

HTCondor Version 23.6.2 Manual

The HTCondor Software Suite (HTCSS) is a software system that creates a High-Throughput Computing (HTC) environment.
This environment might be a single cluster, a set of related clusters on a campus, cloud resources, or
national or international federations of computers.

If you are a user of HTCondor, and have been given a login or credentials to use a batch scheduler on an
Access Point (sometimes called a scheduler or login node), you may want to read our Quick Start guide
here: Users’ Quick Start Guide

If you are beginning administrator of HTCondor, or want to install it for the first time, please
look at our installation guide here: Downloading and Installing

Otherwise, for users of HTCondor who want more information, a complete user’s reference manual
is here: Users’ Manual, and a similar complete reference for
administrators of HTCondor can be found here: Administrators’ Manual

HTCondor contains many command line tools, each with a traditional Unix “man-page”. These
may be found here: Commands Reference (man pages)

Finally, for users writing Python interfaces to HTCondor, our Python API documentation
is here: Python Bindings

A complete table of contents follows.

Manual built on April 16, 2024

Quick start guides

	Users’ Quick Start Guide
	What is a Job?

	A First HTCondor Job

	The science Job Example

	Expanding the science Job and the Organization of Files

	Where to Go from Here

	Downloading and Installing

	Overview
	High-Throughput Computing (HTC) and its Requirements

	HTCondor’s Power

	Exceptional Features

	Availability

	Contributions and Acknowledgments

	Support, Downloads and Bug Reporting

Reference Manuals

	Users’ Manual
	Introduction to HTCondor

	Running a Job: the Steps To Take

	Submitting a Job

	Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism

	Managing a Job

	Automatically managing a job

	How To Debug an Always Idle Job

	Choosing an HTCondor Universe

	Environment and services for a running job

	Job Scheduling

	Job Sets

	Self-Checkpointing Applications

	Submitting to a Remote AP

	Chirp: custom updates to the AP

	Special Environment Considerations

	Administrators’ Manual
	Introduction

	Starting Up, Shutting Down and Reconfiguring the System

	Introduction to Configuration

	Configuration Macros

	Configuration for Execution Points

	Configuration for Access Points

	Configuration for Central Managers

	Security

	Networking, Port Usage, and CCB

	Files, Directories and Logs

	Third Party/Delegated file, credential and checkpoint transfer

	ClassAds
	HTCondor’s ClassAd Mechanism

	ClassAd Transforms

	Print Formats

	DAGMan Workflows
	DAGMan Introduction

	Running and Managing DAGMan

	DAGMan Completion

	Composing Workflows from DAGs

	Advance DAGMan Functionality

	Informational Files

	Quick Reference

	Python Bindings

Additional Docs

	Cloud Computing
	Introduction

	HTCondor Annex User’s Guide

	Using condor_annex for the First Time

	HTCondor Annex Customization Guide

	HTCondor Annex Configuration

	HTCondor in the Cloud

	Google Cloud Marketplace Entry

	Google Cloud HPC Toolkit

	Grid Computing
	Introduction

	Connecting HTCondor Pools with Flocking

	The Grid Universe

	The HTCondor Job Router

	Platform-Specific Information
	Linux

	Microsoft Windows

	Macintosh OS X

	Windows Installer

	Recipes, Examples, and Other Answers
	Answers for Users

	Answers for Admins

	Version History and Release Notes
	Introduction to HTCondor Versions

	Upgrading from an 10.0 LTS version to an 23.0 LTS version of HTCondor

	Version 23 Feature Releases

	Version 23.0 LTS Releases

	Version 10 Feature Releases

	Version 10.0 LTS Releases

Reference, Glossary and Index

	Commands Reference (man pages)
	HTCondor’s ClassAd Mechanism

	classad_eval

	condor_adstash

	condor_advertise

	condor_annex

	condor_check_password

	condor_check_userlogs

	condor_chirp

	condor_configure

	condor_config_val

	condor_continue

	condor_dagman

	condor_drain

	condor_evicted_files

	condor_fetchlog

	condor_findhost

	condor_gather_info

	condor_gpu_discovery

	condor_history

	condor_hold

	condor_install

	condor_job_router_info

	condor_master

	condor_now

	condor_off

	condor_on

	condor_ping

	condor_pool_job_report

	condor_power

	condor_preen

	condor_prio

	condor_procd

	condor_q

	condor_qedit

	condor_qusers

	condor_qsub

	condor_reconfig

	condor_release

	condor_remote_cluster

	condor_reschedule

	condor_restart

	condor_rm

	condor_rmdir

	condor_router_history

	condor_router_q

	condor_router_rm

	condor_run

	condor_set_shutdown

	condor_sos

	condor_ssh_start

	condor_ssh_to_job

	condor_ssl_fingerprint

	condor_stats

	condor_status

	condor_store_cred

	condor_submit

	condor_submit_dag

	condor_suspend

	condor_tail

	condor_test_token

	condor_token_create

	condor_token_fetch

	condor_token_list

	condor_token_request

	condor_token_request_approve

	condor_token_request_auto_approve

	condor_token_request_list

	condor_top

	condor_transfer_data

	condor_transform_ads

	condor_update_machine_ad

	condor_updates_stats

	condor_upgrade_check

	condor_urlfetch

	condor_userlog

	condor_userprio

	condor_vacate

	condor_vacate_job

	condor_version

	condor_wait

	condor_watch_q

	condor_who

	get_htcondor

	gidd_alloc

	htcondor

	procd_ctl

	ClassAd Attributes
	ClassAd Types

	Accounting ClassAd Attributes

	Job ClassAd Attributes

	Machine ClassAd Attributes

	DaemonMaster ClassAd Attributes

	Scheduler ClassAd Attributes

	Negotiator ClassAd Attributes

	Submitter ClassAd Attributes

	Defrag ClassAd Attributes

	Grid ClassAd Attributes

	Collector ClassAd Attributes

	ClassAd Attributes Added by the condor_collector

	DaemonCore Statistics Attributes

	Codes and Other Needed Values
	condor_shadow Exit Codes

	Job Event Log Codes

	Job Universe Numbers

	DaemonCore Command Numbers

	DaemonCore Daemon Exit Codes

	Glossary

	Index

Licensing and Copyright

HTCondor is released under the Apache License, Version 2.0.

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

Licensed under the Apache License, Version 2.0 (the “License”); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

For complete information and additional license notices see
http://htcondor.org/license.html.

Users’ Quick Start Guide

HTCondor [https://htcondor.org] is a system for dynamically sharing
computational resources between competing computational tasks. As an
HTCondor user, you will describe your computational tasks as a series
of independent, asynchronous “jobs.” You access computational resources
managed by HTCondor by submitting (or “placing”) job descriptions at an
HTCondor “access point” (AP), also known as a “submit node.” HTCondor
locates an appropriate machine for each job,
packages up the job and ships it off to that machine for execution.
Machines providing resources to HTCondor are therefore known as execution
points (EP).

This guide covers submitting and observing the successful completion
of a first, example job. It then suggests extensions that you can apply to
your own jobs.

This guide presumes that

	HTCondor is running

	You have access to a machine within the pool that may submit jobs,
termed an Access Point (AP).

	You are logged in to and working on the AP. (If you
just finished getting HTCondor, the one machine
you just installed is this AP.)

	Your program executable, your submit description file, and any needed
input files are all on the file system of the AP.

	Your job (the program executable) is able to run without any
interactive input. Standard input (from the keyboard), standard output
(seen on the display), and standard error (seen on the display) may still
be used, but their contents will be redirected from/to files.

What is a Job?

“Job” is a very specific term in HTCondor. A job is the atomic unit of work.
A job may use multiple cores on one machine, but one job may not (in general)
run across more than one machine. To effectively use HTCondor, you will
need to divide your total work (often called a workflow) into a number
of jobs. These atomic units of work run asynchronously with respect to each other, but
may be connected by input and output files. Each job is described by a
Job ClassAd, which is usually created by the system from a submit description file.
HTCondor is a High Throughput system, which means it has been designed to
effectively manage hundreds of thousands of jobs. Attributes of jobs that
must be defined include the executable or script to run, the amount of memory, CPU
and other machine resources it needs, and descriptions of the file inputs it need.
The set of files used by a job is called the “sandbox”. There is an input sandbox,
the input files that exist before a job starts; the output sandbox, the set of files
created by the job; and a scratch sandbox, the set of files made as the job runs.

A First HTCondor Job

For HTCondor to run a job, it must be given details such as the names
and location of the executable and all needed input files. These details
are specified in a submit description file.

The executable

Before presenting the details of the submit description file, consider this
first HTCondor job. It is a sleep job that waits for 6 seconds and then
exits. While most aspects of HTCondor are identical on Linux (or Mac) and
Windows machines, awareness of the AP’s operating system will lead
to a better understanding of jobs and job submission.

This first executable program is a shell script (Linux or Mac) or batch file
(Windows). The file that represents this differs based on operating
system; the Linux (or Mac) version is shown first, and
the Windows version is shown second. To try this example,
log in to the AP, and use an editor to type in or copy and paste
the file contents. Name the resulting file sleep.sh if the AP
is Linux (or Mac) operating system, and name the resulting file sleep.bat
if the AP is running Windows. Note that you will need to
know whether the operating system on your AP is a Linux (or Mac)
operating system or Windows.

Linux (or Mac) executable, a shell script

#!/bin/bash
file name: sleep.sh

TIMETOWAIT="6"
echo "sleeping for $TIMETOWAIT seconds"
/bin/sleep $TIMETOWAIT

Windows executable, a batch file

:: file name: sleep.bat
@echo off

set TIMETOWAIT=6
echo sleeping for %TIMETOWAIT% seconds
choice /D Y /T %TIMETOWAIT% > NUL

For a Linux (or Mac) AP only, change the sleep.sh file to be
executable by running the following command:

chmod u+x sleep.sh

The contents of the submit description file

The submit description file describes the job. To submit this sample
job, again use an editor to create the file sleep.sub. The submit
description file contents for this job differs on Linux (or Mac) and Windows
machines only in the name of the script or batch file:

Linux (and Mac) submit description file

sleep.sub -- simple sleep job

executable = sleep.sh

log = sleep.log
output = sleep.out
error = sleep.err

should_transfer_files = Yes
when_to_transfer_output = ON_EXIT

request_cpus = 1
request_memory = 512M
request_disk = 1G

queue

Windows submit description file

sleep.sub -- simple sleep job

executable = sleep.bat

log = sleep.log
output = sleep.out
error = sleep.err

should_transfer_files = Yes
when_to_transfer_output = ON_EXIT

request_cpus = 1
request_memory = 512M
request_disk = 1G

queue

The first line of this submit description file is a comment. Comments
begin with the # character. Comments do not span lines.

Each line of the submit description file has the form

command_name = value

The command name is case insensitive and precedes an equals sign. Values
to right of the equals sign are likely to be case sensitive, especially
in the case that they specify paths and file names.

Next in this file is a specification of the executable to run. It
specifies the program that becomes the HTCondor job. For this example, it
is the file name of the Linux (or Mac) script or Windows batch file. A full
path and executable name, or a path and executable relative to the current
working directory may be specified.

The log command causes a job event log file named sleep.log to be
created on the AP once the job is submitted. A log is not
necessary, but it can be incredibly useful in figuring out what happened or
is happening with a job.

HTCondor must be told how many resources your job needs on an Execution
Point in order to run. This allows HTCondor to run as many jobs as
possible on each EP without overloading them. Jobs must declare the
number of CPUs, the amount of memory and disk they need. Special jobs
may need to request other resources, such as GPUs or licenses. Ask your
administrator if your jobs requires such things. The amount of cpus
is unit less, but memory and disk requires can have a “M” for megabyte,
“G” for Gigabyte suffix for legibility. Without the suffix, memory
units are megabytes and disk kilobytes.

request_cpus = 1
request_memory = 512M
request_disk = 1G

If this script/batch file were to be invoked from the command line, and
outside of HTCondor, its single line of output

sleeping for 6 seconds

would be sent to standard output (the display). When submitted as an HTCondor
job, standard output of the job is on that EP, and thus unavailable. HTCondor
captures standard output in a file due to the output command in the submit
description file. This example names the redirected standard output file
sleep.out, and this file is returned to the AP when the job completes. The
same structure is specified for standard error, as specified with the error
command.

The commands

should_transfer_files = Yes
when_to_transfer_output = ON_EXIT

direct HTCondor to explicitly send the needed files, including the executable,
to the machine where the job executes. These commands will likely not be
necessary for jobs in which the AP and the EP (the Execution Point, or worker
node) access a shared file system. However, including these commands
will allow this first sample job to work under a large variety of pool
configurations.

The queue command tells HTCondor to run one instance of this job.

Submitting the job

With this submit description file, all that remains is to hand off the job to
HTCondor. Note that the queue command should be the last command in the
file. Commands after the queue are ignored. Otherwise, the order of
commands with the file does not matter. Assuming the current working directory
contains the sleep.sub submit description file and the executable
(sleep.sh or sleep.bat), the command line

condor_submit sleep.sub

submits the job to the AP. If the submission is successful, the terminal will
display a response that identifies the job, of the form

Submitting job(s).
1 job(s) submitted to cluster 6.

Monitoring the job

Once the job has been submitted, command line tools may help you follow along
with the progress of the job. The condor_q command prints a listing of
all your jobs currently in the queue. For example, a short time after Kris
submits the sleep job from a Linux (or Mac) AP on a pool that has
no other queued jobs, the output may appear as

$ condor_q
-- Submitter: example.wisc.edu : <128.105.14.44:56550> : example.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 6.0 kris 2/13 10:49 0+00:00:03 R 0 97.7 sleep.sh

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

The first column of output from condor_q identifies the job; the
identifier is composed of two integers separated by a period. The first
integer is known as a cluster number, and it will be the same for each of
the potentially many jobs submitted by a single invocation of
condor_submit. The second integer in the identifier is known as a
process ID, and it distinguishes between distinct job instances that have
the same cluster number. These values start at 0.

Of interest in this output, the job is running, and it has used 3 seconds
of time so far.

At job completion, the log file contains

000 (006.000.000) 02/13 10:49:04 Job submitted from host: <128.105.14.44:46062>
...
001 (006.000.000) 02/13 10:49:24 Job executing on host: <128.105.15.5:43051?PrivNet=cs.wisc.edu>
...
006 (006.000.000) 02/13 10:49:30 Image size of job updated: 100000
 0 - MemoryUsage of job (MB)
 0 - ResidentSetSize of job (KB)
...
005 (006.000.000) 02/13 10:49:31 Job terminated.
 (1) Normal termination (return value 0)
 Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
 Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage
 23 - Run Bytes Sent By Job
 113 - Run Bytes Received By Job
 23 - Total Bytes Sent By Job
 113 - Total Bytes Received By Job
 Partitionable Resources : Usage Request Allocated
 Cpus : 1 1
 Disk (KB) : 100000 100000 2033496
 Memory (MB) : 0 98 2001
...

Each event in the job event log file is separated by a line containing three
periods. For each event, the first 3-digit value is an event number.

Removing a job

Successfully submitted jobs will occasionally need to be removed from the
queue. The condor_rm command with the job identifier as a command line
argument removes jobs. Kris’ job may be removed from the queue with

condor_rm 6.0

Specification of the cluster number only as with the command

condor_rm 6

will cause all jobs within that cluster to be removed.

The science Job Example

A second example job illustrates aspects of file specification for the
job. Assume that the program executable is called science.exe. This
program does not use standard input or output; instead, the command line
to invoke this program specifies two input files and one output file. For
this example, the command line to invoke science.exe (not as an HTCondor
job) will be

science.exe infile-A.txt infile-B.txt outfile.txt

While the name of the executable is specified in the submit description file
with the executable command, the remainder of the command line will be
specified with the arguments command.

Here is the submit description file for this job:

science1.sub -- run one instance of science.exe
executable = science.exe
arguments = "infile-A.txt infile-B.txt outfile.txt"

transfer_input_files = infile-A.txt,infile-B.txt
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

request_cpus = 1
request_memory = 512M
request_disk = 1G

max_retries = 2
log = science1.log
queue

The input files infile-A.txt and infile-B.txt will need to be
available on the Execution Point within the pool where the job
runs. HTCondor cannot interpret command line arguments, so it cannot know
that these command line arguments for this job specify input and output
files. The submit command transfer_input_files instructs HTCondor to
transfer these input files from the machine where the job is submitted to the
machine chosen to execute the job. The default operation of HTCondor is to
transfer all files created by the job on the EP back to the
AP. Therefore, there is no specification of the outfile.txt
output file.

This example submit description file modifies the commands that direct
the transfer of files from AP to EP and back again.

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

These values are the HTCondor defaults, so are not needed in this example.
They are included to direct attention to the capabilities of HTCondor. The
should_transfer_files command specifies whether HTCondor should assume the
existence of a file system shared by the AP and the EP. Where there is a
shared file system, a correctly configured pool of machines will not need to
transfer the files from one machine to the other, as both can access the shared
file system. Where there is not a shared file system, HTCondor must transfer
the files from one machine to the other. The specification IF_NEEDED asks
HTCondor to use a shared file system when one is detected, but to transfer the
files when no shared file system is detected. When files are to be
transferred, HTCondor automatically sends the executable as well as a file
representing standard input; this file would be specified by the input
submit command, and it is not relevant to this example. Other files are
specified in a comma separated list with transfer_input_files, as they are
in this example.

When the job completes, all files created by the executable as it ran are
transferred back to the AP.

HTCondor assumes that if the job exits of its own accord, with an exit code
of zero, that indicates success, and any non-zero exit code is a failure.
By default, when the job exits, it will leave the queue. If you would
like a job that exits with a non-zero exit code to be restarted some
number of times until it does, set max_retries in the submit file like
so:

max_retries = 2

Expanding the science Job and the Organization of Files

A further example promotes understanding of how HTCondor makes the
submission of lots of jobs easy. Assume that the science.exe job
is to be run 40 times. If the input and output files were exactly the
same for each run, then only the last line of the given submit description
file changes: from

queue

to

queue 40

It is likely that this does not produce the desired outcome, as the output
file created, outfile.txt, has the same name for each queued instance
of the job, and thus this file of results for each run conflicts. Chances
are that the input files also must be distinct for each of the 40 separate
instances of the job. HTCondor offers the use of a macro that can uniquely
name each run’s input and output file names. The $(Process) macro causes
substitution by the process ID from the job identifier. The submit
description file for this proposed solution uniquely names the files:

science2.sub -- run 40 instances of science.exe
executable = science.exe
arguments = "infile-$(Process)A.txt infile-$(Process)B.txt outfile$(Process).txt"

transfer_input_files = infile-$(Process)A.txt,infile-$(Process)B.txt
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

request_cpus = 1
request_memory = 512M
request_disk = 1G

max_retries = 2
log = science2.log
queue 40

The 40 instances of this job will have process ID values that run from 0 to
39. The two input files for process ID 0 are infile-0A.txt and
infile-0B.txt, the ones for process ID 1 will be infile-1A.txt and
infile-1B.txt, and so on, all the way to process ID 39, which will be
files infile-39A.txt and infile-39B.txt. Using this macro for
the output file naming of each of the 40 jobs creates outfile0.txt for
process ID 0; outfile1.txt for process ID 1; and so on, to
outfile39.txt for process ID 39.

This example does not scale well as the number of jobs increases,
because the number of files in the same directory becomes unwieldy. Assume
now that there will be 100 instances of the science.exe job, and each
instance has distinct input files, and produces a distinct output file. A
recommended organization introduces a unique directory for each job
instance. The following submit description file facilitates this organization
by specifying the directory with the initialdir command. The directories
for this example are named run0, run1, etc. all the way to run99
for the 100 instances of the following example submit file:

science3.sub -- run 100 instances of science.exe, with
unique directories named by the $(Process) macro

executable = science.exe
arguments = "infile-A.txt infile-B.txt outfile.txt"

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

initialdir = run$(Process)
transfer_input_files = infile-A.txt,infile-B.txt

request_cpus = 1
request_memory = 512M
request_disk = 1G

max_retries = 2
log = science3.log
queue 100

The input and output files for each job instance can again be the initial
simple names that do not incorporate the $(Process) macro. These files are
distinct for each run due to their placement within a uniquely named
directory. This organization also works well for executables that do not
facilitate command line naming of input or output files.

Here is a listing of the files and directories on the AP within
this suggested directory structure. The files created due to submitting and
running the jobs are shown preceded by an asterisk (*). Only a subset of the
100 directories are shown. Directories are identified using the Linux (and
Mac) convention of appending the directory name with a slash character (/).

science.exe
science3.sub
run0/
 infile-A.txt
 infile-B.txt
 * outfile.txt
 * science3.log
run1/
 infile-A.txt
 infile-B.txt
 * outfile.txt
 * science3.log
run2/
 infile-A.txt
 infile-B.txt
 * outfile.txt
 * science3.log

Where to Go from Here

	Consider watching our
video tutorial [https://www.youtube.com/watch?v=p2X6s_7e51k&list=PLO7gMRGDPNumCuo3pCdRk23GDLNKFVjHn]
for new users.

	Additional tutorials [https://www.youtube.com/playlist?list=PLO7gMRGDPNumCuo3pCdRk23GDLNKFVjHn]
about other aspects of using HTCondor are available
in our YouTube channel [https://www.youtube.com/channel/UCd1UBXmZIgB4p85t2tu-gLw].

	Slides from past HTCondor Weeks [https://htcondor.org/past_condor_weeks.html] – our annual conference – include the tutorials given there.

	The Users’ Manual is a good reference.

	If you like what you’ve seen but want to run more jobs simultaneously, the
administrator’s quick start guide
will help you make more of your machines available to run jobs.

Downloading and Installing

These instructions show how to create a complete HTCondor installation with
all of its components on a single computer, so that you can test HTCondor and
explore its features. We recommend that new users start with the
first set of instructions
here and then continue with the Users’ Quick Start Guide;
that link will appear again at the end of these instructions.

If you know how to use Docker, you may find it easier to start with the
htcondor/mini image; see the Docker Images entry. If you’re familiar
with cloud computing, you may also get HTCondor in the cloud.

Installing HTCondor on a Cluster

Experienced users who want to make an HTCondor pool out of multiple
machines should follow the Administrative Quick Start Guide. If you’re new to
HTCondor administration, you may want to read the Administrators’ Manual.

Installing HTCondor on a Single Machine with Administrative Privileges

If you have administrative privileges on your machine, choose the
instructions corresponding to your operating system:

	Windows.

	Linux. HTCondor supports
Amazon Linux 2023;
Enterprise Linux 7 including Red Hat, CentOS, and Scientific Linux 7;
Enterprise Linux 8 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux;
Enterprise Linux 9 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux;
openSUSE LEAP 15 including SUSE Linux Enterprise Server 15;
Debian 11 and 12; and Ubuntu 20.04 and 22.04.

	macOS. HTCondor supports macOS 10.15 and later.

Hand-Installation of HTCondor on a Single Machine with User Privileges

If you don’t have administrative privileges on your machine, you can still
install HTCondor. An unprivileged installation isn’t able to effectively
limit the resource usage of the jobs it runs, but since it only
works for the user who installed it, at least you know who to blame for
misbehaving jobs.

	Linux. HTCondor supports
Amazon Linux 2023;
Enterprise Linux 7 including Red Hat, CentOS, and Scientific Linux 7;
Enterprise Linux 8 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux;
Enterprise Linux 9 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux;
openSUSE LEAP 15 including SUSE Linux Enterprise Server 15;
Debian 11 and 12; and Ubuntu 20.04 and 22.04.

	macOS. HTCondor supports macOS 10.15 and later.

Docker Images

HTCondor is also available [https://hub.docker.com/u/htcondor] on Docker Hub.

If you’re new to HTCondor, the htcondor/mini image is equivalent to
following any of the instructions above, and once you’ve started the
container, you can proceed directly to the Users’ Quick Start Guide and learn
how to run jobs.

For other options, see our docker image list.

Kubernetes

You can deploy a complete HTCondor pool with the following command:

kubectl apply -f https://github.com/htcondor/htcondor/blob/latest/build/docker/k8s/pool.yaml

If you’re new to HTCondor, you can proceed directly to
the Users’ Quick Start Guide after logging in to the submit pod.

In the Cloud

Although you can use our Docker images (or Kubernetes support) in the cloud,
HTCondor also supports cloud-native distribution.

	For Amazon Web Services, we offer a
minicondor image [https://aws.amazon.com/marketplace/pp/B073WHVRPR]
preconfigured for use with condor_annex,
which allows to easily add cloud resources to your pool.

	The Google Cloud Marketplace Entry lets you construct an entire HTCondor
pool that scales automatically to run submitted jobs. If you’re new to
HTCondor, you can proceed to the Users’ Quick Start Guide immediately after
following those instructions.

	We also have documentation on creating a
HTCondor in the Cloud by hand.

Windows (as Administrator)

Installation of HTCondor must be done by a user with administrator
privileges. We have provided quickstart instructions below to walk
you through a single-node HTCondor installation using the HTCondor
Windows installer GUI.

For more information about the installation options, or how to use
the installer in unattended batch mode, see the complete
Windows Installer guide.

It is possible to manually install HTCondor on Windows, without the
provided MSI program, but we strongly discourage this unless you have
a specific need for this approach and have extensive HTCondor experience.

Quickstart Installation Instructions

To download the latest HTCondor Windows Installer:

	Go to the
current channel [https://research.cs.wisc.edu/htcondor/tarball/current/]
download site.

	Click on the second-latest version. (The latest version should always be
the under-development version and will only have daily builds.)

	Click on the release folder.

	Click on the file ending in .msi (usually the first one).

Start the installer by double clicking on the MSI file once it’s downloaded.
Then follow the directions below for each option.

	If HTCondor is already installed.
	If HTCondor has been previously installed, a dialog box will appear
before the installation of HTCondor proceeds. The question asks if
you wish to preserve your current HTCondor configuration files.
Answer yes or no, as appropriate.

If you answer yes, your configuration files will not be changed, and
you will proceed to the point where the new binaries will be
installed.

If you answer no, then there will be a second question that asks if
you want to use answers given during the previous installation as
default answers.

	STEP 1: License Agreement.
	Agree to the HTCondor license agreement.

	STEP 2: HTCondor Pool Configuration.
	Choose the option to create a new pool and enter a name.

	STEP 3: This Machine’s Roles.
	Check the “submit jobs” box. From the list of execution options,
choose “always run jobs”.

	STEP 4: The Account Domain.
	Skip this entry.

	STEP 5: E-mail Settings.
	Specify the desired email address(es), if any.

	STEP 6: Java Settings.
	If this entry is already set, accept it. Otherwise, skip it.

	STEP 7: Access Permission Settings.
	Accept the default values. You can change these later by modifying the configuration files.

	STEP 8: VM Universe Setting.
	Disable the vm universe.

	STEP 9: Choose Destination Folder
	

Accept the default settings.

This should complete the installation process. The installer will have
automatically started HTCondor in the background and you do not need to
restart Windows for HTCondor to work.

Open a command prompt to follow the next set of instructions.

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The
following commands should complete without errors, producing output that
looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

 Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
 Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

	For a brief introduction to running jobs with HTCondor,
see the Users’ Quick Start Guide.

	If you’re looking to set up a multi-machine pool, go to the
Administrative Quick Start Guide.

Setting Up a Whole Pool with Windows

Follow the instructions above through Step 1. Then, customize the
installation as follows:

	STEP 2: HTCondor Pool Configuration.
	Create a new pool
only on the machine you’ve chosen as their central manager. See
the Administrative Quick Start Guide. Otherwise, choose the option to
join an existing pool and enter the name or IP address of the
central manager.

	STEP 3: This Machine’s Roles.
	Check the “submit jobs”
box to select the submit role, or choose “always run jobs” to select
the execute role.

	STEP 4: The Account Domain.
	Enter the
same name on all submit-role machines. This helps ensure that a
user can’t get more resources by logging in to more than one machine.

	STEP 5: E-mail Settings.
	Specify the desired email address(es), if any.

	STEP 6: Java Settings.
	If this entry is already set, accept it. Otherwise, skip it.

Experienced users who know they want to use the java universe
should instead enter the path to the Java executable on the machine,
if it isn’t already set, or they want to use a different one.

To disable use of the java universe, leave the field blank.

	STEP 7: Access Permission Settings.
	Machines within the HTCondor pool will need various types of access
permission. The three categories of permission that can be set here
are read, write, and administrator. The values can be usernames, hostnames
or IP address ranges, Wild cards and macros are permitted.
It is recommended that you accept the defaults here and change the
values later as needed by modifying the HTCondor configuration files.

	Read
	Read access allows a machine to obtain information about
HTCondor such as the status of machines in the pool and the job
queues. If all of your HTCondor machines and users are in
a single DNS domain or IP Address range, setting this to *.domain
an IP address range with wildcards is a good choice.
See ALLOW_READ

	Write
	Write access is for submitting jobs to the Schedd. Setting this
to * will allow any user that can login to the machine submit jobs.
See ALLOW_WRITE

	Administrator
	Administrator access is for starting and stopping the daemons
and sending administrative commands such as reconfig and drain.
By default the installer will give this permission to the Windows
user that runs the installer and to the Windows Adminstrator account.
See ALLOW_ADMINISTRATOR

For more details on these access permissions, and others that can be
manually changed in your configuration file, please see the section
titled Setting Up Security in HTCondor in the
Authorization section.

	STEP 8: VM Universe Setting.
	Disable the vm universe.

Experienced users with VMWare and Perl already installed may enable
the vm universe.

	STEP 9: Choose Destination Folder
	

Experienced users may change the default installation path
(c:\Condor), but we don’t recommend doing so. Certain jobs may
not run if the installation path has a space in it.

Linux (as root)

For ease of installation on Linux, we provide a script that will automatically
download, install and start HTCondor.

Quickstart Installation Instructions

Warning

	RedHat systems must be attached to a subscription.

	Debian and Ubuntu containers don’t come with curl installed,
so run the following first.

apt-get update && apt-get install -y curl

The command below shows how to download the script and run it immediately;
if you would like to inspect it first, see
Inspecting the Script. The default behavior
will create a complete HTCondor pool with its multiple roles on one computer,
referred to in this manual as a “minicondor.”
Experienced users who are making an HTCondor pool out of multiple machines
should add a flag to select the desired role; see
the Administrative Quick Start Guide for more details.

curl -fsSL https://get.htcondor.org | sudo /bin/bash -s -- --no-dry-run

If you see an error like bash: sudo: command not found, try re-running
the command above without the sudo.

Inspecting the Script

If you would like to inspect the script before you running it on
your system as root, you can:

	read the script [https://get.htcondor.org];

	compare the script to the versions in our GitHub repository [https://github.com/htcondor/htcondor/blob/master/src/condor_scripts/get_htcondor];

	or run the script as user nobody, dropping the --no-dry-run
flag. This will cause the script to print out what it would do if
run for real. You can then inspect the output and copy-and-paste it
to perform the installation.

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The
following commands should complete without errors, producing output that
looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

 Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
 Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

	For a brief introduction to running jobs with HTCondor,
see the Users’ Quick Start Guide.

	If you’re looking to set up a multi-machine pool, go to the
Administrative Quick Start Guide.

Setting Up a Whole Pool

The details of using this installation procedure to create a multi-machine
HTCondor pool are described in the admin quick-start guide:
Administrative Quick Start Guide.

Linux (from our repositories)

If you’re not already familiar with HTCondor, we recommend you follow our
instructions for your first installation.

If you’re looking to automate the installation of HTCondor using your existing
toolchain, the latest information is embedded in the output of the script run
as part of the instructions. This script can
be run as a normal user (or nobody), so we recommend this approach.

Otherwise, this page contains information about the RPM and deb
repositories we offer. These repositories will almost always have more
recent releases than the distributions.

RPM-based Distributions

We support several RPM-based platforms:
Enterprise Linux 7, including Red Hat, CentOS, and Scientific Linux;
Enterprise Linux 8, including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux;
Enterprise Linux 9, including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux;
openSUSE LEAP 15 including SUSE Linux Enterprise Server (SLES) 15.
Binaries are available for x86_64 for all these platforms.
For Enterprise Linux 8, HTCondor also supports ARM (“aarch64”) and Power (“ppc64le”).
For Enterprise Linux 9, HTCondor also supports ARM (“aarch64”).

Repository packages are available for each platform:

	Amazon Linux 2023 [https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.amzn2023.noarch.rpm]

	Enterprise Linux 7 [https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.el7.noarch.rpm]

	Enterprise Linux 8 [https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.el8.noarch.rpm]

	Enterprise Linux 9 [https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.el9.noarch.rpm]

	openSUSE LEAP 15 [https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.leap15.noarch.rpm]

Except for Amazon Linux, the HTCondor packages on these platforms depend on the corresponding
version of EPEL [https://fedoraproject.org/wiki/EPEL].

Additionally, the following repositories are required for specific platforms:

	On RedHat 8, codeready-builder-for-rhel-8-${ARCH}-rpms.

	On CentOS 8, powertools (or PowerTools).

	On CentOS or RedHat 9, crb.

deb-based Distributions

We support four deb-based platforms: Debian 11 (Bullseye) and Debian 12 (Bookworm); and
Ubuntu 20.04 (Focal Fossa) and 22.04 (Jammy Jellyfish).
Binaries are available for x86_64 for all these platforms.
For Unbuntu 20.04 (Focal Fossa) HTCondor also supports Power PC (ppc64el).
These repositories also include the source packages.

Debian 11, and 12

Add our Debian signing key [https://research.cs.wisc.edu/htcondor/repo/keys/HTCondor-23.x-Key]
with apt-key add before adding the repositories below.

	Debian 11: deb https://research.cs.wisc.edu/htcondor/repo/debian/23.x bullseye main

	Debian 12: deb https://research.cs.wisc.edu/htcondor/repo/debian/23.x bookworm main

Ubuntu 20.04, and 22.04

Add our Ubuntu signing key [https://research.cs.wisc.edu/htcondor/repo/keys/HTCondor-23.x-Key]
with apt-key add before adding the repositories below.

	Ubuntu 20.04: deb https://research.cs.wisc.edu/htcondor/repo/ubuntu/23.x focal main

	Ubuntu 22.04: deb https://research.cs.wisc.edu/htcondor/repo/ubuntu/23.x jammy main

Linux or macOS (as user)

Installing HTCondor on Linux or macOS as a normal user is a multi-step process. Note
that a user-install of HTCondor is always self-contained on a single
machine; if you want to create a multi-machine HTCondor pool, you will need
to have administrative privileges on the relevant machines and follow the
instructions here: Administrative Quick Start Guide.

Download

The first step is to download HTCondor for your platform. If you know
which platform you’re using, that HTCondor supports it, and which
version you want, you can download the corresponding file from
our website [https://research.cs.wisc.edu/htcondor/tarball/current/];
otherwise, we recommend using our download script, as follows.

cd
curl -fsSL https://get.htcondor.org | /bin/bash -s -- --download

On macOS, If you use a web browser to download a tarball from our web
site, then the OS will mark the file as quarantined. All binaries
extracted from the tarball will be similarly marked. The OS will
refuse to run any binaries that are quarantined. You can remove the
quarantine marking from the tarball before extracting, like so:

xattr -d com.apple.quarantine condor-10.7.1-x86_64_macOS13-stripped.tar.gz

Install

Unpack the tarball and rename the resulting directory:

tar -x -f condor.tar.gz
mv condor-*stripped condor

You won’t need condor.tar.gz again, so you can remove it now if you wish.

Configure

cd condor
./bin/make-personal-from-tarball

Using HTCondor

You’ll need to run the following command now, and every time you log in:

. ~/condor/condor.sh

Then to start HTCondor (if the machine has rebooted since you last logged in):

condor_master

It will finish silently after starting up, if everything went well.

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The
following commands should complete without errors, producing output that
looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

 Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
 Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

	For a brief introduction to running jobs with HTCondor,
see the Users’ Quick Start Guide.

	If you’re looking to set up a multi-machine pool, go to the
Administrative Quick Start Guide.

macOS (as root)

Installing HTCondor on macOS as root user is a multi-step process.
For a multi-machine HTCondor pool, information about the roles each
machine will play can be found here: Administrative Quick Start Guide.
Note that the get_htcondor tool cannot perform the installation
steps on macOS at present. You must follow the instructions below.

Note that all of the following commands must be run as root, except for
downloading and extracting the tarball.

The condor Service Account

The first step is to create a service account under which the HTCondor
daemons will run.
The commands that specify a PrimaryGroupID or UniqueID may fail with an
error that includes eDSRecordAlreadyExists.
If that occurs, you will have to retry the command with a different id number
(other than 300).

dscl . -create /Groups/condor
dscl . -create /Groups/condor PrimaryGroupID 300
dscl . -create /Groups/condor RealName 'Condor Group'
dscl . -create /Groups/condor passwd '*'
dscl . -create /Users/condor
dscl . -create /Users/condor UniqueID 300
dscl . -create /Users/condor passwd '*'
dscl . -create /Users/condor PrimaryGroupID 300
dscl . -create /Users/condor UserShell /usr/bin/false
dscl . -create /Users/condor RealName 'Condor User'
dscl . -create /Users/condor NFSHomeDirectory /var/empty

Download

The next step is to download HTCondor.
If you want to select a specific version of HTCondor, you can download
the corresponding file from
our website [https://research.cs.wisc.edu/htcondor/tarball/].
Otherwise, we recommend using our download script, as follows.

cd
curl -fsSL https://get.htcondor.org | /bin/bash -s -- --download

If you use a web browser to download a tarball from our web site, then
the OS will mark the file as quarantined. All binaries extracted from
the tarball will be similarly marked. The OS will refuse to run any
binaries that are quarantined. You can remove the quarantine marking
from the tarball before extracting it, like so:

xattr -d com.apple.quarantine condor-10.7.1-x86_64_macOS13-stripped.tar.gz

Install

Unpack the tarball.

mkdir /usr/local/condor
tar -x -C /usr/local/condor --strip-components 1 -f condor.tar.gz

You won’t need condor.tar.gz again, so you can remove it now if you wish.

Set up the log directory and default configuration files.

cd /usr/local/condor
mkdir -p local/log
mkdir -p local/config.d
cp etc/examples/condor_config etc/condor_config
cp etc/examples/00-htcondor-9.0.config local/config.d

If you are setting up a single-machine pool, then run the following
command to finish the configuration.

cp etc/examples/00-minicondor local/config.d

If you are setting up part of a multi-machine pool, then you’ll have to
make some other configuration changes, which we don’t cover here.

Next, fix up the permissions of the the installed files.

chown -R root:wheel /usr/local/condor
chown -R condor:condor /usr/local/condor/local/log

Finally, make the configuration file available at one of the well-known
locations for the tools to find.

mkdir -p /etc/condor
ln -s /usr/local/condor/etc/condor_config /etc/condor

Start the Daemons

Now, register HTCondor has a service managed by launchd and start up
the daemons.

cp /usr/local/condor/etc/examples/condor.plist /Library/LaunchDaemons
launchctl load /Library/LaunchDaemons/condor.plist
launchctl start condor

Using HTCondor

You’ll want to add the HTCondor bin and sbin directories to your
PATH environment variable.

export PATH=$PATH:/usr/local/condor/bin:/usr/local/condor/sbin

If you want to use the Python bindings for HTCondor, you’ll want to add
them to your PYTHONPATH.

export PYTHONPATH="/usr/local/condor/lib/python3${PYTHONPATH+":"}${PYTHONPATH-}"

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The
following commands should complete without errors, producing output that
looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

 Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
 Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

	For a brief introduction to running jobs with HTCondor,
see the Users’ Quick Start Guide.

	If you’re looking to set up a multi-machine pool, go to the
Administrative Quick Start Guide.

Docker Images

HTCondor provides images on Docker Hub.

Quickstart Instructions

If you’re just getting started with HTCondor, use htcondor/mini,
a stand-alone HTCondor configuration. The following command will work on
most systems with Docker installed:

docker run -it htcondor/mini

From here, you can proceed to the Users’ Quick Start Guide.

Setting Up a Whole Pool with Docker

If you’re looking to set up a whole pool, the following images correspond
to the three required roles. See the Administrative Quick Start Guide for more
information about the roles and how to configure these images to work together.

	htcondor/cm, an image configured as a central manager

	htcondor/execute, an image configured as an execute node

	htcondor/submit, an image configured as a submit node

All images include the latest version of HTCondor.
If you want to use the latest LTS version, use the docker tag lts.

Administrative Quick Start Guide

This guide does not contain step-by-step instructions for
getting HTCondor. Rather, it is a guide to joining multiple
machines into a single pool of computational resources for use by HTCondor
jobs.

This guide begins by briefly describing the three roles required by every
HTCondor pool, as well as the resources and networking required by each
of those roles. This information will enable you to choose which machine(s)
will perform which role(s). This guide also includes instructions on how to
use the get_htcondor tool to install and configure Linux (or Mac) machines
to perform each of the roles.

If you’re curious, using Windows machines, or you want to automate the
configuration of their pool using a tool like Puppet, the
last section of this guide briefly describes what
the get_htcondor tool does and provides a link to the rest of the details.

Single-machine Installations

If you just finished installing a single-machine (“mini”) HTCondor
using get_htcondor, you can just run get_htcondor again (and
follow its instructions) to reconfigure the machine to be one of
these three roles; this may destroy any other configuration changes
you’ve made.

We don’t recommend trying to add a machine configured as a “mini”
HTCondor to the pool, or trying to add execute machines to an existing
“mini” HTCondor pool. We also don’t recommend creating an entire
pool out of unprivileged installations.

The Three Roles

Even a single-machine installation of HTCondor performs all three roles.

The Execute Role

The most common reason for adding a machine to an HTCondor pool is to make
another machine execute HTCondor jobs; the first major role, therefore, is
the execute role. This role is responsible for the technical aspects of
actually running, monitoring, and managing the job’s executable; transferring
the job’s input and output; and advertising, monitoring, and managing the
resources of the execute machine. HTCondor can manage pools containing
tens of thousands of execute machines, so this is by far the most common role.

The execute role itself uses very few resources, so almost any machine
can contribute to a pool. The execute role can run on a machine with only
outbound network connectivity, but being able to accept inbound connections
from the machine(s) performing the submit role will simplify setup and reduce
overhead. The execute machine does not need to allow user access, or
even share user IDs with other machines in the pool (although this may be
very convenient, especially on Windows).

The Submit Role

We’ll discuss what “advertising” a machine’s resources means in the next
section, but the execute role leaves an obvious question unanswered: where
do the jobs come from? The answer is the submit role. This role is
responsible for accepting, monitoring, managing, and scheduling jobs on its
assigned resources; transferring the input and output of jobs; and requesting
and accepting resource assignments. (A “resource” is some reserved fraction
of an execute machine.) HTCondor allows arbitrarily many submit roles in a
pool, but for administrative convenience, most pools only have one, or a
small number, of machines acting in the submit role.

A submit-role machine requires a bit under a megabyte of RAM for each
running job, and its ability to transfer data to and from the execute-role
machines may become a performance bottleneck. We typically recommend adding
another access point for every twenty thousand simultaneously running
jobs. A access point must have outbound network connectivity, but a submit
machine without inbound network connectivity can’t use execute-role machines
without inbound network connectivity. As execute machines are more numerous,
access points typically allow inbound connections. Although you may allow
users to submit jobs over the network, we recommend allowing users SSH access
to the access point.

The Central Manager Role

Only one machine in each HTCondor pool can perform this role (barring
certain high-availability configurations, where only one machine can
perform this role at a time). A central manager matches resource requests –
generated by the submit role based on its jobs – with the resources described
by the execute machines. We refer to sending these (automatically-generated)
descriptions to the central manager as “advertising” because it’s the
primary way execute machines get jobs to run.

A central manager must accept connections from each execute machine and each
access point in a pool. However, users should never need access to the
central manager. Every machine in the pool updates the central manager every
few minutes, and it answers both system and user queries about the status of
the pool’s resources, so a fast network is important. For very large pools,
memory may become a limiting factor.

Assigning Roles to Machines

The easiest way to assign a role to a machine is when you initially
get HTCondor. You’ll need to supply the same password for
each machine in the same pool; sharing that secret is how the machines
recognize each other as members of the same pool, and connections between
machines are encrypted with it. (HTCondor uses port 9618 to communicate,
so make sure that the machines in your pool accept TCP connections on that
port from each other.) In the command lines below, replace
$htcondor_password with the password you want to use. In addition to the
password, you must specify the name of the central manager, which may be a
host name (which must resolve on all machines in the pool) or an IP address.
In the command lines below, replace $central_manager_name with the host
name or IP address you want to use.

When you get HTCondor, start with the central manager, then add
the access point(s), and then add the execute machine(s). You may
not have sudo installed; you may omit it from the command lines below
if you run them as root.

Central Manager

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /bin/bash -s -- --no-dry-run --central-manager $central_manager_name

Submit

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /bin/bash -s -- --no-dry-run --submit $central_manager_name

Execute

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /bin/bash -s -- --no-dry-run --execute $central_manager_name

At this point, users logged in on the access point should be able to see
execute machines in the pool (using condor_status), submit jobs
(using condor_submit), and see them run (using condor_q).

Creating a Multi-Machine Pool using Windows or Containers

If you are creating a multi-machine HTCondor pool on Windows computers or
using containerization, please see the “Setting Up a Whole Pool” section
of the relevant installation guide:

	Setting Up a Whole Pool with Windows

	Setting Up a Whole Pool with Docker

Where to Go from Here

There are two major directions you can go from here, but before we discuss
them, a warning.

Making Configuration Changes

HTCondor configuration files should generally be owned by root
(or Administrator, on Windows), but readable by all users. We recommend
that you don’t make changes to the configuration files established by the
installation procedure; this avoids conflicts between your changes and any
changes we may have to make to the base configuration in future
updates. Instead, you should add (or edit) files in the configuration
directory; its location can be determined on a given machine by running
condor_config_val LOCAL_CONFIG_DIR there. HTCondor will process files
in this directory in lexicographic order, so we recommend naming files
##-name.config so that, for example, a setting in 00-base.config
will be overridden by a setting in 99-specific.config.

Enabling Features

Some features of HTCondor, for one reason or another, aren’t (or can’t be)
enabled by default. Areas of potentially general interest include:

	Configuration for Execution Points (particularly
Enabling the Fetching and Use of OAuth2 Credentials and Cgroup-Based Process Tracking),

	Docker Universe

	Apptainer and Singularity Support

Implementing Policies

Although your HTCondor pool should be fully functional at this point, it
may not be behaving precisely as you wish, particularly with respect to
resource allocation. You can tune how HTCondor allocates resources to
users, or groups of users, using the user priority and group quota systems,
described in Configuration for Central Managers. You
can enforce machine-specific policies – for instance, preferring GPU jobs
on machines with GPUs – using the options described in
Configuration for Execution Points.

Further Reading

	It may be helpful to at least skim the Users’ Manual to get
an idea of what your users might want or expect, particularly the
sections on DAGMan Introduction,
Choosing an HTCondor Universe, and
Self-Checkpointing Applications.

	Understanding HTCondor’s ClassAd Mechanism is essential for
many administrative tasks.

	The rest of the Administrators’ Manual, particularly the section on
Monitoring with Ganglia, Elasticsearch, etc..

	Slides from
past HTCondor Weeks [https://htcondor.org/past_condor_weeks.html]
– our annual conference – include a number of tutorials and talks on
administrative topics, including monitoring and examples of policies and
their implementations.

What get_htcondor Does to Configure a Role

The configuration files generated by get_htcondor are very similar, and
only two lines long:

	set the HTCondor configuration variable CONDOR_HOST to the name
(or IP address) of your central manager;

	add the appropriate metaknob: use role : get_htcondor_central_manager,
use role : get_htcondor_submit, or use role : get_htcondor_execute.

Putting all of the pool-independent configuration into the metaknobs allows
us to change the metaknobs to fix problems or work with later versions of
HTCondor as you upgrade.

The get_htcondor documentation
describes what the configuration script does and how to determine the exact details.

Overview

	High-Throughput Computing (HTC) and its Requirements

	HTCondor’s Power

	Exceptional Features

	Availability

	Contributions and Acknowledgments

	Support, Downloads and Bug Reporting
	Downloads

	Support

	Reporting Bugs

High-Throughput Computing (HTC) and its Requirements

The quality of many projects is dependent upon the quantity of computing
cycles available. Many problems require years of computation to solve.
These problems demand a computing environment that delivers large amounts
of computational power over a long period of time. Such an environment is
called a High-Throughput Computing (HTC) environment.

In contrast, High Performance Computing (HPC)

environments deliver a tremendous amount of compute power over a short
period of time. HPC environments are often measured in terms of Floating
point Operations Per Second (FLOPS). A growing community is not
concerned about operations per second, but operations per month or per
year (FLOPY). They are more interested in how many jobs they can complete
over a long period of time instead of how fast an individual job can finish.

The key to HTC is to efficiently harness the use of all available
resources. Years ago, the engineering and scientific community relied on
a large, centralized mainframe or a supercomputer to do computational
work. A large number of individuals and groups needed to pool their
financial resources to afford such a machine. Users had to wait for
their turn on the mainframe, and they had a limited amount of time
allocated. While this environment was inconvenient for users, the
utilization of the mainframe was high; it was busy nearly all the time.

As computers became smaller, faster, and cheaper, users moved away from
centralized mainframes. Today, most organizations own or lease many
different kinds of computing resources in many places. Racks of
departmental servers, desktop machines, leased resources from the Cloud,
allocations from national supercomputer centers are all examples
of these resources. This is an environment of distributed ownership,
 where individuals
throughout an organization own their own resources. The total
computational power of the institution as a whole may be enormous,
but because of distributed ownership,
groups have not been able to capitalize on the aggregate institutional
computing power. And, while distributed ownership is more convenient
for the users, the utilization of the computing power is lower. Many
machines sit idle for very long periods of time while their owners
have no work for the machines to do.

HTCondor’s Power

HTCondor is a software system that creates a High-Throughput Computing
(HTC) environment. It effectively uses the computing power of
machines connected over a network, be they a single cluster, a set
of clusters on a campus, cloud resources either stand alone or temporarily
joined to a local cluster, or international grids.
Power comes from the ability to effectively harness shared resources with
distributed ownership.

A user submits jobs to HTCondor. HTCondor finds available machines
and begins running the jobs there. HTCondor has
the capability to detect that a machine running a job is no
longer available (perhaps the machine crashed, or maybe it prefers to
run another job). HTCondor will automatically
restart the job on another machine without intervention from the user.

HTCondor is useful when a job must be run many (thousands
of) times, perhaps
with hundreds of different data sets. With one command, all of the
jobs are submitted to HTCondor. Depending upon the number of
machines in the HTCondor pool, hundreds of otherwise idle
machines can be running the jobs at any given moment.

HTCondor does not require an account (login) on machines where it runs a
job. HTCondor can do this because of its file transfer and split
execution mechanisms.

HTCondor provides powerful resource management by match-making resource
 owners with resource consumers. This is the
cornerstone of a successful HTC environment. Other compute cluster
resource management systems attach properties to the job queues
themselves, resulting in user confusion over which queue to use as well
as administrative hassle in constantly adding and editing queue
properties to satisfy user demands. HTCondor implements ClassAds,
 a clean design that simplifies the user’s
submission of jobs.

ClassAds work in a fashion similar to the newspaper classified
advertising want-ads. All machines in the HTCondor pool advertise their
resource properties, both static and dynamic, such as available RAM
memory, CPU type, CPU speed, virtual memory size, physical location, and
current load average, in a resource offer ad.
 A user specifies a resource request ad
 when submitting a job. The request
defines both the required and a desired set of properties of the
resource to run the job. HTCondor acts as a broker by matching and
ranking resource offer ads with resource request ads, making certain
that all requirements in both ads are satisfied. During this
match-making process, HTCondor also considers several layers of priority
values: the priority the user assigned to the resource request ad, the
priority of the user which submitted the ad, and the desire of machines in
the pool to accept certain types of ads over others.

Exceptional Features

	Reliability
	An HTCondor job “is like money in the bank”. After successful submission,
HTCondor owns the job, and will run it to completion, even if the submit machine
or execute machine crash, and require HTCondor to restart the job elsewhere.

	Scalability
	An HTCondor pool is horizontally scalable to hundreds of thousands
of execute cores running a similar number of running jobs, and an
even larger number of idle jobs. HTCondor is also
scalable down to run an entire pool on a single machine, and
many scales between these two extremes.

	Security
	HTCondor, by default, uses strong authentication and encryption on the wire.
The HTCondor worker node scratch directories can be encrypted,
so that if a node is stolen or broken into, scratch files are unreadable.

	Parallelization without Reimplementation or Redesign
	HTCondor is able to run most programs which researchers can run on their
laptop or their desktop, in any programming language, such as C, Fortran,
Python, Julia, Matlab, R or others, without changing the code. HTCondor
will do the work of running your code as parallel jobs, so it is
not necessary to implement parallelism in your code.

	Portability and Heterogeneity
	HTCondor runs on most Linux distributions and on Windows. A single HTCondor
pool can support machines of different OSes. Worker nodes need not be identically
provisioned – HTCondor detects the memory, CPU cores, GPUs and other machine resources
available on a machine, and only runs jobs that match their needs to the machine’s
capabilities.

	Pools of Machines can be Joined Together
	Flocking allows jobs submitted from one pool of HTCondor machines
to execute on another authorized pool.

	Jobs Can Be Ordered
	A set of jobs where the output of one or more jobs becomes the input of
one or more other jobs, can be defined, such that HTCondor will run
the jobs in the proper order, and organize the inputs and outputs properly.
This is accomplished with a directed acyclic graph, where each job is a
node in the graph.

	HTCondor Can Use Remote Resources, from a Cloud, a Supercomputer Allocation, or a Grid
	Glidein allows jobs submitted to HTCondor to be
executed on machines in remote pools in various locations worldwide. These remote
pools can be in one or more clouds, in an allocation on a HPC site, in a
different HTCondor pool or on a compute grid.

	Sensitive to the Desires of Machine Owners
	The owner of a machine has complete priority over the use of the
machine. HTCondor lets the machine’s owner decide if and how HTCondor
uses the machine. When HTCondor relinquishes the machine, it cleans up
any files created by the jobs that ran on the system.

	Flexible Policy Mechanisms
	HTCondor allows users to specify very flexible policies for
how they want jobs to be run. Conversely, it independently
allows the owners of machines to specify very flexible policies
about what jobs (if any) should be run on their machines. Together,
HTCondor merges and adjudicates these policy requests into one
coherent system.

The ClassAd mechanism in HTCondor provides
an expressive framework for matchmaking resource
requests with resource offers. Users can easily request both job
requirements and job desires. For example, a user can require that
their job must be started on a machine with a
certain amount of memory, but should there be multiple available
machines that meet that criteria, to select the one with the most
memory.

Availability

HTCondor is available for download from the URL
http://htcondor.org/downloads/.

For more platform-specific information about HTCondor’s support for
various operating systems, see the Platform-Specific Information chapter.

Contributions and Acknowledgments

The quality of the HTCondor project is enhanced by the contributions of
external organizations. We gratefully acknowledge the following
contributions.

	The GOZAL Project from the Computer Science Department of the
Technion Israel Institute of Technology
(http://www.technion.ac.il/), for
their enhancements for HTCondor’s High Availability. The
condor_had daemon allows one of multiple machines to function as
the central manager for a HTCondor pool. Therefore, if an acting
central manager fails, another can take its place.

	Micron Corporation
(http://www.micron.com/) for the
MSI-based installer for HTCondor on Windows.

	Paradyn Project
(http://www.paradyn.org/) and the
Universitat Autònoma de Barcelona
(http://www.caos.uab.es/) for work on
the Tool Daemon Protocol (TDP).

The HTCondor project wishes to acknowledge the following:

	This material is based upon work supported by the National Science
Foundation under Grant Numbers MCS-8105904, OCI-0437810, and
OCI-0850745. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation.

Support, Downloads and Bug Reporting

The latest software releases, publications/papers regarding HTCondor and
other High-Throughput Computing research can be found at the official
web site for HTCondor at
http://htcondor.org/.

Downloads

A list of recent HTCondor software releases is available on our downloads page:
https://htcondor.org/downloads.

Selecting a release channel will lead you to the
Downloading and Installing section of the HTCondor Manual, which describes
how to download and install HTCondor.

Support

Mailing Lists

Our users support each other on a community unmoderated mailing list
(htcondor-users@cs.wisc.edu) targeted at solving problems with
HTCondor. HTCondor team members attempt to monitor traffic to
htcondor-users, responding as they can. Follow the instructions at
http://htcondor.org/mail-lists.
If you have a question or potential bug report for HTCondor that
can be asked on a public mailing list, this is the first place to go.

In addition, there is a very low-volume e-mail list at htcondor-world@cs.wisc.edu.
We use this e-mail list to announce new releases of
HTCondor and other major HTCondor-related news items. To subscribe or
unsubscribe from the list, follow the instructions at
http://htcondor.org/mail-lists.
The HTCondor World e-mail list group is moderated, and only
major announcements of wide interest are distributed.

Email Support

You can reach the HTCondor Team directly. The HTCondor Team is
composed of the developers and administrators of HTCondor at the
University of Wisconsin-Madison. HTCondor questions, bug reports,
comments, pleas for help, and requests for commercial contract
consultation or support are all welcome; send e-mail to
htcondor-admin@cs.wisc.edu.
Please include your name, organization, and email in your
message. If you are having trouble with HTCondor, please help us
troubleshoot by including as much pertinent information as you can,
including snippets of HTCondor log files, and the version
of HTCondor you are running.

Finally, we have several options for users who require additional support for
HTCondor beyond the free support listed above. All details are available on
our website: https://htcondor.org/htcondor-support/

Reporting Bugs

We recommend you use the mailing lists or email support listed above to report
bugs. Please provide as much information as possible: detailed information
about the problem, relevant log files, and steps on how to reproduce it.
If it’s a new issue that our team was not aware of, we’ll create a new ticket
in our system.

Ticketing System

Experienced HTCondor users can also request a user account that will allow
them to create tickets directly in our system:

https://htcondor-wiki.cs.wisc.edu/index.cgi/rptview?rn=4

To get an account, send an email to htcondor-admin@cs.wisc.edu explaining why
you want it and how you intend to use it. These are typically reserved for
known collaborators with direct contact to the HTCondor team.

Users’ Manual

	Introduction to HTCondor

	Running a Job: the Steps To Take

	Submitting a Job
	Sample submit description files

	Submitting many similar jobs with one queue command

	Variables in the Submit Description File

	Including Submit Commands Defined Elsewhere

	Using Conditionals in the Submit Description File

	Function Macros in the Submit Description File

	About Requirements and Rank

	Submitting Jobs Using a Shared File System

	Jobs That Require Credentials

	Jobs That Require GPUs

	Interactive Jobs

	Submitting Lots of Jobs

	Heterogeneous Submit: Execution on Differing Architectures

	Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism
	Specifying If and When to Transfer Files

	Specifying What Files to Transfer

	File Paths for File Transfer

	Dataflow Jobs

	Public Input Files

	Behavior for Error Cases

	File Transfer Using a URL

	Managing a Job
	Checking on the progress of jobs

	Peeking in on a running job’s output files

	Starting an interactive shell next to a running job on a remote machine

	Removing a job from the queue

	Placing a job on hold

	Changing the priority of jobs

	Job in the Hold State

	In the Job Event Log File

	Job Termination

	Job Completion

	Summary of all HTCondor users and their jobs

	Automatically managing a job
	Automatically rerunning a failed job

	Automatically removing a job in the queue

	Automatically placing a job on hold

	Automatically releasing a held job

	Automatically evicting a running job

	Holding a completed job

	How To Debug an Always Idle Job
	Jobs that start but are quickly evicted

	Jobs that don’t match any Execution Point

	Not enough priority

	Systemic problems

	Choosing an HTCondor Universe
	Vanilla Universe

	Grid Universe

	Java Universe

	Scheduler Universe

	Local Universe

	Parallel Universe

	VM Universe

	Docker Universe

	Container Universe

	Environment and services for a running job
	Services for Running Jobs

	Container Universe Jobs

	Docker Universe Applications

	Virtual Machine Jobs

	Parallel Jobs (Including MPI Jobs)

	Java jobs

	NFS

	Job Scheduling
	Priorities and Preemption

	Time Scheduling for Job Execution

	Matchmaking with ClassAds

	Job Sets
	Submitting a job set

	Listing job sets

	Checking on the progress of job sets

	Removing a job set

	Self-Checkpointing Applications
	How To Run Self-Checkpointing Jobs

	Requirements

	Using checkpoint_exit_code

	How Frequently to Checkpoint

	Debugging Self-Checkpointing Jobs

	Working Around the Assumptions

	Other Options

	Signals

	Submitting to a Remote AP
	Submitting a job to a remote Access Point

	File transfer with remote submission

	Chirp: custom updates to the AP

	Special Environment Considerations
	Job Leases

Introduction to HTCondor

The HTCondor software system is developed by the Center for High Throughput
Computing at the University of Wisconsin-Madison (UW-Madison), and was first
installed as a production system in the UW-Madison Computer Sciences department
in the 1990s. HTCondor pools have since served as a major source of computing
cycles to thousands of campuses, labs, organizations and commercial entities.
For many, it has revolutionized the role computing plays in their research.
Increasing computing throughput by several orders of magnitude may not merely
deliver the same results faster, but may enable qualitatively different avenues
of research.

HTCondor is a specialized batch system for managing
compute-intensive jobs. HTCondor provides a queuing mechanism, scheduling
policy, priority scheme, and resource classifications. Users submit their
compute jobs to HTCondor, HTCondor puts the jobs in a queue, runs them, and
then informs the user as to the result.

Batch systems normally operate only with dedicated machines. Often termed
worker nodes, these dedicated machines are typically owned by one group and
dedicated to the sole purpose of running compute jobs. HTCondor can schedule
jobs on dedicated machines. But unlike traditional batch systems, HTCondor is
also designed to run jobs on machines shared and used by other systems or
people. By running on these shared resources, HTCondor can effectively harness
all machines throughout a campus. This is important because often an
organization has more latent, idle computers than any single department or
group otherwise has access to.

Running a Job: the Steps To Take

Here are the basic steps to run a job with HTCondor.

	Work Decomposition
	Typically, users want High Throughput computing systems when they have
more work than can reasonably run on a single machine. Therefore, the
computation must run concurrently on multiple machines. HTCondor itself
does not help with breaking up a large amount of work to run independently
on many machines. In many cases, such as Monte Carlo simulations, this
may be trivial to do. In other situations, the code must be refactored
or code loops may need to be broken into separate work steps in order to be
suitable for High Throughput computing. Work must be broken down into
a set of jobs whose runtime is neither too short nor too long. HTCondor
is most efficient when running jobs whose runtime is measured in minutes
or hours. There is overhead in scheduling each job, which is why very short
jobs (measured in seconds) do not work well. On the other hand, if a job
takes many days to run, there is the threat of losing work in progress should
the job or the server it runs on crashes.

	Prepare the job for batch execution.
	To run under HTCondor a job must be able to run as a background batch
job. HTCondor runs the program
unattended and in the background. A program that runs in the
background will not be able to do interactive input and output.
Create any needed input files for the program.
Make certain the program will run correctly with these files.

	Create a description file.
	A submit description file controls the all details of a job submission.
This text file tells HTCondor everything it needs to know to run the job
on a remote machine, e.g. how much memory and how many cpu cores are
needed, what input files the job needs, and other aspects of
machine the job might need.

Write a submit description file to go with the job, using the
examples provided in the Submitting a Job
section for guidance. There are many possible options that can be
set in a submit file, but most submit files only use a few. The complete list
of submit file options is in condor_submit.

	Submit the Job.
	Submit the program to HTCondor with the condor_submit command.

HTCondor will assign the job a unique Cluster and Proc identifier
as integers separated by a dot. You use this Cluster and Proc
id to manage the job later.

	Manage the Job.
	After submission, HTCondor manages the job during its lifetime. You
can monitor the job’s progress with the condor_q.
On some platforms, you can ssh to a running job with the
condor_ssh_to_job command, and inspect the job as it runs.

HTCondor can write into a log file describing changes to the state
of your job – when it starts executing, when
it uses more resources, when it completes, or when it is preempted
from a machine. You can remove a running or idle job from the queue
with condor_rm.

	Examine the results of a finished job.
	When your program completes, HTCondor will tell you (by e-mail, if
preferred) the exit status of your program and various statistics about
its performances, including time used and I/O performed. If you are
using a log file for the job, the exit status will
be recorded in there. Output files will be transferred back to the
submitting machine, if a shared filesystem is not used. After the job
completes, it will not be visible to the condor_q command
, but is queryable with the condor_history command.

Submitting a Job

The condor_submit command takes a job description file as input
and submits the job to HTCondor.

In the submit description file, HTCondor finds everything it needs to
know about the job. Items such as the name of the executable to run, the
initial working directory, and command-line arguments to the program all
go into the submit description file. condor_submit creates a job
ClassAd based upon the information, and HTCondor works toward running
the job.

It is easy to submit multiple runs of a program
to HTCondor with a single submit description file. To run the same
program many times with different input data sets, arrange the data files
accordingly so that each run reads its own input, and each run writes
its own output. Each individual run may have its own initial working
directory, files mapped for stdin, stdout, stderr,
command-line arguments, and shell environment.

The condor_submit manual page contains a complete and full
description of how to use condor_submit. It also includes descriptions of
all of the many commands that may be placed into a submit description
file. In addition, the index lists entries for each command under the
heading of Submit Commands.

Sample submit description files

In addition to the examples of submit description files given here,
there are more in the condor_submit manual page.

Example 1

Example 1 is one of the simplest submit description files possible. It
queues the program myexe for execution somewhere in the pool.
As this submit description file does not request a specific operating
system to run on, HTCondor will use the default, which is to run the job
on a machine which has the same architecture and operating system
it was submitted from.

Before submitting a job to HTCondor, it is a good idea to test it
first locally, by running it from a command shell. This example job
might look like this when run from the shell prompt.

$./myexe SomeArgument

The corresponding submit description file might look like the following

Example 1
Simple HTCondor submit description file
Everything with a leading # is a comment

executable = myexe
arguments = SomeArgument

output = outputfile
error = errorfile
log = myexe.log

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

should_transfer_files = yes
when_to_transfer_output = on_exit

queue

The standard output for this job will go to the file
outputfile, as specified by the
output command. Likewise,
the standard error output will go to the file named errorfile.

HTCondor will append events about the job to a log file with the
requested name myexe.log. When the job
finishes, its exit conditions and resource usage will also be noted in the log file.
This file’s contents are an excellent way to figure out what happened to jobs.

HTCondor needs to know how many machine resources to allocate to this job.
The request_ lines describe that this job should be allocated 1 cpu core, 1024
megabytes of memory and 10240 kilobytes of scratch disk space.

Finally, the queue statement tells HTCondor that you are done describing the
job, and to send it to the queue for processing.

Example 2

The submit description file for Example 2 queues 150
 runs of program foo.
This job requires machines which have at least
4 GiB of physical memory, one cpu core and 16 Gb of scratch disk.
Each of the 150 runs of the program is given its own HTCondor process number,
starting with 0. $(Process) is expanded by HTCondor to the actual number
used by each instance of the job. So, stdout, and stderr will refer to
out.0, and err.0 for the first run of the program,
out.1, and err.1 for the second run of the program,
and so forth. A log file containing entries about when and where
HTCondor runs, transfer files, and terminates for all the 150
queued programs will be written into the single file foo.log.
If there are 150 or more available slots in your pool, all 150 instances
might be run at the same time, otherwise, HTCondor will run as many as
it can concurrently.

Each instance of this program works on one input file. The name of this
input file is passed to the program as the only argument. We prepare
150 copies of this input file in the current directory, and name them
input_file.0, input_file.1 … up to input_file.149. Using transfer_input_files,
we tell HTCondor which input file to send to each instance of the program.

Example 2: Show off some fancy features,
including the use of pre-defined macros.

executable = foo
arguments = input_file.$(Process)

request_cpus = 1
request_memory = 4096M
request_disk = 16383K

error = err.$(Process)
output = out.$(Process)
log = foo.log

should_transfer_files = yes
transfer_input_files = input_file.$(Process)
when_to_transfer_output = on_exit

Help with debugging jobs by creating
manifest directory describing sandbox before and after
manifest = true

submit 150 instances of this job
queue 150

Submitting many similar jobs with one queue command

A wide variety of job submissions can be specified with extra
information to the queue
submit command. This flexibility eliminates the need for a job wrapper
or Perl script for many submissions.

The form of the queue command defines variables and expands values,
identifying a set of jobs. Square brackets identify an optional item.

queue [<int expr>]

queue [<int expr>] [<varname>] in [slice]
<list of items>

queue [<int expr>] [<varname>] matching [files |
dirs] [slice] <list of items with file globbing>

queue [<int expr>] [<list of varnames>] from
[slice] <file name> | <list of items>

All optional items have defaults:

	If <int expr> is not specified, it defaults to the value 1.

	If <varname> or <list of varnames> is not specified, it
defaults to the single variable called ITEM.

	If slice is not specified, it defaults to all elements within the
list. This is the Python slice [::], with a step value of 1.

	If neither files nor dirs is specified in a specification
using the from key word, then both files and directories are
considered when globbing.

The list of items uses syntax in one of two forms. One form is a comma
and/or space separated list; the items are placed on the same line as
the queue command. The second form separates items by placing each
list item on its own line, and delimits the list with parentheses. The
opening parenthesis goes on the same line as the queue command. The
closing parenthesis goes on its own line. The queue command
specified with the key word from will always use the second form of
this syntax. Example 3 below uses this second form of syntax. Finally,
the key word from accepts a shell command in place of file name,
followed by a pipe | (example 4).

The optional slice specifies a subset of the list of items using the
Python syntax for a slice. Negative step values are not permitted.

Here are a set of examples.

Example 1

transfer_input_files = $(filename)
arguments = -infile $(filename)
queue filename matching files *.dat

The use of file globbing expands the list of items to be all files in
the current directory that end in .dat. Only files, and not
directories are considered due to the specification of files. One
job is queued for each file in the list of items. For this example,
assume that the three files initial.dat, middle.dat, and
ending.dat form the list of items after expansion; macro
filename is assigned the value of one of these file names for each
job queued. That macro value is then substituted into the arguments
and transfer_input_files commands. The queue command expands
to

transfer_input_files = initial.dat
arguments = -infile initial.dat
queue
transfer_input_files = middle.dat
arguments = -infile middle.dat
queue
transfer_input_files = ending.dat
arguments = -infile ending.dat
queue

Example 2

queue 1 input in A, B, C

Variable input is set to each of the 3 items in the list, and one
job is queued for each. For this example the queue command expands
to

input = A
queue
input = B
queue
input = C
queue

Example 3

queue input, arguments from (
 file1, -a -b 26
 file2, -c -d 92
)

Using the from form of the options, each of the two variables
specified is given a value from the list of items. For this example the
queue command expands to

input = file1
arguments = -a -b 26
queue
input = file2
arguments = -c -d 92
queue

Example 4

queue from seq 7 9 |

feeds the list of items to queue with the output of seq 7 9:

item = 7
queue
item = 8
queue
item = 9
queue

Variables in the Submit Description File

There are automatic variables for use within the submit description
file.

	$(Cluster) or $(ClusterId)
	Each set of queued jobs from a specific user, submitted from a
single submit host, sharing an executable have the same value of
$(Cluster) or $(ClusterId). The first cluster of jobs are
assigned to cluster 0, and the value is incremented by one for each
new cluster of jobs. $(Cluster) or $(ClusterId) will have
the same value as the job ClassAd attribute ClusterId.

	$(Process) or $(ProcId)
	Within a cluster of jobs, each takes on its own unique
$(Process) or $(ProcId) value. The first job has value 0.
$(Process) or $(ProcId) will have the same value as the job
ClassAd attribute ProcId.

	$$(a_machine_classad_attribute)
	When the machine is matched to this job for it to run on, any
dollar-dollar expressions are looked up from the machine ad, and then
expanded. This lets you put the value of some machine ad attribute
into your job. For example, if you to pass the actual amount of
memory a slot has provisioned as an argument to the job, you
could add arguments = --mem $$(Memory)

arguments = --mem $$(Memory)

or, if you wanted to put the name of the machine the job ran on
into the output file name, you could add

output = output_file.$$(Name)

	$$([an_evaluated_classad_expression])
	This dollar-dollar-bracket syntax is useful when you need to
perform some math on a value before passing it to your job.
For example, if want to pass 90% of the allocated memory as an
argument to your job, the submit file can have

arguments = --mem $$([Memory * 0.9])

and when the job is matched to a machine, condor will evaluate
this expression in the context of both the job and machine ad

	$(ARCH)
	The Architecture that HTCondor is running on, or the ARCH variable
in the config file. Example might be X86_64.

	$(OPSYS) $(OPSYSVER) $(OPSYSANDVER) $(OPSYSMAJORVER)
	These submit file macros are availle at submit time, and mimic
the classad attributes of the same names.

	$(SUBMIT_FILE)
	The name of the submit_file as passed to the condor_submit command.

	$(SUBMIT_TIME)
	The Unix epoch time submit was run. Note, this may be useful for
naming output files.

	$(Year) $(Month) $(Day)
	These integer values are derived from the $(SUBMIT_TIME) macro above.

	$(Item)
	The default name of the variable when no <varname> is provided
in a queue command.

	$(ItemIndex)
	Represents an index within a list of items. When no slice is
specified, the first $(ItemIndex) is 0. When a slice is
specified, $(ItemIndex) is the index of the item within the
original list.

	$(Step)
	For the <int expr> specified, $(Step) counts, starting at 0.

	$(Row)
	When a list of items is specified by placing each item on its own
line in the submit description file, $(Row) identifies which
line the item is on. The first item (first line of the list) is
$(Row) 0. The second item (second line of the list) is
$(Row) 1. When a list of items are specified with all items on
the same line, $(Row) is the same as $(ItemIndex).

Here is an example of a queue command for which the values of these
automatic variables are identified.

Example 1

This example queues six jobs.

queue 3 in (A, B)

	$(Process) takes on the six values 0, 1, 2, 3, 4, and 5.

	Because there is no specification for the <varname> within this
queue command, variable $(Item) is defined. It has the value
A for the first three jobs queued, and it has the value B for
the second three jobs queued.

	$(Step) takes on the three values 0, 1, and 2 for the three jobs
with $(Item)=A, and it takes on the same three values 0, 1, and 2
for the three jobs with $(Item)=B.

	$(ItemIndex) is 0 for all three jobs with $(Item)=A, and it
is 1 for all three jobs with $(Item)=B.

	$(Row) has the same value as $(ItemIndex) for this example.

Including Submit Commands Defined Elsewhere

Externally defined submit commands can be incorporated into the submit
description file using the syntax

include : <what-to-include>

The <what-to-include> specification may specify a single file, where the
contents of the file will be incorporated into the submit description
file at the point within the file where the include is. Or,
<what-to-include> may cause a program to be executed, where the output
of the program is incorporated into the submit description file. The
specification of <what-to-include> has the bar character (|)
following the name of the program to be executed.

The include key word is case insensitive. There are no requirements
for white space characters surrounding the colon character.

Included submit commands may contain further nested include
specifications, which are also parsed, evaluated, and incorporated.
Levels of nesting on included files are limited, such that infinite
nesting is discovered and thwarted, while still permitting nesting.

Consider the example

include : ./list-infiles.sh |

In this example, the bar character at the end of the line causes the
script list-infiles.sh to be invoked, and the output of the script
is parsed and incorporated into the submit description file. If this
bash script is in the PATH when submit is run, and contains

#!/bin/sh

echo "transfer_input_files = `ls -m infiles/*.dat`"
exit 0

then the output of this script has specified the set of input files to
transfer to the execute host. For example, if directory infiles
contains the three files A.dat, B.dat, and C.dat, then the
submit command

transfer_input_files = infiles/A.dat, infiles/B.dat, infiles/C.dat

is incorporated into the submit description file.

Using Conditionals in the Submit Description File

Conditional if/else semantics are available in a limited form. The
syntax:

if <simple condition>
 <statement>
 . . .
 <statement>
else
 <statement>
 . . .
 <statement>
endif

An else key word and statements are not required, such that simple if
semantics are implemented. The <simple condition> does not permit
compound conditions. It optionally contains the exclamation point
character (!) to represent the not operation, followed by

	the defined keyword followed by the name of a variable. If the
variable is defined, the statement(s) are incorporated into the
expanded input. If the variable is not defined, the statement(s) are
not incorporated into the expanded input. As an example,

if defined MY_UNDEFINED_VARIABLE
 X = 12
else
 X = -1
endif

results in X = -1, when MY_UNDEFINED_VARIABLE is not yet
defined.

	the version keyword, representing the version number of of the daemon
or tool currently reading this conditional. This keyword is followed
by an HTCondor version number. That version number can be of the form
x.y.z or x.y. The version of the daemon or tool is compared to the
specified version number. The comparison operators are

	== for equality. Current version 8.2.3 is equal to 8.2.

	>= to see if the current version number is greater than or equal
to. Current version 8.2.3 is greater than 8.2.2, and current
version 8.2.3 is greater than or equal to 8.2.

	<= to see if the current version number is less than or equal to.
Current version 8.2.0 is less than 8.2.2, and current version
8.2.3 is less than or equal to 8.2.

As an example,

if version >= 8.1.6
 DO_X = True
else
 DO_Y = True
endif

results in defining DO_X as True if the current version of
the daemon or tool reading this if statement is 8.1.6 or a more
recent version.

	True or yes or the value 1. The statement(s) are incorporated.

	False or no or the value 0 The statement(s) are not incorporated.

	$(<variable>) may be used where the immediately evaluated value is a
simple boolean value. A value that evaluates to the empty string is
considered False, otherwise a value that does not evaluate to a
simple boolean value is a syntax error.

The syntax

if <simple condition>
 <statement>
 . . .
 <statement>
elif <simple condition>
 <statement>
 . . .
 <statement>
endif

is the same as syntax

if <simple condition>
 <statement>
 . . .
 <statement>
else
 if <simple condition>
 <statement>
 . . .
 <statement>
 endif
endif

Here is an example use of a conditional in the submit description file.
A portion of the sample.sub submit description file uses the if/else
syntax to define command line arguments in one of two ways:

if defined X
 arguments = -n $(X)
else
 arguments = -n 1 -debug
endif

Submit variable X is defined on the condor_submit command line
with

$ condor_submit X=3 sample.sub

This command line incorporates the submit command X = 3 into the
submission before parsing the submit description file. For this
submission, the command line arguments of the submitted job become

arguments = -n 3

If the job were instead submitted with the command line

$ condor_submit sample.sub

then the command line arguments of the submitted job become

arguments = -n 1 -debug

Function Macros in the Submit Description File

A set of predefined functions increase flexibility. Both submit
description files and configuration files are read using the same
parser, so these functions may be used in both submit description files
and configuration files.

Case is significant in the function’s name, so use the same letter case
as given in these definitions.

	$CHOICE(index, listname) or $CHOICE(index, item1, item2, ...)
	An item within the list is returned. The list is represented by a
parameter name, or the list items are the parameters. The index
parameter determines which item. The first item in the list is at
index 0. If the index is out of bounds for the list contents, an
error occurs.

	$ENV(environment-variable-name[:default-value])
	Evaluates to the value of environment variable
environment-variable-name. If there is no environment variable
with that name, Evaluates to UNDEFINED unless the optional
:default-value is used; in which case it evaluates to default-value.
For example,

A = $ENV(HOME)

binds A to the value of the HOME environment variable.

	$F[fpduwnxbqa](filename)
	One or more of the lower case letters may be combined to form the
function name and thus, its functionality. Each letter operates on
the filename in its own way.

	f convert relative path to full path by prefixing the current
working directory to it. This option works only in
condor_submit files.

	p refers to the entire directory portion of filename,
with a trailing slash or backslash character. Whether a slash or
backslash is used depends on the platform of the machine. The
slash will be recognized on Linux platforms; either a slash or
backslash will be recognized on Windows platforms, and the parser
will use the same character specified.

	d refers to the last portion of the directory within the
path, if specified. It will have a trailing slash or backslash,
as appropriate to the platform of the machine. The slash will be
recognized on Linux platforms; either a slash or backslash will
be recognized on Windows platforms, and the parser will use the
same character specified unless u or w is used. if b is used the
trailing slash or backslash will be omitted.

	u convert path separators to Unix style slash characters

	w convert path separators to Windows style backslash
characters

	n refers to the file name at the end of any path, but without
any file name extension. As an example, the return value from
$Fn(/tmp/simulate.exe) will be simulate (without the
.exe extension).

	x refers to a file name extension, with the associated period
(.). As an example, the return value from
$Fx(/tmp/simulate.exe) will be .exe.

	b when combined with the d option, causes the trailing slash
or backslash to be omitted. When combined with the x option,
causes the leading period (.) to be omitted.

	q causes the return value to be enclosed within quotes.
Double quote marks are used unless a is also specified.

	a When combined with the q option, causes the return value to
be enclosed within single quotes.

$DIRNAME(filename) is the same as $Fp(filename)

$BASENAME(filename) is the same as $Fnx(filename)

	$INT(item-to-convert) or $INT(item-to-convert, format-specifier)
	Expands, evaluates, and returns a string version of
item-to-convert. The format-specifier has the same syntax as
a C language or Perl format specifier. If no format-specifier is
specified, “%d” is used as the format specifier.

	$RANDOM_CHOICE(choice1, choice2, choice3, ...)
	 A random choice
of one of the parameters in the list of parameters is made. For
example, if one of the integers 0-8 (inclusive) should be randomly
chosen:

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)

	$RANDOM_INTEGER(min, max [, step])
	 A random integer
within the range min and max, inclusive, is selected. The optional
step parameter controls the stride within the range, and it defaults
to the value 1. For example, to randomly chose an even integer in
the range 0-8 (inclusive):

$RANDOM_INTEGER(0, 8, 2)

	$REAL(item-to-convert) or $REAL(item-to-convert, format-specifier)
	Expands, evaluates, and returns a string version of
item-to-convert for a floating point type. The
format-specifier is a C language or Perl format specifier. If no
format-specifier is specified, “%16G” is used as a format
specifier.

	$SUBSTR(name, start-index) or $SUBSTR(name, start-index, length)
	Expands name and returns a substring of it. The first character of
the string is at index 0. The first character of the substring is at
index start-index. If the optional length is not specified, then the
substring includes characters up to the end of the string. A
negative value of start-index works back from the end of the string.
A negative value of length eliminates use of characters from the end
of the string. Here are some examples that all assume

Name = abcdef

	$SUBSTR(Name, 2) is cdef.

	$SUBSTR(Name, 0, -2) is abcd.

	$SUBSTR(Name, 1, 3) is bcd.

	$SUBSTR(Name, -1) is f.

	$SUBSTR(Name, 4, -3) is the empty string, as there are no
characters in the substring for this request.

Here are example uses of the function macros in a submit description
file. Note that these are not complete submit description files, but
only the portions that promote understanding of use cases of the
function macros.

Example 1

Generate a range of numerical values for a set of jobs, where values
other than those given by $(Process) are desired.

MyIndex = $(Process) + 1
initial_dir = run-$INT(MyIndex,%04d)

Assuming that there are three jobs queued, such that $(Process) becomes
0, 1, and 2, initial_dir will evaluate to the directories
run-0001, run-0002, and run-0003.

Example 2

This variation on Example 1 generates a file name extension which is a
3-digit integer value.

Values = $(Process) * 10
Extension = $INT(Values,%03d)
input = X.$(Extension)

Assuming that there are four jobs queued, such that $(Process) becomes
0, 1, 2, and 3, Extension will evaluate to 000, 010, 020, and 030,
leading to files defined for input of X.000, X.010,
X.020, and X.030.

Example 3

This example uses both the file globbing of the
queue command and a macro
function to specify a job input file that is within a subdirectory on
the submit host, but will be placed into a single, flat directory on the
execute host.

arguments = $Fnx(FILE)
transfer_input_files = $(FILE)
queue FILE matching (
 samplerun/*.dat
)

Assume that two files that end in .dat, A.dat and B.dat, are
within the directory samplerun. Macro FILE expands to
samplerun/A.dat and samplerun/B.dat for the two jobs queued. The
input files transferred are samplerun/A.dat and samplerun/B.dat
on the submit host. The $Fnx() function macro expands to the
complete file name with any leading directory specification stripped,
such that the command line argument for one of the jobs will be
A.dat and the command line argument for the other job will be
B.dat.

About Requirements and Rank

The requirements and rank commands in the submit description
file are powerful and flexible. Using them effectively requires
care, and this section presents those details.

Both requirements and rank need to be specified as valid
HTCondor ClassAd expressions, however, default values are set by the
condor_submit program if these are not defined in the submit
description file. From the condor_submit manual page and the above
examples, you see that writing ClassAd expressions is intuitive,
especially if you are familiar with the programming language C. There
are some pretty nifty expressions you can write with ClassAds. A
complete description of ClassAds and their expressions can be found in
the HTCondor’s ClassAd Mechanism section.

All of the commands in the submit description file are case insensitive,
except for the ClassAd attribute string values. ClassAd attribute names
are case insensitive, but ClassAd string values are case preserving.

Note that the comparison operators (<, >, <=, >=, and ==) compare
strings case insensitively. The special comparison operators =?= and =!=
compare strings case sensitively.

A requirements or
rank command in the submit
description file may utilize attributes that appear in a machine or a
job ClassAd. Within the submit description file (for a job) the prefix
MY. (on a ClassAd attribute name) causes a reference to the job ClassAd
attribute, and the prefix TARGET. causes a reference to a potential
machine or matched machine ClassAd attribute.

The condor_status command displays
 statistics about
machines within the pool. The -l option displays the machine ClassAd
attributes for all machines in the HTCondor pool. The job ClassAds, if
there are jobs in the queue, can be seen with the condor_q -l
command. This shows all the defined attributes for current jobs in the
queue.

A list of defined ClassAd attributes for job ClassAds is given in the
Appendix on the Job ClassAd Attributes page. A
list of defined ClassAd attributes for machine ClassAds is given in the
Appendix on the Machine ClassAd Attributes page.

Rank Expression Examples

When considering the match between a job and a machine, rank is used to
choose a match from among all machines that satisfy the job’s
requirements and are available to the user, after accounting for the
user’s priority and the machine’s rank of the job. The rank expressions,
simple or complex, define a numerical value that expresses preferences.

The job’s rank expression evaluates to one of three values. It can
be UNDEFINED, ERROR, or a floating point value. If rank evaluates to
a floating point value, the best match will be the one with the largest,
positive value. If no rank is given in the submit description file,
then HTCondor substitutes a default value of 0.0 when considering
machines to match. If the job’s rank of a given machine evaluates to
UNDEFINED or ERROR, this same value of 0.0 is used. Therefore, the
machine is still considered for a match, but has no ranking above any
other.

A boolean expression evaluates to the numerical value of 1.0 if true,
and 0.0 if false.

The following rank expressions provide examples to follow.

For a job that desires the machine with the most available memory:

Rank = memory

For a job that prefers to run on a friend’s machine on Saturdays and
Sundays:

Rank = ((clockday == 0) || (clockday == 6))
 && (machine == "friend.cs.wisc.edu")

For a job that prefers to run on one of three specific machines:

Rank = (machine == "friend1.cs.wisc.edu") ||
 (machine == "friend2.cs.wisc.edu") ||
 (machine == "friend3.cs.wisc.edu")

For a job that wants the machine with the best floating point
performance (on Linpack benchmarks):

Rank = kflops

This particular example highlights a difficulty with rank expression
evaluation as currently defined. While all machines have floating point
processing ability, not all machines will have the KFlops attribute
defined. For machines where this attribute is not defined, rank will
evaluate to the value UNDEFINED, and HTCondor will use a default rank of
the machine of 0.0. The rank attribute will only rank machines where
the attribute is defined. Therefore, the machine with the highest
floating point performance may not be the one given the highest rank.

So, it is wise when writing a rank expression to check if the
expression’s evaluation will lead to the expected resulting ranking of
machines. This can be accomplished using the condor_status command
with the -constraint argument. This allows the user to see a list of
machines that fit a constraint. To see which machines in the pool have
KFlops defined, use

$ condor_status -constraint kflops

Alternatively, to see a list of machines where KFlops is not
defined, use

$ condor_status -constraint "kflops=?=undefined"

For a job that prefers specific machines in a specific order:

Rank = ((machine == "friend1.cs.wisc.edu")*3) +
 ((machine == "friend2.cs.wisc.edu")*2) +
 (machine == "friend3.cs.wisc.edu")

If the machine being ranked is friend1.cs.wisc.edu, then the
expression

(machine == "friend1.cs.wisc.edu")

is true, and gives the value 1.0. The expressions

(machine == "friend2.cs.wisc.edu")

and

(machine == "friend3.cs.wisc.edu")

are false, and give the value 0.0. Therefore, rank evaluates to the
value 3.0. In this way, machine friend1.cs.wisc.edu is ranked higher
than machine friend2.cs.wisc.edu, machine friend2.cs.wisc.edu is
ranked higher than machine friend3.cs.wisc.edu, and all three of
these machines are ranked higher than others.

Submitting Jobs Using a Shared File System

If vanilla, java, or parallel universe jobs are submitted without using
the File Transfer mechanism, HTCondor must use a shared file system to
access input and output files. In this case, the job must be able to
access the data files from any machine on which it could potentially
run.

As an example, suppose a job is submitted from blackbird.cs.wisc.edu,
and the job requires a particular data file called
/u/p/s/psilord/data.txt. If the job were to run on
cardinal.cs.wisc.edu, the file /u/p/s/psilord/data.txt must be
available through either NFS or AFS for the job to run correctly.

HTCondor allows users to ensure their jobs have access to the right
shared files by using the FileSystemDomain and UidDomain machine
ClassAd attributes. These attributes specify which machines have access
to the same shared file systems. All machines that mount the same shared
directories in the same locations are considered to belong to the same
file system domain. Similarly, all machines that share the same user
information (in particular, the same UID, which is important for file
systems like NFS) are considered part of the same UID domain.

The default configuration for HTCondor places each machine in its own
UID domain and file system domain, using the full host name of the
machine as the name of the domains. So, if a pool does have access to a
shared file system, the pool administrator must correctly configure
HTCondor such that all the machines mounting the same files have the
same FileSystemDomain configuration. Similarly, all machines that
share common user information must be configured to have the same
UidDomain configuration.

When a job relies on a shared file system, HTCondor uses the
requirements expression to ensure that the job runs on a machine in
the correct UidDomain and FileSystemDomain. In this case, the
default requirements expression specifies that the job must run on a
machine with the same UidDomain and FileSystemDomain as the
machine from which the job is submitted. This default is almost always
correct. However, in a pool spanning multiple UidDomains and/or
FileSystemDomains, the user may need to specify a different
requirements expression to have the job run on the correct machines.

For example, imagine a pool made up of both desktop workstations and a
dedicated compute cluster. Most of the pool, including the compute
cluster, has access to a shared file system, but some of the desktop
machines do not. In this case, the administrators would probably define
the FileSystemDomain to be cs.wisc.edu for all the machines that
mounted the shared files, and to the full host name for each machine
that did not. An example is jimi.cs.wisc.edu.

In this example, a user wants to submit vanilla universe jobs from her
own desktop machine (jimi.cs.wisc.edu) which does not mount the shared
file system (and is therefore in its own file system domain, in its own
world). But, she wants the jobs to be able to run on more than just her
own machine (in particular, the compute cluster), so she puts the
program and input files onto the shared file system. When she submits
the jobs, she needs to tell HTCondor to send them to machines that have
access to that shared data, so she specifies a different
requirements expression than the default:

Requirements = TARGET.UidDomain == "cs.wisc.edu" && \
 TARGET.FileSystemDomain == "cs.wisc.edu"

WARNING: If there is no shared file system, or the HTCondor pool
administrator does not configure the FileSystemDomain setting
correctly (the default is that each machine in a pool is in its own file
system and UID domain), a user submits a job that cannot use remote
system calls (for example, a vanilla universe job), and the user does
not enable HTCondor’s File Transfer mechanism, the job will only run on
the machine from which it was submitted.

Jobs That Require Credentials

If the HTCondor pool administrator has configured the access point
with one or more credential monitors,
jobs submitted on that machine may automatically be provided with credentials
and/or it may be possible for users to request and obtain credentials for their jobs.

Suppose the administrator has configured the access point
such that users may obtain credentials from a storage service called “CloudBoxDrive.”
A job that needs credentials from CloudBoxDrive
should contain the submit command

use_oauth_services = cloudboxdrive

Upon submitting this job for the first time,
the user will be directed to a webpage hosted on the access point
which will guide the user through the process of obtaining a CloudBoxDrive credential.
The credential is then stored securely on the access point.
(Note: depending on which credential monitor is used, the original
job may have to be re-submitted at this point.)
(Also note that at no point is the user’s password stored on the access point.)
Once a credential is stored on the access point,
as long as it remains valid,
it is transferred securely to all subsequently submitted jobs that contain use_oauth_services = cloudboxdrive.

When a job that contains credentials runs on an execute machine,
the job’s executable will have the environment variable _CONDOR_CREDS set,
which points to the location of all of the credentials inside the job’s sandbox.
For credentials obtained via the use_oauth_services submit file command,
the “access token” is stored under $_CONDOR_CREDS
in a JSON-encoded file
named with the name of the service provider and with the extension .use.
For the “CloudBoxDrive” example,
the access token would be located in $_CONDOR_CREDS/cloudboxdrive.use.

The HTCondor file transfer mechanism has built-in plugins
for using user-obtained credentials
to transfer files from some specific storage providers,
see File Transfer Using a URL.

Credential Scopes

Some credential providers may require the user to provide a description of the
permissions (often called “scopes”) a user needs for a specific credential.
Credential permission scoping is possible using the <service
name>_oauth_permissions submit file command. For example, suppose our
CloudBoxDrive service has a /public directory, and the documentation for
the service said that users must specify a read:<directory> scope in order
to be able to read data out of <directory>. The submit file would need to
contain

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions = read:/public

Some credential providers may also require the user to provide
the name of the resource (or “audience”) that a credential should allow access to.
Resource naming is done using the <service name>_oauth_resource submit file command.
For example, if our CloudBoxDrive service has servers located at some universities
and the documentation says that we should pick one near us and specify it as the audience,
the submit file might look like

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions = read:/public
cloudboxdrive_oauth_resource = https://cloudboxdrive.myuni.edu

It is possible for a single job to request and/or use credentials from multiple
services by listing each service in the use_oauth_services command.
Suppose the nearby university has a SciTokens service that provides credentials
to access the localstorage.myuni.edu machine, and the HTCondor pool
administrator has configured the access point to allow users to obtain
credentials from this service, and that a user has write access to the /foo
directory on the storage machine. A submit file that would result in a job
that contains credentials that can read from CloudBoxDrive and write to the
local university storage might look like

use_oauth_services = cloudboxdrive, myuni

cloudboxdrive_oauth_permissions = read:/public
cloudboxdrive_oauth_resource = https://cloudboxdrive.myuni.edu

myuni_oauth_permissions = write:/foo
myuni_oauth_resource = https://localstorage.myuni.edu

Credential Handles

A single job can also request multiple credentials from the same service provider
by affixing handles to the

 Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism

Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism

HTCondor works well without a shared file system between the submit
machines and the worker nodes. The HTCondor file
transfer mechanism allows the user to explicitly select which input files are
transferred to the worker node before the
job starts. HTCondor will transfer these files, potentially
delaying this transfer request, if starting the transfer right away
would overload the access point. Queueing requests like this prevents
the crashes so common with too-busy shared file servers. These input files are placed
into a scratch directory on the worker node, which is the starting current
directory of the job. When the job completes, by default, HTCondor detects any
newly-created files at the top level of this sandbox directory, and
transfers them back to the submitting machine. The input sandbox is
what we call the executable and all the declared input files of a job. The
set of all files created by the job is the output sandbox.

Specifying If and When to Transfer Files

To enable the file transfer mechanism, place this command in the job’s
submit description file:
should_transfer_files

should_transfer_files = YES

Setting the
should_transfer_files
command explicitly enables or disables the file transfer mechanism. The
command takes on one of three possible values:

	YES: HTCondor transfers the input sandbox from
the access point to the execute machine. The output sandbox
is transferred back to the access point. The command
when_to_transfer_output.
controls when the output sandbox is transferred back, and what directory
it is stored in.

	IF_NEEDED: HTCondor only transfers sandboxes when the job is matched with
a machine in a different FileSystemDomain than
the one the access point belongs to, as if
should_transfer_files = YES. If the job is matched with a machine
in the same FileSystemDomain as the submitting machine, HTCondor
will not transfer files and relies on the shared file system.

	NO: HTCondor’s file transfer mechanism is disabled. In this case is
is the responsibility of the user to ensure that all data used by the
job is accessible on the remote worker node.

The when_to_transfer_output command tells HTCondor when output
files are to be transferred back to the access point. The command
takes on one of three possible values:

	ON_EXIT (the default): HTCondor transfers the output sandbox
back to the access point only when the job exits on its own. If the
job is preempted or removed, no files are transferred back.

	ON_EXIT_OR_EVICT: HTCondor behaves the same as described for the
value ON_EXIT when the job exits on its own. However, each
time the job is evicted from a machine, the output sandbox is
transferred back to the access point and placed under the SPOOL directory.
eviction time. Before the job starts running again, the former output
sandbox is copied to the job’s new remote scratch directory.

If transfer_output_files.
is specified, this list governs which files are transferred back at eviction
time. If a file listed in transfer_output_files does not exist
at eviction time, the job will go on hold.

The purpose of saving files at eviction time is to allow the job to
resume from where it left off.

	ON_SUCCESS: HTCondor transfers files like ON_EXIT, but only if
the job succeeds, as defined by the success_exit_code submit command.
The success_exit_code command must be used, even for the default
exit code of 0.

The default values for these two submit commands make sense as used
together. If only should_transfer_files is set, and set to the
value NO, then no output files will be transferred, and the value of
when_to_transfer_output is irrelevant. If only
when_to_transfer_output is set, and set to the value
ON_EXIT_OR_EVICT, then the default value for an unspecified
should_transfer_files will be YES.

Note that the combination of

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT_OR_EVICT

would produce undefined file access semantics. Therefore, this
combination is prohibited by condor_submit.

Specifying What Files to Transfer

If the file transfer mechanism is enabled, HTCondor will transfer the
following files before the job is run on a remote machine as the input
sandbox:

	the executable, as defined with the
executable command

	the input, as defined with the
input command

	any jar files, for the java universe, as defined with the
jar_files command

If the job requires other input files, the submit description file
should have the
transfer_input_files
command. This comma-separated list specifies any other files, URLs, or
directories that HTCondor is to transfer to the remote scratch
directory, to set up the execution environment for the job before it is
run. These files are placed in the same directory as the job’s
executable. For example:

executable = my_program
input = my_input
should_transfer_files = YES
transfer_input_files = file1,file2

This example explicitly enables the file transfer mechanism. By default,
HTCondor will transfer the executable (my_program) and the file
specified by the input command (my_input). The files file1
and file2 are also transferred, by explicit user instruction.

If the file transfer mechanism is enabled, HTCondor will transfer the
following files from the execute machine back to the access point
after the job exits, as the output sandbox.

	the output file, as defined with the output command

	the error file, as defined with the error command

	any files created by the job in the remote scratch directory.

A path given for output and error submit commands represents a path on
the access point. If no path is specified, the directory specified
with initialdir is
used, and if that is not specified, the directory from which the job was
submitted is used. At the time the job is submitted, zero-length files
are created on the access point, at the given path for the files
defined by the output and error commands. This permits job
submission failure, if these files cannot be written by HTCondor.

To restrict the output files or permit entire directory contents to be
transferred, specify the exact list with
transfer_output_files.
When this comma separated list is defined, and any of the files or directories do not
exist as the job exits, HTCondor considers this an error, and places the
job on hold. Setting
transfer_output_files
to the empty string (“”) means no files are to be transferred. When this
list is defined, automatic detection of output files created by the job
is disabled. Paths specified in this list refer to locations on the
execute machine. The naming and placement of files and directories
relies on the term base name. By example, the path a/b/c has the
base name c. It is the file name or directory name with all
directories leading up to that name stripped off. On the access point,
the transferred files or directories are named using only the base name.
Therefore, each output file or directory must have a different name,
even if they originate from different paths.

If only a subset of the output sandbox should be transferred, the subset
is specified by further adding a submit command of the form:

transfer_output_files = file1, file2

Here are examples of file transfer with HTCondor. Assume that the
job produces the following structure within the remote scratch
directory:

o1
o2
d1 (directory)
 o3
 o4

If the submit description file sets

transfer_output_files = o1,o2,d1

then transferred back to the access point will be

o1
o2
d1 (directory)
 o3
 o4

Note that the directory d1 and all its contents are specified, and
therefore transferred. If the directory d1 is not created by the job
before exit, then the job is placed on hold. If the directory d1 is
created by the job before exit, but is empty, this is not an error.

If, instead, the submit description file sets

transfer_output_files = o1,o2,d1/o3

then transferred back to the access point will be

o1
o2
o3

Note that only the base name is used in the naming and placement of the
file specified with d1/o3.

File Paths for File Transfer

The file transfer mechanism specifies file names or URLs on
the file system of the access point and file names on the
execute machine. Care must be taken to know which machine, submit or
execute, is referencing the file.

Files in the
transfer_input_files
command are specified as they are accessed on the access point. The
job, as it executes, accesses files as they are found on the execute
machine.

There are four ways to specify files and paths for
transfer_input_files:

	Relative to the current working directory as the job is submitted, if
the submit command
initialdir is not
specified.

	Relative to the initial directory, if the submit command
initialdir is
specified.

	Absolute file paths.

	As an URL, which should be accessible by the execute machine.

Before executing the program, HTCondor copies the input sandbox
into a remote scratch directory on the
execute machine, where the program runs. Therefore, the executing
program must access input files relative to its working directory.
Because all files and directories listed for transfer are placed into a
single, flat directory, inputs must be uniquely named to avoid collision
when transferred.

A job may instead set preserve_relative_paths (to True), in which
case the relative paths of transferred files are preserved. For example,
although the input list dirA/file1, dirB/file1 would normally result in
a collision, instead HTCondor will create the directories dirA and
dirB in the input sandbox, and each will get its corresponding version
of file1.

Both relative and absolute paths may be used in
transfer_output_files.
Relative paths are relative to the job’s remote scratch directory on the
execute machine. When the files and directories are copied back to the
access point, they are placed in the job’s initial working directory
as the base name of the original path. An alternate name or path may be
specified by using
transfer_output_remaps.

The preserve_relative_paths command also applies to relative paths
specified in transfer_output_files (if not remapped).

A job may create files outside the remote scratch directory but within
the file system of the execute machine, in a directory such as /tmp,
if this directory is guaranteed to exist and be accessible on all
possible execute machines. However, HTCondor will not automatically
transfer such files back after execution completes, nor will it clean up
these files.

Here are several examples to illustrate the use of file transfer. The
program executable is called my_program, and it uses three
command-line arguments as it executes: two input file names and an
output file name. The program executable and the submit description file
for this job are located in directory /scratch/test.

Here is the directory tree as it exists on the access point, for all
the examples:

/scratch/test (directory)
 my_program.condor (the submit description file)
 my_program (the executable)
 files (directory)
 logs2 (directory)
 in1 (file)
 in2 (file)
 logs (directory)

Example 1

This first example explicitly transfers input files. These input
files to be transferred are specified relative to the directory
where the job is submitted. An output file specified in the
arguments command,
out1, is created when the job is executed. It will be
transferred back into the directory /scratch/test.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
transfer_input_files = files/in1,files/in2

arguments = in1 in2 out1

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

The log file is written on the access point, and is not involved
with the file transfer mechanism.

Example 2

This second example is identical to Example 1, except that absolute
paths to the input files are specified, instead of relative paths to
the input files.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/in1,/scratch/test/files/in2

arguments = in1 in2 out1

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Example 3

This third example illustrates the use of the submit command
initialdir, and its
effect on the paths used for the various files. The expected
location of the executable is not affected by the
initialdir command.
All other files (specified by
input,
output,
error,
transfer_input_files,
as well as files modified or created by the job and automatically
transferred back) are located relative to the specified
initialdir
Therefore, the output file, out1, will be placed in the files
directory. Note that the logs2 directory exists to make this
example work correctly.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs2/err.$(cluster)
output = logs2/out.$(cluster)
log = logs2/log.$(cluster)

initialdir = files

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = in1,in2

arguments = in1 in2 out1

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Example 4 - Illustrates an Error

This example illustrates a job that will fail. The files specified
using the
transfer_input_files
command work correctly (see Example 1). However, relative paths to
files in the
arguments command
cause the executing program to fail. The file system on the
submission side may utilize relative paths to files, however those
files are placed into the single, flat, remote scratch directory on
the execute machine.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1,files/in2

arguments = files/in1 files/in2 files/out1

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

This example fails with the following error:

err: files/out1: No such file or directory.

Example 5 - Illustrates an Error

As with Example 4, this example illustrates a job that will fail.
The executing program’s use of absolute paths cannot work.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/in1, /scratch/test/files/in2

arguments = /scratch/test/files/in1 /scratch/test/files/in2 /scratch/test/files/out1

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

The job fails with the following error:

err: /scratch/test/files/out1: No such file or directory.

Example 6

This example illustrates a case where the executing program creates
an output file in a directory other than within the remote scratch
directory that the program executes within. The file creation may or
may not cause an error, depending on the existence and permissions
of the directories on the remote file system.

The output file /tmp/out1 is transferred back to the job’s
initial working directory as /scratch/test/out1.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

transfer_input_files = files/in1,files/in2
transfer_output_files = /tmp/out1

arguments = in1 in2 /tmp/out1
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Dataflow Jobs

A dataflow job is a job that might not need to run because its desired
outputs already exist. To skip such a job, add the following line to your
submit file:

skip_if_dataflow = True

A dataflow job meets any of the following criteria:

	Output files exist, are newer than input files

	Execute file is newer than input files

	Standard input file is newer than input files

Skipping dataflow jobs can potentially save large amounts of time in
long-running workflows.

Public Input Files

There are some cases where HTCondor’s file transfer mechanism is
inefficient. For jobs that need to run a large number of times, the
input files need to get transferred for every job, even if those files
are identical. This wastes resources on both the access point and the
network, slowing overall job execution time.

Public input files allow a user to specify files to be transferred over
a publicly-available HTTP web service. A system administrator can then
configure caching proxies, load balancers, and other tools to
dramatically improve performance. Public input files are not available
by default, and need to be explicitly enabled by a system administrator.

To specify files that use this feature, the submit file should include a
public_input_files
command. This comma-separated list specifies files which HTCondor will
transfer using the HTTP mechanism. For example:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = file1,file2
public_input_files = public_data1,public_data2

Similar to the regular
transfer_input_files,
the files specified in
public_input_files
can be relative to the submit directory, or absolute paths. You can also
specify an initialdir,
and condor_submit will look for files relative to that directory. The
files must be world-readable on the file system (files with permissions
set to 0644, directories with permissions set to 0755).

Lastly, all files transferred using this method will be publicly
available and world-readable, so this feature should not be used for any
sensitive data.

Behavior for Error Cases

This section describes HTCondor’s behavior for some error cases in
dealing with the transfer of files.

	Disk Full on Execute Machine
	When transferring any files from the access point to the remote
scratch directory, if the disk is full on the execute machine, then
the job is place on hold.

	Error Creating Zero-Length Files on Submit Machine
	As a job is submitted, HTCondor creates zero-length files as
placeholders on the access point for the files defined by
output and
error. If these files
cannot be created, then job submission fails.

This job submission failure avoids having the job run to completion,
only to be unable to transfer the job’s output due to permission
errors.

	Error When Transferring Files from Execute Machine to Submit Machine
	When a job exits, or potentially when a job is evicted from an
execute machine, one or more files may be transferred from the
execute machine back to the machine on which the job was submitted.

During transfer, if any of the following three similar types of
errors occur, the job is put on hold as the error occurs.

	If the file cannot be opened on the access point, for example
because the system is out of inodes.

	If the file cannot be written on the access point, for example
because the permissions do not permit it.

	If the write of the file on the access point fails, for example
because the system is out of disk space.

File Transfer Using a URL

Instead of file transfer that goes only between the access point and
the execute machine, HTCondor has the ability to transfer files from a
location specified by a URL for a job’s input file, or from the execute
machine to a location specified by a URL for a job’s output file(s).
This capability requires administrative set up, as described in
the Third Party/Delegated file, credential and checkpoint transfer section.

URL file transfers work in most HTCondor job universes, but not grid, local
or scheduler. HTCondor’s file transfer mechanism must be enabled.
Therefore, the submit description file for the job will define both
should_transfer_files
and
when_to_transfer_output.
In addition, the URL for any files specified with a URL are given in the
transfer_input_files
command. An example portion of the submit description file for a job
that has a single file specified with a URL:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = http://www.full.url/path/to/filename

The destination file is given by the file name within the URL.

For the transfer of the entire contents of the output sandbox, which are
all files that the job creates or modifies, HTCondor’s file transfer
mechanism must be enabled. In this sample portion of the submit
description file, the first two commands explicitly enable file
transfer, and the added
output_destination
command provides both the protocol to be used and the destination of the
transfer.

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output_destination = urltype://path/to/destination/directory

Note that with this feature, no files are transferred back to the submit
machine. This does not interfere with the streaming of output.

Uploading to URLs using output file remaps

File transfer plugins now support uploads as well as downloads. The
transfer_output_remaps
command can additionally be used to upload
files to specific URLs when a job completes. To do this, set the
destination for an output file to a URL instead of a filename. For
example:

transfer_output_remaps = "myresults.dat = http://destination-server.com/myresults.dat"

We use a HTTP PUT request to perform the upload, so the user is
responsible for making sure that the destination server accepts PUT
requests (which is usually disabled by default).

Passing a credential for URL file transfers

Some files served over HTTPS will require a credential in order to
download. Each credential cred should be placed in a file in
$_CONDOR_CREDS/cred.use. Then in order to use that credential for a
download, append its name to the beginning of the URL protocol along
with a + symbol. For example, to download the file
https://download.com/bar using the cred credential, specify the
following in the submit file:

transfer_input_files = cred+https://download.com/bar

If your credential file has an underscore in it,
the underscore must be replaced in the transfer_input_files URL
with a “.”, e.g. for $_CONDOR_CREDS/cred_local.use:

transfer_input_files = cred.local+https://download.com/bar

Otherwise, the credential file must have a name that only contains
alphanumeric characters (a-z, A-Z, 0-9) and/or -,
except for the . in the `.use extension.

If you’re using a token from an OAuth service provider,
the credential will be named based on the OAuth provider.
For example, if your submit file has use_oauth_services = mytokens,
you can request files using that token by doing:

use_oauth_services = mytokens

transfer_input_files = mytokens+https://download.com/bar

If you add an optional handle to the token name,
append the handle name to the token name in the URL with a “.”:

use_oauth_services = mytokens
mytokens_oauth_permissions_personal =
mytokens_oauth_permissions_group =

transfer_input_files = mytokens.personal+https://download.com/bar, mytokens.group+https://download.com/foo

Note that in the above token-with-a-handle case,
the token files will be stored in the job
environment at $_CONDOR_CREDS/mytokens_personal.use
and $_CONDOR_CREDS/mytokens_group.use.

Transferring files using file transfer plugins

HTCondor comes with file transfer plugins
that can communicate with Box.com, Google Drive, Stash Cache, OSDF, and Microsoft OneDrive.
Using one of these plugins requires that the HTCondor pool administrator
has set up the mechanism for HTCondor to gather credentials
for the desired service,
and requires that your submit file
contains the proper commands
to obtain credentials
from the desired service (see Jobs That Require Credentials).

To use a file transfer plugin,
substitute https in a transfer URL with the service name
(box for Box.com,
stash for Stash Cache,
osdf for OSDF,
gdrive for Google Drive, and
onedrive for Microsoft OneDrive)
and reference a file path starting at the root directory of the service.
For example, to download bar.txt from a Box.com account
where bar.txt is in the foo folder, use:

use_oauth_services = box
transfer_input_files = box://foo/bar.txt

If your job requests multiple credentials from the same service,
use <handle>+<service>://path/to/file
to reference each specific credential.
For example, for a job that uses Google Drive to
download public_files/input.txt from one account (public)
and to upload output.txt to my_private_files/output.txt on a second account (private):

use_oauth_services = gdrive
gdrive_oauth_permissions_public =
gdrive_oauth_permissions_private =

transfer_input_files = public+gdrive://public_files/input.txt
transfer_output_remaps = "output.txt = private+gdrive://my_private_files/output.txt"

Transferring files using the S3 protocol

HTCondor supports downloading files from and uploading files to
storage servers using the S3 protocol via s3:// URLs. Downloading or
uploading requires
a two-part credential: the “access key ID” and the “secret key ID”. HTCondor
does not transfer these credentials off the submit node; instead, it uses
them to construct “pre-signed” https:// URLs that temporarily allow
the bearer access. (Thus, an execute node needs to support https://
URLs for S3 URLs to work.)

To make use of this feature, you will need to specify the following
information in the submit file:

	a file containing your access key ID (and nothing else)

	a file containing your secret access key (and nothing else)

	one or more S3 URLs as input values or output destinations.

See the subsections below for specific examples.

You may (like any other URL) specify an S3 URL in transfer_input_files,
or as part of a remap in transfer_output_remaps
However, HTCondor does not currently support transferring entire buckets or directories. If you
specify an s3:// URL as the output_destination, that URL will be
used a prefix for each output file’s location; if you specify a URL ending a
/, it will be treated like a directory.

S3 Transfer Recipes

Transferring files to and from Amazon S3

Specify your credential files in the submit file using the attributes
aws_access_key_id_file and aws_secret_access_key_file.
 ,
 ,
Amazon S3 switched from global buckets
to region-specific buckets; use the first URL form for the older buckets
and the second for newer buckets.

aws_access_key_id_file = /home/example/secrets/accessKeyID
aws_secret_access_key_file = /home/example/secrets/secretAccessKey

For old, non-region-specific buckets.
transfer_input_files = s3://<bucket-name>/<key-name>,
transfer_output_remaps = "output.dat = s3://<bucket-name>/<output-key-name>"

or, for new, region-specific buckets:
transfer_input_files = s3://<bucket-name>.s3.<region>.amazonaws.com/<key>
transfer_output_remaps = "output.dat = s3://<bucket-name>.s3.<region>.amazonaws.com/<output-key-name>"

Optionally, specify a region for S3 URLs which don't include one:
aws_region = <region>

Transferring files to and from Google Cloud Storage

Google Cloud Storage implements an XML API which is interoperable with S3 [https://cloud.google.com/storage/docs/interoperability]. This requires an
extra step of generating HMAC credentials [https://console.cloud.google.com/storage/settings;tab=interoperability]
to access Cloud Storage. Google Cloud best practices are to create a Service
Account with read/write permission to the bucket. Read HMAC keys for Cloud
Storage [https://cloud.google.com/storage/docs/authentication/hmackeys] for
more details.

After generating HMAC credentials, they can be used within a job:

gs_access_key_id_file = /home/example/secrets/bucket_access_key_id
gs_secret_access_key_file = /home/example/secrets/bucket_secret_access_key
transfer_input_files = gs://<bucket-name>/<input-key-name>
transfer_output_remaps = "output.dat = gs://<bucket-name>/<output-key-name>"

If Cloud Storage is configured with Private Service Connect [https://cloud.google.com/vpc/docs/private-service-connect], then use the S3 URL
approach with the private Cloud Storage endpoint. e.g.,

gs_access_key_id_file = /home/example/secrets/bucket_access_key_id
gs_secret_access_key_file = /home/example/secrets/bucket_secret_access_key
transfer_input_files = s3://<cloud-storage-private-endpoint>/<bucket-name>/<input-key-name>
transfer_output_remaps = "output.dat = s3://<cloud-storage-private-endpoint>/<bucket-name>/<output-key-name>"

Transferring files to and from another provider

Many other companies and institutions offer a service compatible with the
S3 protocol. You can access these services using s3:// URLs and the
key files described above.

s3_access_key_id_file = /home/example/secrets/accessKeyID
s3_secret_access_key_file = /home/example/secrets/secretAccessKey
transfer_input_files = s3://some.other-s3-provider.org/my-bucket/large-input.file
transfer_output_remaps = "large-output.file = s3://some.other-s3-provider.org/my-bucket/large-output.file"

If you need to specify a region, you may do so using aws_region,
despite the name.

 Managing a Job

Managing a Job

This section provides a brief summary of what can be done once jobs are
submitted. The basic mechanisms for monitoring a job are introduced, but
the commands are discussed briefly. You are encouraged to look at the
man pages of the commands referred to (located in Commands Reference (man pages))
for more information.

Checking on the progress of jobs

You can check on your jobs with the condor_q
command. This
command has many options, by default, it displays only your jobs
queued in the local scheduler. An example of the output from condor_q is

$ condor_q

-- Schedd: submit.chtc.wisc.edu : <127.0.0.1:9618?... @ 12/31/69 23:00:00
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS
nemo batch23 4/22 20:44 _ _ _ 1 _ 3671850.0
nemo batch24 4/22 20:56 _ _ _ 1 _ 3673477.0
nemo batch25 4/22 20:57 _ _ _ 1 _ 3673728.0
nemo batch26 4/23 10:44 _ _ _ 1 _ 3750339.0
nemo batch27 7/2 15:11 _ _ _ _ _ 7594591.0
nemo batch28 7/10 03:22 4428 3 _ _ 4434 7801943.0 ... 7858552.0
nemo batch29 7/14 14:18 5074 1182 30 19 80064 7859129.0 ... 7885217.0
nemo batch30 7/14 14:18 5172 1088 28 30 58310 7859106.0 ... 7885192.0

2388 jobs; 0 completed, 1 removed, 58 idle, 2276 running, 53 held, 0 suspended

The goal of the HTCondor system is to effectively manage many jobs. As you may have thousands
of jobs in a queue, by default condor_q summarizes many similar jobs on one line. Depending
on the types of your jobs, this output may look a little different.

Often, when you are starting out, and have few jobs, you may want to see one line of output
per job. The -nobatch option to condor_q does this, and output might look something like:

$ condor_q -nobatch

-- Schedd submit.chtc.wisc.edu : <127.0.0.1:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
1297254.0 nemo 5/31 18:05 14+17:40:01 R 0 7.3 condor_dagman
1297255.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1297256.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1297259.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1297261.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1302278.0 nemo 6/4 12:22 1+00:05:37 I 0 390.6 mdrun_1.sh
1304740.0 nemo 6/5 00:14 1+00:03:43 I 0 390.6 mdrun_1.sh
1304967.0 nemo 6/5 05:08 0+00:00:00 I 0 0.0 mdrun_1.sh

14 jobs; 4 idle, 8 running, 2 held

This still only shows your jobs. You can display information about all the users
with jobs in this scheduler by adding the -allusers option to condor_q.

The output contains many columns of information about the queued jobs.
 The
ST column (for status) shows the status of current jobs in the queue:

	R
	The job is currently running.

	I
	The job is idle. It is not running right now, because it is
waiting for a machine to become available.

	H
	The job is the hold state. In the hold state, the job will not be
scheduled to run until it is released. See the condor_hold
and the condor_release manual pages.

The RUN_TIME time reported for a job is the time that has been
committed to the job.

Another useful method of tracking the progress of jobs is through the
job event log. The specification of a log in the submit description
file causes the progress of the job to be logged in a file. Follow the
events by viewing the job event log file. Various events such as
execution commencement, file transfer, eviction and termination are logged
in the file. Also logged is the time at which the event occurred.

When a job begins to run, HTCondor starts up a condor_shadow process
on the access point. The shadow process is the mechanism by which the
remotely executing jobs can access the environment from which it was
submitted, such as input and output files.

It is normal for a machine which has submitted hundreds of jobs to have
hundreds of condor_shadow processes running on the machine. Since the
text segments of all these processes is the same, the load on the submit
machine is usually not significant. If there is degraded performance,
limit the number of jobs that can run simultaneously by reducing the
MAX_JOBS_RUNNING configuration variable.

You can also find all the machines that are running your job through the
condor_status command.
 For example, to find
all the machines that are running jobs submitted by
breach@cs.wisc.edu, type:

$ condor_status -constraint 'RemoteUser == "breach@cs.wisc.edu"'

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

alfred.cs. INTEL LINUX Claimed Busy 0.980 64 0+07:10:02
biron.cs.w INTEL LINUX Claimed Busy 1.000 128 0+01:10:00
cambridge. INTEL LINUX Claimed Busy 0.988 64 0+00:15:00
falcons.cs INTEL LINUX Claimed Busy 0.996 32 0+02:05:03
happy.cs.w INTEL LINUX Claimed Busy 0.988 128 0+03:05:00
istat03.st INTEL LINUX Claimed Busy 0.883 64 0+06:45:01
istat04.st INTEL LINUX Claimed Busy 0.988 64 0+00:10:00
istat09.st INTEL LINUX Claimed Busy 0.301 64 0+03:45:00
...

To find all the machines that are running any job at all, type:

$ condor_status -run

Name Arch OpSys LoadAv RemoteUser ClientMachine

adriana.cs INTEL LINUX 0.980 hepcon@cs.wisc.edu chevre.cs.wisc.
alfred.cs. INTEL LINUX 0.980 breach@cs.wisc.edu neufchatel.cs.w
amul.cs.wi X86_64 LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
anfrom.cs. X86_64 LINUX 1.023 ashoks@jules.ncsa.ui jules.ncsa.uiuc
anthrax.cs INTEL LINUX 0.285 hepcon@cs.wisc.edu chevre.cs.wisc.
astro.cs.w INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
aura.cs.wi X86_64 WINDOWS 0.996 nice-user.condor@cs. chevre.cs.wisc.
balder.cs. INTEL WINDOWS 1.000 nice-user.condor@cs. chevre.cs.wisc.
bamba.cs.w INTEL LINUX 1.574 dmarino@cs.wisc.edu riola.cs.wisc.e
bardolph.c INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
...

Peeking in on a running job’s output files

When a job is running, you may be curious about any output it has created.
The condor_tail command can copy output files from a running job on a remote
machine back to the access point. condor_tail uses the same networking
stack as HTCondor proper, so it will work if the execute machine is behind a firewall.
Simply run, where xx.yy is the job id of a running job:

$ condor_tail xx.yy

or

$ condor_tail -f xx.yy

to continuously follow the standard output. To copy a different file, run

$ condor_tail xx.yy name_of_output_file

Starting an interactive shell next to a running job on a remote machine

condor_ssh_to_job is a very powerful command, but is not available on
all platforms, or all installations. Some administrators disable it, so check with
your local site if it does not appear to work. condor_ssh_to_job takes the job
id of a running job as an argument, and establishes a shell running on the node
next to the job. The environment of this shell is a similar to the job as possible.
Users of condor_ssh_to_job can look at files, attach to their job with the debugger
and otherwise inspect the job.

Removing a job from the queue

A job can be removed from the queue at any time by using the
condor_rm command. If
the job that is being removed is currently running, the job is killed,
and its queue entry is removed. The following
example shows the queue of jobs before and after a job is removed.

$ condor_q -nobatch

-- Schedd: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
 125.0 raman 4/11 14:37 0+00:00:00 R 0 1.4 sleepy
 132.0 raman 4/11 16:57 0+00:00:00 R 0 1.4 hello

2 jobs; 1 idle, 1 running, 0 held

$ condor_rm 132.0
Job 132.0 removed.

$ condor_q -nobatch

-- Schedd: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
 125.0 raman 4/11 14:37 0+00:00:00 R 0 1.4 sleepy

1 jobs; 1 idle, 0 running, 0 held

Placing a job on hold

A job in the queue may be placed on hold by running the command
condor_hold. A job in the hold state remains in the hold state until
later released for execution by the command condor_release.

Use of the condor_hold command causes a hard kill signal to be sent
to a currently running job (one in the running state).

Jobs that are running when placed on hold will start over from the
beginning when released.

The condor_hold and the condor_release
manual pages contain usage details.

Changing the priority of jobs

In addition to the priorities assigned to each user, HTCondor also
provides each user with the capability of assigning priorities to each
submitted job. These job priorities are local to each queue and can be
any integer value, with higher values meaning better priority.

The default priority of a job is 0, but can be changed using the
condor_prio command.
 For example, to change
the priority of a job to -15,

$ condor_q -nobatch raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
 126.0 raman 4/11 15:06 0+00:00:00 I 0 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

$ condor_prio -p -15 126.0

$ condor_q -nobatch raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
 126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

It is important to note that these job priorities are completely
different from the user priorities assigned by HTCondor. Job priorities
do not impact user priorities. They are only a mechanism for the user to
identify the relative importance of jobs among all the jobs submitted by
the user to that specific queue.

Job in the Hold State

Should HTCondor detect something about a job that would prevent it
from ever running successfully, say, because the executable doesn’t
exist, or input files are missing, HTCondor will put the job in Hold state.
A job in the Hold state will remain in the queue, and show up in the
output of the condor_q command, but is not eligible to run.
The job will stay in this state until it is released or removed. Users
may also hold their jobs manually with the condor_hold command.

A table listing the reasons why a job may be held is at the
Job ClassAd Attributes section. A
string identifying the reason that a particular job is in the Hold state
may be displayed by invoking condor_q -hold. For the example job ID 16.0,
use:

$ condor_q -hold 16.0

This command prints information about the job, including the job ClassAd
attribute HoldReason.

In the Job Event Log File

In a job event log file are a listing of events in chronological order
that occurred during the life of one or more jobs. The formatting of the
events is always the same, so that they may be machine readable. Four
fields are always present, and they will most often be followed by other
fields that give further information that is specific to the type of
event.

The first field in an event is the numeric value assigned as the event
type in a 3-digit format. The second field identifies the job which
generated the event. Within parentheses are the job ClassAd attributes
of ClusterId value, ProcId value, and the node number for
parallel universe jobs or a set of zeros (for jobs run under all other
universes), separated by periods. The third field is the date and time
of the event logging. The fourth field is a string that briefly
describes the event. Fields that follow the fourth field give further
information for the specific event type.

A complete list of these values is at Job Event Log Codes section.

Job Termination

From time to time, and for a variety of reasons, HTCondor may terminate
a job before it completes. For instance, a job could be removed (via
condor_rm), preempted (by a user a with higher priority), or killed
(for using more memory than it requested). In these cases, it might be
helpful to know why HTCondor terminated the job. HTCondor calls its
records of these reasons “Tickets of Execution”.

A ticket of execution is usually issued by the condor_startd, and
includes:

	when the condor_startd was told, or otherwise decided, to terminate the job
(the when attribute);

	who made the decision to terminate, usually a Sinful string
(the who attribute);

	and what method was employed to command the termination, as both as
string and an integer (the How and HowCode attributes).

The relevant log events include a human-readable rendition of the ToE,
and the job ad is updated with the ToE after the usual delay.

HTCondor only issues ToE in three cases:

	when the job terminates of its own accord (issued by the starter,
HowCode 0);

	and when the startd terminates the job because it received a
DEACTIVATE_CLAIM command (HowCode 1)

	or a DEACTIVATE_CLAIM_FORCIBLY command (HowCode 2).

In both cases, HTCondor records the ToE in the job ad. In the event
log(s), event 005 (job completion) includes the ToE for the first case,
and event 009 (job aborted) includes the ToE for the second and third cases.

Future HTCondor releases will issue ToEs in additional cases and include
them in additional log events.

Job Completion

When an HTCondor job completes, either through normal means or by
abnormal termination by signal, HTCondor will remove it from the job
queue. That is, the job will no longer appear in the output of
condor_q, and the job will be inserted into the job history file.
Examine the job history file with the condor_history command. If
there is a log file specified in the submit description file for the
job, then the job exit status will be recorded there as well, along with
other information described below.

By default, HTCondor does not send an email message when the job
completes. Modify this behavior with the
notification command
in the submit description file. The message will include the exit status
of the job, which is the argument that the job passed to the exit system
call when it completed, or it will be notification that the job was
killed by a signal. Notification will also include the following
statistics (as appropriate) about the job:

	Submitted at:
	when the job was submitted with condor_submit

	Completed at:
	when the job completed

	Real Time:
	the elapsed time between when the job was submitted and when it
completed, given in a form of <days> <hours>:<minutes>:<seconds>

	Virtual Image Size:
	memory size of the job

Statistics about just the last time the job ran:

	Run Time:
	total time the job was running, given in the form
<days> <hours>:<minutes>:<seconds>

	Remote User Time:
	total CPU time the job spent executing in user mode on remote
machines; this does not count time spent on run attempts that were
evicted. Given in the form
<days> <hours>:<minutes>:<seconds>

	Remote System Time:
	total CPU time the job spent executing in system mode (the time
spent at system calls); this does not count time spent on run
attempts that were evicted. Given in the form
<days> <hours>:<minutes>:<seconds>

The Run Time accumulated by all run attempts are summarized with the
time given in the form <days> <hours>:<minutes>:<seconds>.

And, statistics about the bytes sent and received by the last run of the
job and summed over all attempts at running the job are given.

The job terminated event includes the following:

	the type of termination (normal or by signal)

	the return value (or signal number)

	local and remote usage for the last (most recent) run
(in CPU-seconds)

	local and remote usage summed over all runs
(in CPU-seconds)

	bytes sent and received by the job’s last (most recent) run,

	bytes sent and received summed over all runs,

	a report on which partitionable resources were used, if any. Resources
include CPUs, disk, and memory; all are lifetime peak values.

Your administrator may have configured HTCondor to report on other resources,
particularly GPUs (lifetime average) and GPU memory usage (lifetime peak).
HTCondor currently assigns all the usage of a GPU to the job running in
the slot to which the GPU is assigned; if the admin allows more than one job
to run on the same GPU, or non-HTCondor jobs to use the GPU, GPU usage will be
misreported accordingly.

When configured to report GPU usage, HTCondor sets the following two
attributes in the job:

	GPUsUsage
	GPU usage over the lifetime of the job, reported as a fraction of the
the maximum possible utilization of one GPU.

	GPUsMemoryUsage
	Peak memory usage over the lifetime of the job, in megabytes.

Summary of all HTCondor users and their jobs

When jobs are submitted, HTCondor will attempt to find resources to run
the jobs. A list of all those with jobs submitted may be obtained
through condor_status
 with the -submitters
option. An example of this would yield output similar to:

$ condor_status -submitters

Name Machine Running IdleJobs HeldJobs

ballard@cs.wisc.edu bluebird.c 0 11 0
nice-user.condor@cs. cardinal.c 6 504 0
wright@cs.wisc.edu finch.cs.w 1 1 0
jbasney@cs.wisc.edu perdita.cs 0 0 5

 RunningJobs IdleJobs HeldJobs

 ballard@cs.wisc.edu 0 11 0
 jbasney@cs.wisc.edu 0 0 5
nice-user.condor@cs. 6 504 0
 wright@cs.wisc.edu 1 1 0

 Total 7 516 5

 Automatically managing a job

Automatically managing a job

While a user can manually manage an HTCondor job in ways described
in the previous section, it is often better to give HTCondor policies
with which it can automatically manage a job without user intervention.

Automatically rerunning a failed job

By default, when a job exits, HTCondor considers it completed, removes it from
the job queue and places it in the history file. If a job exits
with a non-zero exit code, this usually means that some error has happened.
If this error is ephemeral, a user might want to re-run the job again, to see
if the job succeeds on a second invocation. HTCondor can does this automatically with the
max_retries option in the submit file, to tell HTCondor the maximum
number of times to restart the job from scratch. In the rare case where some
value other than zero indicates success, a submit file can set success_exit_code
to the integer value that is considered successful.

Example submit description with max_retries

executable = myexe
arguments = SomeArgument

Retry this job 5 times if non-zero exit code
max_retries = 5

output = outputfile
error = errorfile
log = myexe.log

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

should_transfer_files = yes

queue

Automatically removing a job in the queue

HTCondor can automatically remove a job, running or otherwise, from the queue
if a given constraint is true. In the submit description file, set
periodic_remove to a classad expression. When this expression evaluates
to true, the scheduler will remove the job, just as if condor_rm had
run on that job. See Matchmaking with ClassAds for information
about the classad language and ClassAd Attributes for the list of attributes
which can be used in these expressions. For example, to automatically remove a
job which has been in the queue for more than 100 hours, the submit file could have

periodic_remove = (time() - QDate) > (100 * 3600)

or, to remove jobs that have been running for more than seven hours:

periodic_remove = (JobStatus == 2) && (time() - EnteredCurrentStatus) > (7 * 3600)

Automatically placing a job on hold

Often, if a job is doing something unexpected, it is more useful to hold the job,
rather than remove it. If the problem with the job can be fixed, the job can then be
released and started again. Much like the periodic_remove command, there is a
periodic_hold command that works in a similar way, but instead of removing the job,
puts the job on hold. Unlike periodic_remove, there are additional attributes
that help to tell the user why the job was placed on hold. periodic_hold_reason
is a string which is put into the HoldReason attribute to explain why we put the
job on hold. periodic_hold_subcode is an integer that is put into the
HoldReasonSubCode that is useful for periodic_release to examine. Neither
periodic_hold_subcode nor periodic_hold_reason are required, but are good
practice to include if periodic_hold is defined.

Automatically releasing a held job

In the same way that a job can be automatically held, jobs in the held state
can be released with the periodic_release command. Often, using a periodic_hold with
a paired periodic_release is a good way to restart a stuck job. Jobs can go
into the hold state for many reasons, so best practice, when trying to release
a job that was held with periodic_hold is to include the HoldReasonSubCode
in the periodic_release expression.

periodic_hold = (JobStatus == 2) && (time() - EnteredCurrentStatus) > (7 * 3600)
periodic_hold_reason = "Job ran for more than seven hours"
periodic_hold_subcode = 42
periodic_release = (HoldReasonSubCode == 42)

Automatically evicting a running job

HTCondor can automatically evict a running job, from the machine
it is running on, if a given constraint is true. In the submit description file, set
periodic_vacate to a classad expression. When this expression evaluates
to true, the scheduler will evicte the job, just as if condor_vacate_job had
run on that job. See Matchmaking with ClassAds for information
about the classad language and ClassAd Attributes for the list of attributes
which can be used in these expressions. For example, to automatically evicte a
job which has been in the queue for more than 100 hours, and have it restart
again, the submit file could have

periodic_vacate = (time() - QDate) > (100 * 3600)

Holding a completed job

A job may exit, and HTCondor consider it completed, even though something has
gone wrong with the job. A submit file may contain a on_exit_hold expression
to tell HTCondor to put the job on hold, instead of moving it to the history. A held
job informs users that there may have been a problem with the job that should be investigated.
For example, if a job should never exit by a signal, the job can be put on hold if it
does with

on_exit_hold = ExitBySignal == true

 How To Debug an Always Idle Job

How To Debug an Always Idle Job

Sometimes, when you submit a job to HTCondor, it sits idle seemingly forever,
condor_q shows it in the idle state, when you expect it should start running.
This can be frustrating, but there are tools to give visibility so you can
debug what is going on.

Jobs that start but are quickly evicted

One possibility is that the job is actually starting, but something goes wrong
very quickly after it starts, so the Execution Point evicts the job, and the
condor_schedd puts it back to idle. condor_q would only show it in the
“R”unning state for a brief moment, so it is likely that even frequent
executions of condor_q will show it in the Idle state.

A quick look at the HTCondor job log will help to verify that this is what is
happening. Assuming your submit file contains a line like:

log = my_job.log

Then you should see a line in my_job.log, assuming that HTCondor assigned the
job id of 781.0 to your job (the job id is in parenthesis):

000 (781.000.000) 2022-01-30 15:15:35 Job submitted from host: <127.0.0.1:45527?addrs=127.0.0.1-45527>
...

Many jobs can share the same job log file, so be sure to find the entries for the job
in question. If there is nothing further in this log, this flapping between
Running and Idle is not the problem, and you can check items further down this list.

However, if you see repeated entries like

001 (781.000.000) 2022-01-30 15:15:36 Job executing on host: <127.0.0.1:42089?addrs=127.0.0.1-42089>
...
007 (781.000.000) 2022-01-30 15:15:37 Shadow exception!
 Error from slot1_2@bat: FATAL: executable file not found in $PATH
 0 - Run Bytes Sent By Job
 0 - Run Bytes Received By Job
 ...
 001 (781.000.000) 2022-01-30 15:15:37 Job executing on host: <127.0.0.1:42089?addrs=127.0.0.1-42089>
 ...
 007 (781.000.000) 2022-01-30 15:15:38 Shadow exception!
 ...

Then this flapping is the problem, and you’ll need to figure out why. Perhaps a
condor_submit -i interactive login, and trying to start the job by hand is
useful, maybe you’ll need to ask a system administrator.

Jobs that don’t match any Execution Point

Another common cause of an always-idle job is that the job doesn’t match any
slot in the pool. Perhaps the memory or disk requested in the submit file is
greater than any slot in the pool has. Perhaps your administrator requires
jobs to set certain custom attributes to identify them, or for accounting.
HTCondor has a tool we call better-analyze that simulates the matching of slots
to jobs. It isn’t perfect, as it doesn’t have full knowledge of the system,
but it is easy to run, and can help to quickly narrow down this kind of
problems.

$ condor_q -better-analyze 781.0

Now, as condor_q -better-analyze by default, tries to simulate matching
this job to all slots in the pool, this can take a while, and generate
a lot of output. Sometimes, you are pretty sure that a job should match one
particular slot, in that case, you can restrict the matching attempt to
that one slot by running

$ condor_q -better-analyze 781.0 -machine machine_in_question

which will emit information only about a potential match to
machine_in_question. If the last few lines of this look like
this:

The Requirements expression for job 781.0 reduces to these conditions:

 Slots
 Step Matched Condition
 ----- -------- ---------
 [0] 1 TARGET.Arch == "X86_64"
 [1] 1 TARGET.OpSys == "LINUX"
 [3] 1 TARGET.Disk >= RequestDisk
 [5] 0 TARGET.Memory >= RequestMemory

 781.007: Run analysis summary ignoring user priority. Of 1 machines,
 1 are rejected by your job's requirements
 0 reject your job because of their own requirements
 0 match and are already running your jobs
 0 match but are serving other users
 0 are able to run your job

 WARNING: Be advised:
 No machines matched the jobs's constraints

In this example, RequestMemory is set too high, so the job won’t match any machines.
Maybe it was a typo. Try setting it lower to see if the job will match.
If condor_q -better-analyze tells you that some machines do match, then
this probably isn’t the problem, or, it could be that very few machines in your
pool match your job, and you’ll just need to wait until they are available.

Not enough priority

Another reason your job isn’t running is that other jobs of yours are running,
but your priority isn’t good enough to allow any more of your jobs running.
If this is a problem, the HTCondor condor_schedd will run your jobs in
the order specified by the Job_Priority submit command. You could
give your more important jobs a higher job priority. The command
condor_userprio -all will show you your current userprio, which
is what HTCondor uses to calculate your fair share.

Systemic problems

The final case is that you have done nothing wrong, but there is some problem
with the system. Maybe a network is down, or a system daemon has crashed,
or there is an overload somewhere. If you are an expert, there may be
information in the debug logs, usually found in /usr/log/condor. In this
case, you may need to consult your system administrator, or ask for
help on the condor-users email list.

 Choosing an HTCondor Universe

Choosing an HTCondor Universe

A universe in HTCondor
 defines
an execution environment for a job. HTCondor supports several different
universes:

	vanilla

	grid

	java

	scheduler

	local

	parallel

	vm

	container

	docker

The universe under which
a job runs is specified in the submit description file. If a universe is
not specified, the default is vanilla.

 The vanilla universe is a good
default, for it has the fewest restrictions on the job.
 The grid universe allows users to submit
jobs using HTCondor’s interface. These jobs are submitted for execution
on grid resources.
 The java
universe allows users to run jobs written for the Java Virtual Machine
(JVM). The scheduler universe allows users to submit lightweight jobs to
be spawned by the program known as a daemon on the submit host itself.
 The parallel universe is for programs
that require multiple machines for one job. See the
Environment and services for a running job section for more
about the Parallel universe. The vm universe
allows users to run jobs where the job is no longer a simple executable,
but a disk image, facilitating the execution of a virtual machine. Container
universe allows the user to specify a container image for one of many possible
container runtimes, just as singularity or docker, and condor will run the job
in the appropriate container runtimes. The docker universe runs a Docker container
as an HTCondor job.

Vanilla Universe

The vanilla universe in HTCondor is intended for most programs.
Shell scripts are another case where the vanilla universe is useful.

Access to the job’s input and output files is a concern for vanilla
universe jobs. One option is for HTCondor to rely on a shared file system,
such as NFS or AFS. Alternatively, HTCondor has a mechanism for
transferring files on behalf of the user. In this case, HTCondor will
transfer any files needed by a job to the execution site, run the job,
and transfer the output back to the submitting machine.

Grid Universe

The Grid universe in HTCondor is intended to provide the standard
HTCondor interface to users who wish to start jobs intended for remote
management systems. The Grid Universe section has details
on using the Grid universe. The manual page for condor_submit
has detailed descriptions of the grid-related attributes.

Java Universe

A program submitted to the Java universe may run on any sort of machine
with a JVM regardless of its location, owner, or JVM version. HTCondor
will take care of all the details such as finding the JVM binary and
setting the classpath.

Scheduler Universe

The scheduler universe allows users to submit lightweight jobs to be run
immediately, alongside the condor_schedd daemon on the submit host
itself. Scheduler universe jobs are not matched with a remote machine,
and will never be preempted. The job’s requirements expression is
evaluated against the condor_schedd ‘s ClassAd.

Originally intended for meta-schedulers such as condor_dagman, the
scheduler universe can also be used to manage jobs of any sort that must
run on the submit host.

However, unlike the local universe, the scheduler universe does not use
a condor_starter daemon to manage the job, and thus offers limited
features and policy support. The local universe is a better choice for
most jobs which must run on the submit host, as it offers a richer set
of job management features, and is more consistent with other universes
such as the vanilla universe. The scheduler universe may be retired in
the future, in favor of the newer local universe.

Local Universe

The local universe allows an HTCondor job to be submitted and executed
with different assumptions for the execution conditions of the job. The
job does not wait to be matched with a machine. It instead executes
right away, on the machine where the job is submitted. The job will
never be preempted. The job’s requirements expression is evaluated
against the condor_schedd ‘s ClassAd.

Parallel Universe

The parallel universe allows parallel programs, such as MPI jobs, to be
run within the opportunistic HTCondor environment. Please see
the Parallel Jobs (Including MPI Jobs)
section for more details.

VM Universe

HTCondor facilitates the execution of KVM and Xen virtual machines
with the vm universe.

Please see the Environment and services for a running job section for
details.

Docker Universe

The docker universe runs a docker container on an execute host as a job.
Please see the Environment and services for a running job section for
details.

Container Universe

The container universe runs a container on an execute host as a job.
Please see the Environment and services for a running job section for
details.

 Environment and services for a running job

Environment and services for a running job

Services for Running Jobs

HTCondor provides an environment and certain services
for running jobs. Jobs can use these services to
provide more reliable runs, to give logging and monitoring
data for users, and to synchronize with other jobs. Note
that different HTCondor job universes may provide different
services. The functionality below is available in the vanilla
universe, unless otherwise stated.

Environment Variables

An HTCondor job running on a worker node does not, by default, inherit
the environment variables from the machine it runs on or the machine it
was submitted from. If it did, the environment might change from run
to run, or machine to machine, and create non reproducible, difficult
to debug problems. Rather, HTCondor is deliberate about what environment
variables a job sees, and allows the user to set them in the job description file.

The user may define environment variables for the job with the environment
submit command.

Instead of defining environment variables individually, the entire set
of environment variables in the condor_submit’s environment
can be copied into the job. The getenv command does this.

In general, it is preferable to just declare the minimum set of needed
environment variables with the environment command, as that clearly
declares the needed environment variables. If the needed set is not known,
the getenv command is useful. If the environment is set with both the
environment command
and getenv is also set to true, values specified with
environment override values in the submitter’s environment,
regardless of the order of the environment and getenv commands in the submit file.

Commands within the submit description file may reference the
environment variables of the submitter. Submit
description file commands use $ENV(EnvironmentVariableName) to reference
the value of an environment variable.

Extra Environment Variables HTCondor sets for Jobs

HTCondor sets several additional environment variables for each
executing job that may be useful.

	_CONDOR_SCRATCH_DIR
names the directory where the job may place temporary data files.
This directory is unique for every job that is run, and its contents
are deleted by HTCondor when the job stops running on a machine. When
file transfer is enabled, the job is started in this directory.

	_CONDOR_SLOT

gives the name of the slot (for multicore machines), on which the job is
run. On machines with only a single slot, the value of this variable
will be 1, just like the SlotID attribute in the machine’s
ClassAd. See the Configuration for Execution Points section for more
details about configuring multicore machines.

	_CONDOR_JOB_AD

is the path to a file in the job’s scratch directory which contains
the job ad for the currently running job. The job ad is current as of
the start of the job, but is not updated during the running of the
job. The job may read attributes and their values out of this file as
it runs, but any changes will not be acted on in any way by HTCondor.
The format is the same as the output of the condor_q -l
command. This environment variable may be particularly useful in a
USER_JOB_WRAPPER.

	_CONDOR_MACHINE_AD

is the path to a file in the job’s scratch directory which contains
the machine ad for the slot the currently running job is using. The
machine ad is current as of the start of the job, but is not updated
during the running of the job. The format is the same as the output
of the condor_status -l command. Interesting attributes jobs
may want to look at from this file include Memory and Cpus, the amount
of memory and cpus provisioned for this slot.

	_CONDOR_JOB_IWD

is the path to the initial working directory the job was born with.

	_CONDOR_WRAPPER_ERROR_FILE

is only set when the administrator has installed a
USER_JOB_WRAPPER. If this file exists, HTCondor assumes that the
job wrapper has failed and copies the contents of the file to the
StarterLog for the administrator to debug the problem.

	CUBACORES GOMAXPROCS JULIA_NUM_THREADS MKL_NUM_THREADS
NUMEXPR_NUM_THREADS OMP_NUM_THREADS OMP_THREAD_LIMIT
OPENBLAS_NUM_THREADS PYTHON_CPU_COUNT ROOT_MAX_THREADS TF_LOOP_PARALLEL_ITERATIONS
TF_NUM_THREADS

are set to the number of cpu cores provisioned to this job. Should be
at least RequestCpus, but HTCondor may match a job to a bigger slot. Jobs should not
spawn more than this number of cpu-bound threads, or their performance will suffer.
Many third party libraries like OpenMP obey these environment variables. An
administrator can add new variables to this set with the configuration knob
STARTER_NUM_THREADS_ENV_VARS.

	BATCH_SYSTEM

All job running under a HTCondor starter have the environment variable BATCH_SYSTEM
set to the string HTCondor. Inspecting this variable allows a job to
determine if it is running under HTCondor.

	SINGULARITY_CACHEDIR APPTAINER_CACHEDIR

These two variables are set to the location of the scratch directory to prevent apptainer
or singularity from writing to a home directory or other place that isn’t cleaned up on
job exit.

	X509_USER_PROXY

gives the full path to the X.509 user proxy file if one is associated
with the job. Typically, a user will specify
x509userproxy in
the submit description file.

If the job has been assigned GPUs, the system will also set the following environment
variables for the GPU runtime to use.

	CUDA_VISIBLE_DEVICES NVIDIA_VISIBLE_DEVICES

are set to the names of the GPUs assigned to this job. The job should NEVER change these,
but they may be useful for debuggging or logging

Communicating with the Submit machine via Chirp

HTCondor provides a method for running jobs to read or write information
to or from the access point, called “chirp”. Chirp allows jobs to

	Write to the job ad in the schedd.
This can be used for long-running jobs to write progress information
back to the access point, so that a condor_q query will reveal
how far along a running job is. Or, if a job is listening on a network
port, chirp can write the port number to the job ad, so that others
can connect to this job.

	Read from the job ad in the schedd.
While most information a job needs should be in input files, command line
arguments or environment variables, a job can read dynamic information
from the schedd’s copy of the classad.

	Write a message to the job log.
Another place to put progress information is into the job log file. This
allows anyone with access to that file to see how much progress a running
job has made.

	Read a file from the access point.
This allows a job to read a file from the access point at runtime.
While file transfer is generally a better approach, file transfer requires
the submitter to know the files to be transferred at submit time.

	Write a file to the access point.
Again, while file transfer is usually the better choice, with chirp, a job
can write intermediate results back to the access point before the job exits.

HTCondor ships a command-line tool, called condor_chirp that can do these
actions, and provides python bindings so that they can be done natively in
Python.

When changes to a job made by chirp take effect

When condor_chirp successfully updates a job ad attribute, that change
will be reflected in the copy of the job ad in the condor_schedd on
the access point. However, most job ad attributes are read by the condor_starter
or condor_startd at job start up time, and should chirp change these
attributes at run time, it will not impact the running job. In particular,
the attributes relating to resource requests, such as RequestCpus, RequestMemory,
RequestDisk and RequestGPUS, will not cause any changes to the provisioned
resources for a running job. If the job is evicted, and restarts, these
new requests will then take effect in the new execution of the job. The same
is true for the Requirements expression of a job.

Resource Limitations on a Running Job

Depending on how HTCondor has been configured, the OS platform, and other
factors, HTCondor may configure the system a job runs on to prevent a job
from using all the resources on a machine. This protects other jobs that
may be running on the machine, and the machine itself from being harming
by a running job.

Jobs may see

	A private (non-shared) /tmp and /var/tmp directory

	A private (non-shared) /dev/shm

	A limit on the amount of memory they can allocate, above which the
job may be placed on hold or evicted by the system.

	A limit on the amount of CPU cores the may use, above which the
job may be blocked, and will run very slowly.

	A limit on the amount of scratch disk space the job may use, above
which the job may be placed on hold or evicted by the system.

Container Universe Jobs

In addition to Docker, many competing container runtimes
have been developed, some of which are mostly compatible with
Docker, and others which provide their own feature sets. Many
HTCondor users and administrators want to run jobs inside containers,
but don’t care which runtime is used.

HTCondor’s container universe provides an abstraction where the user
does not specify exactly which container runtime to use, but just
aspects of their contained job, and HTCondor will select an appropriate
runtime. To do this, set the job submit file command container_image
to a specified container image.

The submit file command universe can either be optionally set to
container or not declared at all. If universe is declared and set
to anything but container then the job submission will fail.

Note that the container may specify the executable to run, either in
the runfile option of a singularity image, or in the entrypoint
option of a Dockerfile. If this is set, the executable command in the
HTCondor submit file is optional, and the default command in the container
will be run.

This container image may describe an image in a docker-style repo if it
is prefixed with docker://, or a Singularity .sif image on disk, or a
Singularity sandbox image (an exploded directory). condor_submit
will parse this image and advertise what type of container image it
is, and match with startds that can support that image.

The container image may also be specified with an URL syntax that tells
HTCondor to use a file transfer plugin to transfer the image. For example
with

container_image = http://example.com/dir/image.sif

A container image that would otherwise be transferred can be forced
to never be transferred by setting

should_transfer_container = no

HTCondor knows that “docker://” and “oras://” (for apptainer) are special, and
are never transferred by HTCondor plugins.

Here is a complete submit description file for a sample container universe
job:

#universe = container is optional
universe = container
container_image = ./image.sif

executable = /bin/cat
arguments = /etc/hosts

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

output = out.$(Process)
error = err.$(Process)
log = log.$(Process)

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue 1

Docker Universe Applications

A docker universe job instantiates a Docker container from a Docker
image, and HTCondor manages the running of that container as an HTCondor
job, on an execute machine. This running container can then be managed
as any HTCondor job. For example, it can be scheduled, removed, put on
hold, or be part of a workflow managed by DAGMan.

The docker universe job will only be matched with an execute host that
advertises its capability to run docker universe jobs. When an execute
machine with docker support starts, the machine checks to see if the
docker command is available and has the correct settings for HTCondor.
Docker support is advertised if available and if it has the correct
settings.

The image from which the container is instantiated is defined by
specifying a Docker image with the submit command
docker_image. This
image must be pre-staged on a docker hub that the execute machine can
access.

The submit file command universe can either be optionally set to docker
or not declared at all. If universe is declared and set to anything but
docker then the job submission will fail. Regardless, the submit file
command docker_image must be declared and set to a docker image.

After submission, the job is treated much the same way as a vanilla
universe job. Details of file transfer are the same as applied to the
vanilla universe. One of the benefits of Docker containers is the file
system isolation they provide. Each container has a distinct file
system, from the root on down, and this file system is completely
independent of the file system on the host machine. The container does
not share a file system with either the execute host or the submit host,
with the exception of the scratch directory, which is volume mounted to
the host, and is the initial working directory of the job. Optionally,
the administrator may configure other directories from the host machine
to be volume mounted, and thus visible inside the container. See the
docker section of the administrator’s manual for details.

In Docker universe (as well as vanilla), HTCondor never allows a
containerized process to run as root inside the container, it always
runs as a non-root user. It will run as the same non-root user that a
vanilla job will. If a Docker Universe job fails in an obscure way, but
runs fine in a docker container on a desktop, try running the job as a
non-root user on the desktop to try to duplicate the problem.

HTCondor creates a per-job scratch directory on the execute machine,
transfers any input files to that directory, bind-mounts that directory
to a directory of the same name inside the container, and sets the IWD
of the contained job to that directory. The assumption is that the job
will look in the cwd for input files, and drop output files in the same
directory. In docker terms, we docker run with the -v
/some_scratch_directory -w /some_scratch_directory -user
non-root-user command line options (along with many others).

The executable file can come from one of two places: either from within
the container’s image, or it can be a script transferred from the submit
machine to the scratch directory of the execute machine. To specify the
former, use an absolute path (starting with a /) for the executable. For
the latter, use a relative path.

Therefore, the submit description file should contain the submit command

should_transfer_files = YES

With this command, all input and output files will be transferred as
required to and from the scratch directory mounted as a Docker volume.

If no executable is
specified in the submit description file, it is presumed that the Docker
container has a default command to run.

If the docker image has an entrypoint defined, and executable
is specified in the submit description file,
it will be used as first argument for the entrypoint, followed by any arguments.

It is possible to use as entrypoint the executable
directly, redefining the entrypoint of the image (equivalent to --entrypoint in
docker run [https://docs.docker.com/engine/reference/commandline/container_run])

The entrypoint is replaced by the executable if the submit description file contains the command:

docker_override_entrypoint = True

The default value is False as it is the behaviour that works well with the majority of the
docker images.

When the job completes, is held, evicted, or is otherwise removed from
the machine, the container will be removed.

Here is a complete submit description file for a sample docker universe
job:

#universe = docker is optional
universe = docker
docker_image = debian
executable = /bin/cat
arguments = /etc/hosts
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output = out.$(Process)
error = err.$(Process)
log = log.$(Process)

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue 1

A debian container is the HTCondor job, and it runs the /bin/cat
program on the /etc/hosts file before exiting.

Docker and Networking

By default, docker universe jobs will be run with a private, NATed
network interface.

In the job submit file, if the user specifies

docker_network_type = none

then no networking will be available to the job.

In the job submit file, if the user specifies

docker_network_type = host

then, instead of a NATed interface, the job will use the host’s
network interface, just like a vanilla universe job.
If an administrator has defined additional, custom docker
networks, they will be advertised in the slot attribute
DockerNetworks, and any value in that list can be
a valid argument for this keyword.

If the host network type is unavailable, you can ask Docker to forward one
or more ports on the host into the container. In the following example, we
assume that the ‘centos7_with_htcondor’ image has HTCondor set up and ready
to go, but doesn’t turn it on by default.

#universe = docker is optional
universe = docker
docker_image = centos7_with_htcondor
executable = /usr/sbin/condor_master
arguments = -f
container_service_names = condor
condor_container_port = 9618
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output = out.$(Process)
error = err.$(Process)
log = log.$(Process)

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue 1

The container_service_names submit command accepts a comma- or space-
separated list of service names; each service name must have a corresponding

 Job Scheduling

Job Scheduling

Priorities and Preemption

HTCondor has two independent priority controls: job priorities and user
priorities.

The HTCondor system calculate a “fair share” of machine slots to allocate to each user.
Whether each user can use all of these slots depends on a number of factors. For example,
if the user’s jobs only match to a small number of machines, perhaps
the user will be running fewer jobs than allocated. This fair share is based on the
user priority. Each user can then specify the order in which each of their jobs
should be matched and run on the fair share, this is based on the job priority.

Job Priority

Job priorities allow a user to sort their own jobs to determine which are
tried to be run first. A job priority can be any integer: larger values
denote better priority. So, 0 is a better job priority than -3, and 6 is a better than 5.

Note

Job priorities are computed per user, so that whatever job priorities
one user sets has no impact at all on any other user, in terms of how many jobs
users can run or in what order. Also, unmatchable high priority jobs do not block
lower priority jobs. That is, a priority 10 job will try to be matched before
a priority 9 job, but if the priority 10 job doesn’t match any slots, HTCondor
will keep going, and try the priority 9 job next.

The job priority may be specified in the submit description file by setting

priority = 15

If no priority is set, the default is 0. See the Dagman section for ways that dagman
can automatically set the priority of any or all jobs in a dag.

Each job can be given a distinct priority. For an
already queued job, its priority may be changed with the condor_prio.
command. This sets the value
of job ClassAd attribute JobPrio. condor_prio can be called on a running
job, but lowering a job priority will not trigger eviction of the running
job. The condor_vacate_job command can preempt a running job.

A fine-grained categorization of jobs and their ordering is available
for experts by using the job ClassAd attributes: PreJobPrio1,
PreJobPrio2, JobPrio, PostJobPrio1, or PostJobPrio2.

User priority

Slots are allocated to users based upon user priority. A lower
numerical value for user priority means proportionally better priority,
so a user with priority 5 will be allocated 10 times the resources as
someone with user priority 50. User priorities in HTCondor can be
examined with the condor_userprio command. HTCondor
administrators can set and change individual user priorities with the
same utility.

HTCondor continuously calculates the share of available machines that
each user should be allocated. This share is inversely related to the
ratio between user priorities. For example, a user with a priority of 10
will get twice as many machines as a user with a priority of 20. The
priority of each individual user changes according to the number of
resources the individual is using. Each user starts out with the best
possible priority: 0.5. If the number of machines a user currently has
is greater than the user priority, the user priority will worsen by
numerically increasing over time. If the number of machines is less then
the priority, the priority will improve by numerically decreasing over
time. The long-term result is fair-share access across all users. The
speed at which HTCondor adjusts the priorities is controlled with the
configuration variable PRIORITY_HALFLIFE.
The default is one day. A user running 100 cores of jobs for a long
time will have their real user priority exponential grow to 100.
If all the jobs are removed, one day later that user’s real priority
will be 50, and two days later it will shrink to 25.

HTCondor enforces that each user gets his/her fair share of machines
according to user priority by allocating available machines.
Optionally, a pool administrator can configure the system to preempt
the running jobs of users who are above their fair share in favor
of users who are below their fair share, but this is not the default.
For instance, if a low priority user is utilizing all available machines
and suddenly a higher priority user submits jobs, HTCondor may
vacate jobs belonging to the lower priority user.

User priorities are keyed on <username>@<domain>, for example
johndoe@cs.wisc.edu. The domain name to use, if any, is configured
by the HTCondor site administrator. Thus, user priority and therefore
resource allocation is not impacted by which machine the user submits
from or even if the user submits jobs from multiple machines.

The user priority system can also support backfill or nice jobs (see
the condor_submit manual page). Nice jobs
artificially boost the user priority by ten million just for the nice
job. This effectively means that nice jobs will only run on machines
that no other HTCondor job (that is, non-niced job) wants. In a similar
fashion, an HTCondor administrator could set the user priority of any
specific HTCondor user very high. If done, for example, with a guest
account, the guest could only use cycles not wanted by other users of
the system.

How Jobs are Vacated

When HTCondor needs a job to vacate a machine for whatever reason, it
sends the job an operating system signal specified in the KillSig
attribute of the job’s ClassAd. The value of this attribute can be
specified by the user at submit time by placing the kill_sig option
in the HTCondor submit description file.

If a program wanted to do some work when asked to vacate a
machine, the program may set up a signal handler to handle this
signal. This clean up signal is specified with kill_sig. Note that
the clean up work needs to be quick. If the job takes too long to exit
after getting the kill_sig, HTCondor sends a SIGKILL signal
which immediately terminates the process.

The default value for KillSig is SIGTERM, the usual method
to nicely terminate a Unix program.

Time Scheduling for Job Execution

CronTab Scheduling

HTCondor’s CronTab scheduling functionality allows jobs to be scheduled
to execute periodically. A job’s execution schedule is defined by
commands within the submit description file. The notation is much like
that used by the Unix cron daemon. As such, HTCondor developers are
fond of referring to CronTab scheduling as
Crondor.

Example Crondor Submit File

A job that runs every 15 minutes

Executable = /bin/sleep
Arguments = 15

cron_minute = 0,15,30,45
cron_prep_time = 60
OnExitRemove = false

Error = error.$(Cluster)
Output = out.$(Cluster)
Log = log

Request_Cpus = 1
Request_Memory = 100M
Request_Disk = 100M
Queue

Also, unlike the Unix cron daemon, HTCondor never runs more than one
instance of a job at the same time.

The capability for repetitive or periodic execution of the job is
enabled by specifying an
on_exit_remove
command for the job, such that the job does not leave the queue until
desired.

Semantics for CronTab Specification

A job’s execution schedule is defined by a set of specifications within
the submit description file. HTCondor uses these to calculate a
DeferralTime for the job.

Table 2.3 lists the submit commands and acceptable
values for these commands. At least one of these must be defined in
order for HTCondor to calculate a DeferralTime for the job. Once one
CronTab value is defined, the default for all the others uses all the
values in the allowed values ranges.

	cron_minute

	0 - 59

	cron_hour

	0 - 23

	cron_day_of_month

	1 - 31

	cron_month

	1 - 12

	cron_day_of_week

	0 - 7 (Sunday is 0 or 7)

Table 2.3: The list of submit commands and their value ranges.

The day of a job’s execution can be specified by both the
cron_day_of_month and the cron_day_of_week attributes. The
day will be the logical or of both.

The semantics allow more than one value to be specified by using the *
operator, ranges, lists, and steps (strides) within ranges.

	The asterisk operator
	The * (asterisk) operator specifies that all of the allowed values
are used for scheduling. For example,

cron_month = *

becomes any and all of the list of possible months:
(1,2,3,4,5,6,7,8,9,10,11,12). Thus, a job runs any month in the
year.

	Ranges
	A range creates a set of integers from all the allowed values
between two integers separated by a hyphen. The specified range is
inclusive, and the integer to the left of the hyphen must be less
than the right hand integer. For example,

cron_hour = 0-4

represents the set of hours from 12:00 am (midnight) to 4:00 am, or
(0,1,2,3,4).

	Lists
	A list is the union of the values or ranges separated by commas.
Multiple entries of the same value are ignored. For example,

cron_minute = 15,20,25,30
cron_hour = 0-3,9-12,15

where this cron_minute example represents (15,20,25,30) and
cron_hour represents (0,1,2,3,9,10,11,12,15).

	Steps
	Steps select specific numbers from a range, based on an interval. A
step is specified by appending a range or the asterisk operator with
a slash character (/), followed by an integer value. For example,

cron_minute = 10-30/5
cron_hour = */3

where this cron_minute example specifies every five minutes
within the specified range to represent (10,15,20,25,30), and
cron_hour specifies every three hours of the day to represent
(0,3,6,9,12,15,18,21).

Preparation Time and Execution Window

The
cron_prep_time
command is analogous to the deferral time’s
deferral_prep_time
command. It specifies the number of seconds before the deferral time
that the job is to be matched and sent to the execution machine. This
permits HTCondor to make necessary preparations before the deferral time
occurs.

Consider the submit description file example that includes

cron_minute = 0
cron_hour = *
cron_prep_time = 300

The job is scheduled to begin execution at the top of every hour. Note
that the setting of cron_hour in this example is not required, as
the default value will be *, specifying any and every hour of the day.
The job will be matched and sent to an execution machine no more than
five minutes before the next deferral time. For example, if a job is
submitted at 9:30am, then the next deferral time will be calculated to
be 10:00am. HTCondor may attempt to match the job to a machine and send
the job once it is 9:55am.

As the CronTab scheduling calculates and uses deferral time, jobs may
also make use of the deferral window. The submit command
cron_window is
analogous to the submit command
deferral_window.
Consider the submit description file example that includes

cron_minute = 0
cron_hour = *
cron_window = 360

As the previous example, the job is scheduled to begin execution at the
top of every hour. Yet with no preparation time, the job is likely to
miss its deferral time. The 6-minute window allows the job to begin
execution, as long as it arrives and can begin within 6 minutes of the
deferral time, as seen by the time kept on the execution machine.

Scheduling

When a job using the CronTab functionality is submitted to HTCondor, use
of at least one of the submit description file commands beginning with
cron_ causes HTCondor to calculate and set a deferral time for when
the job should run. A deferral time is determined based on the current
time rounded later in time to the next minute. The deferral time is the
job’s DeferralTime attribute. A new deferral time is calculated when
the job first enters the job queue, when the job is re-queued, or when
the job is released from the hold state. New deferral times for all jobs
in the job queue using the CronTab functionality are recalculated when a
condor_reconfig or a condor_restart command that affects the job
queue is issued.

A job’s deferral time is not always the same time that a job will
receive a match and be sent to the execution machine. This is because
HTCondor operates on the job queue at times that are independent of job
events, such as when job execution completes. Therefore, HTCondor may
operate on the job queue just after a job’s deferral time states that it
is to begin execution. HTCondor attempts to start a job when the
following pseudo-code boolean expression evaluates to True:

(time() + SCHEDD_INTERVAL) >= (DeferralTime - CronPrepTime)

If the time() plus the number of seconds until the next time
HTCondor checks the job queue is greater than or equal to the time that
the job should be submitted to the execution machine, then the job is to
be matched and sent now.

Jobs using the CronTab functionality are not automatically re-queued by
HTCondor after their execution is complete. The submit description file
for a job must specify an appropriate
on_exit_remove
command to ensure that a job remains in the queue. This job maintains
its original ClusterId and ProcId.

Submit Commands Usage Examples

Here are some examples of the submit commands necessary to schedule jobs
to run at multifarious times. Please note that it is not necessary to
explicitly define each attribute; the default value is *.

Run 23 minutes after every two hours, every day of the week:

on_exit_remove = false
cron_minute = 23
cron_hour = 0-23/2
cron_day_of_month = *
cron_month = *
cron_day_of_week = *

Run at 10:30pm on each of May 10th to May 20th, as well as every
remaining Monday within the month of May:

on_exit_remove = false
cron_minute = 30
cron_hour = 20
cron_day_of_month = 10-20
cron_month = 5
cron_day_of_week = 2

Run every 10 minutes and every 6 minutes before noon on January 18th
with a 2-minute preparation time:

on_exit_remove = false
cron_minute = */10,*/6
cron_hour = 0-11
cron_day_of_month = 18
cron_month = 1
cron_day_of_week = *
cron_prep_time = 120

Submit Commands Limitations

The use of the CronTab functionality has all of the same limitations of
deferral times, because the mechanism is based upon deferral times.

	It is impossible to schedule vanilla universe jobs at
intervals that are smaller than the interval at which HTCondor
evaluates jobs. This interval is determined by the configuration
variable SCHEDD_INTERVAL. As a
vanilla universe job completes execution and is placed
back into the job queue, it may not be placed in the idle state in
time. This problem does not afflict local universe jobs.

	HTCondor cannot guarantee that a job will be matched in order to make
its scheduled deferral time. A job must be matched with an execution
machine just as any other HTCondor job; if HTCondor is unable to find
a match, then the job will miss its chance for executing and must
wait for the next execution time specified by the CronTab schedule.

Jobs may be scheduled to begin execution at a specified time in the
future with HTCondor’s job deferral functionality. All specifications
are in a job’s submit description file. Job deferral functionality is
expanded to provide for the periodic execution of a job, known as the
CronTab scheduling.

Job Deferral

The scheduling of jobs using HTCondor’s CronTab feature
calculates and utilizes the DeferralTime ClassAd attribute.
Job deferral allows the specification of the exact date and time at
which a job is to begin executing. HTCondor attempts to match the job to
an execution machine just like any other job, however, the job will wait
until the exact time to begin execution. A user can define the job to
allow some flexibility in the execution of jobs that miss their
execution time.

Deferred Execution Time

A job’s deferral time is the exact time that HTCondor should attempt to
execute the job. The deferral time attribute is defined as an expression
that evaluates to a Unix Epoch timestamp (the number of seconds elapsed
since 00:00:00 on January 1, 1970, Coordinated Universal Time). This is
the time that HTCondor will begin to execute the job.

After a job is matched and all of its files have been transferred to an
execution machine, HTCondor checks to see if the job’s ClassAd contains
a deferral time. If it does, HTCondor calculates the number of seconds
between the execution machine’s current system time and the job’s
deferral time. If the deferral time is in the future, the job waits to
begin execution. While a job waits, its job ClassAd attribute
JobStatus indicates the job is in the Running state. As the deferral
time arrives, the job begins to execute. If a job misses its execution
time, that is, if the deferral time is in the past, the job is evicted
from the execution machine and put on hold in the queue.

The specification of a deferral time does not interfere with HTCondor’s
behavior. For example, if a job is waiting to begin execution when a
condor_hold command is issued, the job is removed from the execution
machine and is put on hold. If a job is waiting to begin execution when
a condor_suspend command is issued, the job continues to wait. When
the deferral time arrives, HTCondor begins execution for the job, but
immediately suspends it.

The deferral time is specified in the job’s submit description file with
the command
deferral_time.

Deferral Window

If a job arrives at its execution machine after the deferral time has
passed, the job is evicted from the machine and put on hold in the job
queue. This may occur, for example, because the transfer of needed files
took too long due to a slow network connection. A deferral window
permits the execution of a job that misses its deferral time by
specifying a window of time within which the job may begin.

The deferral window is the number of seconds after the deferral time,
within which the job may begin. When a job arrives too late, HTCondor
calculates the difference in seconds between the execution machine’s
current time and the job’s deferral time. If this difference is less
than or equal to the deferral window, the job immediately begins
execution. If this difference is greater than the deferral window, the
job is evicted from the execution machine and is put on hold in the job
queue.

The deferral window is specified in the job’s submit description file
with the command deferral_window.

Preparation Time

When a job defines a deferral time far in the future and then is matched
to an execution machine, potential computation cycles are lost because
the deferred job has claimed the machine, but is not actually executing.
Other jobs could execute during the interval when the job waits for its
deferral time. To make use of the wasted time,a job defines a
deferral_prep_time
with an integer expression that evaluates to a number of seconds. At
this number of seconds before the deferral time, the job may be matched
with a machine.

Deferral Usage Examples

Here are examples of how the job deferral time, deferral window, and the
preparation time may be used.

The job’s submit description file specifies that the job is to begin
execution on January 1st, 2006 at 12:00 pm:

deferral_time = 1136138400

The Unix date program may be used to calculate a Unix epoch time. The
syntax of the command to do this depends on the options provided within
that flavor of Unix. In some, it appears as

$ date --date "MM/DD/YYYY HH:MM:SS" +%s

and in others, it appears as

$ date -d "YYYY-MM-DD HH:MM:SS" +%s

MM is a 2-digit month number, DD is a 2-digit day of the month number,
and YYYY is a 4-digit year. HH is the 2-digit hour of the day, MM is the
2-digit minute of the hour, and SS are the 2-digit seconds within the
minute. The characters +%s tell the date program to give the output as
a Unix epoch time.

The job always waits 60 seconds after submission before beginning
execution:

deferral_time = (QDate + 60)

In this example, assume that the deferral time is 45 seconds in the past
as the job is available. The job begins execution, because 75 seconds
remain in the deferral window:

deferral_window = 120

In this example, a job is scheduled to execute far in the future, on
January 1st, 2010 at 12:00 pm. The
deferral_prep_time
attribute delays the job from being matched until 60 seconds before the
job is to begin execution.

deferral_time = 1262368800
deferral_prep_time = 60

Deferral Limitations

There are some limitations to HTCondor’s job deferral feature.

	Job deferral is not available for scheduler universe jobs. A
scheduler universe job defining the deferral_time produces a
fatal error when submitted.

	The time that the job begins to execute is based on the execution
machine’s system clock, and not the submission machine’s system
clock. Be mindful of the ramifications when the two clocks show
dramatically different times.

	A job’s JobStatus attribute is always in the Running state when
job deferral is used. There is currently no way to distinguish
between a job that is executing and a job that is waiting for its
deferral time.

Matchmaking with ClassAds

Before you learn about how to submit a job, it is important to
understand how HTCondor allocates resources.
 Understanding the unique
framework by which HTCondor matches submitted jobs with machines is the
key to getting the most from HTCondor’s scheduling algorithm.

HTCondor simplifies job submission by acting as a matchmaker of
ClassAds. HTCondor’s ClassAds are analogous to
the classified advertising section of the newspaper. Sellers advertise
specifics about what they have to sell, hoping to attract a buyer.
Buyers may advertise specifics about what they wish to purchase. Both
buyers and sellers list constraints that need to be satisfied. For
instance, a buyer has a maximum spending limit, and a seller requires a
minimum purchase price. Furthermore, both want to rank requests to their
own advantage. Certainly a seller would rank one offer of $50 dollars
higher than a different offer of $25. In HTCondor, users submitting jobs
can be thought of as buyers of compute resources and machine owners are
sellers.

All machines in a HTCondor pool advertise their attributes,
 such as available memory, CPU type
and speed, virtual memory size, current load average, along with other
static and dynamic properties. This machine ClassAd
 also advertises under what conditions it
is willing to run a HTCondor job and what type of job it would prefer.
These policy attributes can reflect the individual terms and preferences
by which all the different owners have graciously allowed their machine
to be part of the HTCondor pool. You may advertise that your machine is
only willing to run jobs at night and when there is no keyboard activity
on your machine. In addition, you may advertise a preference (rank) for
running jobs submitted by you or one of your co-workers.

Likewise, when submitting a job, you specify a ClassAd with your
requirements and preferences. The ClassAd includes the type of machine you wish to
use. For instance, perhaps you are looking for the fastest floating
point performance available. You want HTCondor to rank available
machines based upon floating point performance. Or, perhaps you care
only that the machine has a minimum of 128 MiB of RAM. Or, perhaps you
will take any machine you can get! These job attributes and requirements
are bundled up into a job ClassAd.

HTCondor plays the role of a matchmaker by continuously reading all the
job ClassAds and all the machine ClassAds, matching and ranking job ads
with machine ads. HTCondor makes certain that all requirements in both
ClassAds are satisfied.

Inspecting Machine ClassAds with condor_status

Once HTCondor is installed, you will get a feel for what a machine
ClassAd does by trying the condor_status command. Try the
condor_status command to get a summary of information from ClassAds
about the resources available in your pool. Type condor_status and
hit enter to see a summary similar to the following:

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

amul.cs.wisc.edu LINUX INTEL Claimed Busy 0.990 1896 0+00:07:04
slot1@amundsen.cs. LINUX INTEL Owner Idle 0.000 1456 0+00:21:58
slot2@amundsen.cs. LINUX INTEL Owner Idle 0.110 1456 0+00:21:59
angus.cs.wisc.edu LINUX INTEL Claimed Busy 0.940 873 0+00:02:54
anhai.cs.wisc.edu LINUX INTEL Claimed Busy 1.400 1896 0+00:03:03
apollo.cs.wisc.edu LINUX INTEL Unclaimed Idle 1.000 3032 0+00:00:04
arragon.cs.wisc.ed LINUX INTEL Claimed Busy 0.980 873 0+00:04:29
bamba.cs.wisc.edu LINUX INTEL Owner Idle 0.040 3032 15+20:10:19
...

The condor_status command has options that summarize machine ads in a
variety of ways. For example,

	condor_status -available
	shows only machines which are willing to run jobs now.

	condor_status -run
	shows only machines which are currently running jobs.

	condor_status -long
	lists the machine ClassAds for all machines in the pool.

The following shows a portion of a machine ClassAd

for a single machine: turunmaa.cs.wisc.edu. Some of the listed
attributes are used by HTCondor for scheduling. Other attributes are for
information purposes. An important point is that any of the attributes
in a machine ClassAd can be utilized at job submission time as part of a
request or preference on what machine to use. Additional attributes can
be easily added. For example, your site administrator can add a physical
location attribute to your machine ClassAds.

Machine = "turunmaa.cs.wisc.edu"
FileSystemDomain = "cs.wisc.edu"
Name = "turunmaa.cs.wisc.edu"
CondorPlatform = "$CondorPlatform: x86_rhap_5 $"
Cpus = 1
CondorVersion = "$CondorVersion: 7.6.3 Aug 18 2011 BuildID: 361356 $"
Requirements = START
EnteredCurrentActivity = 1316094896
MyAddress = "<128.105.175.125:58026>"
EnteredCurrentState = 1316094896
Memory = 1897
CkptServer = "pitcher.cs.wisc.edu"
OpSys = "LINUX"
State = "Owner"
START = true
Arch = "INTEL"
Mips = 2634
Activity = "Idle"
StartdIpAddr = "<128.105.175.125:58026>"
TargetType = "Job"
LoadAvg = 0.210000
Disk = 92309744
VirtualMemory = 2069476
TotalSlots = 1
UidDomain = "cs.wisc.edu"
MyType = "Machine"

 Job Sets

Job Sets

Warning

Job sets are an experimental feature that is currently disabled by default.
To check to see if it is enabled, run $ condor_config_val USE_JOBSETS
which will return true or false. If false, you will need your administrator
to set the config knob USE_JOBSETS to true for this to work.

Multiple jobs that share
a common set of input files and/or arguments and/or index values, etc.,
can be organized and submitted as a job set
).
For example, if you have 10 sets of measurements
that you are using as input to two different models,
you might consider submitting a job set
containing two different modeling jobs
that use the same set of input measurement data.

Submitting a job set

Submitting a job set involves creating a job set description file
and then using the htcondor command-line tool
to submit the jobs described in the job set description file
to the job queue.
For example, if your jobs are described in a file named my-jobs.set:

my-jobs.set file

 name = MyJobSet

 iterator = table inputfile {
 input_A.txt
 input_B.txt
 }

 job {
 executable = a.out
 arguments = $(inputfile)
 transfer_input_files = $(inputfile)
 Request_cpus = 1
 Request_memory = 1024M
 Request_disk = 1024M
 }

Then you can submit this set using the following command from the shell:

Command line to submit a simple job set

 $ htcondor jobset submit my-jobs.set

A job set description file must contain:

	A name,

	An iterator, and

	At least one job.

The name of a job set is used to identify the set.
Job set names are used to check the status of sets or to remove sets.

The iterator of a job set is used to describe the shared values
and the values’ associated variable names
that are used by the jobs in the job set.
Multiple iterator types are planned to be supported by HTCondor.
As of HTCondor 9.4.0, only the table iterator type is available.

The table iterator type works similar
to the queue <list of varnames> from <file name or list of items> syntax
used by condor_submit description files.
A table contains comma-separated columns (one per named variable)
and line-separated rows.
The table data can either be stored in a separate file
and referenced by file name,
or it can be stored inside the job set description file itself
inside curly brackets ({ ... }, see example below).

The job set description file syntax for a table iterator is:

iterator = table <list of variable names> <table file name>

or

iterator = table <list of variable names> {
 <list of items>
}

Suppose you have four input files,
and each input file is associated with two parameters, foo and bar,
needed by your jobs.
An example table in this case could be:

input_A.txt,0,0
input_B.txt,0,1
input_C.txt,1,0
input_D.txt,1,1

If this table is stored in input_description.txt,
your iterator would be:

iterator = table inputfile,foo,bar input_description.txt

Or you could put this table directly inside in the job set description file:

iterator = table inputfile,foo,bar {
 input_A.txt,0,0
 input_B.txt,0,1
 input_C.txt,1,0
 input_D.txt,1,1
}

Each job in a job set is a HTCondor job
and is described using the condor_submit submit description syntax.
A job description can reference one or more
of the variables described by the job set iterator.
Furthermore, each job description in a job set
can have its variables mapped
(e.g. foo=bar will replace $(foo) with $(bar)).
A job description can either be stored in a separate file
and referenced by file name,
or it can be stored inside the job set description file itself
inside curly brackets ({ ... }, see example below).

The job set description file syntax for a job is:

job [<list of mapped variable names>] <submit file name>

or

job [<list of mapped variable names>] {
 <submit file description>
}

Suppose you have two jobs
that you want to have use the inputfile, foo, and bar values
defined in the table iterator example above.
And suppose that one of these jobs already has an existing submit description
in a file named my-job.sub,
and this submit file doesn’t use the foo and bar variable names
but instead uses x and y.
Your job descriptions could look like:

job x=foo,y=bar my-job.sub

job {
 executable = a.out
 arguments = $(inputfile) $(foo) $(bar)
 transfer_input_files = $(inputfile)
}

Note how in the second job above that there is no queue statement.
Job description queue statements
are disregarded when using job sets.
Instead, the number of jobs queued
are based on the iterator of the job set.
For the table iterator, the number of jobs queued
will be the number of rows in the table.

Putting together the examples above,
an entire example job set might look like:

name = MyJobSet

iterator = table inputfile,foo,bar {
 input_A.txt,0,0
 input_B.txt,0,1
 input_C.txt,1,0
 input_D.txt,1,1
}

job x=foo,y=bar my-job.sub

job {
 executable = a.out
 arguments = $(inputfile) $(foo) $(bar)
 transfer_input_files = $(inputfile)
}

Based on this job set description,
with two job descriptions
(which become two job clusters),
you would expect the following output
when submitting this job set:

$ htcondor jobset submit my-jobs.set
Submitted job set MyJobSet containing 2 job clusters.

Listing job sets

You can get a list of your active job sets
(i.e. job sets with jobs that are idle, executing, or held)
with the command htcondor jobset list:

$ htcondor jobset list
JOB_SET_NAME
MyJobSet

The argument --allusers will list active job sets
for all users on the current access point:

$ htcondor jobset list --allusers
OWNER JOB_SET_NAME
alice MyJobSet
bob AnotherJobSet

Checking on the progress of job sets

You can check on your job set with the
htcondor jobset status <job set name> command.

$ htcondor jobset status MyJobSet

MyJobSet currently has 3 jobs idle, 5 jobs running, and 0 jobs completed.
MyJobSet contains:
 Job cluster 1234 with 4 total jobs
 Job cluster 1235 with 4 total jobs

Removing a job set

If you realize that there is a problem with a job set
or you just do not need the job set to finish computing
for whatever reason,
you can remove an entire job set with the
htcondor jobset remove <job set name> command:

$ htcondor jobset remove MyJobSet
Removed 8 jobs matching job set MyJobSet for user alice.

 Self-Checkpointing Applications

Self-Checkpointing Applications

This section is about writing jobs for an executable which periodically
saves checkpoint information, and how to make HTCondor store that
information safely, in case it’s needed to continue the job on another
machine or at a later time.

This section is not about how to checkpoint a given executable; that’s
up to you or your software provider.

How To Run Self-Checkpointing Jobs

The best way to run self-checkpointing code is to set checkpoint_exit_code
HTCondor in your submit file. (Any exit code will work, but if you can choose,
consider error code 85. On Linux systems, this is ERESTART, which
seems appropriate.) If the executable exits HTCondor
with checkpoint_exit_code, HTCondor will transfer the checkpoint to
the submit node, and then immediately restart the executable in the
same sandbox on the same machine, with the same arguments. This
immediate transfer makes the checkpoint available for continuing the job
even if the job is interrupted in a way that doesn’t allow for files to
be transferred (e.g., power failure), or if the file transfer doesn’t
complete in the time allowed.

For a job to use checkpoint_exit_code successfully, its executable
must meet a number of requirements.

Requirements

Your self-checkpointing code may not meet all of the following
requirements. In many cases, however, you will be able to add a wrapper
script, or modify an existing one, to meet these requirements. (Thus,
your executable may be a script, rather than the code that’s writing
the checkpoint.) If you can not, consult Working Around the
Assumptions and/or the Other Options.

	Your executable exits after taking a checkpoint with an exit code it
does not otherwise use.

	If your executable does not exit when it takes a checkpoint,
HTCondor will not transfer its checkpoint. If your executable
exits normally when it takes a checkpoint, HTCondor will not be
able to tell the difference between taking a checkpoint and
actually finishing; that is, if the checkpoint code and the
terminal exit code are the same, your job will never finish.

	When restarted, your executable determines on its own if a checkpoint
is available, and if so, uses it.

	If your job does not look for a checkpoint each time it starts up,
it will start from scratch each time; HTCondor does not run a
different command line when restarting a job which has taken a
checkpoint.

	Starting your executable up from a checkpoint is relatively quick.

	If starting your executable up from a checkpoint is relatively
slow, your job may not run efficiently enough to be useful,
depending on the frequency of checkpoints and interruptions.

Using checkpoint_exit_code

The following Python script (example.py) is a toy example of code that
checkpoints itself. It counts from 0 to 10 (exclusive), sleeping for 10
seconds at each step. It writes a checkpoint file (containing the next number)
after each nap, and exits with code 85 at count 3, 6, and 9. It exits
with code 0 when complete.

#!/usr/bin/env python

import sys
import time

value = 0
try:
 with open('example.checkpoint', 'r') as f:
 value = int(f.read())
except IOError:
 pass

print("Starting from {0}".format(value))
for i in range(value,10):
 print("Computing timestamp {0}".format(value))
 time.sleep(10)
 value += 1
 with open('example.checkpoint', 'w') as f:
 f.write("{0}".format(value))
 if value%3 == 0:
 sys.exit(85)

print("Computation complete")
sys.exit(0)

The following submit file (example.submit) commands HTCondor to transfer the
file example.checkpoint to the submit node whenever the script exits with code
85. If interrupted, the job will resume from the most recent of those
checkpoints. Before version 8.9.8, you must include your checkpoint file(s)
in transfer_output_files; otherwise HTCondor will not transfer it
(them). Starting with version 8.9.8, you may instead use
transfer_checkpoint_files.

checkpoint_exit_code = 85
transfer_output_files = example.checkpoint
should_transfer_files = yes

executable = example.py
arguments =

output = example.out
error = example.err
log = example.log

request_cpus = 1
request_memory = 512M
request_disk = 1G

queue 1

This example does not remove the “checkpoint file” generated for
timestep 9 when the executable completes. This could be done in
example.py immediately before it exits, but that would cause the
final file transfer to fail, if you specified the file in
transfer_output_files. The script could instead remove the file
and then re-create it empty, it desired.

How Frequently to Checkpoint

Obviously, the longer the code spends writing checkpoints, and the
longer your job spends transferring them, the longer it will take for
you to get the job’s results. Conversely, the more frequently the job
transfers new checkpoints, the less time the job loses if it’s
interrupted. For most users and for most jobs, taking a checkpoint about
once an hour works well, and it’s not a bad duration to start
experimenting with. A number of factors will skew this interval up or
down:

	If your job(s) usually run on resources with strict time limits, you
may want to adjust how often your job checkpoints to minimize wasted
time. For instance, if your job writes a checkpoint after each hour,
and each checkpoint takes five minutes to write out and then
transfer, your fifth checkpoint will finish twenty-five minutes into
the fifth hour, and you won’t gain any benefit from the next
thirty-five minutes of computation. If you instead write a checkpoint
every eighty-four minutes, your job will only waste four minutes.

	If a particular code writes larger checkpoints, or writes smaller
checkpoints unusually slowly, you may want to take a checkpoint less
frequently than you would for other jobs of a similar length, to keep
the total overhead (delay) the same. The opposite is also true: if
the job can take checkpoints particularly quickly, or the checkpoints
are particularly small, the job could checkpoint more often for the
same amount of overhead.

	Some code naturally checkpoints at longer or shorter intervals. If a
code writes a checkpoint every five minutes, it may make sense for
the executable to wait for the code to write ten or more
checkpoints before exiting (which asks HTCondor to transfer the
checkpoint file(s)). If a job is a sequence of steps, the natural (or
only possible) checkpoint interval may be between steps.

	How long it takes to restart from a checkpoint. It should never take
longer to restart from a checkpoint than to recompute from the
beginning, but the restart process is part of the overhead of taking
a checkpoint. The longer a code takes to restart, the less often the
executable should exit.

Measuring how long it takes to make checkpoints is left as an exercise
for the reader. HTCondor will report in
the job’s log (if a log is enabled for that job) how long file
transfers, including checkpoint transfers, took.

Debugging Self-Checkpointing Jobs

Because a job may be interrupted at any time, it’s valid to interrupt
the job at any time and see if a valid checkpoint is transferred. To do
so, use condor_vacate_job to evict the job. When that’s done (watch
the user log), use condor_hold to put it on hold, so that it can’t
restart while you’re looking at the checkpoint (and potentially,
overwrite it). Finally, to obtain the checkpoint file(s) themselves, run
the somewhat mis-named condor_evicted_files program to ask where they are.

For example, if your job is ID 635.0, and is logging to the file
job.log, you can copy the files in the checkpoint to a subdirectory of
the current as follows:

$ condor_vacate_job 635.0

Wait for the job to finish being evicted;
hit CTRL-C when you see ‘Job was evicted.’
and immediately hold the job.

$ tail --follow job.log
$ condor_hold 635.0

Copy the checkpoint files from the spool.
Note that _condor_stderr and _condor_stdout are the files corresponding
to the job’s output and error submit commands; they aren’t named
correctly until the the job finishes.

$ condor_evicted_files get 635.0
Copied to '635.0'.
$ cd 635.0

Now examine the checkpoint files to see if they look right.
When you’re done, release the job to see if it actually works right.

$ condor_release 635.0
$ condor_ssh_to_job 635.0

You may also want to remove your copy of checkpoint files:

$ cd ..; rm -fr 635.0

Working Around the Assumptions

The basic technique here is to write a wrapper script (or modify an
existing one), so that the executable has the necessary behavior,
even if the code does not.

	Your executable exits after taking a checkpoint with an exit code it
does not otherwise use.

	If your code exits when it takes a checkpoint, but not with a
unique code, your wrapper script will have to determine, when the
executable exits, if it did so because it took a checkpoint. If
so, the wrapper script will have to exit with a unique code. If
the code could usefully exit with any code, and the wrapper script
therefore can not exit with a unique code, you can instead
instruct HTCondor to consider being killed by a particular signal as
a sign of successful checkpoint; set
+SuccessCheckpointExitBySignal to TRUE and
+SuccessCheckpointExitSignal to the particular signal. (If you
do not set checkpoint_exit_code, you must set
+WantFTOnCheckpoint.)

	If your code does not exit when it takes a checkpoint, the wrapper
script will have to determine when a checkpoint has been made,
kill the program, and then exit with a unique code.

	When restarted, your executable determines on its own if a
checkpoint is available, and if so, uses it.

	If your code requires different arguments to start from a
checkpoint, the wrapper script must check for the presence of a
checkpoint and start the executable with correspondingly modified
arguments.

	Starting your executable up from a checkpoint is relatively quick.

	The longer the start-up delay, the slower the job’s overall
progress. If your job’s progress is too slow as a result of
start-up delay, and your code can take checkpoints without
exiting, read the ‘Delayed Transfers’ and ‘Manual Transfers’
sections below.

Other Options

The preceding sections of this HOWTO explain how a job meeting the
requirements can take checkpoints at arbitrary intervals and transfer
them back to the submit node. Although this is the method of operation
most likely to result in an interrupted job continuing from a valid
checkpoint, other, less reliable options exist.

Delayed Transfers

This method is risky, because it does not allow your job to recover from
any failure mode other than an eviction (and sometimes not even then).
It may also require changes to your executable. The advantage of
this method is that it doesn’t require your code to restart, or even a
recent version of HTCondor.

The basic idea is to take checkpoints as the job runs, but not transfer
them back to the submit node until the job is evicted. This implies that
your executable doesn’t exit until the job is complete (which is the
normal case). If your code has long start-up delays, you’ll naturally
not want it to exit after it writes a checkpoint; otherwise, the wrapper
script could restart the code as necessary.

To use this method, set when_to_transfer_output to
ON_EXIT_OR_EVICT instead of setting checkpoint_exit_code. This
will cause HTCondor to transfer your checkpoint file(s) (which you
listed in transfer_output_files, as noted above) when the job is
evicted. Of course, since this is the only time your checkpoint file(s)
will be transferred, if the transfer fails, your job has to start over
from the beginning. One reason file transfer on eviction fails is if it
takes too long, so this method may not work if your
transfer_output_files contain too much data.

Furthermore, eviction can happen at any time, including while the code
is updating its checkpoint file(s). If the code does not update its
checkpoint file(s) atomically, HTCondor will transfer the
partially-updated checkpoint file(s), potentially overwriting the
previous, complete one(s); this will probably prevent the code from
picking up where it left off.

In some cases, you can work around this problem by using a wrapper
script. The idea is that renaming a file is an atomic operation, so if
your code writes checkpoints to one file, call it checkpoint, your
wrapper script – when it detects that the checkpoint is complete –
would rename that file checkpoint.atomic. That way,
checkpoint.atomic always has a complete checkpoint in it. With a
such a script, instead of putting checkpoint in
transfer_output_files, you would put checkpoint.atomic, and
HTCondor would never see a partially-complete checkpoint file. (The
script would also, of course, have to copy checkpoint.atomic to
checkpoint before running the code.)

Manual Transfers

If you’re comfortable with programming, instead of running a job with
checkpoint_exit_code, you could use condor_chirp, or other tools,
to manage your checkpoint file(s). Your executable would be
responsible for downloading the checkpoint file(s) on start-up, and
periodically uploading the checkpoint file(s) during execution. We don’t
recommend you do this for the same reasons we recommend against managing
your own input and output file transfers.

Early Checkpoint Exits

If your executable’s natural checkpoint interval is half or more of your
pool’s max job runtime, it may make sense to checkpoint and then
immediately ask to be rescheduled, rather than lower your user priority
doing work you know will be thrown away. In this case, you can use the
OnExitRemove job attribute to determine if your job should be
rescheduled after exiting. Don’t set ON_EXIT_OR_EVICT, and don’t set
+WantFTOnCheckpoint; just have the job exit with a unique code after
its checkpoint.

Signals

Signals offer additional options for running self-checkpointing jobs. If
you’re not familiar with signals, this section may not make sense to
you.

Periodic Signals

HTCondor supports transferring checkpoint file(s) for an executable
which takes a checkpoint when sent a particular signal, if the executable
then exits in a unique way. Set +WantCheckpointSignal to TRUE to
periodically receive checkpoint signals, and +CheckpointSig to
specify which one. (The interval is specified by the administrator of
the execute machine.) The unique way may be a specific exit code, for which
you would set checkpoint_exit_code, or a signal, for which you would
set +SuccessCheckpointExitBySignal to TRUE and
+SuccessCheckpointExitSignal to the particular signal. (If you do
not set checkpoint_exit_code, you must set +WantFTOnCheckpoint.)

Delayed Transfer with Signals

This method is very similar to but riskier than delayed transfers,
because in addition to delaying the transfer of the checkpoint files(s),
it also delays their creation. Thus, this option should almost never be
used; if taking and transferring your checkpoint file(s) is fast enough
to reliably complete during an eviction, you’re not losing much by doing
so periodically, and it’s unlikely that a code which takes small
checkpoints quickly takes a long time to start up. However, this method
will work even with very old version of HTCondor.

To use this method, set when_to_transfer_output to
ON_EXIT_OR_EVICT and KillSig to the particular signal that
causes your job to checkpoint.

 Submitting to a Remote AP

Submitting to a Remote AP

Submitting a job to a remote Access Point

Usually, when you run the condor_submit` command, you are logged into an Access Point (AP)
which is running a condor_schedd, and your submit defaults to sending the job to the
condor_schedd running on that same AP. However, it is possible to have condor_submit
send the job to a condor_schedd running on some other machine. Maybe you want to run
condor_submit from your laptop and send the job to an AP on some server. Maybe
you are building a web portal, and you want the portal to run on one machine,
and the condor_schedd running on some other machine.

The first concern is security. When you submit locally, the condor_schedd
can easily determine who is submitting the job, and thus what system
account it should run the condor_shadow as. This is much more difficult
with a remote, over-the-network submit. For this to work, some additional
setup must happen. While this authentication can be setup with SSL, Kerberos
or Windows native methods, for Linux systems, we recommend HTCondor’s
ID tokens, as it is easy for a user to setup, and secure.

Why remote submission?

While it isn’t the usual case, there are several reasons you might want to
submit from one machine to another. Maybe you want to run condor_submit
from your laptop and send the job to an AP on some other server, because you
have input data on your laptop, and don’t want to manually copy it to your
Access Point. Maybe you are building a web portal, and you want the portal
to run on one machine, and the condor_schedd process running on some other
machine to balance load.

Assuming that an administrator has set up signing keys
(see Token Authentication),
to create a token that can authenticate you for remote
submission, login to the access point and run the command

$ condor_token_fetch -token name_of_your_ap

Note that name_of_your_ap is merely a filename, but if you have more than one
AP, it is good to name the file containing the token clearly. When this
command succeeds, there is no output but the access token is place into the
file with that name in the tokens.d subdirectory of your personal .condor
directory in your home directory.

If you copy this directory and contents from the AP (the machine
you want to submit to, and place the directory in the same
place on the machine you want to submit from, then
condor_submit can submit remotely. To do so, you’ll
need to tell condor_submit the name of the pool (i.e. the
name of the machine running the central manager), and the name
of the Access Point that you ran condor_token_fetch on. If you
don’t know the name of the central manager, running the command
condor_config_val COLLECTOR_HOST will tell you.

Then, to submit the job, on the remote machine, simple run

$ condor_submit -name name-of-ap -pool cm-name submit_file

and perhaps any other options you might want to pass to condor_submit
After condor_submit reports the cluster id of your new job, it
has been successfully submitted to the AP, and the AP is responsible
for the management of the job thereafter. You can query the
job with

$ condor_q -name name-of-ap -pool cm-name

and run all the related commands like condor_rm, condor_hold
and condor_release in a similar way.

File transfer with remote submission

After condor_submit successfully completes a remote submission,
the machine you ran condor_submit on is not involved at all in the
management of the job; the remote AP manages it. Therefore, you can
disconnect that machine from the network, turn it off, or hibernate it.
Even if this machine is turned off, the AP will find a matching Execution
Point to run the job on, and run it to completion.

This means that any input files specified in transfer_input_files
are copied off of this access point as part of the submit process
and stored in a safe place on the Access Point. This safe place is
the spool directory. While a user can force spooling to happen
by adding the -spool option to condor_submit, any remote
submit (with the -name option) automatically turns on spooling.
Note that files transferred via file transfer plugins are never spooled,
they are always pulled by the worker node immediately before job execution.

Correspondingly, when the jobs complete, output files cannot be
transferred to the submitting machine, as it may be off, or disconnected
from the network. These files are also stored in the spool directory
of the AP machine. To indicate that a completed job still has
spool files it is holding on the AP machine, a remotely submitted
job remained in the AP’s, and is visible with the condor_q command
after completion, and is in the ‘C’ompleted state. Jobs will
stay in this state for three days by default, or until you have
fetched the output files off of the machine.

You can fetch the output sandbox from the AP back to your submitting
machine (or anywhere that has permissions), by running the
condor_transfer_data command. This also takes a -name and
-pool option like condor_submit. You can specify a job or jobs
in the usual way, often just with the cluster.proc syntax. When run,
it copies the job’s output sandbox from the spool on the AP back to
the current directory of the machine condor_transfer_data is run.

 Chirp: custom updates to the AP

Chirp: custom updates to the AP

Chirp is a set of commands that a running job can invoke on the EP to send or
receive custom user data to or from the AP. It is one of the few HTCondor
features that only runs in a running job on the EP.

Common uses for chirp include appending to the job event log to log on the AP
the completion percentage of the job. Or, say, a job has three different
phases: preparation, activity, and cleanup. With chirp, the job can ask
HTCondor to append an event to the job event log informing the AP and the user
there what phase the job has entered. For example, a running job could run the
command line tool:

$ /usr/libexec/condor_chirp ulog "I have reached stage 3"

In addition to the user log, with chirp, the job can read from or write to the
job’s classad as it exists in the schedd. Note that a static copy of the job
ad, in the state that it existed at job startup is dropped into the job’s
scratch directory. You can find this file by inspecting the environment
variable $_CONDOR_JOB_AD. But to see attributes which have been updated on the
AP after the job has started, including attributes which may have been changed
with the condor_qedit command, you will need to use chirp:

$ /usr/libexec/condor_chirp set_job_ad_attr MyCurrentStatus '"Stage 3"'

As always with passing classad expressions or values through the shell, be
careful with quoting. Also note that these commands don’t need to, and
indeed can not pass the job cluster or proc id as an argument – the job
is implicitly the one that is running, and chirp cannot write to any other
job.

As there is some cost to writing to the instance of the job ad inside the
schedd, chirp also supports delayed job ad updates. This is on by default, and
any job ad attribute whose name begins with “Chirp” is considered a delayed
updated. Any updates to these attributes will be batched together and send
when the starter needs to send another update to the shadow, for any reasons,
or when there are 100 (by default) pending delayed updates.

Chirp may be used from a command line tool, see the
condor_chirp man page for full details.

Alternatively, python programs can natively run chirp commands, see the htchirp
bindings for more details on this method.

This service is off by default; it may be enabled by placing in the submit
description file:

want_io_proxy = True

This places the needed attribute into the job ClassAd.

The Chirp wire protocol used by the starter is fully documented at
http://ccl.cse.nd.edu/software/chirp/.

 Special Environment Considerations

Special Environment Considerations

Job Leases

A job lease specifies how long a given job will attempt to run on a
remote resource, even if that resource loses contact with the submitting
machine. Similarly, it is the length of time the submitting machine will
spend trying to reconnect to the (now disconnected) execution host,
before the submitting machine gives up and tries to claim another
resource to run the job. The goal aims at run only once semantics, so
that the condor_schedd daemon does not allow the same job to run on
multiple sites simultaneously.

If the submitting machine is alive, it periodically renews the job
lease, and all is well. If the submitting machine is dead, or the
network goes down, the job lease will no longer be renewed. Eventually
the lease expires. While the lease has not expired, the execute host
continues to try to run the job, in the hope that the access point
will come back to life and reconnect. If the job completes and the lease
has not expired, yet the submitting machine is still dead, the
condor_starter daemon will wait for a condor_shadow daemon to
reconnect, before sending final information on the job, and its output
files. Should the lease expire, the condor_startd daemon kills off
the condor_starter daemon and user job.

A default value equal to 40 minutes exists for a job’s ClassAd attribute
JobLeaseDuration, or this attribute may be set in the submit
description file, using
job_lease_duration,
to keep a job running in the case that the submit side no longer renews
the lease. There is a trade off in setting the value of
job_lease_duration
Too small a value, and the job might get killed before the submitting
machine has a chance to recover. Forward progress on the job will be
lost. Too large a value, and an execute resource will be tied up waiting
for the job lease to expire. The value should be chosen based on how
long the user is willing to tie up the execute machines, how quickly
access points come back up, and how much work would be lost if the
lease expires, the job is killed, and the job must start over from its
beginning.

As a special case, a submit description file setting of

job_lease_duration = 0

as well as utilizing submission other than condor_submit that do not
set JobLeaseDuration (such as using the web services interface)
results in the corresponding job ClassAd attribute to be explicitly
undefined. This has the further effect of changing the duration of a
claim lease, the amount of time that the execution machine waits before
dropping a claim due to missing keep alive messages.

 Administrators’ Manual

Administrators’ Manual

	Introduction
	The Different Roles a Machine Can Play

	The HTCondor Daemons

	Starting Up, Shutting Down and Reconfiguring the System
	Daemons That Do Not Run as root

	Remote Management Features

	DaemonCore

	Introduction to Configuration
	HTCondor Configuration Files

	Ordered Evaluation to Set the Configuration

	Configuration File Macros

	Comments and Line Continuations

	Multi-Line Values

	Executing a Program to Produce Configuration Macros

	Including Configuration from Elsewhere

	Reporting Errors and Warnings

	Conditionals in Configuration

	Function Macros in Configuration

	Macros That Will Require a Restart When Changed

	Pre-Defined Macros

	Configuration Templates

	Configuring HTCondor for Multiple Platforms

	Configuration Macros
	HTCondor-wide Configuration File Entries

	Daemon Logging Configuration File Entries

	DaemonCore Configuration File Entries

	Network-Related Configuration File Entries

	Shared File System Configuration File Macros

	condor_master Configuration File Macros

	condor_startd Configuration File Macros

	condor_schedd Configuration File Entries

	condor_shadow Configuration File Entries

	condor_starter Configuration File Entries

	condor_submit Configuration File Entries

	condor_preen Configuration File Entries

	condor_collector Configuration File Entries

	condor_negotiator Configuration File Entries

	condor_procd Configuration File Macros

	condor_credd Configuration File Macros

	condor_gridmanager Configuration File Entries

	condor_job_router Configuration File Entries

	condor_lease_manager Configuration File Entries

	DAGMan Configuration File Entries

	Configuration File Entries Relating to Security

	Configuration File Entries Relating to Virtual Machines

	Configuration File Entries Relating to High Availability

	Configuration File Entries Relating to condor_ssh_to_job

	condor_rooster Configuration File Macros

	condor_shared_port Configuration File Macros

	Configuration File Entries Relating to Job Hooks

	Configuration File Entries Relating to Daemon ClassAd Hooks: Startd Cron and Schedd Cron

	Configuration File Entries Only for Windows Platforms

	condor_defrag Configuration File Macros

	condor_gangliad Configuration File Macros

	condor_annex Configuration File Macros

	Configuration for Execution Points
	Introduction

	Slots: where jobs run

	Slot Isolation and Protection

	condor_startd Policy Configuration

	Configuring HTCondor for Running Backfill Jobs

	Custom and system slot attributes

	Container/VM support: Docker, Apptainer, Singularity and Xen/VMware

	Configuring GPUs

	condor_negotiator-Side Resource Consumption Policies

	Power Management

	Hooks

	Configuration for Access Points
	condor_schedd Policy Configuration

	Schedd Job Transforms

	Submit Requirements

	Submit Warnings

	Schedd Cron

	Dedicated Scheduling

	High Availability of the Job Queue

	Performance Tuning of the AP

	Configuration for Central Managers
	User Priorities and Negotiation

	Negotiation

	Group Accounting

	Accounting Groups with Hierarchical Group Quotas

	Setting Accounting Group automatically per user

	Concurrency Limits

	Defragmenting Dynamic Slots

	Configuring The HTCondorView Server

	Running Multiple Negotiators in One Pool

	High Availability of the Central Manager

	Monitoring with Ganglia, Elasticsearch, etc.

	Ganglia

	Absent ClassAds

	GPUs

	Elasticsearch

	Security
	Security Overview

	Security Terms

	Quick Configuration of Security

	HTCondor’s Security Model

	Security Negotiation

	Authentication

	The Unified Map File for Authentication

	Encryption

	Integrity

	Authorization

	FIPS

	Security Sessions

	Host-Based Security in HTCondor

	Examples of Security Configuration

	Changing the Security Configuration

	User Accounts in HTCondor on Unix Platforms

	Networking, Port Usage, and CCB
	Port Usage in HTCondor

	Reducing Port Usage with the condor_shared_port Daemon

	Configuring HTCondor for Machines With Multiple Network Interfaces

	HTCondor Connection Brokering (CCB)

	Using TCP to Send Updates to the condor_collector

	Running HTCondor on an IPv6 Network Stack

	Files, Directories and Logs
	Job and Daemon Logs

	DAGMan Logs

	Directories

	Third Party/Delegated file, credential and checkpoint transfer
	Enabling the Transfer of Files Specified by a URL

	Enabling the Transfer of Public Input Files over HTTP

	Self-Checkpointing Jobs

	Enabling the Fetching and Use of OAuth2 Credentials

	Automatic Issuance of SciTokens Credentials

	Using HTCondor with Kerberos and AFS

 Introduction

Introduction

This is the HTCondor Administrator’s Manual. Its purpose is to aid in
the installation and administration of an HTCondor pool. For help on
using HTCondor, see the HTCondor User’s Manual.

An HTCondor pool is comprised of a single machine which serves as the central manager,
 and an arbitrary number of other machines. Machines
intended to run work are called Execution Points (EP)s, also known as worker
nodes. Machines that hold a queue of jobs ready to run, or the results of jobs
that have run are called Access Points (AP)s, also known as submit machines.
The role of HTCondor is to match waiting requests with available resources.
Every part of HTCondor sends periodic updates to the central manager, the
centralized repository of information about the state of the pool.
Periodically, the central manager assesses the current state of the pool and
tries to match pending requests with the appropriate resources.

Each resource has an owner,
 the one who
sets the policy for the use of the machine. This person has absolute
power over the use of the machine, and HTCondor goes out of its way to
minimize the impact on this owner caused by HTCondor. It is up to the
resource owner to define a policy for when HTCondor requests will
serviced and when they will be denied.

Each resource request has an owner as well: the user who submitted the
job. These people want HTCondor to provide as many CPU cycles as
possible for their work. Often the interests of the resource owners are
in conflict with the interests of the resource requesters. The job of
the HTCondor administrator is to configure the HTCondor pool to find the
happy medium that keeps both resource owners and users of resources
satisfied. The purpose of this manual is to relate the mechanisms that
HTCondor provides to enable the administrator to find this happy medium.

The Different Roles a Machine Can Play

Every machine in an HTCondor pool can serve a variety of roles. Most
machines serve more than one role simultaneously. Certain roles can only
be performed by a single machine in the pool. The following list
describes what these roles are and what resources are required on the
machine that is providing that service:

Central Manager (CM) Diagram

 flowchart TD
 condor_master --> condor_collector & condor_negotiator

Daemons for Central Manager, both managed by a condor_master

	Central Manager
	There can be only one central manager for the pool. This machine is
the collector of information, and the negotiator between resources
and resource requests. These two halves of the central manager’s
responsibility are performed by separate daemons, so it would be
possible to have different machines providing those two services.
However, normally they both live on the same machine. This machine
plays a very important part in the HTCondor pool and should be
reliable. If this machine crashes, no further matchmaking can be
performed within the HTCondor system, although all current matches
remain in effect until they are broken by either party involved in
the match. Therefore, choose for central manager a machine that is
likely to be up and running all the time, or at least one that will
be rebooted quickly if something goes wrong. The central manager
will ideally have a good network connection to all the machines in
the pool, since these pool machines all send updates over the
network to the central manager.

Execution Point (EP) Diagram

 flowchart TD
 condor_master --> condor_startd
 condor_startd --> condor_starter_for_slot1
 condor_startd --> condor_starter_for_slot2
 condor_starter_for_slot1 --> job_in_slot1
 condor_starter_for_slot2 --> job_in_slot2

Daemons for a Execution Point, one condor_starter per running job.

	Execution Point
	Any machine in the pool, including the central manager, can be
configured as to whether or not it should execute HTCondor jobs.
Obviously, some of the machines will have to serve this function, or
the pool will not be useful. Being an execute machine does not
require lots of resources. About the only resource that might matter
is disk space. In general the more resources a machine has in terms
of swap space, memory, number of CPUs, the larger variety of
resource requests it can serve.

Access Point (AP) Diagram

 flowchart TD
 condor_master --> condor_schedd
 condor_schedd --> condor_shadow_for_job1
 condor_schedd --> condor_shadow_for_job2

Daemons for an Access Point, one condor_shadow per running job.

	Access Point
	Any machine in the pool, including the central manager, can be
configured as to whether or not it should allow HTCondor jobs to be
submitted. The resource requirements for an access point are
actually much greater than the resource requirements for an execute
machine. Every submitted job that is currently running on a
remote machine runs a process on the access point. As a result,
lots of running jobs will need a fair amount of swap space and/or
real memory. HTCondor pools can scale out horizontally by adding
additional access points. Older terminology called these submit
machines or scheduler machine.

The HTCondor Daemons

The following list describes all the daemons and programs that could be
started under HTCondor and what they do:

	condor_master
	This daemon is responsible for keeping all the rest of the HTCondor
daemons running on each machine in the pool. It spawns the other
daemons, and it periodically checks to see if there are new binaries
installed for any of them. If there are, the condor_master daemon
will restart the affected daemons. In addition, if any daemon
crashes, the condor_master will send e-mail to the HTCondor
administrator of the pool and restart the daemon. The
condor_master also supports various administrative commands that
enable the administrator to start, stop or reconfigure daemons
remotely. The condor_master will run on every machine in the
pool, regardless of the functions that each machine is performing.

	condor_startd
	This daemon represents a given resource to the HTCondor pool, as a
machine capable of running jobs. It advertises certain attributes
about machine that are used to match it with pending resource
requests. The condor_startd will run on any machine in the pool
that is to be able to execute jobs. It is responsible for enforcing
the policy that the resource owner configures, which determines
under what conditions jobs will be started, suspended, resumed,
vacated, or killed. When the condor_startd is ready to execute an
HTCondor job, it spawns the condor_starter.

	condor_starter
	This daemon is the entity that actually spawns the HTCondor job on a
given machine. It sets up the execution environment and monitors the
job once it is running. When a job completes, the condor_starter
notices this, sends back any status information to the submitting
machine, and exits.

	condor_schedd
	This daemon represents resource requests to the HTCondor pool. Any
machine that is to be an access point needs to have a
condor_schedd running. When users submit jobs, the jobs go to the
condor_schedd, where they are stored in the job queue. The
condor_schedd manages the job queue. Various tools to view and
manipulate the job queue, such as condor_submit, condor_q, and
condor_rm, all must connect to the condor_schedd to do their
work. If the condor_schedd is not running on a given machine,
none of these commands will work.

The condor_schedd advertises the number of waiting jobs in its
job queue and is responsible for claiming available resources to
serve those requests. Once a job has been matched with a given
resource, the condor_schedd spawns a condor_shadow daemon to
serve that particular request.

	condor_shadow
	This daemon runs on the machine where a given request was submitted
and acts as the resource manager for the request.

	condor_collector
	This daemon is responsible for collecting all the information about
the status of an HTCondor pool. All other daemons periodically send
ClassAd updates to the condor_collector. These ClassAds contain
all the information about the state of the daemons, the resources
they represent or resource requests in the pool. The
condor_status command can be used to query the
condor_collector for specific information about various parts of
HTCondor. In addition, the HTCondor daemons themselves query the
condor_collector for important information, such as what address
to use for sending commands to a remote machine.

	condor_negotiator
	This daemon is responsible for all the match making within the
HTCondor system. Periodically, the condor_negotiator begins a
negotiation cycle, where it queries the condor_collector for the
current state of all the resources in the pool. It contacts each
condor_schedd that has waiting resource requests in priority
order, and tries to match available resources with those requests.
The condor_negotiator is responsible for enforcing user
priorities in the system, where the more resources a given user has
claimed, the less priority they have to acquire more resources. If a
user with a better priority has jobs that are waiting to run, and
resources are claimed by a user with a worse priority, the
condor_negotiator can preempt that resource and match it with the
user with better priority.

Note

A higher numerical value of the user priority in HTCondor
translate into worse priority for that user. The best priority is
0.5, the lowest numerical value, and this priority gets worse as
this number grows.

	condor_kbdd
	This daemon is used on both Linux and Windows platforms. On those
platforms, the condor_startd frequently cannot determine console
(keyboard or mouse) activity directly from the system, and requires
a separate process to do so. On Linux, the condor_kbdd connects
to the X Server and periodically checks to see if there has been any
activity. On Windows, the condor_kbdd runs as the logged-in user
and registers with the system to receive keyboard and mouse events.
When it detects console activity, the condor_kbdd sends a command
to the condor_startd. That way, the condor_startd knows the
machine owner is using the machine again and can perform whatever
actions are necessary, given the policy it has been configured to
enforce.

	condor_gridmanager
	This daemon handles management and execution of all grid
universe jobs. The condor_schedd invokes the
condor_gridmanager when there are grid universe jobs in the
queue, and the condor_gridmanager exits when there are no more
grid universe jobs in the queue.

	condor_credd
	This daemon runs on Windows platforms to manage password storage in
a secure manner.

	condor_had
	This daemon implements the high availability of a pool’s central
manager through monitoring the communication of necessary daemons.
If the current, functioning, central manager machine stops working,
then this daemon ensures that another machine takes its place, and
becomes the central manager of the pool.

	condor_replication
	This daemon assists the condor_had daemon by keeping an updated
copy of the pool’s state. This state provides a better transition
from one machine to the next, in the event that the central manager
machine stops working.

	condor_transferer
	This short lived daemon is invoked by the condor_replication
daemon to accomplish the task of transferring a state file before
exiting.

	condor_procd
	This daemon controls and monitors process families within HTCondor.
Its use is optional in general.

	condor_job_router
	This daemon transforms vanilla universe jobs into grid
universe jobs, such that the transformed jobs are capable of running
elsewhere, as appropriate.

	condor_lease_manager
	This daemon manages leases in a persistent manner. Leases are
represented by ClassAds.

	condor_rooster
	This daemon wakes hibernating machines based upon configuration
details.

	condor_defrag
	This daemon manages the draining of machines with fragmented
partitionable slots, so that they become available for jobs
requiring a whole machine or larger fraction of a machine.

	condor_shared_port
	This daemon listens for incoming TCP packets on behalf of HTCondor
daemons, thereby reducing the number of required ports that must be
opened when HTCondor is accessible through a firewall.

 Starting Up, Shutting Down and Reconfiguring the System

Starting Up, Shutting Down and Reconfiguring the System

If you installed HTCondor with administrative privileges, HTCondor will
start up when the machine boots and shut down when the machine does, using
the usual mechanism for the machine’s operating system. You can generally
use those mechanisms in the usual way if you need to manually control
whether or not HTCondor is running. There are two situations in
which you might want to run condor_master,
condor_on, or condor_off from the
command line.

	If you installed HTCondor without administrative privileges, you’ll
have to run condor_master from the command line to turn on HTCondor:

$ condor_master

Then run the following command to turn HTCondor completely off:

$ condor_off -master

	If the usual OS-specific method of controlling HTCondor is inconvenient
to use remotely, you may be able to use the condor_on and condor_off
tools instead.

Daemons That Do Not Run as root

HTCondor is normally installed such that the HTCondor daemons have root
permission. This allows HTCondor to run the condor_shadow
daemon and the job with the submitting user’s UID and file access
rights. When HTCondor is started as root, HTCondor jobs can access
whatever files the user that submits the jobs can.

However, it is possible that the HTCondor installation does not have
root access, or has decided not to run the daemons as root. That is
unfortunate, since HTCondor is designed to be run as root. To see if
HTCondor is running as root on a specific machine, use the command

$ condor_status -master -l <machine-name>

where <machine-name> is the name of the specified machine. This command
displays the full condor_master ClassAd; if the attribute RealUid
equals zero, then the HTCondor daemons are indeed running with root
access. If the RealUid attribute is not zero, then the HTCondor
daemons do not have root access.

Note

The Unix program ps is not an effective method of determining if HTCondor is
running with root access. When using ps, it may often appear that the daemons
are running as the condor user instead of root. However, note that the ps
command shows the current effective owner of the process, not the real owner.
(See the getuid (2) and geteuid (2) Unix man pages for details.) In Unix, a
process running under the real UID of root may switch its effective UID. (See
the seteuid (2) man page.) For security reasons, the daemons only set the
effective UID to root when absolutely necessary, as it will be to perform a
privileged operation.

If daemons are not running with root access, make any and all files
and/or directories that the job will touch readable and/or writable by
the UID (user id) specified by the RealUid attribute. Often this may
mean using the Unix command chmod 777 on the directory from which the
HTCondor job is submitted.

Remote Management Features

All of the commands described in this section are subject to the
security policy chosen for the HTCondor pool. As such, the commands must
be either run from a machine that has the proper authorization, or run
by a user that is authorized to issue the commands.
The Security section details the
implementation of security in HTCondor.

	Shutting Down HTCondor
	There are a variety of ways to shut down all or parts of an HTCondor
pool. All utilize the condor_off tool.

To stop a single execute machine from running jobs, the
condor_off command specifies the machine by host name.

$ condor_off -startd <hostname>

Jobs will be killed. If it is instead desired that the machine
stops running jobs only after the currently executing job completes,
the command is

$ condor_off -startd -peaceful <hostname>

Note that this waits indefinitely for the running job to finish,
before the condor_startd daemon exits.

Th shut down all execution machines within the pool,

$ condor_off -all -startd

To wait indefinitely for each machine in the pool to finish its
current HTCondor job, shutting down all of the execute machines as
they no longer have a running job,

$ condor_off -all -startd -peaceful

To shut down HTCondor on a machine from which jobs are submitted,

$ condor_off -schedd <hostname>

If it is instead desired that the access point (which runs the
condor_schedd) shuts down only after all jobs that are currently in the
queue are finished, first disable new submissions to the queue by setting
the configuration variable

MAX_JOBS_SUBMITTED = 0

See instructions below in Reconfiguring an HTCondor Pool
for how to reconfigure a pool. After the reconfiguration,
the command to wait for all jobs to complete and shut down the submission of
jobs is

$ condor_off -schedd -peaceful <hostname>

Substitute the option -all for the host name, if all submit
machines in the pool are to be shut down.

	Restarting HTCondor, If HTCondor Daemons Are Not Running
	If HTCondor is not running, perhaps because one of the condor_off
commands was used, then starting HTCondor daemons back up depends on
which part of HTCondor is currently not running.

If no HTCondor daemons are running, then starting HTCondor is a
matter of executing the condor_master daemon. The
condor_master daemon will then invoke all other specified daemons
on that machine. The condor_master daemon executes on every
machine that is to run HTCondor.

If a specific daemon needs to be started up, and the
condor_master daemon is already running, then issue the command
on the specific machine with

$ condor_on -subsystem <subsystemname>

where <subsystemname> is replaced by the daemon’s subsystem name.
Or, this command might be issued from another machine in the pool
(which has administrative authority) with

$ condor_on <hostname> -subsystem <subsystemname>

where <subsystemname> is replaced by the daemon’s subsystem name,
and <hostname> is replaced by the host name of the machine where
this condor_on command is to be directed.

	Restarting HTCondor, If HTCondor Daemons Are Running
	If HTCondor daemons are currently running, but need to be killed and
newly invoked, the condor_restart tool does this. This would be
the case for a new value of a configuration variable for which using
condor_reconfig is inadequate.

To restart all daemons on all machines in the pool,

$ condor_restart -all

To restart all daemons on a single machine in the pool,

$ condor_restart <hostname>

where <hostname> is replaced by the host name of the machine to be
restarted.

	Reconfiguring an HTCondor Pool
	

To change a global configuration variable and have all the machines
start to use the new setting, change the value within the file, and send
a condor_reconfig command to each host. Do this with a single
command,

$ condor_reconfig -all

If the global configuration file is not shared among all the machines,
as it will be if using a shared file system, the change must be made to
each copy of the global configuration file before issuing the
condor_reconfig command.

Issuing a condor_reconfig command is inadequate for some
configuration variables. For those, a restart of HTCondor is required.
Those configuration variables that require a restart are listed in
the Macros That Will Require a Restart When Changed section. You can also refer to the
condor_restart manual page.

DaemonCore

This section is a brief description of DaemonCore. DaemonCore is a
library that is shared among most of the HTCondor daemons which provides
common functionality. Currently, the following daemons use DaemonCore:

	condor_master

	condor_startd

	condor_schedd

	condor_collector

	condor_negotiator

	condor_kbdd

	condor_gridmanager

	condor_credd

	condor_had

	condor_replication

	condor_transferer

	condor_job_router

	condor_lease_manager

	condor_rooster

	condor_shared_port

	condor_defrag

	condor_c-gahp

	condor_c-gahp_worker_thread

	condor_dagman

	condor_ft-gahp

	condor_rooster

	condor_shadow

	condor_shared_port

	condor_transferd

	condor_vm-gahp

Most of DaemonCore’s details are not interesting for administrators.
However, DaemonCore does provide a uniform interface for the daemons to
various Unix signals, and provides a common set of command-line options
that can be used to start up each daemon.

DaemonCore and Unix signals

One of the most visible features that DaemonCore provides for
administrators is that all daemons which use it behave the same way on
certain Unix signals. The signals and the behavior DaemonCore provides
are listed below:

	SIGHUP
	Causes the daemon to reconfigure itself.

	SIGTERM
	Causes the daemon to gracefully shutdown.

	SIGQUIT
	Causes the daemon to quickly shutdown.

Exactly what gracefully and quickly means varies from daemon to daemon.
For daemons with little or no state (the condor_kbdd,
condor_collector and condor_negotiator) there is no difference,
and both SIGTERM and SIGQUIT signals result in the daemon
shutting itself down quickly. For the condor_master, a graceful
shutdown causes the condor_master to ask all of its children to
perform their own graceful shutdown methods. The quick shutdown causes
the condor_master to ask all of its children to perform their own
quick shutdown methods. In both cases, the condor_master exits after
all its children have exited. In the condor_startd, if the machine is
not claimed and running a job, both the SIGTERM and SIGQUIT
signals result in an immediate exit. In the condor_schedd, if
there are no jobs currently running, there will be no condor_shadow
processes, and both signals result in an immediate exit. However, with
jobs running, a graceful shutdown causes the condor_schedd to ask
each condor_shadow to gracefully vacate the job it is serving, while
a quick shutdown results in a hard kill of every condor_shadow.

For all daemons, a reconfigure results in the daemon re-reading its
configuration file(s), causing any settings that have changed to take
effect. See the Introduction to Configuration section for
full details on what settings are in the configuration files and what they do.

DaemonCore and Command-line Arguments

The second visible feature that DaemonCore provides to administrators is
a common set of command-line arguments that all daemons understand.
These arguments and what they do are described below:

	-a string
	Append a period character (‘.’) concatenated with string to the
file name of the log for this daemon, as specified in the
configuration file.

	-b
	Causes the daemon to start up in the background. When a DaemonCore
process starts up with this option, it disassociates itself from the
terminal and forks itself, so that it runs in the background. This
is the default behavior for the condor_master. Prior to 8.9.7 it
was the default for all HTCondor daemons.

	-c filename
	Causes the daemon to use the specified filename as a full path
and file name as its global configuration file. This overrides the
CONDOR_CONFIG environment variable and the regular locations
that HTCondor checks for its configuration file.

	-d
	Use dynamic directories. The $(LOG), $(SPOOL), and
$(EXECUTE) directories are all created by the daemon at run
time, and they are named by appending the parent’s IP address and
PID to the value in the configuration file. These values are then
inherited by all children of the daemon invoked with this -d
argument. For the condor_master, all HTCondor processes will use
the new directories. If a condor_schedd is invoked with the -d
argument, then only the condor_schedd daemon and any
condor_shadow daemons it spawns will use the dynamic directories
(named with the condor_schedd daemon’s PID).

Note that by using a dynamically-created spool directory named by
the IP address and PID, upon restarting daemons, jobs submitted to
the original condor_schedd daemon that were stored in the old
spool directory will not be noticed by the new condor_schedd
daemon, unless you manually specify the old, dynamically-generated
SPOOL directory path in the configuration of the new
condor_schedd daemon.

	-f
	Causes the daemon to start up in the foreground. Instead of forking,
the daemon runs in the foreground. Since 8.9.7, this has been the default
for all daemons other than the condor_master.

	-k filename
	For non-Windows operating systems, causes the daemon to read out a
PID from the specified filename, and send a SIGTERM to that
process. The daemon started with this optional argument waits until
the daemon it is attempting to kill has exited.

	-l directory
	Overrides the value of LOG as specified in
the configuration files. Primarily, this option is used with the
condor_kbdd when it needs to run as the individual user logged
into the machine, instead of running as root. Regular users would
not normally have permission to write files into HTCondor’s log
directory. Using this option, they can override the value of LOG
and have the condor_kbdd write its log file into a directory that
the user has permission to write to.

	-local-name name
	Specify a local name for this instance of the daemon. This local
name will be used to look up configuration parameters.
The Configuration File Macros section contains details on how this local name will be used in the
configuration.

	-p port
	Causes the daemon to bind to the specified port as its command
socket. The condor_master daemon uses this option to ensure that
the condor_collector and condor_negotiator start up using
well-known ports that the rest of HTCondor depends upon them using.

	-pidfile filename
	Causes the daemon to write out its PID (process id number) to the
specified filename. This file can be used to help shutdown the
daemon without first searching through the output of the Unix ps
command.

Since daemons run with their current working directory set to the
value of LOG, if a full path (one that begins with a slash
character, /) is not specified, the file will be placed in the
LOG directory.

	-q
	Quiet output; write less verbose error messages to stderr when
something goes wrong, and before regular logging can be initialized.

	-r minutes
	Causes the daemon to set a timer, upon expiration of which, it sends
itself a SIGTERM for graceful shutdown.

	-t
	Causes the daemon to print out its error message to stderr
instead of its specified log file. This option forces the -f
option.

	-v
	Causes the daemon to print out version information and exit.

 Introduction to Configuration

Introduction to Configuration

This section of the manual contains general information about HTCondor
configuration, relating to all parts of the HTCondor system. If you’re
setting up an HTCondor pool, you should read this section before you
read the other configuration-related sections:

	The Configuration Templates section contains
information about configuration templates, which are now the
preferred way to set many configuration macros.

	The Configuration Macros section contains
information about the hundreds of individual configuration macros. In
general, it is best to try to achieve your desired configuration
using configuration templates before resorting to setting individual
configuration macros, but it is sometimes necessary to set individual
configuration macros.

	The settings that control the policy under which HTCondor will start,
suspend, resume, vacate or kill jobs are described in
the Configuration for Execution Points section on Policy
Configuration for the condor_startd.

HTCondor Configuration Files

The HTCondor configuration files are used to customize how HTCondor
operates at a given site. The basic configuration as shipped with
HTCondor can be used as a starting point, but most likely you will want
to modify that configuration to some extent.

Each HTCondor program will, as part of its initialization process,
configure itself by calling a library routine which parses the various
configuration files that might be used, including pool-wide,
platform-specific, and machine-specific configuration files. Environment
variables may also contribute to the configuration.

The result of configuration is a list of key/value pairs. Each key is a
configuration variable name, and each value is a string literal that may
utilize macro substitution (as defined below). Some configuration
variables are evaluated by HTCondor as ClassAd expressions; some are
not. Consult the documentation for each specific case. Unless otherwise
noted, configuration values that are expected to be numeric or boolean
constants can be any valid ClassAd expression of operators on constants.
Example:

MINUTE = 60
HOUR = (60 * $(MINUTE))
SHUTDOWN_GRACEFUL_TIMEOUT = ($(HOUR)*24)

Ordered Evaluation to Set the Configuration

Multiple files, as well as a program’s environment variables, determine
the configuration. The order in which attributes are defined is
important, as later definitions override earlier definitions. The order
in which the (multiple) configuration files are parsed is designed to
ensure the security of the system. Attributes which must be set a
specific way must appear in the last file to be parsed. This prevents
both the naive and the malicious HTCondor user from subverting the
system through its configuration. The order in which items are parsed
is:

	a single initial configuration file, which has historically been
known as the global configuration file (see below);

	other configuration files that are referenced and parsed due to
specification within the single initial configuration file (these
files have historically been known as local configuration files);

	if HTCondor daemons are not running as root on Unix platforms, the
file $(HOME)/.condor/user_config if it exists, or the file
defined by configuration variable USER_CONFIG_FILE;

if HTCondor daemons are not running as Local System on Windows
platforms, the file %USERPROFILE\.condor\user_config if it exists,
or the file defined by configuration variable USER_CONFIG_FILE;

	specific environment variables whose names are prefixed with
CONDOR (note that these environment variables directly define
macro name/value pairs, not the names of configuration files).

Some HTCondor tools utilize environment variables to set their
configuration; these tools search for specifically-named environment
variables. The variable names are prefixed by the string _CONDOR_ or
condor. The tools strip off the prefix, and utilize what remains
as configuration. As the use of environment variables is the last within
the ordered evaluation, the environment variable definition is used. The
security of the system is not compromised, as only specific variables
are considered for definition in this manner, not any environment
variables with the _CONDOR_ prefix.

The location of the single initial configuration file differs on Windows
from Unix platforms. For Unix platforms, the location of the single
initial configuration file starts at the top of the following list. The
first file that exists is used, and then remaining possible file
locations from this list become irrelevant.

	the file specified by the CONDOR_CONFIG environment variable. If
there is a problem reading that file, HTCondor will print an error
message and exit right away.

	/etc/condor/condor_config

	/usr/local/etc/condor_config

	~condor/condor_config

For Windows platforms, the location of the single initial configuration
file is determined by the contents of the environment variable
CONDOR_CONFIG. If this environment variable is not defined, then the
location is the registry value of
HKEY_LOCAL_MACHINE/Software/Condor/CONDOR_CONFIG.

The single, initial configuration file may contain the specification of
one or more other configuration files, referred to here as local
configuration files. Since more than one file may contain a definition
of the same variable, and since the last definition of a variable sets
the value, the parse order of these local configuration files is fully
specified here. In order:

	The value of configuration variable
LOCAL_CONFIG_DIR lists one or more directories which
contain configuration files. The list is parsed from left to right.
The leftmost (first) in the list is parsed first. Within each
directory, a lexicographical ordering by file name determines the
ordering of file consideration.

	The value of configuration variable
LOCAL_CONFIG_FILE lists one or more configuration
files. These listed files are parsed from left to right. The leftmost
(first) in the list is parsed first.

	If one of these steps changes the value (right hand side) of
LOCAL_CONFIG_DIR, then LOCAL_CONFIG_DIR is processed for a
second time, using the changed list of directories.

The parsing and use of configuration files may be bypassed by setting
environment variable CONDOR_CONFIG with the string ONLY_ENV.
With this setting, there is no attempt to locate or read configuration
files. This may be useful for testing where the environment contains all
needed information.

Configuration File Macros

Macro definitions are of the form:

<macro_name> = <macro_definition>

The macro name given on the left hand side of the definition is a case
insensitive identifier. There may be white space between the macro name,
the equals sign (=), and the macro definition. The macro definition is a
string literal that may utilize macro substitution.

Macro invocations are of the form:

$(macro_name[:<default if macro_name not defined>])

The colon and default are optional in a macro invocation. Macro
definitions may contain references to other macros, even ones that are
not yet defined, as long as they are eventually defined in the
configuration files. All macro expansion is done after all configuration
files have been parsed, with the exception of macros that reference
themselves.

A = xxx
C = $(A)

is a legal set of macro definitions, and the resulting value of C is
xxx. Note that C is actually bound to $(A), not its value.

As a further example,

A = xxx
C = $(A)
A = yyy

is also a legal set of macro definitions, and the resulting value of
C is yyy.

A macro may be incrementally defined by invoking itself in its
definition. For example,

A = xxx
B = $(A)
A = $(A)yyy
A = $(A)zzz

is a legal set of macro definitions, and the resulting value of A is
xxxyyyzzz. Note that invocations of a macro in its own definition
are immediately expanded. $(A) is immediately expanded in line 3 of
the example. If it were not, then the definition would be impossible to
evaluate.

Recursively defined macros such as

A = $(B)
B = $(A)

are not allowed. They create definitions that HTCondor refuses to parse.

A macro invocation where the macro name is not defined results in a
substitution of the empty string. Consider the example

MAX_ALLOC_CPUS = $(NUMCPUS)-1

If NUMCPUS is not defined, then this macro substitution becomes

MAX_ALLOC_CPUS = -1

The default value may help to avoid this situation. The default value
may be a literal

MAX_ALLOC_CPUS = $(NUMCPUS:4)-1

such that if NUMCPUS is not defined, the result of macro
substitution becomes

MAX_ALLOC_CPUS = 4-1

The default may be another macro invocation:

MAX_ALLOC_CPUS = $(NUMCPUS:$(DETECTED_CPUS_LIMIT))-1

These default specifications are restricted such that a macro invocation
with a default can not be nested inside of another default. An
alternative way of stating this restriction is that there can only be
one colon character per line. The effect of nested defaults can be
achieved by placing the macro definitions on separate lines of the
configuration.

All entries in a configuration file must have an operator, which will be
an equals sign (=). Identifiers are alphanumerics combined with the
underscore character, optionally with a subsystem name and a period as a
prefix. As a special case, a line without an operator that begins with a
left square bracket will be ignored. The following two-line example
treats the first line as a comment, and correctly handles the second
line.

[HTCondor Settings]
my_classad = [foo=bar]

To simplify pool administration, any configuration variable name may be
prefixed by a subsystem (see the $(SUBSYSTEM) macro in
Pre-Defined Macros for the
list of subsystems) and the period (.) character. For configuration variables
defined this way, the value is applied to the specific subsystem. For example,
the ports that HTCondor may use can be restricted to a range using the
HIGHPORT and LOWPORT configuration variables.

MASTER.LOWPORT = 20000
MASTER.HIGHPORT = 20100

Note that all configuration variables may utilize this syntax, but
nonsense configuration variables may result. For example, it makes no
sense to define

NEGOTIATOR.MASTER_UPDATE_INTERVAL = 60

since the condor_negotiator daemon does not use the
MASTER_UPDATE_INTERVAL variable.

It makes little sense to do so, but HTCondor will configure correctly
with a definition such as

MASTER.MASTER_UPDATE_INTERVAL = 60

The condor_master uses this configuration variable, and the prefix of
MASTER. causes this configuration to be specific to the
condor_master daemon.

As of HTCondor version 8.1.1, evaluation works in the expected manner
when combining the definition of a macro with use of a prefix that gives
the subsystem name and a period. Consider the example

FILESPEC = A
MASTER.FILESPEC = B

combined with a later definition that incorporates FILESPEC in a
macro:

USEFILE = mydir/$(FILESPEC)

When the condor_master evaluates variable USEFILE, it evaluates
to mydir/B. Previous to HTCondor version 8.1.1, it evaluated to
mydir/A. When any other subsystem evaluates variable USEFILE, it
evaluates to mydir/A.

This syntax has been further expanded to allow for the specification of
a local name on the command line using the command line option

-local-name <local-name>

This allows multiple instances of a daemon to be run by the same
condor_master daemon, each instance with its own local configuration
variable.

The ordering used to look up a variable, called <parameter name>:

	<subsystem name>.<local name>.<parameter name>

	<local name>.<parameter name>

	<subsystem name>.<parameter name>

	<parameter name>

If this local name is not specified on the command line, numbers 1 and 2
are skipped. As soon as the first match is found, the search is
completed, and the corresponding value is used.

This example configures a condor_master to run 2 condor_schedd
daemons. The condor_master daemon needs the configuration:

XYZZY = $(SCHEDD)
XYZZY_ARGS = -local-name xyzzy
DAEMON_LIST = $(DAEMON_LIST) XYZZY
DC_DAEMON_LIST = + XYZZY
XYZZY_LOG = $(LOG)/SchedLog.xyzzy

Using this example configuration, the condor_master starts up a
second condor_schedd daemon, where this second condor_schedd
daemon is passed -local-name xyzzy on the command line.

Continuing the example, configure the condor_schedd daemon named
xyzzy. This condor_schedd daemon will share all configuration
variable definitions with the other condor_schedd daemon, except for
those specified separately.

SCHEDD.XYZZY.SCHEDD_NAME = XYZZY
SCHEDD.XYZZY.SCHEDD_LOG = $(XYZZY_LOG)
SCHEDD.XYZZY.SPOOL = $(SPOOL).XYZZY

Note that the example SCHEDD_NAME and SPOOL are specific to the
condor_schedd daemon, as opposed to a different daemon such as the
condor_startd. Other HTCondor daemons using this feature will have
different requirements for which parameters need to be specified
individually. This example works for the condor_schedd, and more
local configuration can, and likely would be specified.

Also note that each daemon’s log file must be specified individually,
and in two places: one specification is for use by the condor_master,
and the other is for use by the daemon itself. In the example, the
XYZZY condor_schedd configuration variable
SCHEDD.XYZZY.SCHEDD_LOG definition references the condor_master
daemon’s XYZZY_LOG.

Comments and Line Continuations

An HTCondor configuration file may contain comments and line
continuations. A comment is any line beginning with a pound character
(#). A continuation is any entry that continues across multiples lines.
Line continuation is accomplished by placing the backslash character (\)
at the end of any line to be continued onto another. Valid examples of
line continuation are

START = (KeyboardIdle > 15 * $(MINUTE)) && \
((LoadAvg - CondorLoadAvg) <= 0.3)

and

ADMIN_MACHINES = condor.cs.wisc.edu, raven.cs.wisc.edu, \
stork.cs.wisc.edu, ostrich.cs.wisc.edu, \
bigbird.cs.wisc.edu
ALLOW_ADMINISTRATOR = $(ADMIN_MACHINES)

Where a line continuation character directly precedes a comment, the
entire comment line is ignored, and the following line is used in the
continuation. Line continuation characters within comments are ignored.

Both this example

A = $(B) \
$(C)
$(D)

and this example

A = $(B) \
$(C) \
$(D)

result in the same value for A:

A = $(B) $(D)

Multi-Line Values

As of version 8.5.6, the value for a macro can comprise multiple lines
of text. The syntax for this is as follows:

<macro_name> @=<tag>
<macro_definition lines>
@<tag>

For example:

modify routed job attributes:
remove it if it goes on hold or stays idle for over 6 hours
JOB_ROUTER_DEFAULTS @=jrd
 [
 requirements = target.WantJobRouter is true;
 MaxIdleJobs = 10;
 MaxJobs = 200;

 set_PeriodicRemove = JobStatus == 5 || (JobStatus == 1 && (time() - QDate) > 3600*6);
 delete_WantJobRouter = true;
 set_requirements = true;
]
 @jrd

Note that in this example, the square brackets are part of the
JOB_ROUTER_DEFAULTS value.

Executing a Program to Produce Configuration Macros

Instead of reading from a file, HTCondor can run a program to obtain
configuration macros. The vertical bar character (|) as the last
character defining a file name provides the syntax necessary to tell
HTCondor to run a program. This syntax may only be used in the
definition of the CONDOR_CONFIG environment variable, or the
LOCAL_CONFIG_FILE configuration variable.

The command line for the program is formed by the characters preceding
the vertical bar character. The standard output of the program is parsed
as a configuration file would be.

An example:

LOCAL_CONFIG_FILE = /bin/make_the_config|

Program /bin/make_the_config is executed, and its output is the set
of configuration macros.

Note that either a program is executed to generate the configuration
macros or the configuration is read from one or more files. The syntax
uses space characters to separate command line elements, if an executed
program produces the configuration macros. Space characters would
otherwise separate the list of files. This syntax does not permit
distinguishing one from the other, so only one may be specified.

(Note that the include command
syntax (see below) is now the preferred way to execute a program to
generate configuration macros.)

Including Configuration from Elsewhere

Externally defined configuration can be incorporated using the following
syntax:

include [ifexist] : <file>
include : <cmdline>|
include [ifexist] command [into <cache-file>] : <cmdline>

(Note that the ifexist and into options were added in version 8.5.7.
Also note that the command option must be specified in order to use the
into option - just using the bar after <cmdline> will not work.)

In the file form of the include command, the <file> specification
must describe a single file, the contents of which will be parsed and
incorporated into the configuration. Unless the ifexist option is
specified, the non-existence of the file is a fatal error.

In the command line form of the include command (specified with
either the command option or by appending a bar (|) character after the
<cmdline> specification), the <cmdline> specification must describe a
command line (program and arguments); the command line will be executed,
and the output will be parsed and incorporated into the configuration.

If the into option is not used, the command line will be executed every
time the configuration file is referenced. This may well be undesirable,
and can be avoided by using the into option. The into keyword must be
followed by the full pathname of a file into which to write the output
of the command line. If that file exists, it will be read and the
command line will not be executed. If that file does not exist, the
output of the command line will be written into it and then the cache
file will be read and incorporated into the configuration. If the
command line produces no output, a zero length file will be created. If
the command line returns a non-zero exit code, configuration will abort
and the cache file will not be created unless the ifexist keyword is
also specified.

The include key word is case insensitive. There are no requirements
for white space characters surrounding the colon character.

Consider the example

FILE = config.$(FULL_HOSTNAME)
include : $(LOCAL_DIR)/$(FILE)

Values are acquired for configuration variables FILE, and
LOCAL_DIR by immediate evaluation, causing variable
FULL_HOSTNAME to also be immediately evaluated. The resulting value
forms a full path and file name. This file is read and parsed. The
resulting configuration is incorporated into the current configuration.
This resulting configuration may contain further nested include
specifications, which are also parsed, evaluated, and incorporated.
Levels of nested include are limited, such that infinite nesting
is discovered and thwarted, while still permitting nesting.

Consider the further example

SCRIPT_FILE = script.$(IP_ADDRESS)
include : $(RELEASE_DIR)/$(SCRIPT_FILE) |

In this example, the bar character at the end of the line causes a
script to be invoked, and the output of the script is incorporated into
the current configuration. The same immediate parsing and evaluation
occurs in this case as when a file’s contents are included.

For pools that are transitioning to using this new syntax in
configuration, while still having some tools and daemons with HTCondor
versions earlier than 8.1.6, special syntax in the configuration will
cause those daemons to fail upon startup, rather than continuing, but
incorrectly parsing the new syntax. Newer daemons will ignore the extra
syntax. Placing the @ character before the include key word causes
the older daemons to fail when they attempt to parse this syntax.

Here is the same example, but with the syntax that causes older daemons
to fail when reading it.

FILE = config.$(FULL_HOSTNAME)
@include : $(LOCAL_DIR)/$(FILE)

A daemon older than version 8.1.6 will fail to start. Running an older
condor_config_val identifies the @include line as being bad. A
daemon of HTCondor version 8.1.6 or more recent sees:

FILE = config.$(FULL_HOSTNAME)
include : $(LOCAL_DIR)/$(FILE)

and starts up successfully.

Here is an example using the new ifexist and into options:

stuff.pl writes "STUFF=1" to stdout
include ifexist command into $(LOCAL_DIR)/stuff.config : perl $(LOCAL_DIR)/stuff.pl

Reporting Errors and Warnings

As of version 8.5.7, warning and error messages can be included in
HTCondor configuration files.

The syntax for warning and error messages is as follows:

warning : <warning message>
error : <error message>

The warning and error messages will be printed when the configuration
file is used (when almost any HTCondor command is run, for example).
Error messages (unlike warnings) will prevent the successful use of the
configuration file. This will, for example, prevent a daemon from
starting, and prevent condor_config_val from returning a value.

Here’s an example of using an error message in a configuration file
(combined with some of the new include features documented above):

stuff.pl writes "STUFF=1" to stdout
include command into $(LOCAL_DIR)/stuff.config : perl $(LOCAL_DIR)/stuff.pl
if ! defined stuff
 error : stuff is needed!
endif

Conditionals in Configuration

Conditional if/else semantics are available in a limited form. The
syntax:

if <simple condition>
 <statement>
 . . .
 <statement>
else
 <statement>
 . . .
 <statement>
endif

An else key word and statements are not required, such that simple if
semantics are implemented. The <simple condition> does not permit
compound conditions. It optionally contains the exclamation point
character (!) to represent the not operation, followed by

	the defined keyword followed by the name of a variable. If the
variable is defined, the statement(s) are incorporated into the
expanded input. If the variable is not defined, the statement(s) are
not incorporated into the expanded input. As an example,

if defined MY_UNDEFINED_VARIABLE
 X = 12
else
 X = -1
endif

results in X = -1, when MY_UNDEFINED_VARIABLE is not yet
defined.

	the version keyword, representing the version number of of the daemon
or tool currently reading this conditional. This keyword is followed
by an HTCondor version number. That version number can be of the form
x.y.z or x.y. The version of the daemon or tool is compared to the
specified version number. The comparison operators are

	== for equality. Current version 8.2.3 is equal to 8.2.

	>= to see if the current version number is greater than or equal
to. Current version 8.2.3 is greater than 8.2.2, and current
version 8.2.3 is greater than or equal to 8.2.

	<= to see if the current version number is less than or equal to.
Current version 8.2.0 is less than 8.2.2, and current version
8.2.3 is less than or equal to 8.2.

As an example,

if version >= 8.1.6
 DO_X = True
else
 DO_Y = True
endif

results in defining DO_X as True if the current version of
the daemon or tool reading this if statement is 8.1.6 or a more
recent version.

	True or yes or the value 1. The statement(s) are incorporated.

	False or no or the value 0 The statement(s) are not incorporated.

	$(<variable>) may be used where the immediately evaluated value is a
simple boolean value. A value that evaluates to the empty string is
considered False, otherwise a value that does not evaluate to a
simple boolean value is a syntax error.

The syntax

if <simple condition>
 <statement>
 . . .
 <statement>
elif <simple condition>
 <statement>
 . . .
 <statement>
endif

is the same as syntax

if <simple condition>
 <statement>
 . . .
 <statement>
else
 if <simple condition>
 <statement>
 . . .
 <statement>
 endif
endif

Function Macros in Configuration

A set of predefined functions increase flexibility. Both submit
description files and configuration files are read using the same
parser, so these functions may be used in both submit description files
and configuration files.

Case is significant in the function’s name, so use the same letter case
as given in these definitions.

	$CHOICE(index, listname) or $CHOICE(index, item1, item2, ...)
	An item within the list is returned. The list is represented by a
parameter name, or the list items are the parameters. The index
parameter determines which item. The first item in the list is at
index 0. If the index is out of bounds for the list contents, an
error occurs.

	$ENV(environment-variable-name[:default-value])
	Evaluates to the value of environment variable
environment-variable-name. If there is no environment variable
with that name, Evaluates to UNDEFINED unless the optional
:default-value is used; in which case it evaluates to default-value.
For example,

A = $ENV(HOME)

binds A to the value of the HOME environment variable.

	$F[fpduwnxbqa](filename)
	One or more of the lower case letters may be combined to form the
function name and thus, its functionality. Each letter operates on
the filename in its own way.

	f convert relative path to full path by prefixing the current
working directory to it. This option works only in
condor_submit files.

	p refers to the entire directory portion of filename,
with a trailing slash or backslash character. Whether a slash or
backslash is used depends on the platform of the machine. The
slash will be recognized on Linux platforms; either a slash or
backslash will be recognized on Windows platforms, and the parser
will use the same character specified.

	d refers to the last portion of the directory within the
path, if specified. It will have a trailing slash or backslash,
as appropriate to the platform of the machine. The slash will be
recognized on Linux platforms; either a slash or backslash will
be recognized on Windows platforms, and the parser will use the
same character specified unless u or w is used. if b is used the
trailing slash or backslash will be omitted.

	u convert path separators to Unix style slash characters

	w convert path separators to Windows style backslash
characters

	n refers to the file name at the end of any path, but without
any file name extension. As an example, the return value from
$Fn(/tmp/simulate.exe) will be simulate (without the
.exe extension).

	x refers to a file name extension, with the associated period
(.). As an example, the return value from
$Fx(/tmp/simulate.exe) will be .exe.

	b when combined with the d option, causes the trailing slash
or backslash to be omitted. When combined with the x option,
causes the leading period (.) to be omitted.

	q causes the return value to be enclosed within quotes.
Double quote marks are used unless a is also specified.

	a When combined with the q option, causes the return value to
be enclosed within single quotes.

$DIRNAME(filename) is the same as $Fp(filename)

$BASENAME(filename) is the same as $Fnx(filename)

	$INT(item-to-convert) or $INT(item-to-convert, format-specifier)
	Expands, evaluates, and returns a string version of
item-to-convert. The format-specifier has the same syntax as
a C language or Perl format specifier. If no format-specifier is
specified, “%d” is used as the format specifier. The format
is everything after the comma, including spaces. It can include other text.

X = 2
Y = 6
XYArea = $(X) * $(Y)

	$INT(XYArea) is 12

	$INT(XYArea,%04d) is 0012

	$INT(XYArea,Area=%d) is Area=12

	$RANDOM_CHOICE(choice1, choice2, choice3, ...)
	 A random choice
of one of the parameters in the list of parameters is made. For
example, if one of the integers 0-8 (inclusive) should be randomly
chosen:

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)

	$RANDOM_INTEGER(min, max [, step])
	 A random integer
within the range min and max, inclusive, is selected. The optional
step parameter controls the stride within the range, and it defaults
to the value 1. For example, to randomly chose an even integer in
the range 0-8 (inclusive):

$RANDOM_INTEGER(0, 8, 2)

	$REAL(item-to-convert) or $REAL(item-to-convert, format-specifier)
	Expands, evaluates, and returns a string version of
item-to-convert for a floating point type. The
format-specifier is a C language or Perl format specifier. If no
format-specifier is specified, “%16G” is used as a format
specifier.

	$SUBSTR(name, start-index) or $SUBSTR(name, start-index, length)
	Expands name and returns a substring of it. The first character of
the string is at index 0. The first character of the substring is at
index start-index. If the optional length is not specified, then the
substring includes characters up to the end of the string. A
negative value of start-index works back from the end of the string.
A negative value of length eliminates use of characters from the end
of the string. Here are some examples that all assume

Name = abcdef

	$SUBSTR(Name, 2) is cdef.

	$SUBSTR(Name, 0, -2) is abcd.

	$SUBSTR(Name, 1, 3) is bcd.

	$SUBSTR(Name, -1) is f.

	$SUBSTR(Name, 4, -3) is the empty string, as there are no
characters in the substring for this request.

	$STRING(item-to-convert) or $STRING(item-to-convert, format-specifier)
	Expands, evaluates, and returns a string version of
item-to-convert for a string type. The
format-specifier is a C language or Perl format specifier. If no
format-specifier is specified, “%s” is used as a format specifier. The format
is everything after the comma, including spaces. It can include other text
besides %s.

FULL_HOSTNAME = host.DOMAIN
LCFullHostname = toLower("$(FULL_HOSTNAME)")

	$STRING(LCFullHostname) is host.domain

	$STRING(LCFullHostname,Name: %s) is Name: host.domain

	$EVAL(item-to-convert)
	Expands, evaluates, and returns an classad unparsed version of
item-to-convert for any classad type, the resulting value is
formatted using the equivalent of the “%v” format specifier - If it
is a string it is printed without quotes, otherwise it is unparsed
as a classad value. Due to the way the parser works, you must use
a variable to hold the expression to be evaluated if the expression
has a close brace ‘)’ character.

slist = "a,B,c"
lcslist = tolower($(slist))
list = split($(slist))
clist = size($(list)) * 10
semilist = join(";",split($(lcslist)))

	$EVAL(slist) is a,B,c

	$EVAL(lcslist) is a,b,c

	$EVAL(list) is {"a", "B", "c"}

	$EVAL(clist) is 30

	$EVAL(semilist) is a;b;c

Environment references are not currently used in standard HTCondor
configurations. However, they can sometimes be useful in custom
configurations.

Macros That Will Require a Restart When Changed

The HTCondor daemons will generally not undo any work they have already done when the configuration changes
so any change that would require undoing of work will require a restart before it takes effect. There a very
few exceptions to this rule. The condor_master will pick up changes to DAEMON_LIST on a reconfig.
Although it may take hours for a condor_startd to drain and exit when it is removed from the daemon list.

Examples of changes requiring a restart would any change to how HTCondor uses the network. A configuration change
to NETWORK_INTERFACE, NETWORK_HOSTNAME, ENABLE_IPV4 and ENABLE_IPV6 require a restart. A change in the
way daemons locate each other, such as PROCD_ADDRESS, BIND_ALL_INTERFACES, USE_SHARED_PORT or SHARED_PORT_PORT
require a restart of the condor_master and all of the daemons under it.

The condor_startd requires a restart to make any change to the slot resource configuration, This would include MEMORY,
NUM_CPUS and

 Configuration Macros

Configuration Macros

The section contains a list of the individual configuration macros for
HTCondor. Before attempting to set up HTCondor configuration, you should
probably read the Introduction to Configuration section
and possibly the
Configuration Templates
section.

The settings that control the policy under which HTCondor will start,
suspend, resume, vacate or kill jobs are described in
condor_startd Policy Configuration,
not in this section.

HTCondor-wide Configuration File Entries

This section describes settings which affect all parts of the HTCondor
system. Other system-wide settings can be found in
Network-Related Configuration File Entries
and Shared File System Configuration File Macros.

	SUBSYSTEM¶
	Various configuration macros described below may include

 Configuration for Execution Points

Configuration for Execution Points

Introduction

HTCondor Execution Points, or EP’s, are the machines where jobs run. Every
Execution Point has an implied human owner who can control the policy of these
machines in very fine detail. The configuration of an EP is responsible for:

Execution Point (EP) Diagram

 flowchart TD
 condor_master --> condor_startd
 condor_startd --> condor_starter_for_slot1
 condor_startd --> condor_starter_for_slot2
 condor_starter_for_slot1 --> job_in_slot1
 condor_starter_for_slot2 --> job_in_slot2

Daemons for a Execution Point, one condor_starter per running job.

	Dividing a single machine one or more slots, each of which can run at most
one job at a time. These slots can protect the machine and other slots
by limiting the amount of resources used by the job in the slot. Different
slots can support different policies.

	Deciding when jobs run, and when they should not run. More specifically,
the EP can decide which jobs run when, (and when they stop running). This
is covered in section
condor_startd Policy Configuration below.

	Partially in service of the above, the EP detects and advertises aspects
about the machine. These are placed in attributes in a machine or slot
Classad, and sent to the condor_collector for global querying. (See
Machine ClassAd Attributes) Some of these attributes may be about the hardware, such as how
much memory the machine has, or what kind of GPU it has. Other attributes
may be about the software, such as what Operating System it is running.
Some are predefined and automatically advertised by the system, others may
be custom attributes created and defined by the administrator. These custom
attributes may be statically defined (e.g. this machine is on the 3rd floor,
and belongs to the Astronomy department), or they may be dynamically
discovered by scripts (e.g. The temperature of the CPU is currently 40
degrees C) This is covered in section
Custom and system slot attributes below.

	Providing an environment, and services for running jobs. These services
may include the ability to run in a container or VM environment, such as
Docker, Apptainer or Xen; providing the capability for the job to read or
update information on the AP; and setting environment variables for the job
to read.

The execution point is mainly managed by the condor_startd daemon, which itself
is managed by a condor_master daemon. Each running job in a slot is then
managed by an instance of the condor_starter daemon, which was spawned from
the condor_startd when the job was started.

Slots: where jobs run

Each EP runs one condor_startd daemon. The HTCondor “slot” describes a set
of resources (e.g. Memory, Cpus, Disk) where a job may run. Each slot is
represented by its own machine ClassAd, distinguished by the machine ClassAd
attribute Name, which is of the form slot<N>@hostname, or
slot<M_N>@hostname. The value for <N> will also be defined with
machine ClassAd attribute SlotID. Every condor_startd contains
one or more slots, depending on configuration, and the hardware it runs on.
There are three types of slots: Partitionable, Dynamic, and Static.

Partitionable Slots

By default, each EP starts out with one partitionable slot, which represents
all the detected resources on the machine. Attributes like Memory,
Disk and Cpus describe how much is available. However, no jobs run
directly in Partionable slots. Rather, partitionable slots serve as a parent
for Dynamic slots. Partionable slots have the attribute SlotType set to
Partitionable, and PartionableSlot set to True, and are sometimes
called p-slots for convenience. p-slots are named slotN@startd_name, where N
is usually 1. Although possible, it is rare to have multiple p-slots on one
machine.

Dynamic Slots

Dynamic slots actually run jobs. They are created dynamically, from the
resources of their parent Partitionable Slot. For example, assume a
partitionable slot on a machine has 3 cpu cores, 10 Gb of Memory, and 100 Gb of
disk. Then, when a job which is allocated 1 cpu core, 2 Gb of Memory and 20 Gb
of disk is started under that partitionable slot, the partionable slot is left
with 2 cores, 8 Gb of memory and 80 Gb of disk. A new dynamic slot is created
with the allocated resources. When the job exits, if the AP has another job
that fits in the dynamic slot (or d-slot), the AP can reuse the d-slot for
another job. At such time as it cannot reused the slot the d-slot is
destroyed, and the resources allocated to it are returned to the parent p-slot.
Depending on the configuration, the privilege level of HTCondor, and the OS,
these slot may or may not enforce the resources limits they have allocated.
dslots are named slotN_M@startd_name, where N is the number of the parent
partitionable slot (often “1”). Dynamic slots have the attribute
DynamicSlot set to True, and the attribute SlotType set to
Dynamic.

Discovering classad attribute values

The values of attributes in all slots on a machine may be listed by using the command:

$ condor_status -l hostname

Static Slots

Jobs run in static slots, in much they same way they do for dynamic slots.
However, the number of static slots in a condor_startd, and their size is
fixed by configuration at boot time of the condor_startd, and cannot be
changed without restarting the condor_startd. By default, no static slots
are created. Static slots are named slotN@startd_name, where N starts at 1 and
continues to the number of static slots. The configuration setting use
FEATURE : StaticSlots will configure a startd to advertise zero partitionable
slots, and one static slot per detected core, with 1 cpu core in each slot, and
each slot evenly dividing the detected memory and execution disk space.
However, an administrator can configure the various static slots to
have any amount of resources. See following section for details.

Dividing System Resources in Multi-core Machines

Within a machine the shared system resources of cores, RAM, swap space
and disk space will be divided for use by the slots. There are two main
ways to go about dividing the resources of a multi-core machine:

	Evenly divide all resources.
	Prior to HTCondor 23.0 the condor_startd will automatically divide the
machine into multiple slots by default, placing one core in each slot, and evenly
dividing all shared resources among the slots. Beginning with HTCondor 23.0
the condor_startd will create a single partitionable slot by default.

In HTCondor 23.0 you can use the configuration template use FEATURE : StaticSlots
to configure a number of static slots. If used without arguments this
configuration template will define a number of single core static slots equal to
the number of detected cpu cores.

To simply configure static slots in any version, configure NUM_SLOTS to the
integer number of slots desired. NUM_SLOTS may not be used to make HTCondor advertise
more slots than there are cores on the machine. The number of cores
is defined by NUM_CPUS.

	Define slot types.
	Instead of the default slot configuration, the machine may
have definitions of slot types, where each type is provided with a
fraction of shared system resources. Given the slot type definition,
control how many of each type are reported at any given time with
further configuration.

Configuration variables define the slot types, as well as variables
that list how much of each system resource goes to each slot type.

Configuration variable

 Configuration for Access Points

Configuration for Access Points

condor_schedd Policy Configuration

Schedd Job Transforms

The condor_schedd can transform jobs as they are submitted.
Transformations can be used to guarantee the presence of required job
attributes, to set defaults for job attributes the user does not supply,
or to modify job attributes so that they conform to schedd policy; an
example of this might be to automatically set accounting attributes
based on the owner of the job while letting the job owner indicate a
preference.

There can be multiple job transforms. Each transform can have a
Requirements expression to indicate which jobs it should transform and
which it should ignore. Transforms without a Requirements expression
apply to all jobs. Job transforms are applied in order. The set of
transforms and their order are configured using the Configuration
variable JOB_TRANSFORM_NAMES.

For each entry in this list there must be a corresponding

 Configuration for Central Managers

Configuration for Central Managers

User Priorities and Negotiation

HTCondor uses priorities to determine machine allocation for jobs. This
section details the priorities and the allocation of machines
(negotiation).

Note

A video describing how user priorities, negotiation and
fair share work in HTCondor is available at
https://www.youtube.com/watch?v=NNnrCjFV0tM

For accounting purposes, each user is identified by
username@uid_domain. Each user is assigned a priority value even if
submitting jobs from different machines in the same domain, or even if
submitting from multiple machines in the different domains.

The numerical priority value assigned to a user is inversely related to
the goodness of the priority. A user with a numerical priority of 5 gets
more resources than a user with a numerical priority of 50. There are
two priority values assigned to HTCondor users:

	Real User Priority (RUP), which measures resource usage of the user.

	Effective User Priority (EUP), which determines the number of
resources the user can get.

This section describes these two priorities and how they affect resource
allocations in HTCondor. Documentation on configuring and controlling
priorities may be found in the
condor_negotiator Configuration File Entries section.

Real User Priority (RUP)

A user’s RUP reports a smoothed average of the number of cores a user
has used over some recent period of time. Every user begins with a RUP of
one half (0.5), which is the lowest possible value. At steady state, the RUP
of a user equilibrates to the number of cores currently used.
So, if a specific user continuously uses exactly ten cores
for a long period of time, the RUP of that user asymptotically
approaches ten.

However, if the user decreases the number of cores used, the RUP asymptotically
lowers to the new value. The rate at which the priority value decays can be set
by the macro PRIORITY_HALFLIFE, a time period defined in seconds.
Intuitively, if the PRIORITY_HALFLIFE in a pool is set to the default
of 86400 seconds (one day), and a user with a RUP of 10 has no running jobs,
that user’s RUP would be 5 one day later, 2.5 two days later, and so on.

For example, if a new user has no historical usage, their RUP will start
at 0.5 If that user then has 100 cores running, their RUP will grow
as the graph below show:

[image: User Priority]

Or, if a new user with no historical usage has 100 cores running
for 24 hours, then removes all the jobs, so has no cores running,
their RUP will grow and shrink as shown below:

[image: User Priority]

Effective User Priority (EUP)

The effective user priority (EUP) of a user is used to determine how many cores
a user should receive. The EUP is simply the RUP multiplied by a priority
factor the administrator can set per-user. The default initial priority factor
for all new users as they first submit jobs is set by the configuration
variable DEFAULT_PRIO_FACTOR, and defaults to 1000.0. An administrator
can change this priority factor using the condor_userprio command. For
example, setting the priority factor of some user to 2,000 will grant that user
twice as many cores as a user with the default priority factor of 1,000,
assuming they both have the same historical usage.

The number of resources that a user may receive is inversely related to
the ratio between the EUPs of submitting users. User A with
EUP=5 will receive twice as many resources as user B with EUP=10 and
four times as many resources as user C with EUP=20. However, if A does
not use the full number of resources that A may be given, the available
resources are repartitioned and distributed among remaining users
according to the inverse ratio rule.

Assume two users with no history, named A and B, using a pool with 100 cores. To
simplify the math, also assume both users have an equal priority factor of 1.0.
User A submits a very large number of short-running jobs at time t = 0 zero. User
B waits until 48 hours later, and also submits an infinite number of short jobs.
At the beginning, the EUP doesn’t matter, as there is only one user with jobs,
and so user A gets the whole pool. At the 48 hour mark, both users compete for
the pool. Assuming the default PRIORITY_HALFLIFE of 24 hours, user A’s RUP
should be about 75.0 at the 48 hour mark, and User B will still be the minimum of
.5. At that instance, User B deserves 150 times User A. However, this ratio will
decay quickly. User A’s share of the pool will drop from all 100 cores to less than
one core immediately, but will quickly rebound to a handful of cores, and will
asymptotically approach half of the pool as User B gets the inverse. A graph
of these two users might look like this:

[image: Fair Share]

HTCondor supplies mechanisms to directly support two policies in which
EUP may be useful:

	Nice users
	A job may be submitted with the submit command
nice_user set to
True. This nice user job will have its RUP boosted by the
NICE_USER_PRIO_FACTOR
priority factor specified in the configuration, leading to a very
large EUP. This corresponds to a low priority for resources,
therefore using resources not used by other HTCondor users.

	Remote Users
	HTCondor’s flocking feature (see the Connecting HTCondor Pools with Flocking section)
allows jobs to run in a pool other than the local one. In addition,
the submit-only feature allows a user to submit jobs to another
pool. In such situations, submitters from other domains can submit
to the local pool. It may be desirable to have HTCondor treat local
users preferentially over these remote users. If configured,
HTCondor will boost the RUPs of remote users by
REMOTE_PRIO_FACTOR specified
in the configuration, thereby lowering their priority for resources.

The priority boost factors for individual users can be set with the
setfactor option of condor_userprio. Details may be found in the
condor_userprio manual page.

Priorities in Negotiation and Preemption

Priorities are used to ensure that users get their fair share of
resources. The priority values are used at allocation time, meaning
during negotiation and matchmaking. Therefore, there are ClassAd
attributes that take on defined values only during negotiation, making
them ephemeral. In addition to allocation, HTCondor may preempt a
machine claim and reallocate it when conditions change.

Too many preemptions lead to thrashing, a condition in which negotiation
for a machine identifies a new job with a better priority most every
cycle. Each job is, in turn, preempted, and no job finishes. To avoid
this situation, the PREEMPTION_REQUIREMENTS configuration variable is defined
for and used only by the condor_negotiator daemon to specify the
conditions that must be met for a preemption to occur. When preemption
is enabled, it is usually defined to deny preemption if a current
running job has been running for a relatively short period of time. This
effectively limits the number of preemptions per resource per time
interval. Note that PREEMPTION_REQUIREMENTS only applies to
preemptions due to user priority. It does not have any effect if the
machine’s RANK expression prefers a different job, or if the
machine’s policy causes the job to vacate due to other activity on the
machine. See the condor_startd Policy Configuration section for the current default policy on preemption.

The following ephemeral attributes may be used within policy
definitions. Care should be taken when using these attributes, due to
their ephemeral nature; they are not always defined, so the usage of an
expression to check if defined such as

(RemoteUserPrio =?= UNDEFINED)

is likely necessary.

Within these attributes, those with names that contain the string Submitter
refer to characteristics about the candidate job’s user; those with names that
contain the string Remote refer to characteristics about the user currently
using the resource. Further, those with names that end with the string
ResourcesInUse have values that may change within the time period
associated with a single negotiation cycle. Therefore, the configuration
variables PREEMPTION_REQUIREMENTS_STABLE and
PREEMPTION_RANK_STABLE exist to inform the condor_negotiator daemon
that values may change. See the
condor_negotiator Configuration File Entries section for definitions of these configuration variables.

	 SubmitterUserPrio
	A floating point value representing the user priority of the
candidate job.

	 SubmitterUserResourcesInUse
	The integer number of slots currently utilized by the user
submitting the candidate job.

	 RemoteUserPrio
	A floating point value representing the user priority of the job
currently running on the machine. This version of the attribute,
with no slot represented in the attribute name, refers to the
current slot being evaluated.

	 Slot<N>_RemoteUserPrio
	A floating point value representing the user priority of the job
currently running on the particular slot represented by <N> on the
machine.

	 RemoteUserResourcesInUse
	The integer number of slots currently utilized by the user of the
job currently running on the machine.

	 SubmitterGroupResourcesInUse
	If the owner of the candidate job is a member of a valid accounting
group, with a defined group quota, then this attribute is the
integer number of slots currently utilized by the group.

	 SubmitterGroup
	The accounting group name of the requesting submitter.

	 SubmitterGroupQuota
	If the owner of the candidate job is a member of a valid accounting
group, with a defined group quota, then this attribute is the
integer number of slots defined as the group’s quota.

	 RemoteGroupResourcesInUse
	If the owner of the currently running job is a member of a valid
accounting group, with a defined group quota, then this attribute is
the integer number of slots currently utilized by the group.

	 RemoteGroup
	The accounting group name of the owner of the currently running job.

	 RemoteGroupQuota
	If the owner of the currently running job is a member of a valid
accounting group, with a defined group quota, then this attribute is
the integer number of slots defined as the group’s quota.

	 SubmitterNegotiatingGroup
	The accounting group name that the candidate job is negotiating
under.

	 RemoteNegotiatingGroup
	The accounting group name that the currently running job negotiated
under.

	 SubmitterAutoregroup
	Boolean attribute is True if candidate job is negotiated via
autoregroup.

	 RemoteAutoregroup
	Boolean attribute is True if currently running job negotiated
via autoregroup.

Priority Calculation

This section may be skipped if the reader so feels, but for the curious,
here is HTCondor’s priority calculation algorithm.

The RUP of a user \(u\) at time \(t\), \(\pi_{r}(u,t)\), is calculated every
time interval \(\delta t\) using the formula

\[\pi_r(u,t) = \beta × \pi_r(u, t - \delta t) + (1 - \beta) × \rho(u, t)\]

where \(\rho (u,t)\) is the number of resources used by user \(u\) at time \(t\),
and \(\beta = 0.5^{\delta t / h}\).
\(h\) is the half life period set by PRIORITY_HALFLIFE.

The EUP of user \(u\) at time \(t\), \(\pi_{e}(u,t)\) is calculated by

\[\pi_e(u,t) = \pi_r(u,t) \times f(u,t)\]

where \(f(u,t)\) is the priority boost factor for user \(u\) at time \(t\).

As mentioned previously, the RUP calculation is designed so that at
steady state, each user’s RUP stabilizes at the number of resources used
by that user. The definition of \(\beta\) ensures that the calculation of
\(\pi_{r}(u,t)\) can be calculated over non-uniform time intervals \(\delta t\)
without affecting the calculation. The time interval \(\delta t\) varies due to
events internal to the system, but HTCondor guarantees that unless the
central manager machine is down, no matches will be unaccounted for due
to this variance.

Negotiation

Negotiation is the method HTCondor undergoes periodically to match
queued jobs with resources capable of running jobs. The
condor_negotiator daemon is responsible for negotiation.

During a negotiation cycle, the condor_negotiator daemon accomplishes
the following ordered list of items.

	Build a list of all possible resources, regardless of the state of
those resources.

	Obtain a list of all job submitters (for the entire pool).

	Sort the list of all job submitters based on EUP (see
The Layperson’s Description of the Pie Spin and Pie Slice for an explanation of EUP). The
submitter with the best priority is first within the sorted list.

	Iterate until there are either no more resources to match, or no more
jobs to match.

For each submitter (in EUP order):

For each submitter, get each job. Since jobs may be submitted
from more than one machine (hence to more than one
condor_schedd daemon), here is a further definition of the
ordering of these jobs. With jobs from a single
condor_schedd daemon, jobs are typically returned in job
priority order. When more than one condor_schedd daemon is
involved, they are contacted in an undefined order. All jobs
from a single condor_schedd daemon are considered before
moving on to the next. For each job:

	For each machine in the pool that can execute jobs:

	If machine.requirements evaluates to False or
job.requirements evaluates to False, skip this
machine

	If the machine is in the Claimed state, but not running
a job, skip this machine.

	If this machine is not running a job, add it to the
potential match list by reason of No Preemption.

	If the machine is running a job

	If the machine.RANK on this job is better than
the running job, add this machine to the potential
match list by reason of Rank.

	If the EUP of this job is better than the EUP of the
currently running job, and
PREEMPTION_REQUIREMENTS is True, and the
machine.RANK on this job is not worse than the
currently running job, add this machine to the
potential match list by reason of Priority.
See example below.

	Of machines in the potential match list, sort by
NEGOTIATOR_PRE_JOB_RANK, job.RANK,
NEGOTIATOR_POST_JOB_RANK, Reason for claim (No
Preemption, then Rank, then Priority), PREEMPTION_RANK

	The job is assigned to the top machine on the potential
match list. The machine is removed from the list of
resources to match (on this negotiation cycle).

As described above, the condor_negotiator tries to match each job
to all slots in the pool. Assume that five slots match one request for
three jobs, and that their NEGOTIATOR_PRE_JOB_RANK, Job.Rank,
and NEGOTIATOR_POST_JOB_RANK expressions evaluate (in the context
of both the slot ad and the job ad) to the following values.

	Slot Name

	NEGOTIATOR_PRE_JOB_RANK

	Job.Rank

	NEGOTIATOR_POST_JOB_RANK

	slot1

	100

	1

	10

	slot2

	100

	2

	20

	slot3

	100

	2

	30

	slot4

	0

	1

	40

	slot5

	200

	1

	50

Table 3.1: Example of slots before sorting

These slots would be sorted first on NEGOTIATOR_PRE_JOB_RANK, then
sorting all ties based on Job.Rank and any remaining ties sorted by
NEGOTIATOR_POST_JOB_RANK. After that, the first three slots would be
handed to the condor_schedd. This means that
NEGOTIATOR_PRE_JOB_RANK is very strong, and overrides any ranking
expression by the submitter of the job. After sorting, the slots would look
like this, and the schedd would be given slot5, slot3 and slot2:

	Slot Name

	NEGOTIATOR_PRE_JOB_RANK

	Job.Rank

	NEGOTIATOR_POST_JOB_RANK

	slot5

	200

	1

	50

	slot3

	100

	2

	30

	slot2

	100

	2

	20

	slot1

	100

	1

	10

	slot4

	0

	1

	40

Table 3.2: Example of slots after sorting

The condor_negotiator asks the condor_schedd for the “next job” from a
given submitter/user. Typically, the condor_schedd returns jobs in the order
of job priority. If priorities are the same, job submission time is used; older
jobs go first. If a cluster has multiple procs in it and one of the jobs cannot
be matched, the condor_schedd will not return any more jobs in that cluster
on that negotiation pass. This is an optimization based on the theory that the
cluster jobs are similar. The configuration variable
NEGOTIATE_ALL_JOBS_IN_CLUSTER disables the cluster-skipping
optimization. Use of the configuration variable SIGNIFICANT_ATTRIBUTES
will change the definition of what the condor_schedd considers a cluster from
the default definition of all jobs that share the same ClusterId.

The Layperson’s Description of the Pie Spin and Pie Slice

The negotiator first finds all users who
have submitted jobs and calculates their priority. Then, it totals the
SlotWeight (by default, cores) of all currently available slots, and
using the ratios of the user priorities, it calculates the number of
cores each user could get. This is their pie slice.
(See: SLOT_WEIGHT in condor_startd Configuration File Macros)

If any users have a floor defined via condor_userprio -set-floor
, and their current allocation of cores is below the floor, a
special round of the below-floor users goes first, attempting to
allocate up to the defined number of cores for their floor level.
These users are negotiated for in user priority order. This allows
an admin to give users some “guaranteed” minimum number of cores, no
matter what their previous usage or priority is.

After the below-floor users are negotiated for, all users
are negotiated for, in user priority order.
The condor_negotiator contacts each schedd where the user’s job lives, and asks for job
information. The condor_schedd daemon (on behalf of
a user) tells the matchmaker about a job, and the matchmaker looks at
available slots to create a list that match the requirements expression.
It then sorts the matching slots by the rank expressions within ClassAds.
If a slot prefers a job via the slot RANK expression, the job
is assigned to that slot, potentially preempting an already running job.
Otherwise, give the slot to the job that the job ranks highest. If
the highest ranked slot is already running a job, the negotiator may preempt
the running job for the new job.

This matchmaking cycle continues until the user has received all of the
machines in their pie slice. If there is a per-user ceiling defined
with the condor_userprio -setceil command, and this ceiling is smaller
than the pie slice, the user gets only up to their ceiling number of
cores. The matchmaker then contacts the next
highest priority user and offers that user their pie slice worth of
machines. After contacting all users, the cycle is repeated with any
still available resources and recomputed pie slices. The matchmaker
continues spinning the pie until it runs out of machines or all the
condor_schedd daemons say they have no more jobs.

Group Accounting

By default, HTCondor does all accounting on a per-user basis.
This means that HTCondor keeps track of the historical usage per-user,
calculates a priority and fair-share per user, and allows the
administrator to change this fair-share per user. In HTCondor
terminology, the accounting principal is called the submitter.

The name of this submitter is, by default, the name the schedd authenticated
when the job was first submitted to the schedd. Usually, this is
the operating system username. However, the submitter can override
the username selected by setting the submit file option

accounting_group_user = ishmael

This means this job should be treated, for accounting purposes only, as
“ishamel”, but “ishmael” will not be the operating system id the shadow
or job uses. Note that HTCondor trusts the user to set this
to a valid value. The administrator can use schedd requirements or transforms
to validate such settings, if desired. accounting_group_user is frequently used
in web portals, where one trusted operating system process submits jobs on
behalf of different users.

Note that if many people submit jobs with identical accounting_group_user values,
HTCondor treats them as one set of jobs for accounting purposes. So, if
Alice submits 100 jobs as accounting_group_user ishmael, and so does Bob
a moment later, HTCondor will not try to fair-share between them,
as it would do if they had not set accounting_group_user. If all these
jobs have identical requirements, they will be run First-In, First-Out,
so whoever submitted first makes the subsequent jobs wait until the
last one of the first submit is finished.

Accounting Groups with Hierarchical Group Quotas

With additional configuration, it is possible to create accounting
groups, where the submitters within the group maintain their distinct
identity, and fair-share still happens within members of that group.

An upper limit on the number of slots allocated to a group of users can
be specified with group quotas.

Consider an example pool with thirty slots: twenty slots are owned by
the physics group and ten are owned by the chemistry group. The desired
policy is that no more than twenty concurrent jobs are ever running from
the physicists, and only ten from the chemists. These machines are
otherwise identical, so it does not matter which machines run which
group’s jobs. It only matters that the proportions of allocated slots
are correct.

Group quotas may implement this policy. Define the groups and set their
quotas in the configuration of the central manager:

GROUP_NAMES = group_physics, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_chemistry = 10

The implementation of quotas is hierarchical, such that quotas may be
described for the tree of groups, subgroups, sub subgroups, etc. Group
names identify the groups, such that the configuration can define the
quotas in terms of limiting the number of cores allocated for a group or
subgroup. Group names do not need to begin with "group_", but that
is the convention, which helps to avoid naming conflicts between groups
and subgroups. The hierarchy is identified by using the period (‘.’)
character to separate a group name from a subgroup name from a sub
subgroup name, etc. Group names are case-insensitive for negotiation.

At the root of the tree that defines the hierarchical groups is the
“<none>” group. The implied quota of the “<none>” group will be
all available slots. This string will appear in the output of
condor_status.

If the sum of the child quotas exceeds the parent, then the child quotas
are scaled down in proportion to their relative sizes. For the given
example, there were 30 original slots at the root of the tree. If a
power failure removed half of the original 30, leaving fifteen slots,
physics would be scaled back to a quota of ten, and chemistry to five.
This scaling can be disabled by setting the condor_negotiator
configuration variable
NEGOTIATOR_ALLOW_QUOTA_OVERSUBSCRIPTION to True. If
the sum of the child quotas is less than that of the parent, the child
quotas remain intact; they are not scaled up. That is, if somehow the
number of slots doubled from thirty to sixty, physics would still be
limited to 20 slots, and chemistry would be limited to 10. This example
in which the quota is defined by absolute values is called a static
quota.

Each job must state which group it belongs to. By default, this is opt-in,
and the system trusts each user to put the correct group in the submit
description file. See “Setting Accounting Groups Automatically below”
to configure the system to set them without user input and to prevent
users from opting into the wrong groups. Jobs that do not identify
themselves as a group member are negotiated for as part of the “<none>”
group. Note that this requirement is per job, not per user. A given user
may be a member of many groups. Jobs identify which group they are in by setting the
accounting_group and
accounting_group_user
commands within the submit description file, as specified in the
Group Accounting section.
For example:

accounting_group = group_physics
accounting_group_user = einstein

The size of the quotas may instead be expressed as a proportion. This is
then referred to as a dynamic group quota, because the size of the quota
is dynamically recalculated every negotiation cycle, based on the total
available size of the pool. Instead of using static quotas, this example
can be recast using dynamic quotas, with one-third of the pool allocated
to chemistry and two-thirds to physics. The quotas maintain this ratio
even as the size of the pool changes, perhaps because of machine
failures, because of the arrival of new machines within the pool, or
because of other reasons. The job submit description files remain the
same. Configuration on the central manager becomes:

GROUP_NAMES = group_physics, group_chemistry
GROUP_QUOTA_DYNAMIC_group_chemistry = 0.33
GROUP_QUOTA_DYNAMIC_group_physics = 0.66

The values of the quotas must be less than 1.0, indicating fractions of
the pool’s machines. As with static quota specification, if the sum of
the children exceeds one, they are scaled down proportionally so that
their sum does equal 1.0. If their sum is less than one, they are not
changed.

Extending this example to incorporate subgroups, assume that the physics
group consists of high-energy (hep) and low-energy (lep) subgroups. The
high-energy sub-group owns fifteen of the twenty physics slots, and the
low-energy group owns the remainder. Groups are distinguished from
subgroups by an intervening period character (.) in the group’s name.
Static quotas for these subgroups extend the example configuration:

GROUP_NAMES = group_physics, group_physics.hep, group_physics.lep, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_physics.hep = 15
GROUP_QUOTA_group_physics.lep = 5
GROUP_QUOTA_group_chemistry = 10

This hierarchy may be more useful when dynamic quotas are used. Here is
the example, using dynamic quotas:

GROUP_NAMES = group_physics, group_physics.hep, group_physics.lep, group_chemistry
GROUP_QUOTA_DYNAMIC_group_chemistry = 0.33334
GROUP_QUOTA_DYNAMIC_group_physics = 0.66667
GROUP_QUOTA_DYNAMIC_group_physics.hep = 0.75
GROUP_QUOTA_DYNAMIC_group_physics.lep = 0.25

The fraction of a subgroup’s quota is expressed with respect to its
parent group’s quota. That is, the high-energy physics subgroup is
allocated 75% of the 66% that physics gets of the entire pool, however
many that might be. If there are 30 machines in the pool, that would be
the same 15 machines as specified in the static quota example.

High-energy physics users indicate which group their jobs should go in
with the submit description file identification:

accounting_group = group_physics.hep
accounting_group_user = higgs

In all these examples so far, the hierarchy is merely a notational
convenience. Each of the examples could be implemented with a flat
structure, although it might be more confusing for the administrator.
Surplus is the concept that creates a true hierarchy.

If a given group or sub-group accepts surplus, then that given group is
allowed to exceed its configured quota, by using the leftover, unused
quota of other groups. Surplus is disabled for all groups by default.
Accepting surplus may be enabled for all groups by setting
GROUP_ACCEPT_SURPLUS to
True. Surplus may be enabled for individual groups by setting

 Security

Security

Security Overview

One main goal of HTCondor is to make all condor
installations easier to secure. In older versions, a default installation
typically required additional steps after setup to enable end-to-end security
for all users and daemons in the system. Configuring various different types
of authentication and security policy could also involve setting quite a number
of different configuration parameters and a fairly deep foray into the manual
to understand how they all work together.

This overview will explain the high-level concepts involved in securing an
HTCondor pool. If possible, we recommend performing a clean installation “from
scratch” and then migrating over pieces of your old configuration as needed.
Here are some quick links for getting started if you want to jump right in:

	Quick Links:
	If you are upgrading an existing pool from 8.9.X to 9.0.X, please visit
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=UpgradingFromEightNineToNineZero

If you are installing a new HTCondor pool from scratch, please read
about Downloading and Installing

General Security Flow

Establishing a secure connection in HTCondor goes through four major steps,
which are very briefly enumerated here for reference.

	Negotiation: In order for a client and server to communicate, they need to
agree on which security mechanisms will be used for the connection. This
includes whether or not the connection will be authenticated, which types of
authentication methods can be used, whether the connection will be encrypted,
and which different types of encryption algorithms can be used. The client
sends its capabilities, preferences, and requirements; the server compares
those against its own, decides what to do, and tells the client; if a
connection is possible, they both then work to enact it. We call the decisions
the server makes during negotiation the “security policy” for that connection;
see Security Negotiation for details on policy
configuration.

	Authentication/Mapping: If the server decides to authenticate (and we
strongly recommend that it almost always either do so or reject the
connection), the methods allowed are tried in the order decided by the server
until one of them succeeds. After a successful authentication, the server
decides the canonical name of the user based on the credentials used by the
client. For SSL, this involves mapping the DN to a user@domain.name format.
For most other methods the result is already in user@domain.name format. For
details on different types of supported authentication methods, please see
Authentication.

	Encryption and Integrity: If the server decided that encryption would be
used, both sides now enable encryption and integrity checks using the method
preferred by the server. AES is now the preferred method and enabled by
default. The overhead of doing the encryption and integrity checks is minimal
so we have decided to simplify configuration by requiring changes to disable it
rather than enable it. For details on different types of supported
authentication methods, see Encryption.

	Authorization: The canonical user is now checked to see if they are allowed
to send the command to the server that they wish to send. Commands are
“registered” at different authorization levels, and there is an ALLOW/DENY list
for each level. If the canonical user is authorized, HTCondor performs the
requested action. If authorization fails, the permission is DENIED and the
network connection is closed. For list of authorization levels and more
information on configuring ALLOW and DENY lists, please see
Authorization.

Highlights of New Features In Version 9.0.0

Introducing: IDTOKENS

In 9.0.0, we have introduced a new authentication mechanism called
IDTOKENS. These tokens are easy for the administrator to issue, and in
many cases users can also acquire their own tokens on a machine used to submit
jobs (running the condor_schedd). An IDTOKEN is a relatively lightweight
credential that can be used to prove an identity. The contents of the token
are actually a JWT (https://jwt.io/) that is signed by a “Token Signing Key”
that establishes the trustworthiness of the token. Typically, this signing key
is something accessible only to HTCondor (and owned by the “root” user of the
system) and not users, and by default lives in /etc/condor/passwords.d/POOL.
To make configuration easier, this signing key is generated automatically by
HTCondor if it does not exist on the machine that runs the Central Manager, or
the condor_collector daemon in particular. So after installing the central
manager and starting it up for the first time, you should as the administrator
be all set to start issuing tokens. That said, you will need to copy the
signing key to all other machines in your pool that you want to be able to
receive and validate the IDTOKEN credentials that you issue.

Documentation for the command line tools used for creating and managing
IDTOKENS is available in the Token Authentication section.

Introducing: AES

We also support AES, a widely-used encryption
method that has hardware support in most modern CPUS. Because the overhead of
encryption is so much lower, we have turned it on by default. We use AES in
such a way (called AESGCM mode) that it provides integrity checks (checksums)
on transmitted data, and this method is now on by default and is the preferred
method to be used if both sides support it.

Types of Network Connections

We generally consider user-to-daemon and daemon-to-daemon connections
distinctly. User-to-daemon connections almost always issue READ or
WRITE level commands, and the vast majority of those connections are to the
schedd or the collector; many of those connections will be between processes on
the same machine. Conversely, daemon-to-daemon connections are typically
between two different machines, and use commands registered at all levels.

User-to-Daemon Connections (User Authentication)

In order for users to submit jobs to the HTCondor system, they will need to
authenticate to the condor_schedd daemon. They also need to authenticate to
the SchedD to modify, remove, hold, or release jobs. When users are
interacting with the condor_schedd, they issue commands that need to be
authorized at either the “READ” or “WRITE” level. (Unless the user is an
administrator, in which case they might also issue “ADMINISTRATOR”-level
commands).

Authenticating using FS

On Linux or a Mac system this is typically done by logging into the machine that is
running the condor_schedd daemon and authentication using a method called
FS. FS stands for
“File System” and the method works by having the user create a file in /tmp
that the condor_schedd can then examine to determine who the owner is.
Because this operates in /tmp, this only works for connections to daemons on
the same machine. FS is enabled by default so the administrator does not
need to do anything to allow users to interact with the job queue this way.
(There are other methods, mentioned below, that can work over a network
connection.)

Note

HTCondor on Windows does not use FS, but rather a method
specific to Windows called NTSSPI. See the section on
Authentication for more info.

If it is necessary to do a “remote submit” – that is, run condor_submit on a
different machine than is running the condor_schedd – then the administrator
will need to configure another method. FS_REMOTE works similarly to FS
but uses a shared directory other than /tmp. Mechanisms such as KERBEROS,
SSL, and MUNGE can also be configured. However, with the addition of
IDTOKENS in 9.0.0, it is easy to configure and deploy this mechanism and we
would suggest you do so unless you have a specific need to use one of the
alternatives.

Authenticating using IDTOKENS

If a user is able to log in to the machine running the condor_schedd, and the
SchedD has been set up with the Token Signing Key (see above for how that is
created and deployed) then the user can simply run condor_token_fetch and
retrieve their own token. This token can then be (securely) moved to another
machine and used to interact with the job queue, including submission, edits,
hold, release, and removing the job.

If the user cannot log in to the machine running the condor_schedd, they
should ask their administrator to create tokens for them using the
condor_token_create command line tool. Once again, more info can be found in
the Token Authentication section.

Daemon-to-Daemon Connections (Daemon Authentication)

HTCondor daemons need to trust each other to pass information security from one
to the other. This information may contain important attributes about a job to
run, such as which executable to run, the arguments, and which user to run the
job as. Obviously, being able to tamper those could allow an impersonator to
perform all sorts of nefarious tasks.

For daemons that run on the same machine, for example a condor_master,
condor_schedd, and the condor_shadow daemons launched by the
condor_schedd, this authentication is performed using a secret that is shared
with each condor daemon when it is launched. These are called “family
sessions”, since the processes sharing the secret are all part of the same unix
process family. This allows the HTCondor daemons to contact one another
locally without having to use another type of authentication. So essentially,
when we are discussing daemon-to-daemon communication, we are talking about
HTCondor daemons on two different physical machines. In those cases, they need
to establish trust using some mechanism that works over a network. The FS
mechanism used for user job submission typically doesn’t work here because it
relies on sharing a directory between the two daemons, typically /tmp.
However, IDTOKENS are able to work here as long as the server has a copy of
the Signing Key that was used to issue the token that the client is using. The
daemon will authenticate as condor@$(TRUST_DOMAIN) where the trust domain
is the string set by the token issuer, and is usually equal to the
$(UID_DOMAIN) setting on the central manager. (Note that setting
UID_DOMAIN has other consequences.)

Once HTCondor has determined the authenticate principal, it checks the
authorization lists as mentioned above in
General Security Flow. For daemon-to-daemon
authorization, there are a few lists that may be consulted.

If the condor daemon receiving the connection is the condor_collector, it first
checks to see if there are specific authorization lists for daemons advertising
to the collector (i.e. joining the pool). If the incoming command is
advertising a submit node (i.e. a condor_schedd daemon), it will check
ALLOW_ADVERTISE_SCHEDD. If the incoming command is for an execute node (a
condor_startd daemon), it will check ALLOW_ADVERTISE_STARTD. And if the
incoming command is for a condor_master (which runs on all HTCondor nodes) it
will check ALLOW_ADVERTISE_MASTER. If the list it checks is undefined, it will
then check ALLOW_DAEMON instead.

If the condor daemon receiving the connection is not a condor_collector, the
ALLOW_DAEMON is the only list that is looked at.

It is notable that many daemon-to-daemon connections have been optimized to not
need to authenticate using one of the standard methods. Similar to the
“family” sessions that work internally on one machine, there are sessions
called “match” sessions that can be used internally within one POOL of
machines. Here, trust is established by the negotiator when matching a job to
a resource – the Negotiator takes a secret generated by the condor_startd and
securely passes it to the condor_schedd when a match is made. The submit and
execute machines can now use this secret to establish a secure channel.
Because of this, you do not necessarily need to have authentication from one to
the other configured; it is enough to have secure channels from the SchedD to
the Collector and from the StartD to the collector. Likewise, a Negotiator can
establish trust with a SchedD in the same way: the SchedD trusts the Collector
to tell only trustworthy Negotiators its secret.

Security Terms

Security in HTCondor is a broad issue, with many aspects to consider.
Because HTCondor’s main purpose is to allow users to run arbitrary code
on large numbers of computers, it is important to try to limit who can
access an HTCondor pool and what privileges they have when using the
pool. This section covers these topics.

There is a distinction between the kinds of resource attacks HTCondor
can defeat, and the kinds of attacks HTCondor cannot defeat. HTCondor
cannot prevent security breaches of users that can elevate their
privilege to the root or administrator account. HTCondor does not run
user jobs in sandboxes (possibly excepting Docker or Singularity jobs)
so HTCondor cannot defeat all malicious actions by user jobs.
An example of a malicious job is one that launches a distributed denial
of service attack. HTCondor assumes that users are trustworthy. HTCondor
can prevent unauthorized access to the HTCondor pool, to help ensure
that only trusted users have access to the pool. In addition, HTCondor
provides encryption and integrity checking, to ensure that network
transmissions are not examined or tampered with while in transit.

Broadly speaking, the aspects of security in HTCondor may be categorized
and described:

	Users
	Authorization or capability in an operating system is based on a
process owner. Both those that submit jobs and HTCondor daemons
become process owners. The HTCondor system prefers that HTCondor
daemons are run as the user root, while other common operations are
owned by a user of HTCondor. Operations that do not belong to either
root or an HTCondor user are often owned by the condor user. See
User Accounts in HTCondor on Unix Platforms
for more detail.

	Authentication
	Proper identification of a user is accomplished by the process of
authentication. It attempts to distinguish between real users and
impostors. By default, HTCondor’s authentication uses the user id
(UID) to determine identity, but HTCondor can choose among a variety
of authentication mechanisms, including the stronger authentication
methods Kerberos and SSL.

	Authorization
	Authorization specifies who is allowed to do what. Some users are
allowed to submit jobs, while other users are allowed administrative
privileges over HTCondor itself. HTCondor provides authorization on
either a per-user or on a per-machine basis.

	Privacy
	HTCondor may encrypt data sent across the network, which prevents
others from viewing the data. With persistence and sufficient
computing power, decryption is possible. HTCondor can encrypt the
data sent for internal communication, as well as user data, such as
files and executables. Encryption operates on network transmissions:
unencrypted data is stored on disk by default. However, see the
ENCRYPT_EXECUTE_DIRECTORY setting for how to encrypt
job data on the disk of an execute node.

	Integrity
	The man-in-the-middle attack tampers with data without the awareness
of either side of the communication. HTCondor’s integrity check
sends additional cryptographic data to verify that network data
transmissions have not been tampered with. Note that the integrity
information is only for network transmissions: data stored on disk
does not have this integrity information. Also note that integrity
checks are not performed upon job data files that are transferred by
HTCondor via the File Transfer Mechanism described in
the Submitting a Job section.

Quick Configuration of Security

Warning

This method of configuring security is experimental.

Many tools and daemons that send administrative commands between machines
(e.g. condor_off, condor_drain, or condor_defrag)
won’t work without further setup.
We plan to remove this limitation in future releases.

While pool administrators with complex configurations or application developers may need to
understand the full security model described in this chapter, HTCondor
strives to make it easy to enable reasonable security settings for new pools.

When installing a new pool, assuming you are on a trusted network and there
are no unprivileged users logged in to the submit hosts:

	Start HTCondor on your central manager host (containing the condor_collector daemon) first.
For a fresh install, this will automatically generate a random key in
the file specified by SEC_TOKEN_POOL_SIGNING_KEY_FILE
(defaulting to /etc/condor/passwords.d/POOL on Linux and $(RELEASE_DIR)\tokens.sk\POOL on Windows).

	Install an auto-approval rule on the central manager using condor_token_request_auto_approve.
This automatically approves any daemons starting on a specified network for
a fixed period of time. For example, to auto-authorize any daemon on the network 192.168.0.0/24
for the next hour (3600 seconds), run the following command from the central manager:

$ condor_token_request_auto_approve -netblock 192.168.0.0/24 -lifetime 3600

	Within the auto-approval rule’s lifetime, start the submit and execute
hosts inside the appropriate network. The token requests for the corresponding daemons (the condor_master, condor_startd, and condor_schedd)
will be automatically approved and installed into /etc/condor/tokens.d/;
this will authorize the daemon to advertise to the collector. By default,
auto-generated tokens do not have an expiration.

This quick-configuration requires no configuration changes beyond the default settings. More
complex cases, such as those where the network is not trusted, are covered in the
Token Authentication section.

HTCondor’s Security Model

At the heart of HTCondor’s security model is the notion that
communications are subject to various security checks. A request from
one HTCondor daemon to another may require authentication to prevent
subversion of the system. A request from a user of HTCondor may need to
be denied due to the confidential nature of the request. The security
model handles these example situations and many more.

Requests to HTCondor are categorized into groups of access levels, based
on the type of operation requested. The user of a specific request must
be authorized at the required access level. For example, executing the
condor_status command requires the READ access level. Actions
that accomplish management tasks, such as shutting down or restarting of
a daemon require an ADMINISTRATOR access level. See
the Authorization section for a full list of
HTCondor’s access levels and their meanings.

There are two sides to any communication or command invocation in
HTCondor. One side is identified as the client, and the other side is
identified as the daemon. The client is the party that initiates the
command, and the daemon is the party that processes the command and
responds. In some cases it is easy to distinguish the client from the
daemon, while in other cases it is not as easy. HTCondor tools such as
condor_submit and condor_config_val are clients. They send
commands to daemons and act as clients in all their communications. For
example, the condor_submit command communicates with the
condor_schedd. Behind the scenes, HTCondor daemons also communicate
with each other; in this case the daemon initiating the command plays
the role of the client. For instance, the condor_negotiator daemon
acts as a client when contacting the condor_schedd daemon to initiate
matchmaking. Once a match has been found, the condor_schedd daemon
acts as a client and contacts the condor_startd daemon.

HTCondor’s security model is implemented using configuration. Commands
in HTCondor are executed over TCP/IP network connections. While network
communication enables HTCondor to manage resources that are distributed
across an organization (or beyond), it also brings in security
challenges. HTCondor must have ways of ensuring that communications are
being sent by trustworthy users and not tampered with in transit. These
issues can be addressed with HTCondor’s authentication, encryption, and
integrity features.

Access Level Descriptions

Authorization is granted based on specified access levels. This list
describes each access level, and provides examples of their usage. The
levels implement a partial hierarchy; a higher level often implies a
READ or both a WRITE and a READ level of access as
described.

	READ
	This access level can obtain or read information about HTCondor.
Examples that require only READ access are viewing the status of
the pool with condor_status, checking a job queue with
condor_q, or viewing user priorities with condor_userprio.
READ access does not allow any changes, and it does not allow
job submission.

	WRITE
	This access level is required to send (write) information to
HTCondor. Examples that require WRITE access are job submission
with condor_submit and advertising a machine so it appears in the
pool (this is usually done automatically by the condor_startd
daemon). The WRITE level of access implies READ access.

	ADMINISTRATOR
	This access level has additional HTCondor administrator rights to
the pool. It includes the ability to change user priorities with the
command condor_userprio, as well as the ability to turn HTCondor
on and off (as with the commands condor_on and condor_off).
The condor_fetchlog tool also requires an ADMINISTRATOR
access level. The ADMINISTRATOR level of access implies both
READ and WRITE access.

	CONFIG
	This access level is required to modify a daemon’s configuration
using the condor_config_val command. By default, this level of
access can change any configuration parameters of an HTCondor pool,
except those specified in the condor_config.root configuration
file. The CONFIG level of access implies READ access.

	DAEMON
	This access level is used for commands that are internal to the
operation of HTCondor. An example of this internal operation is when
the condor_startd daemon sends its ClassAd updates to the
condor_collector daemon (which may be more specifically
controlled by the ADVERTISE_STARTD access level). Authorization
at this access level should only be given to the user account under
which the HTCondor daemons run. The DAEMON level of access
implies both READ and WRITE access.

	NEGOTIATOR
	This access level is used specifically to verify that commands are
sent by the condor_negotiator daemon. The condor_negotiator
daemon runs on the central manager of the pool. Commands requiring
this access level are the ones that tell the condor_schedd daemon
to begin negotiating, and those that tell an available
condor_startd daemon that it has been matched to a
condor_schedd with jobs to run. The NEGOTIATOR level of
access implies READ access.

	ADVERTISE_MASTER
	This access level is used specifically for commands used to
advertise a condor_master daemon to the collector. Any setting
for this access level that is not defined will default to the
corresponding setting in the DAEMON access level.
The ADVERTISE_MASTER level of access implies READ access.

	ADVERTISE_STARTD
	This access level is used specifically for commands used to
advertise a condor_startd daemon to the collector. Any setting
for this access level that is not defined will default to the
corresponding setting in the DAEMON access level.
The ADVERTISE_STARTD level of access implies READ access.

	ADVERTISE_SCHEDD
	This access level is used specifically for commands used to
advertise a condor_schedd daemon to the collector. Any setting
for this access level that is not defined will default to the
corresponding setting in the DAEMON access level.
The ADVERTISE_SCHEDD level of access implies READ access.

	CLIENT
	This access level is different from all the others. Whereas all of
the other access levels refer to the security policy for accepting
connections from others, the CLIENT access level applies when an
HTCondor daemon or tool is connecting to some other HTCondor daemon.
In other words, it specifies the policy of the client that is
initiating the operation, rather than the server that is being
contacted.

The following is a list of registered commands that daemons will accept.
The list is ordered by daemon. For each daemon, the commands are grouped
by the access level required for a daemon to accept the command from a
given machine.

ALL DAEMONS:

	WRITE
	The command sent as a result of condor_reconfig to reconfigure a
daemon.

STARTD:

	WRITE
	All commands that relate to a condor_schedd daemon claiming a
machine, starting jobs there, or stopping those jobs.

	READ
	The command that condor_preen sends to request the current state
of the condor_startd daemon.

	NEGOTIATOR
	The command that the condor_negotiator daemon sends to match a
machine’s condor_startd daemon with a given condor_schedd
daemon.

NEGOTIATOR:

	WRITE
	The command that initiates a new negotiation cycle. It is sent by
the condor_schedd when new jobs are submitted or a
condor_reschedule command is issued.

	READ
	The command that can retrieve the current state of user priorities
in the pool, sent by the condor_userprio command.

	ADMINISTRATOR
	The command that can set the current values of user priorities, sent
as a result of the condor_userprio command.

COLLECTOR:

	ADVERTISE_MASTER
	Commands that update the condor_collector daemon with new
condor_master ClassAds.

	ADVERTISE_SCHEDD
	Commands that update the condor_collector daemon with new
condor_schedd ClassAds.

	ADVERTISE_STARTD
	Commands that update the condor_collector daemon with new
condor_startd ClassAds.

	DAEMON
	All other commands that update the condor_collector daemon with
new ClassAds. Note that the specific access levels such as
ADVERTISE_STARTD default to the DAEMON settings, which in
turn defaults to WRITE.

	READ
	All commands that query the condor_collector daemon for ClassAds.

SCHEDD:

	NEGOTIATOR
	The command that the condor_negotiator sends to begin negotiating
with this condor_schedd to match its jobs with available
condor_startds.

	WRITE
	The command which condor_reschedule sends to the condor_schedd
to get it to update the condor_collector with a current ClassAd
and begin a negotiation cycle.

The commands which write information into the job queue (such as
condor_submit and condor_hold). Note that for most commands
which attempt to write to the job queue, HTCondor will perform an
additional user-level authentication step. This additional
user-level authentication prevents, for example, an ordinary user
from removing a different user’s jobs.

	READ
	The command from any tool to view the status of the job queue.

The commands that a condor_startd sends to the condor_schedd
when the condor_schedd daemon’s claim is being preempted and also
when the lease on the claim is renewed. These operations only
require READ access, rather than DAEMON in order to limit
the level of trust that the condor_schedd must have for the
condor_startd. Success of these commands is only possible if the
condor_startd knows the secret claim id, so effectively,
authorization for these commands is more specific than HTCondor’s
general security model implies. The condor_schedd automatically
grants the condor_startd READ access for the duration of the
claim. Therefore, if one desires to only authorize specific execute
machines to run jobs, one must either limit which machines are
allowed to advertise themselves to the pool (most common) or
configure the condor_schedd ‘s
ALLOW_CLIENT setting to only allow connections from
the condor_schedd to the trusted execute machines.

MASTER: All commands are registered with ADMINISTRATOR access:

	restart
	Master restarts itself (and all its children)

	off
	Master shuts down all its children

	off -master
	Master shuts down all its children and exits

	on
	Master spawns all the daemons it is configured to spawn

Security Negotiation

Because of the wide range of environments and security demands
necessary, HTCondor must be flexible. Configuration provides this
flexibility. The process by which HTCondor determines the security
settings that will be used when a connection is established is called
security negotiation. Security negotiation’s primary purpose is to
determine which of the features of authentication, encryption, and
integrity checking will be enabled for a connection. In addition, since
HTCondor supports multiple technologies for authentication and
encryption, security negotiation also determines which technology is
chosen for the connection.

Security negotiation is a completely separate process from matchmaking,
and should not be confused with any specific function of the
condor_negotiator daemon. Security negotiation occurs when one
HTCondor daemon or tool initiates communication with another HTCondor
daemon, to determine the security settings by which the communication
will be ruled. The condor_negotiator daemon does negotiation, whereby
queued jobs and available machines within a pool go through the process
of matchmaking (deciding out which machines will run which jobs).

Configuration

The configuration macro names that determine what features will be used
during client-daemon communication follow the pattern:

SEC_<context>_<feature>

The <feature> portion of the macro name determines which security
feature’s policy is being set. <feature> may be any one of

AUTHENTICATION
ENCRYPTION
INTEGRITY
NEGOTIATION

The <context> component of the security policy macros can be used to
craft a fine-grained security policy based on the type of communication
taking place. <context> may be any one of

CLIENT
READ
WRITE
ADMINISTRATOR
CONFIG
DAEMON
NEGOTIATOR
ADVERTISE_MASTER
ADVERTISE_STARTD
ADVERTISE_SCHEDD
DEFAULT

Any of these constructed configuration macros may be set to any of the
following values:

REQUIRED
PREFERRED
OPTIONAL
NEVER

Security negotiation resolves various client-daemon combinations of
desired security features in order to set a policy.

As an example, consider Frida the scientist. Frida wants to avoid
authentication when possible. She sets

SEC_DEFAULT_AUTHENTICATION = OPTIONAL

The machine running the condor_schedd to which Frida will remotely
submit jobs, however, is operated by a security-conscious system
administrator who dutifully sets:

SEC_DEFAULT_AUTHENTICATION = REQUIRED

When Frida submits her jobs, HTCondor’s security negotiation determines
that authentication will be used, and allows the command to continue.
This example illustrates the point that the most restrictive security
policy sets the levels of security enforced. There is actually more to
the understanding of this scenario. Some HTCondor commands, such as the
use of condor_submit to submit jobs always require authentication of
the submitter, no matter what the policy says. This is because the
identity of the submitter needs to be known in order to carry out the
operation. Others commands, such as condor_q, do not always require
authentication, so in the above example, the server’s policy would force
Frida’s condor_q queries to be authenticated, whereas a different
policy could allow condor_q to happen without any authentication.

Whether or not security negotiation occurs depends on the setting at
both the client and daemon side of the configuration variable(s) defined
by SEC_*_NEGOTIATION. SEC_DEFAULT_NEGOTIATION is a variable
representing the entire set of configuration variables for
NEGOTIATION. For the client side setting, the only definitions that
make sense are REQUIRED and NEVER. For the daemon side setting,
the PREFERRED value makes no sense. Table 3.2
shows how security negotiation resolves various client-daemon
combinations of security negotiation policy settings. Within the table,
Yes means the security negotiation will take place. No means it will
not. Fail means that the policy settings are incompatible and the
communication cannot continue.

	
	Daemon Setting

	NEVER

	OPTIONAL

	REQUIRED

	Client
Setting

	NEVER

	No

	No

	Fail

	REQUIRED

	Fail

	Yes

	Yes

Table 3.2: Resolution of security negotiation.

Enabling authentication, encryption, and integrity checks is dependent
on security negotiation taking place. The enabled security negotiation
further sets the policy for these other features.
Table 3.3 shows how security features are resolved
for client-daemon combinations of security feature policy settings. Like
Table 3.2, Yes means the feature will be utilized.
No means it will not. Fail implies incompatibility and the feature
cannot be resolved.

	
	Daemon Setting

	NEVER

	OPTIONAL

	PREFERRED

	REQUIRED

	Client
Setting

	NEVER

	No

	No

	No

	Fail

	OPTIONAL

	No

	No

	Yes

	Yes

	PREFERRED

	No

	Yes

	Yes

	Yes

	REQUIRED

	Fail

	Yes

	Yes

	Yes

Table 3.3: Resolution of security features.

The enabling of encryption and/or integrity checks is dependent on
authentication taking place. The authentication provides a key exchange.
The key is needed for both encryption and integrity checks.

Setting SEC_CLIENT_<feature> determines the policy for all outgoing
commands. The policy for incoming commands (the daemon side of the
communication) takes a more fine-grained approach that implements a set
of access levels for the received command. For example, it is desirable
to have all incoming administrative requests require authentication.
Inquiries on pool status may not be so restrictive. To implement this,
the administrator configures the policy:

SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_READ_AUTHENTICATION = OPTIONAL

The DEFAULT value for <context> provides a way to set a policy for all
access levels (READ, WRITE, etc.) that do not have a specific
configuration variable defined. In addition, some access levels will
default to the settings specified for other access levels. For example,
ADVERTISE_STARTD defaults to DAEMON, and DAEMON defaults to
WRITE, which then defaults to the general DEFAULT setting.

Configuration for Security Methods

Authentication and encryption can each be accomplished by a variety of
methods or technologies. Which method is utilized is determined during
security negotiation.

The configuration macros that determine the methods to use for
authentication and/or encryption are

SEC_<context>_AUTHENTICATION_METHODS
SEC_<context>_CRYPTO_METHODS

These macros are defined by a comma or space delimited list of possible
methods to use. The Authentication section
lists all implemented authentication methods. The
Encryption section lists all implemented
encryption methods.

Authentication

The client side of any communication uses one of two macros to specify
whether authentication is to occur:

	SEC_DEFAULT_AUTHENTICATION

	SEC_CLIENT_AUTHENTICATION

For the daemon side, there are a larger number of macros to specify
whether authentication is to take place, based upon the necessary access
level:

	SEC_DEFAULT_AUTHENTICATION

	SEC_READ_AUTHENTICATION

	SEC_WRITE_AUTHENTICATION

	SEC_ADMINISTRATOR_AUTHENTICATION

	SEC_CONFIG_AUTHENTICATION

	SEC_DAEMON_AUTHENTICATION

	SEC_NEGOTIATOR_AUTHENTICATION

	SEC_ADVERTISE_MASTER_AUTHENTICATION

	SEC_ADVERTISE_STARTD_AUTHENTICATION

	SEC_ADVERTISE_SCHEDD_AUTHENTICATION

As an example, the macro defined in the configuration file for a daemon
as

SEC_WRITE_AUTHENTICATION = REQUIRED

signifies that the daemon must authenticate the client for any
communication that requires the WRITE access level. If the daemon’s
configuration contains

SEC_DEFAULT_AUTHENTICATION = REQUIRED

and does not contain any other security configuration for
AUTHENTICATION, then this default defines the daemon’s needs for
authentication over all access levels. Where a specific macro is
defined, the more specific value takes precedence over the default
definition.

If authentication is to be done, then the communicating parties must
negotiate a mutually acceptable method of authentication to be used. A
list of acceptable methods may be provided by the client, using the
macros

	SEC_DEFAULT_AUTHENTICATION_METHODS

	SEC_CLIENT_AUTHENTICATION_METHODS

A list of acceptable methods may be provided by the daemon, using the
macros

	SEC_DEFAULT_AUTHENTICATION_METHODS

	SEC_READ_AUTHENTICATION_METHODS

	SEC_WRITE_AUTHENTICATION_METHODS

	SEC_ADMINISTRATOR_AUTHENTICATION_METHODS

	SEC_DAEMON_AUTHENTICATION_METHODS

	SEC_CONFIG_AUTHENTICATION_METHODS

	SEC_NEGOTIATOR_AUTHENTICATION_METHODS

	SEC_ADVERTISE_MASTER_AUTHENTICATION_METHODS

	SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS

	SEC_ADVERTISE_SCHEDD_AUTHENTICATION_METHODS

The methods are given as a comma-separated list of acceptable values.
These variables list the authentication methods that are available to be
used. The ordering of the list defines preference; the first item in the
list indicates the highest preference. As not all of the authentication
methods work on Windows platforms, which ones do not work on Windows are
indicated in the following list of defined values:

SSL
KERBEROS
PASSWORD
FS (not available on Windows platforms)
FS_REMOTE (not available on Windows platforms)
IDTOKENS
SCITOKENS
NTSSPI
MUNGE
CLAIMTOBE
ANONYMOUS

For example, a client may be configured with:

SEC_CLIENT_AUTHENTICATION_METHODS = FS, SSL

and a daemon the client is trying to contact with:

SEC_DEFAULT_AUTHENTICATION_METHODS = SSL

Security negotiation will determine that SSL authentication is the only
compatible choice. If there are multiple compatible authentication
methods, security negotiation will make a list of acceptable methods and
they will be tried in order until one succeeds.

As another example, the macro

SEC_DEFAULT_AUTHENTICATION_METHODS = KERBEROS, NTSSPI

indicates that either Kerberos or Windows authentication may be used,
but Kerberos is preferred over Windows. Note that if the client and
daemon agree that multiple authentication methods may be used, then they
are tried in turn. For instance, if they both agree that Kerberos or
NTSSPI may be used, then Kerberos will be tried first, and if there is a
failure for any reason, then NTSSPI will be tried.

An additional specialized method of authentication exists for
communication between the condor_schedd and condor_startd, as
well as communication between the condor_schedd and the condor_negotiator.
It is
especially useful when operating at large scale over high latency
networks or in situations where it is inconvenient to set up one of the
other methods of authentication between the submit and execute
daemons. See the description of
SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION in
Configuration File Entries Relating to Security for details.

If the configuration for a machine does not define any variable for
SEC_<access-level>_AUTHENTICATION, then HTCondor uses a default
value of OPTIONAL. Authentication will be required for any operation
which modifies the job queue, such as condor_qedit and condor_rm.
If the configuration for a machine does not define any variable for
SEC_<access-level>_AUTHENTICATION_METHODS, the default value for a
Unix machine is FS, IDTOKENS, KERBEROS. This default value for a Windows
machine is NTSSPI, IDTOKENS, KERBEROS.

SSL Authentication

SSL authentication utilizes X.509 certificates to establish trust between
a client and a server.

SSL authentication may be mutual or server-only.
That is, the server always needs a certificate that can be verified by
the client, but a certificate for the client may be optional.
Whether a client certificate is required is controlled by
configuration variable
AUTH_SSL_REQUIRE_CLIENT_CERTIFICATE, a boolean value
that defaults to False.
If the value is False, then the client may present a certificate
to be verified by the server.
If the client doesn’t have a certificate, then its identity is set to
unauthenticated by the server.
If the value is True and the client doesn’t have a certificate, then
the SSL authentication fails (other authentication methods may then be
tried).

The names and locations of keys and certificates for clients, servers,
and the files used to specify trusted certificate authorities (CAs) are
defined by settings in the configuration files. The contents of the
files are identical in format and interpretation to those used by other
systems which use SSL, such as Apache httpd.

The configuration variables AUTH_SSL_CLIENT_CERTFILE and
AUTH_SSL_SERVER_CERTFILE specify the file location for the certificate
file for the initiator and recipient of connections, respectively. Similarly,
the configuration variables
AUTH_SSL_CLIENT_KEYFILE and
AUTH_SSL_SERVER_KEYFILE specify the locations for keys. If no client
certificate is used, the client will authenticate as user anonymous@ssl.

The configuration variables AUTH_SSL_SERVER_CAFILE and
AUTH_SSL_CLIENT_CAFILE each specify a path and file name, providing
the location of a file containing one or more certificates issued by trusted
certificate authorities. Similarly, AUTH_SSL_SERVER_CADIR and
AUTH_SSL_CLIENT_CADIR each specify a directory with one or more files,
each which may contain a single CA certificate. The directories must be
prepared using the OpenSSL c_rehash utility.
These CA certificates are used in addition to the default CA file and
directory locations given in OpenSSL’s configuration.
If you do not want to use OpenSSL’s default trusted CAs, you can set
the configuration variables AUTH_SSL_SERVER_USE_DEFAULT_CAS
and AUTH_SSL_CLIENT_USE_DEFAULT_CAS to False.

Bootstrapping SSL Authentication

HTCondor daemons exposed to the Internet may utilize server certificates provided
by well-known authorities; however, SSL can be difficult to bootstrap for non-public
hosts.

Accordingly, on first startup, if COLLECTOR_BOOTSTRAP_SSL_CERTIFICATE
is True, the condor_collector generates a new CA and key in the locations
pointed to by TRUST_DOMAIN_CAFILE and TRUST_DOMAIN_CAKEY,
respectively. If AUTH_SSL_SERVER_CERTFILE or
AUTH_SSL_SERVER_KEYFILE do not exist, the collector will generate a
host certificate and key using the generated CA and write them to the
respective locations.

The first time an unknown CA is encountered by tool such as condor_status, the tool
will prompt the user on whether it should trust the CA; the prompt looks like the following:

$ condor_status
The remote host collector.wisc.edu presented an untrusted CA certificate with the following fingerprint:
SHA-256: 781b:1d:1:ca:b:f7:ab:b6:e4:a3:31:80:ae:28:9d:b0:a9:ee:1b:c1:63:8b:62:29:83:1f:e7:88:29:75:6:
Subject: /O=condor/CN=hcc-briantest7.unl.edu
Would you like to trust this server for current and future communications?
Please type 'yes' or 'no':

The result will be persisted in a file at .condor/known_hosts inside the user’s home directory.

Similarly, a daemon authenticating as a client against a remote server will
record the result of the authentication in a system-wide trust whose location
is kept in the configuration variable SEC_SYSTEM_KNOWN_HOSTS. Since a
daemon cannot prompt the administrator for a decision, it will always deny
unknown CAs _unless_ BOOTSTRAP_SSL_SERVER_TRUST is set to true.

The first time any daemon is authenticated, even if it’s not through SSL, it will be noted in the
known_hosts file.

The format of the known_hosts file is line-oriented and has three fields,

HOSTNAME METHOD CERTIFICATE_DATA

Any blank line or line prefixed with # will be ignored.
Any line prefixed with ! will result in the CA certificate to _not_ be trusted. To easily switch
an untrusted CA to be trusted, simply delete the ! prefix.

For example, collector.wisc.edu would be trusted with this file entry using SSL:

collector.wisc.edu SSL MIIBvjCCAWSgAwIBAgIJAJRheVnN5ZDyMAoGCCqGSM49BAMCMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTAeFw0yMTA1MTcxOTQ3MjRaFw0zMTA1MTUxOTQ3MjNaMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABPN7qu+qdsfP6WR++UucrZYvMhssre8jvgWsnPBdzCYU/EqHYp+wri/aAKyDrLM5R1lWX44jSykgIpTOCLJUS/ajYzBhMB0GA1UdDgQWBBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAfBgNVHSMEGDAWgBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAPBgNVHRMBAf8EBTADAQH/MA4GA1UdDwEB/wQEAwICBDAKBggqhkjOPQQDAgNIADBFAiARfW+suELxSzSdi9u20hFs/aSXpd+gwJ6Ne8jjG+y/2AIhAO6f3ff9nnYRmesFbvt1lv+LosOMbeiUdVoaKFOGIyuJ

The following line would cause collector.wisc.edu to _not_ be trusted:

!collector.wisc.edu SSL MIIBvjCCAWSgAwIBAgIJAJRheVnN5ZDyMAoGCCqGSM49BAMCMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTAeFw0yMTA1MTcxOTQ3MjRaFw0zMTA1MTUxOTQ3MjNaMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABPN7qu+qdsfP6WR++UucrZYvMhssre8jvgWsnPBdzCYU/EqHYp+wri/aAKyDrLM5R1lWX44jSykgIpTOCLJUS/ajYzBhMB0GA1UdDgQWBBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAfBgNVHSMEGDAWgBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAPBgNVHRMBAf8EBTADAQH/MA4GA1UdDwEB/wQEAwICBDAKBggqhkjOPQQDAgNIADBFAiARfW+suELxSzSdi9u20hFs/aSXpd+gwJ6Ne8jjG+y/2AIhAO6f3ff9nnYRmesFbvt1lv+LosOMbeiUdVoaKFOGIyuJ

Kerberos Authentication

If Kerberos is used for authentication, then a mapping from a Kerberos domain
(called a realm) to an HTCondor UID domain is necessary. There are two ways to
accomplish this mapping. For a first way to specify the mapping, see
The Unified Map File for Authentication to use
HTCondor’s unified map file. A second way to specify the mapping is to set the
configuration variable KERBEROS_MAP_FILE to the path of an
administrator-maintained Kerberos-specific map file. The configuration syntax
is

KERBEROS_MAP_FILE = /path/to/etc/condor.kmap

Lines within this map file have the syntax

KERB.REALM = UID.domain.name

Here are two lines from a map file to use as an example:

CS.WISC.EDU = cs.wisc.edu
ENGR.WISC.EDU = ee.wisc.edu

If a KERBEROS_MAP_FILE configuration variable is defined and set,
then all permitted realms must be explicitly mapped. If no map file is
specified, then HTCondor assumes that the Kerberos realm is the same as
the HTCondor UID domain.

The configuration variable KERBEROS_SERVER_PRINCIPAL defines the name
of a Kerberos principal, to override the default host/<hostname>@<realm>.
A principal specifies a unique name to which a set of credentials may be
assigned.

The configuration variable KERBEROS_SERVER_SERVICE defines a Kerberos
service to override the default host. HTCondor prefixes this to
/<hostname>@<realm> to obtain the default Kerberos principal.
Configuration variable KERBEROS_SERVER_PRINCIPAL overrides
KERBEROS_SERVER_SERVICE.

For example, the configuration

KERBEROS_SERVER_SERVICE = condor-daemon

results in HTCondor’s use of

condor-daemon/the.host.name@YOUR.KERB.REALM

as the server principal.

Here is an example of configuration settings that use Kerberos for
authentication and require authentication of all communications of the
write or administrator access level.

SEC_WRITE_AUTHENTICATION = REQUIRED
SEC_WRITE_AUTHENTICATION_METHODS = KERBEROS
SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS = KERBEROS

Kerberos authentication on Unix platforms requires access to various
files that usually are only accessible by the root user. At this time,
the only supported way to use KERBEROS authentication on Unix platforms
is to start daemons HTCondor as user root.

Password Authentication

The password method provides mutual authentication through the use of a
shared secret. This is often a good choice when strong security is
desired, but an existing Kerberos or X.509 infrastructure is not in
place. Password authentication is available on both Unix and Windows. It
currently can only be used for daemon-to-daemon authentication. The
shared secret in this context is referred to as the pool password.

Before a daemon can use password authentication, the pool password must
be stored on the daemon’s local machine. On Unix, the password will be
placed in a file defined by the configuration variable
SEC_PASSWORD_FILE. This file will
be accessible only by the UID that HTCondor is started as. On Windows,
the same secure password store that is used for user passwords will be
used for the pool password (see the
Secure Password Storage section).

Under Unix, the password file can be generated by using the following
command to write directly to the password file:

$ condor_store_cred -f /path/to/password/file

Under Windows (or under Unix), storing the pool password is done with
the -c option when using to condor_store_cred add. Running

$ condor_store_cred -c add

prompts for the pool password and store it on the local machine, making
it available for daemons to use in authentication. The condor_master
must be running for this command to work.

In addition, storing the pool password to a given machine requires
CONFIG-level access. For example, if the pool password should only be
set locally, and only by root, the following would be placed in the
global configuration file.

ALLOW_CONFIG = root@mydomain/$(IP_ADDRESS)

It is also possible to set the pool password remotely, but this is
recommended only if it can be done over an encrypted channel. This is
possible on Windows, for example, in an environment where common
accounts exist across all the machines in the pool. In this case,
ALLOW_CONFIG can be set to allow the HTCondor administrator (who in
this example has an account condor common to all machines in the pool)
to set the password from the central manager as follows.

ALLOW_CONFIG = condor@mydomain/$(CONDOR_HOST)

The HTCondor administrator then executes

$ condor_store_cred -c -n host.mydomain add

from the central manager to store the password to a given machine. Since
the condor account exists on both the central manager and host.mydomain,
the NTSSPI authentication method can be used to authenticate and encrypt
the connection. condor_store_cred will warn and prompt for
cancellation, if the channel is not encrypted for whatever reason
(typically because common accounts do not exist or HTCondor’s security
is misconfigured).

When a daemon is authenticated using a pool password, its security
principle is condor_pool@$(UID_DOMAIN), where $(UID_DOMAIN) is taken
from the daemon’s configuration. The ALLOW_DAEMON and ALLOW_NEGOTIATOR
configuration variables for authorization should restrict access using
this name. For example,

ALLOW_DAEMON = condor_pool@mydomain/*, condor@mydomain/$(IP_ADDRESS)
ALLOW_NEGOTIATOR = condor_pool@mydomain/$(CONDOR_HOST)

This configuration allows remote DAEMON-level and NEGOTIATOR-level
access, if the pool password is known. Local daemons authenticated as
condor@mydomain are also allowed access. This is done so local
authentication can be done using another method such as FS.

If there is no pool password available on Linux, the condor_collector will
automatically generate one. This is meant to ease the configuration of
freshly-installed clusters; for POOL authentication, the HTCondor administrator
only needs to copy this file to each host in the cluster.

Example Security Configuration Using Pool Password

The following example configuration uses pool password
authentication and network message integrity checking for all
communication between HTCondor daemons.

SEC_PASSWORD_FILE = $(LOCK)/pool_password
SEC_DAEMON_AUTHENTICATION = REQUIRED
SEC_DAEMON_INTEGRITY = REQUIRED
SEC_DAEMON_AUTHENTICATION_METHODS = PASSWORD
SEC_NEGOTIATOR_AUTHENTICATION = REQUIRED
SEC_NEGOTIATOR_INTEGRITY = REQUIRED
SEC_NEGOTIATOR_AUTHENTICATION_METHODS = PASSWORD
SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS
ALLOW_DAEMON = condor_pool@$(UID_DOMAIN)/*.cs.wisc.edu, \
 condor@$(UID_DOMAIN)/$(IP_ADDRESS)
ALLOW_NEGOTIATOR = condor_pool@$(UID_DOMAIN)/negotiator.machine.name

Example Using Pool Password for condor_startd Advertisement

One problem with the pool password method of authentication is that
it involves a single, shared secret. This does not scale well with
the addition of remote users who flock to the local pool. However,
the pool password may still be used for authenticating portions of
the local pool, while others (such as the remote condor_schedd
daemons involved in flocking) are authenticated by other means.

In this example, only the condor_startd daemons in the local pool
are required to have the pool password when they advertise
themselves to the condor_collector daemon.

SEC_PASSWORD_FILE = $(LOCK)/pool_password
SEC_ADVERTISE_STARTD_AUTHENTICATION = REQUIRED
SEC_ADVERTISE_STARTD_INTEGRITY = REQUIRED
SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS = PASSWORD
SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS
ALLOW_ADVERTISE_STARTD = condor_pool@$(UID_DOMAIN)/*.cs.wisc.edu

Token Authentication

Password authentication requires both parties (client and server) in
an authenticated session to have access to the same password file. Further,
both client and server authenticate the remote side as the user condor_pool
which, by default, has a high level of privilege to the entire pool. Hence,
it is only reasonable for daemon-to-daemon authentication. Further, as
only one password is allowed, it is impossible to use PASSWORD
authentication to flock to a remote pool.

Token-based authentication is a newer extension to PASSWORD authentication
that allows the pool administrator to generate new, low-privilege tokens
using one of several pool signing keys.
It also allows a daemon or tool to authenticate to a remote pool
without having that pool’s password.
As tokens are derived from a specific signing key,
if an administrator removes a signing key from the directory specified in SEC_PASSWORD_DIRECTORY,
then all derived tokens are immediately invalid. Most simple installs will
utilize a single signing key, named POOL.

While most token signing keys are placed in the directory specified by
SEC_PASSWORD_DIRECTORY, with the filename within the directory determining
the key’s name, the POOL token signing key can be located elsewhere by
setting SEC_TOKEN_POOL_SIGNING_KEY_FILE to the full pathname of the
desired file. On Linux the same file can be both the pool signing key and the
pool password if SEC_PASSWORD_FILE and SEC_TOKEN_POOL_SIGNING_KEY_FILE
refer to the same file. However this is not preferred because in order to
properly interoperate with older versions of HTCondor the pool password will be
read as a text file and truncated at the first NUL character. This differs
from the pool signing key which is read as binary in HTCondor 9.0. Some 8.9
releases used the pool password as the pool signing key for tokens, those
versions will not interoperate with 9.0 if the pool signing key file contains
NUL characters.

The condor_collector
process will automatically generate the pool signing key named POOL on startup
if that file does not exist.

To generate a token, the administrator may utilize the condor_token_create
command-line utility:

$ condor_token_create -identity frida@pool.example.com

The resulting token may be given to Frida and appended to a file in the directory
specified by SEC_TOKEN_DIRECTORY (defaults to ~/.condor/tokens.d). Subsequent
authentications to the pool will utilize this token and cause Frida to be authenticated
as the identity frida@pool.example.com. For daemons, tokens are stored in
SEC_TOKEN_SYSTEM_DIRECTORY; on Unix platforms, this defaults to
/etc/condor/tokens.d which should be a directory with permissions that only allow
read and write access by user root.

Note that each pool signing key is named (the pool signing key defaults to
the special name POOL) by its corresponding filename in
SEC_PASSWORD_DIRECTORY; HTCondor will assume that, for all daemons in
the same trust domain (defaulting to the HTCondor pool) will have the same
signing key for the same name. That is, the signing key contained in key1
in host pool.example.com is identical to the signing key contained in
key1 in host submit.example.com.

Unlike pool passwords, tokens can have a limited lifetime and can limit the
authorizations allowed to the client. For example,

$ condor_token_create -identity condor@pool.example.com \
 -lifetime 3600 \
 -authz ADVERTISE_STARTD

will create a new token that maps to user condor@pool.example.com. However,
this token is only valid for the ADVERTISE_STARTD authorization, regardless
of what the server has configured for the condor user (the intersection of
the identity’s configured authorization and the token’s authorizations, if specified,
are used). Further, the token will only be valid for 3600 seconds (one hour).

In many cases, it is difficult or awkward for the administrator to securely
provide the new token to the user; an email or text message from
administrator to user is typically insufficiently secure to send the token (especially
as old emails are often archived for many years). In such a case, the user
may instead anonymously request a token from the administrator. The user
will receive a request ID, which the administrator will need in order to approve
the request. The ID (typically, a 7 digit number) is easier to communicate
over the phone (compared to the token, which is hundreds of characters long).
Importantly, neither user nor administrator is responsible
for securely moving the token - e.g., there is no chance it will be leaked into
an email archive.

If a condor_master, condor_startd, or condor_schedd daemon cannot
authenticate with the collector, it will automatically perform a token request
from the collector.

To use the token request workflow, the user needs a confidential channel to
the server or an appropriate auto-approval rule needs to be in place. The simplest
way to establish a confidential channel is using SSL Authentication
without a client certificate; configure the collector using a host certificate.

Using the SSL authentication, the client can request a new authentication token:

$ condor_token_request
Token request enqueued. Ask an administrator to please approve request 9235785.

This will enqueue a request for a token corresponding to the superuser condor;
the HTCondor pool administrator will subsequently need to approve request 9235785 using the
condor_token_request_approve tool.

If the host trusts requests coming from a specific network (i.e., the same
administrator manages the network and no unprivileged users are currently on
the network), then the auto-approval mechanism may be used. When in place, auto-approval
allows any token authentication request on an approved network to be automatically
approved by HTCondor on behalf of the pool administrator - even when requests do not come over
confidential connections.

When a daemon issues a token for a client (e.g. for
condor_token_fetch or condor_token_request), the signing key it
uses must appear in the list SEC_TOKEN_FETCH_ALLOWED_SIGNING_KEYS.
If the client doesn’t request a specific signing key to use, then the
key given by SEC_TOKEN_ISSUER_KEY is used.
The default for both of these configuration parameters is POOL.

If there are multiple tokens in files in the SEC_TOKEN_SYSTEM_DIRECTORY, then
the daemon will search for tokens in that directory based on lexicographical order;
the exception is that the file $(SUBSYS)_auto_generated_token will be searched first for
daemons of type $(SUBSYS). For example, if SEC_TOKEN_SYSTEM_DIRECTORY is set to
/etc/condor/tokens.d, then the condor_schedd will search at
/etc/condor/tokens.d/SCHEDD_auto_generated_token by default.

Users may create their own tokens with condor_token_fetch. This command-line
utility will contact the default condor_schedd and request a new
token given the user’s authenticated identity. Unlike condor_token_create,
the condor_token_fetch has no control over the mapped identity (but does not
need to read the files in SEC_PASSWORD_DIRECTORY).

If no security authentication methods specified by the administrator - and the
daemon or user has access to at least one token - then IDTOKENS authentication
is automatically added to the list of valid authentication methods. Otherwise,
to setup IDTOKENS authentication, enable it in the list of authentication methods:

SEC_DEFAULT_AUTHENTICATION_METHODS=$(SEC_DEFAULT_AUTHENTICATION_METHODS), IDTOKENS
SEC_CLIENT_AUTHENTICATION_METHODS=$(SEC_CLIENT_AUTHENTICATION_METHODS), IDTOKENS

Revoking Token: If a token is lost, stolen, or accidentally exposed,
then the system administrator may use the token revocation mechanism in order
to prevent unauthorized use. Revocation can be accomplished by setting the
SEC_TOKEN_REVOCATION_EXPR configuration parameter;
when set, the value of this parameter will be
evaluated as a ClassAd expression against the token’s contents.

For example, consider the following token:

eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.eyJpYXQiOjE1ODg0NzQ3MTksImlzcyI6ImhjYy1icmlhbnRlc3Q3LnVubC5lZHUiLCJqdGkiOiJjNzYwYzJhZjE5M2ExZmQ0ZTQwYmM5YzUzYzk2ZWU3YyIsInN1YiI6ImJib2NrZWxtQGhjYy1icmlhbnRlc3Q3LnVubC5lZHUifQ.fiqfgwjyTkxMSdxwm84xxMTVcGfearddEDj_rhiIbi4ummU

When printed using condor_token_list, the human-readable form is as follows
(line breaks added for readability):

$ condor_token_list
Header: {"alg":"HS256","kid":"POOL"}
Payload: {
 "iat": 1588474719,
 "iss": "pool.example.com",
 "jti": "c760c2af193a1fd4e40bc9c53c96ee7c",
 "sub": "alice@pool.example.com"
}

If we would like to revoke this token, we could utilize any of the following
values for SEC_TOKEN_REVOCATION_EXPR, depending on the desired breadth of
the revocation:

Revokes all tokens from the user Alice:
SEC_TOKEN_REVOCATION_EXPR = sub =?= "alice@pool.example.com"

Revokes all tokens from Alice issued before or after this one:
SEC_TOKEN_REVOCATION_EXPR = sub =?= "alice@pool.example.com" && \
 iat <= 1588474719

Revokes *only* this token:
SEC_TOKEN_REVOCATION_EXPR = jti =?= "c760c2af193a1fd4e40bc9c53c96ee7c"

The revocation only works on the daemon where
SEC_TOKEN_REVOCATION_EXPR is set; to revoke a token across the entire
pool, set SEC_TOKEN_REVOCATION_EXPR on every host.

In order to invalidate all tokens issued by a given master password in
SEC_PASSWORD_DIRECTORY, simply remove the file from the directory.

File System Authentication

This form of authentication utilizes the ownership of a file in the
identity verification of a client. A daemon authenticating a client
requires the client to write a file in a specific location (/tmp).
The daemon then checks the ownership of the file. The file’s ownership
verifies the identity of the client. In this way, the file system
becomes the trusted authority. This authentication method is only
appropriate for clients and daemons that are on the same computer.

File System Remote Authentication

Like file system authentication, this form of authentication utilizes
the ownership of a file in the identity verification of a client. In
this case, a daemon authenticating a client requires the client to write
a file in a specific location, but the location is not restricted to
/tmp. The location of the file is specified by the configuration
variable FS_REMOTE_DIR.

Windows Authentication

This authentication is done only among Windows machines using a
proprietary method. The Windows security interface SSPI is used to
enforce NTLM (NT LAN Manager). The authentication is based on challenge
and response, using the user’s password as a key. This is similar to
Kerberos. The main difference is that Kerberos provides an access token
that typically grants access to an entire network, whereas NTLM
authentication only verifies an identity to one machine at a time.
NTSSPI is best-used in a way similar to file system authentication in
Unix, and probably should not be used for authentication between two
computers.

SciTokens Authentication

A SciToken is a form of JSON Web Token (JWT) that the client can present
that the server can verify. Authentication of the server by the client
is done via an SSL host certificate (the same as with SSL authentication).
More information about SciTokens can be found at
https://scitokens.org.

Some other JWT token types can be used with the SciTokens authentication
method. WLCG tokens are accepted automatically. Other token types, such as EGI
CheckIn tokens, require some relaxation of the SciTokens validation checks.
Configuration parameter SEC_SCITOKENS_ALLOW_FOREIGN_TOKEN_TYPES
determines whether any tokens will be accepted under these relaxed checks. It’s
a boolean value that defaults to True. Configuration parameter
SEC_SCITOKENS_FOREIGN_TOKEN_ISSUERS determines which issuers’ tokens
will be accepted under these relaxed checks. It’s a list of issuer URLs that
defaults to the EGI CheckIn issuer. These parameters should be used with
caution, as they disable some security checks.

Ask MUNGE for Authentication

Ask the MUNGE service to validate both sides of the authentication. See:
https://dun.github.io/munge/ for instructions on installing.

Claim To Be Authentication

Claim To Be authentication accepts any identity claimed by the client.
As such, it does not authenticate. It is included in HTCondor and in the
list of authentication methods for testing purposes only.

Anonymous Authentication

Anonymous authentication causes authentication to be skipped entirely.
As such, it does not authenticate. It is included in HTCondor and in the
list of authentication methods for testing purposes only.

The Unified Map File for Authentication

HTCondor’s unified map file allows the mappings from authenticated names to an
HTCondor canonical user name to be specified as a single list within a single
file. The location of the unified map file is defined by the configuration
variable CERTIFICATE_MAPFILE; it specifies the path and file name of
the unified map file. Each mapping is on its own line of the unified map file.
Each line contains either an @include directive, or 3 fields, separated by
white space (space or tab characters):

	The name of the authentication method to which the mapping applies.

	A name or a regular expression representing the authenticated name to
be mapped.

	The canonical HTCondor user name.

Allowable authentication method names are the same as used to define any
of the configuration variables SEC_*_AUTHENTICATION_METHODS, as
repeated here:

SSL
KERBEROS
PASSWORD
FS
FS_REMOTE
IDTOKENS
SCITOKENS
NTSSPI
MUNGE
CLAIMTOBE
ANONYMOUS

The fields that represent an authenticated name and the canonical HTCondor user
name may utilize regular expressions as defined by PCRE2 (Perl-Compatible
Regular Expressions). Due to this, more than one line (mapping) within the
unified map file may match. Look ups are therefore defined to use the first
mapping that matches.

For HTCondor version 8.5.8 and later, the authenticated name field will be
interpreted as a regular expression or as a simple string based on the value of
the CERTIFICATE_MAPFILE_ASSUME_HASH_KEYS configuration variable. If
this configuration variable is true, then the authenticated name field is a
regular expression only when it begins and ends with the / character. If this
configuration variable is false, or on HTCondor versions older than 8.5.8, the
authenticated name field is always a regular expression.

A regular expression may need to contain spaces, and in this case the
entire expression can be surrounded by double quote marks. If a double
quote character also needs to appear in such an expression, it is
preceded by a backslash.

If the first field is the special value @include, it should be
followed by a file or directory path in the second field. If a
file is specified, it will be read and parsed as map file. If
a directory is specified, then each file in the directory is read
as a map file unless the name of the file matches the pattern
specified in the LOCAL_CONFIG_DIR_EXCLUDE_REGEXP configuration variable.
Files in the directory are read in lexical order. When a map file
is read as a result of an @include statement, any @include statements
that it contains will be ignored. If the file or directory path specified
with an @include statement is a relative path, it will be treated as relative to
the file currently being read.

The default behavior of HTCondor when no map file is specified is to do
the following mappings, with some additional logic noted below:

FS (.*) \1
FS_REMOTE (.*) \1
SSL (.*) ssl@unmapped
KERBEROS ([^/]*)/?[^@]*@(.*) \1@\2
NTSSPI (.*) \1
MUNGE (.*) \1
CLAIMTOBE (.*) \1
PASSWORD (.*) \1
SCITOKENS .* PLUGIN:*

For SciTokens, the authenticated name is the iss and sub
claims of the token, separated by a comma.

For Kerberos, if KERBEROS_MAP_FILE
is specified, the domain portion of the name is obtained by mapping the
Kerberos realm to the value specified in the map file, rather than just
using the realm verbatim as the domain portion of the condor user name.
See the Authentication section for details.

If authentication did not happen or failed and was not required, then
the user is given the name unauthenticated@unmapped.

SciTokens Mapping Plugins

For SciTokens, the iss and sub claims of the token may not be
sufficient to map the token to the appropriate canonical HTCondor user
name.
For these situations, a series of plugins can be employed to perform
the mapping based on the full token payload.
Each plugin can accept the token and provide a mapped identity or
decline the token.
If the plugin declines, then additional plugins are consulted.
If all plugins decline the token, then the mapped identity
scitokens@unmapped is used.

Each plugin is given a name consisting of alphanumeric characters.
To use a set of plugins to perform a mapping, the third field of the
matching line in the map file (the canonical name) should be the text
PLUGIN: followed by a comma-separated list of plugin names. Note
that no spaces should be used within the list.

For each plugin, the configuration parameter

 Networking, Port Usage, and CCB

Networking, Port Usage, and CCB

This section on network communication in HTCondor discusses which
network ports are used, how HTCondor behaves on machines with multiple
network interfaces and IP addresses, and how to facilitate functionality
in a pool that spans firewalls and private networks.

The security section of the manual contains some information that is
relevant to the discussion of network communication which will not be
duplicated here, so please see
the Security section as well.

Firewalls, private networks, and network address translation (NAT) pose
special problems for HTCondor. There are currently two main mechanisms
for dealing with firewalls within HTCondor:

	Restrict HTCondor to use a specific range of port numbers, and allow
connections through the firewall that use any port within the range.

	Use HTCondor Connection Brokering (CCB).

Each method has its own advantages and disadvantages, as described
below.

Port Usage in HTCondor

IPv4 Port Specification

The general form for IPv4 port specification is

<IP:port?param1name=value1¶m2name=value2¶m3name=value3&...>

These parameters and values are URL-encoded. This means any special
character is encoded with %, followed by two hexadecimal digits
specifying the ASCII value. Special characters are any non-alphanumeric
character.

HTCondor currently recognizes the following parameters with an IPv4 port
specification:

	CCBID
	Provides contact information for forming a CCB connection to a
daemon, or a space separated list, if the daemon is registered with
more than one CCB server. Each contact information is specified in
the form of IP:port#ID. Note that spaces between list items will be
URL encoded by %20.

	PrivNet
	Provides the name of the daemon’s private network. This value is
specified in the configuration with PRIVATE_NETWORK_NAME.

	sock
	Provides the name of condor_shared_port daemon named socket.

	PrivAddr
	Provides the daemon’s private address in form of IP:port.

Default Port Usage

Every HTCondor daemon listens on a network port for incoming commands.
(Using condor_shared_port, this port may be shared between multiple
daemons.) Most daemons listen on a dynamically assigned port. In order
to send a message, HTCondor daemons and tools locate the correct port to
use by querying the condor_collector, extracting the port number from
the ClassAd. One of the attributes included in every daemon’s ClassAd is
the full IP address and port number upon which the daemon is listening.

To access the condor_collector itself, all HTCondor daemons and tools
must know the port number where the condor_collector is listening.
The condor_collector is the only daemon with a well-known, fixed
port. By default, HTCondor uses port 9618 for the condor_collector
daemon. However, this port number can be changed (see below).

As an optimization for daemons and tools communicating with another
daemon that is running on the same host, each HTCondor daemon can be
configured to write its IP address and port number into a well-known
file. The file names are controlled using the

 Files, Directories and Logs

Files, Directories and Logs

HTCondor records many types of information in a variety of logs.
Administration may require locating and using the contents of a log to
debug issues. Listed here are details of the logs, to aid in
identification.

Job and Daemon Logs

	job event log
	The job event log is an optional, chronological list of events that
occur as a job runs. The job event log is written on the submit
machine. The submit description file for the job requests a job
event log with the submit command
log. The log is created
on and remains on the access point. Contents of the log are detailed
in the In the Job Event Log File section.
Examples of events are that the job is running, that the job is placed on
hold, or that the job completed.

	daemon logs
	Each daemon configured to have a log writes events relevant to that
daemon. Each event written consists of a timestamp and message. The
name of the log file is set by the value of configuration variable

 Third Party/Delegated file, credential and chec