HTCondor Manual
Release 23.6.2

HTCondor Team

Apr 26, 2024

QUICK START GUIDES

1 Users’ Quick Start Guide 3
1.1 WhatisalJob? e 3
1.2 AFirstHTCondorJob e e e 4
1.3 Thescience Job Example L 8
1.4 Expanding the science Job and the Organizationof Files 9
1.5 WheretoGofromHere e 11
2 Downloading and Installing 13
2.1 Windows (as Administrator) e e e e e e e e e e 13
2.2 LInux (ASTOOL)t v o e e e e e e e e e e e e e e e e 16
2.3 Linux (from our repoSitories)« v v v vt e e e e e e e e e e e e e e e e e e 17
2.4 Linux or macOS (S USET) v v v i i e e e e e e e e e e e e e e e 19
2.5 macOS (aSTOOL) o i e e e e 20
2.6 Docker Images o . e e e e e e e e e e e e e e e 23
2.7 Administrative Quick Start Guide 24
3 Overview 31
3.1 High-Throughput Computing (HTC) and its Requirements 31
3.2 HTCondor’'sPower e e e 31
3.3 Exceptional Features e 32
34 Availability . . . oL e 33
3.5 Contributions and Acknowledgments e 33
3.6 Support, Downloads and Bug Reporting 34
4 Users’ Manual 37
4.1 Introductionto HTCondor L e 37
4.2 Runningalob: the Steps ToTake i i i e e e e e e e 37
43 SubmittingalJob L e e e e e 38
4.4 Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 61
45 ManagingalJob. L e e e e e 72
4.6 Automatically managingajob L 79
47 How To Debug an Always Idle Job e 82
4.8 Choosing an HTCondor Universe v v i i v i i et e e e e et e e e e oo 84
4.9 Environment and services forarunningjob o oL oo 86
4.10 JobScheduling L 109
401 Job Sets . . . o o e e e 118
4.12 Self-Checkpointing Applications e 121
4.13 SubmittingtoaRemote AP L e e e e 127
4.14 Chirp: customupdatestothe AP L e 128
4.15 Special Environment Considerations L 129

10

11

Administrators’ Manual

5.1 Introduction e e e e
5.2 Starting Up, Shutting Down and Reconfiguring the System
5.3 Introduction to Configuration L e
54 Configuration Macros e e e
5.5 Configuration for Execution Points oL
5.6 Configuration for Access Points L e e e e
5.7 Configuration for Central Managerst v it e e e e e
5.8 Security . . . oL oL e e e e e e e e
5.9 Networking, Port Usage,and CCB e
5.10 Files, Directoriesand Logs oL
5.11 Third Party/Delegated file, credential and checkpoint transfer
ClassAds

6.1 HTCondor’s ClassAd Mechanism 0 i i i it et e e e e e e
6.2 ClassAd Transforms L e e
6.3 PrintFormats e e e
DAGMan Workflows

7.1 DAGMan Introduction e e e e
7.2 Running and Managing DAGMan L e
7.3 DAGMan Completion e
7.4 Composing Workflows from DAGs e
7.5 Advance DAGMan Functionality L e
7.6 Informational Files e
7.7 Quick Reference e e e e e e
Python Bindings

8.1 Imstalling the Bindings e e e e e e e
8.2 HTCondor Python Bindings Tutorials
8.3 Python Bindings version 2 API Reference o .
84 classad APl Reference e
8.5 htcondor APl Reference e
8.6 htcondor.htchirp APIReference e
8.7 htcondor.dags API Reference e e
8.8 htcondor.personal APIReference e
Cloud Computing

0.1 Introduction e e e e e
9.2 HTCondor Annex User’'s Guide i ittt i e e e
9.3 Using condor_annex for the First Time,
9.4 HTCondor Annex Customization Guide i ittt
9.5 HTCondor Annex Configuration i i v it et e e e e e
9.6 HTCondorinthe Cloud ittt
9.7 Google Cloud Marketplace Entry e
9.8 Google Cloud HPC Toolkit e
Grid Computing

10.1 Introduction e e e e e e e e e
10.2 Connecting HTCondor Pools with Flocking
10.3 The Grid Universe o v v i i e
104 The HTCondorJobRouter o e et e e

Platform-Specific Information
) 15 1 <

131
131
135
140
162
299
365
373
399
438
449
453

465
465
488
490

497
497
506
514
522
531
544
549

555
555
556
606
610
619
652
659
672

675
675
676
683
688
690
692
693
693

695
695
696
697
709

721

11.2 Microsoft Windows e e e e 722

11.3 Macintosh OS X o e e e e e 732
11.4 Windows Installer o e e e 732
12 Recipes, Examples, and Other Answers 739
12.1 Answers for USers o i i i e e e e e e e e e e e e e e e e 739
12.2 Answers for Admins e e e e e e e e e e 740
13 Version History and Release Notes 743
13.1 Introduction to HTCondor Versions o v i i v i ittt e e e e e e e e 743
13.2 Upgrading from an 10.0 LTS version to an 23.0 LTS version of HTCondor 745
13.3 Version 23 Feature Releases e 746
13.4 Version 23.0 LTS Releases o . i it it e e e e e e e e e e e e e 752
13.5 Version 10 Feature Releases 0 i i e e e e e 757
13.6 Version 10.0LTS Releases o o i i e e e e e e e 769
14 Commands Reference (man pages) 779
14.1 HTCondor’s ClassAd Mechanism 0 i i it et e e e e e e 779
14.2 classad_eval e e e e e e e e e 802
14.3 condor_adstash e e e e e e e e e e e 804
14.4 condor_advertise e e e e e e e e e 807
14.5 condor_annex e 809
14.6 condor_check_password e e e e e e e e e e e 812
14.7 condor_check_userlogs e e e e e e e e e 813
14.8 condor_chirp o e e e e e e e 814
14.9 condor_configure L e e e e e e e e e 817
14.10 condor_config_val e e e e e e e e e 820
14.11 condor_continue e e e e e e e e e e e 824
14.12 condor_dagman e e e e e e e e e e e e e e e 826
14.13 condor_drain e e e e e e e e e e e e 830
14.14 condor_evicted_files e e e e 832
14.15 condor_fetchlog e e e e e e e e e 833
14.16 condor_findhost e e e e e e e e e e e e e e 835
14.17 condor_gather_info i e e e e e e e e e e e e e e e e 836
14.18 condor_gpu_discovery i e e e e e e e e e e e e e 838
14.19 condor_history e e e e e e e e e e e e 841
14.20 condor_hold e e e e 845
14.21 condor_install e e e e e e e 846
14.22 condor_job_router_info e e e e e e e e e e e e e e e e e 850
14.23 condor_mastero e e e e e e e e e e e e e e e e 851
14.24 condor_now e e e e e e e e e e e e 852
14.25 condor_off« . o e e e e e e e e e 853
14.26 condor_on e e e s 856
14.27 condor_ping e e e e e e e e e e e e e e e e e e 857
14.28 condor_pool_job_report e e e e e e e e e e e e e 859
14.29 condor_power e e e e e e e e e e e e e 859
14.30 condor_preen e e e e e e e e e e e e e e e e e 860
14.31 condor_prio e e e e e e e e e 861
14.32 condor_procd e e e e e e e e e e e e e e 862
14.33 condor_q o e e e e e e e e e e e e e e 864
14.34 condor_gedit e e e e e e e e e 878
14.35 condor_qusers L e e e e e e e e e e 879
14.36 condor_gsub e e e e e e e e e e e e e 882
14.37 condor_reconfig e e e e e e e e e e e e e e e e e 885

14.38 condor_release e e e e e e e e e e 887

14.39 condor_remote_cluster e e e e e e e e e 888
14.40 condor_reschedule e e e 889
14.41 condor_restart e e e e e e e e e e e 891
14.42 condor_rm e e e e e e e 893
14.43 condor_rmdir e e e 895
14.44 condor_router_RiStOry e e e e e e e e e e e e e e e e e 896
14.45 condor_router_q o e e e e e e e e e e e e e 897
14.46 condor_router_rm e e e e e e e e e e e e e e e e e 898
14.47 condor_run e e e e e e e e e e 898
14.48 condor_set_shutdown e e e 901
14.49 condor_sos e e e e e e e e 902
14.50 condor_ssh_start e e e e e e e e e 903
14.51 condor_ssh_to_job e e 904
14.52 condor_ssl_fingerprint e e e e e e e e e e e e 907
14.53 condor_stats e e e e e e 908
14.54 condor_status o e e e e e e e e e e e e 910
14.55 condor_store_cred e e e e e e e 917
14.56 condor_submit e e e e e e e e e 919
14.57 condor_submit_dag e e e e e e 960
14.58 condor_suspend e e e e e e e e 965
14.59 condor_tail e e e 967
14.60 condor_test_token e e e e e e e e e e e 968
14.61 condor_token_create e e e e e e e e e 969
14.62 condor_token_fetch e e e 971
14.63 condor_token_list e e e e e e 973
14.64 condor_token_request e e e e e e e e e e e e e e e e e 975
14.65 condor_token_request_approveo i e e e e e e e e e e e e e e e e 977
14.66 condor_token_request_auto_approve i i e i e e e e e e e e e e e 979
14.67 condor_token_request_list oL e e e e e 980
14.68 condor_top e e e e e e e e e e e e e e e e e 982
14.69 condor_transfer_data e e e e e e e e e e e e 984
14.70 condor_transform_ads e e e e e e e e e e e e e 986
14.71 condor_update_machine_ad e e e e e e e 988
14.72 condor_updates_Stats o e e e e e e e e e e e e e e e e e 990
14.73 condor_upgrade_check e e e e e e e e 991
14.74 condor_urlfetch o e e e e e e e e 993
14.75 condor_userlog e e e e e e e e e e e e e e e e 994
14.76 condor_userprio i e e e e e e e e e e e e e e e e e 996
14.77 condor_vacate e e e e e e e e e e e 1002
14.78 condor_vacate_job e e e 1003
14.79 condor_version e e e e e e e e e e e e 1005
14.80 condor_wait e e e e e e e e s 1006
14.81 condor_watch_q e e e e e e e e e e e e e e e 1008
14.82 condor_who e e e e e 1011
14.83 get_htcondor e e e e e e e e e e 1014
14.84 gidd_alloc e e 1016
14.85 htcondor e e e 1016
14.86 procd_ctl o e e e e e e e e e e e e e e e e e 1020
15 ClassAd Attributes 1023
I5.1 ClassAd TYPES . . . o v v v e e e e e e e e e e 1023
15.2 Accounting ClassAd Attributes o e e e e e e e e e e 1025
15.3 Job ClassAd Attributes e e e e e e e e 1026

15.4 Machine ClassAd Attributes e e e
15.5 DaemonMaster ClassAd Attributes e e
15.6 Scheduler ClassAd Attributes e e
15.7 Negotiator ClassAd Attributes
15.8 Submitter ClassAd Attributes e e e e e e e e e
15.9 Defrag ClassAd Attributes o L e e e
15.10 Grid ClassAd Attributes e e e e e
15.11 Collector ClassAd Attributes 0 e e e e e e e e e
15.12 ClassAd Attributes Added by the condor_collector
15.13 DaemonCore Statistics Attributes e e e e e e e

16 Codes and Other Needed Values
16.1 condor_shadow Exit Codes @ e e e e e e
16.2 JobEventLogCodes o e e e e e
16.3 Job Universe Numbers e
16.4 DaemonCore Command Numbers ittt e e e e
16.5 DaemonCore Daecmon Exit Codes e

17 Glossary

18 Index

19 Licensing and Copyright
Python Module Index

Index

1113

1115

1117

vi

HTCondor Manual, Release 23.6.2

The HTCondor Software Suite (HTCSS) is a software system that creates a High-Throughput Computing (HTC) envi-
ronment. This environment might be a single cluster, a set of related clusters on a campus, cloud resources, or national
or international federations of computers.

If you are a user of HTCondor, and have been given a login or credentials to use a batch scheduler on an Access Point
(sometimes called a scheduler or login node), you may want to read our Quick Start guide here: Users’ Quick Start
Guide

If you are beginning administrator of HTCondor, or want to install it for the first time, please look at our installation
guide here: Downloading and Installing

Otherwise, for users of HTCondor who want more information, a complete user’s reference manual is here: Users’
Manual, and a similar complete reference for administrators of HTCondor can be found here: Administrators’ Manual

HTCondor contains many command line tools, each with a traditional Unix “man-page”. These may be found here:
Commands Reference (man pages)

Finally, for users writing Python interfaces to HTCondor, our Python API documentation is here: Python Bindings
A complete table of contents follows.

Manual built on April 16, 2024

QUICK START GUIDES 1

HTCondor Manual, Release 23.6.2

2 QUICK START GUIDES

CHAPTER
ONE

USERS’ QUICK START GUIDE

HTCondor is a system for dynamically sharing computational resources between competing computational tasks. As
an HTCondor user, you will describe your computational tasks as a series of independent, asynchronous “jobs.” You
access computational resources managed by HTCondor by submitting (or “placing”) job descriptions at an HTCondor
“access point” (AP), also known as a “submit node.” HTCondor locates an appropriate machine for each job, packages
up the job and ships it off to that machine for execution. Machines providing resources to HTCondor are therefore
known as execution points (EP).

This guide covers submitting and observing the successful completion of a first, example job. It then suggests extensions
that you can apply to your own jobs.

This guide presumes that
* HTCondor is running
* You have access to a machine within the pool that may submit jobs, termed an Access Point (AP).

* You are logged in to and working on the AP. (If you just finished gerting HTCondor, the one machine you just
installed is this AP.)

* Your program executable, your submit description file, and any needed input files are all on the file system of the
AP.

* Your job (the program executable) is able to run without any interactive input. Standard input (from the keyboard),
standard output (seen on the display), and standard error (seen on the display) may still be used, but their contents
will be redirected from/to files.

1.1 What is a Job?

“Job” is a very specific term in HTCondor. A job is the atomic unit of work. A job may use multiple cores on one
machine, but one job may not (in general) run across more than one machine. To effectively use HTCondor, you
will need to divide your total work (often called a workflow) into a number of jobs. These atomic units of work run
asynchronously with respect to each other, but may be connected by input and output files. Each job is described by a
Job ClassAd, which is usually created by the system from a submit description file. HTCondor is a High Throughput
system, which means it has been designed to effectively manage hundreds of thousands of jobs. Attributes of jobs that
must be defined include the executable or script to run, the amount of memory, CPU and other machine resources it
needs, and descriptions of the file inputs it need. The set of files used by a job is called the “sandbox”. There is an
input sandbox, the input files that exist before a job starts; the output sandbox, the set of files created by the job; and a
scratch sandbox, the set of files made as the job runs.

https://htcondor.org

HTCondor Manual, Release 23.6.2

1.2 A First HTCondor Job

For HTCondor to run a job, it must be given details such as the names and location of the executable and all needed
input files. These details are specified in a submit description file.

The executable

Before presenting the details of the submit description file, consider this first HTCondor job. It is a sleep job that waits
for 6 seconds and then exits. While most aspects of HTCondor are identical on Linux (or Mac) and Windows machines,
awareness of the AP’s operating system will lead to a better understanding of jobs and job submission.

This first executable program is a shell script (Linux or Mac) or batch file (Windows). The file that represents this differs
based on operating system; the Linux (or Mac) version is shown first, and the Windows version is shown second. To try
this example, log in to the AP, and use an editor to type in or copy and paste the file contents. Name the resulting file
sleep.sh if the AP is Linux (or Mac) operating system, and name the resulting file sleep.bat if the AP is running
Windows. Note that you will need to know whether the operating system on your AP is a Linux (or Mac) operating
system or Windows.

Listing 1: Linux (or Mac) executable, a shell script

#!/bin/bash
file name: sleep.sh

TIMETOWAIT="6"
echo "sleeping for $TIMETOWAIT seconds"
/bin/sleep $TIMETOWAIT

Listing 2: Windows executable, a batch file

:: file name: sleep.bat
@echo off

set TIMETOWAIT=6
echo sleeping for %TIMETOWAITY% seconds
choice /D Y /T %TIMETOWAIT% > NUL

For a Linux (or Mac) AP only, change the sleep. sh file to be executable by running the following command:

chmod u+x sleep.sh

The contents of the submit description file
The submit description file describes the job. To submit this sample job, again use an editor to create the file sleep.
sub. The submit description file contents for this job differs on Linux (or Mac) and Windows machines only in the

name of the script or batch file:

Listing 3: Linux (and Mac) submit description file

sleep.sub -- simple sleep job

executable = sleep.sh

(continues on next page)

4 Chapter 1. Users’ Quick Start Guide

HTCondor Manual, Release 23.6.2

(continued from previous page)

log = sleep.log
output = sleep.out
error = sleep.err
should_transfer_files = Yes

when_to_transfer_output = ON_EXIT

request_cpus =1
request_memory = 512M
request_disk = 1G
queue

Listing 4: Windows submit description file

sleep.sub -- simple sleep job

executable = sleep.bat
log = sleep.log
output = sleep.out
error = sleep.err
should_transfer_files = Yes

when_to_transfer_output = ON_EXIT

request_cpus =1
request_memory = 512M
request_disk = 1G
queue

The first line of this submit description file is a comment. Comments begin with the # character. Comments do not
span lines.

Each line of the submit description file has the form

command_name = value

The command name is case insensitive and precedes an equals sign. Values to right of the equals sign are likely to be
case sensitive, especially in the case that they specify paths and file names.

Next in this file is a specification of the executable to run. It specifies the program that becomes the HTCondor job.
For this example, it is the file name of the Linux (or Mac) script or Windows batch file. A full path and executable
name, or a path and executable relative to the current working directory may be specified.

The 1og command causes a job event log file named sleep. log to be created on the AP once the job is submitted. A
log is not necessary, but it can be incredibly useful in figuring out what happened or is happening with a job.

HTCondor must be told how many resources your job needs on an Execution Point in order to run. This allows HT-
Condor to run as many jobs as possible on each EP without overloading them. Jobs must declare the number of CPUs,
the amount of memory and disk they need. Special jobs may need to request other resources, such as GPUs or licenses.
Ask your administrator if your jobs requires such things. The amount of cpus is unit less, but memory and disk requires
can have a “M” for megabyte, “G” for Gigabyte suffix for legibility. Without the suffix, memory units are megabytes
and disk kilobytes.

1.2. A First HTCondor Job 5

HTCondor Manual, Release 23.6.2

request_cpus =1
request_memory = 512M
request_disk = 1G

If this script/batch file were to be invoked from the command line, and outside of HTCondor, its single line of output

sleeping for 6 seconds

would be sent to standard output (the display). When submitted as an HTCondor job, standard output of the job is on
that EP, and thus unavailable. HTCondor captures standard output in a file due to the command in the submit description
file. This example names the redirected standard output file sleep.out, and this file is returned to the AP when the
job completes. The same structure is specified for standard error, as specified with the command.

The commands

Yes
ON_EXIT

should_transfer_files
when_to_transfer_output

direct HTCondor to explicitly send the needed files, including the executable, to the machine where the job executes.
These commands will likely not be necessary for jobs in which the AP and the EP (the Execution Point, or worker
node) access a shared file system. However, including these commands will allow this first sample job to work under
a large variety of pool configurations.

The command tells HTCondor to run one instance of this job.

Submitting the job

With this submit description file, all that remains is to hand off the job to HTCondor. Note that the command should
be the last command in the file. Commands after the are ignored. Otherwise, the order of commands with the file does
not matter. Assuming the current working directory contains the sleep. sub submit description file and the executable
(sleep.shor sleep.bat), the command line

condor_submit sleep.sub

submits the job to the AP. If the submission is successful, the terminal will display a response that identifies the job, of
the form

Submitting job(s).
1 job(s) submitted to cluster 6.

Monitoring the job

Once the job has been submitted, command line tools may help you follow along with the progress of the job. The
condor_q command prints a listing of all your jobs currently in the queue. For example, a short time after Kris submits
the sleep job from a Linux (or Mac) AP on a pool that has no other queued jobs, the output may appear as

$ condor_q
-- Submitter: example.wisc.edu : <128.105.14.44:56550> : example.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

6.0 kris 2/13 10:49 0+00:00:03 R O 97.7 sleep.sh

1 jobs; ® completed, ® removed, O idle, 1 running, 0 held, ® suspended

6 Chapter 1. Users’ Quick Start Guide

HTCondor Manual, Release 23.6.2

The first column of output from condor_q identifies the job; the identifier is composed of two integers separated by
a period. The first integer is known as a cluster number, and it will be the same for each of the potentially many jobs
submitted by a single invocation of condor_submit. The second integer in the identifier is known as a process ID,
and it distinguishes between distinct job instances that have the same cluster number. These values start at 0.

Of interest in this output, the job is running, and it has used 3 seconds of time so far.

At job completion, the log file contains

000 (006.000.000) 02/13 10:49:04 Job submitted from host: <128.105.14.44:46062>

001 (006.000.000) 02/13 10:49:24 Job executing on host: <128.105.15.5:43051?PrivNet=cs.
—wisc.edu>

006 (006.000.000) 02/13 10:49:30 Image size of job updated: 100000
® - MemoryUsage of job (MB)
® - ResidentSetSize of job (KB)
005 (006.000.000) 02/13 10:49:31 Job terminated.
(1) Normal termination (return value 0)
Usr O 00:00:00, Sys 0 00:00:00 - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 Run Local Usage
Usr O 00:00:00, Sys 0 00:00:00 Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 Total Local Usage

23 - Run Bytes Sent By Job

113 - Run Bytes Received By Job

23 - Total Bytes Sent By Job

113 - Total Bytes Received By Job

Partitionable Resources : Usage Request Allocated
Cpus : 1 1
Disk (KB) : 100000 100000 2033496
Memory (MB) : 0 98 2001

Each event in the job event log file is separated by a line containing three periods. For each event, the first 3-digit value
is an event number.

Removing a job

Successfully submitted jobs will occasionally need to be removed from the queue. The condor_rm command with the
job identifier as a command line argument removes jobs. Kris’ job may be removed from the queue with

condor_rm 6.0

Specification of the cluster number only as with the command

condor_rm 6

will cause all jobs within that cluster to be removed.

1.2. A First HTCondor Job 7

HTCondor Manual, Release 23.6.2

1.3 The science Job Example

A second example job illustrates aspects of file specification for the job. Assume that the program executable is called
science.exe. This program does not use standard input or output; instead, the command line to invoke this program
specifies two input files and one output file. For this example, the command line to invoke science.exe (not as an
HTCondor job) will be

science.exe infile-A.txt infile-B.txt outfile.txt

While the name of the executable is specified in the submit description file with the command, the remainder of the
command line will be specified with the command.

Here is the submit description file for this job:

sciencel.sub -- run one instance of science.exe

executable = science.exe

arguments = "infile-A.txt infile-B.txt outfile.txt"
transfer_input_files = infile-A.txt,infile-B.txt
should_transfer_files = IF_NEEDED

when_to_transfer_output = ON_EXIT

request_cpus =1
request_memory = 512M
request_disk = 1G
max_retries =2

log = sciencel.log
queue

The input files infile-A.txt and infile-B.txt will need to be available on the Execution Point within the pool
where the job runs. HTCondor cannot interpret command line arguments, so it cannot know that these command line
arguments for this job specify input and output files. The submit command instructs HTCondor to transfer these input
files from the machine where the job is submitted to the machine chosen to execute the job. The default operation of
HTCondor is to transfer all files created by the job on the EP back to the AP. Therefore, there is no specification of the
outfile.txt output file.

This example submit description file modifies the commands that direct the transfer of files from AP to EP and back
again.

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

These values are the HTCondor defaults, so are not needed in this example. They are included to direct attention to the
capabilities of HTCondor. The command specifies whether HTCondor should assume the existence of a file system
shared by the AP and the EP. Where there is a shared file system, a correctly configured pool of machines will not
need to transfer the files from one machine to the other, as both can access the shared file system. Where there is not
a shared file system, HTCondor must transfer the files from one machine to the other. The specification IF_NEEDED
asks HTCondor to use a shared file system when one is detected, but to transfer the files when no shared file system is
detected. When files are to be transferred, HTCondor automatically sends the executable as well as a file representing
standard input; this file would be specified by the submit command, and it is not relevant to this example. Other files
are specified in a comma separated list with , as they are in this example.

When the job completes, all files created by the executable as it ran are transferred back to the AP.

HTCondor assumes that if the job exits of its own accord, with an exit code of zero, that indicates success, and any

8 Chapter 1. Users’ Quick Start Guide

HTCondor Manual, Release 23.6.2

non-zero exit code is a failure. By default, when the job exits, it will leave the queue. If you would like a job that exits
with a non-zero exit code to be restarted some number of times until it does, set in the submit file like so:

max_retries = 2

1.4 Expanding the science Job and the Organization of Files

A further example promotes understanding of how HTCondor makes the submission of lots of jobs easy. Assume that
the science.exe job is to be run 40 times. If the input and output files were exactly the same for each run, then only
the last line of the given submit description file changes: from

queue

to

queue 40

It is likely that this does not produce the desired outcome, as the output file created, outfile. txt, has the same name
for each queued instance of the job, and thus this file of results for each run conflicts. Chances are that the input files
also must be distinct for each of the 40 separate instances of the job. HTCondor offers the use of a macro that can
uniquely name each run’s input and output file names. The $ (Process) macro causes substitution by the process ID
from the job identifier. The submit description file for this proposed solution uniquely names the files:

science2.sub -- run 40 instances of science.exe
executable = science.exe
arguments =

~"infile-$(Process)A.txt infile-$(Process)B.txt outfile§(Process).txt"

transfer_input_files = infile-$(Process)A.txt,infile-$(Process)B.txt
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

request_cpus =1
request_memory = 512M
request_disk = 1G
max_retries =2

log = science2.log
queue 40

The 40 instances of this job will have process ID values that run from 0 to 39. The two input files for process ID 0 are
infile-0A.txt and infile-0B. txt, the ones for process ID 1 will be infile-1A.txt and infile-1B.txt, and
so on, all the way to process ID 39, which will be files infile-39A.txt and infile-39B. txt. Using this macro for
the output file naming of each of the 40 jobs creates outfile®.txt for process ID 0; outfilel. txt for process ID
1; and so on, to outfile39. txt for process ID 39.

This example does not scale well as the number of jobs increases, because the number of files in the same directory
becomes unwieldy. Assume now that there will be 100 instances of the science.exe job, and each instance has
distinct input files, and produces a distinct output file. A recommended organization introduces a unique directory for
each job instance. The following submit description file facilitates this organization by specifying the directory with
the command. The directories for this example are named run@, runl, etc. all the way to run99 for the 100 instances
of the following example submit file:

1.4. Expanding the science Job and the Organization of Files 9

HTCondor Manual, Release 23.6.2

science3.sub -- run 100 instances of science.exe, with
unique directories named by the $(Process) macro

executable
arguments

should_transfer_files
when_to_transfer_output

initialdir

transfer_input_files

request_cpus
request_memory
request_disk

max_retries
log
queue 100

science.exe

"infile-A.txt infile-B.txt outfile.txt"

IF_NEEDED
ON_EXIT

run$ (Process)
infile-A.txt,infile-B.txt
512M

1G

2
science3.log

The input and output files for each job instance can again be the initial simple names that do not incorporate the
$ (Process) macro. These files are distinct for each run due to their placement within a uniquely named directory.
This organization also works well for executables that do not facilitate command line naming of input or output files.

Here is a listing of the files and directories on the AP within this suggested directory structure. The files created due to
submitting and running the jobs are shown preceded by an asterisk (*). Only a subset of the 100 directories are shown.
Directories are identified using the Linux (and Mac) convention of appending the directory name with a slash character

o).

science.exe
science3.sub
run®/
infile-A.txt
infile-B.txt
* outfile.txt
* science3.log
runl/
infile-A.txt
infile-B.txt
* outfile.txt
* science3.log
run2/
infile-A.txt
infile-B.txt
* outfile.txt
* science3.log

10

Chapter 1. Users’ Quick Start Guide

HTCondor Manual, Release 23.6.2

1.5 Where to Go from Here

* Consider watching our video tutorial for new users.

Additional tutorials about other aspects of using HTCondor are available in our YouTube channel.

* Slides from past HTCondor Weeks — our annual conference — include the tutorials given there.

* The Users’ Manual is a good reference.

« If you like what you’ve seen but want to run more jobs simultaneously, the administrator’s quick start guide will
help you make more of your machines available to run jobs.

1.5. Where to Go from Here 11

https://www.youtube.com/watch?v=p2X6s_7e51k&list=PLO7gMRGDPNumCuo3pCdRk23GDLNKFVjHn
https://www.youtube.com/playlist?list=PLO7gMRGDPNumCuo3pCdRk23GDLNKFVjHn
https://www.youtube.com/channel/UCd1UBXmZIgB4p85t2tu-gLw
https://htcondor.org/past_condor_weeks.html

HTCondor Manual, Release 23.6.2

12 Chapter 1. Users’ Quick Start Guide

CHAPTER
TWO

DOWNLOADING AND INSTALLING

2.1 Windows (as Administrator)

Installation of HTCondor must be done by a user with administrator privileges. We have provided quickstart instructions
below to walk you through a single-node HTCondor installation using the HTCondor Windows installer GUI.

For more information about the installation options, or how to use the installer in unattended batch mode, see the
complete Windows Installer guide.

Itis possible to manually install HTCondor on Windows, without the provided MSI program, but we strongly discourage
this unless you have a specific need for this approach and have extensive HTCondor experience.

2.1.1 Quickstart Installation Instructions

To download the latest HTCondor Windows Installer:
1. Go to the current channel download site.

2. Click on the second-latest version. (The latest version should always be the under-development version and will
only have daily builds.)

3. Click on the release folder.
4. Click on the file ending in .msi (usually the first one).

Start the installer by double clicking on the MSI file once it’s downloaded. Then follow the directions below for each
option.

If HTCondor is already installed.
If HTCondor has been previously installed, a dialog box will appear before the installation of HTCondor proceeds.
The question asks if you wish to preserve your current HTCondor configuration files. Answer yes or no, as
appropriate.

If you answer yes, your configuration files will not be changed, and you will proceed to the point where the new
binaries will be installed.

If you answer no, then there will be a second question that asks if you want to use answers given during the
previous installation as default answers.

STEP 1: License Agreement.
Agree to the HTCondor license agreement.

STEP 2: HTCondor Pool Configuration.
Choose the option to create a new pool and enter a name.

STEP 3: This Machine’s Roles.
Check the “submit jobs” box. From the list of execution options, choose “always run jobs”.

13

https://research.cs.wisc.edu/htcondor/tarball/current/

HTCondor Manual, Release 23.6.2

STEP 4: The Account Domain.
Skip this entry.

STEP 5: E-mail Settings.
Specify the desired email address(es), if any.

STEP 6: Java Settings.
If this entry is already set, accept it. Otherwise, skip it.

STEP 7: Access Permission Settings.
Accept the default values. You can change these later by modifying the configuration files.

STEP 8: VM Universe Setting.
Disable the vim universe.

STEP 9: Choose Destination Folder
Accept the default settings.

This should complete the installation process. The installer will have automatically started HTCondor in the background
and you do not need to restart Windows for HTCondor to work.

Open a command prompt to follow the next set of instructions.
Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The following commands should complete without
errors, producing output that looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv
slotl@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 O0+00

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0
condor_q

-- Schedd: azaphrael.org : <184.60.25.78:345857... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: O jobs; ® completed, ® removed, 0 idle, ® running, O held, ® suspended
Total for all users: ® jobs; 0 completed, ® removed, ® idle, O running, O held, O.
—suspended

If both commands worked, the installation likely succeeded.

14 Chapter 2. Downloading and Installing

HTCondor Manual, Release 23.6.2

Where to Go from Here

* For a brief introduction to running jobs with HTCondor, see the Users’ Quick Start Guide.

* If you’re looking to set up a multi-machine pool, go to the Administrative Quick Start Guide.

2.1.2 Setting Up a Whole Pool with Windows

Follow the instructions above through Step 1. Then, customize the installation as follows:

STEP 2: HTCondor Pool Configuration.
Create a new pool only on the machine you’ve chosen as their central manager. See the Administrative Quick
Start Guide. Otherwise, choose the option to join an existing pool and enter the name or IP address of the central
manager.

STEP 3: This Machine’s Roles.
Check the “submit jobs” box to select the submit role, or choose “always run jobs” to select the execute role.

STEP 4: The Account Domain.
Enter the same name on all submit-role machines. This helps ensure that a user can’t get more resources by
logging in to more than one machine.

STEP 5: E-mail Settings.
Specity the desired email address(es), if any.

STEP 6: Java Settings.
If this entry is already set, accept it. Otherwise, skip it.

Experienced users who know they want to use the java universe should instead enter the path to the Java exe-
cutable on the machine, if it isn’t already set, or they want to use a different one.

To disable use of the java universe, leave the field blank.

STEP 7: Access Permission Settings.
Machines within the HTCondor pool will need various types of access permission. The three categories of
permission that can be set here are read, write, and administrator. The values can be usernames, hostnames or IP
address ranges, Wild cards and macros are permitted. It is recommended that you accept the defaults here and
change the values later as needed by modifying the HTCondor configuration files.

Read
Read access allows a machine to obtain information about HTCondor such as the status of ma-
chines in the pool and the job queues. If all of your HTCondor machines and users are in a single
DNS domain or IP Address range, setting this to *.domain an IP address range with wildcards is
a good choice. See ALLOW_READ

Write
Write access is for submitting jobs to the Schedd. Setting this to * will allow any user that can
login to the machine submit jobs. See ALLOW_WRITE

Administrator
Administrator access is for starting and stopping the daemons and sending administrative
commands such as reconfig and drain. By default the installer will give this permission to
the Windows user that runs the installer and to the Windows Adminstrator account. See
ALLOW_ADMINISTRATOR

For more details on these access permissions, and others that can be manually changed in your configuration file,
please see the section titled Setting Up Security in HTCondor in the Authorization section.

STEP 8: VM Universe Setting.
Disable the vm universe.

2.1. Windows (as Administrator) 15

HTCondor Manual, Release 23.6.2

Experienced users with VMWare and Perl already installed may enable the vim universe.
STEP 9: Choose Destination Folder

Experienced users may change the default installation path (c:\Condor), but we don’t recommend doing so.
Certain jobs may not run if the installation path has a space in it.

2.2 Linux (as root)

For ease of installation on Linux, we provide a script that will automatically download, install and start HTCondor.

2.2.1 Quickstart Installation Instructions

Warning:
* RedHat systems must be attached to a subscription.

¢ Debian and Ubuntu containers don’t come with curl installed, so run the following first.

apt-get update && apt-get install -y curl

The command below shows how to download the script and run it immediately; if you would like to inspect it first,
see Inspecting the Script. The default behavior will create a complete HTCondor pool with its multiple roles on one
computer, referred to in this manual as a “minicondor.” Experienced users who are making an HTCondor pool out
of multiple machines should add a flag to select the desired role; see the Administrative Quick Start Guide for more
details.

curl -fsSL https://get.htcondor.org | sudo /bin/bash -s -- --no-dry-run

If you see an error like bash: sudo: command not found, try re-running the command above without the sudo.

Inspecting the Script

If you would like to inspect the script before you running it on your system as root, you can:
* read the script;
» compare the script to the versions in our GitHub repository;

e or run the script as user nobody, dropping the --no-dry-run flag. This will cause the script to print out what
it would do if run for real. You can then inspect the output and copy-and-paste it to perform the installation.

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The following commands should complete without
errors, producing output that looks like the corresponding example.

condor_status

16 Chapter 2. Downloading and Installing

https://get.htcondor.org
https://github.com/htcondor/htcondor/blob/master/src/condor_scripts/get_htcondor

HTCondor Manual, Release 23.6.2

Name OpSys Arch State Activity LoadAv Mem Actv
slotl@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0
condor_g

-- Schedd: azaphrael.org : <184.60.25.78:345857... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: O jobs; O completed, O removed, 0 idle, ® running, O held, 0 suspended
Total for all users: 0O jobs; O completed, ® removed, ® idle, 0 running, 0 held, 0.
—suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

* For a brief introduction to running jobs with HTCondor, see the Users’ Quick Start Guide.

* If you're looking to set up a multi-machine pool, go to the Administrative Quick Start Guide.

2.2.2 Setting Up a Whole Pool

The details of using this installation procedure to create a multi-machine HTCondor pool are described in the admin
quick-start guide: Administrative Quick Start Guide.

2.3 Linux (from our repositories)

If you’re not already familiar with HTCondor, we recommend you follow our instructions for your first installation.

If you’re looking to automate the installation of HTCondor using your existing toolchain, the latest information is
embedded in the output of the script run as part of the instructions. This script can be run as a normal user (or nobody),
so we recommend this approach.

Otherwise, this page contains information about the RPM and deb repositories we offer. These repositories will almost
always have more recent releases than the distributions.

2.3. Linux (from our repositories) 17

HTCondor Manual, Release 23.6.2

2.3.1 RPM-based Distributions

We support several RPM-based platforms: Enterprise Linux 7, including Red Hat, CentOS, and Scientific Linux; En-
terprise Linux 8, including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux; Enterprise Linux 9, including Red
Hat, CentOS Stream, Alma Linux, and Rocky Linux; openSUSE LEAP 15 including SUSE Linux Enterprise Server
(SLES) 15. Binaries are available for x86_64 for all these platforms. For Enterprise Linux 8, HTCondor also supports
ARM (*“aarch64”) and Power (“ppc64le”). For Enterprise Linux 9, HTCondor also supports ARM (“aarch64”).

Repository packages are available for each platform:

e Amazon Linux 2023

 Enterprise Linux 7

* Enterprise Linux 8

* Enterprise Linux 9

* openSUSE LEAP 15
Except for Amazon Linux, the HTCondor packages on these platforms depend on the corresponding version of EPEL.
Additionally, the following repositories are required for specific platforms:

¢ On RedHat 8, codeready-builder-for-rhel-8-${ARCH}-rpms.

¢ On CentOS 8, powertools (or PowerTools).

¢ On CentOS or RedHat 9, crb.

2.3.2 deb-based Distributions

We support four deb-based platforms: Debian 11 (Bullseye) and Debian 12 (Bookworm); and Ubuntu 20.04 (Focal
Fossa) and 22.04 (Jammy Jellyfish). Binaries are available for x86_64 for all these platforms. For Unbuntu 20.04
(Focal Fossa) HTCondor also supports Power PC (ppc64el). These repositories also include the source packages.

Debian 11, and 12

Add our Debian signing key with apt-key add before adding the repositories below.
e Debian 11: deb https://research.cs.wisc.edu/htcondor/repo/debian/23.x bullseye main

e Debian 12: deb https://research.cs.wisc.edu/htcondor/repo/debian/23.x bookworm main

Ubuntu 20.04, and 22.04

Add our Ubuntu signing key with apt-key add before adding the repositories below.
e Ubuntu 20.04: deb https://research.cs.wisc.edu/htcondor/repo/ubuntu/23.x focal main

e Ubuntu 22.04: deb https://research.cs.wisc.edu/htcondor/repo/ubuntu/23.x jammy main

18 Chapter 2. Downloading and Installing

https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.amzn2023.noarch.rpm
https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.el7.noarch.rpm
https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.el8.noarch.rpm
https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.el9.noarch.rpm
https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.leap15.noarch.rpm
https://fedoraproject.org/wiki/EPEL
https://research.cs.wisc.edu/htcondor/repo/keys/HTCondor-23.x-Key
https://research.cs.wisc.edu/htcondor/repo/keys/HTCondor-23.x-Key

HTCondor Manual, Release 23.6.2

2.4 Linux or macOS (as user)

Installing HTCondor on Linux or macOS as a normal user is a multi-step process. Note that a user-install of HTCondor
is always self-contained on a single machine; if you want to create a multi-machine HTCondor pool, you will need to
have administrative privileges on the relevant machines and follow the instructions here: Administrative Quick Start
Guide.

2.4.1 Download

The first step is to download HTCondor for your platform. If you know which platform you’re using, that HTCondor
supports it, and which version you want, you can download the corresponding file from our website; otherwise, we
recommend using our download script, as follows.

cd
curl -fsSL https://get.htcondor.org | /bin/bash -s -- --download

On macOS, If you use a web browser to download a tarball from our web site, then the OS will mark the file as
quarantined. All binaries extracted from the tarball will be similarly marked. The OS will refuse to run any binaries
that are quarantined. You can remove the quarantine marking from the tarball before extracting, like so:

xattr -d com.apple.quarantine condor-10.7.1-x86_64_macOS13-stripped.tar.gz

2.4.2 Install

Unpack the tarball and rename the resulting directory:

tar -x -f condor.tar.gz
mv condor-*stripped condor

You won’t need condor. tar.gz again, so you can remove it now if you wish.

2.4.3 Configure

cd condor
./bin/make-personal-from-tarball

2.4.4 Using HTCondor

You’ll need to run the following command now, and every time you log in:

. ~/condor/condor.sh

Then to start HTCondor (if the machine has rebooted since you last logged in):

condor_master

It will finish silently after starting up, if everything went well.

2.4. Linux or macOS (as user) 19

https://research.cs.wisc.edu/htcondor/tarball/current/

HTCondor Manual, Release 23.6.2

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The following commands should complete without
errors, producing output that looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv
slotl@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0
condor_g

-- Schedd: azaphrael.org : <184.60.25.78:345857... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: O jobs; 0 completed, O removed, 0 idle, ® running, O held, 0 suspended
Total for all users: 0O jobs; ® completed, ® removed, ® idle, 0 running, 0 held, 0.
—suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

* For a brief introduction to running jobs with HTCondor, see the Users’ Quick Start Guide.

* If you’re looking to set up a multi-machine pool, go to the Administrative Quick Start Guide.

2.5 macOS (as root)

Installing HTCondor on macOS as root user is a multi-step process. For a multi-machine HTCondor pool, infor-
mation about the roles each machine will play can be found here: Administrative Quick Start Guide. Note that the
get_htcondor tool cannot perform the installation steps on macOS at present. You must follow the instructions be-
low.

Note that all of the following commands must be run as root, except for downloading and extracting the tarball.

20 Chapter 2. Downloading and Installing

HTCondor Manual, Release 23.6.2

2.5.1 The condor Service Account

The first step is to create a service account under which the HTCondor daemons will run. The commands that specity a
PrimaryGroupID or UniqueID may fail with an error that includes eDSRecordAlreadyExists. If that occurs, you
will have to retry the command with a different id number (other than 300).

dscl . -create /Groups/condor

dscl . -create /Groups/condor PrimaryGroupID 300

dscl . -create /Groups/condor RealName 'Condor Group'
dscl . -create /Groups/condor passwd '*'

dscl . -create /Users/condor

dscl . -create /Users/condor UniqueID 300

dscl . -create /Users/condor passwd '*'

dscl . -create /Users/condor PrimaryGroupID 300

dscl . -create /Users/condor UserShell /usr/bin/false
dscl . -create /Users/condor RealName 'Condor User'
dscl . -create /Users/condor NFSHomeDirectory /var/empty

2.5.2 Download

The next step is to download HTCondor. If you want to select a specific version of HTCondor, you can download the
corresponding file from our website. Otherwise, we recommend using our download script, as follows.

cd
curl -fsSL https://get.htcondor.org | /bin/bash -s -- --download

If you use a web browser to download a tarball from our web site, then the OS will mark the file as quarantined. All
binaries extracted from the tarball will be similarly marked. The OS will refuse to run any binaries that are quarantined.
You can remove the quarantine marking from the tarball before extracting it, like so:

xattr -d com.apple.quarantine condor-10.7.1-x86_64_macOS13-stripped.tar.gz

2.5.3 Install

Unpack the tarball.

mkdir /usr/local/condor
tar -x -C /usr/local/condor --strip-components 1 -f condor.tar.gz

You won’t need condor. tar.gz again, so you can remove it now if you wish.

Set up the log directory and default configuration files.

cd /usr/local/condor

mkdir -p local/log

mkdir -p local/config.d

cp etc/examples/condor_config etc/condor_config

cp etc/examples/00-htcondor-9.0.config local/config.d

If you are setting up a single-machine pool, then run the following command to finish the configuration.

cp etc/examples/00-minicondor local/config.d

2.5. macOS (as root) 21

https://research.cs.wisc.edu/htcondor/tarball/

HTCondor Manual, Release 23.6.2

If you are setting up part of a multi-machine pool, then you’ll have to make some other configuration changes, which
we don’t cover here.

Next, fix up the permissions of the the installed files.

chown -R root:wheel /usr/local/condor
chown -R condor:condor /usr/local/condor/local/log

Finally, make the configuration file available at one of the well-known locations for the tools to find.

mkdir -p /etc/condor
In -s /usr/local/condor/etc/condor_config /etc/condor

2.5.4 Start the Daemons

Now, register HTCondor has a service managed by launchd and start up the daemons.

cp /usr/local/condor/etc/examples/condor.plist /Library/LaunchDaemons
launchctl load /Library/LaunchDaemons/condor.plist
launchctl start condor

2.5.5 Using HTCondor

You’ll want to add the HTCondor bin and sbin directories to your PATH environment variable.

export PATH=$PATH:/usr/local/condor/bin:/usr/local/condor/sbin

If you want to use the Python bindings for HTCondor, you’ll want to add them to your PYTHONPATH.

export PYTHONPATH="/usr/local/condor/lib/python3${PYTHONPATH+":"3}${PYTHONPATH-}"

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The following commands should complete without
errors, producing output that looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv
slotl@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0

22 Chapter 2. Downloading and Installing

HTCondor Manual, Release 23.6.2

condor_g

-- Schedd: azaphrael.org : <184.60.25.78:345857... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: O jobs; O completed, ® removed, 0 idle, O running, 0 held, 0 suspended
Total for all users: O jobs; 0 completed, O removed, O idle, O running, ® held, 0.
—suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

* For a brief introduction to running jobs with HTCondor, see the Users’ Quick Start Guide.

« If you're looking to set up a multi-machine pool, go to the Administrative Quick Start Guide.

2.6 Docker Images

HTCondor provides images on Docker Hub.

2.6.1 Quickstart Instructions

If you’re just getting started with HTCondor, use htcondor/mini, a stand-alone HTCondor configuration. The fol-
lowing command will work on most systems with Docker installed:

docker run -it htcondor/mini

From here, you can proceed to the Users’ Quick Start Guide.

2.6.2 Setting Up a Whole Pool with Docker
If you’re looking to set up a whole pool, the following images correspond to the three required roles. See the Adminis-
trative Quick Start Guide for more information about the roles and how to configure these images to work together.

e htcondor/cm, an image configured as a central manager

* htcondor/execute, an image configured as an execute node

e htcondor/submit, an image configured as a submit node

All images include the latest version of HTCondor. If you want to use the latest LTS version, use the docker tag 1ts.

2.6. Docker Images 23

HTCondor Manual, Release 23.6.2

2.7 Administrative Quick Start Guide

This guide does not contain step-by-step instructions for getting HTCondor. Rather, it is a guide to joining multiple
machines into a single pool of computational resources for use by HTCondor jobs.

This guide begins by briefly describing the three roles required by every HTCondor pool, as well as the resources and
networking required by each of those roles. This information will enable you to choose which machine(s) will perform
which role(s). This guide also includes instructions on how to use the get_htcondor tool to install and configure
Linux (or Mac) machines to perform each of the roles.

If you’re curious, using Windows machines, or you want to automate the configuration of their pool using a tool like
Puppet, the /ast section of this guide briefly describes what the get_htcondor tool does and provides a link to the rest
of the details.

Single-machine Installations

If you just finished installing a single-machine (“mini”) HTCondor using get_htcondor, you can just run
get_htcondor again (and follow its instructions) to reconfigure the machine to be one of these three roles; this
may destroy any other configuration changes you’ve made.

We don’t recommend trying to add a machine configured as a “mini” HTCondor to the pool, or trying to add
execute machines to an existing “mini” HTCondor pool. We also don’t recommend creating an entire pool out of
unprivileged installations.

2.7.1 The Three Roles

Even a single-machine installation of HTCondor performs all three roles.

The Execute Role

The most common reason for adding a machine to an HTCondor pool is to make another machine execute HTCondor
jobs; the first major role, therefore, is the execute role. This role is responsible for the technical aspects of actually
running, monitoring, and managing the job’s executable; transferring the job’s input and output; and advertising, mon-
itoring, and managing the resources of the execute machine. HTCondor can manage pools containing tens of thousands
of execute machines, so this is by far the most common role.

The execute role itself uses very few resources, so almost any machine can contribute to a pool. The execute role can
run on a machine with only outbound network connectivity, but being able to accept inbound connections from the
machine(s) performing the submit role will simplify setup and reduce overhead. The execute machine does not need
to allow user access, or even share user IDs with other machines in the pool (although this may be very convenient,
especially on Windows).

24 Chapter 2. Downloading and Installing

HTCondor Manual, Release 23.6.2

The Submit Role

We’ll discuss what “advertising” a machine’s resources means in the next section, but the execute role leaves an obvious
question unanswered: where do the jobs come from? The answer is the submit role. This role is responsible for
accepting, monitoring, managing, and scheduling jobs on its assigned resources; transferring the input and output
of jobs; and requesting and accepting resource assignments. (A “resource” is some reserved fraction of an execute
machine.) HTCondor allows arbitrarily many submit roles in a pool, but for administrative convenience, most pools
only have one, or a small number, of machines acting in the submit role.

A submit-role machine requires a bit under a megabyte of RAM for each running job, and its ability to transfer data to
and from the execute-role machines may become a performance bottleneck. We typically recommend adding another
access point for every twenty thousand simultaneously running jobs. A access point must have outbound network con-
nectivity, but a submit machine without inbound network connectivity can’t use execute-role machines without inbound
network connectivity. As execute machines are more numerous, access points typically allow inbound connections. Al-
though you may allow users to submit jobs over the network, we recommend allowing users SSH access to the access
point.

The Central Manager Role

Only one machine in each HTCondor pool can perform this role (barring certain high-availability configurations, where
only one machine can perform this role at a time). A central manager matches resource requests — generated by the
submit role based on its jobs — with the resources described by the execute machines. We refer to sending these
(automatically-generated) descriptions to the central manager as “advertising” because it’s the primary way execute
machines get jobs to run.

A central manager must accept connections from each execute machine and each access point in a pool. However,
users should never need access to the central manager. Every machine in the pool updates the central manager every
few minutes, and it answers both system and user queries about the status of the pool’s resources, so a fast network is
important. For very large pools, memory may become a limiting factor.

2.7.2 Assigning Roles to Machines

The easiest way to assign a role to a machine is when you initially ger HTCondor. You’ll need to supply the same
password for each machine in the same pool; sharing that secret is how the machines recognize each other as members
of the same pool, and connections between machines are encrypted with it. (HTCondor uses port 9618 to communicate,
so make sure that the machines in your pool accept TCP connections on that port from each other.) In the command
lines below, replace $htcondor_password with the password you want to use. In addition to the password, you must
specify the name of the central manager, which may be a host name (which must resolve on all machines in the pool)
or an IP address. In the command lines below, replace $central_manager_name with the host name or IP address
you want to use.

When you get HTCondor, start with the central manager, then add the access point(s), and then add the execute ma-
chine(s). You may not have sudo installed; you may omit it from the command lines below if you run them as root.

2.7. Administrative Quick Start Guide 25

HTCondor Manual, Release 23.6.2

Central Manager

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /
—bin/bash -s -- --no-dry-run --central-manager $central_manager_name

Submit

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /
—bin/bash -s -- --no-dry-run --submit $central_manager_name

Execute

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /
—bin/bash -s -- --no-dry-run --execute $central_manager_name

At this point, users logged in on the access point should be able to see execute machines in the pool (using
condor_status), submit jobs (using condor_submit), and see them run (using condor_q).

Creating a Multi-Machine Pool using Windows or Containers

If you are creating a multi-machine HTCondor pool on Windows computers or using containerization, please see the
“Setting Up a Whole Pool” section of the relevant installation guide:

e Setting Up a Whole Pool with Windows

e Setting Up a Whole Pool with Docker

2.7.3 Where to Go from Here

There are two major directions you can go from here, but before we discuss them, a warning.

Making Configuration Changes

HTCondor configuration files should generally be owned by root (or Administrator, on Windows), but readable by all
users. We recommend that you don’t make changes to the configuration files established by the installation procedure;
this avoids conflicts between your changes and any changes we may have to make to the base configuration in future
updates. Instead, you should add (or edit) files in the configuration directory; its location can be determined on a given
machine by running condor_config_val LOCAL_CONFIG_DIR there. HTCondor will process files in this directory
in lexicographic order, so we recommend naming files ##-name. config so that, for example, a setting in 00-base.
config will be overridden by a setting in 99-specific.config.

26 Chapter 2. Downloading and Installing

HTCondor Manual, Release 23.6.2

Enabling Features
Some features of HTCondor, for one reason or another, aren’t (or can’t be) enabled by default. Areas of potentially
general interest include:

» Configuration for Execution Points (particularly Enabling the Fetching and Use of OAuth2 Credentials and
Cgroup-Based Process Tracking),

e Docker Universe

* Apptainer and Singularity Support

Implementing Policies

Although your HTCondor pool should be fully functional at this point, it may not be behaving precisely as you wish,
particularly with respect to resource allocation. You can tune how HTCondor allocates resources to users, or groups
of users, using the user priority and group quota systems, described in Configuration for Central Managers. You can
enforce machine-specific policies — for instance, preferring GPU jobs on machines with GPUs — using the options
described in Configuration for Execution Points.

Further Reading

* It may be helpful to at least skim the Users’ Manual to get an idea of what your users might want or expect,
particularly the sections on DAGMan Introduction, Choosing an HTCondor Universe, and Self-Checkpointing
Applications.

* Understanding HTCondor’s ClassAd Mechanism is essential for many administrative tasks.
* The rest of the Administrators’ Manual, particularly the section on Monitoring with Ganglia, Elasticsearch, etc..

* Slides from past HTCondor Weeks — our annual conference — include a number of tutorials and talks on admin-
istrative topics, including monitoring and examples of policies and their implementations.

2.7.4 What get_htcondor Does to Configure a Role

The configuration files generated by get_htcondor are very similar, and only two lines long:
* set the HTCondor configuration variable to the name (or IP address) of your central manager;

e add the appropriate metaknob: use role : get_htcondor_central_manager, use role :
get_htcondor_submit, or use role : get_htcondor_execute.

Putting all of the pool-independent configuration into the metaknobs allows us to change the metaknobs to fix problems
or work with later versions of HTCondor as you upgrade.

The get_htcondor documentation describes what the configuration script does and how to determine the exact details.

These instructions show how to create a complete HTCondor installation with all of its components on a single com-
puter, so that you can test HTCondor and explore its features. We recommend that new users start with the first set of
instructions here and then continue with the Users’ Quick Start Guide; that link will appear again at the end of these
instructions.

If you know how to use Docker, you may find it easier to start with the htcondor/mini image; see the Docker Images
entry. If you’re familiar with cloud computing, you may also get HTCondor in the cloud.

2.7. Administrative Quick Start Guide 27

https://htcondor.org/past_condor_weeks.html

HTCondor Manual, Release 23.6.2

Installing HTCondor on a Cluster

Experienced users who want to make an HTCondor pool out of multiple machines should follow the Administrative
Quick Start Guide. If you’re new to HTCondor administration, you may want to read the Administrators’ Manual.

Installing HTCondor on a Single Machine with Administrative Privileges

If you have administrative privileges on your machine, choose the instructions corresponding to your operating system:
* Windows.

 Linux. HTCondor supports Amazon Linux 2023; Enterprise Linux 7 including Red Hat, CentOS, and Scientific
Linux 7; Enterprise Linux 8 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux; Enterprise
Linux 9 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux; openSUSE LEAP 15 including
SUSE Linux Enterprise Server 15; Debian 11 and 12; and Ubuntu 20.04 and 22.04.

e macOS. HTCondor supports macOS 10.15 and later.

Hand-Installation of HTCondor on a Single Machine with User Privileges

If you don’t have administrative privileges on your machine, you can still install HTCondor. An unprivileged installation
isn’t able to effectively limit the resource usage of the jobs it runs, but since it only works for the user who installed it,
at least you know who to blame for misbehaving jobs.

 Linux. HTCondor supports Amazon Linux 2023; Enterprise Linux 7 including Red Hat, CentOS, and Scientific
Linux 7; Enterprise Linux 8 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux; Enterprise
Linux 9 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux; openSUSE LEAP 15 including
SUSE Linux Enterprise Server 15; Debian 11 and 12; and Ubuntu 20.04 and 22.04.

* macOS. HTCondor supports macOS 10.15 and later.
Docker Images

HTCondor is also available on Docker Hub.

If you’re new to HTCondor, the htcondor/mini image is equivalent to following any of the instructions above, and
once you’ve started the container, you can proceed directly to the Users’ Quick Start Guide and learn how to run jobs.

For other options, see our docker image list.

Kubernetes

You can deploy a complete HTCondor pool with the following command:

kubectl apply -f https://github.com/htcondor/htcondor/blob/latest/build/docker/k8s/pool.
—yaml

If you’re new to HTCondor, you can proceed directly to the Users’ Quick Start Guide after logging in to the submit
pod.

28 Chapter 2. Downloading and Installing

https://hub.docker.com/u/htcondor

HTCondor Manual, Release 23.6.2

In the Cloud
Although you can use our Docker images (or Kubernetes support) in the cloud, HTCondor also supports cloud-native
distribution.

» For Amazon Web Services, we offer a minicondor image preconfigured for use with condor_annex, which allows
to easily add cloud resources to your pool.

* The Google Cloud Marketplace Entry lets you construct an entire HTCondor pool that scales automatically to
run submitted jobs. If you’re new to HTCondor, you can proceed to the Users’ Quick Start Guide immediately
after following those instructions.

* We also have documentation on creating a H7Condor in the Cloud by hand.

2.7. Administrative Quick Start Guide 29

https://aws.amazon.com/marketplace/pp/B073WHVRPR

HTCondor Manual, Release 23.6.2

30

Chapter 2. Downloading and Installing

CHAPTER
THREE

OVERVIEW

3.1 High-Throughput Computing (HTC) and its Requirements

The quality of many projects is dependent upon the quantity of computing cycles available. Many problems require
years of computation to solve. These problems demand a computing environment that delivers large amounts of com-
putational power over a long period of time. Such an environment is called a High-Throughput Computing (HTC)
environment. In contrast, High Performance Computing (HPC) environments deliver a tremendous amount of com-
pute power over a short period of time. HPC environments are often measured in terms of Floating point Operations
Per Second (FLOPS). A growing community is not concerned about operations per second, but operations per month
or per year (FLOPY). They are more interested in how many jobs they can complete over a long period of time instead
of how fast an individual job can finish.

The key to HTC is to efficiently harness the use of all available resources. Years ago, the engineering and scientific
community relied on a large, centralized mainframe or a supercomputer to do computational work. A large number of
individuals and groups needed to pool their financial resources to afford such a machine. Users had to wait for their
turn on the mainframe, and they had a limited amount of time allocated. While this environment was inconvenient for
users, the utilization of the mainframe was high; it was busy nearly all the time.

As computers became smaller, faster, and cheaper, users moved away from centralized mainframes. Today, most orga-
nizations own or lease many different kinds of computing resources in many places. Racks of departmental servers,
desktop machines, leased resources from the Cloud, allocations from national supercomputer centers are all examples
of these resources. This is an environment of distributed ownership, where individuals throughout an organization own
their own resources. The total computational power of the institution as a whole may be enormous, but because of
distributed ownership, groups have not been able to capitalize on the aggregate institutional computing power. And,
while distributed ownership is more convenient for the users, the utilization of the computing power is lower. Many
machines sit idle for very long periods of time while their owners have no work for the machines to do.

3.2 HTCondor’s Power

HTCondor is a software system that creates a High-Throughput Computing (HTC) environment. It effectively uses
the computing power of machines connected over a network, be they a single cluster, a set of clusters on a campus,
cloud resources either stand alone or temporarily joined to a local cluster, or international grids. Power comes from the
ability to effectively harness shared resources with distributed ownership.

A user submits jobs to HTCondor. HTCondor finds available machines and begins running the jobs there. HTCondor
has the capability to detect that a machine running a job is no longer available (perhaps the machine crashed, or maybe
it prefers to run another job). HTCondor will automatically restart the job on another machine without intervention
from the user.

31

HTCondor Manual, Release 23.6.2

HTCondor is useful when a job must be run many (thousands of) times, perhaps with hundreds of different data sets.
With one command, all of the jobs are submitted to HTCondor. Depending upon the number of machines in the
HTCondor pool, hundreds of otherwise idle machines can be running the jobs at any given moment.

HTCondor does not require an account (login) on machines where it runs a job. HTCondor can do this because of its
file transfer and split execution mechanisms.

HTCondor provides powerful resource management by match-making resource owners with resource consumers. This
is the cornerstone of a successful HTC environment. Other compute cluster resource management systems attach
properties to the job queues themselves, resulting in user confusion over which queue to use as well as administrative
hassle in constantly adding and editing queue properties to satisfy user demands. HTCondor implements ClassAds, a
clean design that simplifies the user’s submission of jobs.

ClassAds work in a fashion similar to the newspaper classified advertising want-ads. All machines in the HTCondor
pool advertise their resource properties, both static and dynamic, such as available RAM memory, CPU type, CPU
speed, virtual memory size, physical location, and current load average, in a resource offer ad. A user specifies a
resource request ad when submitting a job. The request defines both the required and a desired set of properties of the
resource to run the job. HTCondor acts as a broker by matching and ranking resource offer ads with resource request
ads, making certain that all requirements in both ads are satisfied. During this match-making process, HTCondor also
considers several layers of priority values: the priority the user assigned to the resource request ad, the priority of the
user which submitted the ad, and the desire of machines in the pool to accept certain types of ads over others.

3.3 Exceptional Features

Reliability
An HTCondor job “is like money in the bank”. After successful submission, HTCondor owns the
job, and will run it to completion, even if the submit machine or execute machine crash, and require
HTCondor to restart the job elsewhere.

Scalability
An HTCondor pool is horizontally scalable to hundreds of thousands of execute cores running a
similar number of running jobs, and an even larger number of idle jobs. HTCondor is also scalable
down to run an entire pool on a single machine, and many scales between these two extremes.

Security
HTCondor, by default, uses strong authentication and encryption on the wire. The HTCondor worker
node scratch directories can be encrypted, so that if a node is stolen or broken into, scratch files are
unreadable.

Parallelization without Reimplementation or Redesign
HTCondor is able to run most programs which researchers can run on their laptop or their desktop, in
any programming language, such as C, Fortran, Python, Julia, Matlab, R or others, without changing
the code. HTCondor will do the work of running your code as parallel jobs, so it is not necessary to
implement parallelism in your code.

Portability and Heterogeneity
HTCondor runs on most Linux distributions and on Windows. A single HTCondor pool can support
machines of different OSes. Worker nodes need not be identically provisioned — HTCondor detects
the memory, CPU cores, GPUs and other machine resources available on a machine, and only runs
jobs that match their needs to the machine’s capabilities.

Pools of Machines can be Joined Together
Flocking allows jobs submitted from one pool of HTCondor machines to execute on another autho-
rized pool.

Jobs Can Be Ordered
A set of jobs where the output of one or more jobs becomes the input of one or more other jobs, can

32 Chapter 3. Overview

HTCondor Manual, Release 23.6.2

be defined, such that HTCondor will run the jobs in the proper order, and organize the inputs and
outputs properly. This is accomplished with a directed acyclic graph, where each job is a node in the
graph.

HTCondor Can Use Remote Resources, from a Cloud, a Supercomputer Allocation, or a Grid
Glidein allows jobs submitted to HTCondor to be executed on machines in remote pools in various
locations worldwide. These remote pools can be in one or more clouds, in an allocation on a HPC
site, in a different HTCondor pool or on a compute grid.

Sensitive to the Desires of Machine Owners
The owner of a machine has complete priority over the use of the machine. HTCondor lets the
machine’s owner decide if and how HTCondor uses the machine. When HTCondor relinquishes the
machine, it cleans up any files created by the jobs that ran on the system.

Flexible Policy Mechanisms
HTCondor allows users to specify very flexible policies for how they want jobs to be run. Conversely,
it independently allows the owners of machines to specify very flexible policies about what jobs (if
any) should be run on their machines. Together, HTCondor merges and adjudicates these policy
requests into one coherent system.

The ClassAd mechanism in HTCondor provides an expressive framework for matchmaking resource
requests with resource offers. Users can easily request both job requirements and job desires. For
example, a user can require that their job must be started on a machine with a certain amount of
memory, but should there be multiple available machines that meet that criteria, to select the one
with the most memory.

3.4 Availability

HTCondor is available for download from the URL http://htcondor.org/downloads/.

3.5 Contributions and Acknowledgments

For more platform-specific information about HTCondor’s support for various operating systems, see the Platform-
Specific Information chapter.

The quality of the HTCondor project is enhanced by the contributions of external organizations. We gratefully ac-
knowledge the following contributions.

e The GOZAL Project from the Computer Science Department of the Technion Israel Institute of Technology
(http://www.technion.ac.il/), for their enhancements for HTCondor’s High Availability. The condor_had daemon
allows one of multiple machines to function as the central manager for a HTCondor pool. Therefore, if an acting

central manager fails, another can take its place.

¢ Micron Corporation (http://www.micron.com/) for the MSI-based installer for HTCondor on Windows.

 Paradyn Project (http://www.paradyn.org/) and the Universitat Autonoma de Barcelona (http://www.caos.uab.

es/) for work on the Tool Daemon Protocol (TDP).

The HTCondor project wishes to acknowledge the following:

3.4. Availability

33

http://htcondor.org/downloads/
http://www.technion.ac.il/
http://www.micron.com/
http://www.paradyn.org/
http://www.caos.uab.es/
http://www.caos.uab.es/

HTCondor Manual, Release 23.6.2

 This material is based upon work supported by the National Science Foundation under Grant Numbers MCS-
8105904, OCI-0437810, and OCI-0850745. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

3.6 Support, Downloads and Bug Reporting

The latest software releases, publications/papers regarding HTCondor and other High-Throughput Computing research
can be found at the official web site for HTCondor at http://htcondor.org/.

3.6.1 Downloads

A list of recent HTCondor software releases is available on our downloads page: https://htcondor.org/downloads.

Selecting a release channel will lead you to the Downloading and Installing section of the HTCondor Manual, which
describes how to download and install HTCondor.

3.6.2 Support
Mailing Lists

Our users support each other on a community unmoderated mailing list (htcondor-users @cs.wisc.edu) targeted at solv-
ing problems with HTCondor. HTCondor team members attempt to monitor traffic to htcondor-users, responding as
they can. Follow the instructions at http://htcondor.org/mail-lists. If you have a question or potential bug report for
HTCondor that can be asked on a public mailing list, this is the first place to go.

In addition, there is a very low-volume e-mail list at htcondor-world @cs.wisc.edu. We use this e-mail list to announce
new releases of HTCondor and other major HTCondor-related news items. To subscribe or unsubscribe from the list,
follow the instructions at http://htcondor.org/mail-lists. The HTCondor World e-mail list group is moderated, and only
major announcements of wide interest are distributed.

Email Support

You can reach the HTCondor Team directly. The HTCondor Team is composed of the developers and administrators of
HTCondor at the University of Wisconsin-Madison. HTCondor questions, bug reports, comments, pleas for help, and
requests for commercial contract consultation or support are all welcome; send e-mail to htcondor-admin @cs.wisc.edu.
Please include your name, organization, and email in your message. If you are having trouble with HTCondor, please
help us troubleshoot by including as much pertinent information as you can, including snippets of HTCondor log files,
and the version of HTCondor you are running.

Finally, we have several options for users who require additional support for HTCondor beyond the free support listed
above. All details are available on our website: https://htcondor.org/htcondor-support/

34 Chapter 3. Overview

http://htcondor.org/
https://htcondor.org/downloads
mailto:htcondor-users@cs.wisc.edu
http://htcondor.org/mail-lists
mailto:htcondor-world@cs.wisc.edu
http://htcondor.org/mail-lists
mailto:htcondor-admin@cs.wisc.edu
https://htcondor.org/htcondor-support/

HTCondor Manual, Release 23.6.2

3.6.3 Reporting Bugs

We recommend you use the mailing lists or email support listed above to report bugs. Please provide as much infor-
mation as possible: detailed information about the problem, relevant log files, and steps on how to reproduce it. If it’s
a new issue that our team was not aware of, we’ll create a new ticket in our system.

Ticketing System

Experienced HTCondor users can also request a user account that will allow them to create tickets directly in our
system:

https://htcondor-wiki.cs.wisc.edu/index.cgi/rptview 7rn=4

To get an account, send an email to htcondor-admin @cs.wisc.edu explaining why you want it and how you intend to
use it. These are typically reserved for known collaborators with direct contact to the HTCondor team.

3.6. Support, Downloads and Bug Reporting 35

https://htcondor-wiki.cs.wisc.edu/index.cgi/rptview?rn=4
mailto:htcondor-admin@cs.wisc.edu

HTCondor Manual, Release 23.6.2

36

Chapter 3. Overview

CHAPTER
FOUR

USERS’ MANUAL

4.1 Introduction to HTCondor

The HTCondor software system is developed by the Center for High Throughput Computing at the University of
Wisconsin-Madison (UW-Madison), and was first installed as a production system in the UW-Madison Computer Sci-
ences department in the 1990s. HTCondor pools have since served as a major source of computing cycles to thousands
of campuses, labs, organizations and commercial entities. For many, it has revolutionized the role computing plays
in their research. Increasing computing throughput by several orders of magnitude may not merely deliver the same
results faster, but may enable qualitatively different avenues of research.

HTCondor is a specialized batch system for managing compute-intensive jobs. HTCondor provides a queuing mecha-
nism, scheduling policy, priority scheme, and resource classifications. Users submit their compute jobs to HTCondor,
HTCondor puts the jobs in a queue, runs them, and then informs the user as to the result.

Batch systems normally operate only with dedicated machines. Often termed worker nodes, these dedicated machines
are typically owned by one group and dedicated to the sole purpose of running compute jobs. HTCondor can schedule
jobs on dedicated machines. But unlike traditional batch systems, HTCondor is also designed to run jobs on machines
shared and used by other systems or people. By running on these shared resources, HTCondor can effectively harness
all machines throughout a campus. This is important because often an organization has more latent, idle computers
than any single department or group otherwise has access to.

4.2 Running a Job: the Steps To Take

Here are the basic steps to run a job with HTCondor.

Work Decomposition

Typically, users want High Throughput computing systems when they have more work than can rea-
sonably run on a single machine. Therefore, the computation must run concurrently on multiple
machines. HTCondor itself does not help with breaking up a large amount of work to run indepen-
dently on many machines. In many cases, such as Monte Carlo simulations, this may be trivial to
do. In other situations, the code must be refactored or code loops may need to be broken into sepa-
rate work steps in order to be suitable for High Throughput computing. Work must be broken down
into a set of jobs whose runtime is neither too short nor too long. HTCondor is most efficient when
running jobs whose runtime is measured in minutes or hours. There is overhead in scheduling each
job, which is why very short jobs (measured in seconds) do not work well. On the other hand, if a
job takes many days to run, there is the threat of losing work in progress should the job or the server
it runs on crashes.

37

HTCondor Manual, Release 23.6.2

Prepare the job for batch execution.
To run under HTCondor a job must be able to run as a background batch job. HTCondor runs the
program unattended and in the background. A program that runs in the background will not be able
to do interactive input and output. Create any needed input files for the program. Make certain the
program will run correctly with these files.

Create a description file.
A submit description file controls the all details of a job submission. This text file tells HTCondor
everything it needs to know to run the job on a remote machine, e.g. how much memory and how
many cpu cores are needed, what input files the job needs, and other aspects of machine the job might
need.

Write a submit description file to go with the job, using the examples provided in the Submitting a
Job section for guidance. There are many possible options that can be set in a submit file, but most
submit files only use a few. The complete list of submit file options is in condor_submit.

Submit the Job.
Submit the program to HTCondor with the command. HTCondor will assign the job a unique Cluster
and Proc identifier as integers separated by a dot. You use this Cluster and Proc id to manage the job
later.

Manage the Job.
After submission, HTCondor manages the job during its lifetime. You can monitor the job’s progress
with the condor_g. On some platforms, you can ssh to a running job with the condor_ssh_to_job
command, and inspect the job as it runs.

HTCondor can write into a log file describing changes to the state of your job — when it starts execut-
ing, when it uses more resources, when it completes, or when it is preempted from a machine. You
can remove a running or idle job from the queue with condor_rm.

Examine the results of a finished job.
When your program completes, HTCondor will tell you (by e-mail, if preferred) the exit status of your
program and various statistics about its performances, including time used and I/O performed. If you
are using a log file for the job, the exit status will be recorded in there. Output files will be transferred
back to the submitting machine, if a shared filesystem is not used. After the job completes, it will
not be visible to the condor_g command , but is queryable with the condor_history command.

4.3 Submitting a Job

The command takes a job description file as input and submits the job to HTCondor. In the submit description file,
HTCondor finds everything it needs to know about the job. Items such as the name of the executable to run, the initial
working directory, and command-line arguments to the program all go into the submit description file. creates a job
ClassAd based upon the information, and HTCondor works toward running the job.

It is easy to submit multiple runs of a program to HTCondor with a single submit description file. To run the same
program many times with different input data sets, arrange the data files accordingly so that each run reads its own
input, and each run writes its own output. Each individual run may have its own initial working directory, files mapped
for stdin, stdout, stderr, command-line arguments, and shell environment.

The condor_submit manual page contains a complete and full description of how to use . It also includes descriptions
of all of the many commands that may be placed into a submit description file. In addition, the index lists entries for
each command under the heading of Submit Commands.

38 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.3.1 Sample submit description files

In addition to the examples of submit description files given here, there are more in the condor_submit manual page.
Example 1

Example 1 is one of the simplest submit description files possible. It queues the program myexe for execution some-
where in the pool. As this submit description file does not request a specific operating system to run on, HTCondor
will use the default, which is to run the job on a machine which has the same architecture and operating system it was
submitted from.

Before submitting a job to HTCondor, it is a good idea to test it first locally, by running it from a command shell. This
example job might look like this when run from the shell prompt.

$./myexe SomeArgument

The corresponding submit description file might look like the following

Example 1
Simple HTCondor submit description file
Everything with a leading # is a comment

executable = myexe
arguments = SomeArgument
output = outputfile
error = errorfile
log = myexe.log
request_cpus =1

request_memory = 1024M
request_disk 10240K

should_transfer_files = yes
when_to_transfer_output = on_exit

queue

The standard output for this job will go to the file outputfile, as specified by the command. Likewise, the standard
error output will go to the file named errorfile.

HTCondor will append events about the job to a log file with the requested name myexe.log. When the job finishes,
its exit conditions and resource usage will also be noted in the log file. This file’s contents are an excellent way to figure
out what happened to jobs.

HTCondor needs to know how many machine resources to allocate to this job. The request_ lines describe that this
job should be allocated 1 cpu core, 1024 megabytes of memory and 10240 kilobytes of scratch disk space.

Finally, the queue statement tells HTCondor that you are done describing the job, and to send it to the queue for
processing.

Example 2

The submit description file for Example 2 queues 150 runs of program foo. This job requires machines which have
at least 4 GiB of physical memory, one cpu core and 16 Gb of scratch disk. Each of the 150 runs of the program is
given its own HTCondor process number, starting with 0. $(Process) is expanded by HTCondor to the actual number
used by each instance of the job. So, stdout, and stderr will refer to out.®, and err.O® for the first run of the
program, out.1, and err. 1 for the second run of the program, and so forth. A log file containing entries about when

4.3. Submitting a Job 39

HTCondor Manual, Release 23.6.2

and where HTCondor runs, transfer files, and terminates for all the 150 queued programs will be written into the single
file foo.log. If there are 150 or more available slots in your pool, all 150 instances might be run at the same time,
otherwise, HTCondor will run as many as it can concurrently.

Each instance of this program works on one input file. The name of this input file is passed to the program as the only
argument. We prepare 150 copies of this input file in the current directory, and name them input_file.0, input_file.1

. up to input_file.149. Using transfer_input_files, we tell HTCondor which input file to send to each instance of the
program.

Example 2: Show off some fancy features,
including the use of pre-defined macros.

executable = foo

arguments = input_file.$(Process)
request_cpus =1

request_memory = 4096M

request_disk = 16383K

error = err.$(Process)

output = out.$(Process)

log = foo.log

should_transfer_files = yes
transfer_input_files = input_file.$(Process)
when_to_transfer_output = on_exit

Help with debugging jobs by creating
manifest directory describing sandbox before and after
manifest = true

submit 150 instances of this job
queue 150

4.3.2 Submitting many similar jobs with one queue command
A wide variety of job submissions can be specified with extra information to the submit command. This flexibility
eliminates the need for a job wrapper or Perl script for many submissions.

The form of the queue command defines variables and expands values, identifying a set of jobs. Square brackets
identify an optional item.

queue [<int expr>]
queue [<int expr> | [<varname>] in [slice] <list of items>
queue [<int expr> | [<varname> | matching [files | dirs] [slice] <list of items with file globbing>
queue [<int expr> | [<list of varnames> | from [slice] <file name> | <list of items>
All optional items have defaults:
e If <int expr> is not specified, it defaults to the value 1.

e If <varname> or <list of varnames> is not specified, it defaults to the single variable called ITEM.

40 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

* If slice is not specified, it defaults to all elements within the list. This is the Python slice [: :], with a step
value of 1.

* If neither files nor dirs is specified in a specification using the from key word, then both files and directories
are considered when globbing.

The list of items uses syntax in one of two forms. One form is a comma and/or space separated list; the items are
placed on the same line as the command. The second form separates items by placing each list item on its own line,
and delimits the list with parentheses. The opening parenthesis goes on the same line as the command. The closing
parenthesis goes on its own line. The command specified with the key word from will always use the second form of
this syntax. Example 3 below uses this second form of syntax. Finally, the key word from accepts a shell command in
place of file name, followed by a pipe | (example 4).

The optional slice specifies a subset of the list of items using the Python syntax for a slice. Negative step values are
not permitted.

Here are a set of examples.

Example 1

transfer_input_files $(filename)
arguments -infile $(filename)
queue filename matching files *.dat

The use of file globbing expands the list of items to be all files in the current directory that end in .dat. Only files,
and not directories are considered due to the specification of files. One job is queued for each file in the list of items.
For this example, assume that the three files initial.dat, middle.dat, and ending.dat form the list of items after
expansion; macro filename is assigned the value of one of these file names for each job queued. That macro value is
then substituted into the arguments and transfer_input_files commands. The queue command expands to

transfer_input_files = initial.dat

arguments = -infile initial.dat
queue

transfer_input_files = middle.dat
arguments = -infile middle.dat
queue

transfer_input_files = ending.dat
arguments = -infile ending.dat
queue

Example 2

queue 1 input in A, B, C

Variable input is set to each of the 3 items in the list, and one job is queued for each. For this example the queue
command expands to

input = A
queue
input = B
queue
input = C
queue
Example 3

4.3. Submitting a Job 41

HTCondor Manual, Release 23.6.2

queue input, arguments from (
filel, -a -b 26
file2, -c -d 92

)

Using the from form of the options, each of the two variables specified is given a value from the list of items. For this
example the queue command expands to

input = filel
arguments = -a -b 26
queue

input = file2
arguments = -c -d 92
queue

Example 4

queue from seq 7 9 |

feeds the list of items to queue with the output of seq 7 9:

item = 7
queue
item = 8
queue
item = 9
queue

4.3.3 Variables in the Submit Description File

There are automatic variables for use within the submit description file.

$(Cluster) or $(ClusterId)
Each set of queued jobs from a specific user, submitted from a single submit host, sharing an executable have the
same value of $(Cluster) or $(ClusterId). The first cluster of jobs are assigned to cluster 0, and the value
is incremented by one for each new cluster of jobs. $ (Cluster) or $ (ClusterId) will have the same value as
the job ClassAd attribute .

$(Process) or $(ProcId)
Within a cluster of jobs, each takes on its own unique $ (Process) or $ (ProcId) value. The first job has value
0. $(Process) or $(ProcId) will have the same value as the job ClassAd attribute .

$$(a_machine_classad_attribute)
When the machine is matched to this job for it to run on, any dollar-dollar expressions are looked up from the
machine ad, and then expanded. This lets you put the value of some machine ad attribute into your job. For
example, if you to pass the actual amount of memory a slot has provisioned as an argument to the job, you could
add arguments = --mem $$(Memory)

arguments = --mem $$(Memory)

or, if you wanted to put the name of the machine the job ran on into the output file name, you could add

42 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

output = output_file.$$(Name)

$$([an_evaluated_classad_expression])
This dollar-dollar-bracket syntax is useful when you need to perform some math on a value before passing it to
your job. For example, if want to pass 90% of the allocated memory as an argument to your job, the submit file
can have

arguments = --mem $$([Memory * 0.9])

and when the job is matched to a machine, condor will evaluate this expression in the context of both the job and
machine ad

$ (ARCH)
The Architecture that HTCondor is running on, or the ARCH variable in the config file. Example might be
X86_64.

$(OPSYS) $(OPSYSVER) $ (OPSYSANDVER) $(OPSYSMAJORVER)
These submit file macros are availle at submit time, and mimic the classad attributes of the same names.

$ (SUBMIT_FILE)
The name of the submit_file as passed to the condor_submit command.

$ (SUBMIT_TIME)
The Unix epoch time submit was run. Note, this may be useful for naming output files.

$(Year) $(Month) $(Day)
These integer values are derived from the $(SUBMIT_TIME) macro above.

$(Item)
The default name of the variable when no <varname> is provided in a queue command.

$(ItemIndex)
Represents an index within a list of items. When no slice is specified, the first $ (TtemIndex) is 0. When a slice
is specified, $ (ItemIndex) is the index of the item within the original list.

$(Step)
For the <int expr> specified, $ (Step) counts, starting at 0.

$(Row)
When a list of items is specified by placing each item on its own line in the submit description file, $ (Row)
identifies which line the item is on. The first item (first line of the list) is $ (Row) 0. The second item (second
line of the list) is $ (Row) 1. When a list of items are specified with all items on the same line, $ (Row) is the
same as $ (ItemIndex).

Here is an example of a queue command for which the values of these automatic variables are identified.
Example 1

This example queues six jobs.

queue 3 in (A, B)

¢ $(Process) takes on the six values 0, 1, 2, 3, 4, and 5.

* Because there is no specification for the <varname> within this queue command, variable $ (Item) is defined.
It has the value A for the first three jobs queued, and it has the value B for the second three jobs queued.

* $(Step) takes on the three values 0, 1, and 2 for the three jobs with $ (Item)=A, and it takes on the same three
values 0, 1, and 2 for the three jobs with $ (Item)=B.

e $(ItemIndex) is O for all three jobs with $(Item)=A, and it is 1 for all three jobs with $ (ITtem)=B.

4.3. Submitting a Job 43

HTCondor Manual, Release 23.6.2

* $(Row) has the same value as $ (ItemIndex) for this example.

4.3.4 Including Submit Commands Defined Elsewhere

Externally defined submit commands can be incorporated into the submit description file using the syntax

include : <what-to-include>

The <what-to-include> specification may specify a single file, where the contents of the file will be incorporated into
the submit description file at the point within the file where the include is. Or, <what-to-include> may cause a program
to be executed, where the output of the program is incorporated into the submit description file. The specification of
<what-to-include> has the bar character (|) following the name of the program to be executed.

The include key word is case insensitive. There are no requirements for white space characters surrounding the colon
character.

Included submit commands may contain further nested include specifications, which are also parsed, evaluated, and
incorporated. Levels of nesting on included files are limited, such that infinite nesting is discovered and thwarted, while
still permitting nesting.

Consider the example

include : ./list-infiles.sh |

In this example, the bar character at the end of the line causes the script 1ist-infiles. sh to be invoked, and the
output of the script is parsed and incorporated into the submit description file. If this bash script is in the PATH when
submit is run, and contains

#!/bin/sh

echo "transfer_input_files = "1s -m infiles/*.dat "
exit O

then the output of this script has specified the set of input files to transfer to the execute host. For example, if directory
infiles contains the three files A.dat, B.dat, and C.dat, then the submit command

transfer_input_files = infiles/A.dat, infiles/B.dat, infiles/C.dat

is incorporated into the submit description file.

4.3.5 Using Conditionals in the Submit Description File

Conditional if/else semantics are available in a limited form. The syntax:

if <simple condition>
<statement>

<statement>
else
<statement>

(continues on next page)

44 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

<statement>
endif

An else key word and statements are not required, such that simple if semantics are implemented. The <simple condi-
tion> does not permit compound conditions. It optionally contains the exclamation point character (!) to represent the
not operation, followed by

¢ the defined keyword followed by the name of a variable. If the variable is defined, the statement(s) are incor-
porated into the expanded input. If the variable is not defined, the statement(s) are not incorporated into the
expanded input. As an example,

if defined MY_UNDEFINED_VARIABLE
X =12

else
X =-1

endif

results in X = -1, when MY_UNDEFINED_VARIABLE is not yet defined.

* the version keyword, representing the version number of of the daemon or tool currently reading this conditional.
This keyword is followed by an HTCondor version number. That version number can be of the form x.y.z or x.y.
The version of the daemon or tool is compared to the specified version number. The comparison operators are

— == for equality. Current version 8.2.3 is equal to 8.2.

— >=to see if the current version number is greater than or equal to. Current version 8.2.3 is greater than
8.2.2, and current version 8.2.3 is greater than or equal to 8.2.

— <=to see if the current version number is less than or equal to. Current version 8.2.0 is less than 8.2.2, and
current version 8.2.3 is less than or equal to 8.2.

As an example,

if version >= 8.1.6
DO_X = True
else
DO_Y = True
endif

results in defining DO_X as True if the current version of the daemon or tool reading this if statement is 8.1.6 or
a more recent version.

* True or yes or the value 1. The statement(s) are incorporated.
* False or no or the value 0 The statement(s) are not incorporated.

* $(<variable>) may be used where the immediately evaluated value is a simple boolean value. A value that
evaluates to the empty string is considered False, otherwise a value that does not evaluate to a simple boolean
value is a syntax error.

The syntax

if <simple condition>
<statement>

<statement>
elif <simple condition>

(continues on next page)

4.3. Submitting a Job 45

HTCondor Manual, Release 23.6.2

(continued from previous page)

<statement>

<statement>
endif

is the same as syntax

if <simple condition>
<statement>

<statement>
else
if <simple condition>
<statement>

<statement>
endif
endif

Here is an example use of a conditional in the submit description file. A portion of the sample. sub submit description
file uses the if/else syntax to define command line arguments in one of two ways:

if defined X

arguments = -n $(X)
else

arguments = -n 1 -debug
endif

Submit variable X is defined on the command line with

$ condor_submit X=3 sample.sub

This command line incorporates the submit command X = 3 into the submission before parsing the submit description
file. For this submission, the command line arguments of the submitted job become

arguments = -n 3

If the job were instead submitted with the command line

$ condor_submit sample.sub

then the command line arguments of the submitted job become

arguments = -n 1 -debug

46 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.3.6 Function Macros in the Submit Description File

A set of predefined functions increase flexibility. Both submit description files and configuration files are read using
the same parser, so these functions may be used in both submit description files and configuration files.

Case is significant in the function’s name, so use the same letter case as given in these definitions.

$CHOICE(index, listname) or $CHOICE(index, iteml, item2, ...)
An item within the list is returned. The list is represented by a parameter name, or the list items are the parameters.
The index parameter determines which item. The first item in the list is at index 0. If the index is out of bounds
for the list contents, an error occurs.

$ENV(environment-variable-name[:default-value])
Evaluates to the value of environment variable environment-variable-name. If there is no environment
variable with that name, Evaluates to UNDEFINED unless the optional :default-value is used; in which case it
evaluates to default-value. For example,

A = $ENV(HOME)

binds A to the value of the HOME environment variable.

$F [fpduwnxbqa] (filename)
One or more of the lower case letters may be combined to form the function name and thus, its functionality.
Each letter operates on the filename in its own way.

» £ convert relative path to full path by prefixing the current working directory to it. This option works only
in files.

* prefers to the entire directory portion of filename, with a trailing slash or backslash character. Whether a
slash or backslash is used depends on the platform of the machine. The slash will be recognized on Linux
platforms; either a slash or backslash will be recognized on Windows platforms, and the parser will use the
same character specified.

* d refers to the last portion of the directory within the path, if specified. It will have a trailing slash or
backslash, as appropriate to the platform of the machine. The slash will be recognized on Linux platforms;
either a slash or backslash will be recognized on Windows platforms, and the parser will use the same
character specified unless u or w is used. if b is used the trailing slash or backslash will be omitted.

* u convert path separators to Unix style slash characters
* w convert path separators to Windows style backslash characters

* n refers to the file name at the end of any path, but without any file name extension. As an example, the
return value from $Fn(/tmp/simulate.exe) will be simulate (without the . exe extension).

 x refers to a file name extension, with the associated period (.). As an example, the return value from
$Fx(/tmp/simulate.exe) will be .exe.

* b when combined with the d option, causes the trailing slash or backslash to be omitted. When combined
with the x option, causes the leading period (.) to be omitted.

* q causes the return value to be enclosed within quotes. Double quote marks are used unless a is also
specified.

* a When combined with the q option, causes the return value to be enclosed within single quotes.
$DIRNAME (filename) is the same as $Fp(filename)
$BASENAME (filename) is the same as $Fnx(filename)

4.3. Submitting a Job 47

HTCondor Manual, Release 23.6.2

$INT(item-to-convert) or $INT(item-to-convert, format-specifier)
Expands, evaluates, and returns a string version of item-to-convert. The format-specifier has the same
syntax as a C language or Perl format specifier. If no format-specifier is specified, “%d” is used as the
format specifier.

$RANDOM_CHOICE(choicel, choice2, choice3, ...)
A random choice of one of the parameters in the list of parameters is made. For example, if one of the integers
0-8 (inclusive) should be randomly chosen:

$RANDOM_CHOICE(®,1,2,3,4,5,6,7,8)

$RANDOM_INTEGER(min, max [, stepl)
A random integer within the range min and max, inclusive, is selected. The optional step parameter controls
the stride within the range, and it defaults to the value 1. For example, to randomly chose an even integer in the
range 0-8 (inclusive):

$RANDOM_INTEGER(O, 8, 2)

$REAL (item-to-convert) or $REAL (item-to-convert, format-specifier)
Expands, evaluates, and returns a string version of item-to-convert for a floating point type. The
format-specifier is a C language or Perl format specifier. If no format-specifier is specified, “%16G”
is used as a format specifier.

$SUBSTR(name, start-index) or $SUBSTR(name, start-index, length)
Expands name and returns a substring of it. The first character of the string is at index 0. The first character of
the substring is at index start-index. If the optional length is not specified, then the substring includes characters
up to the end of the string. A negative value of start-index works back from the end of the string. A negative
value of length eliminates use of characters from the end of the string. Here are some examples that all assume

Name = abcdef

¢ $SUBSTR(Name, 2) is cdef.
$SUBSTR(Name, O, -2) is abcd.

$SUBSTR(Name, 1, 3) is bcd.

L]

$SUBSTR(Name, -1)is f.

$SUBSTR(Name, 4, -3) is the empty string, as there are no characters in the substring for this request.

Here are example uses of the function macros in a submit description file. Note that these are not complete submit
description files, but only the portions that promote understanding of use cases of the function macros.

Example 1

Generate a range of numerical values for a set of jobs, where values other than those given by $(Process) are desired.

MyIndex = $(Process) + 1
initial_dir = run-$INT(MyIndex,%04d)

Assuming that there are three jobs queued, such that $(Process) becomes 0, 1, and 2, initial_dir will evaluate to
the directories run-0001, run-0002, and run-0003.

Example 2

This variation on Example 1 generates a file name extension which is a 3-digit integer value.

48 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

Values $(Process) * 10
Extension = $INT(Values,%03d)
input X.$(Extension)

Assuming that there are four jobs queued, such that $(Process) becomes 0, 1, 2, and 3, Extension will evaluate to
000, 010, 020, and 030, leading to files defined for input of X.000, X.010, X. 020, and X.030.

Example 3

This example uses both the file globbing of the command and a macro function to specify a job input file that is within
a subdirectory on the submit host, but will be placed into a single, flat directory on the execute host.

$Fnx (FILE)
$(FILE)

arguments

transfer_input_files

queue FILE matching (
samplerun/*.dat

)

Assume that two files that end in .dat, A.dat and B.dat, are within the directory samplerun. Macro FILE expands
to samplerun/A.dat and samplerun/B.dat for the two jobs queued. The input files transferred are samplerun/A.
dat and samplerun/B.dat on the submit host. The $Fnx () function macro expands to the complete file name with
any leading directory specification stripped, such that the command line argument for one of the jobs will be A.dat
and the command line argument for the other job will be B.dat.

4.3.7 About Requirements and Rank

The and commands in the submit description file are powerful and flexible. Using them effectively requires care, and
this section presents those details.

Both and need to be specified as valid HTCondor ClassAd expressions, however, default values are set by the program
if these are not defined in the submit description file. From the manual page and the above examples, you see that
writing ClassAd expressions is intuitive, especially if you are familiar with the programming language C. There are
some pretty nifty expressions you can write with ClassAds. A complete description of ClassAds and their expressions
can be found in the HTCondor’s ClassAd Mechanism section.

All of the commands in the submit description file are case insensitive, except for the ClassAd attribute string values.
ClassAd attribute names are case insensitive, but ClassAd string values are case preserving.

Note that the comparison operators (<, >, <=, >=, and ==) compare strings case insensitively. The special comparison
operators =?= and =!= compare strings case sensitively.

A or command in the submit description file may utilize attributes that appear in a machine or a job ClassAd. Within
the submit description file (for a job) the prefix MY. (on a ClassAd attribute name) causes a reference to the job ClassAd
attribute, and the prefix TARGET. causes a reference to a potential machine or matched machine ClassAd attribute.

The command displays statistics about machines within the pool. The -1 option displays the machine ClassAd attributes
for all machines in the HTCondor pool. The job ClassAds, if there are jobs in the queue, can be seen with the condor_g
-l command. This shows all the defined attributes for current jobs in the queue.

A list of defined ClassAd attributes for job ClassAds is given in the Appendix on the Job ClassAd Attributes page. A
list of defined ClassAd attributes for machine ClassAds is given in the Appendix on the Machine ClassAd Attributes

page.

4.3. Submitting a Job 49

HTCondor Manual, Release 23.6.2

Rank Expression Examples

When considering the match between a job and a machine, rank is used to choose a match from among all machines
that satisfy the job’s requirements and are available to the user, after accounting for the user’s priority and the machine’s
rank of the job. The rank expressions, simple or complex, define a numerical value that expresses preferences.

The job’s expression evaluates to one of three values. It can be UNDEFINED, ERROR, or a floating point value. If
evaluates to a floating point value, the best match will be the one with the largest, positive value. If no is given in the
submit description file, then HTCondor substitutes a default value of 0.0 when considering machines to match. If the
job’s of a given machine evaluates to UNDEFINED or ERROR, this same value of 0.0 is used. Therefore, the machine
is still considered for a match, but has no ranking above any other.

A boolean expression evaluates to the numerical value of 1.0 if true, and 0.0 if false.
The following expressions provide examples to follow.

For a job that desires the machine with the most available memory:

Rank = memory

For a job that prefers to run on a friend’s machine on Saturdays and Sundays:

Rank = ((clockday == 0) || (clockday == 6))
&& (machine == "friend.cs.wisc.edu")

For a job that prefers to run on one of three specific machines:

Rank = (machine == "friendl.cs.wisc.edu") ||
(machine == "friend2.cs.wisc.edu") ||
(machine == "friend3.cs.wisc.edu")

For a job that wants the machine with the best floating point performance (on Linpack benchmarks):

Rank = kflops

This particular example highlights a difficulty with expression evaluation as currently defined. While all machines have
floating point processing ability, not all machines will have the attribute defined. For machines where this attribute is
not defined, will evaluate to the value UNDEFINED, and HTCondor will use a default rank of the machine of 0.0. The
attribute will only rank machines where the attribute is defined. Therefore, the machine with the highest floating point
performance may not be the one given the highest rank.

So, it is wise when writing a expression to check if the expression’s evaluation will lead to the expected resulting
ranking of machines. This can be accomplished using the command with the -constraint argument. This allows the
user to see a list of machines that fit a constraint. To see which machines in the pool have defined, use

$ condor_status -constraint kflops

Alternatively, to see a list of machines where is not defined, use

$ condor_status -constraint "kflops=?=undefined"

For a job that prefers specific machines in a specific order:

Rank = ((machine == "friendl.cs.wisc.edu")*3) +
((machine == "friend2.cs.wisc.edu")*2) +
(machine == "friend3.cs.wisc.edu")

50 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

If the machine being ranked is friendl.cs.wisc.edu, then the expression

(machine == "friendl.cs.wisc.edu")

is true, and gives the value 1.0. The expressions

(machine == "friend2.cs.wisc.edu")
and
(machine == "friend3.cs.wisc.edu")

are false, and give the value 0.0. Therefore, evaluates to the value 3.0. In this way, machine friendl.cs.wisc.eduis
ranked higher than machine friend2.cs.wisc.edu, machine friend2.cs.wisc.eduis ranked higher than machine
friend3.cs.wisc.edu, and all three of these machines are ranked higher than others.

4.3.8 Submitting Jobs Using a Shared File System

If vanilla, java, or parallel universe jobs are submitted without using the File Transfer mechanism, HTCondor must use
a shared file system to access input and output files. In this case, the job must be able to access the data files from any
machine on which it could potentially run.

As an example, suppose a job is submitted from blackbird.cs.wisc.edu, and the job requires a particular data file called
/u/p/s/psilord/data.txt. If the job were to run on cardinal.cs.wisc.edu, the file /u/p/s/psilord/data.txt
must be available through either NFS or AFS for the job to run correctly.

HTCondor allows users to ensure their jobs have access to the right shared files by using the and machine ClassAd
attributes. These attributes specify which machines have access to the same shared file systems. All machines that
mount the same shared directories in the same locations are considered to belong to the same file system domain.
Similarly, all machines that share the same user information (in particular, the same UID, which is important for file
systems like NFS) are considered part of the same UID domain.

The default configuration for HTCondor places each machine in its own UID domain and file system domain, using
the full host name of the machine as the name of the domains. So, if a pool does have access to a shared file system,
the pool administrator must correctly configure HTCondor such that all the machines mounting the same files have the
same configuration. Similarly, all machines that share common user information must be configured to have the same
configuration.

When a job relies on a shared file system, HTCondor uses the expression to ensure that the job runs on a machine in
the correct and . In this case, the default expression specifies that the job must run on a machine with the same and
as the machine from which the job is submitted. This default is almost always correct. However, in a pool spanning
multiple s and/or s, the user may need to specify a different requirements expression to have the job run on the correct
machines.

For example, imagine a pool made up of both desktop workstations and a dedicated compute cluster. Most of the pool,
including the compute cluster, has access to a shared file system, but some of the desktop machines do not. In this case,
the administrators would probably define the to be cs.wisc.edu for all the machines that mounted the shared files,
and to the full host name for each machine that did not. An example is jimi.cs.wisc.edu.

In this example, a user wants to submit vanilla universe jobs from her own desktop machine (jimi.cs.wisc.edu) which
does not mount the shared file system (and is therefore in its own file system domain, in its own world). But, she wants
the jobs to be able to run on more than just her own machine (in particular, the compute cluster), so she puts the program
and input files onto the shared file system. When she submits the jobs, she needs to tell HTCondor to send them to
machines that have access to that shared data, so she specifies a different expression than the default:

4.3. Submitting a Job 51

HTCondor Manual, Release 23.6.2

Requirements = TARGET.UidDomain == "cs.wisc.edu" && \
TARGET.FileSystemDomain == "cs.wisc.edu"

WARNING: If there is no shared file system, or the HTCondor pool administrator does not configure the setting cor-
rectly (the default is that each machine in a pool is in its own file system and UID domain), a user submits a job that
cannot use remote system calls (for example, a vanilla universe job), and the user does not enable HTCondor’s File
Transfer mechanism, the job will only run on the machine from which it was submitted.

4.3.9 Jobs That Require Credentials

If the HTCondor pool administrator has configured the access point with one or more credential monitors, jobs sub-
mitted on that machine may automatically be provided with credentials and/or it may be possible for users to request
and obtain credentials for their jobs.

Suppose the administrator has configured the access point such that users may obtain credentials from a storage service
called “CloudBoxDrive.” A job that needs credentials from CloudBoxDrive should contain the submit command

use_oauth_services = cloudboxdrive

Upon submitting this job for the first time, the user will be directed to a webpage hosted on the access point which will
guide the user through the process of obtaining a CloudBoxDrive credential. The credential is then stored securely
on the access point. (Note: depending on which credential monitor is used, the original job may have to be
re-submitted at this point.) (Also note that at no point is the user’s password stored on the access point.) Once a
credential is stored on the access point, as long as it remains valid, it is transferred securely to all subsequently submitted
jobs that contain use_oauth_services = cloudboxdrive.

When a job that contains credentials runs on an execute machine, the job’s executable will have the environment variable
_CONDOR_CREDS set, which points to the location of all of the credentials inside the job’s sandbox. For credentials
obtained via the submit file command, the “access token” is stored under $_CONDOR_CREDS in a JSON-encoded file
named with the name of the service provider and with the extension .use. For the “CloudBoxDrive” example, the
access token would be located in §_CONDOR_CREDS/cloudboxdrive.use.

The HTCondor file transfer mechanism has built-in plugins for using user-obtained credentials to transfer files from
some specific storage providers, see File Transfer Using a URL.

Credential Scopes

Some credential providers may require the user to provide a description of the permissions (often called
“scopes”) a user needs for a specific credential. Credential permission scoping is possible using the <service
name>_oauth_permissions submit file command. For example, suppose our CloudBoxDrive service has a /public
directory, and the documentation for the service said that users must specify a read: <directory> scope in order to
be able to read data out of <directory>. The submit file would need to contain

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions = read:/public

Some credential providers may also require the user to provide the name of the resource (or “audience’) that a credential
should allow access to. Resource naming is done using the <service name>_oauth_resource submit file command.
For example, if our CloudBoxDrive service has servers located at some universities and the documentation says that
we should pick one near us and specify it as the audience, the submit file might look like

52 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions = read:/public
cloudboxdrive_oauth_resource = https://cloudboxdrive.myuni.edu

It is possible for a single job to request and/or use credentials from multiple services by listing each service in the com-
mand. Suppose the nearby university has a SciTokens service that provides credentials to access the localstorage.
myuni . edu machine, and the HTCondor pool administrator has configured the access point to allow users to obtain
credentials from this service, and that a user has write access to the /foo directory on the storage machine. A submit file
that would result in a job that contains credentials that can read from CloudBoxDrive and write to the local university
storage might look like

use_oauth_services = cloudboxdrive, myuni

cloudboxdrive_oauth_permissions = read:/public
cloudboxdrive_oauth_resource = https://cloudboxdrive.myuni.edu

myuni_oauth_permissions = write:/foo
myuni_oauth_resource = https://localstorage.myuni.edu

Credential Handles

A single job can also request multiple credentials from the same service provider by affixing handles to the and (if
necessary) commands. For example, if a user wants separate read and write credentials for CloudBoxDrive

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions_readpublic = read:/public
cloudboxdrive_oauth_permissions_writeprivate = write:/private

cloudboxdrive_oauth_resource_readpublic = https://cloudboxdrive.myuni.edu
cloudboxdrive_oauth_resource_writeprivate = https://cloudboxdrive.myuni.edu

Submitting the above would result in a job with respective access tokens located in $_CONDOR_CREDS/
cloudboxdrive_readpublic.use and $_CONDOR_CREDS/cloudboxdrive_writeprivate.use.

Note that the permissions and resource settings for each handle (and for no handle) are stored separately from the job so
multiple jobs from the same user running at the same time or for a period of time consecutively may not use a different
set of permissions and resource settings for the same service and handle. If that is attempted, a new job submission
will fail with instructions on how to resolve the conflict, but the safest thing is to choose a unique handle.

If a service provider does not require permissions or resources to be specified, a user can still request multiple credentials
by affixing handles to commands with empty values

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions_personal =
cloudboxdrive_oauth_permissions_public =

When the Vault credential monitor is configured, the service name may optionally be split into two parts with an
underscore between them, where the first part is the issuer and the second part is the role. In this example the issuer is
“dune” and the role is “production”, both as configured by the administrator of the Vault server:

use_oauth_services = dune_production

4.3. Submitting a Job 53

HTCondor Manual, Release 23.6.2

Warning: Note that if a handle is not used, the permissions granted by the token will be the default permissions,
which is usually the maximal, most permissive set. Using a handle allows the user to reduce the scope of the
permissions granted by the token.

Vault does not require permissions or resources to be set, but they may be set to reduce the default permissions or
restrict the resources that may use the credential. The full service name including an underscore may be used in an or .
Avoid using handles that might be confused as role names. For example, the following will result in a conflict between
two credentials called dune_production.use:

use_oauth_services = dune, dune_production
dune_oauth_permissions_production =
dune_production_oauth_permissions =

4.3.10 Jobs That Require GPUs

HTCondor has built-in support for detecting machines with GPUs, and matching jobs that need GPUs to machines that
have them. If your job needs a GPU, you’ll first need to tell HTCondor how many GPUs each job needs with the submit
command:

request_GPUs = <n>

where <n> is replaced by the integer quantity of GPUs required for the job. For example, a job that needs 1 GPU uses

request_GPUs =1

Because there are different capabilities among GPUs, your job might need to further qualify which GPU is required.
The submit command does this, or in newer versions of HTCondor, there are special commands for some of the GPU
properties like and . For example, to request a CUDA GPU whose CUDA Capability is at least 8, add one of the
following to your submit file:

request_GPUs =1
require_gpus = Capability >= 8.0

request_GPUs = 1

works in HTCondor 23.5 or later
gpus_minimum_capability = 8.0
gpus_minimum_memory = 4GB

To see a summary of the GPU devices HTCondor has detected on your pool, including the device names, Capability
and Memory, run the following command.

$ condor_status -gpus -compact

Access to GPU resources by an HTCondor job needs special configuration of the machines that offer GPUs. Details of
how to set up the configuration are in the Configuration for Execution Points section.

54 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.3.11 Interactive Jobs

An interactive job is a Condor job that is provisioned and scheduled like any other vanilla universe Condor job onto
an execute machine within the pool. The result of a running interactive job is a shell prompt issued on the execute
machine where the job runs. The user that submitted the interactive job may then use the shell as desired, perhaps
to interactively run an instance of what is to become a Condor job. This might aid in checking that the set up and
execution environment are correct, or it might provide information on the RAM or disk space needed. This job (shell)
continues until the user logs out or any other policy implementation causes the job to stop running. A useful feature of
the interactive job is that the users and jobs are accounted for within Condor’s scheduling and priority system.

Neither the submit nor the execute host for interactive jobs may be on Windows platforms.

The current working directory of the shell will be the initial working directory of the running job. The shell type will
be the default for the user that submits the job. At the shell prompt, X11 forwarding is enabled.

Each interactive job will have a job ClassAd attribute of

Interactivelob = True

Submission of an interactive job specifies the option -interactive on the command line.

A submit description file may be specified for this interactive job. Within this submit description file, a specification
of these 5 commands will be either ignored or altered:

1.

2
3
4. . The interactive job is a vanilla universe job.
5. <n>. In this case the value of <n> is ignored; exactly one interactive job is queued.
The submit description file may specify anything else needed for the interactive job, such as files to transfer.

If no submit description file is specified for the job, a default one is utilized as identified by the value of the configuration
variable .

Here are examples of situations where interactive jobs may be of benefit.

* An application that cannot be batch processed might be run as an interactive job. Where input or output cannot
be captured in a file and the executable may not be modified, the interactive nature of the job may still be run on
a pool machine, and within the purview of Condor.

* A pool machine with specialized hardware that requires interactive handling can be scheduled with an interactive
job that utilizes the hardware.

* The debugging and set up of complex jobs or environments may benefit from an interactive session. This in-
teractive session provides the opportunity to run scripts or applications, and as errors are identified, they can be
corrected on the spot.

* Development may have an interactive nature, and proceed more quickly when done on a pool machine. It may
also be that the development platforms required reside within Condor’s purview as execute hosts.

4.3. Submitting a Job 55

HTCondor Manual, Release 23.6.2

4.3.12 Submitting Lots of Jobs

When submitting a lot of jobs with a single submit file, you can dramatically speed up submission and reduce the load
on the condor_schedd by submitting the jobs as a late materialization job factory.

A submission of this form sends a single ClassAd, called the Cluster ad, to the condor_schedd, as well as instructions
to create the individual jobs as variations on that Cluster ad. These instructions are sent as a submit digest and optional
itemdata. The submit digest is the submit file stripped down to just the statements that vary between jobs. The itemdata
is the arguments to the statement when the arguments are more than just a count of jobs.

The condor_schedd will use the submit digest and the itemdata to create the individual job ClassAds when they are
needed. Materialization is controlled by two values stored in the Cluster classad, and by optional limits configured in
the condor_schedd.

The limit specifies the maximum number of non-running jobs that should be materialized in the condor_schedd at any
one time. One or more jobs will materialize whenever a job enters the Run state and the number of non-running jobs that
are still in the condor_schedd is less than this limit. This limit is stored in the Cluster ad in the JobMaterializeMaxIdle
attribute.

The limit specifies an overall limit on the number of jobs that can be materialized in the condor_schedd at any one
time. One or more jobs will materialize when a job leaves the condor_schedd and the number of materialized jobs
remaining is less than this limit. This limit is stored in the Cluster ad in the JobMaterializeLimit attribute.

Late materialization can be used as a way for a user to submit millions of jobs without hitting the or limits in the
condor_schedd, since the condor_schedd will enforce these limits by applying them to the max_materialize and
max_idle values specified in the Cluster ad.

To give an example, the following submit file:

executable = foo

arguments = input_file.$(Process)
request_cpus =1

request_memory = 4096M

request_disk = 16383K

error = err.$(Process)
output = out.$(Process)
log = foo.log

should_transfer_files = yes
transfer_input_files = input_file.$(Process)

submit as a factory with an idle jobs limit
max_idle = 100

submit 15,000 instances of this job
queue 15*%1000

When submitted as a late materialization factory, the submit digest for this factory will contain only the submit state-
ments that vary between jobs, and the collapsed queue statement like this:

arguments = input_file.$(Process)
error = err.$(Process)
output = out.$(Process)

(continues on next page)

56 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

transfer_input_files = input_file.$(Process)

queue 15000

Materialization log events

When a Late Materialization job factory is submitted to the condor_schedd, a Cluster submitted event will be
written to the UserLog of the Cluster ad. This will be the same log file used by the first job materialized by the factory.
To avoid confusion, it is recommended that you use the same log file for all jobs in the factory.

When the Late Materialization job factory is removed from the condor_schedd, a Cluster removed event will be
written to the UserLog of the Cluster ad. This event will indicate how many jobs were materialized before the factory
was removed.

If Late Materialization of jobs is paused due to an error in materialization or because condor_hold was used to hold
the cluster id, a Job Materialization Paused event will be written to the UserLog of the Cluster ad. This event
will indicate the reason for the pause.

When condor_release is used to release the the cluster id of a Late Materialization job factory, and materialization
was paused because of a previous use of condor_hold, a Job Materialization Resumed event will be written to
the UserLog of the Cluster ad.

Limitations

Currently, not all features of condor_submit will work with late materialization. The following limitations apply:

* Only a single Queue statement is allowed, lines from the submit file after the first Queue statement will be
ignored.

* the $RANDOM_INTEGER and $RANDOM_CHOICE macro functions will expand at submit time to produce the Cluster
ad, but these macro functions will not be included in the submit digest and so will have the same value for all
jobs.

» Spooling of input files does not work with late materialization.

Displaying the Factory

can be use to show late materialization job factories in the condor_schedd by using the -factory option.

> condor_q -factory

-- Schedd: submit.example.org : <192.168.101.101:96187?... @ 12/01/20 13:35:00

ID OWNER SUBMITTED LIMIT PRESNT RUN IDLE HOLD NEXTID MODE DIGEST
77. bob 12/01 13:30 15000 130 30 80 20 1230 /var/lib/
—condor/spool/77/condor_submit.77.digest

The factory above shows that 30 jobs are currently running, 80 are idle, 20 are held and that the next job to materialize
will be job 77.1230. The total of Idle + Held jobs is 100, which is equal to the value specified in the submit file.

The path to the submit digest file is shown. This file is used to reload the factory when the condor_schedd is restarted.
If the factory is unable to materialize jobs because of an error, the MODE field will show Held or Errs to indicate there
is a problem. Errs indicates a problem reloading the factory, Held indicates a problem materializing jobs.

In case of a factory problem, use condor_q -factory -long to see the the factory information and the
JobMaterializePauseReason attribute.

4.3. Submitting a Job 57

HTCondor Manual, Release 23.6.2

Removing a Factory

The Late materialization job factory will be remove from the schedd automatically once all of the jobs have materialized
and completed. To remove the factory without first completing all of the jobs use with the Clusterld of the factory as
the argument.

Editing a Factory

The submit digest for a Late Materialization job factory cannot be changed after submission, but the Cluster ad for the
factory can be edited using . Any command that has the ClusterId as a edit target will edit all currently materialized
jobs, as well as editing the Cluster ad so that all jobs that materialize in the future will also be edited.

4.3.13 Heterogeneous Submit: Execution on Differing Architectures

If executables are available for the different platforms of machines in the HTCondor pool, HTCondor can be allowed
the choice of a larger number of machines when allocating a machine for a job. Modifications to the submit description
file allow this choice of platforms.

A simplified example is a cross submission. An executable is available for one platform, but the submission is done
from a different platform. Given the correct executable, the command in the submit description file specifies the target
architecture. For example, an executable compiled for a 32-bit Intel processor running Windows Vista, submitted from
an Intel architecture running Linux would add the requirement

requirements = Arch == "INTEL" && OpSys == "WINDOWS"

Without this command, will assume that the program is to be executed on a machine with the same platform as the
machine where the job is submitted.

Vanilla Universe Example for Execution on Differing Architectures

A more complex example of a heterogeneous submission occurs when a job may be executed on many different ar-
chitectures to gain full use of a diverse architecture and operating system pool. If the executables are available for the
different architectures, then a modification to the submit description file will allow HTCondor to choose an executable
after an available machine is chosen.

A special-purpose Machine Ad substitution macro can be used in string attributes in the submit description file. The
macro has the form

$$ (MachineAdAttribute)

The $$() informs HTCondor to substitute the requested MachineAdAttribute from the machine where the job will
be executed.

An example of the heterogeneous job submission has executables available for two platforms: RHEL 3 on both 32-bit
and 64-bit Intel processors. This example uses povray to render images using a popular free rendering engine.

The substitution macro chooses a specific executable after a platform for running the job is chosen. These executables
must therefore be named based on the machine attributes that describe a platform. The executables named

povray.LINUX.INTEL
povray.LINUX.X86_64

will work correctly for the macro

58 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

povray.$$(0pSys).$$(Arch)

The executables or links to executables with this name are placed into the initial working directory so that they may be
found by HTCondor. A submit description file that queues three jobs for this example:

Example of heterogeneous submission

universe = vanilla

executable = povray.$$(0pSys).$$(Arch)

log = povray.log

output = povray.out.$(Process)

error = povray.err.$(Process)

request_cpus =1

request_memory = 512M

request_disk = 1G

requirements = (Arch == "INTEL" && OpSys == "LINUX") || \
(Arch == "X86_64" && OpSys =="LINUX")

arguments = +W1024 +H768 +Iimagel.pov

queue

arguments = +W1024 +H768 +Iimage2.pov

queue

arguments = +WW1024 +H768 +Iimage3.pov

queue

These jobs are submitted to the vanilla universe to assure that once a job is started on a specific platform, it will finish
running on that platform. Switching platforms in the middle of job execution cannot work correctly.

There are two common errors made with the substitution macro. The first is the use of a non-existent
MachineAdAttribute. If the specified MachineAdAttribute does not exist in the machine’s ClassAd, then HT-
Condor will place the job in the held state until the problem is resolved.

The second common error occurs due to an incomplete job set up. For example, the submit description file given above
specifies three available executables. If one is missing, HTCondor reports back that an executable is missing when it
happens to match the job with a resource that requires the missing binary.

Vanilla Universe Example for Execution on Differing Operating Systems

The addition of several related OpSys attributes assists in selection of specific operating systems and versions in het-
erogeneous pools.

Example targeting only RedHat platforms

universe = vanilla

Executable = /bin/date
Log = distro.log
Output = distro.out

Error distro.err

(continues on next page)

4.3. Submitting a Job 59

HTCondor Manual, Release 23.6.2

(continued from previous page)

Requirements = (OpSysName == "RedHat")
request_cpus =1
request_memory = 512M
request_disk = 1G

Queue

Example targeting RedHat 6 platforms in a heterogeneous Linux pool

universe = vanilla

executable = /bin/date

log = distro.log

output = distro.out

error = distro.err

requirements = (OpSysName == "RedHat" && OpSysMajorVer == 6)
request_cpus =1

request_memory = 512M

request_disk = 1G

queue

Here is a more compact way to specify a RedHat 6 platform.

Example targeting RedHat 6 platforms in a heterogeneous Linux pool

universe = vanilla

executable = /bin/date

log = distro.log

output = distro.out

error = distro.err

request_cpus =1
request_memory = 512M
request_disk = 1G
requirements = (OpSysAndVer == "RedHat6")

queue

60 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.4 Submitting Jobs Without a Shared File System: HTCondor’s File
Transfer Mechanism

HTCondor works well without a shared file system between the submit machines and the worker nodes. The HTCondor
file transfer mechanism allows the user to explicitly select which input files are transferred to the worker node before the
job starts. HTCondor will transfer these files, potentially delaying this transfer request, if starting the transfer right away
would overload the access point. Queueing requests like this prevents the crashes so common with too-busy shared
file servers. These input files are placed into a scratch directory on the worker node, which is the starting current
directory of the job. When the job completes, by default, HTCondor detects any newly-created files at the top level
of this sandbox directory, and transfers them back to the submitting machine. The input sandbox is what we call the
executable and all the declared input files of a job. The set of all files created by the job is the output sandbox.

4.4.1 Specifying If and When to Transfer Files

To enable the file transfer mechanism, place this command in the job’s submit description file:

should_transfer_files = YES

Setting the

command explicitly enables or disables the file transfer mechanism. The command takes on one of three possible
values:

1. YES: HTCondor transfers the input sandbox from the access point to the execute machine. The output sandbox
is transferred back to the access point. The command . controls when the output sandbox is transferred back,
and what directory it is stored in.

2. IF_NEEDED: HTCondor only transfers sandboxes when the job is matched with a machine in a different than
the one the access point belongs to, as if should_transfer_files = YES. If the job is matched with a machine in
the same as the submitting machine, HTCondor will not transfer files and relies on the shared file system.

3. NO: HTCondor’s file transfer mechanism is disabled. In this case is is the responsibility of the user to ensure
that all data used by the job is accessible on the remote worker node.

The command tells HTCondor when output files are to be transferred back to the access point. The command takes on
one of three possible values:

1. ON_EXIT (the default): HTCondor transfers the output sandbox back to the access point only when the job exits
on its own. If the job is preempted or removed, no files are transferred back.

2. ON_EXIT_OR_EVICT: HTCondor behaves the same as described for the value ON_EXIT when the job exits on
its own. However, each time the job is evicted from a machine, the output sandbox is transferred back to the
access point and placed under the SPOOL directory. eviction time. Before the job starts running again, the
former output sandbox is copied to the job’s new remote scratch directory.

If . is specified, this list governs which files are transferred back at eviction time. If a file listed in trans-
fer_output_files does not exist at eviction time, the job will go on hold.

The purpose of saving files at eviction time is to allow the job to resume from where it left off.

3. ON_SUCCESS: HTCondor transfers files like ON_EXIT, but only if the job succeeds, as defined by the
success_exit_code submit command. The command must be used, even for the default exit code of 0.

The default values for these two submit commands make sense as used together. If only is set, and set to the
value NO, then no output files will be transferred, and the value of when_to_transfer_output is irrelevant. If only

4.4. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 61

HTCondor Manual, Release 23.6.2

when_to_transfer_output is set, and set to the value ON_EXIT_OR_EVICT, then the default value for an unspecified
should_transfer_files will be YES.

Note that the combination of

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT_OR_EVICT

would produce undefined file access semantics. Therefore, this combination is prohibited by .

4.4.2 Specifying What Files to Transfer
If the file transfer mechanism is enabled, HTCondor will transfer the following files before the job is run on a remote
machine as the input sandbox:

1. the executable, as defined with the command

2. the input, as defined with the command

3. any jar files, for the java universe, as defined with the command

If the job requires other input files, the submit description file should have the command. This comma-separated list
specifies any other files, URLSs, or directories that HTCondor is to transfer to the remote scratch directory, to set up the
execution environment for the job before it is run. These files are placed in the same directory as the job’s executable.
For example:

executable = my_program

input = my_input
should_transfer_files = YES
transfer_input_files = filel,file2

This example explicitly enables the file transfer mechanism. By default, HTCondor will transfer the executable
(my_program) and the file specified by the input command (my_input). The files filel and file2 are also trans-
ferred, by explicit user instruction.

If the file transfer mechanism is enabled, HTCondor will transfer the following files from the execute machine back to
the access point after the job exits, as the output sandbox.

1. the output file, as defined with the command
2. the error file, as defined with the command
3. any files created by the job in the remote scratch directory.

A path given for and submit commands represents a path on the access point. If no path is specified, the directory
specified with is used, and if that is not specified, the directory from which the job was submitted is used. At the time
the job is submitted, zero-length files are created on the access point, at the given path for the files defined by the and
commands. This permits job submission failure, if these files cannot be written by HTCondor.

To restrict the output files or permit entire directory contents to be transferred, specify the exact list with . When this
comma separated list is defined, and any of the files or directories do not exist as the job exits, HTCondor considers
this an error, and places the job on hold. Setting to the empty string (“”’) means no files are to be transferred. When
this list is defined, automatic detection of output files created by the job is disabled. Paths specified in this list refer
to locations on the execute machine. The naming and placement of files and directories relies on the term base name.
By example, the path a/b/c has the base name c. It is the file name or directory name with all directories leading up
to that name stripped off. On the access point, the transferred files or directories are named using only the base name.
Therefore, each output file or directory must have a different name, even if they originate from different paths.

If only a subset of the output sandbox should be transferred, the subset is specified by further adding a submit command
of the form:

62 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

transfer_output_files = filel, file2

Here are examples of file transfer with HTCondor. Assume that the job produces the following structure within the
remote scratch directory:

ol

02

dl (directory)
o3
o4

If the submit description file sets

transfer_output_files = o0l,02,dl

then transferred back to the access point will be

ol

02

dl (directory)
o3
o4

Note that the directory d1 and all its contents are specified, and therefore transferred. If the directory d1 is not created
by the job before exit, then the job is placed on hold. If the directory d1 is created by the job before exit, but is empty,
this is not an error.

If, instead, the submit description file sets

transfer_output_files = o0l,02,d1/03

then transferred back to the access point will be

ol
02
o3

Note that only the base name is used in the naming and placement of the file specified with d1/03.

4.4.3 File Paths for File Transfer

The file transfer mechanism specifies file names or URLSs on the file system of the access point and file names on the
execute machine. Care must be taken to know which machine, submit or execute, is referencing the file.

Files in the command are specified as they are accessed on the access point. The job, as it executes, accesses files as
they are found on the execute machine.

There are four ways to specify files and paths for :
1. Relative to the current working directory as the job is submitted, if the submit command is not specified.
2. Relative to the initial directory, if the submit command is specified.
3. Absolute file paths.

4. As an URL, which should be accessible by the execute machine.

4.4. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 63

HTCondor Manual, Release 23.6.2

Before executing the program, HTCondor copies the input sandbox into a remote scratch directory on the execute
machine, where the program runs. Therefore, the executing program must access input files relative to its working
directory. Because all files and directories listed for transfer are placed into a single, flat directory, inputs must be
uniquely named to avoid collision when transferred.

A job may instead set (to True), in which case the relative paths of transferred files are preserved. For example,
although the input list dirA/filel, dirB/filel would normally result in a collision, instead HTCondor will create
the directories dirA and dirB in the input sandbox, and each will get its corresponding version of filel.

Both relative and absolute paths may be used in . Relative paths are relative to the job’s remote scratch directory on the
execute machine. When the files and directories are copied back to the access point, they are placed in the job’s initial
working directory as the base name of the original path. An alternate name or path may be specified by using .

The command also applies to relative paths specified in (if not remapped).

A job may create files outside the remote scratch directory but within the file system of the execute machine, in a
directory such as /tmp, if this directory is guaranteed to exist and be accessible on all possible execute machines.
However, HTCondor will not automatically transfer such files back after execution completes, nor will it clean up these
files.

Here are several examples to illustrate the use of file transfer. The program executable is called my_program, and it uses
three command-line arguments as it executes: two input file names and an output file name. The program executable
and the submit description file for this job are located in directory /scratch/test.

Here is the directory tree as it exists on the access point, for all the examples:

/scratch/test (directory)
my_program.condor (the submit description file)
my_program (the executable)
files (directory)
logs2 (directory)
inl (file)
in2 (file)
logs (directory)

Example 1

This first example explicitly transfers input files. These input files to be transferred are specified relative to the directory
where the job is submitted. An output file specified in the command, out1, is created when the job is executed. It will
be transferred back into the directory /scratch/test.

file name: my_program.condor
HTCondor submit description file for my_program

executable = my_program
universe = vanilla

error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
transfer_input_files = files/inl,files/in2

arguments = inl in2 outl

request_cpus 1
request_memory = 1024M
request_disk 10240K

(continues on next page)

64 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

queue

The log file is written on the access point, and is not involved with the file transfer mechanism.
Example 2

This second example is identical to Example 1, except that absolute paths to the input files are specified, instead of
relative paths to the input files.

file name: my_program.condor
HTCondor submit description file for my_program

executable = my_program
universe = vanilla

error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/inl,/scratch/test/files/in2

arguments = inl in2 outl

request_cpus 1
request_memory = 1024M
request_disk = 10240K

queue

Example 3

This third example illustrates the use of the submit command , and its effect on the paths used for the various files. The
expected location of the executable is not affected by the command. All other files (specified by , , , , as well as files
modified or created by the job and automatically transferred back) are located relative to the specified

Therefore, the output file, out1, will be placed in the files directory. Note that the 1ogs2 directory exists to make this
example work correctly.

file name: my_program.condor
HTCondor submit description file for my_program

executable = my_program

universe = vanilla

error = logs2/err.$(cluster)
output = logs2/out.$(cluster)
log = logs2/log. $(cluster)
initialdir = files

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = inl,in2

arguments = inl in2 outl

(continues on next page)

4.4. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 65

HTCondor Manual, Release 23.6.2

(continued from previous page)

request_cpus 1
request_memory = 1024M
request_disk 10240K

queue

Example 4 - Illustrates an Error

This example illustrates a job that will fail. The files specified using the command work correctly (see Example 1).
However, relative paths to files in the command cause the executing program to fail. The file system on the submission
side may utilize relative paths to files, however those files are placed into the single, flat, remote scratch directory on
the execute machine.

file name: my_program.condor
HTCondor submit description file for my_program

executable = my_program
universe = vanilla

error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/inl,files/in2

arguments = files/inl files/in2 files/outl
request_cpus =1

request_memory = 1024M

request_disk = 10240K

queue

This example fails with the following error:

err: files/outl: No such file or directory.

Example S - Illustrates an Error

As with Example 4, this example illustrates a job that will fail. The executing program’s use of absolute paths cannot
work.

file name: my_program.condor
HTCondor submit description file for my_program

executable = my_program
universe = vanilla

error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/inl, /scratch/test/files/in2

(continues on next page)

66 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

arguments = /scratch/test/files/inl /scratch/test/files/in2 /scratch/test/files/outl

request_cpus 1
request_memory = 1024M
request_disk = 10240K

queue

The job fails with the following error:

err: /scratch/test/files/outl: No such file or directory.

Example 6

This example illustrates a case where the executing program creates an output file in a directory other than within the
remote scratch directory that the program executes within. The file creation may or may not cause an error, depending
on the existence and permissions of the directories on the remote file system.

The output file /tmp/outl is transferred back to the job’s initial working directory as /scratch/test/outl.

file name: my_program.condor
HTCondor submit description file for my_program

executable = my_program
universe = vanilla

error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

transfer_input_files = files/inl,files/in2
transfer_output_files = /tmp/outl

arguments = inl in2 /tmp/outl
request_cpus =1

request_memory = 1024M
request_disk = 10240K

queue

4.4.4 Dataflow Jobs

A dataflow job is a job that might not need to run because its desired outputs already exist. To skip such a job, add the
following line to your submit file:

skip_if_dataflow = True

A dataflow job meets any of the following criteria:

* Output files exist, are newer than input files

4.4. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 67

HTCondor Manual, Release 23.6.2

 Execute file is newer than input files
» Standard input file is newer than input files

Skipping dataflow jobs can potentially save large amounts of time in long-running workflows.

4.4.5 Public Input Files

There are some cases where HTCondor’s file transfer mechanism is inefficient. For jobs that need to run a large number
of times, the input files need to get transferred for every job, even if those files are identical. This wastes resources on
both the access point and the network, slowing overall job execution time.

Public input files allow a user to specify files to be transferred over a publicly-available HTTP web service. A system
administrator can then configure caching proxies, load balancers, and other tools to dramatically improve performance.
Public input files are not available by default, and need to be explicitly enabled by a system administrator.

To specify files that use this feature, the submit file should include a command. This comma-separated list specifies
files which HTCondor will transfer using the HTTP mechanism. For example:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = filel,file2
public_input_files = public_datal,public_data2

Similar to the regular , the files specified in can be relative to the submit directory, or absolute paths. You can also
specify an , and will look for files relative to that directory. The files must be world-readable on the file system (files
with permissions set to 0644, directories with permissions set to 0755).

Lastly, all files transferred using this method will be publicly available and world-readable, so this feature should not
be used for any sensitive data.

4.4.6 Behavior for Error Cases

This section describes HTCondor’s behavior for some error cases in dealing with the transfer of files.

Disk Full on Execute Machine
When transferring any files from the access point to the remote scratch directory, if the disk is full
on the execute machine, then the job is place on hold.

Error Creating Zero-Length Files on Submit Machine
As a job is submitted, HTCondor creates zero-length files as placeholders on the access point for the
files defined by and . If these files cannot be created, then job submission fails.

This job submission failure avoids having the job run to completion, only to be unable to transfer the
job’s output due to permission errors.

Error When Transferring Files from Execute Machine to Submit Machine
When a job exits, or potentially when a job is evicted from an execute machine, one or more files
may be transferred from the execute machine back to the machine on which the job was submitted.

During transfer, if any of the following three similar types of errors occur, the job is put on hold as
the error occurs.

1. If the file cannot be opened on the access point, for example because the system is out of inodes.

2. If the file cannot be written on the access point, for example because the permissions do not
permit it.

68 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

3. If the write of the file on the access point fails, for example because the system is out of disk
space.

4.4.7 File Transfer Using a URL

Instead of file transfer that goes only between the access point and the execute machine, HTCondor has the ability
to transfer files from a location specified by a URL for a job’s input file, or from the execute machine to a location
specified by a URL for a job’s output file(s). This capability requires administrative set up, as described in the Third
Party/Delegated file, credential and checkpoint transfer section.

URL file transfers work in most HTCondor job universes, but not grid, local or scheduler. HTCondor’s file transfer
mechanism must be enabled. Therefore, the submit description file for the job will define both and . In addition, the
URL for any files specified with a URL are given in the command. An example portion of the submit description file
for a job that has a single file specified with a URL:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = http://www.full.url/path/to/filename

The destination file is given by the file name within the URL.

For the transfer of the entire contents of the output sandbox, which are all files that the job creates or modifies, HT-
Condor’s file transfer mechanism must be enabled. In this sample portion of the submit description file, the first two
commands explicitly enable file transfer, and the added command provides both the protocol to be used and the desti-
nation of the transfer.

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output_destination = urltype://path/to/destination/directory

Note that with this feature, no files are transferred back to the submit machine. This does not interfere with the streaming
of output.

Uploading to URLSs using output file remaps

File transfer plugins now support uploads as well as downloads. The command can additionally be used to upload files
to specific URLs when a job completes. To do this, set the destination for an output file to a URL instead of a filename.
For example:

transfer_output_remaps = "myresults.dat = http://destination-server.com/myresults.dat"

We use a HTTP PUT request to perform the upload, so the user is responsible for making sure that the destination
server accepts PUT requests (which is usually disabled by default).

Passing a credential for URL file transfers

Some files served over HTTPS will require a credential in order to download. Each credential cred should be placed
in a file in $_CONDOR_CREDS/cred.use. Then in order to use that credential for a download, append its name to the
beginning of the URL protocol along with a + symbol. For example, to download the file https://download.com/bar
using the cred credential, specify the following in the submit file:

transfer_input_files = cred+https://download.com/bar

If your credential file has an underscore in it, the underscore must be replaced in the transfer_input_files URL
with a “.”, e.g. for $_CONDOR_CREDS/cred_local.use:

4.4. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 69

https://download.com/bar

HTCondor Manual, Release 23.6.2

transfer_input_files = cred.local+https://download.com/bar

Otherwise, the credential file must have a name that only contains alphanumeric characters (a-z, A-Z, 0-9) and/or -,
except for the . in the * .use extension.

If you’re using a token from an OAuth service provider, the credential will be named based on the OAuth provider. For
example, if your submit file has use_oauth_services = mytokens, you can request files using that token by doing:

use_oauth_services = mytokens

transfer_input_files = mytokens+https://download.com/bar

9,

If you add an optional handle to the token name, append the handle name to the token name in the URL with a ““.”:

use_oauth_services = mytokens
mytokens_oauth_permissions_personal =
mytokens_oauth_permissions_group =

transfer_input_files =_
—.mytokens.personal+https://download.com/bar, mytokens.group+https://download.com/foo

Note that in the above token-with-a-handle case, the token files will be stored in the job environment at
$_CONDOR_CREDS/mytokens_personal.use and $_CONDOR_CREDS/mytokens_group.use.

Transferring files using file transfer plugins

HTCondor comes with file transfer plugins that can communicate with Box.com, Google Drive, Stash Cache, OSDF,
and Microsoft OneDrive. Using one of these plugins requires that the HTCondor pool administrator has set up the
mechanism for HTCondor to gather credentials for the desired service, and requires that your submit file contains the
proper commands to obtain credentials from the desired service (see Jobs That Require Credentials).

To use a file transfer plugin, substitute https in a transfer URL with the service name (box for Box.com, stash for
Stash Cache, osdf for OSDF, gdrive for Google Drive, and onedrive for Microsoft OneDrive) and reference a file
path starting at the root directory of the service. For example, to download bar. txt from a Box.com account where
bar.txt is in the foo folder, use:

use_oauth_services = box
transfer_input_files = box://foo/bar.txt

If your job requests multiple credentials from the same service, use <handle>+<service>://path/to/file torefer-
ence each specific credential. For example, for a job that uses Google Drive to download public_files/input.txt
from one account (public) and to upload output.txt to my_private_files/output.txt on a second account
(private):

use_oauth_services = gdrive
gdrive_oauth_permissions_public =
gdrive_oauth_permissions_private =

transfer_input_files = public+gdrive://public_files/input.txt
transfer_output_remaps = "output.txt = private+gdrive://my_private_files/output.txt"

70 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

Transferring files using the S3 protocol

HTCondor supports downloading files from and uploading files to storage servers using the S3 protocol via s3:/
/ URLs. Downloading or uploading requires a two-part credential: the “access key ID” and the “secret key 1D”.
HTCondor does not transfer these credentials off the submit node; instead, it uses them to construct “pre-signed”
https:// URLs that temporarily allow the bearer access. (Thus, an execute node needs to support https:// URLs
for S3 URLs to work.)

To make use of this feature, you will need to specify the following information in the submit file:
* afile containing your access key ID (and nothing else)
* afile containing your secret access key (and nothing else)
* one or more S3 URLs as input values or output destinations.

See the subsections below for specific examples.

You may (like any other URL) specify an S3 URL in, or as part of a remap in However, HTCondor does not currently
support transferring entire buckets or directories. If you specify an s3:// URL as the , that URL will be used a prefix
for each output file’s location; if you specify a URL ending a /, it will be treated like a directory.

S3 Transfer Recipes

Transferring files to and from Amazon S3

Specify your credential files in the submit file using the attributes and . , , Amazon S3 switched from global buckets to
region-specific buckets; use the first URL form for the older buckets and the second for newer buckets.

aws_access_key_id_file = /home/example/secrets/accessKeyID
aws_secret_access_key_file = /home/example/secrets/secretAccessKey

For old, non-region-specific buckets.
transfer_input_files = s3://<bucket-name>/<key-name>,
transfer_output_remaps = "output.dat = s3://<bucket-name>/<output-key-name>"

or, for new, region-specific buckets:

transfer_input_files = s3://<bucket-name>.s3.<region>.amazonaws.com/<key>
transfer_output_remaps =.

—"output.dat = s3://<bucket-name>.s3.<region>.amazonaws.com/<output-key-name>"

Optionally, specify a region for S3 URLs which don't include one:
aws_region = <region>

Transferring files to and from Google Cloud Storage

Google Cloud Storage implements an XML API which is interoperable with S3. This requires an extra step of generating
HMAC credentials to access Cloud Storage. Google Cloud best practices are to create a Service Account with read/write
permission to the bucket. Read HMAC keys for Cloud Storage for more details.

After generating HMAC credentials, they can be used within a job:

gs_access_key_id_file = /home/example/secrets/bucket_access_key_id
gs_secret_access_key_file = /home/example/secrets/bucket_secret_access_key
transfer_input_files = gs://<bucket-name>/<input-key-name>
transfer_output_remaps = "output.dat = gs://<bucket-name>/<output-key-name>"

4.4. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 71

https://cloud.google.com/storage/docs/interoperability
https://console.cloud.google.com/storage/settings;tab=interoperability
https://console.cloud.google.com/storage/settings;tab=interoperability
https://cloud.google.com/storage/docs/authentication/hmackeys

HTCondor Manual, Release 23.6.2

If Cloud Storage is configured with Private Service Connect, then use the S3 URL approach with the private Cloud
Storage endpoint. e.g.,

gs_access_key_id_file = /home/example/secrets/bucket_access_key_id
gs_secret_access_key_file = /home/example/secrets/bucket_secret_access_key
transfer_input_files =,
—s83://<cloud-storage-private-endpoint>/<bucket-name>/<input-key-name>
transfer_output_remaps =.

—"output.dat = s3://<cloud-storage-private-endpoint>/<bucket-name>/<output-key-name>"

Transferring files to and from another provider

Many other companies and institutions offer a service compatible with the S3 protocol. You can access these services
using s3:// URLs and the key files described above.

s3_access_key_id_file = /home/example/secrets/accessKeyID
s3_secret_access_key_file = /home/example/secrets/secretAccessKey
transfer_input_files = s3://some.other-s3-provider.org/my-bucket/large-input.file
transfer_output_remaps =,

—"large-output.file = s3://some.other-s3-provider.org/my-bucket/large-output.file"

If you need to specify a region, you may do so using , despite the name.

4.5 Managing a Job

This section provides a brief summary of what can be done once jobs are submitted. The basic mechanisms for mon-
itoring a job are introduced, but the commands are discussed briefly. You are encouraged to look at the man pages of
the commands referred to (located in Commands Reference (man pages)) for more information.

4.5.1 Checking on the progress of jobs

You can check on your jobs with the command. This command has many options, by default, it displays only your jobs
queued in the local scheduler. An example of the output from is

$ condor_g

-- Schedd: submit.chtc.wisc.edu : <127.0.0.1:9618?... @ 12/31/69 23:00:00
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

nemo batch23 4/22 20:44 _ _ _ 1 _ 3671850.0

nemo batch24 4/22 20:56 _ _ _ 1 _ 3673477.0

nemo batch25 4/22 20:57 _ _ _ 1 _ 3673728.0

nemo batch26 4/23 10:44 _ _ _ 1 _ 3750339.0

nemo batch27 7/2 15:11 _ _ _ _ _ 7594591.0

nemo batch28 7/10 03:22 4428 3 _ _ 4434 7801943.0
-»7858552.0

nemo batch29 7/14 14:18 5074 1182 30 19 80064 7859129.0
-7885217.0

nemo batch30 7/14 14:18 5172 1088 28 30 58310 7859106.0
>7885192.0

2388 jobs; O completed, 1 removed, 58 idle, 2276 running, 53 held, 0 suspended

72 Chapter 4. Users’ Manual

https://cloud.google.com/vpc/docs/private-service-connect

HTCondor Manual, Release 23.6.2

The goal of the HTCondor system is to effectively manage many jobs. As you may have thousands of jobs in a queue,
by default summarizes many similar jobs on one line. Depending on the types of your jobs, this output may look a little
different.

Often, when you are starting out, and have few jobs, you may want to see one line of output per job. The -nobatch
option to does this, and output might look something like:

$ condor_q -nobatch

-- Schedd submit.chtc.wisc.edu : <127.0.0.1:96182...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

1297254.0 nemo 5/31 18:05 14+17:40:01 R O 7.3 condor_dagman
1297255.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1297256.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1297259.0 nemo 5/31 18:05 14+17:39:55 R © 7.3 condor_dagman
1297261.0 nemo 5/31 18:05 14+17:39:55 R O 7.3 condor_dagman
1302278.0 nemo 6/4 12:22 1+00:05:37 I O 390.6 mdrun_1.sh
1304740.0 nemo 6/5 00:14 1+00:03:43 I O 390.6 mdrun_1.sh
1304967.0 nemo 6/5 05:08 0+00:00:00 I O 0.0 mdrun_1.sh

14 jobs; 4 idle, 8 running, 2 held

This still only shows your jobs. You can display information about all the users with jobs in this scheduler by adding
the -allusers option to .

The output contains many columns of information about the queued jobs. The ST column (for status) shows the status
of current jobs in the queue:

R

The job is currently running.
I

The job is idle. It is not running right now, because it is waiting for a machine to become available.
H

The job is the hold state. In the hold state, the job will not be scheduled to run until it is released. See the
condor_hold and the condor_release manual pages.

The RUN_TIME time reported for a job is the time that has been committed to the job.

Another useful method of tracking the progress of jobs is through the job event log. The specification of a 1log in the
submit description file causes the progress of the job to be logged in a file. Follow the events by viewing the job event
log file. Various events such as execution commencement, file transfer, eviction and termination are logged in the file.
Also logged is the time at which the event occurred.

When a job begins to run, HTCondor starts up a condor_shadow process on the access point. The shadow process is
the mechanism by which the remotely executing jobs can access the environment from which it was submitted, such as
input and output files.

It is normal for a machine which has submitted hundreds of jobs to have hundreds of condor_shadow processes running
on the machine. Since the text segments of all these processes is the same, the load on the submit machine is usually
not significant. If there is degraded performance, limit the number of jobs that can run simultaneously by reducing the
configuration variable.

You can also find all the machines that are running your job through the command. For example, to find all the machines
that are running jobs submitted by breach@cs.wisc.edu, type:

nw

$ condor_status -constraint 'RemoteUser == "breach@cs.wisc.edu

(continues on next page)

4.5. Managing a Job 73

HTCondor Manual, Release 23.6.2

(continued from previous page)

Name Arch OpSys State Activity LoadAv Mem ActvtyTime
alfred.cs. INTEL LINUX Claimed Busy 0.980 64 0+07:10:02
biron.cs.w INTEL LINUX Claimed Busy 1.000 128 0+01:10:00
cambridge. INTEL LINUX Claimed Busy 0.988 64 0+00:15:00
falcons.cs INTEL LINUX Claimed Busy 0.996 32 0+02:05:03
happy.cs.w INTEL LINUX Claimed Busy 0.988 128 0+03:05:00
istat®3.st INTEL LINUX Claimed Busy 0.883 64 0+06:45:01
istat®4.st INTEL LINUX Claimed Busy 0.988 64 0+00:10:00
istat0®9.st INTEL LINUX Claimed Busy 0.301 64 0+03:45:00
To find all the machines that are running any job at all, type:

$ condor_status -run

Name Arch OpSys LoadAv RemoteUser ClientMachine
adriana.cs INTEL LINUX 0.980 hepcon@cs.wisc.edu chevre.cs.wisc.
alfred.cs. INTEL LINUX 0.980 breach@cs.wisc.edu neufchatel.cs.w
amul.cs.wi X86_64 LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
anfrom.cs. X86_64 LINUX 1.023 ashoks@jules.ncsa.ui jules.ncsa.uiuc
anthrax.cs INTEL LINUX 0.285 hepcon@cs.wisc.edu chevre.cs.wisc.
astro.cs.w INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
aura.cs.wi X86_64 WINDOWS 0.996 nice-user.condor@cs. chevre.cs.wisc.
balder.cs. INTEL WINDOWS 1.000 nice-user.condor@cs. chevre.cs.wisc.
bamba.cs.w INTEL LINUX 1.574 dmarino@cs.wisc.edu riola.cs.wisc.e
bardolph.c INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.

4.5.2 Peeking in on a running job’s output files

When a job is running, you may be curious about any output it has created. The condor_tail command can copy output
files from a running job on a remote machine back to the access point. condor_tail uses the same networking stack as
HTCondor proper, so it will work if the execute machine is behind a firewall. Simply run, where xx.yy is the job id of
a running job:

$ condor_tail xx.yy

or

$ condor_tail -f xx.yy

to continuously follow the standard output. To copy a different file, run

$ condor_tail xx.yy name_of_output_file

74 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.5.3 Starting an interactive shell next to a running job on a remote machine

condor_ssh_to_job is a very powerful command, but is not available on all platforms, or all installations. Some
administrators disable it, so check with your local site if it does not appear to work. condor_ssh_to_job takes the job
id of a running job as an argument, and establishes a shell running on the node next to the job. The environment of
this shell is a similar to the job as possible. Users of condor_ssh_to_job can look at files, attach to their job with the
debugger and otherwise inspect the job.

4.5.4 Removing a job from the queue

A job can be removed from the queue at any time by using the command. If the job that is being removed is currently
running, the job is killed, and its queue entry is removed. The following example shows the queue of jobs before and
after a job is removed.

$ condor_q -nobatch

-- Schedd: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 raman 4/11 14:37 0+00:00:00 R 0 1.4 sleepy
132.0 raman 4/11 16:57 0+00:00:00 R O 1.4 hello

2 jobs; 1 idle, 1 running, 0 held

$ condor_rm 132.0
Job 132.0 removed.

$ condor_q -nobatch

-- Schedd: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD

125.0 raman 4/11 14:37 0+00:00:00 R O 1.4 sleepy

1 jobs; 1 idle, O running, 0 held

4.5.5 Placing a job on hold

A job in the queue may be placed on hold by running the command . A job in the hold state remains in the hold state
until later released for execution by the command .

Use of the command causes a hard kill signal to be sent to a currently running job (one in the running state).

Jobs that are running when placed on hold will start over from the beginning when released.

The condor_hold and the condor_release manual pages contain usage details.

4.5. Managing a Job 75

HTCondor Manual, Release 23.6.2

4.5.6 Changing the priority of jobs

In addition to the priorities assigned to each user, HTCondor also provides each user with the capability of assigning
priorities to each submitted job. These job priorities are local to each queue and can be any integer value, with higher
values meaning better priority.

The default priority of a job is 0, but can be changed using the command. For example, to change the priority of a job
to -15,

$ condor_gq -nobatch raman
-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I O 0.3 hello
1 jobs; 1 idle, ® running, 0 held
$ condor_prio -p -15 126.0
$ condor_g -nobatch raman
-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, ® running, 0 held

It is important to note that these job priorities are completely different from the user priorities assigned by HTCondor.
Job priorities do not impact user priorities. They are only a mechanism for the user to identify the relative importance
of jobs among all the jobs submitted by the user to that specific queue.

4.5.7 Job in the Hold State

Should HTCondor detect something about a job that would prevent it from ever running successfully, say, because the
executable doesn’t exist, or input files are missing, HTCondor will put the job in Hold state. A job in the Hold state
will remain in the queue, and show up in the output of the command, but is not eligible to run. The job will stay in this
state until it is released or removed. Users may also hold their jobs manually with the command.

A table listing the reasons why a job may be held is at the Job ClassAd Attributes section. A string identifying the
reason that a particular job is in the Hold state may be displayed by invoking -hold. For the example job ID 16.0, use:

$ condor_gq -hold 16.0

This command prints information about the job, including the job ClassAd attribute .

76 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.5.8 In the Job Event Log File

In a job event log file are a listing of events in chronological order that occurred during the life of one or more jobs.
The formatting of the events is always the same, so that they may be machine readable. Four fields are always present,
and they will most often be followed by other fields that give further information that is specific to the type of event.

The first field in an event is the numeric value assigned as the event type in a 3-digit format. The second field identifies
the job which generated the event. Within parentheses are the job ClassAd attributes of value, value, and the node
number for parallel universe jobs or a set of zeros (for jobs run under all other universes), separated by periods. The
third field is the date and time of the event logging. The fourth field is a string that briefly describes the event. Fields
that follow the fourth field give further information for the specific event type.

A complete list of these values is at Job Event Log Codes section.

4.5.9 Job Termination

From time to time, and for a variety of reasons, HTCondor may terminate a job before it completes. For instance, a
job could be removed (via), preempted (by a user a with higher priority), or killed (for using more memory than it
requested). In these cases, it might be helpful to know why HTCondor terminated the job. HTCondor calls its records
of these reasons “Tickets of Execution”.

A ticket of execution is usually issued by the condor_startd, and includes:
» when the condor_startd was told, or otherwise decided, to terminate the job (the when attribute);
* who made the decision to terminate, usually a Sinful string (the who attribute);

¢ and what method was employed to command the termination, as both as string and an integer (the How and
HowCode attributes).

The relevant log events include a human-readable rendition of the ToE, and the job ad is updated with the ToE after the
usual delay.

HTCondor only issues ToE in three cases:
* when the job terminates of its own accord (issued by the starter, HowCode 0);
* and when the startd terminates the job because it received a DEACTIVATE_CLAIM command (HowCode 1)
e or a DEACTIVATE_CLAIM_FORCIBLY command (HowCode 2).

In both cases, HTCondor records the ToE in the job ad. In the event log(s), event 005 (job completion) includes the
ToE for the first case, and event 009 (job aborted) includes the ToE for the second and third cases.

Future HTCondor releases will issue ToEs in additional cases and include them in additional log events.

4.5. Managing a Job 77

HTCondor Manual, Release 23.6.2

4.5.10 Job Completion

When an HTCondor job completes, either through normal means or by abnormal termination by signal, HTCondor
will remove it from the job queue. That is, the job will no longer appear in the output of , and the job will be inserted
into the job history file. Examine the job history file with the command. If there is a log file specified in the submit
description file for the job, then the job exit status will be recorded there as well, along with other information described
below.

By default, HTCondor does not send an email message when the job completes. Modify this behavior with the command
in the submit description file. The message will include the exit status of the job, which is the argument that the job
passed to the exit system call when it completed, or it will be notification that the job was killed by a signal. Notification
will also include the following statistics (as appropriate) about the job:

Submitted at:
when the job was submitted with

Completed at:
when the job completed

Real Time:
the elapsed time between when the job was submitted and when it completed, given in a form of
<days> <hours>:<minutes>:<seconds>

Virtual Image Size:
memory size of the job

Statistics about just the last time the job ran:

Run Time:
total time the job was running, given in the form <days> <hours>:<minutes>:<seconds>

Remote User Time:
total CPU time the job spent executing in user mode on remote machines; this does not count
time spent on run attempts that were evicted. Given in the form <days> <hours>:<minutes>:
<seconds>

Remote System Time:
total CPU time the job spent executing in system mode (the time spent at system calls); this does
not count time spent on run attempts that were evicted. Given in the form <days> <hours>:
<minutes>:<seconds>

The Run Time accumulated by all run attempts are summarized with the time given in the form <days> <hours>:
<minutes>:<seconds>.

And, statistics about the bytes sent and received by the last run of the job and summed over all attempts at running the
job are given.

The job terminated event includes the following:
* the type of termination (normal or by signal)
e the return value (or signal number)
* local and remote usage for the last (most recent) run (in CPU-seconds)
¢ local and remote usage summed over all runs (in CPU-seconds)
* bytes sent and received by the job’s last (most recent) run,

* bytes sent and received summed over all runs,

78 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

 areport on which partitionable resources were used, if any. Resources include CPUs, disk, and memory; all are
lifetime peak values.

Your administrator may have configured HTCondor to report on other resources, particularly GPUs (lifetime average)
and GPU memory usage (lifetime peak). HTCondor currently assigns all the usage of a GPU to the job running in the
slot to which the GPU is assigned; if the admin allows more than one job to run on the same GPU, or non-HTCondor
jobs to use the GPU, GPU usage will be misreported accordingly.

When configured to report GPU usage, HTCondor sets the following two attributes in the job:

GPUsUsage
GPU usage over the lifetime of the job, reported as a fraction of the the maximum possible utilization
of one GPU.

GPUsMemoryUsage
Peak memory usage over the lifetime of the job, in megabytes.

4.5.11 Summary of all HTCondor users and their jobs

When jobs are submitted, HTCondor will attempt to find resources to run the jobs. A list of all those with jobs submitted
may be obtained through with the -submitters option. An example of this would yield output similar to:

$ condor_status -submitters

Name Machine Running IdleJobs HeldJobs
ballard@cs.wisc.edu bluebird.c 0 11 0
nice-user.condor@cs. cardinal.c 6 504 0
wright@cs.wisc.edu finch.cs.w 1 1 0
jbasney@cs.wisc.edu perdita.cs 0 0 5
RunningJobs IdleJobs HeldJobs
ballard@cs.wisc.edu 0 11 0
jbasney@cs.wisc.edu 0 0 5
nice-user.condor@cs. 6 504 0
wright@cs.wisc.edu 1 1 0
Total 7 516 5

4.6 Automatically managing a job

While a user can manually manage an HTCondor job in ways described in the previous section, it is often better to give
HTCondor policies with which it can automatically manage a job without user intervention.

4.6. Automatically managing a job 79

HTCondor Manual, Release 23.6.2

4.6.1 Automatically rerunning a failed job

By default, when a job exits, HTCondor considers it completed, removes it from the job queue and places it in the
history file. If a job exits with a non-zero exit code, this usually means that some error has happened. If this error is
ephemeral, a user might want to re-run the job again, to see if the job succeeds on a second invocation. HTCondor can
does this automatically with the option in the submit file, to tell HTCondor the maximum number of times to restart
the job from scratch. In the rare case where some value other than zero indicates success, a submit file can set to the
integer value that is considered successful.

Example submit description with max_retries

executable = myexe
arguments = SomeArgument

Retry this job 5 times if non-zero exit code
max_retries = 5

output = outputfile
error = errorfile
log = myexe.log

request_cpus 1
request_memory = 1024M
request_disk 10240K

should_transfer_files = yes

queue

4.6.2 Automatically removing a job in the queue

HTCondor can automatically remove a job, running or otherwise, from the queue if a given constraint is true. In the
submit description file, set to a classad expression. When this expression evaluates to true, the scheduler will remove
the job, just as if condor_rm had run on that job. See Matchmaking with ClassAds for information about the classad
language and ClassAd Attributes for the list of attributes which can be used in these expressions. For example, to
automatically remove a job which has been in the queue for more than 100 hours, the submit file could have

periodic_remove = (time() - QDate) > (100 * 3600)

or, to remove jobs that have been running for more than seven hours:

periodic_remove = (JobStatus == 2) && (time() - EnteredCurrentStatus) > (7 * 3600)

80 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.6.3 Automatically placing a job on hold

Often, if a job is doing something unexpected, it is more useful to hold the job, rather than remove it. If the problem with
the job can be fixed, the job can then be released and started again. Much like the command, there is a command that
works in a similar way, but instead of removing the job, puts the job on hold. Unlike , there are additional attributes
that help to tell the user why the job was placed on hold. periodic_hold_reason is a string which is put into the
HoldReason attribute to explain why we put the job on hold. periodic_hold_subcode is an integer that is put into the
HoldReasonSubCode that is useful for to examine. Neither periodic_hold_subcode nor periodic_hold_reason are
required, but are good practice to include if is defined.

4.6.4 Automatically releasing a held job

In the same way that a job can be automatically held, jobs in the held state can be released with the command. Often,
using a with a paired is a good way to restart a stuck job. Jobs can go into the hold state for many reasons, so best
practice, when trying to release a job that was held with is to include the HoldReasonSubCode in the expression.

periodic_hold = (JobStatus == 2) && (time() - EnteredCurrentStatus) > (7 * 3600)
periodic_hold_reason = "Job ran for more than seven hours"
periodic_hold_subcode = 42

periodic_release = (HoldReasonSubCode == 42)

4.6.5 Automatically evicting a running job

HTCondor can automatically evict a running job, from the machine it is running on, if a given constraint is true. In
the submit description file, set periodic_vacate to a classad expression. When this expression evaluates to true, the
scheduler will evicte the job, just as if condor_vacate_job had run on that job. See Matchmaking with ClassAds for
information about the classad language and ClassAd Attributes for the list of attributes which can be used in these
expressions. For example, to automatically evicte a job which has been in the queue for more than 100 hours, and have
it restart again, the submit file could have

periodic_vacate = (time() - QDate) > (100 * 3600)

4.6.6 Holding a completed job

A job may exit, and HTCondor consider it completed, even though something has gone wrong with the job. A submit
file may contain a expression to tell HTCondor to put the job on hold, instead of moving it to the history. A held job
informs users that there may have been a problem with the job that should be investigated. For example, if a job should
never exit by a signal, the job can be put on hold if it does with

on_exit_hold = ExitBySignal == true

4.6. Automatically managing a job 81

HTCondor Manual, Release 23.6.2

4.7 How To Debug an Always Idle Job

Sometimes, when you submit a job to HTCondor, it sits idle seemingly forever, shows it in the idle state, when you
expect it should start running. This can be frustrating, but there are tools to give visibility so you can debug what is
going on.

4.7.1 Jobs that start but are quickly evicted

One possibility is that the job is actually starting, but something goes wrong very quickly after it starts, so the Execution
Point evicts the job, and the condor_schedd puts it back to idle. would only show it in the “R”unning state for a brief
moment, so it is likely that even frequent executions of will show it in the Idle state.

A quick look at the HTCondor job log will help to verify that this is what is happening. Assuming your submit file
contains a line like:

log = my_job.log

Then you should see a line in my_job.log, assuming that HTCondor assigned the job id of 781.0 to your job (the job id
is in parenthesis):

000 (781.000.000) 2022-01-30 15:15:35 Job submitted from host: <127.0.0.1:455277
—addrs=127.0.0.1-45527>

Many jobs can share the same job log file, so be sure to find the entries for the job in question. If there is nothing further
in this log, this flapping between Running and Idle is not the problem, and you can check items further down this list.

However, if you see repeated entries like

001 (781.000.000) 2022-01-30 15:15:36 Job executing on host: <127.0.0.1:420897addrs=127.
~0.0.1-42089>

007 (781.000.000) 2022-01-30 15:15:37 Shadow exception!

Error from slotl_2@bat: FATAL: executable file not found in $PATH
® - Run Bytes Sent By Job
® - Run Bytes Received By Job

001 (781.000.000) 2022-01-30 15:15:37 Job executing on host: <127.0.0.1:420897addrs=127.
~0.0.1-42089>

007 (781.000.000) 2022-01-30 15:15:38 Shadow exception!

Then this flapping is the problem, and you’ll need to figure out why. Perhaps a condor_submit -i interactive login, and
trying to start the job by hand is useful, maybe you’ll need to ask a system administrator.

82 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.7.2 Jobs that don’t match any Execution Point

Another common cause of an always-idle job is that the job doesn’t match any slot in the pool. Perhaps the memory or
disk requested in the submit file is greater than any slot in the pool has. Perhaps your administrator requires jobs to set
certain custom attributes to identify them, or for accounting. HTCondor has a tool we call better-analyze that simulates
the matching of slots to jobs. It isn’t perfect, as it doesn’t have full knowledge of the system, but it is easy to run, and
can help to quickly narrow down this kind of problems.

$ condor_q -better-analyze 781.0

Now, as condor_gq -better-analyze by default, tries to simulate matching this job to all slots in the pool, this can take a
while, and generate a lot of output. Sometimes, you are pretty sure that a job should match one particular slot, in that
case, you can restrict the matching attempt to that one slot by running

$ condor_q -better-analyze 781.0 -machine machine_in_question

which will emit information only about a potential match to machine_in_question. If the last few lines of this look like
this:

The Requirements expression for job 781.0 reduces to these conditions:

Slots
Step Matched Condition

[0] 1 TARGET.Arch == "X86_64"

[1] 1 TARGET.OpSys == "LINUX"

[3] 1 TARGET.Disk >= RequestDisk

[5] 0 TARGET.Memory >= RequestMemory

781.007: Run analysis summary ignoring user priority. Of 1 machines,
1 are rejected by your job's requirements
® reject your job because of their own requirements
® match and are already running your jobs
0® match but are serving other users
® are able to run your job
WARNING: Be advised:
No machines matched the jobs's constraints

In this example, RequestMemory is set too high, so the job won’t match any machines. Maybe it was a typo. Try
setting it lower to see if the job will match. If condor_gq -better-analyze tells you that some machines do match, then
this probably isn’t the problem, or, it could be that very few machines in your pool match your job, and you’ll just need
to wait until they are available.

4.7. How To Debug an Always Idle Job 83

HTCondor Manual, Release 23.6.2

4.7.3 Not enough priority

Another reason your job isn’t running is that other jobs of yours are running, but your priority isn’t good enough to
allow any more of your jobs running. If this is a problem, the HTCondor condor_schedd will run your jobs in the order
specified by the Job_Priority submit command. You could give your more important jobs a higher job priority. The
command condor_userprio -all will show you your current userprio, which is what HTCondor uses to calculate your
fair share.

4.7.4 Systemic problems

The final case is that you have done nothing wrong, but there is some problem with the system. Maybe a network
is down, or a system daemon has crashed, or there is an overload somewhere. If you are an expert, there may be
information in the debug logs, usually found in /usr/log/condor. In this case, you may need to consult your system
administrator, or ask for help on the condor-users email list.

4.8 Choosing an HTCondor Universe

A universe in HTCondor defines an execution environment for a job. HTCondor supports several different universes:
* vanilla
e grid
* java
e scheduler
* local
* parallel
* vm
e container
e docker
The under which a job runs is