HTCondor job is a virtual machine image, most of the submit
description file commands specifying input or output files are not
applicable. The
executable command is
still required, but its value is ignored. It identifies different jobs
in the output of condor_q.

The VM image for the job must already reside in Google’s Cloud Storage
service and be registered with GCE. In the submit description file,
provide the identifier for the image using the
gce_image command.

This grid type requires granting HTCondor permission to use your Google
account. The easiest way to do this is to use the gcloud command-line
tool distributed by Google. Find gcloud and documentation for it at
https://cloud.google.com/compute/docs/gcloud-compute/.
After installation of gcloud, run gcloud auth login and follow its
directions. Once done with that step, the tool will write authorization
credentials to the file .config/gcloud/credentials under your HOME
directory.

Given an authorization file, specify its location in the submit
description file using the
gce_auth_file
command, as in the example:

gce_auth_file = /path/to/auth-file

GCE allows the choice of different hardware configurations for instances
to run on. Select which configuration to use for the gce grid type
with the
gce_machine_type
submit description file command. HTCondor provides no default.

Each virtual machine instance can be given a unique set of metadata,
which consists of name/value pairs, similar to the environment variables
of regular jobs. The instance can query its metadata via a well-known
address. This makes it easy for many instances to share the same VM
image, but perform different work. This data can be specified to
HTCondor in one of two ways. First, the data can be provided directly in
the submit description file using the
gce_metadata
command. The value should be a comma-separated list of name=value
settings, as the example:

gce_metadata = setting1=foo,setting2=bar

Second, the data can be stored in a file, and the file name is specified
with the
gce_metadata_file
submit description file command. This second option allows a wider range
of characters to be used in the metadata values. Each name=value pair
should be on its own line. No white space is removed from the lines,
except for the newline that separates entries.

Both options can be used at the same time, but do not use the same
metadata name in both places.

HTCondor sets the following elements when describing the instance to the
GCE server: machineType, name, scheduling, disks,
metadata, and networkInterfaces. You can provide additional
elements to be included in the instance description as a block of JSON.
Write the additional elements to a file, and specify the filename in
your submit file with the
gce_json_file
command. The contents of the file are inserted into HTCondor’s JSON
description of the instance, between a comma and the closing brace.

Here’s a sample JSON file that sets two additional elements:

"canIpForward": True,
"description": "My first instance"

GCE Configuration Variables

The following configuration parameters are specific to the gce grid
type. The values listed here are the defaults. Different values may be
specified in the HTCondor configuration files. To work around an issue where
long-running gce_gahp processes have trouble authenticating, the gce_gahp
self-restarts periodically, with the default value of 24 hours. You can set
the number of seconds between restarts using GCE_GAHP_LIFETIME, where zero
means to never restart. Restarting the gce_gahp does not affect the jobs
themselves.

GCE_GAHP = $(SBIN)/gce_gahp
GCE_GAHP_LOG = /tmp/GceGahpLog.$(USERNAME)
GCE_GAHP_LIFETIME = 86400

The Azure Grid Type

HTCondor jobs may be submitted to the Microsoft Azure cloud service.
Azure is an on-line commercial service that provides the rental of
computers by the hour to run computational applications. It runs virtual
machine images that have been uploaded to Azure’s servers. More
information about Azure is available at
https://azure.microsoft.com.

Azure Job Submission

HTCondor jobs are submitted to the Azure service with the grid
universe, setting the
grid_resource
command to azure, followed by your Azure subscription id. The submit
description file command will be similar to:

grid_resource = azure 4843bfe3-1ebe-423e-a6ea-c777e57700a9

Since the HTCondor job is a virtual machine image, most of the submit
description file commands specifying input or output files are not
applicable. The
executable command is
still required, but its value is ignored. It identifies different jobs
in the output of condor_q.

The VM image for the job must already be registered a virtual machine
image in Azure. In the submit description file, provide the identifier
for the image using the
azure_image command.

This grid type requires granting HTCondor permission to use your Azure
account. The easiest way to do this is to use the az command-line tool
distributed by Microsoft. Find az and documentation for it at
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest.
After installation of az, run az login and follow its directions.
Once done with that step, the tool will write authorization credentials
in a file under your HOME directory. HTCondor will use these credentials
to communicate with Azure.

You can also set up a service account in Azure for HTCondor to use. This
lets you limit the level of access HTCondor has to your Azure account.
Instructions for creating a service account can be found here:
https://htcondor.org/gahp/AzureGAHPSetup.docx.

Once you have created a file containing the service account credentials,
you can specify its location in the submit description file using the
azure_auth_file
command, as in the example:

azure_auth_file = /path/to/auth-file

Azure allows the choice of different hardware configurations for
instances to run on. Select which configuration to use for the azure
grid type with the
azure_size submit
description file command. HTCondor provides no default.

Azure has many locations where instances can be run (i.e. multiple data
centers distributed throughout the world). You can select which location
to use with the
azure_location
submit description file command.

Azure creates an administrator account within each instance, which you
can log into remote via SSH. You can select the name of the account with
the
azure_admin_username
command. You can supply the name of a file containing an SSH public key
that will allow access to the administrator account with the
azure_admin_key
command.

 The HTCondor Job Router

The HTCondor Job Router

The HTCondor Job Router is an add-on to the condor_schedd that
transforms jobs from one type into another according to a configurable
policy. This process of transforming the jobs is called job routing.

One example of how the Job Router can be used is for the task of sending
excess jobs to one or more remote grid sites. The Job Router can
transform the jobs such as vanilla universe jobs into grid universe jobs
that use any of the grid types supported by HTCondor. The rate at which
jobs are routed can be matched roughly to the rate at which the site is
able to start running them. This makes it possible to balance a large
work flow across multiple grid sites, a local HTCondor pool, and any
flocked HTCondor pools, without having to guess in advance how quickly
jobs will run and complete in each of the different sites.

Job Routing is most appropriate for high throughput work flows, where
there are many more jobs than computers, and the goal is to keep as many
of the computers busy as possible. Job Routing is less suitable when
there are a small number of jobs, and the scheduler needs to choose the
best place for each job, in order to finish them as quickly as possible.
The Job Router does not know which site will run the jobs faster, but it
can decide whether to send more jobs to a site, based on whether jobs
already submitted to that site are sitting idle or not, as well as
whether the site has experienced recent job failures.

Routing Mechanism

The condor_job_router daemon and configuration determine a policy
for which jobs may be transformed and sent to grid sites. By default, a
job is transformed into a grid universe job by making a copy of the
original job ClassAd, and modifying some attributes in this copy of the
job. The copy is called the routed copy, and it shows up in the job
queue under a new job id.

Until the routed copy finishes or is removed, the original copy of the
job passively mirrors the state of the routed job. During this time, the
original job is not available for matchmaking, because it is tied to the
routed copy. The original job also does not evaluate periodic
expressions, such as PeriodicHold. Periodic expressions are
evaluated for the routed copy. When the routed copy completes, the
original job ClassAd is updated such that it reflects the final status
of the job. If the routed copy is removed, the original job returns to
the normal idle state, and is available for matchmaking or rerouting.
If, instead, the original job is removed or goes on hold, the routed
copy is removed.

Although the default mode routes vanilla universe jobs to grid universe
jobs, the routing rules may be configured to do some other
transformation of the job. It is also possible to edit the job in place
rather than creating a new transformed version of the job.

The condor_job_router daemon utilizes a routing table, in which a
ClassAd transform describes each site to where jobs may be sent.

There is also a list of pre-route and post-route transforms that are
applied whenever a job is routed.

The routing table is given as a set of configuration macros. Each configuration macro
is given in the job transform language. This is the same transform language used by the
condor_schedd for job transforms. This language is similar to the
condor_submit language, but has commands to describe the
transform steps and optional macro values such as MaxJobs that can control the way
the route is used.

When a route matches a job, and the condor_job_router is about to apply
the routing transform, it will first apply all of the pre-route transforms
that match that job, then it will apply the routing transform, then it will
apply all of the post-route transforms that match the job.

In older versions the routing table was given as a list of ClassAds,
and for backwards compatibility this form of configuration is still
supported - It will be converted automatically into a set of job transforms.

Job Submission with Job Routing Capability

If Job Routing is set up, then the following items ought to be
considered for jobs to have the necessary prerequisites to be considered
for routing.

	Jobs appropriate for routing to the grid must not rely on access to a
shared file system, or other services that are only available on the
local pool. The job will use HTCondor’s file transfer mechanism,
rather than relying on a shared file system to access input files and
write output files. In the submit description file, to enable file
transfer, there will be a set of commands similar to

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = input1, input2
transfer_output_files = output1, output2

Vanilla universe jobs and most types of grid universe jobs differ in
the set of files transferred back when the job completes. Vanilla
universe jobs transfer back all files created or modified, while all
grid universe jobs, except for HTCondor-C, only transfer back the
output file, as well as
those explicitly listed with
transfer_output_files .
Therefore, when routing jobs to grid universes other than HTCondor-C,
it is important to explicitly specify all output files that must be
transferred upon job completion.

	One configuration for routed jobs requires the jobs to identify
themselves as candidates for Job Routing. This may be accomplished by
inventing a ClassAd attribute that the configuration utilizes in
setting the policy for job identification, and the job defines this
attribute to identify itself. If the invented attribute is called
WantJobRouter, then the job identifies itself as a job that may
be routed by placing in the submit description file:

+WantJobRouter = True

This implementation can be taken further, allowing the job to first
be rejected within the local pool, before being a candidate for Job
Routing:

+WantJobRouter = LastRejMatchTime =!= UNDEFINED

	As appropriate to the potential grid site, create a grid proxy, and
specify it in the submit description file:

x509userproxy = /tmp/x509up_u275

This is not necessary if the condor_job_router daemon is
configured to add a grid proxy on behalf of jobs.

Job submission does not change for jobs that may be routed.

$ condor_submit job1.sub

where job1.sub might contain:

universe = vanilla
executable = my_executable
output = job1.stdout
error = job1.stderr
log = job1.ulog
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
+WantJobRouter = LastRejMatchTime =!= UNDEFINED
x509userproxy = /tmp/x509up_u275
queue

The status of the job may be observed as with any other HTCondor job,
for example by looking in the job’s log file. Before the job completes,
condor_q shows the job’s status. Should the job become routed, a
second job will enter the job queue. This is the routed copy of the
original job. The command condor_router_q shows a more specialized
view of routed jobs, as this example shows:

$ condor_router_q -S
 JOBS ST Route GridResource
 40 I Site1 site1.edu/jobmanager-condor
 10 I Site2 site2.edu/jobmanager-pbs
 2 R Site3 condor submit.site3.edu condor.site3.edu

condor_router_history summarizes the history of routed jobs, as this
example shows:

$ condor_router_history
Routed job history from 2007-06-27 23:38 to 2007-06-28 23:38

Site Hours Jobs Runs
 Completed Aborted

Site1 10 2 0
Site2 8 2 1
Site3 40 6 0

TOTAL 58 10 1

An Example Configuration

The following sample configuration sets up potential job routing to
three routes (grid sites). Definitions of the configuration variables
specific to the Job Router are in the
condor_job_router Configuration File Entries section. One route a local SLURM cluster.
A second route is cluster accessed via ARC CE. The third
site is an HTCondor site accessed by HTCondor-C. The condor_job_router daemon
does not know which site will be best for a given job. The policy implemented in
this sample configuration stops sending more jobs to a site, if ten jobs
that have already been sent to that site are idle.

These configuration settings belong in the local configuration file of
the machine where jobs are submitted. Check that the machine can
successfully submit grid jobs before setting up and using the Job
Router. Typically, the single required element that needs to be added
for SSL authentication is an X.509 trusted certification authority
directory, in a place recognized by HTCondor (for example,
/etc/grid-security/certificates).

Note that, as of version 8.5.6, the configuration language supports
multi-line values, as shown in the example below (see the
Multi-Line Values section
for more details).

The list of enabled routes is specified by JOB_ROUTER_ROUTE_NAMES, routes
will be considered in the order given by this configuration variable.

define a global constraint, only jobs that match this will be considered for routing
JOB_ROUTER_SOURCE_JOB_CONSTRAINT = WantJobRouter

define a default maximum number of jobs that will be matched to each route
and a limit on the number of idle jobs a route may have before we stop using it.
JOB_ROUTER_DEFAULT_MAX_JOBS_PER_ROUTE = 200
JOB_ROUTER_DEFAULT_MAX_IDLE_JOBS_PER_ROUTE = 10

This could be made an attribute of the job, rather than being hard-coded
ROUTED_JOB_MAX_TIME = 1440

Now we define each of the routes to send jobs to
JOB_ROUTER_ROUTE_NAMES = Site1 Site2 CondorSite

JOB_ROUTER_ROUTE_Site1 @=rt
 GridResource = "batch slurm"
@rt

JOB_ROUTER_ROUTE_Site2 @=rt
 GridResource = "arc site2.edu"
 SET ArcRte = "ENV/PROXY"
@rt

JOB_ROUTER_ROUTE_CondorSite @=rt
 MaxIdleJobs = 20
 GridResource = "condor submit.site3.edu cm.site3.edu"
 SET remote_jobuniverse = 5
@rt

define a pre-route transform that does the transforms all routes should do
JOB_ROUTER_PRE_ROUTE_TRANSFORM_NAMES = Defaults

JOB_ROUTER_TRANSFORM_Defaults @=jrd
 # remove routed job if it goes on hold or stays idle for over 6 hours
 SET PeriodicRemove = JobStatus == 5 || \
 (JobStatus == 1 && (time() - QDate) > 3600*6))
 # delete the global SOURCE_JOB_CONSTRAINT attribute so that routed jobs will not be routed again
 DELETE WantJobRouter
 SET Requirements = true
@jrd

Reminder: you must restart HTCondor for changes to DAEMON_LIST to take effect.
DAEMON_LIST = $(DAEMON_LIST) JOB_ROUTER

For testing, set this to a small value to speed things up.
Once you are running at large scale, set it to a higher value
to prevent the JobRouter from using too much cpu.
JOB_ROUTER_POLLING_PERIOD = 10

#It is good to save lots of schedd queue history
#for use with the router_history command.
MAX_HISTORY_ROTATIONS = 20

Routing Table Entry Commands and Macro values

A route consists of a sequence of Macro values and commands which are applied
in order to produce the routed job ClassAd. Certain macro names have special meaning
when used in a router transform. These special macro names are listed below
along a brief listing of the the transform commands. For a more detailed description
of the transform commands refer to the Transform Commands section.

The conversion of a job to a routed copy will usually require the job ClassAd to
be modified. The Routing Table specifies attributes of the different
possible routes and it may specify specific modifications that should be
made to the job when it is sent along a specific route. In addition to
this mechanism for transforming the job, external programs may be
invoked to transform the job. For more information, see
the Hooks for the Job Router section.

The following attributes and instructions for modifying job attributes
may appear in a Routing Table entry.

	GridResource = <string>
	Specifies the value for the GridResource attribute that will be
inserted into the routed copy of the job’s ClassAd.

	Requirements = <expr>
	A Requirements expression that identifies jobs that may be
matched to the route. If there is a JOB_ROUTER_SOURCE_JOB_CONSTRAINT
then only jobs that match that constraint and this Requirements expression
can match this route.

	MaxJobs = <integer>
	An integer maximum number of jobs permitted on the route at one
time. The default is 100.

	MaxIdleJobs = <integer>
	An integer maximum number of routed jobs in the idle state. At or
above this value, no more jobs will be sent to this site. This is
intended to prevent too many jobs from being sent to sites which are
too busy to run them. If the value set for this attribute is too
small, the rate of job submission to the site will slow, because the
condor_job_router daemon will submit jobs up to this limit, wait
to see some of the jobs enter the running state, and then submit
more. The disadvantage of setting this attribute’s value too high is
that a lot of jobs may be sent to a site, only to site idle for
hours or days. The default value is 50.

	FailureRateThreshold = <float>
	A maximum tolerated rate of job failures. Failure is determined by
the expression sets for the attribute JobFailureTest expression.
The default threshold is 0.03 jobs/second. If the threshold is
exceeded, submission of new jobs is throttled until jobs begin
succeeding, such that the failure rate is less than the threshold.
This attribute implements black hole throttling, such that a site at
which jobs are sent only to fail (a black hole) receives fewer jobs.

	JobFailureTest = <boolean expr>
	An expression evaluated for each job that finishes, to determine
whether it was a failure. The default value if no expression is
defined assumes all jobs are successful. Routed jobs that are
removed are considered to be failures. An example expression to
treat all jobs running for less than 30 minutes as failures is
target.RemoteWallClockTime < 1800. A more flexible expression
might reference a property or expression of the job that specifies a
failure condition specific to the type of job.

	SendIDTokens = <string expr>
	A string expression that lists the names of the IDTOKENS to add to the
input file transfer list of the routed job. The string should list one or
more of the IDTOKEN names specified by the JOB_ROUTER_CREATE_IDTOKEN_NAMES
configuration variable.
if SendIDTokens is not specified, then the value of the JobRouter
configuration variable JOB_ROUTER_SEND_ROUTE_IDTOKENS will be used.

	UseSharedX509UserProxy = <boolean epr>
	A boolean expression that when True causes the value of
SharedX509UserProxy to be the X.509 user proxy for the routed
job. Note that if the condor_job_router daemon is running as
root, the copy of this file that is given to the job will have its
ownership set to that of the user running the job. This requires the
trust of the user. It is therefore recommended to avoid this
mechanism when possible. Instead, require users to submit jobs with
X509UserProxy set in the submit description file. If this
feature is needed, use the boolean expression to only allow specific
values of target.Owner to use this shared proxy file. The shared
proxy file should be owned by the condor user. Currently, to use a
shared proxy, the job must also turn on sandboxing by having the
attribute JobShouldBeSandboxed.

	SharedX509UserProxy = <string>
	A string representing file containing the X.509 user proxy for the
routed job.

	JobShouldBeSandboxed = <boolean expr>
	A boolean expression that when True causes the created copy of
the job to be sandboxed. A copy of the input files will be placed in
the condor_schedd daemon’s spool area for the target job, and
when the job runs, the output will be staged back into the spool
area. Once all of the output has been successfully staged back, it
will be copied again, this time from the spool area of the sandboxed
job back to the original job’s output locations. By default,
sandboxing is turned off. Only to turn it on if using a shared X.509
user proxy or if direct staging of remote output files back to the
final output locations is not desired.

	EditJobInPlace = <boolean expr>
	A boolean expression that, when True, causes the original job to
be transformed in place rather than creating a new transformed
version (a routed copy) of the job. In this mode, the Job Router
Hook <Keyword>_HOOK_TRANSLATE_JOB
 and transformation rules
in the routing table are applied during the job transformation. The
routing table attribute GridResource is ignored, and there is no
default transformation of the job from a vanilla job to a grid
universe job as there is otherwise. Once transformed, the job is
still a candidate for matching routing rules, so it is up to the
routing logic to control whether the job may be transformed multiple
times or not. For example, to transform the job only once, an
attribute could be set in the job ClassAd to prevent it from
matching the same routing rule in the future. To transform the job
multiple times with limited frequency, a timestamp could be inserted
into the job ClassAd marking the time of the last transformation,
and the routing entry could require that this timestamp either be
undefined or older than some limit.

	UNIVERSE <value>
	A universe name or integer value specifying the desired universe for the routed copy
of the job. The default value is 9, which is the grid universe.

	SET <attr> <expr>
	Sets the value of <attr> in the routed copy’s job ClassAd to the
specified value. An example of an attribute that might be set is
PeriodicRemove. For example, if the routed job goes on hold or
stays idle for too long, remove it and return the original copy of
the job to a normal state.

	DEFAULT <attr> <expr>
	Sets the value of <attr> if the value is currently missing or undefined.
This is equivalent to

if ! defined MY.<Attr>
 SET <Attr> <value>
endif

	EVALSET <attr> <expr>
	Defines an expression. The expression is evaluated, and the
resulting value sets the value of the routed copy’s job ClassAd
attribute <attr>. Use this when the attribute must not be an expression
or when information available only to the condor_job_router is needed to
determine the value.

	EVALMACRO <var> <expr>
	Defines an expression. The expression is evaluated, and the
resulting value is store in the temporary variable <var>.
$(var) can the be used in later statements in this route or
in a later transform that is part of this route. This is often use to
evaluate complex expressions that can later be used in if statements in the route.

	COPY <attr> <newattr>
	Copies the value of <attr> from the original attribute name to a new attribute
name in the routed copy. Useful to save the value of an expression that you intend
to change as part of the route so that the value prior to routing is still visible in the job ClassAd.

	COPY /<regex>/ <attrpat>
	Copies all attributes that match the regular expression <regex> to new attribute names.

	RENAME <attr> <newattr>
	Renames the attribute <attr> to a new attribute name. This is the equivalent of
a COPY statement followed by a DELETE statement.

	RENAME /<regex>/ <attrpat>
	Renames all attributes that match the regular expression <regex> to new attribute names.

	DELETE <attr>
	Deletes <attr> from the routed copy of the job ClassAd.

	DELETE /<regex>/
	Deletes all attributes that match the regular expression <regex> from the routed copy of the job.

Deprecated router configuration

Warning

The deprecated job router configuration macro JOB_ROUTER_DEFAULTS will
be removed during the lifetime of the HTCondor V23 feature series in
preparation of HTCondor V24.

Prior to version 8.9.7 the condor_job_router used a list of ClassAds
to configure the routes. This form of configuration is still supported.
It will be converted at load time to the new syntax.

A good place to learn about the syntax of ClassAds is the Informal
Language Description in the C++ ClassAds tutorial:
http://htcondor.org/classad/c++tut.html.
Two essential differences distinguish the ClassAd syntax used by the
condor_job_router from the syntax used in most other areas of HTCondor.
In the router configuration, each ClassAd is surrounded by
square brackets. And each assignment statement ends with a semicolon. Newlines
are ignored by the parser. Thus When the ClassAd is embedded in an
HTCondor configuration file, it may appear all on a single line, but the
readability is often improved by inserting line continuation characters
after each assignment statement. This is done in the examples.
Unfortunately, this makes the insertion of comments into the
configuration file awkward, because of the interaction between comments
and line continuation characters in configuration files. An alternative
is to use C-style comments (/* ...*/). Another alternative is to read
in the routing table entries from a separate file, rather than embedding
them in the HTCondor configuration file.

Note that, as of version 8.5.6, the configuration language supports
multi-line values, as shown in the example below (see the
Multi-Line Values section
for more details).

As of version 8.8.7, the order in which routes are considered can be
configured by specifying JOB_ROUTER_ROUTE_NAMES. Prior to that version
the order in which routes were considered could not be specified and
so routes were normally given mutually exclusive requirements.

These settings become the default settings for all routes
because they are merged with each route before the route is applied
JOB_ROUTER_DEFAULTS @=jrd
 [
 requirements=target.WantJobRouter is True;
 MaxIdleJobs = 10;
 MaxJobs = 200;

 /* now modify routed job attributes */
 /* remove routed job if it goes on hold or stays idle for over 6 hours */
 set_PeriodicRemove = JobStatus == 5 ||
 (JobStatus == 1 && (time() - QDate) > 3600*6);
 delete_WantJobRouter = true;
 set_requirements = true;
]
 @jrd

This could be made an attribute of the job, rather than being hard-coded
ROUTED_JOB_MAX_TIME = 1440

Now we define each of the routes to send jobs on
JOB_ROUTER_ENTRIES @=jre
 [GridResource = "batch slurm";
 name = "Site_1";
]
 [GridResource = "arc site2.edu";
 name = "Site_2";
 set_ArcRte = "ENV/PROXY";
]
 [GridResource = "condor submit.site3.edu cm.site3.edu";
 name = "Site_3";
 set_remote_jobuniverse = 5;
]
 @jre

Optionally define the order that routes should be considered
uncomment this line to declare the order
#JOB_ROUTER_ROUTE_NAMES = Site_1 Site_2 Site_3

Deprecated Routing Table Entry ClassAd Attributes

Warning

The deprecated job router configuration macros JOB_ROUTER_ENTRIES,
JOB_ROUTER_ENTRIES_FILE, and JOB_ROUTER_ENTRIES_CMD will be removed
during the lifetime of the HTCondor V23 feature series in preparation
of HTCondor V24.

In the deprecated condor_job_router configuration, each route is the
result of merging the JOB_ROUTER_DEFAULTS ClassAd with one of the
JOB_ROUTER_ENTRIES ClassAds, with attributes specified in JOB_ROUTER_ENTRIES
overriding those specified in JOB_ROUTER_DEFAULTS.

	Name
	An optional identifier that will be used in log messages concerning
this route. If no name is specified, the default used will be the
value of GridResource. The condor_job_router distinguishes
routes and advertises statistics based on this attribute’s value.

	TargetUniverse
	An integer value specifying the desired universe for the routed copy
of the job. The default value is 9, which is the grid universe.

	OverrideRoutingEntry
	A boolean value that when True, indicates that this entry in the
routing table replaces any previous entry in the table with the same
name. When False, it indicates that if there is a previous entry
by the same name, the previous entry should be retained and this
entry should be ignored. The default value is True.

	Set_<ATTR>
	Sets the value of <ATTR> in the routed copy’s job ClassAd to the
specified value. An example of an attribute that might be set is
PeriodicRemove. For example, if the routed job goes on hold or
stays idle for too long, remove it and return the original copy of
the job to a normal state.

	Eval_Set_<ATTR>
	Defines an expression. The expression is evaluated, and the
resulting value sets the value of the routed copy’s job ClassAd
attribute <ATTR>. Use this attribute to set a custom or local
value, especially for modifying an attribute which may have been
already specified in a default routing table.

	Copy_<ATTR>
	Defined with the name of a routed copy ClassAd attribute. Copies the
value of <ATTR> from the original job ClassAd into the specified
attribute named of the routed copy. Useful to save the value of an
expression, before replacing it with something else that references
the original expression.

	Delete_<ATTR>
	Deletes <ATTR> from the routed copy ClassAd. A value assigned to
this attribute in the routing table entry is ignored.

 Platform-Specific Information

Platform-Specific Information

The HTCondor Team strives to make HTCondor work the same way across all
supported platforms. However, because HTCondor is a very low-level
system which interacts closely with the internals of the operating
systems on which it runs, this goal is not always possible to achieve.
The following sections provide detailed information about using HTCondor
on different computing platforms and operating systems.

	Linux

	Microsoft Windows
	Limitations under Windows

	Supported Features under Windows

	Secure Password Storage

	Executing Jobs as the Submitting User

	The condor_credd Daemon

	Executing Jobs with the User’s Profile Loaded

	Using Windows Scripts as Job Executables

	How HTCondor for Windows Starts and Stops a Job

	Security Considerations in HTCondor for Windows

	Network files and HTCondor

	Interoperability between HTCondor for Unix and HTCondor for Windows

	Some differences between HTCondor for Unix -vs- HTCondor for Windows

	Macintosh OS X

	Windows Installer
	Detailed Installation Instructions Using the MSI Program

	Unattended Installation Procedure Using the MSI Installer

 Linux

Linux

This section provides information specific to the Linux port of
HTCondor.

HTCondor is sensitive to changes in the following elements of the
system:

	The kernel version

	The version of the GNU C library (glibc)

The HTCondor Team provides support for the distributions of Linux
which are most popular amoung our users. Red Hat, Debian and their
derivatives are currenty the most popular Linux distributions in
our space, and we provide native packages of HTCondor for these flavors.

 Microsoft Windows

Microsoft Windows

Windows is a strategic platform for HTCondor, and therefore we have been
working toward a complete port to Windows. Our goal is to make HTCondor
every bit as capable on Windows as it is on Unix – or even more capable.

Porting HTCondor from Unix to Windows is a formidable task, because many
components of HTCondor must interact closely with the underlying
operating system.

This section contains additional information specific to running
HTCondor on Windows. In order to effectively use HTCondor, first read
the Overview chapter and the Users’ Manual. If
administrating or customizing the policy and set up of HTCondor, also
read the Administrators’ Manual chapter. After
reading these chapters, review the information in this chapter for
important information and differences when using and administrating
HTCondor on Windows. For information on installing HTCondor for Windows,
see Windows (as Administrator).

Limitations under Windows

In general, this release for Windows works the same as the release of
HTCondor for Unix. However, the following items are not supported in
this version:

	grid universe jobs may not be submitted from a Windows platform,
unless the grid type is condor.

	Accessing files via a network share that requires a Kerberos ticket
(such as AFS) is not yet supported.

Supported Features under Windows

Except for those items listed above, most everything works the same way
in HTCondor as it does in the Unix release. This release is based on the
HTCondor Version 23.0.8 source tree, and thus the feature set is the same
as HTCondor Version 23.0.8 for Unix. For instance, all of the following
work in HTCondor:

	The ability to submit, run, and manage queues of jobs running on a
cluster of Windows machines.

	All tools such as condor_q, condor_status, condor_userprio,
are included.

	The ability to customize job policy using ClassAds. The machine
ClassAds contain all the information included in the Unix version,
including current load average, RAM and virtual memory sizes, integer
and floating-point performance, keyboard/mouse idle time, etc.
Likewise, job ClassAds contain a full complement of information,
including system dependent entries such as dynamic updates of the
job’s image size and CPU usage.

	Everything necessary to run an HTCondor central manager on Windows.

	Security mechanisms.

	HTCondor for Windows can run jobs at a lower operating system
priority level. Jobs can be suspended, soft-killed by using a
WM_CLOSE message, or hard-killed automatically based upon policy
expressions. For example, HTCondor can automatically suspend a job
whenever keyboard/mouse or non-HTCondor created CPU activity is
detected, and continue the job after the machine has been idle for a
specified amount of time.

	HTCondor correctly manages jobs which create multiple processes. For
instance, if an HTCondor job spawns multiple processes and HTCondor
needs to kill the job, all processes created by the job will be
terminated.

	In addition to interactive tools, users and administrators can
receive information from HTCondor by e-mail (standard SMTP) and/or by
log files.

	HTCondor includes a friendly GUI installation and set up program,
which can perform a full install or deinstall of HTCondor.
Information specified by the user in the set up program is stored in
the system registry. The set up program can update a current
installation with a new release using a minimal amount of effort.

	HTCondor can give a job access to the running user’s Registry hive.

Secure Password Storage

In order for HTCondor to operate properly, it must at times be able to
act on behalf of users who submit jobs. This is required on submit
machines, so that HTCondor can access a job’s input files, create and
access the job’s output files, and write to the job’s log file from
within the appropriate security context. On Unix systems, arbitrarily
changing what user HTCondor performs its actions as is easily done when
HTCondor is started with root privileges. On Windows, however,
performing an action as a particular user or on behalf of a particular
user requires knowledge of that user’s password, even when running at
the maximum privilege level. HTCondor provides secure password storage
through the use of the condor_store_cred tool. Passwords managed by
HTCondor are encrypted and stored in a secure location within the
Windows registry. When HTCondor needs to perform an action as or on
behalf of a particular user, it uses the securely stored password to do
so. This implies that a password is stored for every user that will
submit jobs from the Windows submit machine.

A further feature permits HTCondor to execute the job itself under the
security context of its submitting user, specifying the
run_as_owner
command in the job’s submit description file. With this feature, it is
necessary to configure and run a centralized condor_credd daemon to
manage the secure password storage. This makes each user’s password
available, via an encrypted connection to the condor_credd, to any
execute machine that may need it.

By default, the secure password store for a submit machine when no
condor_credd is running is managed by the condor_schedd. This
approach works in environments where the user’s password is only needed
on the submit machine.

Executing Jobs as the Submitting User

By default, HTCondor executes jobs on Windows using dedicated run
accounts that have minimal access rights and privileges, and which are
recreated for each new job. As an alternative, HTCondor can be
configured to allow users to run jobs using their Windows login
accounts. This may be useful if jobs need access to files on a network
share, or to other resources that are not available to the low-privilege
run account.

This feature requires use of a condor_credd daemon for secure
password storage and retrieval. With the condor_credd daemon running,
the user’s password must be stored, using the condor_store_cred
tool. Then, a user that wants a job to run using their own account
places into the job’s submit description file

run_as_owner = True

The condor_credd Daemon

The condor_credd daemon manages secure password storage. A single
running instance of the condor_credd within an HTCondor pool is
necessary in order to provide the feature described in
Executing Jobs as the Submitting User,
where a job runs as the submitting user, instead of as a temporary user that
has strictly limited access capabilities.

It is first necessary to select the single machine on which to run the
condor_credd. Often, the machine acting as the pool’s central manager
is a good choice. An important restriction, however, is that the
condor_credd host must be a machine running Windows.

All configuration settings necessary to enable the condor_credd are
contained in the example file etc\condor_config.local.credd from the
HTCondor distribution. Copy these settings into a local configuration
file for the machine that will run the condor_credd. Run
condor_restart for these new settings to take effect, then verify
(via Task Manager) that a condor_credd process is running.

A second set of configuration variables specify security for the
communication among HTCondor daemons. These variables must be set for
all machines in the pool. The following example settings are in the
comments contained in the etc\condor_config.local.credd example file.
These sample settings rely on the PASSWORD method for authentication
among daemons, including communication with the condor_credd daemon.
The LOCAL_CREDD variable must be
customized to point to the machine hosting the condor_credd and the
ALLOW_CONFIG variable will be
customized, if needed, to refer to an administrative account that exists
on all HTCondor nodes.

CREDD_HOST = credd.cs.wisc.edu
CREDD_CACHE_LOCALLY = True

STARTER_ALLOW_RUNAS_OWNER = True

ALLOW_CONFIG = Administrator@*
SEC_CLIENT_AUTHENTICATION_METHODS = NTSSPI, PASSWORD
SEC_CONFIG_NEGOTIATION = REQUIRED
SEC_CONFIG_AUTHENTICATION = REQUIRED
SEC_CONFIG_ENCRYPTION = REQUIRED
SEC_CONFIG_INTEGRITY = REQUIRED

The example above can be modified to meet the needs of your pool,
providing the following conditions are met:

	The requesting client must use an authenticated connection

	The requesting client must have an encrypted connection

	The requesting client must be authorized for DAEMON level access.

Using a pool password on Windows

In order for PASSWORD authenticated communication to work, a pool
password must be chosen and distributed. The chosen pool password must
be stored identically for each machine. The pool password first should
be stored on the condor_credd host, then on the other machines in the
pool.

To store the pool password on a Windows machine, run

$ condor_store_cred add -c

when logged in with the administrative account on that machine, and
enter the password when prompted. If the administrative account is
shared across all machines, that is if it is a domain account or has the
same password on all machines, logging in separately to each machine in
the pool can be avoided. Instead, the pool password can be securely
pushed out for each Windows machine using a command of the form

$ condor_store_cred add -c -n exec01.cs.wisc.edu

Once the pool password is distributed, but before submitting jobs, all
machines must reevaluate their configuration, so execute

$ condor_reconfig -all

from the central manager. This will cause each execute machine to test
its ability to authenticate with the condor_credd. To see whether
this test worked for each machine in the pool, run the command

$ condor_status -f "%s\t" Name -f "%s\n" ifThenElse(isUndefined(LocalCredd),\"UNDEF\",LocalCredd)

Any rows in the output with the UNDEF string indicate machines where
secure communication is not working properly. Verify that the pool
password is stored correctly on these machines.

Regardless of how Condor’s authentication is configured, the pool
password can always be set locally by running the

$ condor_store_cred add -c

command as the local SYSTEM account. Third party tools such as PsExec
can be used to accomplish this. When condor_store_cred is run as the
local SYSTEM account, it bypasses the network authentication and writes
the pool password to the registry itself. This allows the other condor
daemons (also running under the SYSTEM account) to access the pool
password when authenticating against the pool’s collector. In case the
pool is remote and no initial communication can be established due to
strong security, the pool password may have to be set using the above
method and following command:

$ condor_store_cred -u condor_pool@poolhost add

Executing Jobs with the User’s Profile Loaded

HTCondor can be configured when using dedicated run accounts, to load
the account’s profile. A user’s profile includes a set of personal
directories and a registry hive loaded under HKEY_CURRENT_USER.

This may be useful if the job requires direct access to the user’s
registry entries. It also may be useful when the job requires an
application, and the application requires registry access. This feature
is always enabled on the condor_startd, but it is limited to the
dedicated run account. For security reasons, the profile is cleaned
before a subsequent job which uses the dedicated run account begins.
This ensures that malicious jobs cannot discover what any previous job
has done, nor sabotage the registry for future jobs. It also ensures the
next job has a fresh registry hive.

A job that is to run with a profile uses the
load_profile command
in the job’s submit description file:

load_profile = True

This feature is currently not compatible with
run_as_owner , and
will be ignored if both are specified.

Using Windows Scripts as Job Executables

HTCondor has added support for scripting jobs on Windows. Previously,
HTCondor jobs on Windows were limited to executables or batch files.
With this new support, HTCondor determines how to interpret the script
using the file name’s extension. Without a file name extension, the file
will be treated as it has been in the past: as a Windows executable.

This feature may not require any modifications to HTCondor’s
configuration. An example that does not require administrative
intervention are Perl scripts using ActivePerl.

Windows Scripting Host scripts do require configuration to work
correctly. The configuration variables set values to be used in registry
look up, which results in a command that invokes the correct
interpreter, with the correct command line arguments for the specific
scripting language. In Microsoft nomenclature, verbs are actions that
can be taken upon a given a file. The familiar examples of Open,
Print, and Edit, can be found on the context menu when a user
right clicks on a file. The command lines to be used for each of these
verbs are stored in the registry under the HKEY_CLASSES_ROOT hive.
In general, a registry look up uses the form:

HKEY_CLASSES_ROOT\<FileType>\Shell\<OpenVerb>\Command

Within this specification, <FileType> is the name of a file type (and
therefore a scripting language), and is obtained from the file name
extension. <OpenVerb> identifies the verb, and is obtained from the
HTCondor configuration.

The HTCondor configuration sets the selection of a verb, to aid in the
registry look up. The file name extension sets the name of the HTCondor
configuration variable. This variable name is of the form:

OPEN_VERB_FOR_<EXT>_FILES

<EXT> represents the file name extension. The following configuration
example uses the Open2 verb for a Windows Scripting Host registry look
up for several scripting languages:

OPEN_VERB_FOR_JS_FILES = Open2
OPEN_VERB_FOR_VBS_FILES = Open2
OPEN_VERB_FOR_VBE_FILES = Open2
OPEN_VERB_FOR_JSE_FILES = Open2
OPEN_VERB_FOR_WSF_FILES = Open2
OPEN_VERB_FOR_WSH_FILES = Open2

In this example, HTCondor specifies the Open2 verb, instead of the
default Open verb, for a script with the file name extension of wsh. The
Windows Scripting Host ‘s Open2 verb allows standard input, standard
output, and standard error to be redirected as needed for HTCondor jobs.

A common difficulty is encountered when a script interpreter requires
access to the user’s registry. Note that the user’s registry is
different than the root registry. If not given access to the user’s
registry, some scripts, such as Windows Scripting Host scripts, will
fail. The failure error message appears as:

CScript Error: Loading your settings failed. (Access is denied.)

The fix for this error is to give explicit access to the submitting
user’s registry hive. This can be accomplished with the addition of the
load_profile command
in the job’s submit description file:

load_profile = True

With this command, there should be no registry access errors. This
command should also work for other interpreters. Note that not all
interpreters will require access. For example, ActivePerl does not by
default require access to the user’s registry hive.

How HTCondor for Windows Starts and Stops a Job

This section provides some details on how HTCondor starts and stops
jobs. This discussion is geared for the HTCondor administrator or
advanced user who is already familiar with the material in the
Administrator’s Manual and wishes to know detailed information on what
HTCondor does when starting and stopping jobs.

When HTCondor is about to start a job, the condor_startd on the
execute machine spawns a condor_starter process. The
condor_starter then creates:

	a run account on the machine with a login name of condor-slot<X>,
where <X> is the slot number of the condor_starter. This
account is added to group Users by default. The default group may
be changed by setting configuration variable
DYNAMIC_RUN_ACCOUNT_LOCAL_GROUP
 . This step is skipped
if the job is to be run using the submitting user’s account, as
specified in Executing Jobs as the Submitting User.

	a new temporary working directory for the job on the execute machine.
This directory is named dir_XXX, where XXX is the process ID
of the condor_starter. The directory is created in the
$(EXECUTE) directory, as specified in HTCondor’s configuration
file. HTCondor then grants write permission to this directory for the
user account newly created for the job.

	a new, non-visible Window Station and Desktop for the job.
Permissions are set so that only the account that will run the job
has access rights to this Desktop. Any windows created by this job
are not seen by anyone; the job is run in the background. Setting
USE_VISIBLE_DESKTOP to
True will allow the job to access the default desktop instead of
a newly created one.

Next, the condor_starter daemon contacts the condor_shadow daemon,
which is running on the submitting machine, and the condor_starter
pulls over the job’s executable and input files. These files are placed
into the temporary working directory for the job. After all files have
been received, the condor_starter spawns the user’s executable. Its
current working directory set to the temporary working directory.

While the job is running, the condor_starter closely monitors the CPU
usage and image size of all processes started by the job. Every 20
minutes the condor_starter sends this information, along with the
total size of all files contained in the job’s temporary working
directory, to the condor_shadow. The condor_shadow then inserts
this information into the job’s ClassAd so that policy and scheduling
expressions can make use of this dynamic information.

If the job exits of its own accord (that is, the job completes), the
condor_starter first terminates any processes started by the job
which could still be around if the job did not clean up after itself.
The condor_starter examines the job’s temporary working directory for
any files which have been created or modified and sends these files back
to the condor_shadow running on the submit machine. The
condor_shadow places these files into the
initialdir specified in
the submit description file; if no initialdir was specified, the
files go into the directory where the user invoked condor_submit.
Once all the output files are safely transferred back, the job is
removed from the queue. If, however, the condor_startd forcibly kills
the job before all output files could be transferred, the job is not
removed from the queue but instead switches back to the Idle state.

If the condor_startd decides to vacate a job prematurely, the
condor_starter sends a WM_CLOSE message to the job. If the job
spawned multiple child processes, the WM_CLOSE message is only sent to
the parent process. This is the one started by the condor_starter.
The WM_CLOSE message is the preferred way to terminate a process on
Windows, since this method allows the job to clean up and free any
resources it may have allocated. When the job exits, the
condor_starter cleans up any processes left behind. At this point, if
when_to_transfer_output
is set to ON_EXIT (the default) in the job’s submit description
file, the job switches states, from Running to Idle, and no files are
transferred back. If when_to_transfer_output is set to
ON_EXIT_OR_EVICT, then files in the job’s temporary working
directory which were changed or modified are first sent back to the
submitting machine. If exactly which files to transfer is specified with
transfer_output_files ,
then this modifies the files transferred and can affect the state of the
job if the specified files do not exist. On an eviction, the
condor_shadow places these intermediate files into a subdirectory
created in the $(SPOOL) directory on the submitting machine. The job
is then switched back to the Idle state until HTCondor finds a different
machine on which to run. When the job is started again, HTCondor places
into the job’s temporary working directory the executable and input
files as before, plus any files stored in the submit machine’s
$(SPOOL) directory for that job.

Note

A Windows console process can intercept a WM_CLOSE message via
the Win32 SetConsoleCtrlHandler() function, if it needs to do special
cleanup work at vacate time; a WM_CLOSE message generates a
CTRL_CLOSE_EVENT. See SetConsoleCtrlHandler() in the Win32
documentation for more info.

Note

The default handler in Windows for a WM_CLOSE message is for the
process to exit. Of course, the job could be coded to ignore it and not
exit, but eventually the condor_startd will become impatient and
hard-kill the job, if that is the policy desired by the administrator.

Finally, after the job has left and any files transferred back, the
condor_starter deletes the temporary working directory, the temporary
account if one was created, the Window Station and the Desktop before
exiting. If the condor_starter should terminate abnormally, the
condor_startd attempts the clean up. If for some reason the
condor_startd should disappear as well (that is, if the entire
machine was power-cycled hard), the condor_startd will clean up when
HTCondor is restarted.

Security Considerations in HTCondor for Windows

On the execute machine (by default), the user job is run using the
access token of an account dynamically created by HTCondor which has
bare-bones access rights and privileges. For instance, if your machines
are configured so that only Administrators have write access to
C:\WINNT, then certainly no HTCondor job run on that machine would be
able to write anything there. The only files the job should be able to
access on the execute machine are files accessible by the Users and
Everyone groups, and files in the job’s temporary working directory. Of
course, if the job is configured to run using the account of the
submitting user (as described in
Executing Jobs as the Submitting User),
it will be able to do anything that the user is able to do on the
execute machine it runs on.

On the submit machine, HTCondor impersonates the submitting user,
therefore the File Transfer mechanism has the same access rights as the
submitting user. For example, say only Administrators can write to
C:\WINNT on the submit machine, and a user gives the following to
condor_submit :

executable = mytrojan.exe
initialdir = c:\winnt
output = explorer.exe
queue

Unless that user is in group Administrators, HTCondor will not permit
explorer.exe to be overwritten.

If for some reason the submitting user’s account disappears between the
time condor_submit was run and when the job runs, HTCondor is not
able to check and see if the now-defunct submitting user has read/write
access to a given file. In this case, HTCondor will ensure that group
“Everyone” has read or write access to any file the job subsequently
tries to read or write. This is in consideration for some network
setups, where the user account only exists for as long as the user is
logged in.

HTCondor also provides protection to the job queue. It would be bad if
the integrity of the job queue is compromised, because a malicious user
could remove other user’s jobs or even change what executable a user’s
job will run. To guard against this, in HTCondor’s default configuration
all connections to the condor_schedd (the process which manages the
job queue on a given machine) are authenticated using Windows’ eSSPI
security layer. The user is then authenticated using the same
challenge-response protocol that Windows uses to authenticate users to
Windows file servers. Once authenticated, the only users allowed to edit
job entry in the queue are:

	the user who originally submitted that job (i.e. HTCondor allows
users to remove or edit their own jobs)

	users listed in the condor_config file parameter
QUEUE_SUPER_USERS. In the default configuration, only the
“SYSTEM” (LocalSystem) account is listed here.

WARNING: Do not remove “SYSTEM” from QUEUE_SUPER_USERS, or HTCondor
itself will not be able to access the job queue when needed. If the
LocalSystem account on your machine is compromised, you have all sorts
of problems!

To protect the actual job queue files themselves, the HTCondor
installation program will automatically set permissions on the entire
HTCondor release directory so that only Administrators have write
access.

Finally, HTCondor has all the security mechanisms present in the
full-blown version of HTCondor. See
the Authorization section for complete
information on how to allow/deny access to HTCondor.

Network files and HTCondor

HTCondor can work well with a network file server. The recommended
approach to having jobs access files on network shares is to configure
jobs to run using the security context of the submitting user (see
Executing Jobs as the Submitting User).
If this is done, the job will be able to access resources on the network in
the same way as the user can when logged in interactively.

In some environments, running jobs as their submitting users is not a
feasible option. This section outlines some possible alternatives. The
heart of the difficulty in this case is that on the execute machine,
HTCondor creates a temporary user that will run the job. The file server
has never heard of this user before.

Choose one of these methods to make it work:

	METHOD A: access the file server as a different user via a net use
command with a login and password

	METHOD B: access the file server as guest

	METHOD C: access the file server with a “NULL” descriptor

	METHOD D: create and have HTCondor use a special account

All of these methods have advantages and disadvantages.

Here are the methods in more detail:

METHOD A - access the file server as a different user via a net use
command with a login and password

Example: you want to copy a file off of a server before running it….

@echo off
net use \\myserver\someshare MYPASSWORD /USER:MYLOGIN
copy \\myserver\someshare\my-program.exe
my-program.exe

The idea here is to simply authenticate to the file server with a
different login than the temporary HTCondor login. This is easy with the
“net use” command as shown above. Of course, the obvious disadvantage is
this user’s password is stored and transferred as clear text.

METHOD B - access the file server as guest

Example: you want to copy a file off of a server before running it as
GUEST

@echo off
net use \\myserver\someshare
copy \\myserver\someshare\my-program.exe
my-program.exe

In this example, you’d contact the server MYSERVER as the HTCondor
temporary user. However, if you have the GUEST account enabled on
MYSERVER, you will be authenticated to the server as user “GUEST”. If
your file permissions (ACLs) are setup so that either user GUEST (or
group EVERYONE) has access the share “someshare” and the
directories/files that live there, you can use this method. The downside
of this method is you need to enable the GUEST account on your file
server. WARNING: This should be done *with extreme caution* and only
if your file server is well protected behind a firewall that blocks SMB
traffic.

METHOD C - access the file server with a “NULL” descriptor

One more option is to use NULL Security Descriptors. In this way, you
can specify which shares are accessible by NULL Descriptor by adding
them to your registry. You can then use the batch file wrapper like:

net use z: \\myserver\someshare /USER:""
z:\my-program.exe

so long as ‘someshare’ is in the list of allowed NULL session shares. To
edit this list, run regedit.exe and navigate to the key:

HKEY_LOCAL_MACHINE\
 SYSTEM\
 CurrentControlSet\
 Services\
 LanmanServer\
 Parameters\
 NullSessionShares

and edit it. Unfortunately it is a binary value, so you’ll then need to
type in the hex ASCII codes to spell out your share. Each share is
separated by a null (0x00) and the last in the list is terminated with
two nulls.

Although a little more difficult to set up, this method of sharing is a
relatively safe way to have one quasi-public share without opening the
whole guest account. You can control specifically which shares can be
accessed or not via the registry value mentioned above.

METHOD D - create and have HTCondor use a special account

Create a permanent account (called condor-guest in this description)
under which HTCondor will run jobs. On all Windows machines, and on the
file server, create the condor-guest account.

On the network file server, give the condor-guest user permissions to
access files needed to run HTCondor jobs.

Securely store the password of the condor-guest user in the Windows
registry using condor_store_cred on all Windows machines.

Tell HTCondor to use the condor-guest user as the owner of jobs, when
required. Details for this are in
the Security section.

Interoperability between HTCondor for Unix and HTCondor for Windows

Unix machines and Windows machines running HTCondor can happily co-exist
in the same HTCondor pool without any problems. Jobs submitted on
Windows can run on Windows or Unix, and jobs submitted on Unix can run
on Unix or Windows. Without any specification using the
Requirements command
in the submit description file, the default behavior will be to require
the execute machine to be of the same architecture and operating system
as the submit machine.

There is absolutely no need to run more than one HTCondor central
manager, even if there are both Unix and Windows machines in the pool.
The HTCondor central manager itself can run on either Unix or Windows;
there is no advantage to choosing one over the other.

Some differences between HTCondor for Unix -vs- HTCondor for Windows

	On Unix, we recommend the creation of a condor account when
installing HTCondor. On Windows, this is not necessary, as HTCondor
is designed to run as a system service as user LocalSystem.

	On Unix, HTCondor finds the condor_config main configuration file
by looking in ˜condor, in /etc, or via an environment variable.
On Windows, the location of condor_config file is determined via
the registry key HKEY_LOCAL_MACHINE/Software/Condor. Override
this value by setting an environment variable named
CONDOR_CONFIG.

	On Unix, in the vanilla universe at job vacate time, HTCondor sends
the job a softkill signal defined in the submit description file,
which defaults to SIGTERM. On Windows, HTCondor sends a WM_CLOSE
message to the job at vacate time.

	On Unix, if one of the HTCondor daemons has a fault, a core file will
be created in the $(Log) directory. On Windows, a core file will
also be created, but instead of a memory dump of the process, it will
be a very short ASCII text file which describes what fault occurred
and where it happened. This information can be used by the HTCondor
developers to fix the problem.

 Macintosh OS X

Macintosh OS X

This section provides information specific to the Macintosh OS X port of
HTCondor. The Macintosh port of HTCondor is more accurately a port of
HTCondor to Darwin, the BSD layer of OS X.
It is not well-integrated into the Macintosh environment beyond that.

HTCondor on the Macintosh has a few shortcomings:

	Users connected to the Macintosh via ssh are not noticed for
console activity.

	The memory size of threaded programs is reported incorrectly.

	No Macintosh-based installer is provided.

	The example start up scripts do not follow Macintosh conventions.

 Windows Installer

Windows Installer

This section includes detailed information about the options offered by
the Windows Installer, including how to run it unattended for automated
installations. If you’re not an experienced user, you may wish to follow
the quick start guide’s
instructions
instead.

Detailed Installation Instructions Using the MSI Program

This section describes the different HTCondor Installer options in
greater detail.

	STEP 1: License Agreement.
	The first step in installing HTCondor is a welcome screen and
license agreement. You are reminded that it is best to run the
installation when no other Windows programs are running. If you need
to close other Windows programs, it is safe to cancel the
installation and close them. You are asked to agree to the license.
Answer yes or no. If you should disagree with the License, the
installation will not continue.

Also fill in name and company information, or use the defaults as
given.

	STEP 2: HTCondor Pool Configuration.
	The HTCondor configuration needs to be set based upon if this is a
new pool or to join an existing one. Choose the appropriate radio
button.

For a new pool, enter a chosen name for the pool. To join an
existing pool, enter the host name of the central manager of the
pool.

	STEP 3: This Machine’s Roles.
	Each machine within an HTCondor pool can either submit jobs or
execute submitted jobs, or both submit and execute jobs. A check box
determines if this machine will be a submit point for the pool.

A set of radio buttons determines the ability and configuration of
the ability to execute jobs. There are four choices:

	Do not run jobs on this machine. This machine will not execute HTCondor jobs.

	Always run jobs and never suspend them.

	Run jobs when the keyboard has been idle for 15 minutes.

	Run jobs when the keyboard has been idle for 15 minutes, and the CPU is idle.

If you are setting up HTCondor as a single installation for testing,
make sure you check the box to make the machine a submit point, and
also choose the second option from the list above.

For a machine that is to execute jobs and the choice is one of the
last two in the list, HTCondor needs to further know what to do with
the currently running jobs. There are two choices:

	Keep the job in memory and continue when the machine meets the
condition chosen for when to run jobs.

	Restart the job on a different machine.

This choice involves a trade off. Restarting the job on a different
machine is less intrusive on the workstation owner than leaving the
job in memory for a later time. A suspended job left in memory will
require swap space, which could be a scarce resource. Leaving a job
in memory, however, has the benefit that accumulated run time is not
lost for a partially completed job.

	STEP 4: The Account Domain.
	Enter the machine’s accounting (or UID) domain. On this version of
HTCondor for Windows, this setting is only used for user priorities
(see the User Priorities and Negotiation section)
and to form a default e-mail address for the user.

	STEP 5: E-mail Settings.
	Various parts of HTCondor will send e-mail to an HTCondor
administrator if something goes wrong and requires human attention.
Specify the e-mail address and the SMTP relay host of this
administrator. Please pay close attention to this e-mail, since it
will indicate problems in the HTCondor pool.

	STEP 6: Java Settings.
	In order to run jobs in the java universe, HTCondor must have
the path to the jvm executable on the machine. The installer will
search for and list the jvm path, if it finds one. If not, enter the
path. To disable use of the java universe, leave the field
blank.

	STEP 7: Access Permission Settings.
	Machines within the HTCondor pool will need various types of access
permission. The three categories of permission that can be set here
are read, write, and administrator. The values can be usernames, hostnames
or IP address ranges, Wild cards and macros are permitted.
It is recommended that you accept the defaults here and change the
values later as needed by modifying the HTCondor configuration files.

	Read
	Read access allows a machine to obtain information about
HTCondor such as the status of machines in the pool and the job
queues. If all of your HTCondor machines and users are in
a single DNS domain or IP Address range, setting this to *.domain
an IP address range with wildcards is a good choice.
See ALLOW_READ

	Write
	Write access is for submitting jobs to the Schedd. Setting this
to * will allow any user that can login to the machine submit jobs.
See ALLOW_WRITE

	Administrator
	Administrator access is for starting and stopping the daemons
and sending administrative commands such as reconfig and drain.
By default the installer will give this permission to the Windows
user that runs the installer and to the Windows Adminstrator account.
See ALLOW_ADMINISTRATOR

For more details on these access permissions, and others that can be
manually changed in your configuration file, please see the section
titled Setting Up Security in HTCondor in the
Authorization section.

	STEP 8: VM Universe Setting.
	A radio button determines whether this machine will be configured to
run vm universe jobs utilizing VMware. In addition to having the
VMware Server installed, HTCondor also needs Perl installed. The
resources available for vm universe jobs can be tuned with these
settings, or the defaults listed can be used.

	Version
	Use the default value, as only one version is currently
supported.

	Maximum Memory
	The maximum memory that each virtual machine is permitted to use
on the target machine.

	Maximum Number of VMs
	The number of virtual machines that can be run in parallel on
the target machine.

	Networking Support
	The VMware instances can be configured to use network support.
There are four options in the pull-down menu.

	None: No networking support.

	NAT: Network address translation.

	Bridged: Bridged mode.

	NAT and Bridged: Allow both methods.

	Path to Perl Executable
	The path to the Perl executable.

	STEP 9: Choose Setup Type
	

The next step is where the destination of the HTCondor files will be
decided. We recommend that HTCondor be installed in the location
shown as the default in the install choice: C:\Condor. This is due
to several hard coded paths in scripts and configuration files.
Clicking on the Custom choice permits changing the installation
directory.

Installation on the local disk is chosen for several reasons. The
HTCondor services run as local system, and within Microsoft Windows,
local system has no network privileges. Therefore, for HTCondor to
operate, HTCondor should be installed on a local hard drive, as
opposed to a network drive (file server).

The second reason for installation on the local disk is that the
Windows usage of drive letters has implications for where HTCondor
is placed. The drive letter used must be not change, even when
different users are logged in. Local drive letters do not change
under normal operation of Windows.

While it is strongly discouraged, it may be possible to place
HTCondor on a hard drive that is not local, if a dependency is added
to the service control manager such that HTCondor starts after the
required file services are available.

Unattended Installation Procedure Using the MSI Installer

This section details how to run the HTCondor for Windows installer in an
unattended batch mode. This mode is one that occurs completely from the
command prompt, without the GUI interface.

The HTCondor for Windows installer uses the Microsoft Installer (MSI)
technology, and it can be configured for unattended installs analogous
to any other ordinary MSI installer.

The following is a sample batch file that is used to set all the
properties necessary for an unattended install.

@echo on
set ARGS=
set ARGS=NEWPOOL="N"
set ARGS=%ARGS% POOLNAME=""
set ARGS=%ARGS% RUNJOBS="C"
set ARGS=%ARGS% VACATEJOBS="Y"
set ARGS=%ARGS% SUBMITJOBS="Y"
set ARGS=%ARGS% CONDOREMAIL="you@yours.com"
set ARGS=%ARGS% SMTPSERVER="smtp.localhost"
set ARGS=%ARGS% ALLOWREAD="*"
set ARGS=%ARGS% ALLOWWRITE="*"
set ARGS=%ARGS% ALLOWADMINISTRATOR="$(IP_ADDRESS)"
set ARGS=%ARGS% INSTALLDIR="C:\Condor"
set ARGS=%ARGS% POOLHOSTNAME="$(IP_ADDRESS)"
set ARGS=%ARGS% ACCOUNTINGDOMAIN="none"
set ARGS=%ARGS% JVMLOCATION="C:\Windows\system32\java.exe"
set ARGS=%ARGS% USEVMUNIVERSE="N"
set ARGS=%ARGS% VMMEMORY="128"
set ARGS=%ARGS% VMMAXNUMBER="$(NUM_CPUS)"
set ARGS=%ARGS% VMNETWORKING="N"
REM set ARGS=%ARGS% LOCALCONFIG="http://my.example.com/condor_config.$(FULL_HOSTNAME)"

msiexec /qb /l* condor-install-log.txt /i condor-8.0.0-133173-Windows-x86.msi %ARGS%

Each property corresponds to answers that would have been supplied while
running the interactive installer. The following is a brief explanation
of each property as it applies to unattended installations; see the above explanations
for more detail.

	NEWPOOL = < Y | N >
	determines whether the installer will create a new pool with the
target machine as the central manager.

	POOLNAME
	sets the name of the pool, if a new pool is to be created. Possible
values are either the name or the empty string “”.

	RUNJOBS = < N | A | I | C >
	determines when HTCondor will run jobs. This can be set to:

	Never run jobs (N)

	Always run jobs (A)

	Only run jobs when the keyboard and mouse are Idle (I)

	Only run jobs when the keyboard and mouse are idle and the CPU
usage is low (C)

	VACATEJOBS = < Y | N >
	determines what HTCondor should do when it has to stop the execution
of a user job. When set to Y, HTCondor will vacate the job and start
it somewhere else if possible. When set to N, HTCondor will merely
suspend the job in memory and wait for the machine to become
available again.

	SUBMITJOBS = < Y | N >
	will cause the installer to configure the machine as a submit node
when set to Y.

	CONDOREMAIL
	sets the e-mail address of the HTCondor administrator. Possible
values are an e-mail address or the empty string “”.

	ALLOWREAD
	is a list of names that are allowed to issue READ commands to
HTCondor daemons. This value should be set in accordance with the
ALLOW_READ setting in the
configuration file, as described in
the Authorization section.

	ALLOWWRITE
	is a list of names that are allowed to issue WRITE commands to
HTCondor daemons. This value should be set in accordance with the
ALLOW_WRITE setting in the
configuration file, as described in
the Authorization section.

	ALLOWADMINISTRATOR
	is a list of names that are allowed to issue ADMINISTRATOR commands
to HTCondor daemons. This value should be set in accordance with the
ALLOW_ADMINISTRATOR setting
in the configuration file, as described in
the Authorization section.

	INSTALLDIR
	defines the path to the directory where HTCondor will be installed.

	POOLHOSTNAME
	defines the host name of the pool’s central manager.

	ACCOUNTINGDOMAIN
	defines the accounting (or UID) domain the target machine will be
in.

	JVMLOCATION
	defines the path to Java virtual machine on the target machine.

	SMTPSERVER
	defines the host name of the SMTP server that the target machine is
to use to send e-mail.

	VMMEMORY
	an integer value that defines the maximum memory each VM run on the
target machine.

	VMMAXNUMBER
	an integer value that defines the number of VMs that can be run in
parallel on the target machine.

	VMNETWORKING = < N | A | B | C >
	determines if VM Universe can use networking. This can be set to:

	None (N)

	NAT (A)

	Bridged (B)

	NAT and Bridged (C)

	USEVMUNIVERSE = < Y | N >
	will cause the installer to enable VM Universe jobs on the target
machine.

	LOCALCONFIG
	defines the location of the local configuration file. The value can
be the path to a file on the local machine, or it can be a URL
beginning with http. If the value is a URL, then the
condor_urlfetch tool is invoked to fetch configuration whenever
the configuration is read.

	PERLLOCATION
	defines the path to Perl on the target machine. This is required
in order to use the vm universe.

After defining each of these properties for the MSI installer, the
installer can be started with the msiexec command. The following
command starts the installer in unattended mode, and it dumps a journal
of the installer’s progress to a log file:

> msiexec /qb /lxv* condor-install-log.txt /i condor-8.0.0-173133-Windows-x86.msi [property=value] ...

More information on the features of msiexec can be found at
Microsoft’s website at
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx.

Manual Installation of HTCondor on Windows

If you are to install HTCondor on many different machines, you may wish
to use some other mechanism to install HTCondor on additional machines
rather than running the Setup program described above on each machine.

WARNING: This is for advanced users only! All others should use the
Setup program described above.

Here is a brief overview of how to install HTCondor manually without
using the provided GUI-based setup program:

	The Service
	The service that HTCondor will install is called “Condor”. The
Startup Type is Automatic. The service should log on as System
Account, but do not enable “Allow Service to Interact with
Desktop”. The program that is run is condor_master.exe.

The HTCondor service can be installed and removed using the
sc.exe tool, which is included in Windows XP and Windows 2003
Server. The tool is also available as part of the Windows 2000
Resource Kit.

Installation can be done as follows:

> sc create Condor binpath= c:\condor\bin\condor_master.exe

To remove the service, use:

> sc delete Condor

	The Registry
	HTCondor uses a few registry entries in its operation. The key that
HTCondor uses is HKEY_LOCAL_MACHINE/Software/Condor. The values
that HTCondor puts in this registry key serve two purposes.

	The values of CONDOR_CONFIG and RELEASE_DIR are used for
HTCondor to start its service.

CONDOR_CONFIG should point to the condor_config file. In
this version of HTCondor, it must reside on the local disk.

RELEASE_DIR should point to the directory where HTCondor is
installed. This is typically C:\Condor, and again, this must
reside on the local disk.

	The other purpose is storing the entries from the last
installation so that they can be used for the next one.

	The File System
	The files that are needed for HTCondor to operate are identical to
the Unix version of HTCondor, except that executable files end in
.exe. For example the on Unix one of the files is
condor_master and on HTCondor the corresponding file is
condor_master.exe.

These files currently must reside on the local disk for a variety of
reasons. Advanced Windows users might be able to put the files on
remote resources. The main concern is twofold. First, the files must
be there when the service is started. Second, the files must always
be in the same spot (including drive letter), no matter who is
logged into the machine.

Note also that when installing manually, you will need to create the
directories that HTCondor will expect to be present given your
configuration. This normally is simply a matter of creating the
log, spool, and execute directories. Do not stage other
files in any of these directories; any files not created by HTCondor
in these directories are subject to removal.

For any installation, HTCondor services are installed and run as the
Local System account. Running the HTCondor services as any other account
(such as a domain user) is not supported and could be problematic.

 Frequently Asked Questions (FAQ)

Frequently Asked Questions (FAQ)

There are many Frequently Asked Questions maintained on the HTCondor web
page, at
http://htcondor-wiki.cs.wisc.edu/index.cgi/wiki
and on the configuration how-to and recipes page at
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes

Supported platforms are listed in the Availability section.
There is also Platform-Specific Information available..

 Version History and Release Notes

Version History and Release Notes

	Introduction to HTCondor Versions
	HTCondor Version Number Scheme

	Upgrading from an 10.0 LTS version to an 23.0 LTS version of HTCondor

	Version 23.0 LTS Releases
	Version 23.0.8

	Version 23.0.6

	Version 23.0.4

	Version 23.0.3

	Version 23.0.2

	Version 23.0.1

	Version 23.0.0

	Version 10 Feature Releases
	Version 10.9.0

	Version 10.8.0

	Version 10.7.1

	Version 10.7.0

	Version 10.6.0

	Version 10.5.1

	Version 10.5.0

	Version 10.4.3

	Version 10.4.2

	Version 10.4.1

	Version 10.4.0

	Version 10.3.1

	Version 10.3.0

	Version 10.2.5

	Version 10.2.4

	Version 10.2.3

	Version 10.2.2

	Version 10.2.1

	Version 10.2.0

	Version 10.1.3

	Version 10.1.2

	Version 10.1.1

	Version 10.1.0

	Version 10.0 LTS Releases
	Version 10.0.9

	Version 10.0.8

	Version 10.0.7

	Version 10.0.6

	Version 10.0.5

	Version 10.0.4

	Version 10.0.3

	Version 10.0.2

	Version 10.0.1

	Version 10.0.0

 Introduction to HTCondor Versions

Introduction to HTCondor Versions

This chapter provides descriptions of what features have been added or
bugs fixed for each release of HTCondor. The first section describes the
HTCondor version numbering scheme, what the numbers mean, and what the
different releases are. The rest of the sections each describe the
specific releases.

HTCondor Version Number Scheme

We changed the version numbering scheme after the 9.1.3 release:
what would have been the next 9.1.x release is now the 9.2.0 release.
We made this change to give us additional flexibility in releasing
small updates to address specific issues without disturbing the normal
development of HTCondor. The version number will still retain the
MAJOR.MINOR.PATCH form with slightly different meanings. We have borrowed
ideas from Semantic Versioning [https://semver.org/].

	The MAJOR number increments for each new Long Term Support (LTS) release.
A new LTS release may have backward-incompatible changes and may require
updates to configuration files. If the current LTS release is 23.0.6,
the next one will be 24.0.0. A new LTS release is expected about every
twelve months in August. The LTS major version number matches the year
of initial release.

	The MINOR number increments each feature release.
This number stays at 0 for LTS releases. If the current feature release
is 23.2.0, the next one will be 23.3.0.
A new feature release is expected every month.

	The PATCH number increments when we have targeted fixes. For the LTS
releases, a patch release is expected every
month and may occur more frequently if a serious problem is
discovered. For the feature releases, the frequency of patch releases
depends on the demand for quick updates.

Types of Releases

	An LTS release is numbered X.0.0, and is a new long-term support
release. The previous LTS
release is supported for six months after a new LTS version is released.
The final feature release undergoes a stabilization effort where the
software is run through multiple code quality tools (such as Valgrind)
to assure the best possible LTS release. The MAJOR.0.0 version is not
released until the stabilization effort is complete.
Paid support contracts are only available for the LTS release.

	An LTS patch release is numbered X.0.Z, and is an update to the LTS
major release. The patches
are reviewed to ensure correctness and compatibility with the LTS release.
These releases contain bug fixes and security updates and are released when
a major issue is identified, or just before the next feature release.
These releases go through our entire testing process. Large code
changes are not permitted in the LTS release. Enhancements are not
implemented in the LTS release unless there is minimal impact with a major
benefit. Ports to new platforms will appear in the LTS release. The
HTCondor team guarantees that patches to the LTS release are compatible.

	A feature release is numbered X.Y.0 and includes one or more new
features.
The software goes through our entire testing process.
We use these releases in production at the Center for High Throughput
Computing. These releases contain all the patches from the LTS release
and all the patches from the to the feature releases. The HTCondor
development team guarantees protocol compatibility between the feature
releases and the LTS release. However, changes in behavior may be
observed, and adjustments to configuration may be required when new
features are implemented.

	A feature patch release is numbered X.Y.Z and contains targeted
patches to address a specific issue with a feature release.
specific issue with a feature release. If there is a specific need to be
addressed before 23.3.0 is tested and ready, we would issue a 23.2.1 patch
release. These releases have undergone code review and light testing.
These patch releases are cumulative.

 %%{init: { 'gitGraph': {'showCommitLabel': false, 'mainBranchName': 'lts-23'}} }%%
gitGraph TB:
 commit tag:"23.0.0"
 branch "feature 23.x"
 checkout "lts-23"
 commit tag:"23.0.1"
 checkout "feature 23.x"
 merge "lts-23"
 commit tag:"23.1.0"
 commit tag:"23.1.1"
 commit tag:"23.1.2"
 checkout "lts-23"
 commit tag:"23.0.2"
 checkout "feature 23.x"
 merge "lts-23"
 commit tag:"23.2.0"
 commit tag:"23.2.1"
 branch "lts-24"
 commit tag:"24.0.0"
 branch "feature 24.x"
 checkout "lts-24"
 commit tag:"24.0.1"
 checkout "feature 24.x"
 merge "lts-24"
 commit tag:"24.1.0"
 commit tag:"24.1.1"
 commit tag:"24.1.2"

Support Life Cycle

We plan to release a new LTS version every August. The support life cycles
are directly related to the release dates.

HTCondor Support Life Cycle

	Version

	Release

	End of Regular Support

	End of Security Suport

	23.x

	September 29, 2023

	August 2024

	August 2024

	23.0

	September 29, 2023

	August 2024

	August 2025

	10.x

	November 10, 2022

	September 29, 2023

	September 29, 2023

	10.0

	November 10, 2022

	September 29, 2023

	August 2024

Repositories

These releases will be served out of three repositories.

	The LTS release and its patches (X.0.Z) are in the existing Stable channel.

	The feature releases (X.Y.0) are in the existing Current channel.

	A new Updates channel will contain quick patch releases (X.Y.Z).

Recommendations

If you are new to HTCondor or require maximum stability in your environment,
use an LTS release. Updates to the latest LTS release should be seamless.
A new LTS release will appear about every twelve months with clear
directions on issues to address when upgrading to the new LTS release.

If you want to take advantage of the latest features, use the feature
releases. This is an opportunity see our development directions early, and
have some influence on the features being implemented. It is what we use
in our production environment.

If you want to run the very latest release, also enable the updates
repository to get the targeted fixes. However, these fixes may come
frequently, and you may wish to pick and choose which updates to install.

 Upgrading from an 10.0 LTS version to an 23.0 LTS version of HTCondor

Upgrading from an 10.0 LTS version to an 23.0 LTS version of HTCondor

Upgrading from a 10.0 LTS version of HTCondor to a 23.0 LTS version will bring
new features introduced in the 10.x versions of HTCondor. These new
features include the following (note that this list contains only the
most significant changes; a full list of changes can be found in the
version history: Version 10 Feature Releases):

	A condor_startd without any slot types defined will now default to a single
partitionable slot rather than a number of static slots equal to the number of
cores as it was in previous versions. The configuration template
use FEATURE : StaticSlots was added for admins wanting the old behavior.
(HTCONDOR-2026) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2026]

	In an HTCondor Execution Point started by root on Linux, the default for cgroups
memory has changed to be enforcing. This means that jobs that use more then
their provisioned memory will be put on hold with an appropriate hold message.
The previous default can be restored by setting CGROUP_MEMORY_LIMIT_POLICY
= none on the Execution points.
(HTCONDOR-1974) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1974]

	Users can now define DAGMan save points to be able to save the state of a DAGs
progess to a file and then re-run a DAG from that saved point of progress.
(HTCONDOR-1636) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1636]

	DAGMan has much better user control of enviroment variables present
in the DAGMan job propers environment via condor_submit_dag's new
flags (-include_env & -insert_env) and/or the new DAG file
description command ENV.
(HTCONDOR-1955) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1955]
(HTCONDOR-1580) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1580]

	Added the condor_qusers command to monitor
and control users at the Access Point. Users disabled at the Access Point
are no longer allowed to submit jobs. Jobs submitted before the user was
disabled are allowed to run to completion. When a user is disabled, an
optional reason string can be provided.
(HTCONDOR-1723) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1723]
(HTCONDOR-1853) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1853]

	The condor_negotiator now support setting a minimum floor number of cores
that any given submitter should get, regardless of their fair share. This
can be set or queried via the condor_userprio tool, in the same way that
the ceiling can be set or get.
(HTCONDOR-557) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-557]

	Added a -gpus option to condor_status. With this option condor_status
will show only machines that have GPUs provisioned; and it will show information
about the GPU properties.
(HTCONDOR-1958) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1958]

	The output of condor_status when using the -compact option has been improved
to show a separate row for the second and subsequent slot type for machines that have
multiple slot types. Also the totals now count slots that have the BackfillSlot
attribute under the Backfill or BkIdle columns.
(HTCONDOR-1957) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1957]

	Container universe jobs may now specify the container_image to be an image
transferred via a file transfer plugin.
(HTCONDOR-1820) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1820]

	Support for Enterprise Linux 9, Amazon Linux 2023, and Debian 12.
(HTCONDOR-1285) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1285]
(HTCONDOR-1742) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1742]
(HTCONDOR-1938) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1938]

	Administrators can specify a new history file for Access Points that records information
about a job for each execution attempt. If enabled then this information can be queried
via condor_history -epochs.
(HTCONDOR-1104) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1104]

	A single HTCondor pool can now have multiple condor_defrag daemons running and they
will not interfere with each other so long as each has DEFRAG_REQUIREMENTS
that select mutually exclusive subsets of the pool.
(HTCONDOR-1903) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1903]

	Add condor_test_token tool to generate a short lived SciToken for testing.
(HTCONDOR-1115) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1115]

	The job’s executable is no longer renamed to condor_exec.exe.
(HTCONDOR-1227) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1227]

Upgrading from a 10.0 LTS version of HTCondor to a 23.0 LTS version will also
introduce changes that administrators and users of sites running from an
older HTCondor version should be aware of when planning an upgrade. Here
is a list of items that administrators should be aware of. To see if any of
the following items will affect an upgrade run condor_upgrade_check.

	HTCondor will no longer pass all environment variables to the DAGMan proper manager
jobs environment. This may result in DAGMan and its various parts (primarily PRE,
POST,& HOLD Scripts) to start failing or change behavior due to missing needed
environment variables. To revert back to the old behavior or add the missing
environment variables to the DAGMan proper job set the DAGMAN_MANAGER_JOB_APPEND_GETENV
configuration option.
(HTCONDOR-1580) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1580]

	We added the ability for the condor_schedd to track users over time. Once
you have upgraded to HTCondor 23, you may no longer downgrade to a version before
HTCondor 10.5.0 or HTCondor 10.0.4 LTS.
(HTCONDOR-1432) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1432]

	Execution Points without any administrator defined slot configuration will now default
to creating and utilizing one partitionable slot. This causes Startd RANK expressions
to have no effect. To revert an Execution Point to use static slots add
use FEATURE:StaticSlots to the Execution Point configuration.
(HTCONDOR-2026) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2026]

	The configuration expression constant CpuBusyTime no longer represents a time delta but
rather a timestamp of when the CPU became busy. The new expression constant CpuBusyTimer
now represents the time delta of how long a CPU has been busy for.
(HTCONDOR-1502) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1502]

	The configuration expression constants ActivationTimer, ConsoleBusy, CpuBusy,
CpuIdle, JustCPU, KeyboardBusy, KeyboardNotBusy, LastCkpt, MachineBusy,
and NonCondorLoadAvg no longer exist by default for configuration expressions. To
re-enable these constants either add use FEATURE:POLICY_EXPR_FRAGMENTS or one of the
desktop policies to the configuration.
(HTCONDOR-1502) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1502]

	The job router configuration macros JOB_ROUTER_DEFAULTS, JOB_ROUTER_ENTRIES,
JOB_ROUTER_ENTRIES_FILE, and JOB_ROUTER_ENTRIES_CMD are deprecated and will
be removed during the lifetime of the HTCondor V23 feature series.
(HTCONDOR-1968) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1968]

 Version 23.0 LTS Releases

Version 23.0 LTS Releases

These are Long Term Support (LTS) versions of HTCondor. As usual, only bug fixes
(and potentially, ports to new platforms) will be provided in future
23.0.y versions. New features will be added in the 23.x.y feature versions.

Warning

The configuration macros JOB_ROUTER_DEFAULTS, JOB_ROUTER_ENTRIES, JOB_ROUTER_ENTRIES_CMD,
and JOB_ROUTER_ENTRIES_FILE are deprecated and will be removed for V24 of HTCondor. New
configuration syntax for the job router is defined using JOB_ROUTER_ROUTE_NAMES and
JOB_ROUTER_ROUTE_<name>. Note: The removal will occur during the lifetime of the
HTCondor V23 feature series.
(HTCONDOR-1968) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1968]

The details of each version are described below.

Version 23.0.8

Release Notes:

	HTCondor version 23.0.8 released on April 11, 2024.

New Features:

	None.

Bugs Fixed:

	Fixed a bug that caused ssh-agent processes to be leaked when
using grid universe remote batch job submission over SSH.
(HTCONDOR-2286) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2286]

	Fixed a bug where DAGMan would crash when the provisioner node was
given a parent node.
(HTCONDOR-2291) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2291]

	Fixed a bug that prevented the use of ftp: URLs in the file
transfer plugin.
(HTCONDOR-2273) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2273]

	Fixed a bug where a job that’s matched to an offline slot ad remains
idle forever.
(HTCONDOR-2304) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2304]

	Fixed a bug where the condor_shadow would not write a job
termination event to the job log for a completed job if the
condor_shadow failed to reconnect to the condor_starter prior
to completing cleanup. This would result in DAGMan workflows being
stuck waiting forever for jobs to finish.
(HTCONDOR-2292) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2292]

	Fixed bug where the Shadow failed to write its job ad to JOB_EPOCH_HISTORY
when it failed to reconnect to the Starter.
(HTCONDOR-2289) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2289]

	Fixed a bug in the Windows MSI installer that would cause installation to fail
when the install path had a space in the path name, such as when installing to
C:\Program Files
(HTCONDOR-2302) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2302]

	Fixed a bug where the USER_JOB_WRAPPER was allowed to create job
event log information events with newlines in them, which broke the event
log parser.
(HTCONDOR-2305) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2305]

	Fixed SyntaxWarning raised by Python 3.12 in condor_adstash.
(HTCONDOR-2312) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2312]

	Improved use of Vault for job credentials. Reject some invalid use
cases and avoid redundant work with frequent job submission.
(HTCONDOR-2038) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2038]
(HTCONDOR-2232) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2232]

	Fixed an issue where HTCondor could not be installed on Debian or Ubuntu
platforms if there was more that one condor user in LDAP.
(HTCONDOR-2306) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2306]

Version 23.0.6

Release Notes:

	HTCondor version 23.0.6 released on March 14, 2024.

New Features:

	Speed up starting of daemons on Linux systems configured with
very large number of file descriptors.
(HTCONDOR-2270) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2270]

Bugs Fixed:

	Fixed bug in DAGMan where nodes that had retries would incorrectly
set its descendants to the Futile state if the node job got removed.
(HTCONDOR-2240) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2240]

	Fixed bug in the event log reader that would rarely cause DAGMan
to lose track of a job, and wait forever for a job that had
really finished, with DAGMan not realizing that said job had
indeed finished.
(HTCONDOR-2236) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2236]

	Fixed condor_test_token to access the SciTokens cache as the correct
user when run as root.
(HTCONDOR-2241) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2241]

	Fixed a bug that caused a crash if a configuration file or submit
description file contained an empty multi-line value.
(HTCONDOR-2249) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2249]

	Fixed a bug where a submit transform or a job router route could crash on a
two argument transform statement that had missing arguments.
(HTCONDOR-2280) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2280]

	Fixed error handing for the -format and -autoformat options of
the condor_qusers tool when the argument to those options was not a valid
expression.
(HTCONDOR-2269) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2269]

	Fixed a bug where the condor_collector generated an invalid host
certificate for itself on macOS.
(HTCONDOR-2272) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2272]

Version 23.0.4

Release Notes:

	HTCondor version 23.0.4 released on February 8, 2024.

New Features:

	The condor_starter will now set the environment variable NVIDIA_VISIBLE_DEVICES either
to none or to a list of the full uuid of each GPU device assigned to the slot.
(HTCONDOR-2242) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2242]

	When the HTCondor Keyboard daemon (condor_kbdd) is installed, a
configuration file is included to automatically enable user input monitoring.
(HTCONDOR-2255) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2255]

	The condor_starter can now be configured to capture the stdout and stderr
of file transfer plugins and write that output into the StarterLog.
(HTCONDOR-1459) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1459]

	Updated condor_upgrade_check script for better support and
maintainability. This update includes new flags/functionality
and removal of old checks for upgrading between V9 and V10 of
HTCondor.
(HTCONDOR-2168) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2168]

Bugs Fixed:

	Fixed a bug in the HTCondor Keyboard daemon where activity detected by the
X Screen Saver extension was ignored.
(HTCONDOR-2255) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2255]

	Search engine timeout settings for condor_adstash now apply to all search
engine operations, not just the initial request to the search engine.
(HTCONDOR-2167) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2167]

	Ensure Perl dependencies are present for the condor_gather_info script.
The condor_gather_info script now properly reports the User login name.
Also, report the contents of /etc/os-release`.
(HTCONDOR-2094) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2094]

	The submit language will no longer treat request_gpu_memory and request_gpus_memory
as requests for a custom resource of type gpu_memory or gpus_memory respectively.
(HTCONDOR-2201) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2201]

	Fixed bug where DAG node jobs declared inline inside a DAG file
would fail to set the Job ClassAd attribute JobSubmitMethod.
(HTCONDOR-2184) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2184]

	Fixed SyntaxWarning raised by Python 3.12 in scripts packaged
with the Python bindings.
(HTCONDOR-2212) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2212]

Version 23.0.3

Release Notes:

	HTCondor version 23.0.3 released on January 4, 2024.

	Preliminary support for openSUSE LEAP 15.
(HTCONDOR-2156) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2156]

New Features:

	Improve htcondor job status command to display information about
a jobs goodput.
(HTCONDOR-1982) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1982]

	Added ROOT_MAX_THREADS to STARTER_NUM_THREADS_ENV_VARS default value.
(HTCONDOR-2137) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2137]

Bugs Fixed:

	The file transfer plugin documents that an exit code of 0
is success, 1 is failure, and 2 is reserved for future work to
handle the need to refresh credentials. The definition has now
changed so that any non-zero exit codes are treated as an error
putting the job on hold.
(HTCONDOR-2205) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2205]

	Fixed a bug where any file I/O error (such as disk full) was
ignored by the condor_starter when writing the ClassAd file
that controlled file transfer plugins. As a result, in rare
cases, file transfer plugins could be unknowingly given
incomplete sets of files to transfer.
(HTCONDOR-2203) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2203]

	Fixed a crash in the Python bindings when job submit fails due to
any reason. A common reason might be when SUBMIT_REQUIREMENT_NAMES
fails.
(HTCONDOR-1931) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1931]

	There is a fixed size limit of 5120 bytes for chip commands. The
starter now returns an error, and the chirp_client prints out
an error when requested to send a chirp command over this limit.
Previously, these were silently ignored.
(HTCONDOR-2157) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2157]

	Fixed a bug where the Python-based HTChirp client had its max line length set
much shorter than is allowed by the HTCondor Chirp server. The client now
also throws a relevant error when this max limit is hit while sending commands
to the server.
(HTCONDOR-2142) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2142]

	Linux jobs with a invalid #! interpreter now get a better error
message when the Execution Point is running as root. This was enhanced in 10.0,
but a bug prevented the enhancement from fully working on a system
installed Execution Point.
(HTCONDOR-1698) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1698]

	Fixed a bug where the DAGMan job proper for a DAG with a final
node could stay stuck in the removed job state.
(HTCONDOR-2147) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2147]

	Correctly identify GPUsAverageUsage and GPUsMemoryUsage as floating point
values for condor_adstash.
(HTCONDOR-2170) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2170]

	Fixed a bug where condor_adstash would get wedged due to a logging failure.
(HTCONDOR-2166) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2166]

	Updated the usage and man page of the condor_drain tool to include information
about the -reconfig-on-completion option.
(HTCONDOR-2164) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2164]

Version 23.0.2

Release Notes:

	HTCondor version 23.0.2 released on November 20, 2023.

New Features:

	None.

Bugs Fixed:

	Fixed a bug when Hashicorp Vault is configured to issue data transfer tokens
(which is not the default), job submission could hang and then fail.
Reverted a change to condor_submit that disconnected the output stream of
SEC_CREDENTIAL_STORER to the user’s console, which broke OIDC flow.
(HTCONDOR-2078) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2078]

	Fixed a bug that could result in job sandboxes not being cleaned up
for batch grid jobs submitted to a remote cluster.
(HTCONDOR-2073) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2073]

	Improved cleanup of ssh-agent processes when submitting batch
grid universe jobs to a remote cluster via ssh.
(HTCONDOR-2118) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2118]

	Fixed a bug where the condor_negotiator could fail to contact a
condor_schedd that’s on the same private network.
(HTCONDOR-2115) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2115]

	Fixed CGROUP_MEMORY_LIMIT_POLICY = custom for cgroup v2 systems.
(HTCONDOR-2133) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2133]

	Implemented DISABLE_SWAP_FOR_JOB support for cgroup v2 systems.
(HTCONDOR-2127) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2127]

	Fixed a bug in the OAuth and Vault credmons where log files would not
rotate according to the configuration.
(HTCONDOR-2013) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2013]

	Fixed a bug in the condor_schedd where it would not create a permanent User
record when a queue super user submitted a job for a different owner. This
bug would sometimes cause the condor_schedd to crash after a job for a new
user was submitted.
(HTCONDOR-2131) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2131]

	Fixed a bug that could cause jobs to be created incorrectly when a using
initialdir and max_idle or max_materialize in the same submit file.
(HTCONDOR-2092) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2092]

	Fixed bug in DAGMan where held jobs that were removed would cause a
warning about the internal count of held job procs being incorrect.
(HTCONDOR-2102) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2102]

	Fixed a bug in condor_transfer_data where using the -addr
flag would automatically apply the -all flag to transfer
all job data back making the use of -addr with a Job ID
constraint fail.
(HTCONDOR-2105) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2105]

	Fixed warnings about use of deprecated HTCondor Python binding methods
in the htcondor dag submit command.
(HTCONDOR-2104) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2104]

	Fixed several small bugs with Trust On First Use (TOFU) for SSL
authentication.
Added configuration parameter
BOOTSTRAP_SSL_SERVER_TRUST_PROMPT_USER, which can be used to
prevent tools from prompting the user about trusting the server’s
SSL certificate.
(HTCONDOR-2080) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2080]

	Fixed bug in the condor_userlog tool where it would crash
when reading logs with parallel universe jobs in it.
(HTCONDOR-2099) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2099]

Version 23.0.1

Release Notes:

	HTCondor version 23.0.1 released on October 31, 2023.

	We added a HTCondor Python wheel for Python 3.12 on PyPI.
(HTCONDOR-2117) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2117]

	The HTCondor tarballs now contain apptainer version 1.2.4.
(HTCONDOR-2111) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2111]

New Features:

	None.

Bugs Fixed:

	Fixed a bug introduced in HTCondor 10.6.0 that prevented USE_PID_NAMESPACES from working.
(HTCONDOR-2088) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2088]

	Fix a bug where HTCondor fails to install on Debian and Ubuntu platforms when the condor
user is present and the /var/lib/condor directory is not.
(HTCONDOR-2074) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2074]

	Fixed a bug where execution times reported for ARC CE jobs were
inflated by a factor of 60.
(HTCONDOR-2068) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2068]

	Fixed a bug in DAGMan where Service nodes that failed caused the DAGMan process to fail
an assertion check and crash.
(HTCONDOR-2051) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2051]

	The job attributes CpusProvisioned, DiskProvisioned, and
MemoryProvisioned are now updated for Condor-C and Job Router jobs.
(HTCONDOR-2069) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2069]

	Updated HTCondor Windows binaries that are statically linked to the curl library to use curl version 8.4.0.
The update was due to a report of a vulnerability, CVE-2023-38545, which affects earlier versions of curl.
(HTCONDOR-2084) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2084]

	Fixed a bug on Windows where jobs would be inappropriately put on hold with an out of memory
error if they returned an exit code with high bits set
(HTCONDOR-2061) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2061]

	Fixed a bug where jobs put on hold by the shadow were not writing their ad to the
job epoch history file.
(HTCONDOR-2060) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2060]

	Fixed a rare race condition where condor_rm’ing a parallel universe job would not remove
the job if the rm happened after the job was matched but before it fully started
(HTCONDOR-2070) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2070]

Version 23.0.0

Release Notes:

	HTCondor version 23.0.0 released on September 29, 2023.

New Features:

	A condor_startd without any slot types defined will now default to a single partitionable slot rather
than a number of static slots equal to the number of cores as it was in previous versions.
The configuration template use FEATURE : StaticSlots was added for admins wanting the old behavior.
(HTCONDOR-2026) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2026]

	The TargetType attribute is no longer a required attribute in most Classads. It is still used for
queries to the condor_collector and it remains in the Job ClassAd and the Machine ClassAd because
of older versions of HTCondor require it to be present.
(HTCONDOR-1997) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1997]

	The -dry-run option of condor_submit will now print the output of a SEC_CREDENTIAL_STORER script.
This can be useful when developing such a script.
(HTCONDOR-2014) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2014]

	Added ability to query epoch history records from the Python bindings.
(HTCONDOR-2036) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2036]

	The default value of SEC_DEFAULT_AUTHENTICATION_METHODS will now be visible
in condor_config_val. The default for SEC_*_AUTHENTICATION_METHODS
will inherit from this value, and thus no READ and CLIENT will no longer
automatically have CLAIMTOBE.
(HTCONDOR-2047) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2047]

	Added new tool condor_test_token, which will create a SciToken
with configurable contents (including issuer) which will be accepted
for a short period of time by the local HTCondor daemons.
(HTCONDOR-1115) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1115]

Bugs Fixed:

	Fixed a bug that would cause the condor_startd to crash in rare cases
when jobs go on hold
(HTCONDOR-2016) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2016]

	Fixed a bug where if a user-level checkpoint could not be transferred from
the starter to the AP, the job would go on hold. Now it will retry, or
go back to idle.
(HTCONDOR-2034) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2034]

	Fixed a bug where the CommittedTime attribute was not set correctly
for Docker Universe jobs doing user level check-pointing.
(HTCONDOR-2014) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2014]

	Fixed a bug where condor_preen was deleting files named ‘OfflineAds’
in the spool directory.
(HTCONDOR-2019) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2019]

	Fixed a bug where the blahpd would incorrectly believe that an LSF
batch scheduler was not working.
(HTCONDOR-2003) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2003]

	Fixed the Execution Point’s detection of whether libvirt is working
properly for the VM universe.
(HTCONDOR-2009) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2009]

	Fixed a bug where container universe did not work for late materialization jobs
submitted to the condor_schedd
(HTCONDOR-2031) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2031]

	Fixed a bug where the condor_startd could crash if a new match is
made at the end a drain request.
(HTCONDOR-2032) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2032]

 Version 10 Feature Releases

Version 10 Feature Releases

We release new features in these releases of HTCondor. The details of each
version are described below.

Version 10.9.0

Release Notes:

	HTCondor version 10.9.0 released on September 28, 2023.

	This version includes all the updates from Version 10.0.9.

New Features:

	None.

Bugs Fixed:

	None.

Version 10.8.0

Release Notes:

	HTCondor version 10.8.0 released on September 14, 2023.

	The packaged builds (RPMs and debs) have been reorganized.
We no longer wish to support the ClassAd library and it has been folded into
the main condor package. The condor-blahp and condor-procd packages
have also been folded into the condor package.
(HTCONDOR-1981) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1981]

	On Debian based systems, the HTCondor’s libexec directory has moved to
the more standard /usr/libexec/condor.
(HTCONDOR-1981) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1981]

	The Debian packaging has been aligned with the RPM packaging.
The package names are now condor and minicondor.
The condor-kbdd package has been split out, since many installations
are server based and do not require the keyboard daemon and all of its
dependencies on the X Window system. Also, the condor-vm-gahp package
has been split out for sites that do not want to support VM Universe and
the libvirt dependencies that come along with it.
(HTCONDOR-1987) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1987]

	This version includes all the updates from Version 10.0.8.

New Features:

	In an HTCondor Execution Point started by root on Linux, the default
for cgroups memory has changed to be enforcing. This means that
jobs that use more then their provisioned memory will be put
on hold with an appropriate hold message. condor_q -hold will show
that message. The previous default can be restored by setting
CGROUP_MEMORY_LIMIT_POLICY = none on the Execution points.
(HTCONDOR-1974) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1974]

	Added a -gpus option to condor_status. With this option condor_status
will show only machines that have GPUs provisioned; and it will show information
about the GPU properties.
(HTCONDOR-1958) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1958]

	The output of condor_status when using the -compact option has been improved
to show a separate row for the second and subsequent slot type for machines that have
multiple slot types. Also the totals now count slots that have the BackfillSlot
attribute under the Backfill or BkIdle columns.
(HTCONDOR-1957) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1957]

	Added new DAG command ENV for DAGMan. This command allows users to specify
environment variables to be added into the DAGMan job proper’s environment either
by setting values explicitly or getting them from the environment the job is
submitted from.
(HTCONDOR-1955) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1955]

	Improved output for htcondor dag status command to include more information
about the specified DAG.
(HTCONDOR-1951) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1951]

	Updated DAGMan to utilize the -reason flag to add a message about why
a job was removed when DAGMan removes managed jobs via condor_rm for some
reason.
(HTCONDOR-1950) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1950]

	Partitionable slots can now be directly claimed by a condor_schedd
(i.e. the State of the partitionable slot changes to Claimed).
While a slot is claimed, no other condor_schedd is able to create
new dynamic slots to run jobs.
This is controlled by the new configuration parameter
ENABLE_CLAIMABLE_PARTITIONABLE_SLOTS and is disabled by
default.
(HTCONDOR-1824) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1824]

	By default, the user event logs are no longer fsync’d by the condor_schedd. This
should improve the performance of the condor_schedd, especially when the user’s event
logs are on non-solid state disks. There is a knob to revert to the old
semantics, ENABLE_USERLOG_FSYNC, which defaults to false.
(HTCONDOR-1550) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1550]

	A new configuration variable ALLOW_SUBMIT_FROM_KNOWN_USERS_ONLY was
added to allow administrators to restrict job submission to users that have
already been added to the condor_schedd using the condor_qusers tool.
(HTCONDOR-1934) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1934]

	Updated condor_upgrade_check script to check and warn about known incompatibilities
introduced in the feature series for HTCondor V10 that can cause issues when
upgrading to a newer version (i.e. HTCondor V23).
(HTCONDOR-1960) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1960]

	Self-checkpointing jobs may now include the time spent generating
successfully-stored checkpoints as part of their CommittedTime
job ad attribute.
(HTCONDOR-1942) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1942]

Bugs Fixed:

	Fixed a bug introduced in 10.5.0 that caused jobs to fail to start
if they requested an OAuth credential whose service name included
an asterisk.
(HTCONDOR-1966) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1966]

	Fixed bugs in condor_store_cred that could cause it to crash or
write incorrect data for the pool password.
(HTCONDOR-1587) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1587]

	Fixed a bug with condor_ssh_to_job where it would fail if the Execution
point was behind CCB, and the command was run immediately after the job
started.
(HTCONDOR-1979) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1979]

	Some support scripts for the htcondor annex command are now
properly installed as executable.
(HTCONDOR-1984) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1984]

	Fixed a bug where condor_remote_cluster could get stuck in a loop
while installing files into an NFS directory.
(HTCONDOR-2023) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2023]

Version 10.7.1

	HTCondor version 10.7.1 released on August 9, 2023.

New Features:

	None.

Bugs Fixed:

	Fixed inefficiency in DAGMan setting a nodes descendants to futile status
which would result in DAGMan taking an extremely long time when a node fails
in a very large and bushy DAG.
(HTCONDOR-1945) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1945]

Version 10.7.0

Release Notes:

	HTCondor version 10.7.0 released on July 31, 2023.

	This version includes all the updates from Version 10.0.7.

	Add support for Debian 12 (bookworm).
(HTCONDOR-1938) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1938]

New Features:

	A single HTCondor pool can now have multiple condor_defrag daemons running
and they will not interfere with each other so long as each has
DEFRAG_REQUIREMENTS that select mutually exclusive subsets of the pool.
(HTCONDOR-1903) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1903]

	If a job does not define any of the periodic policy expressions (like
periodic_hold), HTCondor no longer sets a default value (like false) in the
job ad. The system knows that if these aren’t set, to take the default action.
This removes about 10% of the attributes in a job ad, with corresponding
benefits for all consumers of the job ad.
(HTCONDOR-1919) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1919]

	Added submit command want_io_proxy.
This replaces the old command +WantIOProxy.
(HTCONDOR-1875) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1875]

	Apptainer is now included in the tarballs.
(HTCONDOR-1932) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1932]

Bugs Fixed:

	Fixed bug introduced in 10.5.0 on cgroup v1 systems where the
user and system CPU time measured was low by a factor of 10,000.
(HTCONDOR-1920) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1920]

	Fixed a bug introduced in V10.5.0 of HTCondor where the .job.ad and
.machine.ad failed to be written to a local universe jobs scratch
directory because of the condor_starter having the wrong permissions.
(HTCONDOR-1912) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1912]

	If the collector is storing offline ads via COLLECTOR_PERSISTENT_AD_LOG
the condor_preen tool will no longer delete that file
(HTCONDOR-1874) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1874]

	Fixed a bug where empty execute sandboxes failed to be cleaned up on the
Execution Point when using Startd disk enforcement.
(HTCONDOR-1821) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1821]

	When using Startd disk enforcement, if a condor_starter running a container
or VM universe job is abruptly killed (like SIGABRT) then the condor_startd
would fail to cleanup the running docker container or VM and underlying logical
volume.
(HTCONDOR-1895) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1895]

Version 10.6.0

Release Notes:

	HTCondor version 10.6.0 released on June 29, 2023.

	This version includes all the updates from Version 10.0.6.

New Features:

	Added the condor_qusers command to monitor and control users at the Access Point.
Users disabled at the Access Point are no longer allowed to submit jobs. Jobs submitted
before the user was disabled are allowed to run to completion. When a user
is disabled, an optional reason string can be provided. The reason will be
included in the error message from condor_submit when submission is refused
because the user is disabled.
(HTCONDOR-1723) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1723]
(HTCONDOR-1835) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1835]

	Mitigate a memory leak in the arc_gahp with libcurl when it uses
NSS for security.
When an arc_gahp process has handled a certain number of commands,
a new arc_gahp is started and old process exits.
The number of commands that triggers a new process is controlled by
new configuration parameter ARC_GAHP_COMMAND_LIMIT.
(HTCONDOR-1778) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1778]

	Container universe jobs may now specify the container_image to
be an image transferred via a file transfer plugin.
(HTCONDOR-1820) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1820]

	Added two new functions for using ClassAd expressions. The stringListSubsetMatch and
stringListISubsetMatch functions can be used to check if all of the members of a
stringlist are also in a target stringlist. A single stringListSubsetMatch function
call can replace a whole set of stringListMember calls once the whole pool is
updated to 10.6.0.
(HTCONDOR-1817) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1817]

	Added a new automatic submit file macro $(JobId) which expands to the full
id of the submitted job.
(HTCONDOR-1836) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1836]

	The job’s executable is no longer renamed to condor_exec.exe when
the job’s sandbox is transferred to the Execution Point.
(HTCONDOR-1227) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1227]

Bugs Fixed:

	condor_restd service in the htcondor/mini container no longer crashes
on startup due to the en_US.UTF-8 locale being unavailable.
(HTCONDOR-1785) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1785]

	Fixed a bug that would very rarely cause condor_wait to hang forever.
(HTCONDOR-1792) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1792]

Version 10.5.1

	HTCondor version 10.5.1 released on June 6, 2023.

New Features:

	None.

Bugs Fixed:

	For grid universe jobs of type batch, detecting if a Slurm
system is functioning now works with older versions of Slurm.
(HTCONDOR-1826) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1826]

Version 10.5.0

Release Notes:

	HTCondor version 10.5.0 released on June 5, 2023.

	This version includes all the updates from Version 10.0.4.

	Add support for Amazon Linux 2023. VOMS authentication is omitted on this
platform.
(HTCONDOR-1742) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1742]

New Features:

	Added new Save File functionality to DAGMan which allows users to
specify DAG nodes as save points to record the current DAG’s progress
in a file similar to a rescue file. These files can then be specified
with the new condor_submit_dag flag load_save to re-run the
DAG from that point of progression. For more information visit
DAG Save Point Files.
(HTCONDOR-1636) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1636]

	The admin knob SUBMIT_ALLOW_GETENV when set to false, now allows
submit files to use any value but true for their getenv = ...
commands.
(HTCONDOR-1671) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1671]

	Improved throughput when submitting a large number of ARC CE jobs.
Previously, jobs could remain stalled for a long time in the ARC CE
server waiting for their input sandbox to be transferred while other
were being submitted.
(HTCONDOR-1666) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1666]

	The arc_gahp can now issue multiple HTTPS requests in parallel in
different threads. This is controlled by the new configuration
parameter ARC_GAHP_USE_THREADS.
(HTCONDOR-1690) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1690]

	The Execute event in the user log now prints out slot name, sandbox path
and resource quantities of execution slot.
(HTCONDOR-1722) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1722]

	Added new submit command ulog_execute_attrs for a jobs submit file. This
command takes a comma-separated list of machine ClassAd attributes to be
written to the user logs execute event.
(HTCONDOR-1759) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1759]

	Added new DAGMan configuration macro DAGMAN_RECORD_MACHINE_ATTRS
to give a list of machine attributes that will be added to DAGMan submitted
jobs for recording in the various produced job ads and userlogs.
(HTCONDOR-1717) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1717]

	The condor_transform_ads tool can now read a configuration file containing
JOB_TRANSFORM_<name> or JOB_ROUTER_ROUTE_<name> and then apply
any or all of the transforms declared in that file. This makes it
easier to test job transforms before deploying them.
(HTCONDOR-1710) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1710]

	Linux Cgroup support has been redone in a way that doesn’t depend on
using the procd. There should be no user visible changes in
the usual cases.
(HTCONDOR-1589) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1589]

Bugs Fixed:

	Expanded default list of environment variables to include in the DAGMan
proper manager jobs getenv to include HOME, USER, LANG, and
LC_ALL. Thus resulting in these variables appearing in the DAGMan
manager jobs environment.
(HTCONDOR-1725) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1725]

	Fixed a bug on cgroup v2 systems where memory limits over 2 gigabytes would
not be enforced correctly.
(HTCONDOR-1775) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1775]

	HTCondor no longer puts jobs using cgroup v1 into the blkio controller.
HTCondor never put limits on the i/o, and some kernel version panicked
and crashed when they had active jobs in the blkio controller.
(HTCONDOR-1786) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1786]

	Forced condor_ssh_to_job to never try to use a Control Master, which would
break ssh_to_job. Also raised the timeout for ssh_to_job which might
be needed for slow WANs.
(HTCONDOR-1782) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1782]

	Fixed a bug when running with root on a Linux systems with cgroup v1
that would print a warning to the StarterLog claiming
Warning: cannot chown /sys/fs/cgroup/cpu,cpuset
(HTCONDOR-1672) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1672]

	Fixed a bug where condor_history would fail to find history files
for a remote query if the various history configuration macros were
specified with subsystem prefixes i.e. SCHEDD.HISTORY = /path
(HTCONDOR-1739) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1739]

	When started on a systemd system, HTCondor will now wait for the SSSD
service to start. Previously it only waited for ypbind.
(HTCONDOR-1655) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1655]

	Fixed a bug in condor_preen that would remove any recorded job epoch
history files stored in the spool directory.
(HTCONDOR-1738) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1738]

Version 10.4.3

Release Notes:

	HTCondor version 10.4.3 released on May 9, 2023.

	Tarballs in this release contain the recent scitokens-cpp 1.0.1 library.
(HTCONDOR-1779) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1779]

New Features:

	None.

Bugs Fixed:

	The ce-audit collector plug-in should no longer crash.
(HTCONDOR-1774) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1774]

Version 10.4.2

	HTCondor version 10.4.2 released on May 2, 2023.

New Features:

	None.

Bugs Fixed:

	Fixed a bug introduced in HTCondor 10.0.3 that caused remote
submission of batch grid universe jobs via ssh to fail when
attempting to do file transfer.
(HTCONDOR-1747) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1747]

	Fixed a bug where the HTCondor-CE would fail to handle any of its
jobs after a restart.
(HTCONDOR-1755) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1755]

Version 10.4.1

Release Notes:

	HTCondor version 10.4.1 released on April 12, 2023.

	Preliminary support for Ubuntu 20.04 (Focal Fossa) on PowerPC (ppc64el).
(HTCONDOR-1668) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1668]

New Features:

	None.

Bugs Fixed:

	condor_remote_cluster now works correctly when the hardware
architecture of the remote machine isn’t x86_64.
(HTCONDOR-1670) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1670]

Version 10.4.0

Release Notes:

	HTCondor version 10.4.0 released on April 6, 2023.

	This version includes all the updates from Version 10.0.3.

	HTCondor will no longer pass all environment variables to the DAGMan proper manager jobs environment.
This may result in DAGMan and its various parts (primarily PRE, POST,& HOLD Scripts) to start failing
or change behavior due to missing needed environment variables. To revert back to the old behavior or
add the missing environment variables to the DAGMan proper jobs environment set the
DAGMAN_MANAGER_JOB_APPEND_GETENV configuration option.
(HTCONDOR-1580) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1580]

	The condor_startd will no longer advertise CpuBusy or CpuBusyTime
unless the configuration template use POLICY : DESKTOP or use POLICY : UWCS_DESKTOP
is used. Those templates will cause CpuBusyTime to be advertised as a time value and not
a duration value. The policy expressions in those templates have been modified
to account for this fact. If you have written policy expressions of your own that reference
CpuBusyTime you will need to modify them to use $(CpuBusyTimer) from one of those templates
or make the equivalent change.
(HTCONDOR-1502) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1502]

New Features:

	DAGMan no longer sets getenv = true in the .condor.sub file while adding the
ability to better control the environment passed to the DAGMan proper job.
getenv will default to CONDOR_CONFIG,_CONDOR_*,PATH,PYTHONPATH,PERL*,PEGASUS_*,TZ
in the .condor.sub file which can be appended to via the
DAGMAN_MANAGER_JOB_APPEND_GETENV or the new condor_submit_dag flag
include_env. Also added new condor_submit_dag flag insert_env to
directly set key=value pairs of information into the .condor.sub environment.
(HTCONDOR-1580) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1580]

	New configuration parameter SEC_SCITOKENS_FOREIGN_TOKEN_ISSUERS
restricts which issuers’ tokens will be accepted under
SEC_SCITOKENS_ALLOW_FOREIGN_TOKEN_TYPES.
Updated default values allow EGI CheckIn tokens to be accepted under
the SCITOKENS authentication method.
(HTCONDOR-1515) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1515]

	The condor_startd can now be configured to evaluate a set of expressions
defined by STARTD_LATCH_EXPRS. For each expression, the last
evaluated value will be advertised as well as the time that the evaluation
changed to that value. This new generic mechanism was used to add a new
slot attribute NumDynamicSlotsTime that is the last time a dynamic slot
was created or destroyed.
(HTCONDOR-1502) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1502]

	Add new field ContainerDuration to TransferInput attribute of
jobs that measure the number of seconds to transfer the
Apptainer/Singularity image.
(HTCONDOR-1588) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1588]

	For grid universe jobs of type batch, add detection of when the
target batch system is unreachable or not functioning. When this is
the case, HTCondor marks the resource as unavailable instead of
putting the affected jobs on hold. This matches the behavior for
other grid universe job types.
Grid ads in the collector now contain attributes
GridResourceUnavailableTimeReason and
GridResourceUnavailableTimeReasonCode, which give details about
why the remote scheduling system is considered unavailable.
(HTCONDOR-1582) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1582]

	Added ability for DAGMan to automatically record the Node Retry attempt in that
nodes job ad. This is done by setting the new configuration option DAGMAN_NODE_RECORD_INFO.
(HTCONDOR-1634) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1634]

Bugs Fixed:

	Fixed a bug where if the docker command emitted warnings to stderr, the
condor_startd would not correctly advertise the amount of used image cache.
(HTCONDOR-1645) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1645]

	Fixed a bug where condor_history would fail if the job history
file doesn’t exist.
(HTCONDOR-1578) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1578]

	Fixed a bug in the view server where it would assert and exit if
the view server stats file are deleted at just the wrong time.
(HTCONDOR-1599) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1599]

	Fixed a bug where condor_shadow was unable to write the job ad to the
JOB_EPOCH_HISTORY file when located in condor owned directories
such as the spool directory.
(HTCONDOR-1631) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1631]

	Remove warning when installing HTCondor RPMs on Enterprise Linux 9.
(HTCONDOR-1571) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1571]

Version 10.3.1

	HTCondor version 10.3.1 released on March 7, 2023.

New Features:

	The condor_startd now advertises whether there appears to be
a useful /usr/sbin/sshd on the system, in order for condor_ssh_to_job
to work.
(HTCONDOR-1614) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1614]

Bugs Fixed:

	None.

Version 10.3.0

Release Notes:

	HTCondor version 10.3.0 released on March 6, 2023.

	This version includes all the updates from Version 10.0.2.

	When HTCondor is configured to use cgroups, if the system
as a whole is out of memory, and the kernel kills a job with the out
of memory killer, HTCondor now checks to see if the job is below
the provisioned memory. If so, HTCondor now evicts the job, and
marks it as idle, not held, so that it might start again on a
machine with sufficient resources. Previous, HTCondor would let
this job attempt to run, hoping the next time the OOM killer fired
it would pick a different process.
(HTCONDOR-1512) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1512]

	This version changes the semantics of the output_destination submit
command. It no longer sends the files named by the output or
error submit commands to the output destination. Submitters may
instead specify those locations with URLs directly.
(HTCONDOR-1365) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1365]

New Features:

	When HTCondor has root, and is running with cgroups, the cgroup the job is
in is writeable by the job. This allows the job (perhaps a glidein)
to sub-divide the resource limits it has been given, and allocate
subsets of those to its child processes.
(HTCONDOR-1496) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1496]

	Added capabilities for per job run instance history recording. Where during
the condor_shadow daemon’s shutdown it will write the current job ad
to a file designated by JOB_EPOCH_HISTORY and/or a directory
specified by JOB_EPOCH_HISTORY_DIR. These per run instance
job ad records can be read via condor_history using the new -epochs
option. This behavior is not turned on by default. Setting either of the
job epoch location config knobs above will turn on this behavior.
(HTCONDOR-1104) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1104]

	Added new condor_history -search option that takes a filename
to find all matching condor time rotated files filename.YYYYMMDDTHHMMSS
to read from instead of using any default files.
(HTCONDOR-1514) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1514]

	Added new condor_history -directory option to use a history sources
alternative configured directory knob such as JOB_EPOCH_HISTORY_DIR
to search for history.
(HTCONDOR-1514) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1514]

	Added ability to set a gangliad metrics lifetime (DMAX value) within the
metric definition language with the new Lifetime keyword.
(HTCONDOR-1547) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1547]

	Added configuration knob GANGLIAD_MIN_METRIC_LIFETIME to set
the minimum value for gangliads calculated metric lifetime (DMAX value)
for all metrics without a specified Lifetime.
(HTCONDOR-1547) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1547]

	Added an attribute to the condor_schedd classad that advertises the number of
late materialization jobs that have been submitted, but have not yet materialized.
The new attribute is called JobsUnmaterialized
(HTCONDOR-1591) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1591]

	The linux_kernel_tuning_script, run by the condor_master at startup,
now tries to increase the value of /proc/sys/fs/pipe-user-pages-soft
to 128k, if it was below this. This improves the scalability of the
condor_schedd when running more than 16k jobs from any one user.
(HTCONDOR-1556) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1556]

	The linux_kernel_tuning_script, run by the condor_master at startup,
no longer tries to mount the various cgroup filesystems. We assume that
any reasonable Linux system will have done this in a manner that it
deems appropriate.
(HTCONDOR-1528) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1528]

	Linux worker nodes now advertise DockerCachedImageSizeMb, the number of
megabytes that are used in the docker image cache.
(HTCONDOR-1494) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1494]

	When a file-transfer plug-in aborts due to lack of progress, the message
now includes the https_proxy (or http_proxy) environment variable,
and the phrasing has been changed to avoid suggesting that the plug-in
actually respected it.
(HTCONDOR-1473) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1473]

Bugs Fixed:

	Added support for older cgroup v2 systems with missing memory.peak
files in the memory controller.
(HTCONDOR-1529) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1529]

	The HTCondor starter now removes any cgroup that it has created for
a job when it exits.
(HTCONDOR-1500) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1500]

	Fixed bug where condor_history would occasionally fail to display
all matching user requested job ids.
(HTCONDOR-1506) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1506]

	Fixed bugs in how the condor_collector generated its own CA and host
certificate files.
Configuration parameter COLLECTOR_BOOTSTRAP_SSL_CERTIFICATE now
defaults to True on Unix platforms.
Configuration parameters AUTH_SSL_SERVER_CERTFILE and
AUTH_SSL_SERVER_KEYFILE can now be a list of files. The first pair of
files with valid credentials is used.
(HTCONDOR-1455) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1455]

	Added missing environment variables for the SciTokens plugin.
(HTCONDOR-1516) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1516]

Version 10.2.5

	HTCondor version 10.2.5 released on February 28, 2023.

New Features:

	None.

-Bugs Fixed:

	Fixed an issue where after a condor_schedd restart, the
JobsUnmaterialized attribute in the condor_schedd ad may be an
overcount of the number of unmaterialized jobs in rare cases.
(HTCONDOR-1606) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1606]

Version 10.2.4

Release Notes:

	HTCondor version 10.2.4 released on February 24, 2023.

New Features:

	None.

Bugs Fixed:

	Fixed an issue where after a condor_schedd restart, the
JobsUnmaterialized attribute in the condor_schedd ad may be an
undercount of the number of unmaterialized jobs for previous submissions.
(HTCONDOR-1591) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1591]

Version 10.2.3

	HTCondor version 10.2.3 released on February 21, 2023.

New Features:

	Added an attribute to the condor_schedd ClassAd that advertises the number of
late materialization jobs that have been submitted, but have not yet materialized.
The new attribute is called JobsUnmaterialized.
(HTCONDOR-1591) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1591]

Bugs Fixed:

	None.

Version 10.2.2

Release Notes:

	HTCondor version 10.2.2 released on February 7, 2023.

New Features:

	None.

Bugs Fixed:

	Fixed bugs with configuration knob SINGULARITY_USE_PID_NAMESPACES.
(HTCONDOR-1574) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1574]

Version 10.2.1

	HTCondor version 10.2.1 released on January 24, 2023.

New Features:

	Improved scalability of condor_schedd when running more than 1,000 jobs
from the same user.
(HTCONDOR-1549) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1549]

	condor_ssh_to_job should now work in glidein and other environments
where the job or HTCondor is running as a Unix user id that doesn’t
have an entry in the /etc/passwd database.
(HTCONDOR-1543) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1543]

Bugs Fixed:

	In the Python bindings, the attribute ServerTime is now included
in job ads returned by Schedd.query().
(HTCONDOR-1531) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1531]

	Fixed issue when HTCondor could not be installed on Ubuntu 18.04
(Bionic Beaver).
(HTCONDOR-1548) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1548]

Version 10.2.0

Release Notes:

	HTCondor version 10.2.0 released on January 5, 2023.

	This version includes all the updates from Version 10.0.1.

	We changed the semantics of relative paths in the output, error, and
transfer_output_remaps submit file commands. These commands now create
the directories named in relative paths if they do not exist. This could
cause jobs that used to go on hold (because they couldn’t write their
output or error files, or a remapped output file) to instead succeed.
(HTCONDOR-1325) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1325]

	HTCondor can now put a job in a Linux control (cgroup), not only if it has
root privilege, but also if the administrator or some external entity
has made the cgroup HTCondor is configured to use writeable by the
non-rootly user a personal condor or glidein is running as.
(HTCONDOR-1465) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1465]

	File-transfer plug-ins may no longer take as long as they like to finish.
After MAX_FILE_TRANSFER_PLUGIN_LIFETIME seconds, the starter will
terminate the transfer and report a time-out failure (with ETIME, 62,
as the hold reason subcode).
(HTCONDOR-1404) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1404]

New Features:

	Add support for Enterprise Linux 9 on x86_64 and aarch64 architectures.
(HTCONDOR-1285) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1285]

	Add support to the condor_starter for tracking processes via cgroup v2
on Linux distributions that support cgroup v2.
(HTCONDOR-1457) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1457]

	The condor_negotiator now support setting a minimum floor number of cores that any
given submitter should get, regardless of their fair share. This can be set or queried
via the condor_userprio tool, in the same way that the ceiling can be set or get
(HTCONDOR-557) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-557]

	Improved the validity testing of the Singularity / Apptainer container runtime software
at condor_startd startup. If this testing fails, slot attribute HasSingularity will be
set to false, and attribute SingularityOfflineReason will contain error information.
Also in the event of Singularity errors, more information is recorded into the condor_starter
log file.
(HTCONDOR-1431) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1431]

	condor_q default behavior of displaying the cumulative run time has changed
to now display the current run time for jobs in running, transferring output,
and suspended states while displaying the previous run time for jobs in idle or held
state unless passed -cumulative-time to show the jobs cumulative run time for all runs.
(HTCONDOR-1064) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1064]

	Docker Universe submit files now support docker_pull_policy = always, so
that docker will check to see if the cached image is out of date. This increases
the network activity, may cause increased throttling when pulling from docker hub,
and is recommended to be used with care.
(HTCONDOR-1482) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1482]

	Added configuration knob SINGULARITY_USE_PID_NAMESPACES.
(HTCONDOR-1431) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1431]

	condor_history will now stop searching history files once all requested job ads are
found if passed ClusterIds or ClusterId.ProcId pairs.
(HTCONDOR-1364) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1364]

	Improved condor_history search speeds when searching for matching jobs, matching clusters,
and matching owners.
(HTCONDOR-1382) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1382]

	The local issuer credmon can optionally add group authorizations to users’ tokens by setting
LOCAL_CREDMON_AUTHZ_GROUP_TEMPLATE and LOCAL_CREDMON_AUTHZ_GROUP_MAPFILE.
(HTCONDOR-1402) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1402]

	The JOB_INHERITS_STARTER_ENVIRONMENT configuration variable now accepts a list
of match patterns just like the submit command getenv does.
(HTCONDOR-1339) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1339]

	Declaring either container_image or docker_image without a defined universe
in a submit file will now automatically setup job for respective universe based on
image type.
(HTCONDOR-1401) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1401]

	Added new Scheduler ClassAd attribute EffectiveFlockList that represents the
condor_collector addresses that a condor_schedd is actively sending flocked jobs.
(HTCONDOR-1389) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1389]

	Added new DAGMan node status called Futile that represents a node that will never run
due to the failure of a node that the Futile node depends on either directly or
indirectly through a chain of PARENT/CHILD relationships. Also, added a new ClassAd
attribute DAG_NodesFutile to count the number of Futile nodes in a DAG.
(HTCONDOR-1456) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1456]

	Improved error handling in the condor_shadow and condor_starter
when they have trouble talking to each other.
(HTCONDOR-1360) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1360]

	Added support for plugins that can perform the mapping of a
validated SciToken to an HTCondor canonical user name during
security authentication.
(HTCONDOR-1463) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1463]

	EGI CheckIn tokens can now be used to authenticate via the SCITOKENS
authentication method.
New configuration parameter SEC_SCITOKENS_ALLOW_FOREIGN_TOKEN_TYPES
must be set to True to enable this usage.
(HTCONDOR-1498) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1498]

Bugs Fixed:

	Fixed bug where HasSingularity would be advertised as true in cases
where it wouldn’t work.
(HTCONDOR-1274) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1274]

Version 10.1.3

Release Notes:

	HTCondor version 10.1.3 limited release on November 22, 2022.

New Features:

	Jobs run in Singularity or Apptainer container runtimes now use the
SINGULARITY_VERBOSITY flag, which controls the verbosity of the runtime logging
to the job’s stderr. The default value is “-s” for silent, meaning only
fatal errors are logged.
(HTCONDOR-1436) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1436]

	The PREPARE_JOB and PREPARE_JOB_BEFORE_TRANSFER job hooks can now return a HookStatusCode and
a HookStatusMessage to give better feedback to the user.
See the Startd Cron and Schedd Cron manual section.
(HTCONDOR-1416) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1416]

	The local issuer credmon can optionally add group authorizations to users’ tokens by setting
LOCAL_CREDMON_AUTHZ_GROUP_TEMPLATE and LOCAL_CREDMON_AUTHZ_GROUP_MAPFILE.
(HTCONDOR-1402) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1402]

Bugs Fixed:

	None.

Version 10.1.2

	HTCondor version 10.1.2 limited release on November 15, 2022.

New Features:

	OpenCL jobs can now run inside a Singularity container launched by HTCondor if the
OpenCL drivers are present on the host in directory /etc/OpenCL/vendors.
(HTCONDOR-1410) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1410]

Bugs Fixed:

	None.

Version 10.1.1

Release Notes:

	HTCondor version 10.1.1 released on November 10, 2022.

New Features:

	Improvements to job hooks, including configuration knob STARTER_DEFAULT_JOB_HOOK_KEYWORD,
the new hook PREPARE_JOB_BEFORE_TRANSFER,
and the ability to preserve stderr from job hooks into the StarterLog or StartdLog.
See the Hooks manual section.
(HTCONDOR-1400) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1400]

Bugs Fixed:

	Fixed bugs in the container universe that prevented
apptainer-only systems from running container universe jobs
with Docker repository style images
(HTCONDOR-1412) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1412]

Version 10.1.0

Release Notes:

	HTCondor version 10.1.0 released on November 10, 2022.

	This version includes all the updates from Version 10.0.0.

New Features:

	None.

Bugs Fixed:

	None.

 Version 10.0 LTS Releases

Version 10.0 LTS Releases

These are Long Term Support (LTS) versions of HTCondor. As usual, only bug fixes
(and potentially, ports to new platforms) will be provided in future
10.0.y versions. New features will be added in the 10.x.y feature versions.

The details of each version are described below.

Version 10.0.9

Release Notes:

	HTCondor version 10.0.9 released on September 28, 2023.

New Features:

	Updated condor_upgrade_check script to check and warn about known incompatibilities
introduced in the feature series for HTCondor V10 that can cause issues when
upgrading to a newer version (i.e. HTCondor V23).
(HTCONDOR-1960) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1960]

Bugs Fixed:

	Fixed htcondor.htchirp to find its configuration at _CONDOR_CHIRP_CONFIG
instead of at _CONDOR_SCRATCH_DIR/.chirp.config.
(HTCONDOR-2012) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2012]

	Fixed a bug that prevented deletion of stored user passwords with
condor_store_cred on Windows.
(HTCONDOR-1998) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1998]

	Fixed misaligned pointers issue for the PowerPC architecture in the configuration system.
(HTCONDOR-2001) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-2001]

Version 10.0.8

Release Notes:

	HTCondor version 10.0.8 released on September 14, 2023.

New Features:

	None.

Bugs Fixed:

	Removed cgroup v1 blkio controller support – this prevents
a kernel panic in some EL8 kernels.
(HTCONDOR-1985) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1985]

	Fixed a bug in DAGMan where service nodes that finish before the DAGs
end would result in DAGMan crashing due to an assertion failure.
(HTCONDOR-1909) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1909]

	When the file transfer queue is growing too big, HTCondor sends email to the
administrator. Prior versions of HTCondor would send an arbitrarily large number
of emails. Now HTCondor will only send one email per day.
(HTCONDOR-1937) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1937]

	Fixed a bug where condor_adstash would not import the OpenSearch library properly.
(HTCONDOR-1965) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1965]

	Fixed a bug that broke the version check for older versions of the Elasticsearch Python library.
(HTCONDOR-1964) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1964]

	Fixed a bug in condor_adstash that caused a “unexpected keyword argument” error to occur when
new attributes needed to be added to the index and when using version 8.0.0 or newer of
the Elasticsearch Python library.
(HTCONDOR-1930) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1930]

	Fixed a bug with parallel universe that would result in the condor_startd
rejecting start attempts from the condor_schedd and causing the condor_schedd
to crash.
(HTCONDOR-1952) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1952]

	Preen now preserves all files in the spool directory matching *OfflineLog*
so that central managers with multiple active collectors can have offline
ads.
(HTCONDOR-1933) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1933]

	Fixed a bug that could cause condor_config_val to crash when there were no configuration files.
(HTCONDOR-1954) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1954]

Version 10.0.7

Release Notes:

	HTCondor version 10.0.7 released on July 25, 2023.

New Features:

	Improved daemon logging for IDTOKENS authentication to make useful
messages more prominent.
(HTCONDOR-1776) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1776]

	The -summary option of condor_config_val now works with a remote
configuration query when the daemon being queried is version 10.0.7 or later. It behaves
like -dump when the daemon is older.
(HTCONDOR-1879) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1879]

Bugs Fixed:

	Fixed bug where condor cron jobs put on hold by the condor_shadow
or condor_starter would never start running again and stay IDLE
when released from the HELD state.
(HTCONDOR-1869) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1869]

	Remove limit on certificate chain length in SSL authentication.
(HTCONDOR-1904) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1904]

	Print detailed error message when condor_remote_cluster fails to
fetch a URL.
(HTCONDOR-1884) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1884]

	Fixed a bug that caused condor_preen to crash if configuration
parameter PREEN_COREFILE_MAX_SIZE was set to a value larger than
2 gigabytes.
(HTCONDOR-1908) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1908]

	Fixed a bug where if the $(SPOOL) directory was on a separate file system
condor_preen would delete the special lost+found directory.
(HTCONDOR-1906) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1906]

	If the collector is storing offline ads via COLLECTOR_PERSISTENT_AD_LOG
the condor_preen tool will no longer delete that file
(HTCONDOR-1874) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1874]

	Fixed a bug when creating the default value for DC_DAEMON_LIST where a
secondary daemon such as COLLECTOR01 would not be considered a DC daemon if
the primary daemon was not in DAEMON_LIST.
(HTCONDOR-1900) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1900]

Version 10.0.6

Release Notes:

	HTCondor version 10.0.6 released on June 22, 2023.

New Features:

	Added configuration parameter AUTH_SSL_USE_CLIENT_PROXY_ENV_VAR,
which controls whether the client checks the environment variable
X509_USER_PROXY for the location of a credential to use during SSL
authentication with a daemon.
(HTCONDOR-1841) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1841]

	During SSL authentication, when the client uses a proxy certificate,
the server now uses the End Entity certificate’s subject as the
authenticated identity to map, instead of the proxy certificate’s
subject.
(HTCONDOR-1866) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1866]

Bugs Fixed:

	Fixed a bug in the python bindings where some attributes were
omitted from accounting ads queried from the condor_negotiator.
(HTCONDOR-1780) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1780]

	Fixed a bug in the python bindings where an incorrect version was
being reported.
(HTCONDOR-1813) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1813]

	The classad functions anycompare, allcompare, sum, min,
max, avg and join no longer treat a single undefined input
as forcing the result to be undefined. sum, min, max, avg and join
will skip over undefined inputs, while anycompare and allcompare will compare
them correctly.
(HTCONDOR-1799) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1799]

	The submit commands remote_initialdir, transfer_input,
transfer_output, and transfer_error now work properly when
submitting a batch grid universe job to a remote system via ssh.
(HTCONDOR-1560) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1560]

	Fixed bug in condor_pool_job_report script that broke the script and
outputted error messages about invalid constraint expressions due internal
use of condor_history specifying a file to read with -f flag instead
of full -file.
(HTCONDOR-1812) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1812]

	Fixed a bug where the condor_startd would sometimes not remove docker images
that had been left behind when a condor_starter exited abruptly.
(HTCONDOR-1814) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1814]

	condor_store_cred and condor_credmon_vault now reuses existing
Vault tokens when down scoping access tokens.
(HTCONDOR-1527) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1527]

	Fixed a missing library import in condor_credmon_vault.
(HTCONDOR-1527) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1527]

	When started on a systemd system, HTCondor will now wait for the SSSD
service to start. Previously it only waited for ypbind.
(HTCONDOR-1829) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1829]

Version 10.0.5

Release Notes:

	HTCondor version 10.0.5 released on June 9, 2023.

	Renamed the upgrade9to10checks.py script to condor_upgrade_check
to match standard HTCSS naming scheme.
(HTCONDOR-1828) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1828]

New Features:

	None.

Bugs Fixed:

	Fix spurious warning from condor_upgrade_check for regular expressions that contain a space.
(HTCONDOR-1840) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1840]

	condor_upgrade_check no longer attempts to check for problems
for an HTCondor pool when requesting checks for an HTCondor-CE.
(HTCONDOR-1840) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1840]

Version 10.0.4

Release Notes:

	HTCondor version 10.0.4 released on May 30, 2023.

	Ubuntu 18.04 (Bionic Beaver) is no longer supported, since its end of life
is April 30th, 2023.

	Preliminary support for Ubuntu 20.04 (Focal Fossa) on PowerPC (ppc64le).
(HTCONDOR-1668) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1668]

New Features:

	Added new script called upgrade9to10checks.py to help administrators check
for known issues that exist and changes needed for an HTCondor system when
upgrading from V9 to V10. This script checks for three well known
breaking changes: changing of the default value for TRUST_DOMAIN,
changing to using PCRE2 for regular expression matching, and changes
to how users request GPUs.
(HTCONDOR-1658) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1658]

	Added configuration parameter AUTH_SSL_ALLOW_CLIENT_PROXY,
which allows the client to present an X.509 proxy certificate during
SSL authentication with a daemon.
(HTCONDOR-1781) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1781]

	Added CONFIG_ROOT configuration variable that is set to the directory
of the main configuration file before the configuration files are read.
(HTCONDOR-1733) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1733]

	Ensure that the SciTokens library can create its cache of token
issuer credentials.
(HTCONDOR-1757) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1757]

Bugs Fixed:

	Fixed a bug where certain errors during file transfer could result in
file-transfer processes not being cleaned up. This would manifest as
jobs completing successfully, including final file transfer, but ending
up without one of their output files (the one the error occurred during).
(HTCONDOR-1687) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1687]

	Fixed a bug where the condor_schedd falsely believed there were
too many jobs in the queue and rejected new job submissions based on
MAX_JOBS_SUBMITTED.
(HTCONDOR-1688) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1688]

	Fix a bug where SSL authentication would fail when using a daemon’s
private network address when PRIVATE_NETWORK_NAME was configured.
(HTCONDOR-1713) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1713]

	Fixed a bug that could cause a daemon or tool to crash when
attempting SSL or SCITOKENS authentication.
(HTCONDOR-1756) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1756]

	Fixed a bug where the HTCondor-CE would fail to handle any of its
jobs after a restart.
(HTCONDOR-1755) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1755]

	Fixed a bug where Job Ad Information events weren’t always written
when using the Job Router.
(HTCONDOR-1642) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1642]

	Fixed a bug where the submit event wasn’t written to the job event
log if the job ad didn’t contain a CondorVersion attribute.
(HTCONDOR-1643) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1643]

	Fixed a bug where a condor_schedd was denied authorization to send
reschedule command to a condor_negotiator with the IDToken authorization
levels recommended in the documentation for setting up a condor pool.
(HTCONDOR-1615) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1615]

	condor_remote_cluster now works correctly when the hardware
architecture of the remote machine isn’t x86_64.
(HTCONDOR-1670) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1670]

	Fixed condor_c-gahp and condor_job_router to submit jobs in the
same way as condor_submit.
(HTCONDOR-1695) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1695]

	Fixed a bug introduced in HTCondor 10.0.3 that caused remote
submission of batch grid universe jobs via ssh to fail when
attempting to do file transfer.
(HTCONDOR-1747) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1747]

	When writing a remove event in JSON, the ToE.When field is now seconds
since the (Unix) epoch, like all other events.
(HTCONDOR-1763) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1763]

	Fixed a bug where DAGMan job submission would fail when not using
direct submission due to setting a custom job ClassAd attribute with
the + syntax in a VARS command that doesn’t append the
variables i.e. VARS NodeA PREPEND +customAttr="value"
(HTCONDOR-1771) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1771]

	The ce-audit collector plug-in should no longer crash.
(HTCONDOR-1774) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1774]

Version 10.0.3

Release Notes:

	HTCondor version 10.0.3 released on April 6, 2023.

	If you set CERTIFICATE_MAPFILE_ASSUME_HASH_KEYS and use / to
mark the beginning and end of a regular expression, the character sequence
\\ in the mapfile now passes a single \ to the regular expression
engine. This allows you to pass the sequence \/ to the regular
expression engine (put \\\/ in the map file), which was not previously
possible. If the macro above is set and you have a \\ in your map file,
you will need to replace it with \\\\.
(HTCONDOR-1573) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1573]

	For condor_annex users: Amazon Web Services is deprecating the Node.js
12.x runtime. If you ran the condor_annex setup command with a previous
version of HTCondor, you’ll need to update your setup. Go to the AWS
CloudFormation console [https://console.aws.amazon.com/cloudformation/]
and look for the stack named HTCondorAnnex-LambdaFunctions. (You
may have to switch regions.) Click on that stack’s radio button, hit
the delete button in the table header, and confirm. Wait for the delete
to finish. Then run condor_annex -aws-region region-name-N -setup
for the region. Repeat for each region of interest.
(HTCONDOR-1627) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1627].

New Features:

	Allow remote submission of batch grid universe jobs via ssh to work
with sites that were configured with the old bosco_cluster tool.
(HTCONDOR-1632) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1632]

Bugs Fixed:

	Fixed two problems with GPU metrics. First, fixed a bug where reconfiguring
a condor_startd caused GPU metrics to stop being reported. Second, fixed
a bug where GPU (core) utilization could be wildly over-reported.
(HTCONDOR-1660) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1660]

	Fix bug, introduced in HTCondor version 10.0.2, that prevented new
installations of HTCondor from working on Debian or Ubuntu.
(HTCONDOR-1689) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1689]

	Fixed bug where a condor_dagman node with RETRY capabilities would instantly
restart that node every time it saw a job proc failure. This would result in nodes
with multi-proc jobs to resubmit the entire node multiple times causing internal
issues for DAGMan.
(HTCONDOR-1607) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1607]

	Fixed a rare bug in the late materialization code that could
cause a condor_schedd crash.
(HTCONDOR-1581) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1581]

	Fixed bug where the condor_shadow would crash during job removal.
(HTCONDOR-1585) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1585]

	Fixed a bug where two condor_schedd daemons in a High Availability
configuration could be active at the same time.
(HTCONDOR-1590) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1590]

	Improved the HTCondor’s systemd configuration to not start HTCondor until the
system attempts (and mostly likely succeeds) to mount remote filesystems.
(HTCONDOR-1594) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1594]

	Fixed a bug where the condor_master of a glidein submitted to
SLURM via HTCondor-CE would try to talk to the condor_gridmanager
of the HTCondor-CE.
(HTCONDOR-1604) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1604]

	Fixed a bug in the condor_schedd that could result in the TotalSubmitProcs
attribute of a late materialization job being set to a value smaller than the
correct value shortly after the condor_schedd was restarted.
(HTCONDOR-1603) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1603]

	If a job’s requested credentials are not available when the job is
about to start, the job is now placed on hold.
(HTCONDOR-1600) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1600]

	Fixed a bug that would cause the condor_schedd to hang if an
invalid condor cron argument was submitted
(HTCONDOR-1624) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1624]

	Fixed a bug where cron jobs put on hold due to invalid time specifications
would be unable to be removed from the job queue with tools.
(HTCONDOR-1629) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1629]

	Fixed how the condor_gridmanager handles failed ARC CE jobs.
Before, it would endlessly re-query the status of jobs that failed
during submission to the LRMS behind ARC CE.
If ARC CE reports a job as FAILED because the job exited with a
non-zero exit code, the condor_gridmanager now treats it as
completed.
(HTCONDOR-1583) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1583]

	Fixed a bug where values specified with arc_rte in the job’s
submit description weren’t properly sent to the ARC CE service.
(HTCONDOR-1648) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1648]

	Fixed a bug that can cause a daemon to crash during SciTokens
authentication if the configuration parameter
SCITOKENS_SERVER_AUDIENCE isn’t set.
(HTCONDOR-1652) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1652]

Version 10.0.2

Release Notes:

	HTCondor version 10.0.2 released on March 2, 2023.

	HTCondor Python wheel is now available for Python 3.11 on PyPI.
(HTCONDOR-1586) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1586]

	The macOS tarball is now being built on macOS 11.
(HTCONDOR-1610) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1610]

New Features:

	Added configuration option called ALLOW_TRANSFER_REMAP_TO_MKDIR to allow
a transfer output remap to create directories in allowed places if they
do not exist at transfer output time.
(HTCONDOR-1480) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1480]

	Improved scalability of condor_schedd when running more than 1,000 jobs
from the same user.
(HTCONDOR-1549) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1549]

	condor_ssh_to_job should now work in glidein and other environments
where the job or HTCondor is running as a Unix user id that doesn’t
have an entry in the /etc/passwd database.
(HTCONDOR-1543) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1543]

	VM universe jobs are now configured to pass through the host CPU model
to the VM. This change enables VMs with newer kernels (such as Enterprise
Linux 9) to operate in VM Universe.
(HTCONDOR-1559) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1559]

	The condor_remote_cluster command was updated to fetch the Alma Linux
tarballs for Enterprise Linux 8 and 9.
(HTCONDOR-1562) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1562]

Bugs Fixed:

	In the python bindings, the attribute ServerTime is now included
in job ads returned by Schedd.query() to support Fifemon.
(HTCONDOR-1531) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1531]

	Fixed issue when HTCondor could not be installed on Ubuntu 18.04
(Bionic Beaver).
(HTCONDOR-1548) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1548]

	Attempting to use a file-transfer plug-in that doesn’t exist is no longer
silently ignored. This could happen due to different bug, also fixed, where plug-ins
specified only in transfer_output_remaps were not automatically added
to a job’s requirements.
(HTCONDOR-1501) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1501]

	Fixed a bug where condor_now could not use the resources freed by
evicting a job if its procID was 1.
(HTCONDOR-1519) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1519]

	Fixed a bug that caused the condor_startd to exit when thinpool
provisioned filesystems were enabled.
(HTCONDOR-1524) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1524]

	Fixed a bug causing a Python warning when installing on Ubuntu 22.04.
(HTCONDOR-1534) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1534]

	Fixed a bug where the condor_history tool would crash
when doing a remote query with a constraint expression or specified
job IDs.
(HTCONDOR-1564) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1564]

Version 10.0.1

Release Notes:

	HTCondor version 10.0.1 released on January 5, 2023.

New Features:

	Add support for Ubuntu 22.04 LTS (Jammy Jellyfish).
(HTCONDOR-1304) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1304]

	HTCondor now includes a file transfer plugin that support stash://
and osdf:// URLs.
(HTCONDOR-1332) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1332]

	The Windows installer now uses the localized name of the Users group
so that it can be installed on non-English Windows platforms.
(HTCONDOR-1474) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1474]

	OpenCL jobs can now run inside a Singularity container launched by HTCondor if the
OpenCL drivers are present on the host in directory /etc/OpenCL/vendors.
(HTCONDOR-1410) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1410]

	The CompletionDate attribute of jobs is now undefined until such time as the job completes
previously it was 0.
(HTCONDOR-1393) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1393]

Bugs Fixed:

	Fixed a bug where Debian, Ubuntu and other Linux platforms with
swap accounting disabled in the kernel would never put
a job on hold if it exceeded RequestMemory and
MEMORY_LIMIT_POLICY was set to hard or soft.
(HTCONDOR-1466) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1466]

	Fixed a bug where using the -forcex option with condor_rm
on a scheduler universe job could cause a condor_schedd crash.
(HTCONDOR-1472) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1472]

	Fixed bugs in the container universe that prevented
apptainer-only systems from running container universe jobs
with Docker repository style images.
(HTCONDOR-1412) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1412]

	Docker universe and container universe job that use the docker runtime now detect
when the Unix uid or gid has the high bit set, which docker does not support.
(HTCONDOR-1421) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1421]

	Grid universe batch works again on Debian and Ubuntu.
Since 9.5.0, some required files had been missing.
(HTCONDOR-1475) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1475]

	Fixed bug in the curl plugin where it would crash on Enterprise Linux 8
systems when using a file:// url type.
(HTCONDOR-1426) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1426]

	Fixed bug in where the multi-file curl plugin would fail to timeout
due lack of upload or download progress if a large amount of bytes
where transferred at some point.
(HTCONDOR-1403) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1403]

	Fixed bug where the multi-file curl plugin would fail to receive a SciToken
if it was in raw format rather than json.
(HTCONDOR-1447) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1447]

	Fixed a bug that prevented the starter from properly mounting
thinpool provisioned ephemeral scratch directories.
(HTCONDOR-1419) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1419]

	Fixed a bug where SSL authentication with the condor_collector could
fail when the provided hostname is not a DNS CNAME.
(HTCONDOR-1443) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1443]

	Fixed a Vault credmon bug where tokens were being refreshed too often.
(HTCONDOR-1017) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1017]

	Fixed a Vault credmon bug where the CA certificates used were not based on the
HTCondor configuration.
(HTCONDOR-1179) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1179]

	Fixed the condor_gridmanager to recognize when it has the final
data for an ARC job in the FAILED status with newer versions of ARC CE.
Before, the condor_gridmanager would leave the job marked as
RUNNING and retry querying the ARC CE server endlessly.
(HTCONDOR-1448) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1448]

	Fixed AES encryption failures on macOS Ventura.
(HTCONDOR-1458) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1458]

	Fixed a bug that would cause tools that have the -printformat argument to segfault
when the format file contained a FIELDPREFIX, FIELDSUFFIX, RECORDPREFIX or RECORDSUFFIX.
(HTCONDOR-1464) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1464]

	Fixed a bug in the RENAME command of the transform language that could result in a
crash of the condor_schedd or condor_job_router.
(HTCONDOR-1486) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1486]

	For tarball installations, the condor_configure script now configures
HTCondor to use user based security.
(HTCONDOR-1461) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1461]

Version 10.0.0

Release Notes:

	HTCondor version 10.0.0 released on November 10, 2022.

New Features:

	The default for TRUST_DOMAIN, which is used by with IDTOKEN authentication
has been changed to $(UID_DOMAIN). If you have already created IDTOKENs for
use in your pool, you should configure TRUST_DOMAIN to the issuer value of a valid token.
(HTCONDOR-1381) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1381]

	The condor_transform_ads tool now has a -jobtransforms argument that reads
transforms from the configuration. This provides a convenient way to test the
JOB_TRANSFORM_<NAME> configuration variables.
(HTCONDOR-1312) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1312]

	Added new automatic configuration variable DETECTED_CPUS_LIMIT which gets set
to the minimum of DETECTED_CPUS from the configuration and OMP_NUM_THREADS
and SLURM_CPU_ON_NODES from the environment.
(HTCONDOR-1307) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1307]

Bugs Fixed:

	Fixed a bug where if a job created a symbolic link to a file, the contents of
that file would be counted in the job’s DiskUsage. Previously,
symbolic links to directories were (correctly) ignored, but not symbolic links to
files.
(HTCONDOR-1354) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1354]

	Fixed a bug where if SINGULARITY_TARGET_DIR is set, condor_ssh_to
job would start the interactive shell in the root directory of
the job, not in the current working directory of the job.
(HTCONDOR-1406) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1406]

	Suppressed a Singularity or Apptainer warning that would appear
in a job’s stderr file, warning about the inability to set the
HOME environment variable if the job or the system explicitly tried
to set it.
(HTCONDOR-1386) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1386]

	Fixed a bug where on certain Linux kernels, the ProcLog would be filled
with thousands of errors of the form “Internal cgroup error when
retrieving iowait statistics”. This error was harmless, but filled
the ProcLog with noise.
(HTCONDOR-1385) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1385]

	Fixed bug where certain submit file variables like accounting_group and
accounting_group_user couldn’t be declared specifically for DAGMan jobs because
DAGMan would always write over the variables at job submission time.
(HTCONDOR-1277) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1277]

	Fixed a bug where SciTokens authentication wasn’t available on macOS
and Python wheels distributions.
(HTCONDOR-1328) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1328]

	Fixed job submission to newer ARC CE releases.
(HTCONDOR-1327) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1327]

	Fixed a bug where a pre-created security session may not be used
when connecting to a daemon over IPv6.
The peers would do a full round of authentication and authorization,
which may fail.
This primarily happened with both peers had PREFER_IPV4 set to
False.
(HTCONDOR-1341) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1341]

	The condor_negotiator no longer sends the admin capability
attribute of machine ads to the condor_schedd.
(HTCONDOR-1349) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1349]

	Fixed a bug in DAGMan where Node jobs that could not write to their UserLog
would cause the DAG to get stuck indefinitely while waiting for pending Nodes.
(HTCONDOR-1305) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1305]

	Fixed a bug where s3:// URLs host or bucket names shorter than 14
characters caused the shadow to dump core.
(HTCONDOR-1378) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1378]

	Fixed a bug in the hibernation code that caused HTCondor to ignore
the active Suspend-To-Disk option.
(HTCONDOR-1357) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1357]

	Fixed a bug where some administrator client tools did not properly
use the remote administrator capability (configuration parameter
SEC_ENABLE_REMOTE_ADMINISTRATION).
(HTCONDOR-1371) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1371]

	When a JOB_TRANSFORM_* transform changes an attribute at submit time in a late
materialization factory, it no longer marks that attribute as fixed for all jobs. This
change makes it possible for a transform to modify rather than simply replacing an attribute
that that the user wishes to vary per job.
(HTCONDOR-1369) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1369]

	Fixed bug where Collector, Negotiator, and Schedd core files that are naturally
large would be deleted by condor_preen because the file sizes exceeded the max file size.
(HTCONDOR-1377) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1377]

	Fixed a bug that could cause a daemon or tool to crash when
connecting to a daemon using a security session.
This particularly affected the condor_schedd.
(HTCONDOR-1372) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1372]

	Fixed a bug that could cause digits to be truncated reading resource usage information
from the job event log via the Python or C++ APIs for reading event logs. Note this only
happens for very large values of requested or allocated disk, memory.
(HTCONDOR-1263) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1263]

	Fixed a bug where GPUs that were marked as OFFLINE in the Startd would still be available
for matchmaking in the AvailableGPUs attribute.
(HTCONDOR-1397) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1397]

	The executables within the tarball distribution now use RPATH to find
shared libraries. Formerly, RUNPATH was used and tarballs became
susceptible to failures when independently compiled HTCondor libraries were
present in the LD_LIBRARY_PATH.
(HTCONDOR-1405) [https://opensciencegrid.atlassian.net/browse/HTCONDOR-1405]

 Command Reference Manual (man pages)

Command Reference Manual (man pages)

HTCondor ships with many command line tools. While the number may seem overwhelming at first, they can be divided into a few groups:

 mindmap
 All
Commands
 ManagingJobs
 condor_rm
 condor_submit
 condor_submit_dag
 condor_suspend
 condor_continue
 condor_hold
 condor_release
 condor_transfer_data
 condor_q condor_qedit
 condor_history
 ManagingExecution Points
 condor_off
 condor_on
 condor_restart
 condor_drain
 condor_now
 condor_vacate
 condor_config_val
 condor_reconfig
 condor_status
 ManagingRunning Jobs
 condor_ssh_to_job
 condor_tail
 condor_evicted_files
 condor_chirp
 condor_vacate_job
 Debugging Testing
 classad_eval
 condor_version
 condor_who
 condor_top
 condor_fetchlog
 condor_transform_ads
 condor_gpu_discovery
 condor_power_state
 Managing Submitters
 condor_userprio
 condor_qusers

A map of all the tools

Commands that manage jobs:

condor_rm, condor_submit, condor_submit_dag, condor_suspend, condor_continue, condor_hold, condor_release, condor_transfer_data, condor_q
condor_qedit, condor_history

Commands for managing execution points:

condor_off, condor_on, condor_restart, condor_drain, condor_now, condor_vacate, condor_config_val, condor_reconfig, condor_status

Commands for working with running jobs:

condor_ssh_to_job, condor_tail, condor_evicted_files, condor_chirp, condor_vacate_job

Commands for debugging and testing:

classad_eval, condor_version, condor_who, condor_top, condor_fetchlog, condor_transform_ads, condor_gpu_discovery, condor_power_state

Commands for managing submitters:

condor_userprio, condor_qusers

	classad_eval

	ClassAds

	condor_adstash

	condor_advertise

	condor_annex

	condor_check_password

	condor_check_userlogs

	condor_chirp

	condor_configure

	condor_config_val

	condor_continue

	condor_dagman

	condor_drain

	condor_evicted_files

	condor_fetchlog

	condor_findhost

	condor_gather_info

	condor_gpu_discovery

	condor_history

	condor_hold

	condor_install

	condor_job_router_info

	condor_master

	condor_now

	condor_off

	condor_on

	condor_ping

	condor_pool_job_report

	condor_power

	condor_preen

	condor_prio

	condor_procd

	condor_q

	condor_qedit

	condor_qusers

	condor_qsub

	condor_reconfig

	condor_release

	condor_remote_cluster

	condor_reschedule

	condor_restart

	condor_rm

	condor_rmdir

	condor_router_history

	condor_router_q

	condor_router_rm

	condor_run

	condor_set_shutdown

	condor_sos

	condor_ssh_start

	condor_ssh_to_job

	condor_ssl_fingerprint

	condor_stats

	condor_status

	condor_store_cred

	condor_submit

	condor_submit_dag

	condor_suspend

	condor_tail

	condor_test_token

	condor_token_create

	condor_token_fetch

	condor_token_list

	condor_token_request

	condor_token_request_approve

	condor_token_request_auto_approve

	condor_token_request_list

	condor_top

	condor_transfer_data

	condor_transform_ads

	condor_update_machine_ad

	condor_updates_stats

	condor_upgrade_check

	condor_urlfetch

	condor_userlog

	condor_userprio

	condor_vacate

	condor_vacate_job

	condor_version

	condor_wait

	condor_watch_q

	condor_who

	get_htcondor

	gidd_alloc

	htcondor

	procd_ctl

 classad_eval

classad_eval

Evaluate the given ClassAd expression(s) in the context of the given
ClassAd attributes, and prints the result in ClassAd format.

Synopsis

classad_eval -help

classad_eval
[-[ad]-file <file-name>]
[-target-file <file-name>]
<ad | assignment | expression | -quiet>+

Description

classad_eval is designed to help you understand and debug ClassAd
expressions. You can supply a ClassAd on the command-line, or via a
file, as context for evaluating the expression. You may also construct
a ClassAd one argument at a time, with assignments.

By default, classad_eval will print the ClassAd context used to evaluate
the expression before printing the result of the first expression, and for
every expression with a new ClassAd thereafter. You may suppress this
behavior with the -quiet flag, which replaces an ad, assignment,
or expression, and quiets every expression after it on the command line.

Attributes specified on the command line, including those specified as part
of a complete ad, replace attributes in the context ad, which starts empty.
You can’t remove attributes from the context ad, but you can set them to
undefined.

Options, flags, and arguments may be freely intermixed, and take effect
in order.

Note that classad_eval uses the new ClassAd syntax: ClassAds
specified in a file must be surrounded by square brackets and
attribute-value pairs must be separated by semicolons. For compability
with condor_q -long:new and condor_status -long:new, classad_eval
will use only the first ClassAd if passed a ClassAd list of them.

Examples

Almost every ad, assignment, or expression will require you to single
quote them. There are some exceptions; for instance, the following two
commands are equivalent:

$ classad_eval 'a = 2' 'a * 2'
$ classad_eval a=2 a*2

You can specify attributes for the context ad in three ways:

$ classad_eval '[a = 2; b = 2]' 'a + b'
$ classad_eval 'a = 2; b = 2' 'a + b'
$ classad_eval 'a = 2' 'b = 2' 'a + b'

You need not supply an empty ad for expressions that don’t reference attributes:

$ classad_eval 'strcat("foo", "bar")'

If you want to evaluate an expression in the context of the job ad, first
store the job ad in a file:

$ condor_q -l:new 1227.2 > job.ad
$ classad_eval -quiet -file job.ad 'JobUniverse'

You can extract a machine ad in a similar way:

$ condor_status -l:new slot1@exec-17 > machine.ad
$ classad_eval -quiet -file machine.ad 'Rank'

You may evaluate an expression in order to check a match by using the
-target-file option:

$ condor_q -l:new 1227.2 > job.ad
$ condor_status -l:new exec-17 > machine.ad
$ classad_eval -quiet -my-file job.ad -target-ad machine.ad 'MY.requirements' 'TARGET.requirements'

Assignments (including whole ClassAds) are all merged into the context ad:

$ classad_eval 'x = y' 'x' 'y = 7' 'x' '[x = 6; z = "foo";]' 'x'
[x = y]
undefined
[y = 7; x = y]
7
[z = "foo"; x = 6; y = 7]
6

You can suppress printing the context ad partway through:

$ classad_eval 'x = y' 'x' -quiet 'y = 7' 'x' '[x = 6; z = "foo";]' 'x'
[x = y]
undefined
7
6

Exit Status

Returns 0 on success.

Author

Center for High Throughput Computing, University of Wisconsin-Madison

 ClassAds

ClassAds

The ClassAd language consists of two parts: structured data (called
“ClassAds”), and expressions.

HTCondor uses ClassAds to describe various things, primarily machines and
jobs; it uses expressions as constraints for querying ClassAds,
and for defining what it means for two ClassAds to match each other.

Data Syntax

A ClassAd is a list of attribute-value pairs, separated by newlines.
Values may be booleans, integers, reals, strings, dictionaries, lists,
or the special values UNDEFINED and ERROR.
Dictionaries are marked by square brackets and lists by braces;
dictionaries separate elements with semicolons,
and lists separate elements with commas.

attribute_name = "attribute-value"
pi = 3.141
count = 3
list = { "red", "green", "blue" }
dictionary = [type = "complex"; real = 7.75; imaginary = -3]
structured_attr = [hostnames = { "submit-1", "submit", "submit1" };
 ip = "127.0.0.1"; port = "9618"]

For the list of ClassAd attributes generated by HTCondor, see
https://htcondor.readthedocs.io/en/latest/classad-attributes/index.html.

Expression Syntax

An expression consists of literals (from the data syntax) and attribute
references composed with operators and functions. The value of a ClassAd
attribute may be an expression.

MY.count < 10 && regexp(".*example.*", attribute_name)

Attribute References

An attribute reference always includes an attribute name. In HTCondor,
when determining if two ClassAds match, an expression may specify which
ad’s value is used by prefixing it with MY. or TARGET.. Attribute
references are case-insensitive.

MY.count
TARGET.machine

An element of a dictionary is referenced by using the subscript operator
([]) with an expression that evaluates to a string or with a dot
(.), as follows:

MY.structured_attr.hostnames
MY.structured_attr["hostnames"]

Note that the following references the attribute named by the attribute
hostnames, not the attribute named hostnames:

MY.structured_attr[hostnames]

List elements are referenced by an expression that evaluates to an
integer, where the first element in the list is numbered 0. For
example, if colors = { [x = "1"], [x = "2", y = "3"] }, then
MY.structure_attr.colors[0] results in [x = "1"].

UNDEFINED and ERROR

The ClassAd language includes two special values, UNDEFINED and ERROR.
An attribute may be set to either explicitly, but these values typically
result from referring to an attribute that doesn’t exist, or asking
for something impossible:

undefined_reference = MY.undefined_attribute
explicitly_undefined = UNDEFINED
one_error_value = "three" * 7
another_error_value = 1.3 / 0

Most expressions that refer to values that are UNDEFINED will evaluate
to UNDEFINED. The same applies to ERROR.

Operators

The operators *, /, + and - operate arithmetically, on
integers and reals.

The comparison operators ==, !=, <=, <, >= and >
operate on booleans, integers, reals and strings. String comparison is
case-insensitive. Comparing a string and a non-string value results in
ERROR.

The special comparison operator =?= is like == except in the
following two ways: it is case-sensitive when comparing strings; and,
when comparing values to UNDEFINED, results in FALSE instead of UNDEFINED.
(If comparing UNDEFINED to itself, the operator =?= results in TRUE).

The special comparison operator =!= is the negation of =?=.

The logical operators && and || operate on integers and reals;
non-zero is true, and zero is false.

The ternary operator x ? y : z operates on expressions.

The default operator x ?: z returns x if x is defined
and z otherwise.

The IS and ISNT operators are synonyms for =?= and =!=.

Functions

Function name are case-insensitive. Unless otherwise noted, if any of a
function’s arguments are UNDEFINED or ERROR, so is the result. If an
argument’s type is noted, the function will return ERROR unless the argument
has that type.

	integer INT(expr)
	If expr is numeric, return the closest integer. If expr
evaluates to a string, attempt to convert the string to an
integer. Return ERROR if the string is not an integer, or
if expr is neither numeric nor a string.

	boolean MEMBER(expr, list l)
	Returns TRUE if expr is equal, as defined by the operator ==,
to any member of the list l, or FALSE if it isn’t.

	boolean REGEXP(string pattern, string target[, string options])
	Return TRUE if the PCRE regular expression pattern matches target,
or FALSE if it doesn’t.
Return ERROR if pattern is a not a valid regular expression.
If specified, options is a PCRE option string (one or more
of f, i, s, m, and g). See the Specification
section for details.

	list SPLIT(string s[, string tokens])
	Separate s by whitespace or comma, or instead by any of the
characters in tokens, if specified, and return the result as
a list of strings.

	boolean STRINGLISTIMEMBER(string s, string list[, string tokens])
	Equivalent to MEMBER(*s*, SPLIT(*list*, *tokens*)).

	string SUBSTR(string s, integer offset[, integer length])
	Returns the substring of s from offset to the end of the string,
or instead for length characters, if specified. The first
character in s is at position 0. If offset is negative,
the substring begins offset characters before the end of the
string. If length is negative, the substring ends that many
characters before the end of the string. If the substring contains
no characters, return the empty string. Thus, the following two
calls both return the string “78”:

substr("0123456789", 7, 2)
substr("0123456789", -3, -1)

All ClassAd functions are defined in the references below.

Reserved Words

The words UNDEFINED, ERROR, IS, ISNT, TRUE, FALSE,
MY, TARGET, and PARENT may not be used as attribute names.

Testing ClassAd Expressions

Use classad_eval to test ClassAd expressions. For
instance, if you want to test to see if a regular expression matches
some fixed string, you could check in the following way (on Linux or Mac;
the quoting rules are different on Windows):

$ classad_eval 'regexp(".*tr.*", "string")'
[]
true

This prints out the ClassAd used as context in the evaluation (in this case,
there wasn’t one, so it’s the empty ad) and the result.

Examples

These examples assume a Linux shell environment and a working HTCondor pool.

Selecting a Slot based on Job ID

If job 288.7 is running:

$ condor_status -const 'JobId == "288.7"'

Selecting Jobs based on Execute Machine

If jobs are running on the machine example-execute-node:

$ condor_q -all -const 'regexp("@example-execute-node$", RemoteHost)'

String Manipulation

In this example, an administrator has just added twelve new hosts
to the pool – compute-296 to compute-307 – and wants to see if
they’ve started running jobs yet.

$ condor_status -const '296 <= int(substr(Machine, 8)) && int(substr(Machine, 8)) <= 307'

You could also write this as follows:

$ condor_status -const '296 <= int(split(Machine, "-")[1]) && int(split(Machine, "-")[1]) <= 307'

Selecting Machines with a Particular File-Transfer Plugin

If you’re considering using the gdrive file-transfer plugin, and you’d like
to see which machines have it, select from the slot ads based on the
corresponding attribute, but only print out the machine name, and then
throw away the duplicates:

$ condor_status -af Machine \
 -const 'StringListIMember("gdrive", HasFileTransferPluginMethods)' \
 | uniq

You could instead use a constraint to ignore dynamic slots for a report
on the resources available to run jobs which require the gdrive plugin.
Note that you can also use expressions when formatting the output. In
this case, it’s just to make the output prettier.

$ condor_status -af Machine CPUs Memory Disk \
 '(GPUs =!= undefined && GPUs >= 1) ? CUDACapability : "[no GPUs]"' \
 -const 'SlotType =!= "Dynamic" && StringListIMember("gdrive", HasFileTransferPluginMethods)'

Specification

For use in HTCondor, including a complete list of functions, see
https://htcondor.readthedocs.io/en/latest/classads/classad-mechanism.html.

For the language specification,
see https://research.cs.wisc.edu/htcondor/classad/refman/.

Author

Center for High Throughput Computing, University of Wisconsin-Madison

 condor_adstash

condor_adstash

Gather schedd and/or startd job history ClassAds and push them via a
search engine or file interface.

Synopsis

condor_adstash [--help]

condor_adstash [--process_name NAME] [--standalone]
[--sample_interval SECONDS] [--checkpoint_file PATH]
[--log_file PATH] [--log_level LEVEL]
[--threads THREADS] [--interface {null,elasticsearch,jsonfile}]
[--collectors COLLECTORS] [--schedds SCHEDDS] [--startds STARTDS]
[--schedd_history] [--startd_history] [--ad_file PATH]
[--schedd_history_max_ads NUM_ADS] [--startd_history_max_ads NUM_ADS]
[--schedd_history_timeout SECONDS] [--startd_history_timeout SECONDS]
[--se_host HOST[:PORT]] [--se_url_prefix PREFIX]
[--se_username USERNAME] [--se_use_https] [--se_timeout SECONDS]
[--se_bunch_size NUM_DOCS] [--es_index_name INDEX_NAME]
[--se_no_log_mappings] [--se_ca_certs PATH]
[--json_dir PATH]

Description

condor_adstash is a tool that assists in monitoring usage by gathering job
ClassAds (typically from condor_schedd and/or condor_startd history queries)
and pushing the ClassAds as documents to some target (typically Elasticsearch).

Unless run in --standalone mode, condor_adstash expects to be invoked
as a daemon by a condor_master, i.e. condor_adstash should be invoked in
standalone mode when run on the command-line.
Whether invoked by condor_master or run standalone, condor_adstash gets
its configuration, in increasing priority, from the HTCondor configuration
macros beginning with ADSTASH_ (when --process_name is not provided),
then environment variables, and finally command-line options.

condor_adstash must be able to write its --checkpoint_file to a
persistent location so that duplicate job ClassAds are not fetched from the
daemons’ histories in consecutive polls.

A named Elasticsearch index will be created if it doesn’t exist, and may be
modified if new fields (corresponding to ClassAd attribute names) need to be
added.
It is up to the administrator of the Elasticsearch instance to install rollover
policies (e.g. ILM) on the named index and/or to set up the index as an alias.

Options

	-h, --help
	Display the help message and exit.

	--process_name PREFIX
	Give condor_adstash a different name for looking up HTCondor
configuration and environment variable values (see examples).

	--standalone
	Run condor_adstash in standalone mode (runs once, does not attempt to
contact condor_master)

	--sample_interval SECONDS
	Number of seconds between polling the list(s) of daemons (ignored in
standalone mode)

	--checkpoint_file PATH
	Location of checkpoint file (will be created if missing)

	--log_file PATH
	Location of log file

	--log_level LEVEL
	Log level (uses Python logging library levels:
CRITICAL/ERROR/WARNING/INFO/DEBUG)

	--threads THREADS
	Number of parallel threads to use when polling for job ClassAds and when
pushing documents to Elasticsearch

	--interface {null,elasticsearch,opensearch,jsonfile}
	Push ads via the chosen interface

ClassAd source options

	--schedd_history
	Poll and push condor_schedd job histories

	--startd_history
	Poll and push condor_startd job histories

	--ad_file PATH
	Load Job ClassAds from a file instead of querying daemons (Ignores
--schedd_history and --startd_history.)

Options for HTCondor daemon (Schedd, Startd, etc.) history sources

	--collectors COLLECTORS
	Comma-separated list of condor_collector addresses to contact to locate
condor_schedd and condor_startd daemons

	--schedds SCHEDDS
	Comma-separated list of condor_schedd names to poll job histories from

	--startds STARTDS
	Comma-separated list of condor_startd machines to poll job histories from

	--schedd_history_max_ads NUM_ADS
	Abort after reading NUM_ADS from a condor_schedd

	--startd_history_max_ads NUM_ADS
	Abort after reading NUM_ADS from a condor_startd

	--schedd_history_timeout SECONDS
	Abort if reading from a condor_schedd takes more than this many seconds

	--startd_history_timeout SECONDS
	Abort if reading from a condor_startd takes more than this many seconds

Search engine (Elasticsearch, OpenSearch, etc.) interface options

	--se_host HOST[:PORT]
	Search engine host:port

	--se_url_prefix PREFIX
	Search engine URL prefix

	--se_username USERNAME
	Search engine username

	--se_use_https
	Use HTTPS when connecting to search engine

	--se_timeout SECONDS
	Max time to wait for search engine queries

	--se_bunch_size NUM_DOCS
	Group ads in bunches of this size to send to search engine

	--se_index_name INDEX_NAME
	Push ads to this search engine index or alias

	--se_no_log_mappings
	Don’t write a JSON file with mappings to the log directory

	--se_ca_certs PATH
	Path to root certificate authority file (will use certifi’s CA if not set)

JSON file interface options

	--json_dir PATH
	Directory to store JSON files, which are named by timestamp

Examples

Running condor_adstash in standalone mode on the command-line will result in
condor_adstash reading its configuration from the current HTCondor
configuration:

$ condor_adstash --standalone

By default, condor_adstash looks for HTCondor configuration variables with
names are prefixed with ADSTASH_, e.g. ADSTASH_READ_SCHEDDS = *.
These values can be overridden on the command-line:

$ condor_adstash --standalone --schedds=myschedd.localdomain

condor_adstash configuration variables can be also be named using custom
prefixes, with the prefix passed in using -\-process_name=PREFIX.
For example, if the HTCondor configuration contained
FOO_SCHEDD_HISTORY = False and FOO_STARTD_HISTORY = True,
condor_adstash can be invoked to read these instead of
ADSTASH_SCHEDD_HISTORY and ADSTASH_STARTD_HISTORY:

$ condor_adstash --standalone --process_name=FOO

Providing a PREFIX to --process_name that does not match any HTCondor
configuration variables will cause condor_adstash to fallback to a default set
of configuration values, which may be useful in debugging.

The configuration values that condor_adstash reads from the current HTCondor
configuration can be previewed by printing the help message.
The values will be listed as the default values for each command-line option:

$ condor_adstash --help
$ condor_adstash --process_name=FOO --help

 condor_advertise

condor_advertise

Send a ClassAd to the condor_collector daemon

Synopsis

condor_advertise [-help | -version]

condor_advertise [-pool centralmanagerhostname[:portname]]
[-debug] [-tcp] [-udp] [-multiple]
[update-command [classad-filename]]

Description

condor_advertise sends one or more ClassAds to the
condor_collector daemon on the central manager machine. The optional
argument update-command says what daemon type’s ClassAd is to be
updated; if it is absent, it assumed to be the update command
corresponding to the type of the (first) ClassAd. The optional argument
classad-filename is the file from which the ClassAd(s) should be read.
If classad-filename is omitted or is the dash character (‘-‘), then
the ClassAd(s) are read from standard input. You must specify
update-command if you do not want to read from standard input.

When -multiple is specified, multiple ClassAds may be published.
Publishing many ClassAds in a single invocation of condor_advertise
is more efficient than invoking condor_advertise once per ClassAd.
The ClassAds are expected to be separated by one or more blank lines.
When -multiple is not specified, blank lines are ignored (for
backward compatibility). It is best not to rely on blank lines being
ignored, as this may change in the future.

The update-command may be one of the following strings:

UPDATE_STARTD_AD
UPDATE_SCHEDD_AD
UPDATE_MASTER_AD
UPDATE_GATEWAY_AD
UPDATE_CKPT_SRVR_AD
UPDATE_NEGOTIATOR_AD
UPDATE_HAD_AD
UPDATE_AD_GENERIC
UPDATE_SUBMITTOR_AD
UPDATE_COLLECTOR_AD
UPDATE_LICENSE_AD
UPDATE_STORAGE_AD

condor_advertise can also be used to invalidate and delete ClassAds
currently held by the condor_collector daemon. In this case the
update-command will be one of the following strings:

INVALIDATE_STARTD_ADS
INVALIDATE_SCHEDD_ADS
INVALIDATE_MASTER_ADS
INVALIDATE_GATEWAY_ADS
INVALIDATE_CKPT_SRVR_ADS
INVALIDATE_NEGOTIATOR_ADS
INVALIDATE_HAD_ADS
INVALIDATE_ADS_GENERIC
INVALIDATE_SUBMITTOR_ADS
INVALIDATE_COLLECTOR_ADS
INVALIDATE_LICENSE_ADS
INVALIDATE_STORAGE_ADS

For any of these INVALIDATE commands, the ClassAd in the required file
will look like the following:

MyType = "Query"
TargetType = "Machine"
Name = "condor.example.com"
Requirements = Name == "condor.example.com"

The definition for MyType is always Query. TargetType is set
to the MyType of the ad to be deleted. This MyType is
DaemonMaster for the condor_master ClassAd, Machine for the
condor_startd ClassAd, Scheduler for the condor_schedd
ClassAd, and Negotiator for the condor_negotiator ClassAd.

Requirements is an expression evaluated within the context of ads of
TargetType. When Requirements evaluates to True, the
matching ad is invalidated. A full example is given below.

Options

	-help
	Display usage information

	-version
	Display version information

	-debug
	Print debugging information as the command executes.

	-multiple
	Send more than one ClassAd, where the boundary between ClassAds is
one or more blank lines.

	-pool centralmanagerhostname[:portname]
	Specify a pool by giving the central manager’s host name and an
optional port number. The default is the COLLECTOR_HOST
specified in the configuration file.

	-tcp
	Use TCP for communication. Used by default if
UPDATE_COLLECTOR_WITH_TCP is true.

	-udp
	Use UDP for communication.

General Remarks

The job and machine ClassAds are regularly updated. Therefore, the
result of condor_advertise is likely to be overwritten in a very
short time. It is unlikely that either HTCondor users (those who submit
jobs) or administrators will ever have a use for this command. If it is
desired to update or set a ClassAd attribute, the condor_config_val
command is the proper command to use.

Attributes are defined in Appendix A of the HTCondor manual.

For those administrators who do need condor_advertise, the following
attributes may be included:

DaemonStartTime
UpdateSequenceNumber

If both of the above are included, the condor_collector will
automatically include the following attributes:

UpdatesTotal
UpdatesLost
UpdatesSequenced
UpdatesHistory

Affected by COLLECTOR_DAEMON_HISTORY_SIZE .

Examples

Assume that a machine called condor.example.com is turned off, yet its
condor_startd ClassAd does not expire for another 20 minutes. To
avoid this machine being matched, an administrator chooses to delete the
machine’s condor_startd ClassAd. Create a file (called
remove_file in this example) with the three required attributes:

MyType = "Query"
TargetType = "Machine"
Name = "condor.example.com"
Requirements = Name == "condor.example.com"

This file is used with the command:

$ condor_advertise INVALIDATE_STARTD_ADS remove_file

Exit Status

condor_advertise will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure. Success
means that all ClassAds were successfully sent to all
condor_collector daemons. When there are multiple ClassAds or
multiple condor_collector daemons, it is possible that some but not
all publications succeed; in this case, the exit status is 1, indicating
failure.

 condor_annex

condor_annex

Add cloud resources to the pool.

Synopsis

condor_annex -help

condor_annex [-aws-region <region>] -setup [FROM
INSTANCE|[/full/path/to/access/key/file
[/full/path/to/secret/key/file]]]

condor_annex [-aws-on-demand] -annex-name <name of the
annex> -count <integer number of instances>
[-aws-on-demand-*] [common options]

condor_annex [-aws-spot-fleet] -annex-name <name of
the annex> -slots <integer weight> [-aws-spot-fleet-*]
[common options]

condor_annex -annex-name <name of the annex>
-duration hours

condor_annex [-annex-name <name of the annex>] -status
[-classad]

condor_annex -check-setup

condor_annex <condor_annex options> status <condor_status
options>

Description

condor_annex adds clouds resources to the pool. (“The pool” is
determined in the usual manner for HTCondor daemons and tools.) This
version supports only Amazon Web Services (‘AWS’). To add “on-demand”
instances, use the third form listed above; to add “spot” instances, use
the fourth. For an explanation of terms, consult either the HTCondor
manual in the Cloud Computing chapter or
the AWS documentation.

Using condor_annex with AWS requires a one-time setup procedure
performed by invoking condor_annex with the -setup flag (the
second form listed above). You may check if this procedure has been
performed with the -check-setup flag (the seventh form listed
above). If you use the setup flag on an instance whose role gives it
sufficient privileges, you may, instead of specifying your API keys,
pass FROM INSTANCE to -setup to ask condor_annex to use the
instance’s role credentials.

To reset the lease on an existing annex, invoke condor_annex with
only the -annex-name option and -duration flag (the fifth form
listed above).

To determine which of the instances previously requested for a
particular annex are not currently in the pool, invoke condor_annex
with the -status flag and the -annex-name option (the sixth form
listed above). The output of this command is intended to be
human-readable; specifying the -classad flag will produce the same
information in ClassAd format. If you omit -annex-name, information
for all annexes will be returned.

Starting in 8.7.3, you may instead invoke condor_annex with
status as a command argument (the eighth form listed above). This
will cause condor_annex to use condor_status to present annex
instance data. Arguments and options on the command line after
status will be passed unmodified to condor_status, but not all
arguments and options will behave as expected. (See below.)
condor_annex will construct an ad for each annex instance and pass
that information to condor_status; condor_status will (unless you
specify otherwise using its command line) query the collector for more
information about the instances. Information from the collector will be
presented as usual; instances which did not have ads in the collector
will be presented last, in their own table. These instances can not be
presented in the usual way because the annex instance ads generated by
condor_annex do not (and can not) have the same information in them
as ads generated by a condor_startd running in the instance. See the
condor_status manual page for details about the “merge” mode
of condor_status used by this command argument. Note that both condor_annex
and condor_status have -annex-name options; if you’re interested in a
particular annex, put this flag on the command line before the status
command argument to avoid confusing results.

Common options are listed first, followed by options specific to AWS,
followed by options specific to AWS’ on-demand instances, followed by
options specific to AWS’ spot instances, followed by options intended
for use by experts.

Options

	-help
	Print a usage reminder.

	-setup [/full/path/to/access/key/file/full/path/to/secret/key/file]
	Do the first-time setup.

	-duration hours
	Set the maximum lease duration in decimal hours. After this amount
of time, all instances will terminated, regardless of their
idleness. Defaults to 50 minutes.

	-idle hours
	Set the maximum idle duration in decimal hours. An instance idle
for longer than this duration will terminate itself. Defaults to 15
minutes.

	-yes
	Start the annex automatically without a yes/no confirmation prompt.

	-tag name value
	Add a tag named name with value value to each instance in the
requested annex. Only works at annex creation. This option may be
specified more than once.

	-config-dir /full/path/to/directory
	Copy the contents of /full/path/to/directory to each instance’s
configuration directory.

	-owner owner[, owner]*
	Configure the annex so that only owner may start jobs there. By
default, configure the annex so that only the user running
condor_annex may start jobs there.

	-no-owner
	Configure the annex so that anyone in the pool may use the annex.

	-aws-region region
	Specify the region in which to create the annex.

	-aws-user-data user-data
	Set the instance user data to user-data.

	-aws-user-data-file /full/path/to/file
	Set the instance user data to the contents of the file
/full/path/to/file.

	-aws-default-user-data user-data
	Set the instance user data to user-data, if it’s not already set.
Only applies to spot fleet requests.

	-aws-default-user-data-file /full/path/to/file
	Set the instance user data to the contents of the file
/full/path/to/file, if it’s not already set. Only applies to spot
fleet requests.

	-aws-on-demand-instance-type instance-type
	This annex will requests instances of type instance-type. The
default for v8.7.1 is ‘m4.large’.

	-aws-on-demand-ami-id ami-id
	This annex will start instances of the AMI ami-id. The default for
v8.7.1 is ‘ami-35b13223’, a GPU-compatible Amazon Linux image with
HTCondor pre-installed.

	-aws-on-demand-security-group-ids group-id[,group-id]
	This annex will start instances with the listed security group IDs.
The default is the security group created by -setup.

	-aws-on-demand-key-name key-name
	This annex will start instances with the key pair named key-name.
The default is the key pair created by -setup.

	-aws-spot-fleet-config-file /full/path/to/file
	Use the JSON blob in /full/path/to/file for the spot fleet
request.

	-aws-access-key-file /full/path/to/access-key-file
	Experts only.

	-aws-secret-key-file /full/path/to/secret-key-file
	Experts only.

	-aws-ec2-url https://ec2.<region>.amazonaws.com
	Experts only.

	-aws-events-url https://events.<region>.amazonaws.com
	Experts only.

	-aws-lambda-url https://lambda.<region>.amazonaws.com
	Experts only.

	-aws-s3-url https://s3.<region>.amazonaws.com
	Experts only.

	-aws-spot-fleet-lease-function-arn sfr-lease-function-arn
	Developers only.

	-aws-on-demand-lease-function-arn odi-lease-function-arn
	Developers only.

	-aws-on-demand-instance-profile-arn instance-profile-arn
	Developers only.

General Remarks

Currently, only AWS is supported. The AMI configured by setup runs
HTCondor v8.6.10 on Amazon Linux 2016.09, and the default instance type
is “m4.large”. The default AMI has the appropriate drivers for AWS’ GPU
instance types.

Examples

To start an on-demand annex named ‘MyFirstAnnex’ with one core, using
the default AMI and instance type, run

$ condor_annex -count 1 -annex-name MyFirstAnnex

You will be asked to confirm that the defaults are what you want.

As of 2017-04-17, the following example will cost a minimum of $90.

To start an on-demand annex with 100 GPUs that job owners ‘big’ and
‘little’ may use (be sure to include yourself!), run

$ condor_annex -count 100 -annex-name MySecondAnnex \
 -aws-on-demand-instance-type p2.xlarge -owner "big, little"

Exit Status

condor_annex will exit with a status value of 0 (zero) on success.

 condor_check_password

condor_check_password

Examine HTCondor key files, looking for keys that prior version of HTCondor
will not fully read.

Synopsis

condor_check_password <-h | --help>

condor_check_password [--truncate] [key]

Description

Versions of HTCondor before 8.9.12 contained contained a bug in the code
used to read the pool password (hence the name of the tool): in some
cases the read would be truncated before end of the file. Because the
same code is used to read IDTOKENS signing keys, this bug affects the
IDTOKENS authorization method, as well.

There was no backwards-compatible fix: versions 8.9.12 and later may
read the same file differently than earlier versions, meaning that
tokens issued before 8.9.12 may not be recognized by later versions.

This tool detects key files which will not be fully read by earlier versions
of HTCondor. IDTOKENS generated by such a key will not be accepted by
later versions (which read the whole key file). If you choose to
truncate these files on disk, later version of HTCondor will read only
the same bits as earlier versions, allowing them to accept tokens
issued by earlier versions, at the cost of weakening your pool’s
resistance to brute-force attacks.

By default, this tool checks all the key files that will be
found by the current HTCondor configuration; you may specify a
specific key or keys to check, instead.

Options

	-h, --help
	Print a usage reminder.

	--truncate
	When a potentially insecure key is encountered, truncate it to
match the behavior prior to version 8.9.12.

Exit Status

Exits with code 0 if there were no signing keys to check or if all of
the checked keys were OK. Exits with code 1 if at least one checked
key was not OK. Exits non-zero if a problem was encountered
along the way.

 condor_check_userlogs

condor_check_userlogs

Check job event log files for errors

Synopsis

condor_check_userlogs UserLogFile1 [UserLogFile2
…UserLogFileN]

Description

condor_check_userlogs is a program for checking a job event log or a
set of job event logs for errors. Output includes an indication that no
errors were found within a log file, or a list of errors such as an
execute or terminate event without a corresponding submit event, or
multiple terminated events for the same job.

condor_check_userlogs is especially useful for debugging
condor_dagman problems. If condor_dagman reports an error it is
often useful to run condor_check_userlogs on the relevant log files.

Exit Status

condor_check_userlogs will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

 condor_chirp

condor_chirp

Access files or job ClassAd from an executing job

Synopsis

condor_chirp <Chirp-Command>

Description

condor_chirp is not intended for use as a command-line tool. It is
most often invoked by an HTCondor job, while the job is executing. It
accesses files or job ClassAd attributes on the access point. Files
can be read, written or removed. Job attributes can be read, and most
attributes can be updated.

When invoked by an HTCondor job, the command-line arguments describe the
operation to be performed. Each of these arguments is described below
within the section on Chirp Commands. Descriptions using the terms local
and remote are given from the point of view of the executing job.

If the input file name for put or write is a dash,
condor_chirp uses standard input as the source. If the output file
name for fetch is a dash, condor_chirp writes to standard output
instead of a local file.

Jobs that use condor_chirp must have the attribute WantIOProxy
set to True in the job ClassAd. To do this, place

want_io_proxy = true

in the submit description file of the job.

condor_chirp only works for jobs run in the vanilla, parallel and
java universes.

Chirp Commands

	fetch RemoteFileName LocalFileName
	Copy the RemoteFileName from the access point to the execute
machine, naming it LocalFileName.

	put [-mode mode] [-perm UnixPerm] LocalFileName RemoteFileName
	Copy the LocalFileName from the execute machine to the submit
machine, naming it RemoteFileName. The optional
-perm UnixPerm argument describes the file access
permissions in a Unix format; 660 is an example Unix format.

The optional -mode mode argument is one or more of the
following characters describing the RemoteFileName file: w,
open for writing; a, force all writes to append; t, truncate
before use; c, create the file, if it does not exist; x,
fail if c is given and the file already exists.

	remove RemoteFileName
	Remove the RemoteFileName file from the access point.

	get_job_attr JobAttributeName
	Prints the named job ClassAd attribute to standard output.

	set_job_attr JobAttributeName AttributeValue
	Sets the named job ClassAd attribute with the given attribute value.

	get_job_attr_delayed JobAttributeName
	Prints the named job ClassAd attribute to standard output,
potentially reading the cached value from a recent
set_job_attr_delayed.

	set_job_attr_delayed JobAttributeName AttributeValue
	Sets the named job ClassAd attribute with the given attribute value,
but does not immediately synchronize the value with the submit side.
It can take 15 minutes before the synchronization occurs. This has
much less overhead than the non delayed version. With this option,
jobs do not need ClassAd attribute WantIOProxy set. With this
option, job attribute names are restricted to begin with the case
sensitive substring Chirp.

	ulog Message
	Appends Message to the job event log.

	read [-offset offset] [-stride length skip] RemoteFileName Length
	Read Length bytes from RemoteFileName. Optionally, implement a
stride by starting the read at offset and reading length bytes
with a stride of skip bytes.

	write [-offset offset] [-stride length skip] RemoteFileName LocalFileName [numbytes
] Write the contents of LocalFileName to RemoteFileName.
Optionally, start writing to the remote file at offset and write
length bytes with a stride of skip bytes. If the optional
numbytes follows LocalFileName, then the write will halt after
numbytes input bytes have been written. Otherwise, the entire
contents of LocalFileName will be written.

	rmdir [-r] RemotePath
	Delete the directory specified by RemotePath. If the optional
-r is specified, recursively delete the entire directory.

	getdir [-l] RemotePath
	List the contents of the directory specified by RemotePath. If
-l is specified, list all metadata as well.

	whoami
	Get the user’s current identity.

	whoareyou RemoteHost
	Get the identity of RemoteHost.

	link [-s] OldRemotePath NewRemotePath
	Create a hard link from OldRemotePath to NewRemotePath. If the
optional -s is specified, create a symbolic link instead.

	readlink RemoteFileName
	Read the contents of the file defined by the symbolic link
RemoteFileName.

	stat RemotePath
	Get metadata for RemotePath. Examines the target, if it is a
symbolic link.

	lstat RemotePath
	Get metadata for RemotePath. Examines the file, if it is a
symbolic link.

	statfs RemotePath
	Get file system metadata for RemotePath.

	access RemotePath Mode
	Check access permissions for RemotePath. Mode is one or more of
the characters r, w, x, or f, representing read,
write, execute, and existence, respectively.

	chmod RemotePath UnixPerm
	Change the permissions of RemotePath to UnixPerm. UnixPerm
describes the file access permissions in a Unix format; 660 is an
example Unix format.

	chown RemotePath UID GID
	Change the ownership of RemotePath to UID and GID. Changes the
target of RemotePath, if it is a symbolic link.

	lchown RemotePath UID GID
	Change the ownership of RemotePath to UID and GID. Changes the
link, if RemotePath is a symbolic link.

	truncate RemoteFileName Length
	Truncates RemoteFileName to Length bytes.

	utime RemotePath AccessTime ModifyTime
	Change the access to AccessTime and modification time to
ModifyTime of RemotePath.

Examples

To copy a file from the access point to the execute machine while the
user job is running, run

$ condor_chirp fetch remotefile localfile

To print to standard output the value of the Requirements expression
from within a running job, run

$ condor_chirp get_job_attr Requirements

Note that the remote (submit-side) directory path is relative to the
submit directory, and the local (execute-side) directory is relative to
the current directory of the running program.

To append the word “foo” to a file called RemoteFile on the submit
machine, run

$ echo foo | condor_chirp put -mode wa - RemoteFile

To append the message “Hello World” to the job event log, run

$ condor_chirp ulog "Hello World"

Exit Status

condor_chirp will exit with a status value of 0 (zero) upon success,
and it will exit with the value 1 (one) upon failure.

 condor_configure

condor_configure

Configure or install HTCondor

Synopsis

condor_configure or condor_install [–help] [–usage]

condor_configure or condor_install
[--install[=<path/to/release>]] [--install-dir=<path>]
[--prefix=<path>] [--local-dir=<path>]
[--make-personal-condor] [--bosco] [--type = < submit,
execute, manager >] [--central-manager = < hostname>] [--owner =
< ownername >] [--maybe-daemon-owner] [--install-log = < file
>] [--overwrite] [--ignore-missing-libs] [--force]
[--no-env-scripts] [--env-scripts-dir = < directory >]
[--backup] [--credd] [--verbose]

Description

condor_configure and condor_install refer to a single script that
installs and/or configures HTCondor on Unix machines. As the names
imply, condor_install is intended to perform a HTCondor installation,
and condor_configure is intended to configure (or reconfigure) an
existing installation. Both will run with Perl 5.6.0 or more recent
versions.

condor_configure (and condor_install) are designed to be run more
than one time where required. It can install HTCondor when invoked with
a correct configuration via

$ condor_install

or

$ condor_configure --install

or, it can change the configuration files when invoked via

$ condor_configure

Note that changes in the configuration files do not result in changes
while HTCondor is running. To effect changes while HTCondor is running,
it is necessary to further use the condor_reconfig or
condor_restart command. condor_reconfig is required where the
currently executing daemons need to be informed of configuration
changes. condor_restart is required where the options
–make-personal-condor or –type are used, since these affect
which daemons are running.

Running condor_configure or condor_install with no options results
in a usage screen being printed. The –help option can be used to
display a full help screen.

Within the options given below, the phrase release directories is the
list of directories that are released with HTCondor. This list includes:
bin, etc, examples, include, lib, libexec,
man, sbin, sql and src.

Options

	-help
	Print help screen and exit

	-usage
	Print short usage and exit

	-install[=<path/to/release>]
	Perform installation, assuming that the current working directory
contains the release directory, if the optional
=<path/to/release> is not specified. Without further options,
the configuration is that of a Personal HTCondor, a complete
one-machine pool. If used as an upgrade within an existing
installation directory, existing configuration files and local
directory are preserved. This is the default behavior of
condor_install.

	-install-dir=<path>
	Specifies the path where HTCondor should be installed or the path
where it already is installed. The default is the current working
directory.

	-prefix=<path>
	This is an alias for -install-dir.

	-local-dir=<path>
	Specifies the location of the local directory, which is the
directory that generally contains the local (machine-specific)
configuration file as well as the directories where HTCondor daemons
write their run-time information (spool, log, execute).
This location is indicated by the LOCAL_DIR variable in the
configuration file. When installing (that is, if -install is
specified), condor_configure will properly create the local
directory in the location specified. If none is specified, the
default value is given by the evaluation of
$(RELEASE_DIR)/local.$(HOSTNAME).

During subsequent invocations of condor_configure (that is,
without the -install option), if the -local-dir option is specified,
the new directory will be created and the log, spool and
execute directories will be moved there from their current
location.

	-make-personal-condor
	Installs and configures for Personal HTCondor, a fully-functional,
one-machine pool.

	-bosco
	Installs and configures Bosco, a personal HTCondor that submits jobs
to remote batch systems.

	-type= < submit, execute, manager >
	One or more of the types may be listed. This determines the roles
that a machine may play in a pool. In general, any machine can be a
submit and/or execute machine, and there is one central manager per
pool. In the case of a Personal HTCondor, the machine fulfills all
three of these roles.

	-central-manager=<hostname>
	Instructs the current HTCondor installation to use the specified
machine as the central manager. This modifies the configuration
variable COLLECTOR_HOST to point to the given host name. The
central manager machine’s HTCondor configuration needs to be
independently configured to act as a manager using the option
-type=manager.

	-owner=<ownername>
	Set configuration such that HTCondor daemons will be executed as the
given owner. This modifies the ownership on the log, spool
and execute directories and sets the CONDOR_IDS value in the
configuration file, to ensure that HTCondor daemons start up as the
specified effective user. The section on security within the
HTCondor manual discusses UIDs in HTCondor. This is only applicable
when condor_configure is run by root. If not run as root, the
owner is the user running the condor_configure command.

	-maybe-daemon-owner
	If -owner is not specified and no appropriate user can be found
to run Condor, then this option will allow the daemon user to be
selected. This option is rarely needed by users but can be useful
for scripts that invoke condor_configure to install Condor.

	-install-log=<file>
	Save information about the installation in the specified file. This
is normally only needed when condor_configure is called by a
higher-level script, not when invoked by a person.

	-overwrite
	Always overwrite the contents of the sbin directory in the
installation directory. By default, condor_install will not
install if it finds an existing sbin directory with HTCondor
programs in it. In this case, condor_install will exit with an
error message. Specify -overwrite or -backup to tell
condor_install what to do.

This prevents condor_install from moving an sbin directory
out of the way that it should not move. This is particularly useful
when trying to install HTCondor in a location used by other things
(/usr, /usr/local, etc.) For example: condor_install
-prefix=/usr will not move /usr/sbin out of the way unless
you specify the -backup option.

The -backup behavior is used to prevent condor_install from
overwriting running daemons - Unix semantics will keep the existing
binaries running, even if they have been moved to a new directory.

	-backup
	Always backup the sbin directory in the installation directory.
By default, condor_install will not install if it finds an
existing sbin directory with HTCondor programs in it. In this
case, condor_install with exit with an error message. You must
specify -overwrite or -backup to tell condor_install what
to do.

This prevents condor_install from moving an sbin directory
out of the way that it should not move. This is particularly useful
if you’re trying to install HTCondor in a location used by other
things (/usr, /usr/local, etc.) For example:
condor_install -prefix=/usr will not move /usr/sbin out
of the way unless you specify the -backup option.

The -backup behavior is used to prevent condor_install from
overwriting running daemons - Unix semantics will keep the existing
binaries running, even if they have been moved to a new directory.

	-ignore-missing-libs
	Ignore missing shared libraries that are detected by
condor_install. By default, condor_install will detect missing
shared libraries such as libstdc++.so.5 on Linux; it will print
messages and exit if missing libraries are detected. The
-ignore-missing-libs will cause condor_install to not exit,
and to proceed with the installation if missing libraries are
detected.

	-force
	This is equivalent to enabling both the -overwrite and
-ignore-missing-libs command line options.

	-no-env-scripts
	By default, condor_configure writes simple sh and csh shell
scripts which can be sourced by their respective shells to set the
user’s PATH and CONDOR_CONFIG environment variables. This
option prevents condor_configure from generating these scripts.

	-env-scripts-dir=<directory>
	By default, the simple sh and csh shell scripts (see
-no-env-scripts for details) are created in the root directory
of the HTCondor installation. This option causes condor_configure
to generate these scripts in the specified directory.

	-credd
	Configure the the condor_credd daemon (credential manager
daemon).

	-verbose
	Print information about changes to configuration variables as they
occur.

Exit Status

condor_configure will exit with a status value of 0 (zero) upon
success, and it will exit with a nonzero value upon failure.

Examples

Install HTCondor on the machine (machine1@cs.wisc.edu) to be the pool’s
central manager. On machine1, within the directory that contains the
unzipped HTCondor distribution directories:

$ condor_install --type=submit,execute,manager

This will allow the machine to submit and execute HTCondor jobs, in
addition to being the central manager of the pool.

To change the configuration such that machine2@cs.wisc.edu is an
execute-only machine (that is, a dedicated computing node) within a pool
with central manager on machine1@cs.wisc.edu, issue the command on that
machine2@cs.wisc.edu from within the directory where HTCondor is
installed:

$ condor_configure --central-manager=machine1@cs.wisc.edu --type=execute

To change the location of the LOCAL_DIR directory in the
configuration file, do (from the directory where HTCondor is installed):

$ condor_configure --local-dir=/path/to/new/local/directory

This will move the log,spool,execute directories to
/path/to/new/local/directory from the current local directory.

 condor_config_val

condor_config_val

Query or set a given HTCondor configuration variable

Synopsis

condor_config_val <help option>

condor_config_val [<location options>] <edit option>

condor_config_val [<location options>] [<view
options>] vars

condor_config_val use category [:template_name]
[-expand]

Description

condor_config_val can be used to quickly see what the current
HTCondor configuration is on any given machine. Given a space separated
set of configuration variables with the vars argument,
condor_config_val will report what each of these variables is
currently set to. If a given variable is not defined,
condor_config_val will halt on that variable, and report that it is
not defined. By default, condor_config_val looks in the local
machine’s configuration files in order to evaluate the variables.
Variables and values may instead be queried from a daemon specified
using a location option.

Raw output of condor_config_val displays the string used to define
the configuration variable. This is what is on the right hand side of
the equals sign (=) in a configuration file for a variable. The
default output is an expanded one. Expanded output recursively replaces
any macros within the raw definition of a variable with the macro’s raw
definition.

Each daemon remembers settings made by a successful invocation of
condor_config_val. The configuration file is not modified.

condor_config_val can be used to persistently set or unset
configuration variables for a specific daemon on a given machine using a
-set or -unset edit option. Persistent settings remain when the
daemon is restarted. Configuration variables for a specific daemon on a
given machine may be set or unset for the time period that the daemon
continues to run using a -rset or -runset edit option. These
runtime settings will override persistent settings until the daemon is
restarted. Any changes made will not take effect until
condor_reconfig is invoked.

In general, modifying a host’s configuration with condor_config_val
requires the CONFIG access level, which is disabled on all hosts by
default. Administrators have more fine-grained control over which access
levels can modify which settings. See
the Security section for more details on
security settings. Further, security considerations require proper
settings of configuration variables
SETTABLE_ATTRS_<PERMISSION-LEVEL>

(see DaemonCore Configuration File Entries),
ENABLE_PERSISTENT_CONFIG
(see DaemonCore Configuration File Entries)
and ALLOW...
(see DaemonCore Configuration File Entries)
in order to use condor_config_val to change any configuration variable.

It is generally wise to test a new configuration on a single machine to
ensure that no syntax or other errors in the configuration have been
made before the reconfiguration of many machines. Having bad syntax or
invalid configuration settings is a fatal error for HTCondor daemons,
and they will exit. It is far better to discover such a problem on a
single machine than to cause all the HTCondor daemons in the pool to
exit. condor_config_val can help with this type of testing.

Options

	-help
	(help option) Print usage information and exit.

	-version
	(help option) Print the HTCondor version information and exit.

	-set “var = value”
	(edit option) Sets one or more persistent configuration file
variables. The new value remains if the daemon is restarted. One or
more variables can be set; the syntax requires double quote marks to
identify the pairing of variable name to value, and to permit
spaces.

	-unset var
	(edit option) Each of the persistent configuration variables listed
reverts to its previous value.

	-rset “var = value”
	(edit option) Sets one or more configuration file variables. The new
value remains as long as the daemon continues running. One or more
variables can be set; the syntax requires double quote marks to
identify the pairing of variable name to value, and to permit
spaces.

	-runset var
	(edit option) Each of the configuration variables listed reverts to
its previous value as long as the daemon continues running.

	-summary[:detected]
	(view option) For all configuration variables that differ from
default value, print out the name and value. The values are grouped
by the file that last set the variable, and in the order that they
were set in that file. If the detected option is added, then variables
such as $(OPSYSANDVER) that are detected at runtime are included
in the ouput.

	-dump
	(view option) For all configuration variables that match vars,
display the variables and their values. If no vars are listed,
then display all configuration variables and their values. The
values will be raw unless -expand, -default, or
-evaluate are used.

	-default
	(view option) Default values are displayed.

	-expand
	(view option) Expanded values are displayed. This is the default
unless -dump is used.

	-raw
	(view option) Raw values are displayed.

	-verbose
	(view option) Display configuration file name and line number where
the variable is set, along with the raw, expanded, and default
values of the variable.

	-debug[:<opts>]
	(view option) Send output to stderr, overriding a set value of
TOOL_DEBUG.

	-evaluate
	(view option) Applied only when a location option specifies a
daemon. The value of the requested parameter will be evaluated with
respect to the ClassAd of that daemon.

	-used
	(view option) Applied only when a location option specifies a
daemon. Modifies which variables are displayed to only those used by
the specified daemon.

	-unused
	(view option) Applied only when a location option specifies a
daemon. Modifies which variables are displayed to only those not
used by the specified daemon.

	-config
	(view option) Applied only when the configuration is read from files
(the default), and not when applied to a specific daemon. Display
the current configuration file that set the variable.

	-writeconfig[:upgrade] filename
	(view option) For the configuration read from files (the default),
write to file filename all configuration variables. Values that
are the same as internal, compile-time defaults will be preceded by
the comment character. If the :upgrade o ption is
specified, then values that are the same as the internal,
compile-time defaults are omitted. Variables are in the same order
as the they were read from the original configuration files.

	-macro[:path]
	(view option) Macro expand the text in vars as the configuration
language would. You can use expansion functions such as
$F(<var>). If the :path o ption is specified, treat the
result as a path and return the canonical form.

	-mixedcase
	(view option) Applied only when the configuration is read from files
(the default), and not when applied to a specific daemon. Print
variable names with the same letter case used in the variable’s
definition.

	-local-name <name>
	(view option) Applied only when the configuration is read from files
(the default), and not when applied to a specific daemon. Inspect
the values of attributes that use local names, which is useful to
distinguish which daemon when there is more than one of the
particular daemon running.

	-subsystem <daemon>
	(view option) Applied only when the configuration is read from files
(the default), and not when applied to a specific daemon. Specifies
the subsystem or daemon name to query, with a default value of the
TOOL subsystem.

	-address <ip:port>
	(location option) Connect to the given IP address and port number.

	-pool centralmanagerhostname[:portnumber]
	(location option) Use the given central manager and an optional port
number to find daemons.

	-name <machine_name>
	(location option) Query the specified machine’s condor_master
daemon for its configuration. Does not function together with any of
the options: -dump, -config, or -verbose.

	-master | -schedd | -startd | -collector | -negotiator
	(location option) The specific daemon to query.

	use category [:set name] [-expand]
	Display information about configuration templates (see
Configuration Templates).
Specifying only a category will list the template_names
available for that category. Specifying a category and a
template_name will display the definition of that configuration
template. Adding the -expand option will display the expanded
definition (with macro substitutions). (-expand has no effect if
a template_name is not specified.) Note that there is no dash
before use and that spaces are not allowed next to the colon
character separating category and template_name.

Exit Status

condor_config_val will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

Examples

Here is a set of examples to show a sequence of operations using
condor_config_val. To request the condor_schedd daemon on host
perdita to display the value of the MAX_JOBS_RUNNING configuration
variable:

$ condor_config_val -name perdita -schedd MAX_JOBS_RUNNING
500

To request the condor_schedd daemon on host perdita to set the value
of the MAX_JOBS_RUNNING configuration variable to the value 10.

$ condor_config_val -name perdita -schedd -set "MAX_JOBS_RUNNING = 10"
Successfully set configuration "MAX_JOBS_RUNNING = 10" on
schedd perdita.cs.wisc.edu <128.105.73.32:52067>.

A command that will implement the change just set in the previous
example.

$ condor_reconfig -schedd perdita
Sent "Reconfig" command to schedd perdita.cs.wisc.edu

A re-check of the configuration variable reflects the change
implemented:

$ condor_config_val -name perdita -schedd MAX_JOBS_RUNNING
10

To set the configuration variable MAX_JOBS_RUNNING back to what it
was before the command to set it to 10:

$ condor_config_val -name perdita -schedd -unset MAX_JOBS_RUNNING
Successfully unset configuration "MAX_JOBS_RUNNING" on
schedd perdita.cs.wisc.edu <128.105.73.32:52067>.

A command that will implement the change just set in the previous
example.

$ condor_reconfig -schedd perdita
Sent "Reconfig" command to schedd perdita.cs.wisc.edu

A re-check of the configuration variable reflects that variable has gone
back to is value before initial set of the variable:

$ condor_config_val -name perdita -schedd MAX_JOBS_RUNNING
500

Getting a list of template_names for the role configuration
template category:

$ condor_config_val use role
use ROLE accepts
 CentralManager
 Execute
 Personal
 Submit

Getting the definition of role:personal configuration template:

$ condor_config_val use role:personal
use ROLE:Personal is
 CONDOR_HOST=127.0.0.1
COLLECTOR_HOST=$(CONDOR_HOST):0
DAEMON_LIST=MASTER COLLECTOR NEGOTIATOR STARTD SCHEDD
RunBenchmarks=0

 condor_continue

condor_continue

continue suspended jobs from the HTCondor queue

Synopsis

condor_continue [-help | -version]

condor_continue [-debug] [
-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”] **

Description

condor_continue continues one or more suspended jobs from the
HTCondor job queue. If the -name option is specified, the named
condor_schedd is targeted for processing. Otherwise, the local
condor_schedd is targeted. The job(s) to be continued are identified
by one of the job identifiers, as described below. For any given job,
only the owner of the job or one of the queue super users (defined by
the QUEUE_SUPER_USERS macro) can continue the job.

Options

	-help
	Display usage information

	-version
	Display version information

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number

	-name scheddname
	Send the command to a machine identified by scheddname

	-addr “<a.b.c.d:port>”
	Send the command to a machine located at “<a.b.c.d:port>”

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	cluster
	Continue all jobs in the specified cluster

	cluster.process
	Continue the specific job in the cluster

	user
	Continue jobs belonging to specified user

	-constraint expression
	Continue all jobs which match the job ClassAd expression constraint

	-all
	Continue all the jobs in the queue

Exit Status

condor_continue will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

Examples

To continue all jobs except for a specific user:

$ condor_continue -constraint 'Owner =!= "foo"'

 condor_dagman

condor_dagman

meta scheduler of the jobs submitted as the nodes of a DAG or DAGs

Synopsis

condor_dagman -f -t -l . -help

condor_dagman -version

condor_dagman -f -l . -csdversion version_string
[-debug level] [-dryrun] [-maxidle numberOfProcs]
[-maxjobs numberOfJobs] [-maxpre NumberOfPreScripts]
[-maxpost NumberOfPostScripts] [-maxhold NumberOfHoldScripts]
[-usedagdir] -lockfile filename [-waitfordebug]
[-autorescue 0|1] [-dorescuefrom number]
[-load_save filename] [-allowversionmismatch]
[-DumpRescue] [-verbose] [-force]
[-notification value] [-suppress_notification]
[-dont_suppress_notification] [-dagman DagmanExecutable]
[-outfile_dir directory] [-update_submit]
[-import_env] [-include_env Variables]
[-insert_env Key=Value] [-priority number]
[-DontAlwaysRunPost] [-AlwaysRunPost]
[-DoRecovery] [-dot] -dag dag_file
[-dag dag_file_2 … -dag dag_file_n]

Description

condor_dagman is a meta scheduler for the HTCondor jobs within a DAG
(directed acyclic graph) (or multiple DAGs). In typical usage, a
submitter of jobs that are organized into a DAG submits the DAG using
condor_submit_dag. condor_submit_dag does error checking on
aspects of the DAG and then submits condor_dagman as an HTCondor job.
condor_dagman uses log files to coordinate the further submission of
the jobs within the DAG.

All command line arguments to the DaemonCore library functions work
for condor_dagman. When invoked from the command line,
condor_dagman requires the arguments -f -l . to appear first on the
command line, to be processed by DaemonCore. The csdversion must
also be specified; at start up, condor_dagman checks for a version
mismatch with the condor_submit_dag version in this argument. The
-t argument must also be present for the -help option, such that
output is sent to the terminal.

Arguments to condor_dagman are either automatically set by
condor_submit_dag or they are specified as command-line arguments to
condor_submit_dag and passed on to condor_dagman. The method by
which the arguments are set is given in their description below.

condor_dagman can run multiple, independent DAGs. This is done by
specifying multiple -dag a rguments. Pass multiple DAG input
files as command-line arguments to condor_submit_dag.

Debugging output may be obtained by using the -debug level
option. Level values and what they produce is described as

	level = 0; never produce output, except for usage info

	level = 1; very quiet, output severe errors

	level = 2; normal output, errors and warnings

	level = 3; output errors, as well as all warnings

	level = 4; internal debugging output

	level = 5; internal debugging output; outer loop debugging

	level = 6; internal debugging output; inner loop debugging; output
DAG input file lines as they are parsed

	level = 7; internal debugging output; rarely used; output DAG input
file lines as they are parsed

Options

	-help
	Display usage information and exit.

	-version
	Display version information and exit.

	-csdversion VersionString
	Sets the version of condor_submit_dag command used to submit
the DAGMan workflow. Used to help identify version mismatching.

	-debug level
	An integer level of debugging output. level is an integer, with
values of 0-7 inclusive, where 7 is the most verbose output. This
command-line option to condor_submit_dag is passed to
condor_dagman or defaults to the value 3.

	-dryrun
	Inform DAGMan to do a dry run. Where the DAG is ran but node jobs
are not actually submitted.

	-maxidle NumberOfProcs
	Sets the maximum number of idle procs allowed before
condor_dagman stops submitting more node jobs. If this option is
omitted then the number of idle procs is limited by the configuration
variable DAGMAN_MAX_JOBS_IDLE which defaults to 1000.
To disable this limit, set NumberOfProcs to 0. The NumberOfProcs
can be exceeded if a nodes job has a queue command with more than
one proc to queue. i.e. queue 500 will submit all procs even
if NumberOfProcs is 250. In this case DAGMan will wait for
for the number of idle procs to fall below 250 before submitting
more jobs to the condor_schedd.

	-maxjobs NumberOfClusters
	Sets the maximum number of clusters within the DAG that will be
submitted to HTCondor at one time. Each cluster is associated with
one node job no matter how many individual procs are in the cluster.
NumberOfClusters is a non-negative integer. If this option is
omitted then the number of clusters is limited by the configuration
variable DAGMAN_MAX_JOBS_SUBMITTED which defaults to 0 (unlimited).

	-maxpre NumberOfPreScripts
	Sets the maximum number of PRE scripts within the DAG that may be
running at one time. NumberOfPreScripts is a non-negative integer.
If this option is omitted, the number of PRE scripts is limited by
the configuration variable DAGMAN_MAX_PRE_SCRIPTS
which defaults to 20.

	-maxpost NumberOfPostScripts
	Sets the maximum number of POST scripts within the DAG that may be
running at one time. NumberOfPostScripts is a non-negative
integer. If this option is omitted, the number of POST scripts is
limited by the configuration variable DAGMAN_MAX_POST_SCRIPTS
which defaults to 20.

	-maxhold NumberOfHoldScripts
	Sets the maximum number of HOLD scripts within the DAG that may be
running at one time. NumberOfHoldscripts is a non-negative integer.
If this option is omitted, the number of HOLD scripts is limited by
the configuration variable DAGMAN_MAX_HOLD_SCRIPTS, which
defaults to 0 (unlimited).

	-usedagdir
	This optional argument causes condor_dagman to run each specified
DAG as if the directory containing that DAG file was the current
working directory. This option is most useful when running multiple
DAGs in a single condor_dagman.

	-lockfile filename
	Names the file created and used as a lock file. The lock file
prevents execution of two of the same DAG, as defined by a DAG input
file. A default lock file ending with the suffix .dag.lock is
passed to condor_dagman by condor_submit_dag.

	-waitfordebug
	This optional argument causes condor_dagman to wait at startup
until someone attaches to the process with a debugger and sets the
wait_for_debug variable in main_init() to false.

	-autorescue 0|1
	Whether to automatically run the newest rescue DAG for the given DAG
file, if one exists (0 = false, 1 = true).

	-dorescuefrom number
	Forces condor_dagman to run the specified rescue DAG number for
the given DAG. A value of 0 is the same as not specifying this
option. Specifying a nonexistent rescue DAG is a fatal error.

	-load_save filename
	Specify a file with saved DAG progress to re-run the DAG from. If
given a path DAGMan will attempt to read that file following that
path. Otherwise, DAGMan will check for the file in the DAG’s
save_files sub-directory.

	-allowversionmismatch
	This optional argument causes condor_dagman to allow a version
mismatch between condor_dagman itself and the .condor.sub
file produced by condor_submit_dag (or, in other words, between
condor_submit_dag and condor_dagman). WARNING! This option
should be used only if absolutely necessary. Allowing version
mismatches can cause subtle problems when running DAGs.

	-DumpRescue
	This optional argument causes condor_dagman to immediately dump a
Rescue DAG and then exit, as opposed to actually running the DAG.
This feature is mainly intended for testing. The Rescue DAG file is
produced whether or not there are parse errors reading the original
DAG input file. The name of the file differs if there was a parse
error.

	-verbose
	(This argument is included only to be passed to
condor_submit_dag if lazy submit file generation is used for
nested DAGs.) Cause condor_submit_dag to give verbose error
messages.

	-force
	(This argument is included only to be passed to
condor_submit_dag if lazy submit file generation is used for
nested DAGs.) Require condor_submit_dag to overwrite the files
that it produces, if the files already exist. Note that
dagman.out will be appended to, not overwritten. If new-style
rescue DAG mode is in effect, and any new-style rescue DAGs exist,
the -force flag will cause them to be renamed, and the original
DAG will be run. If old-style rescue DAG mode is in effect, any
existing old-style rescue DAGs will be deleted, and the original DAG
will be run. See the HTCondor manual section on Rescue DAGs for more
information.

	-notification value
	This argument is only included to be passed to condor_submit_dag
if lazy submit file generation is used for nested DAGs. Sets the
e-mail notification for DAGMan itself. This information will be used
within the HTCondor submit description file for DAGMan. This file is
produced by condor_submit_dag. The notification option is
described in the condor_submit manual page.

	-suppress_notification
	Causes jobs submitted by condor_dagman to not send email
notification for events. The same effect can be achieved by setting
the configuration variable DAGMAN_SUPPRESS_NOTIFICATION to
True. This command line option is independent of the -notification
command line option, which controls notification for the condor_dagman
job itself. This flag is generally superfluous, as
DAGMAN_SUPPRESS_NOTIFICATION defaults to True.

	-dont_suppress_notification
	Causes jobs submitted by condor_dagman to defer to content within
the submit description file when deciding to send email notification
for events. The same effect can be achieved by setting the
configuration variable DAGMAN_SUPPRESS_NOTIFICATION to
False. This command line flag is independent of the -notification
command line option, which controls notification for the condor_dagman
job itself. If both -dont_suppress_notification and
-suppress_notification are specified within the same command
line, the last argument is used.

	-dagman DagmanExecutable
	(This argument is included only to be passed to
condor_submit_dag if lazy submit file generation is used for
nested DAGs.) Allows the specification of an alternate
condor_dagman executable to be used instead of the one found in
the user’s path. This must be a fully qualified path.

	-outfile_dir directory
	(This argument is included only to be passed to
condor_submit_dag if lazy submit file generation is used for
nested DAGs.) Specifies the directory in which the .dagman.out
file will be written. The directory may be specified relative to
the current working directory as condor_submit_dag is executed,
or specified with an absolute path. Without this option, the
.dagman.out file is placed in the same directory as the first
DAG input file listed on the command line.

	-update_submit
	(This argument is included only to be passed to
condor_submit_dag if lazy submit file generation is used for
nested DAGs.) This optional argument causes an existing
.condor.sub file to not be treated as an error; rather, the
.condor.sub file will be overwritten, but the existing values of
-maxjobs, -maxidle, -maxpre, and -maxpost will be
preserved.

	-import_env
	(This argument is included only to be passed to
condor_submit_dag if lazy submit file generation is used for
nested DAGs.) This optional argument causes condor_submit_dag to
import the current environment into the environment command of
the .condor.sub file it generates.

	-include_env Variables
	This optional argument takes a comma separated list of enviroment
variables to add to .condor.sub getenv environment filter
which causes found matching environment variables to be added to
the DAGMan manager jobs environment.

	-insert_env Key=Value
	This optional argument takes a delimited string of Key=Value pairs
to explicitly set into the .condor.sub files environment macro.
The base delimiter is a semicolon that can be overriden by setting
the first character in the string to a valid delimiting character.
If multiple -insert_env flags contain the same Key then the last
occurances Value will be set in the DAGMan jobs environment.

	-priority number
	Sets the minimum job priority of node jobs submitted and running
under this condor_dagman job.

	-DontAlwaysRunPost
	This option causes condor_dagman to not run the POST script of a
node if the PRE script fails.

	-AlwaysRunPost
	This option causes condor_dagman to always run the POST script of
a node, even if the PRE script fails.

	-DoRecovery
	Causes condor_dagman to start in recovery mode. This means that
it reads the relevant job user log(s) and catches up to the given
DAG’s previous state before submitting any new jobs.

	-dot
	Run condor_dagman up until the point when a DOT file is
produced.

	-dag filename
	filename is the name of the DAG input file that is set as an
argument to condor_submit_dag, and passed to condor_dagman.

Exit Status

condor_dagman will exit with a status value of 0 (zero) upon success,
and it will exit with the value 1 (one) upon failure.

Examples

condor_dagman is normally not run directly, but submitted as an
HTCondor job by running condor_submit_dag. See the
condor_submit_dag manual page for examples.

 condor_drain

condor_drain

Control draining of an execute machine

Synopsis

condor_drain [-help]

condor_drain [-debug] [-pool pool-name]
[-graceful | -quick | -fast] [-reason reason-text]
[-resume-on-completion | -restart-on-completion | -reconfig-on-completion | -exit-on-completion]
[-check expr] [-start expr] machine-name

condor_drain [-debug] [-pool pool-name] -cancel
[-request-id id] machine-name

Description

condor_drain is an administrative command used to control the
draining of all slots on an execute machine. When a machine is draining,
it will not accept any new jobs unless the -start expression
specifies otherwise. Which machine to drain is specified by the argument
machine-name, and will be the same as the machine ClassAd attribute
Machine.

How currently running jobs are treated depends on the draining schedule
that is chosen with a command-line option:

	-graceful
	Initiate a graceful eviction of the job. This means all promises
that have been made to the job are honored, including
MaxJobRetirementTime. The eviction of jobs is coordinated to
reduce idle time. This means that if one slot has a job with a long
retirement time and the other slots have jobs with shorter
retirement times, the effective retirement time for all of the jobs
is the longer one. If no draining schedule is specified,
-graceful is chosen by default.

	-quick
	MaxJobRetirementTime is not honored. Eviction of jobs is
immediately initiated. Jobs are given time to shut down
according to the usual policy, that is, given by
MachineMaxVacateTime.

	-fast
	Jobs are immediately hard-killed, with no chance to gracefully shut
down.

If you specify -graceful, you may also specify -start. On a
gracefully-draining machine, some jobs may finish retiring before
others. By default, the resources used by the newly-retired jobs do not
become available for use by other jobs until the machine exits the
draining state (see below). The -start expression you supply
replaces the draining machine’s normal START expression for the
duration of the draining state, potentially making those resources
available. See the
condor_startd Policy Configuration
section for more information.

Once draining is complete, the machine will enter the Drained/Idle
state. To resume normal operation (negotiation) at that time or any
previous time during draining, the -cancel option may be used. The
-resume-on-completion option results in automatic resumption of
normal operation once draining has completed, and may be used when
initiating draining. This is useful for forcing a machine with a
partitionable slots to join all of the resources back together into one
machine, facilitating de-fragmentation and whole machine negotiation.

Options

	-help
	Display brief usage information and exit.

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-pool pool-name
	Specify an alternate HTCondor pool, if the default one is not
desired.

	-graceful
	(the default) Honor the maximum vacate and retirement time policy.

	-quick
	Honor the maximum vacate time, but not the retirement time policy.

	-fast
	Honor neither the maximum vacate time policy nor the retirement time
policy.

	-reason reason-text
	Set the drain reason to reason-text. While the condor_startd is draining
it will advertise the given reason. If this option is not used the
reason defaults to the name of the user that started the drain.

	-resume-on-completion
	When done draining, resume normal operation, such that potentially
the whole machine could be claimed.

	-restart-on-completion
	When done draining, restart the condor_startd daemon so that
configuration changes will take effect.

	-reconfig-on-completion
	When done draining, reconfig and then resume normal operation. A reconfig
will not change the resources assigned to slots, but most other configuration
changes will be applied, including changes to the START expression
and to offline GPUs and universes.

	-exit-on-completion
	When done draining, shut down the condor_startd daemon and tell
the condor_master not to restart it automatically.

	-check expr
	Abort draining, if expr is not true for all slots to be drained.

	-start expr
	The START expression to use while the machine is draining. You
can’t reference the machine’s existing START expression.

	-cancel
	Cancel a prior draining request, to permit the condor_negotiator
to use the machine again.

	-request-id id
	Specify a specific draining request to cancel, where id is given
by the DrainingRequestId machine ClassAd attribute.

Exit Status

condor_drain will exit with a non-zero status value if it fails and
zero status if it succeeds.

 condor_evicted_files

condor_evicted_files

Inspect the file(s) that HTCondor is holding on to as a result of a job
being evicted when when_to_transfer_output = ON_EXIT_OR_EVICT,
or checkpointing when CheckpointExitCode is set.

Synopsis

condor_evicted_files [COMMAND] <clusterID>.<procID>[<clusterID.<procID>]*

Description

Print the directory or directories HTCondor is using to store files for the
specified job or jobs. COMMAND may be one of dir, list, or get:

	dir: Print the directory (for each job) in which the file(s) are stored.

	list: List the contents of the directory (for each job).

	get: Copy the contents of the directory to a subdirectory named after
each job’s ID.

General Remarks

The tool presently has a number of limitations:

	It must be run the same machine as the job’s schedd.

	The schedd must NOT have ALTERNATE_JOB_SPOOL set

	You can’t name the destination directory for the get command.

	The tool can’t distinguish between an invalid job ID and a job for which
HTCondor never held any files.

Exit Status

Returns 0 on success.

Author

Center for High Throughput Computing, University of Wisconsin-Madison

 condor_fetchlog

condor_fetchlog

Retrieve a daemon’s log file that is located on another computer

Synopsis

condor_fetchlog [-help | -version]

condor_fetchlog
[-pool centralmanagerhostname[:portnumber]] [-master |
-startd | -schedd | -collector | -negotiator | -kbdd]
machine-name subsystem[.extension]

Description

condor_fetchlog contacts HTCondor running on the machine specified by
machine-name, and asks it to return a log file from that machine.
Which log file is determined from the subsystem[.extension] argument.
The log file is printed to standard output. This command eliminates the
need to remotely log in to a machine in order to retrieve a daemon’s log
file.

For security purposes of authentication and authorization, this command
requires ADMINISTRATOR level of access.

The subsystem[.extension] argument is utilized to construct the log
file’s name. Without an optional .extension, the value of the
configuration variable named subsystem _LOG defines the log file’s
name. When specified, the .extension is appended to this value.

The subsystem argument is any value $(SUBSYSTEM) that has a
defined configuration variable of $(SUBSYSTEM)_LOG, or any of

	NEGOTIATOR_MATCH

	HISTORY

	STARTD_HISTORY

A value for the optional .extension to the subsystem argument is
typically one of the three strings:

	.old

	.slot<X>

	.slot<X>.old

Within these strings, <X> is substituted with the slot number.

A subsystem argument of STARTD_HISTORY fetches all
condor_startd history by concatenating all instances of log files
resulting from rotation.

Options

	-help
	Display usage information

	-version
	Display version information

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number

	-master
	Send the command to the condor_master daemon (default)

	-startd
	Send the command to the condor_startd daemon

	-schedd
	Send the command to the condor_schedd daemon

	-collector
	Send the command to the condor_collector daemon

	-kbdd
	Send the command to the condor_kbdd daemon

Examples

To get the condor_negotiator daemon’s log from a host named
head.example.com from within the current pool:

$ condor_fetchlog head.example.com NEGOTIATOR

To get the condor_startd daemon’s log from a host named
execute.example.com from within the current pool:

$ condor_fetchlog execute.example.com STARTD

This command requested the condor_startd daemon’s log from the
condor_master. If the condor_master has crashed or is
unresponsive, ask another daemon running on that computer to return the
log. For example, ask the condor_startd daemon to return the
condor_master ‘s log:

$ condor_fetchlog -startd execute.example.com MASTER

Exit Status

condor_fetchlog will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

 condor_findhost

condor_findhost

find machine(s) in the pool that can be used with minimal impact on
currently running HTCondor jobs and best meet any specified constraints

Synopsis

condor_findhost [-help] [-m] [-n num]
[-c c_expr] [-r r_expr]
[-p centralmanagerhostname]

Description

condor_findhost searches an HTCondor pool of machines for the best
machine or machines that will have the minimum impact on running
HTCondor jobs if the machine or machines are taken out of the pool. The
search may be limited to the machine or machines that match a set of
constraints and rank expression.

condor_findhost returns a fully-qualified domain name for each
machine. The search is limited (constrained) to a specific set of
machines using the -c option. The search can use the -r option for
rank, the criterion used for selecting a machine or machines from the
constrained list.

Options

	-help
	Display usage information and exit

	-m
	Only search for entire machines. Slots within an entire machine are
not considered.

	-n num
	Find and list up to num machines that fulfill the specification.
num is an integer greater than zero.

	-c c_expr
	Constrain the search to only consider machines that result from the
evaluation of c_expr. c_expr is a ClassAd expression.

	-r r_expr
	r_expr is the rank expression evaluated to use as a basis for
machine selection. r_expr is a ClassAd expression.

	-p centralmanagerhostname
	Specify the pool to be searched by giving the central manager’s host
name. Without this option, the current pool is searched.

General Remarks

condor_findhost is used to locate a machine within a pool that can be
taken out of the pool with the least disturbance of the pool.

An administrator should set preemption requirements for the HTCondor
pool. The expression

(Interactive =?= TRUE)

will let condor_findhost know that it can claim a machine even if
HTCondor would not normally preempt a job running on that machine.

Exit Status

The exit status of condor_findhost is zero on success. If not able to
identify as many machines as requested, it returns one more than the
number of machines identified. For example, if 8 machines are requested,
and condor_findhost only locates 6, the exit status will be 7. If not
able to locate any machines, or an error is encountered,
condor_findhost will return the value 1.

Examples

To find and list four machines, preferring those with the highest mips
(on Drystone benchmark) rating:

$ condor_findhost -n 4 -r "mips"

To find and list 24 machines, considering only those where the
kflops attribute is not defined:

$ condor_findhost -n 24 -c "kflops=?=undefined"

 condor_gather_info

condor_gather_info

Gather information about an HTCondor installation and a queued job

Synopsis

condor_gather_info [–jobid ClusterId.ProcId] [–scratch
/path/to/directory]

Description

condor_gather_info is a Linux-only tool that will collect and output
information about the machine it is run upon, about the HTCondor
installation local to the machine, and optionally about a specified
HTCondor job. The information gathered by this tool is most often used
as a debugging aid for the developers of HTCondor.

Without the –jobid option, information about the local machine and
its HTCondor installation is gathered and placed into the file called
condor-profile.txt, in the current working directory. The
information gathered is under the category of Identity.

With the –jobid option, additional information is gathered about
the job given in the command line argument and identified by its
ClusterId and ProcId ClassAd attributes. The information
includes both categories, Identity and Job information. As the quantity
of information can be extensive, this information is placed into a
compressed tar file. The file is placed into the current working
directory, and it is named using the format

cgi-<username>-jid<ClusterId>.<ProcId>-<year>-<month>-<day>-<hour>_<minute>_<second>-<TZ>.tar.gz

All values within <> are substituted with current values. The building
of this potentially large tar file can require a fair amount of
temporary space. If the –scratch option is specified, it identifies
a directory in which to build the tar file. If the –scratch option
is not specified, then the directory will be /tmp/cgi-<PID>, where
the process ID is that of the condor_gather_info executable.

The information gathered by this tool:

	Identity

	User name who generated the report

	Script location and machine name

	Date of report creation

	uname -a

	Contents of /etc/issue

	Contents of /etc/redhat-release

	Contents of /etc/debian_version

	Contents of $(LOG)/MasterLog

	Contents of $(LOG)/ShadowLog

	Contents of $(LOG)/SchedLog

	Output of ps -auxww -forest

	Output of df -h

	Output of iptables -L

	Output of ls 'condor_config_val LOG'

	Output of ldd 'condor_config_val SBIN'/condor_schedd

	Contents of /etc/hosts

	Contents of /etc/nsswitch.conf

	Output of ulimit -a

	Output of uptime

	Output of free

	Network interface configuration (ifconfig)

	HTCondor version

	Location of HTCondor configuration files

	HTCondor configuration variables

	All variables and values

	Definition locations for each configuration variable

	Job Information

	Output of condor_q jobid

	Output of condor_q -l jobid

	Output of condor_q -analyze jobid

	Job event log, if it exists

	Only events pertaining to the job ID

	If condor_gather_info has the proper permissions, it runs
condor_fetchlog on the machine where the job most recently ran,
and includes the contents of the logs from the condor_master,
condor_startd, and condor_starter.

Options

	-jobid <ClusterId.ProcId>
	Data mine information about this HTCondor job from the local
HTCondor installation and condor_schedd.

	-scratch /path/to/directory
	A path to temporary space needed when building the output tar file.
Defaults to /tmp/cgi-<PID>, where <PID> is replaced by the
process ID of condor_gather_info.

Files

	condor-profile.txt The Identity portion of the information
gathered when condor_gather_info is run without arguments.

	cgi-<username>-jid<cluster>.<proc>-<year>-<month>-<day>-<hour>_<minute>_<second>-<TZ>.tar.gz
The output file which contains all of the information produced by
this tool.

Exit Status

condor_gather_info will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

 condor_gpu_discovery

condor_gpu_discovery

Output GPU-related ClassAd attributes

Synopsis

condor_gpu_discovery -help

condor_gpu_discovery [<options>]

Description

condor_gpu_discovery outputs ClassAd attributes corresponding to a
host’s GPU capabilities. It can presently report CUDA and OpenCL
devices; which type(s) of device(s) it reports is determined by which
libraries, if any, it can find when it runs; this reflects what GPU jobs
will find on that host when they run. (Note that some HTCondor
configuration settings may cause the environment to differ between jobs
and the HTCondor daemons in ways that change library discovery.)

If CUDA_VISIBLE_DEVICES or GPU_DEVICE_ORDINAL is set in the
environment when condor_gpu_discovery is run, it will report only
devices present in the those lists.

This tool is not available for MAC OS platforms.

With no command line options, the single ClassAd attribute
DetectedGPUs is printed. If the value is 0, no GPUs were detected.
If one or more GPUS were detected, the value is a string, presented as a
comma and space separated list of the GPUs discovered, where each is
given a name further used as the prefix string in other attribute
names. Where there is more than one GPU of a particular type, the
prefix string includes an GPU id value identifying the device; these
can be integer values that monotonically increase from 0 when the -by-index
option is used or globally unique identifiers when the -short-uuid or
-uuid argument is used.

For example, a discovery of two GPUs with -by-index may
output

DetectedGPUs="CUDA0, CUDA1"

Further command line options use "CUDA" either with or without one
of the integer values 0 or 1 as the name of the device properties ad
for -nested properties, or as the prefix string in attribute names when -not-nested
properties are chosen.

For machines with more than one or two NVIDIA devices, it is recommended that you
also use the -short-uuid or -uuid option. The uuid value assigned by
NVIDA to each GPU is unique, so using this option provides stable device
identifiers for your devices. The -short-uuid option uses only part of the
uuid, but it is highly likely to still be unique for devices on a single machine.
As of HTCondor 9.0 -short-uuid is the default.
When -short-uuid is used, discovery of two GPUs may look like this

DetectedGPUs="GPU-ddc1c098, GPU-9dc7c6d6"

Any NVIDIA runtime library later than 9.0 will accept the above identifiers in the
CUDA_VISIBLE_DEVICES environment variable.

If the NVML libary is available, and a multi-instance GPU (MIG) -capable
device is present, has MIG enabled, and has created compute instances
for each MIG instance, condor_gpu_discovery will report those instance
as distinct devices. Their names will be in the long UUID form unless
the -short-uuid option is used, because they can not be enumerated
via CUDA. MIG instances don’t have some of the properties reported by
the -properties, -extra, and -dynamic options; these properties
will be omitted. If MIG is enabled on any GPU in the system, some properties
become unavailable for every GPU in the system; condor_gpu_discovery
will report what it can.

Options

	-help
	Print usage information and exit.

	-properties
	In addition to the DetectedGPUs attribute, display some of the
attributes of the GPUs. Each of these attributes will be in a nested
ClassAd (-nested) or have a prefix string at the beginning of its name (-not-nested).
The displayed CUDA attributes
are Capability, DeviceName, DriverVersion,
ECCEnabled, GlobalMemoryMb, and RuntimeVersion. The
displayed Open CL attributes are DeviceName, ECCEnabled,
OpenCLVersion, and GlobalMemoryMb.

	-nested
	
	Default. Display properties that are common to all GPUs in a Common nested ClassAd,
	and properties that are not common to all in a nested ClassAd using the GPUid
as the ClassAd name. Use the -not-nested argument to disable nested ClassAds and
return to the older behavior of using a prefix string for individual property attributes.

	-not-nested
	
	Display properties that are common to all GPUs using a CUDA or OCL as
	the attribute prefix, and properties that are not common to all using a GPUid
prefix. Versions of condor_gpu_discovery prior to 9.11.0 support only this mode.

	-extra
	Display more attributes of the GPUs. Each of these attributes
will be added to a nested property ClassAd (-nested) or
have a prefix string at the beginning of its name (-not-nested).
The additional CUDA attributes are ClockMhz, ComputeUnits, and
CoresPerCU. The additional Open CL attributes are ClockMhz
and ComputeUnits.

	-dynamic
	Display attributes of NVIDIA devices that change values as the GPU
is working. Each of these attributes
will be added to the the nested property ClassAd (-nested) or
have a prefix string at the beginning of its name (-not-nested).
These are FanSpeedPct,
BoardTempC, DieTempC, EccErrorsSingleBit, and
EccErrorsDoubleBit.

	-mixed
	When displaying attribute values, assume that the machine has a
heterogeneous set of GPUs, so always include the integer value in
the prefix string.

	-device <N>
	Display properties only for GPU device <N>, where <N> is the
integer value defined for the prefix string. This option may be
specified more than once; additional <N> are listed along with the
first. This option adds to the devices(s) specified by the
environment variables CUDA_VISIBLE_DEVICES and
GPU_DEVICE_ORDINAL, if any.

	-tag string
	Set the resource tag portion of the intended machine ClassAd
attribute Detected<ResourceTag> to be string. If this option
is not specified, the resource tag is "GPUs", resulting in
attribute name DetectedGPUs.

	-prefix str
	When naming -not-nested attributes, use str as the prefix string. When this
option is not specified, the prefix string is either CUDA or
OCL unless -uuid or -short-uuid is also used.

	-by-index
	Use the prefix and device index as the device identifier.

	-short-uuid
	Use the first 8 characters of the NVIDIA uuid as the device identifier.
When this option is used, devices will be shown as GPU-<xxxxxxxx> where
<xxxxxxxx> is the first 8 hex digits of the NVIDIA device uuid. Unlike device
indices, the uuid of a device will not change of other devices are taken offline
or drained.

	-uuid
	Use the full NVIDIA uuid as the device identifier rather than the device index.

	-simulate:[D,N[,D2,…]]
	For testing purposes, assume that N devices of type D were detected,
And N2 devices of type D2, etc.
No discovery software is invoked. D can be a value from 0 to 6 which
selects a simulated a GPU from the following table.

Simulated GPUs

	
	DeviceName

	Capability

	GlobalMemoryMB

	0

	GeForce GT 330

	1.2

	1024

	1

	GeForce GTX 480

	2.0

	1536

	2

	Tesla V100-PCIE-16GB

	7.0

	24220

	3

	TITAN RTX

	7.5

	24220

	4

	A100-SXM4-40GB

	8.0

	40536

	5

	NVIDIA A100-SXM4-40GB MIG 3g.20gb

	8.0

	20096

	6

	NVIDIA A100-SXM4-40GB MIG 1g.5gb

	8.0

	4864

	-opencl
	Prefer detection via OpenCL rather than CUDA. Without this option,
CUDA detection software is invoked first, and no further Open CL
software is invoked if CUDA devices are detected.

	-cuda
	Do only CUDA detection.

	-nvcuda
	For Windows platforms only, use a CUDA driver rather than the CUDA
run time.

	-config
	Output in the syntax of HTCondor configuration, instead of ClassAd
language. An additional attribute is produced NUM_DETECTED_GPUs
which is set to the number of GPUs detected.

	-repeat [N]
	Repeat listed GPUs N (default 2) times. This results in a list
that looks like CUDA0, CUDA1, CUDA0, CUDA1.

If used with -divide, the last one on the command-line wins,
but you must specify 2 if you want it; the default value only
applies to the first flag.

	-divide [N]
	Like -repeat, except also divide the attribute GlobalMemoryMb
by N. This may help you avoid overcommitting your GPU’s memory.

If used with -repeat, the last one on the command-line wins,
but you must specify 2 if you want it; the default value only
applies to the first flag.

	-packed
	When repeating GPUs, repeat each GPU N times, not the whole list.
This results in a list that looks like CUDA0, CUDA0, CUDA1, CUDA1.

	-cron
	This option suppresses the DetectedGpus attribute so that the
output is suitable for use with condor_startd cron. Combine this
option with the -dynamic option to periodically refresh the
dynamic Gpu information such as temperature. For example, to refresh
GPU temperatures every 5 minutes

use FEATURE : StartdCronPeriodic(DYNGPUS, 5*60, $(LIBEXEC)/condor_gpu_discovery, -dynamic -cron)

	-verbose
	For interactive use of the tool, output extra information to show
detection while in progress.

	-diagnostic
	Show diagnostic information, to aid in tool development.

Exit Status

condor_gpu_discovery will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

 condor_history

condor_history

View log of HTCondor jobs completed to date

Synopsis

condor_history [-help]

condor_history [-name name]
[-pool centralmanagerhostname[:portnumber]] [-backwards]
[-forwards] [-constraint expr] [-file filename]
[-userlog filename] [-search path] [-dir | -directory]
[-local] [-startd] [-epochs]
[-format formatString AttributeName]
[-autoformat[:jlhVr,tng] attr1 [attr2 …]]
[-l | -long | -xml | -json | -jsonl] [-match | -limit number]
[-attributes attr1[,attr2…]]
[-print-format file] [-wide]
[-since time_or_jobid] [-completedsince time_expr] [-scanlimit number]
[cluster | cluster.process | owner]

Description

condor_history displays a summary of all HTCondor jobs listed in the
specified history files. If no history files are specified with the
-file option, the local history file as specified in HTCondor’s
configuration file ($(SPOOL)/history by default) is read. The
default listing summarizes in reverse chronological order each job on a
single line, and contains the following items:

	ID
	The cluster/process id of the job.

	OWNER
	The owner of the job.

	SUBMITTED
	The month, day, hour, and minute the job was submitted to the queue.

	RUN_TIME
	Remote wall clock time accumulated by the job to date in days,
hours, minutes, and seconds, given as the job ClassAd attribute
RemoteWallClockTime.

	ST
	Completion status of the job (C = completed and X = removed).

	COMPLETED
	The time the job was completed.

	CMD
	The name of the executable.

If a job ID (in the form of cluster_id or cluster_id.proc_id) or
an owner is provided, output will be restricted to jobs with the
specified IDs and/or submitted by the specified owner. The -constraint
option can be used to display jobs that satisfy a specified boolean
expression.

Options

	-help
	Display usage information and exit.

	-name name
	Query the named condor_schedd daemon. If used with -startd, query the named condor_startd daemon

	-pool centralmanagerhostname[:portnumber]
	Use the centralmanagerhostname as the central manager to locate
condor_schedd daemons. The default is the COLLECTOR_HOST, as
specified in the configuration.

	-backwards
	List jobs in reverse chronological order. The job most recently
added to the history file is first. This is the default ordering.

	-forwards
	List jobs in chronological order. The job most recently added to the
history file is last. At least 4 characters must be given to
distinguish this option from the -file and -format options.

	-constraint expr
	Display jobs that satisfy the expression.

	-since jobid or expr
	Stop scanning when the given jobid is found or when the expression
becomes true.

	-completedsince time_expr
	Scan until the first job that completed on or before the given unix
timestamp. The argument can be any expression that evaluates to a unix timestamp.
This option is equivalent to -since ‘CompletionDate<=time_expr’.

	-scanlimit Number
	Stop scanning when the given number of ads have been read.

	-limit Number
	Limit the number of jobs displayed to Number. Same option as -match.

	-match Number
	Limit the number of jobs displayed to Number. Same option as -limit.

	-local
	Read from local history files even if there is a SCHEDD_HOST
configured.

	-startd
	Read from Startd history files rather than Schedd history files.
If used with the -name option, query is sent as a command to the given Startd
which must be version 9.0 or later.

	-epochs[:d]
	Read per job run instance recording also known as job epochs instead of
default history file. The -epochs option may be followed by a colon
character for extra functionality:

d Delete job epoch files after finished reading. This option only deletes
epoch files store within JOB_EPOCH_HISTORY_DIR, and can not be used with
-match, -limit, or -scanlimit.

	-file filename
	Use the specified file instead of the default history file.

	-userlog filename
	Display jobs, with job information coming from a job event log,
instead of from the default history file. A job event log does not
contain all of the job information, so some fields in the normal
output of condor_history will be blank.

	-search path
	Use the specified path to filename and all matching condor time rotated files
filename.YYYYMMDDTHHMMSS instead of the default history file. If used
with -dir option then condor_history will use the provided path as the
directory to search for specific pattern matching history files.

	-dir or -directory
	Search for files in a sources alternate directory configuration knob to
read from instead of default history file. Note: only applies to -epochs.

	-format formatString AttributeName
	Display jobs with a custom format. See the condor_q man page
-format option for details.

	-autoformat[:jlhVr,tng] attr1 [attr2 …] or -af[:jlhVr,tng] attr1 [attr2 …]
	(output option) Display attribute(s) or expression(s) formatted in a
default way according to attribute types. This option takes an
arbitrary number of attribute names as arguments, and prints out
their values, with a space between each value and a newline
character after the last value. It is like the -format option
without format strings.

It is assumed that no attribute names begin with a dash character,
so that the next word that begins with dash is the start of the next
option. The autoformat option may be followed by a colon
character and formatting qualifiers to deviate the output formatting
from the default:

j print the job ID as the first field,

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are
quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default
space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces
before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The
l and h characters may not be used together.

	-print-format file
	Read output formatting information from the given custom print format file.
see Print Formats for more information about custom print format files.

	-l or -long
	Display job ClassAds in long format.

	-attributes attrs
	Display only the given attributes when the -long o ption is
used.

	-xml
	Display job ClassAds in XML format. The XML format is fully defined
in the reference manual, obtained from the ClassAds web page, with a
link at
http://htcondor.org/classad/classad.html.

	-json
	Display job ClassAds in JSON format.

	-jsonl
	Display job ClassAds in JSON-Lines format: one job ad per line.

	-wide[:number]
	Restrict output to the given column width. Default width is 80 columns, if -wide is
used without the optional number argument, the width of the output is not restricted.

Exit Status

condor_history will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

 condor_hold

condor_hold

put jobs in the queue into the hold state

Synopsis

condor_hold [-help | -version]

condor_hold [-debug] [-reason reasonstring]
[-subcode number] [
-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”]
cluster… | cluster.process… | user… |
-constraint expression …

condor_hold [-debug] [-reason reasonstring]
[-subcode number] [
-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”] -all

Description

condor_hold places jobs from the HTCondor job queue in the hold
state. If the -name option is specified, the named condor_schedd
is targeted for processing. Otherwise, the local condor_schedd is
targeted. The jobs to be held are identified by one or more job
identifiers, as described below. For any given job, only the owner of
the job or one of the queue super users (defined by the
QUEUE_SUPER_USERS macro) can place the job on hold.

A job in the hold state remains in the job queue, but the job will not
run until released with condor_release.

A currently running job that is placed in the hold state by
condor_hold is sent a hard kill signal.

Options

	-help
	Display usage information

	-version
	Display version information

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number

	-name scheddname
	Send the command to a machine identified by scheddname

	-addr “<a.b.c.d:port>”
	Send the command to a machine located at “<a.b.c.d:port>”

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-reason reasonstring
	Sets the job ClassAd attribute HoldReason to the value given by
reasonstring. reasonstring will be delimited by double quote
marks on the command line, if it contains space characters.

	-subcode number
	Sets the job ClassAd attribute HoldReasonSubCode to the integer
value given by number.

	cluster
	Hold all jobs in the specified cluster

	cluster.process
	Hold the specific job in the cluster

	user
	Hold all jobs belonging to specified user

	-constraint expression
	Hold all jobs which match the job ClassAd expression constraint
(within quotation marks). Note that quotation marks must be escaped
with the backslash characters for most shells.

	-all
	Hold all the jobs in the queue

See Also

condor_release

Examples

To place on hold all jobs (of the user that issued the condor_hold
command) that are not currently running:

$ condor_hold -constraint "JobStatus!=2"

Multiple options within the same command cause the union of all jobs
that meet either (or both) of the options to be placed in the hold
state. Therefore, the command

$ condor_hold Mary -constraint "JobStatus!=2"

places all of Mary’s queued jobs into the hold state, and the constraint
holds all queued jobs not currently running. It also sends a hard kill
signal to any of Mary’s jobs that are currently running. Note that the
jobs specified by the constraint will also be Mary’s jobs, if it is Mary
that issues this example condor_hold command.

Exit Status

condor_hold will exit with a status value of 0 (zero) upon success,
and it will exit with the value 1 (one) upon failure.

 condor_install

condor_install

Configure or install HTCondor

Synopsis

condor_configure or condor_install [–help] [–usage]

condor_configure or condor_install
[--install[=<path/to/release>]] [--install-dir=<path>]
[--prefix=<path>] [--local-dir=<path>]
[--make-personal-condor] [--bosco] [--type = < submit,
execute, manager >] [--central-manager = < hostname>] [--owner =
< ownername >] [--maybe-daemon-owner] [--install-log = < file
>] [--overwrite] [--ignore-missing-libs] [--force]
[--no-env-scripts] [--env-scripts-dir = < directory >]
[--backup] [--credd] [--verbose]

Description

condor_configure and condor_install refer to a single script that
installs and/or configures HTCondor on Unix machines. As the names
imply, condor_install is intended to perform a HTCondor installation,
and condor_configure is intended to configure (or reconfigure) an
existing installation. Both will run with Perl 5.6.0 or more recent
versions.

condor_configure (and condor_install) are designed to be run more
than one time where required. It can install HTCondor when invoked with
a correct configuration via

$ condor_install

or

$ condor_configure --install

or, it can change the configuration files when invoked via

$ condor_configure

Note that changes in the configuration files do not result in changes
while HTCondor is running. To effect changes while HTCondor is running,
it is necessary to further use the condor_reconfig or
condor_restart command. condor_reconfig is required where the
currently executing daemons need to be informed of configuration
changes. condor_restart is required where the options
–make-personal-condor or –type are used, since these affect
which daemons are running.

Running condor_configure or condor_install with no options results
in a usage screen being printed. The –help option can be used to
display a full help screen.

Within the options given below, the phrase release directories is the
list of directories that are released with HTCondor. This list includes:
bin, etc, examples, include, lib, libexec,
man, sbin, sql and src.

Options

	-help
	Print help screen and exit

	-usage
	Print short usage and exit

	-install
	Perform installation, assuming that the current working directory
contains the release directories. Without further options, the
configuration is that of a Personal HTCondor, a complete one-machine
pool. If used as an upgrade within an existing installation
directory, existing configuration files and local directory are
preserved. This is the default behavior of condor_install.

	-install-dir=<path>
	Specifies the path where HTCondor should be installed or the path
where it already is installed. The default is the current working
directory.

	-prefix=<path>
	This is an alias for -install-dir.

	-local-dir=<path>
	Specifies the location of the local directory, which is the
directory that generally contains the local (machine-specific)
configuration file as well as the directories where HTCondor daemons
write their run-time information (spool, log, execute).
This location is indicated by the LOCAL_DIR variable in the
configuration file. When installing (that is, if -install is
specified), condor_configure will properly create the local
directory in the location specified. If none is specified, the
default value is given by the evaluation of
$(RELEASE_DIR)/local.$(HOSTNAME).

During subsequent invocations of condor_configure (that is,
without the -install option), if the -local-dir option is specified,
the new directory will be created and the log, spool and
execute directories will be moved there from their current
location.

	-make-personal-condor
	Installs and configures for Personal HTCondor, a fully-functional,
one-machine pool.

	-bosco
	Installs and configures Bosco, a personal HTCondor that submits jobs
to remote batch systems.

	-type= < submit, execute, manager >
	One or more of the types may be listed. This determines the roles
that a machine may play in a pool. In general, any machine can be a
submit and/or execute machine, and there is one central manager per
pool. In the case of a Personal HTCondor, the machine fulfills all
three of these roles.

	-central-manager=<hostname>
	Instructs the current HTCondor installation to use the specified
machine as the central manager. This modifies the configuration
variable COLLECTOR_HOST to point to the given host name. The
central manager machine’s HTCondor configuration needs to be
independently configured to act as a manager using the option
-type=manager.

	-owner=<ownername>
	Set configuration such that HTCondor daemons will be executed as the
given owner. This modifies the ownership on the log, spool
and execute directories and sets the CONDOR_IDS value in the
configuration file, to ensure that HTCondor daemons start up as the
specified effective user. This is only applicable when
condor_configure is run by root. If not run as root, the owner is
the user running the condor_configure command.

	-maybe-daemon-owner
	If -owner is not specified and no appropriate user can be found
to run Condor, then this option will allow the daemon user to be
selected. This option is rarely needed by users but can be useful
for scripts that invoke condor_configure to install Condor.

	-install-log=<file>
	Save information about the installation in the specified file. This
is normally only needed when condor_configure is called by a
higher-level script, not when invoked by a person.

	-overwrite
	Always overwrite the contents of the sbin directory in the
installation directory. By default, condor_install will not
install if it finds an existing sbin directory with HTCondor
programs in it. In this case, condor_install will exit with an
error message. Specify -overwrite or -backup to tell
condor_install what to do.

This prevents condor_install from moving an sbin directory
out of the way that it should not move. This is particularly useful
when trying to install HTCondor in a location used by other things
(/usr, /usr/local, etc.) For example: condor_install
-prefix=/usr will not move /usr/sbin out of the way unless
you specify the -backup option.

The -backup behavior is used to prevent condor_install from
overwriting running daemons - Unix semantics will keep the existing
binaries running, even if they have been moved to a new directory.

	-backup
	Always backup the sbin directory in the installation directory.
By default, condor_install will not install if it finds an
existing sbin directory with HTCondor programs in it. In this
case, condor_install with exit with an error message. You must
specify -overwrite or -backup to tell condor_install what
to do.

This prevents condor_install from moving an sbin directory
out of the way that it should not move. This is particularly useful
if you’re trying to install HTCondor in a location used by other
things (/usr, /usr/local, etc.) For example:
condor_install -prefix=/usr will not move /usr/sbin out
of the way unless you specify the -backup option.

The -backup behavior is used to prevent condor_install from
overwriting running daemons - Unix semantics will keep the existing
binaries running, even if they have been moved to a new directory.

	-ignore-missing-libs
	Ignore missing shared libraries that are detected by
condor_install. By default, condor_install will detect missing
shared libraries such as libstdc++.so.5 on Linux; it will print
messages and exit if missing libraries are detected. The
-ignore-missing-libs will cause condor_install to not exit,
and to proceed with the installation if missing libraries are
detected.

	-force
	This is equivalent to enabling both the -overwrite and
-ignore-missing-libs command line options.

	-no-env-scripts
	By default, condor_configure writes simple sh and csh shell
scripts which can be sourced by their respective shells to set the
user’s PATH and CONDOR_CONFIG environment variables. This
option prevents condor_configure from generating these scripts.

	-env-scripts-dir=<directory>
	By default, the simple sh and csh shell scripts (see
-no-env-scripts for details) are created in the root directory
of the HTCondor installation. This option causes condor_configure
to generate these scripts in the specified directory.

	-credd
	Configure the the condor_credd daemon (credential manager
daemon).

	-verbose
	Print information about changes to configuration variables as they
occur.

Exit Status

condor_configure will exit with a status value of 0 (zero) upon
success, and it will exit with a nonzero value upon failure.

Examples

Install HTCondor on the machine (machine1@cs.wisc.edu) to be the pool’s
central manager. On machine1, within the directory that contains the
unzipped HTCondor distribution directories:

$ condor_install --type=submit,execute,manager

This will allow the machine to submit and execute HTCondor jobs, in
addition to being the central manager of the pool.

To change the configuration such that machine2@cs.wisc.edu is an
execute-only machine (that is, a dedicated computing node) within a pool
with central manager on machine1@cs.wisc.edu, issue the command on that
machine2@cs.wisc.edu from within the directory where HTCondor is
installed:

$ condor_configure --central-manager=machine1@cs.wisc.edu --type=execute

To change the location of the LOCAL_DIR directory in the
configuration file, do (from the directory where HTCondor is installed):

$ condor_configure --local-dir=/path/to/new/local/directory

This will move the log,spool,execute directories to
/path/to/new/local/directory from the current local directory.

 condor_job_router_info

condor_job_router_info

Discover and display information related to job routing

Synopsis

condor_job_router_info [-help | -version]

condor_job_router_info -config

condor_job_router_info -match-jobs -jobads inputfile [-ignore-prior-routing]

condor_job_router_info -route-jobs outputfile -jobads inputfile [-ignore-prior-routing] [-log-steps]

Description

condor_job_router_info displays information about job routing. The
information will be either the available, configured routes or the
routes for specified jobs. condor_job_router_info can also be used
to simulate routing by supplying a job classad in a file. This can
be used to test the router configuration offline.

Options

	-help
	Display usage information and exit.

	-version
	Display HTCondor version information and exit.

	-config
	Display configured routes.

	-match-jobs
	For each job listed in the file specified by the -jobads option,
display the first route found.

	-route-jobs filename
	For each job listed in the file specified by the -jobads option,
apply the first route found and print the routed jobs to the specified
output file. if filename is - the routed jobs are printed to stdout.

	-log-steps
	When used with the -route-jobs option, print each transform step
as the job transforms are applied.

	-ignore-prior-routing
	For each job, remove any existing routing ClassAd attributes, and
set attribute JobStatus to the Idle state before finding the
first route.

	-jobads filename
	Read job ClassAds from file filename. If filename is -, then
read from stdin.

Exit Status

condor_job_router_info will exit with a status value of 0 (zero)
upon success, and it will exit with the value 1 (one) upon failure.

 condor_master

condor_master

The master HTCondor Daemon

Synopsis

condor_master

Description

This daemon is responsible for keeping all the rest of the HTCondor
daemons running on each machine in your pool. It spawns the other
daemons, and periodically checks to see if there are new binaries
installed for any of them. If there are, the condor_master will
restart the affected daemons. In addition, if any daemon crashes, the
condor_master will send e-mail to the HTCondor Administrator of your
pool and restart the daemon. The condor_master also supports various
administrative commands that let you start, stop or reconfigure daemons
remotely. The condor_master will run on every machine in your
HTCondor pool, regardless of what functions each machine are performing.
Additionally, on Linux platforms, if you start the condor_master as
root, it will tune (but never decrease) certain kernel parameters
important to HTCondor’s performance.

The DAEMON_LIST configuration macro is
used by the condor_master to provide a per-machine list of daemons
that should be started and kept running. For daemons that are specified
in the DC_DAEMON_LIST configuration macro, the condor_master
daemon will spawn them automatically appending a -f argument. For
those listed in DAEMON_LIST, but not in DC_DAEMON_LIST, there
will be no -f argument.

The condor_master creates certain directories necessary for its proper
functioning on start-up if they don’t already exist, using the values of
the configuration settings
EXECUTE,
LOCAL_DIR,
LOCAL_DISK_LOCK_DIR,
LOCAL_UNIV_EXECUTE,
LOCK,
LOG,
RUN,
SEC_CREDENTIAL_DIRECTORY_KRB,
SEC_CREDENTIAL_DIRECTORY_OAUTH,
SEC_PASSWORD_DIRECTORY,
SEC_TOKEN_SYSTEM_DIRECTORY,
and
SPOOL.

Options

	-n name
	Provides an alternate name for the condor_master to override that
given by the MASTER_NAME
configuration variable.

 condor_now

condor_now

Start a job now.

Synopsis

condor_now -help

condor_now [-name] [-debug**] now-job vacate-job
[vacate-job+]

Description

condor_now tries to run the now-job now. The vacate-job is
immediately vacated; after it terminates, if the schedd still has the
claim to the vacated job’s slot - and it usually will - the schedd will
immediately start the now-job on that slot.

If you specify multiple vacate-job s, each will be immediately
vacated; after they all terminate, the schedd will try to coalesce their
slots into a single, larger, slot and then use that slot to run the
now-job.

You must specify each job using both the cluster and proc IDs.

Options

	-help
	Print a usage reminder.

	-debug
	Print debugging output. Control the verbosity with the environment
variables _CONDOR_TOOL_DEBUG, as usual.

	-name **
	Specify the scheduler(‘s name) and (optionally) the pool to find it
in.

General Remarks

The now-job and the vacated-job must have the same owner; if you are not
the queue super-user, you must own both jobs. The jobs must be on the
same schedd, and both jobs must be in the vanilla universe. The now-job
must be idle and the vacated-job must be running.

Examples

To begin running job 17.3 as soon as possible using job 4.2’s slot:

$ condor_now 17.3 4.2

To try to figure out why that doesn’t work for the ‘magic’ scheduler in
the ‘gandalf’ pool, set the environment variable _CONDOR_TOOL_DEBUG
to ‘D_FULLDEBUG’ and then:

$ condor_now -debug -schedd magic -pool gandalf 17.3 4.2

Exit Status

condor_now will exit with a status value of 0 (zero) if the schedd
accepts its request to vacate the vacate-job and start the now-job in
its place. It does not wait for the now-job to have started running.

 condor_off

condor_off

Shutdown HTCondor daemons

Synopsis

condor_off [-help | -version]

condor_off [-graceful | -fast | -peaceful |
-force-graceful | -drain] [-annex name] [-debug[:opts]]
[-pool centralmanagerhostname[:portnumber]] [
-name hostname | hostname | -addr “<a.b.c.d:port>”
| “<a.b.c.d:port>” | -constraint expression | -all]
[-daemon daemonname | -master]
[-exec name]
[-reason “reason-string”]
[-request-id id]
[-check expr]
[-start expr]

Description

condor_off shuts down a set of the HTCondor daemons running on a set
of one or more machines. By default, it does this cleanly, so that
jobs have time to shut down.

The command condor_off without any arguments will shut down all
daemons except condor_master, unless -annex name is
specified. The condor_master can then handle both local and remote
requests to restart the other HTCondor daemons if need be. To restart
HTCondor running on a machine, see the condor_on command.

When the -drain option is chosen, draining options can be specified
by using the optional -reason, -request-id, -check, and -start
arguments.

With the -daemon master option, condor_off will shut down all
daemons including the condor_master. Specification using the
-daemon option will shut down only the specified daemon.

When shutting down all daemons including the condor_master, the -exec
argument can be used to tell the master to run a configured

 condor_on

condor_on

Start up HTCondor daemons

Synopsis

condor_on [-help | -version]

condor_on [-debug]
[-pool centralmanagerhostname[:portnumber]] [
-name hostname | hostname | -addr “<a.b.c.d:port>”
| “<a.b.c.d:port>” | -constraint expression | -all]
[-daemon daemonname]

Description

condor_on starts up a set of the HTCondor daemons on a set of
machines. This command assumes that the condor_master is already
running on the machine. If this is not the case, condor_on will fail
complaining that it cannot find the address of the master. The command
condor_on with no arguments or with the -daemon master option
will tell the condor_master to start up the HTCondor daemons
specified in the configuration variable DAEMON_LIST. If a daemon
other than the condor_master is specified with the -daemon
option, condor_on starts up only that daemon.

This command cannot be used to start up the condor_master daemon.

For security reasons of authentication and authorization, this command
requires ADMINISTRATOR level of access.

Options

	-help
	Display usage information

	-version
	Display version information

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number

	-name hostname
	Send the command to a machine identified by hostname

	hostname
	Send the command to a machine identified by hostname

	-addr “<a.b.c.d:port>”
	Send the command to a machine’s master located at “<a.b.c.d:port>”

	“<a.b.c.d:port>”
	Send the command to a machine located at “<a.b.c.d:port>”

	-constraint expression
	Apply this command only to machines matching the given ClassAd
expression

	-all
	Send the command to all machines in the pool

	-daemon daemonname
	Send the command to the named daemon. Without this option, the
command is sent to the condor_master daemon.

Exit Status

condor_on will exit with a status value of 0 (zero) upon success, and
it will exit with the value 1 (one) upon failure.

Examples

To begin running all daemons (other than condor_master) given in the
configuration variable DAEMON_LIST on the local host:

$ condor_on

To start up only the condor_negotiator on two named machines:

$ condor_on robin cardinal -daemon negotiator

To start up only a daemon within a pool of machines other than the local
pool, use the -pool option. The argument is the name of the central
manager for the pool. Note that one or more machines within the pool
must be specified as the targets for the command. This command starts up
only the condor_schedd daemon on the single machine named cae17
within the pool of machines that has condor.cae.wisc.edu as its
central manager:

$ condor_on -pool condor.cae.wisc.edu -name cae17 -daemon schedd

 condor_ping

condor_ping

Attempt a security negotiation to determine if it succeeds

Synopsis

condor_ping [-help | -version]

condor_ping [-debug] [-address <a.b.c.d:port>]
[-pool host name] [-name daemon name]
[-type subsystem] [-config filename] [-quiet |
-table | -verbose] token [token […]]

Description

condor_ping attempts a security negotiation to discover whether the
configuration is set such that the negotiation succeeds. The target of
the negotiation is defined by one or a combination of the address,
pool, name, or type options. If no target is specified, the
default target is the condor_schedd daemon on the local machine.

One or more token s may be listed, thereby specifying one or more
authorization level to impersonate in security negotiation. A token is
the value ALL, an authorization level, a command name, or the
integer value of a command. The many command names and their associated
integer values will more likely be used by experts, and they are defined
in the file condor_includes/condor_commands.h.

An authorization level may be one of the following strings. If ALL
is listed, then negotiation is attempted for each of these possible
authorization levels.
Note that OWNER is no longer used in HTCondor, but is kept here for use
when talking to older daemons (prior to 9.9.0).

READ
WRITE
ADMINISTRATOR
SOAP
CONFIG
OWNER
DAEMON
NEGOTIATOR
ADVERTISE_MASTER
ADVERTISE_STARTD
ADVERTISE_SCHEDD
CLIENT

Options

	-help
	Display usage information

	-version
	Display version information

	-debug
	Print extra debugging information as the command executes.

	-config filename
	Attempt the negotiation based on the contents of the configuration
file contents in file filename.

	-address <a.b.c.d:port>
	Target the given IP address with the negotiation attempt.

	-pool hostname
	Target the given host with the negotiation attempt. May be
combined with specifications defined by name and type
options.

	-name daemonname
	Target the daemon given by daemonname with the negotiation
attempt.

	-type subsystem
	Target the daemon identified by subsystem, one of the values of
the predefined $(SUBSYSTEM) macro.

	-quiet
	Set exit status only; no output displayed.

	-table
	Output is displayed with one result per line, in a table format.

	-verbose
	Display all available output.

Examples

The example Unix command

$ condor_ping -address "<127.0.0.1:9618>" -table READ WRITE DAEMON

places double quote marks around the sinful string to prevent the less
than and the greater than characters from causing redirect of input and
output. The given IP address is targeted with 3 attempts to negotiate:
one at the READ authorization level, one at the WRITE
authorization level, and one at the DAEMON authorization level.

Exit Status

condor_ping will exit with the status value of the negotiation it
attempted, where 0 (zero) indicates success, and 1 (one) indicates
failure. If multiple security negotiations were attempted, the exit
status will be the logical OR of all values.

 condor_pool_job_report

condor_pool_job_report

generate report about all jobs that have run in the last 24 hours on all
execute hosts

Synopsis

condor_pool_job_report

Description

condor_pool_job_report is a Linux-only tool that is designed to be
run nightly using cron. It is intended to be run on the central
manager, or another machine that has administrative permissions, and is
able to fetch the condor_startd history logs from all of the
condor_startd daemons in the pool. After fetching these logs,
condor_pool_job_report then generates a report about job run times
and mails it to administrators, as defined by configuration variable
CONDOR_ADMIN .

Exit Status

condor_pool_job_report will exit with a status value of 0 (zero)
upon success, and it will exit with the value 1 (one) upon failure.

 condor_power

condor_power

send packet intended to wake a machine from a low power state

Synopsis

condor_power [-h]

condor_power [-d] [-i] [-m MACaddress]
[-s subnet] [ClassAdFile]

Description

condor_power sends one UDP Wake on LAN (WOL) packet to a machine
specified either by command line arguments or by the contents of a
machine ClassAd. The machine ClassAd may be in a file, where the file
name specified by the optional argument ClassAdFile is given on the
command line. With no command line arguments to specify the machine, and
no file specified, condor_power quietly presumes that standard input
is the file source which will specify the machine ClassAd that includes
the public IP address and subnet of the machine.

condor_power needs a complete specification of the machine to be
successful. If a MAC address is provided on the command line, but no
subnet is given, then the default value for the subnet is used. If a
subnet is provided on the command line, but no MAC address is given,
then condor_power falls back to taking its information in the form of
the machine ClassAd as provided in a file or on standard input. Note
that this case implies that the command line specification of the subnet
is ignored.

condor_power relies on the router receiving the WOL packet to
correctly broadcast the request. Since routers are often configured to
ignore requests to broadcast messages on a different subnet than the
sender, the send of a WOL packet to a machine on a different subnet may
fail.

Options

	-h
	Print usage information and exit.

	-d
	Enable debugging messages.

	-i
	Read a ClassAd that is piped in through standard input.

	-m MACaddress
	Specify the MAC address in the standard format of six groups of two
hexadecimal digits separated by colons.

	-s subnet
	Specify the subnet in the standard form of a mask for an IPv4
address. Without this option, a global broadcast will be sent.

Exit Status

condor_power will exit with a status value of 0 (zero) upon success,
and it will exit with the value 1 (one) upon failure.

 condor_preen

condor_preen

remove extraneous files from HTCondor directories

Synopsis

condor_preen [-mail] [-remove] [-verbose]
[-debug] [-log <filename>]

Description

condor_preen examines the directories belonging to HTCondor, and
removes extraneous files and directories which may be left over from
HTCondor processes which terminated abnormally either due to internal
errors or a system crash. The directories checked are the LOG,
EXECUTE, and SPOOL directories as defined in the HTCondor
configuration files. condor_preen is intended to be run as user root
or user condor periodically as a backup method to ensure reasonable file
system cleanliness in the face of errors. This is done automatically by
default by the condor_master daemon. It may also be explicitly
invoked on an as needed basis.

When condor_preen cleans the SPOOL directory, it always leaves
behind the files specified in the configuration variables
VALID_SPOOL_FILES and
SYSTEM_VALID_SPOOL_FILES , as
given by the configuration. For the LOG directory, the only files
removed or reported are those listed within the configuration variable
INVALID_LOG_FILES list. The reason
for this difference is that, in general, the files in the LOG
directory ought to be left alone, with few exceptions. An example of
exceptions are core files. As there are new log files introduced
regularly, it is less effort to specify those that ought to be removed
than those that are not to be removed.

Options

	-mail
	Send mail to the user defined in the PREEN_ADMIN
 configuration variable, instead of
writing to the standard output.

	-remove
	Remove the offending files and directories rather than reporting on
them.

	-verbose
	List all files or directories found in the Condor directories and considered
for deletion, even those which are not extraneous. This option also modifies the output produced by
the -debug and -log options

	-debug
	Print extra debugging information to stderr as the command executes.

	-log <filename>
	Write extra debugging information to <filename> as the command executes.

Exit Status

condor_preen will exit with a status value of 0 (zero) upon success,
and it will exit with a non-zero value upon failure. An exit status
of 2 indicates that condor_preen attempted to send email about deleted
files but was unable to. This usually indicates an error in the configuration
for sending email. An exit status of 1 indicates a general failure.

 condor_prio

condor_prio

change priority of jobs in the HTCondor queue

Synopsis

condor_prio -p priority | +value |
-value [-n schedd_name] [username | ClusterId]

Description

condor_prio changes the priority of one or more jobs in the HTCondor
queue. If the job identification is given by cluster.process,
condor_prio attempts to change the priority of the single job with
job ClassAd attributes ClusterId and ProcId. If described by
cluster, condor_prio attempts to change the priority of all
processes with the given ClusterId job ClassAd attribute. If
username is specified, condor_prio attempts to change priority of
all jobs belonging to that user. For -a, condor_prio attempts to
change priority of all jobs in the queue.

The user must set a new priority with the -p option, or specify a
priority adjustment.

The priority of a job can be any integer, with higher numbers
corresponding to greater priority. For adjustment of the current
priority, +value increases the priority by the amount given with
value. -value decreases the priority by the amount given with
value.

Only the owner of a job or the super user can change the priority.

The priority changed by condor_prio is only used when comparing to
the priority jobs owned by the same user and submitted from the same
machine.

Options

	-a
	Change priority of all jobs in the queue

	-n schedd_name
	Change priority of jobs queued at the specified condor_schedd in
the local pool.

	-pool pool_name -n schedd_name
	Change priority of jobs queued at the specified condor_schedd in
the specified pool.

Exit Status

condor_prio will exit with a status value of 0 (zero) upon success,
and it will exit with the value 1 (one) upon failure.

 condor_procd

condor_procd

Track and manage process families

Synopsis

condor_procd -h

condor_procd -A address-file [options]

Description

condor_procd tracks and manages process families on behalf of the
HTCondor daemons. It may track families of PIDs via relationships such
as: direct parent/child, environment variables, UID, and supplementary
group IDs. Management of the PID families include

	registering new families or new members of existing families

	getting usage information

	signaling families for operations such as suspension, continuing, or
killing the family

	getting a snapshot of the tree of families

In a regular HTCondor installation, this program is not intended to be
used or executed by any human.

The required argument, -A address-file, is the path and file
name of the address file which is the named pipe that clients must use
to speak with the condor_procd.

Options

	-h
	Print out usage information and exit.

	-D
	Wait for the debugger. Initially sleep 30 seconds before beginning
normal function.

	-C principal
	The principal is the UID of the owner of the named pipe that
clients must use to speak to the condor_procd.

	-L log-file
	A file the condor_procd will use to write logging information.

	-E
	When specified, another tool such as the procd_ctl tool must
allocate the GID associated with a process. When this option is not
specified, the condor_procd will allocate the GID itself.

	-P PID
	If not specified, the condor_procd will use the
condor_procd ‘s parent, which may not be PID 1 on Unix, as the
parent of the condor_procd and the root of the tracking family.
When not specified, if the condor_procd ‘s parent PID dies, the
condor_procd exits. When specified, the condor_procd will
track this PID family in question and not also exit if the PID
exits.

	-S seconds
	The maximum number of seconds the condor_procd will wait between
taking snapshots of the tree of families. Different clients to the
condor_procd can specify different snapshot times. The quickest
snapshot time is the one performed by the condor_procd. When this
option is not specified, a default value of 60 seconds is used.

	-G min-gid max-gid
	If the -E option is not specified, then track process families
using a self-allocated, free GID out of the inclusive range
specified by min-gid and max-gid. This means that if a new
process shows up using a previously known GID, the new process will
automatically associate into the process family assigned that GID.
If the -E option is specified, then instead of self-allocating
the GID, the procd_ctl tool must be used to associate the GID
with the PID root of the family. The associated GID must still be in
the range specified. This is a Linux-only feature.

	-K windows-softkill-binary
	This is the path and executable name of the condor_softkill.exe
binary. It is used to send softkill signals to process families.
This is a Windows-only feature.

Dealing with Short Reads

For unknown reasons, on Linux, attemps to read the list of PIDs from the
/proc filesystem do not always return all of the PIDs on the system. The
condor_procd attempts to detect when this occurs, using two methods.

If the list of PIDs does not include PID 1, the condor_procd’s
own PID, or the PID of the condor_procd’s parent (which may be PID 1),
then the list must be incomplete, and the condor_procd immediately retries
the read.

Additionally, the condor_procd compares the number of PIDs it just read
to the number of PIDs from the last time it (successfully) checked. If the
number is too much smaller, it immediately retries. The default threshold
is 0.90, meaning that if the current read has 90% or fewer of the last read’s
PIDs, it’s considered invalid. In our testing, this threshold was met by
roughly 1 in 4000 reads, but successfully detected all real short reads. If
you need to adjust the threshold, you may do so by setting the environment
variable _CONDOR_PROCAPI_RETRY_FRACTION. (In the normal case, simply
have it in the environment when the condor_master starts up.)

If a retried read is incomplete (according to either method), the
condor_procd returns the results of the previous read.

General Remarks

This program may be used in a stand alone mode, independent of HTCondor,
to track process families. The programs procd_ctl and gidd_alloc
are used with the condor_procd in stand alone mode to interact with
the daemon and to inquire about certain state of running processes on
the machine, respectively.

Exit Status

condor_procd will exit with a status value of 0 (zero) upon success,
and it will exit with the value 1 (one) upon failure.

 condor_q

condor_q

Display information about jobs in queue

Synopsis

condor_q [-help [Universe | State]]

condor_q [-debug] [general options] [restriction
list] [output options] [analyze options]

Description

condor_q displays information about jobs in the HTCondor job queue.
By default, condor_q queries the local job queue, but this behavior
may be modified by specifying one of the general options.

As of version 8.5.2, condor_q defaults to querying only the current
user’s jobs. This default is overridden when the restriction list has
usernames and/or job ids, when the -submitter or -allusers arguments
are specified, or when the current user is a queue superuser. It can also
be overridden by setting the CONDOR_Q_ONLY_MY_JOBS configuration macro to
False.

As of version 8.5.6, condor_q defaults to batch-mode output (see -batch
in the Options section below). The old behavior can be obtained by specifying
-nobatch on the command line. To change the default back to its pre-8.5.6
value, set the new configuration variable CONDOR_Q_DASH_BATCH_IS_DEFAULT
to False.

Batches of jobs

As of version 8.5.6, condor_q defaults to displaying information
about batches of jobs, rather than individual jobs. The intention is
that this will be a more useful, and user-friendly, format for users
with large numbers of jobs in the queue. Ideally, users will specify
meaningful batch names for their jobs, to make it easier to keep track
of related jobs.

(For information about specifying batch names for your jobs, see the
condor_submit and condor_submit_dag
manual pages.)

A batch of jobs is defined as follows:

	An entire workflow (a DAG or hierarchy of nested DAGs) (note that
condor_dagman now specifies a default batch name for all jobs in a
given workflow)

	All jobs in a single cluster

	All jobs submitted by a single user that have the same executable
specified in their submit file (unless submitted with different batch
names)

	All jobs submitted by a single user that have the same batch name
specified in their submit file or on the condor_submit or
condor_submit_dag command line.

Output

There are many output options that modify the output generated by
condor_q. The effects of these options, and the meanings of the
various output data, are described below.

Output options

If the -long option is specified, condor_q displays a long
description of the queried jobs by printing the entire job ClassAd for
all jobs matching the restrictions, if any. Individual attributes of the
job ClassAd can be displayed by means of the -format option, which
displays attributes with a printf(3) format, or with the -autoformat
option. Multiple -format options may be specified in the option list
to display several attributes of the job.

For most output options (except as specified), the last line of
condor_q output contains a summary of the queue: the total number of
jobs, and the number of jobs in the completed, removed, idle, running,
held and suspended states.

If no output options are specified, condor_q now defaults to batch
mode, and displays the following columns of information, with one line
of output per batch of jobs:

OWNER, BATCH_NAME, SUBMITTED, DONE, RUN, IDLE, [HOLD,] TOTAL, JOB_IDS

Note that the HOLD column is only shown if there are held jobs in the
output or if there are no jobs in the output.

If the -nobatch option is specified, condor_q displays the
following columns of information, with one line of output per job:

ID, OWNER, SUBMITTED, RUN_TIME, ST, PRI, SIZE, CMD

If the -dag option is specified (in conjunction with -nobatch),
condor_q displays the following columns of information, with one line
of output per job; the owner is shown only for top-level jobs, and for
all other jobs (including sub-DAGs) the node name is shown:

ID, OWNER/NODENAME, SUBMITTED, RUN_TIME, ST, PRI, SIZE, CMD

If the -run option is specified (in conjunction with -nobatch),
condor_q displays the following columns of information, with one line
of output per running job:

ID, OWNER, SUBMITTED, RUN_TIME, HOST(S)

Also note that the -run option disables output of the totals line.

If the -grid option is specified, condor_q displays the following
columns of information, with one line of output per job:

ID, OWNER, STATUS, GRID->MANAGER, HOST, GRID_JOB_ID

If the -grid:ec2 option is specified, condor_q displays the
following columns of information, with one line of output per job:

ID, OWNER, STATUS, INSTANCE ID, CMD

If the -goodput option is specified, condor_q displays the
following columns of information, with one line of output per job:

ID, OWNER, SUBMITTED, RUN_TIME, GOODPUT, CPU_UTIL, Mb/s

If the -io option is specified, condor_q displays the following
columns of information, with one line of output per job:

ID, OWNER, RUNS, ST, INPUT, OUTPUT, RATE, MISC

If the -cputime option is specified (in conjunction with
-nobatch), condor_q displays the following columns of
information, with one line of output per job:

ID, OWNER, SUBMITTED, CPU_TIME, ST, PRI, SIZE, CMD

If the -hold option is specified, condor_q displays the following
columns of information, with one line of output per job:

ID, OWNER, HELD_SINCE, HOLD_REASON

If the -totals option is specified, condor_q displays only one
line of output no matter how many jobs and batches of jobs are in the
queue. That line of output contains the total number of jobs, and the
number of jobs in the completed, removed, idle, running, held and
suspended states.

Output data

The available output data are as follows:

	ID
	(Non-batch mode only) The cluster/process id of the HTCondor job.

	OWNER
	The owner of the job or batch of jobs.

	OWNER/NODENAME
	(-dag only) The owner of a job or the DAG node name of the job.

	BATCH_NAME
	(Batch mode only) The batch name of the job or batch of jobs.

	SUBMITTED
	The month, day, hour, and minute the job was submitted to the queue.

	DONE
	(Batch mode only) The number of job procs that are done, but still
in the queue.

	RUN
	(Batch mode only) The number of job procs that are running.

	IDLE
	(Batch mode only) The number of job procs that are in the queue but
idle.

	HOLD
	(Batch mode only) The number of job procs that are in the queue but
held.

	TOTAL
	(Batch mode only) The total number of job procs in the queue, unless
the batch is a DAG, in which case this is the total number of
clusters in the queue. Note: for non-DAG batches, the TOTAL column
contains correct values only in version 8.5.7 and later.

	JOB_IDS
	(Batch mode only) The range of job IDs belonging to the batch.

	RUN_TIME
	(Non-batch mode only) Wall-clock time accumulated by the job currently
running in days, hours, minutes, and seconds. When the job is idle or
held the jobs previous accumulated time will be displayed.

	ST
	(Non-batch mode only) Current status of the job, which varies
somewhat according to the job universe and the timing of updates. H
= on hold, R = running, I = idle (waiting for a machine to execute
on), C = completed, X = removed, S = suspended (execution of a
running job temporarily suspended on execute node), < = transferring
input (or queued to do so), and > = transferring output (or queued
to do so).

	PRI
	(Non-batch mode only) User specified priority of the job, displayed
as an integer, with higher numbers corresponding to better priority.

	SIZE
	(Non-batch mode only) The peak amount of memory in Mbytes consumed
by the job; note this value is only refreshed periodically. The
actual value reported is taken from the job ClassAd attribute
MemoryUsage if this attribute is defined, and from job attribute
ImageSize otherwise.

	CMD
	(Non-batch mode only) The name of the executable. For EC2 jobs, this
field is arbitrary.

	HOST(S)
	(-run only) The host where the job is running.

	STATUS
	(-grid only) The state that HTCondor believes the job is in.
Possible values are grid-type specific, but include:

	PENDING
	The job is waiting for resources to become available in order to
run.

	ACTIVE
	The job has received resources, and the application is
executing.

	FAILED
	The job terminated before completion because of an error,
user-triggered cancel, or system-triggered cancel.

	DONE
	The job completed successfully.

	SUSPENDED
	The job has been suspended. Resources which were allocated for
this job may have been released due to a scheduler-specific
reason.

	STAGE_IN
	The job manager is staging in files, in order to run the job.

	STAGE_OUT
	The job manager is staging out files generated by the job.

	UNKNOWN
	Unknown

	GRID->MANAGER
	(-grid only) A guess at what remote batch system is running the
job. It is a guess, because HTCondor looks at the jobmanager
contact string to attempt identification. If the value is fork, the
job is running on the remote host without a jobmanager. Values may
also be condor, lsf, or pbs.

	HOST
	(-grid only) The host to which the job was submitted.

	GRID_JOB_ID
	(-grid only) (More information needed here.)

	INSTANCE ID
	(-grid:ec2 only) Usually EC2 instance ID; may be blank or the
client token, depending on job progress.

	GOODPUT
	(-goodput only) The percentage of RUN_TIME for this job which
has been saved in a checkpoint. A low GOODPUT value indicates that
the job is failing to checkpoint. If a job has not yet attempted a
checkpoint, this column contains [?????].

	CPU_UTIL
	(-goodput only) The ratio of CPU_TIME to RUN_TIME for
checkpointed work. A low CPU_UTIL indicates that the job is not
running efficiently, perhaps because it is I/O bound or because the
job requires more memory than available on the remote workstations.
If the job has not (yet) checkpointed, this column contains
[??????].

	Mb/s
	(-goodput only) The network usage of this job, in Megabits per
second of run-time.
READ The total number of bytes the application has read from files
and sockets.
WRITE The total number of bytes the application has written to files
and sockets.
SEEK The total number of seek operations the application has
performed on files.
XPUT The effective throughput (average bytes read and written per
second) from the application’s point of view.
BUFSIZE The maximum number of bytes to be buffered per file.
BLOCKSIZE The desired block size for large data transfers. These
fields are updated when a job produces a checkpoint or completes. If
a job has not yet produced a checkpoint, this information is not
available.

	INPUT
	(-io only) BytesRecvd.

	OUTPUT
	(-io only) BytesSent.

	RATE
	(-io only) BytesRecvd+BytesSent.

	MISC
	(-io only) JobUniverse.

	CPU_TIME
	(-cputime only) The remote CPU time accumulated by the job to
date (which has been stored in a checkpoint) in days, hours,
minutes, and seconds. (If the job is currently running, time
accumulated during the current run is not shown. If the job has not
produced a checkpoint, this column contains 0+00:00:00.)

	HELD_SINCE
	(-hold only) Month, day, hour and minute at which the job was
held.

	HOLD_REASON
	(-hold only) The hold reason for the job.

Analyze

The -analyze or -better-analyze options can be used to determine
why certain jobs are not running by performing an analysis on a per
machine basis for each machine in the pool. The reasons can vary among
failed constraints, insufficient priority, resource owner preferences
and prevention of preemption by the PREEMPTION_REQUIREMENTS
 expression. If the analyze option
-verbose is specified along with the -analyze option, the reason
for failure is displayed on a per machine basis. -better-analyze
differs from -analyze in that it will do matchmaking analysis on
jobs even if they are currently running, or if the reason they are not
running is not due to matchmaking. -better-analyze also produces
more thorough analysis of complex Requirements and shows the values of
relevant job ClassAd attributes. When only a single machine is being
analyzed via -machine or -mconstraint, the values of relevant
attributes of the machine ClassAd are also displayed.

Restrictions

To restrict the display to jobs of interest, a list of zero or more
restriction options may be supplied. Each restriction may be one of:

	cluster.process, which matches jobs which belong to the specified
cluster and have the specified process number;

	cluster (without a process), which matches all jobs belonging
to the specified cluster;

	owner, which matches all jobs owned by the specified owner;

	-constraint expression, which matches all jobs that satisfy the
specified ClassAd expression;

	-unmatchable expression, which matches all jobs that do not match
any slot that would be considered by -better-analyze ;

	-allusers, which overrides the default restriction of only
matching jobs submitted by the current user.

If cluster or cluster.process is specified, and the job matching
that restriction is a condor_dagman job, information for all jobs of
that DAG is displayed in batch mode (in non-batch mode, only the
condor_dagman job itself is displayed).

If no owner restrictions are present, the job matches the restriction
list if it matches at least one restriction in the list. If owner
restrictions are present, the job matches the list if it matches one of
the owner restrictions and at least one non-owner restriction.

Options

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-batch
	(output option) Show a single line of progress information for a
batch of jobs, where a batch is defined as follows:

	An entire workflow (a DAG or hierarchy of nested DAGs)

	All jobs in a single cluster

	All jobs submitted by a single user that have the same executable
specified in their submit file

	All jobs submitted by a single user that have the same batch name
specified in their submit file or on the condor_submit or
condor_submit_dag command line.

Also change the output columns as noted above.

Note that, as of version 8.5.6, -batch is the default, unless
the CONDOR_Q_DASH_BATCH_IS_DEFAULT configuration variable is set
to False.

	-nobatch
	(output option) Show a line for each job (turn off the -batch
option).

	-global
	(general option) Queries all job queues in the pool.

	-submitter submitter
	(general option) List jobs of a specific submitter in the entire
pool, not just for a single condor_schedd.

	-name name
	(general option) Query only the job queue of the named
condor_schedd daemon.

	-pool centralmanagerhostname[:portnumber]
	(general option) Use the centralmanagerhostname as the central
manager to locate condor_schedd daemons. The default is the
COLLECTOR_HOST, as specified in the configuration.

	-jobads file
	(general option) Display jobs from a list of ClassAds from a file,
instead of the real ClassAds from the condor_schedd daemon. This
is most useful for debugging purposes. The ClassAds appear as if
condor_q -long is used with the header stripped out.

	-userlog file
	(general option) Display jobs, with job information coming from a
job event log, instead of from the real ClassAds from the
condor_schedd daemon. This is most useful for automated testing
of the status of jobs known to be in the given job event log,
because it reduces the load on the condor_schedd. A job event log
does not contain all of the job information, so some fields in the
normal output of condor_q will be blank.

	-factory
	(output option) Display information about late materialization job
factories in the condor_shedd.

	-autocluster
	(output option) Output condor_schedd daemon auto cluster
information. For each auto cluster, output the unique ID of the auto
cluster along with the number of jobs in that auto cluster. This
option is intended to be used together with the -long option to
output the ClassAds representing auto clusters. The ClassAds can
then be used to identify or classify the demand for sets of machine
resources, which will be useful in the on-demand creation of execute
nodes for glidein services.

	-cputime
	(output option) Instead of wall-clock allocation time (RUN_TIME),
display remote CPU time accumulated by the job to date in days,
hours, minutes, and seconds. If the job is currently running, time
accumulated during the current run is not shown. Note that this
option has no effect unless used in conjunction with -nobatch.

	-currentrun
	(output option) If this option is specified, RUN_TIME displays the
time accumulated so far on this current run unless the job is in IDLE
or HELD state then RUN_TIME will display the previous runs time. Note
that this is the base behavior and is not required, and this option
cannot be used in conjunction with -cumulative-time.

	-cumulative-time
	(output option) Normally, RUN_TIME contains the current or previous
runs accumulated wall-clock time. If this option is specified,
RUN_TIME displays the accumulated time for the current run plus all
previous runs. Note that this option cannot be used in conjunction
with -currentrun.

	-dag
	(output option) Display DAG node jobs under their DAGMan instance.
Child nodes are listed using indentation to show the structure of
the DAG. Note that this option has no effect unless used in
conjunction with -nobatch.

	-expert
	(output option) Display shorter error messages.

	-grid
	(output option) Get information only about jobs submitted to grid
resources.

	-grid:ec2
	(output option) Get information only about jobs submitted to grid
resources and display it in a format better-suited for EC2 than the
default.

	-goodput
	(output option) Display job goodput statistics.

	-help [Universe | State]
	(output option) Print usage info, and, optionally, additionally
print job universes or job states.

	-hold
	(output option) Get information about jobs in the hold state. Also
displays the time the job was placed into the hold state and the
reason why the job was placed in the hold state.

	-limit Number
	(output option) Limit the number of items output to Number.

	-io
	(output option) Display job input/output summaries.

	-long
	(output option) Display entire job ClassAds in long format (one
attribute per line).

	-idle
	(output option) Get information about idle jobs. Note that this
option implies -nobatch.

	-run
	(output option) Get information about running jobs. Note that this
option implies -nobatch.

	-stream-results
	(output option) Display results as jobs are fetched from the job
queue rather than storing results in memory until all jobs have been
fetched. This can reduce memory consumption when fetching large
numbers of jobs, but if condor_q is paused while displaying
results, this could result in a timeout in communication with
condor_schedd.

	-totals
	(output option) Display only the totals.

	-version
	(output option) Print the HTCondor version and exit.

	-wide
	(output option) If this option is specified, and the command portion
of the output would cause the output to extend beyond 80 columns,
display beyond the 80 columns.

	-xml
	(output option) Display entire job ClassAds in XML format. The XML
format is fully defined in the reference manual, obtained from the
ClassAds web page, with a link at
http://htcondor.org/classad/classad.html.

	-json
	(output option) Display entire job ClassAds in JSON format.

	-attributes Attr1[,Attr2 …]
	(output option) Explicitly list the attributes, by name in a comma
separated list, which should be displayed when using the -xml,
-json or -long options. Limiting the number of attributes
increases the efficiency of the query.

	-format fmt attr
	(output option) Display attribute or expression attr in format
fmt. To display the attribute or expression the format must
contain a single printf(3)-style conversion specifier.
Attributes must be from the job ClassAd. Expressions are ClassAd
expressions and may refer to attributes in the job ClassAd. If the
attribute is not present in a given ClassAd and cannot be parsed as
an expression, then the format option will be silently skipped. %r
prints the unevaluated, or raw values. The conversion specifier must
match the type of the attribute or expression. %s is suitable for
strings such as Owner, %d for integers such as ClusterId,
and %f for floating point numbers such as RemoteWallClockTime.
%v identifies the type of the attribute, and then prints the value
in an appropriate format. %V identifies the type of the attribute,
and then prints the value in an appropriate format as it would
appear in the -long format. As an example, strings used with %V
will have quote marks. An incorrect format will result in undefined
behavior. Do not use more than one conversion specifier in a given
format. More than one conversion specifier will result in undefined
behavior. To output multiple attributes repeat the -format
option once for each desired attribute. Like printf(3) style
formats, one may include other text that will be reproduced
directly. A format without any conversion specifiers may be
specified, but an attribute is still required. Include a backslash
followed by an ‘n’ to specify a line break.

	-autoformat[:jlhVr,tng] attr1 [attr2 …] or -af[:jlhVr,tng] attr1 [attr2 …]
	(output option) Display attribute(s) or expression(s) formatted in a
default way according to attribute types. This option takes an
arbitrary number of attribute names as arguments, and prints out
their values, with a space between each value and a newline
character after the last value. It is like the -format option
without format strings. This output option does not work in
conjunction with any of the options -run, -currentrun,
-hold, -grid, -goodput, or -io.

It is assumed that no attribute names begin with a dash character,
so that the next word that begins with dash is the start of the next
option. The autoformat option may be followed by a colon
character and formatting qualifiers to deviate the output formatting
from the default:

j print the job ID as the first field,

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are
quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default
space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces
before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The
l and h characters may not be used together.

	-print-format file
	Read output formatting information from the given custom print format file.
see Print Formats for more information about custom print format files.

	-analyze[:<qual>]
	(analyze option) Perform a matchmaking analysis on why the requested
jobs are not running. First a simple analysis determines if the job
is not running due to not being in a runnable state. If the job is
in a runnable state, then this option is equivalent to
-better-analyze. <qual> is a comma separated list containing
one or more of

priority to consider user priority during the analysis

summary to show a one line summary for each job or machine

reverse to analyze machines, rather than jobs

	-better-analyze[:<qual>]
	(analyze option) Perform a more detailed matchmaking analysis to
determine how many resources are available to run the requested
jobs. This option is never meaningful for Scheduler universe jobs
and only meaningful for grid universe jobs doing matchmaking. When
this option is used in conjunction with the -unmatchable option,
The output will be a list of job ids that don’t match any of the
available slots. <qual> is a comma separated list containing one
or more of

priority to consider user priority during the analysis

summary to show a one line summary for each job or machine

reverse to analyze machines, rather than jobs

	-machine name
	(analyze option) When doing matchmaking analysis, analyze only
machine ClassAds that have slot or machine names that match the
given name.

	-mconstraint expression
	(analyze option) When doing matchmaking analysis, match only machine
ClassAds which match the ClassAd expression constraint.

	-slotads file
	(analyze option) When doing matchmaking analysis, use the machine
ClassAds from the file instead of the ones from the
condor_collector daemon. This is most useful for debugging
purposes. The ClassAds appear as if condor_status -long is
used.

	-userprios file
	(analyze option) When doing matchmaking analysis with priority, read
user priorities from the file rather than the ones from the
condor_negotiator daemon. This is most useful for debugging
purposes or to speed up analysis in situations where the
condor_negotiator daemon is slow to respond to condor_userprio
requests. The file should be in the format produced by
condor_userprio -long.

	-nouserprios
	(analyze option) Do not consider user priority during the analysis.

	-reverse-analyze
	(analyze option) Analyze machine requirements against jobs.

	-verbose
	(analyze option) When doing analysis, show progress and include the
names of specific machines in the output.

General Remarks

The default output from condor_q is formatted to be human readable,
not script readable. In an effort to make the output fit within 80
characters, values in some fields might be truncated. Furthermore, the
HTCondor Project can (and does) change the formatting of this default
output as we see fit. Therefore, any script that is attempting to parse
data from condor_q is strongly encouraged to use the -format
option (described above, examples given below).

Although -analyze provides a very good first approximation, the
analyzer cannot diagnose all possible situations, because the analysis
is based on instantaneous and local information. Therefore, there are
some situations such as when several submitters are contending for
resources, or if the pool is rapidly changing state which cannot be
accurately diagnosed.

It is possible to hold jobs that are in the X state. To avoid this it
is best to construct a -constraint expression that option
contains JobStatus != 3 if the user wishes to avoid this condition.

Examples

The -format option provides a way to specify both the job attributes
and formatting of those attributes. There must be only one conversion
specification per -format option. As an example, to list only Jane
Doe’s jobs in the queue, choosing to print and format only the owner of
the job, the command line arguments for the job, and the process ID of
the job:

$ condor_q -submitter jdoe -format "%s" Owner -format " %s " Args -format " ProcId = %d\n" ProcId
jdoe 16386 2800 ProcId = 0
jdoe 16386 3000 ProcId = 1
jdoe 16386 3200 ProcId = 2
jdoe 16386 3400 ProcId = 3
jdoe 16386 3600 ProcId = 4
jdoe 16386 4200 ProcId = 7

To display only the JobID’s of Jane Doe’s jobs you can use the
following.

$ condor_q -submitter jdoe -format "%d." ClusterId -format "%d\n" ProcId
27.0
27.1
27.2
27.3
27.4
27.7

An example that shows the analysis in summary format:

$ condor_q -analyze:summary

-- Submitter: submit-1.chtc.wisc.edu : <192.168.100.43:9618?sock=11794_95bb_3> :
 submit-1.chtc.wisc.edu
Analyzing matches for 5979 slots
 Autocluster Matches Machine Running Serving
 JobId Members/Idle Reqmnts Rejects Job Users Job Other User Avail Owner
---------- ------------ -------- ------------ ---------- ---------- ----- -----
25764522.0 7/0 5910 820 7/10 5046 34 smith
25764682.0 9/0 2172 603 9/9 1531 29 smith
25765082.0 18/0 2172 603 18/9 1531 29 smith
25765900.0 1/0 2172 603 1/9 1531 29 smith

An example that shows summary information by machine:

$ condor_q -ana:sum,rev

-- Submitter: s-1.chtc.wisc.edu : <192.168.100.43:9618?sock=11794_95bb_3> : s-1.chtc.wisc.edu
Analyzing matches for 2885 jobs
 Slot Slot's Req Job's Req Both
Name Type Matches Job Matches Slot Match %
------------------------ ---- ------------ ------------ ----------
slot1@INFO.wisc.edu Stat 2729 0 0.00
slot2@INFO.wisc.edu Stat 2729 0 0.00
slot1@aci-001.chtc.wisc.edu Part 0 2793 0.00
slot1_1@a-001.chtc.wisc.edu Dyn 2644 2792 91.37
slot1_2@a-001.chtc.wisc.edu Dyn 2623 2601 85.10
slot1_3@a-001.chtc.wisc.edu Dyn 2644 2632 85.82
slot1_4@a-001.chtc.wisc.edu Dyn 2644 2792 91.37
slot1@a-002.chtc.wisc.edu Part 0 2633 0.00
slot1_10@a-002.chtc.wisc.edu Den 2623 2601 85.10

An example with two independent DAGs in the queue:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:35169?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
wenger DAG: 3696 2/12 11:55 _ 10 _ 10 3698.0 ... 3707.0
wenger DAG: 3697 2/12 11:55 1 1 1 10 3709.0 ... 3710.0

14 jobs; 0 completed, 0 removed, 1 idle, 13 running, 0 held, 0 suspended

Note that the “13 running” in the last line is two more than the total
of the RUN column, because the two condor_dagman jobs themselves are
counted in the last line but not the RUN column.

Also note that the “completed” value in the last line does not
correspond to the total of the DONE column, because the “completed”
value in the last line only counts jobs that are completed but still in
the queue, whereas the DONE column counts jobs that are no longer in the
queue.

Here’s an example with a held job, illustrating the addition of the HOLD
column to the output:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS
wenger CMD: /bin/slee 9/13 16:25 _ 3 _ 1 4 599.0 ...

4 jobs; 0 completed, 0 removed, 0 idle, 3 running, 1 held, 0 suspended

Here are some examples with a nested-DAG workflow in the queue, which is
one of the most complicated cases. The workflow consists of a top-level
DAG with nodes NodeA and NodeB, each with two two-proc clusters; and a
sub-DAG SubZ with nodes NodeSA and NodeSB, each with two two-proc
clusters.

First of all, non-batch mode with all of the node jobs in the queue:

$ condor_q -nobatch

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 591.0 wenger 9/13 16:05 0+00:00:13 R 0 2.4 condor_dagman -p 0
 592.0 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 60
 592.1 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 300
 593.0 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 60
 593.1 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 300
 594.0 wenger 9/13 16:05 0+00:00:07 R 0 2.4 condor_dagman -p 0
 595.0 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 60
 595.1 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 300
 596.0 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 60
 596.1 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 300

10 jobs; 0 completed, 0 removed, 0 idle, 10 running, 0 held, 0 suspended

Now non-batch mode with the -dag option (unfortunately, condor_q
doesn’t do a good job of grouping procs in the same cluster together):

$ condor_q -nobatch -dag

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
 ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
 591.0 wenger 9/13 16:05 0+00:00:27 R 0 2.4 condor_dagman -
 592.0 |-NodeA 9/13 16:05 0+00:00:21 R 0 0.0 sleep 60
 593.0 |-NodeB 9/13 16:05 0+00:00:21 R 0 0.0 sleep 60
 594.0 |-SubZ 9/13 16:05 0+00:00:21 R 0 2.4 condor_dagman -
 595.0 |-NodeSA 9/13 16:05 0+00:00:15 R 0 0.0 sleep 60
 596.0 |-NodeSB 9/13 16:05 0+00:00:15 R 0 0.0 sleep 60
 592.1 |-NodeA 9/13 16:05 0+00:00:21 R 0 0.0 sleep 300
 593.1 |-NodeB 9/13 16:05 0+00:00:21 R 0 0.0 sleep 300
 595.1 |-NodeSA 9/13 16:05 0+00:00:15 R 0 0.0 sleep 300
 596.1 |-NodeSB 9/13 16:05 0+00:00:15 R 0 0.0 sleep 300

10 jobs; 0 completed, 0 removed, 0 idle, 10 running, 0 held, 0 suspended

Now, finally, the non-batch (default) mode:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
wenger ex1.dag+591 9/13 16:05 _ 8 _ 5 592.0 ... 596.1

10 jobs; 0 completed, 0 removed, 0 idle, 10 running, 0 held, 0 suspended

There are several things about this output that may be slightly
confusing:

	The TOTAL column is less than the RUN column. This is because, for
DAG node jobs, their contribution to the TOTAL column is the number
of clusters, not the number of procs (but their contribution to the
RUN column is the number of procs). So the four DAG nodes (8 procs)
contribute 4, and the sub-DAG contributes 1, to the TOTAL column.
(But, somewhat confusingly, the sub-DAG job is not counted in the RUN
column.)

	The sum of the RUN and IDLE columns (8) is less than the 10 jobs
listed in the totals line at the bottom. This is because the
top-level DAG and sub-DAG jobs are not counted in the RUN column, but
they are counted in the totals line.

Now here is non-batch mode after proc 0 of each node job has finished:

$ condor_q -nobatch

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 591.0 wenger 9/13 16:05 0+00:01:19 R 0 2.4 condor_dagman -p 0
 592.1 wenger 9/13 16:05 0+00:01:13 R 0 0.0 sleep 300
 593.1 wenger 9/13 16:05 0+00:01:13 R 0 0.0 sleep 300
 594.0 wenger 9/13 16:05 0+00:01:13 R 0 2.4 condor_dagman -p 0
 595.1 wenger 9/13 16:05 0+00:01:07 R 0 0.0 sleep 300
 596.1 wenger 9/13 16:05 0+00:01:07 R 0 0.0 sleep 300

6 jobs; 0 completed, 0 removed, 0 idle, 6 running, 0 held, 0 suspended

The same state also with the -dag option:

$ condor_q -nobatch -dag

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
 ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
 591.0 wenger 9/13 16:05 0+00:01:30 R 0 2.4 condor_dagman -
 592.1 |-NodeA 9/13 16:05 0+00:01:24 R 0 0.0 sleep 300
 593.1 |-NodeB 9/13 16:05 0+00:01:24 R 0 0.0 sleep 300
 594.0 |-SubZ 9/13 16:05 0+00:01:24 R 0 2.4 condor_dagman -
 595.1 |-NodeSA 9/13 16:05 0+00:01:18 R 0 0.0 sleep 300
 596.1 |-NodeSB 9/13 16:05 0+00:01:18 R 0 0.0 sleep 300

6 jobs; 0 completed, 0 removed, 0 idle, 6 running, 0 held, 0 suspended

And, finally, that state in batch (default) mode:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
wenger ex1.dag+591 9/13 16:05 _ 4 _ 5 592.1 ... 596.1

6 jobs; 0 completed, 0 removed, 0 idle, 6 running, 0 held, 0 suspended

Exit Status

condor_q will exit with a status value of 0 (zero) upon success, and
it will exit with the value 1 (one) upon failure.

 condor_qedit

condor_qedit

modify job attributes

Synopsis

condor_qedit [-debug] [-n schedd-name]
[-pool pool-name] [-forward] {cluster | cluster.proc | owner |
-constraint constraint} edit-list

Description

condor_qedit modifies job ClassAd attributes of queued HTCondor jobs.
The jobs are specified either by cluster number, job ID, owner, or by a
ClassAd constraint expression. The edit-list can take one of 3 forms

	
	attribute-name attribute-value …
	This is the older form, which behaves the same as the format below.

	
	attribute-name=attribute-value …
	The attribute-value may be any ClassAd
expression. String expressions must be surrounded by double quotes.
Multiple attribute value pairs may be listed on the same command line.

	
	-edits[:auto|long|xml|json|new] file-name
	The file indicated by file-name is read as a classad of the given format.
If no format is specified or auto is specified the format will be detected.
if file-name is - standard input will be read.

To ensure security and correctness, condor_qedit will not allow
modification of the following ClassAd attributes:

	Owner

	ClusterId

	ProcId

	MyType

	TargetType

	JobStatus

Since JobStatus may not be changed with condor_qedit, use
condor_hold to place a job in the hold state, and use
condor_release to release a held job, instead of attempting to modify
JobStatus directly.

If a job is currently running, modified attributes for that job will not
affect the job until it restarts. As an example, for PeriodicRemove
to affect when a currently running job will be removed from the queue,
that job must first be evicted from a machine and returned to the queue.
The same is true for other periodic expressions, such as
PeriodicHold and PeriodicRelease.

condor_qedit validates both attribute names and attribute values,
checking for correct ClassAd syntax. An error message is printed, and no
attribute is set or changed if any name or value is invalid.

Options

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-n schedd-name
	Modify job attributes in the queue of the specified schedd

	-pool pool-name
	Modify job attributes in the queue of the schedd specified in the
specified pool

	-forward
	Forward modifications to shadow/gridmanager

Examples

$ condor_qedit -name north.cs.wisc.edu -pool condor.cs.wisc.edu 249.0 answer 42
Set attribute "answer".
$ condor_qedit -name perdita 1849.0 In '"myinput"'
Set attribute "In".
% condor_qedit jbasney OnExitRemove=FALSE
Set attribute "OnExitRemove".
% condor_qedit -constraint 'JobUniverse == 1' 'Requirements=(Arch == "INTEL") && (OpSys == "SOLARIS26") && (Disk >= ExecutableSize) && (VirtualMemory >= ImageSize)'
Set attribute "Requirements".

General Remarks

A job’s ClassAd attributes may be viewed with

$ condor_q -long

Exit Status

condor_qedit will exit with a status value of 0 (zero) upon success,
and it will exit with the value 1 (one) upon failure.

 condor_qusers

condor_qusers

add, enable and disable or show Users in the AP

Synopsis

condor_qusers [-help] [-version] [-debug]
[-name schedd-name] [-pool pool-name]
[-long | --af {attrs} | -format fmt attr]
[-add | -enable | --disable [-reason reason-string]] {users}

Description

condor_qusers adds, enables or eisables or shows User records in the AP.
Which user records are specified by name. The tool will do only one of these
things at a time. It will print user records if no add, enable, or disable
option is chosen.

Options

	-help
	Print useage then exit.

	-version
	Print the version and then exit.

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-name schedd-name
	Modify job attributes in the queue of the specified schedd

	-pool pool-name
	Modify job attributes in the queue of the schedd specified in the
specified pool

	-long
	Print User ClassAds in long form

	-format fmt attr
	Print selected attribute of the User ClassAds using the given format.

	-autoformat[:lhVr,tng] attr1 [attr2 …] or -af[:lhVr,tng] attr1 [attr2 …]
	(output option) Display attribute(s) or expression(s) formatted in a
default way according to attribute types. This option takes an
arbitrary number of attribute names as arguments, and prints out
their values, with a space between each value and a newline
character after the last value. It is like the -format option
without format strings. This output option does not work in
conjunction with any of the options -add, -enable, or -disable

It is assumed that no attribute names begin with a dash character,
so that the next word that begins with dash is the start of the next
option. The autoformat option may be followed by a colon
character and formatting qualifiers to deviate the output formatting
from the default:

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are
quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default
space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces
before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The
l and h characters may not be used together.

	-add user1 [user2 …]
	Add User ClassAds for the given users.

	-enable user1 [user2 …]
	Enable the given users, adding them if necessary.

	-disable user1 [user2 …]
	Disable the given users. Disabled users cannot submit jobs.

	-reason reason-string
	Provide a reason for disabling when used with -disable. The disable reason
will be included in the error message when submit fails because a user is disabled.

Examples

$ condor_qusers -name north.cs.wisc.edu -pool condor.cs.wisc.edu
Print users from north.cs.wisc.edu in the condor.cs.wisc.edu pool
$ condor_qusers -name perdita
Print users from perdition in the local pool
% condor_qusers -add bob
Add user bob to the local AP
% condor_qusers -disable -bob -reason "talk to admin"
Disable user bob with the reason "talk to admin"

General Remarks

An APs User ClassAds have attributes that count the number of jobs that user has in the queue, as well
as enable/disable and the short and fully-qualified user name. The full set of attributes can can be viewed with

$ condor_qusers -long

Exit Status

condor_qusers will exit with a status value of 0 (zero) upon success,
and it will exit with the value 1 (one) upon failure.

 condor_qsub

condor_qsub

Queue jobs that use PBS/SGE-style submission

Synopsis

condor_qsub [–version]

condor_qsub [Specific options] [Directory options]
[Environmental options] [File options] [Notification
options] [Resource options] [Status options]
[Submission options] commandfile

Description

condor_qsub submits an HTCondor job. This job is specified in a
PBS/Torque style or an SGE style. condor_qsub permits the submission
of dependent jobs without the need to specify the full dependency graph
at submission time. Doing things this way is neither as efficient as
HTCondor’s DAGMan, nor as functional as SGE’s qsub or qalter.
condor_qsub serves as a minimal translator to be able to use software
originally written to interact with PBS, Torque, and SGE in an HTCondor
pool.

condor_qsub attempts to behave like qsub. Less than half of the
qsub functionality is implemented. Option descriptions describe the
differences between the behavior of qsub and condor_qsub. qsub
options not listed here are not supported. Some concepts present in PBS
and SGE do not apply to HTCondor, and so these options are not
implemented.

For a full listing of qsub options, please see

	POSIX
	:
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/qsub.html

	SGE
	:
http://gridscheduler.sourceforge.net/htmlman/htmlman1/qsub.html

	PBS/Torque
	:
http://docs.adaptivecomputing.com/torque/4-1-3/Content/topics/commands/qsub.htm

condor_qsub accepts either command line options or the single file,
commandfile, that contains all of the commands.

condor_qsub does the opposite of job submission within the grid
universe batch grid type, which takes HTCondor jobs submitted with
HTCondor syntax and submits them to PBS, SGE, or LSF.

Options

	-a date_time
	(Submission option) Specify a deferred execution date and time. The
PBS/Torque syntax of date_time is a string in the form
[[[[CC]YY]MM]DD]hhmm[.SS]. The portions of this string which are
optional are CC, YY, MM, DD, and SS. For SGE, MM and
DD are not optional. For PBS, MM and DD are optional.
condor_qsub follows the PBS style.

	-A account_string
	(Status option) Uses group accounting where the string
account_string is the accounting group associated with this job.
Unlike SGE, there is no default group of "sge".

	-b y|n
	(Submission option) Using the SGE definition of its -b option, a
value of y causes condor_qsub to not parse the file for
additional condor_qsub commands. The default value is n. If the
command line argument -f filename is also specified, it
negates a value of y.

	-condor-keep-files
	(Specific option) Directs HTCondor to not remove temporary files
generated by condor_qsub, such as HTCondor submit files and
sentinel jobs. These temporary files may be important for debugging.

	-cwd
	(Directory option) Specifies the initial directory in which the job
will run to be the current directory from which the job was
submitted. This sets
initialdir for
condor_submit.

	-d path or -wd path
	(Directory option) Specifies the initial directory in which the job
will run to be path. This sets
initialdir for
condor_submit.

	-e filename
	(File option) Specifies the condor_submit command
error , the file where
stderr is written. If not specified, set to the default name of
`` <commandfile>.e<ClusterId>``, where <commandfile> is the
condor_qsub argument, and `` <ClusterId>`` is the job attribute
ClusterId assigned for the job.

	-f qsub_file
	(Specific option) Parse qsub_file to search for and set
additional condor_submit commands. Within the file, commands will
appear as #PBS or #SGE. condor_qsub will parse the batch
file listed as qsub_file.

	-h
	(Status option) Placed submitted job directly into the hold state.

	-help
	(Specific option) Print usage information and exit.

	-hold_jid <jid>
	(Status option) Submits a job in the hold state. This job is
released only when a previously submitted job, identified by its
cluster ID as <jid>, exits successfully. Successful completion is
defined as not exiting with exit code 100. In implementation, there
are three jobs that define this SGE feature. The first job is the
previously submitted job. The second job is the newly submitted one
that is waiting for the first to finish successfully. The third job
is what SGE calls a sentinel job; this is an HTCondor local universe
job that watches the history for the first job’s exit code. This
third job will exit once it has seen the exit code and, for a
successful termination of the first job, run condor_release on
the second job. If the first job is an array job, the second job
will only be released after all individual jobs of the first job
have completed.

	-i [hostname:]filename
	(File option) Specifies the condor_submit command
input , the file from
which stdin is read.

	-j characters
	(File option) Acceptable characters for this option are e,
o, and n. The only sequence that is relevant is eo; it
specifies that both standard output and standard error are to be
sent to the same file. The file will be the one specified by the
-o option, if both the -o and -e options exist. The file
will be the one specified by the -e option, if only the -e
option is provided. If neither the -o nor the -e options are
provided, the file will be the default used for the -o option.

	-l resource_spec
	(Resource option) Specifies requirements for the job, such as the
amount of RAM and the number of CPUs. Only PBS-style resource
requests are supported. resource_spec is a comma separated list
of key/value pairs. Each pair is of the form
resource_name=value. resource_name and value may be
+————————–+————————–+————————–+
| resource_name | value | Description |
+————————–+————————–+————————–+
arch	string	Sets Arch machine
		attribute. Enclose in
		double quotes.
+————————–+————————–+————————–+		
file	size	Disk space requested.
+————————–+————————–+————————–+		
host	string	Host machine on which
		the job must run.
+————————–+————————–+————————–+		
mem	size	Amount of memory
		requested.
+————————–+————————–+————————–+		
nodes	{<node_count>	<hostn
	ame>} [:ppn=<ppn>] [:gpu	of nodes to be used. For
	s=<gpu>] [:<property> [:	examples, please see
	<property>] ...] [+ ...]	http://docs.adaptivecom
		puting.com/torque/4-1-3/
		Content/topics/2-jobs/re
		questingRes.htm#qsub
+————————–+————————–+————————–+		
opsys	string	Sets OpSys machine
		attribute. Enclose in
		double quotes.
+————————–+————————–+————————–+		
procs	integer	Number of CPUs
		requested.
+————————–+————————–+————————–+

A size value is an integer specified in bytes, following the
PBS/Torque default. Append Kb, Mb, Gb, or Tb to
specify the value in powers of two quantities greater than bytes.

	-m a|e|n
	(Notification option) Identify when HTCondor sends notification
e-mail. If a, send e-mail when the job terminates abnormally. If
e, send e-mail when the job terminates. If n, never send e-mail.

	-M e-mail_address
	(Notification option) Sets the destination address for HTCondor
e-mail.

	-o filename
	(File option) Specifies the condor_submit command
output , the file where
stdout is written. If not specified, set to the default name of
`` <commandfile>.o<ClusterId>``, where <commandfile> is the
condor_qsub argument, and `` <ClusterId>`` is the job attribute
ClusterId assigned for the job.

	-p integer
	(Status option) Sets the
priority submit
command for the job, with 0 being the default. Jobs with higher
numerical priority will run before jobs with lower numerical
priority.

	-print
	(Specific option) Send to stdout the contents of the HTCondor
submit description file that condor_qsub generates.

	-r y|n
	(Status option) The default value of y implements the default
HTCondor policy of assuming that jobs that do not complete are
placed back in the queue to be run again. When n, job submission
is restricted to only running the job if the job ClassAd attribute
NumJobStarts is currently 0. This identifies the job as not
re-runnable, limiting it to start once.

	-S shell
	(Submission option) Specifies the path and executable name of a
shell. Alters the HTCondor submit description file produced, such
that the executable becomes a wrapper script. Within the submit
description file will be executable = <shell> and
arguments = <commandfile>.

	-t start [-stop:step]
	(Submission option) Queues a set of nearly identical jobs. The
SGE-style syntax is supported. start, stop, and step are all
integers. start is the starting index of the jobs, stop is the
ending index (inclusive) of the jobs, and step is the step size
through the indices. Note that using more than one processor or node
in a job will not work with this option.

	-test
	(Specific option) With the intention of testing a potential job
submission, parse files and commands to generate error output.
Produces, but then removes the HTCondor submit description file.
Never submits the job, even if no errors are encountered.

	-v variable list
	(Environmental option) Used to set the submit command
environment for
the job. variable list is as that defined for the submit command.
Note that the syntax needed is specialized to deal with quote marks
and white space characters.

	-V
	(Environmental option) Sets getenv = True in the submit
description file.

	-W attr_name=attr_value[,attr_name=attr_value…]
	(File option) PBS/Torque supports a number of attributes. However,
condor_qsub only supports the names stagein and stageout for
attr_name. The format of attr_value for stagein and
stageout is local_file@hostname:remote_file[,...] and we strip
it to remote_file[,...]. HTCondor’s file transfer mechanism is
then used if needed.

	-version
	(Specific option) Print version information for the condor_qsub
program and exit. Note that condor_qsub has its own version
numbers which are separate from those of HTCondor.

Exit Status

condor_qsub will exit with a status value of 0 (zero) upon success,
and it will exit with the value 1 (one) upon failure to submit a job.

 condor_reconfig

condor_reconfig

Reconfigure HTCondor daemons

Synopsis

condor_reconfig [-help | -version]

condor_reconfig [-debug]
[-pool centralmanagerhostname[:portnumber]] [
-name hostname | hostname | -addr “<a.b.c.d:port>”
| “<a.b.c.d:port>” | -constraint expression | -all]
[-daemon daemonname]

Description

condor_reconfig reconfigures all of the HTCondor daemons in
accordance with the current status of the HTCondor configuration
file(s). Once reconfiguration is complete, the daemons will behave
according to the policies stated in the configuration file(s). The main
exception is with the DAEMON_LIST variable, which will only be
updated if the condor_restart command is used. Other configuration
variables that can only be changed if the HTCondor daemons are restarted
are listed in the HTCondor manual in the section on configuration. In
general, condor_reconfig should be used when making changes to the
configuration files, since it is faster and more efficient than
restarting the daemons.

The command condor_reconfig with no arguments or with the
-daemon master option will cause the reconfiguration of the
condor_master daemon and all the child processes of the
condor_master.

For security reasons of authentication and authorization, this command
requires ADMINISTRATOR level of access.

Options

	-help
	Display usage information

	-version
	Display version information

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number

	-name hostname
	Send the command to a machine identified by hostname

	hostname
	Send the command to a machine identified by hostname

	-addr “<a.b.c.d:port>”
	Send the command to a machine’s master located at “<a.b.c.d:port>”

	“<a.b.c.d:port>”
	Send the command to a machine located at “<a.b.c.d:port>”

	-constraint expression
	Apply this command only to machines matching the given ClassAd
expression

	-all
	Send the command to all machines in the pool

	-daemon daemonname
	Send the command to the named daemon. Without this option, the
command is sent to the condor_master daemon.

Exit Status

condor_reconfig will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

Examples

To reconfigure the condor_master and all its children on the local
host:

$ condor_reconfig

To reconfigure only the condor_startd on a named machine:

$ condor_reconfig -name bluejay -daemon startd

To reconfigure a machine within a pool other than the local pool, use
the -pool option. The argument is the name of the central manager
for the pool. Note that one or more machines within the pool must be
specified as the targets for the command. This command reconfigures the
single machine named cae17 within the pool of machines that has
condor.cae.wisc.edu as its central manager:

$ condor_reconfig -pool condor.cae.wisc.edu -name cae17

 condor_release

condor_release

release held jobs in the HTCondor queue

Synopsis

condor_release [-help | -version]

condor_release [-debug] [
-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”]
cluster… | cluster.process… | user… |
-constraint expression …

condor_release [-debug] [
-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”] -all

Description

condor_release releases jobs from the HTCondor job queue that were
previously placed in hold state. If the -name option is specified,
the named condor_schedd is targeted for processing. Otherwise, the
local condor_schedd is targeted. The jobs to be released are
identified by one or more job identifiers, as described below. For any
given job, only the owner of the job or one of the queue super users
(defined by the QUEUE_SUPER_USERS macro) can release the job.

Options

	-help
	Display usage information

	-version
	Display version information

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number

	-name scheddname
	Send the command to a machine identified by scheddname

	-addr “<a.b.c.d:port>”
	Send the command to a machine located at “<a.b.c.d:port>”

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	cluster
	Release all jobs in the specified cluster

	cluster.process
	Release the specific job in the cluster

	user
	Release jobs belonging to specified user

	-constraint expression
	Release all jobs which match the job ClassAd expression constraint

	-all
	Release all the jobs in the queue

See Also

condor_hold

Examples

To release all of the jobs of a user named Mary:

$ condor_release Mary

Exit Status

condor_release will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

 condor_remote_cluster

condor_remote_cluster

Manage and configure the clusters to be accessed.

Synopsis

condor_remote_cluster [-h || –help]

condor_remote_cluster [-l || –list] [-a || –add <host>
[schedd]] [-r || –remove <host>] [-s || –status
<host>] [-t || –test <host>]

Description

condor_remote_cluster is part of a feature for accessing high
throughput computing resources from a local desktop using only an SSH
connection.

condor_remote_cluster enables management and configuration of the
access point of the remote computing resource.
After initial setup, jobs can be submitted to the local job queue,
which are then forwarded to the remote system.

A <host> is of the form user@fqdn.example.com.

Options

	-help
	Print usage information and exit.

	-list
	List all installed clusters.

	-remove <host>
	Remove an already installed cluster, where the cluster is identified
by <host>.

	-add <host> [scheduler]
	Install and add a cluster defined by <host>. The optional
scheduler specifies the scheduler on the cluster. Valid values are
pbs, lsf, condor, sge or slurm. If not given,
the default will be pbs.

	-status <host>
	Query and print the status of an already installed cluster, where
the cluster is identified by <host>.

	-test <host>
	Attempt to submit a test job to an already installed cluster, where
the cluster is identified by <host>.

 condor_reschedule

condor_reschedule

Update scheduling information to the central manager

Synopsis

condor_reschedule [-help | -version]

condor_reschedule [-debug]
[-pool centralmanagerhostname[:portnumber]] [
-name hostname | hostname | -addr “<a.b.c.d:port>”
| “<a.b.c.d:port>” | -constraint expression | -all]

Description

condor_reschedule updates the information about a set of machines’
resources and jobs to the central manager. This command is used to force
an update before viewing the current status of a machine. Viewing the
status of a machine is done with the condor_status command.
condor_reschedule also starts a new negotiation cycle between
resource owners and resource providers on the central managers, so that
jobs can be matched with machines right away. This can be useful in
situations where the time between negotiation cycles is somewhat long,
and an administrator wants to see if a job in the queue will get matched
without waiting for the next negotiation cycle.

A new negotiation cycle cannot occur more frequently than every 20
seconds. Requests for new negotiation cycle within that 20 second window
will be deferred until 20 seconds have passed since that last cycle.

Options

	-help
	Display usage information

	-version
	Display version information

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number

	-name hostname
	Send the command to a machine identified by hostname

	hostname
	Send the command to a machine identified by hostname

	-addr “<a.b.c.d:port>”
	Send the command to a machine’s master located at “<a.b.c.d:port>”

	“<a.b.c.d:port>”
	Send the command to a machine located at “<a.b.c.d:port>”

	-constraint expression
	Apply this command only to machines matching the given ClassAd
expression

	-all
	Send the command to all machines in the pool

Exit Status

condor_reschedule will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

Examples

To update the information on three named machines:

$ condor_reschedule robin cardinal bluejay

To reschedule on a machine within a pool other than the local pool, use
the -pool option. The argument is the name of the central manager
for the pool. Note that one or more machines within the pool must be
specified as the targets for the command. This command reschedules the
single machine named cae17 within the pool of machines that has
condor.cae.wisc.edu as its central manager:

$ condor_reschedule -pool condor.cae.wisc.edu -name cae17

 condor_restart

condor_restart

Restart a set of HTCondor daemons

Synopsis

condor_restart [-help | -version]

condor_restart [-debug[:opts]]] [-graceful | -fast |
-peaceful | -drain] [-pool centralmanagerhostname[:portnumber]] [
-name hostname | hostname | -addr “<a.b.c.d:port>”
| “<a.b.c.d:port>” | -constraint expression | -all]
[-daemon daemonname | -master]
[-exec name]
[-reason “reason-string”]
[-request-id id]
[-check expr]
[-start expr]

Description

condor_restart restarts a set of HTCondor daemons on a set of
machines. The daemons will be put into a consistent state, killed, and
then invoked anew.

If, for example, the condor_master needs to be restarted again with a
fresh state, this is the command that should be used to do so. If the
DAEMON_LIST variable in the configuration file has been changed,
this command is used to restart the condor_master in order to see
this change. The condor_reconfigure command cannot be used in the
case where the DAEMON_LIST expression changes.

The command condor_restart with no arguments or with the
-daemon master option will safely shut down all running jobs and
all submitted jobs from the machine(s) being restarted, then shut down
all the child daemons of the condor_master, and then restart the
condor_master. This, in turn, will allow the condor_master to
start up other daemons as specified in the DAEMON_LIST configuration
file entry.

When restarting down all daemons including the condor_master, the -exec
argument can be used to tell the master to run a configured

 condor_rm

condor_rm

remove jobs from the HTCondor queue

Synopsis

condor_rm [-help | -version]

condor_rm [-debug] [-forcex] [
-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”]
cluster… | cluster.process… | user… |
-constraint expression …

condor_rm [-debug] [
-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”] -all

Description

condor_rm removes one or more jobs from the HTCondor job queue. If
the -name option is specified, the named condor_schedd is
targeted for processing. Otherwise, the local condor_schedd is
targeted. The jobs to be removed are identified by one or more job
identifiers, as described below. For any given job, only the owner of
the job or one of the queue super users (defined by the
QUEUE_SUPER_USERS macro) can remove the job.

When removing a grid job, the job may remain in the “X” state for a very
long time. This is normal, as HTCondor is attempting to communicate with
the remote scheduling system, ensuring that the job has been properly
cleaned up. If it takes too long, or in rare circumstances is never
removed, the job may be forced to leave the job queue by using the
-forcex option. This forcibly removes jobs that are in the “X” state
without attempting to finish any clean up at the remote scheduler.

Options

	-help
	Display usage information

	-version
	Display version information

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number

	-name scheddname
	Send the command to a machine identified by scheddname

	-addr “<a.b.c.d:port>”
	Send the command to a machine located at “<a.b.c.d:port>”

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-forcex
	Force the immediate local removal of jobs in the ‘X’ state (only
affects jobs already being removed)

	cluster
	Remove all jobs in the specified cluster

	cluster.process
	Remove the specific job in the cluster

	user
	Remove jobs belonging to specified user

	-constraint expression
	Remove all jobs which match the job ClassAd expression constraint

	-all
	Remove all the jobs in the queue

General Remarks

Use the -forcex argument with caution, as it will remove jobs from the
local queue immediately, but can orphan parts of the job that are
running remotely and have not yet been stopped or removed.

Examples

For a user to remove all their jobs that are not currently running:

$ condor_rm -constraint 'JobStatus =!= 2'

Exit Status

condor_rm will exit with a status value of 0 (zero) upon success, and
it will exit with the value 1 (one) upon failure.

 condor_rmdir

condor_rmdir

Windows-only no-fail deletion of directories

Synopsis

condor_rmdir [/HELP | /?]

condor_rmdir @filename

condor_rmdir [/VERBOSE] [/DIAGNOSTIC]
[/PATH:<path>] [/S] [/C] [/Q] [/NODEL]
directory

Description

condor_rmdir can delete a specified directory, and will not fail if
the directory contains files that have ACLs that deny the SYSTEM process
delete access, unlike the built-in Windows rmdir command.

The directory to be removed together with other command line arguments
may be specified within a file named filename, prefixing this argument
with an @ character.

The condor_rmdir.exe executable is is intended to be used by HTCondor
with the /S /C options, which cause it to recurse into
subdirectories and continue on errors.

Options

	/HELP
	Print usage information.

	/?
	Print usage information.

	/VERBOSE
	Print detailed output.

	/DIAGNOSTIC
	Print out the internal flow of control information.

	/PATH:<path>
	Remove the directory given by <path>.

	/S
	Include subdirectories in those removed.

	/C
	Continue even if access is denied.

	/Q
	Print error output only.

	/NODEL
	Do not remove directories. ACLs may still be changed.

Exit Status

condor_rmdir will exit with a status value of 0 (zero) upon success,
and it will exit with the standard HRESULT error code upon failure.

 condor_router_history

condor_router_history

Display the history for routed jobs

Synopsis

condor_router_history [–h]

condor_router_history [–show_records] [–show_iwd]
[–age days] [–days days] [–start “YYYY-MM-DD HH:MM”]

Description

condor_router_history summarizes statistics for routed jobs over the
previous 24 hours. With no command line options, statistics for run
time, number of jobs completed, and number of jobs aborted are listed
per route (site).

Options

	-h
	Display usage information and exit.

	-show_records
	Displays individual records in addition to the summary.

	-show_iwd
	Include working directory in displayed records.

	-age days
	Set the ending time of the summary to be days days ago.

	-days days
	Set the number of days to summarize.

	-start “YYYY-MM-DD HH:MM”
	Set the start time of the summary.

Exit Status

condor_router_history will exit with a status of 0 (zero) upon
success, and non-zero otherwise.

 condor_router_q

condor_router_q

Display information about routed jobs in the queue

Synopsis

condor_router_q [-S] [-R] [-I] [-H]
[-route name] [-idle] [-held]
[-constraint X] [condor_q options]

Description

condor_router_q displays information about jobs managed by the
condor_job_router that are in the HTCondor job queue. The
functionality of this tool is that of condor_q, with additional
options specialized for routed jobs. Therefore, any of the options for
condor_q may also be used with condor_router_q.

Options

	-S
	Summarize the state of the jobs on each route.

	-R
	Summarize the running jobs on each route.

	-I
	Summarize the idle jobs on each route.

	-H
	Summarize the held jobs on each route.

	-route name
	Display only the jobs on the route identified by name.

	-idle
	Display only the idle jobs.

	-held
	Display only the held jobs.

	-constraint X
	Display only the jobs matching constraint X.

Exit Status

condor_router_q will exit with a status of 0 (zero) upon success,
and non-zero otherwise.

 condor_router_rm

condor_router_rm

Remove jobs being managed by the HTCondor Job Router

Synopsis

condor_router_rm [router_rm options] [condor_rm options]

Description

condor_router_rm is a script that provides additional features above
those offered by condor_rm, for removing jobs being managed by the
HTCondor Job Router.

The options that may be supplied to condor_router_rm belong to two
groups:

	router_rm options provide the additional features

	condor_rm options are those options already offered by
condor_rm. See the condor_rm manual page for specification of
these options.

Options

	-constraint X
	(router_rm option) Remove jobs matching the constraint specified by
X

	-held
	(router_rm option) Remove only jobs in the hold state

	-idle
	(router_rm option) Remove only idle jobs

	-route name
	(router_rm option) Remove only jobs on specified route

Exit Status

condor_router_rm will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

 condor_run

condor_run

Submit a shell command-line as an HTCondor job

Synopsis

condor_run [-u universe] [-a submitcmd] “shell
command”

Description

condor_run bundles a shell command line into an HTCondor job and
submits the job. The condor_run command waits for the HTCondor job to
complete, writes the job’s output to the terminal, and exits with the
exit status of the HTCondor job. No output appears until the job
completes.

Enclose the shell command line in double quote marks, so it may be
passed to condor_run without modification. condor_run will not
read input from the terminal while the job executes. If the shell
command line requires input, redirect the input from a file, as
illustrated by the example

$ condor_run "myprog < input.data"

condor_run jobs rely on a shared file system for access to any
necessary input files. The current working directory of the job must be
accessible to the machine within the HTCondor pool where the job runs.

Specialized environment variables may be used to specify requirements
for the machine where the job may run.

	CONDOR_ARCH
	Specifies the architecture of the required platform. Values will be
the same as the Arch machine ClassAd attribute.

	CONDOR_OPSYS
	Specifies the operating system of the required platform. Values will
be the same as the OpSys machine ClassAd attribute.

	CONDOR_REQUIREMENTS
	Specifies any additional requirements for the HTCondor job. It is
recommended that the value defined for CONDOR_REQUIREMENTS be
enclosed in parenthesis.

When one or more of these environment variables is specified, the job is
submitted with:

Requirements = $CONDOR_REQUIREMENTS && Arch == $CONDOR_ARCH && OpSys == $CONDOR_OPSYS

Without these environment variables, the job receives the default
requirements expression, which requests a machine of the same platform
as the machine on which condor_run is executed.

All environment variables set when condor_run is executed will be
included in the environment of the HTCondor job.

condor_run removes the HTCondor job from the queue and deletes its
temporary files, if condor_run is killed before the HTCondor job
completes.

Options

	-u universe
	Submit the job under the specified universe. The default is vanilla.
While any universe may be specified, only the vanilla,
scheduler, and local universes result in a submit description file
that may work properly.

	-a submitcmd
	Add the specified submit command to the implied submit description
file for the job. To include spaces within submitcmd, enclose the
submit command in double quote marks. And, to include double quote
marks within submitcmd, enclose the submit command in single quote
marks.

Examples

condor_run may be used to compile an executable on a different
platform. As an example, first set the environment variables for the
required platform:

$ export CONDOR_ARCH="SUN4u"
$ export CONDOR_OPSYS="SOLARIS28"

Then, use condor_run to submit the compilation as in the following
two examples.

$ condor_run "f77 -O -o myprog myprog.f"

or

$ condor_run "make"

Files

condor_run creates the following temporary files in the user’s
working directory. The placeholder <pid> is replaced by the process id
of condor_run.

	.condor_run.<pid>
	A shell script containing the shell command line.

	.condor_submit.<pid>
	The submit description file for the job.

	.condor_log.<pid>
	The HTCondor job’s log file; it is monitored by condor_run, to
determine when the job exits.

	.condor_out.<pid>
	The output of the HTCondor job before it is output to the terminal.

	.condor_error.<pid>
	Any error messages for the HTCondor job before they are output to
the terminal.

condor_run removes these files when the job completes. However, if
condor_run fails, it is possible that these files will remain in the
user’s working directory, and the HTCondor job may remain in the queue.

General Remarks

condor_run is intended for submitting simple shell command lines to
HTCondor. It does not provide the full functionality of
condor_submit. Therefore, some condor_submit errors and system
failures may not be handled correctly.

All processes specified within the single shell command line will be
executed on the single machine matched with the job. HTCondor will not
distribute multiple processes of a command line pipe across multiple
machines.

condor_run will use the shell specified in the SHELL
 environment variable, if one exists. Otherwise, it
will use /bin/sh to execute the shell command-line.

By default, condor_run expects Perl to be installed in
/usr/bin/perl. If Perl is installed in another path, ask the Condor
administrator to edit the path in the condor_run script, or
explicitly call Perl from the command line:

$ perl path-to-condor/bin/condor_run "shell-cmd"

Exit Status

condor_run exits with a status value of 0 (zero) upon complete
success. The exit status of condor_run will be non-zero upon failure.
The exit status in the case of a single error due to a system call will
be the error number (errno) of the failed call.

 condor_set_shutdown

condor_set_shutdown

Set a program to execute upon condor_master shut down

Synopsis

condor_set_shutdown [-help | -version]

condor_set_shutdown -exec programname [-debug]
[-pool centralmanagerhostname[:portnumber]] [
-name hostname | hostname | -addr “<a.b.c.d:port>”
| “<a.b.c.d:port>” | -constraint expression | -all]

Description

condor_set_shutdown sets a program (typically a script) to execute
when the condor_master daemon shuts down. The
-exec programname argument is required, and specifies the
program to run. The string programname must match the string that
defines Name in the configuration variable
MASTER_SHUTDOWN_<Name> in the condor_master daemon’s
configuration. If it does not match, the condor_master will log an
error and ignore the request.

For security reasons of authentication and authorization, this command
requires ADMINISTRATOR level of access.

Options

	-help
	Display usage information

	-version
	Display version information

	-exec name
	Select the program the master should exec the next time it shuts down.
The master will run the program configured as MASTER_SHUTDOWN_<name>
from the configuration of the condor_master.

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number

	-name hostname
	Send the command to a machine identified by hostname

	hostname
	Send the command to a machine identified by hostname

	-addr “<a.b.c.d:port>”
	Send the command to a machine’s master located at “<a.b.c.d:port>”

	“<a.b.c.d:port>”
	Send the command to a machine located at “<a.b.c.d:port>”

	-constraint expression
	Apply this command only to machines matching the given ClassAd
expression

	-all
	Send the command to all machines in the pool

Exit Status

condor_set_shutdown will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

Examples

To have all condor_master daemons run the program /bin/reboot upon
shut down, configure the condor_master to contain a definition
similar to:

MASTER_SHUTDOWN_REBOOT = /sbin/reboot

where REBOOT is an invented name for this program that the
condor_master will execute. On the command line, run

$ condor_set_shutdown -exec reboot -all
$ condor_off -graceful -all

where the string reboot matches the invented name.

 condor_sos

condor_sos

Issue a command that will be serviced with a higher priority

Synopsis

condor_sos [-help | -version]

condor_sos [-debug] [-timeoutmult value]
condor_command

Description

condor_sos sends the condor_command in such a way that the command
is serviced ahead of other waiting commands. It appears to have a higher
priority than other waiting commands.

condor_sos is intended to give administrators a way to query the
condor_schedd and condor_collector daemons when they are under
such a heavy load that they are not responsive.

There must be a special command port configured, in order for a command
to be serviced with priority. The condor_schedd and
condor_collector always have the special command port. Other daemons
require configuration by setting configuration variable
<SUBSYS>_SUPER_ADDRESS_FILE.

Options

	-help
	Display usage information

	-version
	Display version information

	-debug
	Print extra debugging information as the command executes.

	-timeoutmult value
	Multiply any timeouts set for the command by the integer value.

Examples

The example command

$ condor_sos -timeoutmult 5 condor_hold -all

causes the condor_hold -all command to be handled by the
condor_schedd with priority over any other commands that the
condor_schedd has waiting to be serviced. It also extends any set
timeouts by a factor of 5.

Exit Status

condor_sos will exit with the value 1 on error and with the exit
value of the invoked command when the command is successfully invoked.

 condor_ssh_start

condor_ssh_start

Synopsis

condor_ssh_start

Description

condor_ssh_start is part of a system for accessing high
throughput computing resources from a local desktop.

This command is not meant to be executed on the command line by users.

 condor_ssh_to_job

condor_ssh_to_job

create an ssh session to a running job

Synopsis

condor_ssh_to_job [-help]

condor_ssh_to_job [-debug] [-name schedd-name]
[-pool pool-name] [-ssh ssh-command]
[-keygen-options ssh-keygen-options]
[-shells shell1,shell2,…] [-auto-retry]
[-remove-on-interrupt] cluster | cluster.process |
cluster.process.node [remote-command]

Description

condor_ssh_to_job creates an ssh session to a running job. The
job is specified with the argument. If only the job cluster id is
given, then the job process id defaults to the value 0.

condor_ssh_to_job is available in Unix HTCondor distributions, and
works with two kinds of jobs: those in the vanilla, vm, java, local, or
parallel universes, and those jobs in the grid universe which use EC2
resources. It will not work with other grid universe jobs.

For jobs in the vanilla, vm, java, local, or parallel universes, the
user must be the owner of the job or must be a queue super user, and
both the condor_schedd and condor_starter daemons must allow
condor_ssh_to_job access. If no remote-command is specified, an
interactive shell is created. An alternate ssh program such as sftp
may be specified, using the -ssh option, for uploading and
downloading files.

The remote command or shell runs with the same user id as the running
job, and it is initialized with the same working directory. The
environment is initialized to be the same as that of the job, plus any
changes made by the shell setup scripts and any environment variables
passed by the ssh client. In addition, the environment variable
_CONDOR_JOB_PIDS is defined. It is a space-separated list of PIDs
associated with the job. At a minimum, the list will contain the PID of
the process started when the job was launched, and it will be the first
item in the list. It may contain additional PIDs of other processes that
the job has created.

The ssh session and all processes it creates are treated by HTCondor
as though they are processes belonging to the job. If the slot is
preempted or suspended, the ssh session is killed or suspended along
with the job. If the job exits before the ssh session finishes, the
slot remains in the Claimed Busy state and is treated as though not all
job processes have exited until all ssh sessions are closed. Multiple
ssh sessions may be created to the same job at the same time. Resource
consumption of the sshd process and all processes spawned by it are
monitored by the condor_starter as though these processes belong to
the job, so any policies such as PREEMPT that enforce a limit on
resource consumption also take into account resources consumed by the
ssh session.

condor_ssh_to_job stores ssh keys in temporary files within a newly
created and uniquely named directory. The newly created directory will
be within the directory defined by the environment variable TMPDIR.
When the ssh session is finished, this directory and the ssh keys
contained within it are removed.

See the HTCondor administrator’s manual section on configuration for
details of the configuration variables related to
condor_ssh_to_job.

An ssh session works by first authenticating and authorizing a secure
connection between condor_ssh_to_job and the condor_starter
daemon, using HTCondor protocols. The condor_starter generates an ssh
key pair and sends it securely to condor_ssh_to_job. Then the
condor_starter spawns sshd in inetd mode with its stdin and stdout
attached to the TCP connection from condor_ssh_to_job.
condor_ssh_to_job acts as a proxy for the ssh client to
communicate with sshd, using the existing connection authorized by
HTCondor. At no point is sshd listening on the network for connections
or running with any privileges other than that of the user identity
running the job. If CCB is being used to enable connectivity to the
execute node from outside of a firewall or private network,
condor_ssh_to_job is able to make use of CCB in order to form the
ssh connection.

The login shell of the user id running the job is used to run the
requested command, sshd subsystem, or interactive shell. This is
hard-coded behavior in OpenSSH and cannot be overridden by
configuration. This means that condor_ssh_to_job access is
effectively disabled if the login shell disables access, as in the
example programs /bin/true and /sbin/nologin.

condor_ssh_to_job is intended to work with OpenSSH as installed
in typical environments. It does not work on Windows platforms. If the
ssh programs are installed in non-standard locations, then the paths
to these programs will need to be customized within the HTCondor
configuration. Versions of ssh other than OpenSSH may work, but they
will likely require additional configuration of command-line arguments,
changes to the sshd configuration template file, and possibly
modification of the $(LIBEXEC)/condor_ssh_to_job_sshd_setup script
used by the condor_starter to set up sshd.

For jobs in the grid universe which use EC2 resources, a request that
HTCondor have the EC2 service create a new key pair for the job by
specifying
ec2_keypair_file
causes condor_ssh_to_job to attempt to connect to the corresponding
instance via ssh. This attempts invokes ssh directly, bypassing the
HTCondor networking layer. It supplies ssh with the public DNS name of
the instance and the name of the file with the new key pair’s private
key. For the connection to succeed, the instance must have started an
ssh server, and its security group(s) must allow connections on port
22. Conventionally, images will allow logins using the key pair on a
single specific account. Because ssh defaults to logging in as the
current user, the -l <username> option or its equivalent for other
versions of ssh will be needed as part of the remote-command
argument. Although the -X option does not apply to EC2 jobs, adding
-X or -Y to the remote-command argument can duplicate the
effect.

Options

	-help
	Display brief usage information and exit.

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-name schedd-name
	Specify an alternate condor_schedd, if the default (local) one is
not desired.

	-pool pool-name
	Specify an alternate HTCondor pool, if the default one is not
desired. Does not apply to EC2 jobs.

	-ssh ssh-command
	Specify an alternate ssh program to run in place of ssh, for
example sftp or scp. Additional arguments are specified as
ssh-command. Since the arguments are delimited by spaces, place
double quote marks around the whole command, to prevent the shell
from splitting it into multiple arguments to condor_ssh_to_job.
If any arguments must contain spaces, enclose them within single
quotes. Does not apply to EC2 jobs.

	-keygen-options ssh-keygen-options
	Specify additional arguments to the ssh_keygen program, for
creating the ssh key that is used for the duration of the session.
For example, a different number of bits could be used, or a
different key type than the default. Does not apply to EC2 jobs.

	-shells shell1,shell2,…
	Specify a comma-separated list of shells to attempt to launch. If
the first shell does not exist on the remote machine, then the
following ones in the list will be tried. If none of the specified
shells can be found, /bin/sh is used by default. If this option is
not specified, it defaults to the environment variable SHELL
from within the condor_ssh_to_job environment. Does not apply
to EC2 jobs.

	-auto-retry
	Specifies that if the job is not yet running, condor_ssh_to_job
should keep trying periodically until it succeeds or encounters some
other error.

	-remove-on-interrupt
	If specified, attempt to remove the job from the queue if
condor_ssh_to_job is interrupted via a CTRL-c or otherwise
terminated abnormally.

	-X
	Enable X11 forwarding. Does not apply to EC2 jobs.

	-x
	Disable X11 forwarding.

Examples

$ condor_ssh_to_job 32.0
Welcome to slot2@tonic.cs.wisc.edu!
Your condor job is running with pid(s) 65881.
$ gdb -p 65881
(gdb) where
...
$ logout
Connection to condor-job.tonic.cs.wisc.edu closed.

To upload or download files interactively with sftp:

$ condor_ssh_to_job -ssh sftp 32.0
Connecting to condor-job.tonic.cs.wisc.edu...
sftp> ls
...
sftp> get outputfile.dat

This example shows downloading a file from the job with scp. The
string “remote” is used in place of a host name in this example. It is
not necessary to insert the correct remote host name, or even a valid
one, because the connection to the job is created automatically.
Therefore, the placeholder string “remote” is perfectly fine.

$ condor_ssh_to_job -ssh scp 32 remote:outputfile.dat .

This example uses condor_ssh_to_job to accomplish the task of
running rsync to synchronize a local file with a remote file in the
job’s working directory. Job id 32.0 is used in place of a host name in
this example. This causes rsync to insert the expected job id in the
arguments to condor_ssh_to_job.

$ rsync -v -e "condor_ssh_to_job" 32.0:outputfile.dat .

Note that condor_ssh_to_job was added to HTCondor in version 7.3.
If one uses condor_ssh_to_job to connect to a job on an execute
machine running a version of HTCondor older than the 7.3 series, the
command will fail with the error message

Failed to send CREATE_JOB_OWNER_SEC_SESSION to starter

Exit Status

condor_ssh_to_job will exit with a non-zero status value if it
fails to set up an ssh session. If it succeeds, it will exit with the
status value of the remote command or shell.

 condor_ssl_fingerprint

condor_ssl_fingerprint

list the fingerprint of X.509 certificates for use with SSL authentication

Synopsis

condor_ssl_fingerprint [FILE]

Description

condor_ssl_fingerprint parses provided file for X.509 certificcates and prints
prints them to stdout. If no file is provided, then it defaults to printing
out the user’s known_hosts file (typically, in ~/.condor/known_hosts).

If a single PEM-formatted X.509 certificate is found, then its fingerprint is printed.

The X.509 fingerprints can be used to verify the authenticity of an SSL authentication
with a remote daemon.

Examples

To print the fingerprint of a host certificate

$ condor_token_list
Header: {"alg":"HS256","kid":"POOL"} Payload: {"exp":1565576872,"iat":1565543872,"iss":"htcondor.cs.wisc.edu","scope":"condor:\/DAEMON","sub":"k8sworker@wisc.edu"} File: /home/bucky/.condor/tokens.d/token1
Header: {"alg":"HS256","kid":"POOL"} Payload: {"iat":1572414350,"iss":"htcondor.cs.wisc.edu","scope":"condor:\/WRITE","sub":"bucky@wisc.edu"} File: /home/bucky/.condor/tokens.d/token2

Exit Status

condor_token_list will exit with a non-zero status value if it
fails to read the token directory, tokens are improperly formatted,
or if it experiences some other error. Otherwise, it will exit 0.

See also

condor_token_create(1), condor_token_fetch(1), condor_token_request(1)

Author

Center for High Throughput Computing, University of Wisconsin-Madison

 condor_stats

condor_stats

Display historical information about the HTCondor pool

Synopsis

condor_stats [-f filename] [-orgformat]
[-pool centralmanagerhostname[:portnumber]] [time-range]
query-type

Description

condor_stats displays historic information about an HTCondor pool.
Based on the type of information requested, a query is sent to the
condor_collector daemon, and the information received is displayed
using the standard output. If the -f option is used, the information
will be written to a file instead of to standard output. The -pool
option can be used to get information from other pools, instead of from
the local (default) pool. The condor_stats tool is used to query
resource information (single or by platform), submitter and user
information. If a time range is not
specified, the default query provides information for the previous 24
hours. Otherwise, information can be retrieved for other time ranges
such as the last specified number of hours, last week, last month, or a
specified date range.

The information is displayed in columns separated by tabs. The first
column always represents the time, as a percentage of the range of the
query. Thus the first entry will have a value close to 0.0, while the
last will be close to 100.0. If the -orgformat option is used, the
time is displayed as number of seconds since the Unix epoch. The
information in the remainder of the columns depends on the query type.

Note that logging of pool history must be enabled in the
condor_collector daemon, otherwise no information will be available.

One query type is required. If multiple queries are specified, only the
last one takes effect.

Time Range Options

	-lastday
	Get information for the last day.

	-lastweek
	Get information for the last week.

	-lastmonth
	Get information for the last month.

	-lasthours n
	Get information for the n last hours.

	-from m d y
	Get information for the time since the beginning of the specified
date. A start date prior to the Unix epoch causes condor_stats to
print its usage information and quit.

	-to m d y
	Get information for the time up to the beginning of the specified
date, instead of up to now. A finish date in the future causes
condor_stats to print its usage information and quit.

Query Type Arguments

The query types that do not list all of a category require further
specification as given by an argument.

	-resourcequery hostname
	A single resource query provides information about a single machine.
The information also includes the keyboard idle time (in seconds),
the load average, and the machine state.

	-resourcelist
	A query of a single list of resources to provide a list of all the
machines for which the condor_collector daemon has historic
information within the query’s time range.

	-resgroupquery arch/opsys | “Total”
	A query of a specified group to provide information about a group of
machines based on their platform (operating system and
architecture). The architecture is defined by the machine ClassAd
Arch, and the operating system is defined by the machine ClassAd
OpSys. The string “Total” ask for information about all
platforms.

The columns displayed are the number of machines that are
unclaimed, matched, claimed, preempting, owner, shutdown, delete,
backfill, and drained state.

	-resgrouplist
	Queries for a list of all the group names for which the
condor_collector has historic information within the query’s time
range.

	-userquery email_address/submit_machine
	Query for a specific submitter on a specific machine. The
information displayed includes the number of running jobs and the
number of idle jobs. An example argument appears as

-userquery jondoe@sample.com/onemachine.sample.com

	-userlist
	Queries for the list of all submitters for which the
condor_collector daemon has historic information within the
query’s time range.

	-usergroupquery email_address | “Total”
	Query for all jobs submitted by the specific user, regardless of the
machine they were submitted from, or all jobs. The information
displayed includes the number of running jobs and the number of idle
jobs.

	-usergrouplist
	Queries for the list of all users for which the condor_collector
has historic information within the query’s time range.

Options

	-f filename
	Write the information to a file instead of the standard output.

	-pool centralmanagerhostname[:portnumber]
	Contact the specified central manager instead of the local one.

	-orgformat
	Display the information in an alternate format for timing, which
presents timestamps since the Unix epoch. This argument only affects
the display of resoursequery, resgroupquery, userquery,
and usergroupquery.

Exit Status

condor_stats will exit with a status value of 0 (zero) upon success,
and it will exit with the value 1 (one) upon failure.

 condor_status

condor_status

Display status of the HTCondor pool

Synopsis

condor_status [-debug] [help options] [query options]
[display options] [custom options] [name …]

Description

condor_status is a versatile tool that may be used to monitor and
query the HTCondor pool. The condor_status tool can be used to query
resource information, submitter information, and daemon master
information. The specific query sent and
the resulting information display is controlled by the query options
supplied. Queries and display formats can also be customized.

The options that may be supplied to condor_status belong to five
groups:

	Help options provide information about the condor_status tool.

	Query options control the content and presentation of status
information.

	Display options control the display of the queried information.

	Custom options allow the user to customize query and display
information.

	Host options specify specific machines to be queried

At any time, only one help option, one query option and one display
option may be specified. Any number of custom options and host
options may be specified.

Options

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-help
	(Help option) Display usage information.

	-diagnose
	(Help option) Print out ClassAd query without performing the query.

	-absent
	(Query option) Query for and display only absent resources.

	-ads filename
	(Query option) Read the set of ClassAds in the file specified by
filename, instead of querying the condor_collector.

	-annex name
	(Query option) Query for and display only resources in the named
annex.

	-any
	(Query option) Query all ClassAds and display their type, target
type, and name.

	-avail
	(Query option) Query condor_startd ClassAds and identify
resources which are available.

	-claimed
	(Query option) Query condor_startd ClassAds and print information
about claimed resources.

	-cod
	(Query option) Display only machine ClassAds that have COD claims.
Information displayed includes the claim ID, the owner of the claim,
and the state of the COD claim.

	-collector
	(Query option) Query condor_collector ClassAds and display
attributes.

	-defrag
	(Query option) Query condor_defrag ClassAds.

	-direct hostname
	(Query option) Go directly to the given host name to get the
ClassAds to display. By default, returns the condor_startd
ClassAd. If -schedd is also given, return the condor_schedd
ClassAd on that host.

	-grid
	(Query option) Query grid resource ClassAds.

	-java
	(Query option) Display only Java-capable resources.

	-license
	(Query option) Display license attributes.

	-master
	(Query option) Query condor_master ClassAds and display daemon
master attributes.

	-negotiator
	(Query option) Query condor_negotiator ClassAds and display
attributes.

	-pool centralmanagerhostname[:portnumber]
	(Query option) Query the specified central manager using an optional
port number. condor_status queries the machine specified by the
configuration variable COLLECTOR_HOST by default.

	-run
	(Query option) Display information about machines currently running
jobs.

	-schedd
	(Query option) Query condor_schedd ClassAds and display
attributes.

	-server
	(Query option) Query condor_startd ClassAds and display resource
attributes.

	-startd
	(Query option) Query condor_startd ClassAds.

	-state
	(Query option) Query condor_startd ClassAds and display resource
state information.

	-statistics WhichStatistics
	(Query option) Can only be used if the -direct option has been
specified. Identifies which Statistics attributes to include in the
ClassAd. WhichStatistics is specified using the same syntax as
defined for STATISTICS_TO_PUBLISH. A definition is in the
HTCondor Administrator’s manual section on configuration
(HTCondor-wide Configuration File Entries).

	-storage
	(Query option) Display attributes of machines with network storage
resources.

	-submitters
	(Query option) Query ClassAds sent by submitters and display
important submitter attributes.

	-subsystem type
	(Query option) If type is one of collector, negotiator,
master, schedd, or startd, then behavior is the same as the
query option without the -subsystem option. For example,
-subsystem collector is the same as -collector. A value
of type of CkptServer, Machine, DaemonMaster, or Scheduler
targets that type of ClassAd.

	-vm
	(Query option) Query condor_startd ClassAds, and display only
VM-enabled machines. Information displayed includes the machine
name, the virtual machine software version, the state of machine,
the virtual machine memory, and the type of networking.

	-offline
	(Query option) Query condor_startd ClassAds, and display, for
each machine with at least one offline universe, which universes are
offline for it.

	-attributes Attr1[,Attr2 …]
	(Display option) Explicitly list the attributes in a comma separated
list which should be displayed when using the -xml, -json or
-long options. Limiting the number of attributes increases the
efficiency of the query.

	-expert
	(Display option) Display shortened error messages.

	-long
	(Display option) Display entire ClassAds. Implies that totals will
not be displayed.

	-limit num
	(Query option) At most num results should be displayed.

	-sort expr
	(Display option) Change the display order to be based on ascending
values of an evaluated expression given by expr. Evaluated
expressions of a string type are in a case insensitive alphabetical
order. If multiple -sort arguments appear on the command line,
the primary sort will be on the leftmost one within the command
line, and it is numbered 0. A secondary sort will be based on the
second expression, and it is numbered 1. For informational or
debugging purposes, the ClassAd output to be displayed will appear
as if the ClassAd had two additional attributes.
CondorStatusSortKeyExpr<N> is the expression, where <N> is
replaced by the number of the sort. CondorStatusSortKey<N> gives
the result of evaluating the sort expression that is numbered
<N>.

	-total
	(Display option) Display totals only.

	-xml
	(Display option) Display entire ClassAds, in XML format. The XML
format is fully defined in the reference manual, obtained from the
ClassAds web page, with a link at
http://htcondor.org/classad/classad.html.

	-json
	(Display option) Display entire ClassAds in JSON format.

	-constraint const
	(Custom option) Add constraint expression.

	-compact
	(Custom option) Show compact form, with a single line per machine
using information from the partitionable slot. Some information will
be incorrect if the machine has static slots.

	-format fmt attr
	(Custom option) Display attribute or expression attr in format
fmt. To display the attribute or expression the format must
contain a single printf(3)-style conversion specifier.
Attributes must be from the resource ClassAd. Expressions are
ClassAd expressions and may refer to attributes in the resource
ClassAd. If the attribute is not present in a given ClassAd and
cannot be parsed as an expression, then the format option will be
silently skipped. %r prints the unevaluated, or raw values. The
conversion specifier must match the type of the attribute or
expression. %s is suitable for strings such as Name, %d for
integers such as LastHeardFrom, and %f for floating point
numbers such as LoadAvg. %v identifies the type of the
attribute, and then prints the value in an appropriate format. %V
identifies the type of the attribute, and then prints the value in
an appropriate format as it would appear in the -long format. As
an example, strings used with %V will have quote marks. An incorrect
format will result in undefined behavior. Do not use more than one
conversion specifier in a given format. More than one conversion
specifier will result in undefined behavior. To output multiple
attributes repeat the -format option once for each desired
attribute. Like printf(3)-style formats, one may include other
text that will be reproduced directly. A format without any
conversion specifiers may be specified, but an attribute is still
required. Include a backslash followed by an ‘n’ to specify a line
break.

	-autoformat[:lhVr,tng] attr1 [attr2 …] or -af[:lhVr,tng] attr1 [attr2 …]
	(Output option) Display attribute(s) or expression(s) formatted in a
default way according to attribute types. This option takes an
arbitrary number of attribute names as arguments, and prints out
their values, with a space between each value and a newline
character after the last value. It is like the -format option
without format strings. This output option does not work in
conjunction with the -run option.

It is assumed that no attribute names begin with a dash character,
so that the next word that begins with dash is the start of the next
option. The autoformat option may be followed by a colon
character and formatting qualifiers to deviate the output formatting
from the default:

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are
quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default
space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces
before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The
l and h characters may not be used together.

	-print-format file
	Read output formatting information from the given custom print format file.
see Print Formats for more information about custom print format files.

	-target filename
	(Custom option) Where evaluation requires a target ClassAd to
evaluate against, file filename contains the target ClassAd.

	-merge filename
	(Custom option) Ads will be read from filename, which may be -
to indicate standard in, and compared to the ads selected by the
query specified by the remainder of the command line. Ads will be
considered the same if their sort keys match; sort keys may be
specified with [-sort <key>]. This option will cause up to
three tables to print, in the following order, depending on where a
given ad appeared: first, the ads which appeared in the query but
not in filename; second, the ads which appeared in both the query
and in filename; third, the ads which appeared in filename but
not in the query.

By default, banners will label each table. If -xml is also
given, the same banners will separate three valid XML documents, one
for each table. If -json is also given, a single JSON object
will be produced, with the usual JSON output for each table labeled
as an element in the object.

The -annex option changes this default so that the banners are
not printed and the tables are formatted differently. In this case,
the ads in filename are expected to have different contents from
the ads in the query, so many others will behave strangely.

General Remarks

	The default output from condor_status is formatted to be human
readable, not script readable. In an effort to make the output fit
within 80 characters, values in some fields might be truncated.
Furthermore, the HTCondor Project can (and does) change the
formatting of this default output as we see fit. Therefore, any
script that is attempting to parse data from condor_status is
strongly encouraged to use the -format option (described above).

	The information obtained from condor_startd and condor_schedd
daemons may sometimes appear to be inconsistent. This is normal since
condor_startd and condor_schedd daemons update the HTCondor
manager at different rates, and since there is a delay as information
propagates through the network and the system.

	Note that the ActivityTime in the Idle state is not the
amount of time that the machine has been idle. See the section on
condor_startd states in the Administrator’s Manual for more
information
(Starting Up, Shutting Down and Reconfiguring the System).

	When using condor_status on a pool with SMP machines, you can
either provide the host name, in which case you will get back
information about all slots that are represented on that host, or you
can list specific slots by name. See the examples below for details.

	If you specify host names, without domains, HTCondor will
automatically try to resolve those host names into fully qualified
host names for you. This also works when specifying specific nodes of
an SMP machine. In this case, everything after the “@” sign is
treated as a host name and that is what is resolved.

	You can use the -direct option in conjunction with almost any
other set of options. However, at this time, not all daemons will
respond to direct queries for its ad(s). The condor_startd will
respond to requests for Startd ads. The condor_schedd will respond
to requests for Schedd and Submitter ads.
So the only options currently not supported with -direct are
-master and -collector. Most other options use startd ads for
their information, so they work seamlessly with -direct. The only
other restriction on -direct is that you may only use 1
-direct option at a time. If you want to query information
directly from multiple hosts, you must run condor_status multiple
times.

	Unless you use the local host name with -direct, condor_status
will still have to contact a collector to find the address where the
specified daemon is listening. So, using a -pool option in
conjunction with -direct just tells condor_status which
collector to query to find the address of the daemon you want. The
information actually displayed will still be retrieved directly from
the daemon you specified as the argument to -direct. Do not
use -direct to query the Collector ad, just use -pool and
-collector.

Examples

Example 1 To view information from all nodes of an SMP machine, use only
the host name. For example, if you had a 4-CPU machine, named
vulture.cs.wisc.edu, you might see

$ condor_status vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@vulture.cs.w LINUX INTEL Claimed Busy 1.050 512 0+01:47:42
slot2@vulture.cs.w LINUX INTEL Claimed Busy 1.000 512 0+01:48:19
slot3@vulture.cs.w LINUX INTEL Unclaimed Idle 0.070 512 1+11:05:32
slot4@vulture.cs.w LINUX INTEL Unclaimed Idle 0.000 512 1+11:05:34

 Total Owner Claimed Unclaimed Matched Preempting Backfill

 INTEL/LINUX 4 0 2 2 0 0 0

 Total 4 0 2 2 0 0 0

Example 2 To view information from a specific nodes of an SMP machine,
specify the node directly. You do this by providing the name of the
slot. This has the form slot#@hostname. For example:

$ condor_status slot3@vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot3@vulture.cs.w LINUX INTEL Unclaimed Idle 0.070 512 1+11:10:32

 Total Owner Claimed Unclaimed Matched Preempting Backfill

 INTEL/LINUX 1 0 0 1 0 0 0

 Total 1 0 0 1 0 0 0

Example 3 The -compact option gives a one line summary of each machine using information
from the partitionable slot. If the normal output is this

$ condor_status vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@vulture.cs.w LINUX X86_64 Unclaimed Idle 0.000 679 1+03:18:58
slot1_1@vulture.cs LINUX X86_64 Claimed Busy 1.160 1152 0+03:21:02
slot1_2@vulture.cs LINUX X86_64 Claimed Busy 1.150 2560 0+10:20:50
slot1_3@vulture.cs LINUX X86_64 Claimed Busy 1.160 2816 0+01:32:08
slot1_4@vulture.cs LINUX X86_64 Claimed Busy 0.000 5081 0+00:00:00

 Machines Owner Claimed Unclaimed Matched Preempting Drain

 X86_64/LINUX 5 0 4 1 0 0 0

 Total 5 0 4 1 0 0 0

For the same machine in the same state the -compact option will show this

$ condor_status -compact vulture

Machine Platform Slots Cpus Gpus TotalGb FreCpu FreeGb CpuLoad ST Jobs/Min MaxSlotGb

vulture.cs.wisc.ed x64/CentOS7 4 8 2 12 0 .66 .98 Cb .25 4.96

 Machines Owner Claimed Unclaimed Matched Preempting Drain

 X86_64/CentOS7 4 0 4 1 0 0 0

 Total 4 0 4 1 0 0 0

The Slots column shows that 4 slots have been carved out of the partitionable slot, leaving 0 cpus
and .66 Gigabytes of memory free. Static slots will not be counted in the Slots column.

The ST column shows the consensus state of the dynamic slots using a two character code. The first character
is the State, the second is the activity. If there is not a consensus for either the state or activity,
then # will be shown. The example shows Cb for Claimed/Busy since all of the dynamic slots are in that state.
If one of the dynamic slots were Idle, then C# would be shown.

The Jobs/Min shows the recent job start rate for the machine. A large number here is normal for a
machine that just came online, but if this number stays above 1 for more than a minute, that can be
an indication of a machine is acting as a black hole for jobs, starting them quickly and then failing
them just as quickly.

The MaxSlotGb column shows the memory allocated to the largest slot in Gigabytes, If the memory allocated
for the largest slot cannot be determined, * will be displayed.
Static slots are not counted in the MaxSlotGb column.

Constraint option examples

The Unix command to use the constraint option to see all machines with
the OpSys of "LINUX":

$ condor_status -constraint OpSys==\"LINUX\"

Note that quotation marks must be escaped with the backslash characters
for most shells.

The Windows command to do the same thing:

> condor_status -constraint " OpSys==""LINUX"" "

Note that quotation marks are used to delimit the single argument which
is the expression, and the quotation marks that identify the string must
be escaped by using a set of two double quote marks without any
intervening spaces.

To see all machines that are currently in the Idle state, the Unix
command is

$ condor_status -constraint State==\"Idle\"

To see all machines that are bench marked to have a MIPS rating of more
than 750, the Unix command is

$ condor_status -constraint 'Mips>750'

-cod option example

The -cod option displays the status of COD claims within a given
HTCondor pool.

Name ID ClaimState TimeInState RemoteUser JobId Keyword
astro.cs.wi COD1 Idle 0+00:00:04 wright
chopin.cs.w COD1 Running 0+00:02:05 wright 3.0 fractgen
chopin.cs.w COD2 Suspended 0+00:10:21 wright 4.0 fractgen

 Total Idle Running Suspended Vacating Killing
 INTEL/LINUX 3 1 1 1 0 0
 Total 3 1 1 1 0 0

-format option example To display the name and memory attributes of each
job ClassAd in a format that is easily parsable by other tools:

$ condor_status -format "%s " Name -format "%d\n" Memory

To do the same with the autoformat option, run

$ condor_status -autoformat Name Memory

Exit Status

condor_status will exit with a status value of 0 (zero) upon success,
and it will exit with the value 1 (one) upon failure.

 condor_store_cred

condor_store_cred

securely stash a credential

Synopsis

condor_store_cred -h

condor_store_cred action [options]

Description

condor_store_cred stores credentials in a secure manner. There are
three actions, each of which can optionally be followed by a hyphen and
one of three types.

The actions are:

	add[-type]
	Add credential to secure storage

	delete[-type]
	Remove credential from secure storage

	query[-type]
	Check if a credential has been stored

The types are:

	-pwd
	Credential is a password (default)

	-krb
	Credential is a Kerberos/AFS token

	-oauth
	Credential is Scitoken or Oauth2 token

Credentials are stashed in a persistent manner; they are maintained
across system reboots. When adding a credential, if there is already a
credential stashed, the old credential will be overwritten by the new
one.

There are two separate uses of the password actions of
condor_store_cred:

	A shared pool password is needed in order to implement the
PASSWORD authentication method. condor_store_cred using the
-c option deals with the password for the implied
condor_pool@$(UID_DOMAIN) user name.

On a Unix machine, condor_store_cred add[-pwd] with the -f option
is used to set the pool password, as needed when used with the
PASSWORD authentication method. The pool password is placed in a
file specified by the SEC_PASSWORD_FILE configuration variable.

	In order to submit a job from a Windows platform machine, or to
execute a job on a Windows platform machine utilizing the
run_as_owner
functionality, condor_store_cred add[-pwd] stores the password of a
user/domain pair securely in the Windows registry. Using this stored
password, HTCondor may act on behalf of the submitting user to access
files, such as writing output or log files. HTCondor is able to run
jobs with the user ID of the submitting user. The password is stored
in the same manner as the system does when setting or changing
account passwords.

Unless the -p argument is used with the add or add-pwd action, the
user is prompted to enter the password twice for confirmation, and
characters are not echoed.

The add-krb and add-oauth actions must be used with the -i argument
to specify a filename to read from.

The -oauth actions require a -s service name argument. The -S
and -A options may be used with add-oauth to add scopes and/or
audience to the credentials or with query-oauth to make sure that
the scopes or audience match the previously stored credentials. If
either -S or -A are used then the credentials must be in JSON
format.

Options

	-h
	Displays a brief summary of command options.

	-c
	[-pwd] actions refer to the pool password, as used in the PASSWORD
authentication method.

	-f filename
	For Unix machines only, generates a pool password file named
filename that may be used with the PASSWORD authentication
method.

	-i filename
	Read credential from filename. If filename is -, read from
stdin. Required for add-krb and add-oauth.

	-s service
	The Oauth2 service. Required for all -oauth actions.

	-H handle
	Specify a handle for the given OAuth2 service.

	-S scopes
	Optional comma-separated list of scopes to request for add-oauth
action. If used with the query-oauth action, makes sure that
the same scopes were requested in the original credential.
Requires credentials to be in JSON format.

	-A audience
	Optional audience to request for add-oauth
action. If used with the query-oauth action, makes sure that
the same audience was requested in the original credential.
Requires credentials to be in JSON format.

	-n machinename
	Apply the command on the given machine.

	-p password
	Stores password, rather than prompting the user to enter a
password.

	-u username
	Specify the user name.

Exit Status

condor_store_cred will exit with a status value of 0 (zero) upon
success. If the query-oauth action finds a credential but the
scopes or audience don’t match, condor_store_cred will exit
with a status value 2 (two). Otherwise, it will exit with the value 1
(one) upon failure.

 condor_submit

condor_submit

Queue jobs for execution under HTCondor

Synopsis

condor_submit [-terse] [-verbose] [-unused]
[-file submit_file] [-name schedd_name]
[-remote schedd_name] [-addr <ip:port>]
[-pool pool_name] [-disable]
[-password passphrase] [-debug] [-append command
…][-batch-name batch_name] [-spool]
[-dump filename] [-interactive] [-factory]
[-allow-crlf-script] [-dry-run]
[-maxjobs number-of-jobs] [-single-cluster]
[<submit-variable>=<value>] [submit
description file] [-queue queue_arguments]

Description

condor_submit is the program for submitting jobs for execution under
HTCondor. condor_submit requires one or more submit description
commands to direct the queuing of jobs. These commands may come from a
file, standard input, the command line, or from some combination of
these. One submit description may contain specifications for the queuing
of many HTCondor jobs at once. A single invocation of condor_submit
may cause one or more clusters. A cluster is a set of jobs specified in
the submit description between
queue commands for which the
executable is not changed. It is advantageous to submit multiple jobs as
a single cluster because the schedd uses much less memory to hold the jobs.

Multiple clusters may be specified within a single submit description.
Each cluster must specify a single executable.

The job ClassAd attribute ClusterId identifies a cluster.

The submit description file argument is the path and file name of the
submit description file. If this optional argument is the dash character
(-), then the commands are taken from standard input. If - is
specified for the submit description file, -verbose is implied;
this can be overridden by specifying -terse.

If no submit description file argument is given, and no -queue
argument is given, commands are taken automatically from standard input.

Note that submission of jobs from a Windows machine requires a stashed
password to allow HTCondor to impersonate the user submitting the job.
To stash a password, use the condor_store_cred command. See the
manual page for details.

For lengthy lines within the submit description file, the backslash (\)
is a line continuation character. Placing the backslash at the end of a
line causes the current line’s command to be continued with the next
line of the file. Submit description files may contain comments. A
comment is any line beginning with a pound character (#).

Options

	-terse
	Terse output - display JobId ranges only.

	-verbose
	Verbose output - display the created job ClassAd

	-unused
	As a default, causes no warnings to be issued about user-defined
macros not being used within the submit description file. The
meaning reverses (toggles) when the configuration variable
WARN_ON_UNUSED_SUBMIT_FILE_MACROS
 is set to the non
default value of False. Printing the warnings can help identify
spelling errors of submit description file commands. The warnings
are sent to stderr.

	-file submit_file
	Use submit_file as the submit description file. This is
equivalent to providing submit_file as an argument without the
preceding -file.

	-name schedd_name
	Submit to the specified condor_schedd. Use this option to submit
to a condor_schedd other than the default local one.
schedd_name is the value of the Name ClassAd attribute on the
machine where the condor_schedd daemon runs.

	-remote schedd_name
	Submit to the specified condor_schedd, spooling all required
input files over the network connection. schedd_name is the value
of the Name ClassAd attribute on the machine where the
condor_schedd daemon runs. This option is equivalent to using
both -name and -spool.

	-addr <ip:port>
	Submit to the condor_schedd at the IP address and port given by
the sinful string argument <ip:port>.

	-pool pool_name
	Look in the specified pool for the condor_schedd to submit to.
This option is used with -name or -remote.

	-disable
	Disable file permission checks when submitting a job for read
permissions on all input files, such as those defined by commands
input and
transfer_input_files ,
as well as write permission to output files, such as a log file
defined by log and output
files defined with
output or
transfer_output_files .

	-debug
	Cause debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-append command
	Augment the commands in the submit description file with the given
command. This command will be considered to immediately precede
the queue command within the submit description file, and come
after all other previous commands. If the command specifies a
queue command, as in the example

condor_submit mysubmitfile -append "queue input in A, B, C"

then the entire -append command line option and its arguments
are converted to

condor_submit mysubmitfile -queue input in A, B, C

The submit description file is not modified. Multiple commands are
specified by using the -append option multiple times. Each new
command is given in a separate -append option. Commands with
spaces in them will need to be enclosed in double quote marks.

	-batch-name batch_name
	Set the batch name for this submit. The batch name is displayed by
condor_q -batch. It is intended for use by users to give
meaningful names to their jobs and to influence how condor_q
groups jobs for display. Use of this argument takes precedence over
a batch name specified in the submit description file itself.

	-spool
	Spool all required input files, job event log, and proxy over the
connection to the condor_schedd. After submission, modify local
copies of the files without affecting your jobs. Any output files
for completed jobs need to be retrieved with
condor_transfer_data.

	-dump filename
	Sends all ClassAds to the specified file, instead of to the
condor_schedd.

	-interactive
	Indicates that the user wants to run an interactive shell on an
execute machine in the pool. This is equivalent to creating a submit
description file of a vanilla universe sleep job, and then running
condor_ssh_to_job by hand. Without any additional arguments,
condor_submit with the -interactive flag creates a dummy vanilla
universe job that sleeps, submits it to the local scheduler, waits
for the job to run, and then launches condor_ssh_to_job to run
a shell. If the user would like to run the shell on a machine that
matches a particular
requirements
expression, the submit description file is specified, and it will
contain the expression. Note that all policy expressions specified
in the submit description file are honored, but any
executable or
universe commands are
overwritten to be sleep and vanilla. The job ClassAd attribute
InteractiveJob is set to True to identify interactive jobs
for condor_startd policy usage.

	-factory
	Sends all of the jobs as a late materialization job factory. A job factory
consists of a single cluster classad and a digest containing the submit
commands necessary to describe the differences between jobs. If the Queue
statement has itemdata, then the itemdata will be sent. Using this option
is equivalent to using the max_materialize
 submit command.

	-allow-crlf-script
	Changes the check for an invalid line ending on the executable
script’s #! line from an ERROR to a WARNING. The #! line
will be ignored by Windows, so it won’t matter if it is invalid; but
Unix and Linux will not run a script that has a Windows/DOS line
ending on the first line of the script. So condor_submit will not
allow such a script to be submitted as the job’s executable unless
this option is supplied.

	-dry-run file
	Parse the submit description file, sending the resulting job ClassAd
to the file given by file, but do not submit the job(s). This
permits observation of the job specification, and it facilitates
debugging the submit description file contents. If file is -,
the output is written to stdout.

	-maxjobs number-of-jobs
	If the total number of jobs specified by the submit description file
is more than the integer value given by number-of-jobs, then no
jobs are submitted for execution and an error message is generated.
A 0 or negative value for the number-of-jobs causes no limit to be
imposed.

	-single-cluster
	If the jobs specified by the submit description file causes more
than a single cluster value to be assigned, then no jobs are
submitted for execution and an error message is generated.

	<submit-variable>=<value>
	Defines a submit command or submit variable with a value, and parses
it as if it was placed at the beginning of the submit description
file. The submit description file is not changed. To correctly parse
the condor_submit command line, this option must be specified
without white space characters before and after the equals sign
(=), or the entire option must be surrounded by double quote
marks.

	-queue queue_arguments
	A command line specification of how many jobs to queue, which is
only permitted if the submit description file does not have a
queue command. The queue_arguments are the same as may be
within a submit description file. The parsing of the
queue_arguments finishes at the end of the line or when a dash
character (-) is encountered. Therefore, its best placement
within the command line will be at the end of the command line.

On a Unix command line, the shell expands file globs before
parsing occurs.

Submit Description File Commands

Note: more information on submitting HTCondor jobs can be found here:
Submitting a Job.

As of version 8.5.6, the condor_submit language supports multi-line
values in commands. The syntax is the same as the configuration language
(see more details here:
Multi-Line Values).

Each submit description file describes one or more clusters of jobs to
be placed in the HTCondor execution pool. All jobs in a cluster must
share the same executable, but they may have different input and output
files, and different program arguments. The submit description file is
generally the last command-line argument to condor_submit. If the
submit description file argument is omitted, condor_submit will read
the submit description from standard input.

The submit description file must contain at least one executable
command and at least one queue command. All of the other commands have
default actions.

Note that a submit file that contains more than one executable command
will produce multiple clusters when submitted. This is not generally
recommended, and is not allowed for submit files that are run as DAG node
jobs by condor_dagman.

The commands which can appear in the submit description file are
numerous. They are listed here in alphabetical order by category.

BASIC COMMANDS

	arguments = <argument_list>
	List of arguments to be supplied to the executable as part of the
command line.

In the java universe, the first argument must be the name of the
class containing main.

There are two permissible formats for specifying arguments,
identified as the old syntax and the new syntax. The old syntax
supports white space characters within arguments only in special
circumstances; when used, the command line arguments are represented
in the job ClassAd attribute Args. The new syntax supports
uniform quoting of white space characters within arguments; when
used, the command line arguments are represented in the job ClassAd
attribute Arguments.

Old Syntax

In the old syntax, individual command line arguments are delimited
(separated) by space characters. To allow a double quote mark in an
argument, it is escaped with a backslash; that is, the two character
sequence \” becomes a single double quote mark within an argument.

Further interpretation of the argument string differs depending on
the operating system. On Windows, the entire argument string is
passed verbatim (other than the backslash in front of double quote
marks) to the Windows application. Most Windows applications will
allow spaces within an argument value by surrounding the argument
with double quotes marks. In all other cases, there is no further
interpretation of the arguments.

Example:

arguments = one \"two\" 'three'

Produces in Unix vanilla universe:

argument 1: one
argument 2: "two"
argument 3: 'three'

New Syntax

Here are the rules for using the new syntax:

	The entire string representing the command line arguments is
surrounded by double quote marks. This permits the white space
characters of spaces and tabs to potentially be embedded within a
single argument. Putting the double quote mark within the
arguments is accomplished by escaping it with another double
quote mark.

	The white space characters of spaces or tabs delimit arguments.

	To embed white space characters of spaces or tabs within a single
argument, surround the entire argument with single quote marks.

	To insert a literal single quote mark, escape it within an
argument already delimited by single quote marks by adding
another single quote mark.

Example:

arguments = "3 simple arguments"

Produces:

argument 1: 3
argument 2: simple
argument 3: arguments

Another example:

arguments = "one 'two with spaces' 3"

Produces:

argument 1: one
argument 2: two with spaces
argument 3: 3

And yet another example:

arguments = "one ""two"" 'spacey ''quoted'' argument'"

Produces:

argument 1: one
argument 2: "two"
argument 3: spacey 'quoted' argument

Notice that in the new syntax, the backslash has no special meaning.
This is for the convenience of Windows users.

	environment = <parameter_list>
	List of environment variables.

There are two different formats for specifying the environment
variables: the old format and the new format. The old format is
retained for backward-compatibility. It suffers from a
platform-dependent syntax and the inability to insert some special
characters into the environment.

The new syntax for specifying environment values:

	Put double quote marks around the entire argument string. This
distinguishes the new syntax from the old. The old syntax does
not have double quote marks around it. Any literal double quote
marks within the string must be escaped by repeating the double
quote mark.

	Each environment entry has the form

<name>=<value>

	Use white space (space or tab characters) to separate environment
entries.

	To put any white space in an environment entry, surround the
space and as much of the surrounding entry as desired with single
quote marks.

	To insert a literal single quote mark, repeat the single quote
mark anywhere inside of a section surrounded by single quote
marks.

Example:

environment = "one=1 two=""2"" three='spacey ''quoted'' value'"

Produces the following environment entries:

one=1
two="2"
three=spacey 'quoted' value

Under the old syntax, there are no double quote marks surrounding
the environment specification. Each environment entry remains of the
form

<name>=<value>

Under Unix, list multiple environment entries by separating them
with a semicolon (;). Under Windows, separate multiple entries with
a vertical bar (|). There is no way to insert a literal semicolon
under Unix or a literal vertical bar under Windows. Note that spaces
are accepted, but rarely desired, characters within parameter names
and values, because they are treated as literal characters, not
separators or ignored white space. Place spaces within the parameter
list only if required.

A Unix example:

environment = one=1;two=2;three="quotes have no 'special' meaning"

This produces the following:

one=1
two=2
three="quotes have no 'special' meaning"

If the environment is set with the
environment
command and getenv is
also set, values specified with environment override
values in the submitter’s environment (regardless of the order of
the environment and getenv commands).

	error = <pathname>
	A path and file name used by HTCondor to capture any error messages
the program would normally write to the screen (that is, this file
becomes stderr). A path is given with respect to the file system
of the machine on which the job is submitted. The file is written
(by the job) in the remote scratch directory of the machine where
the job is executed. When the job exits, the resulting file is
transferred back to the machine where the job was submitted, and the
path is utilized for file placement.
If you specify a relative path, the final path will be relative to the
job’s initial working directory, and HTCondor will create directories
as necessary to transfer the file.
If not specified, the default
value of /dev/null is used for submission to a Unix machine. If
not specified, error messages are ignored for submission to a
Windows machine. More than one job should not use the same error
file, since this will cause one job to overwrite the errors of
another. If HTCondor detects that the error and output files for a
job are the same, it will run the job such that the output and error
data is merged.

	executable = <pathname>
	An optional path and a required file name of the executable file for
this job cluster. Only one
executable command
within a submit description file is guaranteed to work properly.
More than one often works.

If no path or a relative path is used, then the executable file is
presumed to be relative to the current working directory of the user
as the condor_submit command is issued.

	batch_name = <batch_name>
	Set the batch name for this submit. The batch name is displayed by
condor_q -batch. It is intended for use by users to give
meaningful names to their jobs and to influence how condor_q
groups jobs for display. This value in a submit file can be
overridden by specifying the -batch-name argument on the
condor_submit command line.

	getenv = <<matchlist> | True | False>
	If getenv is set to
 True,
then condor_submit will copy all of the user’s current shell
environment variables at the time of job submission into the job
ClassAd. The job will therefore execute with the same set of
environment variables that the user had at submit time. Defaults to
False. A wholesale import of the user’s environment is very likely to lead
to problems executing the job on a remote machine unless there is a shared
file system for users’ home directories between the access point and execute machine.
So rather than setting getenv to True, it is much better to set it to a list
of environment variables to import.

Matchlist is a comma, semicolon or space separated list of environment variable names and name patterns that
match or reject names.
Matchlist members are matched case-insensitively to each name
in the environment and those that match are imported. Matchlist members can contain * as wildcard
character which matches anything at that position. Members can have two * characters if one of them
is at the end. Members can be prefixed with !
to force a matching environment variable to not be imported. The order of members in the Matchlist
has no effect on the result. getenv = true is equivalent to getenv = *

Prior to HTCondor 8.9.7 getenv allows only True or False as values.

Examples:

import everything except PATH and INCLUDE (also path, include and other case-variants)
getenv = !PATH, !INCLUDE

import everything with CUDA in the name
getenv = *cuda*

Import every environment variable that starts with P or Q, except PATH
getenv = !path, P*, Q*

If the environment is set with the environment command and
getenv is also set, values specified with
environment override values in the submitter’s environment
(regardless of the order of the environment and getenv
commands).

	input = <pathname>
	HTCondor assumes that its jobs are long-running, and that the user
will not wait at the terminal for their completion. Because of this,
the standard files which normally access the terminal, (stdin,
stdout, and stderr), must refer to files. Thus, the file
name specified with
input should contain any
keyboard input the program requires (that is, this file becomes
stdin). A path is given with respect to the file system of the
machine on which the job is submitted. The file is transferred
before execution to the remote scratch directory of the machine
where the job is executed. If not specified, the default value of
/dev/null is used for submission to a Unix machine. If not
specified, input is ignored for submission to a Windows machine.

Note that this command does not refer to the command-line arguments
of the program. The command-line arguments are specified by the
arguments command.

	log = <pathname>
	Use log to specify a file
name where HTCondor will write a log file of what is happening with
this job cluster, called a job event log. For example, HTCondor will
place a log entry into this file when and where the job begins
running, when it transfers files, if the job is evicted,
and when the job completes. Most users find
specifying a log file to be handy; its use is recommended. If no
log entry is specified, HTCondor does not create a log for this
cluster. If a relative path is specified, it is relative to the
current working directory as the job is submitted or the directory
specified by submit command initialdir on the access point.

	notification = <Always | Complete | Error | Never>
	Owners of HTCondor jobs are notified by e-mail when certain events
occur. If defined by Always or Complete,
the owner will be notified when the job
terminates. If defined by Error, the owner will only be notified
if the job terminates abnormally, (as defined by
JobSuccessExitCode, if defined) or if the job is placed on hold
because of a failure, and not by user request. If defined by Never
(the default), the owner will not receive e-mail, regardless to what
happens to the job. The HTCondor User’s manual documents statistics
included in the e-mail.

	notify_user = <email-address>
	Used to specify the e-mail address to use when HTCondor sends e-mail
about a job. If not specified, HTCondor defaults to using the e-mail
address defined by

job-owner@UID_DOMAIN

where the configuration variable UID_DOMAIN
 is specified by the HTCondor site
administrator. If UID_DOMAIN has not
been specified, HTCondor sends the e-mail to:

job-owner@submit-machine-name

	output = <pathname>
	The output file
captures any information the program would ordinarily write to the
screen (that is, this file becomes stdout). A path is given with
respect to the file system of the machine on which the job is
submitted. The file is written (by the job) in the remote scratch
directory of the machine where the job is executed. When the job
exits, the resulting file is transferred back to the machine where
the job was submitted, and the path is utilized for file placement.
If you specify a relative path, the final path will be relative to the
job’s initial working directory, and HTCondor will create directories
as necessary to transfer the file.
If not specified, the default value of /dev/null is used for
submission to a Unix machine. If not specified, output is ignored
for submission to a Windows machine. Multiple jobs should not use
the same output file, since this will cause one job to overwrite the
output of another. If HTCondor detects that the error and output
files for a job are the same, it will run the job such that the
output and error data is merged.

Note that if a program explicitly opens and writes to a file, that
file should not be specified as the
output file.

	priority = <integer>
	An HTCondor job priority can be any integer, with 0 being the
default. Jobs with higher numerical priority will run before jobs
with lower numerical priority. Note that this priority is on a per
user basis. One user with many jobs may use this command to order
his/her own jobs, and this will have no effect on whether or not
these jobs will run ahead of another user’s jobs.

Note that the priority setting in an HTCondor submit file will be
overridden by condor_dagman if the submit file is used for a node
in a DAG, and the priority of the node within the DAG is non-zero
(see Setting Priorities for Nodes
for more details).

	queue [<int expr>]
	Places zero or more copies of the job into the HTCondor queue.

	queue
	[<int expr>] [<varname>] in [slice] <list of
items> Places zero or more copies of the job in the queue based on
items in a <list of items>

	queue
	[<int expr>] [<varname>] matching [files |
dirs] [slice] <list of items with file globbing>]
Places zero or more copies of the job in the queue based on files
that match a <list of items with file globbing>

	queue
	[<int expr>] [<list of varnames>] from [slice]
<file name> | <list of items>] Places zero or more copies of
the job in the queue based on lines from the submit file or from
<file name>

The optional argument <int expr> specifies how many times to
repeat the job submission for a given set of arguments. It may be an
integer or an expression that evaluates to an integer, and it
defaults to 1. All but the first form of this command are various
ways of specifying a list of items. When these forms are used <int
expr> jobs will be queued for each item in the list. The in,
matching and from keyword indicates how the list will be
specified.

	in The list of items is an explicit comma and/or space
separated <list of items>. If the <list of items> begins
with an open paren, and the close paren is not on the same line
as the open, then the list continues until a line that begins
with a close paren is read from the submit file.

	matching Each item in the <list of items with file
globbing> will be matched against the names of files and
directories relative to the current directory, the set of
matching names is the resulting list of items.

	files Only filenames will matched.

	dirs Only directory names will be matched.

	from <file name> | <list of items> Each line from <file
name> or <list of items> is a single item, this allows for
multiple variables to be set for each item. Lines from <file
name> or <list of items> will be split on comma and/or
space until there are values for each of the variables specified
in <list of varnames>. The last variable will contain the
remainder of the line. When the <list of items> form is used,
the list continues until the first line that begins with a close
paren, and lines beginning with pound sign (‘#’) will be skipped.
When using the <file name> form, if the <file name> ends
with |, then it will be executed as a script whatever the script
writes to stdout will be the list of items.

The optional argument <varname> or <list of varnames> is the
name or names of of variables that will be set to the value of the
current item when queuing the job. If no <varname> is specified
the variable ITEM will be used. Leading and trailing whitespace be
trimmed. The optional argument <slice> is a python style slice
selecting only some of the items in the list of items. Negative step
values are not supported.

A submit file may contain more than one
queue statement, and if
desired, any commands may be placed between subsequent
queue commands, such as
new input ,
output ,
error ,
initialdir , or
arguments commands.
This is handy when submitting multiple runs into one cluster with
one submit description file.

	universe = <vanilla | scheduler | local | grid | java | vm | parallel | docker | container>
	Specifies which HTCondor universe to use when running this job. The
HTCondor universe specifies an HTCondor execution environment.

The vanilla universe is the default (except where the
configuration variable DEFAULT_UNIVERSE
 defines it otherwise).

The scheduler universe is for a job that is to run on the
machine where the job is submitted. This universe is intended for a
job that acts as a metascheduler and will not be preempted.

The local universe is for a job that is to run on the machine
where the job is submitted. This universe runs the job immediately
and will not preempt the job.

The grid universe forwards the job to an external job management
system. Further specification of the grid universe is done with
the
grid_resource
command.

The java universe is for programs written to the Java Virtual
Machine.

The vm universe facilitates the execution of a virtual machine.

The parallel universe is for parallel jobs (e.g. MPI) that
require multiple machines in order to run.

The docker universe runs a docker container as an HTCondor job.

The container universe runs a container as an HTCondor job
using a supported container runtime system on the Execution Point.

	max_materialize = <limit>
	Submit jobs as a late materialization factory and instruct the condor_schedd
to keep the given number of jobs materialized. Use this option to reduce the load
on the condor_schedd when submitting a large number of jobs. The limit can be an expression but
it must evaluate to a constant at submit time. A limit less than 1 will be treated
as unlimited. The condor_schedd can be configured to
have a materialization limit as well, the lower of the two limits will be used.
(see Submitting Lots of Jobs for more details).

	max_idle = <limit>
	Submit jobs as a late materialization factory and instruct the condor_schedd
to keep the given number of non-running jobs materialized. Use this option to reduce the load
on the condor_schedd when submitting a large number of jobs. The limit may be an expression but
it must evaluate to a constant at submit time. Jobs in the Held state are
considered to be Idle for this limit. A limit of less than 1 will prevent jobs from being materialized
although the factory will still be submitted to the condor_schedd.
(see Submitting Lots of Jobs for more details).

COMMANDS FOR MATCHMAKING

	rank = <ClassAd Float Expression>
	A ClassAd Floating-Point expression that states how to rank machines
which have already met the requirements expression. Essentially,
rank expresses preference. A higher numeric value equals better
rank. HTCondor will give the job the machine with the highest rank.
For example,

request_memory = max({60, Target.TotalSlotMemory})
rank = Memory

asks HTCondor to find all available machines with more than 60
megabytes of memory and give to the job the machine with the most
amount of memory. The HTCondor User’s Manual contains complete
information on the syntax and available attributes that can be used
in the ClassAd expression.

	request_cpus = <num-cpus>
	A requested number of CPUs (cores). If not specified, the number
requested will be 1. If specified, the expression

&& (RequestCpus <= Target.Cpus)

is appended to the
requirements
expression for the job.

For pools that enable dynamic condor_startd provisioning,
specifies the minimum number of CPUs requested for this job,
resulting in a dynamic slot being created with this many cores.

	request_disk = <quantity>
	The requested amount of disk space in KiB requested for this job. If
not specified, it will be set to the job ClassAd attribute
DiskUsage. The expression

&& (RequestDisk <= Target.Disk)

is appended to the
requirements
expression for the job.

For pools that enable dynamic condor_startd provisioning, a
dynamic slot will be created with at least this much disk space.

Characters may be appended to a numerical value to indicate units.
K or KB indicates KiB, 210 numbers of bytes. M
or MB indicates MiB, 220 numbers of bytes. G or
GB indicates GiB, 230 numbers of bytes. T or TB
indicates TiB, 240 numbers of bytes.

	request_gpus = <num-gpus>
	A requested number of GPUs. If not specified, no GPUs will be requested.
If specified and require_gpus is not also specified, the expression

&& (Target.GPUs >= RequestGPUs)

is appended to the
requirements
expression for the job.

For pools that enable dynamic condor_startd provisioning,
specifies the minimum number of GPUs requested for this job,
resulting in a dynamic slot being created with this many GPUs.

	require_gpus = <constraint-expression>
	A constraint on the properties of GPUs when used with a non-zero request_gpus value.
If not specified, no constraint on GPUs will be added to the job.
If specified and request_gpus is non-zero, the expression

&& (countMatches(MY.RequireGPUs, TARGET.AvailableGPUs) >= RequestGPUs)

is appended to the
requirements
expression for the job. This expression cannot be evaluated by HTCondor prior
to version 9.8.0. A warning to this will effect will be printed when condor_submit detects this condition.

For pools that enable dynamic condor_startd provisioning and are at least version 9.8.0,
the constraint will be tested against the properties of AvailableGPUs and only those that match
will be assigned to the dynamic slot.

	request_memory = <quantity>
	The required amount of memory in MiB that this job needs to avoid
excessive swapping. If not specified and the submit command
vm_memory is
specified, then the value specified for
vm_memory defines
request_memory .
If neither
request_memory
nor vm_memory is
specified, the value is set by the configuration variable
JOB_DEFAULT_REQUESTMEMORY
 . The actual amount of
memory used by a job is represented by the job ClassAd attribute
MemoryUsage.

For pools that enable dynamic condor_startd provisioning, a
dynamic slot will be created with at least this much RAM.

The expression

&& (RequestMemory <= Target.Memory)

is appended to the
requirements
expression for the job.

Characters may be appended to a numerical value to indicate units.
K or KB indicates KiB, 210 numbers of bytes. M
or MB indicates MiB, 220 numbers of bytes. G or
GB indicates GiB, 230 numbers of bytes. T or TB
indicates TiB, 240 numbers of bytes.

	request_<name> = <quantity>
	The required amount of the custom machine resource identified by
<name> that this job needs. The custom machine resource is
defined in the machine’s configuration. Machines that have available
GPUs will define <name> to be GPUs.
<name> must be at least two characters, and must not begin with _.
If <name> is either Cpu or Gpu a warning will be printed since these are common typos.

	cuda_version = <version>
	The version of the CUDA runtime, if any, used or required by this job,
specified as <major>.<minor> (for example, 9.1). If the minor
version number is zero, you may specify only the major version number.
A single version number of 1000 or higher is assumed to be the
integer-coded version number (major * 1000 + (minor % 100)).

This does not arrange for the CUDA runtime to be present, only for
the job to run on a machine whose driver supports the specified version.

	requirements = <ClassAd Boolean Expression>
	The requirements command is a boolean ClassAd expression which uses
C-like operators. In order for any job in this cluster to run on a
given machine, this requirements expression must evaluate to true on
the given machine.

For scheduler and local universe jobs, the requirements expression
is evaluated against the Scheduler ClassAd which represents the
the condor_schedd daemon running on the access point, rather
than a remote machine. Like all commands in the submit description
file, if multiple requirements commands are present, all but the
last one are ignored. By default, condor_submit appends the
following clauses to the requirements expression:

	Arch and OpSys are set equal to the Arch and OpSys of the submit
machine. In other words: unless you request otherwise, HTCondor
will give your job machines with the same architecture and
operating system version as the machine running condor_submit.

	Cpus >= RequestCpus, if the job ClassAd attribute RequestCpus
is defined.

	Disk >= RequestDisk, if the job ClassAd attribute RequestDisk
is defined. Otherwise, Disk >= DiskUsage is appended to the
requirements. The DiskUsage attribute is initialized to the
size of the executable plus the size of any files specified in a
transfer_input_files
command. It exists to ensure there is enough disk space on the
target machine for HTCondor to copy over both the executable and
needed input files. The DiskUsage attribute represents the
maximum amount of total disk space required by the job in
kilobytes. HTCondor automatically updates the DiskUsage
attribute approximately every 20 minutes while the job runs with
the amount of space being used by the job on the execute machine.

	Memory >= RequestMemory, if the job ClassAd attribute
RequestMemory is defined.

	If Universe is set to Vanilla, FileSystemDomain is set equal to
the access point’s FileSystemDomain.

View the requirements of a job which has already been submitted
(along with everything else about the job ClassAd) with the command
condor_q -l; see the command reference for condor_q.
Also, see the HTCondor Users Manual for complete information on the syntax
and available attributes that can be used in the ClassAd expression.

FILE TRANSFER COMMANDS

	dont_encrypt_input_files = < file1,file2,file… >
	A comma and/or space separated list of input files that are not to
be network encrypted when transferred with the file transfer
mechanism. Specification of files in this manner overrides
configuration that would use encryption. Each input file must also
be in the list given by
transfer_input_files .
When a path to an input file or directory is specified, this
specifies the path to the file on the submit side. A single wild
card character (*) may be used in each file name.

	dont_encrypt_output_files = < file1,file2,file… >
	A comma and/or space separated list of output files that are not to
be network encrypted when transferred back with the file transfer
mechanism. Specification of files in this manner overrides
configuration that would use encryption. The output file(s) must
also either be in the list given by
transfer_output_files
or be discovered and to be transferred back with the file transfer
mechanism. When a path to an output file or directory is specified,
this specifies the path to the file on the execute side. A single
wild card character (*) may be used in each file name.

	encrypt_execute_directory = <True | False>
	Defaults to False. If set to True, HTCondor will encrypt the
contents of the remote scratch directory of the machine where the
job is executed. This encryption is transparent to the job itself,
but ensures that files left behind on the local disk of the execute
machine, perhaps due to a system crash, will remain private. In
addition, condor_submit will append to the job’s
requirements
expression

&& (TARGET.HasEncryptExecuteDirectory)

to ensure the job is matched to a machine that is capable of
encrypting the contents of the execute directory. This support is
limited to Windows platforms that use the NTFS file system and Linux
platforms with the ecryptfs-utils package installed.

	encrypt_input_files = < file1,file2,file… >
	A comma and/or space separated list of input files that are to be
network encrypted when transferred with the file transfer mechanism.
Specification of files in this manner overrides configuration that
would not use encryption. Each input file must also be in the list
given by
transfer_input_files .
When a path to an input file or directory is specified, this
specifies the path to the file on the submit side. A single wild
card character (*) may be used in each file name. The method of
encryption utilized will be as agreed upon in security negotiation;
if that negotiation failed, then the file transfer mechanism must
also fail for files to be network encrypted.

	encrypt_output_files = < file1,file2,file… >
	A comma and/or space separated list of output files that are to be
network encrypted when transferred back with the file transfer
mechanism. Specification of files in this manner overrides
configuration that would not use encryption. The output file(s) must
also either be in the list given by
transfer_output_files
or be discovered and to be transferred back with the file transfer
mechanism. When a path to an output file or directory is specified,
this specifies the path to the file on the execute side. A single
wild card character (*) may be used in each file name. The
method of encryption utilized will be as agreed upon in security
negotiation; if that negotiation failed, then the file transfer
mechanism must also fail for files to be network encrypted.

	erase_output_and_error_on_restart
	If false, and when_to_transfer_output is ON_EXIT_OR_EVICT, HTCondor
will append to the output and error logs rather than erase (truncate) them
when the job restarts.

	max_transfer_input_mb = <ClassAd Integer Expression>
	This integer expression specifies the maximum allowed total size in
MiB of the input files that are transferred for a job. This
expression does not apply to grid universe or
files transferred via file transfer plug-ins. The expression may
refer to attributes of the job. The special value -1 indicates no
limit. If not defined, the value set by configuration variable
MAX_TRANSFER_INPUT_MB is
used. If the observed size of all input files at submit time is
larger than the limit, the job will be immediately placed on hold
with a HoldReasonCode value of 32. If the job passes this
initial test, but the size of the input files increases or the limit
decreases so that the limit is violated, the job will be placed on
hold at the time when the file transfer is attempted.

	max_transfer_output_mb = <ClassAd Integer Expression>
	This integer expression specifies the maximum allowed total size in
MiB of the output files that are transferred for a job. This
expression does not apply to grid universe or
files transferred via file transfer plug-ins. The expression may
refer to attributes of the job. The special value -1 indicates no
limit. If not set, the value set by configuration variable
MAX_TRANSFER_OUTPUT_MB is
used. If the total size of the job’s output files to be transferred
is larger than the limit, the job will be placed on hold with a
HoldReasonCode value of 33. The output will be transferred up to
the point when the limit is hit, so some files may be fully
transferred, some partially, and some not at all.

	output_destination = <destination-URL>
	When present, defines a URL that specifies both a plug-in and a
destination for the transfer of the entire output sandbox or a
subset of output files as specified by the submit command
transfer_output_files .
The plug-in does the transfer of files, and no files are sent back
to the access point. The HTCondor Administrator’s manual has full
details.

	should_transfer_files = <YES | NO | IF_NEEDED >
	The
should_transfer_files
setting is used to define if HTCondor should transfer files to and
from the remote machine where the job runs. The file transfer
mechanism is used to run jobs on
machines which do not have a shared file system with the submit
machine.
should_transfer_files
equal to YES will cause HTCondor to always transfer files for the
job. NO disables HTCondor’s file transfer mechanism. IF_NEEDED
will not transfer files for the job if it is matched with a resource
in the same FileSystemDomain as the access point (and
therefore, on a machine with the same shared file system). If the
job is matched with a remote resource in a different
FileSystemDomain, HTCondor will transfer the necessary files.

For more information about this and other settings related to
transferring files, see the HTCondor User’s manual section on the
file transfer mechanism.

Note that
should_transfer_files
is not supported for jobs submitted to the grid universe.

	skip_filechecks = <True | False>
	When True, file permission checks for the submitted job are
disabled. When False, file permissions are checked; this is the
behavior when this command is not present in the submit description
file. File permissions are checked for read permissions on all input
files, such as those defined by commands
input and
transfer_input_files ,
and for write permission to output files, such as a log file defined
by log and output files
defined with output or
transfer_output_files .

	stream_error = <True | False>
	If True, then stderr is streamed back to the machine from
which the job was submitted. If False, stderr is stored
locally and transferred back when the job completes. This command is
ignored if the job ClassAd attribute TransferErr is False.
The default value is False. This command must be used in
conjunction with error ,
otherwise stderr will sent to /dev/null on Unix machines and
ignored on Windows machines.

	stream_input = <True | False>
	If True, then stdin is streamed from the machine on which
the job was submitted. The default value is False. The command
is only relevant for jobs submitted to the vanilla or java
universes, and it is ignored by the grid universe. This command must
be used in conjunction with
input , otherwise
stdin will be /dev/null on Unix machines and ignored on
Windows machines.

	stream_output = <True | False>
	If True, then stdout is streamed back to the machine from
which the job was submitted. If False, stdout is stored
locally and transferred back when the job completes. This command is
ignored if the job ClassAd attribute TransferOut is False.
The default value is False. This command must be used in
conjunction with
output , otherwise
stdout will sent to /dev/null on Unix machines and ignored
on Windows machines.

	transfer_executable = <True | False>
	This command is applicable to jobs submitted to the grid and vanilla
universes. If transfer_executable is set to False, then
HTCondor looks for the executable on the remote machine, and does
not transfer the executable over. This is useful for an already
pre-staged executable; HTCondor behaves more like rsh. The default
value is True.

	transfer_input_files = < file1,file2,file… >
	A comma-delimited list of all the files and directories to be
transferred into the working directory for the job, before the job
is started. By default, the file specified in the
executable command
and any file specified in the
input command (for
example, stdin) are transferred.

When a path to an input file or directory is specified, this
specifies the path to the file on the submit side. The file is
placed in the job’s temporary scratch directory on the execute side,
and it is named using the base name of the original path. For
example, /path/to/input_file becomes input_file in the job’s
scratch directory.

When a directory is specified, the behavior depends on whether
there is a trailing path separator character. When a directory is
specified with a trailing path separator, it is as if each of the
items within the directory were listed in the transfer list.
Therefore, the contents are transferred, but the directory itself
is not. When there is no trailing path separator, the directory
itself is transferred with all of its contents inside it. On
platforms such as Windows where the path separator is not a
forward slash (/), a trailing forward slash is treated as
equivalent to a trailing path separator. An example of an input
directory specified with a trailing forward slash is
input_data/.

For grid universe jobs other than HTCondor-C, the transfer of
directories is not currently supported.

Symbolic links to files are transferred as the files they point to.
Transfer of symbolic links to directories is not currently
supported.

For vanilla and vm universe jobs only, a file may be specified by
giving a URL, instead of a file name. The implementation for URL
transfers requires both configuration and available plug-in.

If you have a plugin which handles https:// URLs (and HTCondor
ships with one enabled), HTCondor supports pre-signing S3 URLs. This
allows you to specify S3 URLs for this command, for
transfer_output_remaps, and for output_destination. By
pre-signing the URLs on the submit node, HTCondor avoids transferring
your S3 credentials to the execute node. You must specify
aws_access_key_id_file and aws_secret_access_key_file; you may
specify aws_region, if necessary; see below. To use the S3 service
provided by AWS, use S3 URLs of the following forms:

For older buckets that aren't region-specific.
s3://<bucket>/<key>

For newer, region-specific buckets.
s3://<bucket>.s3.<region>.amazonaws.com/<key>

To use other S3 services, where <host> must contain a .:

s3://<host>/<key>

If necessary
aws_region = <region>

You may specify the corresponding access key ID and secret access key
with s3_access_key_id_file and s3_secret_access_key_file if
you prefer (which may reduce confusion, if you’re not using AWS).

If you must access S3 using temporary credentials, you may specify the
temporary credentials using aws_access_key_id_file and
aws_secret_access_key_file for the files containing the corresponding
temporary token, and +EC2SessionToken for the file containing the
session token.

Temporary credentials have a limited lifetime. If you are using S3 only
to download input files, the job must start before the credentials
expire. If you are using S3 to upload output files, the job must finish
before the credentials expire. HTCondor does not know when the credentials
will expire; if they do so before they are needed, file transfer will fail.

HTCondor does not presently support transferring entire buckets or
directories from S3.

HTCondor supports Google Cloud Storage URLs – gs:// – via Google’s
“interoperability” API. You may specify gs:// URLs as if they were
s3:// URLs, and they work the same way.
You may specify the corresponding access key ID and secret access key
with gs_access_key_id_file and gs_secret_access_key_file if
you prefer (which may reduce confusion).

Note that (at present), you may not provide more than one set of
credentials for s3:// or gs:// file transfer; this implies
that all such URLs download from or upload to the same service.

	transfer_output_files = < file1,file2,file… >
	This command forms an explicit list of output files and directories
to be transferred back from the temporary working directory on the
execute machine to the access point. If there are multiple files,
they must be delimited with commas. Setting
transfer_output_files
to the empty string (“”) means that no files are to be transferred.

For HTCondor-C jobs and all other non-grid universe jobs, if
transfer_output_files is not specified, HTCondor will
automatically transfer back all files in the job’s temporary working
directory which have been modified or created by the job.
Subdirectories are not scanned for output, so if output from
subdirectories is desired, the output list must be explicitly
specified. For grid universe jobs other than HTCondor-C, desired
output files must also be explicitly listed. Another reason to
explicitly list output files is for a job that creates many files,
and the user wants only a subset transferred back.

For grid universe jobs other than with grid type condor, to have
files other than standard output and standard error transferred from
the execute machine back to the access point, do use
transfer_output_files, listing all files to be transferred.
These files are found on the execute machine in the working
directory of the job.

When a path to an output file or directory is specified, it
specifies the path to the file on the execute side. As a destination
on the submit side, the file is placed in the job’s initial working
directory, and it is named using the base name of the original path.
For example, path/to/output_file becomes output_file in the
job’s initial working directory. The name and path of the file that
is written on the submit side may be modified by using
transfer_output_remaps .
Note that this remap function only works with files but not with
directories.

When a directory is specified, the behavior depends on whether
there is a trailing path separator character. When a directory is
specified with a trailing path separator, it is as if each of the
items within the directory were listed in the transfer list.
Therefore, the contents are transferred, but the directory itself
is not. When there is no trailing path separator, the directory
itself is transferred with all of its contents inside it. On
platforms such as Windows where the path separator is not a
forward slash (/), a trailing forward slash is treated as
equivalent to a trailing path separator. An example of an input
directory specified with a trailing forward slash is
input_data/.

For grid universe jobs other than HTCondor-C, the transfer of
directories is not currently supported.

Symbolic links to files are transferred as the files they point to.
Transfer of symbolic links to directories is not currently
supported.

	transfer_checkpoint_files = < file1,file2,file3… >
	If present, this command defines the list of files and/or directories
which constitute the job’s checkpoint. When the job successfully
checkpoints – see checkpoint_exit_code – these files will be
transferred to the submit node’s spool.

If this command is absent, the output is transferred instead.

If no files or directories are specified, nothing will be transferred.
This is generally not useful.

The list is interpreted like transfer_output_files, but there is
no corresponding remaps command.

	preserve_relative_paths = < True | False >
	For vanilla and Docker -universe jobs (and others that use the shadow),
this command modifies the behavior of the file transfer commands. When
set to true, the destination for an entry that is a relative path in a
file transfer list becomes its relative path, not its basename. For
example, input_data/b (and its contents, if it is a directory) will
be transferred to input_data/b, not b. This applies to the input,
output, and checkpoint lists.

Trailing slashes are ignored when preserve_relative_paths is set.

	transfer_output_remaps = < ” name = newname ; name2 = newname2 … “>
	This specifies the name (and optionally path) to use when
downloading output files from the completed job. Normally, output
files are transferred back to the initial working directory with the
same name they had in the execution directory. This gives you the
option to save them with a different path or name. If you specify a
relative path, the final path will be relative to the job’s initial
working directory, and HTCondor will create directories as necessary
to transfer the file.

name describes an output file name produced by your job, and
newname describes the file name it should be downloaded to.
Multiple remaps can be specified by separating each with a
semicolon. If you wish to remap file names that contain equals signs
or semicolons, these special characters may be escaped with a
backslash. You cannot specify directories to be remapped.

Note that whether an output file is transferred is controlled by
transfer_output_files. Listing a file in
transfer_output_remaps is not sufficient to cause it to be
transferred.

	transfer_plugins = < tag=plugin ; tag2,tag3=plugin2 … >
	Specifies the file transfer plugins
(see Third Party/Delegated file and credential transfer)
that should be transferred along with
the input files prior to invoking file transfer plugins for files specified in
transfer_input_files. tag should be a URL prefix that is used in transfer_input_files,
and plugin is the path to a file transfer plugin that will handle that type of URL transfer.

	when_to_transfer_output = < ON_EXIT | ON_EXIT_OR_EVICT | ON_SUCCESS >
	Setting when_to_transfer_output to ON_EXIT will cause HTCondor
to transfer the job’s output files back to the submitting machine when
the job completes (exits on its own). If a job is evicted and started
again, the subsequent execution will start with only the executable and
input files in the scratch directory sandbox. If transfer_output_files
is not set, HTCondor considers all new files in the sandbox’s top-level
directory to be the output; subdirectories and their contents will not
be transferred.

Setting when_to_transfer_output to ON_EXIT_OR_EVICT will cause
HTCondor to transfer the job’s output files when the job completes
(exits on its own) and when the job is evicted. When the job is evicted,
HTCondor will transfer the output files to a temporary directory on the
submit node (determined by the SPOOL configuration variable). When
the job restarts, these files will be transferred instead of the input
files. If transfer_output_files is not set, HTCondor considers all
files in the sandbox’s top-level directory to be the output;
subdirectories and their contents will not be transferred.

Setting when_to_transfer_output to ON_SUCCESS will cause HTCondor
to transfer the job’s output files when the job completes successfully.
Success is defined by the success_exit_code command, which must be
set, even if the successful value is the default 0. If
transfer_output_files is not set, HTCondor considers all new files
in the sandbox’s top-level directory to be the output; subdirectories
and their contents will not be transferred.

In all three cases, the job will go on hold if transfer_output_files
specifies a file which does not exist at transfer time.

	aws_access_key_id_file, s3_access_key_id_file
	One of these commands is required if you specify an s3:// URL; they
specify the file containing the access key ID (and only the access key
ID) used to pre-sign the URLs. Use only one.

	aws_secret_access_key_file, s3_secret_access_key_file
	One of these commands is required if you specify an s3:// URL; they
specify the file containing the secret access key (and only the secret
access key) used to pre-sign the URLs. Use only one.

	aws_region
	Optional if you specify an S3 URL (and ignored otherwise), this command
specifies the region to use if one is not specified in the URL.

	gs_access_key_id_file
	Required if you specify a gs:// URLs, this command
specifies the file containing the access key ID (and only the access key
ID) used to pre-sign the URLs.

	gs_secret_access_key_file
	Required if you specify a gs:// URLs, this command
specifies the file containing the secret access key (and only the secret
access key) used to pre-sign the URLs.

POLICY COMMANDS

	allowed_execute_duration = <integer>
	The longest time for which a job may be executing. Jobs which exceed
this duration will go on hold. This time does not include file-transfer
time. Jobs which self-checkpoint have this long to write out each
checkpoint.

This attribute is intended to help minimize the time wasted by jobs
which may erroneously run forever.

	allowed_job_duration = <integer>
	The longest time for which a job may continuously be in the running state.
Jobs which exceed this duration will go on hold. Exiting the running
state resets the job duration used by this command.

This command is intended to help minimize the time wasted by jobs
which may erroneously run forever.

	max_retries = <integer>
	The maximum number of retries allowed for this job (must be
non-negative). If the job fails (does not exit with the
success_exit_code exit code) it will be retried up to
max_retries times (unless retries are ceased because of the
retry_until command). If max_retries is not defined, and
either retry_until or success_exit_code is, the value of
DEFAULT_JOB_MAX_RETRIES will be used for the maximum number of
retries.

The combination of the max_retries, retry_until, and
success_exit_code commands causes an appropriate
OnExitRemove expression to be automatically generated. If retry
command(s) and on_exit_remove are both defined, the
OnExitRemove expression will be generated by OR’ing the
expression specified in OnExitRemove and the expression
generated by the retry commands.

	retry_until <Integer | ClassAd Boolean Expression>
	An integer value or boolean expression that prevents further retries
from taking place, even if max_retries have not been exhausted.
If retry_until is an integer, the job exiting with that exit
code will cause retries to cease. If retry_until is a ClassAd
expression, the expression evaluating to True will cause retries
to cease. For example, if you only want to retry exit codes
17, 34, and 81:

max_retries = 5
retry_until = !member(ExitCode, {17, 34, 81})

	success_exit_code = <integer>
	The exit code that is considered successful for this job. Defaults
to 0 if not defined.

Note: non-zero values of success_exit_code should generally not be
used for DAG node jobs, unless when_to_transfer_output is set to
ON_SUCCESS in order to avoid failed jobs going on hold.

At the present time, condor_dagman does not take into
account the value of success_exit_code. This means that, if
success_exit_code is set to a non-zero value, condor_dagman
will consider the job failed when it actually succeeds. For
single-proc DAG node jobs, this can be overcome by using a POST
script that takes into account the value of success_exit_code
(although this is not recommended). For multi-proc DAG node jobs,
there is currently no way to overcome this limitation.

	checkpoint_exit_code = <integer>
	The exit code which indicates that the executable has exited after
successfully taking a checkpoint. The checkpoint will transferred
and the executable restarted. See
Self-Checkpointing Applications for details.

	hold = <True | False>
	If hold is set to True, then the submitted job will be
placed into the Hold state. Jobs in the Hold state will not run
until released by condor_release. Defaults to False.

	keep_claim_idle = <integer>
	An integer number of seconds that a job requests the
condor_schedd to wait before releasing its claim after the job
exits or after the job is removed.

The process by which the condor_schedd claims a condor_startd
is somewhat time-consuming. To amortize this cost, the
condor_schedd tries to reuse claims to run subsequent jobs, after
a job using a claim is done. However, it can only do this if there
is an idle job in the queue at the moment the previous job
completes. Sometimes, and especially for the node jobs when using
DAGMan, there is a subsequent job about to be submitted, but it has
not yet arrived in the queue when the previous job completes. As a
result, the condor_schedd releases the claim, and the next job
must wait an entire negotiation cycle to start. When this submit
command is defined with a non-negative integer, when the job exits,
the condor_schedd tries as usual to reuse the claim. If it
cannot, instead of releasing the claim, the condor_schedd keeps
the claim until either the number of seconds given as a parameter,
or a new job which matches that claim arrives, whichever comes
first. The condor_startd in question will remain in the
Claimed/Idle state, and the original job will be “charged” (in terms
of priority) for the time in this state.

	leave_in_queue = <ClassAd Boolean Expression>
	When the ClassAd Expression evaluates to True, the job is not
removed from the queue upon completion. This allows the user of a
remotely spooled job to retrieve output files in cases where
HTCondor would have removed them as part of the cleanup associated
with completion. The job will only exit the queue once it has been
marked for removal (via condor_rm, for example) and the
leave_in_queue
expression has become False.
leave_in_queue
defaults to False.

As an example, if the job is to be removed once the output is
retrieved with condor_transfer_data, then use

leave_in_queue = (JobStatus == 4) && ((StageOutFinish =?= UNDEFINED) ||\
 (StageOutFinish == 0))

	next_job_start_delay = <ClassAd Boolean Expression>
	This expression specifies the number of seconds to delay after
starting up this job before the next job is started. The maximum
allowed delay is specified by the HTCondor configuration variable
MAX_NEXT_JOB_START_DELAY
 , which defaults to 10
minutes. This command does not apply to scheduler or local
universe jobs.

This command has been historically used to implement a form of job
start throttling from the job submitter’s perspective. It was
effective for the case of multiple job submission where the transfer
of extremely large input data sets to the execute machine caused
machine performance to suffer. This command is no longer useful, as
throttling should be accomplished through configuration of the
condor_schedd daemon.

	on_exit_hold = <ClassAd Boolean Expression>
	The ClassAd expression is checked when the job exits, and if
True, places the job into the Hold state. If False (the
default value when not defined), then nothing happens and the
on_exit_remove expression is checked to determine if that needs
to be applied.

For example: Suppose a job is known to run for a minimum of an hour.
If the job exits after less than an hour, the job should be placed
on hold and an e-mail notification sent, instead of being allowed to
leave the queue.

on_exit_hold = (time() - JobStartDate) < (60 * $(MINUTE))

This expression places the job on hold if it exits for any reason
before running for an hour. An e-mail will be sent to the user
explaining that the job was placed on hold because this expression
became True.

periodic_* expressions take precedence over on_exit_*
expressions, and *_hold expressions take precedence over a
*_remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd
expression. This expression is available for the vanilla, java,
parallel, grid, local and scheduler universes.

	on_exit_hold_reason = <ClassAd String Expression>
	When the job is placed on hold due to the
on_exit_hold
expression becoming True, this expression is evaluated to set
the value of HoldReason in the job ClassAd. If this expression
is UNDEFINED or produces an empty or invalid string, a default
description is used.

	on_exit_hold_subcode = <ClassAd Integer Expression>
	When the job is placed on hold due to the
on_exit_hold
expression becoming True, this expression is evaluated to set
the value of HoldReasonSubCode in the job ClassAd. The default
subcode is 0. The HoldReasonCode will be set to 3, which
indicates that the job went on hold due to a job policy expression.

	on_exit_remove = <ClassAd Boolean Expression>
	The ClassAd expression is checked when the job exits, and if
True (the default value when undefined), then it allows the job
to leave the queue normally. If False, then the job is placed
back into the Idle state. If the user job runs under the vanilla
universe, then the job restarts from the beginning.

For example, suppose a job occasionally segfaults, but chances are
that the job will finish successfully if the job is run again with
the same data. The
on_exit_remove
expression can cause the job to run again with the following
command. Assume that the signal identifier for the segmentation
fault is 11 on the platform where the job will be running.

on_exit_remove = (ExitBySignal == False) || (ExitSignal != 11)

This expression lets the job leave the queue if the job was not
killed by a signal or if it was killed by a signal other than 11,
representing segmentation fault in this example. So, if the exited
due to signal 11, it will stay in the job queue. In any other case
of the job exiting, the job will leave the queue as it normally
would have done.

As another example, if the job should only leave the queue if it
exited on its own with status 0, this
on_exit_remove
expression works well:

on_exit_remove = (ExitBySignal == False) && (ExitCode == 0)

If the job was killed by a signal or exited with a non-zero exit
status, HTCondor would leave the job in the queue to run again.

periodic_* expressions take precedence over on_exit_*
expressions, and *_hold expressions take precedence over a
*_remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd
expression.

	periodic_hold = <ClassAd Boolean Expression>
	This expression is checked periodically when the job is not in the
Held state. If it becomes True, the job will be placed on hold.
If unspecified, the default value is False.

periodic_* expressions take precedence over on_exit_*
expressions, and *_hold expressions take precedence over a
*_remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd
expression. Note that, by default, this expression is only checked
once every 60 seconds. The period of these evaluations can be
adjusted by setting the PERIODIC_EXPR_INTERVAL,
MAX_PERIODIC_EXPR_INTERVAL, and PERIODIC_EXPR_TIMESLICE
configuration macros.

	periodic_hold_reason = <ClassAd String Expression>
	When the job is placed on hold due to the
periodic_hold
expression becoming True, this expression is evaluated to set
the value of HoldReason in the job ClassAd. If this expression
is UNDEFINED or produces an empty or invalid string, a default
description is used.

	periodic_hold_subcode = <ClassAd Integer Expression>
	When the job is placed on hold due to the
periodic_hold
expression becoming true, this expression is evaluated to set the
value of HoldReasonSubCode in the job ClassAd. The default
subcode is 0. The HoldReasonCode will be set to 3, which
indicates that the job went on hold due to a job policy expression.

	periodic_release = <ClassAd Boolean Expression>
	This expression is checked periodically when the job is in the Held
state. If the expression becomes True, the job will be released.
If the job was held via condor_hold (i.e. HoldReasonCode is
1), then this expression is ignored.

Only job ClassAd attributes will be defined for use by this ClassAd
expression. Note that, by default, this expression is only checked
once every 60 seconds. The period of these evaluations can be
adjusted by setting the PERIODIC_EXPR_INTERVAL,
MAX_PERIODIC_EXPR_INTERVAL, and PERIODIC_EXPR_TIMESLICE
configuration macros.

	periodic_remove = <ClassAd Boolean Expression>
	This expression is checked periodically. If it becomes True, the
job is removed from the queue. If unspecified, the default value is
False.

See the Examples section of this manual page for an example of a
periodic_remove
expression.

periodic_* expressions take precedence over on_exit_*
expressions, and *_hold expressions take precedence over a
*_remove expressions. So, the periodic_remove expression
takes precedent over the on_exit_remove expression, if the two
describe conflicting actions.

Only job ClassAd attributes will be defined for use by this ClassAd
expression. Note that, by default, this expression is only checked
once every 60 seconds. The period of these evaluations can be
adjusted by setting the PERIODIC_EXPR_INTERVAL,
MAX_PERIODIC_EXPR_INTERVAL, and PERIODIC_EXPR_TIMESLICE
configuration macros.

COMMANDS FOR THE GRID

	arc_application = <XML-string>
	For grid universe jobs of type arc, provides additional XML
attributes under the <Application> section of the ARC ADL job
description which are not covered by regular submit description file
parameters.

	arc_resources = <XML-string>
	For grid universe jobs of type arc, provides additional XML
attributes under the <Resources> section of the ARC ADL job
description which are not covered by regular submit description file
parameters.

	arc_rte = < rte1 option,rte2 >
	For grid universe jobs of type arc, provides a list of Runtime
Environment names that the job requires on the ARC system.
The list is comma-delimited. If a Runtime Environment name supports
options, those can be provided after the name, separated by spaces.
Runtime Environment names are defined by the ARC server.

	azure_admin_key = <pathname>
	For grid type azure jobs, specifies the path and file name of a
file that contains an SSH public key. This key can be used to log
into the administrator account of the instance via SSH.

	azure_admin_username = <account name>
	For grid type azure jobs, specifies the name of an administrator
account to be created in the instance. This account can be logged
into via SSH.

	azure_auth_file = <pathname>
	For grid type azure jobs, specifies a path and file name of the
authorization file that grants permission for HTCondor to use the
Azure account. If it’s not defined, then HTCondor will attempt to
use the default credentials of the Azure CLI tools.

	azure_image = <image id>
	For grid type azure jobs, identifies the disk image to be used
for the boot disk of the instance. This image must already be
registered within Azure.

	azure_location = <image id>
	For grid type azure jobs, identifies the location within Azure
where the instance should be run. As an example, one current
location is centralus.

	azure_size = <machine type>
	For grid type azure jobs, the hardware configuration that the
virtual machine instance is to run on.

	batch_extra_submit_args = <command-line arguments>
	Used for batch grid universe jobs.
Specifies additional command-line arguments to be given to the target
batch system’s job submission command.

	batch_project = <projectname>
	Used for batch grid universe jobs.
Specifies the name of the PBS/LSF/SGE/SLURM project, account, or
allocation that should be charged for the resources used by the job.

	batch_queue = <queuename>
	Used for batch grid universe jobs.
Specifies the name of the PBS/LSF/SGE/SLURM job queue into which the
job should be submitted. If not specified, the default queue is used.
For a multi-cluster SLURM configuration, which cluster to use can be
specified by supplying the name after an @ symbol.
For example, to submit a job to the debug queue on cluster foo,
you would use the value debug@foo.

	batch_runtime = <seconds>
	Used for batch grid universe jobs.
Specifies a limit in seconds on the execution time of the job.
This limit is enforced by the PBS/LSF/SGE/SLURM scheduler.

	cloud_label_names = <name0,name1,name…>
	For grid type gce jobs, specifies the case of tag names that
will be associated with the running instance. This is only necessary
if a tag name case matters. By default the list will be
automatically generated.

	cloud_label_<name> = <value>
	For grid type gce jobs, specifies a label and value to be associated with
the running instance. The label name will be lower-cased; use
cloud_label_names
to change the case.

	delegate_job_GSI_credentials_lifetime = <seconds>
	Specifies the maximum number of seconds for which delegated proxies
should be valid. The default behavior when this command is not
specified is determined by the configuration variable
DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME
 , which defaults
to one day. A value of 0 indicates that the delegated proxy should
be valid for as long as allowed by the credential used to create the
proxy. This setting currently only applies to proxies delegated for
non-grid jobs and for HTCondor-C jobs.
This variable has no effect if the configuration variable
DELEGATE_JOB_GSI_CREDENTIALS
 is False, because in
that case the job proxy is copied rather than delegated.

	ec2_access_key_id = <pathname>
	For grid type ec2 jobs, identifies the file containing the
access key.

	ec2_ami_id = <EC2 xMI ID>
	For grid type ec2 jobs, identifies the machine image. Services
compatible with the EC2 Query API may refer to these with
abbreviations other than AMI, for example EMI is valid for
Eucalyptus.

	ec2_availability_zone = <zone name>
	For grid type ec2 jobs, specifies the Availability Zone that the
instance should be run in. This command is optional, unless
ec2_ebs_volumes
is set. As an example, one current zone is us-east-1b.

	ec2_block_device_mapping = <block-device>:<kernel-device>,<block-device>:<kernel-device>, …
	For grid type ec2 jobs, specifies the block device to kernel
device mapping. This command is optional.

	ec2_ebs_volumes = <ebs name>:<device name>,<ebs name>:<device name>,…
	For grid type ec2 jobs, optionally specifies a list of Elastic
Block Store (EBS) volumes to be made available to the instance and
the device names they should have in the instance.

	ec2_elastic_ip = <elastic IP address>
	For grid type ec2 jobs, and optional specification of an Elastic
IP address that should be assigned to this instance.

	ec2_iam_profile_arn = <IAM profile ARN>
	For grid type ec2 jobs, an Amazon Resource Name (ARN)
identifying which Identity and Access Management (IAM) (instance)
profile to associate with the instance.

	ec2_iam_profile_name= <IAM profile name>
	For grid type ec2 jobs, a name identifying which Identity and
Access Management (IAM) (instance) profile to associate with the
instance.

	ec2_instance_type = <instance type>
	For grid type ec2 jobs, identifies the instance type. Different
services may offer different instance types, so no default value is
set.

	ec2_keypair = <ssh key-pair name>
	For grid type ec2 jobs, specifies the name of an SSH key-pair
that is already registered with the EC2 service. The associated
private key can be used to ssh into the virtual machine once it is
running.

	ec2_keypair_file = <pathname>
	For grid type ec2 jobs, specifies the complete path and file
name of a file into which HTCondor will write an SSH key for use
with ec2 jobs. The key can be used to ssh into the virtual machine
once it is running. If
ec2_keypair is
specified for a job,
ec2_keypair_file
is ignored.

	ec2_parameter_names = ParameterName1, ParameterName2, …
	For grid type ec2 jobs, a space or comma separated list of the
names of additional parameters to pass when instantiating an
instance.

	ec2_parameter_<name> = <value>
	For grid type ec2 jobs, specifies the value for the
correspondingly named (instance instantiation) parameter. <name>
is the parameter name specified in the submit command
ec2_parameter_names ,
but with any periods replaced by underscores.

	ec2_secret_access_key = <pathname>
	For grid type ec2 jobs, specifies the path and file name
containing the secret access key.

	ec2_security_groups = group1, group2, …
	For grid type ec2 jobs, defines the list of EC2 security groups
which should be associated with the job.

	ec2_security_ids = id1, id2, …
	For grid type ec2 jobs, defines the list of EC2 security group
IDs which should be associated with the job.

	ec2_spot_price = <bid>
	For grid type ec2 jobs, specifies the spot instance bid, which
is the most that the job submitter is willing to pay per hour to run
this job.

	ec2_tag_names = <name0,name1,name…>
	For grid type ec2 jobs, specifies the case of tag names that
will be associated with the running instance. This is only necessary
if a tag name case matters. By default the list will be
automatically generated.

	ec2_tag_<name> = <value>
	For grid type ec2 jobs, specifies a tag to be associated with
the running instance. The tag name will be lower-cased; use
ec2_tag_names
to change the case.

	WantNameTag = <True | False>
	For grid type ec2 jobs, a job may request that its ‘name’ tag be
(not) set by HTCondor. If the job does not otherwise specify any
tags, not setting its name tag will eliminate a call by the EC2
GAHP, improving performance.

	ec2_user_data = <data>
	For grid type ec2 jobs, provides a block of data that can be
accessed by the virtual machine. If both
ec2_user_data
and
ec2_user_data_file
are specified for a job, the two blocks of data are concatenated,
with the data from this ec2_user_data submit command occurring
first.

	ec2_user_data_file = <pathname>
	For grid type ec2 jobs, specifies a path and file name whose
contents can be accessed by the virtual machine. If both
ec2_user_data
and
ec2_user_data_file
are specified for a job, the two blocks of data are concatenated,
with the data from that ec2_user_data submit command occurring
first.

	ec2_vpc_ip = <a.b.c.d>
	For grid type ec2 jobs, that are part of a Virtual Private Cloud
(VPC), an optional specification of the IP address that this
instance should have within the VPC.

	ec2_vpc_subnet = <subnet specification string>
	For grid type ec2 jobs, an optional specification of the Virtual
Private Cloud (VPC) that this instance should be a part of.

	gce_account = <account name>
	For grid type gce jobs, specifies the Google cloud services
account to use. If this submit command isn’t specified, then a
random account from the authorization file given by
gce_auth_file
will be used.

	gce_auth_file = <pathname>
	For grid type gce jobs, specifies a path and file name of the
authorization file that grants permission for HTCondor to use the
Google account. If this command is not specified, then the default
file of the Google command-line tools will be used.

	gce_image = <image id>
	For grid type gce jobs, the identifier of the virtual machine
image representing the HTCondor job to be run. This virtual machine
image must already be register with GCE and reside in Google’s Cloud
Storage service.

	gce_json_file = <pathname>
	For grid type gce jobs, specifies the path and file name of a
file that contains JSON elements that should be added to the
instance description submitted to the GCE service.

	gce_machine_type = <machine type>
	For grid type gce jobs, the long form of the URL that describes
the machine configuration that the virtual machine instance is to
run on.

	gce_metadata = <name=value,…,name=value>
	For grid type gce jobs, a comma separated list of name and value
pairs that define metadata for a virtual machine instance that is an
HTCondor job.

	gce_metadata_file = <pathname>
	For grid type gce jobs, specifies a path and file name of the
file that contains metadata for a virtual machine instance that is
an HTCondor job. Within the file, each name and value pair is on its
own line; so, the pairs are separated by the newline character.

	gce_preemptible = <True | False>
	For grid type gce jobs, specifies whether the virtual machine
instance should be preemptible. The default is for the instance to
not be preemptible.

	grid_resource = <grid-type-string> <grid-specific-parameter-list>
	For each grid-type-string value, there are further type-specific
values that must specified. This submit description file command
allows each to be given in a space-separated list. Allowable
grid-type-string values are arc, azure, batch,
condor, ec2, and gce.
The HTCondor manual chapter on Grid Computing
details the variety of grid types.

For a grid-type-string of batch, the single parameter is the
name of the local batch system, and will be one of pbs, lsf,
slurm, or sge.

For a grid-type-string of condor, the first parameter is the
name of the remote condor_schedd daemon. The second parameter is
the name of the pool to which the remote condor_schedd daemon
belongs.

For a grid-type-string of ec2, one additional parameter
specifies the EC2 URL.

For a grid-type-string of arc, the single
parameter is the name of the ARC resource to be used.

	transfer_error = <True | False>
	For jobs submitted to the grid universe only. If True, then the
error output (from stderr) from the job is transferred from the
remote machine back to the access point. The name of the file
after transfer is given by the
error command. If
False, no transfer takes place (from the remote machine to
access point), and the name of the file is given by the
error command. The
default value is True.

	transfer_input = <True | False>
	For jobs submitted to the grid universe only. If True, then the
job input (stdin) is transferred from the machine where the job
was submitted to the remote machine. The name of the file that is
transferred is given by the
input command. If
False, then the job’s input is taken from a pre-staged file on
the remote machine, and the name of the file is given by the
input command. The
default value is True.

For transferring files other than stdin, see
transfer_input_files .

	transfer_output = <True | False>
	For jobs submitted to the grid universe only. If True, then the
output (from stdout) from the job is transferred from the remote
machine back to the access point. The name of the file after
transfer is given by the
output command. If
False, no transfer takes place (from the remote machine to
access point), and the name of the file is given by the
output command. The
default value is True.

For transferring files other than stdout, see
transfer_output_files .

	use_x509userproxy = <True | False>
	Set this command to True to indicate that the job requires an
X.509 user proxy. If x509userproxy is set, then that file is
used for the proxy. Otherwise, the proxy is looked for in the
standard locations. If x509userproxy is set or if the job is a
grid universe job of grid type arc,
then the value of use_x509userproxy is forced to
True. Defaults to False.

	x509userproxy = <full-pathname>
	Used to override the default path name for X.509 user certificates.
The default location for X.509 proxies is the /tmp directory,
which is generally a local file system. Setting this value would
allow HTCondor to access the proxy in a shared file system (for
example, AFS). HTCondor will use the proxy specified in the submit
description file first. If nothing is specified in the submit
description file, it will use the environment variable
X509_USER_PROXY. If that variable is not present, it will search
in the default location. Note that proxies are only valid for a
limited time. Condor_submit will not submit a job with an expired
proxy, it will return an error. Also, if the configuration parameter
CRED_MIN_TIME_LEFT is set to some number of seconds, and if the
proxy will expire before that many seconds, condor_submit will also
refuse to submit the job. That is, if CRED_MIN_TIME_LEFT is set
to 60, condor_submit will refuse to submit a job whose proxy will
expire 60 seconds from the time of submission.

x509userproxy is
relevant when the universe is vanilla, or when the
universe is grid and the type of grid system is one of
condor, or arc. Defining
a value causes the proxy to be delegated to the execute machine.
Further, VOMS attributes defined in the proxy will appear in the job
ClassAd.

	use_scitokens = <True | False | Auto>
	Set this command to True to indicate that the job requires a scitoken.
If scitokens_file is set, then that file is
used for the scitoken filename. Otherwise, the the scitoken filename is looked for in the
BEARER_TOKEN_FILE environment variable. If scitokens_file is set
then the value of use_scitokens defaults to True. If the filename is not
defined in on one of these two places, then condor_submit will fail with an error message.
Set this command to Auto to indicate that the job will use a scitoken if scitokens_file
or the BEARER_TOKEN_FILE environment variable is set, but it will not be an error if no
file is specified.

	scitokens_file = <full-pathname>
	Used to set the path to the file containing the scitoken that the job needs,
or to override the path to the scitoken contained in the BEARER_TOKEN_FILE
environment variable.

COMMANDS FOR PARALLEL, JAVA, and SCHEDULER UNIVERSES

	hold_kill_sig = <signal-number>
	For the scheduler universe only,
signal-number is
the signal delivered to the job when the job is put on hold with
condor_hold.
signal-number
may be either the platform-specific name or value of the signal. If
this command is not present, the value of
kill_sig is used.

	jar_files = <file_list>
	Specifies a list of additional JAR files to include when using the
Java universe. JAR files will be transferred along with the
executable and automatically added to the classpath.

	java_vm_args = <argument_list>
	Specifies a list of additional arguments to the Java VM itself, When
HTCondor runs the Java program, these are the arguments that go
before the class name. This can be used to set VM-specific arguments
like stack size, garbage-collector arguments and initial property
values.

	machine_count = <max>
	For the parallel universe, a single value (max) is required. It is
neither a maximum or minimum, but the number of machines to be
dedicated toward running the job.

	remove_kill_sig = <signal-number>
	For the scheduler universe only,
signal-number is
the signal delivered to the job when the job is removed with
condor_rm.
signal-number
may be either the platform-specific name or value of the signal.
This example shows it both ways for a Linux signal:

remove_kill_sig = SIGUSR1
remove_kill_sig = 10

If this command is not present, the value of
kill_sig is used.

COMMANDS FOR THE VM UNIVERSE

	vm_disk = file1:device1:permission1, file2:device2:permission2:format2, …
	A list of comma separated disk files. Each disk file is specified by
4 colon separated fields. The first field is the path and file name
of the disk file. The second field specifies the device. The third
field specifies permissions, and the optional fourth field specifies
the image format. If a disk file will be transferred by HTCondor,
then the first field should just be the simple file name (no path
information).

An example that specifies two disk files:

vm_disk = /myxen/diskfile.img:sda1:w,/myxen/swap.img:sda2:w

	vm_checkpoint = <True | False>
	A boolean value specifying whether or not to take checkpoints. If
not specified, the default value is False. In the current
implementation, setting both
vm_checkpoint
and
vm_networking
to True does not yet work in all cases. Networking cannot be
used if a vm universe job uses a checkpoint in order to continue
execution after migration to another machine.

	vm_macaddr = <MACAddr>
	Defines that MAC address that the virtual machine’s network
interface should have, in the standard format of six groups of two
hexadecimal digits separated by colons.

	vm_memory = <MBytes-of-memory>
	The amount of memory in MBytes that a vm universe job requires.

	vm_networking = <True | False>
	Specifies whether to use networking or not. In the current
implementation, setting both
vm_checkpoint
and
vm_networking
to True does not yet work in all cases. Networking cannot be
used if a vm universe job uses a checkpoint in order to continue
execution after migration to another machine.

	vm_networking_type = <nat | bridge >
	When
vm_networking
is True, this definition augments the job’s requirements to
match only machines with the specified networking. If not specified,
then either networking type matches.

	vm_no_output_vm = <True | False>
	When True, prevents HTCondor from transferring output files back
to the machine from which the vm universe job was submitted. If not
specified, the default value is False.

	vm_type = <xen | kvm>
	Specifies the underlying virtual machine software that this job
expects.

	xen_initrd = <image-file>
	When xen_kernel
gives a file name for the kernel image to use, this optional command
may specify a path to a ramdisk (initrd) image file. If the
image file will be transferred by HTCondor, then the value should
just be the simple file name (no path information).

	xen_kernel = <included | path-to-kernel>
	A value of included
specifies that the kernel is included in the disk file. If not one
of these values, then the value is a path and file name of the
kernel to be used. If a kernel file will be transferred by HTCondor,
then the value should just be the simple file name (no path
information).

	xen_kernel_params = <string>
	A string that is appended to the Xen kernel command line.

	xen_root = <string>
	A string that is appended to the Xen kernel command line to specify
the root device. This string is required when
xen_kernel gives a
path to a kernel. Omission for this required case results in an
error message during submission.

COMMANDS FOR THE DOCKER UNIVERSE

	docker_image = < image-name >
	Defines the name of the Docker image that is the basis for the
docker container.

	docker_network_type = < host | none | custom_admin_defined_value>
	If docker_network_type is set to the string host, then the job is run
using the host’s network. If docker_network_type is set to the string none,
then the job is run with no network. If this is not set, each job gets
a private network interface. Some administrators may define
site specific docker networks on a given worker node. When this
is the case, additional values may be valid here.

	docker_pull_policy = < always >
	if docker_pull_policy is set to always, when a docker universe job
starts on a worker node, the option “–pull always” will be passed to
the docker run command. This only impacts worker nodes which already
have a locally cached version of the image. With this option, docker will
always check with the repo to see if the cached version is out of date.
This requires more network connectivity, and may cause docker hub to
throttle future pull requests. It is generally recommened to never
mutate docker image tag name, and avoid needing this option.

	container_service_names = <service-name>[, <service-name>]*
	A string- or comma- separated list of service names.
Each service-name
must have a corresponding <service-name>_container_port command
specifying a port number (an integer from 0 to 65535). HTCondor
will ask Docker to forward from a host port to the specified port
inside the container. When Docker has done so, HTCondor will add an
attribute to the job ad for each service, <service-name>HostPort,
which contains the port number on the host forwarding to the corresponding
service.

COMMANDS FOR THE CONTAINER UNIVERSE

	container_image = < image-name >
	Defines the name of the container image. Can be a singularity .sif file,
a singularity exploded directory, or a path to an image in a docker style
repository

	container_target_dir = < path-to-directory-inside-container >
	Defines the working directory of the job inside the container. Will be mapped
to the scratch directory on the worker node.

ADVANCED COMMANDS

	accounting_group = <accounting-group-name>
	Causes jobs to negotiate under the given accounting group. This
value is advertised in the job ClassAd as AcctGroup. The
HTCondor Administrator’s manual contains more information about
accounting groups.

	accounting_group_user = <accounting-group-user-name>
	Sets the name associated with this job to be used for resource usage accounting purposes, such as
computation of fair-share priority and reporting via condor_userprio. If not set, defaults to the
value of the job ClassAd attribute User. This value is
advertised in the job ClassAd as AcctGroupUser.

	concurrency_limits = <string-list>
	A list of resources that this job needs. The resources are presumed
to have concurrency limits placed upon them, thereby limiting the
number of concurrent jobs in execution which need the named
resource. Commas and space characters delimit the items in the list.
Each item in the list is a string that identifies the limit, or it
is a ClassAd expression that evaluates to a string, and it is
evaluated in the context of machine ClassAd being considered as a
match. Each item in the list also may specify a numerical value
identifying the integer number of resources required for the job.
The syntax follows the resource name by a colon character (:) and
the numerical value. Details on concurrency limits are in the
HTCondor Administrator’s manual.

	concurrency_limits_expr = <ClassAd String Expression>
	A ClassAd expression that represents the list of resources that this
job needs after evaluation. The ClassAd expression may specify
machine ClassAd attributes that are evaluated against a matched
machine. After evaluation, the list sets concurrency_limits.

	copy_to_spool = <True | False>
	If
copy_to_spool
is True, then condor_submit copies the executable to the
local spool directory before running it on a remote host. As copying
can be quite time consuming and unnecessary, the default value is
False for all job universes.
When False, condor_submit does not copy the executable to a
local spool directory.

	coresize = <size>
	Should the user’s program abort and produce a core file,
coresize specifies the maximum size in bytes of the core file
which the user wishes to keep. If coresize is not specified in
the command file, this is set to 0 (meaning no core will be
generated).

	cron_day_of_month = <Cron-evaluated Day>
	The set of days of the month for which a deferral time applies. The
HTCondor User’s manual section on Time Scheduling for Job Execution
has further details.

	cron_day_of_week = <Cron-evaluated Day>
	The set of days of the week for which a deferral time applies. The
HTCondor User’s manual section on Time Scheduling for Job Execution
has further details.

	cron_hour = <Cron-evaluated Hour>
	The set of hours of the day for which a deferral time applies. The
HTCondor User’s manual section on Time Scheduling for Job Execution
has further details.

	cron_minute = <Cron-evaluated Minute>
	The set of minutes within an hour for which a deferral time applies.
The HTCondor User’s manual section on Time Scheduling for Job
Execution has further details.

	cron_month = <Cron-evaluated Month>
	The set of months within a year for which a deferral time applies.
The HTCondor User’s manual section on Time Scheduling for Job
Execution has further details.

	cron_prep_time = <ClassAd Integer Expression>
	Analogous to
deferral_prep_time .
The number of seconds prior to a job’s deferral time that the job
may be matched and sent to an execution machine.

	cron_window = <ClassAd Integer Expression>
	Analogous to the submit command
deferral_window .
It allows cron jobs that miss their deferral time to begin
execution.

The HTCondor User’s manual section on Time Scheduling for Job
Execution has further details.

	dagman_log = <pathname>
	DAGMan inserts this command to specify an event log that it watches
to maintain the state of the DAG. If the
log command is not
specified in the submit file, DAGMan uses the
log command to specify the
event log.

	deferral_prep_time = <ClassAd Integer Expression>
	The number of seconds prior to a job’s deferral time that the job
may be matched and sent to an execution machine.

The HTCondor User’s manual section on Time Scheduling for Job
Execution has further details.

	deferral_time = <ClassAd Integer Expression>
	Allows a job to specify the time at which its execution is to begin,
instead of beginning execution as soon as it arrives at the
execution machine. The deferral time is an expression that evaluates
to a Unix Epoch timestamp (the number of seconds elapsed since
00:00:00 on January 1, 1970, Coordinated Universal Time). Deferral
time is evaluated with respect to the execution machine. This option
delays the start of execution, but not the matching and claiming of
a machine for the job. If the job is not available and ready to
begin execution at the deferral time, it has missed its deferral
time. A job that misses its deferral time will be put on hold in the
queue.

The HTCondor User’s manual section on Time Scheduling for Job
Execution has further details.

Due to implementation details, a deferral time may not be used for
scheduler universe jobs.

	deferral_window = <ClassAd Integer Expression>
	The deferral window is used in conjunction with the
deferral_time
command to allow jobs that miss their deferral time to begin
execution.

The HTCondor User’s manual section on Time Scheduling for Job
Execution has further details.

	description = <string>
	A string that sets the value of the job ClassAd attribute
JobDescription. When set, tools which display the executable
such as condor_q will instead use this string.

	email_attributes = <list-of-job-ad-attributes>
	A comma-separated list of attributes from the job ClassAd. These
attributes and their values will be included in the e-mail
notification of job completion.

	image_size = <size>
	Advice to HTCondor specifying the maximum virtual image size to
which the job will grow during its execution. HTCondor will then
execute the job only on machines which have enough resources, (such
as virtual memory), to support executing the job. If not specified,
HTCondor will automatically make a (reasonably accurate) estimate
about the job’s size and adjust this estimate as the program runs.
If specified and underestimated, the job may crash due to the
inability to acquire more address space; for example, if malloc()
fails. If the image size is overestimated, HTCondor may have
difficulty finding machines which have the required resources.
size is specified in KiB. For example, for an image size of 8 MiB,
size should be 8000.

	initialdir = <directory-path>
	Used to give jobs a directory with respect to file input and output.
Also provides a directory (on the machine from which the job is
submitted) for the job event log, when a full path is not specified.

For vanilla universe jobs where there is a shared file system, it is
the current working directory on the machine where the job is
executed.

For vanilla or grid universe jobs where file transfer mechanisms are
utilized (there is not a shared file system), it is the directory on
the machine from which the job is submitted where the input files
come from, and where the job’s output files go to.

For scheduler universe jobs, it is the directory on the machine from
which the job is submitted where the job runs; the current working
directory for file input and output with respect to relative path
names.

Note that the path to the executable is not relative to
initialdir ; if it
is a relative path, it is relative to the directory in which the
condor_submit command is run.

	job_ad_information_attrs = <attribute-list>
	A comma-separated list of job ClassAd attribute names. The named
attributes and their values are written to the job event log
whenever any event is being written to the log. This implements the
same thing as the configuration variable
EVENT_LOG_INFORMATION_ATTRS (see the
Daemon Logging Configuration File Entries page), but it applies to the job event log, instead of the system
event log.

	job_lease_duration = <number-of-seconds>
	For vanilla, parallel, VM, and java universe jobs only, the duration
in seconds of a job lease. The default value is 2,400, or forty
minutes. If a job lease is not desired, the value can be explicitly
set to 0 to disable the job lease semantics. The value can also be a
ClassAd expression that evaluates to an integer. The HTCondor User’s
manual section on Special Environment Considerations has further
details.

	job_machine_attrs = <attr1, attr2, …>
	A comma and/or space separated list of machine attribute names that
should be recorded in the job ClassAd in addition to the ones
specified by the condor_schedd daemon’s system configuration
variable SYSTEM_JOB_MACHINE_ATTRS
 . When there are multiple run
attempts, history of machine attributes from previous run attempts
may be kept. The number of run attempts to store may be extended
beyond the system-specified history length by using the submit file
command
job_machine_attrs_history_length .
A machine attribute named X will be inserted into the job
ClassAd as an attribute named MachineAttrX0. The previous value
of this attribute will be named MachineAttrX1, the previous to
that will be named MachineAttrX2, and so on, up to the specified
history length. A history of length 1 means that only
MachineAttrX0 will be recorded. The value recorded in the job
ClassAd is the evaluation of the machine attribute in the context of
the job ClassAd when the condor_schedd daemon initiates the start
up of the job. If the evaluation results in an Undefined or
Error result, the value recorded in the job ad will be
Undefined or Error, respectively.

	want_graceful_removal = <boolean expression>
	If true, this job will be given a chance to shut down cleanly when
removed. The job will be given as much time as the administrator
of the execute resource allows, which may be none. The default is
false. For details, see the configuration setting
GRACEFULLY_REMOVE_JOBS.

	kill_sig = <signal-number>
	When HTCondor needs to kick a job off of a machine, it will send the
job the signal specified by
signal-number .
signal-number
needs to be an integer which represents a valid signal on the
execution machine.
The default value
is SIGTERM, which is the standard way to terminate a program in
Unix.

	kill_sig_timeout = <seconds>
	This submit command should no longer be used as of HTCondor version
7.7.3; use
job_max_vacate_time
instead. If
job_max_vacate_time
is not defined, this defines the number of seconds that HTCondor
should wait following the sending of the kill signal defined by
kill_sig and
forcibly killing the job. The actual amount of time between sending
the signal and forcibly killing the job is the smallest of this
value and the configuration variable KILLING_TIMEOUT
 , as defined on the execute machine.

	load_profile = <True | False>
	When True, loads the account profile of the dedicated run
account for Windows jobs. May not be used with
run_as_owner .

	log_xml = <True | False>
	If log_xml is
True, then the job event log file will be written in ClassAd
XML. If not specified, XML is not used. Note that the file is an XML
fragment; it is missing the file header and footer. Do not mix XML
and non-XML within a single file. If multiple jobs write to a single
job event log file, ensure that all of the jobs specify this option
in the same way.

	match_list_length = <integer value>
	Defaults to the value zero (0). When
match_list_length
is defined with an integer value greater than zero (0), attributes
are inserted into the job ClassAd. The maximum number of attributes
defined is given by the integer value. The job ClassAds introduced
are given as

LastMatchName0 = "most-recent-Name"
LastMatchName1 = "next-most-recent-Name"

The value for each introduced ClassAd is given by the value of the
Name attribute from the machine ClassAd of a previous execution
(match). As a job is matched, the definitions for these attributes
will roll, with LastMatchName1 becoming LastMatchName2,
LastMatchName0 becoming LastMatchName1, and LastMatchName0 being set
by the most recent value of the Name attribute.

An intended use of these job attributes is in the requirements
expression. The requirements can allow a job to prefer a match with
either the same or a different resource than a previous match.

	job_max_vacate_time = <integer expression>
	An integer-valued expression (in seconds) that may be used to adjust
the time given to an evicted job for gracefully shutting down. If
the job’s setting is less than the machine’s, the job’s is used. If
the job’s setting is larger than the machine’s, the result depends
on whether the job has any excess retirement time. If the job has
more retirement time left than the machine’s max vacate time
setting, then retirement time will be converted into vacating time,
up to the amount requested by the job.

Setting this expression does not affect the job’s resource
requirements or preferences. For a job to only run on a machine with
a minimum MachineMaxVacateTime, or to preferentially run on such
machines, explicitly specify this in the requirements and/or rank
expressions.

	manifest = <True | False>
	For vanilla and Docker -universe jobs (and others that use the shadow),
specifies if HTCondor (the starter) should produce a “manifest”, which
is directory containing three files: the list of files and directories
at the top level of the sandbox when file transfer in completes
(in), the same when file transfer out begins (out), and a dump
of the environment set for the job (env).

This feature is not presently available for Windows.

	manifest_dir = <directory name>
	For vanilla and Docker -universe jobs (and others that use the shadow),
specifies the directory in which to record the manifest. Specifying
this enables the creation of a manifest. By default, the manifest
directory is named <cluster>_<proc>_manifest, to avoid conflicts.

This feature is not presently available for Windows.

	max_job_retirement_time = <integer expression>
	An integer-valued expression (in seconds) that does nothing unless
the machine that runs the job has been configured to provide
retirement time. Retirement time is a grace period given to a job to
finish when a resource claim is about to be preempted. The default
behavior in many cases is to take as much retirement time as the
machine offers, so this command will rarely appear in a submit
description file.

When a resource claim is to be preempted, this expression in the
submit file specifies the maximum run time of the job (in seconds,
since the job started). This expression has no effect, if it is
greater than the maximum retirement time provided by the machine
policy. If the resource claim is not preempted, this expression and
the machine retirement policy are irrelevant. If the resource claim
is preempted the job will be allowed to run until the retirement
time expires, at which point it is hard-killed. The job will be
soft-killed when it is getting close to the end of retirement in
order to give it time to gracefully shut down. The amount of
lead-time for soft-killing is determined by the maximum vacating
time granted to the job.

Any jobs running with
nice_user priority
have a default
max_job_retirement_time
of 0, so no retirement time is utilized by default. In all other
cases, no default value is provided, so the maximum amount of
retirement time is utilized by default.

Setting this expression does not affect the job’s resource
requirements or preferences. For a job to only run on a machine with
a minimum MaxJobRetirementTime, or to preferentially run on such
machines, explicitly specify this in the requirements and/or rank
expressions.

	nice_user = <True | False>
	Normally, when a machine becomes available to HTCondor, HTCondor
decides which job to run based upon user and job priorities. Setting
nice_user equal to True tells HTCondor not to use your
regular user priority, but that this job should have last priority
among all users and all jobs. So jobs submitted in this fashion run
only on machines which no other non-nice_user job wants - a true
bottom-feeder job! This is very handy if a user has some jobs they
wish to run, but do not wish to use resources that could instead be
used to run other people’s HTCondor jobs. Jobs submitted in this
fashion have an accounting group. The accounting group is configurable
by setting NICE_USER_ACCOUNTING_GROUP_NAME which defaults to nice-user
The default value is False.

	noop_job = <ClassAd Boolean Expression>
	When this boolean expression is True, the job is immediately
removed from the queue, and HTCondor makes no attempt at running the
job. The log file for the job will show a job submitted event and a
job terminated event, along with an exit code of 0, unless the user
specifies a different signal or exit code.

	noop_job_exit_code = <return value>
	When noop_job is in
the submit description file and evaluates to True, this command
allows the job to specify the return value as shown in the job’s log
file job terminated event. If not specified, the job will show as
having terminated with status 0. This overrides any value specified
with
noop_job_exit_signal .

	noop_job_exit_signal = <signal number>
	When noop_job is in
the submit description file and evaluates to True, this command
allows the job to specify the signal number that the job’s log event
will show the job having terminated with.

	remote_initialdir = <directory-path>
	The path specifies the directory in which the job is to be executed
on the remote machine.

	rendezvousdir = <directory-path>
	Used to specify the shared file system directory to be used for file
system authentication when submitting to a remote scheduler. Should
be a path to a preexisting directory.

	run_as_owner = <True | False>
	A boolean value that causes the job to be run under the login of the
submitter, if supported by the joint configuration of the submit and
execute machines. On Unix platforms, this defaults to True, and
on Windows platforms, it defaults to False. May not be used with
load_profile .
See the HTCondor manual Platform-Specific Information chapter for
administrative details on configuring Windows to support this
option.

	stack_size = <size in bytes>
	This command applies only to Linux platforms.
An integer number of bytes, representing the
amount of stack space to be allocated for the job. This value
replaces the default allocation of stack space, which is unlimited
in size.

	submit_event_notes = <note>
	A string that is appended to the submit event in the job’s log file.
For DAGMan jobs, the string DAG Node: and the node’s name is
automatically defined for submit_event_notes, causing the
logged submit event to identify the DAG node job submitted.

	ulog_execute_attrs = <attribute-list>
	A comma-separated list of machine ClassAd attribute names. The named
attributes and their values are written as part of the execution event
in the job event log.

	use_oauth_services = <list of credential service names>
	A comma-separated list of credential-providing service names for
which the job should be provided credentials for the job execution
environment. The credential service providers must be configured by
the pool admin.

	<credential_service_name>_oauth_permissions[_<handle>] = <scope>
	A string containing the scope(s) that should be requested for
the credential named <credential_service_name>[_<handle>], where
<handle> is optionally provided to differentiate between multiple
credentials from the same credential service provider.

	<credential_service_name>_oauth_resource[_<handle>] = <resource>
	A string containing the resource (or “audience”) that should be
requested for the credential named
<credential_service_name>[_<handle>], where <handle> is optionally
provided to differentiate between multiple credentials from the same
credential service provider.

	MY.<attribute> = <value> or +<attribute> = <value>
	A macro that begins with MY. or a line that begins with a ‘+’ (plus) character instructs
condor_submit to insert the given attribute (without + or MY.) into the job
ClassAd with the given value. The macro can be referenced in other submit statements
by using $(MY.<attribute>). A +<attribute> is converted to MY.<attribute> when the file is read.

Note that setting an job attribute in this way
should not be used in place of one of the specific commands listed
above. Often, the command name does not directly correspond to an
attribute name; furthermore, many submit commands result in actions
more complex than simply setting an attribute or attributes. See
Job ClassAd Attributes
for a list of HTCondor job attributes.

MACROS AND COMMENTS

In addition to commands, the submit description file can contain macros
and comments.

	Macros
	Parameterless macros in the form of
$(macro_name:default initial value) may be used anywhere in
HTCondor submit description files to provide textual substitution at
submit time. Macros can be defined by lines in the form of

<macro_name> = <string>

Several pre-defined macros are supplied by the submit description file
parser. The $(Cluster) or $(ClusterId) macro supplies the
value of the

 ClusterId job
ClassAd attribute, and the $(Process) or $(ProcId) macro
supplies the value of the ProcId job ClassAd attribute.
The $(JobId) macro supplies the full job id. It is equivalent to $(ClusterId).$(ProcId).
These macros are intended to aid in the specification of input/output
files, arguments, etc., for clusters with lots of jobs, and/or could
be used to supply an HTCondor process with its own cluster and
process numbers on the command line.

The $(Node) macro is defined for parallel universe jobs, and is
especially relevant for MPI applications. It is a unique value
assigned for the duration of the job that essentially identifies the
machine (slot) on which a program is executing. Values assigned
start at 0 and increase monotonically. The values are assigned as
the parallel job is about to start.

Recursive definition of macros is permitted. An example of a
construction that works is the following:

foo = bar
foo = snap $(foo)

As a result, foo = snap bar.

Note that both left- and right- recursion works, so

foo = bar
foo = $(foo) snap

has as its result foo = bar snap.

The construction

foo = $(foo) bar

by itself will not work, as it does not have an initial base case.
Mutually recursive constructions such as:

B = bar
C = $(B)
B = $(C) boo

will not work, and will fill memory with expansions.

A default value may be specified, for use if the macro has no
definition. Consider the example

D = $(E:24)

Where E is not defined within the submit description file, the
default value 24 is used, resulting in

D = 24

This is useful for creating submit templates where values can be
passed on the condor_submit command line, but that have a default value as well.
In the above example, if you give a value for E on the command line like this

condor_submit E=99 <submit-file>

The value of 99 is used for E, resulting in

D = 99

To use the dollar sign character ($) as a literal, without macro
expansion, use

$(DOLLAR)

In addition to the normal macro, there is also a special kind of
macro called a substitution macro
 that
allows the substitution of a machine ClassAd attribute value defined
on the resource machine itself (gotten after a match to the machine
has been made) into specific commands within the submit description
file. The substitution macro is of the form:

$$(attribute)

As this form of the substitution macro is only evaluated within the
context of the machine ClassAd, use of a scope resolution prefix
TARGET. or MY. is not allowed.

A common use of this form of the substitution macro is for the
heterogeneous submission of an executable:

executable = povray.$$(OpSys).$$(Arch)

Values for the OpSys and Arch attributes are substituted at
match time for any given resource. This example allows HTCondor to
automatically choose the correct executable for the matched machine.

An extension to the syntax of the substitution macro provides an
alternative string to use if the machine attribute within the
substitution macro is undefined. The syntax appears as:

$$(attribute:string_if_attribute_undefined)

An example using this extended syntax provides a path name to a
required input file. Since the file can be placed in different
locations on different machines, the file’s path name is given as an
argument to the program.

arguments = $$(input_file_path:/usr/foo)

On the machine, if the attribute input_file_path is not defined,
then the path /usr/foo is used instead.

As a special case that only works within the submit file environment
command, the string $$(CondorScratchDir) is expanded to the value
of the job’s scratch directory. This does not work for scheduler universe
or grid universe jobs.

For example, to set PYTHONPATH to a subdirectory of the job scratch dir,
one could set

environment = PYTHONPATH=$$(CondorScratchDir)/some/directory

A further extension to the syntax of the substitution macro allows
the evaluation of a ClassAd expression to define the value. In this
form, the expression may refer to machine attributes by prefacing
them with the TARGET. scope resolution prefix. To place a
ClassAd expression into the substitution macro, square brackets are
added to delimit the expression. The syntax appears as:

$$([ClassAd expression])

An example of a job that uses this syntax may be one that wants to
know how much memory it can use. The application cannot detect this
itself, as it would potentially use all of the memory on a
multi-slot machine. So the job determines the memory per slot,
reducing it by 10% to account for miscellaneous overhead, and passes
this as a command line argument to the application. In the submit
description file will be

arguments = --memory $$([TARGET.Memory * 0.9])

To insert two dollar sign characters ($$) as literals into a ClassAd
string, use

$$(DOLLARDOLLAR)

The environment macro, $ENV, allows the evaluation of an environment
variable to be used in setting a submit description file command.
The syntax used is

$ENV(variable)

An example submit description file command that uses this
functionality evaluates the submitter’s home directory in order to
set the path and file name of a log file:

log = $ENV(HOME)/jobs/logfile

The environment variable is evaluated when the submit description
file is processed.

The $RANDOM_CHOICE macro allows a random choice to be made from a
given list of parameters at submission time. For an expression, if
some randomness needs to be generated, the macro may appear as

$RANDOM_CHOICE(0,1,2,3,4,5,6)

When evaluated, one of the parameters values will be chosen.

	Comments
	Blank lines and lines beginning with a pound sign (‘#’) character
are ignored by the submit description file parser.

Submit Variables

While processing the queue
command in a submit file or from the command line, condor_submit will
set the values of several automatic submit variables so that they can be
referred to by statements in the submit file. With the exception of
Cluster and Process, if these variables are set by the submit file, they
will not be modified during
queue processing.

	ClusterId
	Set to the integer value that the ClusterId attribute that the
job ClassAd will have when the job is submitted. All jobs in a
single submit will normally have the same value for the
ClusterId. If the -dry-run argument is specified, The value
will be 1.

	Cluster
	Alternate name for the ClusterId submit variable. Before HTCondor
version 8.4 this was the only name.

	ProcId
	Set to the integer value that the ProcId attribute of the job
ClassAd will have when the job is submitted. The value will start at
0 and increment by 1 for each job submitted.

	Process
	Alternate name for the ProcId submit variable. Before HTCondor
version 8.4 this was the only name.

	JobId
	Set to $(ClusterId).$(ProcId) so that it will expand to the full
id of the job.

	Node
	For parallel universes, set to the value #pArAlLeLnOdE# or #MpInOdE#
depending on the parallel universe type For other universes it is
set to nothing.

	Step
	Set to the step value as it varies from 0 to N-1 where N is the
number provided on the
queue argument. This
variable changes at the same rate as ProcId when it changes at all.
For submit files that don’t make use of the queue number option,
Step will always be 0. For submit files that don’t make use of any
of the foreach options, Step and ProcId will always be the same.

	ItemIndex
	Set to the index within the item list being processed by the various
queue foreach options. For submit files that don’t make use of any
queue foreach list, ItemIndex will always be 0 For submit files that
make use of a slice to select only some items in a foreach list,
ItemIndex will only be set to selected values.

	Row
	Alternate name for ItemIndex.

	Item
	when a queue foreach option is used and no variable list is
supplied, this variable will be set to the value of the current
item.

The automatic variables below are set before parsing the submit file,
and will not vary during processing unless the submit file itself sets
them.

	ARCH
	Set to the CPU architecture of the machine running condor_submit.
The value will be the same as the automatic configuration variable
of the same name.

	OPSYS
	Set to the name of the operating system on the machine running
condor_submit. The value will be the same as the automatic
configuration variable of the same name.

	OPSYSANDVER
	Set to the name and major version of the operating system on the
machine running condor_submit. The value will be the same as the
automatic configuration variable of the same name.

	OPSYSMAJORVER
	Set to the major version of the operating system on the machine
running condor_submit. The value will be the same as the
automatic configuration variable of the same name.

	OPSYSVER
	Set to the version of the operating system on the machine running
condor_submit. The value will be the same as the automatic
configuration variable of the same name.

	SPOOL
	Set to the full path of the HTCondor spool directory. The value will
be the same as the automatic configuration variable of the same
name.

	IsLinux
	Set to true if the operating system of the machine running
condor_submit is a Linux variant. Set to false otherwise.

	IsWindows
	Set to true if the operating system of the machine running
condor_submit is a Microsoft Windows variant. Set to false
otherwise.

	SUBMIT_FILE
	Set to the full pathname of the submit file being processed by
condor_submit. If submit statements are read from standard input,
it is set to nothing.

	SUBMIT_TIME
	Set to the unix timestamp of the current time when the job is submitted.

	YEAR
	Set to the 4 digit year when the job is submitted.

	MONTH
	Set to the 2 digit month when the job is submitted.

	DAY
	Set to the 2 digit day when the job is submitted.

Exit Status

condor_submit will exit with a status value of 0 (zero) upon success,
and a non-zero value upon failure.

Examples

	Submit Description File Example 1: This example queues three jobs for
execution by HTCondor. The first will be given command line arguments
of 15 and 2000, and it will write its standard output to
foo.out1. The second will be given command line arguments of 30
and 2000, and it will write its standard output to foo.out2.
Similarly the third will have arguments of 45 and 6000, and it
will use foo.out3 for its standard output. Standard error output
(if any) from all three programs will appear in foo.error.

####################
#
submit description file
Example 1: queuing multiple jobs with differing
command line arguments and output files.
#
####################

Executable = foo
Universe = vanilla

Arguments = 15 2000
Output = foo.out0
Error = foo.err0
Queue

Arguments = 30 2000
Output = foo.out1
Error = foo.err1
Queue

Arguments = 45 6000
Output = foo.out2
Error = foo.err2
Queue

Or you can get the same results as the above submit file by using a
list of arguments with the Queue statement

####################
#
submit description file
Example 1b: queuing multiple jobs with differing
command line arguments and output files, alternate syntax
#
####################

Executable = foo
Universe = vanilla

generate different output and error filenames for each process
Output = foo.out$(Process)
Error = foo.err$(Process)

Queue Arguments From (
 15 2000
 30 2000
 45 6000
)

	Submit Description File Example 2: This submit description file
example queues 150 runs of program foo which must have been
compiled and linked for an Intel x86 processor running RHEL 3.
HTCondor will not attempt to run the processes on machines which have
less than 32 Megabytes of physical memory, and it will run them on
machines which have at least 64 Megabytes, if such machines are
available. Stdin, stdout, and stderr will refer to in.0,
out.0, and err.0 for the first run of this program (process
0). Stdin, stdout, and stderr will refer to in.1, out.1, and
err.1 for process 1, and so forth. A log file containing entries
about where and when HTCondor runs, transfers file, if it’s evicted,
and when it terminates, among other things, the various processes in
this cluster will be written into file foo.log.

####################
#
Example 2: Show off some fancy features including
use of pre-defined macros and logging.
#
####################

Executable = foo
Universe = vanilla
Requirements = OpSys == "LINUX" && Arch =="INTEL"
Rank = Memory >= 64
Request_Memory = 32 Mb
Image_Size = 28 Mb

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = foo.log
Queue 150

	Submit Description File Example 3: This example targets the
/bin/sleep program to run only on a platform running a RHEL 6
operating system. The example presumes that the pool contains
machines running more than one version of Linux, and this job needs
the particular operating system to run correctly.

####################
#
Example 3: Run on a RedHat 6 machine
#
####################
Universe = vanilla
Executable = /bin/sleep
Arguments = 30
Requirements = (OpSysAndVer == "RedHat6")

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = sleep.log
Queue

	Command Line example: The following command uses the -append
option to add two commands before the job(s) is queued. A log file
and an error log file are specified. The submit description file is
unchanged.

$ condor_submit -a "log = out.log" -a "error = error.log" mysubmitfile

Note that each of the added commands is contained within quote marks
because there are space characters within the command.

	periodic_remove example: A job should be removed from the queue,
if the total suspension time of the job is more than half of the run
time of the job.

Including the command

periodic_remove = CumulativeSuspensionTime >
 ((RemoteWallClockTime - CumulativeSuspensionTime) / 2.0)

in the submit description file causes this to happen.

General Remarks

	For security reasons, HTCondor will refuse to run any jobs submitted
by user root (UID = 0) or by a user whose default group is group
wheel (GID = 0). Jobs submitted by user root or a user with a default
group of wheel will appear to sit forever in the queue in an idle
state.

	All path names specified in the submit description file must be less
than 256 characters in length, and command line arguments must be
less than 4096 characters in length; otherwise, condor_submit
gives a warning message but the jobs will not execute properly.

	Somewhat understandably, behavior gets bizarre if the user makes the
mistake of requesting multiple HTCondor jobs to write to the same
file, and/or if the user alters any files that need to be accessed by
an HTCondor job which is still in the queue. For example, the
compressing of data or output files before an HTCondor job has
completed is a common mistake.

See Also

HTCondor User Manual

 condor_submit_dag

condor_submit_dag

Manage and queue jobs within a specified DAG for execution on remote
machines

Synopsis

condor_submit_dag [-help | -version]

condor_submit_dag [-no_submit] [-verbose]
[-force] [-dagman DagmanExecutable]
[-maxidle NumberOfProcs] [-maxjobs NumberOfClusters]
[-maxpre NumberOfPreScripts] [-maxpost NumberOfPostScripts]
[-notification value] [-r schedd_name]
[-debug level] [-usedagdir]
[-outfile_dir directory] [-config ConfigFileName]
[-insert_sub_file FileName] [-append Command]
[-batch-name batch_name] [-autorescue 0|1]
[-dorescuefrom number] [-load_save filename]
[-allowversionmismatch]
[-no_recurse] [-do_recurse] [-update_submit]
[-import_env] [-include_env Variables] [-insert_env Key=Value]
[-DumpRescue] [-valgrind] [-DontAlwaysRunPost] [-AlwaysRunPost]
[-priority number]
[-schedd-daemon-ad-file FileName]
[-schedd-address-file FileName] [-suppress_notification]
[-dont_suppress_notification] [-DoRecovery]
DAGInputFile1 [DAGInputFile2 … DAGInputFileN]

Description

condor_submit_dag is the program for submitting a DAG (directed
acyclic graph) of jobs for execution under HTCondor. The program
enforces the job dependencies defined in one or more DAGInputFiles.
Each DAGInputFile contains commands to direct the submission of jobs
implied by the nodes of a DAG to HTCondor. Extensive documentation is in
the HTCondor User Manual section on DAGMan.

Some options may be specified on the command line or in the
configuration or in a node job’s submit description file. Precedence is
given to command line options or configuration over settings from a
submit description file. An example is e-mail notifications. When
configuration variable DAGMAN_SUPPRESS_NOTIFICATION is its default value of
True, and a node job’s submit description file contains

notification = Complete

e-mail will not be sent upon completion, as the value of
DAGMAN_SUPPRESS_NOTIFICATION is enforced.

Options

	-help
	Display usage information and exit.

	-version
	Display version information and exit.

	-no_submit
	Produce the HTCondor submit description file for DAGMan, but do not
submit DAGMan as an HTCondor job.

	-verbose
	Cause condor_submit_dag to give verbose error messages.

	-force
	Require condor_submit_dag to overwrite the files that it
produces, if the files already exist. Note that dagman.out will
be appended to, not overwritten. If rescue files exist then
DAGMan will run the original DAG and rename the rescue files.
Any old-style rescue files will be deleted.

	-dagman DagmanExecutable
	Allows the specification of an alternate condor_dagman executable
to be used instead of the one found in the user’s path. This must be
a fully qualified path.

	-maxidle NumberOfProcs
	Sets the maximum number of idle procs allowed before
condor_dagman stops submitting more node jobs. If this option is
omitted then the number of idle procs is limited by the configuration
variable DAGMAN_MAX_JOBS_IDLE which defaults to 1000.
To disable this limit, set NumberOfProcs to 0. The NumberOfProcs
can be exceeded if a nodes job has a queue command with more than
one proc to queue. i.e. queue 500 will submit all procs even
if NumberOfProcs is 250. In this case DAGMan will wait for
for the number of idle procs to fall below 250 before submitting
more jobs to the condor_schedd.

	-maxjobs NumberOfClusters
	Sets the maximum number of clusters within the DAG that will be
submitted to HTCondor at one time. Each cluster is associated with
one node job no matter how many individual procs are in the cluster.
NumberOfClusters is a non-negative integer. If this option is
omitted then the number of clusters is limited by the configuration
variable DAGMAN_MAX_JOBS_SUBMITTED which defaults to 0 (unlimited).

	-maxpre NumberOfPreScripts
	Sets the maximum number of PRE scripts within the DAG that may be
running at one time. NumberOfPreScripts is a non-negative integer.
If this option is omitted, the number of PRE scripts is limited by
the configuration variable DAGMAN_MAX_PRE_SCRIPTS
which defaults to 20.

	-maxpost NumberOfPostScripts
	Sets the maximum number of POST scripts within the DAG that may be
running at one time. NumberOfPostScripts is a non-negative
integer. If this option is omitted, the number of POST scripts is
limited by the configuration variable DAGMAN_MAX_POST_SCRIPTS
which defaults to 20.

	-notification value
	Sets the e-mail notification for DAGMan itself. This information
will be used within the HTCondor submit description file for DAGMan.
This file is produced by condor_submit_dag. See the description
of notification
within condor_submit manual page for a specification of value.

	-r schedd_name
	Submit condor_dagman to a condor_schedd on a remote machine.
It is assumed that any necessary files will be present on the
remote machine via some method like a shared filesystem between the
local and remote machines. The user also requires the correct
permissions to submit remotely similarly to condor_submit’s
-remote option. If other options are desired, including
transfer of other input files, consider using the -no_submit
option and modifying the resulting submit file for specific needs
before using condor_submit on the prouduced DAGMan job submit file.

	-debug level
	Passes the the level of debugging output desired to
condor_dagman. level is an integer, with values of 0-7
inclusive, where 7 is the most verbose output. See the
condor_dagman manual page for detailed descriptions of these
values. If not specified, no -debug Value is passed to
condor_dagman.

	-usedagdir
	This optional argument causes condor_dagman to run each specified
DAG as if condor_submit_dag had been run in the directory
containing that DAG file. This option is most useful when running
multiple DAGs in a single condor_dagman. Note that the
-usedagdir flag must not be used when running an old-style
Rescue DAG.

	-outfile_dir directory
	Specifies the directory in which the .dagman.out file will be
written. The directory may be specified relative to the current
working directory as condor_submit_dag is executed, or specified
with an absolute path. Without this option, the .dagman.out file
is placed in the same directory as the first DAG input file listed
on the command line.

	-config ConfigFileName
	Specifies a configuration file to be used for this DAGMan run. This
configuration will apply to all DAGs submitted in via DAGMan. Note
that only one custom configuration file can be specified for a DAGMan
workflow which will cause a failure if used in conjuntion with a
DAG using the CONFIG command.

	-insert_sub_file FileName
	Specifies a file to insert into the .condor.sub file created by
condor_submit_dag. The specified file must contain only legal
submit file commands. Only one file can be inserted. The specified
file will override the file set by the configuration variable
DAGMAN_INSERT_SUB_FILE. The specified file is inserted
into the .condor.sub file before the queue command and
any commands specified with the -append option.

	-append Command
	Specifies a command to append to the .condor.sub file created by
condor_submit_dag. The specified command is appended to the
.condor.sub file immediately before the queue command and after
any commands added via -insert_sub_file or DAGMAN_INSERT_SUB_FILE.
Multiple commands are specified by using the -append option
multiple times. Commands with spaces in them must be enclosed in
double quotes.

	-batch-name batch_name
	Set the batch name for this DAG/workflow. The batch name is
displayed by condor_q. If omitted DAGMan will set the batch
name to DagFile+ClusterId where DagFile is the name of
the primary DAG submitted DAGMan and ClusterId is the DAGMan
proper jobs ClusterId. The batch name is set in all jobs
submitted by DAGMan and propagated down into sub-DAGs. Note:
set the batch name to ‘ ‘ (space) to avoid overriding batch
names specified in node job submit files.

	-autorescue 0|1
	Whether to automatically run the newest rescue DAG for the given DAG
file, if one exists (0 = false, 1 = true).

	-dorescuefrom number
	Forces condor_dagman to run the specified rescue DAG number for
the given DAG. A value of 0 is the same as not specifying this
option. Specifying a non-existent rescue DAG is a fatal error.

	-load_save filename
	Specify a file with saved DAG progress to re-run the DAG from. If
given a path DAGMan will attempt to read that file following that
path. Otherwise, DAGMan will check for the file in the DAG’s
save_files sub-directory.

	-allowversionmismatch
	This optional argument causes condor_dagman to allow a version
mismatch between condor_dagman itself and the .condor.sub
file produced by condor_submit_dag (or, in other words, between
condor_submit_dag and condor_dagman). WARNING! This option
should be used only if absolutely necessary. Allowing version
mismatches can cause subtle problems when running DAGs.

	-no_recurse
	This optional argument causes condor_submit_dag to not run
itself recursively on nested DAGs (this is now the default; this
flag has been kept mainly for backwards compatibility).

	-do_recurse
	This optional argument causes condor_submit_dag to run itself
recursively on nested DAGs to pre-produce their .condor.sub
files. DAG nodes specified with the SUBDAG EXTERNAL keyword
or with submit file names ending in .condor.sub are considered
nested DAGs. This flag is useful when the configuration variable
DAGMAN_GENERATE_SUBDAG_SUBMITS is False (Not default).

	-update_submit
	This optional argument causes an existing .condor.sub file to
not be treated as an error; rather, the .condor.sub file will be
overwritten, but the existing values of -maxjobs, -maxidle,
-maxpre, and -maxpost will be preserved.

	-import_env
	This optional argument causes condor_submit_dag to import the
current environment into the environment command of the
.condor.sub file it generates.

	-include_env Variables
	This optional argument takes a comma separated list of enviroment
variables to add to .condor.sub getenv environment filter
which causes found matching environment variables to be added to
the DAGMan manager jobs environment.

	-insert_env Key=Value
	This optional argument takes a delimited string of Key=Value pairs
to explicitly set into the .condor.sub files environment macro.
The base delimiter is a semicolon that can be overriden by setting
the first character in the string to a valid delimiting character.
If multiple -insert_env flags contain the same Key then the last
occurances Value will be set in the DAGMan jobs environment.

	-DumpRescue
	This optional argument tells condor_dagman to immediately dump a
rescue DAG and then exit, as opposed to actually running the DAG.
This feature is mainly intended for testing. The Rescue DAG file is
produced whether or not there are parse errors reading the original
DAG input file. The name of the file differs if there was a parse
error.

	-valgrind
	This optional argument causes the submit description file generated
for the submission of condor_dagman to be modified. The
executable becomes valgrind run on condor_dagman, with a
specific set of arguments intended for testing condor_dagman.
Note that this argument is intended for testing purposes only. Using
the -valgrind option without the necessary valgrind software
installed will cause the DAG to fail. If the DAG does run, it will
run much more slowly than usual.

	-DontAlwaysRunPost
	This option causes the submit description file generated for the
submission of condor_dagman to be modified. It causes
condor_dagman to not run the POST script of a node if the PRE
script fails.

	-AlwaysRunPost
	This option causes the submit description file generated for the
submission of condor_dagman to be modified. It causes
condor_dagman to always run the POST script of a node, even if
the PRE script fails.

	-priority number
	Sets the minimum job priority of node jobs submitted and running
under the condor_dagman job submitted by this
condor_submit_dag command.

	-schedd-daemon-ad-file FileName
	Specifies a full path to a daemon ad file dropped by a
condor_schedd. Therefore this allows submission to a specific
scheduler if several are available without repeatedly querying the
condor_collector. The value for this argument defaults to the
configuration attribute SCHEDD_DAEMON_AD_FILE.

	-schedd-address-file FileName
	Specifies a full path to an address file dropped by a
condor_schedd. Therefore this allows submission to a specific
scheduler if several are available without repeatedly querying the
condor_collector. The value for this argument defaults to the
configuration attribute SCHEDD_ADDRESS_FILE.

	-suppress_notification
	Causes jobs submitted by condor_dagman to not send email
notification for events. The same effect can be achieved by setting
configuration variable DAGMAN_SUPPRESS_NOTIFICATION to True. This
command line option is independent of the -notification command
line option, which controls notification for the condor_dagman
job itself.

	-dont_suppress_notification
	Causes jobs submitted by condor_dagman to defer to content within
the submit description file when deciding to send email notification
for events. The same effect can be achieved by setting configuration
variable DAGMAN_SUPPRESS_NOTIFICATION to False. This
command line flag is independent of the -notification command
line option, which controls notification for the condor_dagman
job itself. If both -dont_suppress_notification and
-suppress_notification are specified with the same command
line, the last argument is used.

	-DoRecovery
	Causes condor_dagman to start in recovery mode. This means that
DAGMan reads the relevant .nodes.log file to restore its previous
state of node completions and failures to continue running.

Exit Status

condor_submit_dag will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

Examples

To run a single DAG:

$ condor_submit_dag diamond.dag

To run a DAG when it has already been run and the output files exist:

$ condor_submit_dag -force diamond.dag

To run a DAG, limiting the number of idle node jobs in the DAG to a
maximum of five:

$ condor_submit_dag -maxidle 5 diamond.dag

To run a DAG, limiting the number of concurrent PRE scripts to 10 and
the number of concurrent POST scripts to five:

$ condor_submit_dag -maxpre 10 -maxpost 5 diamond.dag

To run two DAGs, each of which is set up to run in its own directory:

$ condor_submit_dag -usedagdir dag1/diamond1.dag dag2/diamond2.dag

 condor_suspend

condor_suspend

suspend jobs from the HTCondor queue

Synopsis

condor_suspend [-help | -version]

condor_suspend [-debug] [
-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”] **

Description

condor_suspend suspends one or more jobs from the HTCondor job queue.
When a job is suspended, the match between the condor_schedd and
machine is not been broken, such that the claim is still valid. But, the
job is not making any progress and HTCondor is no longer generating a
load on the machine. If the -name option is specified, the named
condor_schedd is targeted for processing. Otherwise, the local
condor_schedd is targeted. The job(s) to be suspended are identified
by one of the job identifiers, as described below. For any given job,
only the owner of the job or one of the queue super users (defined by
the QUEUE_SUPER_USERS macro) can suspend the job.

Options

	-help
	Display usage information

	-version
	Display version information

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number

	-name scheddname
	Send the command to a machine identified by scheddname

	-addr “<a.b.c.d:port>”
	Send the command to a machine located at “<a.b.c.d:port>”

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	cluster
	Suspend all jobs in the specified cluster

	cluster.process
	Suspend the specific job in the cluster

	user
	Suspend jobs belonging to specified user

	-constraint expression
	Suspend all jobs which match the job ClassAd expression constraint

	-all
	Suspend all the jobs in the queue

Exit Status

condor_suspend will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

Examples

To suspend all jobs except for a specific user:

$ condor_suspend -constraint 'Owner =!= "foo"'

Run condor_continue to continue execution.

 condor_tail

condor_tail

Display the last contents of a running job’s standard output or file

Synopsis

condor_tail [-help] | [-version]

condor_tail [-pool centralmanagerhostname[:portnumber]]
[-name name] [-debug] [-maxbytes numbytes]
[-auto-retry] [-follow] [-no-stdout] [-stderr]
job-ID [filename1] [filename2 …]

Description

condor_tail displays the last bytes of a file in the sandbox of a
running job identified by the command line argument job-ID. stdout
is tailed by default. The number of bytes displayed is limited to 1024,
unless changed by specifying the -maxbytes option. This limit is
applied for each individual tail of a file; for example, when following
a file, the limit is applied each subsequent time output is obtained.

If you specify filename, that name must be specifically listed in the job’s
transfer_output_files.

Options

	-help
	Display usage information and exit.

	-version
	Display version information and exit.

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number.

	-name name
	Query the condor_schedd daemon identified with name.

	-debug
	Display extra debugging information.

	-maxbytes numbytes
	Limits the maximum number of bytes transferred per tail access. If
not specified, the maximum number of bytes is 1024.

	-auto-retry
	Retry the tail of the file(s) every 2 seconds, if the job is not yet
running.

	-follow
	Repetitively tail the file(s), until interrupted.

	-no-stdout
	Do not tail stdout.

	-stderr
	Tail stderr instead of stdout.

Exit Status

The exit status of condor_tail is zero on success.

 condor_test_token

condor_test_token

Create a short-lived SciToken to authenticate with local HTCondor daemons

Synopsis

condor_test_token [–help]

condor_test_token
–issuer issuer-url
–scope scopes
[–subject subject]
[–lifetime lifetime]
[–audience audience]
[–cache cache-location]

Description

condor_test_token generates a temporary signing key, adds it to the
local SciTokens cache for the given issuer, creates a short-lived
token signed by the key, and prints the token to stdout.
Local HTCondor daemons will treat this token like any reguluar token
generated by the given issuer for a short period of time (one hour).

If the HTCondor daemons were started as root, then the tool must be
run as the condor user.

Options

	–help
	Display usage information

	–issuer issuer-url
	Specify the issuer to impersonate

	–scope scopes
	Specify the scope claim for the token

	–subject subject
	specify the sub claim for the token (default is no sub claim)

	–lifetime lifetime
	Specify the lifetime of the token in seconds (default 1 hour)

	–audience audience
	Specify the aud claim for the token (default is no aud claim)

	–cache cache-location
	Specify the SciTokens cache location (default is to find cache via
HTCondor configuration files)

Examples

To create a SciToken with WRITE-level access for user Alice that
appears to be issued by the SciTokens demo issuer:

$ condor_test_token --issuer https://demo.scitokens.org \
 --scope condor:/WRITE --sub alice@foo.org --aud ANY

Exit Status

condor_test_token will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

 condor_token_create

condor_token_create

given a password file, create an authentication token for the IDTOKENS authentication method

Synopsis

condor_token_create -identity user@domain [-key keyid]
[-authz authz …] [-lifetime value]
[-token filename] [-debug]

condor_token_create [-help]

Description

condor_token_create will read an HTCondor password file inside the
SEC_PASSWORD_DIRECTORY (by default, this is the pool password) and use it to create an authentication token.
The authentication token may be subsequently used by clients to authenticate
against a remote HTCondor server. Tokens allow fine-grained authentication
as individual HTCondor users as opposed to pool password, where anything
in possession of the pool password will authenticate as the same user.

An identity must be specified for the token; this will be the client’s
resulting identity at the remote HTCondor server.
If the -lifetime or (one or more) -authz options are specified,
the token will contain additional restrictions that limit what the
client will be authorized to do.
If an attacker is able to access the token, they will be able to authenticate
with the identity listed in the token (subject to the restrictions above).

If successful, the resulting token will be sent to stdout; by specifying
the -token option, it will instead be written to the user’s token directory.
If written to SEC_TOKEN_SYSTEM_DIRECTORY (default /etc/condor/tokens.d),
then the token can be used for daemon-to-daemon authentication.

condor_token_create is only currently supported on Unix platforms.

Options

	-authz authz
	Adds a restriction to the token so it is only valid to be used for
a given authorization level (such as READ, WRITE, DAEMON,
ADVERTISE_STARTD). If multiple authorizations are needed, then
-authz must be specified multiple times. If -authz is not
specified, no authorization restrictions are added and authorization
will be solely based on the token’s identity.
NOTE that -authz cannot be used to give an identity additional
permissions at the remote host. If the server’s admin only permits
the user READ authorization, then specifying -authz WRITE in a
token will not allow the user to perform writes.

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-help
	Display brief usage information and exit.

	-identity user@domain
	Set a specific client identity to be written into the token; a client
will authenticate as this identity with a remote server.

	-key keyid
	Specify a key file to use under the directory specified by the
SEC_PASSWORD_DIRECTORY configuration variable. The key name must
match a file in the password directory; the file’s contents must
be created with condor_store_cred and will be used to sign the
resulting token. If -key is not set, then the default pool
password will be used.

	-lifetime value
	Specify the lifetime, in seconds, for the token to be valid (the
token validity will start when the token is signed). After the
lifetime expires, the token cannot be used for authentication. If
not specified, the token will contain no lifetime restrictions.

	-token filename
	Specifies a filename, relative to the directory in the SEC_TOKEN_DIRECTORY
configuration variable (for example, on Linux this defaults to ~/.condor/tokens.d), where
the resulting token is stored. If not specified, the token will be
sent to stdout.

Examples

To create a token for jane@cs.wisc.edu with no additional restrictions:

$ condor_token_create -identity jane@cs.wisc.edu
eyJhbGciOiJIUzI1NiIsImtpZCI6Il....bnu3NoO9BGM

To create a token for worker-node@cs.wisc.edu that may advertise either
a condor_startd or a condor_master:

$ condor_token_create -identity worker-node@cs.wisc.edu \
 -authz ADVERTISE_STARTD \
 -authz ADVERTISE_MASTER
eyJhbGciOiJIUzI1NiIsImtpZC.....8wkstyj_OnM0SHsOdw

To create a token for friend@cs.wisc.edu that is only valid for 10 minutes,
and then to save it to ~/.condor/tokens.d/friend:

$ condor_token_create -identity friend@cs.wisc.edu -lifetime 600 -token friend

If the administrator would like to create a specific key for signing tokens, token_key,
distinct from the default pool password, they would first use condor_store_cred
to create the key:

$ openssl rand -base64 32 | condor_store_cred -f /etc/condor/passwords.d/token_key

Note, in this case, we created a random 32 character key using SSL instead of providing
a human-friendly password.

Next, the administrator would run run condor_token_create:

$ condor_token_create -identity frida@cs.wisc.edu -key token_key
eyJhbGciOiJIUzI1NiIsImtpZCI6I.....eyJpYXQiOUzlN6QA

If the token_key file is deleted from the SEC_PASSWORD_DIRECTORY, then all of
the tokens issued with that key will be invalidated.

Exit Status

condor_token_create will exit with a non-zero status value if it
fails to read the password file, sign the token, write the output, or
experiences some other error. Otherwise, it will exit 0.

See also

condor_store_cred(1), condor_token_fetch(1), condor_token_request(1), condor_token_list(1)

Author

Center for High Throughput Computing, University of Wisconsin-Madison

 condor_token_fetch

condor_token_fetch

obtain a token from a remote daemon for the IDTOKENS authentication method

Synopsis

condor_token_fetch [-authz authz …] [-lifetime value]
[-pool pool_name] [-name hostname] [-type type]
[-token filename] [-key signing_key]

condor_token_fetch [-help]

Description

condor_token_fetch will attempt to fetch an authentication token from a remote
daemon. If successful, the identity embedded in the token will be the same as client’s
identity at the remote daemon.

Authentication tokens are a useful mechanism to limit an identity’s authorization or
to establish an alternate authentication method. For example, an administrator may
utilize condor_token_fetch to create a token for a monitoring host that is limited
to only the READ authorization. A user may use condor_token_fetch while they
are logged in to a submit host then use the resulting token to submit remotely from
their personal laptop.

If the -lifetime or (one or more) -authz options are specified,
the token will contain additional restrictions that limit what the
client will be authorized to do.

By default, condor_token_fetch will query the local condor_schedd; by specifying
a combination of -pool, -name, or -type, the tool can request tokens
in other pools, on other hosts, or different daemon types.

If successful, the resulting token will be sent to stdout; by specifying
the -token option, it will instead be written to the user’s token directory.

Options

	-authz authz
	Adds a restriction to the token so it is only valid to be used for
a given authorization level (such as READ, WRITE, DAEMON,
ADVERTISE_STARTD). If multiple authorizations are needed, then
-authz must be specified multiple times. If -authz is not
specified, no authorization restrictions are added and authorization
will be solely based on the token’s identity.
NOTE that -authz cannot be used to give an identity additional
permissions at the remote host. If the server’s admin only permits
the user READ authorization, then specifying -authz WRITE in a
token will not allow the user to perform writes.

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-help
	Display brief usage information and exit.

	-lifetime value
	Specify the lifetime, in seconds, for the token to be valid (the
token validity will start when the token is signed). After the
lifetime expires, the token cannot be used for authentication. If
not specified, the token will contain no lifetime restrictions.

	-name hostname
	Request a token from the daemon named hostname in the pool. If not specified,
the locally-running daemons will be used.

	-pool pool_name
	Request a token from a daemon in a non-default pool pool_name.

	-token filename
	Specifies a filename, relative to the directory in the SEC_TOKEN_DIRECTORY
configuration variable (defaulting to ~/.condor/tokens.d), where
the resulting token is stored. If not specified, the token will be
sent to stdout.

	-type type
	Request a token from a specific daemon type type. If not given, a
condor_schedd is used.

	-key signing_key
	Request a token signed by the signing key named signing_key. If not
given, the daemon’s default key will be used.

Examples

To obtain a token with a lifetime of 10 minutes from the default condor_schedd:

$ condor_token_fetch -lifetime 600
eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.eyJpYX...ii7lAfCA

To request a token from bird.cs.wisc.edu which is limited to READ and
WRITE:

$ condor_token_fetch -name bird.cs.wisc.edu \
 -authz READ -authz WRITE
eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.eyJpYX...lJTj54

To create a token from the collector in the htcondor.cs.wisc.edu pool
and then to save it to ~/.condor/tokens.d/friend:

$ condor_token_fetch -identity friend@cs.wisc.edu -lifetime 600 -token friend

Exit Status

condor_token_fetch will exit with a non-zero status value if it
fails to request or read the token. Otherwise, it will exit 0.

See also

condor_token_create(1), condor_token_request(1), condor_token_list(1)

Author

Center for High Throughput Computing, University of Wisconsin-Madison

 condor_token_list

condor_token_list

list all available tokens for IDTOKENS auth

Synopsis

condor_token_list [-dir directory]

condor_token_list -help

Description

condor_token_list parses the tokens available to the current user and
prints them to stdout.

The tokens are stored in files in the directory referenced by
SEC_TOKEN_DIRECTORY; multiple tokens may be saved in each file (one per
line).

The output format is a list of the deserialized contents of each token, along with the file name containing the token, one per
line. It should not be considered machine readable and will be subject to
change in future release of HTCondor.

Options

	-help
	Display brief usage information and exit.

	-dir
	Read tokens from an alternate directory.

Examples

To list all tokens as the current user:

$ condor_token_list
Header: {"alg":"HS256","kid":"POOL"} Payload: {"exp":1565576872,"iat":1565543872,"iss":"htcondor.cs.wisc.edu","scope":"condor:\/DAEMON","sub":"k8sworker@wisc.edu"} File: /home/bucky/.condor/tokens.d/token1
Header: {"alg":"HS256","kid":"POOL"} Payload: {"iat":1572414350,"iss":"htcondor.cs.wisc.edu","scope":"condor:\/WRITE","sub":"bucky@wisc.edu"} File: /home/bucky/.condor/tokens.d/token2

Exit Status

condor_token_list will exit with a non-zero status value if it
fails to read the token directory, tokens are improperly formatted,
or if it experiences some other error. Otherwise, it will exit 0.

See also

condor_token_create(1), condor_token_fetch(1), condor_token_request(1)

Author

Center for High Throughput Computing, University of Wisconsin-Madison

 condor_token_request

condor_token_request

interactively request a token from a remote daemon for the IDTOKENS authentication method

Synopsis

condor_token_request [-identity user@domain] [-authz authz …]
[-lifetime value]
[-pool pool_name] [-name hostname] [-type type]
[-token filename]

condor_token_request [-help]

Description

condor_token_request will request an authentication token from a remote
daemon. Token requests must be approved by the daemon’s administrator using
condor_token_request_approve. Unlike condor_token_fetch, the user doesn’t
need an existing identity with the remote daemon when using
condor_token_request (an anonymous method, such as SSL without a client
certificate will suffice).

If the request is successfully enqueued, the request ID will be printed to stderr;
the administrator will need to know the ID to approve the request. condor_token_request
will wait until the request is approved, timing out after an hour.

The token request mechanism provides a powerful way to bootstrap authentication
in a HTCondor pool - a remote user can request an identity, verify the authenticity of
the request out-of-band with the remote daemon’s administrator, and
then securely recieve their authentication token.

By default, condor_token_request will query the local condor_collector; by specifying
a combination of -pool, -name, or -type, the tool can request tokens
in other pools, on other hosts, or different daemon types.

If successful, the resulting token will be sent to stdout; by specifying
the -token option, it will instead be written to the user’s token directory.

Options

	-authz authz
	Adds a restriction to the token so it is only valid to be used for
a given authorization level (such as READ, WRITE, DAEMON,
ADVERTISE_STARTD). If multiple authorizations are needed, then
-authz must be specified multiple times. If -authz is not
specified, no authorization restrictions are added and authorization
will be solely based on the token’s identity.
NOTE that -authz cannot be used to give an identity additional
permissions at the remote host. If the server’s admin only permits
the user READ authorization, then specifying -authz WRITE in a
token will not allow the user to perform writes.

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-help
	Display brief usage information and exit.

	-identity user@domain
	Request a specific identity from the daemon; a client using the resulting token
will authenticate as this identity with a remote server. If not specified, the
token will be issued for the condor identity.

	-lifetime value
	Specify the lifetime, in seconds, for the token to be valid (the
token validity will start when the token is signed). After the
lifetime expires, the token cannot be used for authentication. If
not specified, the token will contain no lifetime restrictions.

	-name hostname
	Request a token from the daemon named hostname in the pool. If not specified,
the locally-running daemons will be used.

	-pool pool_name
	Request a token from a daemon in a non-default pool pool_name.

	-token filename
	Specifies a filename, relative to the directory in the SEC_TOKEN_DIRECTORY
configuration variable (defaulting to ~/.condor/tokens.d), where
the resulting token is stored. If not specified, the token will be
sent to stdout.

	-type type
	Request a token from a specific daemon type type. If not given, a
condor_collector is used.

Examples

To obtain a token with a lifetime of 10 minutes from the default condor_collector
(the token is not returned until the daemon’s administrator takes action):

$ condor_token_request -lifetime 600
Token request enqueued. Ask an administrator to please approve request 6108900.
eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.eyJpYX...ii7lAfCA

To request a token from bird.cs.wisc.edu which is limited to READ and
WRITE:

$ condor_token_request -name bird.cs.wisc.edu \
 -identity bucky@cs.wisc.edu
 -authz READ -authz WRITE
Token request enqueued. Ask an administrator to please approve request 2578154
eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.eyJpYX...lJTj54

To create a token from the collector in the htcondor.cs.wisc.edu pool
and then to save it to ~/.condor/tokens.d/friend:

$ condor_token_request -pool htcondor.cs.wisc.edu \
 -identity friend@cs.wisc.edu \
 -lifetime 600 -token friend
Token request enqueued. Ask an administrator to please approve request 2720841.

Exit Status

condor_token_request will exit with a non-zero status value if it
fails to request or recieve the token. Otherwise, it will exit 0.

See also

condor_token_create(1), condor_token_fetch(1), condor_token_request_approve(1), condor_token_request_auto_approve(1), condor_token_list(1)

Author

Center for High Throughput Computing, University of Wisconsin-Madison

 condor_token_request_approve

condor_token_request_approve

approve a token request at a remote daemon

Synopsis

condor_token_request_approve [-reqid val]
[-pool pool_name] [-name hostname] [-type type]
[-debug]

condor_token_request_approve [-help]

Description

condor_token_request_approve will approve an request for an authentication token
queued at a remote daemon. Once approved, the requester will be able to fetch a
fully signed token from the daemon and use it to authenticate with the IDTOKENS method.

NOTE that any user can request a very powerful token, even allowing them to be
the HTCondor administrator; such requests can only be approved by an administrator.
Review token requests carefully to ensure you understand
what identity you are approving. The only safe way to approve a request is to
have the request ID communicated out-of-band and verify it matches the expected,
request contents, ensuring the request’s authenticity.

By default, users can only approve requests for their own identity (that is, a user
authenticating as bucky@cs.wisc.edu can only approve token requests for the identity
bucky@cs.wisc.edu). Users with ADMINISTRATOR authorization can approve any
request.

If you want to approve multiple requests at once, do not provide the -reqid flag;
in that case, the utility will iterate through all known requests.

By default, condor_token_request_approve will query the local condor_collector;
by specifying a combination of -pool, -name, or -type, the tool can
request tokens in other pools, on other hosts, or different daemon types.

Options

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-help
	Display brief usage information and exit.

	-name hostname
	Request a token from the daemon named hostname in the pool. If not specified,
the locally-running daemons will be used.

	-pool pool_name
	Request a token from a daemon in a non-default pool pool_name.

	-reqid val
	Provides the specific request ID to approve. Request IDs should be communicated
out of band to the administrator through a trusted channel.

	-type type
	Request a token from a specific daemon type type. If not given, a
condor_collector is used.

Examples

To approve the tokens at the default condor_collector, one-by-one:

$ condor_token_request_approve
RequestedIdentity = "bucky@cs.wisc.edu"
AuthenticatedIdentity = "anonymous@ssl"
PeerLocation = "10.0.0.42"
ClientId = "bird.cs.wisc.edu-516"
RequestId = "8414912"

To approve, please type 'yes'
yes
Request 8414912 approved successfully.

When a token is approved, the corresponding condor_token_request process
will complete. Note the printed request includes both the requested identity
(which will be written into the issued token) and the authenticated identity
of the token requester. In this case, anonymous@ssl indicates the connection
was established successfully over SSL but the remote side is anonymous (did not
contain a client SSL certificate).

Exit Status

condor_token_request_approve will exit with a non-zero status value if it
fails to communicate with the remote daemon. Otherwise, it will exit 0.

See also

condor_token_request(1), condor_token_fetch(1), condor_token_request_auto_approve(1)

Author

Center for High Throughput Computing, University of Wisconsin-Madison

 condor_token_request_auto_approve

condor_token_request_auto_approve

generate a new rule to automatically approve token requests

Synopsis

condor_token_request_auto_approve -netblock network -lifetime val
[-pool pool_name] [-name hostname] [-type type]
[-debug]

condor_token_request_auto_approve [-help]

Description

condor_token_request_auto_approve will install a temporary auto-approval rule for token requests.
Any token request matching the auto-approval rule will be immediately approved instead
of requiring administrator approval

Automatic request approval is intended to help administrators initially setup their cluster.
To install a new rule, you must specify both a network and a lifetime; requests are only
approved if they come from that given source network, are within the rule lifetime, are
limited to ADVERTISE_SCHEDD or ADVERTISE_STARTD permissions, and are for the
condor identity. When a condor_startd or condor_schedd is started and cannot
communicate with the collector, they will automatically generate token requests that meet
the last two conditions.

It is not safe to enable auto-approval when users have access to any of the involved hosts
or networks.

To remove auto-approval rules, run condor_reconfig against the remote daemon.:

By default, condor_token_request_auto_approve will install rules at the local condor_collector;
by specifying a combination of -pool, -name, or -type, the tool can
request tokens in other pools, on other hosts, or different daemon types.

Options

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-help
	Display brief usage information and exit.

	-lifetime value
	Specify the lifetime, in seconds, for the auto-request rule to be valid.

	-name hostname
	Request a token from the daemon named hostname in the pool. If not specified,
the locally-running daemons will be used.

	-netblock network
	A netblock of the form IP_ADDRESS / SUBNET_MASK specifying the source of authorized
requests. Examples may include 129.93.12.0/24 or 10.0.0.0/26.

	-pool pool_name
	Request a token from a daemon in a non-default pool pool_name.

	-type type
	Request a token from a specific daemon type type. If not given, a
condor_collector is used.

Examples

To automatically approve token requests to the default condor_collector coming from the
10.0.0.0/26 subnet for the next 10 minutes:

$ condor_token_request_auto_approve -lifetime 600 -netblock 10.0.0.0/26
Successfully installed auto-approval rule for netblock 10.0.0.0/26 with lifetime of 0.17 hours
Remote daemon reports no un-approved requests pending.

Exit Status

condor_token_request_auto_approve will exit with a non-zero status value if it
fails to communicate with the remote daemon or has insufficient authorization.
Otherwise, it will exit 0.

See also

condor_token_request(1), condor_token_request_approve(1)

Author

Center for High Throughput Computing, University of Wisconsin-Madison

 condor_token_request_list

condor_token_request_list

list all token requests at a remote daemon

Synopsis

condor_token_request_list
[-pool pool_name] [-name hostname] [-type type] [-json]
[-debug]

condor_token_request_list [-help]

Description

condor_token_request_list will list all requests for tokens currently
queued at a remote daemon. This allows the administrator to review token requests;
these requests may be subsequently approved with an invocation of condor_token_request_approve.

An individual with ADMINISTRATOR authorization may see all queued token requests;
otherwise, users can only see token requests for their own identity.

By default, condor_token_request_list will query the local condor_collector;
by specifying a combination of -pool, -name, or -type, the tool can
request tokens in other pools, on other hosts, or different daemon types.

Options

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-help
	Display brief usage information and exit.

	-name hostname
	Request a token from the daemon named hostname in the pool. If not specified,
the locally-running daemons will be used.

	-pool pool_name
	Request a token from a daemon in a non-default pool pool_name.

	-json
	Causes all pending requests to be printed as JSON objects.

	-type type
	Request a token from a specific daemon type type. If not given, a
condor_collector is used.

Examples

To list the tokens at the default condor_collector:

$ condor_token_request_list
RequestId = "4303687"
ClientId = "worker0000.wisc.edu-960"
PeerLocation = "10.0.4.13"
AuthenticatedIdentity = "anonymous@ssl"
RequestedIdentity = "condor@cs.wisc.edu"
LimitAuthorization = "ADVERTISE_STARTD"

RequestedIdentity = "bucky@cs.wisc.edu"
AuthenticatedIdentity = "bucky@cs.wisc.edu"
PeerLocation = "129.93.244.211"
ClientId = "desktop0001.wisc.edu-712"
RequestId = "4413973"

Exit Status

condor_token_request_list will exit with a non-zero status value if it
fails to communicate with the remote daemon or fails to authenticate.
Otherwise, it will exit 0.

See also

condor_token_request(1), condor_token_request_approve(1), condor_token_list(1)

Author

Center for High Throughput Computing, University of Wisconsin-Madison

 condor_top

condor_top

Display status and runtime statistics of a HTCondor daemon

Synopsis

condor_top [-h]

condor_top [-l]
[-p centralmanagerhostname[:portname]] [-n name]
[-d delay] [-c columnset] [-s sortcolumn]
[–attrs=<attr1,attr2,…>] [daemon options]

condor_top [-c columnset] [-s sortcolumn]
[–attrs=<attr1,attr2,…>] [classad-filename classad-filename]

Description

condor_top displays the status (e.g. memory usage and duty cycle) of
a HTCondor daemon and calculates and displays runtime statistics for the
daemon’s subprocesses.

When no arguments are specified, condor_top displays the status for
the primary daemon based on the role of the current machine by scanning
the DAEMON_LIST configuration setting. If multiple daemons are
listed, condor_top will monitor one of (in decreasing priority):
condor_schedd, condor_startd, condor_collector,
condor_negotiator, condor_master.

If the condor_collector returns multiple ClassAds for the chosen
daemon type, condor_top will display stats from the first ClassAd
returned. Results can be constrained by passing the NAME of a
specific daemon with -n.

The default delay is STATISTICS_WINDOW_QUANTUM, which is 4 minutes
(240 seconds) in a default HTCondor configuration. Setting the delay
smaller can be helpful for finding spikes of activity, but setting the
delay too small will lead to poor measurements of the duty cycle and of
the runtime statistics.

condor_top can run in a top-like “live” mode by passing -l. The
live mode is similar to the *nix top command, with stats updating every
delay seconds. Redirecting stdout will disable live mode even if
-l is set. To exit condor_top while in live mode, issue Ctrl-C.

condor_top can be passed two files containing ClassAds from the same
HTCondor daemon, in which case the condor_collector will not be
queried but rather the statistics will be computed and displayed
immediately from the two ClassAds. Only -c, -s, and -attrs options are
considered when passing ClassAds via files.

The following subprocess stat columns may be displayed (*default):

	Item
	*Name of the subprocess

	InstRt
	*Total runtime between the two ClassAds

	InstAvg
	*Mean runtime per execution between the two ClassAds

	TotalRt
	Total runtime since daemon start

	TotAvg
	*Mean runtime per execution since daemon start

	TotMax
	*Max runtime per execution since daemon start

	TotMin
	Min runtime per execution since daemon start

	RtPctAvg
	*Percent of mean runtime per execution. The ratio of InstAvg to
TotAvg, expressed as a percentage

	RtPctMax
	Percent of max runtime per execution. The ratio of (InstAvg -
TotMin) to (TotMax - TotMin), expressed as a percentage

	RtSigmas
	Standard deviations from mean runtime. The ratio of (InstAvg -
TotAvg) to the standard deviation in runtime per execution since
daemon start

	InstCt
	Executions between the two ClassAds

	InstRate
	*Executions per second between the two ClassAds

	TotalCt
	Total executions (counts) since daemon start

	AvgRate
	*Mean count rate. Executions per second since daemon start

	CtPctAvg
	Percent of mean count rate. The ratio of InstRate to AvgRate,
expressed as a percentage.

Options

	-h
	Displays the list of options.

	-l
	Puts condor_top in to a live, continually updating mode.

	-p centralmanagerhostname[:portname]
	Query the daemon via the specified central manager. If omitted, the
value of the configuration variable COLLECTOR_HOST is used.

	-n name
	Query the daemon named name. If omitted, the value used will
depend on the type of daemon queried (see Daemon Options).

	-d delay
	Specifies the delay between ClassAd updates, in integer seconds.
If omitted, the value of the configuration variable
STATISTICS_WINDOW_QUANTUM is used.

	-c columnset
	Display columnset set of columns. Valid columnset s are:
default, runtime, count, all.

	-s sortcolumn
	Sort table by sortcolumn. Defaults to InstRt.

	-attrs=<attr1,attr2,…>
	
Comma-delimited list of additional ClassAd attributes to monitor.

Daemon Options

	-collector
	Monitor condor_collector ClassAds. If -n is not set, the
constraint “Machine == COLLECTOR_HOST” will be used.

	-negotiator
	Monitor condor_negotiator ClassAds. If -n is not set, the
constraint “Machine == COLLECTOR_HOST” will be used.

	-master
	Monitor condor_master ClassAds. If -n is not set, the constraint
“Machine == COLLECTOR_HOST” will be used.

	-schedd
	Monitor condor_schedd ClassAds. If -n is not set, the constraint
“Machine == FULL_HOSTNAME” will be tried, otherwise the first
condor_schedd ClassAd returned from the condor_collector will
be used.

	-startd
	Monitor condor_startd ClassAds. If -n is not set, the constraint
“Machine == FULL_HOSTNAME” will be tried, otherwise the first
condor_startd ClassAd returned from the condor_collector will
be used.

 condor_transfer_data

condor_transfer_data

transfer spooled data

Synopsis

condor_transfer_data [-help | -version]

condor_transfer_data [
-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”]
cluster… | cluster.process… | user… |
-constraint expression …

condor_transfer_data [
-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”] -all

Description

condor_transfer_data causes HTCondor to transfer spooled data. It is
meant to be used in conjunction with the -spool option of
condor_submit, as in

$ condor_submit -spool mysubmitfile

Submission of a job with the -spool option causes HTCondor to spool
all input files, the job event log, and any proxy across a connection to
the machine where the condor_schedd daemon is running. After spooling
these files, the machine from which the job is submitted may disconnect
from the network or modify its local copies of the spooled files.

When the job finishes, the job has JobStatus = 4, meaning that the
job has completed. The output of the job is spooled, and
condor_transfer_data retrieves the output of the completed job.

Options

	-help
	Display usage information

	-version
	Display version information

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number

	-name scheddname
	Send the command to a machine identified by scheddname

	-addr “<a.b.c.d:port>”
	Send the command to a machine located at “<a.b.c.d:port>”

	cluster
	Transfer spooled data belonging to the specified cluster

	cluster.process
	Transfer spooled data belonging to a specific job in the cluster

	user
	Transfer spooled data belonging to the specified user

	-constraint expression
	Transfer spooled data for jobs which match the job ClassAd
expression constraint

	-all
	Transfer all spooled data

Exit Status

condor_transfer_data will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

 condor_transform_ads

condor_transform_ads

Transform ClassAds according to specified rules, and output the
transformed ClassAds.

Synopsis

condor_transform_ads [-help [rules]]

condor_transform_ads [-rules rules-file]
[-jobtransforms name-list]
[-jobroute route-name]
[-in[:<form>] ** *infile*] [-out[:<form>[,
nosort]] ** outfile] [<key>=<value>] [-long] [-json]
[-xml] [-verbose] [-terse] [-debug]
[-unit-test] [-testing] [-convertoldroutes] [infile1
…infileN]

Note that one or more transforms must be specified in the form of a rules
file or a JOB_TRANSFORM_ or JOB_ROUTER_ROUTE_ name and at least one input file must be
specified. Transforms will be applied in the order they are given on the command
line. If a rules file has a TRANSFORM statement with arguments it must be the last
rules file. If no output file is specified, output will be written to
stdout.

Description

condor_transform_ads reads ClassAds from a set of input files,
transforms them according to rules defined in a rules files or read from
configuration, and outputs the resulting transformed ClassAds.

See the ClassAd Transforms section for a description of the transform language.

Options

	-help [rules]
	Display usage information and exit. -help rules displays
information about the available transformation rules.

	-rules rules-file
	Specifies the file containing definitions of the transformation
rules, or configuration that declares a JOB_TRANSFORM_<name> or
JOB_ROUTER_ROUTE_<name> variable for use in a subsequent -jobtransforms <name>
or -jobroute <name> argument.

	-jobtransforms name-list
	A comma-separated list of more transform names. The transform rules will be read
from a previous rules file or the configured JOB_TRANSFORM_<name> values

	-jobroute name
	A job route. The transform rules will be read
from a previous rules file or the configured JOB_ROUTER_ROUTE_<name> values

	-in[:<form>] infile
	Specifies an input file containing ClassAd(s) to be transformed.
<form>, if specified, is one of:

	long: traditional long form (default)

	xml: XML form

	json: JSON ClassAd form

	new: “new” ClassAd form without newlines

	auto: guess format by reading the input

If - is specified for infile, input is read from stdin.

	-out[:<form>[, nosort] outfile
	Specifies an output file to receive the transformed ClassAd(s).
<form>, if specified, is one of:

	long: traditional long form (default)

	xml: XML form

	json: JSON ClassAd form

	new: “new” ClassAd form without newlines

	auto: use the same format as the first input

ClassAds are storted by attribute unless nosort is specified.

	[<key>=<value>]
	Assign key/value pairs before rules file is parsed; can be used to
pass arguments to rules. (More detail needed here.)

	-long
	Use long form for both input and output ClassAd(s). (This is the
default.)

	-json
	Use JSON form for both input and output ClassAd(s).

	-xml
	Use XML form for both input and output ClassAd(s).

	-verbose
	Verbose mode, echo to stderr the transform names as they are applied
and individual transform rules as they are executed.

	-terse
	Disable the -verbose option.

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

Exit Status

condor_transform_ads will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

Examples

Here’s a simple example that transforms the given input ClassAds
according to the given rules:

File: my_input
ResidentSetSize = 500
DiskUsage = 2500000
NumCkpts = 0
TransferrErr = false
Err = "/dev/null"

File: my_rules
EVALSET MemoryUsage (ResidentSetSize / 100)
EVALMACRO WantDisk = (DiskUsage * 2)
SET RequestDisk ($(WantDisk) / 1024)
RENAME NumCkpts NumCheckPoints
DELETE /(.+)Err/

Command:
condor_transform_ads -rules my_rules -in my_input

Output:
DiskUsage = 2500000
Err = "/dev/null"
MemoryUsage = 5
NumCheckPoints = 0
RequestDisk = (5000000 / 1024)
ResidentSetSize = 500

 condor_update_machine_ad

condor_update_machine_ad

update a machine ClassAd

Synopsis

condor_update_machine_ad [-help | -version]

condor_update_machine_ad
[-pool centralmanagerhostname[:portnumber]]
[-name startdname] path/to/update-ad

Description

condor_update_machine_ad modifies the specified condor_startd
daemon’s machine ClassAd. The ClassAd in the file given by
path/to/update-ad represents the changed attributes. The changes
persists until the condor_startd restarts. If no file is specified on
the command line, condor_update_machine_ad reads the update ClassAd
from stdin.

Contents of the file or stdin must contain a complete ClassAd. Each
line must be terminated by a newline character, including the last line
of the file. Lines are of the form

<attribute> = <value>

Changes to certain ClassAd attributes will cause the condor_startd to
regenerate values for other ClassAd attributes. An example of this is
setting HasVM. This will cause OfflineUniverses,
VMOfflineTime, and VMOfflineReason to change.

Options

	-help
	Display usage information and exit

	-version
	Display the HTCondor version and exit

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number

	-name startdname
	Send the command to a machine identified by startdname

General Remarks

This tool is intended for the use of system administrators when dealing
with offline universes.

Examples

To re-enable matching with the VM universe jobs, place on stdin a
complete ClassAd (including the ending newline character) to change the
value of ClassAd attribute HasVM:

$ echo "HasVM = True
" | condor_update_machine_ad

To prevent vm universe jobs from matching with the machine:

$ echo "HasVM = False
" | condor_update_machine_ad

To prevent vm universe jobs from matching with the machine and specify a
reason:

$ echo "HasVM = False
VMOfflineReason = \"Cosmic rays.\"
" | condor_update_machine_ad

Note that the quotes around the reason are required by ClassAds, and
they must be escaped because of the shell. Using a file instead of
stdin may be preferable in these situations, because neither quoting
nor escape characters are needed.

Exit Status

condor_update_machine_ad will exit with a status value of 0 (zero)
upon success, and it will exit with the value 1 (one) upon failure.

 condor_updates_stats

condor_updates_stats

Display output from condor_status

Synopsis

condor_updates_stats [–help | -h] | [–version]

condor_updates_stats [–long | -l]
[–history=<min>-<max>] [–interval=<seconds>] [–notime]
[–time] [–summary | -s]

Description

condor_updates_stats parses the output from condor_status, and it
displays the information relating to update statistics in a useful
format. The statistics are displayed with the most recent update first;
the most recent update is numbered with the smallest value.

The number of historic points that represent updates is configurable on
a per-source basis by configuration variable
COLLECTOR_DAEMON_HISTORY_SIZE
 .

Options

	-help
	Display usage information and exit.

	-h
	Same as -help.

	-version
	Display HTCondor version information and exit.

	-long
	All update statistics are displayed. Without this option, the
statistics are condensed.

	-l
	Same as -long.

	-history=<min>-<max>
	Sets the range of update numbers that are printed. By default, the
entire history is displayed. To limit the range, the minimum and/or
maximum number may be specified. If a minimum is not specified,
values from 0 to the maximum are displayed. If the maximum is not
specified, all values after the minimum are displayed. When both
minimum and maximum are specified, the range to be displayed
includes the endpoints as well as all values in between. If no =
sign is given, command-line parsing fails, and usage information is
displayed. If an = sign is given, with no minimum or maximum values,
the default of the entire history is displayed.

	-interval=<seconds>
	The assumed update interval, in seconds. Assumed times for the the
updates are displayed, making the use of the -time option
together with the -interval option redundant.

	-notime
	Do not display assumed times for the the updates. If more than one
of the options -notime and -time are provided, the final one
within the command line parsed determines the display.

	-time
	Display assumed times for the the updates. If more than one of the
options -notime and -time are provided, the final one within
the command line parsed determines the display.

	-summary
	Display only summary information, not the entire history for each
machine.

	-s
	Same as -summary.

Exit Status

condor_updates_stats will exit with a status value of 0 (zero) upon
success, and it will exit with a nonzero value upon failure.

Examples

Assuming the default of 128 updates kept, and assuming that the update
interval is 5 minutes, condor_updates_stats displays:

$ condor_status -l host1 | condor_updates_stats -\-interval=300
(Reading from stdin)
*** Name/Machine = 'HOST1.cs.wisc.edu' MyType = 'Machine' ***
 Type: Main
 Stats: Total=2277, Seq=2276, Lost=3 (0.13%)
 0 @ Mon Feb 16 12:55:38 2004: Ok
 ...
 28 @ Mon Feb 16 10:35:38 2004: Missed
 29 @ Mon Feb 16 10:30:38 2004: Ok
 ...
 127 @ Mon Feb 16 02:20:38 2004: Ok

Within this display, update numbered 27, which occurs later in time than
the missed update numbered 28, is Ok. Each change in state, in reverse
time order, displays in this condensed version.

 condor_upgrade_check

condor_upgrade_check

Check a current install of HTCondor for incompatibilites that may cause
issues when upgrading to a new major version.

Synopsis

condor_upgrade_check [–help]

condor_upgrade_check [–CE] [–all]
[–ignore TAG {TAG…}] [–only TAG {TAG…}]
[–tags] [–warnings] [–no-warnings]
[–dump] [–verbose]

Description

condor_upgrade_check is a tool intended to be used by administrators
before upgrading an HTCondor install to a new major version. This tool
will perform various checks for the current installation against known
incompatibilities introduced in the Feature series of HTCondor for
a given major version. If a check fails, indicating the current install
will have issues with an upgrade, then the tool will do its best to
suggest a course of action to take.

condor_upgrade_check is intended to be ran on a per-host basis for
upgrading a system. Since the CHTC recommends upgrading between major
versions in steps (i.e. V23 -> V24 -> V25), the available checks change
between major versions. New ones will be added and old ones removed.

Some checks ran by condor_upgrade_check are classified as warnings.
These checks output warnings about incompatibilites that the tool is
not capable of testing and thus give accurrate feedback. Warnings tend
to unconditionally output information.

Note

Some checks ran by this tool require the tool to be ran as root.
If this tool is executed with out root privileges or on a Windows
host then any checks that require root will be skipped.

Options

	-h/–help
	Display condor_upgrade_checks usage to the terminal

	–CE
	Run available checks for installed HTCondor-CE on host

	-a/–all
	Run all available checks ignoring the version check to run

	-i/–ignore TAG [TAG …]
	Ignore checks with a matching TAG. Takes precendence over -only

	-o/–only TAG [TAG …]
	Only run checks with a matching TAG. If given the TAG WARNINGS
then only checks classified as warnings will be ran.

	-w/–warnings/–no-warnings
	Enable/disable output of checks classified as warnings. Default is enabled.

	-t/–tags
	Display all available check TAGS to be used by –only and –ignore

	-d/–dump
	Display information about all available checks.

	-v/–verbose
	Increase tool verbosity

Examples

Check hosts installed HTCondor for potential issues caused by incompatibilities
when upgrading between major versions.

condor_upgrade_check

Check hosts installed HTCondor-CE for potential issues caused by incompatibilites
when upgrading between major versions.

condor_upgrade_check -ce

List all available check TAGS

condor_upgrade_check --tags

List information about all available checks

condor_upgrade_check --dump

Run checks while ignoring specific checks for a host installed HTCondor

condor_upgrade_check --ignore BAR BAZ

Run only checks classified as warnings for a host installed HTCondor

condor_upgrade_check --only warnings

Exit Status

Returns 0 when tool is finished running.
Returns 1 for fatal internal errors.

 condor_urlfetch

condor_urlfetch

fetch configuration given a URL

Synopsis

condor_urlfetch [-<daemon>] url local-url-cache-file

Description

Depending on the command line arguments, condor_urlfetch sends the
result of a query from the url to both standard output and to a file
specified by local-url-cache-file, or it sends the contents of the
file specified by local-url-cache-file to standard output.

condor_urlfetch is intended to be used as the program to run when
defining configuration, such as in the nonfunctional example:

LOCAL_CONFIG_FILE = $(LIBEXEC)/condor_urlfetch -$(SUBSYSTEM) \
 http://www.example.com/htcondor-baseconfig local.config |

The pipe character (|) at the end of this definition of the location of
a configuration file changes the use of the definition. It causes the
command listed on the right hand side of this assignment statement to be
invoked, and standard output becomes the configuration. The value of
$(SUBSYSTEM) becomes the daemon that caused this configuration to be
read. If $(SUBSYSTEM) evaluates to MASTER, then the URL query
always occurs, and the result is sent to standard output as well as
written to the file specified by argument local-url-cache-file. When
$(SUBSYSTEM) evaluates to a daemon other than MASTER, then the
URL query only occurs if the file specified by local-url-cache-file
does not exist. If the file specified by local-url-cache-file does
exist, then the contents of this file is sent to standard output.

Note that if the configuration kept at the URL site changes, and
reconfiguration is requested, the -<daemon> argument needs to be
-MASTER. This is the only way to guarantee that there will be a
query of the changed URL contents, such that they will make their way
into the configuration.

Options

	-<daemon>
	The upper case name of the daemon issuing the request for the
configuration output. If -MASTER, then the URL query always
occurs. If a daemon other than -MASTER, for example STARTD
or SCHEDD, then the URL query only occurs if the file defined by
local-url-cache-file does not exist.

Exit Status

condor_urlfetch will exit with a status value of 0 (zero) upon
success and non zero otherwise.

 condor_userlog

condor_userlog

Display and summarize job statistics from job log files.

Synopsis

condor_userlog [-help] [-total | -raw] [-debug]
[-evict] [-j cluster | cluster.proc] [-all]
[-hostname] logfile …

Description

condor_userlog parses the information in job log files and displays
summaries for each workstation allocation and for each job. See the
condor_submit manual page for instructions for specifying that
HTCondor write a log file for your jobs.

If -total is not specified, condor_userlog will first display a
record for each workstation allocation, which includes the following
information:

	Job
	The cluster/process id of the HTCondor job.

	Host
	The host where the job ran. By default, the host’s IP address is
displayed. If -hostname is specified, the host name will be
displayed instead.

	Start Time
	The time (month/day hour:minute) when the job began running on the
host.

	Evict Time
	The time (month/day hour:minute) when the job was evicted from the
host.

	Wall Time
	The time (days+hours:minutes) for which this workstation was
allocated to the job.

	Good Time
	The allocated time (days+hours:min) which contributed to the
completion of this job. If the job exited during the allocation,
then this value will equal “Wall Time.” Otherwise, it will 0+00:00;
self-checkpoint are presently ignored.

	CPU Usage
	The CPU time (days+hours:min) which contributed to the completion of
this job.

condor_userlog will then display summary statistics per host:

	Host/Job
	The IP address or host name for the host.

	Wall Time
	The workstation time (days+hours:minutes) allocated by this host to
the jobs specified in the query. By default, all jobs in the log are
included in the query.

	Good Time
	The time (days+hours:minutes) allocated on this host which
contributed to the completion of the jobs specified in the query.

	CPU Usage
	The CPU time (days+hours:minutes) obtained from this host which
contributed to the completion of the jobs specified in the query.

	Avg Alloc
	The average length of an allocation on this host
(days+hours:minutes).

	Avg Lost
	The average amount of work lost (days+hours:minutes) when a job was
evicted from this host.

	Goodput
	This percentage is computed as Good Time divided by Wall Time.

	Util.
	This percentage is computed as CPU Usage divided by Good Time.

condor_userlog will then display summary statistics per job:

	Host/Job
	The cluster/process id of the HTCondor job.

	Wall Time
	The total workstation time (days+hours:minutes) allocated to this
job.

	Good Time
	The total time (days+hours:minutes) allocated to this job which
contributed to the job’s completion.

	CPU Usage
	The total CPU time (days+hours:minutes) which contributed to this
job’s completion.

	Avg Alloc
	The average length of a workstation allocation obtained by this job
in minutes (days+hours:minutes).

	Avg Lost
	The average amount of work lost (days+hours:minutes) when this job
was evicted from a host; self-checkpoints are presently ignored.

	Goodput
	This percentage is computed as Good Time divided by Wall Time.

	Util.
	This percentage is computed as CPU Usage divided by Good Time.

Finally, condor_userlog will display a summary for all hosts and
jobs.

Options

	-help
	Get a brief description of the supported options

	-total
	Only display job totals

	-raw
	Display raw data only

	-debug
	Debug mode

	-j
	Select a specific cluster or cluster.proc

	-evict
	Select only allocations which ended due to eviction

	-all
	Select all clusters and all allocations

	-hostname
	Display host name instead of IP address

General Remarks

Since the HTCondor job log file format does not contain a year field in
the timestamp, all entries are assumed to occur in the current year.
Allocations which begin in one year and end in the next will be silently
ignored.

Exit Status

condor_userlog will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

 condor_userprio

condor_userprio

Manage user priorities

Synopsis

condor_userprio -help

condor_userprio [-name negotiatorname]
[-pool centralmanagerhostname[:portnumber]] [Edit option]
| [Display options [username]] [-inputfile filename]

Description

condor_userprio either modifies priority-related information or
displays priority-related information. Displayed information comes from
the accountant log, where the condor_negotiator daemon stores
historical usage information in the file at
$(SPOOL)/Accountantnew.log. Which fields are displayed changes based
on command line arguments. condor_userprio with no arguments, lists
the active users along with their priorities, in increasing priority
order. The -all option can be used to display more detailed
information about each user, resulting in a rather wide display, and
includes the following columns:

	Effective Priority
	The effective priority value of the user, which is used to calculate
the user’s share when allocating resources. A lower value means a
higher priority, and the minimum value (highest priority) is 0.5.
The effective priority is calculated by multiplying the real
priority by the priority factor.

	Real Priority
	The value of the real priority of the user. This value follows the
user’s resource usage.

	Priority Factor
	The system administrator can set this value for each user, thus
controlling a user’s effective priority relative to other users.
This can be used to create different classes of users.

	Res Used
	The number of resources currently used.

	Accumulated Usage
	The accumulated number of resource-hours used by the user since the
usage start time.

	Usage Start Time
	The time since when usage has been recorded for the user. This time
is set when a user job runs for the first time. It is reset to the
present time when the usage for the user is reset.

	Last Usage Time
	The most recent time a resource usage has been recorded for the
user.

By default only users for whom usage was recorded in the last 24 hours,
or whose priority is greater than the minimum are listed.

The -pool option can be used to contact a different central manager
than the local one (the default).

Options that do not begin with a - are treated as a username and results
will restricted to users that match the given name. More than one username
can be specified.

For security purposes of authentication and authorization, specifying an
Edit Option requires the ADMINISTRATOR level of access.

Options

	-help
	Display usage information and exit.

	-name negotiatorname
	When querying ads from the condor_collector, only retrieve ads
that came from the negotiator with the given name.

	-pool centralmanagerhostname[:portnumber]
	Contact the specified centralmanagerhostname with an optional port
number, instead of the local central manager. This can be used to
check other pools. NOTE: The host name (and optional port) specified
refer to the host name (and port) of the condor_negotiator to
query for user priorities. This is slightly different than most
HTCondor tools that support a -pool option, and instead expect
the host name (and port) of the condor_collector.

	-inputfile filename
	Introduced for debugging purposes, read priority information from
filename. The contents of filename are expected to be the same
as captured output from running a condor_userprio -long
command.

	-delete username
	(Edit option) Remove the specified username from HTCondor’s
accounting.

	-resetall
	(Edit option) Reset the accumulated usage of all the users to zero.

	-resetusage username
	(Edit option) Reset the accumulated usage of the user specified by
username to zero.

	-setaccum username value
	(Edit option) Set the accumulated usage of the user specified by
username to the specified floating point value.

	-setbegin username value
	(Edit option) Set the begin usage time of the user specified by
username to the specified value.

	-setfactor username value
	(Edit option) Set the priority factor of the user specified by
username to the specified value.

	-setlast username value
	(Edit option) Set the last usage time of the user specified by
username to the specified value.

	-setprio username value
	(Edit option) Set the real priority of the user specified by
username to the specified value.

	-setfloor username value
	(Edit option) Set the floor for the user specified by
username to the specified value.
This value is the sum of the SlotWeight
(See: SLOT_WEIGHT in condor_startd Configuration File Macros)
of all running jobs. By default, the slot weight of a running job is the number of
cores allocated to that job.

	-setceil username value
	(Edit option) Set the ceiling for the user specified by
username to the specified value.
This value is the sum of the SlotWeight
(See: SLOT_WEIGHT in condor_startd Configuration File Macros)
of all running jobs. By default, the slot weight of a running job is the number of
cores allocated to that job.

	-activefrom month day year
	(Display option) Display information for users who have some
recorded accumulated usage since the specified date.

	-all
	(Display option) Display all available fields about each group or
user.

	-allusers
	(Display option) Display information for all the users who have some
recorded accumulated usage.

	-negotiator
	(Display option) Force the query to come from the negotiator instead
of the collector.

	-autoformat[:jlhVr,tng] attr1 [attr2 …] or -af[:jlhVr,tng] attr1 [attr2 …]
	(Display option) Display attribute(s) or expression(s) formatted in
a default way according to attribute types. This option takes an
arbitrary number of attribute names as arguments, and prints out
their values, with a space between each value and a newline
character after the last value. It is like the -format option
without format strings.

It is assumed that no attribute names begin with a dash character,
so that the next word that begins with dash is the start of the next
option. The autoformat option may be followed by a colon
character and formatting qualifiers to deviate the output formatting
from the default:

j print the job ID as the first field,

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are
quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default
space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces
before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The
l and h characters may not be used together.

	-constraint <expr>
	(Display option) To be used in conjunction with the -long
-modular or the -autoformat options. Displays users and
groups that match the <expr>.

	-debug[:<opts>]
	(Display option) Without :<opts> specified, use configured debug
level to send debugging output to stderr. With :<opts>
specified, these options are debug levels that override any
configured debug levels for this command’s execution to send
debugging output to stderr.

	-flat
	(Display option) Display information such that users within
hierarchical groups are not listed with their group.

	-getreslist username
	(Display option) Display all the resources currently allocated to
the user specified by username.

	-grouporder
	(Display option) Display submitter information with accounting group
entries at the top of the list, and in breadth-first order within
the group hierarchy tree.

	-grouprollup
	(Display option) For hierarchical groups, the display shows sums as
computed for groups, and these sums include sub groups.

	-hierarchical
	(Display option) Display information such that users within
hierarchical groups are listed with their group.

	-legacy
	(Display option) For use with the -long option, displays
attribute names and values as a single ClassAd.

	-long
	(Display option) A verbose output which displays entire ClassAds.

	-modular
	(Display option) Modifies the display when using the -long
option, such that attribute names and values are shown as distinct
ClassAds.

	-most
	(Display option) Display fields considered to be the most useful.
This is the default set of fields displayed.

	-priority
	(Display option) Display fields with user priority information.

	-quotas
	(Display option) Display fields relevant to hierarchical group
quotas.

	-usage
	(Display option) Display usage information for each group or user.

Examples

Example 1 Since the output varies due to command line arguments, here is
an example of the default output for a pool that does not use
Hierarchical Group Quotas. This default output is the same as given with
the -most Display option.

Last Priority Update: 1/19 13:14
 Effective Priority Res Total Usage Time Since
User Name Priority Factor In Use (wghted-hrs) Last Usage
---------------------- ------------ --------- ------ ------------ ----------
www-cndr@cs.wisc.edu 0.56 1.00 0 591998.44 0+16:30
joey@cs.wisc.edu 1.00 1.00 1 990.15 <now>
suzy@cs.wisc.edu 1.53 1.00 0 261.78 0+09:31
leon@cs.wisc.edu 1.63 1.00 2 12597.82 <now>
raj@cs.wisc.edu 3.34 1.00 0 8049.48 0+01:39
jose@cs.wisc.edu 3.62 1.00 4 58137.63 <now>
betsy@cs.wisc.edu 13.47 1.00 0 1475.31 0+22:46
petra@cs.wisc.edu 266.02 500.00 1 288082.03 <now>
carmen@cs.wisc.edu 329.87 10.00 634 2685305.25 <now>
carlos@cs.wisc.edu 687.36 10.00 0 76555.13 0+14:31
ali@proj1.wisc.edu 5000.00 10000.00 0 1315.56 0+03:33
apu@nnland.edu 5000.00 10000.00 0 482.63 0+09:56
pop@proj1.wisc.edu 26688.11 10000.00 1 49560.88 <now>
franz@cs.wisc.edu 29352.06 500.00 109 600277.88 <now>
martha@nnland.edu 58030.94 10000.00 0 48212.79 0+12:32
izzi@nnland.edu 62106.40 10000.00 0 6569.75 0+02:26
marta@cs.wisc.edu 62577.84 500.00 29 193706.30 <now>
kris@proj1.wisc.edu 100597.94 10000.00 0 20814.24 0+04:26
boss@proj1.wisc.edu 318229.25 10000.00 3 324680.47 <now>
---------------------- ------------ --------- ------ ------------ ----------
Number of users: 19 784 4969073.00 0+23:59

Example 2 This is an example of the default output for a pool that uses
hierarchical groups, and the groups accept surplus. This leads to a very
wide display.

$ condor_userprio -pool crane.cs.wisc.edu -allusers
Last Priority Update: 1/19 13:18
Group Config Use Effective Priority Res Total Usage Time Since
 User Name Quota Surplus Priority Factor In Use (wghted-hrs) Last Usage
------------------------------------ --------- ------- ------------ --------- ------ ------------ ----------
<none> 0.00 yes 1.00 0 6.78 9+03:52
 johnsm@crane.cs.wisc.edu 0.50 1.00 0 6.62 9+19:42
 John.Smith@crane.cs.wisc.edu 0.50 1.00 0 0.02 9+03:52
 Sedge@crane.cs.wisc.edu 0.50 1.00 0 0.05 13+03:03
 Duck@crane.cs.wisc.edu 0.50 1.00 0 0.02 31+00:28
 other@crane.cs.wisc.edu 0.50 1.00 0 0.04 16+03:42
Duck 2.00 no 1.00 0 0.02 13+02:57
 goose@crane.cs.wisc.edu 0.50 1.00 0 0.02 13+02:57
Sedge 4.00 no 1.00 0 0.17 9+03:07
 johnsm@crane.cs.wisc.edu 0.50 1.00 0 0.13 9+03:08
 Half@crane.cs.wisc.edu 0.50 1.00 0 0.02 31+00:02
 John.Smith@crane.cs.wisc.edu 0.50 1.00 0 0.05 9+03:07
 other@crane.cs.wisc.edu 0.50 1.00 0 0.01 28+19:34
------------------------------------ --------- ------- ------------ --------- ------ ------------ ----------
Number of users: 10 ByQuota 0 6.97

Exit Status

condor_userprio will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

 condor_vacate

condor_vacate

Vacate jobs that are running on the specified hosts

Synopsis

condor_vacate [-help | -version]

condor_vacate [-graceful | -fast] [-debug]
[-pool centralmanagerhostname[:portnumber]] [
-name hostname | hostname | -addr “<a.b.c.d:port>”
| “<a.b.c.d:port>” | -constraint expression | -all]

Description

condor_vacate causes HTCondor force jobs to vacate from a given set of
machines. The job(s) remains
in the submitting machine’s job queue.

Given the (default) -graceful option, jobs are killed
and HTCondor restarts the job from the
beginning somewhere else. condor_vacate has no effect on a machine
with no HTCondor job currently running.

There is generally no need for the user or administrator to explicitly
run condor_vacate. HTCondor takes care of jobs in this way
automatically following the policies given in configuration files.

Options

	-help
	Display usage information

	-version
	Display version information

	-graceful
	Give the job a change to shut down cleanly, then soft-kill it.

	-fast
	Hard-kill jobs instead of giving them to shut down cleanly.

	-debug
	Causes debugging information to be sent to stderr, based on the
value of the configuration variable TOOL_DEBUG.

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number

	-name hostname
	Send the command to a machine identified by hostname

	hostname
	Send the command to a machine identified by hostname

	-addr “<a.b.c.d:port>”
	Send the command to a machine’s master located at “<a.b.c.d:port>”

	“<a.b.c.d:port>”
	Send the command to a machine located at “<a.b.c.d:port>”

	-constraint expression
	Apply this command only to machines matching the given ClassAd
expression

	-all
	Send the command to all machines in the pool

Exit Status

condor_vacate will exit with a status value of 0 (zero) upon success,
and it will exit with the value 1 (one) upon failure.

Examples

To send a condor_vacate command to two named machines:

$ condor_vacate robin cardinal

To send the condor_vacate command to a machine within a pool of
machines other than the local pool, use the -pool option. The
argument is the name of the central manager for the pool. Note that one
or more machines within the pool must be specified as the targets for
the command. This command sends the command to a the single machine
named cae17 within the pool of machines that has
condor.cae.wisc.edu as its central manager:

$ condor_vacate -pool condor.cae.wisc.edu -name cae17

 condor_vacate_job

condor_vacate_job

vacate jobs in the HTCondor queue from the hosts where they are running

Synopsis

condor_vacate_job [-help | -version]

condor_vacate_job [
-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”]
[-fast] cluster… | cluster.process… | user… |
-constraint expression …

condor_vacate_job [
-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”]
[-fast] -all

Description

condor_vacate_job finds one or more jobs from the HTCondor job queue
and vacates them from the host(s) where they are currently running. The
jobs remain in the job queue and return to the idle state.

A running job running will be sent a soft
kill signal (SIGTERM by default, or whatever is defined as the
SoftKillSig in the job ClassAd), and HTCondor will restart the job
from the beginning somewhere else.

If the -fast option is used, the job(s) will be immediately killed.

If the -name option is specified, the named condor_schedd is
targeted for processing. If the -addr option is used, the
condor_schedd at the given address is targeted for processing.
Otherwise, the local condor_schedd is targeted. The jobs to be
vacated are identified by one or more job identifiers, as described
below. For any given job, only the owner of the job or one of the queue
super users (defined by the QUEUE_SUPER_USERS macro) can vacate the
job.

Using condor_vacate_job on jobs which are not currently running has
no effect.

Options

	-help
	Display usage information

	-version
	Display version information

	-pool centralmanagerhostname[:portnumber]
	Specify a pool by giving the central manager’s host name and an
optional port number

	-name scheddname
	Send the command to a machine identified by scheddname

	-addr “<a.b.c.d:port>”
	Send the command to a machine located at “<a.b.c.d:port>”

	cluster
	Vacate all jobs in the specified cluster

	cluster.process
	Vacate the specific job in the cluster

	user
	Vacate jobs belonging to specified user

	-constraint expression
	Vacate all jobs which match the job ClassAd expression constraint

	-all
	Vacate all the jobs in the queue

	-fast
	Perform a fast vacate and hard kill the jobs

General Remarks

Do not confuse condor_vacate_job with condor_vacate.
condor_vacate is given a list of hosts to vacate, regardless of what
jobs happen to be running on them. Only machine owners and
administrators have permission to use condor_vacate to evict jobs
from a given host. condor_vacate_job is given a list of job to
vacate, regardless of which hosts they happen to be running on. Only the
owner of the jobs or queue super users have permission to use
condor_vacate_job.

Examples

To vacate job 23.0:

$ condor_vacate_job 23.0

To vacate all jobs of a user named Mary:

$ condor_vacate_job mary

To vacate all vanilla universe jobs owned by Mary:

$ condor_vacate_job -constraint 'JobUniverse == 5 && Owner == "mary"'

Note that the entire constraint, including the quotation marks, must be
enclosed in single quote marks for most shells.

Exit Status

condor_vacate_job will exit with a status value of 0 (zero) upon
success, and it will exit with the value 1 (one) upon failure.

 condor_version

condor_version

print HTCondor version and platform information

Synopsis

condor_version [-help]

condor_version [-arch] [-opsys] [-syscall]

Description

With no arguments, condor_version prints the currently installed
HTCondor version number and platform information. The version number
includes a build identification number, as well as the date built.

Options

	-help
	Print usage information

	-arch
	Print this machine’s ClassAd value for Arch

	-opsys
	Print this machine’s ClassAd value for OpSys

	-syscall
	Get any requested version and/or platform information from the
libcondorsyscall.a that this HTCondor pool is configured to use,
instead of using the values that are compiled into the tool itself.
This option may be used in combination with any other options to
modify where the information is coming from.

Exit Status

condor_version will exit with a status value of 0 (zero) upon
success, and it should never exit with a failing value.

 condor_wait

condor_wait

Wait for jobs to finish

Synopsis

condor_wait [-help | -version]

condor_wait [-debug] [-status] [-echo]
[-wait seconds] [-num number-of-jobs] log-file
[job ID]

Description

condor_wait watches a job event log file (created with the log
command within a submit description file) and returns when one or more
jobs from the log have completed or aborted.

Because condor_wait expects to find at least one job submitted event
in the log file, at least one job must have been successfully submitted
with condor_submit before condor_wait is executed.

condor_wait will wait forever for jobs to finish, unless a shorter
wait time is specified.

Options

	-help
	Display usage information

	-version
	Display version information

	-debug
	Show extra debugging information.

	-status
	Show job start and terminate information.

	-echo
	Print the events out to stdout.

	-wait seconds
	Wait no more than the integer number of seconds. The default is
unlimited time.

	-num number-of-jobs
	Wait for the integer number-of-jobs jobs to end. The default is
all jobs in the log file.

	log file
	The name of the log file to watch for information about the job.

	job ID
	A specific job or set of jobs to watch.
 If the job ID is only the job
ClassAd attribute ClusterId, then condor_wait waits for all
jobs with the given ClusterId. If the job ID is a pair of
the job ClassAd attributes, given by ClusterId.ProcId,
then condor_wait waits for the specific job with this job ID.
If this option is not specified, all jobs that exist in the log file
when condor_wait is invoked will be watched.

General Remarks

condor_wait is an inexpensive way to test or wait for the completion
of a job or a whole cluster, if you are trying to get a process outside
of HTCondor to synchronize with a job or set of jobs.

It can also be used to wait for the completion of a limited subset of
jobs, via the -num option.

Examples

$ condor_wait logfile

This command waits for all jobs that exist in logfile to complete.

$ condor_wait logfile 40

This command waits for all jobs that exist in logfile with a job
ClassAd attribute ClusterId of 40 to complete.

$ condor_wait -num 2 logfile

This command waits for any two jobs that exist in logfile to
complete.

$ condor_wait logfile 40.1

This command waits for job 40.1 that exists in logfile to complete.

$ condor_wait -wait 3600 logfile 40.1

This waits for job 40.1 to complete by watching logfile, but it will
not wait more than one hour (3600 seconds).

Exit Status

condor_wait exits with 0 if and only if the specified job or jobs
have completed or aborted. condor_wait returns 1 if unrecoverable
errors occur, such as a missing log file, if the job does not exist in
the log file, or the user-specified waiting time has expired.

 condor_watch_q

condor_watch_q

Track the status of jobs over time.

Synopsis

condor_watch_q [-help]

condor_watch_q [general options] [display options] [behavior options] [tracking options]

Description

condor_watch_q is a tool for tracking the status of jobs over time
without repeatedly querying the condor_schedd. It does this by reading
job event log files.
These files may be specified directly (the -files option),
or indirectly via a single query to the condor_schedd when condor_watch_q
starts up (options like -users or -clusters).

condor_watch_q provides a variety of
options for output formatting, including: colorized output, tabular information,
progress bars, and text summaries. These display options are highly-customizable
via command line options.

condor_watch_q also provides a minimal language for exiting when
certain conditions are met by the tracked jobs. For example, it can be
configured to exit when all of the tracked jobs have terminated.

Examples

If no users, cluster ids, or event logs are given, condor_watch_q will
default to tracking all of the current user’s jobs. Thus, with no arguments,

condor_watch_q

will track all of your currently-active clusters.

To track jobs from a specific cluster,
use the -clusters option, passing the cluster ID:

condor_watch_q -clusters 12345

To track jobs from a specific user,
use the -users option, passing the user’s name
the actual query will be the for the Owner job ad attribute):

condor_watch_q -users jane

To track jobs from a specific event log file,
use the -files option, passing the path to the event log:

condor_watch_q -users /home/jane/events.log

To track jobs from a specific batch,
use the -batches option, passing the batch name:

condor_watch_q -batches BatchOfJobsFromTuesday

All of the above “tracking” options can be used together, and multiple values
may be passed to each one. For example, to track all of the jobs that are:
owned by jane or jim, in cluster 12345,
or in the event log /home/jill/events.log, run

condor_watch_q -users jane jim -clusters 12345 -files /home/jill/events.log

By default, condor_watch_q will never exit on its own
(unless it encounters an error or it is not tracking any jobs).
You can tell it to exit when certain conditions are met. For example,
to exit with status 0 when all of the jobs it is tracking are done
or with status 1 when any job is held, you could run

condor_watch_q -exit all,done,0 -exit any,held,1

Options

General Options

	-help
	Display the help message and exit.

	-debug
	Causes debugging information to be sent to stderr.

Tracking Options

These options control which jobs condor_watch_q will track,
and how it discovers them.

	-users USER [USER …]
	Choose which users to track jobs for.
All of the user’s jobs will be tracked.
One or more user names may be passed.

	-clusters CLUSTER_ID [CLUSTER_ID …]
	Which cluster IDs to track jobs for.
One or more cluster ids may be passed.

	-files FILE [FILE …]
	Which job event log files (i.e., the log file from condor_submit)
to track jobs from.
One or more file paths may be passed.

	-batches BATCH_NAME [BATCH_NAME …]
	Which job batch names to track jobs for.
One or more batch names may be passed.

	-collector COLLECTOR
	Which collector to contact to find the schedd, if needed.
Defaults to the local collector.

	-schedd SCHEDD
	Which schedd to contact for queries, if needed.
Defaults to the local schedd.

Behavior Options

	-exit GROUPER,JOB_STATUS[,EXIT_STATUS]
	Specify conditions under which condor_watch_q should exit.
GROUPER is one of all, any or none.
JOB_STATUS is one of active, done, idle, or held.
The “active” status means “in the queue”,
and includes jobs in the idle, running, and held states.
EXIT_STATUS may be any valid exit status integer.
To specify multiple exit conditions, pass this option multiple times.
condor_watch_q will exit when any of the conditions are satisfied.

Display Options

These options control how condor_watch_q formats its output.
Many of them are “toggles”: -x enables option “x”, and -no-x disables it.

	-groupby {batch, log, cluster}
	How to group jobs into rows for display in the table.
Must be one of
batch (group by job batch name),
log (group by event log file path),
or
cluster (group by cluster ID).
Defaults to batch.

	-table/-no-table
	Enable/disable the table.
Enabled by default.

	-progress/-no-progress
	Enable/disable the progress bar.
Enabled by default.

	-row-progress/-no-row-progress
	Enable/disable the progress bar for each row.
Enabled by default.

	-summary/-no-summary
	Enable/disable the summary line.
Enabled by default.

	-summary-type {totals, percentages}
	Choose what to display on the summary line,
totals (the number of each jobs in each state),
or
percentages (the percentage of jobs in each state, of the total number of tracked jobs)
By default, show totals.

	-updated-at/-no-updated-at
	Enable/disable the “updated at” line.
Enabled by default.

	-abbreviate/-no-abbreviate
	Enable/disable abbreviating path components to the shortest somewhat-unique prefix.
Disabled by default.

	-color/-no-color
	Enable/disable colored output.
Enabled by default if connected to a tty.
Disabled on Windows if colorama is not available (https://pypi.org/project/colorama/).

	-refresh/-no-refresh
	Enable/disable refreshing output.
If refreshing is disabled, output will be appended instead.
Enabled by default if connected to a tty.

Exit Status

Returns 0 when sent a SIGINT (keyboard interrupt).

Returns 0 if no jobs are found to track.

Returns 1 for fatal internal errors.

Can be configured via the -exit option to return any valid exit status when
a certain condition is met.

Author

Center for High Throughput Computing, University of Wisconsin-Madison

 condor_who

condor_who

Display information about owners of jobs and jobs running on an execute
machine

Synopsis

condor_who [help options] [address options] [display
options]

Description

condor_who queries and displays information about the user that owns
the jobs running on a machine. It is intended to be run on an execute
machine.

The options that may be supplied to condor_who belong to three
groups:

	Help options provide information about the condor_who tool.

	Address options allow destination specification for query.

	Display options control the formatting and which of the queried
information to display.

At any time, only one help option and one address option may be
specified. Any number of display options may be specified.

condor_who obtains its information about jobs by talking to one or
more condor_startd daemons. So, condor_who must identify the
command port of any condor_startd daemons. An address option
provides this information. If no address option is given on the
command line, then condor_who searches using this ordering:

	A defined value of the environment variable CONDOR_CONFIG
specifies the directory where log and address files are to be scanned
for needed information.

	With the aim of finding all condor_startd daemons, condor_who
utilizes the same algorithm it would using the -allpids option.
The Linux ps or the Windows tasklist program obtains all PIDs. As
Linux root or Windows administrator, the Linux lsof or the Windows
netstat identifies open sockets and from there the PIDs of listen
sockets. Correlating the two lists of PIDs results in identifying the
command ports of all condor_startd daemons.

Options

	-help
	(help option) Display usage information

	-daemons
	(help option) Display information about the daemons running on the
specified machine, including the daemon’s PID, IP address and
command port

	-diagnostic
	(help option) Display extra information helpful for debugging

	-verbose
	(help option) Display PIDs and addresses of daemons

	-address hostaddress
	(address option) Identify the condor_startd host address to query

	-allpids
	(address option) Query all local condor_startd daemons

	-logdir directoryname
	(address option) Specifies the directory containing log and address
files that condor_who will scan to search for command ports of
condor_start daemons to query

	-pid PID
	(address option) Use the given PID to identify the
condor_startd daemon to query

	-long
	(display option) Display entire ClassAds

	-wide
	(display option) Displays fields without truncating them in order to
fit screen width

	-format fmt attr
	(display option) Display attribute attr in format fmt. To
display the attribute or expression the format must contain a single
printf(3)-style conversion specifier. Attributes must be from
the resource ClassAd. Expressions are ClassAd expressions and may
refer to attributes in the resource ClassAd. If the attribute is not
present in a given ClassAd and cannot be parsed as an expression,
then the format option will be silently skipped. %r prints the
unevaluated, or raw values. The conversion specifier must match the
type of the attribute or expression. %s is suitable for strings such
as Name, %d for integers such as LastHeardFrom, and %f for
floating point numbers such as LoadAvg. %v identifies the type
of the attribute, and then prints the value in an appropriate
format. %V identifies the type of the attribute, and then prints the
value in an appropriate format as it would appear in the -long
format. As an example, strings used with %V will have quote marks.
An incorrect format will result in undefined behavior. Do not use
more than one conversion specifier in a given format. More than one
conversion specifier will result in undefined behavior. To output
multiple attributes repeat the -format option once for each
desired attribute. Like printf(3)-style formats, one may include
other text that will be reproduced directly. A format without any
conversion specifiers may be specified, but an attribute is still
required. Include a backslash followed by an ‘n’ to specify a line
break.

	-autoformat[:lhVr,tng] attr1 [attr2 …] or -af[:lhVr,tng] attr1 [attr2 …]
	(display option) Display attribute(s) or expression(s) formatted in
a default way according to attribute types. This option takes an
arbitrary number of attribute names as arguments, and prints out
their values, with a space between each value and a newline
character after the last value. It is like the -format option
without format strings.

It is assumed that no attribute names begin with a dash character,
so that the next word that begins with dash is the start of the next
option. The autoformat option may be followed by a colon
character and formatting qualifiers to deviate the output formatting
from the default:

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are
quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default
space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces
before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The
l and h characters may not be used together.

Examples

Example 1 Sample output from the local machine, which is running a
single HTCondor job. Note that the output of the PROGRAM field will
be truncated to fit the display, similar to the artificial truncation
shown in this example output.

$ condor_who

OWNER CLIENT SLOT JOB RUNTIME PID PROGRAM
smith1@crane.cs.wisc.edu crane.cs.wisc.edu 2 320.0 0+00:00:08 7776 D:\scratch\condor\execut

Example 2 Verbose sample output.

$ condor_who -verbose

LOG directory "D:\scratch\condor\master\test/log"

Daemon PID Exit Addr Log, Log.Old
------ --- ---- ---- ---, -------
Collector 6788 <128.105.136.32:7977> CollectorLog, CollectorLog.old
Credd 8148 <128.105.136.32:9620> CredLog, CredLog.old
Master 5976 <128.105.136.32:64980> MasterLog,
Match MatchLog, MatchLog.old
Negotiator 6600 NegotiatorLog, NegotiatorLog.old
Schedd 6336 <128.105.136.32:64985> SchedLog, SchedLog.old
Shadow ShadowLog,
Slot1 StarterLog.slot1,
Slot2 7272 <128.105.136.32:65026> StarterLog.slot2,
Slot3 StarterLog.slot3,
Slot4 StarterLog.slot4,
SoftKill SoftKillLog,
Startd 7416 <128.105.136.32:64984> StartLog, StartLog.old
Starter StarterLog,
TOOL TOOLLog,

OWNER CLIENT SLOT JOB RUNTIME PID PROGRAM
smith1@crane.cs.wisc.edu crane.cs.wisc.edu 2 320.0 0+00:01:28 7776 D:\scratch\condor\execut

Exit Status

condor_who will exit with a status value of 0 (zero) upon success,
and it will exit with the value 1 (one) upon failure.

 get_htcondor

get_htcondor

Install and configure HTCondor on Linux machines.

Synopsis

get_htcondor <-h | --help>

get_htcondor [–[no-]dry-run] [--channel name] [--minicondor | [--central-manager | --submit | --execute] central-manager-name] [--shared-filesystem-domain filesystem-domain-name]

get_htcondor --dist

Description

This tool installs and configure HTCondor on Linux machines. See
https://htcondor.readthedocs.io/en/latest/getting-htcondor for detailed
instructions. This page is intended as a quick reference to its options;
it also includes a section about the reasons for the configurations it
installs.

Options

	-help
	Print a usage reminder.

	--dry-run
	Do not issue commands, only print them. [default]

	--no-dry-run
	Issue all the commands needed to install HTCondor.

	--channel name
	Specify channel name to install; name may be
current, the most recent release with new features [default]
or stable, the most recent release with only bug-fixes

	--dist
	Display the detected operating system and exit.

	--minicondor
	Configure as a single-machine (“mini”) HTCondor. [default]

--central-manager central-manager-name

--submit central-manager-name

--execute central-manager-name

Configure this installation with the central manager, submit,
or execute role.

--shared-filesystem-domain filesystem-domain-name

Configure this installation to assume that machines specifying
the same filesystem-domain-name share a filesystem.

Exit Status

On success, exits with code 0. Failures detected by get_htcondor will
result in exit code 1. Other failures may have other exit codes.

Installed Configuration

This tool may install four different configurations. We discuss the
single-machine configuration first, and then the three parts of the
multi-machine configuration as a group. Our goal is to document the
reasoning behind the details, because the details can obscure that
reasoning, and because the details will change as we continue to
improve HTCondor.

As a general note, the configurations this tool installs make extensive
use of metaknobs, lines in HTCondor configuration files that look like
use x : y. To determine exactly what configuration a metaknob sets, run
condor_config_val use x:y.

Single-Machine Installation

The single-machine installation performed by get_htcondor uses the
minicondor package. (A “mini” HTCondor is a single-machine HTCondor
system installed with administrative privileges.) Because the different
roles in the HTCondor system are all on the same machine, we configure
all network communications to occur over the loopback device, where we don’t
have to worry about eavesdropping or requiring encryption. We
use the FS method, which depends on the local filesytem, to identify
which user is attempting to connect, and restrict access correspondingly.

The get_htcondor tool installs the standard minicondor package from the
HTCondor repositories; see the file it creates,
/etc/condor/config.d/00-minicondor, for details.

Multi-Machine Installation

Because the three roles must communicate over the network to form a complete
pool in this case,, security is a much bigger concern; we therefore require
authentication and encryption on every connection. Thankfully, almost all
of the network communication is daemon-to-daemon, so we don’t have to burden
individual users with that aspect of security. Instead, users submit jobs on
the submit-role machine, using FS to authenticate. Users may also need to
contact the central manager (when running condor_status, for example),
but they never need to write anything to it, so we’ve configured
authentication for read-only commands to be optional.

Daemon-to-daemon communication is authenticated with the IDTOKENS method.
(If a user needs to submit jobs remotely, they can also use the IDTOKENS
method, it’s just more work; see condor_token_fetch.) Each role
installed by this tool has a copy of the password, which is used to
generate an IDTOKEN, which is used for all daemon-to-daemon authentication;
both the password and the IDTOKEN can only be read by privileged processes.
An IDTOKEN can only be validated by the holder of the corresponding
password, so each daemon in the pool has to have both.

This tool installs the role-specific configuration in the files
/etc/condor/config.d/01-central-manager.config,
/etc/condor/config.d/01-submit.config, and
/etc/condor/config.d/01-execute.config; consult them for details.

 gidd_alloc

gidd_alloc

find a GID within the specified range which is not used by any process

Synopsis

gidd_alloc min-gid max-gid

Description

This program will scan the alive PIDs, looking for which GID is unused
in the supplied, inclusive range specified by the required arguments
min-gid and max-gid. Upon finding one, it will add the GID to its
own supplementary group list, and then scan the PIDs again expecting to
find only itself using the GID. If no collision has occurred, the
program exits, otherwise it retries.

General Remarks

This is a program only available for the Linux ports of HTCondor.

Exit Status

gidd_alloc will exit with a status value of 0 (zero) upon success,
and it will exit with the value 1 (one) upon failure.

 htcondor

htcondor

Manage HTCondor jobs, job sets, dags, event logs, and resources

Synopsis

htcondor [-h | --help] [-v | -q]

htcondor job submit [--resource resource-type] [--runtime time-seconds] [--email email-address] submit_file

htcondor job status [--resource resource-type] [--skip-history] job_id

htcondor job resources [--resource resource-type] [--skip-history] job_id

htcondor jobset submit description-file

htcondor jobset list [--allusers]

htcondor jobset status job-set-name [--owner user-name] [--nobatch] [--skip-history]

htcondor jobset remove job-set-name [--owner user-name]

htcondor dag submit dag-file

htcondor dag status dagman-job-id

htcondor eventlog read [-csv | -json] [--groupby attribute] eventlog

htcondor eventlog follow [-csv | -json] [--groupby attribute] eventlog

Description

htcondor is a tool for managing HTCondor jobs, job sets, resources, event logs, and
DAGs. It can replace condor_submit, condor_submit_dag, condor_q,
condor_status, and condor_userlog, as well as all-new functionality and features. The user interface is more consistent than its predecessor tools.

The first argument of the htcondor command (ignoring any global options) is
the noun representing an object in the HTCondor system to be operated on.
The nouns include an individual job, jobset, eventlog, or a dag. Each
noun is then followed by a noun-specific verb that describe the operation on
that noun.

One of the following optional global option may appear before the noun:

Global Options

	htcondor -h, htcondor --help
	Display the help message. Can also be specified after any
verb to display the options available for each verb.

	htcondor -q …
	Reduce verbosity of log messages.

	htcondor -v …
	Increase verbosity of log messages.

A noun-specific verb appears after each noun; the verbs are sorted by noun in
the list, which includes with their individual option flags.

Job Verbs

	htcondor job submit submit_file
	Takes as an argument a submit file in the condor_submit job submit
description language, and places a new job in an Access Point

htcondor job submit options

	htcondor job submit --resource resource_type submit_file
	Resource type used to run this job. Currently supports Slurm and EC2.
Assumes the necessary setup is complete and security tokens available.

	htcondor job submit --runtime runtime_in_seconds submit_file
	Amount of time in seconds to allocate resources.
Used in conjunction with the --resource flag.

	htcondor job submit --email address submit_file
	Email address to receive notification messages.
Used in conjunction with the --resource flag.

	htcondor job status
	Takes as an argument a job id in the form of clusterid.procid,
and returns a human readable presentation of the status
of that job.

job status option

htcondor job status --skip-history job.id

Passed to the status verb to skip checking history
if job not found in the active job queue.

	htcondor job resources
	Takes as an argument a job id in the form of clusterid.procid,
and returns a human readable presentation the machine resource
used by this job.

Jobset Verbs

	htcondor jobset submit submit_file
	Takes as an argument a submit file in the condor_submit job submit
description language, and places a new job set in an Access Point

	htcondor jobset list
	Succinctly lists all the jobsets in the queue which are owned by the current user.

htcondor jobset list options

	htcondor jobset list --allusers
	Shows jobs from all users, not just those owned by the current user.

	htcondor jobset status submit_file
	Takes as an argument a job set name, and shows detailed information about
that job set.

htcondor jobset status options

	htcondor jobset status --nobatch
	Shows jobs in a more detailed view, one line per job

	htcondor jobset status --owner ownername
	Shows jobs from the specified job owner.

	htcondor jobset status --skiphistory
	Shows detailed information only about active jobs in the queue, and
ignore historical jobs which have left the queue. This runs much
faster.

	htcondor jobset remove job_name
	Takes as an argument a job_name in the queue, and removes it from
the Access Point.

htcondor jobsets remove options

htcondor jobset remove --owner=owner_name
Removes all jobs owned by the given owner.

Eventlog Verbs

	htcondor eventlog read logfile
	Takes as an argument an event log to process. It may be the per-job or
per-jobset eventlog, which was specified by the log = some_file in the
submit description language. For a dag, it may also be the nodes.log
file that all dags generate. Or, if the global event log is enabled by an
administrator with the EVENT_LOG configuration knob, it may be the global
event log, containing information about all jobs on the Access point.

Given this file, htcondor eventlog read returns information about all
the contained jobs, and their status. It runs much faster than
condor_history, because these logs are more concise than the history
files. Unlike condor_history, it will also show information about
jobs that have not yet left the queue.

	htcondor eventlog follow logfile
	Takes as an argument an event log to process, as above, but instead
of processing that file to completion, it does the equivalent of
tail -f, and runs until interruption, emitting information about
jobs as it appears in the file.

Eventlog Options

	--csv
	By default, htcondor eventlog read emits a table of information
in human readable format. With this option, the output is in
a command separated value format, suitable for injestion by a spreadsheet
or database.

	--json
	Emits output in the json format. Only one of -csv or -json should
be given.

	--group-by attributeName
	With a job ad attribute name, instead of one line per job, emit one line
summarizing all jobs that share the same value for the attribute name
given. In the OSG, the GLIDEIN_SITE attribute is injected into all jobs,
so one can quickly get a count of all jobs running, idle and exitted
per site by using this option.

Examples

$ htcondor eventlog read logfile

Job Host Start Time Evict Time Evictions Wall Time Good Time CPU Usage
19989.0 slot1_1@speedy 5/18 12:34 5/18 12:54 0 0+00:20:00 0+00:20:00 0+00:00:00
19990.0 slot1_1@lumpy 5/22 18:51 5/22 18:51 1 0+00:02:00 0+00:00:00 0+00:00:43
20003.0 slot1_1@chtc 8/9 23:33 8/9 23:37 1 0+00:04:00 0+00:00:00 0+00:00:00
20004.0 slot1_1@wisc 8/9 23:38 8/9 23:58 0 0+00:20:00 0+00:20:00 0+00:00:00

Exit Status

htcondor will exit with a non-zero status value if it fails and
zero status if it succeeds.

 procd_ctl

procd_ctl

command line interface to the condor_procd

Synopsis

procd_ctl -h

procd_ctl -A address-file [command]

Description

This is a programmatic interface to the condor_procd daemon. It may
be used to cause the condor_procd to do anything that the
condor_procd is capable of doing, such as tracking and managing
process families.

This is a program only available for the Linux ports of HTCondor.

The -h option prints out usage information and exits. The
address-file specification within the -A argument specifies the
path and file name of the address file which the named pipe clients must
use to speak with the condor_procd.

One command is given to the condor_procd. The choices for the command
are defined by the Options.

Options

	TRACK_BY_ASSOCIATED_GID GID [PID]
	Use the specified GID to track the specified family rooted at
PID. If the optional PID is not specified, then the PID used is
the one given or assumed by condor_procd.

	GET_USAGE [PID]
	Get the total usage information about the PID family at PID. If
the optional PID is not specified, then the PID used is the one
given or assumed by condor_procd.

	DUMP [PID]
	Print out information about both the root PID being watched and
the tree of processes under this root PID. If the optional PID
is not specified, then the PID used is the one given or assumed by
condor_procd.

	LIST [PID]
	With no PID given, print out information about all the watched
processes. If the optional PID is specified, print out information
about the process specified by PID and all its child processes.

	SIGNAL_PROCESS signal [PID]
	Send the signal to the process specified by PID. If the optional
PID is not specified, then the PID used is the one given or
assumed by condor_procd.

	SUSPEND_FAMILY PID
	Suspend the process family rooted at PID.

	CONTINUE_FAMILY PID
	Continue execution of the process family rooted at PID.

	KILL_FAMILY PID
	Kill the process family rooted at PID.

	UNREGISTER_FAMILY PID
	Stop tracking the process family rooted at PID.

	SNAPSHOT
	Perform a snapshot of the tracked family tree.

	QUIT
	Disconnect from the condor_procd and exit.

General Remarks

This program may be used in a standalone mode, independent of HTCondor,
to track process families. The programs procd_ctl and gidd_alloc
are used with the condor_procd in standalone mode to interact with
the daemon and inquire about certain state of running processes on the
machine, respectively.

Exit Status

procd_ctl will exit with a status value of 0 (zero) upon success, and
it will exit with the value 1 (one) upon failure.

 ClassAd Attributes

ClassAd Attributes

	ClassAd Types

	Accounting ClassAd Attributes

	Job ClassAd Attributes

	Machine ClassAd Attributes

	DaemonMaster ClassAd Attributes

	Scheduler ClassAd Attributes

	Negotiator ClassAd Attributes

	Submitter ClassAd Attributes

	Defrag ClassAd Attributes

	Grid ClassAd Attributes

	Collector ClassAd Attributes

	ClassAd Attributes Added by the condor_collector

	DaemonCore Statistics Attributes

 ClassAd Types

ClassAd Types

ClassAd attributes vary, depending on the entity producing the ClassAd.
Therefore, each ClassAd has an attribute named MyType, which
describes the type of ClassAd. In addition, the condor_collector
appends attributes to any daemon’s ClassAd, whenever the
condor_collector is queried. These additional attributes are listed
in the unnumbered subsection labeled ClassAd Attributes Added by the
condor_collector on the
ClassAd Attributes Added by the condor_collector page.

Here is a list of defined values for MyType, as well as a reference
to a list attributes relevant to that type.

	Accounting
	The condor_negotiator keeps persistent records for every submitter
who has every submitted a job to the pool, containing total usage and
priority information. Attributes in the accounting ad are listed
and described in Accounting ClassAd Attributes
The accounting ads for active users can be queried with the
condor_userprio command, or the accounting ads for all users, including
historical ones can be queried with condor_userprio -negotiator.
Accounting ads hold information about total usage over the user’s
HTCondor lifetime, but submitter ads hold instantaneous information.

	Collector
	Each condor_collector daemon describes its state. ClassAd
attributes that appear in a Collector ClassAd are listed and
described in the unnumbered subsection labeled Collector ClassAd
Attributes on the Collector ClassAd Attributes
page. These ads can be shown by running condor_status -collector.

	DaemonMaster
	Each condor_master daemon describes its state. ClassAd attributes
that appear in a DaemonMaster ClassAd are listed and described in
the unnumbered subsection labeled DaemonMaster ClassAd Attributes on
the DaemonMaster ClassAd Attributes.
These ads can be shown by running condor_status -master.

	Defrag
	Each condor_defrag daemon describes its state. ClassAd attributes
that appear in a Defrag ClassAd are listed and described in the
unnumbered subsection labeled Defrag ClassAd Attributes on
the Defrag ClassAd Attributes page.
This ad can be shown by running condor_status -defrag.

	Grid
	The condor_gridmanager describes the state of each remote
service to which it submits grid universe jobs. ClassAd attributes
that appear in a Grid ClassAd are listed and described in the
unnumbered subsection labeled Grid ClassAd Attributes on
the Grid ClassAd Attributes page.
These ad can be shown by running condor_status -grid.

	Job
	Each submitted job describes its state, for use by the
condor_negotiator daemon in finding a machine upon which to run
the job. ClassAd attributes that appear in a job ClassAd are listed
and described in the unnumbered subsection labeled Job ClassAd
Attributes on the Job ClassAd Attributes page.
These ads can be shown by running condor_q.

	Machine
	Each machine in the pool (and hence, the condor_startd daemon
running on that machine) describes its state. ClassAd attributes
that appear in a machine ClassAd are listed and described in the
unnumbered subsection labeled Machine ClassAd Attributes on
the Machine ClassAd Attributes page.
These ads can be shown by running condor_status.

	Negotiator
	Each condor_negotiator daemon describes its state. ClassAd
attributes that appear in a Negotiator ClassAd are listed and
described in the unnumbered subsection labeled Negotiator ClassAd
Attributes on the Negotiator ClassAd Attributes
page. This ad can be shown by running condor_status -negotiator.

	Scheduler
	Each condor_schedd daemon describes its state. ClassAd attributes
that appear in a Scheduler ClassAd are listed and described in the
unnumbered subsection labeled Scheduler ClassAd Attributes on
the Scheduler ClassAd Attributes page.
These ads can be shown by running condor_status -scheduler.

	Submitter
	Each submitter is described by a ClassAd. ClassAd attributes that
appear in a Submitter ClassAd are listed and described in the
unnumbered subsection labeled Submitter ClassAd Attributes on
the Submitter ClassAd Attributes page.
These ads can be shown run running condor_status -submitter.

In addition, statistics are published for each DaemonCore daemon. These
attributes are listed and described in the unnumbered subsection labeled
DaemonCore Statistics Attributes on the
:doc:/classad-attributes/daemon-core-statistics-attributes` page.

 Accounting ClassAd Attributes

Accounting ClassAd Attributes

The condor_negotiator keeps information about each submitter and group
in accounting ads that are also sent to the condor_collector. Th
condor_userprio command queries and displays these ads. For example,
to see the full set of raw accounting ads, run the command:

$ condor_userprio -l

	AccountingGroup¶
	If this record is for an accounting group with quota, the name of the group.

	AccumulatedUsage¶
	The total number of seconds this submitter has used since they first
arrived in the pool. Note this is not weighted by cpu cores – an
eight core job running for one hour has a usage of 3600, compare with
WeightedAccumulatedUsage

	BeginUsageTime¶
	The Unix epoch time in seconds when this user claimed resources in the system.
This is persistent and survives reboots and HTCondor upgrades.

	ConfigQuota¶
	If this record is for an accounting group with quota, the amount of quota
statically configured.

	IsAccountingGroup¶
	A boolean which is true if this record represents an accounting group

	LastUsageTime¶
	The unix epoch time, in seconds, when this submitter last had
claimed resources.

	Name¶
	The fully qualified name of the user or accounting group. It will be
of the form name@submit.domain.

	Priority¶
	The current effective priority of this user.

	PriorityFactor¶
	The priority factor of this user.

	ResourcesUsed¶
	The current number of slots claimed.

	SubmitterShare¶
	When the negotiator computes the fair share of the pool that
each user should get, assuming they have infinite jobs and every job
matches every slot, the SubmitterShare is the fraction of the pool
this user should get. A floating point number from 0 to 1.0.

	SubmitterLimit¶
	When the negotiator computes the fair share of the pool that
each user should get, assuming they have infinite jobs and every job
matches every slot, the SubmitterLimit is the absolute number of cores
this user should get.

	WeightedAccumulatedUsage¶
	The total amount of core-seconds used by this user since
they arrived in the system, assuming SLOT_WEIGHT = CPUS

	WeightedResourcesUsed¶
	A total number of requested cores across all running jobs from the
submitter.

 Job ClassAd Attributes

Job ClassAd Attributes

Both active HTCondor jobs (those in a condor_schedd) and historical jobs
(those in the history file), are described by classads. Active jobs can be
queried and displayed with the condor_q command, and historical jobs
are queried with the condor_history command, as in the examples below.
Note that not all job attributes are described here, some are for internal
HTCondor use, and are subject to change. Also, not all jobs contain
all attributes.

$ condor_history -l username
$ condor_q -l

	Absent¶
	Boolean set to true True if the ad is absent.

	AcctGroup¶
	The accounting group name, as set in the submit description file via
the
accounting_group
command. This attribute is only present if an accounting group was
requested by the submission. See the User Priorities and Negotiation section
for more information about accounting groups.

	AcctGroupUser¶
	The user name associated with the accounting group. This attribute
is only present if an accounting group was requested by the
submission.

	ActivationDuration¶
	Formally, the length of time in seconds from when the shadow sends a
claim activation to when the shadow receives a claim deactivation.

Informally, this is how much time HTCondor’s fair-share mechanism
will charge the job for, plus one round-trip over the network.

This attribute may not be used in startd policy expressions and is
not computed until complete.

	ActivationExecutionDuration¶
	Formally, the length of time in seconds from when the shadow received
notification that the job had been spawned to when the shadow received
notification that the spawned process has exited.

Informally, this is the duration limited by AllowedExecuteDuration.

This attribute may not be used in startd policy expressions and is
not computed until complete.

	ActivationSetupDuration¶
	Formally, the length of time in seconds from when the shadow sends a
claim activation to when the shadow it notified that the job was
spawned.

Informally, this is how long it took the starter to prepare to execute
the job. That includes file transfer, so the difference between this
duration and the duration of input file transfer is (roughly) the
execute-side overhead of preparing to start the job.

This attribute may not be used in startd policy expressions and is
not computed until complete.

	ActivationTeardownDuration¶
	Formally, the length of time in seconds from when the shadow received
notification that the spawned process exited to when the shadow received
a claim deactivation.

Informally, this is how long it took the starter to finish up after the
job. That includes file transfer, so the difference between this duration
and the duration of output file transfer is (roughly) the execute-side
overhead of handling job termination.

This attribute may not be used in startd policy expressions and is
not computed until complete.

	AllowedExecuteDuration¶
	The longest time for which a job may be executing. Jobs which exceed
this duration will go on hold. This time does not include file-transfer
time. Jobs which self-checkpoint have this long to write out each
checkpoint.

This attribute is intended to help minimize the time wasted by jobs
which may erroneously run forever.

	AllowedJobDuration¶
	The longest time for which a job may continuously be in the running state.
Jobs which exceed this duration will go on hold. Exiting the running
state resets the job duration measured by this attribute.

This attribute is intended to help minimize the time wasted by jobs
which may erroneously run forever.

	AllRemoteHosts¶
	String containing a comma-separated list of all the remote machines
running a parallel or mpi universe job.

	Args¶
	A string representing the command line arguments passed to the job,
when those arguments are specified using the old syntax, as
specified in
the condor_submit section.

	Arguments¶
	A string representing the command line arguments passed to the job,
when those arguments are specified using the new syntax, as
specified in
the condor_submit section.

	AuthTokenSubject¶
	A string recording the subject in the authentication token (IDTOKENS or
SCITOKENS) used to submit the job.

	AuthTokenIssuer¶
	A string recording the issuer in the authentication token (IDTOKENS or
SCITOKENS) used to submit the job.

	AuthTokenGroups¶
	A string recording the groups in the authentication token (IDTOKENS or
SCITOKENS) used to submit the job.

	AuthTokenScopes¶
	A string recording the scopes in the authentication token (IDTOKENS or
SCITOKENS) used to submit the job.

	AuthTokenId¶
	A string recording the unique identifier of the authentication token (IDTOKENS or
SCITOKENS) used to submit the job.

	BatchExtraSubmitArgs¶
	For batch grid universe jobs, additional command-line arguments
to be given to the target batch system’s job submission command.

	BatchProject¶
	For batch grid universe jobs, the name of the
project/account/allocation that should be charged for the job’s
resource usage.

	BatchQueue¶
	For batch grid universe jobs, the name of the
queue in the remote batch system.

	BatchRuntime¶
	For batch grid universe jobs, a limit in seconds on the job’s
execution time, enforced by the remote batch system.

	BlockReadKbytes¶
	The integer number of KiB read from disk for this job.

	BlockReads¶
	The integer number of disk blocks read for this job.

	BlockWriteKbytes¶
	The integer number of KiB written to disk for this job.

	BlockWrites¶
	The integer number of blocks written to disk for this job.

	CloudLabelNames¶
	Used for grid type gce jobs; a string taken from the definition of
the submit description file command
cloud_label_names .
Defines the set of labels associated with the GCE instance.

	ClusterId¶
	Integer cluster identifier for this job. A cluster is a group of
jobs that were submitted together. Each job has its own unique job
identifier within the cluster, but shares a common cluster
identifier. The value changes each time a job or set of jobs are
queued for execution under HTCondor.

	Cmd¶
	The path to and the file name of the job to be executed.

	CommittedTime¶
	The number of seconds of wall clock time that the job has been
allocated a machine, excluding the time spent on run attempts that
were evicted. Like RemoteWallClockTime,
this includes time the job spent in a suspended state, so the total
committed wall time spent running is

CommittedTime - CommittedSuspensionTime

	CommittedSlotTime¶
	This attribute is identical to CommittedTime except that the
time is multiplied by the SlotWeight of the machine(s) that ran
the job. This relies on SlotWeight being listed in
SYSTEM_JOB_MACHINE_ATTRS

	CommittedSuspensionTime¶
	A running total of the number of seconds the job has spent in
suspension during time in which the job was not evicted.
This number is updated when the job exits.

	CompletionDate¶
	The time when the job completed, or undefined if the job has not
yet completed. Measured in the number of seconds since the epoch
(00:00:00 UTC, Jan 1, 1970). Note that older versions of HTCondor
initialzed CompletionDate to the integer 0, so job ads from
older versions of HTCondor might have a 0 CompletionDate for
jobs which haven’t completed.

	ConcurrencyLimits¶
	A string list, delimited by commas and space characters. The items
in the list identify named resources that the job requires. The
value can be a ClassAd expression which, when evaluated in the
context of the job ClassAd and a matching machine ClassAd, results
in a string list.

	CondorPlatform¶
	A string that describes the operating system version that the
condor_submit command that submitted this job was built for. Note
this may be different that the operating system that is actually running.

	CondorVersion¶
	A string that describes the HTCondor version of the condor_submit
command that created this job. Note this may be different than the
version of the HTCondor daemon that runs the job.

	ContainerImage¶
	For Container universe jobs, the string that names the container image to be run
the job in.

	ContainerTargetDir¶
	For Container universe jobs, a filename that becomes the working directory of
the job. Mapped to the scratch directory.

	CumulativeSlotTime¶
	This attribute is identical to RemoteWallClockTime except that
the time is multiplied by the SlotWeight of the machine(s) that
ran the job. This relies on SlotWeight being listed in
SYSTEM_JOB_MACHINE_ATTRS

	CumulativeSuspensionTime¶
	A running total of the number of seconds the job has spent in
suspension for the life of the job.

	CumulativeTransferTime¶
	The total time, in seconds, that condor has spent transferring the
input and output sandboxes for the life of the job.

	CurrentHosts¶
	The number of hosts in the claimed state, due to this job.

	DAGManJobId¶
	For a DAGMan node job only, the ClusterId job ClassAd attribute
of the condor_dagman job which is the parent of this node job.
For nested DAGs, this attribute holds only the ClusterId of the
job’s immediate parent.

	DAGParentNodeNames¶
	For a DAGMan node job only, a comma separated list of each JobName
which is a parent node of this job’s node. This attribute is passed
through to the job via the condor_submit command line, if it does
not exceed the line length defined with _POSIX_ARG_MAX. For
example, if a node job has two parents with JobName s B and C,
the condor_submit command line will contain

-append +DAGParentNodeNames="B,C"

	DAGManNodesLog¶
	For a DAGMan node job only, gives the path to an event log used
exclusively by DAGMan to monitor the state of the DAG’s jobs. Events
are written to this log file in addition to any log file specified
in the job’s submit description file.

	DAGManNodesMask¶
	For a DAGMan node job only, a comma-separated list of the event
codes that should be written to the log specified by
DAGManNodesLog, known as the auxiliary log. All events not
specified in the DAGManNodesMask string are not written to the
auxiliary event log. The value of this attribute is determined by
DAGMan, and it is passed to the job via the condor_submit command
line. By default, the following events are written to the auxiliary
job log:

	Submit, event code is 0

	Execute, event code is 1

	Executable error, event code is 2

	Job evicted, event code is 4

	Job terminated, event code is 5

	Shadow exception, event code is 7

	Job aborted, event code is 9

	Job suspended, event code is 10

	Job unsuspended, event code is 11

	Job held, event code is 12

	Job released, event code is 13

	Post script terminated, event code is 16

	Grid submit, event code is 27

If DAGManNodesLog is not defined, it has no effect. The value of
DAGManNodesMask does not affect events recorded in the job event
log file referred to by UserLog.

	DAGManNodeRetry¶
	For a DAGMan node job only, the current retry attempt number for the node
that this job belongs. This attribute is only included if specified by
DAGMAN_NODE_RECORD_INFO configuration option.

	DeferralPrepTime¶
	An integer representing the number of seconds before the jobs DeferralTime
to which the job may be matched with a machine.

	DeferralTime¶
	A Unix Epoch timestamp that represents the exact time HTCondor should
attempt to begin executing the job.

	DeferralWindow¶
	An integer representing the number of seconds after the jobs DeferralTime
to allow the job to arrive at the execute machine before automatically being
evicted due to missing its DeferralTime.

	DelegateJobGSICredentialsLifetime¶
	An integer that specifies the maximum number of seconds for which
delegated proxies should be valid. The default behavior is
determined by the configuration setting
DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME which defaults
to one day. A value of 0 indicates that the delegated proxy should
be valid for as long as allowed by the credential used to create the
proxy. This setting currently only applies to proxies delegated for
non-grid jobs and HTCondor-C jobs.
This setting has no effect if the configuration setting
DELEGATE_JOB_GSI_CREDENTIALS
 is false, because in
that case the job proxy is copied rather than delegated.

	DiskUsage¶
	Amount of disk space (KiB) in the HTCondor execute directory on the
execute machine that this job has used. An initial value may be set
at the job’s request, placing into the job’s submit description file
a setting such as

1 megabyte initial value
+DiskUsage = 1024

vm universe jobs will default to an initial value of the disk
image size. If not initialized by the job, non-vm universe jobs
will default to an initial value of the sum of the job’s executable
and all input files.

	DockerImage¶
	For Docker and Container universe jobs, a string that names the docker image to run
inside the container.

	EC2AccessKeyId¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_access_key_id .
Defines the path and file name of the file containing the EC2 Query
API’s access key.

	EC2AmiID¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_ami_id .
Identifies the machine image of the instance.

	EC2BlockDeviceMapping¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_block_device_mapping .
Defines the map from block device names to kernel device names for
the instance.

	EC2ElasticIp¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_elastic_ip .
Specifies an Elastic IP address to associate with the instance.

	EC2IamProfileArn¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_iam_profile_arn .
Specifies the IAM (instance) profile to associate with this
instance.

	EC2IamProfileName¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_iam_profile_name .
Specifies the IAM (instance) profile to associate with this
instance.

	EC2InstanceName¶
	Used for grid type ec2 jobs; a string set for the job once the
instance starts running, as assigned by the EC2 service, that
represents the unique ID assigned to the instance by the EC2
service.

	EC2InstanceType¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_instance_type .
Specifies a service-specific instance type.

	EC2KeyPair¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_keypair .
Defines the key pair associated with the EC2 instance.

	EC2ParameterNames¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_parameter_names .
Contains a space or comma separated list of the names of additional
parameters to pass when instantiating an instance.

	EC2SpotPrice¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_spot_price .
Defines the maximum amount per hour a job submitter is willing to
pay to run this job.

	EC2SpotRequestID¶
	Used for grid type ec2 jobs; identifies the spot request HTCondor
made on behalf of this job.

	EC2StatusReasonCode¶
	Used for grid type ec2 jobs; reports the reason for the most recent
EC2-level state transition. Can be used to determine if a spot
request was terminated due to a rise in the spot price.

	EC2TagNames¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_tag_names .
Defines the set, and case, of tags associated with the EC2 instance.

	EC2KeyPairFile¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_keypair_file .
Defines the path and file name of the file into which to write the
SSH key used to access the image, once it is running.

	EC2RemoteVirtualMachineName¶
	Used for grid type ec2 jobs; a string set for the job once the
instance starts running, as assigned by the EC2 service, that
represents the host name upon which the instance runs, such that the
user can communicate with the running instance.

	EC2SecretAccessKey¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_secret_access_key .
Defines that path and file name of the file containing the EC2 Query
API’s secret access key.

	EC2SecurityGroups¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_security_groups .
Defines the list of EC2 security groups which should be associated
with the job.

	EC2SecurityIDs¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_security_ids .
Defines the list of EC2 security group IDs which should be
associated with the job.

	EC2UserData¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_user_data .
Defines a block of data that can be accessed by the virtual machine.

	EC2UserDataFile¶
	Used for grid type ec2 jobs; a string taken from the definition of
the submit description file command
ec2_user_data_file .
Specifies a path and file name of a file containing data that can be
accessed by the virtual machine.

	EmailAttributes¶
	A string containing a comma-separated list of job ClassAd
attributes. For each attribute name in the list, its value will be
included in the e-mail notification upon job completion.

	EncryptExecuteDirectory¶
	A boolean value taken from the submit description file command
encrypt_execute_directory .
It specifies if HTCondor should encrypt the remote scratch directory
on the machine where the job executes.

	EnteredCurrentStatus¶
	An integer containing the epoch time of when the job entered into
its current status So for example, if the job is on hold, the
ClassAd expression

time() - EnteredCurrentStatus

will equal the number of seconds that the job has been on hold.

	Env¶
	A string representing the environment variables passed to the job,
when those arguments are specified using the old syntax, as
specified in
the condor_submit section.

	Environment¶
	A string representing the environment variables passed to the job,
when those arguments are specified using the new syntax, as
specified in
the condor_submit section.

	EraseOutputAndErrorOnRestart¶
	A boolean. If missing or true, HTCondor will erase (truncate) the error
and output logs when the job restarts. If this attribute is false, and
when_to_transfer_output is ON_EXIT_OR_EVICT, HTCondor will instead
append to those files.

	ExecutableSize¶
	Size of the executable in KiB.

	ExitBySignal¶
	An attribute that is True when a user job exits via a signal and
False otherwise. For some grid universe jobs, how the job exited
is unavailable. In this case, ExitBySignal is set to False.

	ExitCode¶
	When a user job exits by means other than a signal, this is the exit
return code of the user job. For some grid universe jobs, how the
job exited is unavailable. In this case, ExitCode is set to 0.

	ExitSignal¶
	When a user job exits by means of an unhandled signal, this
attribute takes on the numeric value of the signal. For some grid
universe jobs, how the job exited is unavailable. In this case,
ExitSignal will be undefined.

	ExitStatus¶
	The way that HTCondor previously dealt with a job’s exit status.
This attribute should no longer be used. It is not always accurate
in heterogeneous pools, or if the job exited with a signal. Instead,
see the attributes: ExitBySignal, ExitCode, and
ExitSignal.

	GceAuthFile¶
	Used for grid type gce jobs; a string taken from the definition of
the submit description file command
gce_auth_file .
Defines the path and file name of the file containing authorization
credentials to use the GCE service.

	GceImage¶
	Used for grid type gce jobs; a string taken from the definition of
the submit description file command
gce_image .
Identifies the machine image of the instance.

	GceJsonFile¶
	Used for grid type gce jobs; a string taken from the definition of
the submit description file command
gce_json_file .
Specifies the path and file name of a file containing a set of JSON
object members that should be added to the instance description
submitted to the GCE service.

	GceMachineType¶
	Used for grid type gce jobs; a string taken from the definition of
the submit description file command
gce_machine_type .
Specifies the hardware profile that should be used for a GCE
instance.

	GceMetadata¶
	Used for grid type gce jobs; a string taken from the definition of
the submit description file command
gce_metadata .
Defines a set of name/value pairs that can be accessed by the
virtual machine.

	GceMetadataFile¶
	Used for grid type gce jobs; a string taken from the definition of
the submit description file command
gce_metadata_file .
Specifies a path and file name of a file containing a set of
name/value pairs that can be accessed by the virtual machine.

	GcePreemptible¶
	Used for grid type gce jobs; a boolean taken from the definition of
the submit description file command
gce_preemptible .
Specifies whether the virtual machine instance created in GCE should
be preemptible.

	GlobalJobId¶
	A string intended to be a unique job identifier within a pool. It
currently contains the condor_schedd daemon Name attribute, a
job identifier composed of attributes ClusterId and ProcId
separated by a period, and the job’s submission time in seconds
since 1970-01-01 00:00:00 UTC, separated by # characters. The value
submit.example.com#152.3#1358363336 is an example. While HTCondor
guaratees this string will be globally unique, the contents are subject
to change, and users should not parse out components of this string.

	GridJobStatus¶
	A string containing the job’s status as reported by the remote job
management system.

	GridResource¶
	A string defined by the right hand side of the the submit
description file command
grid_resource .
It specifies the target grid type, plus additional parameters
specific to the grid type.

	GridResourceUnavailableTime¶
	Time at which the remote job management system became unavailable.
Measured in the number of seconds since the epoch (00:00:00 UTC,
Jan 1, 1970).

	HoldKillSig¶
	Currently only for scheduler and local universe jobs, a string
containing a name of a signal to be sent to the job if the job is
put on hold.

	HoldReason¶
	A string containing a human-readable message about why a job is on
hold. This is the message that will be displayed in response to the
command condor_q -hold. It can be used to determine if a job should
be released or not.

	HoldReasonCode¶
	An integer value that represents the reason that a job was put on
hold. The below table defines all possible values used by
attributes HoldReasonCode, NumHoldsByReason, and HoldReasonSubCode.

	
Integer HoldReasonCode

[NumHoldsByReason Label]

	
Reason for Hold

	
HoldReasonSubCode

	
1

[UserRequest]

	The user put the job on
hold with condor_hold.

	

	
3

[JobPolicy]

	The PERIODIC_HOLD
expression evaluated to
True. Or,
ON_EXIT_HOLD was
true

	User Specified

	
4

[CorruptedCredential]

	The credentials for the
job are invalid.

	

	
5

[JobPolicyUndefined]

	A job policy expression
evaluated to
Undefined.

	

	
6

[FailedToCreateProcess]

	The condor_starter
failed to start the
executable.

	The Unix errno number.

	
7

[UnableToOpenOutput]

	The standard output file
for the job could not be
opened.

	The Unix errno number.

	
8

[UnableToOpenInput]

	The standard input file
for the job could not be
opened.

	The Unix errno number.

	
9

[UnableToOpenOutputStream]

	The standard output
stream for the job could
not be opened.

	The Unix errno number.

	
10

[UnableToOpenInputStream]

	The standard input
stream for the job could
not be opened.

	The Unix errno number.

	
11

[InvalidTransferAck]

	An internal HTCondor
protocol error was
encountered when
transferring files.

	

	
12

[TransferOutputError]

	An error occurred while
transferring job output files
or self-checkpoint files.

	The Unix errno number,
or a plug-in error
number; see below.

	
13

[TransferInputError]

	An error occurred while
transferring job input files.

	The Unix errno number,
or a plug-in error
number; see below.

	
14

[IwdError]

	The initial working
directory of the job
cannot be accessed.

	The Unix errno number.

	
15

[SubmittedOnHold]

	The user requested the
job be submitted on
hold.

	

	
16

[SpoolingInput]

	Input files are being
spooled.

	

	
17

[JobShadowMismatch]

	A standard universe job
is not compatible with
the condor_shadow
version available on the
submitting machine.

	

	
18

[InvalidTransferGoAhead]

	An internal HTCondor
protocol error was
encountered when
transferring files.

	

	
19

[HookPrepareJobFailure]

	<Keyword>_HOOK_PREPARE_JOB

was defined but could
not be executed or
returned failure.

	

	
20

[MissedDeferredExecutionTime]

	The job missed its
deferred execution time
and therefore failed to
run.

	

	
21

[StartdHeldJob]

	The job was put on hold
because WANT_HOLD

in the machine policy
was true.

	

	
22

[UnableToInitUserLog]

	Unable to initialize job
event log.

	

	
23

[FailedToAccessUserAccount]

	Failed to access user
account.

	

	
24

[NoCompatibleShadow]

	No compatible shadow.

	

	
25

[InvalidCronSettings]

	Invalid cron settings.

	

	
26

[SystemPolicy]

	SYSTEM_PERIODIC_HOLD

evaluated to true.

	

	
27

[SystemPolicyUndefined]

	The system periodic job
policy evaluated to
undefined.

	

	
32

[MaxTransferInputSizeExceeded]

	The maximum total input
file transfer size was
exceeded. (See
MAX_TRANSFER_INPUT_MB

	

	
33

[MaxTransferOutputSizeExceeded]

	The maximum total output
file transfer size was
exceeded. (See
MAX_TRANSFER_OUTPUT_MB

	

	
34

[JobOutOfResources]

	Memory usage exceeds a
memory limit.

	

	
35

[InvalidDockerImage]

	Specified Docker image
was invalid.

	

	
36

[FailedToCheckpoint]

	Job failed when sent the
checkpoint signal it
requested.

	

	
37

[EC2UserError]

	User error in the EC2
universe:

	

	
	Public key file not
defined.

	1

	
	Private key file not
defined.

	2

	
	Grid resource string
missing EC2 service URL.

	4

	
	Failed to authenticate.

	9

	
	Can’t use existing SSH
keypair with the given
server’s type.

	10

	
	You, or somebody like
you, cancelled this
request.

	20

	
38

[EC2InternalError]

	Internal error in the
EC2 universe:

	

	
	Grid resource type not
EC2.

	3

	
	Grid resource type not
set.

	5

	
	Grid job ID is not for
EC2.

	7

	
	Unexpected remote job
status.

	21

	
39

[EC2AdminError]

	Adminstrator error in
the EC2 universe:

	

	
	EC2_GAHP not defined.

	6

	
40

[EC2ConnectionProblem]

	Connection problem in
the EC2 universe

	

	
	…while creating an SSH
keypair.

	11

	
	…while starting an
on-demand instance.

	12

	
	…while requesting a spot
instance.

	17

	
41

[EC2ServerError]

	Server error in the EC2
universe:

	

	
	Abnormal instance
termination reason.

	13

	
	Unrecognized instance
termination reason.

	14

	
	Resource was down for
too long.

	22

	
42

[EC2InstancePotentiallyLost]

	Instance potentially
lost due to an error in
the EC2 universe:

	

	
	Connection error while
terminating an instance.

	15

	
	Failed to terminate
instance too many times.

	16

	
	Connection error while
terminating a spot
request.

	17

	
	Failed to terminated a
spot request too many
times.

	18

	
	Spot instance request
purged before instance
ID acquired.

	19

	
43

[PreScriptFailed]

	Pre script failed.

	

	
	
	

	
44

[PostScriptFailed]

	Post script failed.

	

	
45

[SingularityTestFailed]

	Test of singularity runtime failed
before launching a job

	

	
46

[JobDurationExceeded]

	The job’s allowed duration was
exceeded.

	

	
47

[JobExecuteExceeded]

	The job’s allowed execution time
was exceeded.

	

	
48

[HookShadowPrepareJobFailure]

	<Keyword>_HOOK_SHADOW_PREPARE_JOB |
 |
failed when it was executed; |
status code indicated job should be |
held. |

Note for hold codes 12 [TransferOutputError] and 13 [TransferInputError]:
file transfer may invoke file-transfer plug-ins. If it does, the hold
subcodes may additionally be 62 (ETIME), if the file-transfer plug-in
timed out; or the exit code of the plug-in shifted left by eight bits,
otherwise.

	HoldReasonSubCode¶
	An integer value that represents further information to go along
with the HoldReasonCode, for some values of HoldReasonCode.
See HoldReasonCode for a table of possible values.

	HookKeyword¶
	A string that uniquely identifies a set of job hooks, and added to
the ClassAd once a job is fetched.

	ImageSize¶
	Maximum observed memory image size (i.e. virtual memory) of the job
in KiB. The initial value is equal to the size of the executable for
non-vm universe jobs, and 0 for vm universe jobs.
A vanilla universe job’s ImageSize is recomputed
internally every 15 seconds. How quickly this updated information
becomes visible to condor_q is controlled by
SHADOW_QUEUE_UPDATE_INTERVAL and STARTER_UPDATE_INTERVAL.

Under Linux, ProportionalSetSize is a better indicator of memory
usage for jobs with significant sharing of memory between processes,
because ImageSize is simply the sum of virtual memory sizes
across all of the processes in the job, which may count the same
memory pages more than once.

	IOWait¶
	I/O wait time of the job recorded by the cgroup controller in
seconds.

	IwdFlushNFSCache¶
	A boolean expression that controls whether or not HTCondor attempts
to flush a access point’s NFS cache, in order to refresh an
HTCondor job’s initial working directory. The value will be
True, unless a job explicitly adds this attribute, setting it to
False.

	JobAdInformationAttrs¶
	A comma-separated list of attribute names. The named attributes and
their values are written in the job event log whenever any event is
being written to the log. This is the same as the configuration
setting EVENT_LOG_INFORMATION_ATTRS (see
Daemon Logging Configuration File Entries) but it applies to the job event log instead of the system event log.

	JobBatchName¶
	If a job is given a batch name with the -batch-name option to condor_submit, this
string valued attribute will contain the batch name.

	JobCurrentFinishTransferInputDate¶
	Time at which the job most recently finished transferring its input
sandbox. Measured in the number of seconds since the epoch (00:00:00
UTC, Jan 1, 1970)

	JobCurrentFinishTransferOutputDate¶
	Time at which the job most recently finished transferring its output
sandbox. Measured in the number of seconds since the epoch (00:00:00
UTC, Jan 1, 1970)

	JobCurrentStartDate¶
	Time at which the job most recently began running. Measured in the
number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

	JobCurrentStartExecutingDate¶
	Time at which the job most recently finished transferring its input
sandbox and began executing. Measured in the number of seconds since
the epoch (00:00:00 UTC, Jan 1, 1970)

	JobCurrentStartTransferInputDate¶
	Time at which the job most recently began transferring its input
sandbox. Measured in the number of seconds since the epoch (00:00:00
UTC, Jan 1, 1970)

	JobCurrentStartTransferOutputDate¶
	Time at which the job most recently finished executing and began
transferring its output sandbox. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970)

	JobDescription¶
	A string that may be defined for a job by setting
description in the
submit description file. When set, tools which display the
executable such as condor_q will instead use this string. For
interactive jobs that do not have a submit description file, this
string will default to "Interactive job".

	JobDisconnectedDate¶
	Time at which the condor_shadow and condor_starter become disconnected.
Set to Undefined when a succcessful reconnect occurs. Measured in the
number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

	JobLeaseDuration¶
	The number of seconds set for a job lease, the amount of time that a
job may continue running on a remote resource, despite its
submitting machine’s lack of response. See
Job Leases
for details on job leases.

	JobMaxVacateTime¶
	An integer expression that specifies the time in seconds requested
by the job for being allowed to gracefully shut down.

	JobNotification¶
	An integer indicating what events should be emailed to the user. The
integer values correspond to the user choices for the submit command
notification .

	Value

	Notification Value

	0

	Never

	1

	Always

	2

	Complete

	3

	Error

	JobPrio¶
	Integer priority for this job, set by condor_submit or
condor_prio. The default value is 0. The higher the number, the
greater (better) the priority.

	JobRunCount¶
	This attribute is retained for backwards compatibility. It may go
away in the future. It is equivalent to NumShadowStarts for all
universes except scheduler. For the scheduler universe, this
attribute is equivalent to NumJobStarts.

	JobStartDate¶
	Time at which the job first began running. Measured in the number of
seconds since the epoch (00:00:00 UTC, Jan 1, 1970). Due to a long
standing bug in the 8.6 series and earlier, the job classad that is
internal to the condor_startd and condor_starter sets this to
the time that the job most recently began executing. This bug is
scheduled to be fixed in the 8.7 series.

	JobStatus¶
	Integer which indicates the current status of the job.

	Value

	Idle

	1

	Idle

	2

	Running

	3

	Removing

	4

	Completed

	5

	Held

	6

	Transferring Output

	7

	Suspended

	JobSubmitMethod¶
	Integer which indicates how a job was submitted to HTCondor. Users can
set a custom value for job via Python Bindings API.

	Value

	Method of Submission

	Undefined

	Unknown

	0

	condor_submit

	1

	DAGMan-Direct

	2

	Python Bindings

	3

	htcondor job submit

	4

	htcondor dag submit

	5

	htcondor jobset submit

	100+

	Portal/User-set

	JobUniverse
	Integer which indicates the job universe.

	Value

	Universe

	5

	vanilla, docker

	7

	scheduler

	8

	MPI

	9

	grid

	10

	java

	11

	parallel

	12

	local

	13

	vm

	KeepClaimIdle¶
	An integer value that represents the number of seconds that the
condor_schedd will continue to keep a claim, in the Claimed Idle
state, after the job with this attribute defined completes, and
there are no other jobs ready to run from this user. This attribute
may improve the performance of linear DAGs, in the case when a
dependent job can not be scheduled until its parent has completed.
Extending the claim on the machine may permit the dependent job to
be scheduled with less delay than with waiting for the
condor_negotiator to match with a new machine.

	KillSig¶
	The Unix signal number that the job wishes to be sent before being
forcibly killed. It is relevant only for jobs running on Unix
machines.

	KillSigTimeout¶
	This attribute is replaced by the functionality in
JobMaxVacateTime as of HTCondor version 7.7.3. The number of
seconds that the job requests the
condor_starter wait after sending the signal defined as
KillSig and before forcibly removing the job. The actual amount
of time will be the minimum of this value and the execute machine’s
configuration variable KILLING_TIMEOUT

	LastMatchTime¶
	An integer containing the epoch time when the job was last
successfully matched with a resource (gatekeeper) Ad.

	LastRejMatchReason¶
	If, at any point in the past, this job failed to match with a
resource ad, this attribute will contain a string with a
human-readable message about why the match failed.

	LastRejMatchTime¶
	An integer containing the epoch time when HTCondor-G last tried to
find a match for the job, but failed to do so.

	LastRemotePool¶
	The name of the condor_collector of the pool in which a job ran
via flocking in the most recent run attempt. This attribute is not
defined if the job did not run via flocking.

	LastSuspensionTime¶
	Time at which the job last performed a successful suspension.
Measured in the number of seconds since the epoch (00:00:00 UTC, Jan
1, 1970).

	LastVacateTime¶
	Time at which the job was last evicted from a remote workstation.
Measured in the number of seconds since the epoch (00:00:00 UTC, Jan
1, 1970).

	LeaveJobInQueue¶
	A boolean expression that defaults to False, causing the job to
be removed from the queue upon completion. An exception is if the
job is submitted using condor_submit -spool. For this case, the
default expression causes the job to be kept in the queue for 10
days after completion.

	

 Machine ClassAd Attributes

Machine ClassAd Attributes

	AcceptedWhileDraining¶
	Boolean which indicates if the slot accepted its current job while
the machine was draining.

	Activity¶
	String which describes HTCondor job activity on the machine. Can
have one of the following values:

	"Idle"
	There is no job activity

	"Busy"
	A job is busy running

	"Suspended"
	A job is currently suspended

	"Vacating"
	A job is currently vacating

	"Killing"
	A job is currently being killed

	"Benchmarking"
	The startd is running benchmarks

	"Retiring"
	Waiting for a job to finish or for the maximum retirement time to expire

	Arch¶
	String with the architecture of the machine. Currently supported
architectures have the following string definitions:

	"INTEL"
	Intel x86 CPU (Pentium, Xeon, etc).

	"X86_64"
	AMD/Intel 64-bit X86

	Microarch¶
	On X86_64 Linux machines, this advertises the x86_64 microarchitecture,
like x86_64-v2. See https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
for details.

	CanHibernate¶
	The condor_startd has the capability to shut down or hibernate a
machine when certain configurable criteria are met. However, before
the condor_startd can shut down a machine, the hardware itself
must support hibernation, as must the operating system. When the
condor_startd initializes, it checks for this support. If the
machine has the ability to hibernate, then this boolean ClassAd
attribute will be True. By default, it is False.

	ClaimEndTime¶
	The time at which the slot will leave the Claimed state.
Currently, this only applies to partitionable slots.
This is measured in the number of integer seconds since the Unix
epoch (00:00:00 UTC, Jan 1, 1970).

	ClockDay¶
	The day of the week, where 0 = Sunday, 1 = Monday, …, and 6 =
Saturday.

	ClockMin¶
	The number of minutes passed since midnight.

	CondorLoadAvg¶
	The load average contributed by HTCondor, either from remote jobs or
running benchmarks.

	CondorVersion¶
	A string containing the HTCondor version number for the
condor_startd daemon, the release date, and the build
identification number.

	ConsoleIdle¶
	The number of seconds since activity on the system console keyboard
or console mouse has last been detected. The value can be modified
with SLOTS_CONNECTED_TO_CONSOLE as defined in the
condor_startd Configuration File Macros section.

	Cpus¶
	The number of CPUs (cores) in this slot. It is 1 for a single CPU
slot, 2 for a dual CPU slot, etc. For a partitionable slot, it is
the remaining number of CPUs in the partitionable slot.

	CpuFamily¶
	On Linux machines, the Cpu family, as defined in the /proc/cpuinfo
file.

	CpuModel¶
	On Linux machines, the Cpu model number, as defined in the
/proc/cpuinfo file.

	CpuCacheSize¶
	On Linux machines, the size of the L3 cache, in kbytes, as defined
in the /proc/cpuinfo file.

	CurrentRank¶
	A float which represents this machine owner’s affinity for running
the HTCondor job which it is currently hosting. If not currently
hosting an HTCondor job, CurrentRank is 0.0. When a machine is
claimed, the attribute’s value is computed by evaluating the
machine’s Rank expression with respect to the current job’s
ClassAd.

	DetectedCpus¶
	Set by the value of configuration variable DETECTED_CORES

	DetectedMemory¶
	Set by the value of configuration variable DETECTED_MEMORY.
 Specified in MiB.

	Disk¶
	The amount of disk space on this machine available for the job in
KiB (for example, 23000 = 23 MiB). Specifically, this is the amount
of disk space available in the directory specified in the HTCondor
configuration files by the EXECUTE macro,
minus any space reserved with the RESERVED_DISK
macro. For static slots, this value
will be the same as machine ClassAd attribute TotalSlotDisk. For
partitionable slots, this value will be the quantity of disk space
remaining in the partitionable slot.

	Draining¶
	This attribute is True when the slot is draining and undefined
if not.

	DrainingRequestId¶
	This attribute contains a string that is the request id of the
draining request that put this slot in a draining state. It is
undefined if the slot is not draining.

	DotNetVersions¶
	The .NET framework versions currently installed on this computer.
Default format is a comma delimited list. Current definitions:

	"1.1"
	for .Net Framework 1.1

	"2.0"
	for .Net Framework 2.0

	"3.0"
	for .Net Framework 3.0

	"3.5"
	for .Net Framework 3.5

	"4.0Client"
	for .Net Framework 4.0 Client install

	"4.0Full"
	for .Net Framework 4.0 Full install

	DynamicSlot¶
	For SMP machines that allow dynamic partitioning of a slot, this
boolean value identifies that this dynamic slot may be partitioned.

	EnteredCurrentActivity¶
	Time at which the machine entered the current Activity (see
Activity entry above). On all platforms (including NT), this is
measured in the number of integer seconds since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

	ExpectedMachineGracefulDrainingBadput¶
	The job run time in cpu-seconds that would be lost if graceful
draining were initiated at the time this ClassAd was published. This
calculation assumes that jobs will run for the full retirement time
and then be evicted.

	ExpectedMachineGracefulDrainingCompletion¶
	The estimated time at which graceful draining of the machine could
complete if it were initiated at the time this ClassAd was published
and there are no active claims. This is measured in the number of
integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970).
This value is computed with the assumption that the machine policy
will not suspend jobs during draining while the machine is waiting
for the job to use up its retirement time. If suspension happens,
the upper bound on how long draining could take is unlimited. To
avoid suspension during draining, the SUSPEND and CONTINUE
expressions could be configured to pay attention to the Draining
attribute.

	ExpectedMachineQuickDrainingBadput¶
	The job run time in cpu-seconds that would be lost if quick or fast
draining were initiated at the time this ClassAd was published. This
calculation assumes that all evicted jobs will not save a
checkpoint.

	ExpectedMachineQuickDrainingCompletion¶
	Time at which quick or fast draining of the machine could complete
if it were initiated at the time this ClassAd was published and
there are no active claims. This is measured in the number of
integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

	FileSystemDomain¶
	A domain name configured by the HTCondor administrator which
describes a cluster of machines which all access the same,
uniformly-mounted, networked file systems usually via NFS or AFS.
This is useful for Vanilla universe jobs which require remote file
access.

	HasContainer¶
	A boolean value set to True if the machine is capable of
executing container universe jobs.

	HasDocker¶
	A boolean value set to True if the machine is capable of
executing docker universe jobs.

	DockerCachedImageSizeMb¶
	An integer value containing the number of megabytes of space used
by the docker image cache for cached images used by a worker node.
Excludes any images that may be in the cache that were not placed
there by HTCondor.

	HasSandboxImage¶
	A boolean value set to True if the machine is capable of
executing container universe jobs with a singularity “sandbox”
image type

	HasSIF¶
	A boolean value set to True if the machine is capable of
executing container universe jobs with a singularity “SIF”
image type

	HasEncryptExecuteDirectory¶
	A boolean value set to True if the machine is capable of
encrypting execute directories.

	HasFileTransfer¶
	A boolean value that when True identifies that the machine can
use the file transfer mechanism.

	HasFileTransferPluginMethods¶
	A string of comma-separated file transfer protocols that the machine
can support. The value can be modified with FILETRANSFER_PLUGINS
as defined in condor_starter Configuration File Entries.

	HasUserNamespaces¶
	A boolean value that when True identifies that the jobs on this machine
can create user namespaces without root privileges.

	Has_sse4_1¶
	A boolean value set to True if the machine being advertised
supports the SSE 4.1 instructions, and Undefined otherwise.

	Has_sse4_2¶
	A boolean value set to True if the machine being advertised
supports the SSE 4.2 instructions, and Undefined otherwise.

	has_ssse3¶
	A boolean value set to True if the machine being advertised
supports the SSSE 3 instructions, and Undefined otherwise.

	has_avx¶
	A boolean value set to True if the machine being advertised
supports the avx instructions, and Undefined otherwise.

	has_avx2¶
	A boolean value set to True if the machine being advertised
supports the avx2 instructions, and Undefined otherwise.

	has_avx512f¶
	A boolean value set to True if the machine being advertised
support the avx512f (foundational) instructions.

	has_avx512dq¶
	A boolean value set to True if the machine being advertised
support the avx512dq instructions.

	has_avx512dnni¶
	A boolean value set to True if the machine being advertised
support the avx512dnni instructions.

	HasSelfCheckpointTransfers¶
	A boolean value set to True if the machine being advertised
supports transferring (checkpoint) files (to the submit node)
when the job successfully self-checkpoints.

	HasSingularity¶
	A boolean value set to True if the machine being advertised
supports running jobs within Singularity containers.

	HasSshd¶
	A boolean value set to True if the machine has a
/usr/sbin/sshd installed. If False, condor_ssh_to_job
is unlikely to function.

	HasVM¶
	If the configuration triggers the detection of virtual machine
software, a boolean value reporting the success thereof; otherwise
undefined. May also become False if HTCondor determines that it
can’t start a VM (even if the appropriate software is detected).

	IsWakeAble¶
	A boolean value that when True identifies that the machine has
the capability to be woken into a fully powered and running state by
receiving a Wake On LAN (WOL) packet. This ability is a function of
the operating system, the network adapter in the machine (notably,
wireless network adapters usually do not have this function), and
BIOS settings. When the condor_startd initializes, it tries to
detect if the operating system and network adapter both support
waking from hibernation by receipt of a WOL packet. The default
value is False.

	IsWakeEnabled¶
	If the hardware and software have the capacity to be woken into a
fully powered and running state by receiving a Wake On LAN (WOL)
packet, this feature can still be disabled via the BIOS or software.
If BIOS or the operating system have disabled this feature, the
condor_startd sets this boolean attribute to False.

	JobBusyTimeAvg¶
	The Average lifetime of all jobs, including transfer time. This is
determined by measuring the lifetime of each condor_starter that
has exited. This attribute will be undefined until the first time a
condor_starter has exited.

	JobBusyTimeCount¶
	attribute. This is also the the total number times a
condor_starter has exited.

	JobBusyTimeMax¶
	The Maximum lifetime of all jobs, including transfer time. This is
determined by measuring the lifetime of each condor_starter s
that has exited. This attribute will be undefined until the first
time a condor_starter has exited.

	JobBusyTimeMin¶
	The Minimum lifetime of all jobs, including transfer time. This is
determined by measuring the lifetime of each condor_starter that
has exited. This attribute will be undefined until the first time a
condor_starter has exited.

	RecentJobBusyTimeAvg¶
	The Average lifetime of all jobs that have exited in the last 20
minutes, including transfer time. This is determined by measuring
the lifetime of each condor_starter that has exited in the last
20 minutes. This attribute will be undefined if no condor_starter
has exited in the last 20 minutes.

	RecentJobBusyTimeCount¶
	The total number of jobs used to calulate the
RecentJobBusyTimeAvg attribute. This is also the the total
number times a condor_starter has exited in the last 20 minutes.

	RecentJobBusyTimeMax¶
	The Maximum lifetime of all jobs that have exited in the last 20
minutes, including transfer time. This is determined by measuring
the lifetime of each condor_starter s that has exited in the
last 20 minutes. This attribute will be undefined if no
condor_starter has exited in the last 20 minutes.

	RecentJobBusyTimeMin¶
	The Minimum lifetime of all jobs, including transfer time. This is
determined by measuring the lifetime of each condor_starter that
has exited. This attribute will be undefined if no condor_starter
has exited in the last 20 minutes.

	JobDurationAvg¶
	The Average lifetime time of all jobs, not including time spent
transferring files. This attribute will be undefined until the first
time a job exits. Jobs that never start (because they fail to
transfer input, for instance) will not be included in the average.

	JobDurationCount¶
	attribute. This is also the the total number times a job has exited.
Jobs that never start (because input transfer fails, for instance)
are not included in the count.

	JobDurationMax¶
	The lifetime of the longest lived job that has exited. This
attribute will be undefined until the first time a job exits.

	JobDurationMin¶
	The lifetime of the shortest lived job that has exited. This
attribute will be undefined until the first time a job exits.

	RecentJobDurationAvg¶
	The Average lifetime time of all jobs, not including time spent
transferring files, that have exited in the last 20 minutes. This
attribute will be undefined if no job has exited in the last 20
minutes.

	RecentJobDurationCount¶
	The total number of jobs used to calulate the
RecentJobDurationAvg attribute. This is the total number of jobs
that began execution and have exited in the last 20 minutes.

	RecentJobDurationMax¶
	The lifetime of the longest lived job that has exited in the last 20
minutes. This attribute will be undefined if no job has exited in
the last 20 minutes.

	RecentJobDurationMin¶
	The lifetime of the shortest lived job that has exited in the last
20 minutes. This attribute will be undefined if no job has exited in
the last 20 minutes.

	JobPreemptions¶
	The total number of times a running job has been preempted on this
machine.

	JobRankPreemptions¶
	The total number of times a running job has been preempted on this
machine due to the machine’s rank of jobs since the condor_startd
started running.

	JobStarts¶
	The total number of jobs which have been started on this machine
since the condor_startd started running.

	JobUserPrioPreemptions¶
	The total number of times a running job has been preempted on this
machine based on a fair share allocation of the pool since the
condor_startd started running.

	JobVM_VCPUS¶
	An attribute defined if a vm universe job is running on this slot.
Defined by the number of virtualized CPUs in the virtual machine.

	KeyboardIdle¶
	The number of seconds since activity on any keyboard or mouse
associated with this machine has last been detected. Unlike
ConsoleIdle, KeyboardIdle also takes activity on
pseudo-terminals into account. Pseudo-terminals have virtual
keyboard activity from telnet and rlogin sessions. Note that
KeyboardIdle will always be equal to or less than
ConsoleIdle. The value can be modified with
SLOTS_CONNECTED_TO_KEYBOARD as defined in the
condor_startd Configuration File Macros section.

	KFlops¶
	Relative floating point performance as determined via a Linpack
benchmark.

	LastDrainStartTime¶
	Time when draining of this condor_startd was last initiated (e.g.
due to condor_defrag or condor_drain).

	LastDrainStopTime¶
	Time when draining of this condor_startd was last stopped (e.g.
by being cancelled).

	LastHeardFrom¶
	Time when the HTCondor central manager last received a status update
from this machine. Expressed as the number of integer seconds since
the Unix epoch (00:00:00 UTC, Jan 1, 1970). Note: This attribute is
only inserted by the central manager once it receives the ClassAd.
It is not present in the condor_startd copy of the ClassAd.
Therefore, you could not use this attribute in defining
condor_startd expressions (and you would not want to).

	LoadAvg¶
	A floating point number representing the current load average.

	Machine¶
	A string with the machine’s fully qualified host name.

	MachineMaxVacateTime¶
	An integer expression that specifies the time in seconds the machine
will allow the job to gracefully shut down.

	MaxClaimTime¶
	The maximum number of seconds that the slot may remain in the
Claimed state before returning to the Unclaimed state.
Currently, this only applies to partitionable slots.

	MaxJobRetirementTime¶
	When the condor_startd wants to kick the job off, a job which has
run for less than this number of seconds will not be hard-killed.
The condor_startd will wait for the job to finish or to exceed
this amount of time, whichever comes sooner. If the job vacating
policy grants the job X seconds of vacating time, a preempted job
will be soft-killed X seconds before the end of its retirement time,
so that hard-killing of the job will not happen until the end of the
retirement time if the job does not finish shutting down before
then. This is an expression evaluated in the context of the job
ClassAd, so it may refer to job attributes as well as machine
attributes.

	Memory¶
	The amount of RAM in MiB in this slot. For static slots, this value
will be the same as in TotalSlotMemory. For a partitionable
slot, this value will be the quantity remaining in the partitionable
slot.

	Mips¶
	Relative integer performance as determined via a Dhrystone
benchmark.

	MonitorSelfAge¶
	The number of seconds that this daemon has been running.

	MonitorSelfCPUUsage¶
	The fraction of recent CPU time utilized by this daemon.

	MonitorSelfImageSize¶
	The amount of virtual memory consumed by this daemon in KiB.

	MonitorSelfRegisteredSocketCount¶
	The current number of sockets registered by this daemon.

	MonitorSelfResidentSetSize¶
	The amount of resident memory used by this daemon in KiB.

	MonitorSelfSecuritySessions¶
	The number of open (cached) security sessions for this daemon.

	MonitorSelfTime¶
	The time, represented as the number of second elapsed since the Unix
epoch (00:00:00 UTC, Jan 1, 1970), at which this daemon last checked
and set the attributes with names that begin with the string
MonitorSelf.

	MyAddress¶
	String with the IP and port address of the condor_startd daemon
which is publishing this machine ClassAd. When using CCB,
condor_shared_port, and/or an additional private network
interface, that information will be included here as well.

	MyCurrentTime¶
	The time, represented as the number of second elapsed since the Unix
epoch (00:00:00 UTC, Jan 1, 1970), at which the condor_startd
daemon last sent a ClassAd update to the condor_collector.

	MyType¶
	The ClassAd type; always set to the literal string "Machine".

	Name¶
	The name of this resource; typically the same value as the
Machine attribute, but could be customized by the site
administrator. On SMP machines, the condor_startd will divide the
CPUs up into separate slots, each with with a unique name. These
names will be of the form “slot#@full.hostname”, for example,
“slot1@vulture.cs.wisc.edu”, which signifies slot number 1 from
vulture.cs.wisc.edu.

	Offline¶
	A string that lists specific instances of a user-defined machine
resource, identified by name. Each instance is currently
unavailable for purposes of match making.

	OfflineUniverses¶
	A ClassAd list that specifies which job universes are presently
offline, both as strings and as the corresponding job universe
number. Could be used the the startd to refuse to start jobs in
offline universes:

START = OfflineUniverses is undefined || (! member(JobUniverse, OfflineUniverses))

May currently only contain "VM" and 13.

	OpSys¶
	String describing the operating system running on this machine.
Currently supported operating systems have the following string
definitions:

	"LINUX"
	for LINUX 2.0.x, LINUX 2.2.x, LINUX 2.4.x, LINUX 2.6.x, or LINUX
3.10.0 kernel systems, as well as Scientific Linux, Ubuntu
versions 14.04, and Debian 7.0 (wheezy) and 8.0 (jessie)

	"OSX"
	for Darwin

	"FREEBSD7"
	for FreeBSD 7

	"FREEBSD8"
	for FreeBSD 8

	"WINDOWS"
	for all versions of Windows

	OpSysAndVer¶
	A string indicating an operating system and a version number.

For Linux operating systems, it is the value of the OpSysName
attribute concatenated with the string version of the
OpSysMajorVer attribute:

	"RedHat5"
	for RedHat Linux version 5

	"RedHat6"
	for RedHat Linux version 6

	"RedHat7"
	for RedHat Linux version 7

	"Fedora16"
	for Fedora Linux version 16

	"Debian6"
	for Debian Linux version 6

	"Debian7"
	for Debian Linux version 7

	"Debian8"
	for Debian Linux version 8

	"Debian9"
	for Debian Linux version 9

	"Ubuntu14"
	for Ubuntu 14.04

	"SL5"
	for Scientific Linux version 5

	"SL6"
	for Scientific Linux version 6

	"SLFermi5"
	for Fermi’s Scientific Linux version 5

	"SLFermi6"
	for Fermi’s Scientific Linux version 6

	"SLCern5"
	for CERN’s Scientific Linux version 5

	"SLCern6"
	for CERN’s Scientific Linux version 6

For MacOS operating systems, it is the value of the
OpSysShortName attribute concatenated with the string version of
the OpSysVer attribute:

	"MacOSX605"
	for MacOS version 10.6.5 (Snow Leopard)

	"MacOSX703"
	for MacOS version 10.7.3 (Lion)

For BSD operating systems, it is the value of the OpSysName
attribute concatenated with the string version of the
OpSysMajorVer attribute:

	"FREEBSD7"
	for FreeBSD version 7

	"FREEBSD8"
	for FreeBSD version 8

For Windows operating systems, it is the value of the OpSys
attribute concatenated with the string version of the
OpSysMajorVer attribute:

	"WINDOWS500"
	for Windows 2000

	"WINDOWS501"
	for Windows XP

	"WINDOWS502"
	for Windows Server 2003

	"WINDOWS600"
	for Windows Vista

	"WINDOWS601"
	for Windows 7

	OpSysLegacy¶
	A string that holds the long-standing values for the OpSys
attribute. Currently supported operating systems have the following
string definitions:

	"LINUX"
	for LINUX 2.0.x, LINUX 2.2.x, LINUX 2.4.x, LINUX 2.6.x, or LINUX
3.10.0 kernel systems, as well as Scientific Linux, Ubuntu
versions 14.04, and Debian 7 and 8

	"OSX"
	for Darwin

	"FREEBSD7"
	for FreeBSD version 7

	"FREEBSD8"
	for FreeBSD version 8

	"WINDOWS"
	for all versions of Windows

	OpSysLongName¶
	A string giving a full description of the operating system. For
Linux platforms, this is generally the string taken from
/etc/hosts, with extra characters stripped off Debian versions.

	"Red Hat Enterprise Linux Server release 6.2 (Santiago)"
	for RedHat Linux version 6

	"Red Hat Enterprise Linux Server release 7.0 (Maipo)"
	for RedHat Linux version 7.0

	"Ubuntu 14.04.1 LTS"
	for Ubuntu 14.04 point release 1

	"Debian GNU/Linux 8"
	for Debian 8.0 (jessie)

	"Fedora release 16 (Verne)"
	for Fedora Linux version 16

	"MacOSX 7.3"
	for MacOS version 10.7.3 (Lion)

	"FreeBSD8.2-RELEASE-p3"
	for FreeBSD version 8

	"Windows XP SP3"
	for Windows XP

	"Windows 7 SP2"
	for Windows 7

	OpSysMajorVer¶
	An integer value representing the major version of the operating
system.

	5
	for RedHat Linux version 5 and derived platforms such as
Scientific Linux

	6
	for RedHat Linux version 6 and derived platforms such as
Scientific Linux

	7
	for RedHat Linux version 7

	14
	for Ubuntu 14.04

	7
	for Debian 7

	8
	for Debian 8

	16
	for Fedora Linux version 16

	6
	for MacOS version 10.6.5 (Snow Leopard)

	7
	for MacOS version 10.7.3 (Lion)

	7
	for FreeBSD version 7

	8
	for FreeBSD version 8

	501
	for Windows XP

	600
	for Windows Vista

	601
	for Windows 7

	OpSysName¶
	A string containing a terse description of the operating system.

	"RedHat"
	for RedHat Linux version 6 and 7

	"Fedora"
	for Fedora Linux version 16

	"Ubuntu"
	for Ubuntu versions 14.04

	"Debian"
	for Debian versions 7 and 8

	"SnowLeopard"
	for MacOS version 10.6.5 (Snow Leopard)

	"Lion"
	for MacOS version 10.7.3 (Lion)

	"FREEBSD"
	for FreeBSD version 7 or 8

	"WindowsXP"
	for Windows XP

	"WindowsVista"
	for Windows Vista

	"Windows7"
	for Windows 7

	"SL"
	for Scientific Linux

	"SLFermi"
	for Fermi’s Scientific Linux

	"SLCern"
	for CERN’s Scientific Linux

	OpSysShortName¶
	A string containing a short name for the operating system.

	"RedHat"
	for RedHat Linux version 5, 6 or 7

	"Fedora"
	for Fedora Linux version 16

	"Debian"
	for Debian Linux version 6 or 7 or 8

	"Ubuntu"
	for Ubuntu versions 14.04

	"MacOSX"
	for MacOS version 10.6.5 (Snow Leopard) or for MacOS version
10.7.3 (Lion)

	"FreeBSD"
	for FreeBSD version 7 or 8

	"XP"
	for Windows XP

	"Vista"
	for Windows Vista

	"7"
	for Windows 7

	"SL"
	for Scientific Linux

	"SLFermi"
	for Fermi’s Scientific Linux

	"SLCern"
	for CERN’s Scientific Linux

	OpSysVer¶
	An integer value representing the operating system version number.

	700
	for RedHat Linux version 7.0

	602
	for RedHat Linux version 6.2

	1600
	for Fedora Linux version 16.0

	1404
	for Ubuntu 14.04

	700
	for Debian 7.0

	800
	for Debian 8.0

	704
	for FreeBSD version 7.4

	802
	for FreeBSD version 8.2

	605
	for MacOS version 10.6.5 (Snow Leopard)

	703
	for MacOS version 10.7.3 (Lion)

	500
	for Windows 2000

	501
	for Windows XP

	502
	for Windows Server 2003

	600
	for Windows Vista or Windows Server 2008

	601
	for Windows 7 or Windows Server 2008

	PartitionableSlot¶
	For SMP machines, a boolean value identifying that this slot may be
partitioned.

	RecentJobPreemptions¶
	The total number of jobs which have been preempted from this machine
in the last twenty minutes.

	RecentJobRankPreemptions¶
	The total number of times a running job has been preempted on this
machine due to the machine’s rank of jobs in the last twenty
minutes.

	RecentJobStarts¶
	The total number of jobs which have been started on this machine in
the last twenty minutes.

	RecentJobUserPrioPreemptions¶
	The total number of times a running job has been preempted on this
machine based on a fair share allocation of the pool in the last
twenty minutes.

	Requirements¶
	A boolean, which when evaluated within the context of the machine
ClassAd and a job ClassAd, must evaluate to TRUE before HTCondor
will allow the job to use this machine.

	RetirementTimeRemaining¶ when the
	running job can be evicted. MaxJobRetirementTime is the
expression of how much retirement time the machine offers to new
jobs, whereas RetirementTimeRemaining is the negotiated amount
of time remaining for the current running job. This may be less than
the amount offered by the machine’s MaxJobRetirementTime
expression, because the job may ask for less.

	SingularityVersion¶
	A string containing the version of Singularity available, if the
machine being advertised supports running jobs within a Singularity
container (see HasSingularity).

	SlotID¶
	For SMP machines, the integer that identifies the slot. The value
will be X for the slot with

name="slotX@full.hostname"

For non-SMP machines with one slot, the value will be 1.

	SlotType¶
	For SMP machines with partitionable slots, the partitionable slot
will have this attribute set to "Partitionable", and all dynamic
slots will have this attribute set to "Dynamic".

	SlotWeight¶
	This specifies the weight of the slot when calculating usage,
computing fair shares, and enforcing group quotas. For example,
claiming a slot with SlotWeight = 2 is equivalent to claiming
two SlotWeight = 1 slots. See the description of SlotWeight
in condor_startd Configuration File Macros.

	StartdIpAddr¶
	String with the IP and port address of the condor_startd daemon
which is publishing this machine ClassAd. When using CCB,
condor_shared_port, and/or an additional private network
interface, that information will be included here as well.

	State¶
	String which publishes the machine’s HTCondor state. Can be:

	"Owner"
	The machine owner is using the machine, and it is unavailable to
HTCondor.

	"Unclaimed"
	The machine is available to run HTCondor jobs, but a good match
is either not available or not yet found.

	"Matched"
	The HTCondor central manager has found a good match for this
resource, but an HTCondor scheduler has not yet claimed it.

	"Claimed"
	The machine is claimed by a remote condor_schedd and is
probably running a job.

	"Preempting"
	An HTCondor job is being preempted
in order to clear the machine for either a higher priority job
or because the machine owner wants the machine back.

	"Drained"
	This slot is not accepting jobs, because the machine is being
drained.

	TargetType¶
	Describes what type of ClassAd to match with. Always set to the
string literal "Job", because machine ClassAds always want to be
matched with jobs, and vice-versa.

	TotalCondorLoadAvg¶
	The load average contributed by HTCondor summed across all slots on
the machine, either from remote jobs or running benchmarks.

	TotalCpus¶
	The number of CPUs (cores) that are on the machine. This is in
contrast with Cpus, which is the number of CPUs in the slot.

	TotalDisk¶
	The quantity of disk space in KiB available across the machine (not
the slot). For partitionable slots, where there is one partitionable
slot per machine, this value will be the same as machine ClassAd
attribute TotalSlotDisk.

	TotalLoadAvg¶
	A floating point number representing the current load average summed
across all slots on the machine.

	TotalMachineDrainingBadput¶
	The total job runtime in cpu-seconds that has been lost due to job
evictions caused by draining since this condor_startd began
executing. In this calculation, it is assumed that jobs are evicted
without checkpointing.

	TotalMachineDrainingUnclaimedTime¶
	The total machine-wide time in cpu-seconds that has not been used
(i.e. not matched to a job submitter) due to draining since this
condor_startd began executing.

	TotalMemory¶
	The quantity of RAM in MiB available across the machine (not the
slot). For partitionable slots, where there is one partitionable
slot per machine, this value will be the same as machine ClassAd
attribute TotalSlotMemory.

	TotalSlotCpus¶
	The number of CPUs (cores) in this slot. For static slots, this
value will be the same as in Cpus.

	TotalSlotDisk¶
	The quantity of disk space in KiB given to this slot. For static
slots, this value will be the same as machine ClassAd attribute
Disk. For partitionable slots, where there is one partitionable
slot per machine, this value will be the same as machine ClassAd
attribute TotalDisk.

	TotalSlotMemory¶
	The quantity of RAM in MiB given to this slot. For static slots,
this value will be the same as machine ClassAd attribute Memory.
For partitionable slots, where there is one partitionable slot per
machine, this value will be the same as machine ClassAd attribute
TotalMemory.

	TotalSlots¶
	A sum of the static slots, partitionable slots, and dynamic slots on
the machine at the current time.

	TotalTimeBackfillBusy¶
	The number of seconds that this machine (slot) has accumulated
within the backfill busy state and activity pair since the
condor_startd began executing. This attribute will only be
defined if it has a value greater than 0.

	TotalTimeBackfillIdle¶
	The number of seconds that this machine (slot) has accumulated
within the backfill idle state and activity pair since the
condor_startd began executing. This attribute will only be
defined if it has a value greater than 0.

	TotalTimeBackfillKilling¶
	The number of seconds that this machine (slot) has accumulated
within the backfill killing state and activity pair since the
condor_startd began executing. This attribute will only be
defined if it has a value greater than 0.

	TotalTimeClaimedBusy¶
	The number of seconds that this machine (slot) has accumulated
within the claimed busy state and activity pair since the
condor_startd began executing. This attribute will only be
defined if it has a value greater than 0.

	TotalTimeClaimedIdle¶
	The number of seconds that this machine (slot) has accumulated
within the claimed idle state and activity pair since the
condor_startd began executing. This attribute will only be
defined if it has a value greater than 0.

	TotalTimeClaimedRetiring¶
	The number of seconds that this machine (slot) has accumulated
within the claimed retiring state and activity pair since the
condor_startd began executing. This attribute will only be
defined if it has a value greater than 0.

	TotalTimeClaimedSuspended¶
	The number of seconds that this machine (slot) has accumulated
within the claimed suspended state and activity pair since the
condor_startd began executing. This attribute will only be
defined if it has a value greater than 0.

	TotalTimeMatchedIdle¶
	The number of seconds that this machine (slot) has accumulated
within the matched idle state and activity pair since the
condor_startd began executing. This attribute will only be
defined if it has a value greater than 0.

	TotalTimeOwnerIdle¶
	The number of seconds that this machine (slot) has accumulated
within the owner idle state and activity pair since the
condor_startd began executing. This attribute will only be
defined if it has a value greater than 0.

	TotalTimePreemptingKilling¶
	The number of seconds that this machine (slot) has accumulated
within the preempting killing state and activity pair since the
condor_startd began executing. This attribute will only be
defined if it has a value greater than 0.

	TotalTimePreemptingVacating¶
	The number of seconds that this machine (slot) has accumulated
within the preempting vacating state and activity pair since the
condor_startd began executing. This attribute will only be
defined if it has a value greater than 0.

	TotalTimeUnclaimedBenchmarking¶
	The number of seconds that this machine (slot) has accumulated
within the unclaimed benchmarking state and activity pair since the
condor_startd began executing. This attribute will only be
defined if it has a value greater than 0.

	TotalTimeUnclaimedIdle¶
	The number of seconds that this machine (slot) has accumulated
within the unclaimed idle state and activity pair since the
condor_startd began executing. This attribute will only be
defined if it has a value greater than 0.

	UidDomain¶
	file entries, and therefore all have the same logins.

	VirtualMemory¶
	The amount of currently available virtual memory (swap space)
expressed in KiB. On Linux platforms, it is the sum of paging space
and physical memory, which more accurately represents the virtual
memory size of the machine.

	VM_AvailNum¶
	The maximum number of vm universe jobs that can be started on this
machine. This maximum is set by the configuration variable
VM_MAX_NUMBER.

	VM_Guest_Mem¶
	An attribute defined if a vm universe job is running on this slot.
Defined by the amount of memory in use by the virtual machine, given
in Mbytes.

	VM_Memory¶
	Gives the amount of memory available for starting additional VM jobs
on this machine, given in Mbytes. The maximum value is set by the
configuration variable VM_MEMORY.

	VM_Networking¶
	A boolean value indicating whether networking is allowed for virtual
machines on this machine.

	VM_Type¶
	The type of virtual machine software that can run on this machine.
The value is set by the configuration variable VM_TYPE

	VMOfflineReason¶
	The reason the VM universe went offline (usually because a VM
universe job failed to launch).

	VMOfflineTime¶
	The time that the VM universe went offline.

	WindowsBuildNumber¶
	An integer, extracted from the platform type, representing a build
number for a Windows operating system. This attribute only exists on
Windows machines.

	WindowsMajorVersion¶
	An integer, extracted from the platform type, representing a major
version number (currently 5 or 6) for a Windows operating system.
This attribute only exists on Windows machines.

	WindowsMinorVersion¶
	An integer, extracted from the platform type, representing a minor
version number (currently 0, 1, or 2) for a Windows operating
system. This attribute only exists on Windows machines.

In addition, there are a few attributes that are automatically inserted
into the machine ClassAd whenever a resource is in the Claimed state:

	ClientMachine¶
	The host name of the machine that has claimed this resource

	RemoteAutoregroup¶
	A boolean attribute which is True if this resource was claimed
via negotiation when the configuration variable
GROUP_AUTOREGROUP is True. It is False otherwise.

	RemoteGroup¶
	The accounting group name corresponding to the submitter that
claimed this resource.

	RemoteNegotiatingGroup¶
	The accounting group name under which this resource negotiated when
it was claimed. This attribute will frequently be the same as
attribute RemoteGroup, but it may differ in cases such as when
configuration variable GROUP_AUTOREGROUP
is True, in which case it will
have the name of the root group, identified as <none>.

	RemoteOwner¶
	The name of the user who originally claimed this resource.

	RemoteUser¶
	The name of the user who is currently using this resource. In
general, this will always be the same as the RemoteOwner, but in
some cases, a resource can be claimed by one entity that hands off
the resource to another entity which uses it. In that case,
RemoteUser would hold the name of the entity currently using the
resource, while RemoteOwner would hold the name of the entity
that claimed the resource.

	RemoteScheddName¶
	The name of the condor_schedd which claimed this resource.

	PreemptingOwner¶
	The name of the user who is preempting the job that is currently
running on this resource.

	PreemptingUser¶
	The name of the user who is preempting the job that is currently
running on this resource. The relationship between
PreemptingUser and PreemptingOwner is the same as the
relationship between RemoteUser and RemoteOwner.

	PreemptingRank¶
	A float which represents this machine owner’s affinity for running
the HTCondor job which is waiting for the current job to finish or
be preempted. If not currently hosting an HTCondor job,
PreemptingRank is undefined. When a machine is claimed and there
is already a job running, the attribute’s value is computed by
evaluating the machine’s Rank expression with respect to the
preempting job’s ClassAd.

	TotalClaimRunTime¶
	A running total of the amount of time (in seconds) that all jobs
(under the same claim) ran (have spent in the Claimed/Busy state).

	TotalClaimSuspendTime¶
	A running total of the amount of time (in seconds) that all jobs
(under the same claim) have been suspended (in the Claimed/Suspended
state).

	TotalJobRunTime¶
	A running total of the amount of time (in seconds) that a single job
ran (has spent in the Claimed/Busy state).

	TotalJobSuspendTime¶
	A running total of the amount of time (in seconds) that a single job
has been suspended (in the Claimed/Suspended state).

There are a few attributes that are only inserted into the machine
ClassAd if a job is currently executing. If the resource is claimed but
no job are running, none of these attributes will be defined.

	JobId¶
	The job’s identifier (for example, 152.3), as seen from condor_q
on the submitting machine.

	JobStart¶
	The time stamp in integer seconds of when the job began executing,
since the Unix epoch (00:00:00 UTC, Jan 1, 1970). For idle machines,
the value is UNDEFINED.

	LastPeriodicCheckpoint¶
	If the job has performed a periodic checkpoint, this attribute will
be defined and will hold the time stamp of when the last periodic
checkpoint was begun. If the job has yet to perform a periodic
checkpoint, or cannot checkpoint at all, the
LastPeriodicCheckpoint attribute will not be defined.

There are a few attributes that are applicable to machines that are
offline, that is, hibernating.

	MachineLastMatchTime¶
	The Unix epoch time when this offline ClassAd would have been
matched to a job, if the machine were online. In addition, the slot1
ClassAd of a multi-slot machine will have
slot<X>_MachineLastMatchTime defined, where <X> is replaced
by the slot id of each of the slots with MachineLastMatchTime
defined.

	Offline¶
	