
HTCondor Manual
Release 23.6.2

HTCondor Team

Apr 26, 2024

QUICK START GUIDES

1 Users’ Quick Start Guide 3
1.1 What is a Job? . 3
1.2 A First HTCondor Job . 4
1.3 The science Job Example . 8
1.4 Expanding the science Job and the Organization of Files . 9
1.5 Where to Go from Here . 11

2 Downloading and Installing 13
2.1 Windows (as Administrator) . 13
2.2 Linux (as root) . 16
2.3 Linux (from our repositories) . 17
2.4 Linux or macOS (as user) . 19
2.5 macOS (as root) . 20
2.6 Docker Images . 23
2.7 Administrative Quick Start Guide . 24

3 Overview 31
3.1 High-Throughput Computing (HTC) and its Requirements . 31
3.2 HTCondor’s Power . 31
3.3 Exceptional Features . 32
3.4 Availability . 33
3.5 Contributions and Acknowledgments . 33
3.6 Support, Downloads and Bug Reporting . 34

4 Users’ Manual 37
4.1 Introduction to HTCondor . 37
4.2 Running a Job: the Steps To Take . 37
4.3 Submitting a Job . 38
4.4 Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 61
4.5 Managing a Job . 72
4.6 Automatically managing a job . 79
4.7 How To Debug an Always Idle Job . 82
4.8 Choosing an HTCondor Universe . 84
4.9 Environment and services for a running job . 86
4.10 Job Scheduling . 109
4.11 Job Sets . 118
4.12 Self-Checkpointing Applications . 121
4.13 Submitting to a Remote AP . 127
4.14 Chirp: custom updates to the AP . 128
4.15 Special Environment Considerations . 129

i

5 Administrators’ Manual 131
5.1 Introduction . 131
5.2 Starting Up, Shutting Down and Reconfiguring the System . 135
5.3 Introduction to Configuration . 140
5.4 Configuration Macros . 162
5.5 Configuration for Execution Points . 299
5.6 Configuration for Access Points . 365
5.7 Configuration for Central Managers . 373
5.8 Security . 399
5.9 Networking, Port Usage, and CCB . 438
5.10 Files, Directories and Logs . 449
5.11 Third Party/Delegated file, credential and checkpoint transfer . 453

6 ClassAds 465
6.1 HTCondor’s ClassAd Mechanism . 465
6.2 ClassAd Transforms . 488
6.3 Print Formats . 490

7 DAGMan Workflows 497
7.1 DAGMan Introduction . 497
7.2 Running and Managing DAGMan . 506
7.3 DAGMan Completion . 514
7.4 Composing Workflows from DAGs . 522
7.5 Advance DAGMan Functionality . 531
7.6 Informational Files . 544
7.7 Quick Reference . 549

8 Python Bindings 555
8.1 Installing the Bindings . 555
8.2 HTCondor Python Bindings Tutorials . 556
8.3 Python Bindings version 2 API Reference . 606
8.4 classad API Reference . 610
8.5 htcondor API Reference . 619
8.6 htcondor.htchirp API Reference . 652
8.7 htcondor.dags API Reference . 659
8.8 htcondor.personal API Reference . 672

9 Cloud Computing 675
9.1 Introduction . 675
9.2 HTCondor Annex User’s Guide . 676
9.3 Using condor_annex for the First Time . 683
9.4 HTCondor Annex Customization Guide . 688
9.5 HTCondor Annex Configuration . 690
9.6 HTCondor in the Cloud . 692
9.7 Google Cloud Marketplace Entry . 693
9.8 Google Cloud HPC Toolkit . 693

10 Grid Computing 695
10.1 Introduction . 695
10.2 Connecting HTCondor Pools with Flocking . 696
10.3 The Grid Universe . 697
10.4 The HTCondor Job Router . 709

11 Platform-Specific Information 721
11.1 Linux . 721

ii

11.2 Microsoft Windows . 722
11.3 Macintosh OS X . 732
11.4 Windows Installer . 732

12 Recipes, Examples, and Other Answers 739
12.1 Answers for Users . 739
12.2 Answers for Admins . 740

13 Version History and Release Notes 743
13.1 Introduction to HTCondor Versions . 743
13.2 Upgrading from an 10.0 LTS version to an 23.0 LTS version of HTCondor 745
13.3 Version 23 Feature Releases . 746
13.4 Version 23.0 LTS Releases . 752
13.5 Version 10 Feature Releases . 757
13.6 Version 10.0 LTS Releases . 769

14 Commands Reference (man pages) 779
14.1 HTCondor’s ClassAd Mechanism . 779
14.2 classad_eval . 802
14.3 condor_adstash . 804
14.4 condor_advertise . 807
14.5 condor_annex . 809
14.6 condor_check_password . 812
14.7 condor_check_userlogs . 813
14.8 condor_chirp . 814
14.9 condor_configure . 817
14.10 condor_config_val . 820
14.11 condor_continue . 824
14.12 condor_dagman . 826
14.13 condor_drain . 830
14.14 condor_evicted_files . 832
14.15 condor_fetchlog . 833
14.16 condor_findhost . 835
14.17 condor_gather_info . 836
14.18 condor_gpu_discovery . 838
14.19 condor_history . 841
14.20 condor_hold . 845
14.21 condor_install . 846
14.22 condor_job_router_info . 850
14.23 condor_master . 851
14.24 condor_now . 852
14.25 condor_off . 853
14.26 condor_on . 856
14.27 condor_ping . 857
14.28 condor_pool_job_report . 859
14.29 condor_power . 859
14.30 condor_preen . 860
14.31 condor_prio . 861
14.32 condor_procd . 862
14.33 condor_q . 864
14.34 condor_qedit . 878
14.35 condor_qusers . 879
14.36 condor_qsub . 882
14.37 condor_reconfig . 885

iii

14.38 condor_release . 887
14.39 condor_remote_cluster . 888
14.40 condor_reschedule . 889
14.41 condor_restart . 891
14.42 condor_rm . 893
14.43 condor_rmdir . 895
14.44 condor_router_history . 896
14.45 condor_router_q . 897
14.46 condor_router_rm . 898
14.47 condor_run . 898
14.48 condor_set_shutdown . 901
14.49 condor_sos . 902
14.50 condor_ssh_start . 903
14.51 condor_ssh_to_job . 904
14.52 condor_ssl_fingerprint . 907
14.53 condor_stats . 908
14.54 condor_status . 910
14.55 condor_store_cred . 917
14.56 condor_submit . 919
14.57 condor_submit_dag . 960
14.58 condor_suspend . 965
14.59 condor_tail . 967
14.60 condor_test_token . 968
14.61 condor_token_create . 969
14.62 condor_token_fetch . 971
14.63 condor_token_list . 973
14.64 condor_token_request . 975
14.65 condor_token_request_approve . 977
14.66 condor_token_request_auto_approve . 979
14.67 condor_token_request_list . 980
14.68 condor_top . 982
14.69 condor_transfer_data . 984
14.70 condor_transform_ads . 986
14.71 condor_update_machine_ad . 988
14.72 condor_updates_stats . 990
14.73 condor_upgrade_check . 991
14.74 condor_urlfetch . 993
14.75 condor_userlog . 994
14.76 condor_userprio . 996
14.77 condor_vacate . 1002
14.78 condor_vacate_job . 1003
14.79 condor_version . 1005
14.80 condor_wait . 1006
14.81 condor_watch_q . 1008
14.82 condor_who . 1011
14.83 get_htcondor . 1014
14.84 gidd_alloc . 1016
14.85 htcondor . 1016
14.86 procd_ctl . 1020

15 ClassAd Attributes 1023
15.1 ClassAd Types . 1023
15.2 Accounting ClassAd Attributes . 1025
15.3 Job ClassAd Attributes . 1026

iv

15.4 Machine ClassAd Attributes . 1056
15.5 DaemonMaster ClassAd Attributes . 1076
15.6 Scheduler ClassAd Attributes . 1077
15.7 Negotiator ClassAd Attributes . 1088
15.8 Submitter ClassAd Attributes . 1090
15.9 Defrag ClassAd Attributes . 1091
15.10 Grid ClassAd Attributes . 1093
15.11 Collector ClassAd Attributes . 1094
15.12 ClassAd Attributes Added by the condor_collector . 1098
15.13 DaemonCore Statistics Attributes . 1098

16 Codes and Other Needed Values 1101
16.1 condor_shadow Exit Codes . 1101
16.2 Job Event Log Codes . 1102
16.3 Job Universe Numbers . 1107
16.4 DaemonCore Command Numbers . 1107
16.5 DaemonCore Daemon Exit Codes . 1108

17 Glossary 1109

18 Index 1111

19 Licensing and Copyright 1113

Python Module Index 1115

Index 1117

v

vi

HTCondor Manual, Release 23.6.2

The HTCondor Software Suite (HTCSS) is a software system that creates a High-Throughput Computing (HTC) envi-
ronment. This environment might be a single cluster, a set of related clusters on a campus, cloud resources, or national
or international federations of computers.

If you are a user of HTCondor, and have been given a login or credentials to use a batch scheduler on an Access Point
(sometimes called a scheduler or login node), you may want to read our Quick Start guide here: Users’ Quick Start
Guide

If you are beginning administrator of HTCondor, or want to install it for the first time, please look at our installation
guide here: Downloading and Installing

Otherwise, for users of HTCondor who want more information, a complete user’s reference manual is here: Users’
Manual, and a similar complete reference for administrators of HTCondor can be found here: Administrators’ Manual

HTCondor contains many command line tools, each with a traditional Unix “man-page”. These may be found here:
Commands Reference (man pages)

Finally, for users writing Python interfaces to HTCondor, our Python API documentation is here: Python Bindings

A complete table of contents follows.

Manual built on April 16, 2024

QUICK START GUIDES 1

HTCondor Manual, Release 23.6.2

2 QUICK START GUIDES

CHAPTER

ONE

USERS’ QUICK START GUIDE

HTCondor is a system for dynamically sharing computational resources between competing computational tasks. As
an HTCondor user, you will describe your computational tasks as a series of independent, asynchronous “jobs.” You
access computational resources managed by HTCondor by submitting (or “placing”) job descriptions at an HTCondor
“access point” (AP), also known as a “submit node.” HTCondor locates an appropriate machine for each job, packages
up the job and ships it off to that machine for execution. Machines providing resources to HTCondor are therefore
known as execution points (EP).

This guide covers submitting and observing the successful completion of a first, example job. It then suggests extensions
that you can apply to your own jobs.

This guide presumes that

• HTCondor is running

• You have access to a machine within the pool that may submit jobs, termed an Access Point (AP).

• You are logged in to and working on the AP. (If you just finished getting HTCondor, the one machine you just
installed is this AP.)

• Your program executable, your submit description file, and any needed input files are all on the file system of the
AP.

• Your job (the program executable) is able to run without any interactive input. Standard input (from the keyboard),
standard output (seen on the display), and standard error (seen on the display) may still be used, but their contents
will be redirected from/to files.

1.1 What is a Job?

“Job” is a very specific term in HTCondor. A job is the atomic unit of work. A job may use multiple cores on one
machine, but one job may not (in general) run across more than one machine. To effectively use HTCondor, you
will need to divide your total work (often called a workflow) into a number of jobs. These atomic units of work run
asynchronously with respect to each other, but may be connected by input and output files. Each job is described by a
Job ClassAd, which is usually created by the system from a submit description file. HTCondor is a High Throughput
system, which means it has been designed to effectively manage hundreds of thousands of jobs. Attributes of jobs that
must be defined include the executable or script to run, the amount of memory, CPU and other machine resources it
needs, and descriptions of the file inputs it need. The set of files used by a job is called the “sandbox”. There is an
input sandbox, the input files that exist before a job starts; the output sandbox, the set of files created by the job; and a
scratch sandbox, the set of files made as the job runs.

3

https://htcondor.org

HTCondor Manual, Release 23.6.2

1.2 A First HTCondor Job

For HTCondor to run a job, it must be given details such as the names and location of the executable and all needed
input files. These details are specified in a submit description file.

The executable

Before presenting the details of the submit description file, consider this first HTCondor job. It is a sleep job that waits
for 6 seconds and then exits. While most aspects of HTCondor are identical on Linux (or Mac) and Windows machines,
awareness of the AP’s operating system will lead to a better understanding of jobs and job submission.

This first executable program is a shell script (Linux or Mac) or batch file (Windows). The file that represents this differs
based on operating system; the Linux (or Mac) version is shown first, and the Windows version is shown second. To try
this example, log in to the AP, and use an editor to type in or copy and paste the file contents. Name the resulting file
sleep.sh if the AP is Linux (or Mac) operating system, and name the resulting file sleep.bat if the AP is running
Windows. Note that you will need to know whether the operating system on your AP is a Linux (or Mac) operating
system or Windows.

Listing 1: Linux (or Mac) executable, a shell script

#!/bin/bash
file name: sleep.sh

TIMETOWAIT="6"
echo "sleeping for $TIMETOWAIT seconds"
/bin/sleep $TIMETOWAIT

Listing 2: Windows executable, a batch file

:: file name: sleep.bat
@echo off

set TIMETOWAIT=6
echo sleeping for %TIMETOWAIT% seconds
choice /D Y /T %TIMETOWAIT% > NUL

For a Linux (or Mac) AP only, change the sleep.sh file to be executable by running the following command:

chmod u+x sleep.sh

The contents of the submit description file

The submit description file describes the job. To submit this sample job, again use an editor to create the file sleep.
sub. The submit description file contents for this job differs on Linux (or Mac) and Windows machines only in the
name of the script or batch file:

Listing 3: Linux (and Mac) submit description file

sleep.sub -- simple sleep job

executable = sleep.sh

(continues on next page)

4 Chapter 1. Users’ Quick Start Guide

HTCondor Manual, Release 23.6.2

(continued from previous page)

log = sleep.log
output = sleep.out
error = sleep.err

should_transfer_files = Yes
when_to_transfer_output = ON_EXIT

request_cpus = 1
request_memory = 512M
request_disk = 1G

queue

Listing 4: Windows submit description file

sleep.sub -- simple sleep job

executable = sleep.bat

log = sleep.log
output = sleep.out
error = sleep.err

should_transfer_files = Yes
when_to_transfer_output = ON_EXIT

request_cpus = 1
request_memory = 512M
request_disk = 1G

queue

The first line of this submit description file is a comment. Comments begin with the # character. Comments do not
span lines.

Each line of the submit description file has the form

command_name = value

The command name is case insensitive and precedes an equals sign. Values to right of the equals sign are likely to be
case sensitive, especially in the case that they specify paths and file names.

Next in this file is a specification of the executable to run. It specifies the program that becomes the HTCondor job.
For this example, it is the file name of the Linux (or Mac) script or Windows batch file. A full path and executable
name, or a path and executable relative to the current working directory may be specified.

The log command causes a job event log file named sleep.log to be created on the AP once the job is submitted. A
log is not necessary, but it can be incredibly useful in figuring out what happened or is happening with a job.

HTCondor must be told how many resources your job needs on an Execution Point in order to run. This allows HT-
Condor to run as many jobs as possible on each EP without overloading them. Jobs must declare the number of CPUs,
the amount of memory and disk they need. Special jobs may need to request other resources, such as GPUs or licenses.
Ask your administrator if your jobs requires such things. The amount of cpus is unit less, but memory and disk requires
can have a “M” for megabyte, “G” for Gigabyte suffix for legibility. Without the suffix, memory units are megabytes
and disk kilobytes.

1.2. A First HTCondor Job 5

HTCondor Manual, Release 23.6.2

request_cpus = 1
request_memory = 512M
request_disk = 1G

If this script/batch file were to be invoked from the command line, and outside of HTCondor, its single line of output

sleeping for 6 seconds

would be sent to standard output (the display). When submitted as an HTCondor job, standard output of the job is on
that EP, and thus unavailable. HTCondor captures standard output in a file due to the command in the submit description
file. This example names the redirected standard output file sleep.out, and this file is returned to the AP when the
job completes. The same structure is specified for standard error, as specified with the command.

The commands

should_transfer_files = Yes
when_to_transfer_output = ON_EXIT

direct HTCondor to explicitly send the needed files, including the executable, to the machine where the job executes.
These commands will likely not be necessary for jobs in which the AP and the EP (the Execution Point, or worker
node) access a shared file system. However, including these commands will allow this first sample job to work under
a large variety of pool configurations.

The command tells HTCondor to run one instance of this job.

Submitting the job

With this submit description file, all that remains is to hand off the job to HTCondor. Note that the command should
be the last command in the file. Commands after the are ignored. Otherwise, the order of commands with the file does
not matter. Assuming the current working directory contains the sleep.sub submit description file and the executable
(sleep.sh or sleep.bat), the command line

condor_submit sleep.sub

submits the job to the AP. If the submission is successful, the terminal will display a response that identifies the job, of
the form

Submitting job(s).
1 job(s) submitted to cluster 6.

Monitoring the job

Once the job has been submitted, command line tools may help you follow along with the progress of the job. The
condor_q command prints a listing of all your jobs currently in the queue. For example, a short time after Kris submits
the sleep job from a Linux (or Mac) AP on a pool that has no other queued jobs, the output may appear as

$ condor_q
-- Submitter: example.wisc.edu : <128.105.14.44:56550> : example.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

6.0 kris 2/13 10:49 0+00:00:03 R 0 97.7 sleep.sh

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

6 Chapter 1. Users’ Quick Start Guide

HTCondor Manual, Release 23.6.2

The first column of output from condor_q identifies the job; the identifier is composed of two integers separated by
a period. The first integer is known as a cluster number, and it will be the same for each of the potentially many jobs
submitted by a single invocation of condor_submit. The second integer in the identifier is known as a process ID,
and it distinguishes between distinct job instances that have the same cluster number. These values start at 0.

Of interest in this output, the job is running, and it has used 3 seconds of time so far.

At job completion, the log file contains

000 (006.000.000) 02/13 10:49:04 Job submitted from host: <128.105.14.44:46062>
...
001 (006.000.000) 02/13 10:49:24 Job executing on host: <128.105.15.5:43051?PrivNet=cs.
→˓wisc.edu>
...
006 (006.000.000) 02/13 10:49:30 Image size of job updated: 100000

0 - MemoryUsage of job (MB)
0 - ResidentSetSize of job (KB)

...
005 (006.000.000) 02/13 10:49:31 Job terminated.

(1) Normal termination (return value 0)
Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

23 - Run Bytes Sent By Job
113 - Run Bytes Received By Job
23 - Total Bytes Sent By Job
113 - Total Bytes Received By Job
Partitionable Resources : Usage Request Allocated

Cpus : 1 1
Disk (KB) : 100000 100000 2033496
Memory (MB) : 0 98 2001

...

Each event in the job event log file is separated by a line containing three periods. For each event, the first 3-digit value
is an event number.

Removing a job

Successfully submitted jobs will occasionally need to be removed from the queue. The condor_rm command with the
job identifier as a command line argument removes jobs. Kris’ job may be removed from the queue with

condor_rm 6.0

Specification of the cluster number only as with the command

condor_rm 6

will cause all jobs within that cluster to be removed.

1.2. A First HTCondor Job 7

HTCondor Manual, Release 23.6.2

1.3 The science Job Example

A second example job illustrates aspects of file specification for the job. Assume that the program executable is called
science.exe. This program does not use standard input or output; instead, the command line to invoke this program
specifies two input files and one output file. For this example, the command line to invoke science.exe (not as an
HTCondor job) will be

science.exe infile-A.txt infile-B.txt outfile.txt

While the name of the executable is specified in the submit description file with the command, the remainder of the
command line will be specified with the command.

Here is the submit description file for this job:

science1.sub -- run one instance of science.exe
executable = science.exe
arguments = "infile-A.txt infile-B.txt outfile.txt"

transfer_input_files = infile-A.txt,infile-B.txt
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

request_cpus = 1
request_memory = 512M
request_disk = 1G

max_retries = 2
log = science1.log
queue

The input files infile-A.txt and infile-B.txt will need to be available on the Execution Point within the pool
where the job runs. HTCondor cannot interpret command line arguments, so it cannot know that these command line
arguments for this job specify input and output files. The submit command instructs HTCondor to transfer these input
files from the machine where the job is submitted to the machine chosen to execute the job. The default operation of
HTCondor is to transfer all files created by the job on the EP back to the AP. Therefore, there is no specification of the
outfile.txt output file.

This example submit description file modifies the commands that direct the transfer of files from AP to EP and back
again.

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

These values are the HTCondor defaults, so are not needed in this example. They are included to direct attention to the
capabilities of HTCondor. The command specifies whether HTCondor should assume the existence of a file system
shared by the AP and the EP. Where there is a shared file system, a correctly configured pool of machines will not
need to transfer the files from one machine to the other, as both can access the shared file system. Where there is not
a shared file system, HTCondor must transfer the files from one machine to the other. The specification IF_NEEDED
asks HTCondor to use a shared file system when one is detected, but to transfer the files when no shared file system is
detected. When files are to be transferred, HTCondor automatically sends the executable as well as a file representing
standard input; this file would be specified by the submit command, and it is not relevant to this example. Other files
are specified in a comma separated list with , as they are in this example.

When the job completes, all files created by the executable as it ran are transferred back to the AP.

HTCondor assumes that if the job exits of its own accord, with an exit code of zero, that indicates success, and any

8 Chapter 1. Users’ Quick Start Guide

HTCondor Manual, Release 23.6.2

non-zero exit code is a failure. By default, when the job exits, it will leave the queue. If you would like a job that exits
with a non-zero exit code to be restarted some number of times until it does, set in the submit file like so:

max_retries = 2

1.4 Expanding the science Job and the Organization of Files

A further example promotes understanding of how HTCondor makes the submission of lots of jobs easy. Assume that
the science.exe job is to be run 40 times. If the input and output files were exactly the same for each run, then only
the last line of the given submit description file changes: from

queue

to

queue 40

It is likely that this does not produce the desired outcome, as the output file created, outfile.txt, has the same name
for each queued instance of the job, and thus this file of results for each run conflicts. Chances are that the input files
also must be distinct for each of the 40 separate instances of the job. HTCondor offers the use of a macro that can
uniquely name each run’s input and output file names. The $(Process) macro causes substitution by the process ID
from the job identifier. The submit description file for this proposed solution uniquely names the files:

science2.sub -- run 40 instances of science.exe
executable = science.exe
arguments =␣
→˓"infile-$(Process)A.txt infile-$(Process)B.txt outfile$(Process).txt"

transfer_input_files = infile-$(Process)A.txt,infile-$(Process)B.txt
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

request_cpus = 1
request_memory = 512M
request_disk = 1G

max_retries = 2
log = science2.log
queue 40

The 40 instances of this job will have process ID values that run from 0 to 39. The two input files for process ID 0 are
infile-0A.txt and infile-0B.txt, the ones for process ID 1 will be infile-1A.txt and infile-1B.txt, and
so on, all the way to process ID 39, which will be files infile-39A.txt and infile-39B.txt. Using this macro for
the output file naming of each of the 40 jobs creates outfile0.txt for process ID 0; outfile1.txt for process ID
1; and so on, to outfile39.txt for process ID 39.

This example does not scale well as the number of jobs increases, because the number of files in the same directory
becomes unwieldy. Assume now that there will be 100 instances of the science.exe job, and each instance has
distinct input files, and produces a distinct output file. A recommended organization introduces a unique directory for
each job instance. The following submit description file facilitates this organization by specifying the directory with
the command. The directories for this example are named run0, run1, etc. all the way to run99 for the 100 instances
of the following example submit file:

1.4. Expanding the science Job and the Organization of Files 9

HTCondor Manual, Release 23.6.2

science3.sub -- run 100 instances of science.exe, with
unique directories named by the $(Process) macro

executable = science.exe
arguments = "infile-A.txt infile-B.txt outfile.txt"

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

initialdir = run$(Process)
transfer_input_files = infile-A.txt,infile-B.txt

request_cpus = 1
request_memory = 512M
request_disk = 1G

max_retries = 2
log = science3.log
queue 100

The input and output files for each job instance can again be the initial simple names that do not incorporate the
$(Process) macro. These files are distinct for each run due to their placement within a uniquely named directory.
This organization also works well for executables that do not facilitate command line naming of input or output files.

Here is a listing of the files and directories on the AP within this suggested directory structure. The files created due to
submitting and running the jobs are shown preceded by an asterisk (*). Only a subset of the 100 directories are shown.
Directories are identified using the Linux (and Mac) convention of appending the directory name with a slash character
(/).

science.exe
science3.sub
run0/

infile-A.txt
infile-B.txt
* outfile.txt
* science3.log

run1/
infile-A.txt
infile-B.txt
* outfile.txt
* science3.log

run2/
infile-A.txt
infile-B.txt
* outfile.txt
* science3.log

10 Chapter 1. Users’ Quick Start Guide

HTCondor Manual, Release 23.6.2

1.5 Where to Go from Here

• Consider watching our video tutorial for new users.

• Additional tutorials about other aspects of using HTCondor are available in our YouTube channel.

• Slides from past HTCondor Weeks – our annual conference – include the tutorials given there.

• The Users’ Manual is a good reference.

• If you like what you’ve seen but want to run more jobs simultaneously, the administrator’s quick start guide will
help you make more of your machines available to run jobs.

1.5. Where to Go from Here 11

https://www.youtube.com/watch?v=p2X6s_7e51k&list=PLO7gMRGDPNumCuo3pCdRk23GDLNKFVjHn
https://www.youtube.com/playlist?list=PLO7gMRGDPNumCuo3pCdRk23GDLNKFVjHn
https://www.youtube.com/channel/UCd1UBXmZIgB4p85t2tu-gLw
https://htcondor.org/past_condor_weeks.html

HTCondor Manual, Release 23.6.2

12 Chapter 1. Users’ Quick Start Guide

CHAPTER

TWO

DOWNLOADING AND INSTALLING

2.1 Windows (as Administrator)

Installation of HTCondor must be done by a user with administrator privileges. We have provided quickstart instructions
below to walk you through a single-node HTCondor installation using the HTCondor Windows installer GUI.

For more information about the installation options, or how to use the installer in unattended batch mode, see the
complete Windows Installer guide.

It is possible to manually install HTCondor on Windows, without the provided MSI program, but we strongly discourage
this unless you have a specific need for this approach and have extensive HTCondor experience.

2.1.1 Quickstart Installation Instructions

To download the latest HTCondor Windows Installer:

1. Go to the current channel download site.

2. Click on the second-latest version. (The latest version should always be the under-development version and will
only have daily builds.)

3. Click on the release folder.

4. Click on the file ending in .msi (usually the first one).

Start the installer by double clicking on the MSI file once it’s downloaded. Then follow the directions below for each
option.

If HTCondor is already installed.
If HTCondor has been previously installed, a dialog box will appear before the installation of HTCondor proceeds.
The question asks if you wish to preserve your current HTCondor configuration files. Answer yes or no, as
appropriate.

If you answer yes, your configuration files will not be changed, and you will proceed to the point where the new
binaries will be installed.

If you answer no, then there will be a second question that asks if you want to use answers given during the
previous installation as default answers.

STEP 1: License Agreement.
Agree to the HTCondor license agreement.

STEP 2: HTCondor Pool Configuration.
Choose the option to create a new pool and enter a name.

STEP 3: This Machine’s Roles.
Check the “submit jobs” box. From the list of execution options, choose “always run jobs”.

13

https://research.cs.wisc.edu/htcondor/tarball/current/

HTCondor Manual, Release 23.6.2

STEP 4: The Account Domain.
Skip this entry.

STEP 5: E-mail Settings.
Specify the desired email address(es), if any.

STEP 6: Java Settings.
If this entry is already set, accept it. Otherwise, skip it.

STEP 7: Access Permission Settings.
Accept the default values. You can change these later by modifying the configuration files.

STEP 8: VM Universe Setting.
Disable the vm universe.

STEP 9: Choose Destination Folder

Accept the default settings.

This should complete the installation process. The installer will have automatically started HTCondor in the background
and you do not need to restart Windows for HTCondor to work.

Open a command prompt to follow the next set of instructions.

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The following commands should complete without
errors, producing output that looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0␣
→˓suspended

If both commands worked, the installation likely succeeded.

14 Chapter 2. Downloading and Installing

HTCondor Manual, Release 23.6.2

Where to Go from Here

• For a brief introduction to running jobs with HTCondor, see the Users’ Quick Start Guide.

• If you’re looking to set up a multi-machine pool, go to the Administrative Quick Start Guide.

2.1.2 Setting Up a Whole Pool with Windows

Follow the instructions above through Step 1. Then, customize the installation as follows:

STEP 2: HTCondor Pool Configuration.
Create a new pool only on the machine you’ve chosen as their central manager. See the Administrative Quick
Start Guide. Otherwise, choose the option to join an existing pool and enter the name or IP address of the central
manager.

STEP 3: This Machine’s Roles.
Check the “submit jobs” box to select the submit role, or choose “always run jobs” to select the execute role.

STEP 4: The Account Domain.
Enter the same name on all submit-role machines. This helps ensure that a user can’t get more resources by
logging in to more than one machine.

STEP 5: E-mail Settings.
Specify the desired email address(es), if any.

STEP 6: Java Settings.
If this entry is already set, accept it. Otherwise, skip it.

Experienced users who know they want to use the java universe should instead enter the path to the Java exe-
cutable on the machine, if it isn’t already set, or they want to use a different one.

To disable use of the java universe, leave the field blank.

STEP 7: Access Permission Settings.
Machines within the HTCondor pool will need various types of access permission. The three categories of
permission that can be set here are read, write, and administrator. The values can be usernames, hostnames or IP
address ranges, Wild cards and macros are permitted. It is recommended that you accept the defaults here and
change the values later as needed by modifying the HTCondor configuration files.

Read
Read access allows a machine to obtain information about HTCondor such as the status of ma-
chines in the pool and the job queues. If all of your HTCondor machines and users are in a single
DNS domain or IP Address range, setting this to *.domain an IP address range with wildcards is
a good choice. See ALLOW_READ

Write
Write access is for submitting jobs to the Schedd. Setting this to * will allow any user that can
login to the machine submit jobs. See ALLOW_WRITE

Administrator
Administrator access is for starting and stopping the daemons and sending administrative
commands such as reconfig and drain. By default the installer will give this permission to
the Windows user that runs the installer and to the Windows Adminstrator account. See
ALLOW_ADMINISTRATOR

For more details on these access permissions, and others that can be manually changed in your configuration file,
please see the section titled Setting Up Security in HTCondor in the Authorization section.

STEP 8: VM Universe Setting.
Disable the vm universe.

2.1. Windows (as Administrator) 15

HTCondor Manual, Release 23.6.2

Experienced users with VMWare and Perl already installed may enable the vm universe.

STEP 9: Choose Destination Folder

Experienced users may change the default installation path (c:\Condor), but we don’t recommend doing so.
Certain jobs may not run if the installation path has a space in it.

2.2 Linux (as root)

For ease of installation on Linux, we provide a script that will automatically download, install and start HTCondor.

2.2.1 Quickstart Installation Instructions

Warning:

• RedHat systems must be attached to a subscription.

• Debian and Ubuntu containers don’t come with curl installed, so run the following first.

apt-get update && apt-get install -y curl

The command below shows how to download the script and run it immediately; if you would like to inspect it first,
see Inspecting the Script. The default behavior will create a complete HTCondor pool with its multiple roles on one
computer, referred to in this manual as a “minicondor.” Experienced users who are making an HTCondor pool out
of multiple machines should add a flag to select the desired role; see the Administrative Quick Start Guide for more
details.

curl -fsSL https://get.htcondor.org | sudo /bin/bash -s -- --no-dry-run

If you see an error like bash: sudo: command not found, try re-running the command above without the sudo.

Inspecting the Script

If you would like to inspect the script before you running it on your system as root, you can:

• read the script;

• compare the script to the versions in our GitHub repository;

• or run the script as user nobody, dropping the --no-dry-run flag. This will cause the script to print out what
it would do if run for real. You can then inspect the output and copy-and-paste it to perform the installation.

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The following commands should complete without
errors, producing output that looks like the corresponding example.

condor_status

16 Chapter 2. Downloading and Installing

https://get.htcondor.org
https://github.com/htcondor/htcondor/blob/master/src/condor_scripts/get_htcondor

HTCondor Manual, Release 23.6.2

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0␣
→˓suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

• For a brief introduction to running jobs with HTCondor, see the Users’ Quick Start Guide.

• If you’re looking to set up a multi-machine pool, go to the Administrative Quick Start Guide.

2.2.2 Setting Up a Whole Pool

The details of using this installation procedure to create a multi-machine HTCondor pool are described in the admin
quick-start guide: Administrative Quick Start Guide.

2.3 Linux (from our repositories)

If you’re not already familiar with HTCondor, we recommend you follow our instructions for your first installation.

If you’re looking to automate the installation of HTCondor using your existing toolchain, the latest information is
embedded in the output of the script run as part of the instructions. This script can be run as a normal user (or nobody),
so we recommend this approach.

Otherwise, this page contains information about the RPM and deb repositories we offer. These repositories will almost
always have more recent releases than the distributions.

2.3. Linux (from our repositories) 17

HTCondor Manual, Release 23.6.2

2.3.1 RPM-based Distributions

We support several RPM-based platforms: Enterprise Linux 7, including Red Hat, CentOS, and Scientific Linux; En-
terprise Linux 8, including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux; Enterprise Linux 9, including Red
Hat, CentOS Stream, Alma Linux, and Rocky Linux; openSUSE LEAP 15 including SUSE Linux Enterprise Server
(SLES) 15. Binaries are available for x86_64 for all these platforms. For Enterprise Linux 8, HTCondor also supports
ARM (“aarch64”) and Power (“ppc64le”). For Enterprise Linux 9, HTCondor also supports ARM (“aarch64”).

Repository packages are available for each platform:

• Amazon Linux 2023

• Enterprise Linux 7

• Enterprise Linux 8

• Enterprise Linux 9

• openSUSE LEAP 15

Except for Amazon Linux, the HTCondor packages on these platforms depend on the corresponding version of EPEL.

Additionally, the following repositories are required for specific platforms:

• On RedHat 8, codeready-builder-for-rhel-8-${ARCH}-rpms.

• On CentOS 8, powertools (or PowerTools).

• On CentOS or RedHat 9, crb.

2.3.2 deb-based Distributions

We support four deb-based platforms: Debian 11 (Bullseye) and Debian 12 (Bookworm); and Ubuntu 20.04 (Focal
Fossa) and 22.04 (Jammy Jellyfish). Binaries are available for x86_64 for all these platforms. For Unbuntu 20.04
(Focal Fossa) HTCondor also supports Power PC (ppc64el). These repositories also include the source packages.

Debian 11, and 12

Add our Debian signing key with apt-key add before adding the repositories below.

• Debian 11: deb https://research.cs.wisc.edu/htcondor/repo/debian/23.x bullseye main

• Debian 12: deb https://research.cs.wisc.edu/htcondor/repo/debian/23.x bookworm main

Ubuntu 20.04, and 22.04

Add our Ubuntu signing key with apt-key add before adding the repositories below.

• Ubuntu 20.04: deb https://research.cs.wisc.edu/htcondor/repo/ubuntu/23.x focal main

• Ubuntu 22.04: deb https://research.cs.wisc.edu/htcondor/repo/ubuntu/23.x jammy main

18 Chapter 2. Downloading and Installing

https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.amzn2023.noarch.rpm
https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.el7.noarch.rpm
https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.el8.noarch.rpm
https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.el9.noarch.rpm
https://research.cs.wisc.edu/htcondor/repo/23.x/htcondor-release-current.leap15.noarch.rpm
https://fedoraproject.org/wiki/EPEL
https://research.cs.wisc.edu/htcondor/repo/keys/HTCondor-23.x-Key
https://research.cs.wisc.edu/htcondor/repo/keys/HTCondor-23.x-Key

HTCondor Manual, Release 23.6.2

2.4 Linux or macOS (as user)

Installing HTCondor on Linux or macOS as a normal user is a multi-step process. Note that a user-install of HTCondor
is always self-contained on a single machine; if you want to create a multi-machine HTCondor pool, you will need to
have administrative privileges on the relevant machines and follow the instructions here: Administrative Quick Start
Guide.

2.4.1 Download

The first step is to download HTCondor for your platform. If you know which platform you’re using, that HTCondor
supports it, and which version you want, you can download the corresponding file from our website; otherwise, we
recommend using our download script, as follows.

cd
curl -fsSL https://get.htcondor.org | /bin/bash -s -- --download

On macOS, If you use a web browser to download a tarball from our web site, then the OS will mark the file as
quarantined. All binaries extracted from the tarball will be similarly marked. The OS will refuse to run any binaries
that are quarantined. You can remove the quarantine marking from the tarball before extracting, like so:

xattr -d com.apple.quarantine condor-10.7.1-x86_64_macOS13-stripped.tar.gz

2.4.2 Install

Unpack the tarball and rename the resulting directory:

tar -x -f condor.tar.gz
mv condor-*stripped condor

You won’t need condor.tar.gz again, so you can remove it now if you wish.

2.4.3 Configure

cd condor
./bin/make-personal-from-tarball

2.4.4 Using HTCondor

You’ll need to run the following command now, and every time you log in:

. ~/condor/condor.sh

Then to start HTCondor (if the machine has rebooted since you last logged in):

condor_master

It will finish silently after starting up, if everything went well.

2.4. Linux or macOS (as user) 19

https://research.cs.wisc.edu/htcondor/tarball/current/

HTCondor Manual, Release 23.6.2

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The following commands should complete without
errors, producing output that looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0␣
→˓suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

• For a brief introduction to running jobs with HTCondor, see the Users’ Quick Start Guide.

• If you’re looking to set up a multi-machine pool, go to the Administrative Quick Start Guide.

2.5 macOS (as root)

Installing HTCondor on macOS as root user is a multi-step process. For a multi-machine HTCondor pool, infor-
mation about the roles each machine will play can be found here: Administrative Quick Start Guide. Note that the
get_htcondor tool cannot perform the installation steps on macOS at present. You must follow the instructions be-
low.

Note that all of the following commands must be run as root, except for downloading and extracting the tarball.

20 Chapter 2. Downloading and Installing

HTCondor Manual, Release 23.6.2

2.5.1 The condor Service Account

The first step is to create a service account under which the HTCondor daemons will run. The commands that specify a
PrimaryGroupID or UniqueID may fail with an error that includes eDSRecordAlreadyExists. If that occurs, you
will have to retry the command with a different id number (other than 300).

dscl . -create /Groups/condor
dscl . -create /Groups/condor PrimaryGroupID 300
dscl . -create /Groups/condor RealName 'Condor Group'
dscl . -create /Groups/condor passwd '*'
dscl . -create /Users/condor
dscl . -create /Users/condor UniqueID 300
dscl . -create /Users/condor passwd '*'
dscl . -create /Users/condor PrimaryGroupID 300
dscl . -create /Users/condor UserShell /usr/bin/false
dscl . -create /Users/condor RealName 'Condor User'
dscl . -create /Users/condor NFSHomeDirectory /var/empty

2.5.2 Download

The next step is to download HTCondor. If you want to select a specific version of HTCondor, you can download the
corresponding file from our website. Otherwise, we recommend using our download script, as follows.

cd
curl -fsSL https://get.htcondor.org | /bin/bash -s -- --download

If you use a web browser to download a tarball from our web site, then the OS will mark the file as quarantined. All
binaries extracted from the tarball will be similarly marked. The OS will refuse to run any binaries that are quarantined.
You can remove the quarantine marking from the tarball before extracting it, like so:

xattr -d com.apple.quarantine condor-10.7.1-x86_64_macOS13-stripped.tar.gz

2.5.3 Install

Unpack the tarball.

mkdir /usr/local/condor
tar -x -C /usr/local/condor --strip-components 1 -f condor.tar.gz

You won’t need condor.tar.gz again, so you can remove it now if you wish.

Set up the log directory and default configuration files.

cd /usr/local/condor
mkdir -p local/log
mkdir -p local/config.d
cp etc/examples/condor_config etc/condor_config
cp etc/examples/00-htcondor-9.0.config local/config.d

If you are setting up a single-machine pool, then run the following command to finish the configuration.

cp etc/examples/00-minicondor local/config.d

2.5. macOS (as root) 21

https://research.cs.wisc.edu/htcondor/tarball/

HTCondor Manual, Release 23.6.2

If you are setting up part of a multi-machine pool, then you’ll have to make some other configuration changes, which
we don’t cover here.

Next, fix up the permissions of the the installed files.

chown -R root:wheel /usr/local/condor
chown -R condor:condor /usr/local/condor/local/log

Finally, make the configuration file available at one of the well-known locations for the tools to find.

mkdir -p /etc/condor
ln -s /usr/local/condor/etc/condor_config /etc/condor

2.5.4 Start the Daemons

Now, register HTCondor has a service managed by launchd and start up the daemons.

cp /usr/local/condor/etc/examples/condor.plist /Library/LaunchDaemons
launchctl load /Library/LaunchDaemons/condor.plist
launchctl start condor

2.5.5 Using HTCondor

You’ll want to add the HTCondor bin and sbin directories to your PATH environment variable.

export PATH=$PATH:/usr/local/condor/bin:/usr/local/condor/sbin

If you want to use the Python bindings for HTCondor, you’ll want to add them to your PYTHONPATH.

export PYTHONPATH="/usr/local/condor/lib/python3${PYTHONPATH+":"}${PYTHONPATH-}"

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The following commands should complete without
errors, producing output that looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0

22 Chapter 2. Downloading and Installing

HTCondor Manual, Release 23.6.2

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0␣
→˓suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

• For a brief introduction to running jobs with HTCondor, see the Users’ Quick Start Guide.

• If you’re looking to set up a multi-machine pool, go to the Administrative Quick Start Guide.

2.6 Docker Images

HTCondor provides images on Docker Hub.

2.6.1 Quickstart Instructions

If you’re just getting started with HTCondor, use htcondor/mini, a stand-alone HTCondor configuration. The fol-
lowing command will work on most systems with Docker installed:

docker run -it htcondor/mini

From here, you can proceed to the Users’ Quick Start Guide.

2.6.2 Setting Up a Whole Pool with Docker

If you’re looking to set up a whole pool, the following images correspond to the three required roles. See the Adminis-
trative Quick Start Guide for more information about the roles and how to configure these images to work together.

• htcondor/cm, an image configured as a central manager

• htcondor/execute, an image configured as an execute node

• htcondor/submit, an image configured as a submit node

All images include the latest version of HTCondor. If you want to use the latest LTS version, use the docker tag lts.

2.6. Docker Images 23

HTCondor Manual, Release 23.6.2

2.7 Administrative Quick Start Guide

This guide does not contain step-by-step instructions for getting HTCondor. Rather, it is a guide to joining multiple
machines into a single pool of computational resources for use by HTCondor jobs.

This guide begins by briefly describing the three roles required by every HTCondor pool, as well as the resources and
networking required by each of those roles. This information will enable you to choose which machine(s) will perform
which role(s). This guide also includes instructions on how to use the get_htcondor tool to install and configure
Linux (or Mac) machines to perform each of the roles.

If you’re curious, using Windows machines, or you want to automate the configuration of their pool using a tool like
Puppet, the last section of this guide briefly describes what the get_htcondor tool does and provides a link to the rest
of the details.

Single-machine Installations

If you just finished installing a single-machine (“mini”) HTCondor using get_htcondor, you can just run
get_htcondor again (and follow its instructions) to reconfigure the machine to be one of these three roles; this
may destroy any other configuration changes you’ve made.

We don’t recommend trying to add a machine configured as a “mini” HTCondor to the pool, or trying to add
execute machines to an existing “mini” HTCondor pool. We also don’t recommend creating an entire pool out of
unprivileged installations.

2.7.1 The Three Roles

Even a single-machine installation of HTCondor performs all three roles.

The Execute Role

The most common reason for adding a machine to an HTCondor pool is to make another machine execute HTCondor
jobs; the first major role, therefore, is the execute role. This role is responsible for the technical aspects of actually
running, monitoring, and managing the job’s executable; transferring the job’s input and output; and advertising, mon-
itoring, and managing the resources of the execute machine. HTCondor can manage pools containing tens of thousands
of execute machines, so this is by far the most common role.

The execute role itself uses very few resources, so almost any machine can contribute to a pool. The execute role can
run on a machine with only outbound network connectivity, but being able to accept inbound connections from the
machine(s) performing the submit role will simplify setup and reduce overhead. The execute machine does not need
to allow user access, or even share user IDs with other machines in the pool (although this may be very convenient,
especially on Windows).

24 Chapter 2. Downloading and Installing

HTCondor Manual, Release 23.6.2

The Submit Role

We’ll discuss what “advertising” a machine’s resources means in the next section, but the execute role leaves an obvious
question unanswered: where do the jobs come from? The answer is the submit role. This role is responsible for
accepting, monitoring, managing, and scheduling jobs on its assigned resources; transferring the input and output
of jobs; and requesting and accepting resource assignments. (A “resource” is some reserved fraction of an execute
machine.) HTCondor allows arbitrarily many submit roles in a pool, but for administrative convenience, most pools
only have one, or a small number, of machines acting in the submit role.

A submit-role machine requires a bit under a megabyte of RAM for each running job, and its ability to transfer data to
and from the execute-role machines may become a performance bottleneck. We typically recommend adding another
access point for every twenty thousand simultaneously running jobs. A access point must have outbound network con-
nectivity, but a submit machine without inbound network connectivity can’t use execute-role machines without inbound
network connectivity. As execute machines are more numerous, access points typically allow inbound connections. Al-
though you may allow users to submit jobs over the network, we recommend allowing users SSH access to the access
point.

The Central Manager Role

Only one machine in each HTCondor pool can perform this role (barring certain high-availability configurations, where
only one machine can perform this role at a time). A central manager matches resource requests – generated by the
submit role based on its jobs – with the resources described by the execute machines. We refer to sending these
(automatically-generated) descriptions to the central manager as “advertising” because it’s the primary way execute
machines get jobs to run.

A central manager must accept connections from each execute machine and each access point in a pool. However,
users should never need access to the central manager. Every machine in the pool updates the central manager every
few minutes, and it answers both system and user queries about the status of the pool’s resources, so a fast network is
important. For very large pools, memory may become a limiting factor.

2.7.2 Assigning Roles to Machines

The easiest way to assign a role to a machine is when you initially get HTCondor. You’ll need to supply the same
password for each machine in the same pool; sharing that secret is how the machines recognize each other as members
of the same pool, and connections between machines are encrypted with it. (HTCondor uses port 9618 to communicate,
so make sure that the machines in your pool accept TCP connections on that port from each other.) In the command
lines below, replace $htcondor_password with the password you want to use. In addition to the password, you must
specify the name of the central manager, which may be a host name (which must resolve on all machines in the pool)
or an IP address. In the command lines below, replace $central_manager_name with the host name or IP address
you want to use.

When you get HTCondor, start with the central manager, then add the access point(s), and then add the execute ma-
chine(s). You may not have sudo installed; you may omit it from the command lines below if you run them as root.

2.7. Administrative Quick Start Guide 25

HTCondor Manual, Release 23.6.2

Central Manager

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /
→˓bin/bash -s -- --no-dry-run --central-manager $central_manager_name

Submit

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /
→˓bin/bash -s -- --no-dry-run --submit $central_manager_name

Execute

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /
→˓bin/bash -s -- --no-dry-run --execute $central_manager_name

At this point, users logged in on the access point should be able to see execute machines in the pool (using
condor_status), submit jobs (using condor_submit), and see them run (using condor_q).

Creating a Multi-Machine Pool using Windows or Containers

If you are creating a multi-machine HTCondor pool on Windows computers or using containerization, please see the
“Setting Up a Whole Pool” section of the relevant installation guide:

• Setting Up a Whole Pool with Windows

• Setting Up a Whole Pool with Docker

2.7.3 Where to Go from Here

There are two major directions you can go from here, but before we discuss them, a warning.

Making Configuration Changes

HTCondor configuration files should generally be owned by root (or Administrator, on Windows), but readable by all
users. We recommend that you don’t make changes to the configuration files established by the installation procedure;
this avoids conflicts between your changes and any changes we may have to make to the base configuration in future
updates. Instead, you should add (or edit) files in the configuration directory; its location can be determined on a given
machine by running condor_config_val LOCAL_CONFIG_DIR there. HTCondor will process files in this directory
in lexicographic order, so we recommend naming files ##-name.config so that, for example, a setting in 00-base.
config will be overridden by a setting in 99-specific.config.

26 Chapter 2. Downloading and Installing

HTCondor Manual, Release 23.6.2

Enabling Features

Some features of HTCondor, for one reason or another, aren’t (or can’t be) enabled by default. Areas of potentially
general interest include:

• Configuration for Execution Points (particularly Enabling the Fetching and Use of OAuth2 Credentials and
Cgroup-Based Process Tracking),

• Docker Universe

• Apptainer and Singularity Support

Implementing Policies

Although your HTCondor pool should be fully functional at this point, it may not be behaving precisely as you wish,
particularly with respect to resource allocation. You can tune how HTCondor allocates resources to users, or groups
of users, using the user priority and group quota systems, described in Configuration for Central Managers. You can
enforce machine-specific policies – for instance, preferring GPU jobs on machines with GPUs – using the options
described in Configuration for Execution Points.

Further Reading

• It may be helpful to at least skim the Users’ Manual to get an idea of what your users might want or expect,
particularly the sections on DAGMan Introduction, Choosing an HTCondor Universe, and Self-Checkpointing
Applications.

• Understanding HTCondor’s ClassAd Mechanism is essential for many administrative tasks.

• The rest of the Administrators’ Manual, particularly the section on Monitoring with Ganglia, Elasticsearch, etc..

• Slides from past HTCondor Weeks – our annual conference – include a number of tutorials and talks on admin-
istrative topics, including monitoring and examples of policies and their implementations.

2.7.4 What get_htcondor Does to Configure a Role

The configuration files generated by get_htcondor are very similar, and only two lines long:

• set the HTCondor configuration variable to the name (or IP address) of your central manager;

• add the appropriate metaknob: use role : get_htcondor_central_manager, use role :
get_htcondor_submit, or use role : get_htcondor_execute.

Putting all of the pool-independent configuration into the metaknobs allows us to change the metaknobs to fix problems
or work with later versions of HTCondor as you upgrade.

The get_htcondor documentation describes what the configuration script does and how to determine the exact details.

These instructions show how to create a complete HTCondor installation with all of its components on a single com-
puter, so that you can test HTCondor and explore its features. We recommend that new users start with the first set of
instructions here and then continue with the Users’ Quick Start Guide; that link will appear again at the end of these
instructions.

If you know how to use Docker, you may find it easier to start with the htcondor/mini image; see the Docker Images
entry. If you’re familiar with cloud computing, you may also get HTCondor in the cloud.

2.7. Administrative Quick Start Guide 27

https://htcondor.org/past_condor_weeks.html

HTCondor Manual, Release 23.6.2

Installing HTCondor on a Cluster

Experienced users who want to make an HTCondor pool out of multiple machines should follow the Administrative
Quick Start Guide. If you’re new to HTCondor administration, you may want to read the Administrators’ Manual.

Installing HTCondor on a Single Machine with Administrative Privileges

If you have administrative privileges on your machine, choose the instructions corresponding to your operating system:

• Windows.

• Linux. HTCondor supports Amazon Linux 2023; Enterprise Linux 7 including Red Hat, CentOS, and Scientific
Linux 7; Enterprise Linux 8 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux; Enterprise
Linux 9 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux; openSUSE LEAP 15 including
SUSE Linux Enterprise Server 15; Debian 11 and 12; and Ubuntu 20.04 and 22.04.

• macOS. HTCondor supports macOS 10.15 and later.

Hand-Installation of HTCondor on a Single Machine with User Privileges

If you don’t have administrative privileges on your machine, you can still install HTCondor. An unprivileged installation
isn’t able to effectively limit the resource usage of the jobs it runs, but since it only works for the user who installed it,
at least you know who to blame for misbehaving jobs.

• Linux. HTCondor supports Amazon Linux 2023; Enterprise Linux 7 including Red Hat, CentOS, and Scientific
Linux 7; Enterprise Linux 8 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux; Enterprise
Linux 9 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux; openSUSE LEAP 15 including
SUSE Linux Enterprise Server 15; Debian 11 and 12; and Ubuntu 20.04 and 22.04.

• macOS. HTCondor supports macOS 10.15 and later.

Docker Images

HTCondor is also available on Docker Hub.

If you’re new to HTCondor, the htcondor/mini image is equivalent to following any of the instructions above, and
once you’ve started the container, you can proceed directly to the Users’ Quick Start Guide and learn how to run jobs.

For other options, see our docker image list.

Kubernetes

You can deploy a complete HTCondor pool with the following command:

kubectl apply -f https://github.com/htcondor/htcondor/blob/latest/build/docker/k8s/pool.
→˓yaml

If you’re new to HTCondor, you can proceed directly to the Users’ Quick Start Guide after logging in to the submit
pod.

28 Chapter 2. Downloading and Installing

https://hub.docker.com/u/htcondor

HTCondor Manual, Release 23.6.2

In the Cloud

Although you can use our Docker images (or Kubernetes support) in the cloud, HTCondor also supports cloud-native
distribution.

• For Amazon Web Services, we offer a minicondor image preconfigured for use with condor_annex, which allows
to easily add cloud resources to your pool.

• The Google Cloud Marketplace Entry lets you construct an entire HTCondor pool that scales automatically to
run submitted jobs. If you’re new to HTCondor, you can proceed to the Users’ Quick Start Guide immediately
after following those instructions.

• We also have documentation on creating a HTCondor in the Cloud by hand.

2.7. Administrative Quick Start Guide 29

https://aws.amazon.com/marketplace/pp/B073WHVRPR

HTCondor Manual, Release 23.6.2

30 Chapter 2. Downloading and Installing

CHAPTER

THREE

OVERVIEW

3.1 High-Throughput Computing (HTC) and its Requirements

The quality of many projects is dependent upon the quantity of computing cycles available. Many problems require
years of computation to solve. These problems demand a computing environment that delivers large amounts of com-
putational power over a long period of time. Such an environment is called a High-Throughput Computing (HTC)
environment. In contrast, High Performance Computing (HPC) environments deliver a tremendous amount of com-
pute power over a short period of time. HPC environments are often measured in terms of Floating point Operations
Per Second (FLOPS). A growing community is not concerned about operations per second, but operations per month
or per year (FLOPY). They are more interested in how many jobs they can complete over a long period of time instead
of how fast an individual job can finish.

The key to HTC is to efficiently harness the use of all available resources. Years ago, the engineering and scientific
community relied on a large, centralized mainframe or a supercomputer to do computational work. A large number of
individuals and groups needed to pool their financial resources to afford such a machine. Users had to wait for their
turn on the mainframe, and they had a limited amount of time allocated. While this environment was inconvenient for
users, the utilization of the mainframe was high; it was busy nearly all the time.

As computers became smaller, faster, and cheaper, users moved away from centralized mainframes. Today, most orga-
nizations own or lease many different kinds of computing resources in many places. Racks of departmental servers,
desktop machines, leased resources from the Cloud, allocations from national supercomputer centers are all examples
of these resources. This is an environment of distributed ownership, where individuals throughout an organization own
their own resources. The total computational power of the institution as a whole may be enormous, but because of
distributed ownership, groups have not been able to capitalize on the aggregate institutional computing power. And,
while distributed ownership is more convenient for the users, the utilization of the computing power is lower. Many
machines sit idle for very long periods of time while their owners have no work for the machines to do.

3.2 HTCondor’s Power

HTCondor is a software system that creates a High-Throughput Computing (HTC) environment. It effectively uses
the computing power of machines connected over a network, be they a single cluster, a set of clusters on a campus,
cloud resources either stand alone or temporarily joined to a local cluster, or international grids. Power comes from the
ability to effectively harness shared resources with distributed ownership.

A user submits jobs to HTCondor. HTCondor finds available machines and begins running the jobs there. HTCondor
has the capability to detect that a machine running a job is no longer available (perhaps the machine crashed, or maybe
it prefers to run another job). HTCondor will automatically restart the job on another machine without intervention
from the user.

31

HTCondor Manual, Release 23.6.2

HTCondor is useful when a job must be run many (thousands of) times, perhaps with hundreds of different data sets.
With one command, all of the jobs are submitted to HTCondor. Depending upon the number of machines in the
HTCondor pool, hundreds of otherwise idle machines can be running the jobs at any given moment.

HTCondor does not require an account (login) on machines where it runs a job. HTCondor can do this because of its
file transfer and split execution mechanisms.

HTCondor provides powerful resource management by match-making resource owners with resource consumers. This
is the cornerstone of a successful HTC environment. Other compute cluster resource management systems attach
properties to the job queues themselves, resulting in user confusion over which queue to use as well as administrative
hassle in constantly adding and editing queue properties to satisfy user demands. HTCondor implements ClassAds, a
clean design that simplifies the user’s submission of jobs.

ClassAds work in a fashion similar to the newspaper classified advertising want-ads. All machines in the HTCondor
pool advertise their resource properties, both static and dynamic, such as available RAM memory, CPU type, CPU
speed, virtual memory size, physical location, and current load average, in a resource offer ad. A user specifies a
resource request ad when submitting a job. The request defines both the required and a desired set of properties of the
resource to run the job. HTCondor acts as a broker by matching and ranking resource offer ads with resource request
ads, making certain that all requirements in both ads are satisfied. During this match-making process, HTCondor also
considers several layers of priority values: the priority the user assigned to the resource request ad, the priority of the
user which submitted the ad, and the desire of machines in the pool to accept certain types of ads over others.

3.3 Exceptional Features

Reliability
An HTCondor job “is like money in the bank”. After successful submission, HTCondor owns the
job, and will run it to completion, even if the submit machine or execute machine crash, and require
HTCondor to restart the job elsewhere.

Scalability
An HTCondor pool is horizontally scalable to hundreds of thousands of execute cores running a
similar number of running jobs, and an even larger number of idle jobs. HTCondor is also scalable
down to run an entire pool on a single machine, and many scales between these two extremes.

Security
HTCondor, by default, uses strong authentication and encryption on the wire. The HTCondor worker
node scratch directories can be encrypted, so that if a node is stolen or broken into, scratch files are
unreadable.

Parallelization without Reimplementation or Redesign
HTCondor is able to run most programs which researchers can run on their laptop or their desktop, in
any programming language, such as C, Fortran, Python, Julia, Matlab, R or others, without changing
the code. HTCondor will do the work of running your code as parallel jobs, so it is not necessary to
implement parallelism in your code.

Portability and Heterogeneity
HTCondor runs on most Linux distributions and on Windows. A single HTCondor pool can support
machines of different OSes. Worker nodes need not be identically provisioned – HTCondor detects
the memory, CPU cores, GPUs and other machine resources available on a machine, and only runs
jobs that match their needs to the machine’s capabilities.

Pools of Machines can be Joined Together
Flocking allows jobs submitted from one pool of HTCondor machines to execute on another autho-
rized pool.

Jobs Can Be Ordered
A set of jobs where the output of one or more jobs becomes the input of one or more other jobs, can

32 Chapter 3. Overview

HTCondor Manual, Release 23.6.2

be defined, such that HTCondor will run the jobs in the proper order, and organize the inputs and
outputs properly. This is accomplished with a directed acyclic graph, where each job is a node in the
graph.

HTCondor Can Use Remote Resources, from a Cloud, a Supercomputer Allocation, or a Grid
Glidein allows jobs submitted to HTCondor to be executed on machines in remote pools in various
locations worldwide. These remote pools can be in one or more clouds, in an allocation on a HPC
site, in a different HTCondor pool or on a compute grid.

Sensitive to the Desires of Machine Owners
The owner of a machine has complete priority over the use of the machine. HTCondor lets the
machine’s owner decide if and how HTCondor uses the machine. When HTCondor relinquishes the
machine, it cleans up any files created by the jobs that ran on the system.

Flexible Policy Mechanisms
HTCondor allows users to specify very flexible policies for how they want jobs to be run. Conversely,
it independently allows the owners of machines to specify very flexible policies about what jobs (if
any) should be run on their machines. Together, HTCondor merges and adjudicates these policy
requests into one coherent system.

The ClassAd mechanism in HTCondor provides an expressive framework for matchmaking resource
requests with resource offers. Users can easily request both job requirements and job desires. For
example, a user can require that their job must be started on a machine with a certain amount of
memory, but should there be multiple available machines that meet that criteria, to select the one
with the most memory.

3.4 Availability

HTCondor is available for download from the URL http://htcondor.org/downloads/.

For more platform-specific information about HTCondor’s support for various operating systems, see the Platform-
Specific Information chapter.

3.5 Contributions and Acknowledgments

The quality of the HTCondor project is enhanced by the contributions of external organizations. We gratefully ac-
knowledge the following contributions.

• The GOZAL Project from the Computer Science Department of the Technion Israel Institute of Technology
(http://www.technion.ac.il/), for their enhancements for HTCondor’s High Availability. The condor_had daemon
allows one of multiple machines to function as the central manager for a HTCondor pool. Therefore, if an acting
central manager fails, another can take its place.

• Micron Corporation (http://www.micron.com/) for the MSI-based installer for HTCondor on Windows.

• Paradyn Project (http://www.paradyn.org/) and the Universitat Autònoma de Barcelona (http://www.caos.uab.
es/) for work on the Tool Daemon Protocol (TDP).

The HTCondor project wishes to acknowledge the following:

3.4. Availability 33

http://htcondor.org/downloads/
http://www.technion.ac.il/
http://www.micron.com/
http://www.paradyn.org/
http://www.caos.uab.es/
http://www.caos.uab.es/

HTCondor Manual, Release 23.6.2

• This material is based upon work supported by the National Science Foundation under Grant Numbers MCS-
8105904, OCI-0437810, and OCI-0850745. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

3.6 Support, Downloads and Bug Reporting

The latest software releases, publications/papers regarding HTCondor and other High-Throughput Computing research
can be found at the official web site for HTCondor at http://htcondor.org/.

3.6.1 Downloads

A list of recent HTCondor software releases is available on our downloads page: https://htcondor.org/downloads.

Selecting a release channel will lead you to the Downloading and Installing section of the HTCondor Manual, which
describes how to download and install HTCondor.

3.6.2 Support

Mailing Lists

Our users support each other on a community unmoderated mailing list (htcondor-users@cs.wisc.edu) targeted at solv-
ing problems with HTCondor. HTCondor team members attempt to monitor traffic to htcondor-users, responding as
they can. Follow the instructions at http://htcondor.org/mail-lists. If you have a question or potential bug report for
HTCondor that can be asked on a public mailing list, this is the first place to go.

In addition, there is a very low-volume e-mail list at htcondor-world@cs.wisc.edu. We use this e-mail list to announce
new releases of HTCondor and other major HTCondor-related news items. To subscribe or unsubscribe from the list,
follow the instructions at http://htcondor.org/mail-lists. The HTCondor World e-mail list group is moderated, and only
major announcements of wide interest are distributed.

Email Support

You can reach the HTCondor Team directly. The HTCondor Team is composed of the developers and administrators of
HTCondor at the University of Wisconsin-Madison. HTCondor questions, bug reports, comments, pleas for help, and
requests for commercial contract consultation or support are all welcome; send e-mail to htcondor-admin@cs.wisc.edu.
Please include your name, organization, and email in your message. If you are having trouble with HTCondor, please
help us troubleshoot by including as much pertinent information as you can, including snippets of HTCondor log files,
and the version of HTCondor you are running.

Finally, we have several options for users who require additional support for HTCondor beyond the free support listed
above. All details are available on our website: https://htcondor.org/htcondor-support/

34 Chapter 3. Overview

http://htcondor.org/
https://htcondor.org/downloads
mailto:htcondor-users@cs.wisc.edu
http://htcondor.org/mail-lists
mailto:htcondor-world@cs.wisc.edu
http://htcondor.org/mail-lists
mailto:htcondor-admin@cs.wisc.edu
https://htcondor.org/htcondor-support/

HTCondor Manual, Release 23.6.2

3.6.3 Reporting Bugs

We recommend you use the mailing lists or email support listed above to report bugs. Please provide as much infor-
mation as possible: detailed information about the problem, relevant log files, and steps on how to reproduce it. If it’s
a new issue that our team was not aware of, we’ll create a new ticket in our system.

Ticketing System

Experienced HTCondor users can also request a user account that will allow them to create tickets directly in our
system:

https://htcondor-wiki.cs.wisc.edu/index.cgi/rptview?rn=4

To get an account, send an email to htcondor-admin@cs.wisc.edu explaining why you want it and how you intend to
use it. These are typically reserved for known collaborators with direct contact to the HTCondor team.

3.6. Support, Downloads and Bug Reporting 35

https://htcondor-wiki.cs.wisc.edu/index.cgi/rptview?rn=4
mailto:htcondor-admin@cs.wisc.edu

HTCondor Manual, Release 23.6.2

36 Chapter 3. Overview

CHAPTER

FOUR

USERS’ MANUAL

4.1 Introduction to HTCondor

The HTCondor software system is developed by the Center for High Throughput Computing at the University of
Wisconsin-Madison (UW-Madison), and was first installed as a production system in the UW-Madison Computer Sci-
ences department in the 1990s. HTCondor pools have since served as a major source of computing cycles to thousands
of campuses, labs, organizations and commercial entities. For many, it has revolutionized the role computing plays
in their research. Increasing computing throughput by several orders of magnitude may not merely deliver the same
results faster, but may enable qualitatively different avenues of research.

HTCondor is a specialized batch system for managing compute-intensive jobs. HTCondor provides a queuing mecha-
nism, scheduling policy, priority scheme, and resource classifications. Users submit their compute jobs to HTCondor,
HTCondor puts the jobs in a queue, runs them, and then informs the user as to the result.

Batch systems normally operate only with dedicated machines. Often termed worker nodes, these dedicated machines
are typically owned by one group and dedicated to the sole purpose of running compute jobs. HTCondor can schedule
jobs on dedicated machines. But unlike traditional batch systems, HTCondor is also designed to run jobs on machines
shared and used by other systems or people. By running on these shared resources, HTCondor can effectively harness
all machines throughout a campus. This is important because often an organization has more latent, idle computers
than any single department or group otherwise has access to.

4.2 Running a Job: the Steps To Take

Here are the basic steps to run a job with HTCondor.

Work Decomposition
Typically, users want High Throughput computing systems when they have more work than can rea-
sonably run on a single machine. Therefore, the computation must run concurrently on multiple
machines. HTCondor itself does not help with breaking up a large amount of work to run indepen-
dently on many machines. In many cases, such as Monte Carlo simulations, this may be trivial to
do. In other situations, the code must be refactored or code loops may need to be broken into sepa-
rate work steps in order to be suitable for High Throughput computing. Work must be broken down
into a set of jobs whose runtime is neither too short nor too long. HTCondor is most efficient when
running jobs whose runtime is measured in minutes or hours. There is overhead in scheduling each
job, which is why very short jobs (measured in seconds) do not work well. On the other hand, if a
job takes many days to run, there is the threat of losing work in progress should the job or the server
it runs on crashes.

37

HTCondor Manual, Release 23.6.2

Prepare the job for batch execution.
To run under HTCondor a job must be able to run as a background batch job. HTCondor runs the
program unattended and in the background. A program that runs in the background will not be able
to do interactive input and output. Create any needed input files for the program. Make certain the
program will run correctly with these files.

Create a description file.
A submit description file controls the all details of a job submission. This text file tells HTCondor
everything it needs to know to run the job on a remote machine, e.g. how much memory and how
many cpu cores are needed, what input files the job needs, and other aspects of machine the job might
need.

Write a submit description file to go with the job, using the examples provided in the Submitting a
Job section for guidance. There are many possible options that can be set in a submit file, but most
submit files only use a few. The complete list of submit file options is in condor_submit.

Submit the Job.
Submit the program to HTCondor with the command. HTCondor will assign the job a unique Cluster
and Proc identifier as integers separated by a dot. You use this Cluster and Proc id to manage the job
later.

Manage the Job.
After submission, HTCondor manages the job during its lifetime. You can monitor the job’s progress
with the condor_q. On some platforms, you can ssh to a running job with the condor_ssh_to_job
command, and inspect the job as it runs.

HTCondor can write into a log file describing changes to the state of your job – when it starts execut-
ing, when it uses more resources, when it completes, or when it is preempted from a machine. You
can remove a running or idle job from the queue with condor_rm.

Examine the results of a finished job.
When your program completes, HTCondor will tell you (by e-mail, if preferred) the exit status of your
program and various statistics about its performances, including time used and I/O performed. If you
are using a log file for the job, the exit status will be recorded in there. Output files will be transferred
back to the submitting machine, if a shared filesystem is not used. After the job completes, it will
not be visible to the condor_q command , but is queryable with the condor_history command.

4.3 Submitting a Job

The command takes a job description file as input and submits the job to HTCondor. In the submit description file,
HTCondor finds everything it needs to know about the job. Items such as the name of the executable to run, the initial
working directory, and command-line arguments to the program all go into the submit description file. creates a job
ClassAd based upon the information, and HTCondor works toward running the job.

It is easy to submit multiple runs of a program to HTCondor with a single submit description file. To run the same
program many times with different input data sets, arrange the data files accordingly so that each run reads its own
input, and each run writes its own output. Each individual run may have its own initial working directory, files mapped
for stdin, stdout, stderr, command-line arguments, and shell environment.

The condor_submit manual page contains a complete and full description of how to use . It also includes descriptions
of all of the many commands that may be placed into a submit description file. In addition, the index lists entries for
each command under the heading of Submit Commands.

38 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.3.1 Sample submit description files

In addition to the examples of submit description files given here, there are more in the condor_submit manual page.

Example 1

Example 1 is one of the simplest submit description files possible. It queues the program myexe for execution some-
where in the pool. As this submit description file does not request a specific operating system to run on, HTCondor
will use the default, which is to run the job on a machine which has the same architecture and operating system it was
submitted from.

Before submitting a job to HTCondor, it is a good idea to test it first locally, by running it from a command shell. This
example job might look like this when run from the shell prompt.

$./myexe SomeArgument

The corresponding submit description file might look like the following

Example 1
Simple HTCondor submit description file
Everything with a leading # is a comment

executable = myexe
arguments = SomeArgument

output = outputfile
error = errorfile
log = myexe.log

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

should_transfer_files = yes
when_to_transfer_output = on_exit

queue

The standard output for this job will go to the file outputfile, as specified by the command. Likewise, the standard
error output will go to the file named errorfile.

HTCondor will append events about the job to a log file with the requested name myexe.log. When the job finishes,
its exit conditions and resource usage will also be noted in the log file. This file’s contents are an excellent way to figure
out what happened to jobs.

HTCondor needs to know how many machine resources to allocate to this job. The request_ lines describe that this
job should be allocated 1 cpu core, 1024 megabytes of memory and 10240 kilobytes of scratch disk space.

Finally, the queue statement tells HTCondor that you are done describing the job, and to send it to the queue for
processing.

Example 2

The submit description file for Example 2 queues 150 runs of program foo. This job requires machines which have
at least 4 GiB of physical memory, one cpu core and 16 Gb of scratch disk. Each of the 150 runs of the program is
given its own HTCondor process number, starting with 0. $(Process) is expanded by HTCondor to the actual number
used by each instance of the job. So, stdout, and stderr will refer to out.0, and err.0 for the first run of the
program, out.1, and err.1 for the second run of the program, and so forth. A log file containing entries about when

4.3. Submitting a Job 39

HTCondor Manual, Release 23.6.2

and where HTCondor runs, transfer files, and terminates for all the 150 queued programs will be written into the single
file foo.log. If there are 150 or more available slots in your pool, all 150 instances might be run at the same time,
otherwise, HTCondor will run as many as it can concurrently.

Each instance of this program works on one input file. The name of this input file is passed to the program as the only
argument. We prepare 150 copies of this input file in the current directory, and name them input_file.0, input_file.1
. . . up to input_file.149. Using transfer_input_files, we tell HTCondor which input file to send to each instance of the
program.

Example 2: Show off some fancy features,
including the use of pre-defined macros.

executable = foo
arguments = input_file.$(Process)

request_cpus = 1
request_memory = 4096M
request_disk = 16383K

error = err.$(Process)
output = out.$(Process)
log = foo.log

should_transfer_files = yes
transfer_input_files = input_file.$(Process)
when_to_transfer_output = on_exit

Help with debugging jobs by creating
manifest directory describing sandbox before and after
manifest = true

submit 150 instances of this job
queue 150

4.3.2 Submitting many similar jobs with one queue command

A wide variety of job submissions can be specified with extra information to the submit command. This flexibility
eliminates the need for a job wrapper or Perl script for many submissions.

The form of the queue command defines variables and expands values, identifying a set of jobs. Square brackets
identify an optional item.

queue [<int expr>]

queue [<int expr>] [<varname>] in [slice] <list of items>

queue [<int expr>] [<varname>] matching [files | dirs] [slice] <list of items with file globbing>

queue [<int expr>] [<list of varnames>] from [slice] <file name> | <list of items>

All optional items have defaults:

• If <int expr> is not specified, it defaults to the value 1.

• If <varname> or <list of varnames> is not specified, it defaults to the single variable called ITEM.

40 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

• If slice is not specified, it defaults to all elements within the list. This is the Python slice [::], with a step
value of 1.

• If neither files nor dirs is specified in a specification using the from key word, then both files and directories
are considered when globbing.

The list of items uses syntax in one of two forms. One form is a comma and/or space separated list; the items are
placed on the same line as the command. The second form separates items by placing each list item on its own line,
and delimits the list with parentheses. The opening parenthesis goes on the same line as the command. The closing
parenthesis goes on its own line. The command specified with the key word from will always use the second form of
this syntax. Example 3 below uses this second form of syntax. Finally, the key word from accepts a shell command in
place of file name, followed by a pipe | (example 4).

The optional slice specifies a subset of the list of items using the Python syntax for a slice. Negative step values are
not permitted.

Here are a set of examples.

Example 1

transfer_input_files = $(filename)
arguments = -infile $(filename)
queue filename matching files *.dat

The use of file globbing expands the list of items to be all files in the current directory that end in .dat. Only files,
and not directories are considered due to the specification of files. One job is queued for each file in the list of items.
For this example, assume that the three files initial.dat, middle.dat, and ending.dat form the list of items after
expansion; macro filename is assigned the value of one of these file names for each job queued. That macro value is
then substituted into the arguments and transfer_input_files commands. The queue command expands to

transfer_input_files = initial.dat
arguments = -infile initial.dat
queue
transfer_input_files = middle.dat
arguments = -infile middle.dat
queue
transfer_input_files = ending.dat
arguments = -infile ending.dat
queue

Example 2

queue 1 input in A, B, C

Variable input is set to each of the 3 items in the list, and one job is queued for each. For this example the queue
command expands to

input = A
queue
input = B
queue
input = C
queue

Example 3

4.3. Submitting a Job 41

HTCondor Manual, Release 23.6.2

queue input, arguments from (
file1, -a -b 26
file2, -c -d 92

)

Using the from form of the options, each of the two variables specified is given a value from the list of items. For this
example the queue command expands to

input = file1
arguments = -a -b 26
queue
input = file2
arguments = -c -d 92
queue

Example 4

queue from seq 7 9 |

feeds the list of items to queue with the output of seq 7 9:

item = 7
queue
item = 8
queue
item = 9
queue

4.3.3 Variables in the Submit Description File

There are automatic variables for use within the submit description file.

$(Cluster) or $(ClusterId)
Each set of queued jobs from a specific user, submitted from a single submit host, sharing an executable have the
same value of $(Cluster) or $(ClusterId). The first cluster of jobs are assigned to cluster 0, and the value
is incremented by one for each new cluster of jobs. $(Cluster) or $(ClusterId) will have the same value as
the job ClassAd attribute .

$(Process) or $(ProcId)
Within a cluster of jobs, each takes on its own unique $(Process) or $(ProcId) value. The first job has value
0. $(Process) or $(ProcId) will have the same value as the job ClassAd attribute .

$$(a_machine_classad_attribute)
When the machine is matched to this job for it to run on, any dollar-dollar expressions are looked up from the
machine ad, and then expanded. This lets you put the value of some machine ad attribute into your job. For
example, if you to pass the actual amount of memory a slot has provisioned as an argument to the job, you could
add arguments = --mem $$(Memory)

arguments = --mem $$(Memory)

or, if you wanted to put the name of the machine the job ran on into the output file name, you could add

42 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

output = output_file.$$(Name)

$$([an_evaluated_classad_expression])
This dollar-dollar-bracket syntax is useful when you need to perform some math on a value before passing it to
your job. For example, if want to pass 90% of the allocated memory as an argument to your job, the submit file
can have

arguments = --mem $$([Memory * 0.9])

and when the job is matched to a machine, condor will evaluate this expression in the context of both the job and
machine ad

$(ARCH)
The Architecture that HTCondor is running on, or the ARCH variable in the config file. Example might be
X86_64.

$(OPSYS) $(OPSYSVER) $(OPSYSANDVER) $(OPSYSMAJORVER)
These submit file macros are availle at submit time, and mimic the classad attributes of the same names.

$(SUBMIT_FILE)
The name of the submit_file as passed to the condor_submit command.

$(SUBMIT_TIME)
The Unix epoch time submit was run. Note, this may be useful for naming output files.

$(Year) $(Month) $(Day)
These integer values are derived from the $(SUBMIT_TIME) macro above.

$(Item)
The default name of the variable when no <varname> is provided in a queue command.

$(ItemIndex)
Represents an index within a list of items. When no slice is specified, the first $(ItemIndex) is 0. When a slice
is specified, $(ItemIndex) is the index of the item within the original list.

$(Step)
For the <int expr> specified, $(Step) counts, starting at 0.

$(Row)
When a list of items is specified by placing each item on its own line in the submit description file, $(Row)
identifies which line the item is on. The first item (first line of the list) is $(Row) 0. The second item (second
line of the list) is $(Row) 1. When a list of items are specified with all items on the same line, $(Row) is the
same as $(ItemIndex).

Here is an example of a queue command for which the values of these automatic variables are identified.

Example 1

This example queues six jobs.

queue 3 in (A, B)

• $(Process) takes on the six values 0, 1, 2, 3, 4, and 5.

• Because there is no specification for the <varname> within this queue command, variable $(Item) is defined.
It has the value A for the first three jobs queued, and it has the value B for the second three jobs queued.

• $(Step) takes on the three values 0, 1, and 2 for the three jobs with $(Item)=A, and it takes on the same three
values 0, 1, and 2 for the three jobs with $(Item)=B.

• $(ItemIndex) is 0 for all three jobs with $(Item)=A, and it is 1 for all three jobs with $(Item)=B.

4.3. Submitting a Job 43

HTCondor Manual, Release 23.6.2

• $(Row) has the same value as $(ItemIndex) for this example.

4.3.4 Including Submit Commands Defined Elsewhere

Externally defined submit commands can be incorporated into the submit description file using the syntax

include : <what-to-include>

The <what-to-include> specification may specify a single file, where the contents of the file will be incorporated into
the submit description file at the point within the file where the include is. Or, <what-to-include> may cause a program
to be executed, where the output of the program is incorporated into the submit description file. The specification of
<what-to-include> has the bar character (|) following the name of the program to be executed.

The include key word is case insensitive. There are no requirements for white space characters surrounding the colon
character.

Included submit commands may contain further nested include specifications, which are also parsed, evaluated, and
incorporated. Levels of nesting on included files are limited, such that infinite nesting is discovered and thwarted, while
still permitting nesting.

Consider the example

include : ./list-infiles.sh |

In this example, the bar character at the end of the line causes the script list-infiles.sh to be invoked, and the
output of the script is parsed and incorporated into the submit description file. If this bash script is in the PATH when
submit is run, and contains

#!/bin/sh

echo "transfer_input_files = `ls -m infiles/*.dat`"
exit 0

then the output of this script has specified the set of input files to transfer to the execute host. For example, if directory
infiles contains the three files A.dat, B.dat, and C.dat, then the submit command

transfer_input_files = infiles/A.dat, infiles/B.dat, infiles/C.dat

is incorporated into the submit description file.

4.3.5 Using Conditionals in the Submit Description File

Conditional if/else semantics are available in a limited form. The syntax:

if <simple condition>
<statement>
. . .
<statement>

else
<statement>
. . .

(continues on next page)

44 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

<statement>
endif

An else key word and statements are not required, such that simple if semantics are implemented. The <simple condi-
tion> does not permit compound conditions. It optionally contains the exclamation point character (!) to represent the
not operation, followed by

• the defined keyword followed by the name of a variable. If the variable is defined, the statement(s) are incor-
porated into the expanded input. If the variable is not defined, the statement(s) are not incorporated into the
expanded input. As an example,

if defined MY_UNDEFINED_VARIABLE
X = 12

else
X = -1

endif

results in X = -1, when MY_UNDEFINED_VARIABLE is not yet defined.

• the version keyword, representing the version number of of the daemon or tool currently reading this conditional.
This keyword is followed by an HTCondor version number. That version number can be of the form x.y.z or x.y.
The version of the daemon or tool is compared to the specified version number. The comparison operators are

– == for equality. Current version 8.2.3 is equal to 8.2.

– >= to see if the current version number is greater than or equal to. Current version 8.2.3 is greater than
8.2.2, and current version 8.2.3 is greater than or equal to 8.2.

– <= to see if the current version number is less than or equal to. Current version 8.2.0 is less than 8.2.2, and
current version 8.2.3 is less than or equal to 8.2.

As an example,

if version >= 8.1.6
DO_X = True

else
DO_Y = True

endif

results in defining DO_X as True if the current version of the daemon or tool reading this if statement is 8.1.6 or
a more recent version.

• True or yes or the value 1. The statement(s) are incorporated.

• False or no or the value 0 The statement(s) are not incorporated.

• $(<variable>) may be used where the immediately evaluated value is a simple boolean value. A value that
evaluates to the empty string is considered False, otherwise a value that does not evaluate to a simple boolean
value is a syntax error.

The syntax

if <simple condition>
<statement>
. . .
<statement>

elif <simple condition>
(continues on next page)

4.3. Submitting a Job 45

HTCondor Manual, Release 23.6.2

(continued from previous page)

<statement>
. . .
<statement>

endif

is the same as syntax

if <simple condition>
<statement>
. . .
<statement>

else
if <simple condition>

<statement>
. . .
<statement>

endif
endif

Here is an example use of a conditional in the submit description file. A portion of the sample.sub submit description
file uses the if/else syntax to define command line arguments in one of two ways:

if defined X
arguments = -n $(X)

else
arguments = -n 1 -debug

endif

Submit variable X is defined on the command line with

$ condor_submit X=3 sample.sub

This command line incorporates the submit command X = 3 into the submission before parsing the submit description
file. For this submission, the command line arguments of the submitted job become

arguments = -n 3

If the job were instead submitted with the command line

$ condor_submit sample.sub

then the command line arguments of the submitted job become

arguments = -n 1 -debug

46 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.3.6 Function Macros in the Submit Description File

A set of predefined functions increase flexibility. Both submit description files and configuration files are read using
the same parser, so these functions may be used in both submit description files and configuration files.

Case is significant in the function’s name, so use the same letter case as given in these definitions.

$CHOICE(index, listname) or $CHOICE(index, item1, item2, ...)
An item within the list is returned. The list is represented by a parameter name, or the list items are the parameters.
The index parameter determines which item. The first item in the list is at index 0. If the index is out of bounds
for the list contents, an error occurs.

$ENV(environment-variable-name[:default-value])
Evaluates to the value of environment variable environment-variable-name. If there is no environment
variable with that name, Evaluates to UNDEFINED unless the optional :default-value is used; in which case it
evaluates to default-value. For example,

A = $ENV(HOME)

binds A to the value of the HOME environment variable.

$F[fpduwnxbqa](filename)
One or more of the lower case letters may be combined to form the function name and thus, its functionality.
Each letter operates on the filename in its own way.

• f convert relative path to full path by prefixing the current working directory to it. This option works only
in files.

• p refers to the entire directory portion of filename, with a trailing slash or backslash character. Whether a
slash or backslash is used depends on the platform of the machine. The slash will be recognized on Linux
platforms; either a slash or backslash will be recognized on Windows platforms, and the parser will use the
same character specified.

• d refers to the last portion of the directory within the path, if specified. It will have a trailing slash or
backslash, as appropriate to the platform of the machine. The slash will be recognized on Linux platforms;
either a slash or backslash will be recognized on Windows platforms, and the parser will use the same
character specified unless u or w is used. if b is used the trailing slash or backslash will be omitted.

• u convert path separators to Unix style slash characters

• w convert path separators to Windows style backslash characters

• n refers to the file name at the end of any path, but without any file name extension. As an example, the
return value from $Fn(/tmp/simulate.exe) will be simulate (without the .exe extension).

• x refers to a file name extension, with the associated period (.). As an example, the return value from
$Fx(/tmp/simulate.exe) will be .exe.

• b when combined with the d option, causes the trailing slash or backslash to be omitted. When combined
with the x option, causes the leading period (.) to be omitted.

• q causes the return value to be enclosed within quotes. Double quote marks are used unless a is also
specified.

• a When combined with the q option, causes the return value to be enclosed within single quotes.

$DIRNAME(filename) is the same as $Fp(filename)

$BASENAME(filename) is the same as $Fnx(filename)

4.3. Submitting a Job 47

HTCondor Manual, Release 23.6.2

$INT(item-to-convert) or $INT(item-to-convert, format-specifier)
Expands, evaluates, and returns a string version of item-to-convert. The format-specifier has the same
syntax as a C language or Perl format specifier. If no format-specifier is specified, “%d” is used as the
format specifier.

$RANDOM_CHOICE(choice1, choice2, choice3, ...)
A random choice of one of the parameters in the list of parameters is made. For example, if one of the integers
0-8 (inclusive) should be randomly chosen:

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)

$RANDOM_INTEGER(min, max [, step])
A random integer within the range min and max, inclusive, is selected. The optional step parameter controls

the stride within the range, and it defaults to the value 1. For example, to randomly chose an even integer in the
range 0-8 (inclusive):

$RANDOM_INTEGER(0, 8, 2)

$REAL(item-to-convert) or $REAL(item-to-convert, format-specifier)
Expands, evaluates, and returns a string version of item-to-convert for a floating point type. The
format-specifier is a C language or Perl format specifier. If no format-specifier is specified, “%16G”
is used as a format specifier.

$SUBSTR(name, start-index) or $SUBSTR(name, start-index, length)
Expands name and returns a substring of it. The first character of the string is at index 0. The first character of
the substring is at index start-index. If the optional length is not specified, then the substring includes characters
up to the end of the string. A negative value of start-index works back from the end of the string. A negative
value of length eliminates use of characters from the end of the string. Here are some examples that all assume

Name = abcdef

• $SUBSTR(Name, 2) is cdef.

• $SUBSTR(Name, 0, -2) is abcd.

• $SUBSTR(Name, 1, 3) is bcd.

• $SUBSTR(Name, -1) is f.

• $SUBSTR(Name, 4, -3) is the empty string, as there are no characters in the substring for this request.

Here are example uses of the function macros in a submit description file. Note that these are not complete submit
description files, but only the portions that promote understanding of use cases of the function macros.

Example 1

Generate a range of numerical values for a set of jobs, where values other than those given by $(Process) are desired.

MyIndex = $(Process) + 1
initial_dir = run-$INT(MyIndex,%04d)

Assuming that there are three jobs queued, such that $(Process) becomes 0, 1, and 2, initial_dir will evaluate to
the directories run-0001, run-0002, and run-0003.

Example 2

This variation on Example 1 generates a file name extension which is a 3-digit integer value.

48 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

Values = $(Process) * 10
Extension = $INT(Values,%03d)
input = X.$(Extension)

Assuming that there are four jobs queued, such that $(Process) becomes 0, 1, 2, and 3, Extension will evaluate to
000, 010, 020, and 030, leading to files defined for input of X.000, X.010, X.020, and X.030.

Example 3

This example uses both the file globbing of the command and a macro function to specify a job input file that is within
a subdirectory on the submit host, but will be placed into a single, flat directory on the execute host.

arguments = $Fnx(FILE)
transfer_input_files = $(FILE)
queue FILE matching (

samplerun/*.dat
)

Assume that two files that end in .dat, A.dat and B.dat, are within the directory samplerun. Macro FILE expands
to samplerun/A.dat and samplerun/B.dat for the two jobs queued. The input files transferred are samplerun/A.
dat and samplerun/B.dat on the submit host. The $Fnx() function macro expands to the complete file name with
any leading directory specification stripped, such that the command line argument for one of the jobs will be A.dat
and the command line argument for the other job will be B.dat.

4.3.7 About Requirements and Rank

The and commands in the submit description file are powerful and flexible. Using them effectively requires care, and
this section presents those details.

Both and need to be specified as valid HTCondor ClassAd expressions, however, default values are set by the program
if these are not defined in the submit description file. From the manual page and the above examples, you see that
writing ClassAd expressions is intuitive, especially if you are familiar with the programming language C. There are
some pretty nifty expressions you can write with ClassAds. A complete description of ClassAds and their expressions
can be found in the HTCondor’s ClassAd Mechanism section.

All of the commands in the submit description file are case insensitive, except for the ClassAd attribute string values.
ClassAd attribute names are case insensitive, but ClassAd string values are case preserving.

Note that the comparison operators (<, >, <=, >=, and ==) compare strings case insensitively. The special comparison
operators =?= and =!= compare strings case sensitively.

A or command in the submit description file may utilize attributes that appear in a machine or a job ClassAd. Within
the submit description file (for a job) the prefix MY. (on a ClassAd attribute name) causes a reference to the job ClassAd
attribute, and the prefix TARGET. causes a reference to a potential machine or matched machine ClassAd attribute.

The command displays statistics about machines within the pool. The -l option displays the machine ClassAd attributes
for all machines in the HTCondor pool. The job ClassAds, if there are jobs in the queue, can be seen with the condor_q
-l command. This shows all the defined attributes for current jobs in the queue.

A list of defined ClassAd attributes for job ClassAds is given in the Appendix on the Job ClassAd Attributes page. A
list of defined ClassAd attributes for machine ClassAds is given in the Appendix on the Machine ClassAd Attributes
page.

4.3. Submitting a Job 49

HTCondor Manual, Release 23.6.2

Rank Expression Examples

When considering the match between a job and a machine, rank is used to choose a match from among all machines
that satisfy the job’s requirements and are available to the user, after accounting for the user’s priority and the machine’s
rank of the job. The rank expressions, simple or complex, define a numerical value that expresses preferences.

The job’s expression evaluates to one of three values. It can be UNDEFINED, ERROR, or a floating point value. If
evaluates to a floating point value, the best match will be the one with the largest, positive value. If no is given in the
submit description file, then HTCondor substitutes a default value of 0.0 when considering machines to match. If the
job’s of a given machine evaluates to UNDEFINED or ERROR, this same value of 0.0 is used. Therefore, the machine
is still considered for a match, but has no ranking above any other.

A boolean expression evaluates to the numerical value of 1.0 if true, and 0.0 if false.

The following expressions provide examples to follow.

For a job that desires the machine with the most available memory:

Rank = memory

For a job that prefers to run on a friend’s machine on Saturdays and Sundays:

Rank = ((clockday == 0) || (clockday == 6))
&& (machine == "friend.cs.wisc.edu")

For a job that prefers to run on one of three specific machines:

Rank = (machine == "friend1.cs.wisc.edu") ||
(machine == "friend2.cs.wisc.edu") ||
(machine == "friend3.cs.wisc.edu")

For a job that wants the machine with the best floating point performance (on Linpack benchmarks):

Rank = kflops

This particular example highlights a difficulty with expression evaluation as currently defined. While all machines have
floating point processing ability, not all machines will have the attribute defined. For machines where this attribute is
not defined, will evaluate to the value UNDEFINED, and HTCondor will use a default rank of the machine of 0.0. The
attribute will only rank machines where the attribute is defined. Therefore, the machine with the highest floating point
performance may not be the one given the highest rank.

So, it is wise when writing a expression to check if the expression’s evaluation will lead to the expected resulting
ranking of machines. This can be accomplished using the command with the -constraint argument. This allows the
user to see a list of machines that fit a constraint. To see which machines in the pool have defined, use

$ condor_status -constraint kflops

Alternatively, to see a list of machines where is not defined, use

$ condor_status -constraint "kflops=?=undefined"

For a job that prefers specific machines in a specific order:

Rank = ((machine == "friend1.cs.wisc.edu")*3) +
((machine == "friend2.cs.wisc.edu")*2) +
(machine == "friend3.cs.wisc.edu")

50 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

If the machine being ranked is friend1.cs.wisc.edu, then the expression

(machine == "friend1.cs.wisc.edu")

is true, and gives the value 1.0. The expressions

(machine == "friend2.cs.wisc.edu")

and

(machine == "friend3.cs.wisc.edu")

are false, and give the value 0.0. Therefore, evaluates to the value 3.0. In this way, machine friend1.cs.wisc.edu is
ranked higher than machine friend2.cs.wisc.edu, machine friend2.cs.wisc.edu is ranked higher than machine
friend3.cs.wisc.edu, and all three of these machines are ranked higher than others.

4.3.8 Submitting Jobs Using a Shared File System

If vanilla, java, or parallel universe jobs are submitted without using the File Transfer mechanism, HTCondor must use
a shared file system to access input and output files. In this case, the job must be able to access the data files from any
machine on which it could potentially run.

As an example, suppose a job is submitted from blackbird.cs.wisc.edu, and the job requires a particular data file called
/u/p/s/psilord/data.txt. If the job were to run on cardinal.cs.wisc.edu, the file /u/p/s/psilord/data.txt
must be available through either NFS or AFS for the job to run correctly.

HTCondor allows users to ensure their jobs have access to the right shared files by using the and machine ClassAd
attributes. These attributes specify which machines have access to the same shared file systems. All machines that
mount the same shared directories in the same locations are considered to belong to the same file system domain.
Similarly, all machines that share the same user information (in particular, the same UID, which is important for file
systems like NFS) are considered part of the same UID domain.

The default configuration for HTCondor places each machine in its own UID domain and file system domain, using
the full host name of the machine as the name of the domains. So, if a pool does have access to a shared file system,
the pool administrator must correctly configure HTCondor such that all the machines mounting the same files have the
same configuration. Similarly, all machines that share common user information must be configured to have the same
configuration.

When a job relies on a shared file system, HTCondor uses the expression to ensure that the job runs on a machine in
the correct and . In this case, the default expression specifies that the job must run on a machine with the same and
as the machine from which the job is submitted. This default is almost always correct. However, in a pool spanning
multiple s and/or s, the user may need to specify a different requirements expression to have the job run on the correct
machines.

For example, imagine a pool made up of both desktop workstations and a dedicated compute cluster. Most of the pool,
including the compute cluster, has access to a shared file system, but some of the desktop machines do not. In this case,
the administrators would probably define the to be cs.wisc.edu for all the machines that mounted the shared files,
and to the full host name for each machine that did not. An example is jimi.cs.wisc.edu.

In this example, a user wants to submit vanilla universe jobs from her own desktop machine (jimi.cs.wisc.edu) which
does not mount the shared file system (and is therefore in its own file system domain, in its own world). But, she wants
the jobs to be able to run on more than just her own machine (in particular, the compute cluster), so she puts the program
and input files onto the shared file system. When she submits the jobs, she needs to tell HTCondor to send them to
machines that have access to that shared data, so she specifies a different expression than the default:

4.3. Submitting a Job 51

HTCondor Manual, Release 23.6.2

Requirements = TARGET.UidDomain == "cs.wisc.edu" && \
TARGET.FileSystemDomain == "cs.wisc.edu"

WARNING: If there is no shared file system, or the HTCondor pool administrator does not configure the setting cor-
rectly (the default is that each machine in a pool is in its own file system and UID domain), a user submits a job that
cannot use remote system calls (for example, a vanilla universe job), and the user does not enable HTCondor’s File
Transfer mechanism, the job will only run on the machine from which it was submitted.

4.3.9 Jobs That Require Credentials

If the HTCondor pool administrator has configured the access point with one or more credential monitors, jobs sub-
mitted on that machine may automatically be provided with credentials and/or it may be possible for users to request
and obtain credentials for their jobs.

Suppose the administrator has configured the access point such that users may obtain credentials from a storage service
called “CloudBoxDrive.” A job that needs credentials from CloudBoxDrive should contain the submit command

use_oauth_services = cloudboxdrive

Upon submitting this job for the first time, the user will be directed to a webpage hosted on the access point which will
guide the user through the process of obtaining a CloudBoxDrive credential. The credential is then stored securely
on the access point. (Note: depending on which credential monitor is used, the original job may have to be
re-submitted at this point.) (Also note that at no point is the user’s password stored on the access point.) Once a
credential is stored on the access point, as long as it remains valid, it is transferred securely to all subsequently submitted
jobs that contain use_oauth_services = cloudboxdrive.

When a job that contains credentials runs on an execute machine, the job’s executable will have the environment variable
_CONDOR_CREDS set, which points to the location of all of the credentials inside the job’s sandbox. For credentials
obtained via the submit file command, the “access token” is stored under $_CONDOR_CREDS in a JSON-encoded file
named with the name of the service provider and with the extension .use. For the “CloudBoxDrive” example, the
access token would be located in $_CONDOR_CREDS/cloudboxdrive.use.

The HTCondor file transfer mechanism has built-in plugins for using user-obtained credentials to transfer files from
some specific storage providers, see File Transfer Using a URL.

Credential Scopes

Some credential providers may require the user to provide a description of the permissions (often called
“scopes”) a user needs for a specific credential. Credential permission scoping is possible using the <service
name>_oauth_permissions submit file command. For example, suppose our CloudBoxDrive service has a /public
directory, and the documentation for the service said that users must specify a read:<directory> scope in order to
be able to read data out of <directory>. The submit file would need to contain

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions = read:/public

Some credential providers may also require the user to provide the name of the resource (or “audience”) that a credential
should allow access to. Resource naming is done using the <service name>_oauth_resource submit file command.
For example, if our CloudBoxDrive service has servers located at some universities and the documentation says that
we should pick one near us and specify it as the audience, the submit file might look like

52 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions = read:/public
cloudboxdrive_oauth_resource = https://cloudboxdrive.myuni.edu

It is possible for a single job to request and/or use credentials from multiple services by listing each service in the com-
mand. Suppose the nearby university has a SciTokens service that provides credentials to access the localstorage.
myuni.edu machine, and the HTCondor pool administrator has configured the access point to allow users to obtain
credentials from this service, and that a user has write access to the /foo directory on the storage machine. A submit file
that would result in a job that contains credentials that can read from CloudBoxDrive and write to the local university
storage might look like

use_oauth_services = cloudboxdrive, myuni

cloudboxdrive_oauth_permissions = read:/public
cloudboxdrive_oauth_resource = https://cloudboxdrive.myuni.edu

myuni_oauth_permissions = write:/foo
myuni_oauth_resource = https://localstorage.myuni.edu

Credential Handles

A single job can also request multiple credentials from the same service provider by affixing handles to the and (if
necessary) commands. For example, if a user wants separate read and write credentials for CloudBoxDrive

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions_readpublic = read:/public
cloudboxdrive_oauth_permissions_writeprivate = write:/private

cloudboxdrive_oauth_resource_readpublic = https://cloudboxdrive.myuni.edu
cloudboxdrive_oauth_resource_writeprivate = https://cloudboxdrive.myuni.edu

Submitting the above would result in a job with respective access tokens located in $_CONDOR_CREDS/
cloudboxdrive_readpublic.use and $_CONDOR_CREDS/cloudboxdrive_writeprivate.use.

Note that the permissions and resource settings for each handle (and for no handle) are stored separately from the job so
multiple jobs from the same user running at the same time or for a period of time consecutively may not use a different
set of permissions and resource settings for the same service and handle. If that is attempted, a new job submission
will fail with instructions on how to resolve the conflict, but the safest thing is to choose a unique handle.

If a service provider does not require permissions or resources to be specified, a user can still request multiple credentials
by affixing handles to commands with empty values

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions_personal =
cloudboxdrive_oauth_permissions_public =

When the Vault credential monitor is configured, the service name may optionally be split into two parts with an
underscore between them, where the first part is the issuer and the second part is the role. In this example the issuer is
“dune” and the role is “production”, both as configured by the administrator of the Vault server:

use_oauth_services = dune_production

4.3. Submitting a Job 53

HTCondor Manual, Release 23.6.2

Warning: Note that if a handle is not used, the permissions granted by the token will be the default permissions,
which is usually the maximal, most permissive set. Using a handle allows the user to reduce the scope of the
permissions granted by the token.

Vault does not require permissions or resources to be set, but they may be set to reduce the default permissions or
restrict the resources that may use the credential. The full service name including an underscore may be used in an or .
Avoid using handles that might be confused as role names. For example, the following will result in a conflict between
two credentials called dune_production.use:

use_oauth_services = dune, dune_production
dune_oauth_permissions_production =
dune_production_oauth_permissions =

4.3.10 Jobs That Require GPUs

HTCondor has built-in support for detecting machines with GPUs, and matching jobs that need GPUs to machines that
have them. If your job needs a GPU, you’ll first need to tell HTCondor how many GPUs each job needs with the submit
command:

request_GPUs = <n>

where <n> is replaced by the integer quantity of GPUs required for the job. For example, a job that needs 1 GPU uses

request_GPUs = 1

Because there are different capabilities among GPUs, your job might need to further qualify which GPU is required.
The submit command does this, or in newer versions of HTCondor, there are special commands for some of the GPU
properties like and . For example, to request a CUDA GPU whose CUDA Capability is at least 8, add one of the
following to your submit file:

request_GPUs = 1
require_gpus = Capability >= 8.0

request_GPUs = 1
works in HTCondor 23.5 or later
gpus_minimum_capability = 8.0
gpus_minimum_memory = 4GB

To see a summary of the GPU devices HTCondor has detected on your pool, including the device names, Capability
and Memory, run the following command.

$ condor_status -gpus -compact

Access to GPU resources by an HTCondor job needs special configuration of the machines that offer GPUs. Details of
how to set up the configuration are in the Configuration for Execution Points section.

54 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.3.11 Interactive Jobs

An interactive job is a Condor job that is provisioned and scheduled like any other vanilla universe Condor job onto
an execute machine within the pool. The result of a running interactive job is a shell prompt issued on the execute
machine where the job runs. The user that submitted the interactive job may then use the shell as desired, perhaps
to interactively run an instance of what is to become a Condor job. This might aid in checking that the set up and
execution environment are correct, or it might provide information on the RAM or disk space needed. This job (shell)
continues until the user logs out or any other policy implementation causes the job to stop running. A useful feature of
the interactive job is that the users and jobs are accounted for within Condor’s scheduling and priority system.

Neither the submit nor the execute host for interactive jobs may be on Windows platforms.

The current working directory of the shell will be the initial working directory of the running job. The shell type will
be the default for the user that submits the job. At the shell prompt, X11 forwarding is enabled.

Each interactive job will have a job ClassAd attribute of

InteractiveJob = True

Submission of an interactive job specifies the option -interactive on the command line.

A submit description file may be specified for this interactive job. Within this submit description file, a specification
of these 5 commands will be either ignored or altered:

1.

2.

3.

4. . The interactive job is a vanilla universe job.

5. <n>. In this case the value of <n> is ignored; exactly one interactive job is queued.

The submit description file may specify anything else needed for the interactive job, such as files to transfer.

If no submit description file is specified for the job, a default one is utilized as identified by the value of the configuration
variable .

Here are examples of situations where interactive jobs may be of benefit.

• An application that cannot be batch processed might be run as an interactive job. Where input or output cannot
be captured in a file and the executable may not be modified, the interactive nature of the job may still be run on
a pool machine, and within the purview of Condor.

• A pool machine with specialized hardware that requires interactive handling can be scheduled with an interactive
job that utilizes the hardware.

• The debugging and set up of complex jobs or environments may benefit from an interactive session. This in-
teractive session provides the opportunity to run scripts or applications, and as errors are identified, they can be
corrected on the spot.

• Development may have an interactive nature, and proceed more quickly when done on a pool machine. It may
also be that the development platforms required reside within Condor’s purview as execute hosts.

4.3. Submitting a Job 55

HTCondor Manual, Release 23.6.2

4.3.12 Submitting Lots of Jobs

When submitting a lot of jobs with a single submit file, you can dramatically speed up submission and reduce the load
on the condor_schedd by submitting the jobs as a late materialization job factory.

A submission of this form sends a single ClassAd, called the Cluster ad, to the condor_schedd, as well as instructions
to create the individual jobs as variations on that Cluster ad. These instructions are sent as a submit digest and optional
itemdata. The submit digest is the submit file stripped down to just the statements that vary between jobs. The itemdata
is the arguments to the statement when the arguments are more than just a count of jobs.

The condor_schedd will use the submit digest and the itemdata to create the individual job ClassAds when they are
needed. Materialization is controlled by two values stored in the Cluster classad, and by optional limits configured in
the condor_schedd.

The limit specifies the maximum number of non-running jobs that should be materialized in the condor_schedd at any
one time. One or more jobs will materialize whenever a job enters the Run state and the number of non-running jobs that
are still in the condor_schedd is less than this limit. This limit is stored in the Cluster ad in the JobMaterializeMaxIdle
attribute.

The limit specifies an overall limit on the number of jobs that can be materialized in the condor_schedd at any one
time. One or more jobs will materialize when a job leaves the condor_schedd and the number of materialized jobs
remaining is less than this limit. This limit is stored in the Cluster ad in the JobMaterializeLimit attribute.

Late materialization can be used as a way for a user to submit millions of jobs without hitting the or limits in the
condor_schedd, since the condor_schedd will enforce these limits by applying them to the max_materialize and
max_idle values specified in the Cluster ad.

To give an example, the following submit file:

executable = foo
arguments = input_file.$(Process)

request_cpus = 1
request_memory = 4096M
request_disk = 16383K

error = err.$(Process)
output = out.$(Process)
log = foo.log

should_transfer_files = yes
transfer_input_files = input_file.$(Process)

submit as a factory with an idle jobs limit
max_idle = 100

submit 15,000 instances of this job
queue 15*1000

When submitted as a late materialization factory, the submit digest for this factory will contain only the submit state-
ments that vary between jobs, and the collapsed queue statement like this:

arguments = input_file.$(Process)
error = err.$(Process)
output = out.$(Process)

(continues on next page)

56 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

transfer_input_files = input_file.$(Process)

queue 15000

Materialization log events

When a Late Materialization job factory is submitted to the condor_schedd, a Cluster submitted event will be
written to the UserLog of the Cluster ad. This will be the same log file used by the first job materialized by the factory.
To avoid confusion, it is recommended that you use the same log file for all jobs in the factory.

When the Late Materialization job factory is removed from the condor_schedd, a Cluster removed event will be
written to the UserLog of the Cluster ad. This event will indicate how many jobs were materialized before the factory
was removed.

If Late Materialization of jobs is paused due to an error in materialization or because condor_hold was used to hold
the cluster id, a Job Materialization Paused event will be written to the UserLog of the Cluster ad. This event
will indicate the reason for the pause.

When condor_release is used to release the the cluster id of a Late Materialization job factory, and materialization
was paused because of a previous use of condor_hold, a Job Materialization Resumed event will be written to
the UserLog of the Cluster ad.

Limitations

Currently, not all features of condor_submit will work with late materialization. The following limitations apply:

• Only a single Queue statement is allowed, lines from the submit file after the first Queue statement will be
ignored.

• the $RANDOM_INTEGER and $RANDOM_CHOICEmacro functions will expand at submit time to produce the Cluster
ad, but these macro functions will not be included in the submit digest and so will have the same value for all
jobs.

• Spooling of input files does not work with late materialization.

Displaying the Factory

can be use to show late materialization job factories in the condor_schedd by using the -factory option.

> condor_q -factory
-- Schedd: submit.example.org : <192.168.101.101:9618?... @ 12/01/20 13:35:00
ID OWNER SUBMITTED LIMIT PRESNT RUN IDLE HOLD NEXTID MODE DIGEST
77. bob 12/01 13:30 15000 130 30 80 20 1230 /var/lib/
→˓condor/spool/77/condor_submit.77.digest

The factory above shows that 30 jobs are currently running, 80 are idle, 20 are held and that the next job to materialize
will be job 77.1230. The total of Idle + Held jobs is 100, which is equal to the value specified in the submit file.

The path to the submit digest file is shown. This file is used to reload the factory when the condor_schedd is restarted.
If the factory is unable to materialize jobs because of an error, the MODE field will show Held or Errs to indicate there
is a problem. Errs indicates a problem reloading the factory, Held indicates a problem materializing jobs.

In case of a factory problem, use condor_q -factory -long to see the the factory information and the
JobMaterializePauseReason attribute.

4.3. Submitting a Job 57

HTCondor Manual, Release 23.6.2

Removing a Factory

The Late materialization job factory will be remove from the schedd automatically once all of the jobs have materialized
and completed. To remove the factory without first completing all of the jobs use with the ClusterId of the factory as
the argument.

Editing a Factory

The submit digest for a Late Materialization job factory cannot be changed after submission, but the Cluster ad for the
factory can be edited using . Any command that has the ClusterId as a edit target will edit all currently materialized
jobs, as well as editing the Cluster ad so that all jobs that materialize in the future will also be edited.

4.3.13 Heterogeneous Submit: Execution on Differing Architectures

If executables are available for the different platforms of machines in the HTCondor pool, HTCondor can be allowed
the choice of a larger number of machines when allocating a machine for a job. Modifications to the submit description
file allow this choice of platforms.

A simplified example is a cross submission. An executable is available for one platform, but the submission is done
from a different platform. Given the correct executable, the command in the submit description file specifies the target
architecture. For example, an executable compiled for a 32-bit Intel processor running Windows Vista, submitted from
an Intel architecture running Linux would add the requirement

requirements = Arch == "INTEL" && OpSys == "WINDOWS"

Without this command, will assume that the program is to be executed on a machine with the same platform as the
machine where the job is submitted.

Vanilla Universe Example for Execution on Differing Architectures

A more complex example of a heterogeneous submission occurs when a job may be executed on many different ar-
chitectures to gain full use of a diverse architecture and operating system pool. If the executables are available for the
different architectures, then a modification to the submit description file will allow HTCondor to choose an executable
after an available machine is chosen.

A special-purpose Machine Ad substitution macro can be used in string attributes in the submit description file. The
macro has the form

$$(MachineAdAttribute)

The $$() informs HTCondor to substitute the requested MachineAdAttribute from the machine where the job will
be executed.

An example of the heterogeneous job submission has executables available for two platforms: RHEL 3 on both 32-bit
and 64-bit Intel processors. This example uses povray to render images using a popular free rendering engine.

The substitution macro chooses a specific executable after a platform for running the job is chosen. These executables
must therefore be named based on the machine attributes that describe a platform. The executables named

povray.LINUX.INTEL
povray.LINUX.X86_64

will work correctly for the macro

58 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

povray.$$(OpSys).$$(Arch)

The executables or links to executables with this name are placed into the initial working directory so that they may be
found by HTCondor. A submit description file that queues three jobs for this example:

Example of heterogeneous submission

universe = vanilla
executable = povray.$$(OpSys).$$(Arch)
log = povray.log
output = povray.out.$(Process)
error = povray.err.$(Process)

request_cpus = 1
request_memory = 512M
request_disk = 1G

requirements = (Arch == "INTEL" && OpSys == "LINUX") || \
(Arch == "X86_64" && OpSys =="LINUX")

arguments = +W1024 +H768 +Iimage1.pov
queue

arguments = +W1024 +H768 +Iimage2.pov
queue

arguments = +W1024 +H768 +Iimage3.pov
queue

These jobs are submitted to the vanilla universe to assure that once a job is started on a specific platform, it will finish
running on that platform. Switching platforms in the middle of job execution cannot work correctly.

There are two common errors made with the substitution macro. The first is the use of a non-existent
MachineAdAttribute. If the specified MachineAdAttribute does not exist in the machine’s ClassAd, then HT-
Condor will place the job in the held state until the problem is resolved.

The second common error occurs due to an incomplete job set up. For example, the submit description file given above
specifies three available executables. If one is missing, HTCondor reports back that an executable is missing when it
happens to match the job with a resource that requires the missing binary.

Vanilla Universe Example for Execution on Differing Operating Systems

The addition of several related OpSys attributes assists in selection of specific operating systems and versions in het-
erogeneous pools.

Example targeting only RedHat platforms

universe = vanilla
Executable = /bin/date
Log = distro.log
Output = distro.out
Error = distro.err

(continues on next page)

4.3. Submitting a Job 59

HTCondor Manual, Release 23.6.2

(continued from previous page)

Requirements = (OpSysName == "RedHat")

request_cpus = 1
request_memory = 512M
request_disk = 1G

Queue

Example targeting RedHat 6 platforms in a heterogeneous Linux pool

universe = vanilla
executable = /bin/date
log = distro.log
output = distro.out
error = distro.err

requirements = (OpSysName == "RedHat" && OpSysMajorVer == 6)

request_cpus = 1
request_memory = 512M
request_disk = 1G

queue

Here is a more compact way to specify a RedHat 6 platform.

Example targeting RedHat 6 platforms in a heterogeneous Linux pool

universe = vanilla
executable = /bin/date
log = distro.log
output = distro.out
error = distro.err

request_cpus = 1
request_memory = 512M
request_disk = 1G

requirements = (OpSysAndVer == "RedHat6")

queue

60 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.4 Submitting Jobs Without a Shared File System: HTCondor’s File
Transfer Mechanism

HTCondor works well without a shared file system between the submit machines and the worker nodes. The HTCondor
file transfer mechanism allows the user to explicitly select which input files are transferred to the worker node before the
job starts. HTCondor will transfer these files, potentially delaying this transfer request, if starting the transfer right away
would overload the access point. Queueing requests like this prevents the crashes so common with too-busy shared
file servers. These input files are placed into a scratch directory on the worker node, which is the starting current
directory of the job. When the job completes, by default, HTCondor detects any newly-created files at the top level
of this sandbox directory, and transfers them back to the submitting machine. The input sandbox is what we call the
executable and all the declared input files of a job. The set of all files created by the job is the output sandbox.

4.4.1 Specifying If and When to Transfer Files

To enable the file transfer mechanism, place this command in the job’s submit description file:

should_transfer_files = YES

Setting the

command explicitly enables or disables the file transfer mechanism. The command takes on one of three possible
values:

1. YES: HTCondor transfers the input sandbox from the access point to the execute machine. The output sandbox
is transferred back to the access point. The command . controls when the output sandbox is transferred back,
and what directory it is stored in.

2. IF_NEEDED: HTCondor only transfers sandboxes when the job is matched with a machine in a different than
the one the access point belongs to, as if should_transfer_files = YES. If the job is matched with a machine in
the same as the submitting machine, HTCondor will not transfer files and relies on the shared file system.

3. NO: HTCondor’s file transfer mechanism is disabled. In this case is is the responsibility of the user to ensure
that all data used by the job is accessible on the remote worker node.

The command tells HTCondor when output files are to be transferred back to the access point. The command takes on
one of three possible values:

1. ON_EXIT (the default): HTCondor transfers the output sandbox back to the access point only when the job exits
on its own. If the job is preempted or removed, no files are transferred back.

2. ON_EXIT_OR_EVICT: HTCondor behaves the same as described for the value ON_EXIT when the job exits on
its own. However, each time the job is evicted from a machine, the output sandbox is transferred back to the
access point and placed under the SPOOL directory. eviction time. Before the job starts running again, the
former output sandbox is copied to the job’s new remote scratch directory.

If . is specified, this list governs which files are transferred back at eviction time. If a file listed in trans-
fer_output_files does not exist at eviction time, the job will go on hold.

The purpose of saving files at eviction time is to allow the job to resume from where it left off.

3. ON_SUCCESS: HTCondor transfers files like ON_EXIT, but only if the job succeeds, as defined by the
success_exit_code submit command. The command must be used, even for the default exit code of 0.

The default values for these two submit commands make sense as used together. If only is set, and set to the
value NO, then no output files will be transferred, and the value of when_to_transfer_output is irrelevant. If only

4.4. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 61

HTCondor Manual, Release 23.6.2

when_to_transfer_output is set, and set to the value ON_EXIT_OR_EVICT, then the default value for an unspecified
should_transfer_files will be YES.

Note that the combination of

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT_OR_EVICT

would produce undefined file access semantics. Therefore, this combination is prohibited by .

4.4.2 Specifying What Files to Transfer

If the file transfer mechanism is enabled, HTCondor will transfer the following files before the job is run on a remote
machine as the input sandbox:

1. the executable, as defined with the command

2. the input, as defined with the command

3. any jar files, for the java universe, as defined with the command

If the job requires other input files, the submit description file should have the command. This comma-separated list
specifies any other files, URLs, or directories that HTCondor is to transfer to the remote scratch directory, to set up the
execution environment for the job before it is run. These files are placed in the same directory as the job’s executable.
For example:

executable = my_program
input = my_input
should_transfer_files = YES
transfer_input_files = file1,file2

This example explicitly enables the file transfer mechanism. By default, HTCondor will transfer the executable
(my_program) and the file specified by the input command (my_input). The files file1 and file2 are also trans-
ferred, by explicit user instruction.

If the file transfer mechanism is enabled, HTCondor will transfer the following files from the execute machine back to
the access point after the job exits, as the output sandbox.

1. the output file, as defined with the command

2. the error file, as defined with the command

3. any files created by the job in the remote scratch directory.

A path given for and submit commands represents a path on the access point. If no path is specified, the directory
specified with is used, and if that is not specified, the directory from which the job was submitted is used. At the time
the job is submitted, zero-length files are created on the access point, at the given path for the files defined by the and
commands. This permits job submission failure, if these files cannot be written by HTCondor.

To restrict the output files or permit entire directory contents to be transferred, specify the exact list with . When this
comma separated list is defined, and any of the files or directories do not exist as the job exits, HTCondor considers
this an error, and places the job on hold. Setting to the empty string (“”) means no files are to be transferred. When
this list is defined, automatic detection of output files created by the job is disabled. Paths specified in this list refer
to locations on the execute machine. The naming and placement of files and directories relies on the term base name.
By example, the path a/b/c has the base name c. It is the file name or directory name with all directories leading up
to that name stripped off. On the access point, the transferred files or directories are named using only the base name.
Therefore, each output file or directory must have a different name, even if they originate from different paths.

If only a subset of the output sandbox should be transferred, the subset is specified by further adding a submit command
of the form:

62 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

transfer_output_files = file1, file2

Here are examples of file transfer with HTCondor. Assume that the job produces the following structure within the
remote scratch directory:

o1
o2
d1 (directory)

o3
o4

If the submit description file sets

transfer_output_files = o1,o2,d1

then transferred back to the access point will be

o1
o2
d1 (directory)

o3
o4

Note that the directory d1 and all its contents are specified, and therefore transferred. If the directory d1 is not created
by the job before exit, then the job is placed on hold. If the directory d1 is created by the job before exit, but is empty,
this is not an error.

If, instead, the submit description file sets

transfer_output_files = o1,o2,d1/o3

then transferred back to the access point will be

o1
o2
o3

Note that only the base name is used in the naming and placement of the file specified with d1/o3.

4.4.3 File Paths for File Transfer

The file transfer mechanism specifies file names or URLs on the file system of the access point and file names on the
execute machine. Care must be taken to know which machine, submit or execute, is referencing the file.

Files in the command are specified as they are accessed on the access point. The job, as it executes, accesses files as
they are found on the execute machine.

There are four ways to specify files and paths for :

1. Relative to the current working directory as the job is submitted, if the submit command is not specified.

2. Relative to the initial directory, if the submit command is specified.

3. Absolute file paths.

4. As an URL, which should be accessible by the execute machine.

4.4. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 63

HTCondor Manual, Release 23.6.2

Before executing the program, HTCondor copies the input sandbox into a remote scratch directory on the execute
machine, where the program runs. Therefore, the executing program must access input files relative to its working
directory. Because all files and directories listed for transfer are placed into a single, flat directory, inputs must be
uniquely named to avoid collision when transferred.

A job may instead set (to True), in which case the relative paths of transferred files are preserved. For example,
although the input list dirA/file1, dirB/file1 would normally result in a collision, instead HTCondor will create
the directories dirA and dirB in the input sandbox, and each will get its corresponding version of file1.

Both relative and absolute paths may be used in . Relative paths are relative to the job’s remote scratch directory on the
execute machine. When the files and directories are copied back to the access point, they are placed in the job’s initial
working directory as the base name of the original path. An alternate name or path may be specified by using .

The command also applies to relative paths specified in (if not remapped).

A job may create files outside the remote scratch directory but within the file system of the execute machine, in a
directory such as /tmp, if this directory is guaranteed to exist and be accessible on all possible execute machines.
However, HTCondor will not automatically transfer such files back after execution completes, nor will it clean up these
files.

Here are several examples to illustrate the use of file transfer. The program executable is called my_program, and it uses
three command-line arguments as it executes: two input file names and an output file name. The program executable
and the submit description file for this job are located in directory /scratch/test.

Here is the directory tree as it exists on the access point, for all the examples:

/scratch/test (directory)
my_program.condor (the submit description file)
my_program (the executable)
files (directory)

logs2 (directory)
in1 (file)
in2 (file)

logs (directory)

Example 1

This first example explicitly transfers input files. These input files to be transferred are specified relative to the directory
where the job is submitted. An output file specified in the command, out1, is created when the job is executed. It will
be transferred back into the directory /scratch/test.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
transfer_input_files = files/in1,files/in2

arguments = in1 in2 out1

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

(continues on next page)

64 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

queue

The log file is written on the access point, and is not involved with the file transfer mechanism.

Example 2

This second example is identical to Example 1, except that absolute paths to the input files are specified, instead of
relative paths to the input files.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/in1,/scratch/test/files/in2

arguments = in1 in2 out1

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Example 3

This third example illustrates the use of the submit command , and its effect on the paths used for the various files. The
expected location of the executable is not affected by the command. All other files (specified by , , , , as well as files
modified or created by the job and automatically transferred back) are located relative to the specified

Therefore, the output file, out1, will be placed in the files directory. Note that the logs2 directory exists to make this
example work correctly.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs2/err.$(cluster)
output = logs2/out.$(cluster)
log = logs2/log.$(cluster)

initialdir = files

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = in1,in2

arguments = in1 in2 out1
(continues on next page)

4.4. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 65

HTCondor Manual, Release 23.6.2

(continued from previous page)

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Example 4 - Illustrates an Error

This example illustrates a job that will fail. The files specified using the command work correctly (see Example 1).
However, relative paths to files in the command cause the executing program to fail. The file system on the submission
side may utilize relative paths to files, however those files are placed into the single, flat, remote scratch directory on
the execute machine.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1,files/in2

arguments = files/in1 files/in2 files/out1

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

This example fails with the following error:

err: files/out1: No such file or directory.

Example 5 - Illustrates an Error

As with Example 4, this example illustrates a job that will fail. The executing program’s use of absolute paths cannot
work.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/in1, /scratch/test/files/in2

(continues on next page)

66 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

arguments = /scratch/test/files/in1 /scratch/test/files/in2 /scratch/test/files/out1

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

The job fails with the following error:

err: /scratch/test/files/out1: No such file or directory.

Example 6

This example illustrates a case where the executing program creates an output file in a directory other than within the
remote scratch directory that the program executes within. The file creation may or may not cause an error, depending
on the existence and permissions of the directories on the remote file system.

The output file /tmp/out1 is transferred back to the job’s initial working directory as /scratch/test/out1.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

transfer_input_files = files/in1,files/in2
transfer_output_files = /tmp/out1

arguments = in1 in2 /tmp/out1
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

4.4.4 Dataflow Jobs

A dataflow job is a job that might not need to run because its desired outputs already exist. To skip such a job, add the
following line to your submit file:

skip_if_dataflow = True

A dataflow job meets any of the following criteria:

• Output files exist, are newer than input files

4.4. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 67

HTCondor Manual, Release 23.6.2

• Execute file is newer than input files

• Standard input file is newer than input files

Skipping dataflow jobs can potentially save large amounts of time in long-running workflows.

4.4.5 Public Input Files

There are some cases where HTCondor’s file transfer mechanism is inefficient. For jobs that need to run a large number
of times, the input files need to get transferred for every job, even if those files are identical. This wastes resources on
both the access point and the network, slowing overall job execution time.

Public input files allow a user to specify files to be transferred over a publicly-available HTTP web service. A system
administrator can then configure caching proxies, load balancers, and other tools to dramatically improve performance.
Public input files are not available by default, and need to be explicitly enabled by a system administrator.

To specify files that use this feature, the submit file should include a command. This comma-separated list specifies
files which HTCondor will transfer using the HTTP mechanism. For example:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = file1,file2
public_input_files = public_data1,public_data2

Similar to the regular , the files specified in can be relative to the submit directory, or absolute paths. You can also
specify an , and will look for files relative to that directory. The files must be world-readable on the file system (files
with permissions set to 0644, directories with permissions set to 0755).

Lastly, all files transferred using this method will be publicly available and world-readable, so this feature should not
be used for any sensitive data.

4.4.6 Behavior for Error Cases

This section describes HTCondor’s behavior for some error cases in dealing with the transfer of files.

Disk Full on Execute Machine
When transferring any files from the access point to the remote scratch directory, if the disk is full
on the execute machine, then the job is place on hold.

Error Creating Zero-Length Files on Submit Machine
As a job is submitted, HTCondor creates zero-length files as placeholders on the access point for the
files defined by and . If these files cannot be created, then job submission fails.

This job submission failure avoids having the job run to completion, only to be unable to transfer the
job’s output due to permission errors.

Error When Transferring Files from Execute Machine to Submit Machine
When a job exits, or potentially when a job is evicted from an execute machine, one or more files
may be transferred from the execute machine back to the machine on which the job was submitted.

During transfer, if any of the following three similar types of errors occur, the job is put on hold as
the error occurs.

1. If the file cannot be opened on the access point, for example because the system is out of inodes.

2. If the file cannot be written on the access point, for example because the permissions do not
permit it.

68 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

3. If the write of the file on the access point fails, for example because the system is out of disk
space.

4.4.7 File Transfer Using a URL

Instead of file transfer that goes only between the access point and the execute machine, HTCondor has the ability
to transfer files from a location specified by a URL for a job’s input file, or from the execute machine to a location
specified by a URL for a job’s output file(s). This capability requires administrative set up, as described in the Third
Party/Delegated file, credential and checkpoint transfer section.

URL file transfers work in most HTCondor job universes, but not grid, local or scheduler. HTCondor’s file transfer
mechanism must be enabled. Therefore, the submit description file for the job will define both and . In addition, the
URL for any files specified with a URL are given in the command. An example portion of the submit description file
for a job that has a single file specified with a URL:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = http://www.full.url/path/to/filename

The destination file is given by the file name within the URL.

For the transfer of the entire contents of the output sandbox, which are all files that the job creates or modifies, HT-
Condor’s file transfer mechanism must be enabled. In this sample portion of the submit description file, the first two
commands explicitly enable file transfer, and the added command provides both the protocol to be used and the desti-
nation of the transfer.

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output_destination = urltype://path/to/destination/directory

Note that with this feature, no files are transferred back to the submit machine. This does not interfere with the streaming
of output.

Uploading to URLs using output file remaps

File transfer plugins now support uploads as well as downloads. The command can additionally be used to upload files
to specific URLs when a job completes. To do this, set the destination for an output file to a URL instead of a filename.
For example:

transfer_output_remaps = "myresults.dat = http://destination-server.com/myresults.dat"

We use a HTTP PUT request to perform the upload, so the user is responsible for making sure that the destination
server accepts PUT requests (which is usually disabled by default).

Passing a credential for URL file transfers

Some files served over HTTPS will require a credential in order to download. Each credential cred should be placed
in a file in $_CONDOR_CREDS/cred.use. Then in order to use that credential for a download, append its name to the
beginning of the URL protocol along with a + symbol. For example, to download the file https://download.com/bar
using the cred credential, specify the following in the submit file:

transfer_input_files = cred+https://download.com/bar

If your credential file has an underscore in it, the underscore must be replaced in the transfer_input_files URL
with a “.”, e.g. for $_CONDOR_CREDS/cred_local.use:

4.4. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 69

https://download.com/bar

HTCondor Manual, Release 23.6.2

transfer_input_files = cred.local+https://download.com/bar

Otherwise, the credential file must have a name that only contains alphanumeric characters (a-z, A-Z, 0-9) and/or -,
except for the . in the `.use extension.

If you’re using a token from an OAuth service provider, the credential will be named based on the OAuth provider. For
example, if your submit file has use_oauth_services = mytokens, you can request files using that token by doing:

use_oauth_services = mytokens

transfer_input_files = mytokens+https://download.com/bar

If you add an optional handle to the token name, append the handle name to the token name in the URL with a “.”:

use_oauth_services = mytokens
mytokens_oauth_permissions_personal =
mytokens_oauth_permissions_group =

transfer_input_files =␣
→˓mytokens.personal+https://download.com/bar, mytokens.group+https://download.com/foo

Note that in the above token-with-a-handle case, the token files will be stored in the job environment at
$_CONDOR_CREDS/mytokens_personal.use and $_CONDOR_CREDS/mytokens_group.use.

Transferring files using file transfer plugins

HTCondor comes with file transfer plugins that can communicate with Box.com, Google Drive, Stash Cache, OSDF,
and Microsoft OneDrive. Using one of these plugins requires that the HTCondor pool administrator has set up the
mechanism for HTCondor to gather credentials for the desired service, and requires that your submit file contains the
proper commands to obtain credentials from the desired service (see Jobs That Require Credentials).

To use a file transfer plugin, substitute https in a transfer URL with the service name (box for Box.com, stash for
Stash Cache, osdf for OSDF, gdrive for Google Drive, and onedrive for Microsoft OneDrive) and reference a file
path starting at the root directory of the service. For example, to download bar.txt from a Box.com account where
bar.txt is in the foo folder, use:

use_oauth_services = box
transfer_input_files = box://foo/bar.txt

If your job requests multiple credentials from the same service, use <handle>+<service>://path/to/file to refer-
ence each specific credential. For example, for a job that uses Google Drive to download public_files/input.txt
from one account (public) and to upload output.txt to my_private_files/output.txt on a second account
(private):

use_oauth_services = gdrive
gdrive_oauth_permissions_public =
gdrive_oauth_permissions_private =

transfer_input_files = public+gdrive://public_files/input.txt
transfer_output_remaps = "output.txt = private+gdrive://my_private_files/output.txt"

70 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

Transferring files using the S3 protocol

HTCondor supports downloading files from and uploading files to storage servers using the S3 protocol via s3:/
/ URLs. Downloading or uploading requires a two-part credential: the “access key ID” and the “secret key ID”.
HTCondor does not transfer these credentials off the submit node; instead, it uses them to construct “pre-signed”
https:// URLs that temporarily allow the bearer access. (Thus, an execute node needs to support https:// URLs
for S3 URLs to work.)

To make use of this feature, you will need to specify the following information in the submit file:

• a file containing your access key ID (and nothing else)

• a file containing your secret access key (and nothing else)

• one or more S3 URLs as input values or output destinations.

See the subsections below for specific examples.

You may (like any other URL) specify an S3 URL in , or as part of a remap in However, HTCondor does not currently
support transferring entire buckets or directories. If you specify an s3:// URL as the , that URL will be used a prefix
for each output file’s location; if you specify a URL ending a /, it will be treated like a directory.

S3 Transfer Recipes

Transferring files to and from Amazon S3

Specify your credential files in the submit file using the attributes and . , , Amazon S3 switched from global buckets to
region-specific buckets; use the first URL form for the older buckets and the second for newer buckets.

aws_access_key_id_file = /home/example/secrets/accessKeyID
aws_secret_access_key_file = /home/example/secrets/secretAccessKey

For old, non-region-specific buckets.
transfer_input_files = s3://<bucket-name>/<key-name>,
transfer_output_remaps = "output.dat = s3://<bucket-name>/<output-key-name>"

or, for new, region-specific buckets:
transfer_input_files = s3://<bucket-name>.s3.<region>.amazonaws.com/<key>
transfer_output_remaps =␣
→˓"output.dat = s3://<bucket-name>.s3.<region>.amazonaws.com/<output-key-name>"

Optionally, specify a region for S3 URLs which don't include one:
aws_region = <region>

Transferring files to and from Google Cloud Storage

Google Cloud Storage implements an XML API which is interoperable with S3. This requires an extra step of generating
HMAC credentials to access Cloud Storage. Google Cloud best practices are to create a Service Account with read/write
permission to the bucket. Read HMAC keys for Cloud Storage for more details.

After generating HMAC credentials, they can be used within a job:

gs_access_key_id_file = /home/example/secrets/bucket_access_key_id
gs_secret_access_key_file = /home/example/secrets/bucket_secret_access_key
transfer_input_files = gs://<bucket-name>/<input-key-name>
transfer_output_remaps = "output.dat = gs://<bucket-name>/<output-key-name>"

4.4. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 71

https://cloud.google.com/storage/docs/interoperability
https://console.cloud.google.com/storage/settings;tab=interoperability
https://console.cloud.google.com/storage/settings;tab=interoperability
https://cloud.google.com/storage/docs/authentication/hmackeys

HTCondor Manual, Release 23.6.2

If Cloud Storage is configured with Private Service Connect, then use the S3 URL approach with the private Cloud
Storage endpoint. e.g.,

gs_access_key_id_file = /home/example/secrets/bucket_access_key_id
gs_secret_access_key_file = /home/example/secrets/bucket_secret_access_key
transfer_input_files =␣
→˓s3://<cloud-storage-private-endpoint>/<bucket-name>/<input-key-name>
transfer_output_remaps =␣
→˓"output.dat = s3://<cloud-storage-private-endpoint>/<bucket-name>/<output-key-name>"

Transferring files to and from another provider

Many other companies and institutions offer a service compatible with the S3 protocol. You can access these services
using s3:// URLs and the key files described above.

s3_access_key_id_file = /home/example/secrets/accessKeyID
s3_secret_access_key_file = /home/example/secrets/secretAccessKey
transfer_input_files = s3://some.other-s3-provider.org/my-bucket/large-input.file
transfer_output_remaps =␣
→˓"large-output.file = s3://some.other-s3-provider.org/my-bucket/large-output.file"

If you need to specify a region, you may do so using , despite the name.

4.5 Managing a Job

This section provides a brief summary of what can be done once jobs are submitted. The basic mechanisms for mon-
itoring a job are introduced, but the commands are discussed briefly. You are encouraged to look at the man pages of
the commands referred to (located in Commands Reference (man pages)) for more information.

4.5.1 Checking on the progress of jobs

You can check on your jobs with the command. This command has many options, by default, it displays only your jobs
queued in the local scheduler. An example of the output from is

$ condor_q

-- Schedd: submit.chtc.wisc.edu : <127.0.0.1:9618?... @ 12/31/69 23:00:00
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS
nemo batch23 4/22 20:44 _ _ _ 1 _ 3671850.0
nemo batch24 4/22 20:56 _ _ _ 1 _ 3673477.0
nemo batch25 4/22 20:57 _ _ _ 1 _ 3673728.0
nemo batch26 4/23 10:44 _ _ _ 1 _ 3750339.0
nemo batch27 7/2 15:11 _ _ _ _ _ 7594591.0
nemo batch28 7/10 03:22 4428 3 _ _ 4434 7801943.0 ...␣
→˓7858552.0
nemo batch29 7/14 14:18 5074 1182 30 19 80064 7859129.0 ...␣
→˓7885217.0
nemo batch30 7/14 14:18 5172 1088 28 30 58310 7859106.0 ...␣
→˓7885192.0

2388 jobs; 0 completed, 1 removed, 58 idle, 2276 running, 53 held, 0 suspended

72 Chapter 4. Users’ Manual

https://cloud.google.com/vpc/docs/private-service-connect

HTCondor Manual, Release 23.6.2

The goal of the HTCondor system is to effectively manage many jobs. As you may have thousands of jobs in a queue,
by default summarizes many similar jobs on one line. Depending on the types of your jobs, this output may look a little
different.

Often, when you are starting out, and have few jobs, you may want to see one line of output per job. The -nobatch
option to does this, and output might look something like:

$ condor_q -nobatch

-- Schedd submit.chtc.wisc.edu : <127.0.0.1:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
1297254.0 nemo 5/31 18:05 14+17:40:01 R 0 7.3 condor_dagman
1297255.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1297256.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1297259.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1297261.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1302278.0 nemo 6/4 12:22 1+00:05:37 I 0 390.6 mdrun_1.sh
1304740.0 nemo 6/5 00:14 1+00:03:43 I 0 390.6 mdrun_1.sh
1304967.0 nemo 6/5 05:08 0+00:00:00 I 0 0.0 mdrun_1.sh

14 jobs; 4 idle, 8 running, 2 held

This still only shows your jobs. You can display information about all the users with jobs in this scheduler by adding
the -allusers option to .

The output contains many columns of information about the queued jobs. The ST column (for status) shows the status
of current jobs in the queue:

R
The job is currently running.

I
The job is idle. It is not running right now, because it is waiting for a machine to become available.

H
The job is the hold state. In the hold state, the job will not be scheduled to run until it is released. See the
condor_hold and the condor_release manual pages.

The RUN_TIME time reported for a job is the time that has been committed to the job.

Another useful method of tracking the progress of jobs is through the job event log. The specification of a log in the
submit description file causes the progress of the job to be logged in a file. Follow the events by viewing the job event
log file. Various events such as execution commencement, file transfer, eviction and termination are logged in the file.
Also logged is the time at which the event occurred.

When a job begins to run, HTCondor starts up a condor_shadow process on the access point. The shadow process is
the mechanism by which the remotely executing jobs can access the environment from which it was submitted, such as
input and output files.

It is normal for a machine which has submitted hundreds of jobs to have hundreds of condor_shadow processes running
on the machine. Since the text segments of all these processes is the same, the load on the submit machine is usually
not significant. If there is degraded performance, limit the number of jobs that can run simultaneously by reducing the
configuration variable.

You can also find all the machines that are running your job through the command. For example, to find all the machines
that are running jobs submitted by breach@cs.wisc.edu, type:

$ condor_status -constraint 'RemoteUser == "breach@cs.wisc.edu"'

(continues on next page)

4.5. Managing a Job 73

HTCondor Manual, Release 23.6.2

(continued from previous page)

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

alfred.cs. INTEL LINUX Claimed Busy 0.980 64 0+07:10:02
biron.cs.w INTEL LINUX Claimed Busy 1.000 128 0+01:10:00
cambridge. INTEL LINUX Claimed Busy 0.988 64 0+00:15:00
falcons.cs INTEL LINUX Claimed Busy 0.996 32 0+02:05:03
happy.cs.w INTEL LINUX Claimed Busy 0.988 128 0+03:05:00
istat03.st INTEL LINUX Claimed Busy 0.883 64 0+06:45:01
istat04.st INTEL LINUX Claimed Busy 0.988 64 0+00:10:00
istat09.st INTEL LINUX Claimed Busy 0.301 64 0+03:45:00
...

To find all the machines that are running any job at all, type:

$ condor_status -run

Name Arch OpSys LoadAv RemoteUser ClientMachine

adriana.cs INTEL LINUX 0.980 hepcon@cs.wisc.edu chevre.cs.wisc.
alfred.cs. INTEL LINUX 0.980 breach@cs.wisc.edu neufchatel.cs.w
amul.cs.wi X86_64 LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
anfrom.cs. X86_64 LINUX 1.023 ashoks@jules.ncsa.ui jules.ncsa.uiuc
anthrax.cs INTEL LINUX 0.285 hepcon@cs.wisc.edu chevre.cs.wisc.
astro.cs.w INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
aura.cs.wi X86_64 WINDOWS 0.996 nice-user.condor@cs. chevre.cs.wisc.
balder.cs. INTEL WINDOWS 1.000 nice-user.condor@cs. chevre.cs.wisc.
bamba.cs.w INTEL LINUX 1.574 dmarino@cs.wisc.edu riola.cs.wisc.e
bardolph.c INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
...

4.5.2 Peeking in on a running job’s output files

When a job is running, you may be curious about any output it has created. The condor_tail command can copy output
files from a running job on a remote machine back to the access point. condor_tail uses the same networking stack as
HTCondor proper, so it will work if the execute machine is behind a firewall. Simply run, where xx.yy is the job id of
a running job:

$ condor_tail xx.yy

or

$ condor_tail -f xx.yy

to continuously follow the standard output. To copy a different file, run

$ condor_tail xx.yy name_of_output_file

74 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.5.3 Starting an interactive shell next to a running job on a remote machine

condor_ssh_to_job is a very powerful command, but is not available on all platforms, or all installations. Some
administrators disable it, so check with your local site if it does not appear to work. condor_ssh_to_job takes the job
id of a running job as an argument, and establishes a shell running on the node next to the job. The environment of
this shell is a similar to the job as possible. Users of condor_ssh_to_job can look at files, attach to their job with the
debugger and otherwise inspect the job.

4.5.4 Removing a job from the queue

A job can be removed from the queue at any time by using the command. If the job that is being removed is currently
running, the job is killed, and its queue entry is removed. The following example shows the queue of jobs before and
after a job is removed.

$ condor_q -nobatch

-- Schedd: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 raman 4/11 14:37 0+00:00:00 R 0 1.4 sleepy
132.0 raman 4/11 16:57 0+00:00:00 R 0 1.4 hello

2 jobs; 1 idle, 1 running, 0 held

$ condor_rm 132.0
Job 132.0 removed.

$ condor_q -nobatch

-- Schedd: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 raman 4/11 14:37 0+00:00:00 R 0 1.4 sleepy

1 jobs; 1 idle, 0 running, 0 held

4.5.5 Placing a job on hold

A job in the queue may be placed on hold by running the command . A job in the hold state remains in the hold state
until later released for execution by the command .

Use of the command causes a hard kill signal to be sent to a currently running job (one in the running state).

Jobs that are running when placed on hold will start over from the beginning when released.

The condor_hold and the condor_release manual pages contain usage details.

4.5. Managing a Job 75

HTCondor Manual, Release 23.6.2

4.5.6 Changing the priority of jobs

In addition to the priorities assigned to each user, HTCondor also provides each user with the capability of assigning
priorities to each submitted job. These job priorities are local to each queue and can be any integer value, with higher
values meaning better priority.

The default priority of a job is 0, but can be changed using the command. For example, to change the priority of a job
to -15,

$ condor_q -nobatch raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I 0 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

$ condor_prio -p -15 126.0

$ condor_q -nobatch raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

It is important to note that these job priorities are completely different from the user priorities assigned by HTCondor.
Job priorities do not impact user priorities. They are only a mechanism for the user to identify the relative importance
of jobs among all the jobs submitted by the user to that specific queue.

4.5.7 Job in the Hold State

Should HTCondor detect something about a job that would prevent it from ever running successfully, say, because the
executable doesn’t exist, or input files are missing, HTCondor will put the job in Hold state. A job in the Hold state
will remain in the queue, and show up in the output of the command, but is not eligible to run. The job will stay in this
state until it is released or removed. Users may also hold their jobs manually with the command.

A table listing the reasons why a job may be held is at the Job ClassAd Attributes section. A string identifying the
reason that a particular job is in the Hold state may be displayed by invoking -hold. For the example job ID 16.0, use:

$ condor_q -hold 16.0

This command prints information about the job, including the job ClassAd attribute .

76 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.5.8 In the Job Event Log File

In a job event log file are a listing of events in chronological order that occurred during the life of one or more jobs.
The formatting of the events is always the same, so that they may be machine readable. Four fields are always present,
and they will most often be followed by other fields that give further information that is specific to the type of event.

The first field in an event is the numeric value assigned as the event type in a 3-digit format. The second field identifies
the job which generated the event. Within parentheses are the job ClassAd attributes of value, value, and the node
number for parallel universe jobs or a set of zeros (for jobs run under all other universes), separated by periods. The
third field is the date and time of the event logging. The fourth field is a string that briefly describes the event. Fields
that follow the fourth field give further information for the specific event type.

A complete list of these values is at Job Event Log Codes section.

4.5.9 Job Termination

From time to time, and for a variety of reasons, HTCondor may terminate a job before it completes. For instance, a
job could be removed (via), preempted (by a user a with higher priority), or killed (for using more memory than it
requested). In these cases, it might be helpful to know why HTCondor terminated the job. HTCondor calls its records
of these reasons “Tickets of Execution”.

A ticket of execution is usually issued by the condor_startd, and includes:

• when the condor_startd was told, or otherwise decided, to terminate the job (the when attribute);

• who made the decision to terminate, usually a Sinful string (the who attribute);

• and what method was employed to command the termination, as both as string and an integer (the How and
HowCode attributes).

The relevant log events include a human-readable rendition of the ToE, and the job ad is updated with the ToE after the
usual delay.

HTCondor only issues ToE in three cases:

• when the job terminates of its own accord (issued by the starter, HowCode 0);

• and when the startd terminates the job because it received a DEACTIVATE_CLAIM command (HowCode 1)

• or a DEACTIVATE_CLAIM_FORCIBLY command (HowCode 2).

In both cases, HTCondor records the ToE in the job ad. In the event log(s), event 005 (job completion) includes the
ToE for the first case, and event 009 (job aborted) includes the ToE for the second and third cases.

Future HTCondor releases will issue ToEs in additional cases and include them in additional log events.

4.5. Managing a Job 77

HTCondor Manual, Release 23.6.2

4.5.10 Job Completion

When an HTCondor job completes, either through normal means or by abnormal termination by signal, HTCondor
will remove it from the job queue. That is, the job will no longer appear in the output of , and the job will be inserted
into the job history file. Examine the job history file with the command. If there is a log file specified in the submit
description file for the job, then the job exit status will be recorded there as well, along with other information described
below.

By default, HTCondor does not send an email message when the job completes. Modify this behavior with the command
in the submit description file. The message will include the exit status of the job, which is the argument that the job
passed to the exit system call when it completed, or it will be notification that the job was killed by a signal. Notification
will also include the following statistics (as appropriate) about the job:

Submitted at:
when the job was submitted with

Completed at:
when the job completed

Real Time:
the elapsed time between when the job was submitted and when it completed, given in a form of
<days> <hours>:<minutes>:<seconds>

Virtual Image Size:
memory size of the job

Statistics about just the last time the job ran:

Run Time:
total time the job was running, given in the form <days> <hours>:<minutes>:<seconds>

Remote User Time:
total CPU time the job spent executing in user mode on remote machines; this does not count
time spent on run attempts that were evicted. Given in the form <days> <hours>:<minutes>:
<seconds>

Remote System Time:
total CPU time the job spent executing in system mode (the time spent at system calls); this does
not count time spent on run attempts that were evicted. Given in the form <days> <hours>:
<minutes>:<seconds>

The Run Time accumulated by all run attempts are summarized with the time given in the form <days> <hours>:
<minutes>:<seconds>.

And, statistics about the bytes sent and received by the last run of the job and summed over all attempts at running the
job are given.

The job terminated event includes the following:

• the type of termination (normal or by signal)

• the return value (or signal number)

• local and remote usage for the last (most recent) run (in CPU-seconds)

• local and remote usage summed over all runs (in CPU-seconds)

• bytes sent and received by the job’s last (most recent) run,

• bytes sent and received summed over all runs,

78 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

• a report on which partitionable resources were used, if any. Resources include CPUs, disk, and memory; all are
lifetime peak values.

Your administrator may have configured HTCondor to report on other resources, particularly GPUs (lifetime average)
and GPU memory usage (lifetime peak). HTCondor currently assigns all the usage of a GPU to the job running in the
slot to which the GPU is assigned; if the admin allows more than one job to run on the same GPU, or non-HTCondor
jobs to use the GPU, GPU usage will be misreported accordingly.

When configured to report GPU usage, HTCondor sets the following two attributes in the job:

GPUsUsage
GPU usage over the lifetime of the job, reported as a fraction of the the maximum possible utilization
of one GPU.

GPUsMemoryUsage
Peak memory usage over the lifetime of the job, in megabytes.

4.5.11 Summary of all HTCondor users and their jobs

When jobs are submitted, HTCondor will attempt to find resources to run the jobs. A list of all those with jobs submitted
may be obtained through with the -submitters option. An example of this would yield output similar to:

$ condor_status -submitters

Name Machine Running IdleJobs HeldJobs

ballard@cs.wisc.edu bluebird.c 0 11 0
nice-user.condor@cs. cardinal.c 6 504 0
wright@cs.wisc.edu finch.cs.w 1 1 0
jbasney@cs.wisc.edu perdita.cs 0 0 5

RunningJobs IdleJobs HeldJobs

ballard@cs.wisc.edu 0 11 0
jbasney@cs.wisc.edu 0 0 5
nice-user.condor@cs. 6 504 0
wright@cs.wisc.edu 1 1 0

Total 7 516 5

4.6 Automatically managing a job

While a user can manually manage an HTCondor job in ways described in the previous section, it is often better to give
HTCondor policies with which it can automatically manage a job without user intervention.

4.6. Automatically managing a job 79

HTCondor Manual, Release 23.6.2

4.6.1 Automatically rerunning a failed job

By default, when a job exits, HTCondor considers it completed, removes it from the job queue and places it in the
history file. If a job exits with a non-zero exit code, this usually means that some error has happened. If this error is
ephemeral, a user might want to re-run the job again, to see if the job succeeds on a second invocation. HTCondor can
does this automatically with the option in the submit file, to tell HTCondor the maximum number of times to restart
the job from scratch. In the rare case where some value other than zero indicates success, a submit file can set to the
integer value that is considered successful.

Example submit description with max_retries

executable = myexe
arguments = SomeArgument

Retry this job 5 times if non-zero exit code
max_retries = 5

output = outputfile
error = errorfile
log = myexe.log

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

should_transfer_files = yes

queue

4.6.2 Automatically removing a job in the queue

HTCondor can automatically remove a job, running or otherwise, from the queue if a given constraint is true. In the
submit description file, set to a classad expression. When this expression evaluates to true, the scheduler will remove
the job, just as if condor_rm had run on that job. See Matchmaking with ClassAds for information about the classad
language and ClassAd Attributes for the list of attributes which can be used in these expressions. For example, to
automatically remove a job which has been in the queue for more than 100 hours, the submit file could have

periodic_remove = (time() - QDate) > (100 * 3600)

or, to remove jobs that have been running for more than seven hours:

periodic_remove = (JobStatus == 2) && (time() - EnteredCurrentStatus) > (7 * 3600)

80 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.6.3 Automatically placing a job on hold

Often, if a job is doing something unexpected, it is more useful to hold the job, rather than remove it. If the problem with
the job can be fixed, the job can then be released and started again. Much like the command, there is a command that
works in a similar way, but instead of removing the job, puts the job on hold. Unlike , there are additional attributes
that help to tell the user why the job was placed on hold. periodic_hold_reason is a string which is put into the
HoldReason attribute to explain why we put the job on hold. periodic_hold_subcode is an integer that is put into the
HoldReasonSubCode that is useful for to examine. Neither periodic_hold_subcode nor periodic_hold_reason are
required, but are good practice to include if is defined.

4.6.4 Automatically releasing a held job

In the same way that a job can be automatically held, jobs in the held state can be released with the command. Often,
using a with a paired is a good way to restart a stuck job. Jobs can go into the hold state for many reasons, so best
practice, when trying to release a job that was held with is to include the HoldReasonSubCode in the expression.

periodic_hold = (JobStatus == 2) && (time() - EnteredCurrentStatus) > (7 * 3600)
periodic_hold_reason = "Job ran for more than seven hours"
periodic_hold_subcode = 42
periodic_release = (HoldReasonSubCode == 42)

4.6.5 Automatically evicting a running job

HTCondor can automatically evict a running job, from the machine it is running on, if a given constraint is true. In
the submit description file, set periodic_vacate to a classad expression. When this expression evaluates to true, the
scheduler will evicte the job, just as if condor_vacate_job had run on that job. See Matchmaking with ClassAds for
information about the classad language and ClassAd Attributes for the list of attributes which can be used in these
expressions. For example, to automatically evicte a job which has been in the queue for more than 100 hours, and have
it restart again, the submit file could have

periodic_vacate = (time() - QDate) > (100 * 3600)

4.6.6 Holding a completed job

A job may exit, and HTCondor consider it completed, even though something has gone wrong with the job. A submit
file may contain a expression to tell HTCondor to put the job on hold, instead of moving it to the history. A held job
informs users that there may have been a problem with the job that should be investigated. For example, if a job should
never exit by a signal, the job can be put on hold if it does with

on_exit_hold = ExitBySignal == true

4.6. Automatically managing a job 81

HTCondor Manual, Release 23.6.2

4.7 How To Debug an Always Idle Job

Sometimes, when you submit a job to HTCondor, it sits idle seemingly forever, shows it in the idle state, when you
expect it should start running. This can be frustrating, but there are tools to give visibility so you can debug what is
going on.

4.7.1 Jobs that start but are quickly evicted

One possibility is that the job is actually starting, but something goes wrong very quickly after it starts, so the Execution
Point evicts the job, and the condor_schedd puts it back to idle. would only show it in the “R”unning state for a brief
moment, so it is likely that even frequent executions of will show it in the Idle state.

A quick look at the HTCondor job log will help to verify that this is what is happening. Assuming your submit file
contains a line like:

log = my_job.log

Then you should see a line in my_job.log, assuming that HTCondor assigned the job id of 781.0 to your job (the job id
is in parenthesis):

000 (781.000.000) 2022-01-30 15:15:35 Job submitted from host: <127.0.0.1:45527?
→˓addrs=127.0.0.1-45527>
...

Many jobs can share the same job log file, so be sure to find the entries for the job in question. If there is nothing further
in this log, this flapping between Running and Idle is not the problem, and you can check items further down this list.

However, if you see repeated entries like

001 (781.000.000) 2022-01-30 15:15:36 Job executing on host: <127.0.0.1:42089?addrs=127.
→˓0.0.1-42089>
...
007 (781.000.000) 2022-01-30 15:15:37 Shadow exception!

Error from slot1_2@bat: FATAL: executable file not found in $PATH
0 - Run Bytes Sent By Job
0 - Run Bytes Received By Job

...
001 (781.000.000) 2022-01-30 15:15:37 Job executing on host: <127.0.0.1:42089?addrs=127.
→˓0.0.1-42089>
...
007 (781.000.000) 2022-01-30 15:15:38 Shadow exception!
...

Then this flapping is the problem, and you’ll need to figure out why. Perhaps a condor_submit -i interactive login, and
trying to start the job by hand is useful, maybe you’ll need to ask a system administrator.

82 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.7.2 Jobs that don’t match any Execution Point

Another common cause of an always-idle job is that the job doesn’t match any slot in the pool. Perhaps the memory or
disk requested in the submit file is greater than any slot in the pool has. Perhaps your administrator requires jobs to set
certain custom attributes to identify them, or for accounting. HTCondor has a tool we call better-analyze that simulates
the matching of slots to jobs. It isn’t perfect, as it doesn’t have full knowledge of the system, but it is easy to run, and
can help to quickly narrow down this kind of problems.

$ condor_q -better-analyze 781.0

Now, as condor_q -better-analyze by default, tries to simulate matching this job to all slots in the pool, this can take a
while, and generate a lot of output. Sometimes, you are pretty sure that a job should match one particular slot, in that
case, you can restrict the matching attempt to that one slot by running

$ condor_q -better-analyze 781.0 -machine machine_in_question

which will emit information only about a potential match to machine_in_question. If the last few lines of this look like
this:

The Requirements expression for job 781.0 reduces to these conditions:

Slots
Step Matched Condition
----- -------- ---------
[0] 1 TARGET.Arch == "X86_64"
[1] 1 TARGET.OpSys == "LINUX"
[3] 1 TARGET.Disk >= RequestDisk
[5] 0 TARGET.Memory >= RequestMemory

781.007: Run analysis summary ignoring user priority. Of 1 machines,
1 are rejected by your job's requirements
0 reject your job because of their own requirements
0 match and are already running your jobs
0 match but are serving other users
0 are able to run your job

WARNING: Be advised:
No machines matched the jobs's constraints

In this example, RequestMemory is set too high, so the job won’t match any machines. Maybe it was a typo. Try
setting it lower to see if the job will match. If condor_q -better-analyze tells you that some machines do match, then
this probably isn’t the problem, or, it could be that very few machines in your pool match your job, and you’ll just need
to wait until they are available.

4.7. How To Debug an Always Idle Job 83

HTCondor Manual, Release 23.6.2

4.7.3 Not enough priority

Another reason your job isn’t running is that other jobs of yours are running, but your priority isn’t good enough to
allow any more of your jobs running. If this is a problem, the HTCondor condor_schedd will run your jobs in the order
specified by the Job_Priority submit command. You could give your more important jobs a higher job priority. The
command condor_userprio -all will show you your current userprio, which is what HTCondor uses to calculate your
fair share.

4.7.4 Systemic problems

The final case is that you have done nothing wrong, but there is some problem with the system. Maybe a network
is down, or a system daemon has crashed, or there is an overload somewhere. If you are an expert, there may be
information in the debug logs, usually found in /usr/log/condor. In this case, you may need to consult your system
administrator, or ask for help on the condor-users email list.

4.8 Choosing an HTCondor Universe

A universe in HTCondor defines an execution environment for a job. HTCondor supports several different universes:

• vanilla

• grid

• java

• scheduler

• local

• parallel

• vm

• container

• docker

The under which a job runs is specified in the submit description file. If a universe is not specified, the default is vanilla.

The vanilla universe is a good default, for it has the fewest restrictions on the job. The grid universe allows users to
submit jobs using HTCondor’s interface. These jobs are submitted for execution on grid resources. The java universe
allows users to run jobs written for the Java Virtual Machine (JVM). The scheduler universe allows users to submit
lightweight jobs to be spawned by the program known as a daemon on the submit host itself. The parallel universe is
for programs that require multiple machines for one job. See the Environment and services for a running job section
for more about the Parallel universe. The vm universe allows users to run jobs where the job is no longer a simple
executable, but a disk image, facilitating the execution of a virtual machine. Container universe allows the user to
specify a container image for one of many possible container runtimes, just as singularity or docker, and condor will
run the job in the appropriate container runtimes. The docker universe runs a Docker container as an HTCondor job.

84 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.8.1 Vanilla Universe

The vanilla universe in HTCondor is intended for most programs. Shell scripts are another case where the vanilla
universe is useful.

Access to the job’s input and output files is a concern for vanilla universe jobs. One option is for HTCondor to rely on
a shared file system, such as NFS or AFS. Alternatively, HTCondor has a mechanism for transferring files on behalf of
the user. In this case, HTCondor will transfer any files needed by a job to the execution site, run the job, and transfer
the output back to the submitting machine.

4.8.2 Grid Universe

The Grid universe in HTCondor is intended to provide the standard HTCondor interface to users who wish to start
jobs intended for remote management systems. The Grid Universe section has details on using the Grid universe. The
manual page for has detailed descriptions of the grid-related attributes.

4.8.3 Java Universe

A program submitted to the Java universe may run on any sort of machine with a JVM regardless of its location, owner,
or JVM version. HTCondor will take care of all the details such as finding the JVM binary and setting the classpath.

4.8.4 Scheduler Universe

The scheduler universe allows users to submit lightweight jobs to be run immediately, alongside the condor_schedd
daemon on the submit host itself. Scheduler universe jobs are not matched with a remote machine, and will never be
preempted. The job’s requirements expression is evaluated against the condor_schedd ‘s ClassAd.

Originally intended for meta-schedulers such as , the scheduler universe can also be used to manage jobs of any sort
that must run on the submit host.

However, unlike the local universe, the scheduler universe does not use a condor_starter daemon to manage the job,
and thus offers limited features and policy support. The local universe is a better choice for most jobs which must run
on the submit host, as it offers a richer set of job management features, and is more consistent with other universes such
as the vanilla universe. The scheduler universe may be retired in the future, in favor of the newer local universe.

4.8.5 Local Universe

The local universe allows an HTCondor job to be submitted and executed with different assumptions for the execution
conditions of the job. The job does not wait to be matched with a machine. It instead executes right away, on the
machine where the job is submitted. The job will never be preempted. The job’s requirements expression is evaluated
against the condor_schedd ‘s ClassAd.

4.8. Choosing an HTCondor Universe 85

HTCondor Manual, Release 23.6.2

4.8.6 Parallel Universe

The parallel universe allows parallel programs, such as MPI jobs, to be run within the opportunistic HTCondor envi-
ronment. Please see the Parallel Jobs (Including MPI Jobs) section for more details.

4.8.7 VM Universe

HTCondor facilitates the execution of KVM and Xen virtual machines with the vm universe.

Please see the Environment and services for a running job section for details.

4.8.8 Docker Universe

The docker universe runs a docker container on an execute host as a job. Please see the Environment and services for
a running job section for details.

4.8.9 Container Universe

The container universe runs a container on an execute host as a job. Please see the Environment and services for a
running job section for details.

4.9 Environment and services for a running job

4.9.1 Services for Running Jobs

HTCondor provides an environment and certain services for running jobs. Jobs can use these services to provide more
reliable runs, to give logging and monitoring data for users, and to synchronize with other jobs. Note that different
HTCondor job universes may provide different services. The functionality below is available in the vanilla universe,
unless otherwise stated.

Environment Variables

An HTCondor job running on a worker node does not, by default, inherit the environment variables from the machine
it runs on or the machine it was submitted from. If it did, the environment might change from run to run, or machine
to machine, and create non reproducible, difficult to debug problems. Rather, HTCondor is deliberate about what
environment variables a job sees, and allows the user to set them in the job description file.

The user may define environment variables for the job with the submit command.

Instead of defining environment variables individually, the entire set of environment variables in the condor_submit’s
environment can be copied into the job. The command does this.

86 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

In general, it is preferable to just declare the minimum set of needed environment variables with the environment
command, as that clearly declares the needed environment variables. If the needed set is not known, the command is
useful. If the environment is set with both the command and is also set to true, values specified with override values in
the submitter’s environment, regardless of the order of the and commands in the submit file.

Commands within the submit description file may reference the environment variables of the submitter. Submit de-
scription file commands use $ENV(EnvironmentVariableName) to reference the value of an environment variable.

Extra Environment Variables HTCondor sets for Jobs

HTCondor sets several additional environment variables for each executing job that may be useful.

• _CONDOR_SCRATCH_DIR names the directory where the job may place temporary data files. This directory is
unique for every job that is run, and its contents are deleted by HTCondor when the job stops running on a
machine. When file transfer is enabled, the job is started in this directory.

• _CONDOR_SLOT gives the name of the slot (for multicore machines), on which the job is run. On machines with
only a single slot, the value of this variable will be 1, just like the attribute in the machine’s ClassAd. See the
Configuration for Execution Points section for more details about configuring multicore machines.

• _CONDOR_JOB_AD is the path to a file in the job’s scratch directory which contains the job ad for the currently
running job. The job ad is current as of the start of the job, but is not updated during the running of the job. The
job may read attributes and their values out of this file as it runs, but any changes will not be acted on in any
way by HTCondor. The format is the same as the output of the -l command. This environment variable may be
particularly useful in a USER_JOB_WRAPPER.

• _CONDOR_MACHINE_AD is the path to a file in the job’s scratch directory which contains the machine ad for the
slot the currently running job is using. The machine ad is current as of the start of the job, but is not updated
during the running of the job. The format is the same as the output of the -l command. Interesting attributes jobs
may want to look at from this file include Memory and Cpus, the amount of memory and cpus provisioned for
this slot.

• _CONDOR_JOB_IWD is the path to the initial working directory the job was born with.

• _CONDOR_WRAPPER_ERROR_FILE is only set when the administrator has installed a USER_JOB_WRAPPER.
If this file exists, HTCondor assumes that the job wrapper has failed and copies the contents of the file to the
StarterLog for the administrator to debug the problem.

• CUBACORES GOMAXPROCS JULIA_NUM_THREADS MKL_NUM_THREADS NUMEXPR_NUM_THREADS
OMP_NUM_THREADS OMP_THREAD_LIMIT OPENBLAS_NUM_THREADS PYTHON_CPU_COUNT ROOT_MAX_THREADS
TF_LOOP_PARALLEL_ITERATIONS TF_NUM_THREADS are set to the number of cpu cores provisioned
to this job. Should be at least RequestCpus, but HTCondor may match a job to a bigger slot. Jobs should not
spawn more than this number of cpu-bound threads, or their performance will suffer. Many third party libraries
like OpenMP obey these environment variables. An administrator can add new variables to this set with the
configuration knob .

• BATCH_SYSTEM All job running under a HTCondor starter have the environment variable BATCH_SYSTEM
set to the string HTCondor. Inspecting this variable allows a job to determine if it is running under HTCondor.

• SINGULARITY_CACHEDIR APPTAINER_CACHEDIR These two variables are set to the location of the scratch
directory to prevent apptainer or singularity from writing to a home directory or other place that isn’t cleaned up
on job exit.

• X509_USER_PROXY gives the full path to the X.509 user proxy file if one is associated with the job. Typically,
a user will specify in the submit description file.

If the job has been assigned GPUs, the system will also set the following environment variables for the GPU runtime
to use.

4.9. Environment and services for a running job 87

HTCondor Manual, Release 23.6.2

• CUDA_VISIBLE_DEVICES NVIDIA_VISIBLE_DEVICES are set to the names of the GPUs assigned to this job.
The job should NEVER change these, but they may be useful for debuggging or logging

Communicating with the Submit machine via Chirp

HTCondor provides a method for running jobs to read or write information to or from the access point, called “chirp”.
Chirp allows jobs to

• Write to the job ad in the schedd. This can be used for long-running jobs to write progress information back to
the access point, so that a query will reveal how far along a running job is. Or, if a job is listening on a network
port, chirp can write the port number to the job ad, so that others can connect to this job.

• Read from the job ad in the schedd. While most information a job needs should be in input files, command line
arguments or environment variables, a job can read dynamic information from the schedd’s copy of the classad.

• Write a message to the job log. Another place to put progress information is into the job log file. This allows
anyone with access to that file to see how much progress a running job has made.

• Read a file from the access point. This allows a job to read a file from the access point at runtime. While file
transfer is generally a better approach, file transfer requires the submitter to know the files to be transferred at
submit time.

• Write a file to the access point. Again, while file transfer is usually the better choice, with chirp, a job can write
intermediate results back to the access point before the job exits.

HTCondor ships a command-line tool, called that can do these actions, and provides python bindings so that they can
be done natively in Python.

When changes to a job made by chirp take effect

When successfully updates a job ad attribute, that change will be reflected in the copy of the job ad in the condor_schedd
on the access point. However, most job ad attributes are read by the condor_starter or condor_startd at job start up
time, and should chirp change these attributes at run time, it will not impact the running job. In particular, the attributes
relating to resource requests, such as RequestCpus, RequestMemory, RequestDisk and RequestGPUS, will not cause
any changes to the provisioned resources for a running job. If the job is evicted, and restarts, these new requests will
then take effect in the new execution of the job. The same is true for the Requirements expression of a job.

Resource Limitations on a Running Job

Depending on how HTCondor has been configured, the OS platform, and other factors, HTCondor may configure the
system a job runs on to prevent a job from using all the resources on a machine. This protects other jobs that may be
running on the machine, and the machine itself from being harming by a running job.

Jobs may see

• A private (non-shared) /tmp and /var/tmp directory

• A private (non-shared) /dev/shm

• A limit on the amount of memory they can allocate, above which the job may be placed on hold or evicted by
the system.

• A limit on the amount of CPU cores the may use, above which the job may be blocked, and will run very slowly.

• A limit on the amount of scratch disk space the job may use, above which the job may be placed on hold or
evicted by the system.

88 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.9.2 Container Universe Jobs

In addition to Docker, many competing container runtimes have been developed, some of which are mostly compatible
with Docker, and others which provide their own feature sets. Many HTCondor users and administrators want to run
jobs inside containers, but don’t care which runtime is used.

HTCondor’s container universe provides an abstraction where the user does not specify exactly which container runtime
to use, but just aspects of their contained job, and HTCondor will select an appropriate runtime. To do this, set the job
submit file command to a specified container image.

The submit file command can either be optionally set to container or not declared at all. If is declared and set to
anything but container then the job submission will fail.

Note that the container may specify the executable to run, either in the runfile option of a singularity image, or in the
entrypoint option of a Dockerfile. If this is set, the executable command in the HTCondor submit file is optional, and
the default command in the container will be run.

This container image may describe an image in a docker-style repo if it is prefixed with docker://, or a Singularity
.sif image on disk, or a Singularity sandbox image (an exploded directory). will parse this image and advertise what
type of container image it is, and match with startds that can support that image.

The container image may also be specified with an URL syntax that tells HTCondor to use a file transfer plugin to
transfer the image. For example with

container_image = http://example.com/dir/image.sif

A container image that would otherwise be transferred can be forced to never be transferred by setting

should_transfer_container = no

HTCondor knows that “docker://” and “oras://” (for apptainer) are special, and are never transferred by HTCondor
plugins.

Here is a complete submit description file for a sample container universe job:

#universe = container is optional
universe = container
container_image = ./image.sif

executable = /bin/cat
arguments = /etc/hosts

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

output = out.$(Process)
error = err.$(Process)
log = log.$(Process)

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue 1

4.9. Environment and services for a running job 89

HTCondor Manual, Release 23.6.2

4.9.3 Docker Universe Applications

A docker universe job instantiates a Docker container from a Docker image, and HTCondor manages the running of that
container as an HTCondor job, on an execute machine. This running container can then be managed as any HTCondor
job. For example, it can be scheduled, removed, put on hold, or be part of a workflow managed by DAGMan.

The docker universe job will only be matched with an execute host that advertises its capability to run docker universe
jobs. When an execute machine with docker support starts, the machine checks to see if the docker command is available
and has the correct settings for HTCondor. Docker support is advertised if available and if it has the correct settings.

The image from which the container is instantiated is defined by specifying a Docker image with the submit command
. This image must be pre-staged on a docker hub that the execute machine can access.

The submit file command can either be optionally set to docker or not declared at all. If is declared and set to anything
but docker then the job submission will fail. Regardless, the submit file command must be declared and set to a docker
image.

After submission, the job is treated much the same way as a vanilla universe job. Details of file transfer are the same as
applied to the vanilla universe. One of the benefits of Docker containers is the file system isolation they provide. Each
container has a distinct file system, from the root on down, and this file system is completely independent of the file
system on the host machine. The container does not share a file system with either the execute host or the submit host,
with the exception of the scratch directory, which is volume mounted to the host, and is the initial working directory
of the job. Optionally, the administrator may configure other directories from the host machine to be volume mounted,
and thus visible inside the container. See the docker section of the administrator’s manual for details.

In Docker universe (as well as vanilla), HTCondor never allows a containerized process to run as root inside the con-
tainer, it always runs as a non-root user. It will run as the same non-root user that a vanilla job will. If a Docker Universe
job fails in an obscure way, but runs fine in a docker container on a desktop, try running the job as a non-root user on
the desktop to try to duplicate the problem.

HTCondor creates a per-job scratch directory on the execute machine, transfers any input files to that directory, bind-
mounts that directory to a directory of the same name inside the container, and sets the IWD of the contained job to that
directory. The assumption is that the job will look in the cwd for input files, and drop output files in the same directory.
In docker terms, we docker run with the -v /some_scratch_directory -w /some_scratch_directory -user non-root-user
command line options (along with many others).

The executable file can come from one of two places: either from within the container’s image, or it can be a script
transferred from the submit machine to the scratch directory of the execute machine. To specify the former, use an
absolute path (starting with a /) for the executable. For the latter, use a relative path.

Therefore, the submit description file should contain the submit command

should_transfer_files = YES

With this command, all input and output files will be transferred as required to and from the scratch directory mounted
as a Docker volume.

If no is specified in the submit description file, it is presumed that the Docker container has a default command to run.

If the docker image has an entrypoint defined, and is specified in the submit description file, it will be used as first
argument for the entrypoint, followed by any .

It is possible to use as entrypoint the directly, redefining the entrypoint of the image (equivalent to --entrypoint in
docker run)

The entrypoint is replaced by the executable if the submit description file contains the command:

docker_override_entrypoint = True

The default value is False as it is the behaviour that works well with the majority of the docker images.

90 Chapter 4. Users’ Manual

https://docs.docker.com/engine/reference/commandline/container_run

HTCondor Manual, Release 23.6.2

When the job completes, is held, evicted, or is otherwise removed from the machine, the container will be removed.

Here is a complete submit description file for a sample docker universe job:

#universe = docker is optional
universe = docker
docker_image = debian
executable = /bin/cat
arguments = /etc/hosts
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output = out.$(Process)
error = err.$(Process)
log = log.$(Process)

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue 1

A debian container is the HTCondor job, and it runs the /bin/cat program on the /etc/hosts file before exiting.

Docker and Networking

By default, docker universe jobs will be run with a private, NATed network interface.

In the job submit file, if the user specifies

docker_network_type = none

then no networking will be available to the job.

In the job submit file, if the user specifies

docker_network_type = host

then, instead of a NATed interface, the job will use the host’s network interface, just like a vanilla universe job. If an
administrator has defined additional, custom docker networks, they will be advertised in the slot attribute DockerNet-
works, and any value in that list can be a valid argument for this keyword.

If the host network type is unavailable, you can ask Docker to forward one or more ports on the host into the container.
In the following example, we assume that the ‘centos7_with_htcondor’ image has HTCondor set up and ready to go,
but doesn’t turn it on by default.

#universe = docker is optional
universe = docker
docker_image = centos7_with_htcondor
executable = /usr/sbin/condor_master
arguments = -f
container_service_names = condor
condor_container_port = 9618
should_transfer_files = YES
when_to_transfer_output = ON_EXIT

(continues on next page)

4.9. Environment and services for a running job 91

HTCondor Manual, Release 23.6.2

(continued from previous page)

output = out.$(Process)
error = err.$(Process)
log = log.$(Process)

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue 1

The submit command accepts a comma- or space- separated list of service names; each service name must have a
corresponding submit command specifying an integer between 0 and 65535. Docker will automatically select a port
on the host to forward to that port in the container; HTCondor will report that port in the job ad attribute after it
becomes available, which will be (several seconds) after the job starts. HTCondor will update the job ad in the sandbox
(.job.ad) at that time.

4.9.4 Virtual Machine Jobs

The vm universe facilitates an HTCondor job that matches and then lands a disk image on an execute machine within
an HTCondor pool. This disk image is intended to be a virtual machine. In this manner, the virtual machine is the job
to be executed.

This section describes this type of HTCondor job. See Configuration File Entries Relating to Virtual Machines for
details of configuration variables.

The Submit Description File

Different than all other universe jobs, the vm universe job specifies a disk image, not an executable. Therefore, the
submit commands , , and do not apply. If specified, rejects the job with an error. The command changes definition
within a vm universe job. It no longer specifies an executable file, but instead provides a string that identifies the job
for tools such as . Other commands specific to the type of virtual machine software identify the disk image.

Xen and KVM virtual machine software are supported. As these differ from each other, the submit description file
specifies one of

vm_type = xen

or

vm_type = kvm

The job is required to specify its memory needs for the disk image with , which is given in Mbytes. HTCondor uses
this number to assure a match with a machine that can provide the needed memory space.

Virtual machine networking is enabled with the command

vm_networking = true

And, when networking is enabled, a definition of as bridge matches the job only with a machine that is configured to
use bridge networking. A definition of

as nat matches the job only with a machine that is configured to use NAT networking. When no definition of

92 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

is given, HTCondor may match the job with a machine that enables networking, and further, the choice of bridge or
NAT networking is determined by the machine’s configuration.

Modified disk images are transferred back to the machine from which the job was submitted as the vm universe job
completes. Job completion for a vm universe job occurs when the virtual machine is shut down, and HTCondor notices
(as the result of a periodic check on the state of the virtual machine). Should the job not want any files transferred back
(modified or not), for example because the job explicitly transferred its own files, the submit command to prevent the
transfer is

vm_no_output_vm = true

The required disk image must be identified for a virtual machine. This command specifies a list of comma-separated
files. Each disk file is specified by colon-separated fields. The first field is the path and file name of the disk file. The
second field specifies the device. The third field specifies permissions, and the optional fourth specifies the format.
Here is an example that identifies a single file:

vm_disk = swap.img:sda2:w:raw

If HTCondor will be transferring the disk file, then the file name given in should not contain any path information.
Otherwise, the full path to the file should be given.

Setting values in the submit description file for some commands have consequences for the virtual machine description
file. These commands are

•

•

•

•

•

HTCondor uses these values when it produces the description file.

If any files need to be transferred from the access point to the machine where the vm universe job will execute, HT-
Condor must be explicitly told to do so with the standard file transfer attributes:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /myxen/diskfile.img,/myxen/swap.img

Any and all needed files that will not accessible directly from the machines where the job may execute must be listed.

Further commands specify information that is specific to the virtual machine type targeted.

Xen-Specific Submit Commands

A Xen vm universe job requires specification of the guest kernel. The command accomplishes this, utilizing one of the
following definitions.

1. xen_kernel = included implies that the kernel is to be found in disk image given by the definition of the
single file specified in .

2. xen_kernel = path-to-kernel gives the file name of the required kernel. If this kernel must be transferred
to machine on which the vm universe job will execute, it must also be included in the command.

4.9. Environment and services for a running job 93

HTCondor Manual, Release 23.6.2

This form of the command also requires further definition of the command. defines the device containing files
needed by root.

Checkpoints

Creating a checkpoint is straightforward for a virtual machine, as a checkpoint is a set of files that represent a snapshot
of both disk image and memory. The checkpoint is created and all files are transferred back to the $(SPOOL) directory
on the machine from which the job was submitted. The submit command to create checkpoints is

vm_checkpoint = true

Without this command, no checkpoints are created (by default). With the command, a checkpoint is created any time
the vm universe jobs is evicted from the machine upon which it is executing. This occurs as a result of the machine
configuration indicating that it will no longer execute this job.

Periodic creation of checkpoints is not supported at this time.

Enabling both networking and checkpointing for a vm universe job can cause networking problems when the job
restarts, particularly if the job migrates to a different machine. will normally reject such jobs. To enable both, then add
the command

when_to_transfer_output = ON_EXIT_OR_EVICT

Take care with respect to the use of network connections within the virtual machine and their interaction with check-
points. Open network connections at the time of the checkpoint will likely be lost when the checkpoint is subsequently
used to resume execution of the virtual machine. This occurs whether or not the execution resumes on the same machine
or a different one within the HTCondor pool.

Xen and KVM

While the following web page contains instructions specific to Fedora on how to create a virtual guest image, it should
provide a good starting point for other platforms as well.

http://fedoraproject.org/wiki/Virtualization_Quick_Start

Job Completion in the vm Universe

Job completion for a vm universe job occurs when the virtual machine is shut down, and HTCondor notices (as the
result of a periodic check on the state of the virtual machine). This is different from jobs executed under the environment
of other universes.

Shut down of a virtual machine occurs from within the virtual machine environment. A script, executed with the proper
authorization level, is the likely source of the shut down commands.

Under a Windows 2000, Windows XP, or Vista virtual machine, an administrator issues the command

> shutdown -s -t 01

Under a Linux virtual machine, the root user executes

$ /sbin/poweroff

94 Chapter 4. Users’ Manual

http://fedoraproject.org/wiki/Virtualization_Quick_Start

HTCondor Manual, Release 23.6.2

The command /sbin/halt will not completely shut down some Linux distributions, and instead causes the job to
hang.

Since the successful completion of the vm universe job requires the successful shut down of the virtual machine, it is
good advice to try the shut down procedure outside of HTCondor, before a vm universe job is submitted.

Failures to Launch

It is not uncommon for a vm universe job to fail to launch because of a problem with the execute machine. In these
cases, HTCondor will reschedule the job and note, in its user event log (if requested), the reason for the failure and that
the job will be rescheduled. The reason is unlikely to be directly useful to you as an HTCondor user, but may help your
HTCondor administrator understand the problem.

If the VM fails to launch for other reasons, the job will be placed on hold and the reason placed in the job ClassAd’s
attribute. The following table may help in understanding such reasons.

VMGAHP_ERR_JOBCLASSAD_NO_VM_MEMORY_PARAM
The attribute JobVMMemory was not set in the job ad sent to the VM GAHP. HTCondor will usually prevent
you from submitting a VM universe job without JobVMMemory set. Examine your job and verify that JobVM-
Memory is set. If it is, please contact your administrator.

VMGAHP_ERR_JOBCLASSAD_KVM_NO_DISK_PARAM
The attribute VMPARAM_vm_Disk was not set in the job ad sent to the VM GAHP. HTCondor will usually set
this attribute when you submit a valid KVM job (it is derived from vm_disk). Examine your job and verify that
VMPARAM_vm_Disk is set. If it is, please contact your administrator.

VMGAHP_ERR_JOBCLASSAD_KVM_INVALID_DISK_PARAM
The attribute vm_disk was invalid. Please consult the manual, or the condor_submit man page, for information
about the syntax of vm_disk. A syntactically correct value may be invalid if the on-disk permissions of a file
specified in it do not match the requested permissions. Presently, files not transferred to the root of the working
directory must be specified with full paths.

VMGAHP_ERR_JOBCLASSAD_KVM_MISMATCHED_CHECKPOINT
KVM jobs can not presently checkpoint if any of their disk files are not on a shared filesystem. Files on a shared
filesystem must be specified in vm_disk with full paths.

VMGAHP_ERR_JOBCLASSAD_XEN_NO_KERNEL_PARAM
The attribute VMPARAM_Xen_Kernel was not set in the job ad sent to the VM GAHP. HTCondor will usually
set this attribute when you submit a valid Xen job (it is derived from xen_kernel). Examine your job and verify
that VMPARAM_Xen_Kernel is set. If it is, please contact your administrator.

VMGAHP_ERR_JOBCLASSAD_MISMATCHED_HARDWARE_VT
Don’t use ‘vmx’ as the name of your kernel image. Pick something else and change xen_kernel to match.

VMGAHP_ERR_JOBCLASSAD_XEN_KERNEL_NOT_FOUND
HTCondor could not read from the file specified by xen_kernel. Check the path and the file’s permissions. If
it’s on a shared filesystem, you may need to alter your job’s requirements expression to ensure the filesystem’s
availability.

VMGAHP_ERR_JOBCLASSAD_XEN_INITRD_NOT_FOUND
HTCondor could not read from the file specified by xen_initrd. Check the path and the file’s permissions. If
it’s on a shared filesystem, you may need to alter your job’s requirements expression to ensure the filesystem’s
availability.

VMGAHP_ERR_JOBCLASSAD_XEN_NO_ROOT_DEVICE_PARAM
The attribute VMPARAM_Xen_Root was not set in the job ad sent to the VM GAHP. HTCondor will usually set

4.9. Environment and services for a running job 95

HTCondor Manual, Release 23.6.2

this attribute when you submit a valid Xen job (it is derived from xen_root). Examine your job and verify that
VMPARAM_Xen_Root is set. If it is, please contact your administrator.

VMGAHP_ERR_JOBCLASSAD_XEN_NO_DISK_PARAM
The attribute VMPARAM_vm_Disk was not set in the job ad sent to the VM GAHP. HTCondor will usually set
this attribute when you submit a valid Xen job (it is derived from vm_disk). Examine your job and verify that
VMPARAM_vm_Disk is set. If it is, please contact your administrator.

VMGAHP_ERR_JOBCLASSAD_XEN_INVALID_DISK_PARAM
The attribute vm_disk was invalid. Please consult the manual, or the condor_submit man page, for information
about the syntax of vm_disk. A syntactically correct value may be invalid if the on-disk permissions of a file
specified in it do not match the requested permissions. Presently, files not transferred to the root of the working
directory must be specified with full paths.

VMGAHP_ERR_JOBCLASSAD_XEN_MISMATCHED_CHECKPOINT
Xen jobs can not presently checkpoint if any of their disk files are not on a shared filesystem. Files on a shared
filesystem must be specified in vm_disk with full paths.

4.9.5 Parallel Jobs (Including MPI Jobs)

HTCondor’s parallel universe supports jobs that span multiple machines, where the multiple processes within a job must
be running concurrently on these multiple machines, perhaps communicating with each other. The parallel universe
provides machine scheduling, but does not enforce a particular programming paradigm for the underlying applica-
tions. Thus, parallel universe jobs may run under various MPI implementations as well as under other programming
environments.

The parallel universe supersedes the mpi universe. The mpi universe eventually will be removed from HTCondor.

How Parallel Jobs Run ;””””””””””

Parallel universe jobs are submitted from the machine running the dedicated scheduler. The dedicated scheduler
matches and claims a fixed number of machines (slots) for the parallel universe job, and when a sufficient number
of machines are claimed, the parallel job is started on each claimed slot.

Each invocation of assigns a single for what is considered the single parallel job submitted. The submit command
identifies how many machines (slots) are to be allocated. Each instance of the submit command acquires and claims
the number of slots specified by . Each of these slots shares a common job ClassAd and will have the same job ClassAd
attribute value.

Once the correct number of machines are claimed, the is started at more or less the same time on all machines. If
desired, a monotonically increasing integer value that starts at 0 may be provided to each of these machines. The macro
$(Node) is similar to the MPI rank construct. This macro may be used within the submit description file in either the
or command. Thus, as the executable runs, it may discover its own $(Node) value.

Node 0 has special meaning and consequences for the parallel job. The completion of a parallel job is implied and
taken to be when the Node 0 executable exits. All other nodes that are part of the parallel job and that have not yet
exited on their own are killed. This default behavior may be altered by placing the line

+ParallelShutdownPolicy = "WAIT_FOR_ALL"

in the submit description file. It causes HTCondor to wait until every node in the parallel job has completed to consider
the job finished.

96 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

Parallel Jobs and the Dedicated Scheduler

To run parallel universe jobs, HTCondor must be configured such that machines running parallel jobs are dedicated.
Note that dedicated has a very specific meaning in HTCondor: while dedicated machines can run serial jobs, they prefer
to run parallel jobs, and dedicated machines never preempt a parallel job once it starts running.

A machine becomes a dedicated machine when an administrator configures it to accept parallel jobs from one specific
dedicated scheduler. Note the difference between parallel and serial jobs. While any scheduler in a pool can send
serial jobs to any machine, only the designated dedicated scheduler may send parallel universe jobs to a dedicated
machine. Dedicated machines must be specially configured. See the Dedicated Scheduling section for a description
of the necessary configuration, as well as examples. Usually, a single dedicated scheduler is configured for a pool
which can run parallel universe jobs, and this condor_schedd daemon becomes the single machine from which parallel
universe jobs are submitted.

The following command line will list the execute machines in the local pool which have been configured to use a
dedicated scheduler, also printing the name of that dedicated scheduler. In order to run parallel jobs, this name will be
defined to be the string "DedicatedScheduler@", prepended to the name of the scheduler host.

$ condor_status -const '!isUndefined(DedicatedScheduler)' \
-format "%s\t" Machine -format "%s\n" DedicatedScheduler

execute1.example.com DedicatedScheduler@submit.example.com
execute2.example.com DedicatedScheduler@submit.example.com

If this command emits no lines of output, then then pool is not correctly configured to run parallel jobs. Make sure that
the name of the scheduler is correct. The string after the @ sign should match the name of the condor_schedd daemon,
as returned by the command

$ condor_status -schedd

Submission Examples

Simplest Example

Here is a submit description file for a parallel universe job example that is as simple as possible:

###
submit description file for a parallel universe job
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
log = log
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

This job specifies the universe as parallel, letting HTCondor know that dedicated resources are required. The com-
mand identifies that eight machines are required for this job.

4.9. Environment and services for a running job 97

HTCondor Manual, Release 23.6.2

Because no are specified, the dedicated scheduler claims eight machines with the same architecture and operating
system as the access point. When all the machines are ready, it invokes the /bin/sleep command, with a command line
argument of 30 on each of the eight machines more or less simultaneously. Job events are written to the log specified
in the command.

The file transfer mechanism is enabled for this parallel job, such that if any of the eight claimed execute machines does
not share a file system with the access point, HTCondor will correctly transfer the executable. This /bin/sleep example
implies that the access point is running a Unix operating system, and the default assumption for submission from a
Unix machine would be that there is a shared file system.

Example with Operating System Requirements

Assume that the pool contains Linux machines installed with either a RedHat or an Ubuntu operating system. If the
job should run only on RedHat platforms, the requirements expression may specify this:

###
submit description file for a parallel program
targeting RedHat machines
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
log = log
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
requirements = (OpSysName == "RedHat")
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

The machine selection may be further narrowed, instead using the attribute.

###
submit description file for a parallel program
targeting RedHat 6 machines
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
log = log
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
requirements = (OpSysAndVer == "RedHat6")
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Using the $(Node) Macro

98 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

######################################
submit description file for a parallel program
showing the $(Node) macro
######################################
universe = parallel
executable = /bin/cat
log = logfile
input = infile.$(Node)
output = outfile.$(Node)
error = errfile.$(Node)
machine_count = 4
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
queue

The $(Node)macro is expanded to values of 0-3 as the job instances are about to be started. This assigns unique names
to the input and output files to be transferred or accessed from the shared file system. The $(Node) value is fixed for
the entire length of the job.

Differing Requirements for the Machines

Sometimes one machine’s part in a parallel job will have specialized needs. These can be handled with a submit
command that also specifies the number of needed machines.

######################################
Example submit description file
with 4 total machines and differing requirements
######################################
universe = parallel
executable = special.exe
machine_count = 1
requirements = (machine == "machine1@example.com")
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

machine_count = 3
requirements = (machine =!= "machine1@example.com")
queue

The dedicated scheduler acquires and claims four machines. All four share the same value of , as this value is associated
with this single parallel job. The existence of a second command causes a total of two values to be assigned for this
parallel job. The values are assigned based on ordering within the submit description file. Value 0 will be assigned for
the single executable that must be executed on machine1@example.com, and the value 1 will be assigned for the other
three that must be executed elsewhere.

4.9. Environment and services for a running job 99

mailto:machine1@example.com

HTCondor Manual, Release 23.6.2

Requesting multiple cores per slot

If the parallel program has a structure that benefits from running on multiple cores within the same slot, multi-core
slots may be specified.

######################################
submit description file for a parallel program
that needs 8-core slots
######################################
universe = parallel
executable = foo.sh
log = logfile
input = infile.$(Node)
output = outfile.$(Node)
error = errfile.$(Node)
machine_count = 2
request_cpus = 8
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

This parallel job causes the scheduler to match and claim two machines, where each of the machines (slots) has eight
cores. The parallel job is assigned a single and a single , meaning that there is a single job ClassAd for this job.

The executable, foo.sh, is started at the same time on a single core within each of the two machines (slots). It is
presumed that the executable will take care of invoking processes that are to run on the other seven CPUs (cores)
associated with the slot.

Potentially fewer machines are impacted with this specification, as compared with the request that contains

machine_count = 16
request_cpus = 1

The interaction of the eight cores within the single slot may be advantageous with respect to communication delay or
memory access. But, 8-core slots must be available within the pool.

MPI Applications

MPI applications use a single executable, invoked on one or more machines (slots), executing in parallel. The various
implementations of MPI such as Open MPI and MPICH require further framework. HTCondor supports this necessary
framework through a user-modified script. This implementation-dependent script becomes the HTCondor executable.
The script sets up the framework, and then it invokes the MPI application’s executable.

The scripts are located in the $(RELEASE_DIR)/etc/examples directory. The script for the Open MPI implementation is
openmpiscript. The scripts for MPICH implementations are mp1script and mp2script. An MPICH3 script is not
available at this time. These scripts rely on running ssh for communication between the nodes of the MPI application.
The ssh daemon on Unix platforms restricts connections to the approved shells listed in the /etc/shells file.

Here is a sample submit description file for an MPICH MPI application:

100 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

######################################
Example submit description file
for MPICH 1 MPI
works with MPICH 1.2.4, 1.2.5 and 1.2.6
######################################
universe = parallel
executable = mp1script
arguments = my_mpich_linked_executable arg1 arg2
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_mpich_linked_executable
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

The is the mp1script script that will have been modified for this MPI application. This script is invoked on each slot
or core. The script, in turn, is expected to invoke the MPI application’s executable. To know the MPI application’s
executable, it is the first in the list of . And, since HTCondor must transfer this executable to the machine where it will
run, it is listed with the command, and the file transfer mechanism is enabled with the command.

Here is the equivalent sample submit description file, but for an Open MPI application:

######################################
Example submit description file
for Open MPI
######################################
universe = parallel
executable = openmpiscript
arguments = my_openmpi_linked_executable arg1 arg2
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_openmpi_linked_executable
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Most MPI implementations require two system-wide prerequisites. The first prerequisite is the ability to run a com-
mand on a remote machine without being prompted for a password. ssh is commonly used. The second prerequisite
is an ASCII file containing the list of machines that may utilize ssh. These common prerequisites are implemented in
a further script called sshd.sh. sshd.sh generates ssh keys to enable password-less remote execution and starts an
sshd daemon. Use of the sshd.sh script requires the definition of two HTCondor configuration variables. Configura-
tion variable CONDOR_SSHD is an absolute path to an implementation of sshd. sshd.sh has been tested with openssh
version 3.9, but should work with more recent versions. Configuration variable points to the corresponding ssh-keygen
executable.

mp1script and mp2script require the PATH to the MPICH installation to be set. The variable MPDIR may be modified
in the scripts to indicate its proper value. This directory contains the MPICH mpirun executable.

openmpiscript also requires the PATH to the Open MPI installation. Either the variable MPDIR can be set manually

4.9. Environment and services for a running job 101

HTCondor Manual, Release 23.6.2

in the script, or the administrator can define MPDIR using the configuration variable . When using Open MPI on a
multi-machine HTCondor cluster, the administrator may also want to consider tweaking the configuration variable as
well as set = /tmp.

MPI Applications Within HTCondor’s Vanilla Universe

The vanilla universe may be preferred over the parallel universe for parallel applications which can run entirely on one
machine. The command causes a claimed slot to have the required number of CPUs (cores).

There are two ways to ensure that the MPI job can run on any machine that it lands on:

1. Statically build an MPI library and statically compile the MPI code.

2. Bundle all the MPI libraries into a docker container and run MPI in the container

Here is a submit description file example assuming that MPI is installed on all machines on which the MPI job may
run, or that the code was built using static libraries and a static version of mpirun is available.

##
submit description file for
static build of MPI under the vanilla universe
##
universe = vanilla
executable = /path/to/mpirun
request_cpus = 2
arguments = -np 2 my_mpi_linked_executable arg1 arg2 arg3
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_mpi_linked_executable
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

Any additional input files that will be needed for the executable that are not already in the tarball should be included in
the list in command. The corresponding script should then also be updated to move those files into the directory where
the executable will be run.

4.9.6 Java jobs

HTCondor allows users to access a wide variety of machines distributed around the world. The Java Virtual Machine
(JVM) provides a uniform platform on any machine, regardless of the machine’s architecture or operating system. The
HTCondor Java universe brings together these two features to create a distributed, homogeneous computing environ-
ment.

Compiled Java programs can be submitted to HTCondor, and HTCondor can execute the programs on any machine in
the pool that will run the Java Virtual Machine.

The command can be used to see a list of machines in the pool for which HTCondor can use the Java Virtual Machine.

$ condor_status -java

(continues on next page)

102 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

Name JavaVendor Ver State Activity LoadAv Mem ActvtyTime

adelie01.cs.wisc.e Sun Micros 1.6.0_ Claimed Busy 0.090 873 0+00:02:46
adelie02.cs.wisc.e Sun Micros 1.6.0_ Owner Idle 0.210 873 0+03:19:32
slot10@bio.cs.wisc Sun Micros 1.6.0_ Unclaimed Idle 0.000 118 7+03:13:28
slot2@bio.cs.wisc. Sun Micros 1.6.0_ Unclaimed Idle 0.000 118 7+03:13:28
...

If there is no output from the command, then HTCondor does not know the location details of the Java Virtual Machine
on machines in the pool, or no machines have Java correctly installed.

A Simple Example Java Application

Here is a complete, if simple, example. Start with a simple Java program, Hello.java:

public class Hello {
public static void main(String [] args) {

System.out.println("Hello, world!\n");
}

}

Build this program using your Java compiler. On most platforms, this is accomplished with the command

$ javac Hello.java

Submission to HTCondor requires a submit description file. If submitting where files are accessible using a shared file
system, this simple submit description file works:

####################
#
Example 1
Execute a single Java class
#
####################

universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

The Java universe must be explicitly selected.

The main class of the program is given in the statement. This is a file name which contains the entry point of the
program. The name of the main class (not a file name) must be specified as the first argument to the program.

4.9. Environment and services for a running job 103

HTCondor Manual, Release 23.6.2

If submitting the job where a shared file system is not accessible, the submit description file becomes:

####################
#
Example 2
Execute a single Java class,
not on a shared file system
#
####################

universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error
should_transfer_files = YES
when_to_transfer_output = ON_EXIT

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

For more information about using HTCondor’s file transfer mechanisms, see the Submitting a Job section.

To submit the job, where the submit description file is named Hello.cmd, execute

$ condor_submit Hello.cmd

To monitor the job, the commands and are used as with all jobs.

Less Simple Java Specifications

Specifying more than 1 class file.
For programs that consist of more than one .class file, identify the files in the submit description
file:

executable = Stooges.class
transfer_input_files = Larry.class,Curly.class,Moe.class

The command does not change. It still identifies the class file that contains the program’s entry point.

JAR files.
If the program consists of a large number of class files, it may be easier to collect them all together
into a single Java Archive (JAR) file. A JAR can be created with:

$ jar cvf Library.jar Larry.class Curly.class Moe.class Stooges.class

HTCondor must then be told where to find the JAR as well as to use the JAR. The JAR file that contains
the entry point is specified with the command. All JAR files are specified with the command. For this
example that collected all the class files into a single JAR file, the submit description file contains:

executable = Library.jar
jar_files = Library.jar

104 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

Note that the JVM must know whether it is receiving JAR files or class files. Therefore, HTCondor
must also be informed, in order to pass the information on to the JVM. That is why there is a difference
in submit description file commands for the two ways of specifying files (and)

If there are multiple JAR files, the executable command specifies the JAR file that contains the
program’s entry point. This file is also listed with the jar_files command:

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar

Using a third-party JAR file.
As HTCondor requires that all JAR files (third-party or not) be available, specification of a third-
party JAR file is no different than other JAR files. If the sortmerge example above also relies on
version 2.1 from http://jakarta.apache.org/commons/lang/, and this JAR file has been placed in the
same directory with the other JAR files, then the submit description file contains

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar,commons-lang-2.1.jar

An executable JAR file.
When the JAR file is an executable, specify the program’s entry point in the command:

executable = anexecutable.jar
jar_files = anexecutable.jar
arguments = some.main.ClassFile

Discovering the main class within a JAR file.
As of Java version 1.4, Java virtual machines have a -jar option, which takes a single JAR file as
an argument. With this option, the Java virtual machine discovers the main class to run from the
contents of the Manifest file, which is bundled within the JAR file. HTCondor’s java universe does
not support this discovery, so before submitting the job, the name of the main class must be identified.

For a Java application which is run on the command line with

$ java -jar OneJarFile.jar

the equivalent version after discovery might look like

$ java -classpath OneJarFile.jar TheMainClass

The specified value for TheMainClass can be discovered by unjarring the JAR file, and looking for
the MainClass definition in the Manifest file. Use that definition in the HTCondor submit description
file. Partial contents of that file Java universe submit file will appear as

universe = java
executable = OneJarFile.jar
jar_files = OneJarFile.jar
Arguments = TheMainClass More-Arguments
queue

Packages.
An example of a Java class that is declared in a non-default package is

package hpc;

public class CondorDriver
(continues on next page)

4.9. Environment and services for a running job 105

http://jakarta.apache.org/commons/lang/

HTCondor Manual, Release 23.6.2

(continued from previous page)

{
// class definition here

}

The JVM needs to know the location of this package. It is passed as a command-line argument,
implying the use of the naming convention and directory structure.

Therefore, the submit description file for this example will contain

arguments = hpc.CondorDriver

JVM-version specific features.
If the program uses Java features found only in certain JVMs, then the Java application submitted
to HTCondor must only run on those machines within the pool that run the needed JVM. Inform
HTCondor by adding a requirements statement to the submit description file. For example, to
require version 3.2, add to the submit description file:

requirements = (JavaVersion=="3.2")

JVM options.
Options to the JVM itself are specified in the submit description file:

java_vm_args = -DMyProperty=Value -verbose:gc -Xmx1024m

These options are those which go after the java command, but before the user’s main class. Do not use
this to set the classpath, as HTCondor handles that itself. Setting these options is useful for setting
system properties, system assertions and debugging certain kinds of problems.

Chirp I/O with Java

If a job has more sophisticated I/O requirements that cannot be met by HTCondor’s file transfer mechanism, then the
Chirp facility may provide a solution. Chirp has two advantages over simple, whole-file transfers. First, it permits the
input files to be decided upon at run-time rather than submit time, and second, it permits partial-file I/O with results than
can be seen as the program executes. However, small changes to the program are required in order to take advantage
of Chirp. Depending on the style of the program, use either Chirp I/O streams or UNIX-like I/O functions.

Chirp I/O streams are the easiest way to get started. Modify the program to use the objects ChirpInputStream
and ChirpOutputStream instead of FileInputStream and FileOutputStream. These classes are completely
documented in the HTCondor Software Developer’s Kit (SDK). Here is a simple code example:

import java.io.*;
import edu.wisc.cs.condor.chirp.*;

public class TestChirp {

public static void main(String args[]) {

try {
BufferedReader in = new BufferedReader(
new InputStreamReader(
new ChirpInputStream("input")));

(continues on next page)

106 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

PrintWriter out = new PrintWriter(
new OutputStreamWriter(
new ChirpOutputStream("output")));

while(true) {
String line = in.readLine();
if(line==null) break;
out.println(line);

}
out.close();

} catch(IOException e) {
System.out.println(e);

}
}

}

To perform UNIX-like I/O with Chirp, create a ChirpClient object. This object supports familiar operations such as
open, read, write, and close. Exhaustive detail of the methods may be found in the HTCondor SDK, but here is a
brief example:

import java.io.*;
import edu.wisc.cs.condor.chirp.*;

public class TestChirp {

public static void main(String args[]) {

try {
ChirpClient client = new ChirpClient();
String message = "Hello, world!\n";
byte [] buffer = message.getBytes();

// Note that we should check that actual==length.
// However, skip it for clarity.

int fd = client.open("output","wct",0777);
int actual = client.write(fd,buffer,0,buffer.length);
client.close(fd);

client.rename("output","output.new");
client.unlink("output.new");

} catch(IOException e) {
System.out.println(e);

}
}

}

Regardless of which I/O style, the Chirp library must be specified and included with the job. The Chirp JAR (Chirp.

4.9. Environment and services for a running job 107

HTCondor Manual, Release 23.6.2

jar) is found in the lib directory of the HTCondor installation. Copy it into your working directory in order to compile
the program after modification to use Chirp I/O.

$ condor_config_val LIB
/usr/local/condor/lib
$ cp /usr/local/condor/lib/Chirp.jar .

Rebuild the program with the Chirp JAR file in the class path.

$ javac -classpath Chirp.jar:. TestChirp.java

The Chirp JAR file must be specified in the submit description file. Here is an example submit description file that
works for both of the given test programs:

universe = java
executable = TestChirp.class
arguments = TestChirp
jar_files = Chirp.jar
want_io_proxy = True
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

4.9.7 NFS

If the current working directory when a job is submitted is accessed via an NFS automounter, HTCondor may have
problems if the automounter later decides to unmount the volume before the job has completed. This is because likely
has stored the dynamic mount point as the job’s initial current working directory, and this mount point could become
automatically unmounted by the automounter.

There is a simple work around. When submitting the job, use the submit command to point to the stable access point.
For example, suppose the NFS automounter is configured to mount a volume at mount point /a/myserver.company.
com/vol1/johndoe whenever the directory /home/johndoe is accessed. Adding the following line to the submit
description file solves the problem.

initialdir = /home/johndoe

HTCondor attempts to flush the NFS cache on a access point in order to refresh a job’s initial working directory. This
allows files written by the job into an NFS mounted initial working directory to be immediately visible on the access
point. Since the flush operation can require multiple round trips to the NFS server, it is expensive. Therefore, a job
may disable the flushing by setting

+IwdFlushNFSCache = False

in the job’s submit description file. See the Job ClassAd Attributes page for a definition of the job ClassAd attribute.

108 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.10 Job Scheduling

4.10.1 Priorities and Preemption

HTCondor has two independent priority controls: job priorities and user priorities.

The HTCondor system calculate a “fair share” of machine slots to allocate to each user. Whether each user can use all
of these slots depends on a number of factors. For example, if the user’s jobs only match to a small number of machines,
perhaps the user will be running fewer jobs than allocated. This fair share is based on the user priority. Each user can
then specify the order in which each of their jobs should be matched and run on the fair share, this is based on the job
priority.

Job Priority

Job priorities allow a user to sort their own jobs to determine which are tried to be run first. A job priority can be any
integer: larger values denote better priority. So, 0 is a better job priority than -3, and 6 is a better than 5.

Note: Job priorities are computed per user, so that whatever job priorities one user sets has no impact at all on any
other user, in terms of how many jobs users can run or in what order. Also, unmatchable high priority jobs do not block
lower priority jobs. That is, a priority 10 job will try to be matched before a priority 9 job, but if the priority 10 job
doesn’t match any slots, HTCondor will keep going, and try the priority 9 job next.

The job priority may be specified in the submit description file by setting

priority = 15

If no priority is set, the default is 0. See the Dagman section for ways that dagman can automatically set the priority of
any or all jobs in a dag.

Each job can be given a distinct priority. For an already queued job, its priority may be changed with the . command.
This sets the value of job ClassAd attribute . can be called on a running job, but lowering a job priority will not trigger
eviction of the running job. The command can preempt a running job.

A fine-grained categorization of jobs and their ordering is available for experts by using the job ClassAd attributes: , ,
, , or .

User priority

Slots are allocated to users based upon user priority. A lower numerical value for user priority means proportionally
better priority, so a user with priority 5 will be allocated 10 times the resources as someone with user priority 50. User
priorities in HTCondor can be examined with the command. HTCondor administrators can set and change individual
user priorities with the same utility.

HTCondor continuously calculates the share of available machines that each user should be allocated. This share is
inversely related to the ratio between user priorities. For example, a user with a priority of 10 will get twice as many
machines as a user with a priority of 20. The priority of each individual user changes according to the number of
resources the individual is using. Each user starts out with the best possible priority: 0.5. If the number of machines
a user currently has is greater than the user priority, the user priority will worsen by numerically increasing over time.
If the number of machines is less then the priority, the priority will improve by numerically decreasing over time. The
long-term result is fair-share access across all users. The speed at which HTCondor adjusts the priorities is controlled
with the configuration variable . The default is one day. A user running 100 cores of jobs for a long time will have their

4.10. Job Scheduling 109

HTCondor Manual, Release 23.6.2

real user priority exponential grow to 100. If all the jobs are removed, one day later that user’s real priority will be 50,
and two days later it will shrink to 25.

HTCondor enforces that each user gets his/her fair share of machines according to user priority by allocating available
machines. Optionally, a pool administrator can configure the system to preempt the running jobs of users who are above
their fair share in favor of users who are below their fair share, but this is not the default. For instance, if a low priority
user is utilizing all available machines and suddenly a higher priority user submits jobs, HTCondor may vacate jobs
belonging to the lower priority user.

User priorities are keyed on <username>@<domain>, for example johndoe@cs.wisc.edu. The domain name to use,
if any, is configured by the HTCondor site administrator. Thus, user priority and therefore resource allocation is not
impacted by which machine the user submits from or even if the user submits jobs from multiple machines.

The user priority system can also support backfill or nice jobs (see the manual page). Nice jobs artificially boost the
user priority by ten million just for the nice job. This effectively means that nice jobs will only run on machines that
no other HTCondor job (that is, non-niced job) wants. In a similar fashion, an HTCondor administrator could set the
user priority of any specific HTCondor user very high. If done, for example, with a guest account, the guest could only
use cycles not wanted by other users of the system.

How Jobs are Vacated

When HTCondor needs a job to vacate a machine for whatever reason, it sends the job an operating system signal
specified in the attribute of the job’s ClassAd. The value of this attribute can be specified by the user at submit time by
placing the option in the HTCondor submit description file.

If a program wanted to do some work when asked to vacate a machine, the program may set up a signal handler to
handle this signal. This clean up signal is specified with . Note that the clean up work needs to be quick. If the job
takes too long to exit after getting the , HTCondor sends a SIGKILL signal which immediately terminates the process.

The default value for is SIGTERM, the usual method to nicely terminate a Unix program.

4.10.2 Time Scheduling for Job Execution

CronTab Scheduling

HTCondor’s CronTab scheduling functionality allows jobs to be scheduled to execute periodically. A job’s execution
schedule is defined by commands within the submit description file. The notation is much like that used by the Unix
cron daemon. As such, HTCondor developers are fond of referring to CronTab scheduling as Crondor.

Example Crondor Submit File

110 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

Listing 1: A job that runs every 15 minutes
Executable = /bin/sleep
Arguments = 15

cron_minute = 0,15,30,45
cron_prep_time = 60
OnExitRemove = false

Error = error.$(Cluster)
Output = out.$(Cluster)
Log = log

Request_Cpus = 1
Request_Memory = 100M
Request_Disk = 100M
Queue

Also, unlike the Unix cron daemon, HTCondor never runs more than one instance of a job at the same time.

The capability for repetitive or periodic execution of the job is enabled by specifying an command for the job, such that
the job does not leave the queue until desired.

Semantics for CronTab Specification

A job’s execution schedule is defined by a set of specifications within the submit description file. HTCondor uses these
to calculate a for the job.

Table 2.3 lists the submit commands and acceptable values for these commands. At least one of these must be defined
in order for HTCondor to calculate a for the job. Once one CronTab value is defined, the default for all the others uses
all the values in the allowed values ranges.

0 - 59
0 - 23
1 - 31
1 - 12
0 - 7 (Sunday is 0 or 7)

Table 2.3: The list of submit commands and their value ranges.

The day of a job’s execution can be specified by both the cron_day_of_month and the cron_day_of_week attributes.
The day will be the logical or of both.

The semantics allow more than one value to be specified by using the * operator, ranges, lists, and steps (strides) within
ranges.

The asterisk operator
The * (asterisk) operator specifies that all of the allowed values are used for scheduling. For example,

cron_month = *

becomes any and all of the list of possible months: (1,2,3,4,5,6,7,8,9,10,11,12). Thus, a job runs any
month in the year.

Ranges
A range creates a set of integers from all the allowed values between two integers separated by a

4.10. Job Scheduling 111

HTCondor Manual, Release 23.6.2

hyphen. The specified range is inclusive, and the integer to the left of the hyphen must be less than
the right hand integer. For example,

cron_hour = 0-4

represents the set of hours from 12:00 am (midnight) to 4:00 am, or (0,1,2,3,4).

Lists
A list is the union of the values or ranges separated by commas. Multiple entries of the same value
are ignored. For example,

cron_minute = 15,20,25,30
cron_hour = 0-3,9-12,15

where this example represents (15,20,25,30) and represents (0,1,2,3,9,10,11,12,15).

Steps
Steps select specific numbers from a range, based on an interval. A step is specified by appending a
range or the asterisk operator with a slash character (/), followed by an integer value. For example,

cron_minute = 10-30/5
cron_hour = */3

where this example specifies every five minutes within the specified range to represent
(10,15,20,25,30), and specifies every three hours of the day to represent (0,3,6,9,12,15,18,21).

Preparation Time and Execution Window

The command is analogous to the deferral time’s command. It specifies the number of seconds before the deferral time
that the job is to be matched and sent to the execution machine. This permits HTCondor to make necessary preparations
before the deferral time occurs.

Consider the submit description file example that includes

cron_minute = 0
cron_hour = *
cron_prep_time = 300

The job is scheduled to begin execution at the top of every hour. Note that the setting of cron_hour in this example is
not required, as the default value will be *, specifying any and every hour of the day. The job will be matched and sent
to an execution machine no more than five minutes before the next deferral time. For example, if a job is submitted
at 9:30am, then the next deferral time will be calculated to be 10:00am. HTCondor may attempt to match the job to a
machine and send the job once it is 9:55am.

As the CronTab scheduling calculates and uses deferral time, jobs may also make use of the deferral window. The
submit command is analogous to the submit command . Consider the submit description file example that includes

cron_minute = 0
cron_hour = *
cron_window = 360

As the previous example, the job is scheduled to begin execution at the top of every hour. Yet with no preparation time,
the job is likely to miss its deferral time. The 6-minute window allows the job to begin execution, as long as it arrives
and can begin within 6 minutes of the deferral time, as seen by the time kept on the execution machine.

112 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

Scheduling

When a job using the CronTab functionality is submitted to HTCondor, use of at least one of the submit description file
commands beginning with cron_ causes HTCondor to calculate and set a deferral time for when the job should run.
A deferral time is determined based on the current time rounded later in time to the next minute. The deferral time is
the job’s attribute. A new deferral time is calculated when the job first enters the job queue, when the job is re-queued,
or when the job is released from the hold state. New deferral times for all jobs in the job queue using the CronTab
functionality are recalculated when a or a command that affects the job queue is issued.

A job’s deferral time is not always the same time that a job will receive a match and be sent to the execution machine.
This is because HTCondor operates on the job queue at times that are independent of job events, such as when job
execution completes. Therefore, HTCondor may operate on the job queue just after a job’s deferral time states that it
is to begin execution. HTCondor attempts to start a job when the following pseudo-code boolean expression evaluates
to True:

(time() + SCHEDD_INTERVAL) >= (DeferralTime - CronPrepTime)

If the time() plus the number of seconds until the next time HTCondor checks the job queue is greater than or equal
to the time that the job should be submitted to the execution machine, then the job is to be matched and sent now.

Jobs using the CronTab functionality are not automatically re-queued by HTCondor after their execution is complete.
The submit description file for a job must specify an appropriate command to ensure that a job remains in the queue.
This job maintains its original and .

Submit Commands Usage Examples

Here are some examples of the submit commands necessary to schedule jobs to run at multifarious times. Please note
that it is not necessary to explicitly define each attribute; the default value is *.

Run 23 minutes after every two hours, every day of the week:

on_exit_remove = false
cron_minute = 23
cron_hour = 0-23/2
cron_day_of_month = *
cron_month = *
cron_day_of_week = *

Run at 10:30pm on each of May 10th to May 20th, as well as every remaining Monday within the month of May:

on_exit_remove = false
cron_minute = 30
cron_hour = 20
cron_day_of_month = 10-20
cron_month = 5
cron_day_of_week = 2

Run every 10 minutes and every 6 minutes before noon on January 18th with a 2-minute preparation time:

on_exit_remove = false
cron_minute = */10,*/6
cron_hour = 0-11
cron_day_of_month = 18
cron_month = 1

(continues on next page)

4.10. Job Scheduling 113

HTCondor Manual, Release 23.6.2

(continued from previous page)

cron_day_of_week = *
cron_prep_time = 120

Submit Commands Limitations

The use of the CronTab functionality has all of the same limitations of deferral times, because the mechanism is based
upon deferral times.

• It is impossible to schedule vanilla universe jobs at intervals that are smaller than the interval at which HTCondor
evaluates jobs. This interval is determined by the configuration variable . As a vanilla universe job completes
execution and is placed back into the job queue, it may not be placed in the idle state in time. This problem does
not afflict local universe jobs.

• HTCondor cannot guarantee that a job will be matched in order to make its scheduled deferral time. A job must
be matched with an execution machine just as any other HTCondor job; if HTCondor is unable to find a match,
then the job will miss its chance for executing and must wait for the next execution time specified by the CronTab
schedule.

Jobs may be scheduled to begin execution at a specified time in the future with HTCondor’s job deferral functionality.
All specifications are in a job’s submit description file. Job deferral functionality is expanded to provide for the periodic
execution of a job, known as the CronTab scheduling.

Job Deferral

The scheduling of jobs using HTCondor’s CronTab feature calculates and utilizes the ClassAd attribute. Job deferral
allows the specification of the exact date and time at which a job is to begin executing. HTCondor attempts to match the
job to an execution machine just like any other job, however, the job will wait until the exact time to begin execution.
A user can define the job to allow some flexibility in the execution of jobs that miss their execution time.

Deferred Execution Time

A job’s deferral time is the exact time that HTCondor should attempt to execute the job. The deferral time attribute is
defined as an expression that evaluates to a Unix Epoch timestamp (the number of seconds elapsed since 00:00:00 on
January 1, 1970, Coordinated Universal Time). This is the time that HTCondor will begin to execute the job.

After a job is matched and all of its files have been transferred to an execution machine, HTCondor checks to see if the
job’s ClassAd contains a deferral time. If it does, HTCondor calculates the number of seconds between the execution
machine’s current system time and the job’s deferral time. If the deferral time is in the future, the job waits to begin
execution. While a job waits, its job ClassAd attribute indicates the job is in the Running state. As the deferral time
arrives, the job begins to execute. If a job misses its execution time, that is, if the deferral time is in the past, the job is
evicted from the execution machine and put on hold in the queue.

The specification of a deferral time does not interfere with HTCondor’s behavior. For example, if a job is waiting to
begin execution when a command is issued, the job is removed from the execution machine and is put on hold. If a
job is waiting to begin execution when a command is issued, the job continues to wait. When the deferral time arrives,
HTCondor begins execution for the job, but immediately suspends it.

The deferral time is specified in the job’s submit description file with the command .

114 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

Deferral Window

If a job arrives at its execution machine after the deferral time has passed, the job is evicted from the machine and
put on hold in the job queue. This may occur, for example, because the transfer of needed files took too long due to a
slow network connection. A deferral window permits the execution of a job that misses its deferral time by specifying
a window of time within which the job may begin.

The deferral window is the number of seconds after the deferral time, within which the job may begin. When a job
arrives too late, HTCondor calculates the difference in seconds between the execution machine’s current time and the
job’s deferral time. If this difference is less than or equal to the deferral window, the job immediately begins execution.
If this difference is greater than the deferral window, the job is evicted from the execution machine and is put on hold
in the job queue.

The deferral window is specified in the job’s submit description file with the command .

Preparation Time

When a job defines a deferral time far in the future and then is matched to an execution machine, potential computation
cycles are lost because the deferred job has claimed the machine, but is not actually executing. Other jobs could execute
during the interval when the job waits for its deferral time. To make use of the wasted time,a job defines a with an
integer expression that evaluates to a number of seconds. At this number of seconds before the deferral time, the job
may be matched with a machine.

Deferral Usage Examples

Here are examples of how the job deferral time, deferral window, and the preparation time may be used.

The job’s submit description file specifies that the job is to begin execution on January 1st, 2006 at 12:00 pm:

deferral_time = 1136138400

The Unix date program may be used to calculate a Unix epoch time. The syntax of the command to do this depends on
the options provided within that flavor of Unix. In some, it appears as

$ date --date "MM/DD/YYYY HH:MM:SS" +%s

and in others, it appears as

$ date -d "YYYY-MM-DD HH:MM:SS" +%s

MM is a 2-digit month number, DD is a 2-digit day of the month number, and YYYY is a 4-digit year. HH is the 2-digit
hour of the day, MM is the 2-digit minute of the hour, and SS are the 2-digit seconds within the minute. The characters
+%s tell the date program to give the output as a Unix epoch time.

The job always waits 60 seconds after submission before beginning execution:

deferral_time = (QDate + 60)

In this example, assume that the deferral time is 45 seconds in the past as the job is available. The job begins execution,
because 75 seconds remain in the deferral window:

4.10. Job Scheduling 115

HTCondor Manual, Release 23.6.2

deferral_window = 120

In this example, a job is scheduled to execute far in the future, on January 1st, 2010 at 12:00 pm. The

attribute delays the job from being matched until 60 seconds before the job is to begin execution.

deferral_time = 1262368800
deferral_prep_time = 60

Deferral Limitations

There are some limitations to HTCondor’s job deferral feature.

• Job deferral is not available for scheduler universe jobs. A scheduler universe job defining the produces a fatal
error when submitted.

• The time that the job begins to execute is based on the execution machine’s system clock, and not the submission
machine’s system clock. Be mindful of the ramifications when the two clocks show dramatically different times.

• A job’s attribute is always in the Running state when job deferral is used. There is currently no way to distinguish
between a job that is executing and a job that is waiting for its deferral time.

4.10.3 Matchmaking with ClassAds

Before you learn about how to submit a job, it is important to understand how HTCondor allocates resources. Under-
standing the unique framework by which HTCondor matches submitted jobs with machines is the key to getting the
most from HTCondor’s scheduling algorithm.

HTCondor simplifies job submission by acting as a matchmaker of ClassAds. HTCondor’s ClassAds are analogous to
the classified advertising section of the newspaper. Sellers advertise specifics about what they have to sell, hoping to
attract a buyer. Buyers may advertise specifics about what they wish to purchase. Both buyers and sellers list constraints
that need to be satisfied. For instance, a buyer has a maximum spending limit, and a seller requires a minimum purchase
price. Furthermore, both want to rank requests to their own advantage. Certainly a seller would rank one offer of $50
dollars higher than a different offer of $25. In HTCondor, users submitting jobs can be thought of as buyers of compute
resources and machine owners are sellers.

All machines in a HTCondor pool advertise their attributes, such as available memory, CPU type and speed, virtual
memory size, current load average, along with other static and dynamic properties. This machine ClassAd also ad-
vertises under what conditions it is willing to run a HTCondor job and what type of job it would prefer. These policy
attributes can reflect the individual terms and preferences by which all the different owners have graciously allowed
their machine to be part of the HTCondor pool. You may advertise that your machine is only willing to run jobs at
night and when there is no keyboard activity on your machine. In addition, you may advertise a preference (rank) for
running jobs submitted by you or one of your co-workers.

Likewise, when submitting a job, you specify a ClassAd with your requirements and preferences. The ClassAd includes
the type of machine you wish to use. For instance, perhaps you are looking for the fastest floating point performance
available. You want HTCondor to rank available machines based upon floating point performance. Or, perhaps you
care only that the machine has a minimum of 128 MiB of RAM. Or, perhaps you will take any machine you can get!
These job attributes and requirements are bundled up into a job ClassAd.

HTCondor plays the role of a matchmaker by continuously reading all the job ClassAds and all the machine ClassAds,
matching and ranking job ads with machine ads. HTCondor makes certain that all requirements in both ClassAds are
satisfied.

116 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

Inspecting Machine ClassAds with condor_status

Once HTCondor is installed, you will get a feel for what a machine ClassAd does by trying the command. Try the
command to get a summary of information from ClassAds about the resources available in your pool. Type and hit
enter to see a summary similar to the following:

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

amul.cs.wisc.edu LINUX INTEL Claimed Busy 0.990 1896 0+00:07:04
slot1@amundsen.cs. LINUX INTEL Owner Idle 0.000 1456 0+00:21:58
slot2@amundsen.cs. LINUX INTEL Owner Idle 0.110 1456 0+00:21:59
angus.cs.wisc.edu LINUX INTEL Claimed Busy 0.940 873 0+00:02:54
anhai.cs.wisc.edu LINUX INTEL Claimed Busy 1.400 1896 0+00:03:03
apollo.cs.wisc.edu LINUX INTEL Unclaimed Idle 1.000 3032 0+00:00:04
arragon.cs.wisc.ed LINUX INTEL Claimed Busy 0.980 873 0+00:04:29
bamba.cs.wisc.edu LINUX INTEL Owner Idle 0.040 3032 15+20:10:19
...

The command has options that summarize machine ads in a variety of ways. For example,

condor_status -available
shows only machines which are willing to run jobs now.

condor_status -run
shows only machines which are currently running jobs.

condor_status -long
lists the machine ClassAds for all machines in the pool.

The following shows a portion of a machine ClassAd for a single machine: turunmaa.cs.wisc.edu. Some of the listed
attributes are used by HTCondor for scheduling. Other attributes are for information purposes. An important point is
that any of the attributes in a machine ClassAd can be utilized at job submission time as part of a request or preference
on what machine to use. Additional attributes can be easily added. For example, your site administrator can add a
physical location attribute to your machine ClassAds.

Machine = "turunmaa.cs.wisc.edu"
FileSystemDomain = "cs.wisc.edu"
Name = "turunmaa.cs.wisc.edu"
CondorPlatform = "$CondorPlatform: x86_rhap_5 $"
Cpus = 1
CondorVersion = "$CondorVersion: 7.6.3 Aug 18 2011 BuildID: 361356 $"
Requirements = START
EnteredCurrentActivity = 1316094896
MyAddress = "<128.105.175.125:58026>"
EnteredCurrentState = 1316094896
Memory = 1897
CkptServer = "pitcher.cs.wisc.edu"
OpSys = "LINUX"
State = "Owner"
START = true
Arch = "INTEL"
Mips = 2634
Activity = "Idle"
StartdIpAddr = "<128.105.175.125:58026>"

(continues on next page)

4.10. Job Scheduling 117

HTCondor Manual, Release 23.6.2

(continued from previous page)

TargetType = "Job"
LoadAvg = 0.210000
Disk = 92309744
VirtualMemory = 2069476
TotalSlots = 1
UidDomain = "cs.wisc.edu"
MyType = "Machine"

4.11 Job Sets

Warning: Job sets are an experimental feature that is currently disabled by default. To check to see if it is enabled,
run $ condor_config_val USE_JOBSETS which will return true or false. If false, you will need your administrator
to set the config knob to true for this to work.

Multiple jobs that share a common set of input files and/or arguments and/or index values, etc., can be organized and
submitted as a job set). For example, if you have 10 sets of measurements that you are using as input to two different
models, you might consider submitting a job set containing two different modeling jobs that use the same set of input
measurement data.

4.11.1 Submitting a job set

Submitting a job set involves creating a job set description file and then using the htcondor command-line tool to submit
the jobs described in the job set description file to the job queue. For example, if your jobs are described in a file named
my-jobs.set:

Listing 2: my-jobs.set file

name = MyJobSet

iterator = table inputfile {
input_A.txt
input_B.txt

}

job {
executable = a.out
arguments = $(inputfile)
transfer_input_files = $(inputfile)
Request_cpus = 1
Request_memory = 1024M
Request_disk = 1024M

}

Then you can submit this set using the following command from the shell:

118 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

Listing 3: Command line to submit a simple job set

$ htcondor jobset submit my-jobs.set

A job set description file must contain:

1. A name,

2. An iterator, and

3. At least one job.

The name of a job set is used to identify the set. Job set names are used to check the status of sets or to remove sets.

The iterator of a job set is used to describe the shared values and the values’ associated variable names that are used
by the jobs in the job set. Multiple iterator types are planned to be supported by HTCondor. As of HTCondor 9.4.0,
only the table iterator type is available.

The table iterator type works similar to the queue <list of varnames> from <file name or list of
items> syntax used by description files. A table contains comma-separated columns (one per named variable) and
line-separated rows. The table data can either be stored in a separate file and referenced by file name, or it can be stored
inside the job set description file itself inside curly brackets ({ ... }, see example below).

The job set description file syntax for a table iterator is:

iterator = table <list of variable names> <table file name>

or

iterator = table <list of variable names> {
<list of items>

}

Suppose you have four input files, and each input file is associated with two parameters, foo and bar, needed by your
jobs. An example table in this case could be:

input_A.txt,0,0
input_B.txt,0,1
input_C.txt,1,0
input_D.txt,1,1

If this table is stored in input_description.txt, your iterator would be:

iterator = table inputfile,foo,bar input_description.txt

Or you could put this table directly inside in the job set description file:

iterator = table inputfile,foo,bar {
input_A.txt,0,0
input_B.txt,0,1
input_C.txt,1,0
input_D.txt,1,1

}

Each job in a job set is a HTCondor job and is described using the submit description syntax. A job description can
reference one or more of the variables described by the job set iterator. Furthermore, each job description in a job set
can have its variables mapped (e.g. foo=bar will replace $(foo) with $(bar)). A job description can either be stored

4.11. Job Sets 119

HTCondor Manual, Release 23.6.2

in a separate file and referenced by file name, or it can be stored inside the job set description file itself inside curly
brackets ({ ... }, see example below).

The job set description file syntax for a job is:

job [<list of mapped variable names>] <submit file name>

or

job [<list of mapped variable names>] {
<submit file description>

}

Suppose you have two jobs that you want to have use the inputfile, foo, and bar values defined in the table iterator
example above. And suppose that one of these jobs already has an existing submit description in a file named my-job.
sub, and this submit file doesn’t use the foo and bar variable names but instead uses x and y. Your job descriptions
could look like:

job x=foo,y=bar my-job.sub

job {
executable = a.out
arguments = $(inputfile) $(foo) $(bar)
transfer_input_files = $(inputfile)

}

Note how in the second job above that there is no queue statement. Job description queue statements are disregarded
when using job sets. Instead, the number of jobs queued are based on the iterator of the job set. For the table iterator,
the number of jobs queued will be the number of rows in the table.

Putting together the examples above, an entire example job set might look like:

name = MyJobSet

iterator = table inputfile,foo,bar {
input_A.txt,0,0
input_B.txt,0,1
input_C.txt,1,0
input_D.txt,1,1

}

job x=foo,y=bar my-job.sub

job {
executable = a.out
arguments = $(inputfile) $(foo) $(bar)
transfer_input_files = $(inputfile)

}

Based on this job set description, with two job descriptions (which become two job clusters), you would expect the
following output when submitting this job set:

$ htcondor jobset submit my-jobs.set
Submitted job set MyJobSet containing 2 job clusters.

120 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.11.2 Listing job sets

You can get a list of your active job sets (i.e. job sets with jobs that are idle, executing, or held) with the command
htcondor jobset list:

$ htcondor jobset list
JOB_SET_NAME
MyJobSet

The argument --allusers will list active job sets for all users on the current access point:

$ htcondor jobset list --allusers
OWNER JOB_SET_NAME
alice MyJobSet
bob AnotherJobSet

4.11.3 Checking on the progress of job sets

You can check on your job set with the htcondor jobset status <job set name> command.

$ htcondor jobset status MyJobSet

MyJobSet currently has 3 jobs idle, 5 jobs running, and 0 jobs completed.
MyJobSet contains:

Job cluster 1234 with 4 total jobs
Job cluster 1235 with 4 total jobs

4.11.4 Removing a job set

If you realize that there is a problem with a job set or you just do not need the job set to finish computing for whatever
reason, you can remove an entire job set with the htcondor jobset remove <job set name> command:

$ htcondor jobset remove MyJobSet
Removed 8 jobs matching job set MyJobSet for user alice.

4.12 Self-Checkpointing Applications

This section is about writing jobs for an executable which periodically saves checkpoint information, and how to make
HTCondor store that information safely, in case it’s needed to continue the job on another machine or at a later time.

This section is not about how to checkpoint a given executable; that’s up to you or your software provider.

4.12. Self-Checkpointing Applications 121

HTCondor Manual, Release 23.6.2

4.12.1 How To Run Self-Checkpointing Jobs

The best way to run self-checkpointing code is to set HTCondor in your submit file. (Any exit code will work, but
if you can choose, consider error code 85. On Linux systems, this is ERESTART, which seems appropriate.) If the
exits HTCondor with checkpoint_exit_code, HTCondor will transfer the checkpoint to the submit node, and then
immediately restart the in the same sandbox on the same machine, with the same . This immediate transfer makes
the checkpoint available for continuing the job even if the job is interrupted in a way that doesn’t allow for files to be
transferred (e.g., power failure), or if the file transfer doesn’t complete in the time allowed.

For a job to use successfully, its must meet a number of requirements.

4.12.2 Requirements

Your self-checkpointing code may not meet all of the following requirements. In many cases, however, you will be
able to add a wrapper script, or modify an existing one, to meet these requirements. (Thus, your may be a script, rather
than the code that’s writing the checkpoint.) If you can not, consult Working Around the Assumptions and/or the Other
Options.

1. Your executable exits after taking a checkpoint with an exit code it does not otherwise use.

• If your executable does not exit when it takes a checkpoint, HTCondor will not transfer its checkpoint. If
your executable exits normally when it takes a checkpoint, HTCondor will not be able to tell the difference
between taking a checkpoint and actually finishing; that is, if the checkpoint code and the terminal exit code
are the same, your job will never finish.

2. When restarted, your executable determines on its own if a checkpoint is available, and if so, uses it.

• If your job does not look for a checkpoint each time it starts up, it will start from scratch each time; HT-
Condor does not run a different command line when restarting a job which has taken a checkpoint.

3. Starting your executable up from a checkpoint is relatively quick.

• If starting your executable up from a checkpoint is relatively slow, your job may not run efficiently enough
to be useful, depending on the frequency of checkpoints and interruptions.

4.12.3 Using checkpoint_exit_code

The following Python script (example.py) is a toy example of code that checkpoints itself. It counts from 0 to 10
(exclusive), sleeping for 10 seconds at each step. It writes a checkpoint file (containing the next number) after each
nap, and exits with code 85 at count 3, 6, and 9. It exits with code 0 when complete.

#!/usr/bin/env python

import sys
import time

value = 0
try:

with open('example.checkpoint', 'r') as f:
value = int(f.read())

except IOError:
pass

print("Starting from {0}".format(value))
for i in range(value,10):

(continues on next page)

122 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

print("Computing timestamp {0}".format(value))
time.sleep(10)
value += 1
with open('example.checkpoint', 'w') as f:

f.write("{0}".format(value))
if value%3 == 0:

sys.exit(85)

print("Computation complete")
sys.exit(0)

The following submit file (example.submit) commands HTCondor to transfer the file example.checkpoint to the
submit node whenever the script exits with code 85. If interrupted, the job will resume from the most recent of those
checkpoints. Before version 8.9.8, you must include your checkpoint file(s) in ; otherwise HTCondor will not transfer
it (them). Starting with version 8.9.8, you may instead use .

checkpoint_exit_code = 85
transfer_output_files = example.checkpoint
should_transfer_files = yes

executable = example.py
arguments =

output = example.out
error = example.err
log = example.log

request_cpus = 1
request_memory = 512M
request_disk = 1G

queue 1

This example does not remove the “checkpoint file” generated for timestep 9 when the executable completes. This
could be done in example.py immediately before it exits, but that would cause the final file transfer to fail, if you
specified the file in . The script could instead remove the file and then re-create it empty, it desired.

4.12.4 How Frequently to Checkpoint

Obviously, the longer the code spends writing checkpoints, and the longer your job spends transferring them, the longer
it will take for you to get the job’s results. Conversely, the more frequently the job transfers new checkpoints, the less
time the job loses if it’s interrupted. For most users and for most jobs, taking a checkpoint about once an hour works
well, and it’s not a bad duration to start experimenting with. A number of factors will skew this interval up or down:

• If your job(s) usually run on resources with strict time limits, you may want to adjust how often your job check-
points to minimize wasted time. For instance, if your job writes a checkpoint after each hour, and each checkpoint
takes five minutes to write out and then transfer, your fifth checkpoint will finish twenty-five minutes into the
fifth hour, and you won’t gain any benefit from the next thirty-five minutes of computation. If you instead write
a checkpoint every eighty-four minutes, your job will only waste four minutes.

• If a particular code writes larger checkpoints, or writes smaller checkpoints unusually slowly, you may want to
take a checkpoint less frequently than you would for other jobs of a similar length, to keep the total overhead

4.12. Self-Checkpointing Applications 123

HTCondor Manual, Release 23.6.2

(delay) the same. The opposite is also true: if the job can take checkpoints particularly quickly, or the checkpoints
are particularly small, the job could checkpoint more often for the same amount of overhead.

• Some code naturally checkpoints at longer or shorter intervals. If a code writes a checkpoint every five minutes, it
may make sense for the to wait for the code to write ten or more checkpoints before exiting (which asks HTCondor
to transfer the checkpoint file(s)). If a job is a sequence of steps, the natural (or only possible) checkpoint interval
may be between steps.

• How long it takes to restart from a checkpoint. It should never take longer to restart from a checkpoint than to
recompute from the beginning, but the restart process is part of the overhead of taking a checkpoint. The longer
a code takes to restart, the less often the should exit.

Measuring how long it takes to make checkpoints is left as an exercise for the reader. HTCondor will report in the job’s
log (if a log is enabled for that job) how long file transfers, including checkpoint transfers, took.

4.12.5 Debugging Self-Checkpointing Jobs

Because a job may be interrupted at any time, it’s valid to interrupt the job at any time and see if a valid check-
point is transferred. To do so, use condor_vacate_job to evict the job. When that’s done (watch the user log), use
condor_hold to put it on hold, so that it can’t restart while you’re looking at the checkpoint (and potentially, overwrite
it). Finally, to obtain the checkpoint file(s) themselves, run the somewhat mis-named condor_evicted_files program
to ask where they are.

For example, if your job is ID 635.0, and is logging to the file job.log, you can copy the files in the checkpoint to a
subdirectory of the current as follows:

$ condor_vacate_job 635.0

Wait for the job to finish being evicted; hit CTRL-C when you see ‘Job was evicted.’ and immediately hold the job.

$ tail --follow job.log
$ condor_hold 635.0

Copy the checkpoint files from the spool. Note that _condor_stderr and _condor_stdout are the files correspond-
ing to the job’s output and error submit commands; they aren’t named correctly until the the job finishes.

$ condor_evicted_files get 635.0
Copied to '635.0'.
$ cd 635.0

Now examine the checkpoint files to see if they look right. When you’re done, release the job to see if it actually works
right.

$ condor_release 635.0
$ condor_ssh_to_job 635.0

You may also want to remove your copy of checkpoint files:

$ cd ..; rm -fr 635.0

124 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.12.6 Working Around the Assumptions

The basic technique here is to write a wrapper script (or modify an existing one), so that the has the necessary behavior,
even if the code does not.

1. Your executable exits after taking a checkpoint with an exit code it does not otherwise use.

• If your code exits when it takes a checkpoint, but not with a unique code, your wrapper script will have to
determine, when the executable exits, if it did so because it took a checkpoint. If so, the wrapper script
will have to exit with a unique code. If the code could usefully exit with any code, and the wrapper script
therefore can not exit with a unique code, you can instead instruct HTCondor to consider being killed
by a particular signal as a sign of successful checkpoint; set +SuccessCheckpointExitBySignal to
TRUE and +SuccessCheckpointExitSignal to the particular signal. (If you do not set , you must set
+WantFTOnCheckpoint.)

• If your code does not exit when it takes a checkpoint, the wrapper script will have to determine when a
checkpoint has been made, kill the program, and then exit with a unique code.

2. When restarted, your executable determines on its own if a checkpoint is available, and if so, uses it.

• If your code requires different arguments to start from a checkpoint, the wrapper script must check for the
presence of a checkpoint and start the executable with correspondingly modified arguments.

3. Starting your executable up from a checkpoint is relatively quick.

• The longer the start-up delay, the slower the job’s overall progress. If your job’s progress is too slow as a
result of start-up delay, and your code can take checkpoints without exiting, read the ‘Delayed Transfers’
and ‘Manual Transfers’ sections below.

4.12.7 Other Options

The preceding sections of this HOWTO explain how a job meeting the requirements can take checkpoints at arbitrary
intervals and transfer them back to the submit node. Although this is the method of operation most likely to result in
an interrupted job continuing from a valid checkpoint, other, less reliable options exist.

Delayed Transfers

This method is risky, because it does not allow your job to recover from any failure mode other than an eviction (and
sometimes not even then). It may also require changes to your . The advantage of this method is that it doesn’t require
your code to restart, or even a recent version of HTCondor.

The basic idea is to take checkpoints as the job runs, but not transfer them back to the submit node until the job is
evicted. This implies that your doesn’t exit until the job is complete (which is the normal case). If your code has long
start-up delays, you’ll naturally not want it to exit after it writes a checkpoint; otherwise, the wrapper script could restart
the code as necessary.

To use this method, set to ON_EXIT_OR_EVICT instead of setting . This will cause HTCondor to transfer your checkpoint
file(s) (which you listed in , as noted above) when the job is evicted. Of course, since this is the only time your checkpoint
file(s) will be transferred, if the transfer fails, your job has to start over from the beginning. One reason file transfer on
eviction fails is if it takes too long, so this method may not work if your contain too much data.

Furthermore, eviction can happen at any time, including while the code is updating its checkpoint file(s). If the code
does not update its checkpoint file(s) atomically, HTCondor will transfer the partially-updated checkpoint file(s), po-
tentially overwriting the previous, complete one(s); this will probably prevent the code from picking up where it left
off.

In some cases, you can work around this problem by using a wrapper script. The idea is that renaming a file is an atomic
operation, so if your code writes checkpoints to one file, call it checkpoint, your wrapper script – when it detects that

4.12. Self-Checkpointing Applications 125

HTCondor Manual, Release 23.6.2

the checkpoint is complete – would rename that file checkpoint.atomic. That way, checkpoint.atomic always
has a complete checkpoint in it. With a such a script, instead of putting checkpoint in , you would put checkpoint.
atomic, and HTCondor would never see a partially-complete checkpoint file. (The script would also, of course, have
to copy checkpoint.atomic to checkpoint before running the code.)

Manual Transfers

If you’re comfortable with programming, instead of running a job with , you could use condor_chirp, or other tools,
to manage your checkpoint file(s). Your would be responsible for downloading the checkpoint file(s) on start-up, and
periodically uploading the checkpoint file(s) during execution. We don’t recommend you do this for the same reasons
we recommend against managing your own input and output file transfers.

Early Checkpoint Exits

If your executable’s natural checkpoint interval is half or more of your pool’s max job runtime, it may make sense
to checkpoint and then immediately ask to be rescheduled, rather than lower your user priority doing work you know
will be thrown away. In this case, you can use the OnExitRemove job attribute to determine if your job should be
rescheduled after exiting. Don’t set ON_EXIT_OR_EVICT, and don’t set +WantFTOnCheckpoint; just have the job exit
with a unique code after its checkpoint.

4.12.8 Signals

Signals offer additional options for running self-checkpointing jobs. If you’re not familiar with signals, this section
may not make sense to you.

Periodic Signals

HTCondor supports transferring checkpoint file(s) for an which takes a checkpoint when sent a particular signal,
if the then exits in a unique way. Set +WantCheckpointSignal to TRUE to periodically receive checkpoint sig-
nals, and +CheckpointSig to specify which one. (The interval is specified by the administrator of the execute ma-
chine.) The unique way may be a specific exit code, for which you would set , or a signal, for which you would set
+SuccessCheckpointExitBySignal to TRUE and +SuccessCheckpointExitSignal to the particular signal. (If
you do not set , you must set +WantFTOnCheckpoint.)

Delayed Transfer with Signals

This method is very similar to but riskier than delayed transfers, because in addition to delaying the transfer of the
checkpoint files(s), it also delays their creation. Thus, this option should almost never be used; if taking and transferring
your checkpoint file(s) is fast enough to reliably complete during an eviction, you’re not losing much by doing so
periodically, and it’s unlikely that a code which takes small checkpoints quickly takes a long time to start up. However,
this method will work even with very old version of HTCondor.

To use this method, set to ON_EXIT_OR_EVICT and to the particular signal that causes your job to checkpoint.

126 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

4.13 Submitting to a Remote AP

4.13.1 Submitting a job to a remote Access Point

Usually, when you run the condor_submit` command, you are logged into an Access Point (AP) which is running a
condor_schedd, and your submit defaults to sending the job to the condor_schedd running on that same AP. However,
it is possible to have condor_submit send the job to a condor_schedd running on some other machine. Maybe you
want to run condor_submit from your laptop and send the job to an AP on some server. Maybe you are building a
web portal, and you want the portal to run on one machine, and the condor_schedd running on some other machine.

The first concern is security. When you submit locally, the condor_schedd can easily determine who is submitting the
job, and thus what system account it should run the condor_shadow as. This is much more difficult with a remote,
over-the-network submit. For this to work, some additional setup must happen. While this authentication can be setup
with SSL, Kerberos or Windows native methods, for Linux systems, we recommend HTCondor’s ID tokens, as it is
easy for a user to setup, and secure.

Why remote submission?

While it isn’t the usual case, there are several reasons you might want to submit from one machine to another.
Maybe you want to run condor_submit from your laptop and send the job to an AP on some other server, because
you have input data on your laptop, and don’t want to manually copy it to your Access Point. Maybe you are building
a web portal, and you want the portal to run on one machine, and the condor_schedd process running on some
other machine to balance load.

Assuming that an administrator has set up signing keys (see Token Authentication), to create a token that can authenticate
you for remote submission, login to the access point and run the command

$ condor_token_fetch -token name_of_your_ap

Note that name_of_your_ap is merely a filename, but if you have more than one AP, it is good to name the file containing
the token clearly. When this command succeeds, there is no output but the access token is place into the file with that
name in the tokens.d subdirectory of your personal .condor directory in your home directory.

If you copy this directory and contents from the AP (the machine you want to submit to, and place the directory in the
same place on the machine you want to submit from, then condor_submit can submit remotely. To do so, you’ll need
to tell condor_submit the name of the pool (i.e. the name of the machine running the central manager), and the name
of the Access Point that you ran condor_token_fetch on. If you don’t know the name of the central manager, running
the command condor_config_val COLLECTOR_HOST will tell you.

Then, to submit the job, on the remote machine, simple run

$ condor_submit -name name-of-ap -pool cm-name submit_file

and perhaps any other options you might want to pass to condor_submit After condor_submit reports the cluster id
of your new job, it has been successfully submitted to the AP, and the AP is responsible for the management of the job
thereafter. You can query the job with

$ condor_q -name name-of-ap -pool cm-name

and run all the related commands like condor_rm, condor_hold and condor_release in a similar way.

4.13. Submitting to a Remote AP 127

HTCondor Manual, Release 23.6.2

4.13.2 File transfer with remote submission

After condor_submit successfully completes a remote submission, the machine you ran condor_submit on is not
involved at all in the management of the job; the remote AP manages it. Therefore, you can disconnect that machine
from the network, turn it off, or hibernate it. Even if this machine is turned off, the AP will find a matching Execution
Point to run the job on, and run it to completion.

This means that any input files specified in transfer_input_files are copied off of this access point as part of the submit
process and stored in a safe place on the Access Point. This safe place is the spool directory. While a user can force
spooling to happen by adding the -spool option to condor_submit, any remote submit (with the -name option)
automatically turns on spooling. Note that files transferred via file transfer plugins are never spooled, they are always
pulled by the worker node immediately before job execution.

Correspondingly, when the jobs complete, output files cannot be transferred to the submitting machine, as it may be
off, or disconnected from the network. These files are also stored in the spool directory of the AP machine. To indicate
that a completed job still has spool files it is holding on the AP machine, a remotely submitted job remained in the
AP’s, and is visible with the condor_q command after completion, and is in the ‘C’ompleted state. Jobs will stay in
this state for three days by default, or until you have fetched the output files off of the machine.

You can fetch the output sandbox from the AP back to your submitting machine (or anywhere that has permissions), by
running the condor_transfer_data command. This also takes a -name and -pool option like condor_submit. You
can specify a job or jobs in the usual way, often just with the cluster.proc syntax. When run, it copies the job’s output
sandbox from the spool on the AP back to the current directory of the machine condor_transfer_data is run.

4.14 Chirp: custom updates to the AP

Chirp is a set of commands that a running job can invoke on the EP to send or receive custom user data to or from the
AP. It is one of the few HTCondor features that only runs in a running job on the EP.

Common uses for chirp include appending to the job event log to log on the AP the completion percentage of the job.
Or, say, a job has three different phases: preparation, activity, and cleanup. With chirp, the job can ask HTCondor to
append an event to the job event log informing the AP and the user there what phase the job has entered. For example,
a running job could run the command line tool:

$ /usr/libexec/condor_chirp ulog "I have reached stage 3"

In addition to the user log, with chirp, the job can read from or write to the job’s classad as it exists in the schedd. Note
that a static copy of the job ad, in the state that it existed at job startup is dropped into the job’s scratch directory. You
can find this file by inspecting the environment variable $_CONDOR_JOB_AD. But to see attributes which have been
updated on the AP after the job has started, including attributes which may have been changed with the command, you
will need to use chirp:

$ /usr/libexec/condor_chirp set_job_ad_attr MyCurrentStatus '"Stage 3"'

As always with passing classad expressions or values through the shell, be careful with quoting. Also note that these
commands don’t need to, and indeed can not pass the job cluster or proc id as an argument – the job is implicitly the
one that is running, and chirp cannot write to any other job.

As there is some cost to writing to the instance of the job ad inside the schedd, chirp also supports delayed job ad
updates. This is on by default, and any job ad attribute whose name begins with “Chirp” is considered a delayed
updated. Any updates to these attributes will be batched together and send when the starter needs to send another
update to the shadow, for any reasons, or when there are 100 (by default) pending delayed updates.

Chirp may be used from a command line tool, see the condor_chirp man page for full details.

128 Chapter 4. Users’ Manual

HTCondor Manual, Release 23.6.2

Alternatively, python programs can natively run chirp commands, see the htchirp bindings for more details on this
method.

This service is off by default; it may be enabled by placing in the submit description file:

want_io_proxy = True

This places the needed attribute into the job ClassAd.

The Chirp wire protocol used by the starter is fully documented at http://ccl.cse.nd.edu/software/chirp/.

4.15 Special Environment Considerations

4.15.1 Job Leases

A job lease specifies how long a given job will attempt to run on a remote resource, even if that resource loses contact
with the submitting machine. Similarly, it is the length of time the submitting machine will spend trying to reconnect
to the (now disconnected) execution host, before the submitting machine gives up and tries to claim another resource
to run the job. The goal aims at run only once semantics, so that the condor_schedd daemon does not allow the same
job to run on multiple sites simultaneously.

If the submitting machine is alive, it periodically renews the job lease, and all is well. If the submitting machine is
dead, or the network goes down, the job lease will no longer be renewed. Eventually the lease expires. While the lease
has not expired, the execute host continues to try to run the job, in the hope that the access point will come back to
life and reconnect. If the job completes and the lease has not expired, yet the submitting machine is still dead, the
condor_starter daemon will wait for a condor_shadow daemon to reconnect, before sending final information on the
job, and its output files. Should the lease expire, the condor_startd daemon kills off the condor_starter daemon and
user job.

A default value equal to 40 minutes exists for a job’s ClassAd attribute , or this attribute may be set in the submit
description file, using , to keep a job running in the case that the submit side no longer renews the lease. There is a
trade off in setting the value of

Too small a value, and the job might get killed before the submitting machine has a chance to recover. Forward progress
on the job will be lost. Too large a value, and an execute resource will be tied up waiting for the job lease to expire.
The value should be chosen based on how long the user is willing to tie up the execute machines, how quickly access
points come back up, and how much work would be lost if the lease expires, the job is killed, and the job must start
over from its beginning.

As a special case, a submit description file setting of

job_lease_duration = 0

as well as utilizing submission other than that do not set (such as using the web services interface) results in the
corresponding job ClassAd attribute to be explicitly undefined. This has the further effect of changing the duration of
a claim lease, the amount of time that the execution machine waits before dropping a claim due to missing keep alive
messages.

4.15. Special Environment Considerations 129

http://ccl.cse.nd.edu/software/chirp/

HTCondor Manual, Release 23.6.2

130 Chapter 4. Users’ Manual

CHAPTER

FIVE

ADMINISTRATORS’ MANUAL

5.1 Introduction

This is the HTCondor Administrator’s Manual. Its purpose is to aid in the installation and administration of an HT-
Condor pool. For help on using HTCondor, see the HTCondor User’s Manual.

An HTCondor pool is comprised of a single machine which serves as the central manager, and an arbitrary number
of other machines. Machines intended to run work are called Execution Points (EP)s, also known as worker nodes.
Machines that hold a queue of jobs ready to run, or the results of jobs that have run are called Access Points (AP)s, also
known as submit machines. The role of HTCondor is to match waiting requests with available resources. Every part
of HTCondor sends periodic updates to the central manager, the centralized repository of information about the state
of the pool. Periodically, the central manager assesses the current state of the pool and tries to match pending requests
with the appropriate resources.

Each resource has an owner, the one who sets the policy for the use of the machine. This person has absolute power over
the use of the machine, and HTCondor goes out of its way to minimize the impact on this owner caused by HTCondor.
It is up to the resource owner to define a policy for when HTCondor requests will serviced and when they will be
denied.

Each resource request has an owner as well: the user who submitted the job. These people want HTCondor to provide
as many CPU cycles as possible for their work. Often the interests of the resource owners are in conflict with the
interests of the resource requesters. The job of the HTCondor administrator is to configure the HTCondor pool to find
the happy medium that keeps both resource owners and users of resources satisfied. The purpose of this manual is to
relate the mechanisms that HTCondor provides to enable the administrator to find this happy medium.

5.1.1 The Different Roles a Machine Can Play

Every machine in an HTCondor pool can serve a variety of roles. Most machines serve more than one role simulta-
neously. Certain roles can only be performed by a single machine in the pool. The following list describes what these
roles are and what resources are required on the machine that is providing that service:

Central Manager (CM) Diagram

Fig. 1: Daemons for Central Manager, both managed by a

Central Manager
There can be only one central manager for the pool. This machine is the collector of information, and the
negotiator between resources and resource requests. These two halves of the central manager’s responsibility

131

HTCondor Manual, Release 23.6.2

are performed by separate daemons, so it would be possible to have different machines providing those two
services. However, normally they both live on the same machine. This machine plays a very important part in
the HTCondor pool and should be reliable. If this machine crashes, no further matchmaking can be performed
within the HTCondor system, although all current matches remain in effect until they are broken by either party
involved in the match. Therefore, choose for central manager a machine that is likely to be up and running all
the time, or at least one that will be rebooted quickly if something goes wrong. The central manager will ideally
have a good network connection to all the machines in the pool, since these pool machines all send updates over
the network to the central manager.

Execution Point (EP) Diagram

Fig. 2: Daemons for a Execution Point, one condor_starter per running job.

Execution Point
Any machine in the pool, including the central manager, can be configured as to whether or not it should execute
HTCondor jobs. Obviously, some of the machines will have to serve this function, or the pool will not be useful.
Being an execute machine does not require lots of resources. About the only resource that might matter is disk
space. In general the more resources a machine has in terms of swap space, memory, number of CPUs, the larger
variety of resource requests it can serve.

Access Point (AP) Diagram

Fig. 3: Daemons for an Access Point, one condor_shadow per running job.

Access Point
Any machine in the pool, including the central manager, can be configured as to whether or not it should allow
HTCondor jobs to be submitted. The resource requirements for an access point are actually much greater than
the resource requirements for an execute machine. Every submitted job that is currently running on a remote
machine runs a process on the access point. As a result, lots of running jobs will need a fair amount of swap
space and/or real memory. HTCondor pools can scale out horizontally by adding additional access points. Older
terminology called these submit machines or scheduler machine.

132 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

5.1.2 The HTCondor Daemons

The following list describes all the daemons and programs that could be started under HTCondor and what they do:

This daemon is responsible for keeping all the rest of the HTCondor daemons running on each machine in the
pool. It spawns the other daemons, and it periodically checks to see if there are new binaries installed for any
of them. If there are, the daemon will restart the affected daemons. In addition, if any daemon crashes, the
will send e-mail to the HTCondor administrator of the pool and restart the daemon. The also supports various
administrative commands that enable the administrator to start, stop or reconfigure daemons remotely. The will
run on every machine in the pool, regardless of the functions that each machine is performing.

condor_startd
This daemon represents a given resource to the HTCondor pool, as a machine capable of running jobs. It adver-
tises certain attributes about machine that are used to match it with pending resource requests. The condor_startd
will run on any machine in the pool that is to be able to execute jobs. It is responsible for enforcing the policy that
the resource owner configures, which determines under what conditions jobs will be started, suspended, resumed,
vacated, or killed. When the condor_startd is ready to execute an HTCondor job, it spawns the condor_starter.

condor_starter
This daemon is the entity that actually spawns the HTCondor job on a given machine. It sets up the execution
environment and monitors the job once it is running. When a job completes, the condor_starter notices this,
sends back any status information to the submitting machine, and exits.

condor_schedd
This daemon represents resource requests to the HTCondor pool. Any machine that is to be an access point needs
to have a condor_schedd running. When users submit jobs, the jobs go to the condor_schedd, where they are
stored in the job queue. The condor_schedd manages the job queue. Various tools to view and manipulate the
job queue, such as , , and , all must connect to the condor_schedd to do their work. If the condor_schedd is not
running on a given machine, none of these commands will work.

The condor_schedd advertises the number of waiting jobs in its job queue and is responsible for claiming avail-
able resources to serve those requests. Once a job has been matched with a given resource, the condor_schedd
spawns a condor_shadow daemon to serve that particular request.

condor_shadow
This daemon runs on the machine where a given request was submitted and acts as the resource manager for the
request.

condor_collector
This daemon is responsible for collecting all the information about the status of an HTCondor pool. All other
daemons periodically send ClassAd updates to the condor_collector. These ClassAds contain all the information
about the state of the daemons, the resources they represent or resource requests in the pool. The command can
be used to query the condor_collector for specific information about various parts of HTCondor. In addition, the
HTCondor daemons themselves query the condor_collector for important information, such as what address to
use for sending commands to a remote machine.

condor_negotiator
This daemon is responsible for all the match making within the HTCondor system. Periodically, the con-
dor_negotiator begins a negotiation cycle, where it queries the condor_collector for the current state of all the
resources in the pool. It contacts each condor_schedd that has waiting resource requests in priority order, and
tries to match available resources with those requests. The condor_negotiator is responsible for enforcing user
priorities in the system, where the more resources a given user has claimed, the less priority they have to acquire
more resources. If a user with a better priority has jobs that are waiting to run, and resources are claimed by
a user with a worse priority, the condor_negotiator can preempt that resource and match it with the user with
better priority.

5.1. Introduction 133

HTCondor Manual, Release 23.6.2

Note: A higher numerical value of the user priority in HTCondor translate into worse priority for that user. The
best priority is 0.5, the lowest numerical value, and this priority gets worse as this number grows.

condor_kbdd
This daemon is used on both Linux and Windows platforms. On those platforms, the condor_startd frequently
cannot determine console (keyboard or mouse) activity directly from the system, and requires a separate process
to do so. On Linux, the condor_kbdd connects to the X Server and periodically checks to see if there has
been any activity. On Windows, the condor_kbdd runs as the logged-in user and registers with the system to
receive keyboard and mouse events. When it detects console activity, the condor_kbdd sends a command to
the condor_startd. That way, the condor_startd knows the machine owner is using the machine again and can
perform whatever actions are necessary, given the policy it has been configured to enforce.

condor_gridmanager
This daemon handles management and execution of all grid universe jobs. The condor_schedd invokes the
condor_gridmanager when there are grid universe jobs in the queue, and the condor_gridmanager exits when
there are no more grid universe jobs in the queue.

condor_credd
This daemon runs on Windows platforms to manage password storage in a secure manner.

condor_had
This daemon implements the high availability of a pool’s central manager through monitoring the communication
of necessary daemons. If the current, functioning, central manager machine stops working, then this daemon
ensures that another machine takes its place, and becomes the central manager of the pool.

condor_replication
This daemon assists the condor_had daemon by keeping an updated copy of the pool’s state. This state provides
a better transition from one machine to the next, in the event that the central manager machine stops working.

condor_transferer
This short lived daemon is invoked by the condor_replication daemon to accomplish the task of transferring a
state file before exiting.

This daemon controls and monitors process families within HTCondor. Its use is optional in general.

condor_job_router
This daemon transforms vanilla universe jobs into grid universe jobs, such that the transformed jobs are capable
of running elsewhere, as appropriate.

condor_lease_manager
This daemon manages leases in a persistent manner. Leases are represented by ClassAds.

condor_rooster
This daemon wakes hibernating machines based upon configuration details.

condor_defrag
This daemon manages the draining of machines with fragmented partitionable slots, so that they become available
for jobs requiring a whole machine or larger fraction of a machine.

condor_shared_port
This daemon listens for incoming TCP packets on behalf of HTCondor daemons, thereby reducing the number
of required ports that must be opened when HTCondor is accessible through a firewall.

134 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

5.2 Starting Up, Shutting Down and Reconfiguring the System

If you installed HTCondor with administrative privileges, HTCondor will start up when the machine boots and shut
down when the machine does, using the usual mechanism for the machine’s operating system. You can generally use
those mechanisms in the usual way if you need to manually control whether or not HTCondor is running. There are
two situations in which you might want to run condor_master, condor_on, or condor_off from the command line.

1. If you installed HTCondor without administrative privileges, you’ll have to run from the command line to turn
on HTCondor:

$ condor_master

Then run the following command to turn HTCondor completely off:

$ condor_off -master

2. If the usual OS-specific method of controlling HTCondor is inconvenient to use remotely, you may be able to
use the and tools instead.

5.2.1 Daemons That Do Not Run as root

HTCondor is normally installed such that the HTCondor daemons have root permission. This allows HTCondor to
run the condor_shadow daemon and the job with the submitting user’s UID and file access rights. When HTCondor is
started as root, HTCondor jobs can access whatever files the user that submits the jobs can.

However, it is possible that the HTCondor installation does not have root access, or has decided not to run the daemons
as root. That is unfortunate, since HTCondor is designed to be run as root. To see if HTCondor is running as root on a
specific machine, use the command

$ condor_status -master -l <machine-name>

where <machine-name> is the name of the specified machine. This command displays the full condor_master ClassAd;
if the attribute equals zero, then the HTCondor daemons are indeed running with root access. If the attribute is not
zero, then the HTCondor daemons do not have root access.

Note: The Unix program ps is not an effective method of determining if HTCondor is running with root access. When
using ps, it may often appear that the daemons are running as the condor user instead of root. However, note that the ps
command shows the current effective owner of the process, not the real owner. (See the getuid (2) and geteuid (2) Unix
man pages for details.) In Unix, a process running under the real UID of root may switch its effective UID. (See the
seteuid (2) man page.) For security reasons, the daemons only set the effective UID to root when absolutely necessary,
as it will be to perform a privileged operation.

If daemons are not running with root access, make any and all files and/or directories that the job will touch readable
and/or writable by the UID (user id) specified by the attribute. Often this may mean using the Unix command chmod
777 on the directory from which the HTCondor job is submitted.

5.2. Starting Up, Shutting Down and Reconfiguring the System 135

HTCondor Manual, Release 23.6.2

5.2.2 Remote Management Features

All of the commands described in this section are subject to the security policy chosen for the HTCondor pool. As such,
the commands must be either run from a machine that has the proper authorization, or run by a user that is authorized
to issue the commands. The Security section details the implementation of security in HTCondor.

Shutting Down HTCondor
There are a variety of ways to shut down all or parts of an HTCondor pool. All utilize the tool.

To stop a single execute machine from running jobs, the command specifies the machine by host
name.

$ condor_off -startd <hostname>

Jobs will be killed. If it is instead desired that the machine stops running jobs only after the currently
executing job completes, the command is

$ condor_off -startd -peaceful <hostname>

Note that this waits indefinitely for the running job to finish, before the condor_startd daemon exits.

Th shut down all execution machines within the pool,

$ condor_off -all -startd

To wait indefinitely for each machine in the pool to finish its current HTCondor job, shutting down
all of the execute machines as they no longer have a running job,

$ condor_off -all -startd -peaceful

To shut down HTCondor on a machine from which jobs are submitted,

$ condor_off -schedd <hostname>

If it is instead desired that the access point (which runs the condor_schedd) shuts down only after all
jobs that are currently in the queue are finished, first disable new submissions to the queue by setting
the configuration variable

MAX_JOBS_SUBMITTED = 0

See instructions below in Reconfiguring an HTCondor Pool for how to reconfigure a pool. After the
reconfiguration, the command to wait for all jobs to complete and shut down the submission of jobs
is

$ condor_off -schedd -peaceful <hostname>

Substitute the option -all for the host name, if all submit machines in the pool are to be shut down.

Restarting HTCondor, If HTCondor Daemons Are Not Running
If HTCondor is not running, perhaps because one of the commands was used, then starting HTCondor
daemons back up depends on which part of HTCondor is currently not running.

If no HTCondor daemons are running, then starting HTCondor is a matter of executing the daemon.
The daemon will then invoke all other specified daemons on that machine. The daemon executes on
every machine that is to run HTCondor.

136 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

If a specific daemon needs to be started up, and the daemon is already running, then issue the com-
mand on the specific machine with

$ condor_on -subsystem <subsystemname>

where <subsystemname> is replaced by the daemon’s subsystem name. Or, this command might be
issued from another machine in the pool (which has administrative authority) with

$ condor_on <hostname> -subsystem <subsystemname>

where <subsystemname> is replaced by the daemon’s subsystem name, and <hostname> is replaced
by the host name of the machine where this command is to be directed.

Restarting HTCondor, If HTCondor Daemons Are Running
If HTCondor daemons are currently running, but need to be killed and newly invoked, the tool does
this. This would be the case for a new value of a configuration variable for which using is inadequate.

To restart all daemons on all machines in the pool,

$ condor_restart -all

To restart all daemons on a single machine in the pool,

$ condor_restart <hostname>

where <hostname> is replaced by the host name of the machine to be restarted.

Reconfiguring an HTCondor Pool

To change a global configuration variable and have all the machines start to use the new setting,
change the value within the file, and send a command to each host. Do this with a single command,

$ condor_reconfig -all

If the global configuration file is not shared among all the machines, as it will be if using a shared
file system, the change must be made to each copy of the global configuration file before issuing the
command.

Issuing a command is inadequate for some configuration variables. For those, a restart of HTCondor
is required. Those configuration variables that require a restart are listed in the Macros That Will
Require a Restart When Changed section. You can also refer to the condor_restart manual page.

5.2.3 DaemonCore

This section is a brief description of DaemonCore. DaemonCore is a library that is shared among most of the HTCondor
daemons which provides common functionality. Currently, the following daemons use DaemonCore:

• condor_master

• condor_startd

• condor_schedd

• condor_collector

• condor_negotiator

• condor_kbdd

5.2. Starting Up, Shutting Down and Reconfiguring the System 137

HTCondor Manual, Release 23.6.2

• condor_gridmanager

• condor_credd

• condor_had

• condor_replication

• condor_transferer

• condor_job_router

• condor_lease_manager

• condor_rooster

• condor_shared_port

• condor_defrag

• condor_c-gahp

• condor_c-gahp_worker_thread

• condor_dagman

• condor_ft-gahp

• condor_rooster

• condor_shadow

• condor_shared_port

• condor_transferd

• condor_vm-gahp

Most of DaemonCore’s details are not interesting for administrators. However, DaemonCore does provide a uniform
interface for the daemons to various Unix signals, and provides a common set of command-line options that can be
used to start up each daemon.

DaemonCore and Unix signals

One of the most visible features that DaemonCore provides for administrators is that all daemons which use it behave
the same way on certain Unix signals. The signals and the behavior DaemonCore provides are listed below:

SIGHUP
Causes the daemon to reconfigure itself.

SIGTERM
Causes the daemon to gracefully shutdown.

SIGQUIT
Causes the daemon to quickly shutdown.

Exactly what gracefully and quickly means varies from daemon to daemon. For daemons with little or no state (the
condor_kbdd, condor_collector and condor_negotiator) there is no difference, and both SIGTERM and SIGQUIT signals
result in the daemon shutting itself down quickly. For the , a graceful shutdown causes the to ask all of its children
to perform their own graceful shutdown methods. The quick shutdown causes the to ask all of its children to perform
their own quick shutdown methods. In both cases, the exits after all its children have exited. In the condor_startd,
if the machine is not claimed and running a job, both the SIGTERM and SIGQUIT signals result in an immediate exit.
In the condor_schedd, if there are no jobs currently running, there will be no condor_shadow processes, and both

138 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

signals result in an immediate exit. However, with jobs running, a graceful shutdown causes the condor_schedd to ask
each condor_shadow to gracefully vacate the job it is serving, while a quick shutdown results in a hard kill of every
condor_shadow.

For all daemons, a reconfigure results in the daemon re-reading its configuration file(s), causing any settings that
have changed to take effect. See the Introduction to Configuration section for full details on what settings are in the
configuration files and what they do.

DaemonCore and Command-line Arguments

The second visible feature that DaemonCore provides to administrators is a common set of command-line arguments
that all daemons understand. These arguments and what they do are described below:

-a string
Append a period character (‘.’) concatenated with string to the file name of the log for this daemon, as specified
in the configuration file.

-b
Causes the daemon to start up in the background. When a DaemonCore process starts up with this option,
it disassociates itself from the terminal and forks itself, so that it runs in the background. This is the default
behavior for the . Prior to 8.9.7 it was the default for all HTCondor daemons.

-c filename
Causes the daemon to use the specified filename as a full path and file name as its global configuration file.
This overrides the CONDOR_CONFIG environment variable and the regular locations that HTCondor checks for its
configuration file.

-d
Use dynamic directories. The $(LOG), $(SPOOL), and $(EXECUTE) directories are all created by the daemon
at run time, and they are named by appending the parent’s IP address and PID to the value in the configuration
file. These values are then inherited by all children of the daemon invoked with this -d argument. For the , all
HTCondor processes will use the new directories. If a condor_schedd is invoked with the -d argument, then
only the condor_schedd daemon and any condor_shadow daemons it spawns will use the dynamic directories
(named with the condor_schedd daemon’s PID).

Note that by using a dynamically-created spool directory named by the IP address and PID, upon restarting
daemons, jobs submitted to the original condor_schedd daemon that were stored in the old spool directory will
not be noticed by the new condor_schedd daemon, unless you manually specify the old, dynamically-generated
directory path in the configuration of the new condor_schedd daemon.

-f
Causes the daemon to start up in the foreground. Instead of forking, the daemon runs in the foreground. Since
8.9.7, this has been the default for all daemons other than the .

-k filename
For non-Windows operating systems, causes the daemon to read out a PID from the specified filename, and
send a SIGTERM to that process. The daemon started with this optional argument waits until the daemon it is
attempting to kill has exited.

-l directory
Overrides the value of as specified in the configuration files. Primarily, this option is used with the condor_kbdd
when it needs to run as the individual user logged into the machine, instead of running as root. Regular users
would not normally have permission to write files into HTCondor’s log directory. Using this option, they can
override the value of and have the condor_kbdd write its log file into a directory that the user has permission to
write to.

5.2. Starting Up, Shutting Down and Reconfiguring the System 139

HTCondor Manual, Release 23.6.2

-local-name name
Specify a local name for this instance of the daemon. This local name will be used to look up configuration
parameters. The Configuration File Macros section contains details on how this local name will be used in the
configuration.

-p port
Causes the daemon to bind to the specified port as its command socket. The daemon uses this option to ensure
that the condor_collector and condor_negotiator start up using well-known ports that the rest of HTCondor
depends upon them using.

-pidfile filename
Causes the daemon to write out its PID (process id number) to the specified filename. This file can be used to
help shutdown the daemon without first searching through the output of the Unix ps command.

Since daemons run with their current working directory set to the value of , if a full path (one that begins with a
slash character, /) is not specified, the file will be placed in the directory.

-q
Quiet output; write less verbose error messages to stderr when something goes wrong, and before regular
logging can be initialized.

-r minutes
Causes the daemon to set a timer, upon expiration of which, it sends itself a SIGTERM for graceful shutdown.

-t
Causes the daemon to print out its error message to stderr instead of its specified log file. This option forces
the -f option.

-v
Causes the daemon to print out version information and exit.

5.3 Introduction to Configuration

This section of the manual contains general information about HTCondor configuration, relating to all parts of the
HTCondor system. If you’re setting up an HTCondor pool, you should read this section before you read the other
configuration-related sections:

• The Configuration Templates section contains information about configuration templates, which are now the
preferred way to set many configuration macros.

• The Configuration Macros section contains information about the hundreds of individual configuration macros.
In general, it is best to try to achieve your desired configuration using configuration templates before resorting
to setting individual configuration macros, but it is sometimes necessary to set individual configuration macros.

• The settings that control the policy under which HTCondor will start, suspend, resume, vacate or kill jobs are
described in the Configuration for Execution Points section on Policy Configuration for the condor_startd.

140 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

5.3.1 HTCondor Configuration Files

The HTCondor configuration files are used to customize how HTCondor operates at a given site. The basic configura-
tion as shipped with HTCondor can be used as a starting point, but most likely you will want to modify that configuration
to some extent.

Each HTCondor program will, as part of its initialization process, configure itself by calling a library routine which
parses the various configuration files that might be used, including pool-wide, platform-specific, and machine-specific
configuration files. Environment variables may also contribute to the configuration.

The result of configuration is a list of key/value pairs. Each key is a configuration variable name, and each value is
a string literal that may utilize macro substitution (as defined below). Some configuration variables are evaluated by
HTCondor as ClassAd expressions; some are not. Consult the documentation for each specific case. Unless otherwise
noted, configuration values that are expected to be numeric or boolean constants can be any valid ClassAd expression
of operators on constants. Example:

MINUTE = 60
HOUR = (60 * $(MINUTE))
SHUTDOWN_GRACEFUL_TIMEOUT = ($(HOUR)*24)

5.3.2 Ordered Evaluation to Set the Configuration

Multiple files, as well as a program’s environment variables, determine the configuration. The order in which attributes
are defined is important, as later definitions override earlier definitions. The order in which the (multiple) configuration
files are parsed is designed to ensure the security of the system. Attributes which must be set a specific way must appear
in the last file to be parsed. This prevents both the naive and the malicious HTCondor user from subverting the system
through its configuration. The order in which items are parsed is:

1. a single initial configuration file, which has historically been known as the global configuration file (see below);

2. other configuration files that are referenced and parsed due to specification within the single initial configuration
file (these files have historically been known as local configuration files);

3. if HTCondor daemons are not running as root on Unix platforms, the file $(HOME)/.condor/user_config if
it exists, or the file defined by configuration variable ;

if HTCondor daemons are not running as Local System on Windows platforms, the file %USERPRO-
FILE\.condor\user_config if it exists, or the file defined by configuration variable ;

4. specific environment variables whose names are prefixed with _CONDOR_ (note that these environment variables
directly define macro name/value pairs, not the names of configuration files).

Some HTCondor tools utilize environment variables to set their configuration; these tools search for specifically-named
environment variables. The variable names are prefixed by the string _CONDOR_ or _condor_. The tools strip off the
prefix, and utilize what remains as configuration. As the use of environment variables is the last within the ordered
evaluation, the environment variable definition is used. The security of the system is not compromised, as only specific
variables are considered for definition in this manner, not any environment variables with the _CONDOR_ prefix.

The location of the single initial configuration file differs on Windows from Unix platforms. For Unix platforms, the
location of the single initial configuration file starts at the top of the following list. The first file that exists is used, and
then remaining possible file locations from this list become irrelevant.

1. the file specified by the CONDOR_CONFIG environment variable. If there is a problem reading that file, HTCondor
will print an error message and exit right away.

2. /etc/condor/condor_config

5.3. Introduction to Configuration 141

HTCondor Manual, Release 23.6.2

3. /usr/local/etc/condor_config

4. ~condor/condor_config

For Windows platforms, the location of the single initial configuration file is determined by the contents of the envi-
ronment variable CONDOR_CONFIG. If this environment variable is not defined, then the location is the registry value
of HKEY_LOCAL_MACHINE/Software/Condor/CONDOR_CONFIG.

The single, initial configuration file may contain the specification of one or more other configuration files, referred to
here as local configuration files. Since more than one file may contain a definition of the same variable, and since the
last definition of a variable sets the value, the parse order of these local configuration files is fully specified here. In
order:

1. The value of configuration variable lists one or more directories which contain configuration files. The list is
parsed from left to right. The leftmost (first) in the list is parsed first. Within each directory, a lexicographical
ordering by file name determines the ordering of file consideration.

2. The value of configuration variable lists one or more configuration files. These listed files are parsed from left
to right. The leftmost (first) in the list is parsed first.

3. If one of these steps changes the value (right hand side) of , then is processed for a second time, using the changed
list of directories.

The parsing and use of configuration files may be bypassed by setting environment variable CONDOR_CONFIG with the
string ONLY_ENV. With this setting, there is no attempt to locate or read configuration files. This may be useful for
testing where the environment contains all needed information.

5.3.3 Configuration File Macros

Macro definitions are of the form:

<macro_name> = <macro_definition>

The macro name given on the left hand side of the definition is a case insensitive identifier. There may be white space
between the macro name, the equals sign (=), and the macro definition. The macro definition is a string literal that may
utilize macro substitution.

Macro invocations are of the form:

$(macro_name[:<default if macro_name not defined>])

The colon and default are optional in a macro invocation. Macro definitions may contain references to other macros,
even ones that are not yet defined, as long as they are eventually defined in the configuration files. All macro expansion
is done after all configuration files have been parsed, with the exception of macros that reference themselves.

A = xxx
C = $(A)

is a legal set of macro definitions, and the resulting value of C is xxx. Note that C is actually bound to $(A), not its
value.

As a further example,

A = xxx
C = $(A)
A = yyy

142 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

is also a legal set of macro definitions, and the resulting value of C is yyy.

A macro may be incrementally defined by invoking itself in its definition. For example,

A = xxx
B = $(A)
A = $(A)yyy
A = $(A)zzz

is a legal set of macro definitions, and the resulting value of A is xxxyyyzzz. Note that invocations of a macro in its
own definition are immediately expanded. $(A) is immediately expanded in line 3 of the example. If it were not, then
the definition would be impossible to evaluate.

Recursively defined macros such as

A = $(B)
B = $(A)

are not allowed. They create definitions that HTCondor refuses to parse.

A macro invocation where the macro name is not defined results in a substitution of the empty string. Consider the
example

MAX_ALLOC_CPUS = $(NUMCPUS)-1

If NUMCPUS is not defined, then this macro substitution becomes

MAX_ALLOC_CPUS = -1

The default value may help to avoid this situation. The default value may be a literal

MAX_ALLOC_CPUS = $(NUMCPUS:4)-1

such that if NUMCPUS is not defined, the result of macro substitution becomes

MAX_ALLOC_CPUS = 4-1

The default may be another macro invocation:

MAX_ALLOC_CPUS = $(NUMCPUS:$(DETECTED_CPUS_LIMIT))-1

These default specifications are restricted such that a macro invocation with a default can not be nested inside of another
default. An alternative way of stating this restriction is that there can only be one colon character per line. The effect
of nested defaults can be achieved by placing the macro definitions on separate lines of the configuration.

All entries in a configuration file must have an operator, which will be an equals sign (=). Identifiers are alphanumerics
combined with the underscore character, optionally with a subsystem name and a period as a prefix. As a special case,
a line without an operator that begins with a left square bracket will be ignored. The following two-line example treats
the first line as a comment, and correctly handles the second line.

[HTCondor Settings]
my_classad = [foo=bar]

To simplify pool administration, any configuration variable name may be prefixed by a subsystem (see the
$(SUBSYSTEM) macro in Pre-Defined Macros for the list of subsystems) and the period (.) character. For configu-
ration variables defined this way, the value is applied to the specific subsystem. For example, the ports that HTCondor
may use can be restricted to a range using the and configuration variables.

5.3. Introduction to Configuration 143

HTCondor Manual, Release 23.6.2

MASTER.LOWPORT = 20000
MASTER.HIGHPORT = 20100

Note that all configuration variables may utilize this syntax, but nonsense configuration variables may result. For
example, it makes no sense to define

NEGOTIATOR.MASTER_UPDATE_INTERVAL = 60

since the condor_negotiator daemon does not use the variable.

It makes little sense to do so, but HTCondor will configure correctly with a definition such as

MASTER.MASTER_UPDATE_INTERVAL = 60

The uses this configuration variable, and the prefix of MASTER. causes this configuration to be specific to the daemon.

As of HTCondor version 8.1.1, evaluation works in the expected manner when combining the definition of a macro
with use of a prefix that gives the subsystem name and a period. Consider the example

FILESPEC = A
MASTER.FILESPEC = B

combined with a later definition that incorporates FILESPEC in a macro:

USEFILE = mydir/$(FILESPEC)

When the evaluates variable USEFILE, it evaluates to mydir/B. Previous to HTCondor version 8.1.1, it evaluated to
mydir/A. When any other subsystem evaluates variable USEFILE, it evaluates to mydir/A.

This syntax has been further expanded to allow for the specification of a local name on the command line using the
command line option

-local-name <local-name>

This allows multiple instances of a daemon to be run by the same daemon, each instance with its own local configuration
variable.

The ordering used to look up a variable, called <parameter name>:

1. <subsystem name>.<local name>.<parameter name>

2. <local name>.<parameter name>

3. <subsystem name>.<parameter name>

4. <parameter name>

If this local name is not specified on the command line, numbers 1 and 2 are skipped. As soon as the first match is
found, the search is completed, and the corresponding value is used.

This example configures a to run 2 condor_schedd daemons. The daemon needs the configuration:

XYZZY = $(SCHEDD)
XYZZY_ARGS = -local-name xyzzy
DAEMON_LIST = $(DAEMON_LIST) XYZZY
DC_DAEMON_LIST = + XYZZY
XYZZY_LOG = $(LOG)/SchedLog.xyzzy

144 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Using this example configuration, the starts up a second condor_schedd daemon, where this second condor_schedd
daemon is passed -local-name xyzzy on the command line.

Continuing the example, configure the condor_schedd daemon named xyzzy. This condor_schedd daemon will share
all configuration variable definitions with the other condor_schedd daemon, except for those specified separately.

SCHEDD.XYZZY.SCHEDD_NAME = XYZZY
SCHEDD.XYZZY.SCHEDD_LOG = $(XYZZY_LOG)
SCHEDD.XYZZY.SPOOL = $(SPOOL).XYZZY

Note that the example and are specific to the condor_schedd daemon, as opposed to a different daemon such as the
condor_startd. Other HTCondor daemons using this feature will have different requirements for which parameters
need to be specified individually. This example works for the condor_schedd, and more local configuration can, and
likely would be specified.

Also note that each daemon’s log file must be specified individually, and in two places: one specification is for use by
the , and the other is for use by the daemon itself. In the example, the XYZZY condor_schedd configuration variable
SCHEDD.XYZZY.SCHEDD_LOG definition references the daemon’s XYZZY_LOG.

5.3.4 Comments and Line Continuations

An HTCondor configuration file may contain comments and line continuations. A comment is any line beginning
with a pound character (#). A continuation is any entry that continues across multiples lines. Line continuation is
accomplished by placing the backslash character (\) at the end of any line to be continued onto another. Valid examples
of line continuation are

START = (KeyboardIdle > 15 * $(MINUTE)) && \
((LoadAvg - CondorLoadAvg) <= 0.3)

and

ADMIN_MACHINES = condor.cs.wisc.edu, raven.cs.wisc.edu, \
stork.cs.wisc.edu, ostrich.cs.wisc.edu, \
bigbird.cs.wisc.edu
ALLOW_ADMINISTRATOR = $(ADMIN_MACHINES)

Where a line continuation character directly precedes a comment, the entire comment line is ignored, and the following
line is used in the continuation. Line continuation characters within comments are ignored.

Both this example

A = $(B) \
$(C)
$(D)

and this example

A = $(B) \
$(C) \
$(D)

result in the same value for A:

A = $(B) $(D)

5.3. Introduction to Configuration 145

HTCondor Manual, Release 23.6.2

5.3.5 Multi-Line Values

As of version 8.5.6, the value for a macro can comprise multiple lines of text. The syntax for this is as follows:

<macro_name> @=<tag>
<macro_definition lines>
@<tag>

For example:

modify routed job attributes:
remove it if it goes on hold or stays idle for over 6 hours
JOB_ROUTER_DEFAULTS @=jrd
[
requirements = target.WantJobRouter is true;
MaxIdleJobs = 10;
MaxJobs = 200;

set_PeriodicRemove = JobStatus == 5 || (JobStatus == 1 && (time() - QDate) > 3600*6);
delete_WantJobRouter = true;
set_requirements = true;

]
@jrd

Note that in this example, the square brackets are part of the JOB_ROUTER_DEFAULTS value.

5.3.6 Executing a Program to Produce Configuration Macros

Instead of reading from a file, HTCondor can run a program to obtain configuration macros. The vertical bar character
(|) as the last character defining a file name provides the syntax necessary to tell HTCondor to run a program. This
syntax may only be used in the definition of the CONDOR_CONFIG environment variable, or the configuration variable.

The command line for the program is formed by the characters preceding the vertical bar character. The standard output
of the program is parsed as a configuration file would be.

An example:

LOCAL_CONFIG_FILE = /bin/make_the_config|

Program /bin/make_the_config is executed, and its output is the set of configuration macros.

Note that either a program is executed to generate the configuration macros or the configuration is read from one or
more files. The syntax uses space characters to separate command line elements, if an executed program produces
the configuration macros. Space characters would otherwise separate the list of files. This syntax does not permit
distinguishing one from the other, so only one may be specified.

(Note that the include command syntax (see below) is now the preferred way to execute a program to generate con-
figuration macros.)

146 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

5.3.7 Including Configuration from Elsewhere

Externally defined configuration can be incorporated using the following syntax:

include [ifexist] : <file>
include : <cmdline>|
include [ifexist] command [into <cache-file>] : <cmdline>

(Note that the ifexist and into options were added in version 8.5.7. Also note that the command option must be
specified in order to use the into option - just using the bar after <cmdline> will not work.)

In the file form of the include command, the <file> specification must describe a single file, the contents of which
will be parsed and incorporated into the configuration. Unless the ifexist option is specified, the non-existence of
the file is a fatal error.

In the command line form of the include command (specified with either the command option or by appending
a bar (|) character after the <cmdline> specification), the <cmdline> specification must describe a command line
(program and arguments); the command line will be executed, and the output will be parsed and incorporated into the
configuration.

If the into option is not used, the command line will be executed every time the configuration file is referenced. This
may well be undesirable, and can be avoided by using the into option. The into keyword must be followed by the
full pathname of a file into which to write the output of the command line. If that file exists, it will be read and the
command line will not be executed. If that file does not exist, the output of the command line will be written into it
and then the cache file will be read and incorporated into the configuration. If the command line produces no output,
a zero length file will be created. If the command line returns a non-zero exit code, configuration will abort and the
cache file will not be created unless the ifexist keyword is also specified.

The include key word is case insensitive. There are no requirements for white space characters surrounding the colon
character.

Consider the example

FILE = config.$(FULL_HOSTNAME)
include : $(LOCAL_DIR)/$(FILE)

Values are acquired for configuration variables FILE, and by immediate evaluation, causing variable FULL_HOSTNAME
to also be immediately evaluated. The resulting value forms a full path and file name. This file is read and parsed.
The resulting configuration is incorporated into the current configuration. This resulting configuration may contain
further nested include specifications, which are also parsed, evaluated, and incorporated. Levels of nested include
are limited, such that infinite nesting is discovered and thwarted, while still permitting nesting.

Consider the further example

SCRIPT_FILE = script.$(IP_ADDRESS)
include : $(RELEASE_DIR)/$(SCRIPT_FILE) |

In this example, the bar character at the end of the line causes a script to be invoked, and the output of the script is
incorporated into the current configuration. The same immediate parsing and evaluation occurs in this case as when a
file’s contents are included.

For pools that are transitioning to using this new syntax in configuration, while still having some tools and daemons
with HTCondor versions earlier than 8.1.6, special syntax in the configuration will cause those daemons to fail upon
startup, rather than continuing, but incorrectly parsing the new syntax. Newer daemons will ignore the extra syntax.
Placing the @ character before the include key word causes the older daemons to fail when they attempt to parse this
syntax.

5.3. Introduction to Configuration 147

HTCondor Manual, Release 23.6.2

Here is the same example, but with the syntax that causes older daemons to fail when reading it.

FILE = config.$(FULL_HOSTNAME)
@include : $(LOCAL_DIR)/$(FILE)

A daemon older than version 8.1.6 will fail to start. Running an older identifies the @include line as being bad. A
daemon of HTCondor version 8.1.6 or more recent sees:

FILE = config.$(FULL_HOSTNAME)
include : $(LOCAL_DIR)/$(FILE)

and starts up successfully.

Here is an example using the new ifexist and into options:

stuff.pl writes "STUFF=1" to stdout
include ifexist command into $(LOCAL_DIR)/stuff.config : perl $(LOCAL_DIR)/stuff.pl

5.3.8 Reporting Errors and Warnings

As of version 8.5.7, warning and error messages can be included in HTCondor configuration files.

The syntax for warning and error messages is as follows:

warning : <warning message>
error : <error message>

The warning and error messages will be printed when the configuration file is used (when almost any HTCondor
command is run, for example). Error messages (unlike warnings) will prevent the successful use of the configuration
file. This will, for example, prevent a daemon from starting, and prevent from returning a value.

Here’s an example of using an error message in a configuration file (combined with some of the new include features
documented above):

stuff.pl writes "STUFF=1" to stdout
include command into $(LOCAL_DIR)/stuff.config : perl $(LOCAL_DIR)/stuff.pl
if ! defined stuff
error : stuff is needed!

endif

5.3.9 Conditionals in Configuration

Conditional if/else semantics are available in a limited form. The syntax:

if <simple condition>
<statement>
. . .
<statement>

else
<statement>

(continues on next page)

148 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

. . .
<statement>

endif

An else key word and statements are not required, such that simple if semantics are implemented. The <simple condi-
tion> does not permit compound conditions. It optionally contains the exclamation point character (!) to represent the
not operation, followed by

• the defined keyword followed by the name of a variable. If the variable is defined, the statement(s) are incor-
porated into the expanded input. If the variable is not defined, the statement(s) are not incorporated into the
expanded input. As an example,

if defined MY_UNDEFINED_VARIABLE
X = 12

else
X = -1

endif

results in X = -1, when MY_UNDEFINED_VARIABLE is not yet defined.

• the version keyword, representing the version number of of the daemon or tool currently reading this conditional.
This keyword is followed by an HTCondor version number. That version number can be of the form x.y.z or x.y.
The version of the daemon or tool is compared to the specified version number. The comparison operators are

– == for equality. Current version 8.2.3 is equal to 8.2.

– >= to see if the current version number is greater than or equal to. Current version 8.2.3 is greater than
8.2.2, and current version 8.2.3 is greater than or equal to 8.2.

– <= to see if the current version number is less than or equal to. Current version 8.2.0 is less than 8.2.2, and
current version 8.2.3 is less than or equal to 8.2.

As an example,

if version >= 8.1.6
DO_X = True

else
DO_Y = True

endif

results in defining DO_X as True if the current version of the daemon or tool reading this if statement is 8.1.6 or
a more recent version.

• True or yes or the value 1. The statement(s) are incorporated.

• False or no or the value 0 The statement(s) are not incorporated.

• $(<variable>) may be used where the immediately evaluated value is a simple boolean value. A value that
evaluates to the empty string is considered False, otherwise a value that does not evaluate to a simple boolean
value is a syntax error.

The syntax

if <simple condition>
<statement>
. . .
<statement>

(continues on next page)

5.3. Introduction to Configuration 149

HTCondor Manual, Release 23.6.2

(continued from previous page)

elif <simple condition>
<statement>
. . .
<statement>

endif

is the same as syntax

if <simple condition>
<statement>
. . .
<statement>

else
if <simple condition>

<statement>
. . .
<statement>

endif
endif

5.3.10 Function Macros in Configuration

A set of predefined functions increase flexibility. Both submit description files and configuration files are read using
the same parser, so these functions may be used in both submit description files and configuration files.

Case is significant in the function’s name, so use the same letter case as given in these definitions.

$CHOICE(index, listname) or $CHOICE(index, item1, item2, ...)
An item within the list is returned. The list is represented by a parameter name, or the list items are the parameters.
The index parameter determines which item. The first item in the list is at index 0. If the index is out of bounds
for the list contents, an error occurs.

$ENV(environment-variable-name[:default-value])
Evaluates to the value of environment variable environment-variable-name. If there is no environment
variable with that name, Evaluates to UNDEFINED unless the optional :default-value is used; in which case it
evaluates to default-value. For example,

A = $ENV(HOME)

binds A to the value of the HOME environment variable.

$F[fpduwnxbqa](filename)
One or more of the lower case letters may be combined to form the function name and thus, its functionality.
Each letter operates on the filename in its own way.

• f convert relative path to full path by prefixing the current working directory to it. This option works only
in files.

• p refers to the entire directory portion of filename, with a trailing slash or backslash character. Whether a
slash or backslash is used depends on the platform of the machine. The slash will be recognized on Linux
platforms; either a slash or backslash will be recognized on Windows platforms, and the parser will use the
same character specified.

150 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

• d refers to the last portion of the directory within the path, if specified. It will have a trailing slash or
backslash, as appropriate to the platform of the machine. The slash will be recognized on Linux platforms;
either a slash or backslash will be recognized on Windows platforms, and the parser will use the same
character specified unless u or w is used. if b is used the trailing slash or backslash will be omitted.

• u convert path separators to Unix style slash characters

• w convert path separators to Windows style backslash characters

• n refers to the file name at the end of any path, but without any file name extension. As an example, the
return value from $Fn(/tmp/simulate.exe) will be simulate (without the .exe extension).

• x refers to a file name extension, with the associated period (.). As an example, the return value from
$Fx(/tmp/simulate.exe) will be .exe.

• b when combined with the d option, causes the trailing slash or backslash to be omitted. When combined
with the x option, causes the leading period (.) to be omitted.

• q causes the return value to be enclosed within quotes. Double quote marks are used unless a is also
specified.

• a When combined with the q option, causes the return value to be enclosed within single quotes.

$DIRNAME(filename) is the same as $Fp(filename)

$BASENAME(filename) is the same as $Fnx(filename)

$INT(item-to-convert) or $INT(item-to-convert, format-specifier)
Expands, evaluates, and returns a string version of item-to-convert. The format-specifier has the same
syntax as a C language or Perl format specifier. If no format-specifier is specified, “%d” is used as the
format specifier. The format is everything after the comma, including spaces. It can include other text.

X = 2
Y = 6
XYArea = $(X) * $(Y)

• $INT(XYArea) is 12

• $INT(XYArea,%04d) is 0012

• $INT(XYArea,Area=%d) is Area=12

$RANDOM_CHOICE(choice1, choice2, choice3, ...)
A random choice of one of the parameters in the list of parameters is made. For example, if one of the integers
0-8 (inclusive) should be randomly chosen:

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)

$RANDOM_INTEGER(min, max [, step])
A random integer within the range min and max, inclusive, is selected. The optional step parameter controls

the stride within the range, and it defaults to the value 1. For example, to randomly chose an even integer in the
range 0-8 (inclusive):

$RANDOM_INTEGER(0, 8, 2)

$REAL(item-to-convert) or $REAL(item-to-convert, format-specifier)
Expands, evaluates, and returns a string version of item-to-convert for a floating point type. The
format-specifier is a C language or Perl format specifier. If no format-specifier is specified, “%16G”
is used as a format specifier.

$SUBSTR(name, start-index) or $SUBSTR(name, start-index, length)
Expands name and returns a substring of it. The first character of the string is at index 0. The first character of

5.3. Introduction to Configuration 151

HTCondor Manual, Release 23.6.2

the substring is at index start-index. If the optional length is not specified, then the substring includes characters
up to the end of the string. A negative value of start-index works back from the end of the string. A negative
value of length eliminates use of characters from the end of the string. Here are some examples that all assume

Name = abcdef

• $SUBSTR(Name, 2) is cdef.

• $SUBSTR(Name, 0, -2) is abcd.

• $SUBSTR(Name, 1, 3) is bcd.

• $SUBSTR(Name, -1) is f.

• $SUBSTR(Name, 4, -3) is the empty string, as there are no characters in the substring for this request.

$STRING(item-to-convert) or $STRING(item-to-convert, format-specifier)
Expands, evaluates, and returns a string version of item-to-convert for a string type. The
format-specifier is a C language or Perl format specifier. If no format-specifier is specified, “%s”
is used as a format specifier. The format is everything after the comma, including spaces. It can include other
text besides %s.

FULL_HOSTNAME = host.DOMAIN
LCFullHostname = toLower("$(FULL_HOSTNAME)")

• $STRING(LCFullHostname) is host.domain

• $STRING(LCFullHostname,Name: %s) is Name: host.domain

$EVAL(item-to-convert)
Expands, evaluates, and returns an classad unparsed version of item-to-convert for any classad type, the
resulting value is formatted using the equivalent of the “%v” format specifier - If it is a string it is printed without
quotes, otherwise it is unparsed as a classad value. Due to the way the parser works, you must use a variable to
hold the expression to be evaluated if the expression has a close brace ‘)’ character.

slist = "a,B,c"
lcslist = tolower($(slist))
list = split($(slist))
clist = size($(list)) * 10
semilist = join(";",split($(lcslist)))

• $EVAL(slist) is a,B,c

• $EVAL(lcslist) is a,b,c

• $EVAL(list) is {"a", "B", "c"}

• $EVAL(clist) is 30

• $EVAL(semilist) is a;b;c

Environment references are not currently used in standard HTCondor configurations. However, they can sometimes be
useful in custom configurations.

152 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

5.3.11 Macros That Will Require a Restart When Changed

The HTCondor daemons will generally not undo any work they have already done when the configuration changes so
any change that would require undoing of work will require a restart before it takes effect. There a very few exceptions
to this rule. The will pick up changes to on a reconfig. Although it may take hours for a condor_startd to drain and
exit when it is removed from the daemon list.

Examples of changes requiring a restart would any change to how HTCondor uses the network. A configuration change
to , , and require a restart. A change in the way daemons locate each other, such as , , or require a restart of the and all
of the daemons under it.

The condor_startd requires a restart to make any change to the slot resource configuration, This would include , and .
It would also include resource detection like GPUs and Docker support. A general rule of thumb is that changes to the
condor_startd require a restart, but there are a few exceptions. as well as , , and other policy expressions take effect on
reconfig.

For more information about specific configuration variables and whether a restart is required, refer to the documentation
of the individual variables.

5.3.12 Pre-Defined Macros

HTCondor provides pre-defined macros that help configure HTCondor. Pre-defined macros are listed as
$(macro_name).

This first set are entries whose values are determined at run time and cannot be overwritten. These are inserted auto-
matically by the library routine which parses the configuration files. This implies that a change to the underlying value
of any of these variables will require a full restart of HTCondor in order to use the changed value.

$(FULL_HOSTNAME)
The fully qualified host name of the local machine, which is host name plus domain name.

$(HOSTNAME)
The host name of the local machine, without a domain name.

$(IP_ADDRESS)
The ASCII string version of the local machine’s “most public” IP address. This address may be IPv4 or IPv6,
but the macro will always be set.

HTCondor selects the “most public” address heuristically. Your configuration should not depend on HTCondor
picking any particular IP address for this macro; this macro’s value may not even be one of the IP addresses
HTCondor is configured to advertise.

$(IPV4_ADDRESS)
The ASCII string version of the local machine’s “most public” IPv4 address; unset if the local machine has no
IPv4 address.

See IP_ADDRESS about “most public”.

$(IPV6_ADDRESS)
The ASCII string version of the local machine’s “most public” IPv6 address; unset if the local machine has no
IPv6 address.

See IP_ADDRESS about “most public”.

$(IP_ADDRESS_IS_V6)
A boolean which is true if and only if IP_ADDRESS is an IPv6 address. Useful for conditional configuration.

5.3. Introduction to Configuration 153

HTCondor Manual, Release 23.6.2

$(TILDE)
The full path to the home directory of the Unix user condor, if such a user exists on the local machine.

$(SUBSYSTEM)
The subsystem name of the daemon or tool that is evaluating the macro. This is a unique string which identifies
a given daemon within the HTCondor system. The possible subsystem names are:

GAHPs C_GAHP C_GAHP_WORKER_THREAD
EC2_GAHP GCE_GAHP

Daemons MASTER SHARED_PORT
COLLECTOR NEGOTIATOR
SCHEDD SHADOW
STARTD STARTER
HAD GRIDMANAGER
KBDD DEFRAG
GANGLIAD DAGMAN
ROOSTER

Other REPLICATION JOB_ROUTER
SUBMIT TOOL

$(DETECTED_CPUS)
The integer number of hyper-threaded CPUs, as given by $(DETECTED_CORES), when is True. The integer
number of physical (non hyper-threaded) CPUs, as given by $(DETECTED_PHYSICAL_CPUS), when is False.

$(DETECTED_PHYSICAL_CPUS)
The integer number of physical (non hyper-threaded) CPUs. This will be equal the number of unique CPU IDs.

$(DETECTED_CPUS_LIMIT)
An integer value which is set to the minimum of $(DETECTED_CPUS) and values from the environment variables
OMP_THREAD_LIMIT and SLURM_CPUS_ON_NODE. It intended for use as the value of to insure that the number of
CPUS that a condor_startd will provision does not exceed the limits indicated by the environment. Defaults to
$(DETECTED_CPUS) when there is no environment variable that sets a lower value.

This second set of macros are entries whose default values are determined automatically at run time but which can be
overwritten.

$(ARCH)
Defines the string used to identify the architecture of the local machine to HTCondor. The condor_startd will
advertise itself with this attribute so that users can submit binaries compiled for a given platform and force them
to run on the correct machines. will append a requirement to the job ClassAd that it must run on the same and
of the machine where it was submitted, unless the user specifies and/or explicitly in their submit file. See the
manual page (doc:/man-pages/condor_submit) for details.

$(OPSYS)
Defines the string used to identify the operating system of the local machine to HTCondor. If it is not defined in
the configuration file, HTCondor will automatically insert the operating system of this machine as determined
by uname.

$(OPSYS_VER)
Defines the integer used to identify the operating system version number.

$(OPSYS_AND_VER)
Defines the string used prior to HTCondor version 7.7.2 as $(OPSYS).

$(UNAME_ARCH)
The architecture as reported by uname (2)’s machine field. Always the same as on Windows.

154 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

$(UNAME_OPSYS)
The operating system as reported by uname (2)’s sysname field. Always the same as on Windows.

$(DETECTED_MEMORY)
The amount of detected physical memory (RAM) in MiB.

$(DETECTED_CORES)
The number of CPU cores that the operating system schedules. On machines that support hyper-threading, this
will be the number of hyper-threads.

$(PID)
The process ID for the daemon or tool.

$(PPID)
The process ID of the parent process for the daemon or tool.

$(USERNAME)
The user name of the UID of the daemon or tool. For daemons started as root, but running under another UID
(typically the user condor), this will be the other UID.

$(FILESYSTEM_DOMAIN)
Defaults to the fully qualified host name of the machine it is evaluated on. See the Configuration Macros section,
Shared File System Configuration File Entries for the full description of its use and under what conditions it
could be desirable to change it.

$(UID_DOMAIN)
Defaults to the fully qualified host name of the machine it is evaluated on. See the Configuration Macros section
for the full description of this configuration variable.

$(CONFIG_ROOT)
Set to the directory where the the main config file will be read prior to reading any config files. The value will
usually be /etc/condor for an RPM install, C:\Condor for a Windows MSI install and the directory part of the
CONDOR_CONFIG environment variable for a tarball install. This variable will not be set when CONDOR_CONFIG
is set to ONLY_ENV so that no configuration files are read.

Since $(ARCH) and $(OPSYS) will automatically be set to the correct values, we recommend that you do not overwrite
them.

5.3.13 Configuration Templates

Achieving certain behaviors in an HTCondor pool often requires setting the values of a number of configuration macros
in concert with each other. We have added configuration templates as a way to do this more easily, at a higher level,
without having to explicitly set each individual configuration macro.

Configuration templates are pre-defined; users cannot define their own templates.

Note that the value of an individual configuration macro that is set by a configuration template can be overridden by
setting that configuration macro later in the configuration.

Detailed information about configuration templates (such as the macros they set) can be obtained using the use option
(see the condor_config_val manual page). (This document does not contain such information because the command is
a better way to obtain it.)

5.3. Introduction to Configuration 155

HTCondor Manual, Release 23.6.2

Configuration Templates: Using Predefined Sets of Configuration

Predefined sets of configuration can be identified and incorporated into the configuration using the syntax

use <category name> : <template name>

The use key word is case insensitive. There are no requirements for white space characters surrounding the colon
character. More than one <template name> identifier may be placed within a single use line. Separate the names by
a space character. There is no mechanism by which the administrator may define their own custom <category name>
or <template name>.

Each predefined <category name> has a fixed, case insensitive name for the sets of configuration that are predefined.
Placement of a use line in the configuration brings in the predefined configuration it identifies.

Some of the configuration templates take arguments (as described below).

Available Configuration Templates

There are four <category name> values. Within a category, a predefined, case insensitive name identifies the set of
configuration it incorporates.

ROLE category
Describes configuration for the various roles that a machine might play within an HTCondor pool. The config-
uration will identify which daemons are running on a machine.

•

Settings needed for when a single machine is the entire pool.

•

Settings needed to allow this machine to submit jobs to the pool. May be combined with Execute and
CentralManager roles.

•

Settings needed to allow this machine to execute jobs. May be combined with Submit and
CentralManager roles.

•

Settings needed to allow this machine to act as the central manager for the pool. May be combined with
Submit and Execute roles.

FEATURE category
Describes configuration for implemented features.

•

Enables the use of -rset to the machine with this configuration. Note that there are security implications
for use of this configuration, as it potentially permits the arbitrary modification of configuration. Variable
must also be defined.

•

Enables the use of -set to the machine with this configuration. Note that there are security implications
for use of this configuration, as it potentially permits the arbitrary modification of configuration. Variable
must also be defined.

156 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

•

Sets configuration based on detection with the tool, and defines a custom resource using the name GPUs.
Supports both OpenCL and CUDA, if detected. Automatically includes the GPUsMonitor feature. Optional
discovery_args are passed to

•

Also adds configuration to report the usage of NVidia GPUs.

•

Configures a custom machine resource monitor with the given name, mode, period, executable, and metrics.
See Startd Cron for the definitions of these terms.

•

Sets up a partitionable slot of the specified slot type number and allocation (defaults for slot_type_num and
allocation are 1 and 100% respectively). See the condor_startd Policy Configuration for information on
partitionable slot policies.

•

Sets up a number of static slots of the specified slot type number (defaults for slot_type_num and num_slots
are 1 and $(NUM_CPUS) respectively). The number of slots will be equal to num_slots. If no value is
provided for the allocation, the default is to divide 100% of the machine resources evenly across the slots.

• Sets up a condor_schedd job transform that assigns an accounting group to each job as it is submitted. The
accounting group is determined by mapping the Owner attribute of the job using the given map file, which
should specify the allowed accounting groups each Owner is permitted to use. If the submitted job has
an accounting group, that is treated as a requested accounting group and validated against the map. If the
optional check_request argument is true or not present submission will fail if the requested accounting
group is present and not valid. If the argument is false, the requested accounting group will be ignored if it
is not valid.

• Defines a condor_schedd usermap named map_name using the given map file.

• Sets up a condor_schedd job transform that sets the dst_attr attribute of each job as it is submitted. The
value of dst_attr is determined by mapping the src_attr of the job using the usermap named map_name. If
the optional map_filename argument is specified, then this metaknob also defines a condor_schedd usermap
named map_Name using the given map file.

•

Create a one-shot condor_startd job hook. (See Startd Cron for more information about job hooks.)

•

Create a periodic-shot condor_startd job hook. (See Startd Cron for more information about job hooks.)

•

Create a (nearly) continuous condor_startd job hook. (See Startd Cron for more information about job
hooks.)

•

Create a one-shot condor_schedd job hook. (See Startd Cron for more information about job hooks.)

•

Create a periodic-shot condor_schedd job hook. (See Startd Cron for more information about job hooks.)

•

5.3. Introduction to Configuration 157

HTCondor Manual, Release 23.6.2

Create a (nearly) continuous condor_schedd job hook. (See Startd Cron for more information about job
hooks.)

•

Create a one-shot job hook. (See Startd Cron for more information about job hooks.)

•

Create a periodic job hook. (See Startd Cron for more information about job hooks.)

•

Create a (nearly) continuous job hook. (See Startd Cron for more information about job hooks.)

•

Sets configuration that enables the condor_credd and condor_credmon_oauth daemons, which allow for
the automatic renewal of user-supplied OAuth2 credentials. See section Enabling the Fetching and Use of
OAuth2 Credentials for more information.

•

Sets configuration that enables to run as a daemon. polls job history ClassAds and pushes them to an
Elasticsearch index, see section Elasticsearch for more information.

•

Configuration values used in the UWCS_DESKTOP policy. (Note that these values were pre-
viously in the parameter table; configuration that uses these values will have to use the
UWCS_Desktop_Policy_Values template. For example, POLICY : UWCS_Desktop uses the FEATURE
: UWCS_Desktop_Policy_Values template.)

•

•

Sets configuration that will put some common cloud-related attributes in the slot ads. Use the version
which specifies the cloud you’re using. See Common Cloud Attributes for details.

•

Sets configuration that will cause job ads to track the instance IDs of slots that they ran on (if available).

POLICY category
Describes configuration for the circumstances under which machines choose to run jobs.

•

Always start jobs and run them to completion, without consideration of condor_negotiator generated pre-
emption or suspension. This is the default policy, and it is intended to be used with dedicated resources. If
this policy is used together with the Limit_Job_Runtimes policy, order the specification by placing this
Always_Run_Jobs policy first.

•

Jobs which specify a checkpoint destination must specify a checkpoint destination that the AP knows how to
clean up (that has a matching entry in).

•

This was the default policy before HTCondor version 8.1.6. It is intended to be used with desktop machines not
exclusively running HTCondor jobs. It injects UWCS into the name of some configuration variables.

•

158 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

An updated and re-implementation of the UWCS_Desktop policy, but without the UWCS naming of some config-
uration variables.

•

Limits running jobs to a maximum of the specified time using preemption. (The default limit is 24 hours.) This
policy does not work while the machine is draining; use the following policy instead.

If this policy is used together with the Always_Run_Jobs policy, order the specification by placing this
Limit_Job_Runtimes policy second.

•

Limits running jobs to a maximum of the specified time using preemption. (The default limit is 24 hours).

•

Limits running jobs to a maximum of the specified time by placing them on hold immediately (ignoring any job
retirement time). (The default limit is 24 hours).

•

If the startd observes the number of CPU cores used by the job exceed the number of cores in the slot by more
than 0.8 on average over the past minute, preempt the job immediately ignoring any job retirement time.

•

If the startd observes the number of CPU cores used by the job exceed the number of cores in the slot by more than
0.8 on average over the past minute, immediately place the job on hold ignoring any job retirement time. The job
will go on hold with a reasonable hold reason in job attribute and a value of 101 in job attribute . The hold reason
and code can be customized by specifying HOLD_REASON_CPU_EXCEEDED and HOLD_SUBCODE_CPU_EXCEEDED
respectively.

•

If the startd observes the amount of disk space used by the job exceed the disk in the slot, preempt the job
immediately ignoring any job retirement time.

•

If the startd observes the amount of disk space used by the job exceed the disk in the slot, immediately place
the job on hold ignoring any job retirement time. The job will go on hold with a reasonable hold reason in
job attribute and a value of 104 in job attribute . The hold reason and code can be customized by specifying
HOLD_REASON_DISK_EXCEEDED and HOLD_SUBCODE_DISK_EXCEEDED respectively.

•

If the startd observes the memory usage of the job exceed the memory provisioned in the slot, preempt the job
immediately ignoring any job retirement time.

•

If the startd observes the memory usage of the job exceed the memory provisioned in the slot, immediately place
the job on hold ignoring any job retirement time. The job will go on hold with a reasonable hold reason in
job attribute and a value of 102 in job attribute . The hold reason and code can be customized by specifying
HOLD_REASON_MEMORY_EXCEEDED and HOLD_SUBCODE_MEMORY_EXCEEDED respectively.

•

Preempt jobs according to the specified policy. policy_variable must be the name of a configuration macro
containing an expression that evaluates to True if the job should be preempted.

See an example here: Configuration Template Examples.

5.3. Introduction to Configuration 159

HTCondor Manual, Release 23.6.2

•

Add the given policy to the expression; if the expression is defined, policy_variable is prepended to the
existing expression; otherwise is simply set to the value of the policy_variable macro.

See an example here: Configuration Template Examples.

•

Publish the number of CPU cores being used by the job into the slot ad as attribute . This value will be the
average number of cores used by the job over the past minute, sampling every 5 seconds.

SECURITY category
Describes configuration for an implemented security model.

•

The default security model (based on IPs and DNS names). Do not combine with User_Based security.

•

Grants permissions to an administrator and uses With_Authentication. Do not combine with
Host_Based security.

•

Requires both authentication and integrity checks.

•

Requires authentication, encryption, and integrity checks.

Configuration Template Transition Syntax

For pools that are transitioning to using this new syntax in configuration, while still having some tools and daemons
with HTCondor versions earlier than 8.1.6, special syntax in the configuration will cause those daemons to fail upon
start up, rather than use the new, but misinterpreted, syntax. Newer daemons will ignore the extra syntax. Placing the
@ character before the use key word causes the older daemons to fail when they attempt to parse this syntax.

As an example, consider the condor_startd as it starts up. A condor_startd previous to HTCondor version 8.1.6 fails
to start when it sees:

@use feature : GPUs

Running an older also identifies the @use line as being bad. A condor_startd of HTCondor version 8.1.6 or more recent
sees

use feature : GPUs

Configuration Template Examples

• Preempt a job if its memory usage exceeds the requested memory:

MEMORY_EXCEEDED = (isDefined(MemoryUsage) && MemoryUsage > RequestMemory)
use POLICY : PREEMPT_IF(MEMORY_EXCEEDED)

• Put a job on hold if its memory usage exceeds the requested memory:

160 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

MEMORY_EXCEEDED = (isDefined(MemoryUsage) && MemoryUsage > RequestMemory)
use POLICY : WANT_HOLD_IF(MEMORY_EXCEEDED, 102, memory usage exceeded request_
→˓memory)

• Update dynamic GPU information every 15 minutes:

use FEATURE : StartdCronPeriodic(DYNGPU, 15*60, $(LOCAL_DIR)\dynamic_gpu_info.pl,
→˓$(LIBEXEC)\condor_gpu_discovery -dynamic)

where dynamic_gpu_info.pl is a simple perl script that strips off the DetectedGPUs line from :

#!/usr/bin/env perl
my @attrs = `@ARGV`;
for (@attrs) {

next if ($_ =~ /^Detected/i);
print $_;

}

5.3.14 Configuring HTCondor for Multiple Platforms

A single, initial configuration file may be used for all platforms in an HTCondor pool, with platform-specific settings
placed in separate files. This greatly simplifies administration of a heterogeneous pool by allowing specification of
platform-independent, global settings in one place, instead of separately for each platform. This is made possible by
treating the configuration variable as a list of files, instead of a single file. Of course, this only helps when using a shared
file system for the machines in the pool, so that multiple machines can actually share a single set of configuration files.

With multiple platforms, put all platform-independent settings (the vast majority) into the single initial configuration
file, which will be shared by all platforms. Then, set the configuration variable from that global configuration file to
specify both a platform-specific configuration file and optionally, a local, machine-specific configuration file.

The name of platform-specific configuration files may be specified by using $(ARCH) and $(OPSYS), as defined auto-
matically by HTCondor. For example, for 32-bit Intel Windows 7 machines and 64-bit Intel Linux machines, the files
ought to be named:

$ condor_config.INTEL.WINDOWS
condor_config.X86_64.LINUX

Then, assuming these files are in the directory defined by the ETC configuration variable, and machine-specific config-
uration files are in the same directory, named by each machine’s host name, becomes:

LOCAL_CONFIG_FILE = $(ETC)/condor_config.$(ARCH).$(OPSYS), \
$(ETC)/$(HOSTNAME).local

Platform-Specific Configuration File Settings

The configuration variables that are truly platform-specific are:

Full path to the installed HTCondor binaries. While the configuration files may be shared among different plat-
forms, the binaries certainly cannot. Therefore, maintain separate release directories for each platform in the
pool.

The full path to the mail program.

5.3. Introduction to Configuration 161

HTCondor Manual, Release 23.6.2

Which devices in /dev should be treated as console devices.

Which daemons the should start up. The reason this setting is platform-specific is to distinguish the condor_kbdd.
It is needed on many Linux and Windows machines, and it is not needed on other platforms.

Reasonable defaults for all of these configuration variables will be found in the default configuration files inside a
given platform’s binary distribution (except the , since the location of the HTCondor binaries and libraries is in-
stallation specific). With multiple platforms, use one of the condor_config files from either running or from the
$(RELEASE_DIR)/etc/examples/condor_config.generic file, take these settings out, save them into a platform-specific
file, and install the resulting platform-independent file as the global configuration file. Then, find the same settings from
the configuration files for any other platforms to be set up, and put them in their own platform-specific files. Finally,
set the configuration variable to point to the appropriate platform-specific file, as described above.

Not even all of these configuration variables are necessarily going to be different. For example, if an installed mail
program understands the -s option in /usr/local/bin/mail on all platforms, the macro may be set to that in the
global configuration file, and not define it anywhere else. For a pool with only Linux or Windows machines, the will
be the same for each, so there is no reason not to put that in the global configuration file.

Other Uses for Platform-Specific Configuration Files

An installation may want other configuration variables to be platform-specific. Perhaps a different policy is desired for
one of the platforms. Perhaps different people should get the e-mail about problems with the different platforms. There
is nothing hard-coded about any of this. What is shared and what should not shared is entirely configurable.

Since the macro can be an arbitrary list of files, an installation can even break up the global, platform-independent
settings into separate files. In fact, the global configuration file might only contain a definition for , and all other
configuration variables would be placed in separate files.

Different people may be given different permissions to change different HTCondor settings. For example, if a user is
to be able to change certain settings, but nothing else, those settings may be placed in a file which was early in the list,
to give that user write permission on that file. Then, include all the other files after that one. In this way, if the user
was attempting to change settings that the user should not be permitted to change, the settings would be overridden.

This mechanism is quite flexible and powerful. For very specific configuration needs, they can probably be met by
using file permissions, the configuration variable, and imagination.

5.4 Configuration Macros

The section contains a list of the individual configuration macros for HTCondor. Before attempting to set up HTCon-
dor configuration, you should probably read the Introduction to Configuration section and possibly the Configuration
Templates section.

The settings that control the policy under which HTCondor will start, suspend, resume, vacate or kill jobs are described
in condor_startd Policy Configuration, not in this section.

162 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

5.4.1 HTCondor-wide Configuration File Entries

This section describes settings which affect all parts of the HTCondor system. Other system-wide settings can be found
in Network-Related Configuration File Entries and Shared File System Configuration File Macros.

SUBSYSTEM¶
Various configuration macros described below may include in the macro name. This allows for one general
macro name to apply to specific subsystems via a common pattern. Just replace the part of the given macro with
a valid HTCondor subsystem name to apply that macro. Note that some configuration macros with only work
for select subsystems. List of HTCondor Subsystems:

GAHPs C_GAHP C_GAHP_WORKER_THREAD
EC2_GAHP GCE_GAHP

Daemons MASTER SHARED_PORT
COLLECTOR NEGOTIATOR
SCHEDD SHADOW
STARTD STARTER
HAD GRIDMANAGER
KBDD DEFRAG
GANGLIAD DAGMAN
ROOSTER

Other REPLICATION JOB_ROUTER
SUBMIT TOOL

CONDOR_HOST¶
This macro is used to define the $(COLLECTOR_HOST) macro. Normally the condor_collector and con-
dor_negotiator would run on the same machine. If for some reason they were not run on the same machine,
$(CONDOR_HOST) would not be needed. Some of the host-based security macros use $(CONDOR_HOST) by de-
fault. See the Host-Based Security in HTCondor section on Setting up IP/host-based security in HTCondor for
details.

COLLECTOR_HOST¶
The host name of the machine where the condor_collector is running for your pool. Normally, it is defined
relative to the $(CONDOR_HOST) macro. There is no default value for this macro; must be defined for the pool
to work properly.

In addition to defining the host name, this setting can optionally be used to specify the network port of the
condor_collector. The port is separated from the host name by a colon (‘:’). For example,

COLLECTOR_HOST = $(CONDOR_HOST):1234

If no port is specified, the default port of 9618 is used. Using the default port is recommended for most sites. It is
only changed if there is a conflict with another service listening on the same network port. For more information
about specifying a non-standard port for the condor_collector daemon, see Port Usage in HTCondor.

Multiple condor_collector daemons may be running simultaneously, if is defined with a comma separated list
of hosts. Multiple condor_collector daemons may run for the implementation of high availability; see High
Availability of the Central Manager for details. With more than one running, updates are sent to all. With more
than one running, queries are sent to one of the condor_collector daemons, chosen at random.

COLLECTOR_PORT¶
The default port used when contacting the condor_collector and the default port the condor_collector listens
on if no port is specified. This variable is referenced if no port is given and there is no other means to find the
condor_collector port. The default value is 9618.

5.4. Configuration Macros 163

HTCondor Manual, Release 23.6.2

NEGOTIATOR_HOST¶
This configuration variable is no longer used. It previously defined the host name of the machine where the
condor_negotiator is running. At present, the port where the condor_negotiator is listening is dynamically
allocated.

CONDOR_VIEW_HOST¶
A list of HTCondorView servers, separated by commas and/or spaces. Each HTCondorView server is denoted
by the host name of the machine it is running on, optionally appended by a colon and the port number. This
service is optional, and requires additional configuration to enable it. There is no default value for . If is not
defined, no HTCondorView server is used. See Configuring The HTCondorView Server for more details.

SCHEDD_HOST¶
The host name of the machine where the condor_schedd is running for your pool. This is the host that queues
submitted jobs. If the host specifies or , that name must be included in the form name@hostname. In most condor
installations, there is a condor_schedd running on each host from which jobs are submitted. The default value of
is the current host with the optional name included. For most pools, this macro is not defined, nor does it need
to be defined.

RELEASE_DIR¶
The full path to the HTCondor release directory, which holds the bin, etc, lib, and sbin directories. Other
macros are defined relative to this one. There is no default value for .

BIN¶
This directory points to the HTCondor directory where user-level programs are installed. The default value is
$(RELEASE_DIR)/bin.

LIB¶
This directory points to the HTCondor directory containing its libraries. On Windows, libraries are located in .

LIBEXEC¶
This directory points to the HTCondor directory where support commands that HTCondor needs will be placed.
Do not add this directory to a user or system-wide path.

INCLUDE¶
This directory points to the HTCondor directory where header files reside. The default value is
$(RELEASE_DIR)/include. It can make inclusion of necessary header files for compilation of programs (such as
those programs that use libcondorapi.a) easier through the use of .

SBIN¶
This directory points to the HTCondor directory where HTCondor’s system binaries (such as the binaries for
the HTCondor daemons) and administrative tools are installed. Whatever directory $(SBIN) points to ought
to be in the PATH of users acting as HTCondor administrators. The default value is $(BIN) in Windows and
$(RELEASE_DIR)/sbin on all other platforms.

LOCAL_DIR¶
The location of the local HTCondor directory on each machine in your pool. The default value is
$(RELEASE_DIR) on Windows and $(RELEASE_DIR)/hosts/$(HOSTNAME) on all other platforms.

Another possibility is to use the condor user’s home directory, which may be specified with $(TILDE). For
example:

LOCAL_DIR = $(tilde)

LOG¶
Used to specify the directory where each HTCondor daemon writes its log files. The names of the log files
themselves are defined with other macros, which use the $(LOG) macro by default. The log directory also acts as
the current working directory of the HTCondor daemons as the run, so if one of them should produce a core file
for any reason, it would be placed in the directory defined by this macro. The default value is $(LOCAL_DIR)/log.

164 Chapter 5. Administrators’ Manual

mailto:name@hostname

HTCondor Manual, Release 23.6.2

Do not stage other files in this directory; any files not created by HTCondor in this directory are subject to
removal.

RUN¶
A path and directory name to be used by the HTCondor init script to specify the directory where the should write
its process ID (PID) file. The default if not defined is $(LOG).

SPOOL¶
The spool directory is where certain files used by the condor_schedd are stored, such as the job queue file. The
spool also stores all input and output files for remotely-submitted jobs and all intermediate or checkpoint files.
Therefore, you will want to ensure that the spool directory is located on a partition with enough disk space. If a
given machine is only set up to execute HTCondor jobs and not submit them, it would not need a spool directory
(or this macro defined). The default value is $(LOCAL_DIR)/spool. The condor_schedd will not function if is
not defined.

Do not stage other files in this directory; any files not created by HTCondor in this directory are subject to
removal.

EXECUTE¶
This directory acts as a place to create the scratch directory of any HTCondor job that is executing on the local
machine. The scratch directory is the destination of any input files that were specified for transfer. It also serves
as the job’s working directory if the job is using file transfer mode and no other working directory was specified.
If a given machine is set up to only submit jobs and not execute them, it would not need an execute directory,
and this macro need not be defined. The default value is $(LOCAL_DIR)/execute. The condor_startd will not
function if is undefined. To customize the execute directory independently for each batch slot, use .

Do not stage other files in this directory; any files not created by HTCondor in this directory are subject to
removal.

Ideally, this directory should not be placed under /tmp or /var/tmp, if it is, HTCondor loses the ability to make
private instances of /tmp and /var/tmp for jobs.

ETC¶
This directory contains configuration and credential files used by the HTCondor daemons. The default value is
$(LOCAL_DIR). For Linux package installations, the value /etc/condor is used.

TMP_DIR¶
A directory path to a directory where temporary files are placed by various portions of the HTCondor system.
The daemons and tools that use this directory are the condor_gridmanager, when using the -rset option, systems
that use lock files when configuration variable is True, the Web Service API, and the condor_credd daemon.
There is no default value.

If both and are defined, the value set for is used and is ignored.

TEMP_DIR¶
A directory path to a directory where temporary files are placed by various portions of the HTCondor system.
The daemons and tools that use this directory are the condor_gridmanager, when using the -rset option, systems
that use lock files when configuration variable is True, the Web Service API, and the condor_credd daemon.
There is no default value.

If both and are defined, the value set for is used and is ignored.

SLOT<N>_EXECUTE¶
Specifies an execute directory for use by a specific batch slot. <N> represents the number of the batch slot, such
as 1, 2, 3, etc. This execute directory serves the same purpose as , but it allows the configuration of the directory
independently for each batch slot. Having slots each using a different partition would be useful, for example,
in preventing one job from filling up the same disk that other jobs are trying to write to. If this parameter is
undefined for a given batch slot, it will use as the default. Note that each slot will advertise and for the partition
containing its execute directory.

5.4. Configuration Macros 165

HTCondor Manual, Release 23.6.2

LOCAL_CONFIG_FILE¶
Identifies the location of the local, machine-specific configuration file for each machine in the pool. The two
most common choices would be putting this file in the $(LOCAL_DIR), or putting all local configuration files for
the pool in a shared directory, each one named by host name. For example,

LOCAL_CONFIG_FILE = $(LOCAL_DIR)/condor_config.local

or,

LOCAL_CONFIG_FILE = $(release_dir)/etc/$(hostname).local

or, not using the release directory

LOCAL_CONFIG_FILE = /full/path/to/configs/$(hostname).local

The value of is treated as a list of files, not a single file. The items in the list are delimited by either commas or
space characters. This allows the specification of multiple files as the local configuration file, each one processed
in the order given (with parameters set in later files overriding values from previous files). This allows the use
of one global configuration file for multiple platforms in the pool, defines a platform-specific configuration file
for each platform, and uses a local configuration file for each machine. If the list of files is changed in one
of the later read files, the new list replaces the old list, but any files that have already been processed remain
processed, and are removed from the new list if they are present to prevent cycles. See Executing a Program
to Produce Configuration Macros for directions on using a program to generate the configuration macros that
would otherwise reside in one or more files as described here. If is not defined, no local configuration files are
processed. For more information on this, see Configuring HTCondor for Multiple Platforms.

If all files in a directory are local configuration files to be processed, then consider using .

REQUIRE_LOCAL_CONFIG_FILE¶
A boolean value that defaults to True. When True, HTCondor exits with an error, if any file listed in cannot
be read. A value of False allows local configuration files to be missing. This is most useful for sites that have
both large numbers of machines in the pool and a local configuration file that uses the $(HOSTNAME) macro in
its definition. Instead of having an empty file for every host in the pool, files can simply be omitted.

LOCAL_CONFIG_DIR¶
A directory may be used as a container for local configuration files. The files found in the directory are sorted
into lexicographical order by file name, and then each file is treated as though it was listed in . is processed before
any files listed in , and is checked again after processing the list. It is a list of directories, and each directory
is processed in the order it appears in the list. The process is not recursive, so any directories found inside the
directory being processed are ignored. See also .

USER_CONFIG_FILE¶
The file name of a configuration file to be parsed after other local configuration files and before environment
variables set configuration. Relevant only if HTCondor daemons are not run as root on Unix platforms or Local
System on Windows platforms. The default is $(HOME)/.condor/user_config on Unix platforms. The de-
fault is %USERPROFILE\.condor\user_config on Windows platforms. If a fully qualified path is given, that is
used. If a fully qualified path is not given, then the Unix path $(HOME)/.condor/ prefixes the file name given
on Unix platforms, or the Windows path %USERPROFILE\.condor\ prefixes the file name given on Windows
platforms.

The ability of a user to use this user-specified configuration file can be disabled by setting this variable to the
empty string:

USER_CONFIG_FILE =

LOCAL_CONFIG_DIR_EXCLUDE_REGEXP¶
A regular expression that specifies file names to be ignored when looking for configuration files within the

166 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

directories specified via . The default expression ignores files with names beginning with a ‘.’ or a ‘#’, as well
as files with names ending in ‘~’. This avoids accidents that can be caused by treating temporary files created by
text editors as configuration files.

CONDOR_IDS¶
The User ID (UID) and Group ID (GID) pair that the HTCondor daemons should run as, if the daemons are
spawned as root. This value can also be specified in the environment variable. If the HTCondor daemons
are not started as root, then neither this configuration macro nor the environment variable are used. The value
is given by two integers, separated by a period. For example, CONDOR_IDS = 1234.1234. If this pair is not
specified in either the configuration file or in the environment, and the HTCondor daemons are spawned as root,
then HTCondor will search for a condor user on the system, and run as that user’s UID and GID. See User
Accounts in HTCondor on Unix Platforms on UIDs in HTCondor for more details.

CONDOR_ADMIN¶
The email address that HTCondor will send mail to if something goes wrong in the pool. For example, if a daemon
crashes, the can send an obituary to this address with the last few lines of that daemon’s log file and a brief message
that describes what signal or exit status that daemon exited with. The default value is root@$(FULL_HOSTNAME).

<SUBSYS>_ADMIN_EMAIL¶
The email address that HTCondor will send mail to if something goes wrong with the named . Identical to , but
done on a per subsystem basis. There is no default value.

List of possible subsystems to set can be found at .

CONDOR_SUPPORT_EMAIL¶
The email address to be included at the bottom of all email HTCondor sends out under the label “Email address
of the local HTCondor administrator:”. This is the address where HTCondor users at your site should send their
questions about HTCondor and get technical support. If this setting is not defined, HTCondor will use the address
specified in (described above).

EMAIL_SIGNATURE¶
Every e-mail sent by HTCondor includes a short signature line appended to the body. By default, this signature
includes the URL to the global HTCondor project website. When set, this variable defines an alternative signature
line to be used instead of the default. Note that the value can only be one line in length. This variable could be
used to direct users to look at local web site with information specific to the installation of HTCondor.

MAIL¶
The full path to a mail sending program that uses -s to specify a subject for the message. On all platforms, the
default shipped with HTCondor should work. Only if you installed things in a non-standard location on your
system would you need to change this setting. The default value is $(BIN)/condor_mail.exe on Windows and
/usr/bin/mail on all other platforms. The condor_schedd will not function unless is defined. For security
reasons, non-Windows platforms should not use this setting and should use instead.

SENDMAIL¶
The full path to the sendmail executable. If defined, which it is by default on non-Windows platforms, sendmail
is used instead of the mail program defined by .

MAIL_FROM¶
The e-mail address that notification e-mails appear to come from. Contents is that of the From header. There is
no default value; if undefined, the From header may be nonsensical.

SMTP_SERVER¶
For Windows platforms only, the host name of the server through which to route notification e-mail. There is no
default value; if undefined and the debug level is at FULLDEBUG, an error message will be generated.

RESERVED_SWAP¶
The amount of swap space in MiB to reserve for this machine. HTCondor will not start up more condor_shadow
processes if the amount of free swap space on this machine falls below this level. The default value is 0, which

5.4. Configuration Macros 167

HTCondor Manual, Release 23.6.2

disables this check. It is anticipated that this configuration variable will no longer be used in the near future. If
is not set to 0, the value of is used.

DISK¶
Tells HTCondor how much disk space (in kB) to advertise as being available for use by jobs. If is not specified,
HTCondor will advertise the amount of free space on your execute partition, minus .

RESERVED_DISK¶
Determines how much disk space (in MB) you want to reserve for your own machine. When HTCondor is
reporting the amount of free disk space in a given partition on your machine, it will always subtract this amount.
An example is the condor_startd, which advertises the amount of free space in the $(EXECUTE) directory. The
default value of is zero.

LOCK¶
HTCondor needs to create lock files to synchronize access to various log files. Because of problems with network
file systems and file locking over the years, we highly recommend that you put these lock files on a local partition
on each machine. If you do not have your $(LOCAL_DIR) on a local partition, be sure to change this entry.

Whatever user or group HTCondor is running as needs to have write access to this directory. If you are not
running as root, this is whatever user you started up the as. If you are running as root, and there is a condor
account, it is most likely condor. Otherwise, it is whatever you set in the environment variable, or whatever you
define in the setting in the HTCondor config files. See User Accounts in HTCondor on Unix Platforms on UIDs
in HTCondor for details.

If no value for is provided, the value of is used.

HISTORY¶
Defines the location of the HTCondor history file, which stores information about all HTCondor jobs that have
completed on a given machine. This macro is used by both the condor_schedd which appends the information
and , the user-level program used to view the history file. This configuration macro is given the default value of
$(SPOOL)/history in the default configuration. If not defined, no history file is kept.

ENABLE_HISTORY_ROTATION¶
If this is defined to be true, then the history file will be rotated. If it is false, then it will not be rotated, and it will
grow indefinitely, to the limits allowed by the operating system. If this is not defined, it is assumed to be true.
The rotated files will be stored in the same directory as the history file.

MAX_HISTORY_LOG¶
Defines the maximum size for the history file, in bytes. It defaults to 20MB. This parameter is only used if history
file rotation is enabled.

MAX_HISTORY_ROTATIONS¶
When history file rotation is turned on, this controls how many backup files there are. It default to 2, which
means that there may be up to three history files (two backups, plus the history file that is being currently written
to). When the history file is rotated, and this rotation would cause the number of backups to be too large, the
oldest file is removed.

HISTORY_CONTAINS_JOB_ENVIRONMENT¶
This parameter defaults to true. When set to false, the job’s environment attribute (which can be very large) is
not written to the history file. This may allow many more jobs to be kept in the history before rotation.

HISTORY_HELPER_MAX_CONCURRENCY¶
Specifies the maximum number of concurrent remote queries allowed at a time; defaults to 50. When this
maximum is exceeded, further queries will be queued in a non-blocking manner. Setting this option to 0 disables
remote history access. A remote history access is defined as an invocation of that specifies a -name option to
query a condor_schedd running on a remote machine.

HISTORY_HELPER_MAX_HISTORY¶
Specifies the maximum number of ClassAds to parse on behalf of remote history clients. The default is 10,000.

168 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

This allows the system administrator to indirectly manage the maximum amount of CPU time spent on each
client. Setting this option to 0 disables remote history access.

MAX_JOB_QUEUE_LOG_ROTATIONS¶
The condor_schedd daemon periodically rotates the job queue database file, in order to save disk space. This
option controls how many rotated files are saved. It defaults to 1, which means there may be up to two history
files (the previous one, which was rotated out of use, and the current one that is being written to). When the
job queue file is rotated, and this rotation would cause the number of backups to be larger than the maximum
specified, the oldest file is removed.

CLASSAD_LOG_STRICT_PARSING¶
A boolean value that defaults to True. When True, ClassAd log files will be read using a strict syntax checking
for ClassAd expressions. ClassAd log files include the job queue log and the accountant log. When False,
ClassAd log files are read without strict expression syntax checking, which allows some legacy ClassAd log data
to be read in a backward compatible manner. This configuration variable may no longer be supported in future
releases, eventually requiring all ClassAd log files to pass strict ClassAd syntax checking.

DEFAULT_DOMAIN_NAME¶
The value to be appended to a machine’s host name, representing a domain name, which HTCondor then uses to
form a fully qualified host name. This is required if there is no fully qualified host name in file /etc/hosts or
in NIS. Set the value in the global configuration file, as HTCondor may depend on knowing this value in order to
locate the local configuration file(s). The default value as given in the sample configuration file of the HTCondor
download is bogus, and must be changed. If this variable is removed from the global configuration file, or if the
definition is empty, then HTCondor attempts to discover the value.

NO_DNS¶
A boolean value that defaults to False. When True, HTCondor constructs host names using the host’s IP address
together with the value defined for .

CM_IP_ADDR¶
If neither nor COLLECTOR_IP_ADDR macros are defined, then this macro will be used to determine the IP address
of the central manager (collector daemon). This macro is defined by an IP address.

EMAIL_DOMAIN¶
By default, if a user does not specify notify_user in the submit description file, any email HTCondor sends
about that job will go to “username@UID_DOMAIN”. If your machines all share a common UID domain (so that
you would set to be the same across all machines in your pool), but email to user@UID_DOMAIN is not the right
place for HTCondor to send email for your site, you can define the default domain to use for email. A common
example would be to set to the fully qualified host name of each machine in your pool, so users submitting jobs
from a specific machine would get email sent to user@machine.your.domain, instead of user@your.domain. You
would do this by setting to $(FULL_HOSTNAME). In general, you should leave this setting commented out unless
two things are true: 1) is set to your domain, not $(FULL_HOSTNAME), and 2) email to user@UID_DOMAIN
will not work.

CREATE_CORE_FILES¶
Defines whether or not HTCondor daemons are to create a core file in the directory if something really bad
happens. It is used to set the resource limit for the size of a core file. If not defined, it leaves in place whatever
limit was in effect when the HTCondor daemons (normally the) were started. This allows HTCondor to inherit
the default system core file generation behavior at start up. For Unix operating systems, this behavior can be
inherited from the parent shell, or specified in a shell script that starts HTCondor. If this parameter is set and
True, the limit is increased to the maximum. If it is set to False, the limit is set at 0 (which means that no core
files are created). Core files greatly help the HTCondor developers debug any problems you might be having. By
using the parameter, you do not have to worry about tracking down where in your boot scripts you need to set the
core limit before starting HTCondor. You set the parameter to whatever behavior you want HTCondor to enforce.
This parameter defaults to undefined to allow the initial operating system default value to take precedence, and
is commented out in the default configuration file.

ABORT_ON_EXCEPTION¶

5.4. Configuration Macros 169

mailto:username@UID_DOMAIN
mailto:user@UID_DOMAIN
mailto:user@machine.your.domain
mailto:user@your.domain
mailto:user@UID_DOMAIN

HTCondor Manual, Release 23.6.2

When HTCondor programs detect a fatal internal exception, they normally log an error message and exit. If you
have turned on , in some cases you may also want to turn on so that core files are generated when an exception
occurs. Set the following to True if that is what you want.

Q_QUERY_TIMEOUT¶
Defines the timeout (in seconds) that uses when trying to connect to the condor_schedd. Defaults to 20 seconds.

DEAD_COLLECTOR_MAX_AVOIDANCE_TIME¶
Defines the interval of time (in seconds) between checks for a failed primary condor_collector daemon. If
connections to the dead primary condor_collector take very little time to fail, new attempts to query the primary
condor_collector may be more frequent than the specified maximum avoidance time. The default value equals
one hour. This variable has relevance to flocked jobs, as it defines the maximum time they may be reporting to
the primary condor_collector without the condor_negotiator noticing.

PASSWD_CACHE_REFRESH¶
HTCondor can cause NIS servers to become overwhelmed by queries for uid and group information in large
pools. In order to avoid this problem, HTCondor caches UID and group information internally. This integer
value allows pool administrators to specify (in seconds) how long HTCondor should wait until refreshes a cache
entry. The default is set to 72000 seconds, or 20 hours, plus a random number of seconds between 0 and 60
to avoid having lots of processes refreshing at the same time. This means that if a pool administrator updates
the user or group database (for example, /etc/passwd or /etc/group), it can take up to 6 minutes before
HTCondor will have the updated information. This caching feature can be disabled by setting the refresh interval
to 0. In addition, the cache can also be flushed explicitly by running the command . This configuration variable
has no effect on Windows.

SYSAPI_GET_LOADAVG¶
If set to False, then HTCondor will not attempt to compute the load average on the system, and instead will
always report the system load average to be 0.0. Defaults to True.

NETWORK_MAX_PENDING_CONNECTS¶
This specifies a limit to the maximum number of simultaneous network connection attempts. This is primarily
relevant to condor_schedd, which may try to connect to large numbers of startds when claiming them. The ne-
gotiator may also connect to large numbers of startds when initiating security sessions used for sending MATCH
messages. On Unix, the default for this parameter is eighty percent of the process file descriptor limit. On
windows, the default is 1600.

WANT_UDP_COMMAND_SOCKET¶
This setting, added in version 6.9.5, controls if HTCondor daemons should create a UDP command socket in
addition to the TCP command socket (which is required). The default is True, and modifying it requires restarting
all HTCondor daemons, not just a or SIGHUP.

Normally, updates sent to the condor_collector use UDP, in addition to certain keep alive messages and other
non-essential communication. However, in certain situations, it might be desirable to disable the UDP command
port.

Unfortunately, due to a limitation in how these command sockets are created, it is not possible to define this
setting on a per-daemon basis, for example, by trying to set STARTD.WANT_UDP_COMMAND_SOCKET. At least for
now, this setting must be defined machine wide to function correctly.

If this setting is set to true on a machine running a condor_collector, the pool should be configured to use TCP
updates to that collector (see Using TCP to Send Updates to the condor_collector for more information).

ALLOW_SCRIPTS_TO_RUN_AS_EXECUTABLES¶
A boolean value that, when True, permits scripts on Windows platforms to be used in place of the in a job submit
description file, in place of a pre or post script, or in producing the configuration, for example. Allows a script
to be used in any circumstance previously limited to a Windows executable or a batch file. The default value is
True. See Using Windows Scripts as Job Executables for further description.

OPEN_VERB_FOR_<EXT>_FILES¶

170 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

A string that defines a Windows verb for use in a root hive registry look up. <EXT> defines the file name
extension, which represents a scripting language, also needed for the look up. See Using Windows Scripts as Job
Executables for a more complete description.

ENABLE_CLASSAD_CACHING¶
A boolean value that controls the caching of ClassAds. Caching saves memory when an HTCondor process
contains many ClassAds with the same expressions. The default value is True for all daemons other than the
condor_shadow, condor_starter, and . A value of True enables caching.

STRICT_CLASSAD_EVALUATION¶
A boolean value that controls how ClassAd expressions are evaluated. If set to True, then New ClassAd evalu-
ation semantics are used. This means that attribute references without a MY. or TARGET. prefix are only looked
up in the local ClassAd. If set to the default value of False, Old ClassAd evaluation semantics are used. See
ClassAds: Old and New for details.

CLASSAD_USER_LIBS¶
A comma separated list of paths to shared libraries that contain additional ClassAd functions to be used during
ClassAd evaluation.

CLASSAD_USER_PYTHON_MODULES¶
A comma separated list of python modules to load, which are to be used during ClassAd evaluation. If module
foo is in this list, then function bar can be invoked in ClassAds via the expression python_invoke("foo",
"bar", ...). Any further arguments are converted from ClassAd expressions to python; the function return
value is converted back to ClassAds. The python modules are loaded at configuration time, so any module-level
statements are executed. Module writers can invoke classad.register at the module-level in order to use
python functions directly.

Functions executed by ClassAds should be non-blocking and have no side-effects; otherwise, unpredictable HT-
Condor behavior may occur.

CLASSAD_USER_PYTHON_LIB¶
Specifies the path to the python libraries, which is needed when is set. Defaults to $(LIBEXEC)/
libclassad_python_user.so, and would rarely be changed from the default value.

CONDOR_FSYNC¶
A boolean value that controls whether HTCondor calls fsync() when writing the user job and transaction logs.
Setting this value to False will disable calls to fsync(), which can help performance for condor_schedd log
writes at the cost of some durability of the log contents, should there be a power or hardware failure. The default
value is True.

STATISTICS_TO_PUBLISH¶
A comma and/or space separated list that identifies which statistics collections are to place attributes in ClassAds.
Additional information specifies a level of verbosity and other identification of which attributes to include and
which to omit from ClassAds. The special value NONE disables all publishing, so no statistics will be published; no
option is included. For other list items that define this variable, the syntax defines the two aspects by separating
them with a colon. The first aspect defines a collection, which may specify which daemon is to publish the
statistics, and the second aspect qualifies and refines the details of which attributes to publish for the collection,
including a verbosity level. If the first aspect is ALL, the option is applied to all collections. If the first aspect
is DEFAULT, the option is applied to all collections, with the intent that further list items will specify publishing
that is to be different than the default. This first aspect may be SCHEDD or SCHEDULER to publish Statistics
attributes in the ClassAd of the condor_schedd. It may be TRANSFER to publish file transfer statistics. It may be
to publish Statistics attributes in the ClassAd of the condor_starter. Or, it may be DC or DAEMONCORE to publish
DaemonCore statistics. One or more options are specified after the colon.

5.4. Configuration Macros 171

HTCondor Manual, Release 23.6.2

Op-
tion

Description

0 turns off the publishing of any statistics attributes
1 the default level, where some statistics attributes are and others are omitted
2 the verbose level, where all statistics attributes are published
3 the super verbose level, which is currently unused, but intended to be all statistics attributes published

at the verbose level plus extra information
R include attributes from the most recent time interval; the default
!R omit attributes from the most recent time interval
D include attributes for debugging
!D omit attributes for debugging; the default
Z include attributes even if the attribute’s value is 0
!Z omit attributes when the attribute’s value is 0
L include attributes that represent the lifetime value; the default
!L omit attributes that represent the lifetime value

If this variable is not defined, then the default for each collection is used. If this variable is defined, and the
definition does not specify each possible collection, then no statistics are published for those collections not
defined. If an option specifies conflicting possibilities, such as R!R, then the last one takes precedence and is
applied.

As an example, to cause a verbose setting of the publication of Statistics attributes only for the condor_schedd,
and do not publish any other Statistics attributes:

STATISTICS_TO_PUBLISH = SCHEDD:2

As a second example, to cause all collections other than those for DAEMONCORE to publish at a verbosity setting
of 1, and omit lifetime values, where the DAEMONCORE includes all statistics at the verbose level:

STATISTICS_TO_PUBLISH = DEFAULT:1!L, DC:2RDZL

STATISTICS_TO_PUBLISH_LIST¶
A comma and/or space separated list of statistics attribute names that should be published in updates to the
condor_collector daemon, even though the verbosity specified in would not normally send them. This setting
has the effect of redefining the verbosity level of the statistics attributes that it mentions, so that they will always
match the current statistics publication level as specified in .

STATISTICS_WINDOW_SECONDS¶
An integer value that controls the time window size, in seconds, for collecting windowed daemon statistics.
These statistics are, by convention, those attributes with names that are of the form Recent<attrname>. Any
data contributing to a windowed statistic that is older than this number of seconds is dropped from the statistic.
For example, if STATISTICS_WINDOW_SECONDS = 300, then any jobs submitted more than 300 seconds ago
are not counted in the windowed statistic . Defaults to 1200 seconds, which is 20 minutes.

The window is broken into smaller time pieces called quantum. The window advances one quantum at a time.

STATISTICS_WINDOW_SECONDS_<collection>¶
The same as , but used to override the global setting for a particular statistic collection. Collection names currently
implemented are DC or DAEMONCORE and SCHEDD or SCHEDULER.

STATISTICS_WINDOW_QUANTUM¶
For experts only, an integer value that controls the time quantization that form a time window, in seconds, for
the data structures that maintain windowed statistics. Defaults to 240 seconds, which is 6 minutes. This default
is purposely set to be slightly smaller than the update rate to the condor_collector. Setting a smaller value than
the default increases the memory requirement for the statistics. Graphing of statistics at the level of the quantum
expects to see counts that appear like a saw tooth.

172 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

STATISTICS_WINDOW_QUANTUM_<collection>¶
The same as , but used to override the global setting for a particular statistic collection. Collection names currently
implemented are DC or DAEMONCORE and SCHEDD or SCHEDULER.

TCP_KEEPALIVE_INTERVAL¶
The number of seconds specifying a keep alive interval to use for any HTCondor TCP connection. The default
keep alive interval is 360 (6 minutes); this value is chosen to minimize the likelihood that keep alive packets are
sent, while still detecting dead TCP connections before job leases expire. A smaller value will consume more
operating system and network resources, while a larger value may cause jobs to fail unnecessarily due to network
disconnects. Most users will not need to tune this configuration variable. A value of 0 will use the operating
system default, and a value of -1 will disable HTCondor’s use of a TCP keep alive.

ENABLE_IPV4¶
A boolean with the additional special value of auto. If true, HTCondor will use IPv4 if available, and fail
otherwise. If false, HTCondor will not use IPv4. If auto, which is the default, HTCondor will use IPv4 if it can
find an interface with an IPv4 address, and that address is (a) public or private, or (b) no interface’s IPv6 address
is public or private. If HTCondor finds more than one address of each protocol, only the most public address is
considered for that protocol.

ENABLE_IPV6¶
A boolean with the additional special value of auto. If true, HTCondor will use IPv6 if available, and fail
otherwise. If false, HTCondor will not use IPv6. If auto, which is the default, HTCondor will use IPv6 if it can
find an interface with an IPv6 address, and that address is (a) public or private, or (b) no interface’s IPv4 address
is public or private. If HTCondor finds more than one address of each protocol, only the most public address is
considered for that protocol.

PREFER_IPV4¶
A boolean which will cause HTCondor to prefer IPv4 when it is able to choose. HTCondor will otherwise prefer
IPv6. The default is True.

ADVERTISE_IPV4_FIRST¶
A string (treated as a boolean). If evaluates to True, HTCondor will advertise its IPv4 addresses before its IPv6
addresses; otherwise the IPv6 addresses will come first. Defaults to $(PREFER_IPV4).

IGNORE_TARGET_PROTOCOL_PREFERENCE¶
A string (treated as a boolean). If evaluates to True, the target’s listed protocol preferences will be ignored;
otherwise they will not. Defaults to $(PREFER_IPV4).

IGNORE_DNS_PROTOCOL_PREFERENCE¶
A string (treated as a boolean). evaluates to True, the protocol order returned by the DNS will be ignored;
otherwise it will not. Defaults to $(PREFER_IPV4).

PREFER_OUTBOUND_IPV4¶
A string (treated as a boolean). evaluates to True, HTCondor will prefer IPv4; otherwise it will not. Defaults to
$(PREFER_IPV4).

<SUBSYS>_CLASSAD_USER_MAP_NAMES¶
A string defining a list of names for username-to-accounting group mappings for the specified daemon. Names
must be separated by spaces or commas.

List of possible subsystems to set can be found at .

CLASSAD_USER_MAPFILE_<name>¶
A string giving the name of a file to parse to initialize the map for the given username. Note that this macro is
only used if is defined for the relevant daemon.

The format for the map file is the same as the format for , below.

CLASSAD_USER_MAPDATA_<name>¶
A string containing data to be used to initialize the map for the given username. Note that this macro is only used

5.4. Configuration Macros 173

HTCondor Manual, Release 23.6.2

if is defined for the relevant daemon, and is not defined for the given name.

The format for the map data is the same as the format for the security unified map file (see The Unified Map File
for Authentication for details).

The first field must be * (or a subset name - see below), the second field is a regex that we will match against
the input, and the third field will be the output if the regex matches, the 3 and 4 argument form of the ClassAd
userMap() function (see ClassAd Syntax) expect that the third field will be a comma separated list of values. For
example:

file: groups.mapdata
* John chemistry,physics,glassblowing
* Juan physics,chemistry
* Bob security
* Alice security,math

Here is simple example showing how to configure for testing and experimentation.

configuration statements to create a simple userMap that
can be used by the Schedd as well as by tools like condor_q
#
SCHEDD_CLASSAD_USER_MAP_NAMES = Trust $(SCHEDD_CLASSAD_USER_MAP_NAMES)
TOOL_CLASSAD_USER_MAP_NAMES = Trust $(TOOL_CLASSAD_USER_MAP_NAMES)
CLASSAD_USER_MAPDATA_Trust @=end
* Bob User
* Alice Admin
* /.*/ Nobody

@end
#
test with
condor_q -af:j 'Owner' 'userMap("Trust",Owner)'

Optional submaps: If the first field of the mapfile contains something other than *, then a submap is defined.
To select a submap for lookup, the first argument for userMap() should be “mapname.submap”. For example:

mapdata 'groups' with submaps
* Bob security
* Alice security,math
alt Alice math,hacking

SIGN_S3_URLS¶
A boolean value that, when True, tells HTCondor to convert s3:// URLs into pre-signed https:// URLs.
This allows execute nodes to download from or upload to secure S3 buckets without access to the user’s API
tokens, which remain on the submit node at all times. This value defaults to TRUE but can be disabled if the
administrator has already provided an s3:// plug-in. This value must be set on both the submit node and on the
execute node.

174 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

5.4.2 Daemon Logging Configuration File Entries

These entries control how and where the HTCondor daemons write to log files. Many of the entries in this section
represents multiple macros. There is one for each subsystem (listed in). The macro name for each substitutes with the
name of the subsystem corresponding to the daemon.

<SUBSYS>_LOG¶
Defines the path and file name of the log file for a given subsystem. For example, $(STARTD_LOG) gives the
location of the log file for the condor_startd daemon. The default value for most daemons is the daemon’s name in
camel case, concatenated with Log. For example, the default log defined for the daemon is $(LOG)/MasterLog.
The default value for other subsystems is $(LOG)/<SUBSYS>LOG. The special value SYSLOG causes the daemon
to log via the syslog facility on Linux. If the log file cannot be written to, then the daemon will attempt to log
this into a new file of the name $(LOG)/dprintf_failure.<SUBSYS> before the daemon exits.

List of possible subsystems to set can be found at .

LOG_TO_SYSLOG¶
A boolean value that is False by default. When True, all daemon logs are routed to the syslog facility on Linux.

MAX_<SUBSYS>_LOG¶
Controls the maximum size in bytes or amount of time that a log will be allowed to grow. For any log not
specified, the default is $(MAX_DEFAULT_LOG) , which currently defaults to 10 MiB in size. Values are specified
with the same syntax as .

Note that a log file for the does not use this configuration variable definition. Its implementation is separate. See
.

List of possible subsystems to set can be found at .

MAX_DEFAULT_LOG¶
Controls the maximum size in bytes or amount of time that any log not explicitly specified using will be allowed
to grow. When it is time to rotate a log file, it will be saved to a file with an ISO timestamp suffix. The oldest
rotated file receives the ending .old. The .old files are overwritten each time the maximum number of rotated
files (determined by the value of) is exceeded. The default value is 10 MiB in size. A value of 0 specifies that
the file may grow without bounds. A single integer value is specified; without a suffix, it defaults to specifying
a size in bytes. A suffix is case insensitive, except for Mb and Min; these both start with the same letter, and
the implementation attaches meaning to the letter case when only the first letter is present. Therefore, use the
following suffixes to qualify the integer: Bytes for bytes Kb for KiB, 210 numbers of bytes Mb for MiB, 220

numbers of bytes Gb for GiB, 230 numbers of bytes Tb for TiB, 240 numbers of bytes Sec for seconds Min for
minutes Hr for hours Day for days Wk for weeks

MAX_NUM_<SUBSYS>_LOG¶
An integer that controls the maximum number of rotations a log file is allowed to perform before the oldest one
will be rotated away. Thus, at most MAX_NUM_<SUBSYS>_LOG + 1 log files of the same program coexist at a
given time. The default value is 1.

List of possible subsystems to set can be found at .

TRUNC_<SUBSYS>_LOG_ON_OPEN¶
If this macro is defined and set to True, the affected log will be truncated and started from an empty file with
each invocation of the program. Otherwise, new invocations of the program will append to the previous log file.
By default this setting is False for all daemons.

List of possible subsystems to set can be found at .

<SUBSYS>_LOG_KEEP_OPEN¶
A boolean value that controls whether or not the log file is kept open between writes. When True, the daemon
will not open and close the log file between writes. Instead the daemon will hold the log file open until the log

5.4. Configuration Macros 175

HTCondor Manual, Release 23.6.2

needs to be rotated. When False, the daemon reverts to the previous behavior of opening and closing the log
file between writes. When the $(<SUBSYS>_LOCK) macro is defined, setting $(<SUBSYS>_LOG_KEEP_OPEN)
has no effect, as the daemon will unconditionally revert back to the open/close between writes behavior. On
Windows platforms, the value defaults to True for all daemons. On Linux platforms, the value defaults to True
for all daemons, except the condor_shadow, due to a global file descriptor limit.

List of possible subsystems to set can be found at .

<SUBSYS>_LOCK¶
This macro specifies the lock file used to synchronize append operations to the log file for this subsystem. It
must be a separate file from the $(<SUBSYS>_LOG) file, since the $(<SUBSYS>_LOG) file may be rotated and
you want to be able to synchronize access across log file rotations. A lock file is only required for log files
which are accessed by more than one process. Currently, this includes only the subsystem. This macro is defined
relative to the $(LOCK) macro.

List of possible subsystems to set can be found at .

JOB_QUEUE_LOG¶
A full path and file name, specifying the job queue log. The default value, when not defined is
$(SPOOL)/job_queue.log. This specification can be useful, if there is a solid state drive which is big enough
to hold the frequently written to job_queue.log, but not big enough to hold the whole contents of the spool
directory.

FILE_LOCK_VIA_MUTEX¶
This macro setting only works on Win32 - it is ignored on Unix. If set to be True, then log locking is implemented
via a kernel mutex instead of via file locking. On Win32, mutex access is FIFO, while obtaining a file lock is non-
deterministic. Thus setting to True fixes problems on Win32 where processes (usually shadows) could starve
waiting for a lock on a log file. Defaults to True on Win32, and is always False on Unix.

LOCK_DEBUG_LOG_TO_APPEND¶
A boolean value that defaults to False. This variable controls whether a daemon’s debug lock is used when
appending to the log. When False, the debug lock is only used when rotating the log file. This is more efficient,
especially when many processes share the same log file. When True, the debug lock is used when writing to the
log, as well as when rotating the log file. This setting is ignored under Windows, and the behavior of Windows
platforms is as though this variable were True. Under Unix, the default value of False is appropriate when
logging to file systems that support the POSIX semantics of O_APPEND. On non-POSIX-compliant file systems,
it is possible for the characters in log messages from multiple processes sharing the same log to be interleaved,
unless locking is used. Since HTCondor does not support sharing of debug logs between processes running
on different machines, many non-POSIX-compliant file systems will still avoid interleaved messages without
requiring HTCondor to use a lock. Tests of AFS and NFS have not revealed any problems when appending to
the log without locking.

ENABLE_USERLOG_LOCKING¶
A boolean value that defaults to False on Unix platforms and True on Windows platforms. When True, a user’s
job event log will be locked before being written to. If False, HTCondor will not lock the file before writing.

ENABLE_USERLOG_FSYNC¶
A boolean value that is True by default. When True, writes to the user’s job event log are sync-ed to disk before
releasing the lock.

USERLOG_FILE_CACHE_MAX¶
The integer number of job event log files that the condor_schedd will keep open for writing during an interval of
time (specified by). The default value is 0, causing no files to remain open; when 0, each job event log is opened,
the event is written, and then the file is closed. Individual file descriptors are removed from this count when the
condor_schedd detects that no jobs are currently using them. Opening a file is a relatively time consuming
operation on a networked file system (NFS), and therefore, allowing a set of files to remain open can improve
performance. The value of this variable needs to be set low enough such that the condor_schedd daemon process
does not run out of file descriptors by leaving these job event log files open. The Linux operating system defaults

176 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

to permitting 1024 assigned file descriptors per process; the condor_schedd will have one file descriptor per
running job for the condor_shadow.

USERLOG_FILE_CACHE_CLEAR_INTERVAL¶
The integer number of seconds that forms the time interval within which job event logs will be permitted to
remain open when is greater than zero. The default is 60 seconds. When the interval has passed, all job event
logs that the condor_schedd has permitted to stay open will be closed, and the interval within which job event
logs may remain open between writes of events begins anew. This time interval may be set to a longer duration
if the administrator determines that the condor_schedd will not exceed the maximum number of file descriptors;
a longer interval may yield higher performance due to fewer files being opened and closed.

CREATE_LOCKS_ON_LOCAL_DISK¶
A boolean value utilized only for Unix operating systems, that defaults to True. This variable is only relevant if
is True. When True, lock files are written to a directory named condorLocks, thereby using a local drive to
avoid known problems with locking on NFS. The location of the condorLocks directory is determined by

1. The value of , if defined.

2. The value of , if defined and is not defined.

3. The default value of /tmp, if neither nor is defined.

TOUCH_LOG_INTERVAL¶
The time interval in seconds between when daemons touch their log files. The change in last modification time
for the log file is useful when a daemon restarts after failure or shut down. The last modification date is printed,
and it provides an upper bound on the length of time that the daemon was not running. Defaults to 60 seconds.

LOGS_USE_TIMESTAMP¶
This macro controls how the current time is formatted at the start of each line in the daemon log files. When True,
the Unix time is printed (number of seconds since 00:00:00 UTC, January 1, 1970). When False (the default
value), the time is printed like so: <Month>/<Day> <Hour>:<Minute>:<Second> in the local timezone.

DEBUG_TIME_FORMAT¶
This string defines how to format the current time printed at the start of each line in the daemon log files. The
value is a format string is passed to the C strftime() function, so see that manual page for platform-specific details.
If not defined, the default value is

"%m/%d/%y %H:%M:%S"

<SUBSYS>_DEBUG¶
All of the HTCondor daemons can produce different levels of output depending on how much information is
desired. The various levels of verbosity for a given daemon are determined by this macro. Settings are a comma,
vertical bar, or space-separated list of categories and options. Each category can be followed by a colon and a
single digit indicating the verbosity for that category :1 is assumed if there is no verbosity modifier. Permitted
verbosity values are :1 for normal, :2 for extra messages, and :0 to disable logging of that category of messages.
The primary daemon log will always include category and verbosity D_ALWAYS:1, unless D_ALWAYS:0 is added
to this list. Category and option names are:

D_ANY
This flag turns on all categories of messages Be warned: this will generate about a HUGE amount of output.
To obtain a higher level of output than the default, consider using D_FULLDEBUG before using this option.

D_ALL

This is equivalent to D_ANY D_PID D_FDS D_CAT Be warned: this will generate about a HUGE
amount of output. To obtain a higher level of output than the default, consider using D_FULLDEBUG
before using this option.

D_FAILURE
This category is used for messages that indicate the daemon is unable to continue running. These

5.4. Configuration Macros 177

HTCondor Manual, Release 23.6.2

message are “always” printed unless D_FAILURE:0 is added to the list

D_STATUS
This category is used for messages that indicate what task the daemon is currently doing or progress.
Messages of this category will be always printed unless D_STATUS:0 is added to the list

D_ALWAYS
This category is used for messages that are “always” printed unless D_ALWAYS:0 is configured. These can
be progress or status message, as well as failures that do not prevent the daemon from continuing to operate
such as a failure to start a job. At verbosity 2 this category is equivalent to D_FULLDEBUG below.

D_FULLDEBUG
This level provides verbose output of a general nature into the log files. Frequent log messages for very
specific debugging purposes would be excluded. In those cases, the messages would be viewed by having
that other flag and D_FULLDEBUG both listed in the configuration file. This is equivalent to D_ALWAYS:2

D_DAEMONCORE
Provides log file entries specific to DaemonCore, such as timers the daemons have set and the commands
that are registered. If D_DAEMONCORE:2 is set, expect very verbose output.

D_PRIV
This flag provides log messages about the privilege state switching that the daemons do. See User Accounts
in HTCondor on Unix Platforms on UIDs in HTCondor for details.

D_COMMAND
With this flag set, any daemon that uses DaemonCore will print out a log message whenever a command
comes in. The name and integer of the command, whether the command was sent via UDP or TCP, and
where the command was sent from are all logged. Because the messages about the command used by
condor_kbdd to communicate with the condor_startd whenever there is activity on the X server, and the
command used for keep-alives are both only printed with D_FULLDEBUG enabled, it is best if this setting is
used for all daemons.

D_LOAD
The condor_startd keeps track of the load average on the machine where it is running. Both the general
system load average, and the load average being generated by HTCondor’s activity there are determined.
With this flag set, the condor_startd will log a message with the current state of both of these load averages
whenever it computes them. This flag only affects the condor_startd.

D_KEYBOARD
With this flag set, the condor_startd will print out a log message with the current values for remote and
local keyboard idle time. This flag affects only the condor_startd.

D_JOB
When this flag is set, the condor_startd will send to its log file the contents of any job ClassAd that the
condor_schedd sends to claim the condor_startd for its use. This flag affects only the condor_startd.

D_MACHINE
When this flag is set, the condor_startd will send to its log file the contents of its resource ClassAd when
the condor_schedd tries to claim the condor_startd for its use. This flag affects only the condor_startd.

D_SYSCALLS
This flag is used to make the condor_shadow log remote syscall requests and return values. This can
help track down problems a user is having with a particular job by providing the system calls the job is
performing. If any are failing, the reason for the failure is given. The condor_schedd also uses this flag
for the server portion of the queue management code. With D_SYSCALLS defined in there will be verbose
logging of all queue management operations the condor_schedd performs.

D_MATCH
When this flag is set, the condor_negotiator logs a message for every match.

178 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

D_NETWORK
When this flag is set, all HTCondor daemons will log a message on every TCP accept, connect, and close,
and on every UDP send and receive. This flag is not yet fully supported in the condor_shadow.

D_HOSTNAME
When this flag is set, the HTCondor daemons and/or tools will print verbose messages explaining how they
resolve host names, domain names, and IP addresses. This is useful for sites that are having trouble getting
HTCondor to work because of problems with DNS, NIS or other host name resolving systems in use.

D_SECURITY
This flag will enable debug messages pertaining to the setup of secure network communication, including
messages for the negotiation of a socket authentication mechanism, the management of a session key cache.
and messages about the authentication process itself. See HTCondor’s Security Model for more information
about secure communication configuration. D_SECURITY:2 logging is highly verbose and should be used
only when actively debugging security configuration problems.

D_PROCFAMILY
HTCondor often times needs to manage an entire family of processes, (that is, a process and all descendants
of that process). This debug flag will turn on debugging output for the management of families of processes.

D_ACCOUNTANT
When this flag is set, the condor_negotiator will output debug messages relating to the computation of user
priorities (see Configuration for Central Managers).

D_PROTOCOL
Enable debug messages relating to the protocol for HTCondor’s matchmaking and resource claiming frame-
work.

D_STATS
Enable debug messages relating to the TCP statistics for file transfers. Note that the shadow and starter, by
default, log these statistics to special log files (see and . Note that, as of version 8.5.6, defaults to D_STATS.

D_PID
This flag is different from the other flags, because it is used to change the formatting of all log messages
that are printed, as opposed to specifying what kinds of messages should be printed. If D_PID is set,
HTCondor will always print out the process identifier (PID) of the process writing each line to the log
file. This is especially helpful for HTCondor daemons that can fork multiple helper-processes (such as the
condor_schedd or condor_collector) so the log file will clearly show which thread of execution is generating
each log message.

D_FDS
This flag is different from the other flags, because it is used to change the formatting of all log messages that
are printed, as opposed to specifying what kinds of messages should be printed. If D_FDS is set, HTCondor
will always print out the file descriptor that the open of the log file was allocated by the operating system.
This can be helpful in debugging HTCondor’s use of system file descriptors as it will generally track the
number of file descriptors that HTCondor has open. Note the use of this flag is relatively expensive, so it
should only be enabled when you suspect there is a file descriptor leak.

D_CAT or D_CATEGORY
This flag is different from the other flags, because it is used to change the formatting of all log mes-
sages that are printed, as opposed to specifying what kinds of messages should be printed. If D_CAT or
D_CATEGORY is set, Condor will include the debugging level flags that were in effect for each line of output.
This may be used to filter log output by the level or tag it, for example, identifying all logging output at
level D_SECURITY, or D_ACCOUNTANT.

D_TIMESTAMP
This flag is different from the other flags, because it is used to change the formatting of all log messages
that are printed, as opposed to specifying what kinds of messages should be printed. If D_TIMESTAMP is

5.4. Configuration Macros 179

HTCondor Manual, Release 23.6.2

set, the time at the beginning of each line in the log file with be a number of seconds since the start of the
Unix era. This form of timestamp can be more convenient for tools to process.

D_SUB_SECOND
This flag is different from the other flags, because it is used to change the formatting of all log messages
that are printed, as opposed to specifying what kinds of messages should be printed. If D_SUB_SECOND is
set, the time at the beginning of each line in the log file will contain a fractional part to the seconds field
that is accurate to the millisecond.

List of possible subsystems to set can be found at .

ALL_DEBUG¶
Used to make all subsystems share a debug flag. Set the parameter instead of changing all of the individual
parameters. For example, to turn on all debugging in all subsystems, set ALL_DEBUG = D_ALL.

TOOL_DEBUG¶
Uses the same values (debugging levels) as to describe the amount of debugging information sent to stderr for
HTCondor tools.

Log files may optionally be specified per debug level as follows:

<SUBSYS>_<LEVEL>_LOG¶
The name of a log file for messages at a specific debug level for a specific subsystem. <LEVEL> is defined
by any debug level, but without the D_ prefix. See for the list of debug levels. If the debug level is included in
$(<SUBSYS>_DEBUG), then all messages of this debug level will be written both to the log file defined by and the
log file defined by . As examples, SHADOW_SYSCALLS_LOG specifies a log file for all remote system call debug
messages, and specifies a log file that only captures condor_negotiator debug events occurring with matches.

List of possible subsystems to set can be found at .

MAX_<SUBSYS>_<LEVEL>_LOG¶
See .

TRUNC_<SUBSYS>_<LEVEL>_LOG_ON_OPEN¶
See .

The following macros control where and what is written to the event log, a file that receives job events, but across all
users and user’s jobs.

EVENT_LOG¶
The full path and file name of the event log. There is no default value for this variable, so no event log will be
written, if not defined.

EVENT_LOG_MAX_SIZE¶
Controls the maximum length in bytes to which the event log will be allowed to grow. The log file will grow to
the specified length, then be saved to a file with the suffix .old. The .old files are overwritten each time the log
is saved. A value of 0 specifies that the file may grow without bounds (and disables rotation). The default is 1
MiB. For backwards compatibility, will be used if is not defined. If is not defined, this parameter has no effect.

MAX_EVENT_LOG¶
See .

EVENT_LOG_MAX_ROTATIONS¶
Controls the maximum number of rotations of the event log that will be stored. If this value is 1 (the default),
the event log will be rotated to a “.old” file as described above. However, if this is greater than 1, then multiple
rotation files will be stores, up to of them. These files will be named, instead of the “.old” suffix, “.1”, “.2”, with
the “.1” being the most recent rotation. This is an integer parameter with a default value of 1. If is not defined,
or if has a value of 0 (which disables event log rotation), this parameter has no effect.

EVENT_LOG_ROTATION_LOCK¶
Specifies the lock file that will be used to ensure that, when rotating files, the rotation is done by a single process.

180 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

This is a string parameter; its default value is $(LOCK)/EventLogLock. If an empty value is set, then the file
that is used is the file path of the event log itself, with the string .lock appended. If is not defined, or if has a
value of 0 (which disables event log rotation), this configuration variable has no effect.

EVENT_LOG_FSYNC¶
A boolean value that controls whether HTCondor will perform an fsync() after writing each event to the event
log. When True, an fsync() operation is performed after each event. This fsync() operation forces the operating
system to synchronize the updates to the event log to the disk, but can negatively affect the performance of the
system. Defaults to False.

EVENT_LOG_LOCKING¶
A boolean value that defaults to False on Unix platforms and True on Windows platforms. When True, the
event log (as specified by) will be locked before being written to. When False, HTCondor does not lock the
file before writing.

EVENT_LOG_COUNT_EVENTS¶
A boolean value that is False by default. When True, upon rotation of the user’s job event log, a count of the
number of job events is taken by scanning the log, such that the newly created, post-rotation user job event log
will have this count in its header. This configuration variable is relevant when rotation of the user’s job event log
is enabled.

EVENT_LOG_FORMAT_OPTIONS¶
A list of case-insensitive keywords that control formatting of the log events and of timestamps for the log specified
by . Use zero or one of the following formatting options:

XML
Log events in XML format. This has the same effect below

JSON
Log events in JSON format. This conflicts with below

And zero or more of the following option flags:

UTC
Log event timestamps as Universal Coordinated Time. The time value will be printed with a timezone value
of Z to indicate that times are UTC.

ISO_DATE
Log event timestamps in ISO 8601 format. This format includes a 4 digit year and is printed in a way that
makes sorting by date easier.

SUB_SECOND
Include fractional seconds in event timestamps.

LEGACY
Set all time formatting flags to be compatible with older versions of HTCondor.

All of the above options are case-insensitive, and can be preceded by a ! to invert their meaning, so configuring
!UTC, !ISO_DATE, !SUB_SECOND gives the same result as configuring LEGACY.

EVENT_LOG_USE_XML¶
A boolean value that defaults to False. When True, events are logged in XML format. If is not defined, this
parameter has no effect.

EVENT_LOG_JOB_AD_INFORMATION_ATTRS¶
A comma separated list of job ClassAd attributes, whose evaluated values form a new event, the
JobAdInformationEvent, given Event Number 028. This new event is placed in the event log in addition
to each logged event. If is not defined, this configuration variable has no effect. This configuration variable is
the same as the job ClassAd attribute (see Job ClassAd Attributes), but it applies to the system Event Log rather
than the user job log.

5.4. Configuration Macros 181

HTCondor Manual, Release 23.6.2

DEFAULT_USERLOG_FORMAT_OPTIONS¶
A list of case-insensitive keywords that control formatting of the events and of timestamps for the log specified
by a job’s or attributes. see above for the permitted options.

5.4.3 DaemonCore Configuration File Entries

Please read DaemonCore for details on DaemonCore. There are certain configuration file settings that DaemonCore
uses which affect all HTCondor daemons.

ALLOW¶
All macros that begin with either or are settings for HTCondor’s security. See Authorization on Setting up
security in HTCondor for details on these macros and how to configure them.

ENABLE_RUNTIME_CONFIG¶
The tool has an option -rset for dynamically setting run time configuration values, and which only affect the
in-memory configuration variables. Because of the potential security implications of this feature, by default,
HTCondor daemons will not honor these requests. To use this functionality, HTCondor administrators must
specifically enable it by setting to True, and specify what configuration variables can be changed using the
SETTABLE_ATTRS... family of configuration options. Defaults to False.

ENABLE_PERSISTENT_CONFIG¶
The tool has a -set option for dynamically setting persistent configuration values. These values override options
in the normal HTCondor configuration files. Because of the potential security implications of this feature, by
default, HTCondor daemons will not honor these requests. To use this functionality, HTCondor administrators
must specifically enable it by setting to True, creating a directory where the HTCondor daemons will hold
these dynamically-generated persistent configuration files (declared using , described below) and specify what
configuration variables can be changed using the SETTABLE_ATTRS... family of configuration options. Defaults
to False.

PERSISTENT_CONFIG_DIR¶
Directory where daemons should store dynamically-generated persistent configuration files (used to support -set)
This directory should only be writable by root, or the user the HTCondor daemons are running as (if non-root).
There is no default, administrators that wish to use this functionality must create this directory and define this
setting. This directory must not be shared by multiple HTCondor installations, though it can be shared by all
HTCondor daemons on the same host. Keep in mind that this directory should not be placed on an NFS mount
where “root-squashing” is in effect, or else HTCondor daemons running as root will not be able to write to them.
A directory (only writable by root) on the local file system is usually the best location for this directory.

SETTABLE_ATTRS_<PERMISSION-LEVEL>¶
All macros that begin with SETTABLE_ATTRS or <SUBSYS>.SETTABLE_ATTRS are settings used to restrict

the configuration values that can be changed using the command. See Authorization on Setting up Security in
HTCondor for details on these macros and how to configure them. In particular, Authorization contains details
specific to these macros.

SHUTDOWN_GRACEFUL_TIMEOUT¶
Determines how long HTCondor will allow daemons try their graceful shutdown methods before they do a hard
shutdown. It is defined in terms of seconds. The default is 1800 (30 minutes).

<SUBSYS>_ADDRESS_FILE¶
A complete path to a file that is to contain an IP address and port number for a daemon. Every HTCondor daemon
that uses DaemonCore has a command port where commands are sent. The IP/port of the daemon is put in that
daemon’s ClassAd, so that other machines in the pool can query the condor_collector (which listens on a well-
known port) to find the address of a given daemon on a given machine. When tools and daemons are all executing
on the same single machine, communications do not require a query of the condor_collector daemon. Instead,
they look in a file on the local disk to find the IP/port. This macro causes daemons to write the IP/port of their

182 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

command socket to a specified file. In this way, local tools will continue to operate, even if the machine running
the condor_collector crashes. Using this file will also generate slightly less network traffic in the pool, since
tools including and do not need to send any messages over the network to locate the condor_schedd daemon.
This macro is not necessary for the condor_collector daemon, since its command socket is at a well-known port.

List of possible subsystems to set can be found at .

<SUBSYS>_SUPER_ADDRESS_FILE¶
A complete path to a file that is to contain an IP address and port number for a command port that is serviced with
priority for a daemon. Every HTCondor daemon that uses DaemonCore may have a higher priority command
port where commands are sent. Any command that goes through , and any command issued by the super user
(root or local system) for a daemon on the local machine will have the command sent to this port. Default values
are provided for the condor_schedd daemon at $(SPOOL)/.schedd_address.super and the condor_collector
daemon at $(LOG)/.collector_address.super. When not defined for other DaemonCore daemons, there
will be no higher priority command port.

List of possible subsystems to set can be found at .

<SUBSYS>_DAEMON_AD_FILE¶
A complete path to a file that is to contain the ClassAd for a daemon. When the daemon sends a ClassAd
describing itself to the condor_collector, it will also place a copy of the ClassAd in this file. Currently, this
setting only works for the condor_schedd.

List of possible subsystems to set can be found at .

<SUBSYS>_ATTRS¶
Allows any DaemonCore daemon to advertise arbitrary expressions from the configuration file in its ClassAd.
Give the list of entries from the configuration file you want in the given daemon’s ClassAd. Frequently used to
add attributes to machines so that the machines can discriminate between other machines in a job’s rank and
requirements.

The macro is named by substituting with the appropriate subsystem string as defined by .

Note: The condor_kbdd does not send ClassAds now, so this entry does not affect it. The condor_startd,
condor_schedd, , and condor_collector do send ClassAds, so those would be valid subsystems to set this entry
for.

not part of the , it is documented in .

Because of the different syntax of the configuration file and ClassAds, a little extra work is required to get a
given entry into a ClassAd. In particular, ClassAds require quote marks (”) around strings. Numeric values
and boolean expressions can go in directly. For example, if the condor_startd is to advertise a string macro, a
numeric macro, and a boolean expression, do something similar to:

STRING = This is a string
NUMBER = 666
BOOL1 = True
BOOL2 = time() >= $(NUMBER) || $(BOOL1)
MY_STRING = "$(STRING)"
STARTD_ATTRS = MY_STRING, NUMBER, BOOL1, BOOL2

List of possible subsystems to set can be found at .

DAEMON_SHUTDOWN¶
Starting with HTCondor version 6.9.3, whenever a daemon is about to publish a ClassAd update to the con-
dor_collector, it will evaluate this expression. If it evaluates to True, the daemon will gracefully shut itself
down, exit with the exit code 99, and will not be restarted by the (as if it sent itself a command). The expres-
sion is evaluated in the context of the ClassAd that is being sent to the condor_collector, so it can reference

5.4. Configuration Macros 183

HTCondor Manual, Release 23.6.2

any attributes that can be seen with condor_status -long [-daemon_type] (for example, condor_status -long [-
master] for the). Since each daemon’s ClassAd will contain different attributes, administrators should define
these shutdown expressions specific to each daemon, for example:

STARTD.DAEMON_SHUTDOWN = when to shutdown the startd
MASTER.DAEMON_SHUTDOWN = when to shutdown the master

Normally, these expressions would not be necessary, so if not defined, they default to FALSE.

Note: This functionality does not work in conjunction with HTCondor’s high-availability support (see High
Availability of the Central Manager for more information). If you enable high-availability for a particular dae-
mon, you should not define this expression.

DAEMON_SHUTDOWN_FAST¶
Identical to (defined above), except the daemon will use the fast shutdown mode (as if it sent itself a command
using the -fast option).

USE_CLONE_TO_CREATE_PROCESSES¶
A boolean value that controls how an HTCondor daemon creates a new process on Linux platforms. If set to
the default value of True, the clone system call is used. Otherwise, the fork system call is used. clone
provides scalability improvements for daemons using a large amount of memory, for example, a condor_schedd
with a lot of jobs in the queue. Currently, the use of clone is available on Linux systems. If HTCondor detects
that it is running under the valgrind analysis tools, this setting is ignored and treated as False, to work around
incompatibilities.

MAX_TIME_SKIP¶
When an HTCondor daemon notices the system clock skip forwards or backwards more than the number of
seconds specified by this parameter, it may take special action. For instance, the will restart HTCondor in the
event of a clock skip. Defaults to a value of 1200, which in effect means that HTCondor will restart if the system
clock jumps by more than 20 minutes.

NOT_RESPONDING_TIMEOUT¶
When an HTCondor daemon’s parent process is another HTCondor daemon, the child daemon will periodically
send a short message to its parent stating that it is alive and well. If the parent does not hear from the child for
a while, the parent assumes that the child is hung, kills the child, and restarts the child. This parameter controls
how long the parent waits before killing the child. It is defined in terms of seconds and defaults to 3600 (1 hour).
The child sends its alive and well messages at an interval of one third of this value.

<SUBSYS>_NOT_RESPONDING_TIMEOUT¶
Identical to , but controls the timeout for a specific type of daemon. For example,
SCHEDD_NOT_RESPONDING_TIMEOUT controls how long the condor_schedd ‘s parent daemon will wait
without receiving an alive and well message from the condor_schedd before killing it.

List of possible subsystems to set can be found at .

NOT_RESPONDING_WANT_CORE¶
A boolean value with a default value of False. This parameter is for debugging purposes on Unix systems,
and it controls the behavior of the parent process when the parent process determines that a child process is not
responding. If is True, the parent will send a SIGABRT instead of SIGKILL to the child process. If the child
process is configured with the configuration variable enabled, the child process will then generate a core dump.
See and for more details.

LOCK_FILE_UPDATE_INTERVAL¶
An integer value representing seconds, controlling how often valid lock files should have their on disk timestamps
updated. Updating the timestamps prevents administrative programs, such as tmpwatch, from deleting long lived
lock files. If set to a value less than 60, the update time will be 60 seconds. The default value is 28800, which is
8 hours. This variable only takes effect at the start or restart of a daemon.

184 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

SOCKET_LISTEN_BACKLOG¶
An integer value that defaults to 4096, which defines the backlog value for the listen() network call when a
daemon creates a socket for incoming connections. It limits the number of new incoming network connections
the operating system will accept for a daemon that the daemon has not yet serviced.

MAX_ACCEPTS_PER_CYCLE¶
An integer value that defaults to 8. It is a rarely changed performance tuning parameter to limit the number of
accepts of new, incoming, socket connect requests per DaemonCore event cycle. A value of zero or less means
no limit. It has the most noticeable effect on the condor_schedd, and would be given a higher integer value for
tuning purposes when there is a high number of jobs starting and exiting per second.

MAX_TIMER_EVENTS_PER_CYCLE¶
An integer value that defaults to 3. It is a rarely changed performance tuning parameter to set the max number
of internal timer events will be dispatched per DaemonCore event cycle. A value of zero means no limit, so that
all timers that are due at the start of the event cycle should be dispatched.

MAX_UDP_MSGS_PER_CYCLE¶
An integer value that defaults to 1. It is a rarely changed performance tuning parameter to set the number of
incoming UDP messages a daemon will read per DaemonCore event cycle. A value of zero means no limit. It
has the most noticeable effect on the condor_schedd and condor_collector daemons, which can receive a large
number of UDP messages when under heavy load.

MAX_REAPS_PER_CYCLE¶
An integer value that defaults to 0. It is a rarely changed performance tuning parameter that places a limit on the
number of child process exits to process per DaemonCore event cycle. A value of zero or less means no limit.

CORE_FILE_NAME¶
Defines the name of the core file created on Windows platforms. Defaults to core.$(SUBSYSTEM).WIN32.

PIPE_BUFFER_MAX¶
The maximum number of bytes read from a stdout or stdout pipe. The default value is 10240. A rare example
in which the value would need to increase from its default value is when a hook must output an entire ClassAd,
and the ClassAd may be larger than the default.

5.4.4 Network-Related Configuration File Entries

More information about networking in HTCondor can be found in Networking, Port Usage, and CCB.

BIND_ALL_INTERFACES¶
For systems with multiple network interfaces, if this configuration setting is False, HTCondor will only bind
network sockets to the IP address specified with (described below). If set to True, the default value, HTCondor
will listen on all interfaces. However, currently HTCondor is still only able to advertise a single IP address, even
if it is listening on multiple interfaces. By default, it will advertise the IP address of the network interface used
to contact the collector, since this is the most likely to be accessible to other processes which query information
from the same collector. More information about using this setting can be found in Configuring HTCondor for
Machines With Multiple Network Interfaces.

CCB_ADDRESS¶
This is the address of a condor_collector that will serve as this daemon’s HTCondor Connection Broker (CCB).
Multiple addresses may be listed (separated by commas and/or spaces) for redundancy. The CCB server must
authorize this daemon at DAEMON level for this configuration to succeed. It is highly recommended to also
configure if you configure so communications originating within the same private network do not need to go
through CCB. For more information about CCB, see HTCondor Connection Brokering (CCB).

CCB_HEARTBEAT_INTERVAL¶
This is the maximum number of seconds of silence on a daemon’s connection to the CCB server after which

5.4. Configuration Macros 185

HTCondor Manual, Release 23.6.2

it will ping the server to verify that the connection still works. The default is 5 minutes. This feature serves
to both speed up detection of dead connections and to generate a guaranteed minimum frequency of activity to
attempt to prevent the connection from being dropped. The special value 0 disables the heartbeat. The heartbeat
is automatically disabled if the CCB server is older than HTCondor version 7.5.0. Having the heartbeat interval
greater than the job ClassAd attribute may cause unnecessary job disconnects in pools with network issues.

CCB_POLLING_INTERVAL¶
In seconds, the smallest amount of time that could go by before CCB would begin another round of polling to
check on already connected clients. While the value of this variable does not change, the actual interval used
may be exceeded if the measured amount of time previously taken to poll to check on already connected clients
exceeded the amount of time desired, as expressed with . The default value is 20 seconds.

CCB_POLLING_MAX_INTERVAL¶
In seconds, the interval of time after which polling to check on already connected clients must occur, independent
of any other factors. The default value is 600 seconds.

CCB_POLLING_TIMESLICE¶
A floating point fraction representing the fractional amount of the total run time of CCB to set as a target for
the maximum amount of CCB running time used on polling to check on already connected clients. The default
value is 0.05.

CCB_READ_BUFFER¶
The size of the kernel TCP read buffer in bytes for all sockets used by CCB. The default value is 2 KiB.

CCB_REQUIRED_TO_START¶
If true, and is false, and is set, but HTCondor fails to register with any broker, HTCondor will exit rather then
continue to retry indefinitely.

CCB_TIMEOUT¶
The length, in seconds, that we wait for any CCB operation to complete. The default value is 300.

CCB_WRITE_BUFFER¶
The size of the kernel TCP write buffer in bytes for all sockets used by CCB. The default value is 2 KiB.

CCB_SWEEP_INTERVAL¶
The interval, in seconds, between times when the CCB server writes its information about open TCP connections
to a file. Crash recovery is accomplished using the information. The default value is 1200 seconds (20 minutes).

CCB_RECONNECT_FILE¶
The full path and file name of the file that the CCB server writes its information about open TCP connec-
tions to a file. Crash recovery is accomplished using the information. The default value is $(SPOOL)/<ip
address>-<shared port ID or port number>.ccb_reconnect.

COLLECTOR_USES_SHARED_PORT¶
A boolean value that specifies whether the condor_collector uses the condor_shared_port daemon. When true,
the condor_shared_port will transparently proxy queries to the condor_collector so users do not need to be
aware of the presence of the condor_shared_port when querying the collector and configuring other daemons.
The default is True

SHARED_PORT_DEFAULT_ID¶
When is set to True, this is the shared port ID used by the condor_collector. This defaults to collector and
will not need to be changed by most sites.

AUTO_INCLUDE_SHARED_PORT_IN_DAEMON_LIST¶
A boolean value that specifies whether should be automatically inserted into ‘s when is True. The default for
this setting is True.

<SUBSYS>_MAX_FILE_DESCRIPTORS¶
This setting is identical to , but it only applies to a specific subsystem. If the subsystem-specific setting is
unspecified, is used. For the condor_collector daemon, the value defaults to 10240, and for the condor_schedd

186 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

daemon, the value defaults to 4096. If the condor_shared_port daemon is in use, its value for this parameter
should match the largest value set for the other daemons.

List of possible subsystems to set can be found at .

MAX_FILE_DESCRIPTORS¶
Under Unix, this specifies the maximum number of file descriptors to allow the HTCondor daemon to use. File
descriptors are a system resource used for open files and for network connections. HTCondor daemons that make
many simultaneous network connections may require an increased number of file descriptors. For example, see
HTCondor Connection Brokering (CCB) for information on file descriptor requirements of CCB. Changes to this
configuration variable require a restart of HTCondor in order to take effect. Also note that only if HTCondor is
running as root will it be able to increase the limit above the hard limit (on maximum open files) that it inherits.

NETWORK_HOSTNAME¶
The name HTCondor should use as the host name of the local machine, overriding the value returned by gethost-
name(). Among other things, the host name is used to identify daemons in an HTCondor pool, via the Machine
and Name attributes of daemon ClassAds. This variable can be used when a machine has multiple network inter-
faces with different host names, to use a host name that is not the primary one. It should be set to a fully-qualified
host name that will resolve to an IP address of the local machine.

NETWORK_INTERFACE¶
An IP address of the form 123.123.123.123 or the name of a network device, as in the example eth0. The wild
card character (*) may be used within either. For example, 123.123.* would match a network interface with
an IP address of 123.123.123.123 or 123.123.100.100. The default value is *, which matches all network
interfaces.

The effect of this variable depends on the value of . There are two cases:

If is True (the default), controls what IP address will be advertised as the public address of the daemon. If mul-
tiple network interfaces match the value, the IP address that is chosen to be advertised will be the one associated
with the first device (in system-defined order) that is in a public address space, or a private address space, or a
loopback address, in that order of preference. If it is desired to advertise an IP address that is not associated with
any local network interface, for example, when TCP forwarding is being used, then should be used instead of .

If is False, then specifies which IP address HTCondor should use for all incoming and outgoing communication.
If more than one IP address matches the value, then the IP address that is chosen will be the one associated with
the first device (in system-defined order) that is in a public address space, or a private address space, or a loopback
address, in that order of preference.

More information about configuring HTCondor on machines with multiple network interfaces can be found in
Configuring HTCondor for Machines With Multiple Network Interfaces.

PRIVATE_NETWORK_NAME¶
If two HTCondor daemons are trying to communicate with each other, and they both belong to the same private
network, this setting will allow them to communicate directly using the private network interface, instead of
having to use CCB or to go through a public IP address. Each private network should be assigned a unique
network name. This string can have any form, but it must be unique for a particular private network. If another
HTCondor daemon or tool is configured with the same , it will attempt to contact this daemon using its private
network address. Even for sites using CCB, this is an important optimization, since it means that two daemons on
the same network can communicate directly, without having to go through the broker. If CCB is enabled, and the
is defined, the daemon’s private address will be defined automatically. Otherwise, you can specify a particular
private IP address to use by defining the setting (described below). The default is $(FULL_HOSTNAME). After
changing this setting and running , it may take up to one condor_collector update interval before the change
becomes visible.

PRIVATE_NETWORK_INTERFACE¶
For systems with multiple network interfaces, if this configuration setting and are both defined, HTCondor dae-
mons will advertise some additional attributes in their ClassAds to help other HTCondor daemons and tools in
the same private network to communicate directly.

5.4. Configuration Macros 187

HTCondor Manual, Release 23.6.2

defines what IP address of the form 123.123.123.123 or name of a network device (as in the example eth0)
a given multi-homed machine should use for the private network. The asterisk (*) may be used as a wild card
character within either the IP address or the device name. If another HTCondor daemon or tool is configured with
the same , it will attempt to contact this daemon using the IP address specified here. The syntax for specifying
an IP address is identical to . Sites using CCB only need to define the , and the will be defined automatically.
Unless CCB is enabled, there is no default value for this variable. After changing this variable and running , it
may take up to one condor_collector update interval before the change becomes visible.

TCP_FORWARDING_HOST¶
This specifies the host or IP address that should be used as the public address of this daemon. If a host name is
specified, be aware that it will be resolved to an IP address by this daemon, not by the clients wishing to connect
to it. It is the IP address that is advertised, not the host name. This setting is useful if HTCondor on this host may
be reached through a NAT or firewall by connecting to an IP address that forwards connections to this host. It is
assumed that the port number on the that forwards to this host is the same port number assigned to HTCondor
on this host. This option could also be used when ssh port forwarding is being used. In this case, the incoming
addresses of connections to this daemon will appear as though they are coming from the forwarding host rather
than from the real remote host, so any authorization settings that rely on host addresses should be considered
accordingly.

HIGHPORT¶
Specifies an upper limit of given port numbers for HTCondor to use, such that HTCondor is restricted to a range
of port numbers. If this macro is not explicitly specified, then HTCondor will not restrict the port numbers that
it uses. HTCondor will use system-assigned port numbers. For this macro to work, both and (given below) must
be defined.

LOWPORT¶
Specifies a lower limit of given port numbers for HTCondor to use, such that HTCondor is restricted to a range
of port numbers. If this macro is not explicitly specified, then HTCondor will not restrict the port numbers that
it uses. HTCondor will use system-assigned port numbers. For this macro to work, both (given above) and must
be defined.

IN_LOWPORT¶
An integer value that specifies a lower limit of given port numbers for HTCondor to use on incoming connec-
tions (ports for listening), such that HTCondor is restricted to a range of port numbers. This range implies the
use of both and . A range of port numbers less than 1024 may be used for daemons running as root. Do not
specify in combination with such that the range crosses the port 1024 boundary. Applies only to Unix machine
configuration. Use of and overrides any definition of and .

IN_HIGHPORT¶
An integer value that specifies an upper limit of given port numbers for HTCondor to use on incoming connec-
tions (ports for listening), such that HTCondor is restricted to a range of port numbers. This range implies the
use of both and . A range of port numbers less than 1024 may be used for daemons running as root. Do not
specify in combination with such that the range crosses the port 1024 boundary. Applies only to Unix machine
configuration. Use of and overrides any definition of and .

OUT_LOWPORT¶
An integer value that specifies a lower limit of given port numbers for HTCondor to use on outgoing connections,
such that HTCondor is restricted to a range of port numbers. This range implies the use of both and . A range of
port numbers less than 1024 is inappropriate, as not all daemons and tools will be run as root. Applies only to
Unix machine configuration. Use of and overrides any definition of and .

OUT_HIGHPORT¶
An integer value that specifies an upper limit of given port numbers for HTCondor to use on outgoing connections,
such that HTCondor is restricted to a range of port numbers. This range implies the use of both and . A range of
port numbers less than 1024 is inappropriate, as not all daemons and tools will be run as root. Applies only to
Unix machine configuration. Use of and overrides any definition of and .

UPDATE_COLLECTOR_WITH_TCP¶

188 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

This boolean value controls whether TCP or UDP is used by daemons to send ClassAd updates to the con-
dor_collector. Please read Using TCP to Send Updates to the condor_collector for more details and a discussion
of when this functionality is needed. When using TCP in large pools, it is also necessary to ensure that the
condor_collector has a large enough file descriptor limit using . The default value is True.

UPDATE_VIEW_COLLECTOR_WITH_TCP¶
This boolean value controls whether TCP or UDP is used by the condor_collector to forward ClassAd updates
to the condor_collector daemons specified by . Please read Using TCP to Send Updates to the condor_collector
for more details and a discussion of when this functionality is needed. The default value is False.

TCP_UPDATE_COLLECTORS¶
The list of condor_collector daemons which will be updated with TCP instead of UDP when or is False. Please
read Using TCP to Send Updates to the condor_collector for more details and a discussion of when a site needs
this functionality.

<SUBSYS>_TIMEOUT_MULTIPLIER¶
An integer value that defaults to 1. This value multiplies configured timeout values for all targeted subsystem
communications, thereby increasing the time until a timeout occurs. This configuration variable is intended for
use by developers for debugging purposes, where communication timeouts interfere.

List of possible subsystems to set can be found at .

NONBLOCKING_COLLECTOR_UPDATE¶
A boolean value that defaults to True. When True, the establishment of TCP connections to the condor_collector
daemon for a security-enabled pool are done in a nonblocking manner.

NEGOTIATOR_USE_NONBLOCKING_STARTD_CONTACT¶
A boolean value that defaults to True. When True, the establishment of TCP connections from the con-
dor_negotiator daemon to the condor_startd daemon for a security-enabled pool are done in a nonblocking
manner.

UDP_NETWORK_FRAGMENT_SIZE¶
An integer value that defaults to 1000 and represents the maximum size in bytes of an outgoing UDP packet. If the
outgoing message is larger than $(UDP_NETWORK_FRAGMENT_SIZE), then the message will be split (fragmented)
into multiple packets no larger than $(UDP_NETWORK_FRAGMENT_SIZE). If the destination of the message is the
loopback network interface, see below. For instance, the maximum payload size of a UDP packet over Ethernet
is typically 1472 bytes, and thus if a UDP payload exceeds 1472 bytes the IP network stack on either hosts or
forwarding devices (such as network routers) will have to perform message fragmentation on transmission and
reassembly on receipt. Experimentation has shown that such devices are more likely to simply drop a UDP
message under high-traffic scenarios if the message requires reassembly. HTCondor avoids this situation via the
capability to perform UDP fragmentation and reassembly on its own.

UDP_LOOPBACK_FRAGMENT_SIZE¶
An integer value that defaults to 60000 and represents the maximum size in bytes of an outgoing UDP packet
that is being sent to the loopback network interface (e.g. 127.0.0.1). If the outgoing message is larger than
$(UDP_LOOPBACK_FRAGMENT_SIZE), then the message will be split (fragmented) into multiple packets no larger
than $(UDP_LOOPBACK_FRAGMENT_SIZE). If the destination of the message is not the loopback interface, see
above.

ALWAYS_REUSEADDR¶
A boolean value that, when True, tells HTCondor to set SO_REUSEADDR socket option, so that the schedd can
run large numbers of very short jobs without exhausting the number of local ports needed for shadows. The
default value is True. (Note that this represents a change in behavior compared to versions of HTCondor older
than 8.6.0, which did not include this configuration macro. To restore the previous behavior, set this value to
False.)

5.4. Configuration Macros 189

HTCondor Manual, Release 23.6.2

5.4.5 Shared File System Configuration File Macros

These macros control how HTCondor interacts with various shared and network file systems.For information on sub-
mitting jobs under shared file systems, see Submitting Jobs Using a Shared File System.

UID_DOMAIN¶
The macro is used to decide under which user to run jobs. If the $(UID_DOMAIN) on the submitting machine is
different than the $(UID_DOMAIN) on the machine that runs a job, then HTCondor runs the job as the user nobody.
For example, if the access point has a $(UID_DOMAIN) of flippy.cs.wisc.edu, and the machine where the job will
execute has a $(UID_DOMAIN) of cs.wisc.edu, the job will run as user nobody, because the two $(UID_DOMAIN)s
are not the same. If the $(UID_DOMAIN) is the same on both the submit and execute machines, then HTCondor
will run the job as the user that submitted the job.

A further check attempts to assure that the submitting machine can not lie about its . HTCondor compares the
submit machine’s claimed value for to its fully qualified name. If the two do not end the same, then the access
point is presumed to be lying about its . In this case, HTCondor will run the job as user nobody. For example, a
job submission to the HTCondor pool at the UW Madison from flippy.example.com, claiming a of of cs.wisc.edu,
will run the job as the user nobody.

Because of this verification, $(UID_DOMAIN)must be a real domain name. At the Computer Sciences department
at the UW Madison, we set the $(UID_DOMAIN) to be cs.wisc.edu to indicate that whenever someone submits
from a department machine, we will run the job as the user who submits it.

Also see below for information about one more check that HTCondor performs before running a job as a given
user.

A few details:

An administrator could set to *. This will match all domains, but it is a gaping security hole. It is not recom-
mended.

An administrator can also leave undefined. This will force HTCondor to always run jobs as user nobody. If
vanilla jobs are run as user nobody, then files that need to be accessed by the job will need to be marked as world
readable/writable so the user nobody can access them.

When HTCondor sends e-mail about a job, HTCondor sends the e-mail to user@$(UID_DOMAIN). If is unde-
fined, the e-mail is sent to user@submitmachinename.

TRUST_UID_DOMAIN¶
As an added security precaution when HTCondor is about to spawn a job, it ensures that the of a given access
point is a substring of that machine’s fully-qualified host name. However, at some sites, there may be multiple
UID spaces that do not clearly correspond to Internet domain names. In these cases, administrators may wish to
use names to describe the UID domains which are not substrings of the host names of the machines. For this to
work, HTCondor must not do this regular security check. If the setting is defined to True, HTCondor will not
perform this test, and will trust whatever is presented by the access point when trying to spawn a job, instead of
making sure the access point’s host name matches the . When not defined, the default is False, since it is more
secure to perform this test.

TRUST_LOCAL_UID_DOMAIN¶
This parameter works like , but is only applied when the condor_starter and condor_shadow are on the same
machine. If this parameter is set to True, then the condor_shadow ‘s doesn’t have to be a substring its host-
name. If this parameter is set to False, then controls whether this substring requirement is enforced by the
condor_starter. The default is True.

SOFT_UID_DOMAIN¶
A boolean variable that defaults to Falsewhen not defined. When HTCondor is about to run a job as a particular
user (instead of as user nobody), it verifies that the UID given for the user is in the password file and actually

190 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

matches the given user name. However, under installations that do not have every user in every machine’s pass-
word file, this check will fail and the execution attempt will be aborted. To cause HTCondor not to do this check,
set this configuration variable to True. HTCondor will then run the job under the user’s UID.

SLOT<N>_USER¶
The name of a user for HTCondor to use instead of user nobody, as part of a solution that plugs a security hole
whereby a lurker process can prey on a subsequent job run as user name nobody. <N> is an integer associated
with slots. On non Windows platforms you can use instead of this configuration variable. On Windows, will
only work if the credential of the specified user is stored on the execute machine using . See User Accounts in
HTCondor on Unix Platforms for more information.

NOBODY_SLOT_USER¶
The name of a user for HTCondor to use instead of user nobody when The for this slot is not configured. Configure
this to the value $(STARTER_SLOT_NAME) to use the name of the slot as the user name. This configuration
macro is ignored on Windows, where the Starter will automatically create a unique temporary user for each slot
as needed. See User Accounts in HTCondor on Unix Platforms for more information.

STARTER_ALLOW_RUNAS_OWNER¶
A boolean expression evaluated with the job ad as the target, that determines whether the job may run under the
job owner’s account (True) or whether it will run as or nobody (False). On Unix, this defaults to True. On
Windows, it defaults to False. The job ClassAd may also contain the attribute RunAsOwner which is logically
ANDed with the condor_starter daemon’s boolean value. Under Unix, if the job does not specify it, this attribute
defaults to True. Under Windows, the attribute defaults to False. In Unix, if the of the machine and job do not
match, then there is no possibility to run the job as the owner anyway, so, in that case, this setting has no effect.
See User Accounts in HTCondor on Unix Platforms for more information.

DEDICATED_EXECUTE_ACCOUNT_REGEXP¶
This is a regular expression (i.e. a string matching pattern) that matches the account name(s) that are dedicated
to running condor jobs on the execute machine and which will never be used for more than one job at a time.
The default matches no account name. If you have configured to be a different account for each HTCondor slot,
and no non-condor processes will ever be run by these accounts, then this pattern should match the names of
all accounts. Jobs run under a dedicated execute account are reliably tracked by HTCondor, whereas other jobs,
may spawn processes that HTCondor fails to detect. Therefore, a dedicated execution account provides more
reliable tracking of CPU usage by the job and it also guarantees that when the job exits, no “lurker” processes
are left behind. When the job exits, condor will attempt to kill all processes owned by the dedicated execution
account. Example:

SLOT1_USER = cndrusr1
SLOT2_USER = cndrusr2
STARTER_ALLOW_RUNAS_OWNER = False
DEDICATED_EXECUTE_ACCOUNT_REGEXP = cndrusr[0-9]+

You can tell if the starter is in fact treating the account as a dedicated account, because it will print a line such as
the following in its log file:

Tracking process family by login "cndrusr1"

EXECUTE_LOGIN_IS_DEDICATED¶
This configuration setting is deprecated because it cannot handle the case where some jobs run as dedicated
accounts and some do not. Use instead.

A boolean value that defaults to False. When True, HTCondor knows that all jobs are being run by dedicated
execution accounts (whether they are running as the job owner or as nobody or as). Therefore, when the job
exits, all processes running under the same account will be killed.

FILESYSTEM_DOMAIN¶
An arbitrary string that is used to decide if the two machines, a access point and an execute machine, share a file

5.4. Configuration Macros 191

HTCondor Manual, Release 23.6.2

system. Although this configuration variable name contains the word “DOMAIN”, its value is not required to be
a domain name. It often is a domain name.

Note that this implementation is not ideal: machines may share some file systems but not others. HTCondor
currently has no way to express this automatically. A job can express the need to use a particular file system
where machines advertise an additional ClassAd attribute and the job requires machines with the attribute, as
described on the question within the https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes
page for how to run jobs on a subset of machines that have required software installed.

Note that if you do not set $(FILESYSTEM_DOMAIN), the value defaults to the fully qualified host name of the
local machine. Since each machine will have a different $(FILESYSTEM_DOMAIN), they will not be considered
to have shared file systems.

USE_NFS¶
This configuration variable changes the semantics of Chirp file I/O when running in the vanilla, java or parallel
universe. If this variable is set in those universes, Chirp will not send I/O requests over the network as requested,
but perform them directly to the locally mounted file system.

IGNORE_NFS_LOCK_ERRORS¶
When set to True, all errors related to file locking errors from NFS are ignored. Defaults to False, not ignoring
errors.

5.4.6 condor_master Configuration File Macros

These macros control the .

DAEMON_LIST¶
This macro determines what daemons the will start and keep its watchful eyes on. The list is a comma or space
separated list of subsystem names (listed in Pre-Defined Macros). For example,

DAEMON_LIST = MASTER, STARTD, SCHEDD

Note: The condor_shared_port daemon will be included in this list automatically when is configured to True.
While adding SHARED_PORT to the without setting to True will start the condor_shared_port daemon, but it will
not be used. So there is generally no point in adding SHARED_PORT to the daemon list.

Note: On your central manager, your $(DAEMON_LIST) will be different from your regular pool, since it will
include entries for the condor_collector and condor_negotiator.

DC_DAEMON_LIST¶
A list delimited by commas and/or spaces that lists the daemons in which use the HTCondor DaemonCore library.
The must differentiate between daemons that use DaemonCore and those that do not, so it uses the appropriate
inter-process communication mechanisms. This list currently includes all HTCondor daemons.

As of HTCondor version 7.2.1, a daemon may be appended to the default value by placing the plus character (+)
before the first entry in the definition. For example:

DC_DAEMON_LIST = +NEW_DAEMON

<SUBSYS>¶
Once you have defined which subsystems you want the to start, you must provide it with the full path to each of
these binaries. For example:

192 Chapter 5. Administrators’ Manual

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes

HTCondor Manual, Release 23.6.2

MASTER = $(SBIN)/condor_master
STARTD = $(SBIN)/condor_startd
SCHEDD = $(SBIN)/condor_schedd

These are most often defined relative to the $(SBIN) macro.

The macro is named by substituting with the appropriate subsystem string as defined by .

<DaemonName>_ENVIRONMENT¶
<DaemonName> is the name of a daemon listed in . Defines changes to the environment that the daemon is
invoked with. It should use the same syntax for specifying the environment as the environment specification in
a submit description file. For example, to redefine the TMP and CONDOR_CONFIG environment variables seen by
the condor_schedd, place the following in the configuration:

SCHEDD_ENVIRONMENT = "TMP=/new/value CONDOR_CONFIG=/special/config"

When the condor_schedd daemon is started by the , it would see the specified values of TMP and CONDOR_CONFIG.

<SUBSYS>_ARGS¶
This macro allows the specification of additional command line arguments for any process spawned by the . List
the desired arguments using the same syntax as the arguments specification in a submit file (see condor_submit),
with one exception: do not escape double-quotes when using the old-style syntax (this is for backward compat-
ibility). Set the arguments for a specific daemon with this macro, and the macro will affect only that daemon.
Define one of these for each daemon the is controlling. For example, set $(STARTD_ARGS) to specify any extra
command line arguments to the condor_startd.

The macro is named by substituting with the appropriate subsystem string as defined by .

<SUBSYS>_USERID¶
The account name that should be used to run the SUBSYS process spawned by the . When not defined, the process
is spawned as the same user that is running . When defined, the real user id of the spawned process will be set
to the specified account, so if this account is not root, the process will not have root privileges. The must be
running as root in order to start processes as other users. Example configuration:

COLLECTOR_USERID = condor
NEGOTIATOR_USERID = condor

The above example runs the condor_collector and condor_negotiator as the condor user with no root privileges.
If we specified some account other than the condor user, as set by the () configuration variable, then we would
need to configure the log files for these daemons to be in a directory that they can write to. When using a security
method in which the daemon credential is owned by root, it is also necessary to make a copy of the credential,
make it be owned by the account the daemons are using, and configure the daemons to use that copy.

List of possible subsystems to set can be found at .

PREEN¶
In addition to the daemons defined in $(DAEMON_LIST), the also starts up a special process, to clean out junk
files that have been left laying around by HTCondor. This macro determines where the finds the binary. If this
macro is set to nothing, will not run.

PREEN_ARGS¶
Controls how behaves by allowing the specification of command-line arguments. This macro works as
$(<SUBSYS>_ARGS) does. The difference is that you must specify this macro for if you want it to do anything.
takes action only because of command line arguments. -m means you want e-mail about files finds that it thinks
it should remove. -r means you want to actually remove these files.

PREEN_INTERVAL¶
This macro determines how often should be started. It is defined in terms of seconds and defaults to 86400 (once

5.4. Configuration Macros 193

HTCondor Manual, Release 23.6.2

a day).

PUBLISH_OBITUARIES¶
When a daemon crashes, the can send e-mail to the address specified by $(CONDOR_ADMIN) with an obituary
letting the administrator know that the daemon died, the cause of death (which signal or exit status it exited with),
and (optionally) the last few entries from that daemon’s log file. If you want obituaries, set this macro to True.

OBITUARY_LOG_LENGTH¶
This macro controls how many lines of the log file are part of obituaries. This macro has a default value of 20
lines.

START_MASTER¶
If this setting is defined and set to False the will immediately exit upon startup. This appears strange, but perhaps
you do not want HTCondor to run on certain machines in your pool, yet the boot scripts for your entire pool are
handled by a centralized set of files - setting to False for those machines would allow this. Note that is an entry
you would most likely find in a local configuration file, not a global configuration file. If not defined, defaults to
True.

START_DAEMONS¶
This macro is similar to the $(START_MASTER) macro described above. However, the does not exit; it does
not start any of the daemons listed in the $(DAEMON_LIST). The daemons may be started at a later time with a
command.

MASTER_UPDATE_INTERVAL¶
This macro determines how often the sends a ClassAd update to the condor_collector. It is defined in seconds
and defaults to 300 (every 5 minutes).

MASTER_CHECK_NEW_EXEC_INTERVAL¶
This macro controls how often the checks the timestamps of the running daemons. If any daemons have been
modified, the master restarts them. It is defined in seconds and defaults to 300 (every 5 minutes).

MASTER_NEW_BINARY_RESTART¶
Defines a mode of operation for the restart of the , when it notices that the binary has changed. Valid values
are GRACEFUL, PEACEFUL, and NEVER, with a default value of GRACEFUL. On a GRACEFUL restart of the master,
child processes are told to exit, but if they do not before a timer expires, then they are killed. On a PEACEFUL
restart, child processes are told to exit, after which the waits until they do so.

MASTER_NEW_BINARY_DELAY¶
Once the has discovered a new binary, this macro controls how long it waits before attempting to execute the
new binary. This delay exists because the might notice a new binary while it is in the process of being copied, in
which case trying to execute it yields unpredictable results. The entry is defined in seconds and defaults to 120
(2 minutes).

SHUTDOWN_FAST_TIMEOUT¶
This macro determines the maximum amount of time daemons are given to perform their fast shutdown procedure
before the kills them outright. It is defined in seconds and defaults to 300 (5 minutes).

DEFAULT_MASTER_SHUTDOWN_SCRIPT¶
A full path and file name of a program that the is to execute via the Unix execl() call, or the similar Win32 _execl()
call, instead of the normal call to exit(). This allows the admin to specify a program to execute as root when the
exits. Note that a successful call to the program will override this setting; see the documentation for config knob
below.

MASTER_SHUTDOWN_<Name>¶
A full path and file name of a program that the is to execute via the Unix execl() call, or the similar Win32 _execl()
call, instead of the normal call to exit(). Multiple programs to execute may be defined with multiple entries, each
with a unique Name. These macros have no effect on a unless is run, or the -exec argument is used with or . The
Name specified as an argument to the program or -exec arg must match the Name portion of one of these macros;
if not, the will log an error and ignore the command. If a match is found, the will attempt to verify the program,

194 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

and it will store the path and program name. When the shuts down (that is, just before it exits), the program is
then executed as described above. The manual page for condor_set_shutdown contains details on the use of this
program.

NOTE: This program will be run with root privileges under Unix or administrator privileges under Windows.
The administrator must ensure that this cannot be used in such a way as to violate system integrity.

MASTER_BACKOFF_CONSTANT¶ and MASTER_<name>_BACKOFF_CONSTANT¶
When a daemon crashes, uses an exponential back off delay before restarting it; see the discussion at the end of
this section for a detailed discussion on how these parameters work together. These settings define the constant
value of the expression used to determine how long to wait before starting the daemon again (and, effectively
becomes the initial backoff time). It is an integer in units of seconds, and defaults to 9 seconds.

$(MASTER_<name>_BACKOFF_CONSTANT) is the daemon-specific form of ; if this daemon-specific macro is not
defined for a specific daemon, the non-daemon-specific value will used.

MASTER_BACKOFF_FACTOR¶ and MASTER_<name>_BACKOFF_FACTOR¶
When a daemon crashes, uses an exponential back off delay before restarting it; see the discussion at the end
of this section for a detailed discussion on how these parameters work together. This setting is the base of the
exponent used to determine how long to wait before starting the daemon again. It defaults to 2 seconds.

$(MASTER_<name>_BACKOFF_FACTOR) is the daemon-specific form of ; if this daemon-specific macro is not
defined for a specific daemon, the non-daemon-specific value will used.

MASTER_BACKOFF_CEILING¶ and MASTER_<name>_BACKOFF_CEILING¶
When a daemon crashes, uses an exponential back off delay before restarting it; see the discussion at the end of
this section for a detailed discussion on how these parameters work together. This entry determines the maxi-
mum amount of time you want the master to wait between attempts to start a given daemon. (With 2.0 as the
$(MASTER_BACKOFF_FACTOR), 1 hour is obtained in 12 restarts). It is defined in terms of seconds and defaults
to 3600 (1 hour).

$(MASTER_<name>_BACKOFF_CEILING) is the daemon-specific form of ; if this daemon-specific macro is not
defined for a specific daemon, the non-daemon-specific value will used.

MASTER_RECOVER_FACTOR¶ and MASTER_<name>_RECOVER_FACTOR¶
A macro to set how long a daemon needs to run without crashing before it is considered recovered. Once a
daemon has recovered, the number of restarts is reset, so the exponential back off returns to its initial state. The
macro is defined in terms of seconds and defaults to 300 (5 minutes).

$(MASTER_<name>_RECOVER_FACTOR) is the daemon-specific form of ; if this daemon-specific macro is not
defined for a specific daemon, the non-daemon-specific value will used.

When a daemon crashes, will restart the daemon after a delay (a back off). The length of this delay is based on how
many times it has been restarted, and gets larger after each crashes. The equation for calculating this backoff time is
given by:

𝑡 = 𝑐+ 𝑘𝑛

where t is the calculated time, c is the constant defined by $(MASTER_BACKOFF_CONSTANT), k is the “factor” defined
by $(MASTER_BACKOFF_FACTOR), and n is the number of restarts already attempted (0 for the first restart, 1 for the
next, etc.).

With default values, after the first crash, the delay would be t = 9 + 2.00, giving 10 seconds (remember, n = 0). If the
daemon keeps crashing, the delay increases.

For example, take the $(MASTER_BACKOFF_FACTOR) (which defaults to 2.0) to the power the number of times the
daemon has restarted, and add $(MASTER_BACKOFF_CONSTANT) (which defaults to 9). Thus:

1st crash: n = 0, so: t = 9 + 20 = 9 + 1 = 10 seconds

2nd crash: n = 1, so: t = 9 + 21 = 9 + 2 = 11 seconds

5.4. Configuration Macros 195

HTCondor Manual, Release 23.6.2

3rd crash: n = 2, so: t = 9 + 22 = 9 + 4 = 13 seconds

. . .

6th crash: n = 5, so: t = 9 + 25 = 9 + 32 = 41 seconds

. . .

9th crash: n = 8, so: t = 9 + 28 = 9 + 256 = 265 seconds

And, after the 13 crashes, it would be:

13th crash: n = 12, so: t = 9 + 212 = 9 + 4096 = 4105 seconds

This is bigger than the $(MASTER_BACKOFF_CEILING), which defaults to 3600, so the daemon would really be
restarted after only 3600 seconds, not 4105. The tries again every hour (since the numbers would get larger and would
always be capped by the ceiling). Eventually, imagine that daemon finally started and did not crash. This might happen
if, for example, an administrator reinstalled an accidentally deleted binary after receiving e-mail about the daemon
crashing. If it stayed alive for $(MASTER_RECOVER_FACTOR) seconds (defaults to 5 minutes), the count of how many
restarts this daemon has performed is reset to 0.

The moral of the example is that the defaults work quite well, and you probably will not want to change them for any
reason.

MASTER_NAME¶
Defines a unique name given for a daemon on a machine. For a running as root, it defaults to the fully qualified
host name. When not running as root, it defaults to the user that instantiates the , concatenated with an at symbol
(@), concatenated with the fully qualified host name. If more than one is running on the same host, then the for
each must be defined to uniquely identify the separate daemons.

A defined is presumed to be of the form identifying-string@full.host.name. If the string does not include an @
sign, HTCondor appends one, followed by the fully qualified host name of the local machine. The identifying-
string portion may contain any alphanumeric ASCII characters or punctuation marks, except the @ sign. We
recommend that the string does not contain the : (colon) character, since that might cause problems with certain
tools. Previous to HTCondor 7.1.1, when the string included an @ sign, HTCondor replaced whatever followed
the @ sign with the fully qualified host name of the local machine. HTCondor does not modify any portion of
the string, if it contains an @ sign. This is useful for remote job submissions under the high availability of the
job queue.

If the setting is used, and the is configured to spawn a condor_schedd, the name defined with takes precedence
over the setting. Since HTCondor makes the assumption that there is only one instance of the condor_startd
running on a machine, the is not automatically propagated to the condor_startd. However, in situations where
multiple condor_startd daemons are running on the same host, the should be set to uniquely identify the con-
dor_startd daemons.

If an HTCondor daemon (master, schedd or startd) has been given a unique name, all HTCondor tools that need
to contact that daemon can be told what name to use via the -name command-line option.

MASTER_ATTRS¶
This macro is described in .

MASTER_DEBUG¶
This macro is described in .

MASTER_ADDRESS_FILE¶
This macro is described in .

ALLOW_ADMIN_COMMANDS¶
If set to NO for a given host, this macro disables administrative commands, such as , , and , to that host.

MASTER_INSTANCE_LOCK¶
Defines the name of a file for the daemon to lock in order to prevent multiple s from starting. This is useful when

196 Chapter 5. Administrators’ Manual

mailto:identifying-string@full.host.name

HTCondor Manual, Release 23.6.2

using shared file systems like NFS which do not technically support locking in the case where the lock files reside
on a local disk. If this macro is not defined, the default file name will be $(LOCK)/InstanceLock. $(LOCK)
can instead be defined to specify the location of all lock files, not just the ‘s InstanceLock. If $(LOCK) is
undefined, then the master log itself is locked.

ADD_WINDOWS_FIREWALL_EXCEPTION¶
When set to False, the will not automatically add HTCondor to the Windows Firewall list of trusted applications.
Such trusted applications can accept incoming connections without interference from the firewall. This only
affects machines running Windows XP SP2 or higher. The default is True.

WINDOWS_FIREWALL_FAILURE_RETRY¶
An integer value (default value is 2) that represents the number of times the will retry to add firewall exceptions.
When a Windows machine boots up, HTCondor starts up by default as well. Under certain conditions, the
may have difficulty adding exceptions to the Windows Firewall because of a delay in other services starting
up. Examples of services that may possibly be slow are the SharedAccess service, the Netman service, or the
Workstation service. This configuration variable allows administrators to set the number of times (once every 5
seconds) that the will retry to add firewall exceptions. A value of 0 means that HTCondor will retry indefinitely.

USE_PROCESS_GROUPS¶
A boolean value that defaults to True. When False, HTCondor daemons on Unix machines will not create new
sessions or process groups. HTCondor uses processes groups to help it track the descendants of processes it
creates. This can cause problems when HTCondor is run under another job execution system.

DISCARD_SESSION_KEYRING_ON_STARTUP¶
A boolean value that defaults to True. When True, the daemon will replace the kernel session keyring it was
invoked with with a new keyring named htcondor. Various Linux system services, such as OpenAFS and
eCryptFS, use the kernel session keyring to hold passwords and authentication tokens. By replacing the keyring
on start up, the ensures these keys cannot be unintentionally obtained by user jobs.

ENABLE_KERNEL_TUNING¶
Relevant only to Linux platforms, a boolean value that defaults to True. When True, the daemon invokes the
kernel tuning script specified by configuration variable once as root when the daemon starts up.

KERNEL_TUNING_LOG¶
A string value that defaults to $(LOG)/KernelTuningLog. If the kernel tuning script runs, its output will be
logged to this file.

LINUX_KERNEL_TUNING_SCRIPT¶
A string value that defaults to $(LIBEXEC)/linux_kernel_tuning. This is the script that the runs to tune the
kernel when is True.

5.4.7 condor_startd Configuration File Macros

Note: If you are running HTCondor on a multi-CPU machine, be sure to also read condor_startd Policy Configuration
which describes how to set up and configure HTCondor on multi-core machines.

These settings control general operation of the condor_startd. Examples using these configuration macros, as well as
further explanation is found in the Configuration for Execution Points section.

START¶
A boolean expression that, when True, indicates that the machine is willing to start running an HTCondor job.
is considered when the condor_negotiator daemon is considering evicting the job to replace it with one that will
generate a better rank for the condor_startd daemon, or a user with a higher priority.

5.4. Configuration Macros 197

HTCondor Manual, Release 23.6.2

DEFAULT_DRAINING_START_EXPR¶
An alternate expression to use while draining when the drain command is sent without a -start argument.
When this configuration parameter is not set and the drain command does not specify a -start argument, will
have the value undefined and Requirements will be false while draining. This will prevent new jobs from
matching. To allow evictable jobs to match while draining, set this to an expression that matches only those jobs.

SUSPEND¶
A boolean expression that, when True, causes HTCondor to suspend running an HTCondor job. The machine
may still be claimed, but the job makes no further progress, and HTCondor does not generate a load on the
machine.

PREEMPT¶
A boolean expression that, when True, causes HTCondor to stop a currently running job once has expired. This
expression is not evaluated if is True. The default value is False, such that preemption is disabled.

WANT_HOLD¶
A boolean expression that defaults to False. When True and the value of becomes True and is False and has
expired, the job is put on hold for the reason (optionally) specified by the variables and . As usual, the job owner
may specify and/or expressions to react to specific hold states automatically. The attribute in the job ClassAd is
set to the value 21 when is responsible for putting the job on hold.

Here is an example policy that puts jobs on hold that use too much virtual memory:

VIRTUAL_MEMORY_AVAILABLE_MB = (VirtualMemory*0.9)
MEMORY_EXCEEDED = ImageSize/1024 > $(VIRTUAL_MEMORY_AVAILABLE_MB)
PREEMPT = ($(PREEMPT)) || ($(MEMORY_EXCEEDED))
WANT_SUSPEND = ($(WANT_SUSPEND)) && ($(MEMORY_EXCEEDED)) =!= TRUE
WANT_HOLD = ($(MEMORY_EXCEEDED))
WANT_HOLD_REASON = \

ifThenElse($(MEMORY_EXCEEDED), \
"Your job used too much virtual memory.", \
undefined)

WANT_HOLD_REASON¶
An expression that defines a string utilized to set the job ClassAd attribute when a job is put on hold due to . If
not defined or if the expression evaluates to Undefined, a default hold reason is provided.

WANT_HOLD_SUBCODE¶
An expression that defines an integer value utilized to set the job ClassAd attribute when a job is put on hold due
to . If not defined or if the expression evaluates to Undefined, the value is set to 0. Note that is always set to 21.

CONTINUE¶
A boolean expression that, when True, causes HTCondor to continue the execution of a suspended job.

KILL¶
A boolean expression that, when True, causes HTCondor to immediately stop the execution of a vacating job,
without delay. The job is hard-killed, so any attempt by the job to clean up will be aborted. This expression
should normally be False. When desired, it may be used to abort the graceful shutdown of a job earlier than the
limit imposed by .

PERIODIC_CHECKPOINT¶
A boolean expression that, when True, causes HTCondor to initiate a checkpoint of the currently running job.
This setting applies to vm universe jobs that have set to True in the submit description file.

RANK¶
A floating point value that HTCondor uses to compare potential jobs. A larger value for a specific job ranks that
job above others with lower values for .

198 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

ADVERTISE_PSLOT_ROLLUP_INFORMATION¶
A boolean value that defaults to True, causing the condor_startd to advertise ClassAd attributes that may be
used in partitionable slot preemption. The attributes are

•

•

• ChildCPUs

•

•

•

•

•

•

•

•

•

STARTD_PARTITIONABLE_SLOT_ATTRS¶
A list of additional from the above default attributes from dynamic slots that will be rolled up into a list attribute
in their parent partitionable slot, prefixed with the name Child.

WANT_SUSPEND¶
A boolean expression that, when True, tells HTCondor to evaluate the expression to decide whether to suspend
a running job. When True, the expression is not evaluated. When not explicitly set, the condor_startd exits with
an error. When explicitly set, but the evaluated value is anything other than True, the value is utilized as if it
were False.

WANT_VACATE¶
A boolean expression that, when True, defines that a preempted HTCondor job is to be vacated, instead of killed.
This means the job will be soft-killed and given time to clean up. The amount of time given depends on and .
The default value is True.

IS_OWNER¶
A boolean expression that determines when a machine ad should enter the state. While in the state, the machine
ad will not be matched to any jobs. The default value is False (never enter state). Job ClassAd attributes should
not be used in defining , as they would be Undefined.

STARTD_HISTORY¶
A file name where the condor_startd daemon will maintain a job history file in an analogous way to that of the
history file defined by the configuration variable . It will be rotated in the same way, and the same parameters that
apply to the file rotation apply to the condor_startd daemon history as well. This can be read with the command
by passing the name of the file to the -file option of .

$ condor_history -file `condor_config_val LOG`/startd_history

STARTER¶
This macro holds the full path to the condor_starter binary that the condor_startd should spawn. It is normally
defined relative to $(SBIN).

KILLING_TIMEOUT¶
The amount of time in seconds that the condor_startd should wait after sending a fast shutdown request to
condor_starter before forcibly killing the job and condor_starter. The default value is 30 seconds.

5.4. Configuration Macros 199

HTCondor Manual, Release 23.6.2

POLLING_INTERVAL¶
When a condor_startd enters the claimed state, this macro determines how often the state of the machine is
polled to check the need to suspend, resume, vacate or kill the job. It is defined in terms of seconds and defaults
to 5.

UPDATE_INTERVAL¶
Determines how often the condor_startd should send a ClassAd update to the condor_collector. The con-
dor_startd also sends update on any state or activity change, or if the value of its expression changes. See
condor_startd Policy Configuration on condor_startd states, condor_startd Activities, and condor_startd ex-
pression for details on states, activities, and the expression. This macro is defined in terms of seconds and
defaults to 300 (5 minutes).

UPDATE_OFFSET¶
An integer value representing the number of seconds of delay that the condor_startd should wait before sending
its initial update. The default is 0. The time of all other periodic updates sent after this initial update is deter-
mined by $(UPDATE_INTERVAL). Thus, the first update will be sent after $(UPDATE_OFFSET) seconds, and the
second update will be sent after $(UPDATE_OFFSET) + $(UPDATE_INTERVAL). This is useful when used in con-
junction with the $RANDOM_INTEGER() macro for large pools, to spread out the updates sent by a large number
of condor_startd daemons when all of the machines are started at the same time. The example configuration

startd.UPDATE_INTERVAL = 300
startd.UPDATE_OFFSET = $RANDOM_INTEGER(0,300)

causes the initial update to occur at a random number of seconds falling between 0 and 300, with all further
updates occurring at fixed 300 second intervals following the initial update.

MachineMaxVacateTime¶
An integer expression representing the number of seconds the machine is willing to wait for a job that has been
soft-killed to gracefully shut down. The default value is 600 seconds (10 minutes). This expression is evaluated
when the job starts running. The job may adjust the wait time by setting . If the job’s setting is less than the
machine’s, the job’s specification is used. If the job’s setting is larger than the machine’s, the result depends
on whether the job has any excess retirement time. If the job has more retirement time left than the machine’s
maximum vacate time setting, then retirement time will be converted into vacating time, up to the amount of .
The expression may be used to abort the graceful shutdown of the job at any time. At the time when the job is
preempted, the expression may be used to skip the graceful shutdown of the job.

MAXJOBRETIREMENTTIME¶
When the condor_startd wants to evict a job, a job which has run for less than the number of seconds specified
by this expression will not be hard-killed. The condor_startd will wait for the job to finish or to exceed this
amount of time, whichever comes sooner. Time spent in suspension does not count against the job. The default
value of 0 (when the configuration variable is not present) means that the job gets no retirement time. If the job
vacating policy grants the job X seconds of vacating time, a preempted job will be soft-killed X seconds before
the end of its retirement time, so that hard-killing of the job will not happen until the end of the retirement time
if the job does not finish shutting down before then. Note that in peaceful shutdown mode of the condor_startd,
retirement time is treated as though infinite. In graceful shutdown mode, the job will not be preempted until
the configured retirement time expires or expires. In fast shutdown mode, retirement time is ignored. See in
condor_startd Policy Configuration for further explanation.

By default the condor_negotiator will not match jobs to a slot with retirement time remaining. This behavior is
controlled by .

There is no default value for this configuration variable.

CLAIM_WORKLIFE¶
This expression specifies the number of seconds after which a claim will stop accepting additional jobs. The
default is 1200, which is 20 minutes. Once the condor_negotiator gives a condor_schedd a claim to a slot, the
condor_schedd will keep running jobs on that slot as long as it has more jobs with matching requirements, and
has not expired, and it is not preempted. Once expires, any existing job may continue to run as usual, but once it

200 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

finishes or is preempted, the claim is closed. When is -1, this is treated as an infinite claim work life, so claims
may be held indefinitely (as long as they are not preempted and the user does not run out of jobs, of course). A
value of 0 has the effect of not allowing more than one job to run per claim, since it immediately expires after
the first job starts running.

MAX_CLAIM_ALIVES_MISSED¶
The condor_schedd sends periodic updates to each condor_startd as a keep alive (see the description of If the
condor_startd does not receive any keep alive messages, it assumes that something has gone wrong with the
condor_schedd and that the resource is not being effectively used. Once this happens, the condor_startd con-
siders the claim to have timed out, it releases the claim, and starts advertising itself as available for other jobs.
Because these keep alive messages are sent via UDP, they are sometimes dropped by the network. Therefore, the
condor_startd has some tolerance for missed keep alive messages, so that in case a few keep alives are lost, the
condor_startd will not immediately release the claim. This setting controls how many keep alive messages can
be missed before the condor_startd considers the claim no longer valid. The default is 6.

STARTD_HAS_BAD_UTMP¶
When the condor_startd is computing the idle time of all the users of the machine (both local and remote), it
checks the utmp file to find all the currently active ttys, and only checks access time of the devices associated with
active logins. Unfortunately, on some systems, utmp is unreliable, and the condor_startd might miss keyboard
activity by doing this. So, if your utmp is unreliable, set this macro to True and the condor_startd will check
the access time on all tty and pty devices.

CONSOLE_DEVICES¶
This macro allows the condor_startd to monitor console (keyboard and mouse) activity by checking the access
times on special files in /dev. Activity on these files shows up as time in the condor_startd ‘s ClassAd. Give
a comma-separated list of the names of devices considered the console, without the /dev/ portion of the path
name. The defaults vary from platform to platform, and are usually correct.

One possible exception to this is on Linux, where we use “mouse” as one of the entries. Most Linux installations
put in a soft link from /dev/mouse that points to the appropriate device (for example, /dev/psaux for a PS/2
bus mouse, or /dev/tty00 for a serial mouse connected to com1). However, if your installation does not have
this soft link, you will either need to put it in (you will be glad you did), or change this macro to point to the right
device.

Unfortunately, modern versions of Linux do not update the access time of device files for USB devices. Thus,
these files cannot be be used to determine when the console is in use. Instead, use the condor_kbdd daemon,
which gets this information by connecting to the X server.

KBDD_BUMP_CHECK_SIZE¶
The number of pixels that the mouse can move in the X and/or Y direction, while still being considered a bump,
and not keyboard activity. If the movement is greater than this bump size then the move is not a transient one,
and it will register as activity. The default is 16, and units are pixels. Setting the value to 0 effectively disables
bump testing.

KBDD_BUMP_CHECK_AFTER_IDLE_TIME¶
The number of seconds of keyboard idle time that will pass before bump testing begins. The default is 15 minutes.

STARTD_JOB_ATTRS¶
When the machine is claimed by a remote user, the condor_startd can also advertise arbitrary attributes from the
job ClassAd in the machine ClassAd. List the attribute names to be advertised.

Note: Since these are already ClassAd expressions, do not do anything unusual with strings. By default, the
job ClassAd attributes JobUniverse, NiceUser, ExecutableSize and ImageSize are advertised into the machine
ClassAd.

STARTD_LATCH_EXPRS¶
Each time a slot is created, activated, or when periodic STARTD policy is evaluated HTCondor will evaluate

5.4. Configuration Macros 201

HTCondor Manual, Release 23.6.2

expressions whose names are listed in this configuration variable. If the evaluated value can be converted to an
integer, and the value of the integer changes, the time of the change will be published.

This macro should be a list of the names of configuration variables that contain an expression to be evaluated, the
name of the configuration variable will be treated as the base name of attributes published for the macro. Thus
expressions listed behave like with the additional behavior the most recent evaluated value will be advertised as
<name>Value and the time the value changed will be advertised as <name>Time. Entries in this list can also be
the names of standard slot attributes like NumDynamicSlots, in which case the change time will be advertised
but the evaluated value will not be advertised, since that would be redundant.

It is not an error when the result of evaluation is undefined, in that case the STARTD will remember the time that
the value became undefined but not advertise the time. If the evaluated value becomes defined again, the time
that it changed from undefined to the new value will again be advertised.

Example:

STARTD_LATCH_EXPRS = HalfFull NumDynamicSlots
HalfFull = Cpus < (TotalSlotCPUs/2) || Memory < (TotalSlotMemory/2)

For the configuration fragment above, the STARTD will advertise HalfFull as an expression, along with
the last evaluated value of that expression as HalfFullValue, and the time it changed to that value as
HalfFullTime. It will also advertise the time that the number of dynamic slots changed to its current value as
NumDynamicSlotsTime. It will not advertise a NumDynamicSlotsValue because the <name>Value attribute
is only advertised if <name> is an expression in the configuration that is not simple literal value.

STARTD_ATTRS¶
This macro is described in .

SLOT<N>_STARTD_ATTRS¶
Like the above, but only applies to the numbered slot.

STARTD_DEBUG¶
This macro (and other settings related to debug logging in the condor_startd) is described in .

STARTD_ADDRESS_FILE¶
This macro is described in

ENABLE_STARTD_DAEMON_AD¶
Enable a daemon ad for the condor_startd that is separate from the slot ads used for matchmaking and running
jobs. Allowed values are True, False, and Auto. When the value is True, the condor_startd will advertise Slot
ads describing the slot state and StartDaemon ads describing the overall state of the daemon. When the value
is False, the condor_startd will advertise only Machine ads. When the value is Auto, the condor_startd will
advertise Slot and StartDaemon ads to collectors that are HTCondor version 23.2 or later, and Machine ads
to older collectors. The default value is Auto.

STARTD_SHOULD_WRITE_CLAIM_ID_FILE¶
The condor_startd can be configured to write out the ClaimId for the next available claim on all slots to separate
files. This boolean attribute controls whether the condor_startd should write these files. The default value is
True.

STARTD_CLAIM_ID_FILE¶
This macro controls what file names are used if the above is true. By default, HTCondor will write the ClaimId
into a file in the $(LOG) directory called .startd_claim_id.slotX, where X is the value of , the integer that
identifies a given slot on the system, or 1 on a single-slot machine. If you define your own value for this setting,
you should provide a full path, and HTCondor will automatically append the .slotX portion of the file name.

STARTD_PRINT_ADS_ON_SHUTDOWN¶
The condor_startd can be configured to write out the slot ads into the daemon’s log file as it is shutting down.
This is a boolean and the default value is False.

202 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

STARTD_PRINT_ADS_FILTER¶
When above is set to True, this macro can list which specific types of ads will get written to the log. The possible
values are static`, partitionable, and dynamic. The list is comma separated and the default is to print all
three types of ads.

NUM_CPUS¶
An integer value, which can be used to lie to the condor_startd daemon about how many CPUs a machine has.
When set, it overrides the value determined with HTCondor’s automatic computation of the number of CPUs in
the machine. Lying in this way can allow multiple HTCondor jobs to run on a single-CPU machine, by having
that machine treated like a multi-core machine with multiple CPUs, which could have different HTCondor jobs
running on each one. Or, a multi-core machine may advertise more slots than it has CPUs. However, lying in
this manner will hurt the performance of the jobs, since now multiple jobs will run on the same CPU, and the
jobs will compete with each other. The option is only meant for people who specifically want this behavior and
know what they are doing. It is disabled by default.

The default value is $(DETECTED_CPUS_LIMIT) .

The condor_startd only takes note of the value of this configuration variable on start up, therefore it cannot be
changed with a simple reconfigure. To change this, restart the condor_startd daemon for the change to take effect.
The command will be

$ condor_restart -startd

MAX_NUM_CPUS¶
An integer value used as a ceiling for the number of CPUs detected by HTCondor on a machine. This value is
ignored if is set. If set to zero, there is no ceiling. If not defined, the default value is zero, and thus there is no
ceiling.

Note that this setting cannot be changed with a simple reconfigure, either by sending a SIGHUP or by using the
command. To change this, restart the condor_startd daemon for the change to take effect. The command will be

$ condor_restart -startd

COUNT_HYPERTHREAD_CPUS¶
This configuration variable controls how HTCondor sees hyper-threaded processors. When set to the default
value of True, it includes virtual CPUs in the default value of DETECTED_CPUS. On dedicated cluster nodes,
counting virtual CPUs can sometimes improve total throughput at the expense of individual job speed. However,
counting them on desktop workstations can interfere with interactive job performance.

MEMORY¶
Normally, HTCondor will automatically detect the amount of physical memory available on your machine. De-
fine to tell HTCondor how much physical memory (in MB) your machine has, overriding the value HTCondor
computes automatically. The actual amount of memory detected by HTCondor is always available in the pre-
defined configuration macro .

RESERVED_MEMORY¶
How much memory would you like reserved from HTCondor? By default, HTCondor considers all the physical
memory of your machine as available to be used by HTCondor jobs. If is defined, HTCondor subtracts it from
the amount of memory it advertises as available.

STARTD_NAME¶
Used to give an alternative value to the Name attribute in the condor_startd ‘s ClassAd. This esoteric configura-
tion macro might be used in the situation where there are two condor_startd daemons running on one machine,
and each reports to the same condor_collector. Different names will distinguish the two daemons. See the
description of for defaults and composition of valid HTCondor daemon names.

RUNBENCHMARKS¶
A boolean expression that specifies whether to run benchmarks. When the machine is in the Unclaimed state

5.4. Configuration Macros 203

HTCondor Manual, Release 23.6.2

and this expression evaluates to True, benchmarks will be run. If is specified and set to anything other than
False, additional benchmarks will be run once, when the condor_startd starts. To disable start up benchmarks,
set RunBenchmarks to False.

DedicatedScheduler¶
A string that identifies the dedicated scheduler this machine is managed by. Dedicated Scheduling details the use
of a dedicated scheduler.

STARTD_NOCLAIM_SHUTDOWN¶
The number of seconds to run without receiving a claim before shutting HTCondor down on this machine.
Defaults to unset, which means to never shut down. This is primarily intended to facilitate glidein; use in other
situations is not recommended.

STARTD_PUBLISH_WINREG¶
A string containing a semicolon-separated list of Windows registry key names. For each registry key, the contents
of the registry key are published in the machine ClassAd. All attribute names are prefixed with WINREG_. The
remainder of the attribute name is formed in one of two ways. The first way explicitly specifies the name within
the list with the syntax

STARTD_PUBLISH_WINREG = AttrName1 = KeyName1; AttrName2 = KeyName2

The second way of forming the attribute name derives the attribute names from the key names in the list. The
derivation uses the last three path elements in the key name and changes each illegal character to an underscore
character. Illegal characters are essentially any non-alphanumeric character. In addition, the percent character
(%) is replaced by the string Percent, and the string /sec is replaced by the string _Per_Sec.

HTCondor expects that the hive identifier, which is the first element in the full path given by a key name, will be
the valid abbreviation. Here is a list of abbreviations:

• HKLM is the abbreviation for HKEY_LOCAL_MACHINE

• HKCR is the abbreviation for HKEY_CLASSES_ROOT

• HKCU is the abbreviation for HKEY_CURRENT_USER

• HKPD is the abbreviation for HKEY_PERFORMANCE_DATA

• HKCC is the abbreviation for HKEY_CURRENT_CONFIG

• HKU is the abbreviation for HKEY_USERS

The HKPD key names are unusual, as they are not shown in regedit. Their values are periodically updated at the
interval defined by . The others are not updated until is issued.

Here is a complete example of the configuration variable definition,

STARTD_PUBLISH_WINREG = HKLM\Software\Perl\BinDir; \
BATFile_RunAs_Command = HKCR\batFile\shell\RunAs\command; \
HKPD\Memory\Available MBytes; \
BytesAvail = HKPD\Memory\Available Bytes; \
HKPD\Terminal Services\Total Sessions; \
HKPD\Processor\% Idle Time; \
HKPD\System\Processes

which generates the following portion of a machine ClassAd:

WINREG_Software_Perl_BinDir = "C:\Perl\bin\perl.exe"
WINREG_BATFile_RunAs_Command = "%SystemRoot%\System32\cmd.exe /C \"%1\" %*"
WINREG_Memory_Available_MBytes = 5331
WINREG_BytesAvail = 5590536192.000000

(continues on next page)

204 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

WINREG_Terminal_Services_Total_Sessions = 2
WINREG_Processor_Percent_Idle_Time = 72.350384
WINREG_System_Processes = 166

MOUNT_UNDER_SCRATCH¶
A ClassAd expression, which when evaluated in the context of the job ClassAd, evaluates to a string that contains
a comma separated list of directories. For each directory in the list, HTCondor creates a directory in the job’s
temporary scratch directory with that name, and makes it available at the given name using bind mounts. This
is available on Linux systems which provide bind mounts and per-process tree mount tables, such as Red Hat
Enterprise Linux 5. A bind mount is like a symbolic link, but is not globally visible to all processes. It is only
visible to the job and the job’s child processes. As an example:

MOUNT_UNDER_SCRATCH = ifThenElse(TARGET.UtsnameSysname ? "Linux", "/tmp,/var/tmp", "
→˓")

If the job is running on a Linux system, it will see the usual /tmp and /var/tmp directories, but when accessing
files via these paths, the system will redirect the access. The resultant files will actually end up in directories
named tmp or var/tmp under the job’s temporary scratch directory. This is useful, because the job’s scratch
directory will be cleaned up after the job completes, two concurrent jobs will not interfere with each other, and
because jobs will not be able to fill up the real /tmp directory. Another use case might be for home directories,
which some jobs might want to write to, but that should be cleaned up after each job run. The default value is
"/tmp,/var/tmp".

If the job’s execute directory is encrypted, /tmp and /var/tmp are automatically added to when the job is run
(they will not show up if is examined with).

Note: The MOUNT_UNDER_SCRATCH mounts do not take place until the PreCmd of the job, if any, com-
pletes. (See Job ClassAd Attributes for information on PreCmd.)

Also note that, if is defined, it must either be a ClassAd string (with double-quotes) or an expression that evaluates
to a string.

For Docker Universe jobs, any directories that are mounted under scratch are also volume mounted on the same
paths inside the container. That is, any reads or writes to files in those directories goes to the host filesystem
under the scratch directory. This is useful if a container has limited space to grow a filesystem.

MOUNT_PRIVATE_DEV_SHM¶
This boolean value, which defaults to True tells the condor_starter to make /dev/shm on Linux private to each
job. When private, the starter removes any files from the private /dev/shm at job exit time.

The following macros control if the condor_startd daemon should create a custom filesystem for the job’s scratch
directory. This allows HTCondor to prevent the job from using more scratch space than provisioned.

STARTD_ENFORCE_DISK_LIMITS¶
This boolean value, which is only evaluated on Linux systems, tells the condor_startd whether to make an
ephemeral filesystem for the scratch execute directory for jobs. The default is False. This should only be set to
true on HTCondor installations that have root privilege. When true, you must set and , or alternatively set . If
true and required pre-made LVM components are not defined then HTCondor will default to using the .

Note: only needs to be set if Startd disk enforcement is using thin provisioning for logical volumes. This behavior is
dictated by .

LVM_USE_THIN_PROVISIONING¶

5.4. Configuration Macros 205

HTCondor Manual, Release 23.6.2

A boolean value that defaults to True. When True HTCondor will create thin provisioned logical volumes from
a backing thin pool logical volume for ephemeral execute directories. If False then HTCondor will create linear
logical volumes for ephemeral execute directories.

LVM_THINPOOL_NAME¶
A string value that represents an external pre-made Linux LVM thin-pool type logical volume to be used as a
backing pool for ephemeral execute directories. This setting only matters when is True, and HTCondor has root
privilege. This option does not have a default value.

LVM_VOLUME_GROUP_NAME¶
A string value that represents an external pre-made Linux LVM volume group to be used to create logical volumes
for ephemeral execute directories. This setting only matters when is True, and HTCondor has root privilege. This
option does not have a default value.

LVM_BACKING_FILE¶
A string valued parameter that defaults to $(SPOOL)/startd_disk.img. If a rootly HTCondor does not have
pre-made Linux LVM components configured, a single large file will be used as the backing store for ephemeral
file systems for execute directories. This parameter should be set to the path of a large, pre-created file to hold
the blocks these filesystems are created from.

LVM_BACKING_FILE_SIZE_MB¶
An integer value that represents the size in Megabytes to allocate for the ephemeral backing file described by .
This option default to 10240 (10GB).

LVM_THIN_LV_EXTRA_SIZE_MB¶
An integer value that represents size in Megabytes to be added onto the size of a thinly provisioned logical
volume for an ephemeral execute directory. This option only applies when is True. This extra space over will
over provision the backing thin pool while providing a buffer to better catch over use of disk before a job gets
ENOSPC errors. The default value is 2000 (2GB).

LVM_HIDE_MOUNT¶
A boolean value that defaults to false. When LVM ephemeral filesystems are enabled (as described above),
if this knob is set to true, the mount will only be visible to the job and the starter. Any process in any other
process tree will not be able to see the mount. Setting this to true breaks Docker universe.

The following macros control if the condor_startd daemon should perform backfill computations whenever resources
would otherwise be idle. See Configuring HTCondor for Running Backfill Jobs for details.

ENABLE_BACKFILL¶
A boolean value that, when True, indicates that the machine is willing to perform backfill computations when
it would otherwise be idle. This is not a policy expression that is evaluated, it is a simple True or False. This
setting controls if any of the other backfill-related expressions should be evaluated. The default is False.

BACKFILL_SYSTEM¶
A string that defines what backfill system to use for spawning and managing backfill computations. Currently,
the only supported value for this is "BOINC", which stands for the Berkeley Open Infrastructure for Network
Computing. See http://boinc.berkeley.edu for more information about BOINC. There is no default value, admin-
istrators must define this.

START_BACKFILL¶
A boolean expression that is evaluated whenever an HTCondor resource is in the Unclaimed/Idle state and the
expression is True. If evaluates to True, the machine will enter the Backfill state and attempt to spawn a backfill
computation. This expression is analogous to the expression that controls when an HTCondor resource is avail-
able to run normal HTCondor jobs. The default value is False (which means do not spawn a backfill job even
if the machine is idle and expression is True). For more information about policy expressions and the Backfill
state, see Configuration for Execution Points, especially the condor_startd Policy Configuration section.

EVICT_BACKFILL¶
A boolean expression that is evaluated whenever an HTCondor resource is in the Backfill state which, when

206 Chapter 5. Administrators’ Manual

http://boinc.berkeley.edu

HTCondor Manual, Release 23.6.2

True, indicates the machine should immediately kill the currently running backfill computation and return to
the Owner state. This expression is a way for administrators to define a policy where interactive users on a
machine will cause backfill jobs to be removed. The default value is False. For more information about policy
expressions and the Backfill state, see Configuration for Execution Points, especially the condor_startd Policy
Configuration section.

The following macros only apply to the condor_startd daemon when it is running on a multi-core machine. See the
condor_startd Policy Configuration section for details.

STARTD_RESOURCE_PREFIX¶
A string which specifies what prefix to give the unique HTCondor resources that are advertised on multi-core
machines. Previously, HTCondor used the term virtual machine to describe these resources, so the default value
for this setting was vm. However, to avoid confusion with other kinds of virtual machines, such as the ones created
using tools like VMware or Xen, the old virtual machine terminology has been changed, and has become the
term slot. Therefore, the default value of this prefix is now slot. If sites want to continue using vm, or prefer
something other slot, this setting enables sites to define what string the condor_startd will use to name the
individual resources on a multi-core machine.

SLOTS_CONNECTED_TO_CONSOLE¶
An integer which indicates how many of the machine slots the condor_startd is representing should be “con-
nected” to the console. This allows the condor_startd to notice console activity. Defaults to 0. sets this to a very
large number so that all slots will be connected.

SLOTS_CONNECTED_TO_KEYBOARD¶
An integer which indicates how many of the machine slots the condor_startd is representing should be “con-
nected” to the keyboard (for remote tty activity, as well as console activity). Defaults to 0. sets this to a very
large number so that all slots will be connected.

DISCONNECTED_KEYBOARD_IDLE_BOOST¶
If there are slots not connected to either the keyboard or the console, the corresponding idle time reported will
be the time since the condor_startd was spawned, plus the value of this macro. It defaults to 1200 seconds
(20 minutes). We do this because if the slot is configured not to care about keyboard activity, we want it to be
available to HTCondor jobs as soon as the condor_startd starts up, instead of having to wait for 15 minutes or
more (which is the default time a machine must be idle before HTCondor will start a job). If you do not want
this boost, set the value to 0. If you change your START expression to require more than 15 minutes before a job
starts, but you still want jobs to start right away on some of your multi-core nodes, increase this macro’s value.

STARTD_SLOT_ATTRS¶
The list of ClassAd attribute names that should be shared across all slots on the same machine. This setting was
formerly know as For each attribute in the list, the attribute’s value is taken from each slot’s machine ClassAd
and placed into the machine ClassAd of all the other slots within the machine. For example, if the configuration
file for a 2-slot machine contains

STARTD_SLOT_ATTRS = State, Activity, EnteredCurrentActivity

then the machine ClassAd for both slots will contain attributes that will be of the form:

slot1_State = "Claimed"
slot1_Activity = "Busy"
slot1_EnteredCurrentActivity = 1075249233
slot2_State = "Unclaimed"
slot2_Activity = "Idle"
slot2_EnteredCurrentActivity = 1075240035

The following settings control the number of slots reported for a given multi-core host, and what attributes each one has.
They are only needed if you do not want to have a multi-core machine report to HTCondor with a separate slot for each

5.4. Configuration Macros 207

HTCondor Manual, Release 23.6.2

CPU, with all shared system resources evenly divided among them. Please read condor_startd Policy Configuration
for details on how to properly configure these settings to suit your needs.

Note: You cannot change the number or definition of the different slot types with a reconfig. If you change any-
thing related to slot provisioning, you must restart the condor_startd for the change to take effect (for example, using
condor_restart -startd).

Note: Prior to version 6.9.3, any settings that included the term slot used to use virtual machine or vm. If searching
for information about one of these older settings, search for the corresponding attribute names using slot, instead.

MAX_SLOT_TYPES¶
The maximum number of different slot types. Note: this is the maximum number of different types, not of actual
slots. Defaults to 10. (You should only need to change this setting if you define more than 10 separate slot types,
which would be pretty rare.)

SLOT_TYPE_<N>¶
This setting defines a given slot type, by specifying what part of each shared system resource (like RAM, swap
space, etc) this kind of slot gets. This setting has no effect unless you also define . N can be any integer from 1 to
the value of $(MAX_SLOT_TYPES), such as SLOT_TYPE_1. The format of this entry can be somewhat complex,
so please refer to condor_startd Policy Configuration for details on the different possibilities.

SLOT_TYPE_<N>_PARTITIONABLE¶
A boolean variable that defaults to False. When True, this slot permits dynamic provisioning, as specified in
condor_startd Policy Configuration.

CLAIM_PARTITIONABLE_LEFTOVERS¶
A boolean variable that defaults to True. When True within the configuration for both the condor_schedd
and the condor_startd, and the condor_schedd claims a partitionable slot, the condor_startd returns the slot’s
ClassAd and a claim id for leftover resources. In doing so, the condor_schedd can claim multiple dynamic slots
without waiting for a negotiation cycle.

ENABLE_CLAIMABLE_PARTITIONABLE_SLOTS¶
A boolean variable that defaults to False. When set to True in the configuration of both the condor_startd
and the condor_schedd, and the condor_schedd claims a partitionable slot, the partitionable slot’s will change
to Claimed in addition to the creation of a Claimed dynamic slot. While the slot is Claimed, no other con-
dor_schedd is able to create new dynamic slots to run jobs.

MAX_PARTITIONABLE_SLOT_CLAIM_TIME¶
An integer that indicates the maximum amount of time that a partitionable slot can be in the Claimed state before
returning to the Unclaimed state, expressed in seconds. The default value is 3600.

MACHINE_RESOURCE_NAMES¶
A comma and/or space separated list of resource names that represent custom resources specific to a machine.
These resources are further intended to be statically divided or partitioned, and these resource names identify
the configuration variables that define the partitioning. If used, custom resources without names in the list are
ignored.

STARTD_DETECT_GPUS¶
The arguments passed to condor_gpu_discovery to detect GPUs when the configuration does not have a GPUs
resource explicity configured via MACHINE_RESOURCE_GPUS or MACHINE_RESOURCE_INVENTORY_GPUS. Use
of the configuration template use FEATURE : GPUs will set MACHINE_RESOURCE_INVENTORY_GPUS and that
will cause this configuration variable to be ignored. If the value of this configuration variable is set to false
or 0 or empty then automatic GPU discovery will be disabled, but a GPUs resource will still be defined if the
configuration has MACHINE_RESOURCE_GPUS or MACHINE_RESOURCE_INVENTORY_GPUS or the configuration
template use FEATURE : GPUs. The default value is -properties $(GPU_DISCOVERY_EXTRA)

208 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

MACHINE_RESOURCE_<name>¶
An integer that specifies the quantity of or list of identifiers for the customized local machine resource available
for an SMP machine. The portion of this configuration variable’s name identified with <name> will be used
to label quantities of the resource allocated to a slot. If a quantity is specified, the resource is presumed to be
fungible and slots will be allocated a quantity of the resource but specific instances will not be identified. If a
list of identifiers is specified the quantity is the number of identifiers and slots will be allocated both a quantity
of the resource and assigned specific resource identifiers.

OFFLINE_MACHINE_RESOURCE_<name>¶
A comma and/or space separated list of resource identifiers for any customized local machine resources that
are currently offline, and therefore should not be allocated to a slot. The identifiers specified here must match
those specified by value of configuration variables or , or the identifiers will be ignored. The <name> identifies
the type of resource, as specified by the value of configuration variable . This configuration variable is used to
have resources that are detected and reported to exist by HTCondor, but not assigned to slots. A restart of the
condor_startd is required for changes to resources assigned to slots to take effect. If this variable is changed
and command is sent to the Startd, the list of Offline resources will be updated, and the count of resources of
that type will be updated, but newly offline resources will still be assigned to slots. If an offline resource is
assigned to a Partitionable slot, it will never be assigned to a new dynamic slot but it will not be removed from
the Assigned<name> attribute of an existing dynamic slot.

MACHINE_RESOURCE_INVENTORY_<name>¶
Specifies a command line that is executed upon start up of the condor_startd daemon. The script is expected to
output an attribute definition of the form

Detected<xxx>=y

or of the form

Detected<xxx>="y, z, a, ..."

where <xxx> is the name of a resource that exists on the machine, and y is the quantity of the resource or "y,
z, a, ..." is a comma and/or space separated list of identifiers of the resource that exist on the machine. This
attribute is added to the machine ClassAd, such that these resources may be statically divided or partitioned. A
script may be a convenient way to specify a calculated or detected quantity of the resource, instead of specifying
a fixed quantity or list of the resource in the configuration when set by .

The script may also output an attribute of the form

Offline<xxx>="y, z"

where <xxx> is the name of the resource, and "y, z" is a comma and/or space separated list of resource
identifiers that are also in the Detected<xxx> list. This attribute is added to the machine ClassAd, and re-
sources y and z will not be assigned to any slot and will not be included in the count of resources of this
type. This will override the configuration variable OFFLINE_MACHINE_RESOURCE_<xxx> on startup. But
OFFLINE_MACHINE_RESOURCE_<xxx> can still be used to take additional resources offline without restarting.

ENVIRONMENT_FOR_Assigned<name>¶
A space separated list of environment variables to set for the job. Each environment variable will be set to the
list of assigned resources defined by the slot ClassAd attribute Assigned<name>. Each environment variable
name may be followed by an equals sign and a Perl style regular expression that defines how to modify each
resource ID before using it as the value of the environment variable. As a special case for CUDA GPUs, if the
environment variable name is CUDA_VISIBLE_DEVICES, then the correct Perl style regular expression is applied
automatically.

For example, with the configuration

5.4. Configuration Macros 209

HTCondor Manual, Release 23.6.2

ENVIRONMENT_FOR_AssignedGPUs = VISIBLE_GPUS=/^/gpuid:/

and with the machine ClassAd attribute AssignedGPUs = "CUDA1, CUDA2", the job’s environment will con-
tain

VISIBLE_GPUS = gpuid:CUDA1, gpuid:CUDA2

ENVIRONMENT_VALUE_FOR_UnAssigned<name>¶
Defines the value to set for environment variables specified in by configuration variable when there is no machine
ClassAd attribute Assigned<name> for the slot. This configuration variable exists to deal with the situation
where jobs will use a resource that they have not been assigned because there is no explicit assignment. The
CUDA runtime library (for GPUs) has this problem.

For example, where configuration is

ENVIRONMENT_FOR_AssignedGPUs = VISIBLE_GPUS
ENVIRONMENT_VALUE_FOR_UnAssignedGPUs = none

and there is no machine ClassAd attribute AssignedGPUs, the job’s environment will contain

VISIBLE_GPUS = none

MUST_MODIFY_REQUEST_EXPRS¶
A boolean value that defaults to False. When False, configuration variables whose names begin with
MODIFY_REQUEST_EXPR are only applied if the job claim still matches the partitionable slot after modifica-
tion. If True, the modifications always take place, and if the modifications cause the claim to no longer match,
then the condor_startd will simply refuse the claim.

MODIFY_REQUEST_EXPR_REQUESTMEMORY¶
An integer expression used by the condor_startd daemon to modify the evaluated value of the job ClassAd
attribute, before it used to provision a dynamic slot. The default value is given by

quantize(RequestMemory,{128})

MODIFY_REQUEST_EXPR_REQUESTDISK¶
An integer expression used by the condor_startd daemon to modify the evaluated value of the job ClassAd
attribute, before it used to provision a dynamic slot. The default value is given by

quantize(RequestDisk,{1024})

MODIFY_REQUEST_EXPR_REQUESTCPUS¶
An integer expression used by the condor_startd daemon to modify the evaluated value of the job ClassAd
attribute, before it used to provision a dynamic slot. The default value is given by

quantize(RequestCpus,{1})

NUM_SLOTS_TYPE_<N>¶
This macro controls how many of a given slot type are actually reported to HTCondor. There is no default.

NUM_SLOTS¶
An integer value representing the number of slots reported when the multi-core machine is being evenly divided,
and the slot type settings described above are not being used. The default is one slot for each CPU. This setting
can be used to reserve some CPUs on a multi-core machine, which would not be reported to the HTCondor pool.
This value cannot be used to make HTCondor advertise more slots than there are CPUs on the machine. To do
that, use .

210 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

The following variables set consumption policies for partitionable slots. The condor_startd Policy Configuration sec-
tion details consumption policies.

CONSUMPTION_POLICY¶
A boolean value that defaults to False. When True, consumption policies are enabled for partitionable slots
within the condor_startd daemon. Any definition of the form SLOT_TYPE_<N>_CONSUMPTION_POLICY over-
rides this global definition for the given slot type.

CONSUMPTION_<Resource>¶
An expression that specifies a consumption policy for a particular resource within a partitionable slot. To
support a consumption policy, each resource advertised by the slot must have such a policy configured. Cus-
tom resources may be specified, substituting the resource name for <Resource>. Any definition of the form
SLOT_TYPE_<N>_CONSUMPTION_<Resource> overrides this global definition for the given slot type. CPUs,
memory, and disk resources are always advertised by condor_startd, and have the default values:

CONSUMPTION_CPUS = quantize(target.RequestCpus,{1})
CONSUMPTION_MEMORY = quantize(target.RequestMemory,{128})
CONSUMPTION_DISK = quantize(target.RequestDisk,{1024})

Custom resources have no default consumption policy.

SLOT_WEIGHT¶
An expression that specifies a slot’s weight, used as a multiplier the condor_negotiator daemon during match-
making to assess user usage of a slot, which affects user priority. Defaults to .

In the case of slots with consumption policies, the cost of each match is is assessed as the difference in the
slot weight expression before and after the resources consumed by the match are deducted from the slot. Only
Memory, Cpus and Disk are valid attributes for this parameter.

NUM_CLAIMS¶
Specifies the number of claims a partitionable slot will advertise for use by the condor_negotiator daemon. In
the case of slots with a defined consumption policy, the condor_negotiator may match more than one job to the
slot in a single negotiation cycle. For partitionable slots with a consumption policy, defaults to the number of
CPUs owned by the slot. Otherwise, it defaults to 1.

The following configuration variables support java universe jobs.

JAVA¶
The full path to the Java interpreter (the Java Virtual Machine).

JAVA_CLASSPATH_ARGUMENT¶
The command line argument to the Java interpreter (the Java Virtual Machine) that specifies the Java Classpath.
Classpath is a Java-specific term that denotes the list of locations (.jar files and/or directories) where the Java
interpreter can look for the Java class files that a Java program requires.

JAVA_CLASSPATH_SEPARATOR¶
The single character used to delimit constructed entries in the Classpath for the given operating system and Java
Virtual Machine. If not defined, the operating system is queried for its default Classpath separator.

JAVA_CLASSPATH_DEFAULT¶
A list of path names to .jar files to be added to the Java Classpath by default. The comma and/or space character
delimits list entries.

JAVA_EXTRA_ARGUMENTS¶
A list of additional arguments to be passed to the Java executable.

The following configuration variables control .NET version advertisement.

STARTD_PUBLISH_DOTNET¶
A boolean value that controls the advertising of the .NET framework on Windows platforms. When True, the

5.4. Configuration Macros 211

HTCondor Manual, Release 23.6.2

condor_startd will advertise all installed versions of the .NET framework within the attribute in the condor_startd
machine ClassAd. The default value is True. Set the value to false to turn off .NET version advertising.

DOT_NET_VERSIONS¶
A string expression that administrators can use to override the way that .NET versions are advertised. If the
administrator wishes to advertise .NET installations, but wishes to do so in a format different than what the con-
dor_startd publishes in its ClassAds, setting a string in this expression will result in the condor_startd publishing
the string when is True. No value is set by default.

These macros control the power management capabilities of the condor_startd to optionally put the machine in to a
low power state and wake it up later. See (Power Management). for more details

HIBERNATE_CHECK_INTERVAL¶
An integer number of seconds that determines how often the condor_startd checks to see if the machine is ready
to enter a low power state. The default value is 0, which disables the check. If not 0, the expression is evaluated
within the context of each slot at the given interval. If used, a value 300 (5 minutes) is recommended.

As a special case, the interval is ignored when the machine has just returned from a low power state, excluding
"SHUTDOWN". In order to avoid machines from volleying between a running state and a low power state, an hour
of uptime is enforced after a machine has been woken. After the hour has passed, regular checks resume.

HIBERNATE¶
A string expression that represents lower power state. When this state name evaluates to a valid state other than
"NONE", causes HTCondor to put the machine into the specified low power state. The following names are
supported (and are not case sensitive):

• "NONE", "0": No-op; do not enter a low power state

• "S1", "1", "STANDBY", "SLEEP": On Windows, this is Sleep (standby)

• "S2", "2": On Windows, this is Sleep (standby)

• "S3", "3", "RAM", "MEM", "SUSPEND": On Windows, this is Sleep (standby)

• "S4", "4", "DISK", "HIBERNATE": Hibernate

• "S5", "5", "SHUTDOWN", "OFF": Shutdown (soft-off)

The expression is written in terms of the S-states as defined in the Advanced Configuration and Power Interface
(ACPI) specification. The S-states take the form S<n>, where <n> is an integer in the range 0 to 5, inclusive. The
number that results from evaluating the expression determines which S-state to enter. The notation was adopted
because it appears to be the standard naming scheme for power states on several popular operating systems,
including various flavors of Windows and Linux distributions. The other strings, such as "RAM" and "DISK", are
provided for ease of configuration.

Since this expression is evaluated in the context of each slot on the machine, any one slot has veto power over
the other slots. If the evaluation of in one slot evaluates to "NONE" or "0", then the machine will not be placed
into a low power state. On the other hand, if all slots evaluate to a non-zero value, but differ in value, then the
largest value is used as the representative power state.

Strings that do not match any in the table above are treated as "NONE".

UNHIBERNATE¶
A boolean expression that specifies when an offline machine should be woken up. The default value is
MachineLastMatchTime =!= UNDEFINED. This expression does not do anything, unless there is an instance
of condor_rooster running, or another program that evaluates the expression of offline machine ClassAds. In
addition, the collecting of offline machine ClassAds must be enabled for this expression to work. The variable
explains this. The special attribute is updated in the ClassAds of offline machines when a job would have been
matched to the machine if it had been online. For multi-slot machines, the offline ClassAd for slot1 will also
contain the attributes slot<X>_MachineLastMatchTime, where X is replaced by the slot id of the other slots
that would have been matched while offline. This allows the slot1 expression to refer to all of the slots on the

212 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

machine, in case that is necessary. By default, condor_rooster will wake up a machine if any slot on the machine
has its expression evaluate to True.

HIBERNATION_PLUGIN¶
A string which specifies the path and executable name of the hibernation plug-in that the condor_startd should
use in the detection of low power states and switching to the low power states. The default value is $(LIBEXEC)/
power_state. A default executable in that location which meets these specifications is shipped with HTCondor.

The condor_startd initially invokes this plug-in with both the value defined for and the argument ad, and expects
the plug-in to output a ClassAd to its standard output stream. The condor_startd will use this ClassAd to deter-
mine what low power setting to use on further invocations of the plug-in. To that end, the ClassAd must contain
the attribute HibernationSupportedStates, a comma separated list of low power modes that are available.
The recognized mode strings are the same as those in the table for the configuration variable . The optional
attribute HibernationMethod specifies a string which describes the mechanism used by the plug-in. The de-
fault Linux plug-in shipped with HTCondor will produce one of the strings NONE, /sys, /proc, or pm-utils. The
optional attribute HibernationRawMask is an integer which represents the bit mask of the modes detected.

Subsequent condor_startd invocations of the plug-in have command line arguments defined by plus the ar-
gument set <power-mode>, where <power-mode> is one of the supported states as given in the attribute
HibernationSupportedStates.

HIBERNATION_PLUGIN_ARGS¶
Command line arguments appended to the command that invokes the plug-in. The additional argument ad is
appended when the condor_startd initially invokes the plug-in.

HIBERNATION_OVERRIDE_WOL¶
A boolean value that defaults to False. When True, it causes the condor_startd daemon’s detection of the
whether or not the network interface handles WOL packets to be ignored. When False, hibernation is disabled
if the network interface does not use WOL packets to wake from hibernation. Therefore, when True hibernation
can be enabled despite the fact that WOL packets are not used to wake machines.

LINUX_HIBERNATION_METHOD¶
A string that can be used to override the default search used by HTCondor on Linux platforms to detect the hiber-
nation method to use. This is used by the default hibernation plug-in executable that is shipped with HTCondor.
The default behavior orders its search with:

1. Detect and use the pm-utils command line tools. The corresponding string is defined with “pm-utils”.

2. Detect and use the directory in the virtual file system /sys/power. The corresponding string is defined
with “/sys”.

3. Detect and use the directory in the virtual file system /proc/ACPI. The corresponding string is defined
with “/proc”.

To override this ordered search behavior, and force the use of one particular method, set to one of the defined
strings.

OFFLINE_EXPIRE_ADS_AFTER¶
An integer number of seconds specifying the lifetime of the persistent machine ClassAd representing a hibernat-
ing machine. Defaults to the largest 32-bit integer.

DOCKER¶
Defines the path and executable name of the Docker CLI. The default value is /usr/bin/docker. Remember that
the condor user must also be in the docker group for Docker Universe to work. See the Docker universe manual
section for more details (Docker Universe). An example of the configuration for running the Docker CLI:

DOCKER = /usr/bin/docker

DOCKER_VOLUMES¶
A list of directories on the host execute machine to be volume mounted within the container. See the Docker

5.4. Configuration Macros 213

HTCondor Manual, Release 23.6.2

Universe section for full details (Docker Universe).

DOCKER_IMAGE_CACHE_SIZE¶
The number of most recently used Docker images that will be kept on the local machine. The default value is 8.

DOCKER_DROP_ALL_CAPABILITIES¶
A class ad expression, which defaults to true. Evaluated in the context of the job ad and the machine ad, when
true, runs the Docker container with the command line option -drop-all-capabilities. Admins should be very
careful with this setting, and only allow trusted users to run with full Linux capabilities within the container.

DOCKER_PERFORM_TEST¶
When the condor_startd starts up, it runs a simple Docker container to verify that Docker completely works. If
DOCKER_PERFORM_TEST is false, this test is skipped.

DOCKER_RUN_UNDER_INIT¶
A boolean value which defaults to true, which tells the worker node to run Docker universe jobs with the –init
option.

DOCKER_EXTRA_ARGUMENTS¶
Any additional command line options the administrator wants to be added to the Docker container create com-
mand line can be set with this parameter. Note that the admin should be careful setting this, it is intended for
newer Docker options that HTCondor doesn’t support directly. Arbitrary Docker options may break Docker
universe, for example don’t pass the –rm flag in DOCKER_EXTRA_ARGUMENTS, because then HTCondor
cannot get the final exit status from a Docker job.

DOCKER_NETWORKS¶
An optional, comma-separated list of admin-defined networks that a job may request with the
docker_network_type submit file command. Advertised into the slot attribute DockerNetworks.

DOCKER_SHM_SIZE¶
An optional knob that can be configured to adapt the --shm-size Docker container create argument. Allowed
values are integers in bytes. If not set, --shm-size will not be specified by HTCondor and Docker’s default is
used. This is used to configure the size of the container’s /dev/shm size adapting to the job’s requested memory.

DOCKER_CACHE_ADVERTISE_INTERVAL¶
The condor_startd periodically advertises how much disk space the docker daemon is using to store images into
the slot attribute DockerCachedImageSize. This knob, which defaults to 1200 (seconds), controls how often the
start polls the docker daemon for this information.

DOCKER_LOG_DRIVER_NONE¶
When this knob is true (the default), condor passes the command line option –log-driver none to the docker
container it creates. This prevents the docker daemon from duplicating the job’s stdout and saving it in a docker-
specific place on disk to be viewed with the docker logs command, saving space on disk for jobs with large
stdout.

OPENMPI_INSTALL_PATH¶
The location of the Open MPI installation on the local machine. Referenced by examples/openmpiscript,
which is used for running Open MPI jobs in the parallel universe. The Open MPI bin and lib directories should
exist under this path. The default value is /usr/lib64/openmpi.

OPENMPI_EXCLUDE_NETWORK_INTERFACES¶
A comma-delimited list of network interfaces that Open MPI should not use for MPI communications. Refer-
enced by examples/openmpiscript, which is used for running Open MPI jobs in the parallel universe.

The list should contain any interfaces that your job could potentially see from any execute machine. The list may
contain undefined interfaces without generating errors. Open MPI should exclusively use low latency/high speed
networks it finds (e.g. InfiniBand) regardless of this setting. The default value is docker0,virbr0.

These macros control the startds (and starters) capability to create a private filesystem for the scratch directory for each
job.

214 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

THINPOOL_VOLUME_GROUP_NAME¶
A string that names the Linux LVM volume group the administrator has configured as the storage for per-job
scratch directories.

THINPOOL_NAME¶
A string that names the Linux LVM logical volume for storage for per-job scratch directories.

STARTD_ENFORCE_DISK_LIMITS
A boolean that defaults to false that controls whether the starter puts a job on hold that fills the per-job filesystem.

5.4.8 condor_schedd Configuration File Entries

These macros control the condor_schedd.

SHADOW¶
This macro determines the full path of the condor_shadow binary that the condor_schedd spawns. It is normally
defined in terms of $(SBIN).

START_LOCAL_UNIVERSE¶
A boolean value that defaults to TotalLocalJobsRunning < 200. The condor_schedd uses this macro to
determine whether to start a local universe job. At intervals determined by , the condor_schedd daemon eval-
uates this macro for each idle local universe job that it has. For each job, if the macro is True, then the job’s
Requirements expression is evaluated. If both conditions are met, then the job is allowed to begin execution.

The following example only allows 10 local universe jobs to execute concurrently. The attribute is supplied by
condor_schedd ‘s ClassAd:

START_LOCAL_UNIVERSE = TotalLocalJobsRunning < 10

STARTER_LOCAL¶
The complete path and executable name of the condor_starter to run for local universe jobs. This variable’s
value is defined in the initial configuration provided with HTCondor as

STARTER_LOCAL = $(SBIN)/condor_starter

This variable would only be modified or hand added into the configuration for a pool to be upgraded from one
running a version of HTCondor that existed before the local universe to one that includes the local universe, but
without utilizing the newer, provided configuration files.

LOCAL_UNIV_EXECUTE¶
A string value specifying the execute location for local universe jobs. Each running local universe job will
receive a uniquely named subdirectory within this directory. If not specified, it defaults to $(SPOOL)/
local_univ_execute.

START_SCHEDULER_UNIVERSE¶
A boolean value that defaults to TotalSchedulerJobsRunning < 500. The condor_schedd uses this macro
to determine whether to start a scheduler universe job. At intervals determined by , the condor_schedd daemon
evaluates this macro for each idle scheduler universe job that it has. For each job, if the macro is True, then
the job’s Requirements expression is evaluated. If both conditions are met, then the job is allowed to begin
execution.

The following example only allows 10 scheduler universe jobs to execute concurrently. The attribute is supplied
by condor_schedd ‘s ClassAd:

START_SCHEDULER_UNIVERSE = TotalSchedulerJobsRunning < 10

5.4. Configuration Macros 215

HTCondor Manual, Release 23.6.2

START_VANILLA_UNIVERSE¶
A boolean expression that defaults to nothing. When this macro is defined the condor_schedd uses it to determine
whether to start a vanilla universe job. The condor_schedd uses the expression when matching a job with a slot
in addition to the Requirements expression of the job and the slot ClassAds. The expression can refer to job
attributes by using the prefix JOB, slot attributes by using the prefix SLOT, and job owner attributes by using the
prefix OWNER.

The following example prevents jobs owned by a user from starting when that user has more than 25 held jobs

START_VANILLA_UNIVERSE = OWNER.JobsHeld <= 25

SCHEDD_USES_STARTD_FOR_LOCAL_UNIVERSE¶
A boolean value that defaults to false. When true, the condor_schedd will spawn a special startd process to run
local universe jobs. This allows local universe jobs to run with both a condor_shadow and a condor_starter,
which means that file transfer will work with local universe jobs.

MAX_JOBS_RUNNING¶
An integer representing a limit on the number of condor_shadow processes spawned by a given condor_schedd
daemon, for all job universes except grid, scheduler, and local universe. Limiting the number of running scheduler
and local universe jobs can be done using and . The actual number of allowed condor_shadow daemons may be
reduced, if the amount of memory defined by limits the number of condor_shadow daemons. A value for that is
less than or equal to 0 prevents any new job from starting. Changing this setting to be below the current number
of jobs that are running will cause running jobs to be aborted until the number running is within the limit.

Like all integer configuration variables, may be a ClassAd expression that evaluates to an integer, and which
refers to constants either directly or via macro substitution. The default value is an expression that depends on
the total amount of memory and the operating system. The default expression requires 1MByte of RAM per
running job on the access point. In some environments and configurations, this is overly generous and can be
cut by as much as 50%. On Windows platforms, the number of running jobs is capped at 2000. A 64-bit version
of Windows is recommended in order to raise the value above the default. Under Unix, the maximum default is
now 10,000. To scale higher, we recommend that the system ephemeral port range is extended such that there
are at least 2.1 ports per running job.

Here are example configurations:

Example 1:
MAX_JOBS_RUNNING = 10000

Example 2:
This is more complicated, but it produces the same limit as the default.
First define some expressions to use in our calculation.
Assume we can use up to 80% of memory and estimate shadow private data
size of 800k.
MAX_SHADOWS_MEM = ceiling($(DETECTED_MEMORY)*0.8*1024/800)
Assume we can use ~21,000 ephemeral ports (avg ~2.1 per shadow).
Under Linux, the range is set in /proc/sys/net/ipv4/ip_local_port_range.
MAX_SHADOWS_PORTS = 10000
Under windows, things are much less scalable, currently.
Note that this can probably be safely increased a bit under 64-bit windows.
MAX_SHADOWS_OPSYS = ifThenElse(regexp("WIN.*","$(OPSYS)"),2000,100000)
Now build up the expression for MAX_JOBS_RUNNING. This is complicated
due to lack of a min() function.
MAX_JOBS_RUNNING = $(MAX_SHADOWS_MEM)
MAX_JOBS_RUNNING = \
ifThenElse($(MAX_SHADOWS_PORTS) < $(MAX_JOBS_RUNNING), \

$(MAX_SHADOWS_PORTS), \
(continues on next page)

216 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

$(MAX_JOBS_RUNNING))
MAX_JOBS_RUNNING = \
ifThenElse($(MAX_SHADOWS_OPSYS) < $(MAX_JOBS_RUNNING), \

$(MAX_SHADOWS_OPSYS), \
$(MAX_JOBS_RUNNING))

MAX_JOBS_SUBMITTED¶
This integer value limits the number of jobs permitted in a condor_schedd daemon’s queue. Submission of a
new cluster of jobs fails, if the total number of jobs would exceed this limit. The default value for this variable is
the largest positive integer value.

MAX_JOBS_PER_OWNER¶
This integer value limits the number of jobs any given owner (user) is permitted to have within a condor_schedd
daemon’s queue. A job submission fails if it would cause this limit on the number of jobs to be exceeded. The
default value is 100000.

This configuration variable may be most useful in conjunction with , to ensure that no one user can dominate the
queue.

ALLOW_SUBMIT_FROM_KNOWN_USERS_ONLY¶
This boolean value determines if a User record will be created automatically when an unknown user submits a
job. When true, only daemons or users that have a User record in the condor_schedd can submit jobs. When
false, a User record will be added during job submission for users that have never submitted a job before. The
default value is false which is consistent with the behavior of the condor_schedd before User records were added.

MAX_RUNNING_SCHEDULER_JOBS_PER_OWNER¶
This integer value limits the number of scheduler universe jobs that any given owner (user) can have running at
one time. This limit will affect the number of running Dagman jobs, but not the number of nodes within a DAG.
The default value is 200

MAX_JOBS_PER_SUBMISSION¶
This integer value limits the number of jobs any single submission is permitted to add to a condor_schedd dae-
mon’s queue. The whole submission fails if the number of jobs would exceed this limit. The default value is
20000.

This configuration variable may be useful for catching user error, and for protecting a busy condor_schedd dae-
mon from the excessively lengthy interruption required to accept a very large number of jobs at one time.

MAX_SHADOW_EXCEPTIONS¶
This macro controls the maximum number of times that condor_shadow processes can have a fatal error (excep-
tion) before the condor_schedd will relinquish the match associated with the dying shadow. Defaults to 5.

MAX_PENDING_STARTD_CONTACTS¶
An integer value that limits the number of simultaneous connection attempts by the condor_schedd when it is
requesting claims from one or more condor_startd daemons. The intention is to protect the condor_schedd from
being overloaded by authentication operations. The default value is 0. The special value 0 indicates no limit.

CURB_MATCHMAKING¶
A ClassAd expression evaluated by the condor_schedd in the context of the condor_schedd daemon’s own Clas-
sAd. While this expression evaluates to True, the condor_schedd will refrain from requesting more resources
from a condor_negotiator. Defaults to RecentDaemonCoreDutyCycle > 0.98.

MAX_CONCURRENT_DOWNLOADS¶
This specifies the maximum number of simultaneous transfers of output files from execute machines to the access
point. The limit applies to all jobs submitted from the same condor_schedd. The default is 100. A setting of 0
means unlimited transfers. This limit currently does not apply to grid universe jobs, and it also does not apply to
streaming output files. When the limit is reached, additional transfers will queue up and wait before proceeding.

5.4. Configuration Macros 217

HTCondor Manual, Release 23.6.2

MAX_CONCURRENT_UPLOADS¶
This specifies the maximum number of simultaneous transfers of input files from the access point to execute
machines. The limit applies to all jobs submitted from the same condor_schedd. The default is 100. A setting of
0 means unlimited transfers. This limit currently does not apply to grid universe jobs. When the limit is reached,
additional transfers will queue up and wait before proceeding.

FILE_TRANSFER_DISK_LOAD_THROTTLE¶
This configures throttling of file transfers based on the disk load generated by file transfers. The maximum num-
ber of concurrent file transfers is specified by and . Throttling will dynamically reduce the level of concurrency
further to attempt to prevent disk load from exceeding the specified level. Disk load is computed as the average
number of file transfer processes conducting read/write operations at the same time. The throttle may be speci-
fied as a single floating point number or as a range. Syntax for the range is the smaller number followed by 1 or
more spaces or tabs, the string "to", 1 or more spaces or tabs, and then the larger number. Example:

FILE_TRANSFER_DISK_LOAD_THROTTLE = 5 to 6.5

If only a single number is provided, this serves as the upper limit, and the lower limit is set to 90% of the upper
limit. When the disk load is above the upper limit, no new transfers will be started. When between the lower and
upper limits, new transfers will only be started to replace ones that finish. The default value is 2.0.

FILE_TRANSFER_DISK_LOAD_THROTTLE_WAIT_BETWEEN_INCREMENTS¶
This rarely configured variable sets the waiting period between increments to the concurrency level set by . The
default is 1 minute. A value that is too short risks starting too many transfers before their effect on the disk load
becomes apparent.

FILE_TRANSFER_DISK_LOAD_THROTTLE_SHORT_HORIZON¶
This rarely configured variable specifies the string name of the short monitoring time span to use for throttling.
The named time span must exist in . The default is 1m, which is 1 minute.

FILE_TRANSFER_DISK_LOAD_THROTTLE_LONG_HORIZON¶
This rarely configured variable specifies the string name of the long monitoring time span to use for throttling.
The named time span must exist in . The default is 5m, which is 5 minutes.

TRANSFER_QUEUE_USER_EXPR¶
This rarely configured expression specifies the user name to be used for scheduling purposes in the file transfer
queue. The scheduler attempts to give equal weight to each user when there are multiple jobs waiting to transfer
files within the limits set by and/or . When choosing a new job to allow to transfer, the first job belonging to the
transfer queue user who has least number of active transfers will be selected. In case of a tie, the user who has
least recently been given an opportunity to start a transfer will be selected. By default, a transfer queue user is
identified as the job owner. A different user name may be specified by configuring to a string expression that is
evaluated in the context of the job ad. For example, if this expression were set to a name that is the same for all
jobs, file transfers would be scheduled in first-in-first-out order rather than equal share order. Note that the string
produced by this expression is used as a prefix in the ClassAd attributes for per-user file transfer I/O statistics
that are published in the condor_schedd ClassAd.

MAX_TRANSFER_INPUT_MB¶
This integer expression specifies the maximum allowed total size in MiB of the input files that are transferred
for a job. This expression does not apply to grid universe, or files transferred via file transfer plug-ins. The
expression may refer to attributes of the job. The special value -1 indicates no limit. The default value is -1.
The job may override the system setting by specifying its own limit using the attribute. If the observed size of
all input files at submit time is larger than the limit, the job will be immediately placed on hold with a value of
32. If the job passes this initial test, but the size of the input files increases or the limit decreases so that the limit
is violated, the job will be placed on hold at the time when the file transfer is attempted.

MAX_TRANSFER_OUTPUT_MB¶
This integer expression specifies the maximum allowed total size in MiB of the output files that are transferred
for a job. This expression does not apply to grid universe, or files transferred via file transfer plug-ins. The
expression may refer to attributes of the job. The special value -1 indicates no limit. The default value is -1. The

218 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

job may override the system setting by specifying its own limit using the attribute. If the total size of the job’s
output files to be transferred is larger than the limit, the job will be placed on hold with a value of 33. The output
will be transferred up to the point when the limit is hit, so some files may be fully transferred, some partially,
and some not at all.

MAX_TRANSFER_QUEUE_AGE¶
The number of seconds after which an aged and queued transfer may be dequeued from the transfer queue, as it
is presumably hung. Defaults to 7200 seconds, which is 120 minutes.

TRANSFER_IO_REPORT_INTERVAL¶
The sampling interval in seconds for collecting I/O statistics for file transfer. The default is 10 seconds. To
provide sufficient resolution, the sampling interval should be small compared to the smallest time span that is
configured in . The shorter the sampling interval, the more overhead of data collection, which may slow down
the condor_schedd. See Scheduler ClassAd Attributes for a description of the published attributes.

TRANSFER_IO_REPORT_TIMESPANS¶
A string that specifies a list of time spans over which I/O statistics are reported, using exponential moving averages
(like the 1m, 5m, and 15m load averages in Unix). Each entry in the list consists of a label followed by a colon
followed by the number of seconds over which the named time span should extend. The default is 1m:60 5m:300
1h:3600 1d:86400. To provide sufficient resolution, the smallest reported time span should be large compared
to the sampling interval, which is configured by . See Scheduler ClassAd Attributes for a description of the
published attributes.

SCHEDD_QUERY_WORKERS¶
This specifies the maximum number of concurrent sub-processes that the condor_schedd will spawn to handle
queries. The setting is ignored in Windows. In Unix, the default is 8. If the limit is reached, the next query will
be handled in the condor_schedd ‘s main process.

CONDOR_Q_USE_V3_PROTOCOL¶
A boolean value that, when True, causes the condor_schedd to use an algorithm that responds to requests by not
forking itself to handle each request. It instead handles the requests in a non-blocking way. The default value is
True.

CONDOR_Q_DASH_BATCH_IS_DEFAULT¶
A boolean value that, when True, causes to print the -batch output unless the -nobatch option is used or the
other arguments to are incompatible with batch mode. For instance -long is incompatible with -batch. The
default value is True.

CONDOR_Q_ONLY_MY_JOBS¶
A boolean value that, when True, causes to request that only the current user’s jobs be queried unless the current
user is a queue superuser. It also causes the condor_schedd to honor that request. The default value is True. A
value of False in either or the condor_schedd will result in the old behavior of querying all jobs.

CONDOR_Q_SHOW_OLD_SUMMARY¶
A boolean value that, when True, causes to show the old single line summary totals. When False will show
the new multi-line summary totals.

SCHEDD_INTERVAL¶
This macro determines the maximum interval for both how often the condor_schedd sends a ClassAd update to
the condor_collector and how often the condor_schedd daemon evaluates jobs. It is defined in terms of seconds
and defaults to 300 (every 5 minutes).

ABSENT_SUBMITTER_LIFETIME¶
This macro determines the maximum time that the condor_schedd will remember a submitter after the last job
for that submitter leaves the queue. It is defined in terms of seconds and defaults to 1 week.

ABSENT_SUBMITTER_UPDATE_RATE¶
This macro can be used to set the maximum rate at which the condor_schedd sends updates to the con-
dor_collector for submitters that have no jobs in the queue. It is defined in terms of seconds and defaults to

5.4. Configuration Macros 219

HTCondor Manual, Release 23.6.2

300 (every 5 minutes).

WINDOWED_STAT_WIDTH¶
The number of seconds that forms a time window within which performance statistics of the condor_schedd
daemon are calculated. Defaults to 300 seconds.

SCHEDD_INTERVAL_TIMESLICE¶
The bookkeeping done by the condor_schedd takes more time when there are large numbers of jobs in the job
queue. However, when it is not too expensive to do this bookkeeping, it is best to keep the collector up to date
with the latest state of the job queue. Therefore, this macro is used to adjust the bookkeeping interval so that it
is done more frequently when the cost of doing so is relatively small, and less frequently when the cost is high.
The default is 0.05, which means the schedd will adapt its bookkeeping interval to consume no more than 5%
of the total time available to the schedd. The lower bound is configured by (default 5 seconds), and the upper
bound is configured by (default 300 seconds).

JOB_START_COUNT¶
This macro works together with the macro to throttle job starts. The default and minimum values for this integer
configuration variable are both 1.

JOB_START_DELAY¶
This integer-valued macro works together with the macro to throttle job starts. The condor_schedd daemon starts
$(JOB_START_COUNT) jobs at a time, then delays for $(JOB_START_DELAY) seconds before starting the next
set of jobs. This delay prevents a sudden, large load on resources required by the jobs during their start up phase.
The resulting job start rate averages as fast as ($(JOB_START_COUNT)/$(JOB_START_DELAY)) jobs/second.
This setting is defined in terms of seconds and defaults to 0, which means jobs will be started as fast as possible.
If you wish to throttle the rate of specific types of jobs, you can use the job attribute .

MAX_NEXT_JOB_START_DELAY¶
An integer number of seconds representing the maximum allowed value of the job ClassAd attribute . It defaults
to 600, which is 10 minutes.

JOB_STOP_COUNT¶
An integer value representing the number of jobs operated on at one time by the condor_schedd daemon, when
throttling the rate at which jobs are stopped via , , or . The default and minimum values are both 1. This variable
is ignored for grid and scheduler universe jobs.

JOB_STOP_DELAY¶
An integer value representing the number of seconds delay utilized by the condor_schedd daemon, when throt-
tling the rate at which jobs are stopped via , , or . The condor_schedd daemon stops $(JOB_STOP_COUNT) jobs
at a time, then delays for $(JOB_STOP_DELAY) seconds before stopping the next set of jobs. This delay prevents
a sudden, large load on resources required by the jobs when they are terminating. The resulting job stop rate av-
erages as fast as JOB_STOP_COUNT/JOB_STOP_DELAY jobs per second. This configuration variable is also used
during the graceful shutdown of the condor_schedd daemon. During graceful shutdown, this macro determines
the wait time in between requesting each condor_shadow daemon to gracefully shut down. The default value is
0, which means jobs will be stopped as fast as possible. This variable is ignored for grid and scheduler universe
jobs.

JOB_IS_FINISHED_COUNT¶
An integer value representing the number of jobs that the condor_schedd will let permanently leave the job queue
each time that it examines the jobs that are ready to do so. The default value is 1.

JOB_IS_FINISHED_INTERVAL¶
The condor_schedd maintains a list of jobs that are ready to permanently leave the job queue, for example, when
they have completed or been removed. This integer-valued macro specifies a delay in seconds between instances
of taking jobs permanently out of the queue. The default value is 0, which tells the condor_schedd to not impose
any delay.

ALIVE_INTERVAL¶
An initial value for an integer number of seconds defining how often the condor_schedd sends a UDP keep

220 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

alive message to any condor_startd it has claimed. When the condor_schedd claims a condor_startd, the con-
dor_schedd tells the condor_startd how often it is going to send these messages. The utilized interval for sending
keep alive messages is the smallest of the two values and the expression JobLeaseDuration/3, formed with
the job ClassAd attribute . The value of the interval is further constrained by the floor value of 10 seconds. If
the condor_startd does not receive any of these keep alive messages during a certain period of time (defined via
) the condor_startd releases the claim, and the condor_schedd no longer pays for the resource (in terms of user
priority in the system). The macro is defined in terms of seconds and defaults to 300, which is 5 minutes.

STARTD_SENDS_ALIVES¶
Note: This setting is deprecated, and may go away in a future version of HTCondor. This setting is mainly useful
when running mixing very old condor_schedd daemons with newer pools. A boolean value that defaults to True,
causing keep alive messages to be sent from the condor_startd to the condor_schedd by TCP during a claim.
When False, the condor_schedd daemon sends keep alive signals to the condor_startd, reversing the direction.
This variable is only used by the condor_schedd daemon.

REQUEST_CLAIM_TIMEOUT¶
This macro sets the time (in seconds) that the condor_schedd will wait for a claim to be granted by the con-
dor_startd. The default is 30 minutes. This is only likely to matter if is True, and the condor_startd has an
existing claim, and it takes a long time for the existing claim to be preempted due to MaxJobRetirementTime.
Once a request times out, the condor_schedd will simply begin the process of finding a machine for the job all
over again.

Normally, it is not a good idea to set this to be very small, where a small value is a few minutes. Doing so can
lead to failure to preempt, because the preempting job will spend a significant fraction of its time waiting to be
re-matched. During that time, it would miss out on any opportunity to run if the job it is trying to preempt gets
out of the way.

SHADOW_SIZE_ESTIMATE¶
The estimated private virtual memory size of each condor_shadow process in KiB. This value is only used if is
non-zero. The default value is 800.

SHADOW_RENICE_INCREMENT¶
When the condor_schedd spawns a new condor_shadow, it can do so with a nice-level. A nice-level is a Unix
mechanism that allows users to assign their own processes a lower priority so that the processes run with less
priority than other tasks on the machine. The value can be any integer between 0 and 19, with a value of 19 being
the lowest priority. It defaults to 0.

SCHED_UNIV_RENICE_INCREMENT¶
Analogous to and , scheduler universe jobs can be given a nice-level. The value can be any integer between 0
and 19, with a value of 19 being the lowest priority. It defaults to 0.

QUEUE_CLEAN_INTERVAL¶
The condor_schedd maintains the job queue on a given machine. It does so in a persistent way such that if
the condor_schedd crashes, it can recover a valid state of the job queue. The mechanism it uses is a transaction-
based log file (the job_queue.log file, not the SchedLog file). This file contains an initial state of the job queue,
and a series of transactions that were performed on the queue (such as new jobs submitted or jobs completing).
Periodically, the condor_schedd will go through this log, truncate all the transactions and create a new file with
containing only the new initial state of the log. This is a somewhat expensive operation, but it speeds up when
the condor_schedd restarts since there are fewer transactions it has to play to figure out what state the job queue
is really in. This macro determines how often the condor_schedd should rework this queue to cleaning it up. It
is defined in terms of seconds and defaults to 86400 (once a day).

WALL_CLOCK_CKPT_INTERVAL¶
The job queue contains a counter for each job’s “wall clock” run time, i.e., how long each job has executed so
far. This counter is displayed by . The counter is updated when the job is evicted or when the job completes.
When the condor_schedd crashes, the run time for jobs that are currently running will not be added to the counter
(and so, the run time counter may become smaller than the CPU time counter). The condor_schedd saves run
time “checkpoints” periodically for running jobs so if the condor_schedd crashes, only run time since the last

5.4. Configuration Macros 221

HTCondor Manual, Release 23.6.2

checkpoint is lost. This macro controls how often the condor_schedd saves run time checkpoints. It is defined
in terms of seconds and defaults to 3600 (one hour). A value of 0 will disable wall clock checkpoints.

QUEUE_ALL_USERS_TRUSTED¶
Defaults to False. If set to True, then unauthenticated users are allowed to write to the queue, and also we always
trust whatever the value is set to be by the client in the job ad. This was added so users can continue to use the
SOAP web-services interface over HTTP (w/o authenticating) to submit jobs in a secure, controlled environment
- for instance, in a portal setting.

QUEUE_SUPER_USERS¶
A comma and/or space separated list of user names on a given machine that are given super-user access to
the job queue, meaning that they can modify or delete the job ClassAds of other users. These should be of
form USER@DOMAIN; if the domain is not present in the username, HTCondor will assume the default . When
not on this list, users can only modify or delete their own ClassAds from the job queue. Whatever user name
corresponds with the UID that HTCondor is running as - usually user condor - will automatically be included in
this list, because that is needed for HTCondor’s proper functioning. See User Accounts in HTCondor on Unix
Platforms on UIDs in HTCondor for more details on this. By default, the Unix user root and the Windows user
administrator are given the ability to remove other user’s jobs, in addition to user condor. In addition to a single
user, Unix user groups may be specified by using a special syntax defined for this configuration variable; the
syntax is the percent character (%) followed by the user group name. All members of the user group are given
super-user access.

QUEUE_SUPER_USER_MAY_IMPERSONATE¶
A regular expression that matches the operating system user names (that is, job owners in the form USER) that
the queue super user may impersonate when managing jobs. This allows the admin to limit the operating system
users a super user can launch jobs as. When not set, the default behavior is to allow impersonation of any user who
has had a job in the queue during the life of the condor_schedd. For proper functioning of the condor_shadow,
the condor_gridmanager, and the condor_job_router, this expression, if set, must match the owner names of all
jobs that these daemons will manage. Note that a regular expression that matches only part of the user name is
still considered a match. If acceptance of partial matches is not desired, the regular expression should begin with
^ and end with $.

SYSTEM_JOB_MACHINE_ATTRS¶
This macro specifies a space and/or comma separated list of machine attributes that should be recorded in the
job ClassAd. The default attributes are and . When there are multiple run attempts, history of machine at-
tributes from previous run attempts may be kept. The number of run attempts to store is specified by the con-
figuration variable . A machine attribute named X will be inserted into the job ClassAd as an attribute named
MachineAttrX0. The previous value of this attribute will be named MachineAttrX1, the previous to that will
be named MachineAttrX2, and so on, up to the specified history length. A history of length 1 means that only
MachineAttrX0 will be recorded. Additional attributes to record may be specified on a per-job basis by using
the submit file command. The value recorded in the job ClassAd is the evaluation of the machine attribute in the
context of the job ClassAd when the condor_schedd daemon initiates the start up of the job. If the evaluation
results in an Undefined or Error result, the value recorded in the job ClassAd will be Undefined or Error
respectively.

SYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH¶
The integer number of run attempts to store in the job ClassAd when recording the values of machine attributes
listed in . The default is 1. The history length may also be extended on a per-job basis by using the submit
file command The larger of the system and per-job history lengths will be used. A history length of 0 disables
recording of machine attributes.

SCHEDD_LOCK¶
This macro specifies what lock file should be used for access to the SchedLog file. It must be a separate file from
the SchedLog, since the SchedLog may be rotated and synchronization across log file rotations is desired. This
macro is defined relative to the $(LOCK) macro.

SCHEDD_NAME¶

222 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Used to give an alternative value to the Name attribute in the condor_schedd ‘s ClassAd.

See the description of for defaults and composition of valid HTCondor daemon names.

SCHEDD_ATTRS¶
This macro is described in .

SCHEDD_DEBUG¶
This macro (and other settings related to debug logging in the condor_schedd) is described in .

SCHEDD_ADDRESS_FILE¶
This macro is described in .

SCHEDD_EXECUTE¶
A directory to use as a temporary sandbox for local universe jobs. Defaults to $(SPOOL)/execute.

FLOCK_NEGOTIATOR_HOSTS¶
Defines a comma and/or space separated list of condor_negotiator host names for pools in which the con-
dor_schedd should attempt to run jobs. If not set, the condor_schedd will query the condor_collector daemons
for the addresses of the condor_negotiator daemons. If set, then the condor_negotiator daemons must be speci-
fied in order, corresponding to the list set by . In the typical case, where each pool has the condor_collector and
condor_negotiator running on the same machine, $(FLOCK_NEGOTIATOR_HOSTS) should have the same defi-
nition as $(FLOCK_COLLECTOR_HOSTS). This configuration value is also typically used as a macro for adding
the condor_negotiator to the relevant authorization lists.

FLOCK_COLLECTOR_HOSTS¶
This macro defines a list of collector host names (not including the local $(COLLECTOR_HOST)machine) for pools
in which the condor_schedd should attempt to run jobs. Hosts in the list should be in order of preference. The
condor_schedd will only send a request to a central manager in the list if the local pool and pools earlier in the list
are not satisfying all the job requests. must also be configured to allow negotiators from all of the pools to contact
the condor_schedd at the NEGOTIATOR authorization level. Similarly, the central managers of the remote pools
must be configured to allow this condor_schedd to join the pool (this requires ADVERTISE_SCHEDD authorization
level, which defaults to WRITE).

FLOCK_INCREMENT¶
This integer value controls how quickly flocking to various pools will occur. It defaults to 1, meaning that
pools will be considered for flocking slowly. The first condor_collector daemon listed in will be considered for
flocking, and then the second, and so on. A larger value increases the number of condor_collector daemons to
be considered for flocking. For example, a value of 2 will partition the into sets of 2 condor_collector daemons,
and each set will be considered for flocking.

MIN_FLOCK_LEVEL¶
This integer value specifies a number of remote pools that the condor_schedd should always flock to. It defaults
to 0, meaning that none of the pools listed in will be considered for flocking when there are no idle jobs in need
of match-making. Setting a larger value N means the condor_schedd will always flock to (i.e. look for matches
in) the first N pools listed in .

NEGOTIATE_ALL_JOBS_IN_CLUSTER¶
If this macro is set to False (the default), when the condor_schedd fails to start an idle job, it will not try to
start any other idle jobs in the same cluster during that negotiation cycle. This makes negotiation much more
efficient for large job clusters. However, in some cases other jobs in the cluster can be started even though an
earlier job can’t. For example, the jobs’ requirements may differ, because of different disk space, memory, or
operating system requirements. Or, machines may be willing to run only some jobs in the cluster, because their
requirements reference the jobs’ virtual memory size or other attribute. Setting this macro to True will force the
condor_schedd to try to start all idle jobs in each negotiation cycle. This will make negotiation cycles last longer,
but it will ensure that all jobs that can be started will be started.

PERIODIC_EXPR_INTERVAL¶
This macro determines the minimum period, in seconds, between evaluation of periodic job control expressions,

5.4. Configuration Macros 223

HTCondor Manual, Release 23.6.2

such as periodic_hold, periodic_release, and periodic_remove, given by the user in an HTCondor submit file.
By default, this value is 60 seconds. A value of 0 prevents the condor_schedd from performing the periodic
evaluations.

MAX_PERIODIC_EXPR_INTERVAL¶
This macro determines the maximum period, in seconds, between evaluation of periodic job control expressions,
such as periodic_hold, periodic_release, and periodic_remove, given by the user in an HTCondor submit file.
By default, this value is 1200 seconds. If HTCondor is behind on processing events, the actual period between
evaluations may be higher than specified.

PERIODIC_EXPR_TIMESLICE¶
This macro is used to adapt the frequency with which the condor_schedd evaluates periodic job control expres-
sions. When the job queue is very large, the cost of evaluating all of the ClassAds is high, so in order for the
condor_schedd to continue to perform well, it makes sense to evaluate these expressions less frequently. The
default time slice is 0.01, so the condor_schedd will set the interval between evaluations so that it spends only
1% of its time in this activity. The lower bound for the interval is configured by (default 60 seconds) and the
upper bound is configured with (default 1200 seconds).

SYSTEM_PERIODIC_HOLD_NAMES¶
A comma and/or space separated list of unique names, where each is used in the formation of a configuration
variable name that will contain an expression that will be periodically evaluated for each job that is not in the
HELD, COMPLETED, or REMOVED state. Each name in the list will be used in the name of configuration variable
SYSTEM_PERIODIC_HOLD_<Name>. The named expressions are evaluated in the order in which names appear in
this list. Names are not case-sensitive. After all of the named expressions are evaluated, the nameless expression
will be evaluated. If any of these expression evaluates to True the job will be held. See also

There is no default value.

SYSTEM_PERIODIC_HOLD¶ and SYSTEM_PERIODIC_HOLD_<Name>¶
This expression behaves identically to the job expression periodic_hold, but it is evaluated for every job in the
queue. It defaults to False. When True, it causes the job to stop running and go on hold. Here is an example
that puts jobs on hold if they have been restarted too many times, have an unreasonably large virtual memory ,
or have unreasonably large disk usage for an invented environment.

if version > 9.5
use hold names if the version supports it
SYSTEM_PERIODIC_HOLD_NAMES = Mem Disk
SYSTEM_PERIODIC_HOLD_Mem = ImageSize > 3000000
SYSTEM_PERIODIC_HOLD_Disk = JobStatus == 2 && DiskUsage > 10000000
SYSTEM_PERIODIC_HOLD = JobStatus == 1 && JobRunCount > 10

else
SYSTEM_PERIODIC_HOLD = \

(JobStatus == 1 || JobStatus == 2) && \
(JobRunCount > 10 || ImageSize > 3000000 || DiskUsage > 10000000)

endif

SYSTEM_PERIODIC_HOLD_REASON¶ and SYSTEM_PERIODIC_HOLD_<Name>_REASON¶
This string expression is evaluated when the job is placed on hold due to or evaluating to True. If it evaluates to
a non-empty string, this value is used to set the job attribute . Otherwise, a default description is used.

SYSTEM_PERIODIC_HOLD_SUBCODE¶ and SYSTEM_PERIODIC_HOLD_<Name>_SUBCODE¶
This integer expression is evaluated when the job is placed on hold due to or evaluating to True. If it evaluates
to a valid integer, this value is used to set the job attribute . Otherwise, a default of 0 is used. The attribute is set
to 26, which indicates that the job went on hold due to a system job policy expression.

SYSTEM_PERIODIC_RELEASE_NAMES¶
A comma and/or space separated list of unique names, where each is used in the formation of a configuration
variable name that will contain an expression that will be periodically evaluated for each job that is in the HELD

224 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

state (jobs with a value of 1 are ignored). Each name in the list will be used in the name of configuration
variable SYSTEM_PERIODIC_RELEASE_<Name>. The named expressions are evaluated in the order in which
names appear in this list. Names are not case-sensitive. After all of the named expressions are evaluated, the
nameless expression will be evaluated. If any of these expressions evaluates to True the job will be released.
See also

There is no default value.

SYSTEM_PERIODIC_RELEASE¶ and SYSTEM_PERIODIC_RELEASE_<Name>¶
This expression behaves identically to a job’s definition of a expression in a submit description file, but it is
evaluated for every job in the queue. It defaults to False. When True, it causes a Held job to return to the Idle
state. Here is an example that releases jobs from hold if they have tried to run less than 20 times, have most
recently been on hold for over 20 minutes, and have gone on hold due to Connection timed out when trying
to execute the job, because the file system containing the job’s executable is temporarily unavailable.

SYSTEM_PERIODIC_RELEASE = \
(JobRunCount < 20 && (time() - EnteredCurrentStatus) > 1200) && \
(HoldReasonCode == 6 && HoldReasonSubCode == 110)

SYSTEM_PERIODIC_REMOVE_NAMES¶
A comma and/or space separated list of unique names, where each is used in the formation of a configuration
variable name that will contain an expression that will be periodically evaluated for each job in the queue. Each
name in the list will be used in the name of configuration variable SYSTEM_PERIODIC_REMOVE_<Name>. The
named expressions are evaluated in the order in which names appear in this list. Names are not case-sensitive.
After all of the named expressions are evaluated, the nameless expression will be evaluated. If any of these
expressions evaluates to True the job will be removed from the queue. See also

There is no default value.

SYSTEM_PERIODIC_REMOVE¶ and SYSTEM_PERIODIC_REMOVE_<Name>¶
This expression behaves identically to the job expression periodic_remove, but it is evaluated for every job in
the queue. As it is in the configuration file, it is easy for an administrator to set a remove policy that applies to
all jobs. It defaults to False. When True, it causes the job to be removed from the queue. Here is an example
that removes jobs which have been on hold for 30 days:

SYSTEM_PERIODIC_REMOVE = \
(JobStatus == 5 && time() - EnteredCurrentStatus > 3600*24*30)

SYSTEM_PERIODIC_VACATE_NAMES¶
A comma and/or space separated list of unique names, where each is used in the formation of a configuration
variable name that will contain an expression that will be periodically evaluated for each running job in the queue.
Each name in the list will be used in the name of configuration variable SYSTEM_PERIODIC_VACATE_<Name>.
The named expressions are evaluated in the order in which names appear in this list. Names are case-insensitive.
After all of the named expressions are evaluated, the nameless expression will be evaluated. If any of these
expressions evaluates to True the job will be evicted from the machine it is running on, and returned to the
queue as Idle. See also There is no default value.

SYSTEM_PERIODIC_VACATE¶ and SYSTEM_PERIODIC_VACATE_<Name>¶
This expression behaves identically to the job expression periodic_vacate, but it is evaluated for every running
job in the queue. As it is in the configuration file, it is easy for an administrator to set a vacate policy that applies
to all jobs. It defaults to False. When True, it causes the job to be evicted from the machine it is running on.

SCHEDD_ASSUME_NEGOTIATOR_GONE¶
This macro determines the period, in seconds, that the condor_schedd will wait for the condor_negotiator to
initiate a negotiation cycle before the schedd will simply try to claim any local condor_startd. This allows for
a machine that is acting as both a submit and execute node to run jobs locally if it cannot communicate with
the central manager. The default value, if not specified, is 2,000,000 seconds (effectively never). If this feature

5.4. Configuration Macros 225

HTCondor Manual, Release 23.6.2

is desired, we recommend setting it to some small multiple of the negotiation cycle, say, 1200 seconds, or 20
minutes.

GRACEFULLY_REMOVE_JOBS¶
A boolean value defaulting to True. If True, jobs will be given a chance to shut down cleanly when removed. In
the vanilla universe, this means that the job will be sent the signal set in its SoftKillSig attribute, or SIGTERM
if undefined; if the job hasn’t exited after its max vacate time, it will be hard-killed (sent SIGKILL). Signals are
different on Windows, and other details differ between universes.

The submit command overrides this configuration variable.

See for details on how HTCondor computes the job’s max vacate time.

SCHEDD_ROUND_ATTR_<xxxx>¶
This is used to round off attributes in the job ClassAd so that similar jobs may be grouped together for negotiation
purposes. There are two cases. One is that a percentage such as 25% is specified. In this case, the value of the
attribute named <xxxx>\ in the job ClassAd will be rounded up to the next multiple of the specified percentage
of the values order of magnitude. For example, a setting of 25% will cause a value near 100 to be rounded up to
the next multiple of 25 and a value near 1000 will be rounded up to the next multiple of 250. The other case is
that an integer, such as 4, is specified instead of a percentage. In this case, the job attribute is rounded up to the
specified number of decimal places. Replace <xxxx> with the name of the attribute to round, and set this macro
equal to the number of decimal places to round up. For example, to round the value of job ClassAd attribute foo
up to the nearest 100, set

SCHEDD_ROUND_ATTR_foo = 2

When the schedd rounds up an attribute value, it will save the raw (un-rounded) actual value in an attribute
with the same name appended with “_RAW”. So in the above example, the raw value will be stored in attribute
foo_RAW in the job ClassAd. The following are set by default:

SCHEDD_ROUND_ATTR_ResidentSetSize = 25%
SCHEDD_ROUND_ATTR_ProportionalSetSizeKb = 25%
SCHEDD_ROUND_ATTR_ImageSize = 25%
SCHEDD_ROUND_ATTR_ExecutableSize = 25%
SCHEDD_ROUND_ATTR_DiskUsage = 25%
SCHEDD_ROUND_ATTR_NumCkpts = 4

Thus, an ImageSize near 100MB will be rounded up to the next multiple of 25MB. If your batch slots have less
memory or disk than the rounded values, it may be necessary to reduce the amount of rounding, because the job
requirements will not be met.

SCHEDD_BACKUP_SPOOL¶
A boolean value that, when True, causes the condor_schedd to make a backup of the job queue as it starts.
When True, the condor_schedd creates a host-specific backup of the current spool file to the spool directory.
This backup file will be overwritten each time the condor_schedd starts. Defaults to False.

SCHEDD_PREEMPTION_REQUIREMENTS¶
This boolean expression is utilized only for machines allocated by a dedicated scheduler. When True, a ma-
chine becomes a candidate for job preemption. This configuration variable has no default; when not defined,
preemption will never be considered.

SCHEDD_PREEMPTION_RANK¶
This floating point value is utilized only for machines allocated by a dedicated scheduler. It is evaluated in context
of a job ClassAd, and it represents a machine’s preference for running a job. This configuration variable has no
default; when not defined, preemption will never be considered.

ParallelSchedulingGroup¶
For parallel jobs which must be assigned within a group of machines (and not cross group boundaries), this

226 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

configuration variable is a string which identifies a group of which this machine is a member. Each machine
within a group sets this configuration variable with a string that identifies the group.

PER_JOB_HISTORY_DIR¶
If set to a directory writable by the HTCondor user, when a job leaves the condor_schedd ‘s queue, a copy of the
job’s ClassAd will be written in that directory. The files are named history, with the job’s cluster and process
number appended. For example, job 35.2 will result in a file named history.35.2. HTCondor does not rotate
or delete the files, so without an external entity to clean the directory, it can grow very large. This option defaults
to being unset. When not set, no files are written.

DEDICATED_SCHEDULER_USE_FIFO¶
When this parameter is set to true (the default), parallel universe jobs will be scheduled in a first-in, first-out
manner. When set to false, parallel jobs are scheduled using a best-fit algorithm. Using the best-fit algorithm is
not recommended, as it can cause starvation.

DEDICATED_SCHEDULER_WAIT_FOR_SPOOLER¶
A boolean value that when True, causes the dedicated scheduler to schedule parallel universe jobs in a very strict
first-in, first-out manner. When the default value of False, parallel jobs that are being remotely submitted to
a scheduler and are on hold, waiting for spooled input files to arrive at the scheduler, will not block jobs that
arrived later, but whose input files have finished spooling. When True, jobs with larger cluster IDs, but that are
in the Idle state will not be scheduled to run until all earlier jobs have finished spooling in their input files and
have been scheduled.

SCHEDD_SEND_VACATE_VIA_TCP¶
A boolean value that defaults to True. When True, the condor_schedd daemon sends vacate signals via TCP,
instead of the default UDP.

SCHEDD_CLUSTER_INITIAL_VALUE¶
An integer that specifies the initial cluster number value to use within a job id when a job is first submitted. If
the job cluster number reaches the value set by and wraps, it will be re-set to the value given by this variable.
The default value is 1.

SCHEDD_CLUSTER_INCREMENT_VALUE¶
A positive integer that defaults to 1, representing a stride used for the assignment of cluster numbers within a job
id. When a job is submitted, the job will be assigned a job id. The cluster number of the job id will be equal to
the previous cluster number used plus the value of this variable.

SCHEDD_CLUSTER_MAXIMUM_VALUE¶
An integer that specifies an upper bound on assigned job cluster id values. For value M, the maximum job cluster
id assigned to any job will be M - 1. When the maximum id is reached, cluster ids will continue assignment using
. The default value of this variable is zero, which represents the behavior of having no maximum cluster id value.

Note that HTCondor does not check for nor take responsibility for duplicate cluster ids for queued jobs. If is set
to a non-zero value, the system administrator is responsible for ensuring that older jobs do not stay in the queue
long enough for cluster ids of new jobs to wrap around and reuse the same id. With a low enough value, it is
possible for jobs to be erroneously assigned duplicate cluster ids, which will result in a corrupt job queue.

SCHEDD_JOB_QUEUE_LOG_FLUSH_DELAY¶
An integer which specifies an upper bound in seconds on how long it takes for changes to the job ClassAd to be
visible to the HTCondor Job Router. The default is 5 seconds.

ROTATE_HISTORY_DAILY¶
A boolean value that defaults to False. When True, the history file will be rotated daily, in addition to the
rotations that occur due to the definition of that rotate due to size.

ROTATE_HISTORY_MONTHLY¶
A boolean value that defaults to False. When True, the history file will be rotated monthly, in addition to the
rotations that occur due to the definition of that rotate due to size.

5.4. Configuration Macros 227

HTCondor Manual, Release 23.6.2

SCHEDD_COLLECT_STATS_FOR_<Name>¶
A boolean expression that when True creates a set of condor_schedd ClassAd attributes of statistics collected
for a particular set. These attributes are named using the prefix of <Name>. The set includes each entity for
which this expression is True. As an example, assume that condor_schedd statistics attributes are to be created
for only user Einstein’s jobs. Defining

SCHEDD_COLLECT_STATS_FOR_Einstein = (Owner=="einstein")

causes the creation of the set of statistics attributes with names such as EinsteinJobsCompleted and
EinsteinJobsCoredumped.

SCHEDD_COLLECT_STATS_BY_<Name>¶
Defines a string expression. The evaluated string is used in the naming of a set of condor_schedd statistics
ClassAd attributes. The naming begins with <Name>, an underscore character, and the evaluated string. Each
character not permitted in an attribute name will be converted to the underscore character. For example,

SCHEDD_COLLECT_STATS_BY_Host = splitSlotName(RemoteHost)[1]

a set of statistics attributes will be created and kept. If the string expression were to evaluate to "storm.04.cs.
wisc.edu", the names of two of these attributes will be Host_storm_04_cs_wisc_edu_JobsCompleted and
Host_storm_04_cs_wisc_edu_JobsCoredumped.

SCHEDD_EXPIRE_STATS_BY_<Name>¶
The number of seconds after which the condor_schedd daemon will stop collecting and discard the statistics for a
subset identified by <Name>, if no event has occurred to cause any counter or statistic for the subset to be updated.
If this variable is not defined for a particular <Name>, then the default value will be 60*60*24*7, which is one
week’s time.

SIGNIFICANT_ATTRIBUTES¶
A comma and/or space separated list of job ClassAd attributes that are to be added to the list of attributes for
determining the sets of jobs considered as a unit (an auto cluster) in negotiation, when auto clustering is enabled.
When defined, this list replaces the list that the condor_negotiator would define based upon machine ClassAds.

ADD_SIGNIFICANT_ATTRIBUTES¶
A comma and/or space separated list of job ClassAd attributes that will always be added to the list of attributes
that the condor_negotiator defines based upon machine ClassAds, for determining the sets of jobs considered as
a unit (an auto cluster) in negotiation, when auto clustering is enabled.

REMOVE_SIGNIFICANT_ATTRIBUTES¶
A comma and/or space separated list of job ClassAd attributes that are removed from the list of attributes that
the condor_negotiator defines based upon machine ClassAds, for determining the sets of jobs considered as a
unit (an auto cluster) in negotiation, when auto clustering is enabled.

SCHEDD_SEND_RESCHEDULE¶
A boolean value which defaults to true. Set to false for schedds like those in the HTCondor-CE that have no
negotiator associated with them, in order to reduce spurious error messages in the SchedLog file.

SCHEDD_AUDIT_LOG¶
The path and file name of the condor_schedd log that records user-initiated commands that modify the job queue.
If not defined, there will be no condor_schedd audit log.

MAX_SCHEDD_AUDIT_LOG¶
Controls the maximum amount of time that a log will be allowed to grow. When it is time to rotate a log file, it
will be saved to a file with an ISO timestamp suffix. The oldest rotated file receives the file name suffix .old.
The .old files are overwritten each time the maximum number of rotated files (determined by the value of) is
exceeded. A value of 0 specifies that the file may grow without bounds. The following suffixes may be used to
qualify the integer:

Sec for seconds Min for minutes Hr for hours Day for days Wk for weeks

228 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

MAX_NUM_SCHEDD_AUDIT_LOG¶
The integer that controls the maximum number of rotations that the condor_schedd audit log is allowed to per-
form, before the oldest one will be rotated away. The default value is 1.

SCHEDD_USE_SLOT_WEIGHT¶
A boolean that defaults to False. When True, the condor_schedd does use configuration variable to weight
running and idle job counts in the submitter ClassAd.

EXTENDED_SUBMIT_COMMANDS¶
A long form ClassAd that defines extended submit commands and their associated job ad attributes for a specific
Schedd. will query the destination schedd for this ClassAd and use it to modify the internal table of submit
commands before interpreting the submit file.

Each entry in this ClassAd will define a new submit command, the value will indicate the required data type to
the submit file parser with the data type given by example from the value according to this list of types

• string-list - a quoted string containing a comma. e.g. "a,b". string-list values are converted to canonical
form.

• filename - a quoted string beginning with the word file. e.g. "filename". filename values are converted
to fully qualified file paths using the same rules as other submit filenames.

• string - a quoted string that does not match the above special rules. e.g. "string". string values can be
provided quoted or unquoted in the submit file. Unquoted values will have leading and trailing whitespace
removed.

• unsigned-integer - any non-negative integer e.g. 0. unsigned-integer values are evaluated as expressions
and submit will fail if the result does not convert to an unsigned integer. A simple integer value will be
stored in the job.

• integer - any negative integer e.g. -1. integer values are evaluated as expressions and submit will fail if the
result does not convert to an integer. A simple integer value will be stored in the job.

• boolean - any boolean value e.g. true. boolean values are evaluated as expressions and submit will fail if
the result does not convert to true or false.

• expression - any expression or floating point number that is not one of the above. e.g. a+b. expression
values will be parsed as a classad expression and stored in the job.

• error - the literal error will tell submit to generate an error when the command is used. this provides a
way for admins to disable existing submit commands.

• undefined - the literal undefined will be treated by as if that attribute is not in this ad. This is intended to
aid composibility of this ad across multiple configuration files.

The following example will add four new submit commands and disable the use of the the
accounting_group_user submit command.

EXTENDED_SUBMIT_COMMANDS @=end
LongJob = true
Project = "string"
FavoriteFruit = "a,b"
SomeFile = "filename"
accounting_group_user = error

@end

EXTENDED_SUBMIT_HELPFILE¶
A URL or file path to text describing how the condor_schedd extends the submit schema. Use this to document
for users the extended submit commands defined by the configuration variable . will display this URL or the text
of this file when the user uses the -capabilities option.

5.4. Configuration Macros 229

HTCondor Manual, Release 23.6.2

SUBMIT_TEMPLATE_NAMES¶
A comma and/or space separated list of unique names, where each is used in the formation of a configuration
variable name that will contain a set of submit commands. Each name in the list will be used in the name of
the configuration variable . Names are not case-sensitive. There is no default value. Submit templates are used
by when parsing submit files, so administrators or users can add submit templates to the configuration of to
customize the schema or to simplify the creation of submit files.

SUBMIT_TEMPLATE_<Name>¶
A single submit template containing one or more submit commands. The template can be invoked with or without
arguments. The template can refer arguments by number using the $(<N>) where <N> is a value from 0 thru 9.
$(0) expands to all of the arguments, $(1) to the first argument, $(2) to the second argument, and so on. The
argument number can be followed by ? to test if the argument was specified, or by + to expand to that argument
and all subsequent arguments. Thus $(0) and $(1+) will expand to the same thing.

For example:

SUBMIT_TEMPLATE_NAMES = $(SUBMIT_TEMPLATE_NAMES) Slurm
SUBMIT_TEMPLATE_Slurm @=tpl

if ! $(1?)
error : Template:Slurm requires at least 1 argument - Slurm(project, [queue [,

→˓ resource_args...])
endif
universe = Grid
grid_resource = batch slurm $(3)
batch_project = $(1)
batch_queue = $(2:Default)

@tpl

This could be used in a submit file in this way:

use template : Slurm(Blue Book)

JOB_TRANSFORM_NAMES¶
A comma and/or space separated list of unique names, where each is used in the formation of a configuration
variable name that will contain a set of rules governing the transformation of jobs during submission. Each name
in the list will be used in the name of configuration variable . Transforms are applied in the order in which names
appear in this list. Names are not case-sensitive. There is no default value.

JOB_TRANSFORM_<Name>¶
A single job transform specified as a set of transform rules. The syntax for these rules is specified in ClassAd
Transforms The transform rules are applied to jobs that match the transform’s REQUIREMENTS expression as they
are submitted. <Name> corresponds to a name listed in . Names are not case-sensitive. There is no default value.
For jobs submitted as late materialization factories, the factory Cluster ad is transformed at submit time. When
job ads are later materialized, attribute values set by the transform will override values set by the job factory for
those attributes.

SUBMIT_REQUIREMENT_NAMES¶
A comma and/or space separated list of unique names, where each is used in the formation of a configuration
variable name that will represent an expression evaluated to decide whether or not to reject a job submission.
Each name in the list will be used in the name of configuration variable . There is no default value.

SUBMIT_REQUIREMENT_<Name>¶
A boolean expression evaluated in the context of the condor_schedd daemon ClassAd, which is the SCHEDD. or
MY. name space and the job ClassAd, which is the JOB. or TARGET. name space. When False, it causes the
condor_schedd to reject the submission of the job or cluster of jobs. <Name> corresponds to a name listed in .
There is no default value.

230 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

SUBMIT_REQUIREMENT_<Name>_REASON¶
An expression that evaluates to a string, to be printed for the job submitter when evaluates to False and the
condor_schedd rejects the job. There is no default value.

SCHEDD_RESTART_REPORT¶
The complete path to a file that will be written with report information. The report is written when the con-
dor_schedd starts. It contains statistics about its attempts to reconnect to the condor_startd daemons for all jobs
that were previously running. The file is updated periodically as reconnect attempts succeed or fail. Once all
attempts have completed, a copy of the report is emailed to address specified by . The default value is $(LOG)/
ScheddRestartReport. If a blank value is set, then no report is written or emailed.

JOB_SPOOL_PERMISSIONS¶
Control the permissions on the job’s spool directory. Defaults to user which sets permissions to 0700. Possible
values are user, group, and world. If set to group, then the directory is group-accessible, with permissions
set to 0750. If set to world, then the directory is created with permissions set to 0755.

CHOWN_JOB_SPOOL_FILES¶
Prior to HTCondor 8.5.0 on unix, the condor_schedd would chown job files in the SPOOL directory between the
condor account and the account of the job submitter. Now, these job files are always owned by the job submitter
by default. To restore the older behavior, set this parameter to True. The default value is False.

IMMUTABLE_JOB_ATTRS¶
A comma and/or space separated list of attributes provided by the administrator that cannot be changed, once
they have committed values. No attributes are in this list by default.

SYSTEM_IMMUTABLE_JOB_ATTRS¶
A predefined comma and/or space separated list of attributes that cannot be changed, once they have committed
values. The hard-coded value is: .

PROTECTED_JOB_ATTRS¶
A comma and/or space separated list of attributes provided by the administrator that can only be altered by the
queue super-user, once they have committed values. No attributes are in this list by default.

SYSTEM_PROTECTED_JOB_ATTRS¶
A predefined comma and/or space separated list of attributes that can only be altered by the queue super-user,
once they have committed values. The hard-code value is empty.

ALTERNATE_JOB_SPOOL¶
A ClassAd expression evaluated in the context of the job ad. If the result is a string, the value is used an an
alternate spool directory under which the job’s files will be stored. This alternate directory must already exist
and have the same file ownership and permissions as the main directory. Care must be taken that the value won’t
change during the lifetime of each job.

<OAuth2Service>_CLIENT_ID¶
The client ID string for an OAuth2 service named <OAuth2Service>. The client ID is passed on to the con-
dor_credmon_oauth when a job requests OAuth2 credentials for a configured OAuth2 service.

<OAuth2Service>_CLIENT_SECRET_FILE¶
The path to the file containing the client secret string for an OAuth2 service named <OAuth2Service>. The
client secret is passed on to the condor_credmon_oauth when a job requests OAuth2 credentials for a configured
OAuth2 service.

<OAuth2Service>_RETURN_URL_SUFFIX¶
The path (https://<hostname>/<path>) that an OAuth2 service named <OAuth2Service> should be di-
rected when returning after a user permits the submit host access to their account. Most often, this should be set
to name of the OAuth2 service (e.g. box, gdrive, onedrive, etc.). The derived return URL is passed on to the
condor_credmon_oauth when a job requests OAuth2 credentials for a configured OAuth2 service.

<OAuth2Service>_AUTHORIZATION_URL¶
The URL that the companion OAuth2 credmon WSGI application should redirect a user to in order to request

5.4. Configuration Macros 231

HTCondor Manual, Release 23.6.2

access for a user’s credentials for the OAuth2 service named <OAuth2Service>. This URL should be found in
the service’s API documentation. The authorization URL is passed on to the condor_credmon_oauth when a job
requests OAuth2 credentials for a configured OAuth2 service.

<OAuth2Service>_TOKEN_URL¶
The URL that the condor_credmon_oauth should use in order to refresh a user’s tokens for the OAuth2 service
named <OAuth2Service>. This URL should be found in the service’s API documentation. The token URL
is passed on to the condor_credmon_oauth when a job requests OAuth2 credentials for a configured OAuth2
service.

CHECKPOINT_DESTINATION_MAPFILE¶
The location on disk of the file which maps from checkpoint destinations to how invoke the corresponding clean-
up plug-in. Defaults to $(ETC)/checkpoint-destination-mapfile.

SCHEDD_CHECKPOINT_CLEANUP_TIMEOUT¶
There’s only so long that the condor_schedd is willing to let clean-up for a single job (including all of its check-
points) take. This macro defines that duration (as an integer number of seconds).

USE_JOBSETS¶
Boolean to enable the use of job sets with the htcondor jobset command. Defaults to false.

5.4.9 condor_shadow Configuration File Entries

These settings affect the condor_shadow.

SHADOW_LOCK¶
This macro specifies the lock file to be used for access to the ShadowLog file. It must be a separate file from the
ShadowLog, since the ShadowLog may be rotated and you want to synchronize access across log file rotations.
This macro is defined relative to the $(LOCK) macro.

SHADOW_DEBUG¶
This macro (and other settings related to debug logging in the shadow) is described in .

SHADOW_QUEUE_UPDATE_INTERVAL¶
The amount of time (in seconds) between ClassAd updates that the condor_shadow daemon sends to the con-
dor_schedd daemon. Defaults to 900 (15 minutes).

SHADOW_LAZY_QUEUE_UPDATE¶
This boolean macro specifies if the condor_shadow should immediately update the job queue for certain attributes
(at this time, it only effects the and counters) or if it should wait and only update the job queue on the next periodic
update. There is a trade-off between performance and the semantics of these attributes, which is why the behavior
is controlled by a configuration macro. If the condor_shadow do not use a lazy update, and immediately ensures
the changes to the job attributes are written to the job queue on disk, the semantics for the attributes are very
solid (there’s only a tiny chance that the counters will be out of sync with reality), but this introduces a potentially
large performance and scalability problem for a busy condor_schedd. If the condor_shadow uses a lazy update,
there is no additional cost to the condor_schedd, but it means that will not immediately see the changes to
the job attributes, and if the condor_shadow happens to crash or be killed during that time, the attributes are
never incremented. Given that the most obvious usage of these counter attributes is for the periodic user policy
expressions (which are evaluated directly by the condor_shadow using its own copy of the job’s ClassAd, which is
immediately updated in either case), and since the additional cost for aggressive updates to a busy condor_schedd
could potentially cause major problems, the default is True to do lazy, periodic updates.

SHADOW_WORKLIFE¶
The integer number of seconds after which the condor_shadow will exit when the current job finishes, instead of
fetching a new job to manage. Having the condor_shadow continue managing jobs helps reduce overhead and

232 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

can allow the condor_schedd to achieve higher job completion rates. The default is 3600, one hour. The value 0
causes condor_shadow to exit after running a single job.

SHADOW_JOB_CLEANUP_RETRY_DELAY¶
This integer specifies the number of seconds to wait between tries to commit the final update to the job ClassAd
in the condor_schedd ‘s job queue. The default is 30.

SHADOW_MAX_JOB_CLEANUP_RETRIES¶
This integer specifies the number of times to try committing the final update to the job ClassAd in the con-
dor_schedd ‘s job queue. The default is 5.

SHADOW_CHECKPROXY_INTERVAL¶
The number of seconds between tests to see if the job proxy has been updated or should be refreshed. The default
is 600 seconds (10 minutes). This variable’s value should be small in comparison to the refresh interval required
to keep delegated credentials from expiring (configured via and). If this variable’s value is too small, proxy
updates could happen very frequently, potentially creating a lot of load on the submit machine.

SHADOW_RUN_UNKNOWN_USER_JOBS¶
A boolean that defaults to False. When True, it allows the condor_shadow daemon to run jobs as user nobody
when remotely submitted and from users not in the local password file.

SHADOW_STATS_LOG¶
The full path and file name of a file that stores TCP statistics for shadow file transfers. (Note that the shadow
logs TCP statistics to this file by default. Adding D_STATS to the value will cause TCP statistics to be logged to
the normal shadow log file ($(SHADOW_LOG)).) If not defined, defaults to $(LOG)/XferStatsLog. Setting to
/dev/null disables logging of shadow TCP file transfer statistics.

MAX_SHADOW_STATS_LOG¶
Controls the maximum size in bytes or amount of time that the shadow TCP statistics log will be allowed to
grow. If not defined, defaults to $(MAX_DEFAULT_LOG), which currently defaults to 10 MiB in size. Values are
specified with the same syntax as .

ALLOW_TRANSFER_REMAP_TO_MKDIR¶
A boolean value that when True allows the condor_shadow to create directories in a transfer output remap path
when the directory does not exist already. The condor_shadow can not create directories if the remap is an
absolute path or if the remap tries to write to a directory specified within LIMIT_DIRECTORY_ACCESS.

JOB_EPOCH_HISTORY¶
A full path and filename of a file where the condor_shadow will write to a per run job history file in an analogous
way to that of the history file defined by the configuration variable . It will be rotated in the same way, and has
similar parameters that apply to the file rotation apply to the condor_shadow daemon epoch history as well. This
can be read with the command using the -epochs option. By default this option is not set.

$ condor_history -epochs

MAX_EPOCH_HISTORY_LOG¶
Defines the maximum size for the epoch history file, in bytes. It defaults to 20MB.

MAX_EPOCH_HISTORY_ROTATIONS¶
Controls the maximum number of backup epoch history files to be kept. It defaults to 2, which means that there
may be up to three epoch history files (two backups, plus the epoch history file that is being currently written to).
When the epoch history file is rotated, and this rotation would cause the number of backups to be too large, the
oldest file is removed.

JOB_EPOCH_HISTORY_DIR¶
A full path to an existing directory that the condor_shadow will write the jobs current job ad to a per job run
history file with the name job.runs.X.Y.ads. Where X is the jobs cluster id and Y is the jobs process id. For
example, job 35.2 would write a job ad for each run to the file job.runs.35.2.ads. These files can be read
through when ran with the -epochs and -directory options.

5.4. Configuration Macros 233

HTCondor Manual, Release 23.6.2

$ condor_history -epochs -directory

HTCondor does not automatically delete these files, so unchecked the directory can grow very large. Either an
external entity needs to clean up or can use the -epochs options optional :d extension to read and delete the files.

$ condor_history -epochs:d -directory

5.4.10 condor_starter Configuration File Entries

These settings affect the condor_starter.

DISABLE_SETUID¶
HTCondor can prevent jobs from running setuid executables on Linux by setting the no-new-privileges flag. This
can be enabled (i.e. to disallow setuid binaries) by setting to true.

JOB_RENICE_INCREMENT¶
When the condor_starter spawns an HTCondor job, it can do so with a nice-level. A nice-level is a Unix mech-
anism that allows users to assign their own processes a lower priority, such that these processes do not interfere
with interactive use of the machine. For machines with lots of real memory and swap space, such that the only
scarce resource is CPU time, use this macro in conjunction with a policy that allows HTCondor to always start
jobs on the machines. HTCondor jobs would always run, but interactive response on the machines would never
suffer. A user most likely will not notice HTCondor is running jobs. See Configuration for Execution Points for
more details on setting up a policy for starting and stopping jobs on a given machine.

The ClassAd expression is evaluated in the context of the job ad to an integer value, which is set by the con-
dor_starter daemon for each job just before the job runs. The range of allowable values are integers in the range
of 0 to 19 (inclusive), with a value of 19 being the lowest priority. If the integer value is outside this range, then
on a Unix machine, a value greater than 19 is auto-decreased to 19; a value less than 0 is treated as 0. For values
outside this range, a Windows machine ignores the value and uses the default instead. The default value is 0, on
Unix, and the idle priority class on a Windows machine.

STARTER_LOCAL_LOGGING¶
This macro determines whether the starter should do local logging to its own log file, or send debug information
back to the condor_shadow where it will end up in the ShadowLog. It defaults to True.

STARTER_LOG_NAME_APPEND¶
A fixed value that sets the file name extension of the local log file used by the condor_starter daemon. Permitted
values are true, false, slot, cluster and jobid. A value of false will suppress the use of a file extension.
A value of true gives the default behavior of using the slot name, unless there is only a single slot. A value of
slot uses the slot name. A value of cluster uses the job’s ClassAd attribute. A value of jobid uses the job’s
and ClassAd attributes. If cluster or jobid are specified, the resulting log files will persist until deleted by
the user, so these two options should only be used to assist in debugging, not as permanent options.

STARTER_DEBUG¶
This setting (and other settings related to debug logging in the starter) is described above in .

STARTER_NUM_THREADS_ENV_VARS¶
A string containing a list of job environment variables to set equal to the number of cores allocated into the slot.
Many commonly used computing libraries and programs will look at the value of environment variables, such as
OMP_NUM_THREADS, to control how many CPU cores to use. Defaults to CUBACORES, GOMAXPROCS, JU-
LIA_NUM_THREADS, MKL_NUM_THREADS, NUMEXPR_NUM_THREADS, OMP_NUM_THREADS,
OMP_THREAD_LIMIT, OPENBLAS_NUM_THREADS, PYTHON_CPU_COUNT,
ROOT_MAX_THREADS, TF_LOOP_PARALLEL_ITERATIONS, TF_NUM_THREADS.

234 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

STARTER_UPDATE_INTERVAL¶
An integer value representing the number of seconds between ClassAd updates that the condor_starter daemon
sends to the condor_shadow and condor_startd daemons. Defaults to 300 (5 minutes).

STARTER_UPDATE_INTERVAL_TIMESLICE¶
A floating point value, specifying the highest fraction of time that the condor_starter daemon should spend
collecting monitoring information about the job, such as disk usage. The default value is 0.1. If monitoring,
such as checking disk usage takes a long time, the condor_starter will monitor less frequently than specified by .

STARTER_UPDATE_INTERVAL_MAX¶
An integer value representing an upper bound on the number of seconds between updates controlled by and . It
is recommended to leave this parameter at its default value, which is calculated as * (1 /)

USER_JOB_WRAPPER¶
The full path and file name of an executable or script. If specified, HTCondor never directly executes a job, but
instead invokes this executable, allowing an administrator to specify the executable (wrapper script) that will
handle the execution of all user jobs. The command-line arguments passed to this program will include the full
path to the actual user job which should be executed, followed by all the command-line parameters to pass to the
user job. This wrapper script must ultimately replace its image with the user job; thus, it must exec() the user
job, not fork() it.

For Bourne type shells (sh, bash, ksh), the last line should be:

exec "$@"

For the C type shells (csh, tcsh), the last line should be:

exec $*:q

On Windows, the end should look like:

REM set some environment variables
set LICENSE_SERVER=192.168.1.202:5012
set MY_PARAMS=2

REM Run the actual job now
%*

This syntax is precise, to correctly handle program arguments which contain white space characters.

For Windows machines, the wrapper will either be a batch script with a file extension of .bat or .cmd, or an
executable with a file extension of .exe or .com.

If the wrapper script encounters an error as it runs, and it is unable to run the user job, it is important that the
wrapper script indicate this to the HTCondor system so that HTCondor does not assign the exit code of the
wrapper script to the job. To do this, the wrapper script should write a useful error message to the file named
in the environment variable _CONDOR_WRAPPER_ERROR_FILE, and then the wrapper script should exit with a
non-zero value. If this file is created by the wrapper script, HTCondor assumes that the wrapper script has failed,
and HTCondor will place the job back in the queue marking it as Idle, such that the job will again be run. The
condor_starter will also copy the contents of this error file to the condor_starter log, so the administrator can
debug the problem.

When a wrapper script is in use, the executable of a job submission may be specified by a relative path, as long
as the submit description file also contains:

+PreserveRelativeExecutable = True

For example,

5.4. Configuration Macros 235

HTCondor Manual, Release 23.6.2

Let this executable be resolved by user's path in the wrapper
cmd = sleep
+PreserveRelativeExecutable = True

Without this extra attribute:

A typical fully-qualified executable path
cmd = /bin/sleep

CGROUP_MEMORY_LIMIT_POLICY¶
A string with possible values of hard, custom and none. The default value is hard. If set to hard, when the
job tries to use more memory than the slot size, it will be put on hold with an appropriate message. Also, the
cgroup soft limit will set to 90% of the hard limit to encourage the kernel to lower cacheable memory the job is
using. If set to none, no limit will be enforced, but the memory usage of the job will be accurately measured by
a cgroup. When set to custom, the additional knob CGROUP_HARD_MEMORY_LIMIT_EXPR must be set,
which is a classad expression evaluated in the context of the machine and the job, respectively, to determine the
hard limits.

DISABLE_SWAP_FOR_JOB¶
A boolean that defaults to false. When true, and cgroups are in effect, the condor_starter will set the memws
to the same value as the hard memory limit. This will prevent the job from using any swap space. If it needs
more memory than the hard limit, it will be put on hold. When false, the job is allowed to use any swap space
configured by the operating system.

STARTER_HIDE_GPU_DEVICES¶
A Linux-specific boolean that defaults to true. When true, if started as root, HTCondor will use the “devices”
cgroup to prevent the job from accessing any NVidia GPUs not assigned to it by HTCondor. The device files will
still exist in /dev, but any attempt to access them will fail, regardless of their file permissions. The nvidia-smi
command will not report them as being available. Setting this macro to false returns to the previous functionality
(of allowing jobs to access NVidia GPUs not assigned to them).

USE_VISIBLE_DESKTOP¶
This boolean variable is only meaningful on Windows machines. If True, HTCondor will allow the job to create
windows on the desktop of the execute machine and interact with the job. This is particularly useful for debugging
why an application will not run under HTCondor. If False, HTCondor uses the default behavior of creating a
new, non-visible desktop to run the job on. See the Microsoft Windows section for details on how HTCondor
interacts with the desktop.

STARTER_JOB_ENVIRONMENT¶
This macro sets the default environment inherited by jobs. The syntax is the same as the syntax for environment
settings in the job submit file (see condor_submit). If the same environment variable is assigned by this macro
and by the user in the submit file, the user’s setting takes precedence.

JOB_INHERITS_STARTER_ENVIRONMENT¶
A matchlist or boolean value that defaults to False. When set to a matchlist it causes jobs to inherit all envi-
ronment variables from the condor_starter that are selected by the match list and not already defined in the job
ClassAd or by the configuration variable.

A matchlist is a comma, semicolon or space separated list of environment variable names and name patterns that
match or reject names. Matchlist members are matched case-insensitively to each name in the environment and
those that match are imported. Matchlist members can contain * as wildcard character which matches anything
at that position. Members can have two * characters if one of them is at the end. Members can be prefixed with
! to force a matching environment variable to not be imported. The order of members in the Matchlist has no
effect on the result. For backward compatibility a single value of True behaves as if the value was set to *. Prior
to HTCondor version 10.1.0 all values other than True are treated as False.

NAMED_CHROOT¶

236 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

A comma and/or space separated list of full paths to one or more directories, under which the condor_starter
may run a chroot-ed job. This allows HTCondor to invoke chroot() before launching a job, if the job requests
such by defining the job ClassAd attribute with a directory that matches one in this list. There is no default value
for this variable.

STARTER_UPLOAD_TIMEOUT¶
An integer value that specifies the network communication timeout to use when transferring files back to the
access point. The default value is set by the condor_shadow daemon to 300. Increase this value if the disk on
the access point cannot keep up with large bursts of activity, such as many jobs all completing at the same time.

ASSIGN_CPU_AFFINITY¶
A boolean expression that defaults to False. When it evaluates to True, each job under this condor_startd is
confined to using only as many cores as the configured number of slots. When using partitionable slots, each
job will be bound to as many cores as requested by specifying request_cpus. When True, this configuration
variable overrides any specification of . The expression is evaluated in the context of the Job ClassAd.

ENFORCE_CPU_AFFINITY¶
This configuration variable is replaced by . Do not enable this configuration variable unless using glidein or
another unusual setup.

A boolean value that defaults to False. When False, the CPU affinity of processes in a job is not enforced.
When True, the processes in an HTCondor job maintain their affinity to a CPU. This means that this job will
only run on that particular CPU, even if other CPU cores are idle.

If True and is not set, the CPU that the job is locked to is the same as SlotID - 1. Note that slots are numbered
beginning with the value 1, while CPU cores are numbered beginning with the value 0.

When True, more fine grained affinities may be specified with .

SLOT<N>_CPU_AFFINITY¶
This configuration variable is replaced by . Do not enable this configuration variable unless using glidein or
another unusual setup.

A comma separated list of cores to which an HTCondor job running on a specific slot given by the value of <N>
show affinity. Note that slots are numbered beginning with the value 1, while CPU cores are numbered beginning
with the value 0. This affinity list only takes effect when ENFORCE_CPU_AFFINITY = True.

ENABLE_URL_TRANSFERS¶
A boolean value that when True causes the condor_starter for a job to invoke all plug-ins defined by to determine
their capabilities for handling protocols to be used in file transfer specified with a URL. When False, a URL
transfer specified in a job’s submit description file will cause an error issued by . The default value is True.

FILETRANSFER_PLUGINS¶
A comma separated list of full and absolute path and executable names for plug-ins that will accomplish the
task of doing file transfer when a job requests the transfer of an input file by specifying a URL. See Custom File
Transfer Plugins for a description of the functionality required of a plug-in.

<PLUGIN>_TEST_URL¶
This configuration takes a URL to be tested against the specified <PLUGIN>. If this test fails, then that plugin
is removed from the condor_starter classad attribute . This attribute determines what plugin capabilities the
condor_starter can utilize.

RUN_FILETRANSFER_PLUGINS_WITH_ROOT¶
A boolean value that affects only Unix platforms and defaults to False, causing file transfer plug-ins invoked for
a job to run with both the real and the effective UID set to user that the job runs as. The user that the job runs as
may be the job owner, nobody, or the slot user. The group is set to primary group of the user that the job runs as,
and all supplemental groups are dropped. The default gives the behavior exhibited prior to the existence of this
configuration variable. When set to True, file transfer plug-ins are invoked with a real UID of 0 (root), provided
the HTCondor daemons also run as root. The effective UID is set to the user that the job runs as.

5.4. Configuration Macros 237

HTCondor Manual, Release 23.6.2

This configuration variable can permit plug-ins to do privileged operations, such as access a credential protected
by file system permissions. The default value is recommended unless privileged operations are required.

MAX_FILE_TRANSFER_PLUGIN_LIFETIME¶:
An integer number of seconds (defaulting to twenty hours) after which the starter will kill a file transfer plug-in
for taking too long. Currently, this causes the job to go on hold with ETIME (62) as the hold reason subcode.

ENABLE_CHIRP¶
A boolean value that defaults to True. An administrator would set the value to False to disable Chirp remote
file access from execute machines.

ENABLE_CHIRP_UPDATES¶
A boolean value that defaults to True. If is True, and is False, then the user job can only read job attributes
from the submit side; it cannot change them or write to the job event log. If is False, the setting of this variable
does not matter, as no Chirp updates are allowed in that case.

ENABLE_CHIRP_IO¶
A boolean value that defaults to True. If False, the file I/O commands are prohibited.

ENABLE_CHIRP_DELAYED¶
A boolean value that defaults to True. If False, the commands get_job_attr_delayed and
set_job_attr_delayed are prohibited.

CHIRP_DELAYED_UPDATE_PREFIX¶
This is a string-valued and case-insensitive parameter with the default value of "Chirp*". The string is a list
separated by spaces and/or commas. Each attribute passed to the either of the commands set_job_attr_delayed
or get_job_attr_delayed must match against at least one element in the list. An attribute which does not match
any list element fails. A list element may contain a wildcard character ("Chirp*"), which marks where any
number of characters matches. Thus, the default is to allow reads from and writes to only attributes which start
with "Chirp".

Because this parameter must be set to the same value on both the submit and execute nodes, it is advised that this
parameter not be changed from its built-in default.

CHIRP_DELAYED_UPDATE_MAX_ATTRS¶
This integer-valued parameter, which defaults to 100, represents the maximum number of pending delayed
chirp updates buffered by the condor_starter. If the number of unique attributes updated by the command
set_job_attr_delayed exceeds this parameter, it is possible for these updates to be ignored.

CONDOR_SSH_TO_JOB_FAKE_PASSWD_ENTRY¶
A boolean valued parameter which defaults to true. When true, it sets the environment variable LD_PRELOAD
to point to the htcondor-provided libgetpwnam.so for the sshd run by . This results in the shell being set to /bin/sh
and the home directory to the scratch directory for processes launched by .

USE_PSS¶
A boolean value, that when True causes the condor_starter to measure the PSS (Proportional Set Size) of each
HTCondor job. The default value is False. When running many short lived jobs, performance problems in the
have been observed, and a setting of False may relieve these problems.

MEMORY_USAGE_METRIC¶
A ClassAd expression that produces an initial value for the job ClassAd attribute in jobs that are not vm universe.

MEMORY_USAGE_METRIC_VM¶
A ClassAd expression that produces an initial value for the job ClassAd attribute in vm universe jobs.

STARTER_RLIMIT_AS¶
An integer ClassAd expression, expressed in MiB, evaluated by the condor_starter to set the RLIMIT_AS pa-
rameter of the setrlimit() system call. This limits the virtual memory size of each process in the user job. The
expression is evaluated in the context of both the machine and job ClassAds, where the machine ClassAd is the
MY. ClassAd, and the job ClassAd is the TARGET. ClassAd. There is no default value for this variable. Since

238 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

values larger than 2047 have no real meaning on 32-bit platforms, values larger than 2047 result in no limit set
on 32-bit platforms.

USE_PID_NAMESPACES¶
A boolean value that, when True, enables the use of per job PID namespaces for HTCondor jobs run on Linux
kernels. Defaults to False.

PER_JOB_NAMESPACES¶
A boolean value that defaults to False. Relevant only for Linux platforms using file system namespaces. The
default value of False ensures that there will be no private mount points, because auto mounts done by autofs
would use the wrong name for private file system mounts. A True value is useful when private file system mounts
are permitted and autofs (for NFS) is not used.

DYNAMIC_RUN_ACCOUNT_LOCAL_GROUP¶
For Windows platforms, a value that sets the local group to a group other than the default Users for the
condor-slot<X> run account. Do not place the local group name within quotation marks.

JOB_EXECDIR_PERMISSIONS¶
Control the permissions on the job’s scratch directory. Defaults to userwhich sets permissions to 0700. Possible
values are user, group, and world. If set to group, then the directory is group-accessible, with permissions
set to 0750. If set to world, then the directory is created with permissions set to 0755.

STARTER_STATS_LOG¶
The full path and file name of a file that stores TCP statistics for starter file transfers. (Note that the starter logs
TCP statistics to this file by default. Adding D_STATS to the value will cause TCP statistics to be logged to
the normal starter log file ($(STARTER_LOG)).) If not defined, defaults to $(LOG)/XferStatsLog. Setting to
/dev/null disables logging of starter TCP file transfer statistics.

MAX_STARTER_STATS_LOG¶
Controls the maximum size in bytes or amount of time that the starter TCP statistics log will be allowed to
grow. If not defined, defaults to $(MAX_DEFAULT_LOG), which currently defaults to 10 MiB in size. Values are
specified with the same syntax as .

SINGULARITY¶
The path to the Singularity binary. The default value is /usr/bin/singularity.

SINGULARITY_JOB¶
A boolean value specifying whether this startd should run jobs under Singularity. This can be an expression
evaluted in the context of the slot ad and the job ad, where the slot ad is the “MY.”, and the job ad is the
“TARGET.”. The default value is False.

SINGULARITY_IMAGE_EXPR¶
The path to the Singularity container image file. This can be an expression evaluted in the context of the slot
ad and the job ad, where the slot ad is the “MY.”, and the job ad is the “TARGET.”. The default value is
"SingularityImage".

SINGULARITY_TARGET_DIR¶
A directory within the Singularity image to which $_CONDOR_SCRATCH_DIR on the host should be mapped. The
default value is "".

SINGULARITY_BIND_EXPR¶
A string value containing a list of bind mount specifications to be passed to Singularity. This can be an expression
evaluted in the context of the slot ad and the job ad, where the slot ad is the “MY.”, and the job ad is the
“TARGET.”. The default value is "SingularityBind".

SINGULARITY_IGNORE_MISSING_BIND_TARGET¶
A boolean value defaulting to false. If true, and the singularity image is a directory, and the target of a bind
mount doesn’t exist in the target, then skip this bind mount.

5.4. Configuration Macros 239

HTCondor Manual, Release 23.6.2

SINGULARITY_USE_PID_NAMESPACES¶
Controls if jobs using Singularity should run in a private PID namespace, with a default value of Auto. If
set to Auto, then PID namespaces will be used if it is possible to do so, else not used. If set to True, then
a PID namespaces must be used; if the installed Singularity cannot activate PID namespaces (perhaps due to
insufficient permissions), then the slot attribute will be set to False so that jobs needing Singularity will match.
If set to False, then PID namespaces must not be used.

SINGULARITY_EXTRA_ARGUMENTS¶
A string value or classad expression containing a list of extra arguments to be appended to the Singularity com-
mand line. This can be an expression evaluted in the context of the slot ad and the job ad, where the slot ad is
the “MY.”, and the job ad is the “TARGET.”.

USE_DEFAULT_CONTAINER¶
A boolean value or classad expression evaluating to boolean in the context of the Slot ad (the MY.) and the job ad
(the TARGET.). When true, a vanilla universe job that does not request a container will be put into the container
image specified by the parameter

DEFAULT_CONTAINER_IMAGE¶
A string value that when is true, contains the container image to use, either starting with docker:, ending in .sif
for a sif file, or otherwise an exploded directory for singularity/apptainer to run.

5.4.11 condor_submit Configuration File Entries

DEFAULT_UNIVERSE¶
The universe under which a job is executed may be specified in the submit description file. If it is not specified in
the submit description file, then this variable specifies the universe (when defined). If the universe is not specified
in the submit description file, and if this variable is not defined, then the default universe for a job will be the
vanilla universe.

JOB_DEFAULT_NOTIFICATION¶
The default that sets email notification for jobs. This variable defaults to NEVER, such that HTCondor will not
send email about events for jobs. Possible values are NEVER, ERROR, ALWAYS, or COMPLETE. If ALWAYS, the owner
will be notified whenever the job completes. If COMPLETE, the owner will be notified when the job terminates.
If ERROR, the owner will only be notified if the job terminates abnormally, or if the job is placed on hold because
of a failure, and not by user request. If NEVER, the owner will not receive email.

JOB_DEFAULT_LEASE_DURATION¶
The default value for the submit command when the submit file does not specify a value. The default value is
2400, which is 40 minutes.

JOB_DEFAULT_REQUESTMEMORY¶
The amount of memory in MiB to acquire for a job, if the job does not specify how much it needs using the
submit command. If this variable is not defined, then the default is defined by the expression

ifThenElse(MemoryUsage =!= UNDEFINED,MemoryUsage,(ImageSize+1023)/1024)

JOB_DEFAULT_REQUESTDISK¶
The amount of disk in KiB to acquire for a job, if the job does not specify how much it needs using the submit
command. If the job defines the value, then that value takes precedence. If not set, then then the default is defined
as .

JOB_DEFAULT_REQUESTCPUS¶
The number of CPUs to acquire for a job, if the job does not specify how many it needs using the submit command.
If the job defines the value, then that value takes precedence. If not set, then then the default is 1.

240 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

DEFAULT_JOB_MAX_RETRIES¶
The default value for the maximum number of job retries, if the retry feature is used. (Note that this value is only
relevant if either or is defined in the submit file, and is not.) (See the condor_submit man page.) The default
value if not defined is 2.

If you want to automatically append an expression to the Requirements expression or Rank expression of jobs at your
site use the following macros:

APPEND_REQ_VANILLA¶
Expression to be appended to vanilla job requirements.

APPEND_REQUIREMENTS¶
Expression to be appended to any type of universe jobs. However, if is defined, then ignore the for that universe.

APPEND_RANK¶
Expression to be appended to job rank. will override this setting if defined.

APPEND_RANK_VANILLA¶
Expression to append to vanilla job rank.

In addition, you may provide default Rank expressions if your users do not specify their own with:

DEFAULT_RANK¶
Default rank expression for any job that does not specify its own rank expression in the submit description file.
There is no default value, such that when undefined, the value used will be 0.0.

DEFAULT_RANK_VANILLA¶
Default rank for vanilla universe jobs. There is no default value, such that when undefined, the value used will
be 0.0. When both and are defined, the value for is used for vanilla universe jobs.

SUBMIT_GENERATE_CUSTOM_RESOURCE_REQUIREMENTS¶
If True, will treat any attribute in the job ClassAd that begins with Request as a request for a custom resource
and will ad a clause to the Requirements expression ensuring that on slots that have that resource will match the
job. The default value is True.

SUBMIT_GENERATE_CONDOR_C_REQUIREMENTS¶
If True, will add clauses to the job’s Requirements expression for condor grid universe jobs like it does for
vanilla universe jobs. The default value is True.

SUBMIT_SKIP_FILECHECKS¶
If True, behaves as if the -disable command-line option is used. This tells to disable file permission checks
when submitting a job for read permissions on all input files, such as those defined by commands as well as
write permission to output files, such as a log file defined by files defined with This can significantly decrease
the amount of time required to submit a large group of jobs. The default value is True.

WARN_ON_UNUSED_SUBMIT_FILE_MACROS¶
A boolean variable that defaults to True. When True, performs checks on the job’s submit description file
contents for commands that define a macro, but do not use the macro within the file. A warning is issued, but
job submission continues. A definition of a new macro occurs when the lhs of a command is not a known submit
command. This check may help spot spelling errors of known submit commands.

SUBMIT_DEFAULT_SHOULD_TRANSFER_FILES¶
Provides a default value for the submit command if the submit file does not supply a value and when the value
is not forced by some other command in the submit file, such as the universe. Valid values are YES, TRUE,
ALWAYS, NO, FALSE, NEVER and IF_NEEDED. If the value is not one of these, then IF_NEEDED will be
used.

SUBMIT_REQUEST_MISSING_UNITS¶
If set to the string error, it is an error to submit a job with a or with a unitless value. If set to warn, a warning is
printed to the screen, but submit continues. Default value is unset (neither warn or error). (HTCONDOR-1837)

5.4. Configuration Macros 241

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1837

HTCondor Manual, Release 23.6.2

SUBMIT_SEND_RESCHEDULE¶
A boolean expression that when False, prevents from automatically sending a command as it completes. The
command causes the condor_schedd daemon to start searching for machines with which to match the submitted
jobs. When True, this step always occurs. In the case that the machine where the job(s) are submitted is managing
a huge number of jobs (thousands or tens of thousands), this step would hurt performance in such a way that it
became an obstacle to scalability. The default value is True.

SUBMIT_ATTRS¶
A comma-separated and/or space-separated list of ClassAd attribute names for which the attribute and value will
be inserted into all the job ClassAds that creates. In this way, it is like the “+” syntax in a submit description file.
Attributes defined in the submit description file with “+” will override attributes defined in the configuration file
with . Note that adding an attribute to a job’s ClassAd will not function as a method for specifying default values
of submit description file commands forgotten in a job’s submit description file. The command in the submit
description file results in actions by , while the use of adds a job ClassAd attribute at a later point in time.

SUBMIT_ALLOW_GETENV¶
A boolean attribute which defaults to true. If set to false, the submit command “getenv = true” is an error. Any
restricted form of “getenv = some_env_var_name” is still allowed.

LOG_ON_NFS_IS_ERROR¶
A boolean value that controls whether prohibits job submit description files with job event log files on NFS. If
is set to True, such submit files will be rejected. If is set to False, the job will be submitted. If not defined,
defaults to False.

SUBMIT_MAX_PROCS_IN_CLUSTER¶
An integer value that limits the maximum number of jobs that would be assigned within a single cluster. Job
submissions that would exceed the defined value fail, issuing an error message, and with no jobs submitted. The
default value is 0, which does not limit the number of jobs assigned a single cluster number.

ENABLE_DEPRECATION_WARNINGS¶
A boolean value that defaults to False. When True, issues warnings when a job requests features that are no
longer supported.

INTERACTIVE_SUBMIT_FILE¶
The path and file name of a submit description file that will use in the specification of an interactive job. The
default is $(RELEASE_DIR)/libexec/interactive.sub when not defined.

CRED_MIN_TIME_LEFT¶
When a job uses an X509 user proxy, condor_submit will refuse to submit a job whose x509 expiration time is
less than this many seconds in the future. The default is to only refuse jobs whose expiration time has already
passed.

CONTAINER_SHARED_FS¶
This is a list of strings that name directories which are shared on the execute machines and may contain container
images under them. The default value is /cvmfs. When a container universe job lists a condor_image that is under
one of these directories, HTCondor knows not to try to transfer the file to the worker node.

5.4.12 condor_preen Configuration File Entries

These macros affect .

PREEN_ADMIN¶
This macro sets the e-mail address where will send e-mail (if it is configured to send email at all; see the entry
for). Defaults to $(CONDOR_ADMIN).

VALID_SPOOL_FILES¶
A comma or space separated list of files that considers valid files to find in the $(SPOOL) directory, such that

242 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

will not remove these files. There is no default value. will add to the list files and directories that are normally
present in the $(SPOOL) directory. A single asterisk (*) wild card character is permitted in each file item within
the list.

SYSTEM_VALID_SPOOL_FILES¶
A comma or space separated list of files that considers valid files to find in the $(SPOOL) directory. The default
value is all files known by HTCondor to be valid. This variable exists such that it can be queried; it should not
be changed. use it to initialize the list files and directories that are normally present in the $(SPOOL) directory.
A single asterisk (*) wild card character is permitted in each file item within the list.

INVALID_LOG_FILES¶
This macro contains a (comma or space separated) list of files that considers invalid files to find in the $(LOG)
directory. There is no default value.

MAX_CHECKPOINT_CLEANUP_PROCS¶
If a checkpoint clean-up plug-in fails when the condor_schedd (indirectly) invokes it after a job exits the queue,
the next run of will retry it. assumes that the clean-up process is relatively light-weight and starts more than one
if more than one job failed to clean up. This macro limits the number of simultaneous clean-up processes.

CHECKPOINT_CLEANUP_TIMEOUT¶
A checkpoint clean-up plug-in is invoked once per file in the checkpoint, and must therefore do its job relatively
quickly. This macro defines (as an integer number of seconds) how long HTCondor will wait for a checkpoint
clean-up plug-in to exit before it declares that it’s stuck and kills it.

PREEN_CHECKPOINT_CLEANUP_TIMEOUT¶
In addition to the per-file time-out , there’s only so long that is willing to let clean-up for a single job (including
all of its checkpoints) take. This macro defines that duration (as an integer number of seconds).

5.4.13 condor_collector Configuration File Entries

These macros affect the condor_collector.

CLASSAD_LIFETIME¶
The default maximum age in seconds for ClassAds collected by the condor_collector. ClassAds older than the
maximum age are discarded by the condor_collector as stale.

If present, the ClassAd attribute ClassAdLifetime specifies the ClassAd’s lifetime in seconds.
If ClassAdLifetime is not present in the ClassAd, the condor_collector will use the value of
$(CLASSAD_LIFETIME). This variable is defined in terms of seconds, and it defaults to 900 seconds (15
minutes).

To ensure that the condor_collector does not miss any ClassAds, the frequency at which all other subsystems
that report using an update interval must be tuned. The configuration variables that set these subsystems are

• (for the condor_startd daemon)

•

•

•

•

•

COLLECTOR_REQUIREMENTS¶
A boolean expression that filters out unwanted ClassAd updates. The expression is evaluated for ClassAd updates

5.4. Configuration Macros 243

HTCondor Manual, Release 23.6.2

that have passed through enabled security authorization checks. The default behavior when this expression is not
defined is to allow all ClassAd updates to take place. If False, a ClassAd update will be rejected.

Stronger security mechanisms are the better way to authorize or deny updates to the condor_collector. This
configuration variable exists to help those that use host-based security, and do not trust all processes that run on
the hosts in the pool. This configuration variable may be used to throw out ClassAds that should not be allowed.
For example, for condor_startd daemons that run on a fixed port, configure this expression to ensure that only
machine ClassAds advertising the expected fixed port are accepted. As a convenience, before evaluating the
expression, some basic sanity checks are performed on the ClassAd to ensure that all of the ClassAd attributes
used by HTCondor to contain IP:port information are consistent. To validate this information, the attribute to
check is TARGET.MyAddress.

Please note that _all_ ClassAd updates are filtered. Unless your requirements are the same for all daemons,
including the collector itself, you’ll want to use the attribute to limit your filter(s).

CLIENT_TIMEOUT¶
Network timeout that the condor_collector uses when talking to any daemons or tools that are sending it a
ClassAd update. It is defined in seconds and defaults to 30.

QUERY_TIMEOUT¶
Network timeout when talking to anyone doing a query. It is defined in seconds and defaults to 60.

COLLECTOR_NAME¶
This macro is used to specify a short description of your pool. It should be about 20 characters long. For
example, the name of the UW-Madison Computer Science HTCondor Pool is "UW-Madison CS". While this
macro might seem similar to or , it is unrelated. Those settings are used to uniquely identify (and locate) a specific
set of HTCondor daemons, if there are more than one running on the same machine. The setting is just used as
a human-readable string to describe the pool.

COLLECTOR_UPDATE_INTERVAL¶
This variable is defined in seconds and defaults to 900 (every 15 minutes). It controls the frequency of the
periodic updates sent to a central condor_collector.

COLLECTOR_SOCKET_BUFSIZE¶
This specifies the buffer size, in bytes, reserved for condor_collector network UDP sockets. The default is
10240000, or a ten megabyte buffer. This is a healthy size, even for a large pool. The larger this value, the less
likely the condor_collector will have stale information about the pool due to dropping update packets. If your
pool is small or your central manager has very little RAM, considering setting this parameter to a lower value
(perhaps 256000 or 128000).

Note: For some Linux distributions, it may be necessary to raise the OS’s system-wide limit for network buffer
sizes. The parameter that controls this limit is /proc/sys/net/core/rmem_max. You can see the values that the
condor_collector actually uses by enabling D_FULLDEBUG for the collector and looking at the log line that
looks like this:

Reset OS socket buffer size to 2048k (UDP), 255k (TCP).

For changes to this parameter to take effect, condor_collector must be restarted.

COLLECTOR_TCP_SOCKET_BUFSIZE¶
This specifies the TCP buffer size, in bytes, reserved for condor_collector network sockets. The default is 131072,
or a 128 kilobyte buffer. This is a healthy size, even for a large pool. The larger this value, the less likely the
condor_collector will have stale information about the pool due to dropping update packets. If your pool is small
or your central manager has very little RAM, considering setting this parameter to a lower value (perhaps 65536
or 32768).

244 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Note: See the note for .

KEEP_POOL_HISTORY¶
This boolean macro is used to decide if the collector will write out statistical information about the pool to history
files. The default is False. The location, size, and frequency of history logging is controlled by the other macros.

POOL_HISTORY_DIR¶
This macro sets the name of the directory where the history files reside (if history logging is enabled). The
default is the directory.

POOL_HISTORY_MAX_STORAGE¶
This macro sets the maximum combined size of the history files. When the size of the history files is close to
this limit, the oldest information will be discarded. Thus, the larger this parameter’s value is, the larger the time
range for which history will be available. The default value is 10000000 (10 MB).

POOL_HISTORY_SAMPLING_INTERVAL¶
This macro sets the interval, in seconds, between samples for history logging purposes. When a sample is taken,
the collector goes through the information it holds, and summarizes it. The information is written to the history
file once for each 4 samples. The default (and recommended) value is 60 seconds. Setting this macro’s value too
low will increase the load on the collector, while setting it to high will produce less precise statistical information.

COLLECTOR_DAEMON_STATS¶
A boolean value that controls whether or not the condor_collector daemon keeps update statistics on incom-
ing updates. The default value is True. If enabled, the condor_collector will insert several attributes into the
ClassAds that it stores and sends. ClassAds without the UpdateSequenceNumber and DaemonStartTime at-
tributes will not be counted, and will not have attributes inserted (all modern HTCondor daemons which publish
ClassAds publish these attributes).

The attributes inserted are UpdatesTotal, , and UpdatesLost. UpdatesTotal is the total number of updates
(of this ClassAd type) the condor_collector has received from this host. is the number of updates that the con-
dor_collector could have as lost. In particular, for the first update from a daemon, it is impossible to tell if any
previous ones have been lost or not. UpdatesLost is the number of updates that the condor_collector has de-
tected as being lost. See ClassAd Attributes Added by the condor_collector for more information on the added
attributes.

COLLECTOR_STATS_SWEEP¶
This value specifies the number of seconds between sweeps of the condor_collector ‘s per-daemon update statis-
tics. Records for daemons which have not reported in this amount of time are purged in order to save memory.
The default is two days. It is unlikely that you would ever need to adjust this.

COLLECTOR_DAEMON_HISTORY_SIZE¶
This variable controls the size of the published update history that the condor_collector inserts into the ClassAds
it stores and sends. The default value is 128, which means that history is stored and published for the latest 128
updates. This variable’s value is ignored, if is not enabled.

If the value is a non-zero one, the condor_collector will insert attribute into the ClassAd (similar to
UpdatesTotal). AttrUpdatesHistory is a hexadecimal string which represents a bitmap of the last updates.
The most significant bit (MSB) of the bitmap represents the most recent update, and the least significant bit
(LSB) represents the least recent. A value of zero means that the update was not lost, and a value of 1 indicates
that the update was detected as lost.

For example, if the last update was not lost, the previous was lost, and the previous two not, the bitmap would be
0100, and the matching hex digit would be "4". Note that the MSB can never be marked as lost because its loss
can only be detected by a non-lost update (a gap is found in the sequence numbers). Thus, UpdatesHistory =
"0x40" would be the history for the last 8 updates. If the next updates are all successful, the values published,
after each update, would be: 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x00.

5.4. Configuration Macros 245

HTCondor Manual, Release 23.6.2

See ClassAd Attributes Added by the condor_collector for more information on the added attribute.

COLLECTOR_CLASS_HISTORY_SIZE¶
This variable controls the size of the published update history that the condor_collector inserts into the con-
dor_collector ClassAds it produces. The default value is zero.

If this variable has a non-zero value, the condor_collector will insert UpdatesClassHistory into the con-
dor_collector ClassAd (similar to). These are added per class of ClassAd, however. The classes refer to the type
of ClassAds. Additionally, there is a Total class created, which represents the history of all ClassAds that this
condor_collector receives.

Note that the condor_collector always publishes Lost, Total and Sequenced counts for all ClassAd classes. This
is similar to the statistics gathered if is enabled.

COLLECTOR_QUERY_WORKERS¶
This macro sets the maximum number of child worker processes that the condor_collector can have, and defaults
to a value of 4 on Linux and MacOS platforms. When receiving a large query request, the condor_collector may
fork() a new process to handle the query, freeing the main process to handle other requests. Each forked child
process will consume memory, potentially up to 50% or more of the memory consumed by the parent collector
process. To limit the amount of memory consumed on the central manager to handle incoming queries, the default
value for this macro is 4. When the number of outstanding worker processes reaches the maximum specified by
this macro, any additional incoming query requests will be queued and serviced after an existing child worker
completes. Note that on Windows platforms, this macro has a value of zero and cannot be changed.

COLLECTOR_QUERY_WORKERS_RESERVE_FOR_HIGH_PRIO¶
This macro defines the number of slots will be held in reserve to only service high priority query requests.
Currently, high priority queries are defined as those coming from the condor_negotiator during the course of
matchmaking, or via a “condor_sos condor_status” command. The idea here is the critical operation of match-
making machines to jobs will take precedence over user condor_status invocations. Defaults to a value of 1. The
maximum allowable value for this macro is equal to minus 1.

COLLECTOR_QUERY_WORKERS_PENDING¶
This macro sets the maximum of collector pending query requests that can be queued waiting for child workers
to exit. Queries that would exceed this maximum are immediately aborted. When a forked child worker exits, a
pending query will be pulled from the queue for service. Note the collector will confirm that the client has not
closed the TCP socket (because it was tired of waiting) before going through all the work of actually forking a
child and starting to service the query. Defaults to a value of 50.

COLLECTOR_QUERY_MAX_WORKTIME¶
This macro defines the maximum amount of time in seconds that a query has to complete before it is aborted.
Queries that wait in the pending queue longer than this period of time will be aborted before forking. Queries
that have already forked will also abort after the worktime has expired - this protects against clients on a very
slow network connection. If set to 0, then there is no timeout. The default is 0.

HANDLE_QUERY_IN_PROC_POLICY¶
This variable sets the policy for which queries the condor_collector should handle in process rather than by
forking a worker. It should be set to one of the following values

• always Handle all queries in process

• never Handle all queries using fork workers

• small_table Handle only queries of small tables in process

• small_query Handle only small queries in process

• small_table_and_query Handle only small queries on small tables in process

• small_table_or_query Handle small queries or small tables in process

246 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

A small table is any table of ClassAds in the collector other than Master,Startd,Generic and Any ads. A small
query is a locate query, or any query with both a projection and a result limit that is smaller than 10. The default
value is small_table_or_query.

COLLECTOR_DEBUG¶
This macro (and other macros related to debug logging in the condor_collector is described in .

CONDOR_VIEW_CLASSAD_TYPES¶
Provides the ClassAd types that will be forwarded to the . The ClassAd types can be found with -any. The default
forwarding behavior of the condor_collector is equivalent to

CONDOR_VIEW_CLASSAD_TYPES=Machine,Submitter

There is no default value for this variable.

COLLECTOR_FORWARD_FILTERING¶
When this boolean variable is set to True, Machine and Submitter ad updates are not forwarded to the if certain
attributes are unchanged from the previous update of the ad. The default is False, meaning all updates are
forwarded.

COLLECTOR_FORWARD_WATCH_LIST¶
When is set to True, this variable provides the list of attributes that controls whether a Machine or Submitter
ad update is forwarded to the . If all attributes in this list are unchanged from the previous update, then the new
update is not forwarded. The default value is State,Cpus,Memory,IdleJobs.

COLLECTOR_FORWARD_INTERVAL¶
When is set to True, this variable limits how long forwarding of updates for a given ad can be filtered before an
update must be forwarded. The default is one third of .

COLLECTOR_FORWARD_CLAIMED_PRIVATE_ADS¶
When this boolean variable is set to False, the condor_collector will not forward the private portion of Machine
ads to the if the ad’s is Claimed. The default value is $(NEGOTIATOR_CONSIDER_PREEMPTION).

COLLECTOR_FORWARD_PROJECTION¶
An expression that evaluates to a string in the context of an update. The string is treated as a list of attributes to
forward. If the string has no attributes, it is ignored. The intended use is to restrict the list of attributes forwarded
for claimed Machine ads. When $(NEGOTIATOR_CONSIDER_PREEMPTION) is false, the negotiator needs only a
few attributes from Machine ads that are in the Claimed state. A Suggested use might be

if ! $(NEGOTIATOR_CONSIDER_PREEMPTION)
COLLECTOR_FORWARD_PROJECTION = IfThenElse(State is "Claimed", "$(FORWARD_CLAIMED_

→˓ATTRS)", "")
forward only the few attributes needed by the Negotiator and a few more needed␣

→˓by condor_status
FORWARD_CLAIMED_ATTRS = Name MyType MyAddress StartdIpAddr Machine Requirements \

State Activity AccountingGroup Owner RemoteUser SlotWeight ConcurrencyLimits \
Arch OpSys Memory Cpus CondorLoadAvg EnteredCurrentActivity

endif

There is no default value for this variable.

The following macros control where, when, and for how long HTCondor persistently stores absent ClassAds. See
section Absent ClassAds for more details.

ABSENT_REQUIREMENTS¶
A boolean expression evaluated by the condor_collector when a machine ClassAd would otherwise expire. If
True, the ClassAd instead becomes absent. If not defined, the implementation will behave as if False, and no
absent ClassAds will be stored.

5.4. Configuration Macros 247

HTCondor Manual, Release 23.6.2

ABSENT_EXPIRE_ADS_AFTER¶
The integer number of seconds after which the condor_collector forgets about an absent ClassAd. If 0, the
ClassAds persist forever. Defaults to 30 days.

COLLECTOR_PERSISTENT_AD_LOG¶
The full path and file name of a file that stores machine ClassAds for every hibernating or absent machine. This
forms a persistent storage of these ClassAds, in case the condor_collector daemon crashes.

To avoid removing this log, place it in a directory other than the directory defined by $(SPOOL). Alternatively,
if this log file is to go in the directory defined by $(SPOOL), add the file to the list given by .

EXPIRE_INVALIDATED_ADS¶
A boolean value that defaults to False. When True, causes all invalidated ClassAds to be treated as if they
expired. This permits invalidated ClassAds to be marked absent, as defined in Absent ClassAds.

5.4.14 condor_negotiator Configuration File Entries

These macros affect the condor_negotiator.

NEGOTIATOR¶
The full path to the condor_negotiator binary.

NEGOTIATOR_NAME¶
Used to give an alternative value to the Name attribute in the condor_negotiator ‘s ClassAd and the
NegotiatorName attribute of its accounting ClassAds. This configuration macro is useful in the situation where
there are two condor_negotiator daemons running on one machine, and both report to the same condor_collector.
Different names will distinguish the two daemons.

See the description of for defaults and composition of valid HTCondor daemon names.

NEGOTIATOR_INTERVAL¶
Sets the maximum time the condor_negotiator will wait before starting a new negotiation cycle, counting from
the start of the previous cycle. It is defined in seconds and defaults to 60 (1 minute).

NEGOTIATOR_MIN_INTERVAL¶
Sets the minimum time the condor_negotiator will wait before starting a new negotiation cycle, counting from
the start of the previous cycle. It is defined in seconds and defaults to 5.

NEGOTIATOR_UPDATE_INTERVAL¶
This macro determines how often the condor_negotiator daemon sends a ClassAd update to the con-
dor_collector. It is defined in seconds and defaults to 300 (every 5 minutes).

NEGOTIATOR_CYCLE_DELAY¶
An integer value that represents the minimum number of seconds that must pass before a new negotiation cycle
may start. The default value is 20. is intended only for use by HTCondor experts.

NEGOTIATOR_TIMEOUT¶
Sets the timeout that the negotiator uses on its network connections to the condor_schedd and condor_startd s.
It is defined in seconds and defaults to 30.

NEGOTIATION_CYCLE_STATS_LENGTH¶
Specifies how many recent negotiation cycles should be included in the history that is published in the con-
dor_negotiator ‘s ad. The default is 3 and the maximum allowed value is 100. Setting this value to 0 dis-
ables publication of negotiation cycle statistics. The statistics about recent cycles are stored in several at-
tributes per cycle. Each of these attribute names will have a number appended to it to indicate how long ago
the cycle happened, for example: LastNegotiationCycleDuration0, LastNegotiationCycleDuration1,

248 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

LastNegotiationCycleDuration2, The attribute numbered 0 applies to the most recent negotiation cy-
cle. The attribute numbered 1 applies to the next most recent negotiation cycle, and so on. See Negotiator
ClassAd Attributes for a list of attributes that are published.

NEGOTIATOR_NUM_THREADS¶
An integer that specifies the number of threads the negotiator should use when trying to match a job to slots. The
default is 1. For sites with large number of slots, where the negotiator is running on a large machine, setting this
to a larger value may result in faster negotiation times. Setting this to more than the number of cores will result
in slow downs. An administrator setting this should also consider what other processes on the machine may need
cores, such as the collector, and all of its forked children, the condor_master, and any helper programs or scripts
running there.

PRIORITY_HALFLIFE¶
This macro defines the half-life of the user priorities. See User priority on User Priorities for details. It is defined
in seconds and defaults to 86400 (1 day).

DEFAULT_PRIO_FACTOR¶
Sets the priority factor for local users as they first submit jobs, as described in Configuration for Central Man-
agers. Defaults to 1000.

NICE_USER_PRIO_FACTOR¶
Sets the priority factor for nice users, as described in Configuration for Central Managers. Defaults to
10000000000.

NICE_USER_ACCOUNTING_GROUP_NAME¶
Sets the name used for the nice-user accounting group by . Defaults to nice-user.

REMOTE_PRIO_FACTOR¶
Defines the priority factor for remote users, which are those users who who do not belong to the local domain.
See Configuration for Central Managers for details. Defaults to 10000000.

ACCOUNTANT_DATABASE_FILE¶
Defines the full path of the accountant database log file. The default value is $(SPOOL)/Accountantnew.log

ACCOUNTANT_LOCAL_DOMAIN¶
Describes the local UID domain. This variable is used to decide if a user is local or remote. A user is considered
to be in the local domain if their UID domain matches the value of this variable. Usually, this variable is set to
the local UID domain. If not defined, all users are considered local.

MAX_ACCOUNTANT_DATABASE_SIZE¶
This macro defines the maximum size (in bytes) that the accountant database log file can reach before it is
truncated (which re-writes the file in a more compact format). If, after truncating, the file is larger than one half
the maximum size specified with this macro, the maximum size will be automatically expanded. The default is
1 megabyte (1000000).

NEGOTIATOR_DISCOUNT_SUSPENDED_RESOURCES¶
This macro tells the negotiator to not count resources that are suspended when calculating the number of resources
a user is using. Defaults to false, that is, a user is still charged for a resource even when that resource has suspended
the job.

NEGOTIATOR_SOCKET_CACHE_SIZE¶
This macro defines the maximum number of sockets that the condor_negotiator keeps in its open socket cache.
Caching open sockets makes the negotiation protocol more efficient by eliminating the need for socket connection
establishment for each negotiation cycle. The default is currently 500. To be effective, this parameter should be
set to a value greater than the number of condor_schedd s submitting jobs to the negotiator at any time. If you
lower this number, you must run and not just for the change to take effect.

NEGOTIATOR_INFORM_STARTD¶
Boolean setting that controls if the condor_negotiator should inform the condor_startd when it has been matched
with a job. The default is False. When this is set to the default value of False, the condor_startd will never

5.4. Configuration Macros 249

HTCondor Manual, Release 23.6.2

enter the Matched state, and will go directly from Unclaimed to Claimed. Because this notification is done via
UDP, if a pool is configured so that the execute hosts do not create UDP command sockets (see the setting for
details), the condor_negotiator should be configured not to attempt to contact these condor_startd daemons by
using the default value.

NEGOTIATOR_PRE_JOB_RANK¶
Resources that match a request are first sorted by this expression. If there are any ties in the rank of the top choice,
the top resources are sorted by the user-supplied rank in the job ClassAd, then by , then by (if the match would
cause preemption and there are still any ties in the top choice). MY refers to attributes of the machine ClassAd
and TARGET refers to the job ClassAd. The purpose of the pre job rank is to allow the pool administrator
to override any other rankings, in order to optimize overall throughput. For example, it is commonly used to
minimize preemption, even if the job rank prefers a machine that is busy. If explicitly set to be undefined, this
expression has no effect on the ranking of matches. The default value prefers to match multi-core jobs to dynamic
slots in a best fit manner:

NEGOTIATOR_PRE_JOB_RANK = (10000000 * My.Rank) + \
(1000000 * (RemoteOwner =?= UNDEFINED)) - (100000 * Cpus) - Memory

NEGOTIATOR_POST_JOB_RANK¶
Resources that match a request are first sorted by . If there are any ties in the rank of the top choice, the top
resources are sorted by the user-supplied rank in the job ClassAd, then by , then by (if the match would cause
preemption and there are still any ties in the top choice). MY. refers to attributes of the machine ClassAd and
TARGET. refers to the job ClassAd. The purpose of the post job rank is to allow the pool administrator to choose
between machines that the job ranks equally. The default value is

NEGOTIATOR_POST_JOB_RANK = \
(RemoteOwner =?= UNDEFINED) * \
(ifThenElse(isUndefined(KFlops), 1000, Kflops) - \
SlotID - 1.0e10*(Offline=?=True))

PREEMPTION_REQUIREMENTS¶
When considering user priorities, the negotiator will not preempt a job running on a given machine unless this
expression evaluates to True, and the owner of the idle job has a better priority than the owner of the running
job. The expression is evaluated within the context of the candidate machine ClassAd and the candidate idle job
ClassAd; thus the MY scope prefix refers to the machine ClassAd, and the TARGET scope prefix refers to the
ClassAd of the idle (candidate) job. There is no direct access to the currently running job, but attributes of the
currently running job that need to be accessed in can be placed in the machine ClassAd using . If not explicitly
set in the HTCondor configuration file, the default value for this expression is False. should include the term
(SubmitterGroup =?= RemoteGroup), if a preemption policy that respects group quotas is desired. Note
that this variable does not influence other potential causes of preemption, such as the of the condor_startd, or
expressions. See condor_startd Policy Configuration for a general discussion of limiting preemption.

PREEMPTION_REQUIREMENTS_STABLE¶
A boolean value that defaults to True, implying that all attributes utilized to define the variable will not change
within a negotiation period time interval. If utilized attributes will change during the negotiation period time
interval, then set this variable to False.

PREEMPTION_RANK¶
Resources that match a request are first sorted by . If there are any ties in the rank of the top choice, the top
resources are sorted by the user-supplied rank in the job ClassAd, then by , then by (if the match would cause
preemption and there are still any ties in the top choice). MY refers to attributes of the machine ClassAd and
TARGET refers to the job ClassAd. This expression is used to rank machines that the job and the other negotiation
expressions rank the same. For example, if the job has no preference, it is usually preferable to preempt a job
with a small instead of a job with a large . The default value first considers the user’s priority and chooses the user
with the worst priority. Then, among the running jobs of that user, it chooses the job with the least accumulated
run time:

250 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

PREEMPTION_RANK = (RemoteUserPrio * 1000000) - \
ifThenElse(isUndefined(TotalJobRunTime), 0, TotalJobRunTime)

PREEMPTION_RANK_STABLE¶
A boolean value that defaults to True, implying that all attributes utilized to define the variable will not change
within a negotiation period time interval. If utilized attributes will change during the negotiation period time
interval, then set this variable to False.

NEGOTIATOR_SLOT_CONSTRAINT¶
An expression which constrains which machine ClassAds are fetched from the condor_collector by the con-
dor_negotiator during a negotiation cycle.

NEGOTIATOR_SUBMITTER_CONSTRAINT¶
An expression which constrains which submitter ClassAds are fetched from the condor_collector by the con-
dor_negotiator during a negotiation cycle. The condor_negotiator will ignore the jobs of submitters whose
submitter ads don’t match this constraint.

NEGOTIATOR_JOB_CONSTRAINT¶
An expression which constrains which job ClassAds are considered for matchmaking by the condor_negotiator.
This parameter is read by the condor_negotiator and sent to the condor_schedd for evaluation. condor_schedd s
older than version 8.7.7 will ignore this expression and so will continue to send all jobs to the condor_negotiator.

NEGOTIATOR_TRIM_SHUTDOWN_THRESHOLD¶
This setting is not likely to be customized, except perhaps within a glidein setting. An integer expression that
evaluates to a value within the context of the condor_negotiator ClassAd, with a default value of 0. When this
expression evaluates to an integer X greater than 0, the condor_negotiator will not make matches to machines
that contain the ClassAd attribute DaemonShutdown which evaluates to True, when that shut down time is X
seconds into the future. The idea here is a mechanism to prevent matching with machines that are quite close to
shutting down, since the match would likely be a waste of time.

NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT¶ or GROUP_DYNAMIC_MACH_CONSTRAINT¶
This optional expression specifies which machine ClassAds should be counted when computing the size of the
pool. It applies both for group quota allocation and when there are no groups. The default is to count all machine
ClassAds. When extra slots exist for special purposes, as, for example, suspension slots or file transfer slots,
this expression can be used to inform the condor_negotiator that only normal slots should be counted when
computing how big each group’s share of the pool should be.

The name replaces GROUP_DYNAMIC_MACH_CONSTRAINT as of HTCondor version 7.7.3. Using the older name
causes a warning to be logged, although the behavior is unchanged.

NEGOTIATOR_DEBUG¶
This macro (and other settings related to debug logging in the negotiator) is described in .

NEGOTIATOR_MAX_TIME_PER_SUBMITTER¶
The maximum number of seconds the condor_negotiator will spend with each individual submitter during one
negotiation cycle. Once this time limit has been reached, the condor_negotiator will skip over requests from this
submitter until the next negotiation cycle. It defaults to 60 seconds.

NEGOTIATOR_MAX_TIME_PER_SCHEDD¶
The maximum number of seconds the condor_negotiator will spend with each individual condor_schedd during
one negotiation cycle. Once this time limit has been reached, the condor_negotiator will skip over requests from
this condor_schedd until the next negotiation cycle. It defaults to 120 seconds.

NEGOTIATOR_MAX_TIME_PER_CYCLE¶
The maximum number of seconds the condor_negotiator will spend in total across all submitters during one
negotiation cycle. Once this time limit has been reached, the condor_negotiator will skip over requests from all
submitters until the next negotiation cycle. It defaults to 1200 seconds.

5.4. Configuration Macros 251

HTCondor Manual, Release 23.6.2

NEGOTIATOR_MAX_TIME_PER_PIESPIN¶
The maximum number of seconds the condor_negotiator will spend with a submitter in one pie spin. A negotia-
tion cycle is composed of at least one pie spin, possibly more, depending on whether there are still machines left
over after computing fair shares and negotiating with each submitter. By limiting the maximum length of a pie
spin or the maximum time per submitter per negotiation cycle, the condor_negotiator is protected against spend-
ing a long time talking to one submitter, for example someone with a very slow condor_schedd daemon. But,
this can result in unfair allocation of machines or some machines not being allocated at all. See Configuration
for Central Managers for a description of a pie slice. It defaults to 120 seconds.

NEGOTIATOR_DEPTH_FIRST¶
A boolean value which defaults to false. When partitionable slots are enabled, and this parameter is true, the
negotiator tries to pack as many jobs as possible on each machine before moving on to the next machine.

USE_RESOURCE_REQUEST_COUNTS¶
A boolean value that defaults to True. When True, the latency of negotiation will be reduced when there are
many jobs next to each other in the queue with the same auto cluster, and many matches are being made. When
True, the condor_schedd tells the condor_negotiator to send X matches at a time, where X equals number of
consecutive jobs in the queue within the same auto cluster.

NEGOTIATOR_RESOURCE_REQUEST_LIST_SIZE¶
An integer tuning parameter used by the condor_negotiator to control the number of resource requests fetched
from a condor_schedd per network round-trip. With higher values, the latency of negotiation can be significantly
be reduced when negotiating with a condor_schedd running HTCondor version 8.3.0 or more recent, especially
over a wide-area network. Setting this value too high, however, could cause the condor_schedd to unnecessarily
block on network I/O. The default value is 200. If is set to False, then this variable will be unconditionally set
to a value of 1.

NEGOTIATOR_MATCH_EXPRS¶
A comma-separated list of macro names that are inserted as ClassAd attributes into matched job ClassAds. The
attribute name in the ClassAd will be given the prefix NegotiatorMatchExpr, if the macro name does not
already begin with that. Example:

NegotiatorName = "My Negotiator"
NEGOTIATOR_MATCH_EXPRS = NegotiatorName

As a result of the above configuration, jobs that are matched by this condor_negotiator will contain the following
attribute when they are sent to the condor_startd:

NegotiatorMatchExprNegotiatorName = "My Negotiator"

The expressions inserted by the condor_negotiator may be useful in condor_startd policy expressions, when the
condor_startd belongs to multiple HTCondor pools.

NEGOTIATOR_MATCHLIST_CACHING¶
A boolean value that defaults to True. When True, it enables an optimization in the condor_negotiator that
works with auto clustering. In determining the sorted list of machines that a job might use, the job goes to the
first machine off the top of the list. If is True, and if the next job is part of the same auto cluster, meaning that
it is a very similar job, the condor_negotiator will reuse the previous list of machines, instead of recreating the
list from scratch.

NEGOTIATOR_CONSIDER_PREEMPTION¶
For expert users only. A boolean value that defaults to True. When False, it can cause the condor_negotiator to
run faster and also have better spinning pie accuracy. Only set this to False if is False, and if all condor_startd
rank expressions are False.

NEGOTIATOR_CONSIDER_EARLY_PREEMPTION¶
A boolean value that when False (the default), prevents the condor_negotiator from matching jobs to claimed
slots that cannot immediately be preempted due to .

252 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

ALLOW_PSLOT_PREEMPTION¶
A boolean value that defaults to False. When set to True for the condor_negotiator, it enables a new match-
making mode in which one or more dynamic slots can be preempted in order to make enough resources available
in their parent partitionable slot for a job to successfully match to the partitionable slot.

STARTD_AD_REEVAL_EXPR¶
A boolean value evaluated in the context of each machine ClassAd within a negotiation cycle that determines
whether the ClassAd from the condor_collector is to replace the stashed ClassAd utilized during the previous
negotiation cycle. When True, the ClassAd from the condor_collector does replace the stashed one. When not
defined, the default value is to replace the stashed ClassAd if the stashed ClassAd’s sequence number is older
than its potential replacement.

NEGOTIATOR_UPDATE_AFTER_CYCLE¶
A boolean value that defaults to False. When True, it will force the condor_negotiator daemon to publish an
update to the condor_collector at the end of every negotiation cycle. This is useful if monitoring statistics for
the previous negotiation cycle.

NEGOTIATOR_READ_CONFIG_BEFORE_CYCLE¶
A boolean value that defaults to False. When True, the condor_negotiator will re-read the configuration prior to
beginning each negotiation cycle. Note that this operation will update configured behaviors such as concurrency
limits, but not data structures constructed during a full reconfiguration, such as the group quota hierarchy. A full
reconfiguration, for example as accomplished with , remains the best way to guarantee that all condor_negotiator
configuration is completely updated.

<NAME>_LIMIT¶
An integer value that defines the amount of resources available for jobs which declare that they use some con-
sumable resource as described in Concurrency Limits. <Name> is a string invented to uniquely describe the
resource.

CONCURRENCY_LIMIT_DEFAULT¶
An integer value that describes the number of resources available for any resources that are not explicitly named
defined with the configuration variable . If not defined, no limits are set for resources not explicitly identified
using .

CONCURRENCY_LIMIT_DEFAULT_<NAME>¶
If set, this defines a default concurrency limit for all resources that start with <NAME>.

The following configuration macros affect negotiation for group users.

GROUP_NAMES¶
A comma-separated list of the recognized group names, case insensitive. If undefined (the default), group support
is disabled. Group names must not conflict with any user names. That is, if there is a physics group, there may not
be a physics user. Any group that is defined here must also have a quota, or the group will be ignored. Example:

GROUP_NAMES = group_physics, group_chemistry

GROUP_QUOTA_<groupname>¶
A floating point value to represent a static quota specifying an integral number of machines for the hierarchical
group identified by <groupname>. It is meaningless to specify a non integer value, since only integral numbers
of machines can be allocated. Example:

GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_chemistry = 10

When both static and dynamic quotas are defined for a specific group, the static quota is used and the dynamic
quota is ignored.

GROUP_QUOTA_DYNAMIC_<groupname>¶
A floating point value in the range 0.0 to 1.0, inclusive, representing a fraction of a pool’s machines (slots) set

5.4. Configuration Macros 253

HTCondor Manual, Release 23.6.2

as a dynamic quota for the hierarchical group identified by <groupname>. For example, the following specifies
that a quota of 25% of the total machines are reserved for members of the group_biology group.

GROUP_QUOTA_DYNAMIC_group_biology = 0.25

The group name must be specified in the list.

This section has not yet been completed

GROUP_PRIO_FACTOR_<groupname>¶
A floating point value greater than or equal to 1.0 to specify the default user priority factor for <groupname>.
The group name must also be specified in the list. is evaluated when the negotiator first negotiates for the user
as a member of the group. All members of the group inherit the default priority factor when no other value is
present. For example, the following setting specifies that all members of the group named group_physics inherit
a default user priority factor of 2.0:

GROUP_PRIO_FACTOR_group_physics = 2.0

GROUP_AUTOREGROUP¶
A boolean value (defaults to False) that when True, causes users who submitted to a specific group to also
negotiate a second time with the <none> group, to be considered with the independent job submitters. This
allows group submitted jobs to be matched with idle machines even if the group is over its quota. The user name
that is used for accounting and prioritization purposes is still the group user as specified by in the job ClassAd.

GROUP_AUTOREGROUP_<groupname>¶
This is the same as , but it is settable on a per-group basis. If no value is specified for a given group, the default
behavior is determined by , which in turn defaults to False.

GROUP_ACCEPT_SURPLUS¶
A boolean value that, when True, specifies that groups should be allowed to use more than their configured quota
when there is not enough demand from other groups to use all of the available machines. The default value is
False.

GROUP_ACCEPT_SURPLUS_<groupname>¶
A boolean value applied as a group-specific version of . When not specified, the value of applies to the named
group.

GROUP_QUOTA_ROUND_ROBIN_RATE¶
The maximum sum of weighted slots that should be handed out to an individual submitter in each itera-
tion within a negotiation cycle. If slot weights are not being used by the condor_negotiator, as specified by
NEGOTIATOR_USE_SLOT_WEIGHTS = False, then this value is just the (unweighted) number of slots. The de-
fault value is a very big number, effectively infinite. Setting the value to a number smaller than the size of the
pool can help avoid starvation. An example of the starvation problem is when there are a subset of machines
in a pool with large memory, and there are multiple job submitters who desire all of these machines. Normally,
HTCondor will decide how much of the full pool each person should get, and then attempt to hand out that num-
ber of resources to each person. Since the big memory machines are only a subset of pool, it may happen that
they are all given to the first person contacted, and the remainder requiring large memory machines get nothing.
Setting to a value that is small compared to the size of subsets of machines will reduce starvation at the cost of
possibly slowing down the rate at which resources are allocated.

GROUP_QUOTA_MAX_ALLOCATION_ROUNDS¶
An integer that specifies the maximum number of times within one negotiation cycle the condor_negotiator will
calculate how many slots each group deserves and attempt to allocate them. The default value is 3. The reason it
may take more than one round is that some groups may not have jobs that match some of the available machines,
so some of the slots that were withheld for those groups may not get allocated in any given round.

NEGOTIATOR_USE_SLOT_WEIGHTS¶
A boolean value with a default of True. When True, the condor_negotiator pays attention to the machine

254 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

ClassAd attribute . When False, each slot effectively has a weight of 1.

NEGOTIATOR_USE_WEIGHTED_DEMAND¶
A boolean value that defaults to True. When False, the behavior is the same as for HTCondor versions prior
to 7.9.6. If True, when the condor_schedd advertises IdleJobs in the submitter ClassAd, which represents
the number of idle jobs in the queue for that submitter, it will also advertise the total number of requested cores
across all idle jobs from that submitter, . If partitionable slots are being used, and if hierarchical group quotas
are used, and if any hierarchical group quotas set to True, and if configuration variable is set to the number of
cores, then setting this configuration variable to True allows the amount of surplus allocated to each group to be
calculated correctly.

GROUP_SORT_EXPR¶
A floating point ClassAd expression that controls the order in which the condor_negotiator considers groups
when allocating resources. The smallest magnitude positive value goes first. The default value is set such that
group <none> always goes last when considering group quotas, and groups are considered in starvation order
(the group using the smallest fraction of its resource quota is considered first).

NEGOTIATOR_ALLOW_QUOTA_OVERSUBSCRIPTION¶
A boolean value that defaults to True. When True, the behavior of resource allocation when considering groups
is more like it was in the 7.4 stable series of HTCondor. In implementation, when True, the static quotas of
subgroups will not be scaled when the sum of these static quotas of subgroups sums to more than the group’s static
quota. This behavior is desirable when using static quotas, unless the sum of subgroup quotas is considerably less
than the group’s quota, as scaling is currently based on the number of machines available, not assigned quotas
(for static quotas).

5.4.15 condor_procd Configuration File Macros

USE_PROCD¶
This boolean variable determines whether the will be used for managing process families. If the is not used,
each daemon will run the process family tracking logic on its own. Use of the results in improved scalability
because only one instance of this logic is required. The is required when using group ID-based process tracking
(see Group ID-Based Process Tracking. In this case, the setting will be ignored and a will always be used. By
default, the will start a that all other daemons that need process family tracking will use. A daemon that uses the
will start a for use by itself and all of its child daemons.

PROCD_MAX_SNAPSHOT_INTERVAL¶
This setting determines the maximum time that the will wait between probes of the system for information about
the process families it is tracking.

PROCD_LOG¶
Specifies a log file for the to use. Note that by design, the does not include most of the other logic that is shared
amongst the various HTCondor daemons. This means that the does not include the normal HTCondor logging
subsystem, and thus multiple debug levels are not supported. defaults to $(LOG)/ProcLog. Note that enabling
D_PROCFAMILY in the debug level for any other daemon will cause it to log all interactions with the .

MAX_PROCD_LOG¶
Controls the maximum length in bytes to which the log will be allowed to grow. The log file will grow to the
specified length, then be saved to a file with the suffix .old. The .old file is overwritten each time the log is
saved, thus the maximum space devoted to logging will be twice the maximum length of this log file. A value of
0 specifies that the file may grow without bounds. The default is 10 MiB.

PROCD_ADDRESS¶
This specifies the address that the will use to receive requests from other HTCondor daemons. On Unix, this
should point to a file system location that can be used for a named pipe. On Windows, named pipes are also used
but they do not exist in the file system. The default setting is $(RUN)/procd_pipe on Unix and \\.\pipe\procd_pipe
on Windows.

5.4. Configuration Macros 255

HTCondor Manual, Release 23.6.2

USE_GID_PROCESS_TRACKING¶
A boolean value that defaults to False. When True, a job’s initial process is assigned a dedicated GID which
is further used by the to reliably track all processes associated with a job. When True, values for and must also
be set, or HTCondor will abort, logging an error message. See Group ID-Based Process Tracking for a detailed
description.

MIN_TRACKING_GID¶
An integer value, that together with specify a range of GIDs to be assigned on a per slot basis for use by the in
tracking processes associated with a job. See Group ID-Based Process Tracking for a detailed description.

MAX_TRACKING_GID¶
An integer value, that together with specify a range of GIDs to be assigned on a per slot basis for use by the in
tracking processes associated with a job. See Group ID-Based Process Tracking for a detailed description.

BASE_CGROUP¶
The path to the directory used as the virtual file system for the implementation of Linux kernel cgroups. This
variable defaults to the string htcondor, and is only used on Linux systems. To disable cgroup tracking, define
this to an empty string. See Cgroup-Based Process Tracking for a description of cgroup-based process tracking.
An administrator can configure distinct cgroup roots for different slot types within the same startd by prefixing
the BASE_CGROUP macro with the slot type. e.g. setting SLOT_TYPE_1.BASE_CGROUP = hiprio_cgroup
and SLOT_TYPE_2.BASE_CGROUP = low_prio

5.4.16 condor_credd Configuration File Macros

These macros affect the condor_credd and its credmon plugin.

CREDD_HOST¶
The host name of the machine running the condor_credd daemon.

CREDD_POLLING_TIMEOUT¶
An integer value representing the number of seconds that the condor_credd, condor_starter, and condor_schedd
daemons will wait for valid credentials to be produced by a credential monitor (CREDMON) service. The default
value is 20.

CREDD_CACHE_LOCALLY¶
A boolean value that defaults to False. When True, the first successful password fetch operation to the con-
dor_credd daemon causes the password to be stashed in a local, secure password store. Subsequent uses of that
password do not require communication with the condor_credd daemon.

CRED_SUPER_USERS¶
A comma and/or space separated list of user names on a given machine that are permitted to store credentials for
any user when using the command. When not on this list, users can only store their own credentials. Entries in
this list can contain a single ‘*’ wildcard character, which matches any sequence of characters.

SKIP_WINDOWS_LOGON_NETWORK¶
A boolean value that defaults to False. When True, Windows authentication skips trying authentication with
the LOGON_NETWORK method first, and attempts authentication with LOGON_INTERACTIVE method. This can be
useful if many authentication failures are noticed, potentially leading to users getting locked out.

CREDMON_KRB¶
The path to the credmon daemon process when using the Kerberos credentials type. The default is
/usr/sbin/condor_credmon_krb

CREDMON_OAUTH¶
The path to the credmon daemon process when using the OAuth2 credentials type. The default is
/usr/sbin/condor_credmon_oauth.

256 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

CREDMON_OAUTH_TOKEN_MINIMUM¶
The minimum time in seconds that OAuth2 tokens should have remaining on them when they are generated. The
default is 40 minutes. This is currently implemented only in the vault credmon, not the default oauth credmon.

CREDMON_OAUTH_TOKEN_REFRESH¶
The time in seconds between renewing OAuth2 tokens. The default is half of . This is currently implemented
only in the vault credmon, not the default oauth credmon.

5.4.17 condor_gridmanager Configuration File Entries

These macros affect the condor_gridmanager.

GRIDMANAGER_LOG¶
Defines the path and file name for the log of the condor_gridmanager. The owner of the file is the condor user.

GRIDMANAGER_CHECKPROXY_INTERVAL¶
The number of seconds between checks for an updated X509 proxy credential. The default is 10 minutes (600
seconds).

GRIDMANAGER_PROXY_REFRESH_TIME¶
For remote schedulers that allow for X.509 proxy refresh, the condor_gridmanager will not forward a refreshed
proxy until the lifetime left for the proxy on the remote machine falls below this value. The value is in seconds
and the default is 21600 (6 hours).

GRIDMANAGER_MINIMUM_PROXY_TIME¶
The minimum number of seconds before expiration of the X509 proxy credential for the gridmanager to continue
operation. If seconds until expiration is less than this number, the gridmanager will shutdown and wait for a
refreshed proxy credential. The default is 3 minutes (180 seconds).

HOLD_JOB_IF_CREDENTIAL_EXPIRES¶
True or False. Defaults to True. If True, and for grid universe jobs only, HTCondor-G will place a job on
hold seconds before the proxy expires. If False, the job will stay in the last known state, and HTCondor-G will
periodically check to see if the job’s proxy has been refreshed, at which point management of the job will resume.

GRIDMANAGER_SELECTION_EXPR¶
By default, the gridmanager operates on a per- basis. That is, the condor_schedd starts a distinct con-
dor_gridmanager for each grid universe job with a distinct . For additional isolation and/or scalability, you
may set this macro to a ClassAd expression. It will be evaluated against each grid universe job, and jobs with the
same evaluated result will go to the same gridmanager. For instance, if you want to isolate job going to different
remote sites from each other, the following expression works:

GRIDMANAGER_SELECTION_EXPR = GridResource

GRIDMANAGER_LOG_APPEND_SELECTION_EXPR¶
A boolean value that defaults to False. When True, the evaluated value of (if set) is appended to the value of
for each condor_gridmanager instance. The value is sanitized to remove characters that have special meaning to
the shell. This allows each condor_gridmanager instance that runs concurrently to write to a separate daemon
log.

GRIDMANAGER_CONTACT_SCHEDD_DELAY¶
The minimum number of seconds between connections to the condor_schedd. The default is 5 seconds.

GRIDMANAGER_JOB_PROBE_INTERVAL¶
The number of seconds between active probes for the status of a submitted job. The default is 1 minute (60
seconds). Intervals specific to grid types can be set by appending the name of the grid type to the configuration
variable name, as the example

5.4. Configuration Macros 257

HTCondor Manual, Release 23.6.2

GRIDMANAGER_JOB_PROBE_INTERVAL_ARC = 300

GRIDMANAGER_JOB_PROBE_RATE¶
The maximum number of job status probes per second that will be issued to a given remote resource. The time
between status probes for individual jobs may be lengthened beyond to enforce this rate. The default is 5 probes
per second. Rates specific to grid types can be set by appending the name of the grid type to the configuration
variable name, as the example

GRIDMANAGER_JOB_PROBE_RATE_ARC = 15

GRIDMANAGER_RESOURCE_PROBE_INTERVAL¶
When a resource appears to be down, how often (in seconds) the condor_gridmanager should ping it to test if it
is up again. The default is 5 minutes (300 seconds).

GRIDMANAGER_EMPTY_RESOURCE_DELAY¶
The number of seconds that the condor_gridmanager retains information about a grid resource, once the con-
dor_gridmanager has no active jobs on that resource. An active job is a grid universe job that is in the queue,
for which is anything other than Held. Defaults to 300 seconds.

GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE¶
An integer value that limits the number of jobs that a condor_gridmanager daemon will submit to a resource.
A comma-separated list of pairs that follows this integer limit will specify limits for specific remote resources.
Each pair is a host name and the job limit for that host. Consider the example:

GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE = 200, foo.edu, 50, bar.com, 100

In this example, all resources have a job limit of 200, except foo.edu, which has a limit of 50, and bar.com, which
has a limit of 100.

Limits specific to grid types can be set by appending the name of the grid type to the configuration variable name,
as the example

GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE_PBS = 300

In this example, the job limit for all PBS resources is 300. Defaults to 1000.

GAHP_DEBUG_HIDE_SENSITIVE_DATA¶
A boolean value that determines when sensitive data such as security keys and passwords are hidden, when
communication to or from a GAHP server is written to a daemon log. The default is True, hiding sensitive data.

GRIDMANAGER_GAHP_CALL_TIMEOUT¶
The number of seconds after which a pending GAHP command should time out. The default is 5 minutes (300
seconds).

GRIDMANAGER_GAHP_RESPONSE_TIMEOUT¶
The condor_gridmanager will assume a GAHP is hung if this many seconds pass without a response. The default
is 20.

GRIDMANAGER_MAX_PENDING_REQUESTS¶
The maximum number of GAHP commands that can be pending at any time. The default is 50.

GRIDMANAGER_CONNECT_FAILURE_RETRY_COUNT¶
The number of times to retry a command that failed due to a timeout or a failed connection. The default is 3.

EC2_RESOURCE_TIMEOUT¶
The number of seconds after which if an EC2 grid universe job fails to ping the EC2 service, the job will be put
on hold. Defaults to -1, which implements an infinite length, such that a failure to ping the service will never put
the job on hold.

258 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

EC2_GAHP_RATE_LIMIT¶
The minimum interval, in whole milliseconds, between requests to the same EC2 service with the same creden-
tials. Defaults to 100.

BATCH_GAHP_CHECK_STATUS_ATTEMPTS¶
The number of times a failed status command issued to the blahpd should be retried. These retries allow the
condor_gridmanager to tolerate short-lived failures of the underlying batch system. The default value is 5.

C_GAHP_LOG¶
The complete path and file name of the HTCondor GAHP server’s log. The default value is /tmp/CGAHPLog.
$(USERNAME).

MAX_C_GAHP_LOG¶
The maximum size of the .

C_GAHP_WORKER_THREAD_LOG¶
The complete path and file name of the HTCondor GAHP worker process’ log. The default value is /temp/
CGAHPWorkerLog.$(USERNAME).

C_GAHP_CONTACT_SCHEDD_DELAY¶
The number of seconds that the condor_C-gahp daemon waits between consecutive connections to the remote
condor_schedd in order to send batched sets of commands to be executed on that remote condor_schedd daemon.
The default value is 5.

C_GAHP_MAX_FILE_REQUESTS¶
Limits the number of file transfer commands of each type (input, output, proxy refresh) that are performed before
other (potentially higher-priority) commands are read and performed. The default value is 10.

BLAHPD_LOCATION¶
The complete path to the directory containing the blahp software, which is required for grid-type batch jobs. The
default value is $(RELEASE_DIR).

GAHP_SSL_CADIR¶
The path to a directory that may contain the certificates (each in its own file) for multiple trusted CAs to be used
by GAHP servers when authenticating with remote services.

GAHP_SSL_CAFILE¶
The path and file name of a file containing one or more trusted CA’s certificates to be used by GAHP servers
when authenticating with remote services.

CONDOR_GAHP¶
The complete path and file name of the HTCondor GAHP executable. The default value is $(SBIN)/condor_c-
gahp.

EC2_GAHP¶
The complete path and file name of the EC2 GAHP executable. The default value is $(SBIN)/ec2_gahp.

BATCH_GAHP¶
The complete path and file name of the batch GAHP executable, to be used for Slurm, PBS, LSF, SGE, and
similar batch systems. The default location is $(BIN)/blahpd.

ARC_GAHP¶
The complete path and file name of the ARC GAHP executable. The default value is $(SBIN)/arc_gahp.

ARC_GAHP_COMMAND_LIMIT¶
On systems where libcurl uses NSS for security, start a new arc_gahp process when the existing one has handled
the given number of commands. The default is 1000.

ARC_GAHP_USE_THREADS¶
Controls whether the arc_gahp should run multiple HTTPS requests in parallel in different threads. The default
is False.

5.4. Configuration Macros 259

HTCondor Manual, Release 23.6.2

GCE_GAHP¶
The complete path and file name of the GCE GAHP executable. The default value is $(SBIN)/gce_gahp.

AZURE_GAHP¶
The complete path and file name of the Azure GAHP executable. The default value is
$(SBIN)/AzureGAHPServer.py on Windows and $(SBIN)/AzureGAHPServer on other platforms.

BOINC_GAHP¶
The complete path and file name of the BOINC GAHP executable. The default value is $(SBIN)/boinc_gahp.

5.4.18 condor_job_router Configuration File Entries

These macros affect the condor_job_router daemon.

JOB_ROUTER_ROUTE_NAMES¶
An ordered list of the names of enabled routes. In version 8.9.7 or later, routes whose names are listed here
should each have a configuration variable that specifies the route.

Routes will be matched to jobs in the order their names are declared in this list. Routes not declared in this list
will be disabled.

If routes are specified in the deprecated JOB_ROUTER_ENTRIES, JOB_ROUTER_ENTRIES_FILE and
JOB_ROUTER_ENTRIES_CMD configuration variables, then is optional. if it is empty, the order in which
routes are considered will be the order in which their names hash.

JOB_ROUTER_ROUTE_<NAME>¶
Specification of a single route in transform syntax. <NAME> should be one of the route names specified in . The
transform syntax is specified in the ClassAd Transforms section of this manual.

JOB_ROUTER_PRE_ROUTE_TRANSFORM_NAMES¶
An ordered list of the names of transforms that should be applied when a job is being routed before the route
transform is applied. Each transform name listed here should have a corresponding configuration variable.

JOB_ROUTER_POST_ROUTE_TRANSFORM_NAMES¶
An ordered list of the names of transforms that should be applied when a job is being routed after the route
transform is applied. Each transform name listed here should have a corresponding configuration variable.

JOB_ROUTER_TRANSFORM_<NAME>¶
Specification of a single pre-route or post-route transform. <NAME> should be one of the route names specified
in or in . The transform syntax is specified in the ClassAd Transforms section of this manual.

JOB_ROUTER_USE_DEPRECATED_ROUTER_ENTRIES¶
A boolean value that defaults to False. When True, the deprecated parameters and can be used to define routes
in the job routing table.

JOB_ROUTER_DEFAULTS¶

Warning: This macro is deprecated and will be removed for V24 of HTCondor. The actual removal of this
configuration macro will occur during the lifetime of the HTCondor V23 feature series.

Deprecated, use instead. Defined by a single ClassAd in New ClassAd syntax, used to provide default val-
ues for routes in the condor_job_router daemon’s routing table that are specified by the also deprecated
JOB_ROUTER_ENTRIES*. The enclosing square brackets are optional.

JOB_ROUTER_ENTRIES¶

260 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Warning: This macro is deprecated and will be removed for V24 of HTCondor. The actual removal of this
configuration macro will occur during the lifetime of the HTCondor V23 feature series.

Deprecated, use instead. Specification of the job routing table. It is a list of ClassAds, in New ClassAd syntax,
where each individual ClassAd is surrounded by square brackets, and the ClassAds are separated from each
other by spaces. Each ClassAd describes one entry in the routing table, and each describes a site that jobs may
be routed to.

A command causes the condor_job_router daemon to rebuild the routing table. Routes are distinguished by a
routing table entry’s ClassAd attribute Name. Therefore, a Name change in an existing route has the potential to
cause the inaccurate reporting of routes.

Instead of setting job routes using this configuration variable, they may be read from an external source using
the or be dynamically generated by an external program via the configuration variable.

Routes specified by any of these 3 configuration variables are merged with the before being used.

JOB_ROUTER_ENTRIES_FILE¶

Warning: This macro is deprecated and will be removed for V24 of HTCondor. The actual removal of this
configuration macro will occur during the lifetime of the HTCondor V23 feature series.

Deprecated, use instead. A path and file name of a file that contains the ClassAds, in New ClassAd syntax,
describing the routing table. The specified file is periodically reread to check for new information. This occurs
every $(JOB_ROUTER_ENTRIES_REFRESH) seconds.

JOB_ROUTER_ENTRIES_CMD¶

Warning: This macro is deprecated and will be removed for V24 of HTCondor. The actual removal of this
configuration macro will occur during the lifetime of the HTCondor V23 feature series.

Deprecated, use instead. Specifies the command line of an external program to run. The output of
the program defines or updates the routing table, and the output must be given in New ClassAd syntax.
The specified command is periodically rerun to regenerate or update the routing table. This occurs every
$(JOB_ROUTER_ENTRIES_REFRESH) seconds. Specify the full path and file name of the executable within this
command line, as no assumptions may be made about the current working directory upon command invocation.
To enter spaces in any command-line arguments or in the command name itself, surround the right hand side of
this definition with double quotes, and use single quotes around individual arguments that contain spaces. This
is the same as when dealing with spaces within job arguments in an HTCondor submit description file.

JOB_ROUTER_ENTRIES_REFRESH¶
The number of seconds between updates to the routing table described by or . The default value is 0, meaning
no periodic updates occur. With the default value of 0, the routing table can be modified when a command is
invoked or when the condor_job_router daemon restarts.

JOB_ROUTER_LOCK¶
This specifies the name of a lock file that is used to ensure that multiple instances of condor_job_router never
run with the same . Multiple instances running with the same name could lead to mismanagement of routed jobs.
The default value is $(LOCK)/$(JOB_ROUTER_NAME)Lock.

JOB_ROUTER_SOURCE_JOB_CONSTRAINT¶
Specifies a global Requirements expression that must be true for all newly routed jobs, in addition to any
Requirements specified within a routing table entry. In addition to the configurable constraints, the con-
dor_job_router also has some hard-coded constraints. It avoids recursively routing jobs by requiring that the

5.4. Configuration Macros 261

HTCondor Manual, Release 23.6.2

job’s attribute RoutedBy does not match . When not running as root, it also avoids routing jobs belonging to
other users.

JOB_ROUTER_MAX_JOBS¶
An integer value representing the maximum number of jobs that may be routed, summed over all routes. The
default value is -1, which means an unlimited number of jobs may be routed.

JOB_ROUTER_DEFAULT_MAX_JOBS_PER_ROUTE¶
An integer value representing the maximum number of jobs that may be routed to a single route when the route
does not specify a MaxJobs value. The default value is 100.

JOB_ROUTER_DEFAULT_MAX_IDLE_JOBS_PER_ROUTE¶
An integer value representing the maximum number of jobs in a single route that may be in the idle state. When
the number of jobs routed to that site exceeds this number, no more jobs will be routed to it. A route may specify
MaxIdleJobs to override this number. The default value is 50.

MAX_JOB_MIRROR_UPDATE_LAG¶
An integer value that administrators will rarely consider changing, representing the maximum number of seconds
the condor_job_router daemon waits, before it decides that routed copies have gone awry, due to the failure of
events to appear in the condor_schedd ‘s job queue log file. The default value is 600. As the condor_job_router
daemon uses the condor_schedd ‘s job queue log file entries for synchronization of routed copies, when an
expected log file event fails to appear after this wait period, the condor_job_router daemon acts presuming the
expected event will never occur.

JOB_ROUTER_POLLING_PERIOD¶
An integer value representing the number of seconds between cycles in the condor_job_router daemon’s task
loop. The default is 10 seconds. A small value makes the condor_job_router daemon quick to see new candidate
jobs for routing. A large value makes the condor_job_router daemon generate less overhead at the cost of being
slower to see new candidates for routing. For very large job queues where a few minutes of routing latency is no
problem, increasing this value to a few hundred seconds would be reasonable.

JOB_ROUTER_NAME¶
A unique identifier utilized to name multiple instances of the condor_job_router daemon on the same machine.
Each instance must have a different name, or all but the first to start up will refuse to run. The default is
"jobrouter".

Changing this value when routed jobs already exist is not currently gracefully handled. However, it can be done
if one also uses to change the value of ManagedManager and RoutedBy from the old name to the new name.
The following commands may be helpful:

$ condor_qedit -constraint \
'RoutedToJobId =!= undefined && ManagedManager == "insert_old_name"' \
ManagedManager '"insert_new_name"'

$ condor_qedit -constraint \
'RoutedBy == "insert_old_name"' RoutedBy '"insert_new_name"'

JOB_ROUTER_RELEASE_ON_HOLD¶
A boolean value that defaults to True. It controls how the condor_job_router handles the routed copy when
it goes on hold. When True, the condor_job_router leaves the original job ClassAd in the same state as when
claimed. When False, the condor_job_router does not attempt to reset the original job ClassAd to a pre-claimed
state upon yielding control of the job.

JOB_ROUTER_SCHEDD1_SPOOL¶
DEPRECATED. Please use instead. The path to the spool directory for the condor_schedd serving as the source
of jobs for routing. If not specified, this defaults to $(SPOOL). If specified, this parameter must point to the spool
directory of the condor_schedd identified by .

JOB_ROUTER_SCHEDD1_JOB_QUEUE_LOG¶
The path to the job_queue.log file for the condor_schedd serving as the source of jobs for routing. If specified,

262 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

this must point to the job_queue.log file of the condor_schedd identified by .

JOB_ROUTER_SCHEDD2_SPOOL¶
DEPRECATED. Please use instead. The path to the spool directory for the condor_schedd to which the routed
copy of the jobs are submitted. If not specified, this defaults to $(SPOOL). If specified, this parameter must
point to the spool directory of the condor_schedd identified by . Note that when condor_job_router is running
as root and is submitting routed jobs to a different condor_schedd than the source condor_schedd, it is required
that condor_job_router have permission to impersonate the job owners of the routed jobs. It is therefore usually
necessary to configure in the configuration of the target condor_schedd.

JOB_ROUTER_SCHEDD2_JOB_QUEUE_LOG¶
The path to the job_queue.log file for the condor_schedd serving as the destination of jobs for routing. If speci-
fied, this must point to the job_queue.log file of the condor_schedd identified by .

JOB_ROUTER_SCHEDD1_NAME¶
The advertised daemon name of the condor_schedd serving as the source of jobs for routing. If not specified,
this defaults to the local condor_schedd. If specified, this parameter must name the same condor_schedd whose
spool is configured in . If the named condor_schedd is not advertised in the local pool, will also need to be set.

JOB_ROUTER_SCHEDD2_NAME¶
The advertised daemon name of the condor_schedd to which the routed copy of the jobs are submitted. If
not specified, this defaults to the local condor_schedd. If specified, this parameter must name the same con-
dor_schedd whose spool is configured in . If the named condor_schedd is not advertised in the local pool, will
also need to be set. Note that when condor_job_router is running as root and is submitting routed jobs to a dif-
ferent condor_schedd than the source condor_schedd, it is required that condor_job_router have permission to
impersonate the job owners of the routed jobs. It is therefore usually necessary to configure in the configuration
of the target condor_schedd.

JOB_ROUTER_SCHEDD1_POOL¶
The Condor pool (condor_collector address) of the condor_schedd serving as the source of jobs for routing. If
not specified, defaults to the local pool.

JOB_ROUTER_SCHEDD2_POOL¶
The Condor pool (condor_collector address) of the condor_schedd to which the routed copy of the jobs are
submitted. If not specified, defaults to the local pool.

JOB_ROUTER_ROUND_ROBIN_SELECTION¶
A boolean value that controls which route is chosen for a candidate job that matches multiple routes. When set
to False, the default, the first matching route is always selected. When set to True, the Job Router attempts to
distribute jobs across all matching routes, round robin style.

JOB_ROUTER_CREATE_IDTOKEN_NAMES¶
An list of the names of IDTOKENs that the JobRouter should create and refresh. IDTOKENS whose names are
listed here should each have a configuration variable that specifies the filename, ownership and properties of the
IDTOKEN.

JOB_ROUTER_IDTOKEN_REFRESH¶
An integer value of seconds that controls the rate at which the JobRouter will refresh the IDTOKENS listed by
the configuration variable.

JOB_ROUTER_CREATE_IDTOKEN_<NAME>¶
Specification of a single IDTOKEN that will be created an refreshed by the JobRouter. <NAME> should be one
of the IDTOKEN names specified in . The filename, ownership and properties of the IDTOKEN are defined
by the following attributes. Each attribute value must be a classad expression that evaluates to a string, except
lifetime which must evaluate to an integer.

kid¶
The ID of the token signing key to use, equivalent to the -key argument of and the kid attribute of .
Defaults to “POOL”

5.4. Configuration Macros 263

HTCondor Manual, Release 23.6.2

sub¶
The subject or user identity, equivalent to the -identity argument of and the sub attribute of . Defaults
the token name.

scope¶
List of allowed authorizations, equivalent to the -authz argument of and the scope attribute of .

lifetime¶
Time in seconds that the IDTOKEN is valid after creation, equivalent to the -lifetime argument of . The
exp attribute of is the creation time of the token plus this value.

file¶
The filename of the IDTOKEN file, equivalent to the -token argument of . Defaults to the token name.

dir¶
The directory that the IDTOKEN file will be created and refreshed into. Defaults to
$(SEC_TOKEN_DIRECTORY).

owner¶
If specified, the IDTOKEN file will be owned by this user. If not specified, the IDTOKEN file will be
owned by the owner of condor_job_router process. This attribute is optional if the condor_job_router is
running as an ordinary user but required if it is running as a Windows service or as the root or condor user.
The owner specified here should be the same as the attribute of the jobs that this IDTOKEN is intended to
be sent to.

JOB_ROUTER_SEND_ROUTE_IDTOKENS¶
List of the names of the IDTOKENS to add to the input file transfer list of each routed job. This list should be one
or more of the IDTOKEN names specified by the . If the route has a SendIDTokens definition, this configuration
variable is not used for that route.

5.4.19 condor_lease_manager Configuration File Entries

These macros affect the condor_lease_manager.

The condor_lease_manager expects to use the syntax

<subsystem name>.<parameter name>

in configuration. This allows multiple instances of the condor_lease_manager to be easily configured using the syntax

<subsystem name>.<local name>.<parameter name>

LeaseManager.GETADS_INTERVAL¶
An integer value, given in seconds, that controls the frequency with which the condor_lease_manager pulls
relevant resource ClassAds from the condor_collector. The default value is 60 seconds, with a minimum value
of 2 seconds.

LeaseManager.UPDATE_INTERVAL¶
An integer value, given in seconds, that controls the frequency with which the condor_lease_manager sends its
ClassAds to the condor_collector. The default value is 60 seconds, with a minimum value of 5 seconds.

LeaseManager.PRUNE_INTERVAL¶
An integer value, given in seconds, that controls the frequency with which the condor_lease_manager prunes
its leases. This involves checking all leases to see if they have expired. The default value is 60 seconds, with no
minimum value.

264 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

LeaseManager.DEBUG_ADS¶
A boolean value that defaults to False. When True, it enables extra debugging information about the resource
ClassAds that it retrieves from the condor_collector and about the search ClassAds that it sends to the con-
dor_collector.

LeaseManager.MAX_LEASE_DURATION¶
An integer value representing seconds which determines the maximum duration of a lease. This can be used to
provide a hard limit on lease durations. Normally, the condor_lease_manager honors the MaxLeaseDuration
attribute from the resource ClassAd. If this configuration variable is defined, it limits the effective maximum
duration for all resources to this value. The default value is 1800 seconds.

Note that leases can be renewed, and thus can be extended beyond this limit. To provide a limit on the total
duration of a lease, use LeaseManager.MAX_TOTAL_LEASE_DURATION.

LeaseManager.MAX_TOTAL_LEASE_DURATION¶
An integer value representing seconds used to limit the total duration of leases, over all its renewals. The default
value is 3600 seconds.

LeaseManager.DEFAULT_MAX_LEASE_DURATION¶
The condor_lease_manager uses the MaxLeaseDuration attribute from the resource ClassAd to limit the lease
duration. If this attribute is not present in a resource ClassAd, then this configuration variable is used instead.
This integer value is given in units of seconds, with a default value of 60 seconds.

LeaseManager.CLASSAD_LOG¶
This variable defines a full path and file name to the location where the condor_lease_manager keeps persistent
state information. This variable has no default value.

LeaseManager.QUERY_ADTYPE¶
This parameter controls the type of the query in the ClassAd sent to the condor_collector, which will control the
types of ClassAds returned by the condor_collector. This parameter must be a valid ClassAd type name, with a
default value of "Any".

LeaseManager.QUERY_CONSTRAINTS¶
A ClassAd expression that controls the constraint in the query sent to the condor_collector. It is used to further
constrain the types of ClassAds from the condor_collector. There is no default value, resulting in no constraints
being placed on query.

5.4.20 DAGMan Configuration File Entries

These macros affect the operation of DAGMan and DAGMan jobs within HTCondor.

Note: Many of these configuration variables are appropriate to set on a per DAG basis. For more information see
DAG Specific Configuration.

Warning: Configuration settings do not get applied to running DAGMan workflows when executing .

5.4. Configuration Macros 265

HTCondor Manual, Release 23.6.2

General

DAGMAN_CONFIG_FILE¶
The path and name of the configuration file to be used by . This configuration variable is set automatically by ,
and it should not be explicitly set by the user. Defaults to the empty string.

DAGMAN_USE_STRICT¶
An integer defining the level of strictness will apply when turning warnings into fatal errors, as follows:

• 0: no warnings become errors

• 1: severe warnings become errors

• 2: medium-severity warnings become errors

• 3: almost all warnings become errors

Using a strictness value greater than 0 may help find problems with a DAG that may otherwise escape notice.
The default value if not defined is 1.

DAGMAN_STARTUP_CYCLE_DETECT¶
A boolean value that defaults to False. When True, causes to check for cycles in the DAG before submitting
DAG node jobs, in addition to its run time cycle detection. Note that setting this value to True will impose
significant startup delays for large DAGs.

DAGMAN_ABORT_DUPLICATES¶
A boolean value that controls whether to attempt to abort duplicate instances of running the same DAG on the
same machine. When starts up, if no DAG lock file exists, creates the lock file and writes its PID into it. If the
lock file does exist, and is set to True, checks whether a process with the given PID exists, and if so, it assumes
that there is already another instance of running the same DAG. Note that this test is not foolproof: it is possible
that, if crashes, the same PID gets reused by another process before gets rerun on that DAG. This should be quite
rare, however. If not defined, defaults to True. Note: users should rarely change this setting.

DAGMAN_USE_SHARED_PORT¶
A boolean value that controls whether will attempt to connect to the shared port daemon. If not defined, defaults
to False. There is no reason to ever change this value; it was introduced to prevent spurious shared port-related
error messages from appearing in dagman.out files.

DAGMAN_USE_DIRECT_SUBMIT¶
A boolean value that controls whether submits jobs using or by opening a direct connection to the condor_schedd.
defaults to True. When set to True will submit jobs to the local Schedd by connecting to it directly. This is
faster than using , especially for very large DAGs; But this method will ignore some submit file features such as
max_materialize and more than one QUEUE statement.

DAGMAN_USE_JOIN_NODES¶
A boolean value that defaults to True. When True, causes to break up many-PARENT-many-CHILD relation-
ships with an intermediate join node. When these sets are large, this significantly optimizes the graph structure
by reducing the number of dependencies, resulting in a significant improvement to the memory footprint, parse
time, and submit speed.

DAGMAN_PUT_FAILED_JOBS_ON_HOLD¶
A boolean value that when set to True causes DAGMan to automatically retry a node with its job submitted
on hold, if any of the nodes job procs fail. This only applies for job failures and not PRE, POST, or HOLD script
failures within a DAG node. The job is only put on hold if the node has no more declared RETRY attempts. The
default value is False.

DAGMAN_DEFAULT_APPEND_VARS¶
A boolean value that defaults to False. When True, variables parsed in the DAG file VARS line will be appended
to the given Job submit description file unless VARS specifies PREPEND or APPEND. When False, the parsed
variables will be prepended unless specified.

266 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

DAGMAN_MANAGER_JOB_APPEND_GETENV¶
A comma separated list of variable names to add to the DAGMan .condor.sub file’s getenv option. This will
in turn add any found matching environment variables to the DAGMan proper jobs environment. Setting this
value to True will result in getenv = true. The Base .condor.sub values for getenv are the following.

General Shell PATH HOME USER
TZ LANG LC_ALL
PYTHONPATH PERL*

HTCondor CONDOR_CONFIG CONDOR_*
Scitoken BEARER_TOKEN BEAERER_TOKEN_FILE XDG_RUNTIME_DIR
Misc. PEGASUS_*

DAGMAN_NODE_RECORD_INFO¶
A string that when set to RETRY will cause DAGMan to insert a nodes current retry attempt number into the
nodes job ad as the attribute at submission time. This knob is not set by default.

DAGMAN_RECORD_MACHINE_ATTRS¶
A comma separated list of machine attributes that DAGMan will insert into a node jobs submit description for
job_ad_information_attrs and job_machine_attrs. This will result in the listed machine attributes to be
injected into the nodes produced job ads and userlog. This knob is not set by default.

Throttling

DAGMAN_MAX_JOBS_IDLE¶
An integer value that controls the maximum number of idle procs allowed within the DAG before temporarily
stops submitting jobs. will resume submitting jobs once the number of idle procs falls below the specified
limit. currently counts each individual proc within a cluster as a job, which is inconsistent with . Note that
submit description files that queue multiple procs can cause the limit to be exceeded. If a submit description file
contains queue 5000 and is set to 250, this will result in 5000 procs being submitted to the condor_schedd, not
250; in this case, no further jobs will then be submitted by until the number of idle procs falls below 250. The
default value is 1000. To disable this limit, set the value to 0. This configuration option can be overridden by the
-maxidle command-line argument (see condor_submit_dag).

DAGMAN_MAX_JOBS_SUBMITTED¶
An integer value that controls the maximum number of node jobs (clusters) within the DAG that will be submitted
to HTCondor at one time. A single invocation of by counts as one job, even if the submit file produces a multi-
proc cluster. The default value is 0 (unlimited). This configuration option can be overridden by the -maxjobs
command-line argument (see condor_submit_dag).

DAGMAN_MAX_PRE_SCRIPTS¶
An integer defining the maximum number of PRE scripts that any given will run at the same time. The value
0 allows any number of PRE scripts to run. The default value if not defined is 20. Note that the value can be
overridden by the -maxpre command line option.

DAGMAN_MAX_POST_SCRIPTS¶
An integer defining the maximum number of POST scripts that any given will run at the same time. The value
0 allows any number of POST scripts to run. The default value if not defined is 20. Note that the value can be
overridden by the -maxpost command line option.

DAGMAN_MAX_HOLD_SCRIPTS¶
An integer defining the maximum number of HOLD scripts that any given will run at the same time. The default
value 0 allows any number of HOLD scripts to run.

5.4. Configuration Macros 267

HTCondor Manual, Release 23.6.2

DAGMAN_REMOVE_JOBS_AFTER_LIMIT_CHANGE¶
A boolean that determines if after changing some of these throttle limits, should forceably remove jobs to meet
the new limit. Defaults to False.

Priority, node semantics

DAGMAN_DEFAULT_PRIORITY¶
An integer value defining the minimum priority of node jobs running under this job. Defaults to 0.

DAGMAN_SUBMIT_DEPTH_FIRST¶
A boolean value that controls whether to submit ready DAG node jobs in (more-or-less) depth first order, as
opposed to breadth-first order. Setting to True does not override dependencies defined in the DAG. Rather, it
causes newly ready nodes to be added to the head, rather than the tail, of the ready node list. If there are no PRE
scripts in the DAG, this will cause the ready nodes to be submitted depth-first. If there are PRE scripts, the order
will not be strictly depth-first, but it will tend to favor depth rather than breadth in executing the DAG. If is set to
True, consider also setting and to True. If not defined, defaults to False.

DAGMAN_ALWAYS_RUN_POST¶
A boolean value defining whether will ignore the return value of a PRE script when deciding whether to run a
POST script. The default is False, which means that the failure of a PRE script causes the POST script to not
be executed. Changing this to True will restore the previous behavior of , which is that a POST script is always
executed, even if the PRE script fails.

Node job submission/removal

DAGMAN_USER_LOG_SCAN_INTERVAL¶
An integer value representing the number of seconds that waits between checking the workflow log file for status
updates. Setting this value lower than the default increases the CPU time spends checking files, perhaps fruit-
lessly, but increases responsiveness to nodes completing or failing. The legal range of values is 1 to INT_MAX.
If not defined, it defaults to 5 seconds. This default may be automatically decreased if is set to a small value. If
so, this will be noted in the dagman.out file.

DAGMAN_MAX_SUBMITS_PER_INTERVAL¶
An integer that controls how many individual jobs will submit in a row before servicing other requests (such as
a). The legal range of values is 1 to 1000. If defined with a value less than 1, the value 1 will be used. If defined
with a value greater than 1000, the value 1000 will be used. If not defined, it defaults to 100. This default may
be automatically decreased if is set to a small value. If so, this will be noted in the dagman.out file.

Note: The maximum rate at which DAGMan can submit jobs is DAG-
MAN_MAX_SUBMITS_PER_INTERVAL / DAGMAN_USER_LOG_SCAN_INTERVAL.

DAGMAN_MAX_SUBMIT_ATTEMPTS¶
An integer that controls how many times in a row will attempt to execute for a given job before giving up. Note
that consecutive attempts use an exponential backoff, starting with 1 second. The legal range of values is 1 to 16.
If defined with a value less than 1, the value 1 will be used. If defined with a value greater than 16, the value 16
will be used. Note that a value of 16 would result in trying for approximately 36 hours before giving up. If not
defined, it defaults to 6 (approximately two minutes before giving up).

DAGMAN_MAX_JOB_HOLDS¶
An integer value defining the maximum number of times a node job is allowed to go on hold. As a job goes on
hold this number of times, it is removed from the queue. For example, if the value is 2, as the job goes on hold
for the second time, it will be removed. At this time, this feature is not fully compatible with node jobs that have
more than one ProcID. The number of holds of each process in the cluster count towards the total, rather than

268 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

counting individually. So, this setting should take that possibility into account, possibly using a larger value. A
value of 0 allows a job to go on hold any number of times. The default value if not defined is 100.

DAGMAN_HOLD_CLAIM_TIME¶
An integer defining the number of seconds that will cause a hold on a claim after a job is finished, using the job
ClassAd attribute . The default value is 20. A value of 0 causes not to set the job ClassAd attribute.

DAGMAN_SUBMIT_DELAY¶
An integer that controls the number of seconds that will sleep before submitting consecutive jobs. It can be
increased to help reduce the load on the condor_schedd daemon. The legal range of values is any non negative
integer. If defined with a value less than 0, the value 0 will be used.

DAGMAN_PROHIBIT_MULTI_JOBS¶
A boolean value that controls whether prohibits node job submit description files that queue multiple job procs
other than parallel universe. If a DAG references such a submit file, the DAG will abort during the initialization
process. If not defined, defaults to False.

DAGMAN_GENERATE_SUBDAG_SUBMITS¶
A boolean value specifying whether itself should create the .condor.sub files for nested DAGs. If set to False,
nested DAGs will fail unless the .condor.sub files are generated manually by running -no_submit on each
nested DAG, or the -do_recurse flag is passed to for the top-level DAG. DAG nodes specified with the SUBDAG
EXTERNAL keyword or with submit description file names ending in .condor.sub are considered nested DAGs.
The default value if not defined is True.

DAGMAN_REMOVE_NODE_JOBS¶
A boolean value that controls whether removes its node jobs itself when it is removed (in addition to the con-
dor_schedd removing them). Note that setting to True is the safer option (setting it to False means that there is
some chance of ending up with “orphan” node jobs). Setting to False is a performance optimization (decreasing
the load on the condor_schedd when a job is removed). Note that even if is set to False, will remove its node
jobs in some cases, such as a DAG abort triggered by an ABORT-DAG-ON command. Defaults to True.

DAGMAN_MUNGE_NODE_NAMES¶
A boolean value that controls whether automatically renames nodes when running multiple DAGs. The renaming
is done to avoid possible name conflicts. If this value is set to True, all node names have the DAG number
followed by the period character (.) prepended to them. For example, the first DAG specified on the command
line is considered DAG number 0, the second is DAG number 1, etc. So if DAG number 2 has a node named B,
that node will internally be renamed to 2.B. If not defined, defaults to True. Note: users should rarely change
this setting.

DAGMAN_SUPPRESS_JOB_LOGS¶
A boolean value specifying whether events should be written to a log file specified in a node job’s submit de-
scription file. The default value is False, such that events are written to a log file specified by a node job.

DAGMAN_SUPPRESS_NOTIFICATION¶
A boolean value that controls whether jobs submitted by can send email notifications. If True then no submitted
jobs will send email notifications. This is equivalent to setting to Never. Defaults to False.

DAGMAN_CONDOR_SUBMIT_EXE¶
The executable that will use to submit HTCondor jobs. If not defined, looks for in the path. Note: users should
rarely change this setting.

DAGMAN_CONDOR_RM_EXE¶
The executable that will use to remove HTCondor jobs. If not defined, looks for in the path. Note: users should
rarely change this setting.

DAGMAN_ABORT_ON_SCARY_SUBMIT¶
A boolean value that controls whether to abort a DAG upon detection of a scary submit event. An example
of a scary submit event is one in which the HTCondor ID does not match the expected value. Note that in all
HTCondor versions prior to 6.9.3, did not abort a DAG upon detection of a scary submit event. This behavior is

5.4. Configuration Macros 269

HTCondor Manual, Release 23.6.2

what now happens if is set to False. If not defined, defaults to True. Note: users should rarely change this
setting.

Rescue/retry

DAGMAN_AUTO_RESCUE¶
A boolean value that controls whether automatically runs Rescue DAGs. If is True and the DAG input file my.
dag is submitted, and if a Rescue DAG such as the examples my.dag.rescue001 or my.dag.rescue002 exists,
then the largest magnitude Rescue DAG will be run. If not defined, defaults to True.

DAGMAN_MAX_RESCUE_NUM¶
An integer value that controls the maximum Rescue DAG number that will be written, in the case that
DAGMAN_OLD_RESCUE is False, or run if is True. The maximum legal value is 999; the minimum value is
0, which prevents a Rescue DAG from being written at all, or automatically run. If not defined, defaults to 100.

DAGMAN_RESET_RETRIES_UPON_RESCUE¶
A boolean value that controls whether node retries are reset in a Rescue DAG. If this value is False, the number
of node retries written in a Rescue DAG is decreased, if any retries were used in the original run of the DAG;
otherwise, the original number of retries is allowed when running the Rescue DAG. If not defined, defaults to
True.

DAGMAN_WRITE_PARTIAL_RESCUE¶
A boolean value that controls whether writes a partial or a full DAG file as a Rescue DAG. If not defined, defaults
to True. Note: users should rarely change this setting.

Warning: is deprecated as the writing of full Rescue DAG’s is deprecated. This is slated to be removed
during the lifetime of the HTCondor V24 feature series.

DAGMAN_RETRY_SUBMIT_FIRST¶
A boolean value that controls whether a failed submit is retried first (before any other submits) or last (after all
other ready jobs are submitted). If this value is set to True, when a job submit fails, the job is placed at the head
of the queue of ready jobs, so that it will be submitted again before any other jobs are submitted. This had been
the behavior of . If this value is set to False, when a job submit fails, the job is placed at the tail of the queue of
ready jobs. If not defined, it defaults to True.

DAGMAN_RETRY_NODE_FIRST¶
A boolean value that controls whether a failed node with retries is retried first (before any other ready nodes)
or last (after all other ready nodes). If this value is set to True, when a node with retries fails after the submit
succeeded, the node is placed at the head of the queue of ready nodes, so that it will be tried again before any
other jobs are submitted. If this value is set to False, when a node with retries fails, the node is placed at the
tail of the queue of ready nodes. This had been the behavior of . If not defined, it defaults to False.

270 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Log files

DAGMAN_DEFAULT_NODE_LOG¶
The default name of a file to be used as a job event log by all node jobs of a DAG.

This configuration variable uses a special syntax in which @ instead of $ indicates an evaluation of special
variables. Normal HTCondor configuration macros may be used with the normal $ syntax.

Special variables to be used only in defining this configuration variable:

• @(DAG_DIR): The directory in which the primary DAG input file resides. If more than one DAG input file
is specified to , the primary DAG input file is the leftmost one on the command line.

• @(DAG_FILE): The name of the primary DAG input file. It does not include the path.

• @(CLUSTER): The attribute of the job.

• @(OWNER): The user name of the user who submitted the DAG.

• @(NODE_NAME): For SUBDAGs, this is the node name of the SUBDAG in the upper level DAG; for a
top-level DAG, it is the string "undef".

If not defined, @(DAG_DIR)/@(DAG_FILE).nodes.log is the default value.

Notes:

• Using $(LOG) in defining a value for will not have the expected effect, because $(LOG) is defined as "."
for . To place the default log file into the log directory, write the expression relative to a known directory,
such as $(LOCAL_DIR)/log (see examples below).

• A default log file placed in the spool directory will need extra configuration to prevent from removing it;
modify . Removal of the default log file during a run will cause severe problems.

• The value defined for DAGMAN_DEFAULT_NODE_LOG must ensure that the file is unique for
each DAG. Therefore, the value should always include @(DAG_FILE). For example,

DAGMAN_DEFAULT_NODE_LOG = $(LOCAL_DIR)/log/@(DAG_FILE).nodes.log

is okay, but

DAGMAN_DEFAULT_NODE_LOG = $(LOCAL_DIR)/log/dag.nodes.log

will cause failure when more than one DAG is run at the same time on a given access point.

DAGMAN_LOG_ON_NFS_IS_ERROR¶
A boolean value that controls whether prohibits a DAG workflow log from being on an NFS file system. This
value is ignored if and are both True. If a DAG uses such a workflow log file file and is True (and not ignored),
the DAG will abort during the initialization process. If not defined, defaults to False.

DAGMAN_ALLOW_ANY_NODE_NAME_CHARACTERS¶
Allows any characters to be used in DAGMan node names, even characters that are considered illegal because
they are used internally as separators. Turning this feature on could lead to instability when using splices or
munged node names. The default value is False.

DAGMAN_ALLOW_EVENTS¶
An integer that controls which bad events are considered fatal errors by . This macro replaces and expands upon
the functionality of the DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION macro. If is set, it overrides the setting
of DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION. Note: users should rarely change this setting.

The value is a logical bitwise OR of the following values:

• 0 = allow no bad events

5.4. Configuration Macros 271

HTCondor Manual, Release 23.6.2

• 1 = allow all bad events, except the event "job re-run after terminated event"

• 2 = allow terminated/aborted event combination

• 4 = allow a "job re-run after terminated event" bug

• 8 = allow garbage or orphan events

• 16 = allow an execute or terminate event before job’s submit event

• 32 = allow two terminated events per job, as sometimes seen with grid jobs

• 64 = allow duplicated events in general

The default value is 114, which allows terminated/aborted event combination, allows an execute and/or termi-
nated event before job’s submit event, allows double terminated events, and allows general duplicate events.

As examples, a value of 6 instructs to allow both the terminated/aborted event combination and the "job re-run
after terminated event" bug. A value of 0 means that any bad event will be considered a fatal error.

A value of 5 will never abort the DAG because of a bad event. But this value should almost never be used,
because the "job re-run after terminated event" bug breaks the semantics of the DAG.

Debug output

DAGMAN_DEBUG¶
This variable is described in .

DAGMAN_VERBOSITY¶
An integer value defining the verbosity of output to the dagman.out file, as follows (each level includes all
output from lower debug levels):

• level = 0; never produce output, except for usage info

• level = 1; very quiet, output severe errors

• level = 2; output errors and warnings

• level = 3; normal output

• level = 4; internal debugging output

• level = 5; internal debugging output; outer loop debugging

• level = 6; internal debugging output; inner loop debugging

• level = 7; internal debugging output; rarely used

The default value if not defined is 3.

DAGMAN_DEBUG_CACHE_ENABLE¶
A boolean value that determines if log line caching for the dagman.out file should be enabled in the process to
increase performance (potentially by orders of magnitude) when writing the dagman.out file to an NFS server.
Currently, this cache is only utilized in Recovery Mode. If not defined, it defaults to False.

DAGMAN_DEBUG_CACHE_SIZE¶
An integer value representing the number of bytes of log lines to be stored in the log line cache. When the cache
surpasses this number, the entries are written out in one call to the logging subsystem. A value of zero is not
recommended since each log line would surpass the cache size and be emitted in addition to bracketing log lines
explaining that the flushing was happening. The legal range of values is 0 to INT_MAX. If defined with a value
less than 0, the value 0 will be used. If not defined, it defaults to 5 Megabytes.

272 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

DAGMAN_PENDING_REPORT_INTERVAL¶
An integer value representing the number of seconds that controls how often will print a report of pending nodes
to the dagman.out file. The report will only be printed if has been waiting at least seconds without seeing
any node job events, in order to avoid cluttering the dagman.out file. This feature is mainly intended to help
diagnose processes that are stuck waiting indefinitely for a job to finish. If not defined, defaults to 600 seconds
(10 minutes).

MAX_DAGMAN_LOG¶
This variable is described in . If not defined, defaults to 0 (unlimited size).

HTCondor attributes

DAGMAN_COPY_TO_SPOOL¶
A boolean value that when True copies the binary to the spool directory when a DAG is submitted. Setting this
variable to True allows long-running DAGs to survive a DAGMan version upgrade. For running large numbers
of small DAGs, leave this variable unset or set it to False. The default value if not defined is False. Note:
users should rarely change this setting.

DAGMAN_INSERT_SUB_FILE¶
A file name of a file containing submit description file commands to be inserted into the .condor.sub file created
by . The specified file is inserted into the .condor.sub file before the command and before any commands
specified with the -append command line option. Note that the value can be overridden by the -insert_sub_file
command line option.

DAGMAN_ON_EXIT_REMOVE¶
Defines the OnExitRemoveClassAd expression placed into the submit description file by . The default expression
is designed to ensure that is automatically re-queued by the condor_schedd daemon if it exits abnormally or is
killed (for example, during a reboot). If this results in staying in the queue when it should exit, consider changing
to a less restrictive expression, as in the example

(ExitBySignal == false || ExitSignal =!= 9)

If not defined, defaults to the expression

(ExitSignal =?= 11 || (ExitCode =!= UNDEFINED && ExitCode >=0 && ExitCode <= 2))

5.4.21 Configuration File Entries Relating to Security

These macros affect the secure operation of HTCondor. Many of these macros are described in the Security section.

SEC_*_AUTHENTICATION¶
Whether authentication is required for a specified permission level. Acceptable values are REQUIRED,
PREFERRED, OPTIONAL, and NEVER. For example, setting SEC_READ_AUTHENTICATION = REQUIRED indicates
that any command requiring READ authorization will fail unless authentication is performed. The special value,
SEC_DEFAULT_AUTHENTICATION, controls the default setting if no others are specified.

SEC_*_ENCRYPTION¶
Whether encryption is required for a specified permission level. Encryption prevents another entity on the
same network from understanding the contents of the transfer between client and server. Acceptable values are
REQUIRED, PREFERRED, OPTIONAL, and NEVER. For example, setting SEC_WRITE_ENCRYPTION = REQUIRED
indicates that any command requiring WRITE authorization will fail unless the channel is encrypted. The special
value, SEC_DEFAULT_ENCRYPTION, controls the default setting if no others are specified.

5.4. Configuration Macros 273

HTCondor Manual, Release 23.6.2

SEC_*_INTEGRITY¶
Whether integrity-checking is required for a specified permission level. Integrity checking allows the client and
server to detect changes (malicious or otherwise) to the contents of the transfer. Acceptable values are REQUIRED,
PREFERRED, OPTIONAL, and NEVER. For example, setting SEC_WRITE_INTEGRITY = REQUIRED indicates that
any command requiring WRITE authorization will fail unless the channel is integrity-checked. The special value,
SEC_DEFAULT_INTEGRITY, controls the default setting if no others are specified.

As a special exception, file transfers are not integrity checked unless they are also encrypted.

SEC_*_NEGOTIATION¶
Whether the client and server should negotiate security parameters (such as encryption, integrity, and authen-
tication) for a given authorization level. For example, setting SEC_DEFAULT_NEGOTIATION = REQUIRED will
require a security negotiation for all permission levels by default. There is very little penalty for security nego-
tiation and it is strongly suggested to leave this as the default (REQUIRED) at all times.

SEC_*_AUTHENTICATION_METHODS¶
An ordered list of allowed authentication methods for a given authorization level. This set of con-
figuration variables controls both the ordering and the allowed methods. Currently allowed values are
SSL, KERBEROS, PASSWORD, FS (non-Windows), FS_REMOTE (non-Windows), NTSSPI, MUNGE, CLAIMTOBE,
IDTOKENS, SCITOKENS, and ANONYMOUS. See the Security section for a discussion of the relative merits of each
method; some, such as CLAIMTOBE provide effectively no security at all. The default authentication methods are
NTSSPI,FS,IDTOKENS,KERBEROS,SSL.

These methods are tried in order until one succeeds or they all fail; for this reason, we do not recommend changing
the default method list.

The special value, SEC_DEFAULT_AUTHENTICATION_METHODS, controls the default setting if no others are spec-
ified.

SEC_*_CRYPTO_METHODS¶
An ordered list of allowed cryptographic algorithms to use for encrypting a network session at a specified au-
thorization level. The server will select the first entry in its list that both server and client allow. Possible values
are AES, 3DES, and BLOWFISH. The special parameter name SEC_DEFAULT_CRYPTO_METHODS controls the de-
fault setting if no others are specified. There is little benefit in varying the setting per authorization level; it is
recommended to leave these settings untouched.

HOST_ALIAS¶
Specifies the fully qualified host name that clients authenticating this daemon with SSL should expect the dae-
mon’s certificate to match. The alias is advertised to the condor_collector as part of the address of the daemon.
When this is not set, clients validate the daemon’s certificate host name by matching it against DNS A records
for the host they are connected to. See for ways to disable this validation step.

USE_COLLECTOR_HOST_CNAME¶
A boolean value that determines what hostname a client should expect when validating the collector’s certificate
during SSL authentication. When set to True, the hostname given to the client is used. When set to False, if
the given hostname is a DNS CNAME, the client resolves it to a DNS A record and uses that hostname. The
default value is True.

DELEGATE_JOB_GSI_CREDENTIALS¶
A boolean value that defaults to True for HTCondor version 6.7.19 and more recent versions. When True, a
job’s X.509 credentials are delegated, instead of being copied. This results in a more secure communication
when not encrypted.

DELEGATE_FULL_JOB_GSI_CREDENTIALS¶
A boolean value that controls whether HTCondor will delegate a full or limited X.509 proxy. The default value
of False indicates the limited X.509 proxy.

DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME¶
An integer value that specifies the maximum number of seconds for which delegated proxies should be valid.

274 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

The default value is one day. A value of 0 indicates that the delegated proxy should be valid for as long as
allowed by the credential used to create the proxy. The job may override this configuration setting by using the
submit file command. This configuration variable currently only applies to proxies delegated for non-grid jobs
and HTCondor-C jobs. This variable has no effect if

is False.

DELEGATE_JOB_GSI_CREDENTIALS_REFRESH¶
A floating point number between 0 and 1 that indicates the fraction of a proxy’s lifetime at which point delegated
credentials with a limited lifetime should be renewed. The renewal is attempted periodically at or near the
specified fraction of the lifetime of the delegated credential. The default value is 0.25. This setting has no effect
if is False or if is 0. For non-grid jobs, the precise timing of the proxy refresh depends on . To ensure that
the delegated proxy remains valid, the interval for checking the proxy should be, at most, half of the interval for
refreshing it.

USE_VOMS_ATTRIBUTES¶
A boolean value that controls whether HTCondor will attempt to extract and verify VOMS attributes from X.509
credentials. The default is False.

AUTH_SSL_USE_VOMS_IDENTITY¶
A boolean value that controls whether VOMS attributes are included in the peer’s authenticated identity during
SSL authentication. This is used with the unified map file to determine the peer’s HTCondor identity. If is False,
then this parameter is treated as False. The default is True.

SEC_<access-level>_SESSION_DURATION¶
The amount of time in seconds before a communication session expires. A session is a record of necessary
information to do communication between a client and daemon, and is protected by a shared secret key. The
session expires to reduce the window of opportunity where the key may be compromised by attack. A short
session duration increases the frequency with which daemons have to re-authenticate with each other, which
may impact performance.

If the client and server are configured with different durations, the shorter of the two will be used. The default
for daemons is 86400 seconds (1 day) and the default for command-line tools is 60 seconds. The shorter default
for command-line tools is intended to prevent daemons from accumulating a large number of communication
sessions from the short-lived tools that contact them over time. A large number of security sessions consumes a
large amount of memory. It is therefore important when changing this configuration setting to preserve the small
session duration for command-line tools.

One example of how to safely change the session duration is to explicitly set a short duration for tools and and a
longer duration for everything else:

SEC_DEFAULT_SESSION_DURATION = 50000
TOOL.SEC_DEFAULT_SESSION_DURATION = 60
SUBMIT.SEC_DEFAULT_SESSION_DURATION = 60

Another example of how to safely change the session duration is to explicitly set the session duration for a specific
daemon:

COLLECTOR.SEC_DEFAULT_SESSION_DURATION = 50000

SEC_<access-level>_SESSION_LEASE¶
The maximum number of seconds an unused security session will be kept in a daemon’s session cache before
being removed to save memory. The default is 3600. If the server and client have different configurations, the
smaller one will be used.

SEC_INVALIDATE_SESSIONS_VIA_TCP¶
Use TCP (if True) or UDP (if False) for responding to attempts to use an invalid security session. This happens,

5.4. Configuration Macros 275

HTCondor Manual, Release 23.6.2

for example, if a daemon restarts and receives incoming commands from other daemons that are still using a
previously established security session. The default is True.

FS_REMOTE_DIR¶
The location of a file visible to both server and client in Remote File System authentication. The default when
not defined is the directory /shared/scratch/tmp.

ENCRYPT_EXECUTE_DIRECTORY¶
A boolean value that, when True, causes the execute directory for jobs on Linux or Windows platforms to be
encrypted. Defaults to False. Note that even if False, the user can require encryption of the execute directory
on a per-job basis by setting to True in the job submit description file. Enabling this functionality requires that
the HTCondor service is run as user root on Linux platforms, or as a system service on Windows platforms. On
Linux platforms, the encryption method is ecryptfs, and therefore requires an installation of the ecryptfs-utils
package. On Windows platforms, the encryption method is the EFS (Encrypted File System) feature of NTFS.

ENCRYPT_EXECUTE_DIRECTORY_FILENAMES¶
A boolean value relevant on Linux platforms only. Defaults to False. On Windows platforms, file names are
not encrypted, so this variable has no effect. When using an encrypted execute directory, the contents of the files
will always be encrypted. On Linux platforms, file names may or may not be encrypted. There is some overhead
and there are restrictions on encrypting file names (see the ecryptfs documentation). As a result, the default does
not encrypt file names on Linux platforms, and the administrator may choose to enable encryption behavior by
setting this configuration variable to True.

ECRYPTFS_ADD_PASSPHRASE¶
The path to the ecryptfs-add-passphrase command-line utility. If the path is not fully-qualified, then
safe system path subdirectories such as /bin and /usr/bin will be searched. The default value is
ecryptfs-add-passphrase, causing the search to be within the safe system path subdirectories. This con-
figuration variable is used on Linux platforms when a job sets to True in the submit description file.

SEC_TCP_SESSION_TIMEOUT¶
The length of time in seconds until the timeout on individual network operations when establishing a UDP
security session via TCP. The default value is 20 seconds. Scalability issues with a large pool would be the only
basis for a change from the default value.

SEC_TCP_SESSION_DEADLINE¶
An integer representing the total length of time in seconds until giving up when establishing a security session.
Whereas specifies the timeout for individual blocking operations (connect, read, write), this setting specifies the
total time across all operations, including non-blocking operations that have little cost other than holding open
the socket. The default value is 120 seconds. The intention of this setting is to avoid waiting for hours for a
response in the rare event that the other side freezes up and the socket remains in a connected state. This problem
has been observed in some types of operating system crashes.

SEC_DEFAULT_AUTHENTICATION_TIMEOUT¶
The length of time in seconds that HTCondor should attempt authenticating network connections before giving
up. The default imposes no time limit, so the attempt never gives up. Like other security settings, the portion of
the configuration variable name, DEFAULT, may be replaced by a different access level to specify the timeout to
use for different types of commands, for example SEC_CLIENT_AUTHENTICATION_TIMEOUT.

SEC_PASSWORD_FILE¶
For Unix machines, the path and file name of the file containing the pool password for password authentication.

SEC_PASSWORD_DIRECTORY¶
The path to the directory containing signing key files for token authentication. Defaults to /etc/condor/
passwords.d on Unix and to $(RELEASE_DIR)\tokens.sk on Windows.

TRUST_DOMAIN¶
An arbitrary string used by the IDTOKENS authentication method; it defaults to . When HTCondor creates an
IDTOKEN, it sets the issuer (iss) field to this value. When an HTCondor client attempts to authenticate using

276 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

the IDTOKENS method, it only presents an IDTOKEN to the server if the server’s reported issuer matches the
token’s.

Note that the issuer (iss) field is for the _server_. Each IDTOKEN also contains a subject (sub) field, which
identifies the user. IDTOKENS generated by condor_token_fetch will always be of the form user@UID_DOMAIN.

If you have configured the same signing key on two different machines, and want tokens issued by one machine
to be accepted by the other (e.g. an access point and a central manager), those two machines must have the same
value for this setting.

SEC_TOKEN_FETCH_ALLOWED_SIGNING_KEYS¶
A comma or space -separated list of signing key names that can be used to create a token if requested by . Defaults
to POOL.

SEC_TOKEN_ISSUER_KEY¶
The default signing key name to use to create a token if requested by . Defaults to POOL.

SEC_TOKEN_POOL_SIGNING_KEY_FILE¶
The path and filename for the file containing the default signing key for token authentication. Defaults to /etc/
condor/passwords.d/POOL on Unix and to $(RELEASE_DIR)\tokens.sk\POOL on Windows.

SEC_TOKEN_SYSTEM_DIRECTORY¶
For Unix machines, the path to the directory containing tokens for daemon-to-daemon authentication with the
token method. Defaults to /etc/condor/tokens.d.

SEC_TOKEN_DIRECTORY¶
For Unix machines, the path to the directory containing tokens for user authentication with the token method.
Defaults to ~/.condor/tokens.d.

SEC_TOKEN_REVOCATION_EXPR¶
A ClassAd expression evaluated against tokens during authentication; if is set and evaluates to true, then the
token is revoked and the authentication attempt is denied.

SEC_TOKEN_REQUEST_LIMITS¶
If set, this is a comma-separated list of authorization levels that limit the authorizations a token request can
receive. For example, if is set to READ, WRITE, then a token cannot be issued with the authorization DAEMON
even if this would otherwise be permissible.

AUTH_SSL_SERVER_CAFILE¶
The path and file name of a file containing one or more trusted CA’s certificates for the server side of a commu-
nication authenticating with SSL. This file is used in addition to the default CA file configured for OpenSSL.

AUTH_SSL_CLIENT_CAFILE¶
The path and file name of a file containing one or more trusted CA’s certificates for the client side of a commu-
nication authenticating with SSL. This file is used in addition to the default CA file configured for OpenSSL.

AUTH_SSL_SERVER_CADIR¶
The path to a directory containing the certificates (each in its own file) for multiple trusted CAs for the server
side of a communication authenticating with SSL. This directory is used in addition to the default CA directory
configured for OpenSSL.

AUTH_SSL_CLIENT_CADIR¶
The path to a directory containing the certificates (each in its own file) for multiple trusted CAs for the client
side of a communication authenticating with SSL. This directory is used in addition to the default CA directory
configured for OpenSSL.

AUTH_SSL_SERVER_USE_DEFAULT_CAS¶
A boolean value that controls whether the default trusted CA file and directory configured for OpenSSL should
be used by the server during SSL authentication. The default value is True.

5.4. Configuration Macros 277

HTCondor Manual, Release 23.6.2

AUTH_SSL_CLIENT_USE_DEFAULT_CAS¶
A boolean value that controls whether the default trusted CA file and directory configured for OpenSSL should
be used by the client during SSL authentication. The default value is True.

AUTH_SSL_SERVER_CERTFILE¶
A comma-separated list of filenames to search for a public certificate to be used for the server side of SSL
authentication. The first file that contains a valid credential (in combination with) will be used.

AUTH_SSL_CLIENT_CERTFILE¶
The path and file name of the file containing the public certificate for the client side of a communication authenti-
cating with SSL. If no client certificate is provided, then the client may authenticate as the user anonymous@ssl.

AUTH_SSL_SERVER_KEYFILE¶
A comma-separated list of filenames to search for a private key to be used for the server side of SSL authentication.
The first file that contains a valid credential (in combination with) will be used.

AUTH_SSL_CLIENT_KEYFILE¶
The path and file name of the file containing the private key for the client side of a communication authenticating
with SSL.

AUTH_SSL_REQUIRE_CLIENT_CERTIFICATE¶
A boolean value that controls whether the client side of a communication authenticating with SSL must have a
credential. If set to True and the client doesn’t have a credential, then the SSL authentication will fail and other
authentication methods will be tried. The default is False.

AUTH_SSL_ALLOW_CLIENT_PROXY¶
A boolean value that controls whether a daemon will accept an X.509 proxy certificate from a client during SSL
authentication. The default is False.

AUTH_SSL_USE_CLIENT_PROXY_ENV_VAR¶
A boolean value that controls whether a client checks environment variable X509_USER_PROXY for
the location the X.509 credential to use for SSL authentication with a daemon. If this parame-
ter is True and X509_USER_PROXY is set, then that file is used instead of the files specified by
AUTH_SSL_CLIENT_CERTFILE and AUTH_SSL_CLIENT_KEYFILE. The default is False.

SSL_SKIP_HOST_CHECK¶
A boolean variable that controls whether a host check is performed by the client during an SSL authentication
of a Condor daemon. This check requires the daemon’s host name to match either the “distinguished name” or
a subject alternate name embedded in the server’s host certificate When the default value of False is set, the
check is not skipped. When True, this check is skipped, and hosts will not be rejected due to a mismatch of
certificate and host name.

COLLECTOR_BOOTSTRAP_SSL_CERTIFICATE¶
A boolean variable that controls whether the condor_collector should generate its own CA and host certificate at
startup. When True, if the SSL certificate file given by doesn’t exist, the condor_collector will generate its own
CA, then use that CA to generate an SSL host certificate. The certificate and key files are written to the locations
given by and , respectively. The locations of the CA files are controlled by and . The default value is True on
unix platforms and False on Windows.

TRUST_DOMAIN_CAFILE¶
A path specifying the location of the CA the condor_collector will automatically generate if needed when is
True. This CA will be used to generate a host certificate and key if one isn’t provided in . On Linux, this defaults
to /etc/condor/trust_domain_ca.pem.

TRUST_DOMAIN_CAKEY¶
A path specifying the location of the private key for the CA generated at . On Linux, this defaults /etc/condor/
trust_domain_ca_privkey.pem.

BOOTSTRAP_SSL_SERVER_TRUST¶
A boolean variable controlling whether tools and daemons automatically trust the SSL host certificate presented

278 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

on first authentication. When the default of false is set, daemons only trust host certificates from known CAs
and tools may prompt the user for confirmation if the certificate is not trusted (see). After the first authentication,
the method and certificate are persisted to a known_hosts file; subsequent authentications will succeed only if
the certificate is unchanged from the one in the known_hosts file.

BOOTSTRAP_SSL_SERVER_TRUST_PROMPT_USER¶
A boolean variable that controls if tools will prompt the user about whether to trust an SSL host certificate from
an unknown CA. The default value is True.

SEC_SYSTEM_KNOWN_HOSTS¶
The location of the known_hosts file for daemon authentication. This defaults to /etc/condor/known_hosts
on Linux. Tools will always save their known_hosts file inside $HOME/.condor.

CERTIFICATE_MAPFILE¶
A path and file name of the unified map file.

CERTIFICATE_MAPFILE_ASSUME_HASH_KEYS¶
For HTCondor version 8.5.8 and later. When this is true, the second field of the is not interpreted as a regular
expression unless it begins and ends with the slash / character.

SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION¶
This is a special authentication mechanism designed to minimize overhead in the condor_schedd when com-
municating with the execute machine. When this is enabled, the condor_negotiator sends the condor_schedd a
secret key generated by the condor_startd. This key is used to establish a strong security session between the
execute and submit daemons without going through the usual security negotiation protocol. This is especially im-
portant when operating at large scale over high latency networks (for example, on a pool with one condor_schedd
daemon and thousands of condor_startd daemons on a network with a 0.1 second round trip time).

The default value is True. To have any effect, it must be True in the configuration of both the execute side
(condor_startd) as well as the submit side (condor_schedd). When True, all other security negotiation between
the submit and execute daemons is bypassed. All inter-daemon communication between the submit and execute
side will use the condor_startd daemon’s settings for SEC_DAEMON_ENCRYPTION and SEC_DAEMON_INTEGRITY;
the configuration of these values in the condor_schedd, condor_shadow, and condor_starter are ignored.

Important: for this mechanism to be secure, integrity and encryption, should be enabled in the startd configura-
tion. Also, some form of strong mutual authentication (e.g. SSL) should be enabled between all daemons and the
central manager. Otherwise, the shared secret which is exchanged in matchmaking cannot be safely encrypted
when transmitted over the network.

The condor_schedd and condor_shadow will be authenticated as submit-side@matchsession when they
talk to the condor_startd and condor_starter. The condor_startd and condor_starter will be authenticated as
execute-side@matchsession when they talk to the condor_schedd and condor_shadow. These identities is
automatically added to the DAEMON, READ, and CLIENT authorization levels in these daemons when needed.

This same mechanism is also used to allow the condor_negotiator to authenticate with the condor_schedd. The
submitter ads contain a unique security key; any entity that can obtain the key from the collector (by default,
anyone with NEGOTIATOR permission) is authorized to perform negotiation with the condor_schedd. This im-
plies, when is enabled, the HTCondor administrator does not need to explicitly setup authentication from the
negotiator to the submit host.

SEC_USE_FAMILY_SESSION¶
The “family” session is a special security session that’s shared between an HTCondor daemon and all of its
descendant daemons. It allows a family of daemons to communicate securely without an expensive authentication
negotiation on each network connection. It bypasses the security authorization settings. The default value is
True.

SEC_ENABLE_REMOTE_ADMINISTRATION¶
A boolean parameter that controls whether daemons should include a secret administration key when they adver-
tise themselves to the condor_collector. Anyone with this key is authorized to send ADMINISTRATOR-level

5.4. Configuration Macros 279

HTCondor Manual, Release 23.6.2

commands to the daemon. The condor_collector will only provide this key to clients who are authorized at the
ADMINISTRATOR level to the condor_collector. The default value is True.

When this parameter is enabled for all daemons, control of who is allowed to administer the pool can be consol-
idated in the condor_collector and its security configuration.

KERBEROS_SERVER_KEYTAB¶
The path and file name of the keytab file that holds the necessary Kerberos principals. If not defined, this vari-
able’s value is set by the installed Kerberos; it is /etc/v5srvtab on most systems.

KERBEROS_SERVER_PRINCIPAL¶
An exact Kerberos principal to use. The default value is $(KERBEROS_SERVER_SERVICE)/
<hostname>@<realm>, where defaults to host. When both and are defined, this value takes precedence.

KERBEROS_SERVER_USER¶
The user name that the Kerberos server principal will map to after authentication. The default value is condor.

KERBEROS_SERVER_SERVICE¶
A string representing the Kerberos service name. This string is suffixed with a slash character (/) and the host
name in order to form the Kerberos server principal. This value defaults to host. When both and are defined,
the value of takes precedence.

KERBEROS_CLIENT_KEYTAB¶
The path and file name of the keytab file for the client in Kerberos authentication. This variable has no default
value.

SCITOKENS_FILE¶
The path and file name of a file containing a SciToken for use by the client during the SCITOKENS authentication
methods. This variable has no default value. If left unset, HTCondor will use the bearer token discovery protocol
defined by the WLCG (https://zenodo.org/record/3937438) to find one.

SEC_CREDENTIAL_SWEEP_DELAY¶
The number of seconds to wait before cleaning up unused credentials. Defaults to 3,600 seconds (1 hour).

SEC_CREDENTIAL_DIRECTORY_KRB¶
The directory that users’ Kerberos credentials should be stored in. This variable has no default value.

SEC_CREDENTIAL_DIRECTORY_OAUTH¶
The directory that users’ OAuth2 credentials should be stored in. This directory must be owned by root:condor
with the setgid flag enabled.

SEC_CREDENTIAL_PRODUCER¶
A script for to execute to produce credentials while using the Kerberos type of credentials. No parameters are
passed, and credentials most be sent to stdout.

SEC_CREDENTIAL_STORER¶
A script for to execute to produce credentials while using the OAuth2 type of credentials. The oauth services
specified in the use_auth_services line in the submit file are passed as parameters to the script, and the script
should use condor_store_cred to store credentials for each service. Additional modifiers to each service
may be passed: &handle=, &scopes=, or &audience=. The handle should be appended after an underscore to
the service name used with condor_store_cred, the comma-separated list of scopes should be passed to the
command with the -S option, and the audience should be passed to it with the -A option.

LEGACY_ALLOW_SEMANTICS¶
A boolean parameter that defaults to False. In HTCondor 8.8 and prior, if ALLOW_DAEMON or
DENY_DAEMON wasn’t set in the configuration files, then the value of ALLOW_WRITE or DENY_DAEMON
(respectively) was used for these parameters. Setting LEGACY_ALLOW_SEMANTICS to True enables this old
behavior. This is a potential security concern, so this setting should only be used to ease the upgrade of an
existing pool from 8.8 or prior to 9.0 or later.

280 Chapter 5. Administrators’ Manual

https://zenodo.org/record/3937438

HTCondor Manual, Release 23.6.2

5.4.22 Configuration File Entries Relating to Virtual Machines

These macros affect how HTCondor runs vm universe jobs on a matched machine within the pool. They specify items
related to the condor_vm-gahp.

VM_GAHP_SERVER¶
The complete path and file name of the condor_vm-gahp. The default value is $(SBIN)/condor_vm-gahp.

VM_GAHP_LOG¶
The complete path and file name of the condor_vm-gahp log. If not specified on a Unix platform, the con-
dor_starter log will be used for condor_vm-gahp log items. There is no default value for this required configu-
ration variable on Windows platforms.

MAX_VM_GAHP_LOG¶
Controls the maximum length (in bytes) to which the condor_vm-gahp log will be allowed to grow.

VM_TYPE¶
Specifies the type of supported virtual machine software. It will be the value kvm or xen. There is no default
value for this required configuration variable.

VM_MEMORY¶
An integer specifying the maximum amount of memory in MiB to be shared among the VM universe jobs run
on this machine.

VM_MAX_NUMBER¶
An integer limit on the number of executing virtual machines. When not defined, the default value is the same .
When it evaluates to Undefined, as is the case when not defined with a numeric value, no meaningful limit is
imposed.

VM_STATUS_INTERVAL¶
An integer number of seconds that defaults to 60, representing the interval between job status checks by the
condor_starter to see if the job has finished. A minimum value of 30 seconds is enforced.

VM_GAHP_REQ_TIMEOUT¶
An integer number of seconds that defaults to 300 (five minutes), representing the amount of time HTCondor will
wait for a command issued from the condor_starter to the condor_vm-gahp to be completed. When a command
times out, an error is reported to the condor_startd.

VM_RECHECK_INTERVAL¶
An integer number of seconds that defaults to 600 (ten minutes), representing the amount of time the con-
dor_startd waits after a virtual machine error as reported by the condor_starter, and before checking a final
time on the status of the virtual machine. If the check fails, HTCondor disables starting any new vm universe
jobs by removing the attribute from the machine ClassAd.

VM_SOFT_SUSPEND¶
A boolean value that defaults to False, causing HTCondor to free the memory of a vm universe job when the
job is suspended. When True, the memory is not freed.

VM_NETWORKING¶
A boolean variable describing if networking is supported. When not defined, the default value is False.

VM_NETWORKING_TYPE¶
A string describing the type of networking, required and relevant only when is True. Defined strings are

bridge
nat
nat, bridge

5.4. Configuration Macros 281

HTCondor Manual, Release 23.6.2

VM_NETWORKING_DEFAULT_TYPE¶
Where multiple networking types are given in , this optional configuration variable identifies which to use. There-
fore, for

VM_NETWORKING_TYPE = nat, bridge

this variable may be defined as either nat or bridge. Where multiple networking types are given in , and this
variable is not defined, a default of nat is used.

VM_NETWORKING_BRIDGE_INTERFACE¶
For Xen and KVM only, a required string if bridge networking is to be enabled. It specifies the networking
interface that vm universe jobs will use.

LIBVIRT_XML_SCRIPT¶
For Xen and KVM only, a path and executable specifying a program. When the condor_vm-gahp is ready to start a
Xen or KVM vm universe job, it will invoke this program to generate the XML description of the virtual machine,
which it then provides to the virtualization software. The job ClassAd will be provided to this program via
standard input. This program should print the XML to standard output. If this configuration variable is not set, the
condor_vm-gahp will generate the XML itself. The provided script in $(LIBEXEC)/libvirt_simple_script.awk
will generate the same XML that the condor_vm-gahp would.

LIBVIRT_XML_SCRIPT_ARGS¶
For Xen and KVM only, the command-line arguments to be given to the program specified by .

The following configuration variables are specific to the Xen virtual machine software.

XEN_BOOTLOADER¶
A required full path and executable for the Xen bootloader, if the kernel image includes a disk image.

5.4.23 Configuration File Entries Relating to High Availability

These macros affect the high availability operation of HTCondor.

MASTER_HA_LIST¶
Similar to , this macro defines a list of daemons that the starts and keeps its watchful eyes on. However, the
daemons are run in a High Availability mode. The list is a comma or space separated list of subsystem names
(as listed in Pre-Defined Macros). For example,

MASTER_HA_LIST = SCHEDD

The High Availability feature allows for several daemons (most likely on separate machines) to work together to
insure that a particular service stays available. These daemons ensure that one and only one of them will have
the listed daemons running.

To use this feature, the lock URL must be set with .

Currently, only file URLs are supported (those with file:...). The default value for is the empty string, which
disables the feature.

HA_LOCK_URL¶
This macro specifies the URL that the processes use to synchronize for the High Availability service. Currently,
only file URLs are supported; for example, file:/share/spool. Note that this URL must be identical for all
processes sharing this resource. For condor_schedd sharing, we recommend setting up on an NFS share and
having all High Availability condor_schedd processes sharing it, and setting the to point at this directory as well.
For example:

282 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

MASTER_HA_LIST = SCHEDD
SPOOL = /share/spool
HA_LOCK_URL = file:/share/spool
VALID_SPOOL_FILES = SCHEDD.lock

A separate lock is created for each High Availability daemon.

There is no default value for .

Lock files are in the form <SUBSYS>.lock. is not currently aware of the lock files and will delete them if they
are placed in the directory, so be sure to add <SUBSYS>.lock to for each High Availability daemon.

HA_<SUBSYS>_LOCK_URL¶
This macro controls the High Availability lock URL for a specific subsystem as specified in the configuration
variable name, and it overrides the system-wide lock URL specified by . If not defined for each subsystem, is
ignored, and the value of is used.

List of possible subsystems to set can be found at .

HA_LOCK_HOLD_TIME¶
This macro specifies the number of seconds that the will hold the lock for each High Availability daemon. Upon
gaining the shared lock, the will hold the lock for this number of seconds. Additionally, the will periodically
renew each lock as long as the and the daemon are running. When the daemon dies, or the exists, the will
immediately release the lock(s) it holds.

defaults to 3600 seconds (one hour).

HA_<SUBSYS>_LOCK_HOLD_TIME¶
This macro controls the High Availability lock hold time for a specific subsystem as specified in the configuration
variable name, and it overrides the system wide poll period specified by . If not defined for each subsystem, is
ignored, and the value of is used.

List of possible subsystems to set can be found at .

HA_POLL_PERIOD¶
This macro specifies how often the polls the High Availability locks to see if any locks are either stale (meaning
not updated for seconds), or have been released by the owning . Additionally, the renews any locks that it holds
during these polls.

defaults to 300 seconds (five minutes).

HA_<SUBSYS>_POLL_PERIOD¶
This macro controls the High Availability poll period for a specific subsystem as specified in the configuration
variable name, and it overrides the system wide poll period specified by . If not defined for each subsystem, is
ignored, and the value of is used.

List of possible subsystems to set can be found at .

MASTER_<SUBSYS>_CONTROLLER¶
Used only in HA configurations involving the condor_had.

The has the concept of a controlling and controlled daemon, typically with the condor_had daemon serving as the
controlling process. In this case, all and commands directed at controlled daemons are given to the controlling
daemon, which then handles the command, and, when required, sends appropriate commands to the to do the
actual work. This allows the controlling daemon to know the state of the controlled daemon.

As of 6.7.14, this configuration variable must be specified for all configurations using condor_had. To configure
the condor_negotiator controlled by condor_had:

MASTER_NEGOTIATOR_CONTROLLER = HAD

5.4. Configuration Macros 283

HTCondor Manual, Release 23.6.2

The macro is named by substituting with the appropriate subsystem string as defined by .

HAD_LIST¶
A comma-separated list of all condor_had daemons in the form IP:port or hostname:port. Each central
manager machine that runs the condor_had daemon should appear in this list. If is set to True, then the first
machine in this list is the primary central manager, and all others in the list are backups.

All central manager machines must be configured with an identical . The machine addresses are identical to the
addresses defined in .

HAD_USE_PRIMARY¶
Boolean value to determine if the first machine in the configuration variable is a primary central manager. De-
faults to False.

HAD_CONTROLLEE¶
This variable is used to specify the name of the daemon which the condor_had daemon controls. This name
should match the daemon name in the daemon’s definition. The default value is NEGOTIATOR.

HAD_CONNECTION_TIMEOUT¶
The time (in seconds) that the condor_had daemon waits before giving up on the establishment of a TCP con-
nection. The failure of the communication connection is the detection mechanism for the failure of a central
manager machine. For a LAN, a recommended value is 2 seconds. The use of authentication (by HTCondor)
increases the connection time. The default value is 5 seconds. If this value is set too low, condor_had daemons
will incorrectly assume the failure of other machines.

HAD_ARGS¶
Command line arguments passed by the daemon as it invokes the condor_had daemon. To make high availability
work, the condor_had daemon requires the port number it is to use. This argument is of the form

-p $(HAD_PORT_NUMBER)

where HAD_PORT_NUMBER is a helper configuration variable defined with the desired port number. Note that this
port number must be the same value here as used in . There is no default value.

HAD¶
The path to the condor_had executable. Normally it is defined relative to $(SBIN). This configuration variable
has no default value.

MAX_HAD_LOG¶
Controls the maximum length in bytes to which the condor_had daemon log will be allowed to grow. It will
grow to the specified length, then be saved to a file with the suffix .old. The .old file is overwritten each time
the log is saved, thus the maximum space devoted to logging is twice the maximum length of this log file. A
value of 0 specifies that this file may grow without bounds. The default is 1 MiB.

HAD_DEBUG¶
Logging level for the condor_had daemon. See for values.

HAD_LOG¶
Full path and file name of the log file. The default value is $(LOG)/HADLog.

HAD_FIPS_MODE¶
Controls what type of checksum will be sent along with files that are replicated. Set it to 0 for MD5 checksums
and to 1 for SHA-2 checksums. Prior to versions 8.8.13 and 8.9.12 only MD5 checksums are supported. In the
10.0 and later release of HTCondor, MD5 support will be removed and only SHA-2 will be supported. This
configuration variable is intended to provide a transition between the 8.8 and 9.0 releases. Once all machines
in your pool involved in HAD replication have been upgraded to 9.0 or later, you should set the value of this
configuration variable to 1. Default value is 0 in HTCondor versions before 9.12 and 1 in version 9.12 and later.

REPLICATION_LIST¶
A comma-separated list of all condor_replication daemons in the form IP:port or hostname:port. Each

284 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

central manager machine that runs the condor_had daemon should appear in this list. All potential central
manager machines must be configured with an identical .

STATE_FILE¶
A full path and file name of the file protected by the replication mechanism. When not defined, the default path
and file used is

$(SPOOL)/Accountantnew.log

REPLICATION_INTERVAL¶
Sets how often the condor_replication daemon initiates its tasks of replicating the $(STATE_FILE). It is defined
in seconds and defaults to 300 (5 minutes).

MAX_TRANSFER_LIFETIME¶
A timeout period within which the process that transfers the state file must complete its transfer. The recom-
mended value is 2 * average size of state file / network rate. It is defined in seconds and defaults
to 300 (5 minutes).

HAD_UPDATE_INTERVAL¶
Like , determines how often the condor_had is to send a ClassAd update to the condor_collector. Updates are
also sent at each and every change in state. It is defined in seconds and defaults to 300 (5 minutes).

HAD_USE_REPLICATION¶
A boolean value that defaults to False. When True, the use of condor_replication daemons is enabled.

REPLICATION_ARGS¶
Command line arguments passed by the daemon as it invokes the condor_replication daemon. To make high
availability work, the condor_replication daemon requires the port number it is to use. This argument is of the
form

-p $(REPLICATION_PORT_NUMBER)

where REPLICATION_PORT_NUMBER is a helper configuration variable defined with the desired port number.
Note that this port number must be the same value as used in . There is no default value.

REPLICATION¶
The full path and file name of the condor_replication executable. It is normally defined relative to $(SBIN).
There is no default value.

MAX_REPLICATION_LOG¶
Controls the maximum length in bytes to which the condor_replication daemon log will be allowed to grow. It
will grow to the specified length, then be saved to a file with the suffix .old. The .old file is overwritten each
time the log is saved, thus the maximum space devoted to logging is twice the maximum length of this log file.
A value of 0 specifies that this file may grow without bounds. The default is 1 MiB.

REPLICATION_DEBUG¶
Logging level for the condor_replication daemon. See for values.

REPLICATION_LOG¶
Full path and file name to the log file. The default value is $(LOG)/ReplicationLog.

TRANSFERER¶
The full path and file name of the condor_transferer executable. The default value is
$(LIBEXEC)/condor_transferer.

TRANSFERER_LOG¶
Full path and file name to the log file. The default value is $(LOG)/TransfererLog.

TRANSFERER_DEBUG¶
Logging level for the condor_transferer daemon. See for values.

5.4. Configuration Macros 285

HTCondor Manual, Release 23.6.2

MAX_TRANSFERER_LOG¶
Controls the maximum length in bytes to which the condor_transferer daemon log will be allowed to grow. A
value of 0 specifies that this file may grow without bounds. The default is 1 MiB.

5.4.24 Configuration File Entries Relating to condor_ssh_to_job

These macros affect how HTCondor deals with , a tool that allows users to interactively debug jobs. With these con-
figuration variables, the administrator can control who can use the tool, and how the ssh programs are invoked. The
manual page for is at condor_ssh_to_job.

ENABLE_SSH_TO_JOB¶
A boolean expression read by the condor_starter, that when True allows the owner of the job or a queue super
user on the condor_schedd where the job was submitted to connect to the job via ssh. The expression may refer to
attributes of both the job and the machine ClassAds. The job ClassAd attributes may be referenced by using the
prefix TARGET., and the machine ClassAd attributes may be referenced by using the prefix MY.. When False,
it prevents from starting an ssh session. The default value is True.

SCHEDD_ENABLE_SSH_TO_JOB¶
A boolean expression read by the condor_schedd, that when True allows the owner of the job or a queue super
user to connect to the job via ssh if the execute machine also allows access (see). The expression may refer to
attributes of only the job ClassAd. When False, it prevents from starting an ssh session for all jobs managed by
the condor_schedd. The default value is True.

SSH_TO_JOB_<SSH-CLIENT>_CMD¶
A string read by the tool. It specifies the command and arguments to use when invoking the program specified
by <SSH-CLIENT>. Values substituted for the placeholder <SSH-CLIENT> may be SSH, SFTP, SCP, or any other
ssh client capable of using a command as a proxy for the connection to sshd. The entire command plus arguments
string is enclosed in double quote marks. Individual arguments may be quoted with single quotes, using the same
syntax as for arguments in a file. The following substitutions are made within the arguments:

%h: is substituted by the remote host %i: is substituted by the ssh key %k: is substituted by the known
hosts file %u: is substituted by the remote user %x: is substituted by a proxy command suitable for
use with the OpenSSH ProxyCommand option %%: is substituted by the percent mark character

The default string is:
"ssh -oUser=%u -oIdentityFile=%i -oStrictHostKeyChecking=yes -oUserKnownHostsFile=%k
-oGlobalKnownHostsFile=%k -oProxyCommand=%x %h"

When the <SSH-CLIENT> is scp, %h is omitted.

SSH_TO_JOB_SSHD¶
The path and executable name of the ssh daemon. The value is read by the condor_starter. The default value is
/usr/sbin/sshd.

SSH_TO_JOB_SSHD_ARGS¶
A string, read by the condor_starter that specifies the command-line arguments to be passed to the sshd to handle
an incoming ssh connection on its stdin or stdout streams in inetd mode. Enclose the entire arguments string
in double quote marks. Individual arguments may be quoted with single quotes, using the same syntax as for
arguments in an HTCondor submit description file. Within the arguments, the characters %f are replaced by the
path to the sshd configuration file the characters %% are replaced by a single percent character. The default value
is the string “-i -e -f %f”.

286 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

SSH_TO_JOB_SSHD_CONFIG_TEMPLATE¶
A string, read by the condor_starter that specifies the path and file name of an sshd configu-
ration template file. The template is turned into an sshd configuration file by replacing macros
within the template that specify such things as the paths to key files. The macro replacement is
done by the script $(LIBEXEC)/condor_ssh_to_job_sshd_setup. The default value is $(LIB)/
condor_ssh_to_job_sshd_config_template.

SSH_TO_JOB_SSH_KEYGEN¶
A string, read by the condor_starter that specifies the path to ssh_keygen, the program used to create ssh keys.

SSH_TO_JOB_SSH_KEYGEN_ARGS¶
A string, read by the condor_starter that specifies the command-line arguments to be passed to the ssh_keygen to
generate an ssh key. Enclose the entire arguments string in double quotes. Individual arguments may be quoted
with single quotes, using the same syntax as for arguments in an HTCondor submit description file. Within the
arguments, the characters %f are replaced by the path to the key file to be generated, and the characters %% are
replaced by a single percent character. The default value is the string “-N ‘’ -C ‘’ -q -f %f -t rsa”. If the user
specifies additional arguments with the command condor_ssh_to_job -keygen-options, then those arguments are
placed after the arguments specified by the value of .

5.4.25 condor_rooster Configuration File Macros

condor_rooster is an optional daemon that may be added to the daemon’s . It is responsible for waking up hibernating
machines when their expression becomes True. In the typical case, a pool runs a single instance of condor_rooster on
the central manager. However, if the network topology requires that Wake On LAN packets be sent to specific machines
from different locations, condor_rooster can be run on any machine(s) that can read from the pool’s condor_collector
daemon.

For condor_rooster to wake up hibernating machines, the collecting of offline machine ClassAds must be enabled. See
variable for details on how to do this.

ROOSTER_INTERVAL¶
The integer number of seconds between checks for offline machines that should be woken. The default value is
300.

ROOSTER_MAX_UNHIBERNATE¶
An integer specifying the maximum number of machines to wake up per cycle. The default value of 0 means no
limit.

ROOSTER_UNHIBERNATE¶
A boolean expression that specifies which machines should be woken up. The default expression is Offline &&
Unhibernate. If network topology or other considerations demand that some machines in a pool be woken up
by one instance of condor_rooster, while others be woken up by a different instance, may be set locally such that
it is different for the two instances of condor_rooster. In this way, the different instances will only try to wake
up their respective subset of the pool.

ROOSTER_UNHIBERNATE_RANK¶
A ClassAd expression specifying which machines should be woken up first in a given cycle. Higher ranked
machines are woken first. If the number of machines to be woken up is limited by , the rank may be used for
determining which machines are woken before reaching the limit.

ROOSTER_WAKEUP_CMD¶
A string representing the command line invoked by condor_rooster that is to wake up a machine. The com-
mand and any arguments should be enclosed in double quote marks, the same as syntax in an HTCondor submit
description file. The default value is “$(BIN)/condor_power -d -i”. The command is expected to read from its
standard input a ClassAd representing the offline machine.

5.4. Configuration Macros 287

HTCondor Manual, Release 23.6.2

5.4.26 condor_shared_port Configuration File Macros

These configuration variables affect the condor_shared_port daemon. For general discussion of the con-
dor_shared_port daemon, see Reducing Port Usage with the condor_shared_port Daemon.

USE_SHARED_PORT¶
A boolean value that specifies whether HTCondor daemons should rely on the condor_shared_port daemon for
receiving incoming connections. Under Unix, write access to the location defined by is required for this to take
effect. The default is True.

SHARED_PORT_PORT¶
The default TCP port used by the condor_shared_port daemon. If is the default value of True, and the launches
a condor_collector daemon, then the condor_shared_port daemon will ignore this value and use the TCP port
assigned to the condor_collector via the configuration variable.

The default value is $(COLLECTOR_PORT), which defaults to 9618. Note that this causes all HTCondor hosts
to use TCP port 9618 by default, differing from previous behavior. The previous behavior has only the con-
dor_collector host using a fixed port. To restore this previous behavior, set to 0, which will cause the con-
dor_shared_port daemon to use a randomly selected port in the range - , as defined in Port Usage in HTCondor.

SHARED_PORT_DAEMON_AD_FILE¶
This specifies the full path and name of a file used to publish the address of condor_shared_port. This file is
read by the other daemons that have USE_SHARED_PORT=True and which are therefore sharing the same port.
The default typically does not need to be changed.

SHARED_PORT_MAX_WORKERS¶
An integer that specifies the maximum number of sub-processes created by condor_shared_port while servicing
requests to connect to the daemons that are sharing the port. The default is 50.

DAEMON_SOCKET_DIR¶
This specifies the directory where Unix versions of HTCondor daemons will create named sockets so that in-
coming connections can be forwarded to them by condor_shared_port. If this directory does not exist, it will be
created. The maximum length of named socket paths plus names is restricted by the operating system, so using
a path that is longer than 90 characters may cause failures.

Write access to this directory grants permission to receive connections through the shared port. By default, the
directory is created to be owned by HTCondor and is made to be only writable by HTCondor. One possible
reason to broaden access to this directory is if execute nodes are accessed via CCB and the submit node is behind
a firewall with only one open port, which is the port assigned to condor_shared_port. In this case, commands
that interact with the execute node, such as , will not be able to operate unless run by a user with write access to .
In this case, one could grant tmp-like permissions to this directory so that all users can receive CCB connections
back through the firewall. But, consider the wisdom of having a firewall in the first place, if it will be circumvented
in this way.

On Linux platforms, daemons use abstract named sockets instead of normal named sockets. Abstract sockets are
not not tied to a file in the file system. The picks a random prefix for abstract socket names and shares it privately
with the other daemons. When searching for the recipient of an incoming connection, condor_shared_port will
check for both an abstract socket and a named socket in the directory indicated by this variable. The named
socket allows command-line tools such as to use condor_shared_port as described.

On Linux platforms, setting causes HTCondor to log the following information about each connection made
through the : the source address, the socket file name, and the target process’s PID, UID, GID, executable path,
and command line. An administrator may use this logged information to deter abuse.

The default value is auto, causing the use of the directory $(LOCK)/daemon_sock. On Unix platforms other
than Linux, if that path is longer than the 90 characters maximum, then the will instead create a directory under

288 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

/tmp with a name that looks like /tmp/condor_shared_port_<XXXXXX>, where <XXXXXX> is replaced with
random characters. The then tells the other daemons the exact name of the directory it created, and they use it.

If a different value is set for , then that directory is used, without regard for the length of the path name. Ensure
that the length is not longer than 90 characters.

SHARED_PORT_ARGS¶
Like all daemons started by the daemon, the command line arguments to the invocation of the con-
dor_shared_port daemon can be customized. The arguments can be used to specify a non-default port number
for the condor_shared_port daemon as in this example, which specifies port 4080:

SHARED_PORT_ARGS = -p 4080

It is recommended to use configuration variable to set a non-default port number, instead of using this configu-
ration variable.

SHARED_PORT_AUDIT_LOG¶
On Linux platforms, the path and file name of the condor_shared_port log that records connections made via
the . If not defined, there will be no condor_shared_port audit log.

MAX_SHARED_PORT_AUDIT_LOG¶
On Linux platforms, controls the maximum amount of time that the condor_shared_port audit log will be allowed
to grow. When it is time to rotate a log file, the log file will be saved to a file named with an ISO timestamp
suffix. The oldest rotated file receives the file name suffix .old. The .old files are overwritten each time the
maximum number of rotated files (determined by the value of) is exceeded. A value of 0 specifies that the file
may grow without bounds. The following suffixes may be used to qualify the integer:

Sec for seconds Min for minutes Hr for hours Day for days Wk for weeks

MAX_NUM_SHARED_PORT_AUDIT_LOG¶
On Linux platforms, the integer that controls the maximum number of rotations that the condor_shared_port
audit log is allowed to perform, before the oldest one will be rotated away. The default value is 1.

5.4.27 Configuration File Entries Relating to Job Hooks

These macros control the various hooks that interact with HTCondor. Currently, there are two independent sets of
hooks. One is a set of fetch work hooks, some of which are invoked by the condor_startd to optionally fetch work, and
some are invoked by the condor_starter. See Job Hooks That Fetch Work for more details. The other set replace func-
tionality of the condor_job_router daemon. Documentation for the condor_job_router daemon is in The HTCondor
Job Router.

SLOT<N>_JOB_HOOK_KEYWORD¶
For the fetch work hooks, the keyword used to define which set of hooks a particular compute slot should invoke.
The value of <N> is replaced by the slot identification number. For example, on slot 1, the variable name will
be called SLOT1_JOB_HOOK_KEYWORD. There is no default keyword. Sites that wish to use these job hooks must
explicitly define the keyword and the corresponding hook paths.

STARTD_JOB_HOOK_KEYWORD¶
For the fetch work hooks, the keyword used to define which set of hooks a particular condor_startd should invoke.
This setting is only used if a slot-specific keyword is not defined for a given compute slot. There is no default
keyword. Sites that wish to use job hooks must explicitly define the keyword and the corresponding hook paths.

<Keyword>_HOOK_FETCH_WORK¶
For the fetch work hooks, the full path to the program to invoke whenever the condor_startd wants to fetch work.
<Keyword> is the hook keyword defined to distinguish between sets of hooks. There is no default.

5.4. Configuration Macros 289

HTCondor Manual, Release 23.6.2

<Keyword>_HOOK_REPLY_FETCH¶
For the fetch work hooks, the full path to the program to invoke when the hook defined by returns data and then
the condor_startd decides if it is going to accept the fetched job or not. <Keyword> is the hook keyword defined
to distinguish between sets of hooks.

<Keyword>_HOOK_REPLY_CLAIM¶
For the fetch work hooks, the full path to the program to invoke whenever the condor_startd finishes fetching a
job and decides what to do with it. <Keyword> is the hook keyword defined to distinguish between sets of hooks.
There is no default.

<Keyword>_HOOK_PREPARE_JOB¶
For the fetch work hooks, the full path to the program invoked by the condor_starter before it runs the job.
<Keyword> is the hook keyword defined to distinguish between sets of hooks.

<Keyword>_HOOK_PREPARE_JOB_ARGS¶
The arguments for the condor_starter to use when invoking the prepare job hook specified by <Keyword>.

<Keyword>_HOOK_UPDATE_JOB_INFO¶
This configuration variable is used by both fetch work hooks and by condor_job_router hooks.

For the fetch work hooks, the full path to the program invoked by the condor_starter periodically as the job runs,
allowing the condor_starter to present an updated and augmented job ClassAd to the program. See Job Hooks
That Fetch Work for the list of additional attributes included. When the job is first invoked, the condor_starter will
invoke the program after $(STARTER_INITIAL_UPDATE_INTERVAL) seconds. Thereafter, the condor_starter
will invoke the program every $(STARTER_UPDATE_INTERVAL) seconds. <Keyword> is the hook keyword
defined to distinguish between sets of hooks.

As a Job Router hook, the full path to the program invoked when the Job Router polls the status of routed jobs at
intervals set by . <Keyword> is the hook keyword defined by to identify the hooks.

<Keyword>_HOOK_EVICT_CLAIM¶
For the fetch work hooks, the full path to the program to invoke whenever the condor_startd needs to evict a
fetched claim. <Keyword> is the hook keyword defined to distinguish between sets of hooks. There is no default.

<Keyword>_HOOK_JOB_EXIT¶
For the fetch work hooks, the full path to the program invoked by the condor_starter whenever a job exits, either
on its own or when being evicted from an execution slot. <Keyword> is the hook keyword defined to distinguish
between sets of hooks.

<Keyword>_HOOK_JOB_EXIT_TIMEOUT¶
For the fetch work hooks, the number of seconds the condor_starter will wait for the hook defined by hook to
exit, before continuing with job clean up. Defaults to 30 seconds. <Keyword> is the hook keyword defined to
distinguish between sets of hooks.

FetchWorkDelay¶
An expression that defines the number of seconds that the condor_startd should wait after an invocation of
completes before the hook should be invoked again. The expression is evaluated in the context of the slot ClassAd,
and the ClassAd of the currently running job (if any). The expression must evaluate to an integer. If not defined,
the condor_startd will wait 300 seconds (five minutes) between attempts to fetch work. For more information
about this expression, see Job Hooks That Fetch Work.

JOB_ROUTER_HOOK_KEYWORD¶
For the Job Router hooks, the keyword used to define the set of hooks the condor_job_router is to invoke to
replace functionality of routing translation. There is no default keyword. Use of these hooks requires the explicit
definition of the keyword and the corresponding hook paths.

<Keyword>_HOOK_TRANSLATE_JOB¶
A Job Router hook, the full path to the program invoked when the Job Router has determined that a job meets the
definition for a route. This hook is responsible for doing the transformation of the job. <Keyword> is the hook
keyword defined by to identify the hooks.

290 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

<Keyword>_HOOK_JOB_FINALIZE¶
A Job Router hook, the full path to the program invoked when the Job Router has determined that the job com-
pleted. <Keyword> is the hook keyword defined by to identify the hooks.

<Keyword>_HOOK_JOB_CLEANUP¶
A Job Router hook, the full path to the program invoked when the Job Router finishes managing the job.
<Keyword> is the hook keyword defined by to identify the hooks.

5.4.28 Configuration File Entries Relating to Daemon ClassAd Hooks: Startd Cron
and Schedd Cron

The following macros describe the daemon ClassAd hooks which run startd cron and schedd cron. These run executa-
bles or scripts directly from the condor_startd and condor_schedd daemons. The output is merged into the ClassAd
generated by the respective daemon. The mechanism is described in Startd Cron.

These macros all include CRON because the default mode for a daemon ClassAd hook is to run periodically. A specific
daemon ClassAd hook is called a JOB.

To define a job:

• Add a JobName to . (If you want to define a benchmark, or a daemon ClassAd hook in the schedd, use BENCHMARK
or SCHEDD in the macro name instead.) A JobName identifies a specific job and must be unique. In the rest of
this section, where <JobName> appears in a macro name, it means to replace <JobName> with one of the names
.

• You must set , and you’ll probably want to set as well. These macros tell HTCondor how to actually run the job.

• You must also decide when your job will run. By default, a job runs every seconds after the daemon starts up.
You may set to change to this to continuously (WaitForExit); on start-up (OneShot) and optionally, when the
daemon is reconfigured; or as a benchmark (OnDemand). If you do not select OneShot, you must set .

All the other job-specific macros are optional, of which and are probably the most common.

STARTD_CRON_AUTOPUBLISH¶
Optional setting that determines if the condor_startd should automatically publish a new update to the con-
dor_collector after any of the jobs produce output. Beware that enabling this setting can greatly increase the
network traffic in an HTCondor pool, especially when many modules are executed, or if the period in which they
run is short. There are three possible (case insensitive) values for this variable:

Never
This default value causes the condor_startd to not automatically publish updates based on any
jobs. Instead, updates rely on the usual behavior for sending updates, which is periodic, based
on the configuration variable, or whenever a given slot changes state.

Always
Causes the condor_startd to always send a new update to the condor_collector whenever any job
exits.

If_Changed
Causes the condor_startd to only send a new update to the condor_collector if the output pro-
duced by a given job is different than the previous output of the same job. The only exception is
the LastUpdate attribute, which is automatically set for all jobs to be the timestamp when the
job last ran. It is ignored when is set to If_Changed.

STARTD_CRON_CONFIG_VAL¶ , SCHEDD_CRON_CONFIG_VAL¶ , and
BENCHMARKS_CONFIG_VAL¶

This configuration variable can be used to specify the path and executable name of the program which the jobs

5.4. Configuration Macros 291

HTCondor Manual, Release 23.6.2

(hooks) should use to get configuration information from the daemon. If defined, an environment variable by the
same name with the same value will be passed to all jobs.

STARTD_CRON_JOBLIST¶ , SCHEDD_CRON_JOBLIST¶ , and BENCHMARKS_JOBLIST¶
These configuration variables are defined by a comma and/or white space separated list of job names to run. Each
is the logical name of a job. This name must be unique; no two jobs may have the same name. The condor_startd
reads this configuration variable on startup and on reconfig. The condor_schedd reads this variable and other
SCHEDD_CRON_* variables only on startup.

STARTD_CRON_MAX_JOB_LOAD¶ , SCHEDD_CRON_MAX_JOB_LOAD¶ , and
BENCHMARKS_MAX_JOB_LOAD¶

A floating point value representing a threshold for CPU load, such that if starting another job would cause the
sum of assumed loads for all running jobs to exceed this value, no further jobs will be started. The default value
for STARTD_CRON or a SCHEDD_CRON hook managers is 0.1. This implies that a maximum of 10 jobs (using their
default, assumed load) could be concurrently running. The default value for the BENCHMARKS hook manager is
1.0. This implies that only 1 BENCHMARKS job (at the default, assumed load) may be running.

STARTD_CRON_LOG_NON_ZERO_EXIT¶ and SCHEDD_CRON_LOG_NON_ZERO_EXIT¶
If true, each time a cron job returns a non-zero exit code, the corresponding daemon will log the cron job’s exit
code and output. There is no default value, so no logging will occur by default.

STARTD_CRON_<JobName>_ARGS¶ , SCHEDD_CRON_<JobName>_ARGS¶ , and
BENCHMARKS_<JobName>_ARGS¶

The command line arguments to pass to the job as it is invoked. The first argument will be <JobName>.

<JobName> is the logical name assigned for a job as defined by configuration variable , SCHEDD_CRON_JOBLIST,
or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_CONDITION¶
A ClassAd expression evaluated each time the job might otherwise be started. If this macro is set, but the
expression does not evaluate to True, the job will not be started. The expression is evaluated in a context similar
to a slot ad, but without any slot-specific attributes.

<JobName> is the logical name assigned for a job as defined by configuration variable .

STARTD_CRON_<JobName>_CWD¶ , SCHEDD_CRON_<JobName>_CWD¶ , and
BENCHMARKS_<JobName>_CWD¶

The working directory in which to start the job.

<JobName> is the logical name assigned for a job as defined by configuration variable , SCHEDD_CRON_JOBLIST,
or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_ENV¶ , SCHEDD_CRON_<JobName>_ENV¶ , and
BENCHMARKS_<JobName>_ENV¶

The environment string to pass to the job. The syntax is the same as that of as defined at condor_master Config-
uration File Macros.

<JobName> is the logical name assigned for a job as defined by configuration variable , SCHEDD_CRON_JOBLIST,
or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_EXECUTABLE¶ , SCHEDD_CRON_<JobName>_EXECUTABLE¶ , and
BENCHMARKS_<JobName>_EXECUTABLE¶

The full path and executable to run for this job. Note that multiple jobs may specify the same executable, although
the jobs need to have different logical names.

<JobName> is the logical name assigned for a job as defined by configuration variable , SCHEDD_CRON_JOBLIST,
or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_JOB_LOAD¶ , SCHEDD_CRON_<JobName>_JOB_LOAD¶ , and
BENCHMARKS_<JobName>_JOB_LOAD¶

A floating point value that represents the assumed and therefore expected CPU load that a job induces on the
system. This job load is then used to limit the total number of jobs that run concurrently, by not starting new jobs

292 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

if the assumed total load from all jobs is over a set threshold. The default value for each individual STARTD_CRON
or a SCHEDD_CRON job is 0.01. The default value for each individual BENCHMARKS job is 1.0.

<JobName> is the logical name assigned for a job as defined by configuration variable , SCHEDD_CRON_JOBLIST,
or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_KILL¶ , SCHEDD_CRON_<JobName>_KILL¶ , and
BENCHMARKS_<JobName>_KILL¶

A boolean value applicable only for jobs with a MODE of anything other than WaitForExit. The default value
is False.

This variable controls the behavior of the daemon hook manager when it detects that an instance of the job’s
executable is still running as it is time to invoke the job again. If True, the daemon hook manager will kill the
currently running job and then invoke an new instance of the job. If False, the existing job invocation is allowed
to continue running.

<JobName> is the logical name assigned for a job as defined by configuration variable , SCHEDD_CRON_JOBLIST,
or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_METRICS¶
A space or comma -separated list. Each element in the list is a metric type, either SUM or PEAK; a colon; and a
metric name.

An attribute preceded by SUM is a metric which accumulates over time. The canonical example is seconds of
CPU usage.

An attribute preceded by PEAK is a metric which instead records the largest value reported over the period of use.
The canonical example is megabytes of memory usage.

A job with set is a custom machine resource monitor (CMRM), and its output is handled differently than a normal
job’s. A CMRM should output one ad per custom machine resource instance and use SlotMergeConstraints
(see Startd Cron) to specify the instance to which it applies.

The ad corresponding to each custom machine resource instance should have an attribute for each metric named
in the configuration. For SUM metrics, the attribute should be Uptime<MetricName>Seconds; for PEAK
metrics, the attribute should be Uptime<MetricName>PeakUsage.

Each value should be the value of the metric since the last time the job reported. The reported value may therefore
go up or down; HTCondor will record either the sum or the peak value, as appropriate, for the duration of the
job running in a slot assigned resources of the corresponding type.

For example, if your custom resources are SQUIDs, and you detected four of them, your monitor might output
the following:

SlotMergeConstraint = StringListMember("SQUID0", AssignedSQUIDs)
UptimeSQUIDsSeconds = 5.0
UptimeSQUIDsMemoryPeakUsage = 50
- SQUIDsReport0
SlotMergeConstraint = StringListMember("SQUID1", AssignedSQUIDs)
UptimeSQUIDsSeconds = 1.0
UptimeSQUIDsMemoryPeakUsage = 10
- SQUIDsReport1
SlotMergeConstraint = StringListMember("SQUID2", AssignedSQUIDs)
UptimeSQUIDsSeconds = 9.0
UptimeSQUIDsMemoryPeakUsage = 90
- SQUIDsReport2
SlotMergeConstraint = StringListMember("SQUID3", AssignedSQUIDs)
UptimeSQUIDsSeconds = 4.0

(continues on next page)

5.4. Configuration Macros 293

HTCondor Manual, Release 23.6.2

(continued from previous page)

UptimeSQUIDsMemoryPeakUsage = 40
- SQUIDsReport3

The names (‘SQUIDsReport0’) may be anything, but must be consistent from report to report and the ClassAd
for each report must have a distinct name.

You might specify the monitor in the example above as follows:

MACHINE_RESOURCE_INVENTORY_SQUIDs = /usr/local/bin/cmr-squid-discovery

STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) SQUIDs_MONITOR
STARTD_CRON_SQUIDs_MONITOR_MODE = Periodic
STARTD_CRON_SQUIDs_MONITOR_PERIOD = 10
STARTD_CRON_SQUIDs_MONITOR_EXECUTABLE = /usr/local/bin/cmr-squid-monitor
STARTD_CRON_SQUIDs_MONITOR_METRICS = SUM:SQUIDs, PEAK:SQUIDsMemory

STARTD_CRON_<JobName>_MODE¶ , SCHEDD_CRON_<JobName>_MODE¶ , and
BENCHMARKS_<JobName>_MODE¶

A string that specifies a mode within which the job operates. Legal values are

• Periodic, which is the default.

• WaitForExit

• OneShot

• OnDemand

<JobName> is the logical name assigned for a job as defined by configuration variable , SCHEDD_CRON_JOBLIST,
or BENCHMARKS_JOBLIST.

The default Periodic mode is used for most jobs. In this mode, the job is expected to be started by the con-
dor_startd daemon, gather and publish its data, and then exit.

In WaitForExit mode the condor_startd daemon interprets the period as defined by differently. In this case, it
refers to the amount of time to wait after the job exits before restarting it. With a value of 1, the job is kept running
nearly continuously. In general, WaitForExit mode is for jobs that produce a periodic stream of updated data,
but it can be used for other purposes, as well. The output data from the job is accumulated into a temporary
ClassAd until the job exits or until it writes a line starting with dash (-) character. At that point, the temporary
ClassAd replaces the active ClassAd for the job. The active ClassAd for the job is merged into the appropriate
slot ClassAds whenever the slot ClassAds are published.

The OneShot mode is used for jobs that are run once at the start of the daemon. If the reconfig_rerun option
is specified, the job will be run again after any reconfiguration.

The OnDemand mode is used only by the BENCHMARKS mechanism. All benchmark jobs must be be OnDemand
jobs. Any other jobs specified as OnDemand will never run. Additional future features may allow for other
OnDemand job uses.

STARTD_CRON_<JobName>_PERIOD¶ , SCHEDD_CRON_<JobName>_PERIOD¶ , and
BENCHMARKS_<JobName>_PERIOD¶

The period specifies time intervals at which the job should be run. For periodic jobs, this is the time interval
that passes between starting the execution of the job. The value may be specified in seconds, minutes, or hours.
Specify this time by appending the character s, m, or h to the value. As an example, 5m starts the execution of the
job every five minutes. If no character is appended to the value, seconds are used as a default. In WaitForExit
mode, the value has a different meaning: the period specifies the length of time after the job ceases execution
and before it is restarted. The minimum valid value of the period is 1 second.

294 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

<JobName> is the logical name assigned for a job as defined by configuration variable , SCHEDD_CRON_JOBLIST,
or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_PREFIX¶ , SCHEDD_CRON_<JobName>_PREFIX¶ , and
BENCHMARKS_<JobName>_PREFIX¶

Specifies a string which is prepended by HTCondor to all attribute names that the job generates. The use of
prefixes avoids the conflicts that would be caused by attributes of the same name generated and utilized by
different jobs. For example, if a module prefix is xyz_, and an individual attribute is named abc, then the
resulting attribute name will be xyz_abc. Due to restrictions on ClassAd names, a prefix is only permitted to
contain alpha-numeric characters and the underscore character.

<JobName> is the logical name assigned for a job as defined by configuration variable , SCHEDD_CRON_JOBLIST,
or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_RECONFIG¶ and SCHEDD_CRON_<JobName>_RECONFIG¶
A boolean value that when True, causes the daemon to send an HUP signal to the job when the daemon is
reconfigured. The job is expected to reread its configuration at that time.

<JobName> is the logical name assigned for a job as defined by configuration variable or
SCHEDD_CRON_JOBLIST.

STARTD_CRON_<JobName>_RECONFIG_RERUN¶ and
SCHEDD_CRON_<JobName>_RECONFIG_RERUN¶

A boolean value that when True, causes the daemon ClassAd hook mechanism to re-run the specified job when
the daemon is reconfigured via . The default value is False.

<JobName> is the logical name assigned for a job as defined by configuration variable or
SCHEDD_CRON_JOBLIST.

STARTD_CRON_<JobName>_SLOTS¶ and BENCHMARKS_<JobName>_SLOTS¶
Only the slots specified in this comma-separated list may incorporate the output of the job specified by
<JobName>. If the list is not specified, any slot may. Whether or not a specific slot actually incorporates the
output depends on the output; see Startd Cron.

<JobName> is the logical name assigned for a job as defined by configuration variable or BENCHMARKS_JOBLIST.

5.4.29 Configuration File Entries Only for Windows Platforms

These macros are utilized only on Windows platforms.

WINDOWS_RMDIR¶
The complete path and executable name of the HTCondor version of the built-in rmdir program. The HTCondor
version will not fail when the directory contains files that have ACLs that deny the SYSTEM process delete
access. If not defined, the built-in Windows rmdir program is invoked, and a value defined for is ignored.

WINDOWS_RMDIR_OPTIONS¶
Command line options to be specified when configuration variable is defined. Defaults to /S /C when configu-
ration variable is defined and its definition contains the string "condor_rmdir.exe".

5.4. Configuration Macros 295

HTCondor Manual, Release 23.6.2

5.4.30 condor_defrag Configuration File Macros

These configuration variables affect the condor_defrag daemon. A general discussion of condor_defrag may be found
in condor_startd Policy Configuration.

DEFRAG_NAME¶
Used to give an prefix value to the Name attribute in the condor_defrag daemon’s ClassAd. Defaults to the name
given in the . This esoteric configuration macro might be used in the situation where there are two condor_defrag
daemons running on one machine, and each reports to the same condor_collector. Different names will distin-
guish the two daemons. See the description of in condor_master Configuration File Macros for defaults and
composition of valid HTCondor daemon names.

DEFRAG_DRAINING_MACHINES_PER_HOUR¶
A floating point number that specifies how many machines should be drained per hour. The default is 0, so
no draining will happen unless this setting is changed. Each condor_startd is considered to be one machine.
The actual number of machines drained per hour may be less than this if draining is halted by one of the other
defragmentation policy controls. The granularity in timing of draining initiation is controlled by . The lowest
rate of draining that is supported is one machine per day or one machine per , whichever is lower. A fractional
number of machines contributing to the value of is rounded to the nearest whole number of machines on a per
day basis.

DEFRAG_DRAINING_START_EXPR¶
A ClassAd expression that replaces the machine’s expression while it’s draining. Slots which accepted a job after
the machine began draining set the machine ad attribute to true. When the last job which was not accepted while
draining exits, all other jobs are immediately evicted with a MaxJobRetirementTime of 0; job vacate times are
still respected. While the jobs which were accepted while draining are vacating, the expression is false. Using
$(START) in this expression is usually a mistake: it will be replaced by the defrag daemon’s expression, not
the value of the target machine’s expression (and especially not the value of its expression at the time draining
begins).

DEFRAG_REQUIREMENTS¶
An expression that narrows the selection of which machines to drain. By default condor_defrag will drain all
machines that are drainable. A machine, meaning a condor_startd, is matched if any of its partitionable slots
match this expression. Machines are automatically excluded if they cannot be drained, are already draining, or
if they match .

The condor_defrag daemon will always add the following requirements to

PartitionableSlot && Offline =!= true && Draining =!= true

DEFRAG_CANCEL_REQUIREMENTS¶
An expression that is periodically evaluated against machines that are draining. When this expression evalu-
ates to True, draining will be cancelled. This defaults to $(DEFRAG_WHOLE_MACHINE_EXPR) . This could be
used to drain partial rather than whole machines. Beginning with version 8.9.11, only machines that have no
DrainReason or a value of "Defrag" for DrainReason will be checked to see if draining should be cancelled.
Beginning with 10.7.0 The Defrag daemon will also check for its own name in the DrainReason.

DEFRAG_RANK¶
An expression that specifies which machines are more desirable to drain. The expression should evaluate to a
number for each candidate machine to be drained. If the number of machines to be drained is less than the number
of candidates, the machines with higher rank will be chosen. The rank of a machine, meaning a condor_startd,
is the rank of its highest ranked slot. The default rank is -ExpectedMachineGracefulDrainingBadput.

DEFRAG_WHOLE_MACHINE_EXPR¶
An expression that specifies which machines are already operating as whole machines. The default is

296 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Cpus == TotalSlotCpus

A machine is matched if any Partitionable slot on the machine matches this expression and the machine is not
draining or was drained by condor_defrag. Each condor_startd is considered to be one machine. Whole ma-
chines are excluded when selecting machines to drain. They are also counted against .

DEFRAG_MAX_WHOLE_MACHINES¶
An integer that specifies the maximum number of whole machines. When the number of whole machines is
greater than or equal to this, no new machines will be selected for draining. Each condor_startd is counted as
one machine. The special value -1 indicates that there is no limit. The default is -1.

DEFRAG_MAX_CONCURRENT_DRAINING¶
An integer that specifies the maximum number of draining machines. When the number of machines that are
draining is greater than or equal to this, no new machines will be selected for draining. Each draining con-
dor_startd is counted as one machine. The special value -1 indicates that there is no limit. The default is -1.

DEFRAG_INTERVAL¶
An integer that specifies the number of seconds between evaluations of the defragmentation policy. In each cycle,
the state of the pool is observed and machines are drained, if specified by the policy. The default is 600 seconds.
Very small intervals could create excessive load on the condor_collector.

DEFRAG_UPDATE_INTERVAL¶
An integer that specifies the number of seconds between times that the condor_defrag daemon sends updates to
the collector. (See Defrag ClassAd Attributes for information about the attributes in these updates.) The default
is 300 seconds.

DEFRAG_SCHEDULE¶
A setting that specifies the draining schedule to use when draining machines. Possible values are graceful,
quick, and fast. The default is graceful.

graceful
Initiate a graceful eviction of the job. This means all promises that have been made to the job are
honored, including MaxJobRetirementTime. The eviction of jobs is coordinated to reduce idle
time. This means that if one slot has a job with a long retirement time and the other slots have
jobs with shorter retirement times, the effective retirement time for all of the jobs is the longer
one.

quick
MaxJobRetirementTime is not honored. Eviction of jobs is immediately initiated. Jobs are
given time to shut down according to the usual policy, as given by .

fast
Jobs are immediately hard-killed, with no chance to gracefully shut down.

DEFRAG_LOG¶
The path to the condor_defrag daemon’s log file. The default log location is $(LOG)/DefragLog.

5.4.31 condor_gangliad Configuration File Macros

condor_gangliad is an optional daemon responsible for publishing information about HTCondor daemons to the
Ganglia™ monitoring system. The Ganglia monitoring system must be installed and configured separately. In the
typical case, a single instance of the condor_gangliad daemon is run per pool. A default set of metrics are sent. Ad-
ditional metrics may be defined, in order to publish any information available in ClassAds that the condor_collector
daemon has.

5.4. Configuration Macros 297

HTCondor Manual, Release 23.6.2

GANGLIAD_INTERVAL¶
The integer number of seconds between consecutive sending of metrics to Ganglia. Daemons update the con-
dor_collector every 300 seconds, and the Ganglia heartbeat interval is 20 seconds. Therefore, multiples of 20
between 20 and 300 makes sense for this value. Negative values inhibit sending data to Ganglia. The default
value is 60.

GANGLIAD_MIN_METRIC_LIFETIME¶
An integer value representing the minimum DMAX value for all metrics. Where DMAX is the number number
of seconds without updating that a metric will be kept before deletion. This value defaults to 86400 which is
equivalent to 1 day. This value will be overridden by a specific metric defined Lifetime value.

GANGLIAD_VERBOSITY¶
An integer that specifies the maximum verbosity level of metrics to be published to Ganglia. Basic metrics have
a verbosity level of 0, which is the default. Additional metrics can be enabled by increasing the verbosity to
1. In the default configuration, there are no metrics with verbosity levels higher than 1. Some metrics depend
on attributes that are not published to the condor_collector when using the default value of . For example, per-
user file transfer statistics will only be published to Ganglia if GANGLIA_VERBOSITY is set to 1 or higher in the
condor_gangliad configuration and in the condor_schedd configuration contains TRANSFER:2, or if the contains
the desired attributes explicitly.

GANGLIAD_REQUIREMENTS¶
An optional boolean ClassAd expression that may restrict the set of daemon ClassAds to be monitored. This
could be used to monitor a subset of a pool’s daemons or machines. The default is an empty expression, which
has the effect of placing no restriction on the monitored ClassAds. Keep in mind that this expression is applied
to all types of monitored ClassAds, not just machine ClassAds.

GANGLIAD_PER_EXECUTE_NODE_METRICS¶
A boolean value that, when False, causes metrics from execute node daemons to not be published. Aggregate
values from these machines will still be published. The default value is True. This option is useful for pools
such that use glidein, in which it is not desired to record metrics for individual execute nodes.

GANGLIAD_WANT_RESET_METRICS¶
A boolean value that, when True, causes aggregate numeric metrics to be reset to a value of zero when they are
no longer being updated. The default value is False, causing aggregate metrics published to Ganglia to retain
the last value published indefinitely.

GANGLIA_RESET_METRICS_FILE¶
The file name where persistent data will be stored if GANGLIAD_WANT_RESET_METRICS is set to True. If
not set to a fully qualified path, the file will be stored in the SPOOL directory with a filename extension of
.ganglia_metrics. If you are running multiple condor_gangliad instances that share a SPOOL directory, this
knob should be customized. The default is $(SPOOL)/metricsToReset.ganglia_metrics.

GANGLIA_CONFIG¶
The path and file name of the Ganglia configuration file. The default is /etc/ganglia/gmond.conf.

GANGLIA_GMETRIC¶
The full path of the gmetric executable to use. If none is specified, libganglia will be used instead when
possible, because the library interface is more efficient than invoking gmetric. Some versions of libganglia
are not compatible. When a failure to use libganglia is detected, gmetric will be used, if gmetric can be found
in HTCondor’s PATH environment variable.

GANGLIA_GSTAT_COMMAND¶
The full gstat command used to determine which hosts are monitored by Ganglia. For a condor_gangliad running
on a host whose local gmond does not know the list of monitored hosts, change localhost to be the appropriate
host name or IP address within this default string:

gstat --all --mpifile --gmond_ip=localhost --gmond_port=8649

298 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

GANGLIA_SEND_DATA_FOR_ALL_HOSTS¶
A boolean value that when True causes data to be sent to Ganglia for hosts that it is not currently monitoring.
The default is False.

GANGLIA_LIB¶
The full path and file name of the libganglia shared library to use. If none is specified, and if configuration
variable is also not specified, then a search for libganglia will be performed in the directories listed in con-
figuration variable or . The special value NOOP indicates that condor_gangliad should not publish statistics to
Ganglia, but should otherwise go through all the motions it normally does.

GANGLIA_LIB_PATH¶
A comma-separated list of directories within which to search for the libganglia executable, if is not configured.
This is used in 32-bit versions of HTCondor.

GANGLIA_LIB64_PATH¶
A comma-separated list of directories within which to search for the libganglia executable, if is not configured.
This is used in 64-bit versions of HTCondor.

GANGLIAD_DEFAULT_CLUSTER¶
An expression specifying the default name of the Ganglia cluster for all metrics. The expression may refer to
attributes of the machine.

GANGLIAD_DEFAULT_MACHINE¶
An expression specifying the default machine name of Ganglia metrics. The expression may refer to attributes
of the machine.

GANGLIAD_DEFAULT_IP¶
An expression specifying the default IP address of Ganglia metrics. The expression may refer to attributes of the
machine.

GANGLIAD_LOG¶
The path and file name of the condor_gangliad daemon’s log file. The default log is $(LOG)/GangliadLog.

GANGLIAD_METRICS_CONFIG_DIR¶
Path to the directory containing files which define Ganglia metrics in terms of HTCondor ClassAd attributes to
be published. All files in this directory are read, to define the metrics. The default directory /etc/condor/
ganglia.d/ is used when not specified.

5.4.32 condor_annex Configuration File Macros

See HTCondor Annex Configuration for configuration file macros.

5.5 Configuration for Execution Points

5.5.1 Introduction

HTCondor Execution Points, or EP’s, are the machines where jobs run. Every Execution Point has an implied human
owner who can control the policy of these machines in very fine detail. The configuration of an EP is responsible for:

Execution Point (EP) Diagram

5.5. Configuration for Execution Points 299

HTCondor Manual, Release 23.6.2

Fig. 4: Daemons for a Execution Point, one condor_starter per running job.

1. Dividing a single machine one or more slots, each of which can run at most one job at a time. These slots can
protect the machine and other slots by limiting the amount of resources used by the job in the slot. Different slots
can support different policies.

2. Deciding when jobs run, and when they should not run. More specifically, the EP can decide which jobs run
when, (and when they stop running). This is covered in section condor_startd Policy Configuration below.

3. Partially in service of the above, the EP detects and advertises aspects about the machine. These are placed
in attributes in a machine or slot Classad, and sent to the condor_collector for global querying. (See Machine
ClassAd Attributes) Some of these attributes may be about the hardware, such as how much memory the machine
has, or what kind of GPU it has. Other attributes may be about the software, such as what Operating System
it is running. Some are predefined and automatically advertised by the system, others may be custom attributes
created and defined by the administrator. These custom attributes may be statically defined (e.g. this machine is
on the 3rd floor, and belongs to the Astronomy department), or they may be dynamically discovered by scripts
(e.g. The temperature of the CPU is currently 40 degrees C) This is covered in section Custom and system slot
attributes below.

4. Providing an environment, and services for running jobs. These services may include the ability to run in a
container or VM environment, such as Docker, Apptainer or Xen; providing the capability for the job to read or
update information on the AP; and setting environment variables for the job to read.

The execution point is mainly managed by the condor_startd daemon, which itself is managed by a daemon. Each
running job in a slot is then managed by an instance of the condor_starter daemon, which was spawned from the
condor_startd when the job was started.

5.5.2 Slots: where jobs run

Each EP runs one condor_startd daemon. The HTCondor “slot” describes a set of resources (e.g. Memory, Cpus,
Disk) where a job may run. Each slot is represented by its own machine ClassAd, distinguished by the machine ClassAd
attribute Name, which is of the form slot<N>@hostname, or slot<M_N>@hostname. The value for <N> will also be
defined with machine ClassAd attribute . Every condor_startd contains one or more slots, depending on configuration,
and the hardware it runs on. There are three types of slots: Partitionable, Dynamic, and Static.

Partitionable Slots

By default, each EP starts out with one partitionable slot, which represents all the detected resources on the
machine. Attributes like , and describe how much is available. However, no jobs run directly in Partionable
slots. Rather, partitionable slots serve as a parent for Dynamic slots. Partionable slots have the attribute set to
Partitionable, and PartionableSlot set to True, and are sometimes called p-slots for convenience. p-slots are
named slotN@startd_name, where N is usually 1. Although possible, it is rare to have multiple p-slots on one machine.

300 Chapter 5. Administrators’ Manual

mailto:slotN@startd_name

HTCondor Manual, Release 23.6.2

Dynamic Slots

Dynamic slots actually run jobs. They are created dynamically, from the resources of their parent Partitionable Slot.
For example, assume a partitionable slot on a machine has 3 cpu cores, 10 Gb of Memory, and 100 Gb of disk. Then,
when a job which is allocated 1 cpu core, 2 Gb of Memory and 20 Gb of disk is started under that partitionable slot, the
partionable slot is left with 2 cores, 8 Gb of memory and 80 Gb of disk. A new dynamic slot is created with the allocated
resources. When the job exits, if the AP has another job that fits in the dynamic slot (or d-slot), the AP can reuse the
d-slot for another job. At such time as it cannot reused the slot the d-slot is destroyed, and the resources allocated
to it are returned to the parent p-slot. Depending on the configuration, the privilege level of HTCondor, and the OS,
these slot may or may not enforce the resources limits they have allocated. dslots are named slotN_M@startd_name,
where N is the number of the parent partitionable slot (often “1”). Dynamic slots have the attribute set to True, and
the attribute set to Dynamic.

Discovering classad attribute values

The values of attributes in all slots on a machine may be listed by using the command:

$ condor_status -l hostname

Static Slots

Jobs run in static slots, in much they same way they do for dynamic slots. However, the number of static slots in a
condor_startd, and their size is fixed by configuration at boot time of the condor_startd, and cannot be changed without
restarting the condor_startd. By default, no static slots are created. Static slots are named slotN@startd_name, where
N starts at 1 and continues to the number of static slots. The configuration setting use FEATURE : StaticSlotswill
configure a startd to advertise zero partitionable slots, and one static slot per detected core, with 1 cpu core in each slot,
and each slot evenly dividing the detected memory and execution disk space. However, an administrator can configure
the various static slots to have any amount of resources. See following section for details.

Dividing System Resources in Multi-core Machines

Within a machine the shared system resources of cores, RAM, swap space and disk space will be divided for use by
the slots. There are two main ways to go about dividing the resources of a multi-core machine:

Evenly divide all resources.
Prior to HTCondor 23.0 the condor_startd will automatically divide the machine into multiple slots by default,
placing one core in each slot, and evenly dividing all shared resources among the slots. Beginning with HTCondor
23.0 the condor_startd will create a single partitionable slot by default.

In HTCondor 23.0 you can use the configuration template use FEATURE : StaticSlots to configure a number
of static slots. If used without arguments this configuration template will define a number of single core static
slots equal to the number of detected cpu cores.

To simply configure static slots in any version, configure to the integer number of slots desired. may not be used
to make HTCondor advertise more slots than there are cores on the machine. The number of cores is defined by
.

Define slot types.
Instead of the default slot configuration, the machine may have definitions of slot types, where each type is

5.5. Configuration for Execution Points 301

mailto:slotN_M@startd_name
mailto:slotN@startd_name

HTCondor Manual, Release 23.6.2

provided with a fraction of shared system resources. Given the slot type definition, control how many of each
type are reported at any given time with further configuration.

Configuration variables define the slot types, as well as variables that list how much of each system resource goes
to each slot type.

Configuration variable , where <N> is an integer (for example, SLOT_TYPE_1) defines the slot type. Note that
there may be multiple slots of each type. The number of slots created of a given type is configured with .

The resources configured for the slot type can be defined by:

• A simple fraction, such as 1/4

• A simple percentage, such as 25%

• A comma-separated list of attributes, with a percentage, fraction, numerical value, or auto for each one.

• A comma-separated list that includes a blanket value that serves as a default for any resources not explicitly
specified in the list.

A simple fraction or percentage describes the allocation of the total system resources, including the number of
CPUS or cores. A comma separated list allows a fine tuning of the amounts for specific resources.

The number of CPUs and the total amount of RAM in the machine do not change over time. For these attributes,
specify either absolute values or percentages of the total available amount (or auto). For example, in a machine
with 128 Mbytes of RAM, all the following definitions result in the same allocation amount.

SLOT_TYPE_1 = mem=64

SLOT_TYPE_1 = mem=1/2

SLOT_TYPE_1 = mem=50%

SLOT_TYPE_1 = mem=auto

Amounts of disk space and swap space are dynamic, as they change over time. For these, specify a percentage
or fraction of the total value that is allocated to each slot, instead of specifying absolute values. As the total
values of these resources change on the machine, each slot will take its fraction of the total and report that as its
available amount.

The disk space allocated to each slot is taken from the disk partition containing the slot’s or directory. If every
slot is in a different partition, then each one may be defined with up to 100% for its disk share. If some slots are
in the same partition, then their total is not allowed to exceed 100%.

The four predefined attribute names are case insensitive when defining slot types. The first letter of the attribute
name distinguishes between these attributes. The four attributes, with several examples of acceptable names for
each:

• Cpus, C, c, cpu

• ram, RAM, MEMORY, memory, Mem, R, r, M, m

• disk, Disk, D, d

• swap, SWAP, S, s, VirtualMemory, V, v

As an example, consider a machine with 4 cores and 256 Mbytes of RAM. Here are valid example slot type
definitions. Types 1-3 are all equivalent to each other, as are types 4-6. Note that in a real configuration, all
of these slot types would not be used together, because they add up to more than 100% of the various system
resources. This configuration example also omits definitions of , to define the number of each slot type.

302 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

SLOT_TYPE_1 = cpus=2, ram=128, swap=25%, disk=1/2

SLOT_TYPE_2 = cpus=1/2, memory=128, virt=25%, disk=50%

SLOT_TYPE_3 = c=1/2, m=50%, v=1/4, disk=1/2

SLOT_TYPE_4 = c=25%, m=64, v=1/4, d=25%

SLOT_TYPE_5 = 25%

SLOT_TYPE_6 = 1/4

The default value for each resource share is auto. The share may also be explicitly set to auto. All slots with
the value auto for a given type of resource will evenly divide whatever remains, after subtracting out explicitly
allocated resources given in other slot definitions. For example, if one slot is defined to use 10% of the memory
and the rest define it as auto (or leave it undefined), then the rest of the slots will evenly divide 90% of the
memory between themselves.

In both of the following examples, the disk share is set to auto, number of cores is 1, and everything else is 50%:

SLOT_TYPE_1 = cpus=1, ram=1/2, swap=50%

SLOT_TYPE_1 = cpus=1, disk=auto, 50%

Note that it is possible to set the configuration variables such that they specify an impossible configuration. If this
occurs, the condor_startd daemon fails after writing a message to its log attempting to indicate the configuration
requirements that it could not implement.

In addition to the standard resources of CPUs, memory, disk, and swap, the administrator may also define custom
resources on a localized per-machine basis. In addition to GPUs (see Configuring GPUs.) the administrator can
define other types of custom resources.

The resource names and quantities of available resources are defined using configuration variables of the form ,
as shown in this example:

MACHINE_RESOURCE_Cogs = 16
MACHINE_RESOURCE_actuator = 8

If the configuration uses the optional configuration variable to enable and disable local machine resources, also
add the resource names to this variable. For example:

if defined MACHINE_RESOURCE_NAMES
MACHINE_RESOURCE_NAMES = $(MACHINE_RESOURCE_NAMES) Cogs actuator

endif

Local machine resource names defined in this way may now be used in conjunction with , using all the same syntax
described earlier in this section. The following example demonstrates the definition of static and partitionable
slot types with local machine resources:

declare one partitionable slot with half of the Cogs, 6 actuators, and
50% of all other resources:
SLOT_TYPE_1 = cogs=50%,actuator=6,50%
SLOT_TYPE_1_PARTITIONABLE = TRUE
NUM_SLOTS_TYPE_1 = 1

(continues on next page)

5.5. Configuration for Execution Points 303

HTCondor Manual, Release 23.6.2

(continued from previous page)

declare two static slots, each with 25% of the Cogs, 1 actuator, and
25% of all other resources:
SLOT_TYPE_2 = cogs=25%,actuator=1,25%
SLOT_TYPE_2_PARTITIONABLE = FALSE
NUM_SLOTS_TYPE_2 = 2

A job may request these local machine resources using the syntax as described in condor_startd Policy Config-
uration. This example shows a portion of a submit description file that requests cogs and an actuator:

universe = vanilla

request two cogs and one actuator:
request_cogs = 2
request_actuator = 1

queue

The slot ClassAd will represent each local machine resource with the following attributes:

Total<name>: the total quantity of the resource identified by <name> Detected<name>: the quantity
detected of the resource identified by <name>; this attribute is currently equivalent to Total<name>
TotalSlot<name>: the quantity of the resource identified by <name> allocated to this slot <name>:
the amount of the resource identified by <name> available to be used on this slot

From the example given, the Cogs resource would be represented by the ClassAd attributes TotalCogs,
DetectedCogs, TotalSlotCogs, and Cogs. In the job ClassAd, the amount of the requested machine re-
source appears in a job ClassAd attribute named Request<name>. For this example, the two attributes will be
RequestCogs and RequestActuator.

The number of each type and the definitions for the types themselves cannot be changed with reconfiguration.
To change any slot type definitions, use

$ condor_restart -startd

for that change to take effect.

Configuration Specific to Multi-core Machines

Each slot within a multi-core machine is treated as an independent machine, each with its own view of its state as repre-
sented by the machine ClassAd attribute . The policy expressions for the multi-core machine as a whole are propagated
from the condor_startd to the slot’s machine ClassAd. This policy may consider a slot state(s) in its expressions.

Specifically, the evaluation of a slot policy expression works in the following way.

1. The configuration file specifies policy expressions that are shared by all of the slots on the machine.

2. Each slot reads the configuration file and sets up its own machine ClassAd.

3. Each slot is now separate from the others. It has a different ClassAd attribute , a different machine ClassAd, and if
there is a job running, a separate job ClassAd. Each slot periodically evaluates the policy expressions, changing
its own state as necessary. This occurs independently of the other slots on the machine. So, if the condor_startd
daemon is evaluating a policy expression on a specific slot, and the policy expression refers to , , or any attribute
from a job ClassAd, it always refers to the ClassAd of the job running on the specific slot.

304 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

To set a different policy for the slots within a machine, incorporate the slot-specific machine ClassAd attribute . A
policy that is different for each of the two slots will be of the form

SUSPEND = ((SlotID == 1) && (PolicyForSlot1)) || \
((SlotID == 2) && (PolicyForSlot2))

where (PolicyForSlot1) and (PolicyForSlot2) are the desired expressions for each slot.

Dynamic Provisioning: Partitionable and Dynamic Slots

Dynamic provisioning, also referred to as partitionable or dynamic slots, allows HTCondor to use the resources of a
slot in a dynamic way; these slots may be partitioned. This means that more than one job can occupy a single slot at
any one time. Slots have a fixed set of resources which include the cores, memory and disk space. By partitioning the
slot, the use of these resources becomes more flexible.

Here is an example that demonstrates how resources are divided as more than one job is or can be matched to a single
slot. In this example, Slot1 is identified as a partitionable slot and has the following resources:

cpu = 10
memory = 10240
disk = BIG

Assume that JobA is allocated to this slot. JobA includes the following resource requests:

request_cpu = 3
request_memory = 1024
request_disk = 10240

The portion of the slot that is carved out is now known as a dynamic slot. This dynamic slot has its own machine
ClassAd, and its Name attribute distinguishes itself as a dynamic slot with incorporating the substring Slot1_1. Note
that the startd may round up the resource requests, so that subsequent jobs may also match this slot, but it will never
run a job in a slot that won’t fit the job.

After allocation, the partitionable Slot1 advertises that it has the following resources still available, which might look
like:

cpu = 7
memory = 9216
disk = BIG-10240

As each new job is allocated to Slot1, it breaks into Slot1_1, Slot1_2, Slot1_3 etc., until the entire set of Slot1’s
available resources have been consumed by jobs.

Dynamic provisioning is enabled by default, as of HTCondor version 23.0 In older versions, to enable dynamic pro-
visioning, define a slot type, and declare at least one slot of that type. Then, identify that slot type as partitionable by
setting configuration variable to True. The value of <N> within the configuration variable name is the same value as
in slot type definition configuration variable . For the most common cases the machine should be configured for one
slot, managing all the resources on the machine. To do so, set the following configuration variables:

NUM_SLOTS = 1
NUM_SLOTS_TYPE_1 = 1
SLOT_TYPE_1 = 100%
SLOT_TYPE_1_PARTITIONABLE = TRUE

5.5. Configuration for Execution Points 305

HTCondor Manual, Release 23.6.2

In a pool using dynamic provisioning, jobs must express resources they need in the submit description file:

request_cpus
request_memory
request_disk (in kilobytes)

This example shows a portion of the job submit description file for use when submitting a job to a pool with dynamic
provisioning.

universe = vanilla

request_cpus = 3
request_memory = 1024
request_disk = 10240

queue

A partitionable slot will always appear as though it is not running a job. If matched jobs consume all its resources, the
partitionable slot will eventually show as having no available resources; this will prevent further matching of new jobs.
The dynamic slots will show as running jobs. The dynamic slots can be preempted in the same way as all other slots.

Dynamic provisioning provides powerful configuration possibilities, and so should be used with care. Specifically,
while preemption occurs for each individual dynamic slot, it cannot occur directly for the partitionable slot, or for
groups of dynamic slots. For example, for a large number of jobs requiring 1GB of memory, a pool might be split up
into 1GB dynamic slots. In this instance a job requiring 2GB of memory will be starved and unable to run. A partial
solution to this problem is provided by defragmentation accomplished by the condor_defrag daemon, as discussed in
condor_startd Policy Configuration.

Preemption of Partionable Slots

Warning: Partionable slot preemption is an experimental feature, and may not work as expected with all other
HTCondor features.

Another partial solution is a new matchmaking algorithm in the negotiator, referred to as partitionable slot preemption,
or pslot preemption. Without pslot preemption, when the negotiator searches for a match for a job, it looks at each slot
ClassAd individually. With pslot preemption, the negotiator looks at a partitionable slot and all of its dynamic slots
as a group. If the partitionable slot does not have sufficient resources (memory, cpu, and disk) to be matched with
the candidate job, then the negotiator looks at all of the related dynamic slots that the candidate job might preempt
(following the normal preemption rules described elsewhere). The resources of each dynamic slot are added to those
of the partitionable slot, one dynamic slot at a time. Once this partial sum of resources is sufficient to enable a match,
the negotiator sends the match information to the condor_schedd. When the condor_schedd claims the partitionable
slot, the dynamic slots are preempted, such that their resources are returned to the partitionable slot for use by the new
job.

To enable pslot preemption, the following configuration variable must be set for the condor_negotiator:

ALLOW_PSLOT_PREEMPTION = True

When the negotiator examines the resources of dynamic slots, it sorts the slots by their attribute, such that slots with
lower values are considered first. The negotiator only examines the cpu, memory and disk resources of the dynamic
slots; custom resources are ignored.

Dynamic slots that have retirement time remaining are not considered eligible for preemption, regardless of how con-
figuration variable is set.

306 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

When pslot preemption is enabled, the negotiator will not preempt dynamic slots directly. It will preempt them only
as part of a match to a partitionable slot.

When multiple partitionable slots match a candidate job and the various job rank expressions are evaluated to sort the
matching slots, the ClassAd of the partitionable slot is used for evaluation. This may cause unexpected results for some
expressions, as attributes such as will not be present in a partitionable slot that matches with preemption of some of its
dynamic slots.

Defaults for Partitionable Slot Sizes

If a job does not specify the required number of CPUs, amount of memory, or disk space, there are ways for the
administrator to set default values for all of these parameters.

First, if any of these attributes are not set in the submit description file, there are three variables in the configuration
file that condor_submit will use to fill in default values. These are

•

•

•

The value of these variables can be ClassAd expressions. The default values for these variables, should they not be set
are

JOB_DEFAULT_REQUESTCPUS = 1
JOB_DEFAULT_REQUESTMEMORY = \

ifThenElse(MemoryUsage =!= UNDEFINED, MemoryUsage, 1)
JOB_DEFAULT_REQUESTDISK = DiskUsage

Note that these default values are chosen such that jobs matched to partitionable slots function similar to static slots.
These variables do not apply to batch grid universe jobs.

Once the job has been matched, and has made it to the execute machine, the condor_startd has the ability to modify
these resource requests before using them to size the actual dynamic slots carved out of the partitionable slot. Clearly,
for the job to work, the condor_startd daemon must create slots with at least as many resources as the job needs.
However, it may be valuable to create dynamic slots somewhat bigger than the job’s request, as subsequent jobs may
be more likely to reuse the newly created slot when the initial job is done using it.

The condor_startd configuration variables which control this and their defaults are

• = quantize(RequestCpus, {1})

• = quantize(RequestMemory, {128})

• = quantize(RequestDisk, {1024})

5.5.3 Slot Isolation and Protection

When multiple jobs, one in each slots, are running on the same machine, one job might negatively impact another. This
might happen by using too much cpu, or disk, or even sending a signal to a process in another job. HTCondor provides
several mechanism to protect jobs in slots from each other.

5.5. Configuration for Execution Points 307

HTCondor Manual, Release 23.6.2

Per Job PID Namespaces

Per job PID namespaces provide enhanced isolation of one process tree from another through kernel level process ID
namespaces. HTCondor may enable the use of per job PID namespaces for Linux RHEL 6, Debian 6, and more recent
kernels.

Read about per job PID namespaces http://lwn.net/Articles/531419/.

The needed isolation of jobs from the same user that execute on the same machine as each other is already provided
by the implementation of slot users as described in User Accounts in HTCondor on Unix Platforms. This is the rec-
ommended way to implement the prevention of interference between more than one job submitted by a single user.
However, the use of a shared file system by slot users presents issues in the ownership of files written by the jobs.

The per job PID namespace provides a way to handle the ownership of files produced by jobs within a shared file
system. It also isolates the processes of a job within its PID namespace. As a side effect and benefit, the clean up of
processes for a job within a PID namespace is enhanced. When the process with PID = 1 is killed, the operating system
takes care of killing all child processes.

To enable the use of per job PID namespaces, set the configuration to include

USE_PID_NAMESPACES = True

This configuration variable defaults to False, thus the use of per job PID namespaces is disabled by default.

Group ID-Based Process Tracking

One function that HTCondor often must perform is keeping track of all processes created by a job. This is done so
that HTCondor can provide resource usage statistics about jobs, and also so that HTCondor can properly clean up any
processes that jobs leave behind when they exit.

Note: Group ID based process tracking has generally been replaced by cgroup based tracking, which is more powerful
and more general, and requires less setup. Group ID based process tracking may be removed from HTCondor in the
future.

In general, tracking process families is difficult to do reliably. By default HTCondor uses a combination of process
parent-child relationships, process groups, and information that HTCondor places in a job’s environment to track pro-
cess families on a best-effort basis. This usually works well, but it can falter for certain applications or for jobs that try
to evade detection.

Jobs that run with a user account dedicated for HTCondor’s use can be reliably tracked, since all HTCondor needs to
do is look for all processes running using the given account. Administrators must specify in HTCondor’s configuration
what accounts can be considered dedicated via the setting. See User Accounts in HTCondor on Unix Platforms for
further details.

Ideally, jobs can be reliably tracked regardless of the user account they execute under. This can be accomplished with
group ID-based tracking. This method of tracking requires that a range of dedicated group IDs (GID) be set aside for
HTCondor’s use. The number of GIDs that must be set aside for an execute machine is equal to its number of execution
slots. GID-based tracking is only available on Linux, and it requires that HTCondor daemons run as root.

GID-based tracking works by placing a dedicated GID in the supplementary group list of a job’s initial process. Since
modifying the supplementary group ID list requires root privilege, the job will not be able to create processes that go
unnoticed by HTCondor.

308 Chapter 5. Administrators’ Manual

http://lwn.net/Articles/531419/

HTCondor Manual, Release 23.6.2

Once a suitable GID range has been set aside for process tracking, GID-based tracking can be enabled via the parameter.
The minimum and maximum GIDs included in the range are specified with the and settings. For example, the following
would enable GID-based tracking for an execute machine with 8 slots.

USE_GID_PROCESS_TRACKING = True
MIN_TRACKING_GID = 750
MAX_TRACKING_GID = 757

If the defined range is too small, such that there is not a GID available when starting a job, then the condor_starter will
fail as it tries to start the job. An error message will be logged stating that there are no more tracking GIDs.

GID-based process tracking requires use of the . If is true, the will be used regardless of the setting. Changes to and
require a full restart of HTCondor.

Cgroup-Based Process Tracking

A new feature in Linux version 2.6.24 allows HTCondor to more accurately and safely manage jobs composed of sets
of processes. This Linux feature is called Control Groups, or cgroups for short, and it is available starting with RHEL
6, Debian 6, and related distributions. Documentation about Linux kernel support for cgroups can be found in the
Documentation directory in the kernel source code distribution. Another good reference is http://docs.redhat.com/
docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html

The interface between the kernel cgroup functionality is via a (virtual) file system, usually mounted at /sys/fs/
cgroup.

If your Linux distribution uses systemd, it will mount the cgroup file system, and the only remaining item is to set
configuration variable , as described below.

When cgroups are correctly configured and running, the virtual file system mounted on /sys/fs/cgroup should have
several subdirectories under it, and there should an htcondor subdirectory under the directory /sys/fs/cgroup/cpu,
/sys/fs/cgroup/memory and some others.

The condor_starter daemon uses cgroups by default on Linux systems to accurately track all the processes started by
a job, even when quickly-exiting parent processes spawn many child processes. As with the GID-based tracking, this
is only implemented when a daemon is running.

Kernel cgroups are named in a virtual file system hierarchy. HTCondor will put each running job on the ex-
ecute node in a distinct cgroup. The name of this cgroup is the name of the execute directory for that con-
dor_starter, with slashes replaced by underscores, followed by the name and number of the slot. So, for the mem-
ory controller, a job running on slot1 would have its cgroup located at /sys/fs/cgroup/memory/htcondor/
condor_var_lib_condor_execute_slot1/. The tasks file in this directory will contain a list of all the processes
in this cgroup, and many other files in this directory have useful information about resource usage of this cgroup. See
the kernel documentation for full details.

Once cgroup-based tracking is configured, usage should be invisible to the user and administrator. The log, as defined
by configuration variable , will mention that it is using this method, but no user visible changes should occur, other than
the impossibility of a quickly-forking process escaping from the control of the condor_starter, and the more accurate
reporting of memory usage.

A cgroup-enabled HTCondor will install and handle a per-job (not per-process) Linux Out of Memory killer (OOM-
Killer). When a job exceeds the memory provisioned by the condor_startd, the Linux kernel will send an OOM message
to the condor_starter, and HTCondor will evict the job, and put it on hold. Sometimes, even when the job’s memory
usage is below the provisioned amount, if other, non-HTCondor processes, on the system are using too much memory,
the linux kernel may choose to OOM-kill the job. In this case, HTCondor will log a message and evict the job, mark
it as idle, so it can start again somewhere else.

5.5. Configuration for Execution Points 309

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html

HTCondor Manual, Release 23.6.2

Limiting Resource Usage Using Cgroups

While the method described to limit a job’s resource usage is portable, and it should run on any Linux or BSD or
Unix system, it suffers from one large flaw. The flaw is that resource limits imposed are per process, not per job. An
HTCondor job is often composed of many Unix processes. If the method of limiting resource usage with a user job
wrapper is used to impose a 2 Gigabyte memory limit, that limit applies to each process in the job individually. If a job
created 100 processes, each using just under 2 Gigabytes, the job would continue without the resource limits kicking
in. Clearly, this is not what the machine owner intends. Moreover, the memory limit only applies to the virtual memory
size, not the physical memory size, or the resident set size. This can be a problem for jobs that use the mmap system
call to map in a large chunk of virtual memory, but only need a small amount of memory at one time. Typically, the
resource the administrator would like to control is physical memory, because when that is in short supply, the machine
starts paging, and can become unresponsive very quickly.

The condor_starter can, using the Linux cgroup capability, apply resource limits collectively to sets of jobs, and apply
limits to the physical memory used by a set of processes. The main downside of this technique is that it is only available
on relatively new Unix distributions such as RHEL 6 and Debian 6. This technique also may require editing of system
configuration files.

To enable cgroup-based limits, first ensure that cgroup-based tracking is enabled, as it is by default on supported
systems, as described in section 3.14.13. Once set, the condor_starter will create a cgroup for each job, and set
attributes in that cgroup to control memory and cpu usage. These attributes are the cpu.shares attribute in the cpu
controller, and two attributes in the memory controller, both memory.limit_in_bytes, and memory.soft_limit_in_bytes.
The configuration variable controls this. If is set to the string hard, the hard limit will be set to the slot size, and
the soft limit to 90% of the slot size. If set to soft, the soft limit will be set to the slot size and the hard limit will
be set to the memory size of the whole startd. By default, this whole size is the detected memory the size, minus
RESERVED_MEMORY. Or, if is defined, that value is used..

No limits will be set if the value is none. The default is none. If the hard limit is in force, then the total amount of
physical memory used by the sum of all processes in this job will not be allowed to exceed the limit. If the process goes
above the hard limit, the job will be put on hold.

The memory size used in both cases is the machine ClassAd attribute . Note that is a static amount when using
static slots, but it is dynamic when partitionable slots are used. That is, the limit is whatever the “Mem” column of
condor_status reports for that slot.

If is set, HTCondor will also use cgroups to limit the amount of swap space used by each job. By default, the maximum
amount of swap space used by each slot is the total amount of Virtual Memory in the slot, minus the amount of physical
memory. Note that HTCondor measures virtual memory in kbytes, and physical memory in megabytes. To prevent
jobs with high memory usage from thrashing and excessive paging, and force HTCondor to put them on hold instead,
you can tell condor that a job should never use swap, by setting to true (the default is false).

In addition to memory, the condor_starter can also control the total amount of CPU used by all processes within a
job. To do this, it writes a value to the cpu.shares attribute of the cgroup cpu controller. The value it writes is copied
from the attribute of the machine slot ClassAd multiplied by 100. Again, like the attribute, this value is fixed for static
slots, but dynamic under partitionable slots. This tells the operating system to assign cpu usage proportionally to the
number of cpus in the slot. Unlike memory, there is no concept of soft or hard, so this limit only applies when there
is contention for the cpu. That is, on an eight core machine, with only a single, one-core slot running, and otherwise
idle, the job running in the one slot could consume all eight cpus concurrently with this limit in play, if it is the only
thing running. If, however, all eight slots where running jobs, with each configured for one cpu, the cpu usage would
be assigned equally to each job, regardless of the number of processes or threads in each job.

310 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Startd Disk Enforcement With Per Job Scratch Filesystems

On Linux systems, when HTCondor is started as root, it optionally has the ability to create a custom filesystem for
the job’s scratch directory. This allows HTCondor to prevent the job from using more scratch space than provisioned.
HTCondor manages this per scratch directory filesystem usage with the LVM disk management system.

This feature will enable better handling of jobs that utilize more than the disk space than provisioned by HTCondor.
With the feature enabled, when a job fills up the filesystem created for it, the starter will put the job on hold with the
out of resources hold code (34). Otherwise, in a full filesystem, writes will fail with ENOSPC, and leave it up to the
job to handle these errors internally at all places writes occur. Even in included third party libraries.

Note: The ephemeral filesystem created for the job is private to that job so the contents of the filesystem are not
visible outside the process hierarchy. The nsenter command can be used to enter this namespace in order inspect the
job’s sandbox.

Note: As this filesystem will never live through a system reboot, it is mounted with mount options that optimize for
performance, not reliability, and may improve performance for I/O heavy jobs.

To enable per job scratch directory filesystems, simply set to True. However, it is recommended to also setup a func-
tioning Linux LVM environment for HTCondor to utilize by providing the LVM volume group and possibly thin-pool
type logical volume via the configuration options and . If a pre-setup Linux LVM environment isn’t provided then the
condor_startd will automatically setup a Linux LVM environment using a backing loopback file specified by .

Example LVM Configuration

Listing 1: Thin Provisioning Setup

STARTD_ENFORCE_FISK_LIMITS = True
LVM_VOLUME_GROUP_NAME = condor_vg
LVM_THINPOOL_NAME = htcondor

Listing 2: Thick Provisioning Setup

STARTD_ENFORCE_FISK_LIMITS = True
LVM_VOLUME_GROUP_NAME = condor_vg
LVM_USE_THIN_PROVISIONING = False

HTCondor will use the provided Linux LVM information to create logical volumes and filesystems on a per job
basis regardless of thin or thick provisioning.

Note: The minmum logical volume size is by default is 4MB.

Fig. 5: Linux LVM Environment Setup

Note: The condor_startd must be restarted rather than just reconfigured in order for any LVM Startd disk enforcement
configuration to take effect.

5.5. Configuration for Execution Points 311

HTCondor Manual, Release 23.6.2

Warning: When setup to use thin provisioning, if the backing thin pool logical volume fills up completely then
all writes to subsequent thin logical volumes carved from the thin pool with pause for 60 seconds. If desired this
behavior can be disabled by using --errorwhenfull y option when creating the backing thin-pool type logical
volume.

5.5.4 condor_startd Policy Configuration

This section describes the configuration of machines, via the condor_startd daemon, and policies to start, suspend,
resume, vacate or to kill jobs. These polices are at the heart of HTCondor’s balancing act between the needs and wishes
of resource owners (machine owners) and resource users (people submitting their jobs to HTCondor). Understanding
the configuration requires an understanding of ClassAd expressions, which are detailed in the HTCondor’s ClassAd
Mechanism section.

The START Expression

The most important expression to the condor_startd is the expression. This expression describes the conditions that
must be met for a machine or slot to run a job. This expression can reference attributes in the machine’s ClassAd (such
as and) and attributes in a job ClassAd (such as , , and , the name of the executable the job will run). The value of the
expression plays a crucial role in determining the state and activity of a machine.

Note: Configuration templates make it easier to implement certain policies; see information on policy templates here:
Available Configuration Templates.

The Requirements expression is used for matching machines with jobs.

In situations where a machine wants to make itself unavailable for further matches, the Requirements expression is
set to False. When the expression locally evaluates to True, the machine advertises the Requirements expression as
True and does not publish the expression.

Normally, the expressions in the machine ClassAd are evaluated against certain request ClassAds in the con-
dor_negotiator to see if there is a match, or against whatever request ClassAd currently has claimed the machine.
However, by locally evaluating an expression, the machine only evaluates the expression against its own ClassAd. If an
expression cannot be locally evaluated (because it references other expressions that are only found in a request ClassAd,
such as or), the expression is (usually) undefined. See the HTCondor’s ClassAd Mechanism section for specifics on
how undefined terms are handled in ClassAd expression evaluation.

A note of caution is in order when modifying the expression to reference job ClassAd attributes. When using the
POLICY : Desktop configuration template, the expression is a function of the expression:

START =?= FALSE

See a detailed discussion of the expression in condor_startd Policy Configuration. However, the machine locally eval-
uates the expression to determine if it is capable of running jobs for HTCondor. Any job ClassAd attributes appearing
in the expression, and hence in the expression, are undefined in this context, and may lead to unexpected behavior.
Whenever the expression is modified to reference job ClassAd attributes, the expression should also be modified to
reference only machine ClassAd attributes.

Note: If you have machines with lots of real memory and swap space such that the only scarce resource is CPU time,
consider defining so that HTCondor starts jobs on the machine with low priority. Then, further configure to set up the
machines with:

312 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

START = True
SUSPEND = False
PREEMPT = False
KILL = False

In this way, HTCondor jobs always run and can never be kicked off from activity on the machine. However, because
they would run with the low priority, interactive response on the machines will not suffer. A machine user probably
would not notice that HTCondor was running the jobs, assuming you had enough free memory for the HTCondor jobs
such that there was little swapping.

The RANK Expression

A machine may be configured to prefer certain jobs over others using the expression. It is an expression, like any other
in a machine ClassAd. It can reference any attribute found in either the machine ClassAd or a job ClassAd. The most
common use of this expression is likely to configure a machine to prefer to run jobs from the owner of that machine,
or by extension, a group of machines to prefer jobs from the owners of those machines.

For example, imagine there is a small research group with 4 machines called tenorsax, piano, bass, and drums. These
machines are owned by the 4 users coltrane, tyner, garrison, and jones, respectively.

Assume that there is a large HTCondor pool in the department, and this small research group has spent a lot of money
on really fast machines for the group. As part of the larger pool, but to implement a policy that gives priority on the
fast machines to anyone in the small research group, set the expression on the machines to reference the attribute and
prefer requests where that attribute matches one of the people in the group as in

RANK = Owner == "coltrane" || Owner == "tyner" \
|| Owner == "garrison" || Owner == "jones"

The expression is evaluated as a floating point number. However, like in C, boolean expressions evaluate to either 1 or
0 depending on if they are True or False. So, if this expression evaluated to 1, because the remote job was owned by
one of the preferred users, it would be a larger value than any other user for whom the expression would evaluate to 0.

A more complex expression has the same basic set up, where anyone from the group has priority on their fast machines.
Its difference is that the machine owner has better priority on their own machine. To set this up for Garrison’s machine
(bass), place the following entry in the local configuration file of machine bass:

RANK = (Owner == "coltrane") + (Owner == "tyner") \
+ ((Owner == "garrison") * 10) + (Owner == "jones")

Note that the parentheses in this expression are important, because the + operator has higher default precedence than
==.

The use of + instead of || allows us to distinguish which terms matched and which ones did not. If anyone not in the
research group quartet was running a job on the machine called bass, the would evaluate numerically to 0, since none
of the boolean terms evaluates to 1, and 0+0+0+0 still equals 0.

Suppose Elvin Jones submits a job. His job would match the bass machine, assuming evaluated to True for him at that
time. The would numerically evaluate to 1. Therefore, the Elvin Jones job could preempt the HTCondor job currently
running. Further assume that later Jimmy Garrison submits a job. The evaluates to 10 on machine bass, since the
boolean that matches gets multiplied by 10. Due to this, Jimmy Garrison’s job could preempt Elvin Jones’ job on the
bass machine where Jimmy Garrison’s jobs are preferred.

The expression is not required to reference the of the jobs. Perhaps there is one machine with an enormous amount
of memory, and others with not much at all. Perhaps configure this large-memory machine to prefer to run jobs with
larger memory requirements:

5.5. Configuration for Execution Points 313

HTCondor Manual, Release 23.6.2

RANK = ImageSize

That’s all there is to it. The bigger the job, the more this machine wants to run it. It is an altruistic preference, always
servicing the largest of jobs, no matter who submitted them. A little less altruistic is the on Coltrane’s machine that
prefers John Coltrane’s jobs over those with the largest :

RANK = (Owner == "coltrane" * 1000000000000) + Imagesize

This does not work if a job is submitted with an image size of more 1012 Kbytes. However, with that size, this expression
preferring that job would not be HTCondor’s only problem!

Machine States

A machine is assigned a state by HTCondor. The state depends on whether or not the machine is available to run
HTCondor jobs, and if so, what point in the negotiations has been reached. The possible states are

Owner
The machine is being used by the machine owner, and/or is not available to run HTCondor jobs.
When the machine first starts up, it begins in this state.

Unclaimed
The machine is available to run HTCondor jobs, but it is not currently doing so.

Matched
The machine is available to run jobs, and it has been matched by the negotiator with a specific schedd.
That schedd just has not yet claimed this machine. In this state, the machine is unavailable for further
matches.

Claimed
The machine has been claimed by a schedd.

Preempting
The machine was claimed by a schedd, but is now preempting that claim for one of the following
reasons.

1. the owner of the machine came back

2. another user with higher priority has jobs waiting to run

3. another request that this resource would rather serve was found

Backfill
The machine is running a backfill computation while waiting for either the machine owner to come
back or to be matched with an HTCondor job. This state is only entered if the machine is specifically
configured to enable backfill jobs.

Drained
The machine is not running jobs, because it is being drained. One reason a machine may be drained
is to consolidate resources that have been divided in a partitionable slot. Consolidating the resources
gives large jobs a chance to run.

Fig. 6: Machine states and the possible transitions between the states

Each transition is labeled with a letter. The cause of each transition is described below.

314 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

• Transitions out of the Owner state

A
The machine switches from Owner to Unclaimed whenever the expression no longer locally eval-
uates to FALSE. This indicates that the machine is potentially available to run an HTCondor job.

N
The machine switches from the Owner to the Drained state whenever draining of the machine is
initiated, for example by or by the condor_defrag daemon.

• Transitions out of the Unclaimed state

B
The machine switches from Unclaimed back to Owner whenever the expression locally evaluates
to FALSE. This indicates that the machine is unavailable to run an HTCondor job and is in use
by the resource owner.

C
The transition from Unclaimed to Matched happens whenever the condor_negotiator matches
this resource with an HTCondor job.

D
The transition from Unclaimed directly to Claimed also happens if the condor_negotiator
matches this resource with an HTCondor job. In this case the condor_schedd receives the match
and initiates the claiming protocol with the machine before the condor_startd receives the match
notification from the condor_negotiator.

E
The transition from Unclaimed to Backfill happens if the machine is configured to run backfill
computations (see the Configuring HTCondor for Running Backfill Jobs section) and the expres-
sion evaluates to TRUE.

P
The transition from Unclaimed to Drained happens if draining of the machine is initiated, for
example by or by the condor_defrag daemon.

• Transitions out of the Matched state

F
The machine moves from Matched to Owner if either the expression locally evaluates to FALSE,
or if the timer expires. This timeout is used to ensure that if a machine is matched with a given
condor_schedd, but that condor_schedd does not contact the condor_startd to claim it, that the
machine will give up on the match and become available to be matched again. In this case,
since the expression does not locally evaluate to FALSE, as soon as transition F is complete, the
machine will immediately enter the Unclaimed state again (via transition A). The machine might
also go from Matched to Owner if the condor_schedd attempts to perform the claiming protocol
but encounters some sort of error. Finally, the machine will move into the Owner state if the
condor_startd receives a command while it is in the Matched state.

G
The transition from Matched to Claimed occurs when the condor_schedd successfully completes
the claiming protocol with the condor_startd.

• Transitions out of the Claimed state

H
From the Claimed state, the only possible destination is the Preempting state. This transition can
be caused by many reasons:

– The condor_schedd that has claimed the machine has no more work to perform and releases
the claim

5.5. Configuration for Execution Points 315

HTCondor Manual, Release 23.6.2

– The expression evaluates to True (which usually means the resource owner has started using
the machine again and is now using the keyboard, mouse, CPU, etc.)

– The condor_startd receives a command

– The condor_startd is told to shutdown (either via a signal or a command)

– The resource is matched to a job with a better priority (either a better user priority, or one
where the machine rank is higher)

• Transitions out of the Preempting state

I
The resource will move from Preempting back to Claimed if the resource was matched to a job
with a better priority.

J
The resource will move from Preempting to Owner if the expression had evaluated to TRUE, if
was used, or if the expression locally evaluates to FALSE when the condor_startd has finished
evicting whatever job it was running when it entered the Preempting state.

• Transitions out of the Backfill state

K
The resource will move from Backfill to Owner for the following reasons:

– The expression evaluates to TRUE

– The condor_startd receives a command

– The condor_startd is being shutdown

L
The transition from Backfill to Matched occurs whenever a resource running a backfill compu-
tation is matched with a condor_schedd that wants to run an HTCondor job.

M
The transition from Backfill directly to Claimed is similar to the transition from Unclaimed di-
rectly to Claimed. It only occurs if the condor_schedd completes the claiming protocol before
the condor_startd receives the match notification from the condor_negotiator.

• Transitions out of the Drained state

O
The transition from Drained to Owner state happens when draining is finalized or is canceled.
When a draining request is made, the request either asks for the machine to stay in a Drained state
until canceled, or it asks for draining to be automatically finalized once all slots have finished
draining.

The Claimed State and Leases

When a condor_schedd claims a condor_startd, there is a claim lease. So long as the keep alive updates from the
condor_schedd to the condor_startd continue to arrive, the lease is reset. If the lease duration passes with no updates,
the condor_startd drops the claim and evicts any jobs the condor_schedd sent over.

The alive interval is the amount of time between, or the frequency at which the condor_schedd sends keep alive updates
to all condor_schedd daemons. An alive update resets the claim lease at the condor_startd. Updates are UDP packets.

Initially, as when the condor_schedd starts up, the alive interval starts at the value set by the configuration variable . It
may be modified when a job is started. The job’s ClassAd attribute is checked. If the value of JobLeaseDuration/3

316 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

is less than the current alive interval, then the alive interval is set to either this lower value or the imposed lowest limit
on the alive interval of 10 seconds. Thus, the alive interval starts at and goes down, never up.

If a claim lease expires, the condor_startd will drop the claim. The length of the claim lease is the job’s ClassAd
attribute . defaults to 40 minutes time, except when explicitly set within the job’s submit description file. If is explicitly
set to 0, or it is not set as may be the case for a Web Services job that does not define the attribute, then is given the
Undefined value. Further, when undefined, the claim lease duration is calculated with MAX_CLAIM_ALIVES_MISSED *
alive interval. The alive interval is the current value, as sent by the condor_schedd. If the condor_schedd reduces
the current alive interval, it does not update the condor_startd.

Machine Activities

Within some machine states, activities of the machine are defined. The state has meaning regardless of activity. Dif-
ferences between activities are significant. Therefore, a “state/activity” pair describes a machine. The following list
describes all the possible state/activity pairs.

• Owner

Idle
This is the only activity for Owner state. As far as HTCondor is concerned the machine is Idle,
since it is not doing anything for HTCondor.

• Unclaimed

Idle
This is the normal activity of Unclaimed machines. The machine is still Idle in that the machine
owner is willing to let HTCondor jobs run, but HTCondor is not using the machine for anything.

Benchmarking
The machine is running benchmarks to determine the speed on this machine. This activity only
occurs in the Unclaimed state. How often the activity occurs is determined by the expression.

• Matched

Idle
When Matched, the machine is still Idle to HTCondor.

• Claimed

Idle
In this activity, the machine has been claimed, but the schedd that claimed it has yet to activate
the claim by requesting a condor_starter to be spawned to service a job. The machine returns to
this state (usually briefly) when jobs (and therefore condor_starter) finish.

Busy
Once a condor_starter has been started and the claim is active, the machine moves to the Busy
activity to signify that it is doing something as far as HTCondor is concerned.

Suspended
If the job is suspended by HTCondor, the machine goes into the Suspended activity. The match
between the schedd and machine has not been broken (the claim is still valid), but the job is not
making any progress and HTCondor is no longer generating a load on the machine.

Retiring
When an active claim is about to be preempted for any reason, it enters retirement, while it waits
for the current job to finish. The expression determines how long to wait (counting since the

5.5. Configuration for Execution Points 317

HTCondor Manual, Release 23.6.2

time the job started). Once the job finishes or the retirement time expires, the Preempting state
is entered.

• Preempting The Preempting state is used for evicting an HTCondor job from a given machine. When the machine
enters the Preempting state, it checks the expression to determine its activity.

Vacating
In the Vacating activity, the job is given a chance to exit cleanly. This may include uploading
intermediate files. As soon as the job finishes exiting, the machine moves into either the Owner
state or the Claimed state, depending on the reason for its preemption.

Killing
Killing means that the machine has requested the running job to exit the machine immediately.

• Backfill

Idle
The machine is configured to run backfill jobs and is ready to do so, but it has not yet had a chance
to spawn a backfill manager (for example, the BOINC client).

Busy
The machine is performing a backfill computation.

Killing
The machine was running a backfill computation, but it is now killing the job to either return
resources to the machine owner, or to make room for a regular HTCondor job.

• Drained

Idle
All slots have been drained.

Retiring
This slot has been drained. It is waiting for other slots to finish draining.

The following diagram gives the overall view of all machine states and activities and shows the possible transitions from
one to another within the HTCondor system. Each transition is labeled with a number on the diagram, and transition
numbers referred to in this manual will be bold.

Note: The “Matched” state and the “Suspended” activity have been removed from this diagram in order to simplify
the number of shown transitions. The Matched state is not entered by default, and Suspended is rarely used.

Fig. 7: States and Activities of the condor_startd

Various expressions are used to determine when and if many of these state and activity transitions occur. Other transi-
tions are initiated by parts of the HTCondor protocol (such as when the condor_negotiator matches a machine with a
schedd). The following section describes the conditions that lead to the various state and activity transitions.

318 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

State and Activity Transitions

This section traces through all possible state and activity transitions within a machine and describes the conditions
under which each one occurs. Whenever a transition occurs, HTCondor records when the machine entered its new
activity and/or new state. These times are often used to write expressions that determine when further transitions
occurred. For example, enter the Killing activity if a machine has been in the Vacating activity longer than a specified
amount of time.

Owner State

When the startd is first spawned, the machine it represents enters the Owner state. The machine remains in the Owner
state while the expression evaluates to TRUE. If the expression evaluates to FALSE, then the machine transitions to the
Unclaimed state. The default value of is FALSE, which is intended for dedicated resources. But when the POLICY :
Desktop configuration template is used, the expression is optimized for a shared resource

START =?= FALSE

So, the machine will remain in the Owner state as long as the expression locally evaluates to FALSE. The condor_startd
Policy Configuration section provides more detail on the expression. If the locally evaluates to TRUE or cannot be lo-
cally evaluated (it evaluates to UNDEFINED), transition 1 occurs and the machine enters the Unclaimed state. The
expression is locally evaluated by the machine, and should not reference job ClassAd attributes, which would be UN-
DEFINED.

The Owner state represents a resource that is in use by its interactive owner (for example, if the keyboard is being used).
The Unclaimed state represents a resource that is neither in use by its interactive user, nor the HTCondor system. From
HTCondor’s point of view, there is little difference between the Owner and Unclaimed states. In both cases, the resource
is not currently in use by the HTCondor system. However, if a job matches the resource’s expression, the resource is
available to run a job, regardless of if it is in the Owner or Unclaimed state. The only differences between the two states
are how the resource shows up in and other reporting tools, and the fact that HTCondor will not run benchmarking
on a resource in the Owner state. As long as the expression is TRUE, the machine is in the Owner State. When the
expression is FALSE, the machine goes into the Unclaimed State.

Here is an example that assumes that the POLICY : Desktop configuration template is in use. If the expression is

START = KeyboardIdle > 15 * $(MINUTE) && Owner == "coltrane"

and if is 34 seconds, then the machine would remain in the Owner state. Owner is undefined, and anything && FALSE
is FALSE.

If, however, the expression is

START = KeyboardIdle > 15 * $(MINUTE) || Owner == "coltrane"

and is 34 seconds, then the machine leaves the Owner state and becomes Unclaimed. This is because FALSE || UNDE-
FINED is UNDEFINED. So, while this machine is not available to just anybody, if user coltrane has jobs submitted, the
machine is willing to run them. Any other user’s jobs have to wait until exceeds 15 minutes. However, since coltrane
might claim this resource, but has not yet, the machine goes to the Unclaimed state.

While in the Owner state, the startd polls the status of the machine every to see if anything has changed that would
lead it to a different state. This minimizes the impact on the Owner while the Owner is using the machine. Frequently
waking up, computing load averages, checking the access times on files, computing free swap space take time, and
there is nothing time critical that the startd needs to be sure to notice as soon as it happens. If the expression evaluates
to TRUE and five minutes pass before the startd notices, that’s a drop in the bucket of high-throughput computing.

5.5. Configuration for Execution Points 319

HTCondor Manual, Release 23.6.2

The machine can only transition to the Unclaimed state from the Owner state. It does so when the expression no
longer evaluates to TRUE. With the POLICY : Desktop configuration template, that happens when no longer locally
evaluates to FALSE.

Whenever the machine is not actively running a job, it will transition back to the Owner state if evaluates to TRUE.
Once a job is started, the value of does not matter; the job either runs to completion or is preempted. Therefore, you
must configure the preemption policy if you want to transition back to the Owner state from Claimed Busy.

If draining of the machine is initiated while in the Owner state, the slot transitions to Drained/Retiring (transition 36).

Unclaimed State

If the expression becomes TRUE, then the machine returns to the Owner state. If the expression becomes FALSE, then
the machine remains in the Unclaimed state. The default value of is FALSE (never enter Owner state). If the POLICY
: Desktop configuration template is used, then the expression is changed to

START =?= FALSE

so that while in the Unclaimed state, if the expression locally evaluates to FALSE, the machine returns to the Owner
state by transition 2.

When in the Unclaimed state, the expression is relevant. If evaluates to TRUE while the machine is in the Unclaimed
state, then the machine will transition from the Idle activity to the Benchmarking activity (transition 3) and perform
benchmarks to determine and . When the benchmarks complete, the machine returns to the Idle activity (transition 4).

The startd automatically inserts an attribute, LastBenchmark, whenever it runs benchmarks, so commonly
RunBenchmarks is defined in terms of this attribute, for example:

RunBenchmarks = (time() - LastBenchmark) >= (4 * $(HOUR))

This macro calculates the time since the last benchmark, so when this time exceeds 4 hours, we run the benchmarks
again. The startd keeps a weighted average of these benchmarking results to try to get the most accurate numbers
possible. This is why it is desirable for the startd to run them more than once in its lifetime.

Note: LastBenchmark is initialized to 0 before benchmarks have ever been run. To have the condor_startd run
benchmarks as soon as the machine is Unclaimed (if it has not done so already), include a term using LastBenchmark
as in the example above.

Note: If is defined and set to something other than FALSE, the startd will automatically run one set of benchmarks
when it first starts up. To disable benchmarks, both at startup and at any time thereafter, set to FALSE or comment it
out of the configuration file.

From the Unclaimed state, the machine can go to four other possible states: Owner (transition 2), Backfill/Idle, Matched,
or Claimed/Idle.

Once the condor_negotiator matches an Unclaimed machine with a requester at a given schedd, the negotiator sends a
command to both parties, notifying them of the match. If the schedd receives that notification and initiates the claiming
procedure with the machine before the negotiator’s message gets to the machine, the Match state is skipped, and the
machine goes directly to the Claimed/Idle state (transition 5). However, normally the machine will enter the Matched
state (transition 6), even if it is only for a brief period of time.

320 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

If the machine has been configured to perform backfill jobs (see the Configuring HTCondor for Running Backfill Jobs
section), while it is in Unclaimed/Idle it will evaluate the expression. Once evaluates to TRUE, the machine will enter
the Backfill/Idle state (transition 7) to begin the process of running backfill jobs.

If draining of the machine is initiated while in the Unclaimed state, the slot transitions to Drained/Retiring (transition
37).

Matched State

The Matched state is not very interesting to HTCondor. Noteworthy in this state is that the machine lies about its
expression while in this state and says that Requirements are False to prevent being matched again before it has
been claimed. Also interesting is that the startd starts a timer to make sure it does not stay in the Matched state too
long. The timer is set with the configuration file macro. It is specified in seconds and defaults to 120 (2 minutes). If
the schedd that was matched with this machine does not claim it within this period of time, the machine gives up, and
goes back into the Owner state via transition 8. It will probably leave the Owner state right away for the Unclaimed
state again and wait for another match.

At any time while the machine is in the Matched state, if the expression locally evaluates to FALSE, the machine enters
the Owner state directly (transition 8).

If the schedd that was matched with the machine claims it before the MATCH_TIMEOUT expires, the machine goes into
the Claimed/Idle state (transition 9).

Claimed State

The Claimed state is certainly the most complex state. It has the most possible activities and the most expressions that
determine its next activities. In addition, the command affects the machine when it is in the Claimed state.

In general, there are two sets of expressions that might take effect, depending on the universe of the job running on the
claim: vanilla, and all others. The normal expressions look like the following:

WANT_SUSPEND = True
WANT_VACATE = $(ActivationTimer) > 10 * $(MINUTE)
SUSPEND = $(KeyboardBusy) || $(CPUBusy)
...

The vanilla expressions have the string”_VANILLA” appended to their names. For example:

WANT_SUSPEND_VANILLA = True
WANT_VACATE_VANILLA = True
SUSPEND_VANILLA = $(KeyboardBusy) || $(CPUBusy)
...

Without specific vanilla versions, the normal versions will be used for all jobs, including vanilla jobs. In this manual,
the normal expressions are referenced.

While Claimed, the takes effect, and the startd polls the machine much more frequently to evaluate its state.

If the machine owner starts typing on the console again, it is best to notice this as soon as possible to be able to start
doing whatever the machine owner wants at that point. For multi-core machines, if any slot is in the Claimed state, the
startd polls the machine frequently. If already polling one slot, it does not cost much to evaluate the state of all the slots
at the same time.

5.5. Configuration for Execution Points 321

HTCondor Manual, Release 23.6.2

There are a variety of events that may cause the startd to try to get rid of or temporarily suspend a running job. Activity
on the machine’s console, load from other jobs, or shutdown of the startd via an administrative command are all possible
sources of interference. Another one is the appearance of a higher priority claim to the machine by a different HTCondor
user.

Depending on the configuration, the startd may respond quite differently to activity on the machine, such as keyboard
activity or demand for the cpu from processes that are not managed by HTCondor. The startd can be configured to
completely ignore such activity or to suspend the job or even to kill it. A standard configuration for a desktop machine
might be to go through successive levels of getting the job out of the way. The first and least costly to the job is
suspending it. If suspending the job for a short while does not satisfy the machine owner (the owner is still using
the machine after a specific period of time), the startd moves on to vacating the job. Vanilla jobs are sent a soft kill
signal so that they can gracefully shut down if necessary; the default is SIGTERM. If vacating does not satisfy the
machine owner (usually because it is taking too long and the owner wants their machine back now), the final, most
drastic stage is reached: killing. Killing is a quick death to the job, using a hard-kill signal that cannot be intercepted
by the application. For vanilla jobs that do no special signal handling, vacating and killing are equivalent.

The expression determines if the machine will evaluate the expression to consider entering the Suspended activity. The
expression determines what happens when the machine enters the Preempting state. It will go to the Vacating activity
or directly to Killing. If one or both of these expressions evaluates to FALSE, the machine will skip that stage of getting
rid of the job and proceed directly to the more drastic stages.

When the machine first enters the Claimed state, it goes to the Idle activity. From there, it has two options. It can enter
the Preempting state via transition 10 (if a arrives, or if the expression locally evaluates to FALSE), or it can enter the
Busy activity (transition 11) if the schedd that has claimed the machine decides to activate the claim and start a job.

From Claimed/Busy, the machine can transition to three other state/activity pairs. The startd evaluates the expression
to decide which other expressions to evaluate. If is TRUE, then the startd evaluates the expression. If is any value
other than TRUE, then the startd will evaluate the expression and skip the Suspended activity entirely. By transition,
the possible state/activity destinations from Claimed/Busy:

Claimed/Idle
If the starter that is serving a given job exits (for example because the jobs completes), the machine will go to
Claimed/Idle (transition 12). Claimed/Retiring If is FALSE and the expression is True, the machine enters the
Retiring activity (transition 13). From there, it waits for a configurable amount of time for the job to finish before
moving on to preemption.

Another reason the machine would go from Claimed/Busy to Claimed/Retiring is if the condor_negotiator
matched the machine with a “better” match. This better match could either be from the machine’s perspec-
tive using the startd expression, or it could be from the negotiator’s perspective due to a job with a higher user
priority.

Another case resulting in a transition to Claimed/Retiring is when the startd is being shut down. The only
exception is a “fast” shutdown, which bypasses retirement completely.

Claimed/Suspended
If both the and expressions evaluate to TRUE, the machine suspends the job (transition 14).

From the Claimed/Suspended state, the following transitions may occur:

Claimed/Busy
If the expression evaluates to TRUE, the machine resumes the job and enters the Claimed/Busy state (transition
15) or the Claimed/Retiring state (transition 16), depending on whether the claim has been preempted.

Claimed/Retiring
If the expression is TRUE, the machine will enter the Claimed/Retiring activity (transition 16).

Preempting
If the claim is in suspended retirement and the retirement time expires, the job enters the Preempting state (tran-
sition 17). This is only possible if MaxJobRetirementTime decreases during the suspension.

322 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

For the Claimed/Retiring state, the following transitions may occur:

Preempting
If the job finishes or the job’s run time exceeds the value defined for the job ClassAd attribute
MaxJobRetirementTime, the Preempting state is entered (transition 18). The run time is computed from the
time when the job was started by the startd minus any suspension time. When retiring due to condor_startd
daemon shutdown or restart, it is possible for the administrator to issue a peaceful shutdown command, which
causes MaxJobRetirementTime to effectively be infinite, avoiding any killing of jobs. It is also possible for the
administrator to issue a fast shutdown command, which causes MaxJobRetirementTime to be effectively 0.

Claimed/Busy
If the startd was retiring because of a preempting claim only and the preempting claim goes away, the normal
Claimed/Busy state is resumed (transition 19). If instead the retirement is due to owner activity () or the startd
is being shut down, no unretirement is possible.

Claimed/Suspended
In exactly the same way that suspension may happen from the Claimed/Busy state, it may also happen during the
Claimed/Retiring state (transition 20). In this case, when the job continues from suspension, it moves back into
Claimed/Retiring (transition 16) instead of Claimed/Busy (transition 15).

Preempting State

The Preempting state is less complex than the Claimed state. There are two activities. Depending on the value of , a
machine will be in the Vacating activity (if True) or the Killing activity (if False).

While in the Preempting state (regardless of activity) the machine advertises its Requirements expression as False to
signify that it is not available for further matches, either because it is about to transition to the Owner state, or because it
has already been matched with one preempting match, and further preempting matches are disallowed until the machine
has been claimed by the new match.

The main function of the Preempting state is to get rid of the condor_starter associated with the resource. If the
condor_starter associated with a given claim exits while the machine is still in the Vacating activity, then the job
successfully completed a graceful shutdown. For other jobs, this means the application was given an opportunity to do
a graceful shutdown, by intercepting the soft kill signal.

If the machine is in the Vacating activity, it keeps evaluating the expression. As soon as this expression evaluates to
TRUE, the machine enters the Killing activity (transition 21). If the Vacating activity lasts for as long as the maximum
vacating time, then the machine also enters the Killing activity. The maximum vacating time is determined by the
configuration variable . This may be adjusted by the setting of the job ClassAd attribute .

When the starter exits, or if there was no starter running when the machine enters the Preempting state (transition 10),
the other purpose of the Preempting state is completed: notifying the schedd that had claimed this machine that the
claim is broken.

At this point, the machine enters either the Owner state by transition 22 (if the job was preempted because the machine
owner came back) or the Claimed/Idle state by transition 23 (if the job was preempted because a better match was
found).

If the machine enters the Killing activity, (because either was False or the expression evaluated to True), it attempts
to force the condor_starter to immediately kill the underlying HTCondor job. Once the machine has begun to hard
kill the HTCondor job, the condor_startd starts a timer, the length of which is defined by the macro (condor_startd
Configuration File Macros). This macro is defined in seconds and defaults to 30. If this timer expires and the machine
is still in the Killing activity, something has gone seriously wrong with the condor_starter and the startd tries to vacate
the job immediately by sending SIGKILL to all of the condor_starter ‘s children, and then to the condor_starter itself.

5.5. Configuration for Execution Points 323

HTCondor Manual, Release 23.6.2

Once the condor_starter has killed off all the processes associated with the job and exited, and once the schedd that
had claimed the machine is notified that the claim is broken, the machine will leave the Preempting/Killing state. If
the job was preempted because a better match was found, the machine will enter Claimed/Idle (transition 24). If the
preemption was caused by the machine owner (the expression evaluated to TRUE, was used, etc), the machine will
enter the Owner state (transition 25).

Backfill State

The Backfill state is used whenever the machine is performing low priority background tasks to keep itself busy. For
more information about backfill support in HTCondor, see the Configuring HTCondor for Running Backfill Jobs section.
This state is only used if the machine has been configured to enable backfill computation, if a specific backfill manager
has been installed and configured, and if the machine is otherwise idle (not being used interactively or for regular
HTCondor computations). If the machine meets all these requirements, and the expression evaluates to TRUE, the
machine will move from the Unclaimed/Idle state to Backfill/Idle (transition 7).

Once a machine is in Backfill/Idle, it will immediately attempt to spawn whatever backfill manager it has been con-
figured to use (currently, only the BOINC client is supported as a backfill manager in HTCondor). Once the BOINC
client is running, the machine will enter Backfill/Busy (transition 26) to indicate that it is now performing a backfill
computation.

Note: On multi-core machines, the condor_startd will only spawn a single instance of the BOINC client, even if
multiple slots are available to run backfill jobs. Therefore, only the first machine to enter Backfill/Idle will cause a
copy of the BOINC client to start running. If a given slot on a multi-core enters the Backfill state and a BOINC client
is already running under this condor_startd, the slot will immediately enter Backfill/Busy without waiting to spawn
another copy of the BOINC client.

If the BOINC client ever exits on its own (which normally wouldn’t happen), the machine will go back to Backfill/Idle
(transition 27) where it will immediately attempt to respawn the BOINC client (and return to Backfill/Busy via transition
26).

As the BOINC client is running a backfill computation, a number of events can occur that will drive the machine out of
the Backfill state. The machine can get matched or claimed for an HTCondor job, interactive users can start using the
machine again, the machine might be evicted with , or the condor_startd might be shutdown. All of these events cause
the condor_startd to kill the BOINC client and all its descendants, and enter the Backfill/Killing state (transition 28).

Once the BOINC client and all its children have exited the system, the machine will enter the Backfill/Idle state to
indicate that the BOINC client is now gone (transition 29). As soon as it enters Backfill/Idle after the BOINC client
exits, the machine will go into another state, depending on what caused the BOINC client to be killed in the first place.

If the expression evaluates to TRUE while a machine is in Backfill/Busy, after the BOINC client is gone, the machine
will go back into the Owner/Idle state (transition 30). The machine will also return to the Owner/Idle state after the
BOINC client exits if was used, or if the condor_startd is being shutdown.

When a machine running backfill jobs is matched with a requester that wants to run an HTCondor job, the machine
will either enter the Matched state, or go directly into Claimed/Idle. As with the case of a machine in Unclaimed/Idle
(described above), the condor_negotiator informs both the condor_startd and the condor_schedd of the match, and
the exact state transitions at the machine depend on what order the various entities initiate communication with each
other. If the condor_schedd is notified of the match and sends a request to claim the condor_startd before the con-
dor_negotiator has a chance to notify the condor_startd, once the BOINC client exits, the machine will immediately
enter Claimed/Idle (transition 31). Normally, the notification from the condor_negotiator will reach the condor_startd
before the condor_schedd attempts to claim it. In this case, once the BOINC client exits, the machine will enter
Matched/Idle (transition 32).

324 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Drained State

The Drained state is used when the machine is being drained, for example by or by the condor_defrag daemon, and the
slot has finished running jobs and is no longer willing to run new jobs.

Slots initially enter the Drained/Retiring state. Once all slots have been drained, the slots transition to the Idle activity
(transition 33).

If draining is finalized or canceled, the slot transitions to Owner/Idle (transitions 34 and 35).

State/Activity Transition Expression Summary

This section is a summary of the information from the previous sections. It serves as a quick reference.

When TRUE, the machine is willing to spawn a remote HTCondor job.

While in the Unclaimed state, the machine will run benchmarks whenever TRUE.

If the machine has been in the Matched state longer than this value, it will transition to the Owner state.

If True, the machine evaluates the expression to see if it should transition to the Suspended activity. If any value
other than True, the machine will look at the expression.

If is True, and the machine is in the Claimed/Busy state, it enters the Suspended activity if is True.

If the machine is in the Claimed/Suspended state, it enter the Busy activity if is True.

If the machine is either in the Claimed/Suspended activity, or is in the Claimed/Busy activity and is FALSE, the
machine enters the Claimed/Retiring state whenever is TRUE.

This expression specifies the number of seconds after which a claim will stop accepting additional jobs. This
configuration macro is fully documented here: condor_startd Configuration File Macros.

When the machine enters the Preempting/Vacating state, this expression specifies the maximum time in seconds
that the condor_startd will wait for the job to finish. The job may adjust the wait time by setting . If the job’s
setting is less than the machine’s, the job’s is used. If the job’s setting is larger than the machine’s, the result
depends on whether the job has any excess retirement time. If the job has more retirement time left than the
machine’s maximum vacate time setting, then retirement time will be converted into vacating time, up to the
amount of . Once the vacating time expires, the job is hard-killed. The expression may be used to abort the
graceful shutdown of the job at any time.

If the machine is in the Claimed/Retiring state, jobs which have run for less than the number of seconds specified
by this expression will not be hard-killed. The condor_startd will wait for the job to finish or to exceed this amount
of time, whichever comes sooner. Time spent in suspension does not count against the job. If the job vacating
policy grants the job X seconds of vacating time, a preempted job will be soft-killed X seconds before the end of
its retirement time, so that hard-killing of the job will not happen until the end of the retirement time if the job

5.5. Configuration for Execution Points 325

HTCondor Manual, Release 23.6.2

does not finish shutting down before then. The job may provide its own expression for MaxJobRetirementTime,
but this can only be used to take less than the time granted by the condor_startd, never more. For convenience,
nice_user jobs are submitted with a default retirement time of 0, so they will never wait in retirement unless the
user overrides the default.

The machine enters the Preempting state with the goal of finishing shutting down the job by the end of the retire-
ment time. If the job vacating policy grants the job X seconds of vacating time, the transition to the Preempting
state will happen X seconds before the end of the retirement time, so that the hard-killing of the job will not
happen until the end of the retirement time, if the job does not finish shutting down before then.

This expression is evaluated in the context of the job ClassAd, so it may refer to attributes of the current job as
well as machine attributes.

By default the condor_negotiator will not match jobs to a slot with retirement time remaining. This behavior is
controlled by .

This is checked only when the expression is True and the machine enters the Preempting state. If is True, the
machine enters the Vacating activity. If it is False, the machine will proceed directly to the Killing activity.

If the machine is in the Preempting/Vacating state, it enters Preempting/Killing whenever is True.

If the machine is in the Preempting/Killing state for longer than seconds, the condor_startd sends a SIGKILL to
the condor_starter and all its children to try to kill the job as quickly as possible.

If this expression evaluates to a higher number for a pending resource request than it does for the current request,
the machine may preempt the current request (enters the Preempting/Vacating state). When the preemption is
complete, the machine enters the Claimed/Idle state with the new resource request claiming it.

When TRUE, if the machine is otherwise idle, it will enter the Backfill state and spawn a backfill computation
(using BOINC).

When TRUE, if the machine is currently running a backfill computation, it will kill the BOINC client and return
to the Owner/Idle state.

5.5.5 Configuring HTCondor for Running Backfill Jobs

HTCondor can be configured to run backfill jobs whenever the condor_startd has no other work to perform. These
jobs are considered the lowest possible priority, but when machines would otherwise be idle, the resources can be put
to good use.

Currently, HTCondor only supports using the Berkeley Open Infrastructure for Network Computing (BOINC) to pro-
vide the backfill jobs. More information about BOINC is available at http://boinc.berkeley.edu.

The rest of this section provides an overview of how backfill jobs work in HTCondor, details for configuring the policy
for when backfill jobs are started or killed, and details on how to configure HTCondor to spawn the BOINC client to
perform the work.

326 Chapter 5. Administrators’ Manual

http://boinc.berkeley.edu

HTCondor Manual, Release 23.6.2

Overview of Backfill jobs in HTCondor

Whenever a resource controlled by HTCondor is in the Unclaimed/Idle state, it is totally idle; neither the interactive
user nor an HTCondor job is performing any work. Machines in this state can be configured to enter the Backfill state,
which allows the resource to attempt a background computation to keep itself busy until other work arrives (either a
user returning to use the machine interactively, or a normal HTCondor job). Once a resource enters the Backfill state,
the condor_startd will attempt to spawn another program, called a backfill client, to launch and manage the backfill
computation. When other work arrives, the condor_startd will kill the backfill client and clean up any processes it
has spawned, freeing the machine resources for the new, higher priority task. More details about the different states
an HTCondor resource can enter and all of the possible transitions between them are described in Configuration for
Execution Points, especially the condor_startd Policy Configuration and condor_schedd Policy Configuration sections.

At this point, the only backfill system supported by HTCondor is BOINC. The condor_startd has the ability to start
and stop the BOINC client program at the appropriate times, but otherwise provides no additional services to configure
the BOINC computations themselves. Future versions of HTCondor might provide additional functionality to make it
easier to manage BOINC computations from within HTCondor. For now, the BOINC client must be manually installed
and configured outside of HTCondor on each backfill-enabled machine.

Defining the Backfill Policy

There are a small set of policy expressions that determine if a condor_startd will attempt to spawn a backfill client at
all, and if so, to control the transitions in to and out of the Backfill state. This section briefly lists these expressions.
More detail can be found in condor_startd Configuration File Macros.

A boolean value to determine if any backfill functionality should be used. The default value is False.

A string that defines what backfill system to use for spawning and managing backfill computations. Currently,
the only supported string is "BOINC".

A boolean expression to control if an HTCondor resource should start a backfill client. This expression is only
evaluated when the machine is in the Unclaimed/Idle state and the expression is True.

A boolean expression that is evaluated whenever an HTCondor resource is in the Backfill state. A value of
True indicates the machine should immediately kill the currently running backfill client and any other spawned
processes, and return to the Owner state.

The following example shows a possible configuration to enable backfill:

Turn on backfill functionality, and use BOINC
ENABLE_BACKFILL = TRUE
BACKFILL_SYSTEM = BOINC

Spawn a backfill job if we've been Unclaimed for more than 5
minutes
START_BACKFILL = $(StateTimer) > (5 * $(MINUTE))

Evict a backfill job if the machine is busy (based on keyboard
activity or cpu load)
EVICT_BACKFILL = $(MachineBusy)

5.5. Configuration for Execution Points 327

HTCondor Manual, Release 23.6.2

Overview of the BOINC system

The BOINC system is a distributed computing environment for solving large scale scientific problems. A detailed
explanation of this system is beyond the scope of this manual. Thorough documentation about BOINC is available at
their website: http://boinc.berkeley.edu. However, a brief overview is provided here for sites interested in using BOINC
with HTCondor to manage backfill jobs.

BOINC grew out of the relatively famous SETI@home computation, where volunteers installed special client software,
in the form of a screen saver, that contacted a centralized server to download work units. Each work unit contained a
set of radio telescope data and the computation tried to find patterns in the data, a sign of intelligent life elsewhere in
the universe, hence the name: “Search for Extra Terrestrial Intelligence at home”. BOINC is developed by the Space
Sciences Lab at the University of California, Berkeley, by the same people who created SETI@home. However, instead
of being tied to the specific radio telescope application, BOINC is a generic infrastructure by which many different kinds
of scientific computations can be solved. The current generation of SETI@home now runs on top of BOINC, along
with various physics, biology, climatology, and other applications.

The basic computational model for BOINC and the original SETI@home is the same: volunteers install BOINC client
software, called the boinc_client, which runs whenever the machine would otherwise be idle. However, the BOINC
installation on any given machine must be configured so that it knows what computations to work for instead of always
working on a hard coded computation. The BOINC terminology for a computation is a project. A given BOINC client
can be configured to donate all of its cycles to a single project, or to split the cycles between projects so that, on average,
the desired percentage of the computational power is allocated to each project. Once the boinc_client starts running,
it attempts to contact a centralized server for each project it has been configured to work for. The BOINC software
downloads the appropriate platform-specific application binary and some work units from the central server for each
project. Whenever the client software completes a given work unit, it once again attempts to connect to that project’s
central server to upload the results and download more work.

BOINC participants must register at the centralized server for each project they wish to donate cycles to. The process
produces a unique identifier so that the work performed by a given client can be credited to a specific user. BOINC
keeps track of the work units completed by each user, so that users providing the most cycles get the highest rankings,
and therefore, bragging rights.

Because BOINC already handles the problems of distributing the application binaries for each scientific computation,
the work units, and compiling the results, it is a perfect system for managing backfill computations in HTCondor.
Many of the applications that run on top of BOINC produce their own application-specific checkpoints, so even if the
boinc_client is killed, for example, when an HTCondor job arrives at a machine, or if the interactive user returns, an
entire work unit will not necessarily be lost.

Installing the BOINC client software

In HTCondor Version 23.6.2, the boinc_client must be manually downloaded, installed and configured outside of
HTCondor. Download the boinc_client executables at http://boinc.berkeley.edu/download.php.

Once the BOINC client software has been downloaded, the boinc_client binary should be placed in a location where
the HTCondor daemons can use it. The path will be specified with the HTCondor configuration variable .

Additionally, a local directory on each machine should be created where the BOINC system can write files it needs.
This directory must not be shared by multiple instances of the BOINC software. This is the same restriction as placed
on the spool or execute directories used by HTCondor. The location of this directory is defined by . The directory
must be writable by whatever user the boinc_client will run as. This user is either the same as the user the HTCondor
daemons are running as, if HTCondor is not running as root, or a user defined via the configuration variable.

Finally, HTCondor administrators wishing to use BOINC for backfill jobs must create accounts at the various BOINC
projects they want to donate cycles to. The details of this process vary from project to project. Beware that this step

328 Chapter 5. Administrators’ Manual

http://boinc.berkeley.edu
mailto:SETI@home
mailto:SETI@home
mailto:SETI@home
mailto:SETI@home
http://boinc.berkeley.edu/download.php

HTCondor Manual, Release 23.6.2

must be done manually, as the boinc_client can not automatically register a user at a given project, unlike the more
fancy GUI version of the BOINC client software which many users run as a screen saver. For example, to configure
machines to perform work for the Einstein@home project (a physics experiment run by the University of Wisconsin
at Milwaukee), HTCondor administrators should go to http://einstein.phys.uwm.edu/create_account_form.php, fill in
the web form, and generate a new Einstein@home identity. This identity takes the form of a project URL (such as
http://einstein.phys.uwm.edu) followed by an account key, which is a long string of letters and numbers that is used as
a unique identifier. This URL and account key will be needed when configuring HTCondor to use BOINC for backfill
computations.

Configuring the BOINC client under HTCondor

After the boinc_client has been installed on a given machine, the BOINC projects to join have been selected, and a
unique project account key has been created for each project, the HTCondor configuration needs to be modified.

Whenever the condor_startd decides to spawn the boinc_client to perform backfill computations, it will spawn a con-
dor_starter to directly launch and monitor the boinc_client program. This condor_starter is just like the one used to
invoke any other HTCondor jobs.

This condor_starter reads values out of the HTCondor configuration files to define the job it should run, as opposed
to getting these values from a job ClassAd in the case of a normal HTCondor job. All of the configuration variables
names for variables to control things such as the path to the boinc_client binary to use, the command-line arguments,
and the initial working directory, are prefixed with the string "BOINC_". Each of these variables is described as either
a required or an optional configuration variable.

Required configuration variables:

The full path and executable name of the boinc_client binary to use.

The full path to the local directory where BOINC should run.

The HTCondor universe used for running the boinc_client program. This must be set to vanilla for BOINC to
work under HTCondor.

What user the boinc_client program should be run as. This variable is only used if the HTCondor daemons are
running as root. In this case, the condor_starter must be told what user identity to switch to before invoking
the boinc_client. This can be any valid user on the local system, but it must have write permission in whatever
directory is specified by BOINC_InitialDir.

Optional configuration variables:

Command-line arguments that should be passed to the boinc_client program. For example, one way to specify
the BOINC project to join is to use the -attach_project argument to specify a project URL and account key. For
example:

BOINC_Arguments = --attach_project http://einstein.phys.uwm.edu [account_key]

Environment variables that should be set for the boinc_client.

Full path to the file where stdout from the boinc_client should be written. If this variable is not defined, stdout
will be discarded.

5.5. Configuration for Execution Points 329

mailto:Einstein@home
http://einstein.phys.uwm.edu/create_account_form.php
mailto:Einstein@home
http://einstein.phys.uwm.edu

HTCondor Manual, Release 23.6.2

Full path to the file where stderr from the boinc_client should be written. If this macro is not defined, stderr
will be discarded.

The following example shows one possible usage of these settings:

Define a shared macro that can be used to define other settings.
This directory must be manually created before attempting to run
any backfill jobs.
BOINC_HOME = $(LOCAL_DIR)/boinc

Path to the boinc_client to use, and required universe setting
BOINC_Executable = /usr/local/bin/boinc_client
BOINC_Universe = vanilla

What initial working directory should BOINC use?
BOINC_InitialDir = $(BOINC_HOME)

Where to place stdout and stderr
BOINC_Output = $(BOINC_HOME)/boinc.out
BOINC_Error = $(BOINC_HOME)/boinc.err

If the HTCondor daemons reading this configuration are running as root, an additional variable must be defined:

Specify the user that the boinc_client should run as:
BOINC_Owner = nobody

In this case, HTCondor would spawn the boinc_client as nobody, so the directory specified in $(BOINC_HOME) would
have to be writable by the nobody user.

A better choice would probably be to create a separate user account just for running BOINC jobs, so that the local
BOINC installation is not writable by other processes running as nobody. Alternatively, the BOINC_Owner could be
set to daemon.

Attaching to a specific BOINC project

There are a few ways to attach an HTCondor/BOINC installation to a given BOINC project:

• Use the -attach_project argument to the boinc_client program, defined via the BOINC_Arguments variable.
The boinc_client will only accept a single -attach_project argument, so this method can only be used to attach
to one project.

• The boinc_cmd command-line tool can perform various BOINC administrative tasks, including attaching to a
BOINC project. Using boinc_cmd, the appropriate argument to use is called -project_attach. Unfortunately,
the boinc_client must be running for boinc_cmd to work, so this method can only be used once the HTCondor
resource has entered the Backfill state and has spawned the boinc_client.

• Manually create account files in the local BOINC directory. Upon start up, the boinc_client will scan its local
directory (the directory specified with BOINC_InitialDir) for files of the form account_[URL].xml, for
example, account_einstein.phys.uwm.edu.xml. Any files with a name that matches this convention will
be read and processed. The contents of the file define the project URL and the authentication key. The format is:

<account>
<master_url>[URL]</master_url>
<authenticator>[key]</authenticator>

</account>

For example:

330 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

<account>
<master_url>http://einstein.phys.uwm.edu</master_url>
<authenticator>aaaa1111bbbb2222cccc3333</authenticator>

</account>

Of course, the <authenticator> tag would use the real authentication key returned when the account was created
at a given project.

These account files can be copied to the local BOINC directory on all machines in an HTCondor pool, so ad-
ministrators can either distribute them manually, or use symbolic links to point to a shared file system.

In the two cases of using command-line arguments for boinc_client or running the boinc_cmd tool, BOINC will
write out the resulting account file to the local BOINC directory on the machine, and then future invocations of the
boinc_client will already be attached to the appropriate project(s).

BOINC on Windows

The Windows version of BOINC has multiple installation methods. The preferred method of installation for use with
HTCondor is the Shared Installation method. Using this method gives all users access to the executables. During the
installation process

1. Deselect the option which makes BOINC the default screen saver

2. Deselect the option which runs BOINC on start up.

3. Do not launch BOINC at the conclusion of the installation.

There are three major differences from the Unix version to keep in mind when dealing with the Windows installation:

1. The Windows executables have different names from the Unix versions. The Windows client is called boinc.exe.
Therefore, the configuration variable is written:

BOINC_Executable = C:\PROGRA~1\BOINC\boinc.exe

The Unix administrative tool boinc_cmd is called boinccmd.exe on Windows.

2. When using BOINC on Windows, the configuration variable will not be respected fully. To work around this
difficulty, pass the BOINC home directory directly to the BOINC application via the configuration variable. For
Windows, rewrite the argument line as:

BOINC_Arguments = --dir $(BOINC_HOME) \
--attach_project http://einstein.phys.uwm.edu [account_key]

As a consequence of setting the BOINC home directory, some projects may fail with the authentication error:

Scheduler request failed: Peer
certificate cannot be authenticated
with known CA certificates.

To resolve this issue, copy the ca-bundle.crt file from the BOINC installation directory to $(BOINC_HOME).
This file appears to be project and machine independent, and it can therefore be distributed as part of an automated
HTCondor installation.

3. The configuration variable behaves differently on Windows than it does on Unix. Its value may take one of two
forms:

• domain\user

• user This form assumes that the user exists in the local domain (that is, on the computer itself).

5.5. Configuration for Execution Points 331

HTCondor Manual, Release 23.6.2

Setting this option causes the addition of the job attribute

RunAsUser = True

to the backfill client. This further implies that the configuration variable be set to True to insure that the local
condor_starter be able to run jobs in this manner. For more information on the RunAsUser attribute, see Ex-
ecuting Jobs as the Submitting User. For more information on the the configuration variable, see Shared File
System Configuration File Macros.

Examples of Policy Configuration

This section describes various policy configurations, including the default policy.

Default Policy

These settings are the default as shipped with HTCondor. They have been used for many years with no problems. The
vanilla expressions are identical to the regular ones. (They are not listed here. If not defined, the standard expressions
are used for vanilla jobs as well).

The following are macros to help write the expressions clearly.

StateTimer
Amount of time in seconds in the current state.

ActivityTimer
Amount of time in seconds in the current activity.

ActivationTimer
Amount of time in seconds that the job has been running on this machine.

NonCondorLoadAvg
The difference between the system load and the HTCondor load (the load generated by everything but HTCondor).

BackgroundLoad
Amount of background load permitted on the machine and still start an HTCondor job.

HighLoad
If the $(NonCondorLoadAvg) goes over this, the CPU is considered too busy, and eviction of the HTCondor
job should start.

StartIdleTime
Amount of time the keyboard must to be idle before HTCondor will start a job.

ContinueIdleTime
Amount of time the keyboard must to be idle before resumption of a suspended job.

MaxSuspendTime
Amount of time a job may be suspended before more drastic measures are taken.

KeyboardBusy
A boolean expression that evaluates to TRUE when the keyboard is being used.

CPUIdle
A boolean expression that evaluates to TRUE when the CPU is idle.

CPUBusy
A boolean expression that evaluates to TRUE when the CPU is busy.

MachineBusy
The CPU or the Keyboard is busy.

332 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

CPUIsBusy
A boolean value set to the same value as CPUBusy.

CPUBusyTime
The value 0 if CPUBusy is False; the time in seconds since CPUBusy became True.

These variable definitions exist in the example configuration file in order to help write legible expressions. They are
not required, and perhaps will go unused by many configurations.

These macros are here to help write legible expressions:
MINUTE = 60
HOUR = (60 * $(MINUTE))
StateTimer = (time() - EnteredCurrentState)
ActivityTimer = (time() - EnteredCurrentActivity)
ActivationTimer = (time() - JobStart)

NonCondorLoadAvg = (LoadAvg - CondorLoadAvg)
BackgroundLoad = 0.3
HighLoad = 0.5
StartIdleTime = 15 * $(MINUTE)
ContinueIdleTime = 5 * $(MINUTE)
MaxSuspendTime = 10 * $(MINUTE)

KeyboardBusy = KeyboardIdle < $(MINUTE)
ConsoleBusy = (ConsoleIdle < $(MINUTE))
CPUIdle = $(NonCondorLoadAvg) <= $(BackgroundLoad)
CPUBusy = $(NonCondorLoadAvg) >= $(HighLoad)
KeyboardNotBusy = ($(KeyboardBusy) == False)
MachineBusy = ($(CPUBusy) || $(KeyboardBusy)

Preemption is disabled as a default. Always desire to start jobs.

WANT_SUSPEND = False
WANT_VACATE = False
START = True
SUSPEND = False
CONTINUE = True
PREEMPT = False
Kill jobs that take too long leaving gracefully.
MachineMaxVacateTime = 10 * $(MINUTE)
KILL = False

Test-job Policy Example

This example shows how the default macros can be used to set up a machine for running test jobs from a specific user.
Suppose we want the machine to behave normally, except if user coltrane submits a job. In that case, we want that job
to start regardless of what is happening on the machine. We do not want the job suspended, vacated or killed. This
is reasonable if we know coltrane is submitting very short running programs for testing purposes. The jobs should
be executed right away. This works with any machine (or the whole pool, for that matter) by adding the following 5
expressions to the existing configuration:

START = ($(START)) || Owner == "coltrane"
SUSPEND = ($(SUSPEND)) && Owner != "coltrane"
CONTINUE = $(CONTINUE)

(continues on next page)

5.5. Configuration for Execution Points 333

HTCondor Manual, Release 23.6.2

(continued from previous page)

PREEMPT = ($(PREEMPT)) && Owner != "coltrane"
KILL = $(KILL)

Notice that there is nothing special in either the or expressions. If Coltrane’s jobs never suspend, they never look at .
Similarly, if they never preempt, they never look at .

Time of Day Policy

HTCondor can be configured to only run jobs at certain times of the day. In general, we discourage configuring a system
like this, since there will often be lots of good cycles on machines, even when their owners say “I’m always using my
machine during the day.” However, if you submit mostly jobs that cannot produce checkpoints, it might be a good idea
to only allow the jobs to run when you know the machines will be idle and when they will not be interrupted.

To configure this kind of policy, use the and attributes. These are special attributes which are automatically inserted by
the condor_startd into its ClassAd, so you can always reference them in your policy expressions. defines the number
of minutes that have passed since midnight. For example, 8:00am is 8 hours after midnight, or 8 * 60 minutes, or 480.
5:00pm is 17 hours after midnight, or 17 * 60, or 1020. defines the day of the week, Sunday = 0, Monday = 1, and so
on.

To make the policy expressions easy to read, we recommend using macros to define the time periods when you want
jobs to run or not run. For example, assume regular work hours at your site are from 8:00am until 5:00pm, Monday
through Friday:

WorkHours = ((ClockMin >= 480 && ClockMin < 1020) && \
(ClockDay > 0 && ClockDay < 6))

AfterHours = ((ClockMin < 480 || ClockMin >= 1020) || \
(ClockDay == 0 || ClockDay == 6))

Of course, you can fine-tune these settings by changing the definition of AfterHours and WorkHours for your site.

To force HTCondor jobs to stay off of your machines during work hours:

Only start jobs after hours.
START = $(AfterHours)

Consider the machine busy during work hours, or if the keyboard or
CPU are busy.
MachineBusy = ($(WorkHours) || $(CPUBusy) || $(KeyboardBusy))

This MachineBusy macro is convenient if other than the default and expressions are used.

Desktop/Non-Desktop Policy

Suppose you have two classes of machines in your pool: desktop machines and dedicated cluster machines. In this
case, you might not want keyboard activity to have any effect on the dedicated machines. For example, when you log
into these machines to debug some problem, you probably do not want a running job to suddenly be killed. Desktop
machines, on the other hand, should do whatever is necessary to remain responsive to the user.

There are many ways to achieve the desired behavior. One way is to make a standard desktop policy and a standard
non-desktop policy and to copy the desired one into the local configuration file for each machine. Another way is to
define one standard policy (in the global configuration file) with a simple toggle that can be set in the local configuration
file. The following example illustrates the latter approach.

For ease of use, an entire policy is included in this example. Some of the expressions are just the usual default settings.

If "IsDesktop" is configured, make it an attribute of the machine ClassAd.
STARTD_ATTRS = IsDesktop

(continues on next page)

334 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

Only consider starting jobs if:
1) the load average is low enough OR the machine is currently
running an HTCondor job
2) AND the user is not active (if a desktop)
START = (($(CPUIdle) || (State != "Unclaimed" && State != "Owner")) \

&& (IsDesktop =!= True || (KeyboardIdle > $(StartIdleTime))))

Suspend (instead of vacating/killing) for the following cases:
WANT_SUSPEND = ($(SmallJob) || $(JustCpu) \

|| $(IsVanilla))

When preempting, vacate (instead of killing) in the following cases:
WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) \

|| $(IsVanilla))

Suspend jobs if:
1) The CPU has been busy for more than 2 minutes, AND
2) the job has been running for more than 90 seconds
3) OR suspend if this is a desktop and the user is active
SUSPEND = (((CpuBusyTime > 2 * $(MINUTE)) && ($(ActivationTimer) > 90)) \

|| (IsDesktop =?= True && $(KeyboardBusy)))

Continue jobs if:
1) the CPU is idle, AND
2) we've been suspended more than 5 minutes AND
3) the keyboard has been idle for long enough (if this is a desktop)
CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 300) \

&& (IsDesktop =!= True || (KeyboardIdle > $(ContinueIdleTime))))

Preempt jobs if:
1) The job is suspended and has been suspended longer than we want
2) OR, we don't want to suspend this job, but the conditions to
suspend jobs have been met (someone is using the machine)
PREEMPT = (((Activity == "Suspended") && \

($(ActivityTimer) > $(MaxSuspendTime))) \
|| (SUSPEND && (WANT_SUSPEND == False)))

Replace 0 in the following expression with whatever amount of
retirement time you want dedicated machines to provide. The other part
of the expression forces the whole expression to 0 on desktop
machines.
MAXJOBRETIREMENTTIME = (IsDesktop =!= True) * 0

Kill jobs if they have taken too long to vacate gracefully
MachineMaxVacateTime = 10 * $(MINUTE)
KILL = False

With this policy in the global configuration, the local configuration files for desktops can be easily configured with the
following line:

IsDesktop = True

5.5. Configuration for Execution Points 335

HTCondor Manual, Release 23.6.2

In all other cases, the default policy described above will ignore keyboard activity.

Disabling and Enabling Preemption

Preemption causes a running job to be suspended or killed, such that another job can run. Preemption is disabled by the
default configuration. Configuration file examples disable preemption, but contain directions for enabling preemption.

Job Suspension

As new jobs are submitted that receive a higher priority than currently executing jobs, the executing jobs may be
preempted. If the preempted jobs are not capable of writing checkpoints, they lose whatever forward progress they
have made, and are sent back to the job queue to await starting over again as another machine becomes available. An
alternative to this is to use suspension to freeze the job while some other task runs, and then unfreeze it so that it can
continue on from where it left off. This does not require any special handling in the job, unlike most strategies that take
checkpoints. However, it does require a special configuration of HTCondor. This example implements a policy that
allows the job to decide whether it should be evicted or suspended. The jobs announce their choice through the use of
the invented job ClassAd attribute IsSuspendableJob, that is also utilized in the configuration.

The implementation of this policy utilizes two categories of slots, identified as suspendable or nonsuspendable. A job
identifies which category of slot it wishes to run on. This affects two aspects of the policy:

• Of two jobs that might run on a slot, which job is chosen. The four cases that may occur depend on whether the
currently running job identifies itself as suspendable or nonsuspendable, and whether the potentially running job
identifies itself as suspendable or nonsuspendable.

1. If the currently running job is one that identifies itself as suspendable, and the potentially running job identi-
fies itself as nonsuspendable, the currently running job is suspended, in favor of running the nonsuspendable
one. This occurs independent of the user priority of the two jobs.

2. If both the currently running job and the potentially running job identify themselves as suspendable, then
the relative priorities of the users and the preemption policy determines whether the new job will replace
the existing job.

3. If both the currently running job and the potentially running job identify themselves as nonsuspendable,
then the relative priorities of the users and the preemption policy determines whether the new job will
replace the existing job.

4. If the currently running job is one that identifies itself as nonsuspendable, and the potentially running job
identifies itself as suspendable, the currently running job continues running.

• What happens to a currently running job that is preempted. A job that identifies itself as suspendable will be
suspended, which means it is frozen in place, and will later be unfrozen when the preempting job is finished. A
job that identifies itself as nonsuspendable is evicted, giving it a chance to write a checkpoint, and then is killed.
The job will return to the idle state in the job queue, and it can try to run again in the future.

Lie to HTCondor, to achieve 2 slots for each real slot
NUM_CPUS = $(DETECTED_CORES)*2
There is no good way to tell HTCondor that the two slots should be treated
as though they share the same real memory, so lie about how much
memory we have.
MEMORY = $(DETECTED_MEMORY)*2

Slots 1 through DETECTED_CORES are nonsuspendable and the rest are
suspendable
IsSuspendableSlot = SlotID > $(DETECTED_CORES)

(continues on next page)

336 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

If I am a suspendable slot, my corresponding nonsuspendable slot is
my SlotID plus $(DETECTED_CORES)
NonSuspendableSlotState = eval(strcat("slot",SlotID-$(DETECTED_CORES),"_State")

The above expression looks at slotX_State, so we need to add
State to the list of slot attributes to advertise.
STARTD_SLOT_ATTRS = $(STARTD_SLOT_ATTRS) State

For convenience, advertise these expressions in the machine ad.
STARTD_ATTRS = $(STARTD_ATTRS) IsSuspendableSlot NonSuspendableSlotState

MyNonSuspendableSlotIsIdle = \
(NonSuspendableSlotState =!= "Claimed" && NonSuspendableSlotState =!= "Preempting")

NonSuspendable slots are always willing to start jobs.
Suspendable slots are only willing to start if the NonSuspendable slot is idle.
START = \
IsSuspendableSlot!=True && IsSuspendableJob=!=True || \
IsSuspendableSlot && IsSuspendableJob==True && $(MyNonSuspendableSlotIsIdle)

Suspend the suspendable slot if the other slot is busy.
SUSPEND = \
IsSuspendableSlot && $(MyNonSuspendableSlotIsIdle)!=True

WANT_SUSPEND = $(SUSPEND)

CONTINUE = ($(SUSPEND)) != True

Note that in this example, the job ClassAd attribute IsSuspendableJob has no special meaning to HTCondor. It is an
invented name chosen for this example. To take advantage of the policy, a job that wishes to be suspended must submit
the job so that this attribute is defined. The following line should be placed in the job’s submit description file:

+IsSuspendableJob = True

Configuration for Interactive Jobs

Policy may be set based on whether a job is an interactive one or not. Each interactive job has the job ClassAd attribute

InteractiveJob = True

and this may be used to identify interactive jobs, distinguishing them from all other jobs.

As an example, presume that slot 1 prefers interactive jobs. Set the machine’s to show the preference:

RANK = ((MY.SlotID == 1) && (TARGET.InteractiveJob =?= True))

Or, if slot 1 should be reserved for interactive jobs:

START = ((MY.SlotID == 1) && (TARGET.InteractiveJob =?= True))

5.5. Configuration for Execution Points 337

HTCondor Manual, Release 23.6.2

5.5.6 Custom and system slot attributes

The condor_startd advertises one classad per slot to the condor_collector. Each of these ads has many attributes. See
Machine ClassAd Attributes for the complete list of the attributes defined and used by the system. These attributes, and
the custom attributes describe below, which can be used exactly as the predefined ones, have many uses. Let’s consider
the machine classad attribute . This is a more specific version of the attribute , which will just be “Linux” on any Linux
system, whereas might be CentOS8 on such a system.

First, we might use this attribute to examine one particular machine. We can use to query this attribute on a machine
named “vulture” by running:

$ condor_status vulture -af OpSysAndVer
CentOS8

Or, we can use this attribute in job submit file to request that a job only run on machines with this OS version:

executable = my_program
Requirements = Target.OpSysAndVer == "CentOS8"
request_memory = 1G
request_disk = 100M
request_cpus = 1
should_transfer_files = yes
when_to_transfer_output = on_exit
queue

Or, we can expand the value of this slot attribute into our job. Let’s say that we have two different programs compiled,
one for CentOS8, named my_program.CentOS8, and another, compiled for CentOS9, named my_program.CentOS9.
We can use $$ expansion in our submit file to select the correct program when the job is matched to a particular
machine:

executable = my_program.$$(OpSysAndVer)
request_memory = 1G
request_disk = 100M
request_cpus = 1
should_transfer_files = yes
when_to_transfer_output = on_exit
queue

Adding custom static attributes with STARTD_ATTRS

Note on classad types in slot ad attributes.

Note that the right hand side of the “GenomeDBPath” variable (in this case) takes the form of a classad expression.
A common mistake is to not quote this properly for the type of this expression. In particular, strings are quoted
with double-quotes, numeric and boolean values are not quoted, and neither are expressions. Not quoting a value
that should be a string results in it be treated as an expression, which likely will evalute to undefined, and lead to
unexpected outcomes. However, expressions can be useful when used properly. Examples of each type:
A string value, quoted
GenomeDBName = "FruitFlies"
Probably a mistake, because not quoted, and gets evaluated.
Tries to lookup an attributes named FruitFlies.
if this does not exist, returns undefined, but is

338 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

NOT AN ERROR.
WRONGGenomeDBName = FruitFlies
A numeric value, not quoted
GenomeDBSizeGB = 1729
An expression, not quoted (happens to evaluate to a boolean)
HasLargeGenomeDB = GenomeDBSizeGB > 100
STARTD_ATTRS = GenomeDBName GenomeDBSizeGB HasLargeGenomeDB $(STARTD_ATTRS)

Administrators can add custom attributes to the slot classad that can be used exactly as the built-in ones, as demonstrated
above. Let’s say that many jobs need an enormous genomic database, that has been pre-staged on a particular directory
on some EPs. The EP administrator can advertise a custom slot classad attribute that names the file path to this database
for jobs to use. This requires setting two EP configuration variables: , and a variable which defines the attributes itself.
Let’s call the custom attribute we want to add GenomeDBPath. To set this to the string value of “/path/to/db”, we would
first put GenomeDBPath into STARTD_ATTRS, then define GenomeDBPath itself as a configuration macro, like this
in the EP configuration:

GenomeDBPath = "/path/to/db"
STARTD_ATTRS = GenomeDBPath $(STARTD_ATTRS)

Note the convention to always append to any existing , so that multiple configuration files can compose together. Once
this is done, and the condor_startd reconfigured, all slots on this EP will advertise this new attribute.

Beginning users may be tempted to hard-code, or assume the knowledge that certain well-known machines in their poool
might have this database installed at some path. But, by advertising this value as a custom EP attribute, administrators
have gained a level of indirection, and are free to move the database to a different path, or perhaps add machines to the
pool without such database.

Configuring STARTD_ATTRS on a per-slot basis

The can be also configured on a per-slot basis. The condor_startd daemon builds the list of items to advertise by
combining the lists in this order:

1.

2.

For example, consider the following configuration:

STARTD_ATTRS = favorite_color, favorite_season
SLOT1_STARTD_ATTRS = favorite_movie
SLOT2_STARTD_ATTRS = favorite_song

This will result in the condor_startd ClassAd for slot1 defining values for favorite_color, favorite_season, and
favorite_movie. Slot2 will have values for favorite_color, favorite_season, and favorite_song.

Attributes themselves in the list can also be defined on a per-slot basis. Here is another example:

favorite_color = "blue"
favorite_season = "spring"
STARTD_ATTRS = favorite_color, favorite_season
SLOT2_favorite_color = "green"
SLOT3_favorite_season = "summer"

For this example, the condor_startd ClassAds are

slot1:

5.5. Configuration for Execution Points 339

HTCondor Manual, Release 23.6.2

favorite_color = "blue"
favorite_season = "spring"

slot2:

favorite_color = "green"
favorite_season = "spring"

slot3:

favorite_color = "blue"
favorite_season = "summer"

Startd Cron

Daemon ClassAd Hooks

Overview

The Startd Cron and Schedd Cron Daemon ClassAd Hooks mechanism are used to run executables (called jobs) directly
from the condor_startd and condor_schedd daemons. The output from these jobs is incorporated into the machine
ClassAd generated by the respective daemon. This mechanism and associated jobs have been identified by various
names, including Startd Cron, dynamic attributes, and daemon hooks.

Pool management tasks can be enhanced by using a daemon’s ability to periodically run executables. The executables
are expected to generate ClassAd attributes as their output; these ClassAds are then incorporated into the machine
ClassAd. Policy expressions can then reference dynamic attributes (created by the ClassAd hook jobs) in the machine
ClassAd.

Job output

The output of the job is incorporated into one or more ClassAds when the job exits. When the job outputs the special
line:

- update:true

the output of the job is merged into all proper ClassAds, and an update goes to the condor_collector daemon.

If the job exits with a non-zero exit code, and the config knob is true, any unparsed stdout and all of the standard error
of the cron job will be logged in the StartLog file. This can be very useful for debugging.

It is possible for a Startd Cron job (but not a Schedd Cron job) to define multiple ClassAds, using the mechanism
defined below:

• An output line starting with '-' has always indicated end-of-ClassAd. The '-' can now be followed by a
uniqueness tag to indicate the name of the ad that should be replaced by the new ad. This name is joined to
the name of the Startd Cron job to produced a full name for the ad. This allows a single Startd Cron job to
return multiple ads by giving each a unique name, and to replace multiple ads by using the same unique name

340 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

as a previous invocation. The optional uniqueness tag can also be followed by the optional keyword update:
<bool>, which can be used to override the Startd Cron configuration and suppress or force immediate updates.

In other words, the syntax is:

– [name] [update: bool]

• Each ad can contain one of four possible attributes to control what slot ads the ad is merged into when the
condor_startd sends updates to the collector. These attributes are, in order of highest to lower priority (in other
words, if SlotMergeConstraint matches, the other attributes are not considered, and so on):

– SlotMergeConstraint expression: the current ad is merged into all slot ads for which this expression is
true. The expression is evaluated with the slot ad as the TARGET ad.

– SlotName|Name string: the current ad is merged into all slots whose Name attributes match the value of
SlotName up to the length of SlotName.

– SlotTypeId integer: the current ad is merged into all ads that have the same value for their SlotTypeId
attribute.

– SlotId integer: the current ad is merged into all ads that have the same value for their attribute.

For example, if the Startd Cron job returns:

Value=1
SlotId=1
-s1
Value=2
SlotId=2
-s2
Value=10
- update:true

it will set Value=10 for all slots except slot1 and slot2. On those slots it will set Value=1 and Value=2 respectively.
It will also send updates to the collector immediately.

Configuration

Configuration variables related to Daemon ClassAd Hooks are defined in Configuration File Entries Relating to Dae-
mon ClassAd Hooks: Startd Cron and Schedd Cron

Here is a complete configuration example. It defines all three of the available types of jobs: ones that use the con-
dor_startd, benchmark jobs, and ones that use the condor_schedd.

#
Startd Cron Stuff
#
helper variable to use in identifying locations of files
MODULES = $(ROOT)/modules

STARTD_CRON_CONFIG_VAL = $(RELEASE_DIR)/bin/condor_config_val
STARTD_CRON_MAX_JOB_LOAD = 0.2
STARTD_CRON_JOBLIST =

If something goes wrong, and a start cron exits with non-zero
log the stdout/stderr to the StartLog

(continues on next page)

5.5. Configuration for Execution Points 341

HTCondor Manual, Release 23.6.2

(continued from previous page)

STARTD_CRON_LOG_NON_ZERO_EXIT = true

Test job
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) test
STARTD_CRON_TEST_MODE = OneShot
STARTD_CRON_TEST_RECONFIG_RERUN = True
STARTD_CRON_TEST_PREFIX = test_
STARTD_CRON_TEST_EXECUTABLE = $(MODULES)/test
STARTD_CRON_TEST_KILL = True
STARTD_CRON_TEST_ARGS = abc 123
STARTD_CRON_TEST_SLOTS = 1
STARTD_CRON_TEST_JOB_LOAD = 0.01

job 'date'
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) date
STARTD_CRON_DATE_MODE = Periodic
STARTD_CRON_DATE_EXECUTABLE = $(MODULES)/date
STARTD_CRON_DATE_PERIOD = 15s
STARTD_CRON_DATE_JOB_LOAD = 0.01

Job 'foo'
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) foo
STARTD_CRON_FOO_EXECUTABLE = $(MODULES)/foo
STARTD_CRON_FOO_PREFIX = Foo
STARTD_CRON_FOO_MODE = Periodic
STARTD_CRON_FOO_PERIOD = 10m
STARTD_CRON_FOO_JOB_LOAD = 0.2

#
Benchmark Stuff
#
BENCHMARKS_JOBLIST = mips kflops

MIPS benchmark
BENCHMARKS_MIPS_EXECUTABLE = $(LIBEXEC)/condor_mips
BENCHMARKS_MIPS_JOB_LOAD = 1.0

KFLOPS benchmark
BENCHMARKS_KFLOPS_EXECUTABLE = $(LIBEXEC)/condor_kflops
BENCHMARKS_KFLOPS_JOB_LOAD = 1.0

#
Schedd Cron Stuff. Unlike the Startd,
a restart of the Schedd is required for changes to take effect
#
SCHEDD_CRON_CONFIG_VAL = $(RELEASE_DIR)/bin/condor_config_val
SCHEDD_CRON_JOBLIST =

Test job
SCHEDD_CRON_JOBLIST = $(SCHEDD_CRON_JOBLIST) test
SCHEDD_CRON_TEST_MODE = OneShot
SCHEDD_CRON_TEST_RECONFIG_RERUN = True

(continues on next page)

342 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

SCHEDD_CRON_TEST_PREFIX = test_
SCHEDD_CRON_TEST_EXECUTABLE = $(MODULES)/test
SCHEDD_CRON_TEST_PERIOD = 5m
SCHEDD_CRON_TEST_KILL = True
SCHEDD_CRON_TEST_ARGS = abc 123

5.5.7 Container/VM support: Docker, Apptainer, Singularity and Xen/VMware

Docker Universe

The execution of a docker universe job causes the instantiation of a Docker container on an execute host.

The docker universe job is mapped to a vanilla universe job, and the submit description file must specify the submit
command to identify the Docker image. The job’s requirement ClassAd attribute is automatically appended, such
that the job will only match with an execute machine that has Docker installed.

The Docker service must be pre-installed on each execute machine that can execute a docker universe job. Upon start
up of the condor_startd daemon, the capability of the execute machine to run docker universe jobs is probed, and the
machine ClassAd attribute is advertised for a machine that is capable of running Docker universe jobs.

When a docker universe job is matched with a Docker-capable execute machine, HTCondor invokes the Docker CLI
to instantiate the image-specific container. The job’s scratch directory tree is mounted as a Docker volume. When the
job completes, is put on hold, or is evicted, the container is removed.

An administrator of a machine can optionally make additional directories on the host machine readable and writable by a
running container. To do this, the admin must first give an HTCondor name to each directory with the parameter. Then,
each volume must be configured with the path on the host OS with the DOCKER_VOLUME_DIR_XXX parameter.
Finally, the parameter tells HTCondor which of these directories to always mount onto containers running on this
machine.

For example,

DOCKER_VOLUMES = SOME_DIR, ANOTHER_DIR
DOCKER_VOLUME_DIR_SOME_DIR = /path1
DOCKER_VOLUME_DIR_ANOTHER_DIR = /path/to/no2
DOCKER_MOUNT_VOLUMES = SOME_DIR, ANOTHER_DIR

The condor_startd will advertise which docker volumes it has available for mounting with the machine attributes
HasDockerVolumeSOME_NAME = true so that jobs can match to machines with volumes they need.

Optionally, if the directory name is two directories, separated by a colon, the first directory is the name on the host
machine, and the second is the value inside the container. If a “:ro” is specified after the second directory name, the
volume will be mounted read-only inside the container.

These directories will be bind-mounted unconditionally inside the container. If an administrator wants to bind mount
a directory only for some jobs, perhaps only those submitted by some trusted user, the setting may be used. This is a
class ad expression, evaluated in the context of the job ad and the machine ad. Only when it evaluted to TRUE, is the
volume mounted. Extending the above example,

DOCKER_VOLUMES = SOME_DIR, ANOTHER_DIR
DOCKER_VOLUME_DIR_SOME_DIR = /path1

(continues on next page)

5.5. Configuration for Execution Points 343

HTCondor Manual, Release 23.6.2

(continued from previous page)

DOCKER_VOLUME_DIR_SOME_DIR_MOUNT_IF = WantSomeDirMounted && Owner == "smith"
DOCKER_VOLUME_DIR_ANOTHER_DIR = /path/to/no2
DOCKER_MOUNT_VOLUMES = SOME_DIR, ANOTHER_DIR

In this case, the directory /path1 will get mounted inside the container only for jobs owned by user “smith”, and who
set +WantSomeDirMounted = true in their submit file.

In addition to installing the Docker service, the single configuration variable must be set. It defines the location of the
Docker CLI and can also specify that the condor_starter daemon has been given a password-less sudo permission to
start the container as root. Details of the configuration variable are in the condor_startd Configuration File Macros
section.

Docker must be installed as root by following these steps on an Enterprise Linux machine.

1. Acquire and install the docker-engine community edition by following the installations instructions from
docker.com

2. Set up the groups:

$ usermod -aG docker condor

3. Invoke the docker software:

$ systemctl start docker
$ systemctl enable docker

4. Reconfigure the execute machine, such that it can set the machine ClassAd attribute :

$ condor_reconfig

5. Check that the execute machine properly advertises that it is docker-capable with:

$ condor_status -l | grep -i docker

The output of this command line for a correctly-installed and docker-capable execute host will be similar to

HasDocker = true
DockerVersion = "Docker Version 1.6.0, build xxxxx/1.6.0"

By default, HTCondor will keep the 8 most recently used Docker images on the local machine. This number may be
controlled with the configuration variable , to increase or decrease the number of images, and the corresponding disk
space, used by Docker.

By default, Docker containers will be run with all rootly capabilities dropped, and with setuid and setgid binaries
disabled, for security reasons. If you need to run containers with root privilege, you may set the configuration parameter
to an expression that evaluates to false. This expression is evaluted in the context of the machine ad (my) and the job
ad (target).

Docker support an enormous number of command line options when creating containers. While HTCondor tries to
map as many useful options from submit files and machine descriptions to command line options, an administrator
may want additional options passed to the docker container create command. To do so, the parameter can be set, and
condor will append these to the docker container create command.

Docker universe jobs may fail to start on certain Linux machines when SELinux is enabled. The symptom is a permis-
sion denied error when reading or executing from the condor scratch directory. To fix this problem, an administrator
will need to run the following command as root on the execute directories for all the startd machines:

344 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

$ chcon -Rt svirt_sandbox_file_t /var/lib/condor/execute

All docker universe jobs can request either host-based networking or no networking at all. The latter might be for
security reasons. If the worker node administrator has defined additional custom docker networks, perhaps a VPN or
other custom type, those networks can be defined for HTCondor jobs to opt into with the docker_network_type submit
command. Simple set

DOCKER_NETWORKS = some_virtual_network, another_network

And these two networks will be advertised by the startd, and jobs that request these network type will only match to
machines that support it. Note that HTCondor cannot test the validity of these networks, and merely trusts that the
administrator has correctly configured them.

To deal with a potentially user influencing option, there is an optional knob that can be configured to adapt the
--shm-size Docker container create argument taking the machine’s and job’s classAds into account. Exemplary,
setting the /dev/shm size to half the requested memory is achieved by:

DOCKER_SHM_SIZE = Memory * 1024 * 1024 / 2

or, using a user provided value DevShmSize if available and within the requested memory limit:

DOCKER_SHM_SIZE = ifThenElse(DevShmSize isnt Undefined && isInteger(DevShmSize) &&␣
→˓int(DevShmSize) <= (Memory * 1024 * 1024), int(DevShmSize), 2 * 1024 * 1024 * 1024)

Note: is in MB, thus it needs to be scaled to bytes.

Apptainer and Singularity Support

Singularity (https://sylabs.io/singularity/) is a container runtime system popular in scientific and HPC communities.
Apptainer (https://apptainer.org) is an open source fork of Singularity that is API and CLI compatible with singularity.
HTCondor can run jobs inside Singularity containers either in a transparent way, where the job does not know that it is
being contained, or, the HTCondor administrator can configure the HTCondor startd so that a job can opt into running
inside a container. This allows the operating system that the job sees to be different than the one on the host system,
and provides more isolation between processes running in one job and another.

Note: Everything in this document that pertains to Singularity is also true for the Apptainer container runtime.

The decision to run a job inside Singularity ultimately resides on the worker node, although it can delegate that to the
job.

By default, jobs will not be run in Singularity.

For Singularity to work, the administrator must install Singularity on the worker node. The HTCondor startd will detect
this installation at startup. When it detects a usable installation, it will advertise two attributes in the slot ad:

HasSingularity = true
SingularityVersion = "singularity version 3.7.0-1.el7"

If the detected Singularity installation fails to run test containers at startd startup, will be set to false, and the slot ad
attribute SingularityOfflineReason will contain an error string.

5.5. Configuration for Execution Points 345

https://sylabs.io/singularity/
https://apptainer.org

HTCondor Manual, Release 23.6.2

HTCondor will run a job under Singularity when the startd configuration knob evaluates to true. This is evaluated
in the context of the slot ad and the job ad. If it evaluates to false or undefined, the job will run as normal, without
singularity.

When evaluates to true, a second HTCondor knob is required to name the singularity image that must be run, . This
also is evaluated in the context of the machine and the job ad, and must evaluate to a string. This image name is passed
to the singularity exec command, and can be any valid value for a singularity image name. So, it may be a path to file
on a local file system that contains an singularity image, in any format that singularity supports. It may be a string that
begins with docker://, and refer to an image located on docker hub, or other repository. It can begin with http://,
and refer to an image to be fetched from an HTTP server. In this case, singularity will fetch the image into the job’s
scratch directory, convert it to a .sif file and run it from there. Note this may require the job to request more disk space
that it otherwise would need. It can be a relative path, in which case it refers to a file in the scratch directory, so that
the image can be transferred by HTCondor’s file transfer mechanism.

Here’s the simplest possible configuration file. It will force all jobs on this machine to run under Singularity, and to
use an image that it located in the file system in the path /cvfms/cernvm-prod.cern.ch/cvm3:

Forces _all_ jobs to run inside singularity.
SINGULARITY_JOB = true

Forces all jobs to use the CernVM-based image.
SINGULARITY_IMAGE_EXPR = "/cvmfs/cernvm-prod.cern.ch/cvm3"

Another common configuration is to allow the job to select whether to run under Singularity, and if so, which image to
use. This looks like:

SINGULARITY_JOB = !isUndefined(TARGET.SingularityImage)
SINGULARITY_IMAGE_EXPR = TARGET.SingularityImage

Then, users would add the following to their submit file (note the quoting):

+SingularityImage = "/cvmfs/cernvm-prod.cern.ch/cvm3"

or maybe

+SingularityImage = "docker://ubuntu:20"

By default, singularity will bind mount the scratch directory that contains transferred input files, working files, and
other per-job information into the container, and make this the initial working directory of the job. Thus, file transfer
for singularity jobs works just like with vanilla universe jobs. Any new files the job writes to this directory will be
copied back to the submit node, just like any other sandbox, subject to transfer_output_files, as in vanilla universe.

Assuming singularity is configured on the startd as described above, A complete submit file that uses singularity might
look like

executable = /usr/bin/sleep
arguments = 30
+SingularityImage = "docker://ubuntu"

Requirements = HasSingularity

Request_Disk = 1024
Request_Memory = 1024
Request_cpus = 1

should_transfer_files = yes
(continues on next page)

346 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

transfer_input_files = some_input
when_to_transfer_output = on_exit

log = log
output = out.$(PROCESS)
error = err.$(PROCESS)

queue 1

HTCondor can also transfer the whole singularity image, just like any other input file, and use that as the container
image. Given a singularity image file in the file named “image” in the submit directory, the submit file would look like:

executable = /usr/bin/sleep
arguments = 30
+SingularityImage = "image"

Requirements = HasSingularity

Request_Disk = 1024
Request_Memory = 1024
Request_cpus = 1

should_transfer_files = yes
transfer_input_files = image
when_to_transfer_output = on_exit

log = log
output = out.$(PROCESS)
error = err.$(PROCESS)

queue 1

The administrator can optionally specify additional directories to be bind mounted into the container. For example, if
there is some common shared input data located on a machine, or on a shared file system, this directory can be bind-
mounted and be visible inside the container. This is controlled by the configuration parameter . This is an expression,
which is evaluated in the context of the machine and job ads, and which should evaluated to a string which contains a
space separated list of directories to mount.

So, to always bind mount a directory named /nfs into the image, and administrator could set

SINGULARITY_BIND_EXPR = "/nfs"

Or, if a trusted user is allowed to bind mount anything on the host, an expression could be

SINGULARITY_BIND_EXPR = (Target.Owner == "TrustedUser") ? SomeExpressionFromJob : ""

If the source directory for the bind mount is missing on the host machine, HTCondor will skip that mount and run the
job without it. If the image is an exploded file directory, and the target directory is missing inside the image, and the
configuration parameter is set to true (the default is false), then this mount attempt will also be skipped. Otherwise, the
job will return an error when run.

In general, HTCondor will try to set as many Singularity command line options as possible from settings in the machine
ad and job ad, as make sense. For example, if the slot the job runs in is provisioned with GPUs, perhaps in response to
a request_GPUs line in the submit file, the Singularity flag -nv will be passed to Singularity, which should make the

5.5. Configuration for Execution Points 347

HTCondor Manual, Release 23.6.2

appropriate nvidia devices visible inside the container. If the submit file requests environment variables to be set for
the job, HTCondor passes those through Singularity into the job.

Before the condor_starter runs a job with singularity, it first runs singularity test on that image. If no test is defined
inside the image, it runs /bin/sh /bin/true. If the test returns non-zero, for example if the image is missing, or
malformed, the job is put on hold. This is controlled by the condor knob , which defaults to true.

If an administrator wants to pass additional arguments to the singularity exec command instead of the defaults used by
HTCondor, several parameters exist to do this - see the condor_starter configuration parameters that begin with the
prefix SINGULARITY in defined in section condor_starter Configuration File Entries. There you will find parameters
to customize things such as the use of PID namespaces, cache directory, and several other options. However, should an
administrator need to customize Singularity behavior that HTCondor does not currently support, the parameter allows
arbitrary additional parameters to be passed to the singularity exec command. Note that this can be a classad expression,
evaluated in the context of the slot ad and the job ad, where the slot ad can be referenced via “MY.”, and the job ad via
the “TARGET.” reference. In this way, the admin could set different options for different kinds of jobs. For example,
to pass the -w argument, to make the image writable, an administrator could set

SINGULARITY_EXTRA_ARGUMENTS = "-w"

There are some rarely-used settings that some administrators may need to set. By default, HTCondor looks for the
Singularity runtime in /usr/bin/singularity, but this can be overridden with the SINGULARITY parameter:

SINGULARITY = /opt/singularity/bin/singularity

By default, the initial working directory of the job will be the scratch directory, just like a vanilla universe job. This
directory probably doesn’t exist in the image’s file system. Usually, Singularity will be able to create this directory in
the image, but unprivileged versions of singularity with certain image types may not be able to do so. If this is the case,
the current directory on the inside of the container can be set via a knob. This will still map to the scratch directory
outside the container.

Maps $_CONDOR_SCRATCH_DIR on the host to /srv inside the image.
SINGULARITY_TARGET_DIR = /srv

If is not specified by the admin, it may be specified in the job submit file via the submit command
container_target_dir. If both are set, the config knob version takes precedence.

When the HTCondor starter runs a job under Singularity, it always prints to the log the exact command line used. This
can be helpful for debugging or for the curious. An example command line printed to the StarterLog might look like
the following:

About to exec /usr/bin/singularity -s exec -S /tmp -S /var/tmp --pwd /execute/dir_462373␣
→˓-B /execute/dir_462373 --no-home -C /images/debian /execute/dir_462373/demo 3

In this example, no GPUs have been requested, so there is no -nv option. is set to the default of /tmp,/var/tmp,
so condor translates those into -S (scratch directory) requests in the command line. The --pwd is set to the scratch
directory, -B bind mounts the scratch directory with the same name on the inside of the container, and the -C option is
set to contain all namespaces. Then the image is named, and the executable, which in this case has been transferred by
HTCondor into the scratch directory, and the job’s argument (3). Not visible in the log are any environment variables
that HTCondor is setting for the job.

All of the singularity container runtime’s logging, warning and error messages are written to the job’s stderr. This is
an unfortunate aspect of the runtime we hope to fix in the future. By default, HTCondor passes “-s” (silent) to the
singularity runtime, so that the only messages it writes to the job’s stderr are fatal error messages. If a worker node
administrator needs more debugging information, they can change the value of the worker node config parameter and
set it to -d or -v to increase the debugging level.

348 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

The VM Universe

vm universe jobs may be executed on any execution site with Xen (via libvirt) or KVM. To do this, HTCondor must be
informed of some details of the virtual machine installation, and the execution machines must be configured correctly.

What follows is not a comprehensive list of the options that help set up to use the vm universe; rather, it is intended
to serve as a starting point for those users interested in getting vm universe jobs up and running quickly. Details of
configuration variables are in the Configuration File Entries Relating to Virtual Machines section.

Begin by installing the virtualization package on all execute machines, according to the vendor’s instructions. We have
successfully used Xen and KVM.

For Xen, there are three things that must exist on an execute machine to fully support vm universe jobs.

1. A Xen-enabled kernel must be running. This running Xen kernel acts as Dom0, in Xen terminology, under which
all VMs are started, called DomUs Xen terminology.

2. The libvirtd daemon must be available, and Xend services must be running.

3. The pygrub program must be available, for execution of VMs whose disks contain the kernel they will run.

For KVM, there are two things that must exist on an execute machine to fully support vm universe jobs.

1. The machine must have the KVM kernel module installed and running.

2. The libvirtd daemon must be installed and running.

Configuration is required to enable the execution of vm universe jobs. The type of virtual machine that is installed
on the execute machine must be specified with the variable. For now, only one type can be utilized per machine. For
instance, the following tells HTCondor to use KVM:

VM_TYPE = kvm

The location of the condor_vm-gahp and its log file must also be specified on the execute machine. On a Windows
installation, these options would look like this:

VM_GAHP_SERVER = $(SBIN)/condor_vm-gahp.exe
VM_GAHP_LOG = $(LOG)/VMGahpLog

Xen-Specific and KVM-Specific Configuration

Once the configuration options have been set, restart the condor_startd daemon on that host. For example:

$ condor_restart -startd leovinus

The condor_startd daemon takes a few moments to exercise the VM capabilities of the condor_vm-gahp, query its
properties, and then advertise the machine to the pool as VM-capable. If the set up succeeded, then will reveal that the
host is now VM-capable by printing the VM type and the version number:

$ condor_status -vm leovinus

After a suitable amount of time, if this command does not give any output, then the condor_vm-gahp is having difficulty
executing the VM software. The exact cause of the problem depends on the details of the VM, the local installation,
and a variety of other factors. We can offer only limited advice on these matters:

For Xen and KVM, the vm universe is only available when root starts HTCondor. This is a restriction currently imposed
because root privileges are required to create a virtual machine on top of a Xen-enabled kernel. Specifically, root is

5.5. Configuration for Execution Points 349

HTCondor Manual, Release 23.6.2

needed to properly use the libvirt utility that controls creation and management of Xen and KVM guest virtual machines.
This restriction may be lifted in future versions, depending on features provided by the underlying tool libvirt.

When a vm Universe Job Fails to Start

If a vm universe job should fail to launch, HTCondor will attempt to distinguish between a problem with the user’s
job description, and a problem with the virtual machine infrastructure of the matched machine. If the problem is with
the job, the job will go on hold with a reason explaining the problem. If the problem is with the virtual machine
infrastructure, HTCondor will reschedule the job, and it will modify the machine ClassAd to prevent any other vm
universe job from matching. vm universe configuration is not slot-specific, so this change is applied to all slots.

When the problem is with the virtual machine infrastructure, these machine ClassAd attributes are changed:

• will be set to False

• will be set to a somewhat explanatory string

• will be set to the time of the failure

• will be adjusted to include "VM" and 13

Since adds HasVM == True to a vm universe job’s requirements, no further vm universe jobs will match.

Once any problems with the infrastructure are fixed, to change the machine ClassAd attributes such that the machine
will once again match to vm universe jobs, an administrator has three options. All have the same effect of setting the
machine ClassAd attributes to the correct values such that the machine will not reject matches for vm universe jobs.

1. Restart the condor_startd daemon.

2. Submit a vm universe job that explicitly matches the machine. When the job runs, the code detects the running
job and causes the attributes related to the vm universe to be set indicating that vm universe jobs can match with
this machine.

3. Run the command line tool to set machine ClassAd attribute to True, and this will cause the other attributes
related to the vm universe to be set indicating that vm universe jobs can match with this machine. See the
manual page for examples and details.

5.5.8 Configuring GPUs

HTCondor supports incorporating GPU resources and making them available for jobs. First, GPUs must be detected
as available resources. Then, machine ClassAd attributes advertise this availability. Both detection and advertisement
are accomplished by having this configuration for each execute machine that has GPUs:

use feature : GPUs

Use of this configuration template invokes the tool to create a custom resource, with a custom resource name of GPUs,
and it generates the ClassAd attributes needed to advertise the GPUs. is invoked in a mode that discovers and advertises
both CUDA and OpenCL GPUs.

This configuration template refers to macro , which can be used to define additional command line arguments for the
tool. For example, setting

use feature : GPUs
GPU_DISCOVERY_EXTRA = -extra

350 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

causes the tool to output more attributes that describe the detected GPUs on the machine.

defaults to using nested ClassAds for GPU properties. The administrator can be explicit about which form to use for
properties by adding either the -nested or -not-nested option to .

The format – nested or not – of GPU properties in the slot ad is the same as published by . The use of nested GPU
property ads is necessary to do GPU matchmaking and to properly support heterogeneous GPUs.

For resources like GPUs that have individual properties, when configuring slots the slot configuration can specify a
constraint on those properties for the purpose of choosing which GPUs are assigned to which slots. This serves the
same purpose as the submit keyword, but in this case it controls the slot configuration on startup.

The resource constraint can be specified by following the resource quantity with a colon and then a constraint expression.
The constraint expression can refer to resource property attributes like the GPU properties from -nested output. If
the constraint expression is a string literal, it will be matched automatically against the resource id, otherwise it will be
evaluated against each of the resource property ads.

When using resource constraints, it is recommended that you put each resource quantity on a separate line as in the
following example, otherwise the constraint expression may be truncated.

Assuming a machine that has two types of GPUs, 2 of which have Capability 8.0
and the remaining GPUs are less powerful

declare a partitionable slot that has the 2 powerful GPUs
and 90% of the other resources:
SLOT_TYPE_1 @=slot

GPUs = 2 : Capability >= 8.0
90%

@slot
SLOT_TYPE_1_PARTITIONABLE = TRUE
NUM_SLOTS_TYPE_1 = 1

declare a small static slot and assign it a specific GPU by id
SLOT_TYPE_2 @=slot

GPUs = 1 : "GPU-6a96bd13"
CPUs = 1

Memory = 10
@slot
SLOT_TYPE_2_PARTITIONABLE = FALSE
NUM_SLOTS_TYPE_2 = 1

declare two static slots that split up the remaining resources which may or␣
→˓may not include GPUs
SLOT_TYPE_3 = auto
SLOT_TYPE_3_PARTITIONABLE = FALSE
NUM_SLOTS_TYPE_3 = 2

5.5. Configuration for Execution Points 351

HTCondor Manual, Release 23.6.2

5.5.9 condor_negotiator-Side Resource Consumption Policies

Warning: Consumption policies are an experimental feature and may not work well in combination with other
HTCondor features.

For partitionable slots, the specification of a consumption policy permits matchmaking at the negotiator. A dynamic
slot carved from the partitionable slot acquires the required quantities of resources, leaving the partitionable slot with
the remainder. This differs from scheduler matchmaking in that multiple jobs can match with the partitionable slot
during a single negotiation cycle.

All specification of the resources available is done by configuration of the partitionable slot. The machine is identified
as having a resource consumption policy enabled with

CONSUMPTION_POLICY = True

A defined slot type that is partitionable may override the machine value with

SLOT_TYPE_<N>_CONSUMPTION_POLICY = True

A job seeking a match may always request a specific number of cores, amount of memory, and amount of disk space.
Availability of these three resources on a machine and within the partitionable slot is always defined and have these
default values:

CONSUMPTION_CPUS = quantize(target.RequestCpus,{1})
CONSUMPTION_MEMORY = quantize(target.RequestMemory,{128})
CONSUMPTION_DISK = quantize(target.RequestDisk,{1024})

Here is an example-driven definition of a consumption policy. Assume a single partitionable slot type on a multi-core
machine with 8 cores, and that the resource this policy cares about allocating are the cores. Configuration for the
machine includes the definition of the slot type and that it is partitionable.

SLOT_TYPE_1 = cpus=8
SLOT_TYPE_1_PARTITIONABLE = True
NUM_SLOTS_TYPE_1 = 1

Enable use of the condor_negotiator-side resource consumption policy, allocating the job-requested number of cores
to the dynamic slot, and use to assess the user usage that will affect user priority by the number of cores allocated. Note
that the only attributes valid within the expression are Cpus, Memory, and disk. This must the set to the same value on
all machines in the pool.

SLOT_TYPE_1_CONSUMPTION_POLICY = True
SLOT_TYPE_1_CONSUMPTION_CPUS = TARGET.RequestCpus
SLOT_WEIGHT = Cpus

If custom resources are available within the partitionable slot, they may be used in a consumption policy, by specifying
the resource. Using a machine with 4 GPUs as an example custom resource, define the resource and include it in the
definition of the partitionable slot:

MACHINE_RESOURCE_NAMES = gpus
MACHINE_RESOURCE_gpus = 4
SLOT_TYPE_2 = cpus=8, gpus=4

(continues on next page)

352 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

SLOT_TYPE_2_PARTITIONABLE = True
NUM_SLOTS_TYPE_2 = 1

Add the consumption policy to incorporate availability of the GPUs:

SLOT_TYPE_2_CONSUMPTION_POLICY = True
SLOT_TYPE_2_CONSUMPTION_gpus = TARGET.RequestGpu
SLOT_WEIGHT = Cpus

5.5.10 Power Management

HTCondor supports placing machines in low power states. A machine in the low power state is identified as being
offline. Power setting decisions are based upon HTCondor configuration.

Power conservation is relevant when machines are not in heavy use, or when there are known periods of low activity
within the pool.

Entering a Low Power State

By default, HTCondor does not do power management. When desired, the ability to place a machine into a low power
state is accomplished through configuration. This occurs when all slots on a machine agree that a low power state is
desired.

A slot’s readiness to hibernate is determined by the evaluating the configuration variable (see the condor_startd Con-
figuration File Macros section) within the context of the slot. Readiness is evaluated at fixed intervals, as determined
by the configuration variable. A non-zero value of this variable enables the power management facility. It is an integer
value representing seconds, and it need not be a small value. There is a trade off between the extra time not at a low
power state and the unnecessary computation of readiness.

To put the machine in a low power state rapidly after it has become idle, consider checking each slot’s state frequently,
as in the example configuration:

HIBERNATE_CHECK_INTERVAL = 20

This checks each slot’s readiness every 20 seconds. A more common value for frequency of checks is 300 (5 minutes).
A value of 300 loses some degree of granularity, but it is more reasonable as machines are likely to be put in to a low
power state after a few hours, rather than minutes.

A slot’s readiness or willingness to enter a low power state is determined by the expression. Because this expression is
evaluated in the context of each slot, and not on the machine as a whole, any one slot can veto a change of power state.
The expression may reference a wide array of variables. Possibilities include the change in power state if none of the
slots are claimed, or if the slots are not in the Owner state.

Here is a concrete example. Assume that the expression is not set to always be True. This permits an easy determination
whether or not the machine is in an Unclaimed state through the use of an auxiliary macro called ShouldHibernate.

TimeToWait = (2 * $(HOUR))
ShouldHibernate = ((KeyboardIdle > $(StartIdleTime)) \

&& $(CPUIdle) \
&& ($(StateTimer) > $(TimeToWait)))

5.5. Configuration for Execution Points 353

HTCondor Manual, Release 23.6.2

This macro evaluates to True if the following are all True:

• The keyboard has been idle long enough.

• The CPU is idle.

• The slot has been Unclaimed for more than 2 hours.

The sample expression that enters the power state called “RAM”, if ShouldHibernate evaluates to True, and remains
in its current state otherwise is

HibernateState = "RAM"
HIBERNATE = ifThenElse($(ShouldHibernate), $(HibernateState), "NONE")

If any slot returns “NONE”, that slot vetoes the decision to enter a low power state. Only when values returned by all
slots are all non-zero is there a decision to enter a low power state. If all agree to enter the low power state, but differ
in which state to enter, then the largest magnitude value is chosen.

Returning From a Low Power State

The HTCondor command line tool may wake a machine from a low power state by sending a UDP Wake On LAN
(WOL) packet. See the condor_power manual page.

To automatically call under specific conditions, condor_rooster may be used. The configuration options for con-
dor_rooster are described in the condor_rooster Configuration File Macros section.

Keeping a ClassAd for a Hibernating Machine

A pool’s condor_collector daemon can be configured to keep a persistent ClassAd entry for each machine, once it has
entered hibernation. This is required by condor_rooster so that it can evaluate the expression of the offline machines.

To do this, define a log file using the configuration variable. See the condor_startd Configuration File Macros section
for the definition. An optional expiration time for each ClassAd can be specified with . The timing begins from the
time the hibernating machine’s ClassAd enters the condor_collector daemon. See the condor_startd Configuration
File Macros section for the definition.

Linux Platform Details

Depending on the Linux distribution and version, there are three methods for controlling a machine’s power state. The
methods:

1. pm-utils is a set of command line tools which can be used to detect and switch power states. In HTCondor, this
is defined by the string “pm-utils”.

2. The directory in the virtual file system /sys/power contains virtual files that can be used to detect and set the
power states. In HTCondor, this is defined by the string “/sys”.

3. The directory in the virtual file system /proc/acpi contains virtual files that can be used to detect and set the
power states. In HTCondor, this is defined by the string “/proc”.

By default, the HTCondor attempts to detect the method to use in the order shown. The first method detected as usable
on the system is chosen.

354 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

This ordered detection may be bypassed, to use a specified method instead by setting the configuration variable with
one of the defined strings. This variable is defined in the condor_startd Configuration File Macros section. If no usable
methods are detected or the method specified by is either not detected or invalid, hibernation is disabled.

The details of this selection process, and the final method selected can be logged via enabling D_FULLDEBUG in the
relevant subsystem’s log configuration.

Windows Platform Details

If after a suitable amount of time, a Windows machine has not entered the expected power state, then HTCondor is
having difficulty exercising the operating system’s low power capabilities. While the cause will be specific to the
machine’s hardware, it may also be due to improperly configured software. For hardware difficulties, the likely culprit
is the configuration within the machine’s BIOS, for which HTCondor can offer little guidance. For operating system
difficulties, the powercfg tool can be used to discover the available power states on the machine. The following command
demonstrates how to list all of the supported power states of the machine:

> powercfg -A
The following sleep states are available on this system:
Standby (S3) Hibernate Hybrid Sleep
The following sleep states are not available on this system:
Standby (S1)

The system firmware does not support this standby state.
Standby (S2)

The system firmware does not support this standby state.

Note that the expression is written in terms of the Sn state, where n is the value evaluated from the expression.

This tool can also be used to enable and disable other sleep states. This example turns hibernation on.

> powercfg -h on

If this tool is insufficient for configuring the machine in the manner required, the Power Options control panel applica-
tion offers the full extent of the machine’s power management abilities.

5.5.11 Hooks

A hook is an external program or script invoked by an HTCondor daemon to change its behavior or implement some
policy. There are three kinds of Job hooks in HTCondor: Fetch work job hooks, Prepare Job hooks, and Job Router
hooks.

Job Hooks That Fetch Work

In the past, HTCondor has always sent work to the execute machines by pushing jobs to the condor_startd daemon
from the condor_schedd daemon. Beginning with the HTCondor version 7.1.0, the condor_startd daemon now has the
ability to pull work by fetching jobs via a system of plug-ins or hooks. Any site can configure a set of hooks to fetch
work, completely outside of the usual HTCondor matchmaking system.

5.5. Configuration for Execution Points 355

HTCondor Manual, Release 23.6.2

A projected use of the hook mechanism implements what might be termed a glide-in factory, especially where the
factory is behind a firewall. Without using the hook mechanism to fetch work, a glide-in condor_startd daemon be-
hind a firewall depends on CCB to help it listen and eventually receive work pushed from elsewhere. With the hook
mechanism, a glide-in condor_startd daemon behind a firewall uses the hook to pull work. The hook needs only an
outbound network connection to complete its task, thereby being able to operate from behind the firewall, without the
intervention of CCB.

Periodically, each execution slot managed by a condor_startd will invoke a hook to see if there is any work that can be
fetched. Whenever this hook returns a valid job, the condor_startd will evaluate the current state of the slot and decide
if it should start executing the fetched work. If the slot is unclaimed and the Start expression evaluates to True, a new
claim will be created for the fetched job. If the slot is claimed, the condor_startd will evaluate the Rank expression
relative to the fetched job, compare it to the value of Rank for the currently running job, and decide if the existing job
should be preempted due to the fetched job having a higher rank. If the slot is unavailable for whatever reason, the
condor_startd will refuse the fetched job and ignore it. Either way, once the condor_startd decides what it should do
with the fetched job, it will invoke another hook to reply to the attempt to fetch work, so that the external system knows
what happened to that work unit.

If the job is accepted, a claim is created for it and the slot moves into the Claimed state. As soon as this happens, the
condor_startd will spawn a condor_starter to manage the execution of the job. At this point, from the perspective of
the condor_startd, this claim is just like any other. The usual policy expressions are evaluated, and if the job needs to
be suspended or evicted, it will be. If a higher-ranked job being managed by a condor_schedd is matched with the slot,
that job will preempt the fetched work.

The condor_starter itself can optionally invoke additional hooks to help manage the execution of the specific job. There
are hooks to prepare or validate the execution environment for the job, periodically update information about the job
as it runs, notify when the job exits, and to take special actions when the job is being evicted.

Assuming there are no interruptions, the job completes, and the condor_starter exits, the condor_startd will invoke
the hook to fetch work again. If another job is available, the existing claim will be reused and a new condor_starter is
spawned. If the hook returns that there is no more work to perform, the claim will be evicted, and the slot will return
to the Owner state.

To aid with the development and debugging of hooks, output sent to stderr by the hooks will be preserved in daemon
logs of either the condor_starter or condor_startd as appropriate.

Work Fetching Hooks Invoked by HTCondor

There are a handful of hooks invoked by HTCondor related to fetching work, some of which are called by the con-
dor_startd and others by the condor_starter. Each hook is described, including when it is invoked, what task it is
supposed to accomplish, what data is passed to the hook, what output is expected, and, when relevant, the exit status
expected.

• The hook defined by the configuration variable is invoked whenever the condor_startd wants to see if there is
any work to fetch. There is a related configuration variable called which determines how long the condor_startd
will wait between attempts to fetch work, which is described in detail in Job Hooks That Fetch Work. is the most
important hook in the whole system, and is the only hook that must be defined for any of the other condor_startd
hooks to operate.

Command-line arguments passed to the hook
None.

Standard input given to the hook
ClassAd of the slot that is looking for work.

Expected standard output from the hook
ClassAd of a job that can be run. If there is no work, the hook should return no output.

356 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

User id that the hook runs as
hook runs with the same privileges as the condor_startd. When Condor was started as root, this
is usually the condor user, or the user specified in the configuration variable.

Exit status of the hook
Ignored.

The job ClassAd returned by the hook needs to contain enough information for the condor_starter to eventually
spawn the work. The required and optional attributes in this ClassAd are listed here:

Attributes for a FetchWork application are either required or optional. The following attributes are
required:

This attribute defines the full path to the executable program to be run as a FetchWork applica-
tion. Since HTCondor does not currently provide any mechanism to transfer files on behalf of
FetchWork applications, this path should be a valid path on the machine where the application
will be run. It is a string attribute, and must therefore be enclosed in quotation marks (“). There
is no default.

If the condor_startd daemon is executing as root on the resource where a FetchWork application
will run, the user must also define to specify what user name the application will run as. On Win-
dows, the condor_startd daemon always runs as an Administrator service, which is equivalent
to running as root on Unix platforms. must contain a valid user name on the given FetchWork
resource. It is a string attribute, and must therefore be enclosed in quotation marks (“).

Required when running on a condor_startd that uses partitionable slots. It specifies the number
of CPU cores from the partitionable slot allocated for this job.

Required when running on a condor_startd that uses partitionable slots. It specifies the disk
space, in Megabytes, from the partitionable slot allocated for this job.

Required when running on a condor_startd that uses partitionable slots. It specifies the memory,
in Megabytes, from the partitionable slot allocated for this job.

The following list of attributes are optional:

This attribute defines what HTCondor job universe to use for the given FetchWork application.
The only tested universes are vanilla and java. This attribute must be an integer, with vanilla
using the value 5, and java using the value 10.

IWD
IWD is an acronym for Initial Working Directory. It defines the full path to the directory where
a given FetchWork application are to be run. Unless the application changes its current working
directory, any relative path names used by the application will be relative to the IWD. If any
other attributes that define file names (for example, In, Out, and so on) do not contain a full
path, the IWD will automatically be pre-pended to those file names. It is a string attribute, and
must therefore be enclosed in quotation marks (“). If the IWD is not specified, the temporary
execution sandbox created by the condor_starter will be used as the initial working directory.

In
This string defines the path to the file on the FetchWork resource that should be used as stan-

5.5. Configuration for Execution Points 357

HTCondor Manual, Release 23.6.2

dard input (stdin) for the FetchWork application. This file (and all parent directories) must be
readable by whatever user the FetchWork application will run as. If not specified, the default is
/dev/null. It is a string attribute, and must therefore be enclosed in quotation marks (“).

Out
This string defines the path to the file on the FetchWork resource that should be used as standard
output (stdout) for the FetchWork application. This file must be writable (and all parent di-
rectories readable) by whatever user the FetchWork application will run as. If not specified, the
default is /dev/null. It is a string attribute, and must therefore be enclosed in quotation marks
(“).

Err
This string defines the path to the file on the FetchWork resource that should be used as standard
error (stderr) for the FetchWork application. This file must be writable (and all parent direc-
tories readable) by whatever user the FetchWork application will run as. If not specified, the
default is /dev/null. It is a string attribute, and must therefore be enclosed in quotation marks
(“).

This string defines environment variables to set for a given FetchWork application. Each environ-
ment variable has the form NAME=value. Multiple variables are delimited with a semicolon. An
example: Env = “PATH=/usr/local/bin:/usr/bin;TERM=vt100” It is a string attribute, and must
therefore be enclosed in quotation marks (“).

This string attribute defines the list of arguments to be supplied to the program on the command-
line. The arguments are delimited (separated) by space characters. There is no default. If the
corresponds to the Java universe, the first argument must be the name of the class containing
main. It is a string attribute, and must therefore be enclosed in quotation marks (“).

JarFiles
This string attribute is only used if is 10 (the Java universe). If a given FetchWork application is
a Java program, specify the JAR files that the program requires with this attribute. There is no
default. It is a string attribute, and must therefore be enclosed in quotation marks (“). Multiple
file names may be delimited with either commas or white space characters, and therefore, file
names can not contain spaces.

This attribute specifies what signal should be sent whenever the HTCondor system needs to grace-
fully shutdown the FetchWork application. It can either be specified as a string containing the
signal name (for example KillSig = “SIGQUIT”), or as an integer (KillSig = 3) The default is to
use SIGTERM.

StarterUserLog
This string specifies a file name for a log file that the condor_starter daemon can write with
entries for relevant events in the life of a given FetchWork application. It is similar to the job
event log file specified for regular HTCondor jobs with the command in a submit description file.
However, certain attributes that are placed in a job event log do not make sense in the FetchWork
environment, and are therefore omitted. The default is not to write this log file. It is a string
attribute, and must therefore be enclosed in quotation marks (“).

StarterUserLogUseXML
If the StarterUserLog attribute is defined, the default format is a human-readable format. How-
ever, HTCondor can write out this log in an XML representation, instead. To enable the XML
format for this job event log, the StarterUserLogUseXML boolean is set to TRUE. The default
if not specified is FALSE.

If any attribute that specifies a path (, In, Out,Err, StarterUserLog) is not a full path name, HT-

358 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Condor automatically prepends the value of IWD.

• The hook defined by the configuration variable is invoked whenever returns data and the condor_startd decides
if it is going to accept the fetched job or not.

The condor_startd will not wait for this hook to return before taking other actions, and it ignores all output. The
hook is simply advisory, and it has no impact on the behavior of the condor_startd.

Command-line arguments passed to the hook
Either the string accept or reject.

Standard input given to the hook
A copy of the job ClassAd and the slot ClassAd (separated by the string —– and a new line).

Expected standard output from the hook
None.

User id that the hook runs as
The hook runs with the same privileges as the condor_startd. When Condor was started as root,
this is usually the condor user, or the user specified in the configuration variable.

Exit status of the hook
Ignored.

• The hook defined by the configuration variable is invoked whenever the condor_startd needs to evict a claim
representing fetched work.

The condor_startd will not wait for this hook to return before taking other actions, and ignores all output. The
hook is simply advisory, and has no impact on the behavior of the condor_startd.

Command-line arguments passed to the hook
None.

Standard input given to the hook
A copy of the job ClassAd and the slot ClassAd (separated by the string —– and a new line).

Expected standard output from the hook
None.

User id that the hook runs as
The hook runs with the same privileges as the condor_startd. When Condor was started as root,
this is usually the condor user, or the user specified in the configuration variable.

Exit status of the hook
Ignored.

Keywords to Define Job Fetch Hooks in the HTCondor Configuration files

Hooks are defined in the HTCondor configuration files by prefixing the name of the hook with a keyword. This way, a
given machine can have multiple sets of hooks, each set identified by a specific keyword.

Each slot on the machine can define a separate keyword for the set of hooks that should be used with . For example,
on slot 1, the variable name will be called SLOT1_JOB_HOOK_KEYWORD. If the slot-specific keyword is not defined, the
condor_startd will use a global keyword as defined by .

Once a job is fetched via , the condor_startd will insert the keyword used to fetch that job into the job ClassAd as .
This way, the same keyword will be used to select the hooks invoked by the condor_starter during the actual execution

5.5. Configuration for Execution Points 359

HTCondor Manual, Release 23.6.2

of the job. The config knob can define a default hook keyword to use in the event that keyword defined by the job is
invalid or not specified. Alternatively, the can be defined to force the condor_starter to always use a given keyword for
its own hooks, regardless of the value in the job ClassAd for the attribute.

For example, the following configuration defines two sets of hooks, and on a machine with 4 slots, 3 of the slots use the
global keyword for running work from a database-driven system, and one of the slots uses a custom keyword to handle
work fetched from a web service.

Most slots fetch and run work from the database system.
STARTD_JOB_HOOK_KEYWORD = DATABASE

Slot4 fetches and runs work from a web service.
SLOT4_JOB_HOOK_KEYWORD = WEB

The database system needs to both provide work and know the reply
for each attempted claim.
DATABASE_HOOK_DIR = /usr/local/condor/fetch/database
DATABASE_HOOK_FETCH_WORK = $(DATABASE_HOOK_DIR)/fetch_work.php
DATABASE_HOOK_REPLY_FETCH = $(DATABASE_HOOK_DIR)/reply_fetch.php

The web system only needs to fetch work.
WEB_HOOK_DIR = /usr/local/condor/fetch/web
WEB_HOOK_FETCH_WORK = $(WEB_HOOK_DIR)/fetch_work.php

The keywords "DATABASE" and "WEB" are completely arbitrary, so each site is encouraged to use different (more
specific) names as appropriate for their own needs.

Defining the FetchWorkDelay Expression

There are two events that trigger the condor_startd to attempt to fetch new work:

• the condor_startd evaluates its own state

• the condor_starter exits after completing some fetched work

Even if a given compute slot is already busy running other work, it is possible that if it fetched new work, the con-
dor_startd would prefer this newly fetched work (via the Rank expression) over the work it is currently running. How-
ever, the condor_startd frequently evaluates its own state, especially when a slot is claimed. Therefore, administrators
can define a configuration variable which controls how long the condor_startd will wait between attempts to fetch new
work. This variable is called .

The expression must evaluate to an integer, which defines the number of seconds since the last fetch attempt completed
before the condor_startd will attempt to fetch more work. However, as a ClassAd expression (evaluated in the context
of the ClassAd of the slot considering if it should fetch more work, and the ClassAd of the currently running job, if
any), the length of the delay can be based on the current state the slot and even the currently running job.

For example, a common configuration would be to always wait 5 minutes (300 seconds) between attempts to fetch
work, unless the slot is Claimed/Idle, in which case the condor_startd should fetch immediately:

FetchWorkDelay = ifThenElse(State == "Claimed" && Activity == "Idle", 0, 300)

If the condor_startd wants to fetch work, but the time since the last attempted fetch is shorter than the current value of
the delay expression, the condor_startd will set a timer to fetch as soon as the delay expires.

If this expression is not defined, the condor_startd will default to a five minute (300 second) delay between all attempts
to fetch work.

360 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Job Hooks That Modify and Monitor Execution

The Job ClassAd can be modified before execution, and the progress of the job can be modified using hooks. These
hooks are executed by the condor_starter and can be used with or without using Fetch Work hooks.

• The hook defined by the configuration variable is invoked by the condor_starter immediately before transferring
the job’s input files. This hook provides a chance to execute commands to set up or validate the job environment,
and/or edit the job classad that is used by the condor_starter.

The condor_starter waits until this hook returns before attempting to transfer the input files for the job. If the
hook returns a non-zero exit status, the condor_starter will assume an error was reached while attempting to set
up the job environment and abort the job.

Command-line arguments passed to the hook
None.

Standard input given to the hook
A copy of the job ClassAd.

Expected standard output from the hook
A set of attributes to insert or update into the job ad. For example, changing the attribute to
a quoted string changes the executable to be run. Two special attributes can also be specified:
HookStatusCode and HookStatusMessage. HookStatusCode, if specified and is not a neg-
ative number, will be used instead of the exit status of the hook unless the hook process exited
due to a signal. A status code of 0 is success, and a positive integer indicates failure. A status
code between 1 and 299 (inclusive) will result in the job going on hold; 300 or greater will result
in the job going back to the Idle state. The HookStatusMessage will be echoed into the job’s
event log file, and also be used as the Hold Reason string if the job is placed on hold.

User id that the hook runs as
The hook runs with the same privileges as the job itself. If slot users are defined, the hook runs
as the slot user, just as the job does.

Exit status of the hook
0 for success preparing the job, any non-zero value on failure.

• The hook defined by the configuration variable is invoked by the condor_starter before a job is going to be run
but after the job’s input files have been transferred. This hook provides a chance to execute commands to set up
or validate the job environment, and/or edit the job classad that is used by the condor_starter.

The condor_starter waits until this hook returns before attempting to execute the job. If the hook returns a
non-zero exit status, the condor_starter will assume an error was reached while attempting to set up the job
environment and abort the job.

Command-line arguments passed to the hook
None.

Standard input given to the hook
A copy of the job ClassAd.

Expected standard output from the hook
A set of attributes to insert or update into the job ad. For example, changing the attribute to
a quoted string changes the executable to be run. Two special attributes can also be specified:
HookStatusCode and HookStatusMessage. HookStatusCode, if specified and is not a neg-
ative number, will be used instead of the exit status of the hook unless the hook process exited
due to a signal. A status code of 0 is success, and a positive integer indicates failure. A status
code between 1 and 299 (inclusive) will result in the job going on hold; 300 or greater will result

5.5. Configuration for Execution Points 361

HTCondor Manual, Release 23.6.2

in the job going back to the Idle state. The HookStatusMessage will be echoed into the job’s
event log file, and also be used as the Hold Reason string if the job is placed on hold.

User id that the hook runs as
The hook runs with the same privileges as the job itself. If slot users are defined, the hook runs
as the slot user, just as the job does.

Exit status of the hook
0 for success preparing the job, any non-zero value on failure.

• The hook defined by the configuration variable is invoked periodically during the life of the job to update in-
formation about the status of the job. When the job is first spawned, the condor_starter will invoke this hook
after seconds (defaults to 8). Thereafter, the condor_starter will invoke the hook every seconds (defaults to 300,
which is 5 minutes).

The condor_starter will not wait for this hook to return before taking other actions, and ignores all output. The
hook is simply advisory, and has no impact on the behavior of the condor_starter.

Command-line arguments passed to the hook
None.

Standard input given to the hook
A copy of the job ClassAd that has been augmented with additional attributes describing the
current status and execution behavior of the job.

The additional attributes included inside the job ClassAd are:

JobState
The current state of the job. Can be either "Running" or "Suspended".

JobPid
The process identifier for the initial job directly spawned by the condor_starter.

The number of processes that the job has currently spawned.

The epoch time when the job was first spawned by the condor_starter.

The total number of seconds of system CPU time (the time spent at system calls) the job has
used.

The total number of seconds of user CPU time the job has used.

The memory image size of the job in Kbytes.

Expected standard output from the hook
None.

User id that the hook runs as
The hook runs with the same privileges as the job itself.

Exit status of the hook
Ignored.

• The hook defined by the configuration variable is invoked by the condor_starter whenever a job exits, either on
its own or when being evicted from an execution slot.

362 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

The condor_starter will wait for this hook to return before taking any other actions. In the case of jobs that are
being managed by a condor_shadow, this hook is invoked before the condor_starter does its own optional file
transfer back to the submission machine, writes to the local job event log file, or notifies the condor_shadow that
the job has exited.

Command-line arguments passed to the hook
A string describing how the job exited:

– exit The job exited or died with a signal on its own.

– remove The job was removed with or as the result of user job policy expressions (for example,
PeriodicRemove).

– hold The job was held with or the user job policy expressions (for example, PeriodicHold).

– evict The job was evicted from the execution slot for any other reason (evaluated to TRUE
in the condor_startd, , , etc).

Standard input given to the hook
A copy of the job ClassAd that has been augmented with additional attributes describing the
execution behavior of the job and its final results.

The job ClassAd passed to this hook contains all of the extra attributes described above for , and
the following additional attributes that are only present once a job exits:

ExitReason
A human-readable string describing why the job exited.

A boolean indicating if the job exited due to being killed by a signal, or if it exited with an
exit status.

If is true, the signal number that killed the job.

If is false, the integer exit code of the job.

JobDuration
The number of seconds that the job ran during this invocation.

Expected standard output from the hook
None.

User id that the hook runs as
The hook runs with the same privileges as the job itself.

Exit status of the hook
Ignored.

Example Hook: Specifying the Executable at Execution Time

The availability of multiple versions of an application leads to the need to specify one of the versions. As an example,
consider that the java universe utilizes a single, fixed JVM. There may be multiple JVMs available, and the HTCondor
job may need to make the choice of JVM version. The use of a job hook solves this problem. The job does not use the
java universe, and instead uses the vanilla universe in combination with a prepare job hook to overwrite the attribute of
the job ClassAd. This attribute is the name of the executable the condor_starter daemon will invoke, thereby selecting
the specific JVM installation.

In the configuration of the execute machine:

5.5. Configuration for Execution Points 363

HTCondor Manual, Release 23.6.2

JAVA5_HOOK_PREPARE_JOB = $(LIBEXEC)/java5_prepare_hook

With this configuration, a job that sets the attribute with

+HookKeyword = "JAVA5"

in the submit description file causes the condor_starter will run the hook specified by JAVA5_HOOK_PREPARE_JOB
before running this job. Note that the double quote marks are required to correctly define the attribute. Any output
from this hook is an update to the job ClassAd. Therefore, the hook that changes the executable may be

#!/bin/sh

Read and discard the job ClassAd
cat > /dev/null
echo 'Cmd = "/usr/java/java5/bin/java"'

If some machines in your pool have this hook and others do not, this fact should be advertised. Add to the configuration
of every execute machine that has the hook:

HasJava5PrepareHook = True
STARTD_ATTRS = HasJava5PrepareHook $(STARTD_ATTRS)

The submit description file for this example job may be

universe = vanilla
executable = /usr/bin/java
arguments = Hello
match with a machine that has the hook
requirements = HasJava5PrepareHook

should_transfer_files = always
when_to_transfer_output = on_exit
transfer_input_files = Hello.class

output = hello.out
error = hello.err
log = hello.log

+HookKeyword="JAVA5"

queue

Note that the job submit command ensures that this job matches with a machine that has JAVA5_HOOK_PREPARE_JOB
defined.

364 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

5.6 Configuration for Access Points

5.6.1 condor_schedd Policy Configuration

5.6.2 Schedd Job Transforms

The condor_schedd can transform jobs as they are submitted. Transformations can be used to guarantee the presence
of required job attributes, to set defaults for job attributes the user does not supply, or to modify job attributes so that
they conform to schedd policy; an example of this might be to automatically set accounting attributes based on the
owner of the job while letting the job owner indicate a preference.

There can be multiple job transforms. Each transform can have a Requirements expression to indicate which jobs it
should transform and which it should ignore. Transforms without a Requirements expression apply to all jobs. Job
transforms are applied in order. The set of transforms and their order are configured using the Configuration variable .

For each entry in this list there must be a corresponding

configuration variable that specifies the transform rules. Transforms can use the same syntax as condor_job_router
transforms; although unlike the condor_job_router there is no default transform, and all matching transforms are ap-
plied - not just the first one. (See the The HTCondor Job Router section for information on the condor_job_router.)

When a submission is a late materialization job factory, transforms that would match the first factory job will be applied
to the Cluster ad at submit time. When job ads are later materialized, attribute values set by the transform will override
values set by the job factory for those attributes.

The following example shows a set of two transforms: one that automatically assigns an accounting group to jobs based
on the submitting user, and one that shows one possible way to transform Vanilla jobs to Docker jobs.

JOB_TRANSFORM_NAMES = AssignGroup, SL6ToDocker

JOB_TRANSFORM_AssignGroup @=end
map Owner to group using the existing accounting group attribute as requested group
EVALSET AcctGroup = userMap("Groups",Owner,AcctGroup)
EVALSET AccountingGroup = join(".",AcctGroup,Owner)

@end

JOB_TRANSFORM_SL6ToDocker @=end
match only vanilla jobs that have WantSL6 and do not already have a DockerImage
REQUIREMENTS JobUniverse==5 && WantSL6 && DockerImage =?= undefined
SET WantDocker = true
SET DockerImage = "SL6"
SET Requirements = TARGET.HasDocker && $(MY.Requirements)

@end

The AssignGroup transform above assumes that a mapfile that can map an owner to one or more accounting groups
has been configured via , and given the name “Groups”.

The SL6ToDocker transform above is most likely incomplete, as it assumes a custom attribute (WantSL6) that your
pool may or may not use.

5.6. Configuration for Access Points 365

HTCondor Manual, Release 23.6.2

5.6.3 Submit Requirements

The condor_schedd may reject job submissions, such that rejected jobs never enter the queue. Rejection may be best
for the case in which there are jobs that will never be able to run; for instance, a job specifying an obsolete universe, like
standard. Another appropriate example might be to reject all jobs that do not request a minimum amount of memory.
Or, it may be appropriate to prevent certain users from using a specific submit host.

Rejection criteria are configured. Configuration variable

lists criteria, where each criterion is given a name. The chosen name is a major component of the default error message
output if a user attempts to submit a job which fails to meet the requirements. Therefore, choose a descriptive name.
For the three example submit requirements described:

SUBMIT_REQUIREMENT_NAMES = NotStandardUniverse, MinimalRequestMemory, NotChris

The criterion for each submit requirement is then specified in configuration variable , where <Name>matches the chosen
name listed in . The value is a boolean ClassAd expression. The three example criterion result in these configuration
variable definitions:

SUBMIT_REQUIREMENT_NotStandardUniverse = JobUniverse != 1
SUBMIT_REQUIREMENT_MinimalRequestMemory = RequestMemory > 512
SUBMIT_REQUIREMENT_NotChris = Owner != "chris"

Submit requirements are evaluated in the listed order; the first requirement that evaluates to False causes rejection
of the job, terminates further evaluation of other submit requirements, and is the only requirement reported. Each
submit requirement is evaluated in the context of the condor_schedd ClassAd, which is the MY. name space and the
job ClassAd, which is the TARGET. name space. Note that and are both job ClassAd attributes.

Further configuration may associate a rejection reason with a submit requirement with the .

SUBMIT_REQUIREMENT_NotStandardUniverse_REASON = "This pool does not accept standard␣
→˓universe jobs."
SUBMIT_REQUIREMENT_MinimalRequestMemory_REASON = strcat("The job only requested ", \
RequestMemory, " Megabytes. If that small amount is really enough, please contact ...

→˓")
SUBMIT_REQUIREMENT_NotChris_REASON = "Chris, you may only submit jobs to the␣
→˓instructional pool."

The value must be a ClassAd expression which evaluates to a string. Thus, double quotes were
required to make strings for both SUBMIT_REQUIREMENT_NotStandardUniverse_REASON and
SUBMIT_REQUIREMENT_NotChris_REASON. The ClassAd function strcat() produces a string in the definition
of SUBMIT_REQUIREMENT_MinimalRequestMemory_REASON.

Rejection reasons are sent back to the submitting program and will typically be immediately presented to the user. If
an optional is not defined, a default reason will include the <Name> chosen for the submit requirement. Completing the
presentation of the example submit requirements, upon an attempt to submit a standard universe job, would print

Submitting job(s).
ERROR: Failed to commit job submission into the queue.
ERROR: This pool does not accept standard universe jobs.

Where there are multiple jobs in a cluster, if any job within the cluster is rejected due to a submit requirement, the
entire cluster of jobs will be rejected.

366 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

5.6.4 Submit Warnings

Starting in HTCondor 8.7.4, you may instead configure submit warnings. A submit warning is a submit requirement
for which is true. A submit warning does not cause the submission to fail; instead, it returns a warning to the user’s
console (when triggered via) or writes a message to the user log (always). Submit warnings are intended to allow
HTCondor administrators to provide their users with advance warning of new submit requirements. For example, if
you want to increase the minimum request memory, you could use the following configuration.

SUBMIT_REQUIREMENT_NAMES = OneGig $(SUBMIT_REQUIREMENT_NAMES)
SUBMIT_REQUIREMENT_OneGig = RequestMemory > 1024
SUBMIT_REQUIREMENT_OneGig_REASON = "As of <date>, the minimum requested memory will be␣
→˓1024."
SUBMIT_REQUIREMENT_OneGig_IS_WARNING = TRUE

When a user runs to submit a job with between 512 and 1024, they will see (something like) the following, assuming
that the job meets all the other requirements.

Submitting job(s).
WARNING: Committed job submission into the queue with the following warning:
WARNING: As of <date>, the minimum requested memory will be 1024.

1 job(s) submitted to cluster 452.

The job will contain (something like) the following:

000 (452.000.000) 10/06 13:40:45 Job submitted from host: <128.105.136.53:37317?
→˓addrs=128.105.136.53-37317+[fc00--1]-37317&noUDP&sock=19966_e869_5>

WARNING: Committed job submission into the queue with the following warning: As of
→˓<date>, the minimum requested memory will be 1024.
...

Marking a submit requirement as a warning does not change when or how it is evaluated, only the result of doing so.
In particular, failing a submit warning does not terminate further evaluation of the submit requirements list. Currently,
only one (the most recent) problem is reported for each submit attempt. This means users will see (as they previously
did) only the first failed requirement; if all requirements passed, they will see the last failed warning, if any.

Working with Remote Job Submission

Remote job submission requires identification of the job queue, submitting with a command similar to:

$ condor_submit -remote condor@example.com myjob.submit

This implies the identification of a single condor_schedd daemon, running on a single machine. With the high avail-
ability of the job queue, there are multiple condor_schedd daemons, of which only one at a time is acting as the single
submission point. To make remote submission of jobs work properly, set the configuration variable in the local config-
uration to have the same value for each potentially running condor_schedd daemon. In addition, the value chosen for
the variable will need to include the at symbol (@), such that HTCondor will not modify the value set for this variable.
See the description of in the condor_master Configuration File Macros section for defaults and composition of valid
values for . As an example, include in each local configuration a value similar to:

5.6. Configuration for Access Points 367

HTCondor Manual, Release 23.6.2

SCHEDD_NAME = had-schedd@

Then, with this sample configuration, the submit command appears as:

$ condor_submit -remote had-schedd@ myjob.submit

5.6.5 Schedd Cron

Just as an administrator can dynamically add new classad attributes and values programmatically with script to the
startd’s ads, the same can be done with the classads the condor_schedd sends to the collector. However, these are less
generally useful, as there is no matchmaking with the schedd ads. Administrators might want to use this to advertise
some performance or resource usage of the machine the schedd is running on for further monitoring.

See the section in Startd Cron for examples and information about this.

5.6.6 Dedicated Scheduling

The dedicated scheduler is a part of the condor_schedd that handles the scheduling of parallel jobs that require more than
one machine concurrently running per job. MPI applications are a common use for the dedicated scheduler, but parallel
applications which do not require MPI can also be run with the dedicated scheduler. All jobs which use the parallel
universe are routed to the dedicated scheduler within the condor_schedd they were submitted to. A default HTCondor
installation does not configure a dedicated scheduler; the administrator must designate one or more condor_schedd
daemons to perform as dedicated scheduler.

Selecting and Setting Up a Dedicated Scheduler

We recommend that you select a single machine within an HTCondor pool to act as the dedicated scheduler. This
becomes the machine from upon which all users submit their parallel universe jobs. The perfect choice for the dedicated
scheduler is the single, front-end machine for a dedicated cluster of compute nodes. For the pool without an obvious
choice for a access point, choose a machine that all users can log into, as well as one that is likely to be up and running
all the time. All of HTCondor’s other resource requirements for a access point apply to this machine, such as having
enough disk space in the spool directory to hold jobs. See Directories for more information.

Configuration Examples for Dedicated Resources

Each execute machine may have its own policy for the execution of jobs, as set by configuration. Each machine with
aspects of its configuration that are dedicated identifies the dedicated scheduler. And, the ClassAd representing a job
to be executed on one or more of these dedicated machines includes an identifying attribute. An example configuration
file with the following various policy settings is /etc/examples/condor_config.local.dedicated.resource.

Each execute machine defines the configuration variable , which identifies the dedicated scheduler it is managed by.
The local configuration file contains a modified form of

DedicatedScheduler = "DedicatedScheduler@full.host.name"
STARTD_ATTRS = $(STARTD_ATTRS), DedicatedScheduler

368 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Substitute the host name of the dedicated scheduler machine for the string “full.host.name”.

If running personal HTCondor, the name of the scheduler includes the user name it was started as, so the configuration
appears as:

DedicatedScheduler = "DedicatedScheduler@username@full.host.name"
STARTD_ATTRS = $(STARTD_ATTRS), DedicatedScheduler

All dedicated execute machines must have policy expressions which allow for jobs to always run, but not be preempted.
The resource must also be configured to prefer jobs from the dedicated scheduler over all other jobs. Therefore, con-
figuration gives the dedicated scheduler of choice the highest rank. It is worth noting that HTCondor puts no other
requirements on a resource for it to be considered dedicated.

Job ClassAds from the dedicated scheduler contain the attribute Scheduler. The attribute is defined by a string of the
form

Scheduler = "DedicatedScheduler@full.host.name"

The host name of the dedicated scheduler substitutes for the string full.host.name.

Different resources in the pool may have different dedicated policies by varying the local configuration.

Policy Scenario: Machine Runs Only Jobs That Require Dedicated Resources
One possible scenario for the use of a dedicated resource is to only run jobs that require the dedicated resource.
To enact this policy, configure the following expressions:

START = Scheduler =?= $(DedicatedScheduler)
SUSPEND = False
CONTINUE = True
PREEMPT = False
KILL = False
WANT_SUSPEND = False
WANT_VACATE = False
RANK = Scheduler =?= $(DedicatedScheduler)

The expression specifies that a job with the Scheduler attribute must match the string corresponding attribute in
the machine ClassAd. The expression specifies that this same job (with the Scheduler attribute) has the highest
rank. This prevents other jobs from preempting it based on user priorities. The rest of the expressions disable
any other of the condor_startd daemon’s pool-wide policies, such as those for evicting jobs when keyboard and
CPU activity is discovered on the machine.

Policy Scenario: Run Both Jobs That Do and Do Not Require Dedicated Resources
While the first example works nicely for jobs requiring dedicated resources, it can lead to poor utilization of the
dedicated machines. A more sophisticated strategy allows the machines to run other jobs, when no jobs that
require dedicated resources exist. The machine is configured to prefer jobs that require dedicated resources, but
not prevent others from running.

To implement this, configure the machine as a dedicated resource as above, modifying only the expression:

START = True

Policy Scenario: Adding Desktop Resources To The Mix
A third policy example allows all jobs. These desktop machines use a preexisting expression that takes the
machine owner’s usage into account for some jobs. The machine does not preempt jobs that must run on dedicated
resources, while it may preempt other jobs as defined by policy. So, the default pool policy is used for starting
and stopping jobs, while jobs that require a dedicated resource always start and are not preempted.

5.6. Configuration for Access Points 369

HTCondor Manual, Release 23.6.2

The , , , and policies are set in the global configuration. Locally, the configuration is modified to this hybrid
policy by adding a second case.

SUSPEND = Scheduler =!= $(DedicatedScheduler) && ($(SUSPEND))
PREEMPT = Scheduler =!= $(DedicatedScheduler) && ($(PREEMPT))
RANK_FACTOR = 1000000
RANK = (Scheduler =?= $(DedicatedScheduler) * $(RANK_FACTOR)) \

+ $(RANK)
START = (Scheduler =?= $(DedicatedScheduler)) || ($(START))

Define RANK_FACTOR to be a larger value than the maximum value possible for the existing rank expression. is
a floating point value, so there is no harm in assigning a very large value.

Preemption with Dedicated Jobs

The dedicated scheduler can be configured to preempt running parallel universe jobs in favor of higher priority parallel
universe jobs. Note that this is different from preemption in other universes, and parallel universe jobs cannot be
preempted either by a machine’s user pressing a key or by other means.

By default, the dedicated scheduler will never preempt running parallel universe jobs. Two configuration variables
control preemption of these dedicated resources: and . These variables have no default value, so if either are not defined,
preemption will never occur. must evaluate to True for a machine to be a candidate for this kind of preemption. If
more machines are candidates for preemption than needed to satisfy a higher priority job, the machines are sorted by ,
and only the highest ranked machines are taken.

Note that preempting one node of a running parallel universe job requires killing the entire job on all of its nodes. So,
when preemption occurs, it may end up freeing more machines than are needed for the new job. Also, preempted jobs
will be re-run, starting again from the beginning. Thus, the administrator should be careful when enabling preemption
of these dedicated resources. Enable dedicated preemption with the configuration:

STARTD_JOB_ATTRS = JobPrio
SCHEDD_PREEMPTION_REQUIREMENTS = (My.JobPrio < Target.JobPrio)
SCHEDD_PREEMPTION_RANK = 0.0

In this example, preemption is enabled by user-defined job priority. If a set of machines is running a job at user priority
5, and the user submits a new job at user priority 10, the running job will be preempted for the new job. The old job is
put back in the queue, and will begin again from the beginning when assigned to a newly acquired set of machines.

Grouping Dedicated Nodes into Parallel Scheduling Groups

In some parallel environments, machines are divided into groups, and jobs should not cross groups of machines. That
is, all the nodes of a parallel job should be allocated to machines within the same group. The most common example
is a pool of machine using InfiniBand switches. For example, each switch might connect 16 machines, and a pool
might have 160 machines on 10 switches. If the InfiniBand switches are not routed to each other, each job must run on
machines connected to the same switch. The dedicated scheduler’s Parallel Scheduling Groups feature supports this
operation.

Each condor_startd must define which group it belongs to by setting the variable in the configuration file, and advertis-
ing it into the machine ClassAd. The value of this variable is a string, which should be the same for all condor_startd
daemons within a given group. The property must be advertised in the condor_startd ClassAd by appending to the
configuration variable.

The submit description file for a parallel universe job which must not cross group boundaries contains

370 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

+WantParallelSchedulingGroups = True

The dedicated scheduler enforces the allocation to within a group.

5.6.7 High Availability of the Job Queue

Warning: This High Availability configuration depends entirely on using an extremely reliably shared file server.
In our experience, only expensive, proprietary file servers are suitable for this role. Frequently, casual configuration
of a Highly Available HTCondor job queue will result in lowered reliability.

For a pool where all jobs are submitted through a single machine in the pool, and there are lots of jobs, this machine
becoming nonfunctional means that jobs stop running. The condor_schedd daemon maintains the job queue. No
job queue due to having a nonfunctional machine implies that no jobs can be run. This situation is worsened by
using one machine as the single submission point. For each HTCondor job (taken from the queue) that is executed,
a condor_shadow process runs on the machine where submitted to handle input/output functionality. If this machine
becomes nonfunctional, none of the jobs can continue. The entire pool stops running jobs.

The goal of High Availability in this special case is to transfer the condor_schedd daemon to run on another designated
machine. Jobs caused to stop without finishing can be restarted from the beginning, or can continue execution using
the most recent checkpoint. New jobs can enter the job queue. Without High Availability, the job queue would remain
intact, but further progress on jobs would wait until the machine running the condor_schedd daemon became available
(after fixing whatever caused it to become unavailable).

HTCondor uses its flexible configuration mechanisms to allow the transfer of the condor_schedd daemon from one
machine to another. The configuration specifies which machines are chosen to run the condor_schedd daemon. To
prevent multiple condor_schedd daemons from running at the same time, a lock (semaphore-like) is held over the job
queue. This synchronizes the situation in which control is transferred to a secondary machine, and the primary machine
returns to functionality. Configuration variables also determine time intervals at which the lock expires, and periods of
time that pass between polling to check for expired locks.

To specify a single machine that would take over, if the machine running the condor_schedd daemon stops working, the
following additions are made to the local configuration of any and all machines that are able to run the condor_schedd
daemon (becoming the single pool submission point):

MASTER_HA_LIST = SCHEDD
SPOOL = /share/spool
HA_LOCK_URL = file:/share/spool
VALID_SPOOL_FILES = $(VALID_SPOOL_FILES) SCHEDD.lock

Configuration macro identifies the condor_schedd daemon as the daemon that is to be watched to make sure that it is
running. Each machine with this configuration must have access to the lock (the job queue) which synchronizes which
single machine does run the condor_schedd daemon. This lock and the job queue must both be located in a shared file
space, and is currently specified only with a file URL. The configuration specifies the shared space (), and the URL of
the lock. is not currently aware of the lock file and will delete it if it is placed in the directory, so be sure to add file
SCHEDD.lock to .

As HTCondor starts on machines that are configured to run the single condor_schedd daemon, the daemon of the first
machine that looks at (polls) the lock and notices that no lock is held. This implies that no condor_schedd daemon is
running. This daemon acquires the lock and runs the condor_schedd daemon. Other machines with this same capability
to run the condor_schedd daemon look at (poll) the lock, but do not run the daemon, as the lock is held. The machine
running the condor_schedd daemon renews the lock periodically.

5.6. Configuration for Access Points 371

HTCondor Manual, Release 23.6.2

If the machine running the condor_schedd daemon fails to renew the lock (because the machine is not functioning),
the lock times out (becomes stale). The lock is released by the daemon if or condor_off -schedd is executed, or when
the daemon knows that the condor_schedd daemon is no longer running. As other machines capable of running the
condor_schedd daemon look at the lock (poll), one machine will be the first to notice that the lock has timed out or
been released. This machine (correctly) interprets this situation as the condor_schedd daemon is no longer running.
This machine’s daemon then acquires the lock and runs the condor_schedd daemon.

See the condor_master Configuration File Macros section for details relating to the configuration variables used to set
timing and polling intervals.

5.6.8 Performance Tuning of the AP

Of the three roles (AP, CM, EP) in a HTCondor system, the AP is the most common place performance tuning is done.
The CM is mostly stateless, and can typically scale out to very large pools without much additional work. The EP
daemons aren’t resource intensive. However, as the AP stores the state of all the jobs under its control, and persistently
stores frequent updates to those jobs, it is not uncommon for the AP to exhaust system resources, like cpu, or disk and
network bandwidth.

Monitoring AP Performance

The condor_schedd is single threaded. Practically, this means that it only does one thing at a time, and often when it
may be “busy” doing that one thing, it is actually waiting on the system for some i/o to complete. As such, it will rarely
appear to use 100% of a cpu in any system monitoring tool. To help guage how busy the schedd is, it keeps track of
a metric called . This is a floating point value that ranges from 0.0 (completely idle) to 1.0 (competely busy). Values
over 0.95 indicate the schedd is overloaded. In extreme cases and may timeout and fail trying to communicate to an
overloaded schedd. An administrator can see this attribute by running

$ condor_status -direct -schedd name-of-schedd -af RecentDaemonCoreDutyCycle

Horizontal Scaling

While the condor_schedd and the machine it runs on can be tuned to handle a greater rate of jobs, every machine has
some limit of jobs it can support. The main strategy for supporting more jobs in the system as a whole is simply by
running more schedds, or horizontal scaling. This may require partitioning users onto differening submit machines,
or submiting remotely, but at the end of the day, the best way to scale out a very large HTCondor system is by adding
more condor_schedd’s.

Putting the schedd’s database on the fastest disk

The condor_schedd frequently saves state to a file on disk, so that in event of a crash, no jobs will be lost on a restart.
The cost of this reliability, though, is relatively high. In addition to writing to the disk, the schedd uses the fsync system
call to force all the data onto the disk. By default, this file named job_queue.log is written to the directory. However,
the configuration option will override this path. Setting to point to a file on a solid state or nvme drive will make the
schedd faster. Ideally, this path should be on a filesystem that only holds this file.

372 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Avoiding shared filesystems for event logs

Another type of file the condor_schedd frequently writes to are job event logs, those specified by the submit command.
When these are on NFS or other distributed or slow filesystems, the whole system can slow down tremendously. If
possible, encourage users not to put their event logs on such slow filesystems.

Using third party (url / plugin) transfers when able

HTCondor can transfer user’s sandboxes to the EP in many ways. The default method, called HTCondor file transfer,
or “cedar” file transfer, copies files from the AP to the EP. Obviously, this uses cpu, disk and network bandwidth on the
AP. To the degree possible, changing large input file file transfers from cedar, to http transfers from some third party
server, moves the load off of the AP, and onto an http server. If one http server isn’t sufficent there are many methods
for scaling http servers to handle additional load.

Limiting CPU or I/O bound procesing on the AP

The machine the condor_schedd runs on is typically a machine users can log into, to prepare and submit jobs. Some-
times, users will start long-running, cpu or I/O heavy jobs on the submit machine, which can slow down the various
HTCondor services on that machine. We encourage admins to try to limit this, either by social pressure, or enforced
by system limits on the user cpu.

5.7 Configuration for Central Managers

5.7.1 User Priorities and Negotiation

HTCondor uses priorities to determine machine allocation for jobs. This section details the priorities and the allocation
of machines (negotiation).

Note: A video describing how user priorities, negotiation and fair share work in HTCondor is available at https:
//www.youtube.com/watch?v=NNnrCjFV0tM

For accounting purposes, each user is identified by username@uid_domain. Each user is assigned a priority value even
if submitting jobs from different machines in the same domain, or even if submitting from multiple machines in the
different domains.

The numerical priority value assigned to a user is inversely related to the goodness of the priority. A user with a
numerical priority of 5 gets more resources than a user with a numerical priority of 50. There are two priority values
assigned to HTCondor users:

• Real User Priority (RUP), which measures resource usage of the user.

• Effective User Priority (EUP), which determines the number of resources the user can get.

This section describes these two priorities and how they affect resource allocations in HTCondor. Documentation on
configuring and controlling priorities may be found in the condor_negotiator Configuration File Entries section.

5.7. Configuration for Central Managers 373

https://www.youtube.com/watch?v=NNnrCjFV0tM
https://www.youtube.com/watch?v=NNnrCjFV0tM
mailto:username@uid_domain

HTCondor Manual, Release 23.6.2

Real User Priority (RUP)

A user’s RUP reports a smoothed average of the number of cores a user has used over some recent period of time.
Every user begins with a RUP of one half (0.5), which is the lowest possible value. At steady state, the RUP of a user
equilibrates to the number of cores currently used. So, if a specific user continuously uses exactly ten cores for a long
period of time, the RUP of that user asymptotically approaches ten.

However, if the user decreases the number of cores used, the RUP asymptotically lowers to the new value. The rate at
which the priority value decays can be set by the macro , a time period defined in seconds. Intuitively, if the in a pool is
set to the default of 86400 seconds (one day), and a user with a RUP of 10 has no running jobs, that user’s RUP would
be 5 one day later, 2.5 two days later, and so on.

For example, if a new user has no historical usage, their RUP will start at 0.5 If that user then has 100 cores running,
their RUP will grow as the graph below show:

Or, if a new user with no historical usage has 100 cores running for 24 hours, then removes all the jobs, so has no cores
running, their RUP will grow and shrink as shown below:

Effective User Priority (EUP)

The effective user priority (EUP) of a user is used to determine how many cores a user should receive. The EUP is
simply the RUP multiplied by a priority factor the administrator can set per-user. The default initial priority factor for
all new users as they first submit jobs is set by the configuration variable , and defaults to 1000.0. An administrator
can change this priority factor using the command. For example, setting the priority factor of some user to 2,000 will
grant that user twice as many cores as a user with the default priority factor of 1,000, assuming they both have the same
historical usage.

The number of resources that a user may receive is inversely related to the ratio between the EUPs of submitting users.
User A with EUP=5 will receive twice as many resources as user B with EUP=10 and four times as many resources

374 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

as user C with EUP=20. However, if A does not use the full number of resources that A may be given, the available
resources are repartitioned and distributed among remaining users according to the inverse ratio rule.

Assume two users with no history, named A and B, using a pool with 100 cores. To simplify the math, also assume
both users have an equal priority factor of 1.0. User A submits a very large number of short-running jobs at time t
= 0 zero. User B waits until 48 hours later, and also submits an infinite number of short jobs. At the beginning, the
EUP doesn’t matter, as there is only one user with jobs, and so user A gets the whole pool. At the 48 hour mark, both
users compete for the pool. Assuming the default of 24 hours, user A’s RUP should be about 75.0 at the 48 hour mark,
and User B will still be the minimum of .5. At that instance, User B deserves 150 times User A. However, this ratio
will decay quickly. User A’s share of the pool will drop from all 100 cores to less than one core immediately, but will
quickly rebound to a handful of cores, and will asymptotically approach half of the pool as User B gets the inverse. A
graph of these two users might look like this:

HTCondor supplies mechanisms to directly support two policies in which EUP may be useful:

Nice users
A job may be submitted with the submit command set to True. This nice user job will have its RUP boosted by
the

priority factor specified in the configuration, leading to a very large EUP. This corresponds to a low priority for
resources, therefore using resources not used by other HTCondor users.

Remote Users
HTCondor’s flocking feature (see the Connecting HTCondor Pools with Flocking section) allows jobs to run
in a pool other than the local one. In addition, the submit-only feature allows a user to submit jobs to another
pool. In such situations, submitters from other domains can submit to the local pool. It may be desirable to have
HTCondor treat local users preferentially over these remote users. If configured, HTCondor will boost the RUPs
of remote users by specified in the configuration, thereby lowering their priority for resources.

The priority boost factors for individual users can be set with the setfactor option of . Details may be found in the
condor_userprio manual page.

Priorities in Negotiation and Preemption

Priorities are used to ensure that users get their fair share of resources. The priority values are used at allocation time,
meaning during negotiation and matchmaking. Therefore, there are ClassAd attributes that take on defined values only
during negotiation, making them ephemeral. In addition to allocation, HTCondor may preempt a machine claim and
reallocate it when conditions change.

Too many preemptions lead to thrashing, a condition in which negotiation for a machine identifies a new job with a better
priority most every cycle. Each job is, in turn, preempted, and no job finishes. To avoid this situation, the configuration
variable is defined for and used only by the condor_negotiator daemon to specify the conditions that must be met for
a preemption to occur. When preemption is enabled, it is usually defined to deny preemption if a current running job
has been running for a relatively short period of time. This effectively limits the number of preemptions per resource

5.7. Configuration for Central Managers 375

HTCondor Manual, Release 23.6.2

per time interval. Note that only applies to preemptions due to user priority. It does not have any effect if the machine’s
expression prefers a different job, or if the machine’s policy causes the job to vacate due to other activity on the machine.
See the condor_startd Policy Configuration section for the current default policy on preemption.

The following ephemeral attributes may be used within policy definitions. Care should be taken when using these
attributes, due to their ephemeral nature; they are not always defined, so the usage of an expression to check if defined
such as

(RemoteUserPrio =?= UNDEFINED)

is likely necessary.

Within these attributes, those with names that contain the string Submitter refer to characteristics about the candidate
job’s user; those with names that contain the string Remote refer to characteristics about the user currently using the
resource. Further, those with names that end with the string ResourcesInUse have values that may change within the
time period associated with a single negotiation cycle. Therefore, the configuration variables and exist to inform the
condor_negotiator daemon that values may change. See the condor_negotiator Configuration File Entries section for
definitions of these configuration variables.

SubmitterUserPrio
A floating point value representing the user priority of the candidate job.

SubmitterUserResourcesInUse
The integer number of slots currently utilized by the user submitting the candidate job.

RemoteUserPrio
A floating point value representing the user priority of the job currently running on the machine. This version of
the attribute, with no slot represented in the attribute name, refers to the current slot being evaluated.

Slot<N>_RemoteUserPrio
A floating point value representing the user priority of the job currently running on the particular slot represented
by <N> on the machine.

RemoteUserResourcesInUse
The integer number of slots currently utilized by the user of the job currently running on the machine.

SubmitterGroupResourcesInUse
If the owner of the candidate job is a member of a valid accounting group, with a defined group quota, then this
attribute is the integer number of slots currently utilized by the group.

The accounting group name of the requesting submitter.

SubmitterGroupQuota
If the owner of the candidate job is a member of a valid accounting group, with a defined group quota, then this
attribute is the integer number of slots defined as the group’s quota.

RemoteGroupResourcesInUse
If the owner of the currently running job is a member of a valid accounting group, with a defined group quota,
then this attribute is the integer number of slots currently utilized by the group.

The accounting group name of the owner of the currently running job.

RemoteGroupQuota
If the owner of the currently running job is a member of a valid accounting group, with a defined group quota,
then this attribute is the integer number of slots defined as the group’s quota.

The accounting group name that the candidate job is negotiating under.

376 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

The accounting group name that the currently running job negotiated under.

Boolean attribute is True if candidate job is negotiated via autoregroup.

Boolean attribute is True if currently running job negotiated via autoregroup.

Priority Calculation

This section may be skipped if the reader so feels, but for the curious, here is HTCondor’s priority calculation algorithm.

The RUP of a user 𝑢 at time 𝑡, 𝜋𝑟(𝑢, 𝑡), is calculated every time interval 𝛿𝑡 using the formula

𝜋𝑟(𝑢, 𝑡) = 𝛽𝜋𝑟(𝑢, 𝑡− 𝛿𝑡) + (1− 𝛽)𝜌(𝑢, 𝑡)

where 𝜌(𝑢, 𝑡) is the number of resources used by user 𝑢 at time 𝑡, and 𝛽 = 0.5𝛿𝑡/ℎ. ℎ is the half life period set by .

The EUP of user 𝑢 at time 𝑡, 𝜋𝑒(𝑢, 𝑡) is calculated by

𝜋𝑒(𝑢, 𝑡) = 𝜋𝑟(𝑢, 𝑡)× 𝑓(𝑢, 𝑡)

where 𝑓(𝑢, 𝑡) is the priority boost factor for user 𝑢 at time 𝑡.

As mentioned previously, the RUP calculation is designed so that at steady state, each user’s RUP stabilizes at the
number of resources used by that user. The definition of 𝛽 ensures that the calculation of 𝜋𝑟(𝑢, 𝑡) can be calculated
over non-uniform time intervals 𝛿𝑡without affecting the calculation. The time interval 𝛿𝑡 varies due to events internal to
the system, but HTCondor guarantees that unless the central manager machine is down, no matches will be unaccounted
for due to this variance.

5.7.2 Negotiation

Negotiation is the method HTCondor undergoes periodically to match queued jobs with resources capable of running
jobs. The condor_negotiator daemon is responsible for negotiation.

During a negotiation cycle, the condor_negotiator daemon accomplishes the following ordered list of items.

1. Build a list of all possible resources, regardless of the state of those resources.

2. Obtain a list of all job submitters (for the entire pool).

3. Sort the list of all job submitters based on EUP (see The Layperson’s Description of the Pie Spin and Pie Slice
for an explanation of EUP). The submitter with the best priority is first within the sorted list.

4. Iterate until there are either no more resources to match, or no more jobs to match.

For each submitter (in EUP order):

For each submitter, get each job. Since jobs may be submitted from more than one machine
(hence to more than one condor_schedd daemon), here is a further definition of the ordering
of these jobs. With jobs from a single condor_schedd daemon, jobs are typically returned in
job priority order. When more than one condor_schedd daemon is involved, they are con-
tacted in an undefined order. All jobs from a single condor_schedd daemon are considered
before moving on to the next. For each job:

• For each machine in the pool that can execute jobs:

5.7. Configuration for Central Managers 377

HTCondor Manual, Release 23.6.2

1. If machine.requirements evaluates to False or job.requirements evaluates to
False, skip this machine

2. If the machine is in the Claimed state, but not running a job, skip this machine.

3. If this machine is not running a job, add it to the potential match list by reason of No
Preemption.

4. If the machine is running a job

– If the machine.RANK on this job is better than the running job, add this machine
to the potential match list by reason of Rank.

– If the EUP of this job is better than the EUP of the currently running job, and is
True, and the machine.RANK on this job is not worse than the currently running
job, add this machine to the potential match list by reason of Priority. See example
below.

• Of machines in the potential match list, sort by , job.RANK, , Reason for claim (No
Preemption, then Rank, then Priority),

• The job is assigned to the top machine on the potential match list. The machine is
removed from the list of resources to match (on this negotiation cycle).

As described above, the condor_negotiator tries to match each job to all slots in the pool. Assume that five slots match
one request for three jobs, and that their , Job.Rank, and expressions evaluate (in the context of both the slot ad and
the job ad) to the following values.

Slot Name NEGOTIATOR_PRE_JOB_RANK Job.Rank NEGOTIATOR_POST_JOB_RANK
slot1 100 1 10
slot2 100 2 20
slot3 100 2 30
slot4 0 1 40
slot5 200 1 50

Table 3.1: Example of slots before sorting

These slots would be sorted first on , then sorting all ties based on Job.Rank and any remaining ties sorted by . After
that, the first three slots would be handed to the condor_schedd. This means that is very strong, and overrides any
ranking expression by the submitter of the job. After sorting, the slots would look like this, and the schedd would be
given slot5, slot3 and slot2:

Slot Name NEGOTIATOR_PRE_JOB_RANK Job.Rank NEGOTIATOR_POST_JOB_RANK
slot5 200 1 50
slot3 100 2 30
slot2 100 2 20
slot1 100 1 10
slot4 0 1 40

Table 3.2: Example of slots after sorting

The condor_negotiator asks the condor_schedd for the “next job” from a given submitter/user. Typically, the con-
dor_schedd returns jobs in the order of job priority. If priorities are the same, job submission time is used; older jobs
go first. If a cluster has multiple procs in it and one of the jobs cannot be matched, the condor_schedd will not return
any more jobs in that cluster on that negotiation pass. This is an optimization based on the theory that the cluster jobs
are similar. The configuration variable disables the cluster-skipping optimization. Use of the configuration variable
will change the definition of what the condor_schedd considers a cluster from the default definition of all jobs that
share the same .

378 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

The Layperson’s Description of the Pie Spin and Pie Slice

The negotiator first finds all users who have submitted jobs and calculates their priority. Then, it totals the SlotWeight
(by default, cores) of all currently available slots, and using the ratios of the user priorities, it calculates the number of
cores each user could get. This is their pie slice. (See: SLOT_WEIGHT in condor_startd Configuration File Macros)

If any users have a floor defined via -set-floor , and their current allocation of cores is below the floor, a special round
of the below-floor users goes first, attempting to allocate up to the defined number of cores for their floor level. These
users are negotiated for in user priority order. This allows an admin to give users some “guaranteed” minimum number
of cores, no matter what their previous usage or priority is.

After the below-floor users are negotiated for, all users are negotiated for, in user priority order. The condor_negotiator
contacts each schedd where the user’s job lives, and asks for job information. The condor_schedd daemon (on behalf
of a user) tells the matchmaker about a job, and the matchmaker looks at available slots to create a list that match the
requirements expression. It then sorts the matching slots by the rank expressions within ClassAds. If a slot prefers
a job via the slot RANK expression, the job is assigned to that slot, potentially preempting an already running job.
Otherwise, give the slot to the job that the job ranks highest. If the highest ranked slot is already running a job, the
negotiator may preempt the running job for the new job.

This matchmaking cycle continues until the user has received all of the machines in their pie slice. If there is a per-user
ceiling defined with the -setceil command, and this ceiling is smaller than the pie slice, the user gets only up to their
ceiling number of cores. The matchmaker then contacts the next highest priority user and offers that user their pie slice
worth of machines. After contacting all users, the cycle is repeated with any still available resources and recomputed
pie slices. The matchmaker continues spinning the pie until it runs out of machines or all the condor_schedd daemons
say they have no more jobs.

5.7.3 Group Accounting

By default, HTCondor does all accounting on a per-user basis. This means that HTCondor keeps track of the historical
usage per-user, calculates a priority and fair-share per user, and allows the administrator to change this fair-share per
user. In HTCondor terminology, the accounting principal is called the submitter.

The name of this submitter is, by default, the name the schedd authenticated when the job was first submitted to the
schedd. Usually, this is the operating system username. However, the submitter can override the username selected by
setting the submit file option

accounting_group_user = ishmael

This means this job should be treated, for accounting purposes only, as “ishamel”, but “ishmael” will not be the operat-
ing system id the shadow or job uses. Note that HTCondor trusts the user to set this to a valid value. The administrator
can use schedd requirements or transforms to validate such settings, if desired. accounting_group_user is frequently
used in web portals, where one trusted operating system process submits jobs on behalf of different users.

Note that if many people submit jobs with identical accounting_group_user values, HTCondor treats them as one set of
jobs for accounting purposes. So, if Alice submits 100 jobs as accounting_group_user ishmael, and so does Bob a mo-
ment later, HTCondor will not try to fair-share between them, as it would do if they had not set accounting_group_user.
If all these jobs have identical requirements, they will be run First-In, First-Out, so whoever submitted first makes the
subsequent jobs wait until the last one of the first submit is finished.

5.7. Configuration for Central Managers 379

HTCondor Manual, Release 23.6.2

5.7.4 Accounting Groups with Hierarchical Group Quotas

With additional configuration, it is possible to create accounting groups, where the submitters within the group maintain
their distinct identity, and fair-share still happens within members of that group.

An upper limit on the number of slots allocated to a group of users can be specified with group quotas.

Consider an example pool with thirty slots: twenty slots are owned by the physics group and ten are owned by the
chemistry group. The desired policy is that no more than twenty concurrent jobs are ever running from the physicists,
and only ten from the chemists. These machines are otherwise identical, so it does not matter which machines run
which group’s jobs. It only matters that the proportions of allocated slots are correct.

Group quotas may implement this policy. Define the groups and set their quotas in the configuration of the central
manager:

GROUP_NAMES = group_physics, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_chemistry = 10

The implementation of quotas is hierarchical, such that quotas may be described for the tree of groups, subgroups, sub
subgroups, etc. Group names identify the groups, such that the configuration can define the quotas in terms of limiting
the number of cores allocated for a group or subgroup. Group names do not need to begin with "group_", but that is
the convention, which helps to avoid naming conflicts between groups and subgroups. The hierarchy is identified by
using the period (‘.’) character to separate a group name from a subgroup name from a sub subgroup name, etc. Group
names are case-insensitive for negotiation.

At the root of the tree that defines the hierarchical groups is the “<none>” group. The implied quota of the “<none>”
group will be all available slots. This string will appear in the output of .

If the sum of the child quotas exceeds the parent, then the child quotas are scaled down in proportion to their relative
sizes. For the given example, there were 30 original slots at the root of the tree. If a power failure removed half of the
original 30, leaving fifteen slots, physics would be scaled back to a quota of ten, and chemistry to five. This scaling
can be disabled by setting the condor_negotiator configuration variable to True. If the sum of the child quotas is less
than that of the parent, the child quotas remain intact; they are not scaled up. That is, if somehow the number of slots
doubled from thirty to sixty, physics would still be limited to 20 slots, and chemistry would be limited to 10. This
example in which the quota is defined by absolute values is called a static quota.

Each job must state which group it belongs to. By default, this is opt-in, and the system trusts each user to put the
correct group in the submit description file. See “Setting Accounting Groups Automatically below” to configure the
system to set them without user input and to prevent users from opting into the wrong groups. Jobs that do not identify
themselves as a group member are negotiated for as part of the “<none>” group. Note that this requirement is per job,
not per user. A given user may be a member of many groups. Jobs identify which group they are in by setting the and
commands within the submit description file, as specified in the Group Accounting section. For example:

accounting_group = group_physics
accounting_group_user = einstein

The size of the quotas may instead be expressed as a proportion. This is then referred to as a dynamic group quota,
because the size of the quota is dynamically recalculated every negotiation cycle, based on the total available size of
the pool. Instead of using static quotas, this example can be recast using dynamic quotas, with one-third of the pool
allocated to chemistry and two-thirds to physics. The quotas maintain this ratio even as the size of the pool changes,
perhaps because of machine failures, because of the arrival of new machines within the pool, or because of other
reasons. The job submit description files remain the same. Configuration on the central manager becomes:

380 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

GROUP_NAMES = group_physics, group_chemistry
GROUP_QUOTA_DYNAMIC_group_chemistry = 0.33
GROUP_QUOTA_DYNAMIC_group_physics = 0.66

The values of the quotas must be less than 1.0, indicating fractions of the pool’s machines. As with static quota
specification, if the sum of the children exceeds one, they are scaled down proportionally so that their sum does equal
1.0. If their sum is less than one, they are not changed.

Extending this example to incorporate subgroups, assume that the physics group consists of high-energy (hep) and low-
energy (lep) subgroups. The high-energy sub-group owns fifteen of the twenty physics slots, and the low-energy group
owns the remainder. Groups are distinguished from subgroups by an intervening period character (.) in the group’s
name. Static quotas for these subgroups extend the example configuration:

GROUP_NAMES = group_physics, group_physics.hep, group_physics.lep, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_physics.hep = 15
GROUP_QUOTA_group_physics.lep = 5
GROUP_QUOTA_group_chemistry = 10

This hierarchy may be more useful when dynamic quotas are used. Here is the example, using dynamic quotas:

GROUP_NAMES = group_physics, group_physics.hep, group_physics.lep, group_chemistry
GROUP_QUOTA_DYNAMIC_group_chemistry = 0.33334
GROUP_QUOTA_DYNAMIC_group_physics = 0.66667
GROUP_QUOTA_DYNAMIC_group_physics.hep = 0.75
GROUP_QUOTA_DYNAMIC_group_physics.lep = 0.25

The fraction of a subgroup’s quota is expressed with respect to its parent group’s quota. That is, the high-energy physics
subgroup is allocated 75% of the 66% that physics gets of the entire pool, however many that might be. If there are 30
machines in the pool, that would be the same 15 machines as specified in the static quota example.

High-energy physics users indicate which group their jobs should go in with the submit description file identification:

accounting_group = group_physics.hep
accounting_group_user = higgs

In all these examples so far, the hierarchy is merely a notational convenience. Each of the examples could be imple-
mented with a flat structure, although it might be more confusing for the administrator. Surplus is the concept that
creates a true hierarchy.

If a given group or sub-group accepts surplus, then that given group is allowed to exceed its configured quota, by using
the leftover, unused quota of other groups. Surplus is disabled for all groups by default. Accepting surplus may be
enabled for all groups by setting to True. Surplus may be enabled for individual groups by setting to True. Consider
the following example:

GROUP_NAMES = group_physics, group_physics.hep, group_physics.lep, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_physics.hep = 15
GROUP_QUOTA_group_physics.lep = 5
GROUP_QUOTA_group_chemistry = 10
GROUP_ACCEPT_SURPLUS = false
GROUP_ACCEPT_SURPLUS_group_physics = false
GROUP_ACCEPT_SURPLUS_group_physics.lep = true
GROUP_ACCEPT_SURPLUS_group_physics.hep = true

5.7. Configuration for Central Managers 381

HTCondor Manual, Release 23.6.2

This configuration is the same as above for the chemistry users. However, is set to False globally, False for the physics
parent group, and True for the subgroups group_physics.lep and group_physics.lep. This means that group_physics.lep
and group_physics.hep are allowed to exceed their quota of 15 and 5, but their sum cannot exceed 20, for that is their
parent’s quota. If the group_physics had set to True, then either group_physics.lep and group_physics.hep would not
be limited by quota.

Surplus slots are distributed bottom-up from within the quota tree. That is, any leaf nodes of this tree with excess quota
will share it with any peers which accept surplus. Any subsequent excess will then be passed up to the parent node and
over to all of its children, recursively. Any node that does not accept surplus implements a hard cap on the number of
slots that the sum of it’s children use.

After the condor_negotiator calculates the quota assigned to each group, possibly adding in surplus, it then negotiates
with the condor_schedd daemons in the system to try to match jobs to each group. It does this one group at a time. By
default, it goes in “starvation group order.” That is, the group whose current usage is the smallest fraction of its quota
goes first, then the next, and so on. The “<none>” group implicitly at the root of the tree goes last. This ordering can be
replaced by defining configuration variable . The condor_negotiator evaluates this ClassAd expression for each group
ClassAd, sorts the groups by the floating point result, and then negotiates with the smallest positive value going first.
Available attributes for sorting with include:

Attribute Name Description
AccountingGroup A string containing the group name
GroupQuota The computed limit for this group
GroupResourcesInUse The total slot weight used by this group
GroupResourcesAllocated Quota allocated this cycle

Table 3.3: Attributes visible to GROUP_SORT_EXPR

One possible group quota policy is strict priority. For example, a site prefers physics users to match as many slots as
they can, and only when all the physics jobs are running, and idle slots remain, are chemistry jobs allowed to run. The
default “starvation group order” can be used to implement this. By setting configuration variable to True, and setting
the physics quota to a number so large that it cannot ever be met, such as one million, the physics group will always be
the “most starving” group, will always negotiate first, and will always be unable to meet the quota. Only when all the
physics jobs are running will the chemistry jobs then run. If the chemistry quota is set to a value smaller than physics,
but still larger than the pool, this policy can support a third, even lower priority group, and so on.

The command can show the current quotas in effect, and the current usage by group. For example:

$ condor_userprio -quotas
Last Priority Update: 11/12 15:18
Group Effective Config Use Subtree Requested
Name Quota Quota Surplus Quota Resources
------------------------ --------- --------- ------- --------- ----------
group_physics.hep 15.00 15.00 no 15.00 60
group_physics.lep 5.00 5.00 no 5.00 60
------------------------ --------- --------- ------- --------- ----------
Number of users: 2 ByQuota

This shows that there are two groups, each with 60 jobs in the queue. group_physics.hep has a quota of 15 machines,
and group_physics.lep has 5 machines. Other options to , such as -most will also show the number of resources in use.

382 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

5.7.5 Setting Accounting Group automatically per user

By default, any user can put the jobs into any accounting group by setting parameters in the submit file. This can be
useful if a person is a member of multiple groups. However, many sites want to force all jobs submitted by a given user
into one accounting group, and forbid the user to submit to any other group. An HTCondor metaknob makes this easy.
By adding to the access point’s configuration, the setting

USE Feature: AssignAccountingGroup(file_name_of_map)

The admin can create a file that maps the users into their required accounting groups, and makes the attributes im-
mutable, so they can’t be changed. The format of this map file is like other classad map files: Lines of three columns.
The first should be an asterisk *. The second column is the name of the user, and the final is the accounting group that
user should always submit to. For example,

* Alice group_physics
* Bob group_atlas
* Carol group_physics
* /^student_.*/ group_students

The second field can be a regular expression, if enclosed in //. Note that this is on the submit side, and the administrator
will still need to create these group names and give them a quota on the central manager machine. This file is re-read
on a . The third field can also be a comma-separated list. If so, it represents the set of valid accounting groups a user
can opt into. If the user does not set an accounting group in the submit file the first entry in the list will be used.

5.7.6 Concurrency Limits

Concurrency limits allow an administrator to limit the number of concurrently running jobs that declare that they use
some pool-wide resource. This limit is applied globally to all jobs submitted from all schedulers across one HTCondor
pool; the limits are not applied to scheduler, local, or grid universe jobs. This is useful in the case of a shared resource,
such as an NFS or database server that some jobs use, where the administrator needs to limit the number of jobs
accessing the server.

The administrator must predefine the names and capacities of the resources to be limited in the negotiator’s configuration
file. The job submitter must declare in the submit description file which resources the job consumes.

The administrator chooses a name for the limit. Concurrency limit names are case-insensitive. The names are formed
from the alphabet letters ‘A’ to ‘Z’ and ‘a’ to ‘z’, the numerical digits 0 to 9, the underscore character ‘_’ , and at most
one period character. The names cannot start with a numerical digit.

For example, assume that there are 3 licenses for the X software, so HTCondor should constrain the number of running
jobs which need the X software to 3. The administrator picks XSW as the name of the resource and sets the configuration

XSW_LIMIT = 3

where XSW is the invented name of this resource, and this name is appended with the string _LIMIT. With this limit, a
maximum of 3 jobs declaring that they need this resource may be executed concurrently.

In addition to named limits, such as in the example named limit XSW, configuration may specify a concurrency limit for
all resources that are not covered by specifically-named limits. The configuration variable sets this value. For example,

CONCURRENCY_LIMIT_DEFAULT = 1

5.7. Configuration for Central Managers 383

HTCondor Manual, Release 23.6.2

will enforce a limit of at most 1 running job that declares a usage of an unnamed resource. If is omitted from the
configuration, then no limits are placed on the number of concurrently executing jobs for which there is no specifically-
named concurrency limit.

The job must declare its need for a resource by placing a command in its submit description file or adding an attribute
to the job ClassAd. In the submit description file, an example job that requires the X software adds:

concurrency_limits = XSW

This results in the job ClassAd attribute

ConcurrencyLimits = "XSW"

Jobs may declare that they need more than one type of resource. In this case, specify a comma-separated list of
resources:

concurrency_limits = XSW, DATABASE, FILESERVER

The units of these limits are arbitrary. This job consumes one unit of each resource. Jobs can declare that they use more
than one unit with syntax that follows the resource name by a colon character and the integer number of resources. For
example, if the above job uses three units of the file server resource, it is declared with

concurrency_limits = XSW, DATABASE, FILESERVER:3

If there are sets of resources which have the same capacity for each member of the set, the configuration may become
tedious, as it defines each member of the set individually. A shortcut defines a name for a set. For example, define the
sets called LARGE and SMALL:

CONCURRENCY_LIMIT_DEFAULT = 5
CONCURRENCY_LIMIT_DEFAULT_LARGE = 100
CONCURRENCY_LIMIT_DEFAULT_SMALL = 25

To use the set name in a concurrency limit, the syntax follows the set name with a period and then the set member’s
name. Continuing this example, there may be a concurrency limit named LARGE.SWLICENSE, which gets the capacity
of the default defined for the LARGE set, which is 100. A concurrency limit named LARGE.DBSESSION will also have a
limit of 100. A concurrency limit named OTHER.LICENSE will receive the default limit of 5, as there is no set named
OTHER.

A concurrency limit may be evaluated against the attributes of a matched machine. This allows a job to vary what
concurrency limits it requires based on the machine to which it is matched. To implement this, the job uses submit
command instead of Consider an example in which execute machines are located on one of two local networks. The ad-
ministrator sets a concurrency limit to limit the number of network intensive jobs on each network to 10. Configuration
of each execute machine advertises which local network it is on. A machine on "NETWORK_A" configures

NETWORK = "NETWORK_A"
STARTD_ATTRS = $(STARTD_ATTRS) NETWORK

and a machine on "NETWORK_B" configures

NETWORK = "NETWORK_B"
STARTD_ATTRS = $(STARTD_ATTRS) NETWORK

The configuration for the negotiator sets the concurrency limits:

NETWORK_A_LIMIT = 10
NETWORK_B_LIMIT = 10

384 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Each network intensive job identifies itself by specifying the limit within the submit description file:

concurrency_limits_expr = TARGET.NETWORK

The concurrency limit is applied based on the network of the matched machine.

An extension of this example applies two concurrency limits. One limit is the same as in the example, such that it
is based on an attribute of the matched machine. The other limit is of a specialized application called "SWX" in this
example. The negotiator configuration is extended to also include

SWX_LIMIT = 15

The network intensive job that also uses two units of the SWX application identifies the needed resources in the single
submit command:

concurrency_limits_expr = strcat("SWX:2 ", TARGET.NETWORK)

Submit command may not be used together with submit command .

Note that it is possible, under unusual circumstances, for more jobs to be started than should be allowed by the con-
currency limits feature. In the presence of preemption and dropped updates from the condor_startd daemon to the
condor_collector daemon, it is possible for the limit to be exceeded. If the limits are exceeded, HTCondor will not kill
any job to reduce the number of running jobs to meet the limit.

5.7.7 Defragmenting Dynamic Slots

When partitionable slots are used, some attention must be given to the problem of the starvation of large jobs due to
the fragmentation of resources. The problem is that over time the machine resources may become partitioned into slots
suitable only for running small jobs. If a sufficient number of these slots do not happen to become idle at the same time
on a machine, then a large job will not be able to claim that machine, even if the large job has a better priority than the
small jobs.

One way of addressing the partitionable slot fragmentation problem is to periodically drain all jobs from fragmented
machines so that they become defragmented. The condor_defrag daemon implements a configurable policy for doing
that. Its implementation is targeted at machines configured to run whole-machine jobs and at machines that only have
partitionable slots. The draining of a machine configured to have both partitionable slots and static slots would have a
negative impact on single slot jobs running in static slots.

To use this daemon, DEFRAG must be added to , and the defragmentation policy must be configured. Typically, only
one instance of the condor_defrag daemon would be run per pool. It is a lightweight daemon that should not require a
lot of system resources.

Here is an example configuration that puts the condor_defrag daemon to work:

DAEMON_LIST = $(DAEMON_LIST) DEFRAG
DEFRAG_INTERVAL = 3600
DEFRAG_DRAINING_MACHINES_PER_HOUR = 1.0
DEFRAG_MAX_WHOLE_MACHINES = 20
DEFRAG_MAX_CONCURRENT_DRAINING = 10

This example policy tells condor_defrag to initiate draining jobs from 1 machine per hour, but to avoid initiating new
draining if there are 20 completely defragmented machines or 10 machines in a draining state. A full description of
each configuration variable used by the condor_defrag daemon may be found in the condor_defrag Configuration File
Macros section.

5.7. Configuration for Central Managers 385

HTCondor Manual, Release 23.6.2

By default, when a machine is drained, existing jobs are gracefully evicted. This means that each job will be allowed
to use the remaining time promised to it by MaxJobRetirementTime. If the job has not finished when the retirement
time runs out, the job will be killed with a soft kill signal, so that it has an opportunity to save a checkpoint (if the job
supports this).

By default, no new jobs will be allowed to start while the machine is draining. To reduce unused time on the machine
caused by some jobs having longer retirement time than others, the eviction of jobs with shorter retirement time is
delayed until the job with the longest retirement time needs to be evicted.

There is a trade off between reduced starvation and throughput. Frequent draining of machines reduces the chance of
starvation of large jobs. However, frequent draining reduces total throughput. Some of the machine’s resources may
go unused during draining, if some jobs finish before others. If jobs that cannot produce checkpoints are killed because
they run past the end of their retirement time during draining, this also adds to the cost of draining.

To reduce these costs, you may set the configuration macro . If draining gracefully, the defrag daemon will set the
expression for the machine to this value expression. Do not set this to your usual expression; jobs accepted while
draining will not be given their MaxRetirementTime. Instead, when the last retiring job finishes (either terminates
or runs out of retirement time), all other jobs on machine will be evicted with a retirement time of 0. (Those jobs will
be given their MaxVacateTime, as usual.) The machine’s expression will become FALSE and stay that way until - as
usual - the machine exits the draining state.

We recommend that you allow only interruptible jobs to start on draining machines. Different pools may have different
ways of denoting interruptible, but a MaxJobRetirementTime of 0 is probably a good sign. You may also want to
restrict the interruptible jobs’ MaxVacateTime to ensure that the machine will complete draining quickly.

To help gauge the costs of draining, the condor_startd advertises the accumulated time that was unused due to draining
and the time spent by jobs that were killed due to draining. These are advertised respectively in the attributes and
. The condor_defrag daemon averages these values across the pool and advertises the result in its daemon ClassAd
in the attributes and AvgDrainingUnclaimed. Details of all attributes published by the condor_defrag daemon are
described in the Defrag ClassAd Attributes section.

The following command may be used to view the condor_defrag daemon ClassAd:

$ condor_status -l -any -constraint 'MyType == "Defrag"'

5.7.8 Configuring The HTCondorView Server

The HTCondorView server is an alternate use of the condor_collector that logs information on disk, providing a per-
sistent, historical database of pool state. This includes machine state, as well as the state of jobs submitted by users.

An existing condor_collector may act as the HTCondorView collector through configuration. This is the simplest situ-
ation, because the only change needed is to turn on the logging of historical information. The alternative of configuring
a new condor_collector to act as the HTCondorView collector is slightly more complicated, while it offers the advan-
tage that the same HTCondorView collector may be used for several pools as desired, to aggregate information into
one place.

The following sections describe how to configure a machine to run a HTCondorView server and to configure a pool to
send updates to it.

386 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Configuring a Machine to be a HTCondorView Server

To configure the HTCondorView collector, a few configuration variables are added or modified for the condor_collector
chosen to act as the HTCondorView collector. These configuration variables are described in condor_collector Con-
figuration File Entries. Here are brief explanations of the entries that must be customized:

The directory where historical data will be stored. This directory must be writable by whatever user the HTCon-
dorView collector is running as (usually the user condor). There is a configurable limit to the maximum space
required for all the files created by the HTCondorView server called ().

NOTE: This directory should be separate and different from the spool or log directories already set up for
HTCondor. There are a few problems putting these files into either of those directories.

A boolean value that determines if the HTCondorView collector should store the historical information. It is
False by default, and must be specified as True in the local configuration file to enable data collection.

Once these settings are in place in the configuration file for the HTCondorView server host, create the directory specified
in and make it writable by the user the HTCondorView collector is running as. This is the same user that owns the
CollectorLog file in the log directory. The user is usually condor.

If using the existing condor_collector as the HTCondorView collector, no further configuration is needed. To run a
different condor_collector to act as the HTCondorView collector, configure HTCondor to automatically start it.

If using a separate host for the HTCondorView collector, to start it, add the value to , and restart HTCondor on that host.
To run the HTCondorView collector on the same host as another condor_collector, ensure that the two condor_collector
daemons use different network ports. Here is an example configuration in which the main condor_collector and the
HTCondorView collector are started up by the same daemon on the same machine. In this example, the HTCondorView
collector uses port 12345.

VIEW_SERVER = $(COLLECTOR)
VIEW_SERVER_ARGS = -f -p 12345
VIEW_SERVER_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog"
DAEMON_LIST = MASTER, NEGOTIATOR, COLLECTOR, VIEW_SERVER

For this change to take effect, restart the on this host. This may be accomplished with the command, if the command
is run with administrator access to the pool.

5.7.9 Running Multiple Negotiators in One Pool

Usually, a single HTCondor pool will have a single condor_collector instance running and a single condor_negotiator
instance running. However, there are special situation where you may want to run more than one condor_negotiator
against a condor_collector, and still consider it one pool.

In such a scenario, each condor_negotiator is responsible for some non-overlapping partition of the slots in the pool.
This might be for performance – if you have more than 100,000 slots in the pool, you may need to shard this pool into
several smaller sections in order to lower the time each negotiator spends. Because accounting is done at the negotiator
level, you may want to do this to have separate accounting and distinct fair share between different kinds of machines
in your pool. For example, let’s say you have some GPU machines and non-GPU machines, and you want usage of the
non-GPU machine to not “count” against the fair-share usage of GPU machines. One way to do this would be to have
a separate negotiator for the GPU machines vs the non-GPU machines. At Wisconsin, we have a separate, small subset
of our pool for quick-starting interactive jobs. By allocating a negotiator to only negotiate for these few machines, we
can speed up the time to match these machines to interactive users who submit with condor_submit -i.

5.7. Configuration for Central Managers 387

HTCondor Manual, Release 23.6.2

Sharding the negotiator is straightforward. Simply add the NEGOTIATOR entry to the on an additional machine. While
it is possible to run multiple negotiators on one machine, we may not want to, if we are trying to improve performance.
Then, in each negotiator, set to only match those slots this negotiator should use.

Running with multiple negotiators also means you need to be careful with the command. As there is no default nego-
tiator, you should always name the specific negotiator you want to to talk to with the -name option.

5.7.10 High Availability of the Central Manager

Interaction with Flocking

The HTCondor high availability mechanisms discussed in this section currently do not work well in configurations in-
volving flocking. The individual problems listed below interact to make the situation worse. Because of these problems,
we advise against the use of flocking to pools with high availability mechanisms enabled.

• The condor_schedd has a hard configured list of condor_collector and condor_negotiator daemons, and does
not query redundant collectors to get the current condor_negotiator, as it does when communicating with its
local pool. As a result, if the default condor_negotiator fails, the condor_schedd does not learn of the failure,
and thus, talk to the new condor_negotiator.

• When the condor_negotiator is unable to communicate with a condor_collector, it utilizes the next con-
dor_collector within the list. Unfortunately, it does not start over at the top of the list. When combined with
the previous problem, a backup condor_negotiator will never get jobs from a flocked condor_schedd.

Introduction

The condor_negotiator and condor_collector daemons are the heart of the HTCondor matchmaking system. The
availability of these daemons is critical to an HTCondor pool’s functionality. Both daemons usually run on the same
machine, most often known as the central manager. The failure of a central manager machine prevents HTCondor from
matching new jobs and allocating new resources. High availability of the condor_negotiator and condor_collector
daemons eliminates this problem.

Configuration allows one of multiple machines within the pool to function as the central manager. While there are
may be many active condor_collector daemons, only a single, active condor_negotiator daemon will be running.
The machine with the condor_negotiator daemon running is the active central manager. The other potential central
managers each have a condor_collector daemon running; these are the idle central managers.

All submit and execute machines are configured to report to all potential central manager machines.

Each potential central manager machine runs the high availability daemon, condor_had. These daemons communicate
with each other, constantly monitoring the pool to ensure that one active central manager is available. If the active
central manager machine crashes or is shut down, these daemons detect the failure, and they agree on which of the idle
central managers is to become the active one. A protocol determines this.

In the case of a network partition, idle condor_had daemons within each partition detect (by the lack of communication)
a partitioning, and then use the protocol to chose an active central manager. As long as the partition remains, and there
exists an idle central manager within the partition, there will be one active central manager within each partition. When
the network is repaired, the protocol returns to having one central manager.

Through configuration, a specific central manager machine may act as the primary central manager. While this machine
is up and running, it functions as the central manager. After a failure of this primary central manager, another idle
central manager becomes the active one. When the primary recovers, it again becomes the central manager. This is a
recommended configuration, if one of the central managers is a reliable machine, which is expected to have very short

388 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

periods of instability. An alternative configuration allows the promoted active central manager (in the case that the
central manager fails) to stay active after the failed central manager machine returns.

This high availability mechanism operates by monitoring communication between machines. Note that there is a sig-
nificant difference in communications between machines when

1. a machine is down

2. a specific daemon (the condor_had daemon in this case) is not running, yet the machine is functioning

The high availability mechanism distinguishes between these two, and it operates based only on first (when a central
manager machine is down). A lack of executing daemons does not cause the protocol to choose or use a new active
central manager.

The central manager machine contains state information, and this includes information about user priorities. The in-
formation is kept in a single file, and is used by the central manager machine. Should the primary central manager fail,
a pool with high availability enabled would lose this information (and continue operation, but with re-initialized prior-
ities). Therefore, the condor_replication daemon exists to replicate this file on all potential central manager machines.
This daemon promulgates the file in a way that is safe from error, and more secure than dependence on a shared file
system copy.

The condor_replication daemon runs on each potential central manager machine as well as on the active central man-
ager machine. There is a unidirectional communication between the condor_had daemon and the condor_replication
daemon on each machine. To properly do its job, the condor_replication daemon must transfer state files. When it
needs to transfer a file, the condor_replication daemons at both the sending and receiving ends of the transfer invoke
the condor_transferer daemon. These short lived daemons do the task of file transfer and then exit. Do not place into
, as it is not a daemon that the should invoke or watch over.

Configuration

The high availability of central manager machines is enabled through configuration. It is disabled by default. All
machines in a pool must be configured appropriately in order to make the high availability mechanism work. See the
Configuration File Entries Relating to High Availability section, for definitions of these configuration variables.

The condor_had and condor_replication daemons use the condor_shared_port daemon by default. If you want to use
more than one condor_had or condor_replication daemon with the condor_shared_port daemon under the same master,
you must configure those additional daemons to use nondefault socket names. (Set the -sock option in <NAME>_ARGS.)
Because the condor_had daemon must know the condor_replication daemon’s address a priori, you will also need to
set <NAME>.REPLICATION_SOCKET_NAME appropriately.

The stabilization period is the time it takes for the condor_had daemons to detect a change in the pool state such as
an active central manager failure or network partition, and recover from this change. It may be computed using the
following formula:

stabilization period = 12 * (number of central managers) *
$(HAD_CONNECTION_TIMEOUT)

To disable the high availability of central managers mechanism, it is sufficient to remove , , and from the configuration
variable on all machines, leaving only one condor_negotiator in the pool.

To shut down a currently operating high availability mechanism, follow the given steps. All commands must be invoked
from a host which has administrative permissions on all central managers. The first three commands kill all condor_had,
condor_replication, and all running condor_negotiator daemons. The last command is invoked on the host where the
single condor_negotiator daemon is to run.

1. condor_off -all -neg

2. condor_off -all -subsystem -replication

5.7. Configuration for Central Managers 389

HTCondor Manual, Release 23.6.2

3. condor_off -all -subsystem -had

4. condor_on -neg

When configuring condor_had to control the condor_negotiator, if the default backoff constant value is too small, it
can result in a churning of the condor_negotiator, especially in cases in which the primary negotiator is unable to run
due to misconfiguration. In these cases, the will kill the condor_had after the condor_negotiator exists, wait a short
period, then restart condor_had. The condor_had will then win the election, so the secondary condor_negotiator will
be killed, and the primary will be restarted, only to exit again. If this happens too quickly, neither condor_negotiator
will run long enough to complete a negotiation cycle, resulting in no jobs getting started. Increasing this value via to
be larger than a typical negotiation cycle can help solve this problem.

To run a high availability pool without the replication feature, do the following operations:

1. Set the configuration variable to False, and thus disable the replication on configuration level.

2. Remove from both and in the configuration file.

Sample Configuration

This section provides sample configurations for high availability.

We begin with a sample configuration using shared port, and then include a sample configuration for not using shared
port. Both samples relate to the high availability of central managers.

Each sample is split into two parts: the configuration for the central manager machines, and the configuration for the
machines that will not be central managers.

The following shared-port configuration is for the central manager machines.

THE FOLLOWING MUST BE IDENTICAL ON ALL CENTRAL MANAGERS

CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
CONDOR_HOST = $(CENTRAL_MANAGER1), $(CENTRAL_MANAGER2)

Since we're using shared port, we set the port number to the shared
port daemon's port number. NOTE: this assumes that each machine in
the list is using the same port number for shared port. While this
will be true by default, if you've changed it in configuration any-
where, you need to reflect that change here.

HAD_USE_SHARED_PORT = TRUE
HAD_LIST = \
$(CENTRAL_MANAGER1):$(SHARED_PORT_PORT), \
$(CENTRAL_MANAGER2):$(SHARED_PORT_PORT)

REPLICATION_USE_SHARED_PORT = TRUE
REPLICATION_LIST = \
$(CENTRAL_MANAGER1):$(SHARED_PORT_PORT), \
$(CENTRAL_MANAGER2):$(SHARED_PORT_PORT)

The recommended setting.
HAD_USE_PRIMARY = TRUE

(continues on next page)

390 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

If you change which daemon(s) you're making highly-available, you must
change both of these values.
HAD_CONTROLLEE = NEGOTIATOR
MASTER_NEGOTIATOR_CONTROLLER = HAD

THE FOLLOWING MAY DIFFER BETWEEN CENTRAL MANAGERS

The daemon list may contain additional entries.
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION

Using replication is optional.
HAD_USE_REPLICATION = TRUE

This is the default location for the state file.
STATE_FILE = $(SPOOL)/Accountantnew.log

See note above the length of the negotiation cycle.
MASTER_HAD_BACKOFF_CONSTANT = 360

The following shared-port configuration is for the machines which that will not be central managers.

CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
CONDOR_HOST = $(CENTRAL_MANAGER1), $(CENTRAL_MANAGER2)

The following configuration sets fixed port numbers for the central manager machines.

##
A sample configuration file for central managers, to enable the
the high availability mechanism.
##

###
THE FOLLOWING MUST BE IDENTICAL ON ALL POTENTIAL CENTRAL MANAGERS.
###
For simplicity in writing other expressions, define a variable
for each potential central manager in the pool.
These are samples.
CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
A list of all potential central managers in the pool.
CONDOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

Define the port number on which the condor_had daemon will
listen. The port must match the port number used
for when defining HAD_LIST. This port number is
arbitrary; make sure that there is no port number collision
with other applications.
HAD_PORT = 51450
HAD_ARGS = -f -p $(HAD_PORT)

The following macro defines the port number condor_replication will listen
(continues on next page)

5.7. Configuration for Central Managers 391

HTCondor Manual, Release 23.6.2

(continued from previous page)

on on this machine. This port should match the port number specified
for that replication daemon in the REPLICATION_LIST
Port number is arbitrary (make sure no collision with other applications)
This is a sample port number
REPLICATION_PORT = 41450
REPLICATION_ARGS = -p $(REPLICATION_PORT)

The following list must contain the same addresses in the same order
as CONDOR_HOST. In addition, for each hostname, it should specify
the port number of condor_had daemon running on that host.
The first machine in the list will be the PRIMARY central manager
machine, in case HAD_USE_PRIMARY is set to true.
HAD_LIST = \
$(CENTRAL_MANAGER1):$(HAD_PORT), \
$(CENTRAL_MANAGER2):$(HAD_PORT)

The following list must contain the same addresses
as HAD_LIST. In addition, for each hostname, it should specify
the port number of condor_replication daemon running on that host.
This parameter is mandatory and has no default value
REPLICATION_LIST = \
$(CENTRAL_MANAGER1):$(REPLICATION_PORT), \
$(CENTRAL_MANAGER2):$(REPLICATION_PORT)

The following is the name of the daemon that the HAD controls.
This must match the name of a daemon in the master's DAEMON_LIST.
The default is NEGOTIATOR, but can be any daemon that the master
controls.
HAD_CONTROLLEE = NEGOTIATOR

HAD connection time.
Recommended value is 2 if the central managers are on the same subnet.
Recommended value is 5 if Condor security is enabled.
Recommended value is 10 if the network is very slow, or
to reduce the sensitivity of HA daemons to network failures.
HAD_CONNECTION_TIMEOUT = 2

##If true, the first central manager in HAD_LIST is a primary.
HAD_USE_PRIMARY = true

###
THE PARAMETERS BELOW ARE ALLOWED TO BE DIFFERENT ON EACH
CENTRAL MANAGER
THESE ARE MASTER SPECIFIC PARAMETERS
###

the master should start at least these four daemons
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION

(continues on next page)

392 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

(continued from previous page)

Enables/disables the replication feature of HAD daemon
Default: false
HAD_USE_REPLICATION = true

Name of the file from the SPOOL directory that will be replicated
Default: $(SPOOL)/Accountantnew.log
STATE_FILE = $(SPOOL)/Accountantnew.log

Period of time between two successive awakenings of the replication daemon
Default: 300
REPLICATION_INTERVAL = 300

Period of time, in which transferer daemons have to accomplish the
downloading/uploading process
Default: 300
MAX_TRANSFER_LIFETIME = 300

Period of time between two successive sends of classads to the collector by HAD
Default: 300
HAD_UPDATE_INTERVAL = 300

The HAD controls the negotiator, and should have a larger
backoff constant
MASTER_NEGOTIATOR_CONTROLLER = HAD
MASTER_HAD_BACKOFF_CONSTANT = 360

The configuration for machines that will not be central managers is identical for the fixed- and shared- port cases.

##
Sample configuration relating to high availability for machines
that DO NOT run the condor_had daemon.
##

For simplicity define a variable for each potential central manager
in the pool.
CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
List of all potential central managers in the pool
CONDOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

5.7. Configuration for Central Managers 393

HTCondor Manual, Release 23.6.2

5.7.11 Monitoring with Ganglia, Elasticsearch, etc.

HTCondor keeps operational data about different aspects of the system in different places: The condor_collector stores
current data about all the slots and all the daemons in the system. If absent ads are enabled, the condor_collector also
stores information about slots that are no longer in the system, for a fixed amount of time. All this data may be queried
with appropriate options to the command. The AP’s job history file stores data about recent completed and removed
jobs, similarly, each EP stores a startd_history file with information about jobs that have only run on that EP. Both of
these may be queried with the command.

While using or works well for one-off or ad-hoc queries, both tend to be slow, because none of the data is indexed or
stored in a proper database. Furthermore, all these data sources age old data out quickly. Also, there is no graphical UI
provided to visualize or analyze any of the data.

As there are many robust, well-documented systems to do these sorts of things, the best solution is to copy the original
data out of the proprietary HTCondor formats and into third party monitoring, database and visualization systems.

The condor_gangliad is an HTCSS daemon that periodically copies data out of the condor_collector and into the
ganglia monitoring system. It can also be used to populate grafana. is a HTCSS daemon which can copy job history
information out of the AP’s history file and into the Elasticsearch database for further querying.

5.7.12 Ganglia

Installation and configuration of Ganglia itself is beyond the scope of this document: complete information is available
at the ganglia homepage at (http://ganglia.info/), from the O’Reilly book on the subject, or numerous webpages.

Generally speaking, the condor_gangliad should be setup to run on the same system where the ganglia gmetad is
running. Unless the pools is exceptionally large, putting the gmetad and the condor_gangliad on the central manager
machine is a good choice. To enable the condor_gangliad, simply add the line

use FEATURE: ganglia

to the config file on the central manager machine, and the HTCondor system on that machine. If the condor_gangliad
daemon is to run on a different machine than the one running Ganglia’s gmetad, modify configuration variable to get
the list of monitored hosts from the master gmond program.

The above steps alone should be sufficient to get a default set of metrics about the pool into ganglia. Additional metrics,
tuning and other information, if needed, follows.

By default, the condor_gangliad will only propagate metrics to hosts that are already monitored by Ganglia. Set con-
figuration variable to True to set up a Ganglia host to monitor a pool not monitored by Ganglia or have a heterogeneous
pool where some hosts are not monitored. In this case, default graphs that Ganglia provides will not be present. How-
ever, the HTCondor metrics will appear.

On large pools, setting configuration variable to False will reduce the amount of data sent to Ganglia. The execute
node data is the least important to monitor. One can also limit the amount of data by setting configuration variable Be
aware that aggregate sums over the entire pool will not be accurate if this variable limits the ClassAds queried.

Metrics to be sent to Ganglia are specified in files within the directory specified by variable . Here is an example of a
single metric definition given as a New ClassAd:

[
Name = "JobsSubmitted";
Desc = "Number of jobs submitted";
Units = "jobs";

(continues on next page)

394 Chapter 5. Administrators’ Manual

http://ganglia.info/

HTCondor Manual, Release 23.6.2

(continued from previous page)

TargetType = "Scheduler";
]

A nice set of default metrics is in file: $(GANGLIAD_METRICS_CONFIG_DIR)/00_default_metrics.

Recognized metric attribute names and their use:

Name
The name of this metric, which corresponds to the ClassAd attribute name. Metrics published for
the same machine must have unique names.

Value
A ClassAd expression that produces the value when evaluated. The default value is the value in the
daemon ClassAd of the attribute with the same name as this metric.

Desc
A brief description of the metric. This string is displayed when the user holds the mouse over the
Ganglia graph for the metric.

Verbosity
The integer verbosity level of this metric. Metrics with a higher verbosity level than that specified by
configuration variable will not be published.

TargetType
A string containing a comma-separated list of daemon ClassAd types that this metric monitors. The
specified values should match the value of of the daemon ClassAd. In addition, there are special
values that may be included. “Machine_slot1” may be specified to monitor the machine ClassAd
for slot 1 only. This is useful when monitoring machine-wide attributes. The special value “ANY”
matches any type of ClassAd.

Requirements
A boolean expression that may restrict how this metric is incorporated. It defaults to True, which
places no restrictions on the collection of this ClassAd metric.

Title
The graph title used for this metric. The default is the metric name.

Group
A string specifying the name of this metric’s group. Metrics are arranged by group within a Ganglia
web page. The default is determined by the daemon type. Metrics in different groups must have
unique names.

Cluster
A string specifying the cluster name for this metric. The default cluster name is taken from the
configuration variable .

Units
A string describing the units of this metric.

Scale
A scaling factor that is multiplied by the value of the Value attribute. The scale factor is used when
the value is not in the basic unit or a human-interpretable unit. For example, duty cycle is commonly
expressed as a percent, but the HTCondor value ranges from 0 to 1. So, duty cycle is scaled by 100.
Some metrics are reported in KiB. Scaling by 1024 allows Ganglia to pick the appropriate units,
such as number of bytes rather than number of KiB. When scaling by large values, converting to the
“float” type is recommended.

Derivative
A boolean value that specifies if Ganglia should graph the derivative of this metric. Ganglia versions

5.7. Configuration for Central Managers 395

HTCondor Manual, Release 23.6.2

prior to 3.4 do not support this.

Type
A string specifying the type of the metric. Possible values are “double”, “float”, “int32”, “uint32”,
“int16”, “uint16”, “int8”, “uint8”, and “string”. The default is “string” for string values, the default
is “int32” for integer values, the default is “float” for real values, and the default is “int8” for boolean
values. Integer values can be coerced to “float” or “double”. This is especially important for values
stored internally as 64-bit values.

Regex
This string value specifies a regular expression that matches attributes to be monitored by this metric.
This is useful for dynamic attributes that cannot be enumerated in advance, because their names
depend on dynamic information such as the users who are currently running jobs. When this is
specified, one metric per matching attribute is created. The default metric name is the name of the
matched attribute, and the default value is the value of that attribute. As usual, the Value expression
may be used when the raw attribute value needs to be manipulated before publication. However,
since the name of the attribute is not known in advance, a special ClassAd attribute in the daemon
ClassAd is provided to allow the Value expression to refer to it. This special attribute is named
Regex. Another special feature is the ability to refer to text matched by regular expression groups
defined by parentheses within the regular expression. These may be substituted into the values of
other string attributes such as Name and Desc. This is done by putting macros in the string values.
“\\1” is replaced by the first group, “\\2” by the second group, and so on.

Aggregate
This string value specifies an aggregation function to apply, instead of publishing individual metrics
for each daemon ClassAd. Possible values are “sum”, “avg”, “max”, and “min”.

AggregateGroup
When an aggregate function has been specified, this string value specifies which aggregation group
the current daemon ClassAd belongs to. The default is the metric Name. This feature works like
GROUP BY in SQL. The aggregation function produces one result per value of AggregateGroup.
A single aggregate group would therefore be appropriate for a pool-wide metric. As an example,
to publish the sum of an attribute across different types of slot ClassAds, make the metric name an
expression that is unique to each type. The default AggregateGroup would be set accordingly. Note
that the assumption is still that the result is a pool-wide metric, so by default it is associated with the
condor_collector daemon’s host. To group by machine and publish the result into the Ganglia page
associated with each machine, make the AggregateGroup contain the machine name and override
the default Machine attribute to be the daemon’s machine name, rather than the condor_collector
daemon’s machine name.

Machine
The name of the host associated with this metric. If configuration variable is not specified, the default
is taken from the Machine attribute of the daemon ClassAd. If the daemon name is of the form
name@hostname, this may indicate that there are multiple instances of HTCondor running on the
same machine. To avoid the metrics from these instances overwriting each other, the default machine
name is set to the daemon name in this case. For aggregate metrics, the default value of Machine
will be the name of the condor_collector host.

IP
A string containing the IP address of the host associated with this metric. If is not specified, the
default is extracted from the MyAddress attribute of the daemon ClassAd. This value must be unique
for each machine published to Ganglia. It need not be a valid IP address. If the value of Machine
contains an “@” sign, the default IP value will be set to the same value as Machine in order to make
the IP value unique to each instance of HTCondor running on the same host.

Lifetime
A positive integer value representing the max number of seconds without updating a metric will be

396 Chapter 5. Administrators’ Manual

mailto:name@hostname

HTCondor Manual, Release 23.6.2

kept before deletion. This is represented in ganglia as DMAX. If no Lifetime is defined for a metric
then the default value will be set to a calculated value based on the ganglia publish interval with a
minimum value set by .

5.7.13 Absent ClassAds

By default, HTCondor assumes that slots are transient: the condor_collector will discard ClassAds older than seconds.
Its default configuration value is 15 minutes, and as such, the default value for will pass three times before HTCondor
forgets about a resource. In some pools, especially those with dedicated resources, this approach may make it unnec-
essarily difficult to determine what the composition of the pool ought to be, in the sense of knowing which machines
would be in the pool, if HTCondor were properly functioning on all of them.

This assumption of transient machines can be modified by the use of absent ClassAds. When a slot ClassAd would
otherwise expire, the condor_collector evaluates the configuration variable against the machine ClassAd. If True, the
machine ClassAd will be saved in a persistent manner and be marked as absent; this causes the machine to appear in the
output of condor_status -absent. When the machine returns to the pool, its first update to the condor_collector
will invalidate the absent machine ClassAd.

Absent ClassAds, like offline ClassAds, are stored to disk to ensure that they are remembered, even across con-
dor_collector crashes. The configuration variable defines the file in which the ClassAds are stored. Absent ClassAds
are retained on disk as maintained by the condor_collector for a length of time in seconds defined by the configuration
variable . A value of 0 for this variable means that the ClassAds are never discarded, and the default value is thirty
days.

Absent ClassAds are only returned by the condor_collector and displayed when the -absent option to is specified, or
when the absent machine ClassAd attribute is mentioned on the command line. This renders absent ClassAds invisible
to the rest of the HTCondor infrastructure.

A daemon may inform the condor_collector that the daemon’s ClassAd should not expire, but should be removed right
away; the daemon asks for its ClassAd to be invalidated. It may be useful to place an invalidated ClassAd in the absent
state, instead of having it removed as an invalidated ClassAd. An example of a ClassAd that could benefit from being
absent is a system with an uninterruptible power supply that shuts down cleanly but unexpectedly as a result of a power
outage. To cause all invalidated ClassAds to become absent instead of invalidated, set to True. Invalidated ClassAds
will instead be treated as if they expired, including when evaluating .

5.7.14 GPUs

HTCondor supports monitoring GPU utilization for NVidia GPUs. This feature is enabled by default if you set use
feature : GPUs in your configuration file.

Doing so will cause the startd to run the condor_gpu_utilization tool. This tool polls the (NVidia) GPU device(s)
in the system and records their utilization and memory usage values. At regular intervals, the tool reports these values
to the condor_startd, assigning them to each device’s usage to the slot(s) to which those devices have been assigned.

Please note that condor_gpu_utilization can not presently assign GPU utilization directly to HTCondor jobs. As
a result, jobs sharing a GPU device, or a GPU device being used by from outside HTCondor, will result in GPU usage
and utilization being misreported accordingly.

However, this approach does simplify monitoring for the owner/administrator of the GPUs, because usage is reported
by the condor_startd in addition to the jobs themselves.

5.7. Configuration for Central Managers 397

HTCondor Manual, Release 23.6.2

DeviceGPUsAverageUsage
The number of seconds executed by GPUs assigned to this slot, divided by the number of seconds
since the startd started up.

DeviceGPUsMemoryPeakUsage
The largest amount of GPU memory used GPUs assigned to this slot, since the startd started up.

5.7.15 Elasticsearch

HTCondor supports pushing condor_schedd and condor_startd job history ClassAds to Elasticsearch (and other tar-
gets) via the tool/daemon. collects job history ClassAds as specified by its configuration, either querying specified
daemons’ histories or reading job history ClassAds from a specified file, converts each ClassAd to a JSON document,
and pushes each doc to the configured Elasticsearch index. The index is automatically created if it does not exist, and
fields are added and configured based on well known job ClassAd attributes. (Custom attributes are also pushed, though
always as keyword fields.)

is a Python 3.6+ script that uses the HTCondor Python Bindings and the Python Elasticsearch Client, both of which
must be available to the system Python 3 installation if using the daemonized version of . can also be run as a stand
alone tool (e.g. in a Python 3 virtual environment containing the necessary libraries).

Running as a daemon (i.e. under the watch of the) can be enabled by adding use feature : adstash to your HT-
Condor configuration. By default, this configuration will poll all condor_schedds that report to the $(CONDOR_HOST)
condor_collector every 20 minutes and push the contents of the job history ClassAds to an Elasticsearch instance
running on localhost to an index named htcondor-000001. Your situation and monitoring needs are likely differ-
ent! See the condor_config.local.adstash example configuration file in the examples/ directory for detailed
information on how to modify your configuration.

If you prefer to run in standalone mode, or are curious about other ClassAd sources or targets, see the condor_adstash
man page for more details.

Configuring a Pool to Report to the HTCondorView Server

For the HTCondorView server to function, configure the existing collector to forward ClassAd updates to it. This con-
figuration is only necessary if the HTCondorView collector is a different collector from the existing condor_collector
for the pool. All the HTCondor daemons in the pool send their ClassAd updates to the regular condor_collector, which
in turn will forward them on to the HTCondorView server.

Define the following configuration variable:

CONDOR_VIEW_HOST = full.hostname[:portnumber]

where full.hostname is the full host name of the machine running the HTCondorView collector. The full host name is
optionally followed by a colon and port number. This is only necessary if the HTCondorView collector is configured
to use a port number other than the default.

Place this setting in the configuration file used by the existing condor_collector. It is acceptable to place it in the global
configuration file. The HTCondorView collector will ignore this setting (as it should) as it notices that it is being asked
to forward ClassAds to itself.

Once the HTCondorView server is running with this change, send a command to the main condor_collector for the
change to take effect, so it will begin forwarding updates. A query to the HTCondorView collector will verify that it is
working. A query example:

398 Chapter 5. Administrators’ Manual

https://elasticsearch-py.readthedocs.io/

HTCondor Manual, Release 23.6.2

$ condor_status -pool condor.view.host[:portnumber]

A condor_collector may also be configured to report to multiple HTCondorView servers. The configuration variable
can be given as a list of HTCondorView servers separated by commas and/or spaces.

The following demonstrates an example configuration for two HTCondorView servers, where both HTCondorView
servers (and the condor_collector) are running on the same machine, localhost.localdomain:

VIEWSERV01 = $(COLLECTOR)
VIEWSERV01_ARGS = -f -p 12345 -local-name VIEWSERV01
VIEWSERV01_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog01"
VIEWSERV01.POOL_HISTORY_DIR = $(LOCAL_DIR)/poolhist01
VIEWSERV01.KEEP_POOL_HISTORY = TRUE
VIEWSERV01.CONDOR_VIEW_HOST =

VIEWSERV02 = $(COLLECTOR)
VIEWSERV02_ARGS = -f -p 24680 -local-name VIEWSERV02
VIEWSERV02_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog02"
VIEWSERV02.POOL_HISTORY_DIR = $(LOCAL_DIR)/poolhist02
VIEWSERV02.KEEP_POOL_HISTORY = TRUE
VIEWSERV02.CONDOR_VIEW_HOST =

CONDOR_VIEW_HOST = localhost.localdomain:12345 localhost.localdomain:24680
DAEMON_LIST = $(DAEMON_LIST) VIEWSERV01 VIEWSERV02

Note that the value of for VIEWSERV01 and VIEWSERV02 is unset, to prevent them from inheriting the global value
of and attempting to report to themselves or each other. If the HTCondorView servers are running on different machines
where there is no global value for , this precaution is not required.

5.8 Security

5.8.1 Security Overview

One main goal of HTCondor is to make all condor installations easier to secure. In older versions, a default installation
typically required additional steps after setup to enable end-to-end security for all users and daemons in the system.
Configuring various different types of authentication and security policy could also involve setting quite a number of
different configuration parameters and a fairly deep foray into the manual to understand how they all work together.

This overview will explain the high-level concepts involved in securing an HTCondor pool. If possible, we recommend
performing a clean installation “from scratch” and then migrating over pieces of your old configuration as needed. Here
are some quick links for getting started if you want to jump right in:

Quick Links:
If you are upgrading an existing pool from 8.9.X to 9.0.X, please visit https://htcondor-wiki.cs.wisc.edu/index.
cgi/wiki?p=UpgradingFromEightNineToNineZero

If you are installing a new HTCondor pool from scratch, please read about Downloading and Installing

5.8. Security 399

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=UpgradingFromEightNineToNineZero
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=UpgradingFromEightNineToNineZero

HTCondor Manual, Release 23.6.2

General Security Flow

Establishing a secure connection in HTCondor goes through four major steps, which are very briefly enumerated here
for reference.

1. Negotiation: In order for a client and server to communicate, they need to agree on which security mechanisms
will be used for the connection. This includes whether or not the connection will be authenticated, which types
of authentication methods can be used, whether the connection will be encrypted, and which different types of
encryption algorithms can be used. The client sends its capabilities, preferences, and requirements; the server
compares those against its own, decides what to do, and tells the client; if a connection is possible, they both
then work to enact it. We call the decisions the server makes during negotiation the “security policy” for that
connection; see Security Negotiation for details on policy configuration.

2. Authentication/Mapping: If the server decides to authenticate (and we strongly recommend that it almost always
either do so or reject the connection), the methods allowed are tried in the order decided by the server until one of
them succeeds. After a successful authentication, the server decides the canonical name of the user based on the
credentials used by the client. For SSL, this involves mapping the DN to a user@domain.name format. For most
other methods the result is already in user@domain.name format. For details on different types of supported
authentication methods, please see Authentication.

3. Encryption and Integrity: If the server decided that encryption would be used, both sides now enable encryption
and integrity checks using the method preferred by the server. AES is now the preferred method and enabled by
default. The overhead of doing the encryption and integrity checks is minimal so we have decided to simplify
configuration by requiring changes to disable it rather than enable it. For details on different types of supported
authentication methods, see Encryption.

4. Authorization: The canonical user is now checked to see if they are allowed to send the command to the server that
they wish to send. Commands are “registered” at different authorization levels, and there is an ALLOW/DENY
list for each level. If the canonical user is authorized, HTCondor performs the requested action. If authorization
fails, the permission is DENIED and the network connection is closed. For list of authorization levels and more
information on configuring ALLOW and DENY lists, please see Authorization.

Highlights of New Features In Version 9.0.0

Introducing: IDTOKENS

In 9.0.0, we have introduced a new authentication mechanism called IDTOKENS. These tokens are easy for the admin-
istrator to issue, and in many cases users can also acquire their own tokens on a machine used to submit jobs (running
the condor_schedd). An IDTOKEN is a relatively lightweight credential that can be used to prove an identity. The
contents of the token are actually a JWT (https://jwt.io/) that is signed by a “Token Signing Key” that establishes the
trustworthiness of the token. Typically, this signing key is something accessible only to HTCondor (and owned by the
“root” user of the system) and not users, and by default lives in /etc/condor/passwords.d/POOL. To make configuration
easier, this signing key is generated automatically by HTCondor if it does not exist on the machine that runs the Central
Manager, or the condor_collector daemon in particular. So after installing the central manager and starting it up for
the first time, you should as the administrator be all set to start issuing tokens. That said, you will need to copy the
signing key to all other machines in your pool that you want to be able to receive and validate the IDTOKEN credentials
that you issue.

Documentation for the command line tools used for creating and managing IDTOKENS is available in the Token Authen-
tication section.

400 Chapter 5. Administrators’ Manual

mailto:user@domain.name
mailto:user@domain.name
https://jwt.io/

HTCondor Manual, Release 23.6.2

Introducing: AES

We also support AES, a widely-used encryption method that has hardware support in most modern CPUS. Because the
overhead of encryption is so much lower, we have turned it on by default. We use AES in such a way (called AESGCM
mode) that it provides integrity checks (checksums) on transmitted data, and this method is now on by default and is
the preferred method to be used if both sides support it.

Types of Network Connections

We generally consider user-to-daemon and daemon-to-daemon connections distinctly. User-to-daemon connections
almost always issue READ or WRITE level commands, and the vast majority of those connections are to the schedd or the
collector; many of those connections will be between processes on the same machine. Conversely, daemon-to-daemon
connections are typically between two different machines, and use commands registered at all levels.

User-to-Daemon Connections (User Authentication)

In order for users to submit jobs to the HTCondor system, they will need to authenticate to the condor_schedd daemon.
They also need to authenticate to the SchedD to modify, remove, hold, or release jobs. When users are interacting with
the condor_schedd, they issue commands that need to be authorized at either the “READ” or “WRITE” level. (Unless
the user is an administrator, in which case they might also issue “ADMINISTRATOR”-level commands).

Authenticating using FS

On Linux or a Mac system this is typically done by logging into the machine that is running the condor_schedd daemon
and authentication using a method called FS. FS stands for “File System” and the method works by having the user
create a file in /tmp that the condor_schedd can then examine to determine who the owner is. Because this operates in
/tmp, this only works for connections to daemons on the same machine. FS is enabled by default so the administrator
does not need to do anything to allow users to interact with the job queue this way. (There are other methods, mentioned
below, that can work over a network connection.)

Note: HTCondor on Windows does not use FS, but rather a method specific to Windows called NTSSPI. See the
section on Authentication for more info.

If it is necessary to do a “remote submit” – that is, run on a different machine than is running the condor_schedd – then
the administrator will need to configure another method. FS_REMOTE works similarly to FS but uses a shared directory
other than /tmp. Mechanisms such as KERBEROS, SSL, and MUNGE can also be configured. However, with the addition
of IDTOKENS in 9.0.0, it is easy to configure and deploy this mechanism and we would suggest you do so unless you
have a specific need to use one of the alternatives.

Authenticating using IDTOKENS

If a user is able to log in to the machine running the condor_schedd, and the SchedD has been set up with the Token
Signing Key (see above for how that is created and deployed) then the user can simply run and retrieve their own
token. This token can then be (securely) moved to another machine and used to interact with the job queue, including
submission, edits, hold, release, and removing the job.

If the user cannot log in to the machine running the condor_schedd, they should ask their administrator to create tokens
for them using the command line tool. Once again, more info can be found in the Token Authentication section.

5.8. Security 401

HTCondor Manual, Release 23.6.2

Daemon-to-Daemon Connections (Daemon Authentication)

HTCondor daemons need to trust each other to pass information security from one to the other. This information may
contain important attributes about a job to run, such as which executable to run, the arguments, and which user to run
the job as. Obviously, being able to tamper those could allow an impersonator to perform all sorts of nefarious tasks.

For daemons that run on the same machine, for example a , condor_schedd, and the condor_shadow daemons launched
by the condor_schedd, this authentication is performed using a secret that is shared with each condor daemon when
it is launched. These are called “family sessions”, since the processes sharing the secret are all part of the same unix
process family. This allows the HTCondor daemons to contact one another locally without having to use another
type of authentication. So essentially, when we are discussing daemon-to-daemon communication, we are talking
about HTCondor daemons on two different physical machines. In those cases, they need to establish trust using some
mechanism that works over a network. The FS mechanism used for user job submission typically doesn’t work here
because it relies on sharing a directory between the two daemons, typically /tmp. However, IDTOKENS are able to work
here as long as the server has a copy of the Signing Key that was used to issue the token that the client is using. The
daemon will authenticate as condor@$(TRUST_DOMAIN) where the trust domain is the string set by the token issuer,
and is usually equal to the $(UID_DOMAIN) setting on the central manager. (Note that setting has other consequences.)

Once HTCondor has determined the authenticate principal, it checks the authorization lists as mentioned above in
General Security Flow. For daemon-to-daemon authorization, there are a few lists that may be consulted.

If the condor daemon receiving the connection is the condor_collector, it first checks to see if there are specific autho-
rization lists for daemons advertising to the collector (i.e. joining the pool). If the incoming command is advertising
a submit node (i.e. a condor_schedd daemon), it will check . If the incoming command is for an execute node (a
condor_startd daemon), it will check ALLOW_ADVERTISE_STARTD. And if the incoming command is for a (which runs
on all HTCondor nodes) it will check . If the list it checks is undefined, it will then check instead.

If the condor daemon receiving the connection is not a condor_collector, the is the only list that is looked at.

It is notable that many daemon-to-daemon connections have been optimized to not need to authenticate using one of
the standard methods. Similar to the “family” sessions that work internally on one machine, there are sessions called
“match” sessions that can be used internally within one POOL of machines. Here, trust is established by the negotiator
when matching a job to a resource – the Negotiator takes a secret generated by the condor_startd and securely passes
it to the condor_schedd when a match is made. The submit and execute machines can now use this secret to establish
a secure channel. Because of this, you do not necessarily need to have authentication from one to the other configured;
it is enough to have secure channels from the SchedD to the Collector and from the StartD to the collector. Likewise, a
Negotiator can establish trust with a SchedD in the same way: the SchedD trusts the Collector to tell only trustworthy
Negotiators its secret.

5.8.2 Security Terms

Security in HTCondor is a broad issue, with many aspects to consider. Because HTCondor’s main purpose is to allow
users to run arbitrary code on large numbers of computers, it is important to try to limit who can access an HTCondor
pool and what privileges they have when using the pool. This section covers these topics.

There is a distinction between the kinds of resource attacks HTCondor can defeat, and the kinds of attacks HTCondor
cannot defeat. HTCondor cannot prevent security breaches of users that can elevate their privilege to the root or
administrator account. HTCondor does not run user jobs in sandboxes (possibly excepting Docker or Singularity jobs)
so HTCondor cannot defeat all malicious actions by user jobs. An example of a malicious job is one that launches a
distributed denial of service attack. HTCondor assumes that users are trustworthy. HTCondor can prevent unauthorized
access to the HTCondor pool, to help ensure that only trusted users have access to the pool. In addition, HTCondor
provides encryption and integrity checking, to ensure that network transmissions are not examined or tampered with
while in transit.

Broadly speaking, the aspects of security in HTCondor may be categorized and described:

402 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Users
Authorization or capability in an operating system is based on a process owner. Both those that submit jobs and
HTCondor daemons become process owners. The HTCondor system prefers that HTCondor daemons are run as
the user root, while other common operations are owned by a user of HTCondor. Operations that do not belong
to either root or an HTCondor user are often owned by the condor user. See User Accounts in HTCondor on
Unix Platforms for more detail.

Authentication
Proper identification of a user is accomplished by the process of authentication. It attempts to distinguish between
real users and impostors. By default, HTCondor’s authentication uses the user id (UID) to determine identity,
but HTCondor can choose among a variety of authentication mechanisms, including the stronger authentication
methods Kerberos and SSL.

Authorization
Authorization specifies who is allowed to do what. Some users are allowed to submit jobs, while other users are
allowed administrative privileges over HTCondor itself. HTCondor provides authorization on either a per-user
or on a per-machine basis.

Privacy
HTCondor may encrypt data sent across the network, which prevents others from viewing the data. With persis-
tence and sufficient computing power, decryption is possible. HTCondor can encrypt the data sent for internal
communication, as well as user data, such as files and executables. Encryption operates on network transmis-
sions: unencrypted data is stored on disk by default. However, see the setting for how to encrypt job data on the
disk of an execute node.

Integrity
The man-in-the-middle attack tampers with data without the awareness of either side of the communication.
HTCondor’s integrity check sends additional cryptographic data to verify that network data transmissions have
not been tampered with. Note that the integrity information is only for network transmissions: data stored on disk
does not have this integrity information. Also note that integrity checks are not performed upon job data files
that are transferred by HTCondor via the File Transfer Mechanism described in the Submitting a Job section.

5.8.3 Quick Configuration of Security

Warning: This method of configuring security is experimental.

Many tools and daemons that send administrative commands between machines (e.g. , , or condor_defrag) won’t work
without further setup. We plan to remove this limitation in future releases.

While pool administrators with complex configurations or application developers may need to understand the full
security model described in this chapter, HTCondor strives to make it easy to enable reasonable security settings for
new pools.

When installing a new pool, assuming you are on a trusted network and there are no unprivileged users logged in to the
submit hosts:

1. Start HTCondor on your central manager host (containing the condor_collector daemon) first. For a fresh install,
this will automatically generate a random key in the file specified by (defaulting to /etc/condor/passwords.
d/POOL on Linux and $(RELEASE_DIR)\tokens.sk\POOL on Windows).

2. Install an auto-approval rule on the central manager using condor_token_request_auto_approve. This au-
tomatically approves any daemons starting on a specified network for a fixed period of time. For example, to
auto-authorize any daemon on the network 192.168.0.0/24 for the next hour (3600 seconds), run the following
command from the central manager:

5.8. Security 403

HTCondor Manual, Release 23.6.2

$ condor_token_request_auto_approve -netblock 192.168.0.0/24 -lifetime 3600

3. Within the auto-approval rule’s lifetime, start the submit and execute hosts inside the appropriate network. The
token requests for the corresponding daemons (the , condor_startd, and condor_schedd) will be automatically
approved and installed into /etc/condor/tokens.d/; this will authorize the daemon to advertise to the col-
lector. By default, auto-generated tokens do not have an expiration.

This quick-configuration requires no configuration changes beyond the default settings. More complex cases, such as
those where the network is not trusted, are covered in the Token Authentication section.

5.8.4 HTCondor’s Security Model

At the heart of HTCondor’s security model is the notion that communications are subject to various security checks.
A request from one HTCondor daemon to another may require authentication to prevent subversion of the system. A
request from a user of HTCondor may need to be denied due to the confidential nature of the request. The security
model handles these example situations and many more.

Requests to HTCondor are categorized into groups of access levels, based on the type of operation requested. The user
of a specific request must be authorized at the required access level. For example, executing the command requires the
READ access level. Actions that accomplish management tasks, such as shutting down or restarting of a daemon require
an ADMINISTRATOR access level. See the Authorization section for a full list of HTCondor’s access levels and their
meanings.

There are two sides to any communication or command invocation in HTCondor. One side is identified as the client,
and the other side is identified as the daemon. The client is the party that initiates the command, and the daemon is
the party that processes the command and responds. In some cases it is easy to distinguish the client from the daemon,
while in other cases it is not as easy. HTCondor tools such as and are clients. They send commands to daemons and act
as clients in all their communications. For example, the command communicates with the condor_schedd. Behind the
scenes, HTCondor daemons also communicate with each other; in this case the daemon initiating the command plays
the role of the client. For instance, the condor_negotiator daemon acts as a client when contacting the condor_schedd
daemon to initiate matchmaking. Once a match has been found, the condor_schedd daemon acts as a client and contacts
the condor_startd daemon.

HTCondor’s security model is implemented using configuration. Commands in HTCondor are executed over TCP/IP
network connections. While network communication enables HTCondor to manage resources that are distributed
across an organization (or beyond), it also brings in security challenges. HTCondor must have ways of ensuring that
communications are being sent by trustworthy users and not tampered with in transit. These issues can be addressed
with HTCondor’s authentication, encryption, and integrity features.

Access Level Descriptions

Authorization is granted based on specified access levels. This list describes each access level, and provides examples
of their usage. The levels implement a partial hierarchy; a higher level often implies a READ or both a WRITE and a
READ level of access as described.

READ
This access level can obtain or read information about HTCondor. Examples that require only READ access are
viewing the status of the pool with , checking a job queue with , or viewing user priorities with . READ access
does not allow any changes, and it does not allow job submission.

WRITE
This access level is required to send (write) information to HTCondor. Examples that require WRITE access are

404 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

job submission with and advertising a machine so it appears in the pool (this is usually done automatically by
the condor_startd daemon). The WRITE level of access implies READ access.

ADMINISTRATOR
This access level has additional HTCondor administrator rights to the pool. It includes the ability to change user
priorities with the command , as well as the ability to turn HTCondor on and off (as with the commands and).
The tool also requires an ADMINISTRATOR access level. The ADMINISTRATOR level of access implies both READ
and WRITE access.

CONFIG
This access level is required to modify a daemon’s configuration using the command. By default, this
level of access can change any configuration parameters of an HTCondor pool, except those specified in the
condor_config.root configuration file. The CONFIG level of access implies READ access.

DAEMON
This access level is used for commands that are internal to the operation of HTCondor. An example of this
internal operation is when the condor_startd daemon sends its ClassAd updates to the condor_collector daemon
(which may be more specifically controlled by the ADVERTISE_STARTD access level). Authorization at this
access level should only be given to the user account under which the HTCondor daemons run. The DAEMON
level of access implies both READ and WRITE access.

NEGOTIATOR
This access level is used specifically to verify that commands are sent by the condor_negotiator daemon. The
condor_negotiator daemon runs on the central manager of the pool. Commands requiring this access level are
the ones that tell the condor_schedd daemon to begin negotiating, and those that tell an available condor_startd
daemon that it has been matched to a condor_schedd with jobs to run. The NEGOTIATOR level of access implies
READ access.

ADVERTISE_MASTER
This access level is used specifically for commands used to advertise a daemon to the collector. Any setting for
this access level that is not defined will default to the corresponding setting in the DAEMON access level. The
ADVERTISE_MASTER level of access implies READ access.

ADVERTISE_STARTD
This access level is used specifically for commands used to advertise a condor_startd daemon to the collector.
Any setting for this access level that is not defined will default to the corresponding setting in the DAEMON access
level. The ADVERTISE_STARTD level of access implies READ access.

ADVERTISE_SCHEDD
This access level is used specifically for commands used to advertise a condor_schedd daemon to the collector.
Any setting for this access level that is not defined will default to the corresponding setting in the DAEMON access
level. The ADVERTISE_SCHEDD level of access implies READ access.

CLIENT
This access level is different from all the others. Whereas all of the other access levels refer to the security policy
for accepting connections from others, the CLIENT access level applies when an HTCondor daemon or tool is
connecting to some other HTCondor daemon. In other words, it specifies the policy of the client that is initiating
the operation, rather than the server that is being contacted.

The following is a list of registered commands that daemons will accept. The list is ordered by daemon. For each
daemon, the commands are grouped by the access level required for a daemon to accept the command from a given
machine.

ALL DAEMONS:

WRITE
The command sent as a result of to reconfigure a daemon.

STARTD:

5.8. Security 405

HTCondor Manual, Release 23.6.2

WRITE
All commands that relate to a condor_schedd daemon claiming a machine, starting jobs there, or stopping those
jobs.

READ
The command that sends to request the current state of the condor_startd daemon.

NEGOTIATOR
The command that the condor_negotiator daemon sends to match a machine’s condor_startd daemon with a
given condor_schedd daemon.

NEGOTIATOR:

WRITE
The command that initiates a new negotiation cycle. It is sent by the condor_schedd when new jobs are submitted
or a command is issued.

READ
The command that can retrieve the current state of user priorities in the pool, sent by the command.

ADMINISTRATOR
The command that can set the current values of user priorities, sent as a result of the command.

COLLECTOR:

ADVERTISE_MASTER
Commands that update the condor_collector daemon with new ClassAds.

ADVERTISE_SCHEDD
Commands that update the condor_collector daemon with new condor_schedd ClassAds.

ADVERTISE_STARTD
Commands that update the condor_collector daemon with new condor_startd ClassAds.

DAEMON
All other commands that update the condor_collector daemon with new ClassAds. Note that the specific access
levels such as ADVERTISE_STARTD default to the DAEMON settings, which in turn defaults to WRITE.

READ
All commands that query the condor_collector daemon for ClassAds.

SCHEDD:

NEGOTIATOR
The command that the condor_negotiator sends to begin negotiating with this condor_schedd to match its jobs
with available condor_startds.

WRITE
The command which sends to the condor_schedd to get it to update the condor_collector with a current ClassAd
and begin a negotiation cycle.

The commands which write information into the job queue (such as and). Note that for most commands which
attempt to write to the job queue, HTCondor will perform an additional user-level authentication step. This
additional user-level authentication prevents, for example, an ordinary user from removing a different user’s
jobs.

READ
The command from any tool to view the status of the job queue.

The commands that a condor_startd sends to the condor_schedd when the condor_schedd daemon’s claim is be-
ing preempted and also when the lease on the claim is renewed. These operations only require READ access, rather
than DAEMON in order to limit the level of trust that the condor_schedd must have for the condor_startd. Success
of these commands is only possible if the condor_startd knows the secret claim id, so effectively, authorization

406 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

for these commands is more specific than HTCondor’s general security model implies. The condor_schedd au-
tomatically grants the condor_startd READ access for the duration of the claim. Therefore, if one desires to only
authorize specific execute machines to run jobs, one must either limit which machines are allowed to advertise
themselves to the pool (most common) or configure the condor_schedd ‘s setting to only allow connections from
the condor_schedd to the trusted execute machines.

MASTER: All commands are registered with ADMINISTRATOR access:

restart
Master restarts itself (and all its children)

off
Master shuts down all its children

off -master
Master shuts down all its children and exits

on
Master spawns all the daemons it is configured to spawn

5.8.5 Security Negotiation

Because of the wide range of environments and security demands necessary, HTCondor must be flexible. Configuration
provides this flexibility. The process by which HTCondor determines the security settings that will be used when a
connection is established is called security negotiation. Security negotiation’s primary purpose is to determine which
of the features of authentication, encryption, and integrity checking will be enabled for a connection. In addition,
since HTCondor supports multiple technologies for authentication and encryption, security negotiation also determines
which technology is chosen for the connection.

Security negotiation is a completely separate process from matchmaking, and should not be confused with any specific
function of the condor_negotiator daemon. Security negotiation occurs when one HTCondor daemon or tool initiates
communication with another HTCondor daemon, to determine the security settings by which the communication will
be ruled. The condor_negotiator daemon does negotiation, whereby queued jobs and available machines within a pool
go through the process of matchmaking (deciding out which machines will run which jobs).

Configuration

The configuration macro names that determine what features will be used during client-daemon communication follow
the pattern:

SEC_<context>_<feature>

The <feature> portion of the macro name determines which security feature’s policy is being set. <feature> may be
any one of

AUTHENTICATION
ENCRYPTION
INTEGRITY
NEGOTIATION

The <context> component of the security policy macros can be used to craft a fine-grained security policy based on
the type of communication taking place. <context> may be any one of

CLIENT
READ

(continues on next page)

5.8. Security 407

HTCondor Manual, Release 23.6.2

(continued from previous page)

WRITE
ADMINISTRATOR
CONFIG
DAEMON
NEGOTIATOR
ADVERTISE_MASTER
ADVERTISE_STARTD
ADVERTISE_SCHEDD
DEFAULT

Any of these constructed configuration macros may be set to any of the following values:

REQUIRED
PREFERRED
OPTIONAL
NEVER

Security negotiation resolves various client-daemon combinations of desired security features in order to set a policy.

As an example, consider Frida the scientist. Frida wants to avoid authentication when possible. She sets

SEC_DEFAULT_AUTHENTICATION = OPTIONAL

The machine running the condor_schedd to which Frida will remotely submit jobs, however, is operated by a security-
conscious system administrator who dutifully sets:

SEC_DEFAULT_AUTHENTICATION = REQUIRED

When Frida submits her jobs, HTCondor’s security negotiation determines that authentication will be used, and allows
the command to continue. This example illustrates the point that the most restrictive security policy sets the levels of
security enforced. There is actually more to the understanding of this scenario. Some HTCondor commands, such
as the use of to submit jobs always require authentication of the submitter, no matter what the policy says. This is
because the identity of the submitter needs to be known in order to carry out the operation. Others commands, such as
, do not always require authentication, so in the above example, the server’s policy would force Frida’s queries to be
authenticated, whereas a different policy could allow to happen without any authentication.

Whether or not security negotiation occurs depends on the setting at both the client and daemon side of the configuration
variable(s) defined by SEC_*_NEGOTIATION. is a variable representing the entire set of configuration variables for
NEGOTIATION. For the client side setting, the only definitions that make sense are REQUIRED and NEVER. For the daemon
side setting, the PREFERRED value makes no sense. Table 3.2 shows how security negotiation resolves various client-
daemon combinations of security negotiation policy settings. Within the table, Yes means the security negotiation will
take place. No means it will not. Fail means that the policy settings are incompatible and the communication cannot
continue.

Daemon Setting
NEVER OPTIONAL REQUIRED

Client Setting NEVER No No Fail
REQUIRED Fail Yes Yes

Table 3.2: Resolution of security negotiation.

Enabling authentication, encryption, and integrity checks is dependent on security negotiation taking place. The en-
abled security negotiation further sets the policy for these other features. Table 3.3 shows how security features are

408 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

resolved for client-daemon combinations of security feature policy settings. Like Table 3.2, Yes means the feature will
be utilized. No means it will not. Fail implies incompatibility and the feature cannot be resolved.

Daemon Setting
NEVER OPTIONAL PREFERRED REQUIRED

Client Setting NEVER No No No Fail
OPTIONAL No No Yes Yes
PREFERRED No Yes Yes Yes
REQUIRED Fail Yes Yes Yes

Table 3.3: Resolution of security features.

The enabling of encryption and/or integrity checks is dependent on authentication taking place. The authentication
provides a key exchange. The key is needed for both encryption and integrity checks.

Setting SEC_CLIENT_<feature> determines the policy for all outgoing commands. The policy for incoming com-
mands (the daemon side of the communication) takes a more fine-grained approach that implements a set of access
levels for the received command. For example, it is desirable to have all incoming administrative requests require au-
thentication. Inquiries on pool status may not be so restrictive. To implement this, the administrator configures the
policy:

SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_READ_AUTHENTICATION = OPTIONAL

The DEFAULT value for <context> provides a way to set a policy for all access levels (READ, WRITE, etc.) that do
not have a specific configuration variable defined. In addition, some access levels will default to the settings specified
for other access levels. For example, defaults to DAEMON, and DAEMON defaults to WRITE, which then defaults to the
general DEFAULT setting.

Configuration for Security Methods

Authentication and encryption can each be accomplished by a variety of methods or technologies. Which method is
utilized is determined during security negotiation.

The configuration macros that determine the methods to use for authentication and/or encryption are

SEC_<context>_AUTHENTICATION_METHODS
SEC_<context>_CRYPTO_METHODS

These macros are defined by a comma or space delimited list of possible methods to use. The Authentication section
lists all implemented authentication methods. The Encryption section lists all implemented encryption methods.

5.8.6 Authentication

The client side of any communication uses one of two macros to specify whether authentication is to occur:

For the daemon side, there are a larger number of macros to specify whether authentication is to take place, based upon
the necessary access level:

5.8. Security 409

HTCondor Manual, Release 23.6.2

As an example, the macro defined in the configuration file for a daemon as

SEC_WRITE_AUTHENTICATION = REQUIRED

signifies that the daemon must authenticate the client for any communication that requires the WRITE access level. If
the daemon’s configuration contains

SEC_DEFAULT_AUTHENTICATION = REQUIRED

and does not contain any other security configuration for AUTHENTICATION, then this default defines the daemon’s
needs for authentication over all access levels. Where a specific macro is defined, the more specific value takes prece-
dence over the default definition.

If authentication is to be done, then the communicating parties must negotiate a mutually acceptable method of authen-
tication to be used. A list of acceptable methods may be provided by the client, using the macros

A list of acceptable methods may be provided by the daemon, using the macros

410 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

The methods are given as a comma-separated list of acceptable values. These variables list the authentication methods
that are available to be used. The ordering of the list defines preference; the first item in the list indicates the highest
preference. As not all of the authentication methods work on Windows platforms, which ones do not work on Windows
are indicated in the following list of defined values:

SSL
KERBEROS
PASSWORD
FS (not available on Windows platforms)
FS_REMOTE (not available on Windows platforms)
IDTOKENS
SCITOKENS
NTSSPI
MUNGE
CLAIMTOBE
ANONYMOUS

For example, a client may be configured with:

SEC_CLIENT_AUTHENTICATION_METHODS = FS, SSL

and a daemon the client is trying to contact with:

SEC_DEFAULT_AUTHENTICATION_METHODS = SSL

Security negotiation will determine that SSL authentication is the only compatible choice. If there are multiple com-
patible authentication methods, security negotiation will make a list of acceptable methods and they will be tried in
order until one succeeds.

As another example, the macro

SEC_DEFAULT_AUTHENTICATION_METHODS = KERBEROS, NTSSPI

5.8. Security 411

HTCondor Manual, Release 23.6.2

indicates that either Kerberos or Windows authentication may be used, but Kerberos is preferred over Windows. Note
that if the client and daemon agree that multiple authentication methods may be used, then they are tried in turn. For
instance, if they both agree that Kerberos or NTSSPI may be used, then Kerberos will be tried first, and if there is a
failure for any reason, then NTSSPI will be tried.

An additional specialized method of authentication exists for communication between the condor_schedd and con-
dor_startd, as well as communication between the condor_schedd and the condor_negotiator. It is especially useful
when operating at large scale over high latency networks or in situations where it is inconvenient to set up one of the
other methods of authentication between the submit and execute daemons. See the description of in Configuration File
Entries Relating to Security for details.

If the configuration for a machine does not define any variable for SEC_<access-level>_AUTHENTICATION,
then HTCondor uses a default value of OPTIONAL. Authentication will be required for any operation which
modifies the job queue, such as and . If the configuration for a machine does not define any variable for
SEC_<access-level>_AUTHENTICATION_METHODS, the default value for a Unix machine is FS, IDTOKENS, KER-
BEROS. This default value for a Windows machine is NTSSPI, IDTOKENS, KERBEROS.

SSL Authentication

SSL authentication utilizes X.509 certificates to establish trust between a client and a server.

SSL authentication may be mutual or server-only. That is, the server always needs a certificate that can be verified
by the client, but a certificate for the client may be optional. Whether a client certificate is required is controlled by
configuration variable , a boolean value that defaults to False. If the value is False, then the client may present a
certificate to be verified by the server. If the client doesn’t have a certificate, then its identity is set to unauthenticated
by the server. If the value is True and the client doesn’t have a certificate, then the SSL authentication fails (other
authentication methods may then be tried).

The names and locations of keys and certificates for clients, servers, and the files used to specify trusted certificate
authorities (CAs) are defined by settings in the configuration files. The contents of the files are identical in format and
interpretation to those used by other systems which use SSL, such as Apache httpd.

The configuration variables and specify the file location for the certificate file for the initiator and recipient of connec-
tions, respectively. Similarly, the configuration variables and specify the locations for keys. If no client certificate is
used, the client will authenticate as user anonymous@ssl.

The configuration variables and each specify a path and file name, providing the location of a file containing one or
more certificates issued by trusted certificate authorities. Similarly, and each specify a directory with one or more
files, each which may contain a single CA certificate. The directories must be prepared using the OpenSSL c_rehash
utility. These CA certificates are used in addition to the default CA file and directory locations given in OpenSSL’s
configuration. If you do not want to use OpenSSL’s default trusted CAs, you can set the configuration variables and to
False.

Bootstrapping SSL Authentication

HTCondor daemons exposed to the Internet may utilize server certificates provided by well-known authorities; however,
SSL can be difficult to bootstrap for non-public hosts.

Accordingly, on first startup, if is True, the condor_collector generates a new CA and key in the locations pointed to
by and , respectively. If or do not exist, the collector will generate a host certificate and key using the generated CA
and write them to the respective locations.

The first time an unknown CA is encountered by tool such as condor_status, the tool will prompt the user on whether
it should trust the CA; the prompt looks like the following:

412 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

$ condor_status
The remote host collector.wisc.edu presented an untrusted CA certificate with the␣
→˓following fingerprint:
SHA-256: 781b:1d:1:ca:b:f7:ab:b6:e4:a3:31:80:ae:28:9d:b0:a9:ee:1b:c1:63:8b:62:29:83:1f:
→˓e7:88:29:75:6:
Subject: /O=condor/CN=hcc-briantest7.unl.edu
Would you like to trust this server for current and future communications?
Please type 'yes' or 'no':

The result will be persisted in a file at .condor/known_hosts inside the user’s home directory.

Similarly, a daemon authenticating as a client against a remote server will record the result of the authentication in a
system-wide trust whose location is kept in the configuration variable . Since a daemon cannot prompt the administrator
for a decision, it will always deny unknown CAs _unless_ is set to true.

The first time any daemon is authenticated, even if it’s not through SSL, it will be noted in the known_hosts file.

The format of the known_hosts file is line-oriented and has three fields,

HOSTNAME METHOD CERTIFICATE_DATA

Any blank line or line prefixed with # will be ignored. Any line prefixed with ! will result in the CA certificate to _not_
be trusted. To easily switch an untrusted CA to be trusted, simply delete the ! prefix.

For example, collector.wisc.edu would be trusted with this file entry using SSL:

collector.wisc.edu SSL␣
→˓MIIBvjCCAWSgAwIBAgIJAJRheVnN5ZDyMAoGCCqGSM49BAMCMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTAeFw0yMTA1MTcxOTQ3MjRaFw0zMTA1MTUxOTQ3MjNaMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABPN7qu+qdsfP6WR++UucrZYvMhssre8jvgWsnPBdzCYU/
→˓EqHYp+wri/aAKyDrLM5R1lWX44jSykgIpTOCLJUS/
→˓ajYzBhMB0GA1UdDgQWBBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAfBgNVHSMEGDAWgBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAPBgNVHRMBAf8EBTADAQH/
→˓MA4GA1UdDwEB/wQEAwICBDAKBggqhkjOPQQDAgNIADBFAiARfW+suELxSzSdi9u20hFs/
→˓aSXpd+gwJ6Ne8jjG+y/2AIhAO6f3ff9nnYRmesFbvt1lv+LosOMbeiUdVoaKFOGIyuJ

The following line would cause collector.wisc.edu to _not_ be trusted:

!collector.wisc.edu SSL␣
→˓MIIBvjCCAWSgAwIBAgIJAJRheVnN5ZDyMAoGCCqGSM49BAMCMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTAeFw0yMTA1MTcxOTQ3MjRaFw0zMTA1MTUxOTQ3MjNaMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABPN7qu+qdsfP6WR++UucrZYvMhssre8jvgWsnPBdzCYU/
→˓EqHYp+wri/aAKyDrLM5R1lWX44jSykgIpTOCLJUS/
→˓ajYzBhMB0GA1UdDgQWBBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAfBgNVHSMEGDAWgBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAPBgNVHRMBAf8EBTADAQH/
→˓MA4GA1UdDwEB/wQEAwICBDAKBggqhkjOPQQDAgNIADBFAiARfW+suELxSzSdi9u20hFs/
→˓aSXpd+gwJ6Ne8jjG+y/2AIhAO6f3ff9nnYRmesFbvt1lv+LosOMbeiUdVoaKFOGIyuJ

Kerberos Authentication

If Kerberos is used for authentication, then a mapping from a Kerberos domain (called a realm) to an HTCondor UID
domain is necessary. There are two ways to accomplish this mapping. For a first way to specify the mapping, see The
Unified Map File for Authentication to use HTCondor’s unified map file. A second way to specify the mapping is to
set the configuration variable to the path of an administrator-maintained Kerberos-specific map file. The configuration
syntax is

KERBEROS_MAP_FILE = /path/to/etc/condor.kmap

Lines within this map file have the syntax

5.8. Security 413

HTCondor Manual, Release 23.6.2

KERB.REALM = UID.domain.name

Here are two lines from a map file to use as an example:

CS.WISC.EDU = cs.wisc.edu
ENGR.WISC.EDU = ee.wisc.edu

If a configuration variable is defined and set, then all permitted realms must be explicitly mapped. If no map file is
specified, then HTCondor assumes that the Kerberos realm is the same as the HTCondor UID domain.

The configuration variable defines the name of a Kerberos principal, to override the default host/
<hostname>@<realm>. A principal specifies a unique name to which a set of credentials may be assigned.

The configuration variable defines a Kerberos service to override the default host. HTCondor prefixes this to /
<hostname>@<realm> to obtain the default Kerberos principal. Configuration variable overrides .

For example, the configuration

KERBEROS_SERVER_SERVICE = condor-daemon

results in HTCondor’s use of

condor-daemon/the.host.name@YOUR.KERB.REALM

as the server principal.

Here is an example of configuration settings that use Kerberos for authentication and require authentication of all
communications of the write or administrator access level.

SEC_WRITE_AUTHENTICATION = REQUIRED
SEC_WRITE_AUTHENTICATION_METHODS = KERBEROS
SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS = KERBEROS

Kerberos authentication on Unix platforms requires access to various files that usually are only accessible by the root
user. At this time, the only supported way to use KERBEROS authentication on Unix platforms is to start daemons
HTCondor as user root.

Password Authentication

The password method provides mutual authentication through the use of a shared secret. This is often a good choice
when strong security is desired, but an existing Kerberos or X.509 infrastructure is not in place. Password authentication
is available on both Unix and Windows. It currently can only be used for daemon-to-daemon authentication. The shared
secret in this context is referred to as the pool password.

Before a daemon can use password authentication, the pool password must be stored on the daemon’s local machine.
On Unix, the password will be placed in a file defined by the configuration variable . This file will be accessible only
by the UID that HTCondor is started as. On Windows, the same secure password store that is used for user passwords
will be used for the pool password (see the Secure Password Storage section).

Under Unix, the password file can be generated by using the following command to write directly to the password file:

$ condor_store_cred -f /path/to/password/file

Under Windows (or under Unix), storing the pool password is done with the -c option when using to add. Running

414 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

$ condor_store_cred -c add

prompts for the pool password and store it on the local machine, making it available for daemons to use in authentication.
The must be running for this command to work.

In addition, storing the pool password to a given machine requires CONFIG-level access. For example, if the pool
password should only be set locally, and only by root, the following would be placed in the global configuration file.

ALLOW_CONFIG = root@mydomain/$(IP_ADDRESS)

It is also possible to set the pool password remotely, but this is recommended only if it can be done over an encrypted
channel. This is possible on Windows, for example, in an environment where common accounts exist across all the
machines in the pool. In this case, ALLOW_CONFIG can be set to allow the HTCondor administrator (who in this
example has an account condor common to all machines in the pool) to set the password from the central manager as
follows.

ALLOW_CONFIG = condor@mydomain/$(CONDOR_HOST)

The HTCondor administrator then executes

$ condor_store_cred -c -n host.mydomain add

from the central manager to store the password to a given machine. Since the condor account exists on both the
central manager and host.mydomain, the NTSSPI authentication method can be used to authenticate and encrypt the
connection. will warn and prompt for cancellation, if the channel is not encrypted for whatever reason (typically because
common accounts do not exist or HTCondor’s security is misconfigured).

When a daemon is authenticated using a pool password, its security principle is condor_pool@$(UID_DOMAIN),
where $(UID_DOMAIN) is taken from the daemon’s configuration. The ALLOW_DAEMON and AL-
LOW_NEGOTIATOR configuration variables for authorization should restrict access using this name. For example,

ALLOW_DAEMON = condor_pool@mydomain/*, condor@mydomain/$(IP_ADDRESS)
ALLOW_NEGOTIATOR = condor_pool@mydomain/$(CONDOR_HOST)

This configuration allows remote DAEMON-level and NEGOTIATOR-level access, if the pool password is known.
Local daemons authenticated as condor@mydomain are also allowed access. This is done so local authentication can
be done using another method such as FS.

If there is no pool password available on Linux, the condor_collector will automatically generate one. This is meant
to ease the configuration of freshly-installed clusters; for POOL authentication, the HTCondor administrator only needs
to copy this file to each host in the cluster.

Example Security Configuration Using Pool Password

The following example configuration uses pool password authentication and network message integrity checking for
all communication between HTCondor daemons.

SEC_PASSWORD_FILE = $(LOCK)/pool_password
SEC_DAEMON_AUTHENTICATION = REQUIRED
SEC_DAEMON_INTEGRITY = REQUIRED
SEC_DAEMON_AUTHENTICATION_METHODS = PASSWORD
SEC_NEGOTIATOR_AUTHENTICATION = REQUIRED
SEC_NEGOTIATOR_INTEGRITY = REQUIRED
SEC_NEGOTIATOR_AUTHENTICATION_METHODS = PASSWORD

(continues on next page)

5.8. Security 415

mailto:condor@mydomain

HTCondor Manual, Release 23.6.2

(continued from previous page)

SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS
ALLOW_DAEMON = condor_pool@$(UID_DOMAIN)/*.cs.wisc.edu, \

condor@$(UID_DOMAIN)/$(IP_ADDRESS)
ALLOW_NEGOTIATOR = condor_pool@$(UID_DOMAIN)/negotiator.machine.name

Example Using Pool Password for condor_startd Advertisement

One problem with the pool password method of authentication is that it involves a single, shared secret. This does
not scale well with the addition of remote users who flock to the local pool. However, the pool password may still be
used for authenticating portions of the local pool, while others (such as the remote condor_schedd daemons involved
in flocking) are authenticated by other means.

In this example, only the condor_startd daemons in the local pool are required to have the pool password when they
advertise themselves to the condor_collector daemon.

SEC_PASSWORD_FILE = $(LOCK)/pool_password
SEC_ADVERTISE_STARTD_AUTHENTICATION = REQUIRED
SEC_ADVERTISE_STARTD_INTEGRITY = REQUIRED
SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS = PASSWORD
SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS
ALLOW_ADVERTISE_STARTD = condor_pool@$(UID_DOMAIN)/*.cs.wisc.edu

Token Authentication

Password authentication requires both parties (client and server) in an authenticated session to have access to the same
password file. Further, both client and server authenticate the remote side as the user condor_pool which, by default,
has a high level of privilege to the entire pool. Hence, it is only reasonable for daemon-to-daemon authentication.
Further, as only one password is allowed, it is impossible to use PASSWORD authentication to flock to a remote pool.

Token-based authentication is a newer extension to PASSWORD authentication that allows the pool administrator to gen-
erate new, low-privilege tokens using one of several pool signing keys. It also allows a daemon or tool to authenticate
to a remote pool without having that pool’s password. As tokens are derived from a specific signing key, if an admin-
istrator removes a signing key from the directory specified in , then all derived tokens are immediately invalid. Most
simple installs will utilize a single signing key, named POOL.

While most token signing keys are placed in the directory specified by , with the filename within the directory deter-
mining the key’s name, the POOL token signing key can be located elsewhere by setting to the full pathname of the
desired file. On Linux the same file can be both the pool signing key and the pool password if and refer to the same
file. However this is not preferred because in order to properly interoperate with older versions of HTCondor the pool
password will be read as a text file and truncated at the first NUL character. This differs from the pool signing key
which is read as binary in HTCondor 9.0. Some 8.9 releases used the pool password as the pool signing key for tokens,
those versions will not interoperate with 9.0 if the pool signing key file contains NUL characters.

The condor_collector process will automatically generate the pool signing key named POOL on startup if that file does
not exist.

To generate a token, the administrator may utilize the condor_token_create command-line utility:

$ condor_token_create -identity frida@pool.example.com

416 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

The resulting token may be given to Frida and appended to a file in the directory specified by (defaults to ~/.condor/
tokens.d). Subsequent authentications to the pool will utilize this token and cause Frida to be authenticated as the
identity frida@pool.example.com. For daemons, tokens are stored in ; on Unix platforms, this defaults to /etc/
condor/tokens.d which should be a directory with permissions that only allow read and write access by user root.

Note that each pool signing key is named (the pool signing key defaults to the special name POOL) by its corresponding
filename in ; HTCondor will assume that, for all daemons in the same trust domain (defaulting to the HTCondor pool)
will have the same signing key for the same name. That is, the signing key contained in key1 in host pool.example.
com is identical to the signing key contained in key1 in host submit.example.com.

Unlike pool passwords, tokens can have a limited lifetime and can limit the authorizations allowed to the client. For
example,

$ condor_token_create -identity condor@pool.example.com \
-lifetime 3600 \
-authz ADVERTISE_STARTD

will create a new token that maps to user condor@pool.example.com. However, this token is only valid for the
ADVERTISE_STARTD authorization, regardless of what the server has configured for the condor user (the intersection
of the identity’s configured authorization and the token’s authorizations, if specified, are used). Further, the token will
only be valid for 3600 seconds (one hour).

In many cases, it is difficult or awkward for the administrator to securely provide the new token to the user; an email or
text message from administrator to user is typically insufficiently secure to send the token (especially as old emails are
often archived for many years). In such a case, the user may instead anonymously request a token from the administrator.
The user will receive a request ID, which the administrator will need in order to approve the request. The ID (typically,
a 7 digit number) is easier to communicate over the phone (compared to the token, which is hundreds of characters
long). Importantly, neither user nor administrator is responsible for securely moving the token - e.g., there is no chance
it will be leaked into an email archive.

If a , condor_startd, or condor_schedd daemon cannot authenticate with the collector, it will automatically perform a
token request from the collector.

To use the token request workflow, the user needs a confidential channel to the server or an appropriate auto-approval
rule needs to be in place. The simplest way to establish a confidential channel is using SSL Authentication without a
client certificate; configure the collector using a host certificate.

Using the SSL authentication, the client can request a new authentication token:

$ condor_token_request
Token request enqueued. Ask an administrator to please approve request 9235785.

This will enqueue a request for a token corresponding to the superuser condor; the HTCondor pool administrator will
subsequently need to approve request 9235785 using the condor_token_request_approve tool.

If the host trusts requests coming from a specific network (i.e., the same administrator manages the network and no
unprivileged users are currently on the network), then the auto-approval mechanism may be used. When in place, auto-
approval allows any token authentication request on an approved network to be automatically approved by HTCondor
on behalf of the pool administrator - even when requests do not come over confidential connections.

When a daemon issues a token for a client (e.g. for condor_token_fetch or condor_token_request), the signing
key it uses must appear in the list . If the client doesn’t request a specific signing key to use, then the key given by is
used. The default for both of these configuration parameters is POOL.

If there are multiple tokens in files in the , then the daemon will search for tokens in that directory based on lexico-
graphical order; the exception is that the file $(SUBSYS)_auto_generated_token will be searched first for daemons
of type $(SUBSYS). For example, if is set to /etc/condor/tokens.d, then the condor_schedd will search at /etc/
condor/tokens.d/SCHEDD_auto_generated_token by default.

5.8. Security 417

HTCondor Manual, Release 23.6.2

Users may create their own tokens with condor_token_fetch. This command-line utility will contact the default
condor_schedd and request a new token given the user’s authenticated identity. Unlike condor_token_create, the
condor_token_fetch has no control over the mapped identity (but does not need to read the files in).

If no security authentication methods specified by the administrator - and the daemon or user has access to at least one
token - then IDTOKENS authentication is automatically added to the list of valid authentication methods. Otherwise, to
setup IDTOKENS authentication, enable it in the list of authentication methods:

SEC_DEFAULT_AUTHENTICATION_METHODS=$(SEC_DEFAULT_AUTHENTICATION_METHODS), IDTOKENS
SEC_CLIENT_AUTHENTICATION_METHODS=$(SEC_CLIENT_AUTHENTICATION_METHODS), IDTOKENS

Revoking Token: If a token is lost, stolen, or accidentally exposed, then the system administrator may use the token
revocation mechanism in order to prevent unauthorized use. Revocation can be accomplished by setting the configu-
ration parameter; when set, the value of this parameter will be evaluated as a ClassAd expression against the token’s
contents.

For example, consider the following token:

eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.
→˓eyJpYXQiOjE1ODg0NzQ3MTksImlzcyI6ImhjYy1icmlhbnRlc3Q3LnVubC5lZHUiLCJqdGkiOiJjNzYwYzJhZjE5M2ExZmQ0ZTQwYmM5YzUzYzk2ZWU3YyIsInN1YiI6ImJib2NrZWxtQGhjYy1icmlhbnRlc3Q3LnVubC5lZHUifQ.
→˓fiqfgwjyTkxMSdxwm84xxMTVcGfearddEDj_rhiIbi4ummU

When printed using condor_token_list, the human-readable form is as follows (line breaks added for readability):

$ condor_token_list
Header: {"alg":"HS256","kid":"POOL"}
Payload: {

"iat": 1588474719,
"iss": "pool.example.com",
"jti": "c760c2af193a1fd4e40bc9c53c96ee7c",
"sub": "alice@pool.example.com"

}

If we would like to revoke this token, we could utilize any of the following values for , depending on the desired breadth
of the revocation:

Revokes all tokens from the user Alice:
SEC_TOKEN_REVOCATION_EXPR = sub =?= "alice@pool.example.com"

Revokes all tokens from Alice issued before or after this one:
SEC_TOKEN_REVOCATION_EXPR = sub =?= "alice@pool.example.com" && \

iat <= 1588474719

Revokes *only* this token:
SEC_TOKEN_REVOCATION_EXPR = jti =?= "c760c2af193a1fd4e40bc9c53c96ee7c"

The revocation only works on the daemon where is set; to revoke a token across the entire pool, set on every host.

In order to invalidate all tokens issued by a given master password in , simply remove the file from the directory.

418 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

File System Authentication

This form of authentication utilizes the ownership of a file in the identity verification of a client. A daemon authenti-
cating a client requires the client to write a file in a specific location (/tmp). The daemon then checks the ownership of
the file. The file’s ownership verifies the identity of the client. In this way, the file system becomes the trusted authority.
This authentication method is only appropriate for clients and daemons that are on the same computer.

File System Remote Authentication

Like file system authentication, this form of authentication utilizes the ownership of a file in the identity verification of
a client. In this case, a daemon authenticating a client requires the client to write a file in a specific location, but the
location is not restricted to /tmp. The location of the file is specified by the configuration variable .

Windows Authentication

This authentication is done only among Windows machines using a proprietary method. The Windows security in-
terface SSPI is used to enforce NTLM (NT LAN Manager). The authentication is based on challenge and response,
using the user’s password as a key. This is similar to Kerberos. The main difference is that Kerberos provides an access
token that typically grants access to an entire network, whereas NTLM authentication only verifies an identity to one
machine at a time. NTSSPI is best-used in a way similar to file system authentication in Unix, and probably should not
be used for authentication between two computers.

SciTokens Authentication

A SciToken is a form of JSON Web Token (JWT) that the client can present that the server can verify. Authentication
of the server by the client is done via an SSL host certificate (the same as with SSL authentication). More information
about SciTokens can be found at https://scitokens.org.

Some other JWT token types can be used with the SciTokens authentication method. WLCG tokens are accepted
automatically. Other token types, such as EGI CheckIn tokens, require some relaxation of the SciTokens validation
checks. Configuration parameter determines whether any tokens will be accepted under these relaxed checks. It’s a
boolean value that defaults to True. Configuration parameter determines which issuers’ tokens will be accepted under
these relaxed checks. It’s a list of issuer URLs that defaults to the EGI CheckIn issuer. These parameters should be
used with caution, as they disable some security checks.

Ask MUNGE for Authentication

Ask the MUNGE service to validate both sides of the authentication. See: https://dun.github.io/munge/ for instructions
on installing.

5.8. Security 419

https://scitokens.org
https://dun.github.io/munge/

HTCondor Manual, Release 23.6.2

Claim To Be Authentication

Claim To Be authentication accepts any identity claimed by the client. As such, it does not authenticate. It is included
in HTCondor and in the list of authentication methods for testing purposes only.

Anonymous Authentication

Anonymous authentication causes authentication to be skipped entirely. As such, it does not authenticate. It is included
in HTCondor and in the list of authentication methods for testing purposes only.

5.8.7 The Unified Map File for Authentication

HTCondor’s unified map file allows the mappings from authenticated names to an HTCondor canonical user name to
be specified as a single list within a single file. The location of the unified map file is defined by the configuration
variable ; it specifies the path and file name of the unified map file. Each mapping is on its own line of the unified map
file. Each line contains either an @include directive, or 3 fields, separated by white space (space or tab characters):

1. The name of the authentication method to which the mapping applies.

2. A name or a regular expression representing the authenticated name to be mapped.

3. The canonical HTCondor user name.

Allowable authentication method names are the same as used to define any of the configuration variables , as repeated
here:

SSL
KERBEROS
PASSWORD
FS
FS_REMOTE
IDTOKENS
SCITOKENS
NTSSPI
MUNGE
CLAIMTOBE
ANONYMOUS

The fields that represent an authenticated name and the canonical HTCondor user name may utilize regular expressions
as defined by PCRE2 (Perl-Compatible Regular Expressions). Due to this, more than one line (mapping) within the
unified map file may match. Look ups are therefore defined to use the first mapping that matches.

For HTCondor version 8.5.8 and later, the authenticated name field will be interpreted as a regular expression or
as a simple string based on the value of the configuration variable. If this configuration variable is true, then the
authenticated name field is a regular expression only when it begins and ends with the / character. If this configuration
variable is false, or on HTCondor versions older than 8.5.8, the authenticated name field is always a regular expression.

A regular expression may need to contain spaces, and in this case the entire expression can be surrounded by double
quote marks. If a double quote character also needs to appear in such an expression, it is preceded by a backslash.

If the first field is the special value @include, it should be followed by a file or directory path in the second field. If a
file is specified, it will be read and parsed as map file. If a directory is specified, then each file in the directory is read as
a map file unless the name of the file matches the pattern specified in the configuration variable. Files in the directory
are read in lexical order. When a map file is read as a result of an @include statement, any @include statements that

420 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

it contains will be ignored. If the file or directory path specified with an @include statement is a relative path, it will
be treated as relative to the file currently being read.

The default behavior of HTCondor when no map file is specified is to do the following mappings, with some additional
logic noted below:

FS (.*) \1
FS_REMOTE (.*) \1
SSL (.*) ssl@unmapped
KERBEROS ([^/]*)/?[^@]*@(.*) \1@\2
NTSSPI (.*) \1
MUNGE (.*) \1
CLAIMTOBE (.*) \1
PASSWORD (.*) \1
SCITOKENS .* PLUGIN:*

For SciTokens, the authenticated name is the iss and sub claims of the token, separated by a comma.

For Kerberos, if is specified, the domain portion of the name is obtained by mapping the Kerberos realm to the value
specified in the map file, rather than just using the realm verbatim as the domain portion of the condor user name. See
the Authentication section for details.

If authentication did not happen or failed and was not required, then the user is given the name unauthenti-
cated@unmapped.

SciTokens Mapping Plugins

For SciTokens, the iss and sub claims of the token may not be sufficient to map the token to the appropriate canonical
HTCondor user name. For these situations, a series of plugins can be employed to perform the mapping based on
the full token payload. Each plugin can accept the token and provide a mapped identity or decline the token. If
the plugin declines, then additional plugins are consulted. If all plugins decline the token, then the mapped identity
scitokens@unmapped is used.

Each plugin is given a name consisting of alphanumeric characters. To use a set of plugins to perform a mapping,
the third field of the matching line in the map file (the canonical name) should be the text PLUGIN: followed by a
comma-separated list of plugin names. Note that no spaces should be used within the list.

For each plugin, the configuration parameter gives the executable and optional command line arguments needed to
invoke the plugin. The optional configuration parameter specifies the mapped identity if the plugin accepts the token.
If this parameter isn’t set, then the plugin must write the mapped identity to its stdout. If the special value PLUGIN:*
is given in the map file, then the configuration parameter is consulted to determine the names of the plugins to run.

When a plugin is invoked, the given binary is run. The payload of the token is provided via stdin and a series of
environment variables (compatible with those set by ARC CE for its token plugins). If the plugin exits with status 0,
then it accepts the token. If the plugin exits with status 1, then it declines the token and other plugins may be consulted.
If the plugin exits with any other status, the entire mapping procedure fails and the client is rejected.

Here’s an example where one plugin is used for tokens from a specific issuer, and two other plugins are used for tokens
from all other issuers. The first plugin has a fixed mapping given via configuration, while the other plugins will write
the mapping to their stdout. The last plugin uses a command-line argument.

First, this would appear in the map file:

Mapfile snippet:
Plugin for specific token issuer
SCITOKENS ^https://phys.uz.edu, PLUGIN:A

(continues on next page)

5.8. Security 421

mailto:unauthenticated@unmapped
mailto:unauthenticated@unmapped

HTCondor Manual, Release 23.6.2

(continued from previous page)

Plugins for all other token issuers
SCITOKENS .* PLUGIN:B,C

Then, this would appear in the configuration files:

Configuration file snippet:
Plugin A for specific issuer with fixed mapping result
SEC_SCITOKENS_PLUGIN_A_COMMAND = $(LIBEXEC)/A.plugin
SEC_SCITOKENS_PLUGIN_A_MAPPING = physgrp

Plugins B,C for all other tokens
SEC_SCITOKENS_PLUGIN_B_COMMAND = $(LIBEXEC)/B.plugin
SEC_SCITOKENS_PLUGIN_C_COMMAND = $(LIBEXEC)/C.plugin -A

5.8.8 Encryption

Encryption provides privacy support between two communicating parties. Through configuration macros, both the
client and the daemon can specify whether encryption is required for further communication.

The client uses one of two macros to enable or disable encryption:

For the daemon, there are many macros to enable or disable encryption:

As an example, the macro defined in the configuration file for a daemon as

422 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

SEC_CONFIG_ENCRYPTION = REQUIRED

signifies that any communication that changes a daemon’s configuration must be encrypted. If a daemon’s configuration
contains

SEC_DEFAULT_ENCRYPTION = REQUIRED

and does not contain any other security configuration for ENCRYPTION, then this default defines the daemon’s needs
for encryption over all access levels. Where a specific macro is present, its value takes precedence over any default
given.

If encryption is to be done, then the communicating parties must find (negotiate) a mutually acceptable method of
encryption to be used. A list of acceptable methods may be provided by the client, using the macros and

SEC_DEFAULT_CRYPTO_METHODS
SEC_CLIENT_CRYPTO_METHODS

A list of acceptable methods may be provided by the daemon, using the macros

The methods are given as a comma-separated list of acceptable values. These variables list the encryption methods
that are available to be used. The ordering of the list gives preference; the first item in the list indicates the highest
preference. Possible values are

AES
BLOWFISH
3DES

As of version 9.0.2 HTCondor can be configured to be FIPS compliant. This disallows BLOWFISH as an encryption
method. Please see the FIPS section below.

5.8. Security 423

HTCondor Manual, Release 23.6.2

5.8.9 Integrity

An integrity check assures that the messages between communicating parties have not been tampered with. Any change,
such as addition, modification, or deletion can be detected. Through configuration macros, both the client and the
daemon can specify whether an integrity check is required of further communication.

The client uses one of two macros to enable or disable an integrity check:

For the daemon, there are macros to enable or disable an integrity check:

As an example, the macro defined in the configuration file for a daemon as

SEC_CONFIG_INTEGRITY = REQUIRED

signifies that any communication that changes a daemon’s configuration must have its integrity assured. If a daemon’s
configuration contains

SEC_DEFAULT_INTEGRITY = REQUIRED

and does not contain any other security configuration for INTEGRITY, then this default defines the daemon’s needs for
integrity checks over all access levels. Where a specific macro is present, its value takes precedence over any default
given.

If AES encryption is used for a connection, then a secure checksum is included within the AES data regardless of any
INTEGRITY settings.

If another type of encryption was used (i.e. BLOWFISH or 3DES), then a signed MD5 check sum is the only available
method for integrity checking. Its use is implied whenever integrity checks occur.

424 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

As of version 9.0.2 HTCondor can be configured to be FIPS compliant. This disallows MD5 as an integrity method.
We suggest you use AES encryption as the AES-GCM mode we have implemented also provides integrity checks.
Please see the FIPS section below.

5.8.10 Authorization

Authorization protects resource usage by granting or denying access requests made to the resources. It defines who is
allowed to do what.

Authorization is defined in terms of users. An initial implementation provided authorization based on hosts (machines),
while the current implementation relies on user-based authorization. The Host-Based Security in HTCondor section
describes the previous implementation. This IP/Host-Based security still exists, and it can be used, but significantly
stronger and more flexible security can be achieved with the newer authorization based on fully qualified user names.
This section discusses user-based authorization.

The authorization portion of the security of an HTCondor pool is based on a set of configuration macros. The macros
list which user will be authorized to issue what request given a specific access level. When a daemon is to be authorized,
its user name is the login under which the daemon is executed.

These configuration macros define a set of users that will be allowed to (or denied from) carrying out various HTCondor
commands. Each access level may have its own list of authorized users. A complete list of the authorization macros:

In addition, the following are used to control authorization of specific types of HTCondor daemons when advertising
themselves to the pool. If unspecified, these default to the broader ALLOW_DAEMON and DENY_DAEMON settings.

Each client side of a connection may also specify its own list of trusted servers. This is done using the following
settings. Note that the FS and CLAIMTOBE authentication methods are not symmetric. The client is authenticated by
the server, but the server is not authenticated by the client. When the server is not authenticated to the client, only the
network address of the host may be authorized and not the specific identity of the server.

ALLOW_CLIENT
DENY_CLIENT

5.8. Security 425

HTCondor Manual, Release 23.6.2

The names and should be thought of as “when I am acting as a client, these are the servers I allow or deny.” It should
not be confused with the incorrect thought “when I am the server, these are the clients I allow or deny.”

All authorization settings are defined by a comma-separated list of fully qualified users. Each fully qualified user is
described using the following format:

username@domain/hostname

The information to the left of the slash character describes a user within a domain. The information to the right of the
slash character describes one or more machines from which the user would be issuing a command. This host name
may take the form of either a fully qualified host name of the form

bird.cs.wisc.edu

or an IP address of the form

128.105.128.0

An example is

zmiller@cs.wisc.edu/bird.cs.wisc.edu

Within the format, wild card characters (the asterisk, *) are allowed. The use of wild cards is limited to one wild card
on either side of the slash character. A wild card character used in the host name is further limited to come at the
beginning of a fully qualified host name or at the end of an IP address. For example,

*@cs.wisc.edu/bird.cs.wisc.edu

refers to any user that comes from cs.wisc.edu, where the command is originating from the machine bird.cs.wisc.edu.
Another valid example,

zmiller@cs.wisc.edu/*.cs.wisc.edu

refers to commands coming from any machine within the cs.wisc.edu domain, and issued by zmiller. A third valid
example,

@cs.wisc.edu/

refers to commands coming from any user within the cs.wisc.edu domain where the command is issued from any
machine. A fourth valid example,

@cs.wisc.edu/128.105.

refers to commands coming from any user within the cs.wisc.edu domain where the command is issued from machines
within the network that match the first two octets of the IP address.

If the set of machines is specified by an IP address, then further specification using a net mask identifies a physical set
(subnet) of machines. This physical set of machines is specified using the form

network/netmask

The network is an IP address. The net mask takes one of two forms. It may be a decimal number which refers to the
number of leading bits of the IP address that are used in describing a subnet. Or, the net mask may take the form of

a.b.c.d

where a, b, c, and d are decimal numbers that each specify an 8-bit mask. An example net mask is

426 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

255.255.192.0

which specifies the bit mask

11111111.11111111.11000000.00000000

A single complete example of a configuration variable that uses a net mask is

ALLOW_WRITE = joesmith@cs.wisc.edu/128.105.128.0/17

User joesmith within the cs.wisc.edu domain is given write authorization when originating from machines that match
their leftmost 17 bits of the IP address.

For Unix platforms where netgroups are implemented, a netgroup may specify a set of fully qualified users by using an
extension to the syntax for all configuration variables of the form ALLOW_* and DENY_*. The syntax is the plus sign
character (+) followed by the netgroup name. Permissions are applied to all members of the netgroup.

This flexible set of configuration macros could be used to define conflicting authorization. Therefore, the following
protocol defines the precedence of the configuration macros.

1. DENY_* macros take precedence over where there is a conflict. This implies that if a specific user is both denied
and granted authorization, the conflict is resolved by denying access.

2. If macros are omitted, the default behavior is to deny authorization for all users.

In addition, there are some hard-coded authorization rules that cannot be modified by configuration.

1. Connections with a name matching *@unmapped are not allowed to do any job management commands (e.g.
submitting, removing, or modifying jobs). This prevents these operations from being done by unauthenticated
users and users who are authenticated but lacking a name in the map file.

2. To simplify flocking, the condor_schedd automatically grants the condor_startd READ access for the duration
of a claim so that claim-related communications are possible. The condor_shadow grants the condor_starter
DAEMON access so that file transfers can be done. The identity that is granted access in both these cases is the
authenticated name (if available) and IP address of the condor_startd when the condor_schedd initially connects
to it to request the claim. It is important that only trusted condor_startd s are allowed to publish themselves
to the collector or that the condor_schedd ‘s ALLOW_CLIENT setting prevent it from allowing connections to
condor_startd s that it does not trust to run jobs.

3. When is true, execute-side@matchsession is automatically granted READ access to the condor_schedd and
DAEMON access to the condor_shadow.

4. When is true, then negotiator-side@matchsession is automatically granted NEGOTIATOR access to the con-
dor_schedd.

Example of Authorization Security Configuration

An example of the configuration variables for the user-side authorization is derived from the necessary access levels as
described in HTCondor’s Security Model.

ALLOW_READ = *@cs.wisc.edu/*
ALLOW_WRITE = *@cs.wisc.edu/*.cs.wisc.edu
ALLOW_ADMINISTRATOR = condor-admin@cs.wisc.edu/*.cs.wisc.edu
ALLOW_CONFIG = condor-admin@cs.wisc.edu/*.cs.wisc.edu
ALLOW_NEGOTIATOR = condor@cs.wisc.edu/condor.cs.wisc.edu, \

condor@cs.wisc.edu/condor2.cs.wisc.edu
ALLOW_DAEMON = condor@cs.wisc.edu/*.cs.wisc.edu

5.8. Security 427

mailto:*@unmapped
mailto:execute-side@matchsession

HTCondor Manual, Release 23.6.2

This example configuration authorizes any authenticated user in the cs.wisc.edu domain to carry out a request that
requires the READ access level from any machine. Any user in the cs.wisc.edu domain may carry out a request that
requires the WRITE access level from any machine in the cs.wisc.edu domain. Only the user called condor-admin may
carry out a request that requires the ADMINISTRATOR access level from any machine in the cs.wisc.edu domain. The
administrator, logged into any machine within the cs.wisc.edu domain is authorized at the CONFIG access level. Only
the negotiator daemon, running as condor on the two central managers are authorized with the NEGOTIATOR access
level. And, the last line of the example presumes that there is a user called condor, and that the daemons have all been
started up as this user. It authorizes only programs (which will be the daemons) running as condor to carry out requests
that require the DAEMON access level, where the commands originate from any machine in the cs.wisc.edu domain.

Debugging Security Configuration

If the authorization policy denies a network request, an explanation of why the request was denied is printed in the log
file of the daemon that denied the request. The line in the log file contains the words PERMISSION DENIED.

To get HTCondor to generate a similar explanation of why requests are accepted, add D_SECURITY to the daemon’s
debug options (and restart or reconfig the daemon). The line in the log file for these cases will contain the words
PERMISSION GRANTED. If you do not want to see a full explanation but just want to see when requests are made,
add D_COMMAND to the daemon’s debug options.

If the authorization policy makes use of host or domain names, then be aware that HTCondor depends on DNS to map
IP addresses to names. The security and accuracy of your DNS service is therefore a requirement. Typos in DNS
mappings are an occasional source of unexpected behavior. If the authorization policy is not behaving as expected,
carefully compare the names in the policy with the host names HTCondor mentions in the explanations of why requests
are granted or denied.

5.8.11 FIPS

As of version 9.0.2, HTCondor is now FIPS compliant when configured to be so. In practice this means that MD5
digests and Blowfish encryption are not used anywhere. To make this easy to configure, we have added a configuration
macro, and all you need to add to your config is the following:

use security:FIPS

This will configure HTCondor to use AES encryption with AES-GCM message digests for all TCP network connec-
tions. If you are using UDP for any reason, HTCondor will then fall back to using 3DES for UDP packet encryption
because HTCondor does not currently support AES for UDP. The main reasons anyone would be using UDP would be
if you had configured a large pool to be supported by Collector trees using UDP, or if you are using Windows (because
HTCondor sends signals to daemons on Windows using UDP).

Currently, the use of the High-Availability Daemon (HAD) is not supported when running on a machine that is FIPS
compliant.

5.8.12 Security Sessions

To set up and configure secure communications in HTCondor, authentication, encryption, and integrity checks can
be used. However, these come at a cost: performing strong authentication can take a significant amount of time, and
generating the cryptographic keys for encryption and integrity checks can take a significant amount of processing power.

The HTCondor system makes many network connections between different daemons. If each one of these was to be
authenticated, and new keys were generated for each connection, HTCondor would not be able to scale well. Therefore,

428 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

HTCondor uses the concept of sessions to cache relevant security information for future use and greatly speed up the
establishment of secure communications between the various HTCondor daemons.

A new session is established the first time a connection is made from one daemon to another. Each session has a fixed
lifetime after which it will expire and a new session will need to be created again. But while a valid session exists, it
can be re-used as many times as needed, thereby preventing the need to continuously re-establish secure connections.
Each entity of a connection will have access to a session key that proves the identity of the other entity on the opposing
side of the connection. This session key is exchanged securely using a strong authentication method, such as Kerberos.
Other authentication methods, such as NTSSPI, FS_REMOTE, CLAIMTOBE, and ANONYMOUS, do not support secure key
exchange. An entity listening on the wire may be able to impersonate the client or server in a session that does not use
a strong authentication method.

Establishing a secure session requires that either the encryption or the integrity options be enabled. If the encryption
capability is enabled, then the session will be restarted using the session key as the encryption key. If integrity capability
is enabled, then the check sum includes the session key even though it is not transmitted. Without either of these two
methods enabled, it is possible for an attacker to use an open session to make a connection to a daemon and use that
connection for nefarious purposes. It is strongly recommended that if you have authentication turned on, you should
also turn on integrity and/or encryption.

The configuration parameter will allow a user to set the default level of secure sessions in HTCondor. Like other
security settings, the possible values for this parameter can be REQUIRED, PREFERRED, OPTIONAL, or NEVER.
If you disable sessions and you have authentication turned on, then most authentication (other than commands like)
will fail because HTCondor requires sessions when you have security turned on. On the other hand, if you are not
using strong security in HTCondor, but you are relying on the default host-based security, turning off sessions may be
useful in certain situations. These might include debugging problems with the security session management or slightly
decreasing the memory consumption of the daemons, which keep track of the sessions in use.

Session lifetimes for specific daemons are already properly configured in the default installation of HTCondor. HT-
Condor tools such as and create a session that expires after one minute. Theoretically they should not create a session
at all, because the session cannot be reused between program invocations, but this is difficult to do in the general case.
This allows a very small window of time for any possible attack, and it helps keep the memory footprint of running
daemons down, because they are not keeping track of all of the sessions. The session durations may be manually tuned
by using macros in the configuration file, but this is not recommended.

5.8.13 Host-Based Security in HTCondor

This section describes the mechanisms for setting up HTCondor’s host-based security. This is now an outdated form
of implementing security levels for machine access. It remains available and documented for purposes of backward
compatibility. If used at the same time as the user-based authorization, the two specifications are merged together.

The host-based security paradigm allows control over which machines can join an HTCondor pool, which machines
can find out information about your pool, and which machines within a pool can perform administrative commands.
By default, HTCondor is configured to allow anyone to view or join a pool. It is recommended that this parameter is
changed to only allow access from machines that you trust.

This section discusses how the host-based security works inside HTCondor. It lists the different levels of access and
what parts of HTCondor use which levels. There is a description of how to configure a pool to grant or deny certain
levels of access to various machines. Configuration examples and the settings of configuration variables using the
command complete this section.

Inside the HTCondor daemons or tools that use DaemonCore (see the DaemonCore section), most tasks are accom-
plished by sending commands to another HTCondor daemon. These commands are represented by an integer value
to specify which command is being requested, followed by any optional information that the protocol requires at that
point (such as a ClassAd, capability string, etc). When the daemons start up, they will register which commands they
are willing to accept, what to do with arriving commands, and the access level required for each command. When a

5.8. Security 429

HTCondor Manual, Release 23.6.2

command request is received by a daemon, HTCondor identifies the access level required and checks the IP address
of the sender to verify that it satisfies the allow/deny settings from the configuration file. If permission is granted, the
command request is honored; otherwise, the request will be aborted.

Settings for the access levels in the global configuration file will affect all the machines in the pool. Settings in a local
configuration file will only affect the specific machine. The settings for a given machine determine what other hosts
can send commands to that machine. If a machine foo is to be given administrator access on machine bar, place foo in
bar’s configuration file access list (not the other way around).

The following are the various access levels that commands within HTCondor can be registered with:

READ
Machines with READ access can read information from the HTCondor daemons. For example, they can view the
status of the pool, see the job queue(s), and view user permissions. READ access does not allow a machine to
alter any information, and does not allow job submission. A machine listed with READ permission will be unable
join an HTCondor pool; the machine can only view information about the pool.

WRITE
Machines with WRITE access can write information to the HTCondor daemons. Most important for granting a
machine with this access is that the machine will be able to join a pool since they are allowed to send ClassAd
updates to the central manager. The machine can talk to the other machines in a pool in order to submit or run
jobs.

Note: For a machine to join an HTCondor pool, the machine must have both WRITE permission AND READ
permission. WRITE permission is not enough.

ADMINISTRATOR
Machines with ADMINISTRATOR access are granted additional HTCondor administrator rights to the pool. This
includes the ability to change user priorities with the command , and the ability to turn HTCondor on and off
using and . It is recommended that few machines be granted administrator access in a pool; typically these are the
machines that are used by HTCondor and system administrators as their primary workstations, or the machines
running as the pool’s central manager.

Note: Giving ADMINISTRATOR privileges to a machine grants administrator access for the pool to ANY USER
on that machine. This includes any users who can run HTCondor jobs on that machine. It is recommended that
ADMINISTRATOR access is granted with due diligence.

NEGOTIATOR
This access level is used specifically to verify that commands are sent by the condor_negotiator daemon. The
condor_negotiator daemon runs on the central manager of the pool. Commands requiring this access level are
the ones that tell the condor_schedd daemon to begin negotiating, and those that tell an available condor_startd
daemon that it has been matched to a condor_schedd with jobs to run.

CONFIG
This access level is required to modify a daemon’s configuration using the command. By default, machines with
this level of access are able to change any configuration parameter, except those specified in the condor_config.
root configuration file. Therefore, one should exercise extreme caution before granting this level of host-wide
access. Because of the implications caused by CONFIG privileges, it is disabled by default for all hosts.

DAEMON
This access level is used for commands that are internal to the operation of HTCondor. An example of this internal
operation is when the condor_startd daemon sends its ClassAd updates to the condor_collector daemon (which
may be more specifically controlled by the ADVERTISE_STARTD access level). Authorization at this access level
should only be given to hosts that actually run HTCondor in your pool. The DAEMON level of access implies both

430 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

READ and WRITE access. Any setting for this access level that is not defined will default to the corresponding
setting in the WRITE access level.

ADVERTISE_MASTER
This access level is used specifically for commands used to advertise a daemon to the collector. Any setting for
this access level that is not defined will default to the corresponding setting in the DAEMON access level.

ADVERTISE_STARTD
This access level is used specifically for commands used to advertise a condor_startd daemon to the collector.
Any setting for this access level that is not defined will default to the corresponding setting in the DAEMON access
level.

ADVERTISE_SCHEDD
This access level is used specifically for commands used to advertise a condor_schedd daemon to the collector.
Any setting for this access level that is not defined will default to the corresponding setting in the DAEMON access
level.

CLIENT
This access level is different from all the others. Whereas all of the other access levels refer to the security policy
for accepting connections from others, the CLIENT access level applies when an HTCondor daemon or tool is
connecting to some other HTCondor daemon. In other words, it specifies the policy of the client that is initiating
the operation, rather than the server that is being contacted.

ADMINISTRATOR and NEGOTIATOR access default to the central manager machine. CONFIG access is not granted to any
machine as its default. These defaults are sufficient for most pools, and should not be changed without a compelling
reason.

5.8.14 Examples of Security Configuration

Here is a sample security configuration:

ALLOW_ADMINISTRATOR = $(CONDOR_HOST)
ALLOW_READ = *
ALLOW_WRITE = *
ALLOW_NEGOTIATOR = $(COLLECTOR_HOST)
ALLOW_NEGOTIATOR_SCHEDD = $(COLLECTOR_HOST), $(FLOCK_NEGOTIATOR_HOSTS)
ALLOW_WRITE_COLLECTOR = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_WRITE_STARTD = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_READ_COLLECTOR = $(ALLOW_READ), $(FLOCK_FROM)
ALLOW_READ_STARTD = $(ALLOW_READ), $(FLOCK_FROM)
ALLOW_CLIENT = *

This example configuration presumes that the condor_collector and condor_negotiator daemons are running on the
same machine.

For each access level, an ALLOW or a DENY may be added.

• If there is an ALLOW, it means “only allow these machines”. No ALLOW means allow anyone.

• If there is a DENY, it means “deny these machines”. No DENY means deny nobody.

• If there is both an ALLOW and a DENY, it means allow the machines listed in ALLOW except for the machines
listed in DENY.

• Exclusively for the CONFIG access, no ALLOW means allow no one. Note that this is different than the other
ALLOW configurations. It is different to enable more stringent security where older configurations are used,
since older configuration files would not have a CONFIG configuration entry.

5.8. Security 431

HTCondor Manual, Release 23.6.2

Multiple machine entries in the configuration files may be separated by either a space or a comma. The machines may
be listed by

• Individual host names, for example: condor.cs.wisc.edu

• Individual IP address, for example: 128.105.67.29

• IP subnets (use a trailing *), for example: 144.105.*, 128.105.67.*

• Host names with a wild card * character (only one * is allowed per name), for example: *.cs.wisc.edu,
sol*.cs.wisc.edu

To resolve an entry that falls into both allow and deny: individual machines have a higher order of precedence than wild
card entries, and host names with a wild card have a higher order of precedence than IP subnets. Otherwise, DENY
has a higher order of precedence than ALLOW. This is how most people would intuitively expect it to work.

In addition, the above access levels may be specified on a per-daemon basis, instead of machine-wide for all daemons.
Do this with the subsystem string (described in Pre-Defined Macros on Subsystem Names), which is one of: STARTD,
SCHEDD, MASTER, NEGOTIATOR, or COLLECTOR. For example, to grant different read access for the condor_schedd:

ALLOW_READ_SCHEDD = <list of machines>

Here are more examples of configuration settings. Notice that ADMINISTRATOR access is only granted through an
setting to explicitly grant access to a small number of machines. We recommend this.

• Let any machine join the pool. Only the central manager has administrative access.

ALLOW_ADMINISTRATOR = $(CONDOR_HOST)

• Only allow machines at NCSA to join or view the pool. The central manager is the only machine with
ADMINISTRATOR access.

ALLOW_READ = *.ncsa.uiuc.edu
ALLOW_WRITE = *.ncsa.uiuc.edu
ALLOW_ADMINISTRATOR = $(CONDOR_HOST)

• Only allow machines at NCSA and the U of I Math department join the pool, except do not allow lab machines
to do so. Also, do not allow the 177.55 subnet (perhaps this is the dial-in subnet). Allow anyone to view pool
statistics. The machine named bigcheese administers the pool (not the central manager).

ALLOW_WRITE = *.ncsa.uiuc.edu, *.math.uiuc.edu
DENY_WRITE = lab-*.edu, *.lab.uiuc.edu, 177.55.*
ALLOW_ADMINISTRATOR = bigcheese.ncsa.uiuc.edu

• Only allow machines at NCSA and UW-Madison’s CS department to view the pool. Only NCSA machines and
the machine raven.cs.wisc.edu can join the pool. Note: the machine raven.cs.wisc.edu has the read access it
needs through the wild card setting in . This example also shows how to use the continuation character, \, to
continue a long list of machines onto multiple lines, making it more readable. This works for all configuration
file entries, not just host access entries.

ALLOW_READ = *.ncsa.uiuc.edu, *.cs.wisc.edu
ALLOW_WRITE = *.ncsa.uiuc.edu, raven.cs.wisc.edu
ALLOW_ADMINISTRATOR = $(CONDOR_HOST), bigcheese.ncsa.uiuc.edu, \

biggercheese.uiuc.edu

• Allow anyone except the military to view the status of the pool, but only let machines at NCSA view the job
queues. Only NCSA machines can join the pool. The central manager, bigcheese, and biggercheese can perform
most administrative functions. However, only biggercheese can update user priorities.

432 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

DENY_READ = *.mil
ALLOW_READ_SCHEDD = *.ncsa.uiuc.edu
ALLOW_WRITE = *.ncsa.uiuc.edu
ALLOW_ADMINISTRATOR = $(CONDOR_HOST), bigcheese.ncsa.uiuc.edu, \

biggercheese.uiuc.edu
ALLOW_ADMINISTRATOR_NEGOTIATOR = biggercheese.uiuc.edu

5.8.15 Changing the Security Configuration

A new security feature introduced in HTCondor version 6.3.2 enables more fine-grained control over the configuration
settings that can be modified remotely with the command. The manual page for condor_config_val details how to
use to modify configuration settings remotely. Since certain configuration attributes can have a large impact on the
functioning of the HTCondor system and the security of the machines in an HTCondor pool, it is important to restrict
the ability to change attributes remotely.

For each security access level described, the HTCondor administrator can define which configuration settings a host at
that access level is allowed to change. Optionally, the administrator can define separate lists of settable attributes for
each HTCondor daemon, or the administrator can define one list that is used by all daemons.

For each command that requests a change in configuration setting, HTCondor searches all the different possible security
access levels to see which, if any, the request satisfies. (Some hosts can qualify for multiple access levels. For example,
any host with ADMINISTRATOR permission probably has WRITE permission also). Within the qualified access level,
HTCondor searches for the list of attributes that may be modified. If the request is covered by the list, the request will
be granted. If not covered, the request will be refused.

The default configuration shipped with HTCondor is exceedingly restrictive. HTCondor users or administrators cannot
set configuration values from remote hosts with . Enabling this feature requires a change to the settings in the configu-
ration file. Use this security feature carefully. Grant access only for attributes which you need to be able to modify in
this manner, and grant access only at the most restrictive security level possible.

The most secure use of this feature allows HTCondor users to set attributes in the configuration file which are not used by
HTCondor directly. These are custom attributes published by various HTCondor daemons with the setting described
in DaemonCore Configuration File Entries. It is secure to grant access only to modify attributes that are used by
HTCondor to publish information. Granting access to modify settings used to control the behavior of HTCondor is not
secure. The goal is to ensure no one can use the power to change configuration attributes to compromise the security
of your HTCondor pool.

The control lists are defined by configuration settings that contain SETTABLE_ATTRS in their name. The name of the
control lists have the following form:

<SUBSYS>.SETTABLE_ATTRS_<PERMISSION-LEVEL>

The two parts of this name that can vary are the <PERMISSION-LEVEL> and the <SUBSYS>. The <PERMISSION-
LEVEL> can be any of the security access levels described earlier in this section. Examples include WRITE and CONFIG.

The <SUBSYS> is an optional portion of the name. It can be used to define separate rules for which configuration
attributes can be set for each kind of HTCondor daemon (for example, STARTD, SCHEDD, and MASTER). There are many
configuration settings that can be defined differently for each daemon that use this <SUBSYS> naming convention. See
Pre-Defined Macros for a list. If there is no daemon-specific value for a given daemon, HTCondor will look for .

Each control list is defined by a comma-separated list of attribute names which should be allowed to be modified. The
lists can contain wild cards characters (*).

Some examples of valid definitions of control lists with explanations:

5.8. Security 433

HTCondor Manual, Release 23.6.2

• SETTABLE_ATTRS_CONFIG = *

Grant unlimited access to modify configuration attributes to any request that came from a machine in the CONFIG
access level. This was the default behavior before HTCondor version 6.3.2.

• SETTABLE_ATTRS_ADMINISTRATOR = *_DEBUG, MAX_*_LOG

Grant access to change any configuration setting that ended with _DEBUG (for example,) and any attribute that
matched MAX_*_LOG (for example,) to any host with ADMINISTRATOR access.

5.8.16 User Accounts in HTCondor on Unix Platforms

On a Unix system, UIDs (User IDentification numbers) form part of an operating system’s tools for maintaining access
control. Each executing program has a UID, a unique identifier of a user executing the program. This is also called the
real UID. A common situation has one user executing the program owned by another user. Many system commands
work this way, with a user (corresponding to a person) executing a program belonging to (owned by) root. Since the
program may require privileges that root has which the user does not have, a special bit in the program’s protection
specification (a setuid bit) allows the program to run with the UID of the program’s owner, instead of the user that
executes the program. This UID of the program’s owner is called an effective UID.

HTCondor works most smoothly when its daemons run as root. The daemons then have the ability to switch their
effective UIDs at will. When the daemons run as root, they normally leave their effective UID and GID (Group IDen-
tification) to be those of user and group condor. This allows access to the log files without changing the ownership of
the log files. It also allows access to these files when the user condor’s home directory resides on an NFS server. root
can not normally access NFS files.

If there is no condor user and group on the system, an administrator can specify which UID and GID the HTCondor
daemons should use when they do not need root privileges in two ways: either with the environment variable or the
configuration variable. In either case, the value should be the UID integer, followed by a period, followed by the
GID integer. For example, if an HTCondor administrator does not want to create a condor user, and instead wants
their HTCondor daemons to run as the daemon user (a common non-root user for system daemons to execute as), the
daemon user’s UID was 2, and group daemon had a GID of 2, the corresponding setting in the HTCondor configuration
file would be CONDOR_IDS = 2.2.

On a machine where a job is submitted, the condor_schedd daemon changes its effective UID to root such that it
has the capability to start up a condor_shadow daemon for the job. Before a condor_shadow daemon is created, the
condor_schedd daemon switches back to root, so that it can start up the condor_shadow daemon with the (real) UID
of the user who submitted the job. Since the condor_shadow runs as the owner of the job, all remote system calls are
performed under the owner’s UID and GID. This ensures that as the job executes, it can access only files that its owner
could access if the job were running locally, without HTCondor.

On the machine where the job executes, the job runs either as the submitting user or as user nobody, to help ensure
that the job cannot access local resources or do harm. If the matches, and the user exists as the same UID in password
files on both the submitting machine and on the execute machine, the job will run as the submitting user. If the user
does not exist in the execute machine’s password file and is True, then the job will run under the submitting user’s
UID anyway (as defined in the submitting machine’s password file). If is False, and matches, and the user is not in the
execute machine’s password file, then the job execution attempt will be aborted.

Jobs that run as nobody are low privilege, but can still interfere with each other. To avoid this, you can configure to the
value $(STARTER_SLOT_NAME) or configure for each slot to define a different username to use for each slot instead of
the user nobody. If is configured to be $(STARTER_SLOT_NAME) usernames such as slot1, slot2 and slot1_2 will
be used instead of nobody and each slot will use a different name than every other slot.

434 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Running HTCondor as Non-Root

While we strongly recommend starting up the HTCondor daemons as root, we understand that it is not always possible
to do so. The main problems of not running HTCondor daemons as root appear when one HTCondor installation is
shared by many users on a single machine, or if machines are set up to only execute HTCondor jobs. With a submit-only
installation for a single user, there is no need for or benefit from running as root.

The effects of HTCondor of running both with and without root access are classified for each daemon:

condor_startd
An HTCondor machine set up to execute jobs where the condor_startd is not started as root relies on the good will
of the HTCondor users to agree to the policy configured for the condor_startd to enforce for starting, suspending,
vacating, and killing HTCondor jobs. When the condor_startd is started as root, however, these policies may be
enforced regardless of malicious users. By running as root, the HTCondor daemons run with a different UID than
the HTCondor job. The user’s job is started as either the UID of the user who submitted it, or as user nobody,
depending on the settings. Therefore, the HTCondor job cannot do anything to the HTCondor daemons. Without
starting the daemons as root, all processes started by HTCondor, including the user’s job, run with the same UID.
Only root can switch UIDs. Therefore, a user’s job could kill the condor_startd and condor_starter. By doing
so, the user’s job avoids getting suspended or vacated. This is nice for the job, as it obtains unlimited access to
the machine, but it is awful for the machine owner or administrator. If there is trust of the users submitting jobs
to HTCondor, this might not be a concern. However, to ensure that the policy chosen is enforced by HTCondor,
the condor_startd should be started as root.

In addition, some system information cannot be obtained without root access on some platforms. As a result,
when running without root access, the condor_startd must call other programs such as uptime, to get this infor-
mation. This is much less efficient than getting the information directly from the kernel, as is done when running
as root. On Linux, this information is available without root access, so it is not a concern on those platforms.

If all of HTCondor cannot be run as root, at least consider installing the condor_startd as setuid root. That would
solve both problems. Barring that, install it as a setgid sys or kmem program, depending on whatever group has
read access to /dev/kmem on the system. That would solve the system information problem.

condor_schedd
The biggest problem with running the condor_schedd without root access is that the condor_shadow processes
which it spawns are stuck with the same UID that the condor_schedd has. This requires users to go out of their
way to grant write access to user or group that the condor_schedd is run as for any files or directories their jobs
write or create. Similarly, read access must be granted to their input files.

Consider installing as a setgid condor program so that at least the stdout, stderr and job event log files get
created with the right permissions. If is a setgid program, it will automatically set its umask to 002 and create
group-writable files. This way, the simple case of a job that only writes to stdout and stderr will work. If
users have programs that open their own files, they will need to know and set the proper permissions on the
directories they submit from.

The spawns both the condor_startd and the condor_schedd. To have both running as root, have the run as root.
This happens automatically if the is started from boot scripts.

condor_negotiator and condor_collector
There is no need to have either of these daemons running as root.

condor_kbdd
On platforms that need the condor_kbdd, the condor_kbdd must run as root. If it is started as any other user, it
will not work. Consider installing this program as a setuid root binary if the will not be run as root. Without the
condor_kbdd, the condor_startd has no way to monitor USB mouse or keyboard activity, although it will notice
keyboard activity on ttys such as xterms and remote logins.

If HTCondor is not run as root, then choose almost any user name. A common choice is to set up and use the condor
user; this simplifies the setup, because HTCondor will look for its configuration files in the condor user’s directory. If

5.8. Security 435

HTCondor Manual, Release 23.6.2

condor is not selected, then the configuration must be placed properly such that HTCondor can find its configuration
files.

If users will be submitting jobs as a user different than the user HTCondor is running as (perhaps you are running as the
condor user and users are submitting as themselves), then users have to be careful to only have file permissions properly
set up to be accessible by the user HTCondor is using. In practice, this means creating world-writable directories for
output from HTCondor jobs. This creates a potential security risk, in that any user on the machine where the job is
submitted can alter the data, remove it, or do other undesirable things. It is only acceptable in an environment where
users can trust other users.

Normally, users without root access who wish to use HTCondor on their machines create a condor home directory
somewhere within their own accounts and start up the daemons (to run with the UID of the user). As in the case where
the daemons run as user condor, there is no ability to switch UIDs or GIDs. The daemons run as the UID and GID
of the user who started them. On a machine where jobs are submitted, the condor_shadow daemons all run as this
same user. But, if other users are using HTCondor on the machine in this environment, the condor_shadow daemons
for these other users’ jobs execute with the UID of the user who started the daemons. This is a security risk, since the
HTCondor job of the other user has access to all the files and directories of the user who started the daemons. Some
installations have this level of trust, but others do not. Where this level of trust does not exist, it is best to set up a
condor account and group, or to have each user start up their own Personal HTCondor submit installation.

When a machine is an execution site for an HTCondor job, the HTCondor job executes with the UID of the user who
started the condor_startd daemon. This is also potentially a security risk, which is why we do not recommend starting
up the execution site daemons as a regular user. Use either root or a user such as condor that exists only to run HTCondor
jobs.

Who Jobs Run As

Under Unix, HTCondor runs jobs as one of

• the user called nobody

Running jobs as the nobody user is the least preferable. HTCondor uses user nobody if the value of the configu-
ration variable of the submitting and executing machines are different, or if configuration variable is False, or
if the job ClassAd contains RunAsOwner=False.

When HTCondor cleans up after executing a vanilla universe job, it does the best that it can by deleting all of the
processes started by the job. During the life of the job, it also does its best to track the CPU usage of all processes
created by the job. There are a variety of mechanisms used by HTCondor to detect all such processes, but, in
general, the only foolproof mechanism is for the job to run under a dedicated execution account (as it does under
Windows by default). With all other mechanisms, it is possible to fool HTCondor, and leave processes behind
after HTCondor has cleaned up. In the case of a shared account, such as the Unix user nobody, it is possible
for the job to leave a lurker process lying in wait for the next job run as nobody. The lurker process may prey
maliciously on the next nobody user job, wreaking havoc.

HTCondor could prevent this problem by simply killing all processes run by the nobody user, but this would
annoy many system administrators. The nobody user is often used for non-HTCondor system processes. It may
also be used by other HTCondor jobs running on the same machine, if it is a multi-processor machine.

• dedicated accounts called slot users set up for the purpose of running HTCondor jobs

Better than the nobody user will be to create user accounts for HTCondor to use. These can be low-privilege
accounts, just as the nobody user is. Create one of these accounts for each job execution slot per computer, so that
distinct user names can be used for concurrently running jobs. This prevents malicious or naive behavior from
one slot to affect another slot. For a sample machine with two compute slots, create two users that are intended
only to be used by HTCondor. As an example, call them cndrusr1 and cndrusr2. Configuration identifies these

436 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

users with the configuration variable, where <N> is replaced with the slot number. Here is configuration for this
example:

SLOT1_USER = cndrusr1
SLOT2_USER = cndrusr2

Also tell HTCondor that these accounts are intended only to be used by HTCondor, so HTCondor can kill all the
processes belonging to these users upon job completion. The configuration variable is introduced and set to a
regular expression that matches the account names just created:

DEDICATED_EXECUTE_ACCOUNT_REGEXP = cndrusr[0-9]+

Finally, tell HTCondor not to run jobs as the job owner:

STARTER_ALLOW_RUNAS_OWNER = False

• the user that submitted the jobs

Four conditions must be set correctly to run jobs as the user that submitted the job.

1. In the configuration, the value of variable must be True on the machine that will run the job. Its default
value is True on Unix platforms and False on Windows platforms.

2. If the job’s ClassAd has the attribute RunAsOwner, it must be set to True; if unset, the job must be run on
a Unix system. This attribute can be set up for all users by adding an attribute to configuration variable . If
this were the only attribute to be added to all job ClassAds, it would be set up with

SUBMIT_ATTRS = RunAsOwner
RunAsOwner = True

3. The value of configuration variable must be the same for both the condor_startd and condor_schedd dae-
mons.

4. The UID_DOMAIN must be trusted. For example, if the condor_starter daemon does a reverse DNS
lookup on the condor_schedd daemon, and finds that the result is not the same as defined for configuration
variable , then it is not trusted. To correct this, set in the configuration for the condor_starter

TRUST_UID_DOMAIN = True

Notes:

1. Under Windows, HTCondor by default runs jobs under a dynamically created local account that exists for the
duration of the job, but it can optionally run the job as the user account that owns the job if is True and the job
contains RunAsOwner=True.

will only work if the credential of the specified user is stored on the execute machine using . for details of
this command. However, the default behavior in Windows is to run jobs under a dynamically created dedicated
execution account, so just using the default behavior is sufficient to avoid problems with lurker processes. See
Executing Jobs as the Submitting User, and the condor_store_cred manual page for details.

2. The condor_starter logs a line similar to

Tracking process family by login "cndrusr1"

when it treats the account as a dedicated account.

5.8. Security 437

HTCondor Manual, Release 23.6.2

Working Directories for Jobs

Every executing process has a notion of its current working directory. This is the directory that acts as the base for all
file system access. There are two current working directories for any HTCondor job: one where the job is submitted
and a second where the job executes. When a user submits a job, the submit-side current working directory is the same
as for the user when the command is issued. The submit command may change this, thereby allowing different jobs
to have different working directories. This is useful when submitting large numbers of jobs. This submit-side current
working directory remains unchanged for the entire life of a job. The submit-side current working directory is also the
working directory of the condor_shadow daemon.

There is also an execute-side current working directory.

5.9 Networking, Port Usage, and CCB

This section on network communication in HTCondor discusses which network ports are used, how HTCondor behaves
on machines with multiple network interfaces and IP addresses, and how to facilitate functionality in a pool that spans
firewalls and private networks.

The security section of the manual contains some information that is relevant to the discussion of network communi-
cation which will not be duplicated here, so please see the Security section as well.

Firewalls, private networks, and network address translation (NAT) pose special problems for HTCondor. There are
currently two main mechanisms for dealing with firewalls within HTCondor:

1. Restrict HTCondor to use a specific range of port numbers, and allow connections through the firewall that use
any port within the range.

2. Use HTCondor Connection Brokering (CCB).

Each method has its own advantages and disadvantages, as described below.

5.9.1 Port Usage in HTCondor

IPv4 Port Specification

The general form for IPv4 port specification is

<IP:port?param1name=value1¶m2name=value2¶m3name=value3&...>

These parameters and values are URL-encoded. This means any special character is encoded with %, followed by two
hexadecimal digits specifying the ASCII value. Special characters are any non-alphanumeric character.

HTCondor currently recognizes the following parameters with an IPv4 port specification:

CCBID
Provides contact information for forming a CCB connection to a daemon, or a space separated list, if the daemon
is registered with more than one CCB server. Each contact information is specified in the form of IP:port#ID.
Note that spaces between list items will be URL encoded by %20.

438 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

PrivNet
Provides the name of the daemon’s private network. This value is specified in the configuration with .

sock
Provides the name of condor_shared_port daemon named socket.

PrivAddr
Provides the daemon’s private address in form of IP:port.

Default Port Usage

Every HTCondor daemon listens on a network port for incoming commands. (Using condor_shared_port, this port
may be shared between multiple daemons.) Most daemons listen on a dynamically assigned port. In order to send a
message, HTCondor daemons and tools locate the correct port to use by querying the condor_collector, extracting the
port number from the ClassAd. One of the attributes included in every daemon’s ClassAd is the full IP address and
port number upon which the daemon is listening.

To access the condor_collector itself, all HTCondor daemons and tools must know the port number where the con-
dor_collector is listening. The condor_collector is the only daemon with a well-known, fixed port. By default, HT-
Condor uses port 9618 for the condor_collector daemon. However, this port number can be changed (see below).

As an optimization for daemons and tools communicating with another daemon that is running on the same host, each
HTCondor daemon can be configured to write its IP address and port number into a well-known file. The file names
are controlled using the configuration variables, as described in the DaemonCore Configuration File Entries section.

All HTCondor tools and daemons that need to communicate with the condor_negotiator will either use the or will
query the condor_collector for the condor_negotiator ‘s ClassAd.

Using a Non Standard, Fixed Port for the condor_collector

By default, HTCondor uses port 9618 for the condor_collector daemon. To use a different port number for this daemon,
the configuration variables that tell HTCondor these communication details are modified. Instead of

CONDOR_HOST = machX.cs.wisc.edu
COLLECTOR_HOST = $(CONDOR_HOST)

the configuration might be

CONDOR_HOST = machX.cs.wisc.edu
COLLECTOR_HOST = $(CONDOR_HOST):9650

If a non standard port is defined, the same value of (including the port) must be used for all machines in the HTCondor
pool. Therefore, this setting should be modified in the global configuration file (condor_config file), or the value
must be duplicated across all configuration files in the pool if a single configuration file is not being shared.

When querying the condor_collector for a remote pool that is running on a non standard port, any HTCondor tool that
accepts the -pool argument can optionally be given a port number. For example:

$ condor_status -pool foo.bar.org:1234

5.9. Networking, Port Usage, and CCB 439

HTCondor Manual, Release 23.6.2

Using a Dynamically Assigned Port for the condor_collector

On single machine pools, it is permitted to configure the condor_collector daemon to use a dynamically assigned port,
as given out by the operating system. This prevents port conflicts with other services on the same machine. However,
a dynamically assigned port is only to be used on single machine HTCondor pools, and only if the

configuration variable has also been defined. This mechanism allows all of the HTCondor daemons and tools running
on the same machine to find the port upon which the condor_collector daemon is listening, even when this port is not
defined in the configuration file and is not known in advance.

To enable the condor_collector daemon to use a dynamically assigned port, the port number is set to 0 in the variable.
The COLLECTOR_ADDRESS_FILE configuration variable must also be defined, as it provides a known file where the IP
address and port information will be stored. All HTCondor clients know to look at the information stored in this file.
For example:

COLLECTOR_HOST = $(CONDOR_HOST):0
COLLECTOR_ADDRESS_FILE = $(LOG)/.collector_address

Configuration definition of COLLECTOR_ADDRESS_FILE is in the DaemonCore Configuration File Entries section and
is in the HTCondor-wide Configuration File Entries section.

Restricting Port Usage to Operate with Firewalls

If an HTCondor pool is completely behind a firewall, then no special consideration or port usage is needed. However,
if there is a firewall between the machines within an HTCondor pool, then configuration variables may be set to force
the usage of specific ports, and to utilize a specific range of ports.

By default, HTCondor uses port 9618 for the condor_collector daemon, and dynamic (apparently random) ports for
everything else. See Port Usage in HTCondor, if a dynamically assigned port is desired for the condor_collector
daemon.

All of the HTCondor daemons on a machine may be configured to share a single port. See the condor_shared_port
Configuration File Macros section for more information.

The configuration variables and facilitate setting a restricted range of ports that HTCondor will use. This may be useful
when some machines are behind a firewall. The configuration macros and will restrict dynamic ports to the range
specified. The configuration variables are fully defined in the Network-Related Configuration File Entries section. All
of these ports must be greater than 0 and less than 65,536. Note that both and must be at least 1024 for HTCondor
version 6.6.8. In general, use ports greater than 1024, in order to avoid port conflicts with standard services on the
machine. Another reason for using ports greater than 1024 is that daemons and tools are often not run as root, and only
root may listen to a port lower than 1024. Also, the range must include enough ports that are not in use, or HTCondor
cannot work.

The range of ports assigned may be restricted based on incoming (listening) and outgoing (connect) ports with the
configuration variables , , , and See the Network-Related Configuration File Entries section for complete definitions of
these configuration variables. A range of ports lower than 1024 for daemons running as root is appropriate for incoming
ports, but not for outgoing ports. The use of ports below 1024 (versus above 1024) has security implications; therefore,
it is inappropriate to assign a range that crosses the 1024 boundary.

NOTE: Setting and will not automatically force the condor_collector to bind to a port within the range. The only way
to control what port the condor_collector uses is by setting the (as described above).

The total number of ports needed depends on the size of the pool, the usage of the machines within the pool (which
machines run which daemons), and the number of jobs that may execute at one time. Here we discuss how many ports
are used by each participant in the system. This assumes that condor_shared_port is not being used. If it is being used,
then all daemons can share a single incoming port.

440 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

The central manager of the pool needs 5 + number of condor_schedd daemons ports for outgoing connections
and 2 ports for incoming connections for daemon communication.

Each execute machine (those machines running a condor_startd daemon) requires `` 5 + (5 * number of slots advertised
by that machine)`` ports. By default, the number of slots advertised will equal the number of physical CPUs in that
machine.

Submit machines (those machines running a condor_schedd daemon) require `` 5 + (5 * MAX_JOBS_RUNNING``)
ports. The configuration variable limits (on a per-machine basis, if desired) the maximum number of jobs. Without this
configuration macro, the maximum number of jobs that could be simultaneously executing at one time is a function of
the number of reachable execute machines.

Also be aware that and only impact dynamic port selection used by the HTCondor system, and they do not impact port
selection used by jobs submitted to HTCondor. Thus, jobs submitted to HTCondor that may create network connections
may not work in a port restricted environment. For this reason, specifying and is not going to produce the expected
results if a user submits MPI applications to be executed under the parallel universe.

Where desired, a local configuration for machines not behind a firewall can override the usage of and , such that the ports
used for these machines are not restricted. This can be accomplished by adding the following to the local configuration
file of those machines not behind a firewall:

HIGHPORT = UNDEFINED
LOWPORT = UNDEFINED

If the maximum number of ports allocated using and is too few, socket binding errors of the form

failed to bind any port within <$LOWPORT> - <$HIGHPORT>

are likely to appear repeatedly in log files.

Multiple Collectors

This section has not yet been written

Port Conflicts

This section has not yet been written

5.9.2 Reducing Port Usage with the condor_shared_port Daemon

The condor_shared_port is an optional daemon responsible for creating a TCP listener port shared by all of the HT-
Condor daemons.

The main purpose of the condor_shared_port daemon is to reduce the number of ports that must be opened. This
is desirable when HTCondor daemons need to be accessible through a firewall. This has a greater security benefit
than simply reducing the number of open ports. Without the condor_shared_port daemon, HTCondor can use a range
of ports, but since some HTCondor daemons are created dynamically, this full range of ports will not be in use by
HTCondor at all times. This implies that other non-HTCondor processes not intended to be exposed to the outside
network could unintentionally bind to ports in the range intended for HTCondor, unless additional steps are taken to

5.9. Networking, Port Usage, and CCB 441

HTCondor Manual, Release 23.6.2

control access to those ports. While the condor_shared_port daemon is running, it is exclusively bound to its port,
which means that other non-HTCondor processes cannot accidentally bind to that port.

A second benefit of the condor_shared_port daemon is that it helps address the scalability issues of a access point.
Without the condor_shared_port daemon, more than 2 ephemeral ports per running job are often required, depending
on the rate of job completion. There are only 64K ports in total, and most standard Unix installations only allocate a
subset of these as ephemeral ports. Therefore, with long running jobs, and with between 11K and 14K simultaneously
running jobs, port exhaustion has been observed in typical Linux installations. After increasing the ephemeral port
range to its maximum, port exhaustion occurred between 20K and 25K running jobs. Using the condor_shared_port
daemon dramatically reduces the required number of ephemeral ports on the submit node where the submit node
connects directly to the execute node. If the submit node connects via CCB to the execute node, no ports are required
per running job; only the one port allocated to the condor_shared_port daemon is used.

When CCB is enabled, the condor_shared_port daemon registers with the CCB server on behalf of all daemons sharing
the port. This means that it is not possible to individually enable or disable CCB connectivity to daemons that are
using the shared port; they all effectively share the same setting, and the condor_shared_port daemon handles all CCB
connection requests on their behalf.

HTCondor’s authentication and authorization steps are unchanged by the use of a shared port. Each HTCondor daemon
continues to operate according to its configured policy. Requests for connections to the shared port are not authenticated
or restricted by the condor_shared_port daemon. They are simply passed to the requested daemon, which is then
responsible for enforcing the security policy.

When the is configured to use the shared port by setting the configuration variable

USE_SHARED_PORT = True

the condor_shared_port daemon is treated specially. is automatically added to . A command such as , which shuts
down all daemons except for the , will also leave the condor_shared_port running. This prevents the from getting into
a state where it can no longer receive commands.

Also when USE_SHARED_PORT = True, the condor_collector needs to be configured to use a shared port, so that
connections to the shared port that are destined for the condor_collector can be forwarded. As an example, the shared
port socket name of the condor_collector with shared port number 11000 is

COLLECTOR_HOST = cm.host.name:11000?sock=collector

This example assumes that the socket name used by the condor_collector is collector, and it runs on cm.host.name.
This configuration causes the condor_collector to automatically choose this socket name. If multiple condor_collector
daemons are started on the same machine, the socket name can be explicitly set in the daemon’s invocation arguments,
as in the example:

COLLECTOR_ARGS = -sock collector

When the condor_collector address is a shared port, TCP updates will be automatically used instead of UDP, because
the condor_shared_port daemon does not work with UDP messages. Under Unix, this means that the condor_collector
daemon should be configured to have enough file descriptors. See Using TCP to Send Updates to the condor_collector
for more information on using TCP within HTCondor.

SOAP commands cannot be sent through the condor_shared_port daemon. However, a daemon may be configured to
open a fixed, non-shared port, in addition to using a shared port. This is done both by setting USE_SHARED_PORT =
True and by specifying a fixed port for the daemon using <SUBSYS>_ARGS = -p <portnum>.

442 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

5.9.3 Configuring HTCondor for Machines With Multiple Network Interfaces

HTCondor can run on machines with multiple network interfaces. Starting with HTCondor version 6.7.13 (and there-
fore all HTCondor 6.8 and more recent versions), new functionality is available that allows even better support for
multi-homed machines, using the configuration variable . A multi-homed machine is one that has more than one NIC
(Network Interface Card). Further improvements to this new functionality will remove the need for any special config-
uration in the common case. For now, care must still be given to machines with multiple NICs, even when using this
new configuration variable.

Using BIND_ALL_INTERFACES

Machines can be configured such that whenever HTCondor daemons or tools call bind(), the daemons or tools use
all network interfaces on the machine. This means that outbound connections will always use the appropriate network
interface to connect to a remote host, instead of being forced to use an interface that might not have a route to the given
destination. Furthermore, sockets upon which a daemon listens for incoming connections will be bound to all network
interfaces on the machine. This means that so long as remote clients know the right port, they can use any IP address
on the machine and still contact a given HTCondor daemon.

This functionality is on by default. To disable this functionality, the boolean configuration variable is defined and set
to False:

BIND_ALL_INTERFACES = FALSE

This functionality has limitations. Here are descriptions of the limitations.

Using all network interfaces does not work with Kerberos.
Every Kerberos ticket contains a specific IP address within it. Authentication over a socket (using Kerberos)
requires the socket to also specify that same specific IP address. Use of causes outbound connections from a
multi-homed machine to originate over any of the interfaces. Therefore, the IP address of the outbound connec-
tion and the IP address in the Kerberos ticket will not necessarily match, causing the authentication to fail. Sites
using Kerberos authentication on multi-homed machines are strongly encouraged not to enable , at least until
HTCondor’s Kerberos functionality supports using multiple Kerberos tickets together with finding the right one
to match the IP address a given socket is bound to.

There is a potential security risk.
Consider the following example of a security risk. A multi-homed machine is at a network boundary. One
interface is on the public Internet, while the other connects to a private network. Both the multi-homed machine
and the private network machines comprise an HTCondor pool. If the multi-homed machine enables , then it
is at risk from hackers trying to compromise the security of the pool. Should this multi-homed machine be
compromised, the entire pool is vulnerable. Most sites in this situation would run an sshd on the multi-homed
machine so that remote users who wanted to access the pool could log in securely and use the HTCondor tools
directly. In this case, remote clients do not need to use HTCondor tools running on machines in the public
network to access the HTCondor daemons on the multi-homed machine. Therefore, there is no reason to have
HTCondor daemons listening on ports on the public Internet, causing a potential security threat.

Up to two IP addresses will be advertised.
At present, even though a given HTCondor daemon will be listening to ports on multiple interfaces, each with
their own IP address, there is currently no mechanism for that daemon to advertise all of the possible IP addresses
where it can be contacted. Therefore, HTCondor clients (other HTCondor daemons or tools) will not necessarily
able to locate and communicate with a given daemon running on a multi-homed machine where has been enabled.

Currently, HTCondor daemons can only advertise two IP addresses in the ClassAd they send to their con-
dor_collector. One is the public IP address and the other is the private IP address. HTCondor tools and other
daemons that wish to connect to the daemon will use the private IP address if they are configured with the same

5.9. Networking, Port Usage, and CCB 443

HTCondor Manual, Release 23.6.2

private network name, and they will use the public IP address otherwise. So, even if the daemon is listening
on 3 or more different interfaces, each with a separate IP, the daemon must choose which two IP addresses to
advertise so that other daemons and tools can connect to it.

By default, HTCondor advertises the most public IP address available on the machine. The configuration variable
can be used to specify the public IP address HTCondor should advertise, and , along with can be used to specify
the private IP address to advertise.

Sites that make heavy use of private networks and multi-homed machines should consider if using the HTCondor
Connection Broker, CCB, is right for them. More information about CCB and HTCondor can be found in the HTCondor
Connection Brokering (CCB) section.

Central Manager with Two or More NICs

Often users of HTCondor wish to set up compute farms where there is one machine with two network interface cards
(one for the public Internet, and one for the private net). It is convenient to set up the head node as a central manager
in most cases and so here are the instructions required to do so.

Setting up the central manager on a machine with more than one NIC can be a little confusing because there are a few
external variables that could make the process difficult. One of the biggest mistakes in getting this to work is that either
one of the separate interfaces is not active, or the host/domain names associated with the interfaces are incorrectly
configured.

Given that the interfaces are up and functioning, and they have good host/domain names associated with them here is
how to configure HTCondor:

In this example, farm-server.farm.orgmaps to the private interface. In the central manager’s global (to the cluster)
configuration file:

CONDOR_HOST = farm-server.farm.org

In the central manager’s local configuration file:

NETWORK_INTERFACE = <IP address of farm-server.farm.org>
NEGOTIATOR = $(SBIN)/condor_negotiator
COLLECTOR = $(SBIN)/condor_collector
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, SCHEDD, STARTD

Now, if the cluster is set up so that it is possible for a machine name to never have a domain name (for example, there
is machine name but no fully qualified domain name in /etc/hosts), configure to be the domain that is to be added
on to the end of the host name.

A Client Machine with Multiple Interfaces

If client machine has two or more NICs, then there might be a specific network interface on which the client machine
desires to communicate with the rest of the HTCondor pool. In this case, the local configuration file for the client
should have

NETWORK_INTERFACE = <IP address of desired interface>

444 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

5.9.4 HTCondor Connection Brokering (CCB)

HTCondor Connection Brokering, or CCB, is a way of allowing HTCondor components to communicate with each
other when one side is in a private network or behind a firewall. Specifically, CCB allows communication across a
private network boundary in the following scenario: an HTCondor tool or daemon (process A) needs to connect to an
HTCondor daemon (process B), but the network does not allow a TCP connection to be created from A to B; it only
allows connections from B to A. In this case, B may be configured to register itself with a CCB server that both A and
B can connect to. Then when A needs to connect to B, it can send a request to the CCB server, which will instruct B
to connect to A so that the two can communicate.

As an example, consider an HTCondor execute node that is within a private network. This execute node’s condor_startd
is process B. This execute node cannot normally run jobs submitted from a machine that is outside of that private net-
work, because bi-directional connectivity between the submit node and the execute node is normally required. However,
if both execute and access point can connect to the CCB server, if both are authorized by the CCB server, and if it is
possible for the execute node within the private network to connect to the submit node, then it is possible for the submit
node to run jobs on the execute node.

To effect this CCB solution, the execute node’s condor_startd within the private network registers itself with the CCB
server by setting the configuration variable . The submit node’s condor_schedd communicates with the CCB server,
requesting that the execute node’s condor_startd open the TCP connection. The CCB server forwards this request
to the execute node’s condor_startd, which opens the TCP connection. Once the connection is open, bi-directional
communication is enabled.

If the location of the execute and submit nodes is reversed with respect to the private network, the same idea applies:
the submit node within the private network registers itself with a CCB server, such that when a job is running and the
execute node needs to connect back to the submit node (for example, to transfer output files), the execute node can
connect by going through CCB to request a connection.

If both A and B are in separate private networks, then CCB alone cannot provide connectivity. However, if an incom-
ing port or port range can be opened in one of the private networks, then the situation becomes equivalent to one of
the scenarios described above and CCB can provide bi-directional communication given only one-directional connec-
tivity. See Port Usage in HTCondor for information on opening port ranges. Also note that CCB works nicely with
condor_shared_port.

Any condor_collector may be used as a CCB server. There is no requirement that the condor_collector acting as
the CCB server be the same condor_collector that a daemon advertises itself to (as with). However, this is often a
convenient choice.

Example Configuration

This example assumes that there is a pool of machines in a private network that need to be made accessible from
the outside, and that the condor_collector (and therefore CCB server) used by these machines is accessible from the
outside. Accessibility might be achieved by a special firewall rule for the condor_collector port, or by being on a
dual-homed machine in both networks.

The configuration of variable on machines in the private network causes registration with the CCB server as in the
example:

CCB_ADDRESS = $(COLLECTOR_HOST)
PRIVATE_NETWORK_NAME = cs.wisc.edu

The definition of ensures that all communication between nodes within the private network continues to happen as
normal, and without going through the CCB server. The name chosen for should be different from the private network
name chosen for any HTCondor installations that will be communicating with this pool.

5.9. Networking, Port Usage, and CCB 445

HTCondor Manual, Release 23.6.2

Under Unix, and with large HTCondor pools, it is also necessary to give the condor_collector acting as the CCB server a
large enough limit of file descriptors. This may be accomplished with the configuration variable or an equivalent. Each
HTCondor process configured to use CCB with requires one persistent TCP connection to the CCB server. A typical
execute node requires one connection for the , one for the condor_startd, and one for each running job, as represented
by a condor_starter. A typical access point requires one connection for the , one for the condor_schedd, and one for
each running job, as represented by a condor_shadow. If there will be no administrative commands required to be sent
to the from outside of the private network, then CCB may be disabled in the by assigning MASTER.CCB_ADDRESS to
nothing:

MASTER.CCB_ADDRESS =

Completing the count of TCP connections in this example: suppose the pool consists of 500 8-slot execute nodes and
CCB is not disabled in the configuration of the processes. In this case, the count of needed file descriptors plus some
extra for other transient connections to the collector is 500*(1+1+8)=5000. Be generous, and give it twice as many
descriptors as needed by CCB alone:

COLLECTOR.MAX_FILE_DESCRIPTORS = 10000

Security and CCB

The CCB server authorizes all daemons that register themselves with it (using) at the DAEMON authorization level
(these are playing the role of process A in the above description). It authorizes all connection requests (from process
B) at the READ authorization level. As usual, whether process B authorizes process A to do whatever it is trying to
do is up to the security policy for process B; from the HTCondor security model’s point of view, it is as if process A
connected to process B, even though at the network layer, the reverse is true.

Troubleshooting CCB

Errors registering with CCB or requesting connections via CCB are logged at level D_ALWAYS in the debugging log.
These errors may be identified by searching for “CCB” in the log message. Command-line tools require the argument
-debug for this information to be visible. To see details of the CCB protocol add D_FULLDEBUG to the debugging
options for the particular HTCondor subsystem of interest. Or, add D_FULLDEBUG to to get extra debugging from all
HTCondor components.

A daemon that has successfully registered itself with CCB will advertise this fact in its address in its ClassAd. The
ClassAd attribute MyAddress will contain information about its "CCBID".

Scalability and CCB

Any number of CCB servers may be used to serve a pool of HTCondor daemons. For example, half of the pool could
use one CCB server and half could use another. Or for redundancy, all daemons could use both CCB servers and then
CCB connection requests will load-balance across them. Typically, the limit of how many daemons may be registered
with a single CCB server depends on the authentication method used by the condor_collector for DAEMON-level and
READ-level access, and on the amount of memory available to the CCB server. We are not able to provide specific
recommendations at this time, but to give a very rough idea, a server class machine should be able to handle CCB
service plus normal condor_collector service for a pool containing a few thousand slots without much trouble.

446 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

5.9.5 Using TCP to Send Updates to the condor_collector

TCP sockets are reliable, connection-based sockets that guarantee the delivery of any data sent. However, TCP sockets
are fairly expensive to establish, and there is more network overhead involved in sending and receiving messages.

UDP sockets are datagrams, and are not reliable. There is very little overhead in establishing or using a UDP socket,
but there is also no guarantee that the data will be delivered. The lack of guaranteed delivery of UDP will negatively
affect some pools, particularly ones comprised of machines across a wide area network (WAN) or highly-congested
network links, where UDP packets are frequently dropped.

By default, HTCondor daemons will use TCP to send updates to the condor_collector, with the exception of the con-
dor_collector forwarding updates to any condor_collector daemons specified in , where UDP is used. These configu-
ration variables control the protocol used:

When set to False, the HTCondor daemons will use UDP to update the condor_collector, instead of the default
TCP. Defaults to True.

When set to True, the HTCondor collector will use TCP to forward updates to condor_collector daemons spec-
ified by , instead of the default UDP. Defaults to False.

A list of condor_collector daemons which will be updated with TCP instead of UDP, when or is set to False.

When there are sufficient file descriptors, the condor_collector leaves established TCP sockets open, facilitating better
performance. Subsequent updates can reuse an already open socket.

Each HTCondor daemon that sends updates to the condor_collector will have 1 socket open to it. So, in a pool with N
machines, each of them running a , condor_schedd, and condor_startd, the condor_collector would need at least 3*N
file descriptors. If the condor_collector is also acting as a CCB server, it will require an additional file descriptor for
each registered daemon. In the default configuration, the number of file descriptors available to the condor_collector
is 10240. For very large pools, the number of descriptor can be modified with the configuration:

COLLECTOR_MAX_FILE_DESCRIPTORS = 40960

If there are insufficient file descriptors for all of the daemons sending updates to the condor_collector, a warning will
be printed in the condor_collector log file. The string "file descriptor safety level exceeded" identifies
this warning.

5.9.6 Running HTCondor on an IPv6 Network Stack

HTCondor supports using IPv4, IPv6, or both.

To require IPv4, you may set to true; if the machine does not have an interface with an IPv4 address, HTCondor will
not start. Likewise, to require IPv6, you may set to true.

If you set to false, HTCondor will not use IPv4, even if it is available; likewise for and IPv6.

The default setting for and is auto. If HTCondor does not find an interface with an address of the corresponding
protocol, that protocol will not be used. Additionally, if only one of the protocols has a private or public address, the
other protocol will be disabled. For instance, a machine with a private IPv4 address and a loopback IPv6 address will
only use IPv4; there’s no point trying to contact some other machine via IPv6 over a loopback interface.

If both IPv4 and IPv6 networking are enabled, HTCondor runs in mixed mode. In mixed mode, HTCondor daemons
have at least one IPv4 address and at least one IPv6 address. Other daemons and the command-line tools choose

5.9. Networking, Port Usage, and CCB 447

HTCondor Manual, Release 23.6.2

between these addresses based on which protocols are enabled for them; if both are, they will prefer the first address
listed by that daemon.

A daemon may be listening on one, some, or all of its machine’s addresses. Daemons may presently list at most two
addresses, one IPv6 and one IPv4. Each address is the “most public” address of its protocol; by default, the IPv6
address is listed first. HTCondor selects the “most public” address heuristically.

Nonetheless, there are two cases in which HTCondor may not use an IPv6 address when one is available:

• When given a literal IP address, HTCondor will use that IP address.

• When looking up a host name using DNS, HTCondor will use the first address whose protocol is enabled for the
tool or daemon doing the look up.

You may force HTCondor to prefer IPv4 in all three of these situations by setting the macro to true; this is the default.
With set, HTCondor daemons will list their “most public” IPv4 address first; prefer the IPv4 address when choosing
from another’s daemon list; and prefer the IPv4 address when looking up a host name in DNS.

In practice, both an HTCondor pool’s central manager and any submit machines within a mixed mode pool must have
both IPv4 and IPv6 addresses for both IPv4-only and IPv6-only condor_startd daemons to function properly.

IPv6 and Host-Based Security

You may freely intermix IPv6 and IPv4 address literals. You may also specify IPv6 netmasks as a legal IPv6 address
followed by a slash followed by the number of bits in the mask; or as the prefix of a legal IPv6 address followed by
two colons followed by an asterisk. The latter is entirely equivalent to the former, except that it only allows you to
(implicitly) specify mask bits in groups of sixteen. For example, fe8f:1234::/60 and fe8f:1234::* specify the
same network mask.

The HTCondor security subsystem resolves names in the ALLOW and DENY lists and uses all of the resulting IP
addresses. Thus, to allow or deny IPv6 addresses, the names must have IPv6 DNS entries (AAAA records), or must be
enabled.

IPv6 Address Literals

When you specify an IPv6 address and a port number simultaneously, you must separate the IPv6 address from the port
number by placing square brackets around the address. For instance:

COLLECTOR_HOST = [2607:f388:1086:0:21e:68ff:fe0f:6462]:5332

If you do not (or may not) specify a port, do not use the square brackets. For instance:

NETWORK_INTERFACE = 1234:5678::90ab

IPv6 without DNS

When using the configuration variable , IPv6 addresses are turned into host names by taking the IPv6 address, changing
colons to dashes, and appending $(DEFAULT_DOMAIN_NAME). So,

2607:f388:1086:0:21b:24ff:fedf:b520

becomes

2607-f388-1086-0-21b-24ff-fedf-b520.example.com

assuming

448 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

DEFAULT_DOMAIN_NAME=example.com

5.10 Files, Directories and Logs

HTCondor records many types of information in a variety of logs. Administration may require locating and using the
contents of a log to debug issues. Listed here are details of the logs, to aid in identification.

5.10.1 Job and Daemon Logs

job event log
The job event log is an optional, chronological list of events that occur as a job runs. The job event log is written
on the submit machine. The submit description file for the job requests a job event log with the submit command
. The log is created on and remains on the access point. Contents of the log are detailed in the In the Job Event
Log File section. Examples of events are that the job is running, that the job is placed on hold, or that the job
completed.

daemon logs
Each daemon configured to have a log writes events relevant to that daemon. Each event written consists of a
timestamp and message. The name of the log file is set by the value of configuration variable , where is replaced
by the name of the daemon. The log is not permitted to grow without bound; log rotation takes place after
a configurable maximum size or length of time is encountered. This maximum is specified by configuration
variable .

Which events are logged for a particular daemon are determined by the value of configuration variable . The
possible values for categorize events, such that it is possible to control the level and quantity of events written to
the daemon’s log.

Configuration variables that affect daemon logs are

Daemon logs are often investigated to accomplish administrative debugging. can be used to determine the loca-
tion and file name of the daemon log. For example, to display the location of the log for the condor_collector

5.10. Files, Directories and Logs 449

HTCondor Manual, Release 23.6.2

daemon, use

$ condor_config_val COLLECTOR_LOG

job queue log
The job queue log is a transactional representation of the current job queue. If the condor_schedd crashes, the
job queue can be rebuilt using this log. The file name is set by configuration variable , and defaults to $(SPOOL)/
job_queue.log.

Within the log, each transaction is identified with an integer value and followed where appropriate with other
values relevant to the transaction. To reduce the size of the log and remove any transactions that are no longer
relevant, a copy of the log is kept by renaming the log at each time interval defined by configuration variable ,
and then a new log is written with only current and relevant transactions.

Configuration variables that affect the job queue log are

condor_schedd audit log
The optional condor_schedd audit log records user-initiated events that modify the job queue, such as invocations
of , , and . Each event has a time stamp and a message that describes details of the event.

This log exists to help administrators track the activities of pool users.

The file name is set by configuration variable .

Configuration variables that affect the audit log are

condor_shared_port audit log
The optional condor_shared_port audit log records connections made through the . Each record includes the
source address, the socket file name, and the target process’s PID, UID, GID, executable path, and command
line.

This log exists to help administrators track the activities of pool users.

The file name is set by configuration variable .

Configuration variables that affect the audit log are

event log
The event log is an optional, chronological list of events that occur for all jobs and all users. The events logged
are the same as those that would go into a job event log. The file name is set by configuration variable . The log
is created only if this configuration variable is set.

Configuration variables that affect the event log, setting details such as the maximum size to which this log may
grow and details of file rotation and locking are

450 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

accountant log
The accountant log is a transactional representation of the condor_negotiator daemon’s database of accounting
information, which are user priorities. The file name of the accountant log is $(SPOOL)/Accountantnew.log.
Within the log, users are identified by username@uid_domain.

To reduce the size and remove information that is no longer relevant, a copy of the log is made when its size hits
the number of bytes defined by configuration variable , and then a new log is written in a more compact form.

Administrators can change user priorities kept in this log by using the command line tool .

negotiator match log
The negotiator match log is a second daemon log from the condor_negotiator daemon. Events written to this log
are those with debug level of D_MATCH. The file name is set by configuration variable , and defaults to $(LOG)/
MatchLog.

history log
This optional log contains information about all jobs that have been completed. It is written by the condor_schedd
daemon. The file name is $(SPOOL)/history.

Administrators can change view this historical information by using the command line tool .

Configuration variables that affect the history log, setting details such as the maximum size to which this log
may grow are

5.10.2 DAGMan Logs

default node log
A job event log of all node jobs within a single DAG. It is used to enforce the dependencies of the DAG.

The file name is set by configuration variable , and the full path name of this file must be unique while any and all
submitted DAGs and other jobs from the submit host run. The syntax used in the definition of this configuration
variable is different to enable the setting of a unique file name. See the DAGMan Configuration File Entries
section for the complete definition.

the .dagman.out file
A log created or appended to for each DAG submitted with timestamped events and extra information about the
configuration applied to the DAG. The name of this log is formed by appending .dagman.out to the name of
the DAG input file. The file remains after the DAG completes.

5.10. Files, Directories and Logs 451

mailto:username@uid_domain

HTCondor Manual, Release 23.6.2

This log may be helpful in debugging what has happened in the execution of a DAG, as well as help to determine
the final state of the DAG.

Configuration variables that affect this log are

the DAGMan job state log
This optional, machine-readable log enables automated monitoring of DAG. The page Machine-Readable Event
History details this log.

5.10.3 Directories

HTCondor uses a few different directories, some of which are role-specific. Do not use these directories for any other
purpose, and do not share these directories between machines. The directories are listed in here by the name of the
configuration option used to tell HTCondor where they are; you will not normally need to change these.

Directories used by More than One Role

Each HTCondor daemon writes its own log file, and each log file is placed in the directory. You can
configure the name of each daemon’s log by setting , although you should never need to do so. You
can also control the sizes of the log files or how often they rotate; see Daemon Logging Configuration
File Entries for details. If you want to write your logs to a shared filesystem, we recommend including
$(HOSTNAME) in the value of rather than changing the names of each individual log to not collide.
If you set to a shared filesystem, you should set to a local filesystem; see below.

HTCondor uses a small number of lock files to synchronize access to certain files that are shared
between multiple daemons. Because of problems encountered with file locking and network file
systems (particularly NFS), these lock files should be placed on a local filesystem on each machine.
By default, they are placed in the directory.

Directories use by the Submit Role

The directory holds two types of files: system data and (user) job data. The former includes the job
queue and history files. The latter includes:

• the files transferred, if any, when a job which set when_to_transfer_files to
EXIT_OR_EVICT is evicted.

• the input and output files of remotely-submitted jobs.

• the checkpoint files stored by self-checkpointing jobs.

Disk usage therefore varies widely based on the job mix, but since the schedd will abort if it can’t
append to the job queue log, you want to make sure this directory is on a partition which won’t run
out of space.

To help ensure this, you may set to separate the job queue log (system data) from the (user) job
data. This can also be used to increase performance (or reliability) by moving the job queue log to
specialized hardware (an SSD or a a high-redundancy RAID, for example).

452 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Directories use by the Execute Role

The directory is the parent directory of the current working directory for any HTCondor job that
runs on a given execute-role machine. HTCondor copies the executable and input files for a job to its
subdirectory; the job’s standard output and standard error streams are also logged here. Jobs will also
almost always generate their output here as well, so the directory should provide a plenty of space.
should not be placed under /tmp or /var/tmp if possible, as HTCondor loses the ability to make /tmp
and /var/tmp private to the job. While not a requirement, ideally should be on a distinct filesystem,
so that it is impossible for a rogue job to fill up non-HTCondor related partitions.

Usually, the per-job scratch execute directory is created by the startd as a directory under . However,
on Linux machines where HTCondor has root privilege, it can be configured to make an ephemeral,
per-job scratch filesystem backed either by LVM, if it is configured, or a large existing file on the
filesystem.

There are several advantages to this approach. The first is that disk space is more accurately measured
and enforced. HTCondor can get the disk usage by a single system call, instead of traversing what
might be a very deep directory hierarchy. There may also be performance benefits, as this filesystem
never needs to survive a reboot, and is thus mounted with mount options that provide the least amount
of disk consistence in the face of a reboot. Also, when the job exits, all the files in the filesystem can
be removed by simply unmounting and destroying the filesystem, which is much faster than having
condor remove each scratch file in turn.

To enable this, first set to true. Then, if LVM is installed and configured, set to the name of a logical
volume. "condor_lv" might be a good choice. Finally, set to the name of the volume group the
LVM administrator has created for this purpose. "condor_vg" might be a good name. If there is
no LVM on the system, a single large existing file can be used as the backing store, in which case
the knob should be set to the name of the existing large file on disk that HTCondor will use to make
filesystems from.

5.11 Third Party/Delegated file, credential and checkpoint transfer

5.11.1 Enabling the Transfer of Files Specified by a URL

HTCondor permits input files to be directly transferred from a location specified by a URL to the EP; likewise, output
files may be transferred to a location specified by a URL. All transfers (both input and output) are accomplished by
invoking a file transfer plugin: an executable or shell script that handles the task of file transfer.

This URL specification works for most HTCondor job universes, but not grid, local or scheduler. The execute machine
directly retrieves the files from their source. Each URL-transferred file, is separately listed in the job submit description
file with the command transfer_input_files; see Submitting Jobs Without a Shared File System: HTCondor’s File
Transfer Mechanism for details.

For transferring output files, either the entire output sandbox, or a subset of these files, as specified by the submit
description file command transfer_output_files are transferred to the directory specified by the URL. The URL
itself is specified in the separate submit description file command see Submitting Jobs Without a Shared File System:
HTCondor’s File Transfer Mechanism for details. The plug-in is invoked once for each output file to be transferred.

Configuration identifies the availability of the one or more plug-in(s). The plug-ins must be installed and available on
every execute machine that may run a job which might specify a URL, for either direction.

URL transfers are enabled by default in the configuration of execute machines. To Disable URL transfers, set

5.11. Third Party/Delegated file, credential and checkpoint transfer 453

HTCondor Manual, Release 23.6.2

ENABLE_URL_TRANSFERS = FALSE

A comma separated list giving the absolute path and name of all available plug-ins is specified as in the example:

FILETRANSFER_PLUGINS = /opt/condor/plugins/wget-plugin, \
/opt/condor/plugins/hdfs-plugin, \
/opt/condor/plugins/custom-plugin

The condor_starter invokes all listed plug-ins to determine their capabilities. Each may handle one or more protocols
(scheme names). The plug-in’s response to invocation identifies which protocols it can handle. When a URL transfer
is specified by a job, the condor_starter invokes the proper one to do the transfer. If more than one plugin is capable
of handling a particular protocol, then the last one within the list given by is used.

HTCondor assumes that all plug-ins will respond in specific ways. To determine the capabilities of the plug-ins as to
which protocols they handle, the condor_starter daemon invokes each plug-in giving it the command line argument
-classad. In response to invocation with this command line argument, the plug-in must respond with an output of
four ClassAd attributes. The first three are fixed:

MultipleFileSupport = true
PluginVersion = "0.1"
PluginType = "FileTransfer"

The fourth ClassAd attribute is SupportedMethods. This attribute is a string containing a comma separated list of the
protocols that the plug-in handles. So, for example

SupportedMethods = "http,ftp,file"

would identify that the three protocols described by http, ftp, and file are supported. These strings will match the
protocol specification as given within a URL in a command or within a URL in an command in a submit description
file for a job.

When a job specifies a URL transfer, the plug-in is invoked, without the command line argument -classad. It will
instead be given two other command line arguments. For the transfer of input file(s), the first will be the URL of the
file to retrieve and the second will be the absolute path identifying where to place the transferred file. For the transfer
of output file(s), the first will be the absolute path on the local machine of the file to transfer, and the second will be the
URL of the directory and file name at the destination.

The plug-in is expected to do the transfer, exiting with status 0 if the transfer was successful, and a non-zero status if
the transfer was not successful. When not successful, the job is placed on hold, and the job ClassAd attribute will be
set as appropriate for the job. The job ClassAd attribute will be set to the exit status of the plug-in.

As an example of the transfer of a subset of output files, assume that the submit description file contains

output_destination = url://server/some/directory/
transfer_output_files = foo, bar, qux

HTCondor invokes the plug-in that handles the url protocol with input classads describing all the files to be transferred
and their destinations. The directory delimiter (/ on Unix, and \ on Windows) is appended to the destination URL, such
that the input will look like the following:

[LocalFileName = "/path/to/local/copy/of/foo"; Url = "url://server/some/directory//foo"␣
→˓]
[LocalFileName = "/path/to/local/copy/of/bar"; Url = "url://server/some/directory//bar"␣
→˓]
[LocalFileName = "/path/to/local/copy/of/qux"; Url = "url://server/some/directory//qux"␣
→˓]

454 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

HTCondor also expects the plugin to exit with one of the following standardized exit codes:

• 0: Transfer successful

• Any other value: Transfer failed

Custom File Transfer Plugins

This functionality is not limited to a predefined set of protocols or plugins. New ones can be invented. As an invented
example, the zkm transfer type writes random bytes to a file. The plug-in that handles zkm transfers would respond to
invocation with the -classad command line argument with:

MultipleFileSupport = true
PluginVersion = "0.1"
PluginType = "FileTransfer"
SupportedMethods = "zkm"

And, then when a job requested that this plug-in be invoked, for the invented example:

transfer_input_files = zkm://128/r-data

the plug-in will be invoked with a first command line argument of zkm://128/r-data and a second command line
argument giving the full path along with the file name r-data as the location for the plug-in to write 128 bytes of
random data.

By default, HTCondor includes plugins for standard file protocols http://..., https://... and ftp://.... Ad-
ditionally, URL plugins exist for transferring files to/from Box.com accounts (box://...), Google Drive accounts
(gdrive://...), OSDF accounts (osdf://...), Stash accounts (stash://...), and Microsoft OneDrive accounts
(onedrive://...). These plugins require users to have obtained OAuth2 credentials for the relevant service(s) before
they can be used. See Enabling the Fetching and Use of OAuth2 Credentials for how to enable users to fetch OAuth2
credentials.

An example template for a file transfer plugin is available in our source repository under
/src/condor_examples/filetransfer_example_plugin.py. This provides most of the functionality required in the
plugin, except for the transfer logic itself, which is clearly indicated in the comments.

Sending File Transfer Plugins With Your Job

You can also use custom protocols on machines that do not have the necessary plugin installed. This is achieved by
sending the file transfer plugin along with your job, using the transfer_plugins submit attribute described on the
condor_submit man page.

Assume you want to transfer some URLs that use the custommethod:// protocol, and you also have a plugin script
called custommethod_plugin.py that knows how to handle these URLs. Since this plugin is not available on any of
the execution points in your pool, you can send it along with your job by including the following in the submit file:

transfer_plugins = custommethod=custommethod_plugin.py
transfer_output_files = custommethod://path/to/file1, custommethod://path/to/file2

When the job arrives at an exeuction point, it will know to use the plugin script provided to transfer these URLs. If
your custommethod:// protocol is already supported at your execution point, the plugin provided in your submit file
will take precedence.

5.11. Third Party/Delegated file, credential and checkpoint transfer 455

https://github.com/htcondor/htcondor/blob/master/src/condor_examples/filetransfer_example_plugin.py

HTCondor Manual, Release 23.6.2

5.11.2 Enabling the Transfer of Public Input Files over HTTP

Another option for transferring files over HTTP is for users to specify a list of public input files. These are specified in
the submit file as follows:

public_input_files = file1,file2,file3

HTCondor will automatically convert these files into URLs and transfer them over HTTP using plug-ins. The advantage
to this approach is that system administrators can leverage Squid caches or load-balancing infrastructure, resulting in
improved performance. This also allows us to gather statistics about file transfers that were not previously available.

When a user submits a job with public input files, HTCondor generates a hash link for each file in the root directory for
the web server. Each of these links points back to the original file on local disk. Next, HTCondor replaces the names
of the files in the submit job with web links to their hashes. These get sent to the execute node, which downloads the
files using our curl_plugin tool, and are then remapped back to their original names.

In the event of any errors or configuration problems, HTCondor will fall back to a regular (non-HTTP) file transfer.

To enable HTTP public file transfers, a system administrator must perform several steps as described below.

Install a web service for public input files

An HTTP service must be installed and configured on the submit node. Any regular web server software such as Apache
(https://httpd.apache.org/) or nginx (https://nginx.org) will do. The submit node must be running a Linux system.

Configuration knobs for public input files

Several knobs must be set and configured correctly for this functionality to work:

• : Must be set to true (default: false) : The full web address (hostname + port) where your web server is serving
files (default: 127.0.0.1:8080) : Absolute path to the local directory where the web service is serving files from.

• : User security level used to write links to the directory specified by HTTP_PUBLIC_FILES_ROOT_DIR. There
are three valid options for this knob:

1. <user>: Links will be written as user who submitted the job.

2. <condor>: Links will be written as user running condor daemons. By default this is the user condor unless
you have changed this by setting the configuration parameter CONDOR_IDS.

3. <%username%>: Links will be written as the user %username% (ie. httpd, nobody) If using this option,
make sure the directory is writable by this particular user.

The default setting is <condor>.

Additional HTTP infrastructure for public input files

The main advantage of using HTTP for file transfers is that system administrators can use additional infrastructure
(such as Squid caching) to improve file transfer performance. This is outside the scope of the HTCondor configuration
but is still worth mentioning here. When curl_plugin is invoked, it checks the environment variable http_proxy for a
proxy server address; by setting this appropriately on execute nodes, a system can dramatically improve transfer speeds
for commonly used files.

456 Chapter 5. Administrators’ Manual

https://httpd.apache.org/
https://nginx.org

HTCondor Manual, Release 23.6.2

5.11.3 Self-Checkpointing Jobs

As of HTCondor 23.1, self-checkpointing jobs may set checkpoint_destination (see the man page), which causes
HTCondor to store the job’s checkpoint(s) at the specific URL (rather than in the AP’s directory). This can be a
major improvement in scalability. Once the job leaves the queue, HTCondor should delete its stored checkpoints – but
the plug-in for the checkpoint destination wrote the files, so HTCondor doesn’t know how to delete them. You, the
HTCondor administrator, need to tell HTCondor how to delete checkpoints by registering the corresponding clean-up
plug-in.

You may also wish to prevent jobs with checkpoint destinations that HTCondor doesn’t know how to clean up from
entering the queue. To enable this, add use policy:OnlyRegisteredCheckpointDestinations (reference) to
your HTCondor configuration.

Registering a Checkpoint Destination

When transferring files to or from a URL, HTCondor assumes that a plug-in which handles a particular schema (e.g.,
https) can read from and write to any URL starting with https://. However, this may not be true for a clean-up
plug-in (see below). Therefore, when registering a clean-up plug-in, you specify a URL prefix for which that plug-in is
responsible, using a map file syntax. A map file is line-oriented; every line has three columns, separated by whitespace.
The left column must be *; the middle column is a URL prefix; and the right column is the clean-up plug-in to invoke,
plus any required arguments, separated by commas. (Presently, the columns can not contain spaces.) Prefixes are
checked in order of decreasing length, regardless of their order in the file.

The default location of the checkpoint destination mapfile is $(ETC)/checkpoint-destination-mapfile, but it
can be specified by the configuration value .

Checkpoint Destinations with a Filesystem Mounted on the AP

HTCondor ships with a clean-up plugin (cleanup_locally_mounted_checkpoint) that deletes checkpoints from
a filesystem mounted on the AP. This is more useful than it sounds, because the mounted filesystem could the remote
backing store for files available through some other service, perhaps on a different machine. The plug-in needs to be told
how to map from the destination URL to the corresponding location in the filesystem. For instance, if you’ve mounted a
CephFS at /ceph/example-fs and made that origin available via the OSDF at osdf:///example.vo/example-fs,
your map file would include the line

* osdf:///example.vo/example-fs/ cleanup_locally_mounted_checkpoint,-prefix,\
→˓0,-path,/ceph/example-fs

because the cleanup_locally_mounted_checkpoint script that ships with HTCondor needs to know the URL and
path to the example-fs. (One could replace \0 with osdf:///example.vo/example-fs/, but that could lead to
accidentally changing one without changing the other.)

Other Checkpoint Destinations

You may specify a different executable in the right column. Executables which are not specified with an absolute path
are assumed to be in the directory.

The remainder of this section is a detailed explanation of how HTCondor launches such an executable. This may be
useful for administrators who wish to understand the process tree they’re seeing, but it is intended to aid people trying
to write a checkpoint clean-up plug-in for a different kind of checkpoint destination. For the rest of this section, assume
that “a job” means “a job which specified a checkpoint destination.”

When a job exits the queue, the condor_schedd will immediately spawn the checkpoint clean-up process (con-
dor_manifest); that process will call the checkpoint clean-up plug-in once per file in each checkpoint the job wrote.

5.11. Third Party/Delegated file, credential and checkpoint transfer 457

HTCondor Manual, Release 23.6.2

The condor_schedd does not check to see if this process succeeded; that’s a job for . When runs, if a job’s checkpoint
has not been cleaned up, it will also spawn condor_manifest, and do so in exactly the same way the condor_schedd
did. Failures will be reported via the usual channels for . You may specify how long condor_manifest may run with
the configuration macro . The condor_manifest tool removes each MANIFEST file as its contents get cleaned up, so
this timeout need only be long enough to complete a single checkpoint’s worth of clean-up in order to make progress.

(On non-Windows platforms, condor_manifest is spawned as the of the job whose checkpoints are being cleaned-up;
this is both safer and easier, since that user may have useful privileges (for example, filesystems may be mounted
“root-squash”).)

The condor_manifest command understands the “MANIFEST” file format used by HTCondor to record the names and
hashes of files in the checkpoint, and also how to find every MANIFEST file created by the job. For each file in each
MANIFEST, condor_manifest invokes the command specified in the map file, followed by the arguments specified in
the map file, followed by -from <BASE> -file <FILE> -jobad <JOBAD>, where <BASE><FILE> is the complete
URL to which <FILE> was stored and <FILE> is name listed in the MANIFEST. We use this construction because
<BASE> includes path components generated by HTCondor to ensure the uniqueness of checkpoints, which permits the
user to specify the same checkpoint destination for every job in a cluster (or in a DAG, etc). <JOBAD> is the full path
to a copy of the job ad, in case the clean-up plug-in needs to know, for example, which credentials were used to upload
the checkpoint(s).

The plug-in will not be explicitly instructed to remove directories, not even the directories the HTCondor created
to make sure that different checkpoints are written to different places. The plug-in can determine which directories
HTCondor created by comparing the registered prefix to the <BASE> argument described above, if it wishes to remove
them. If <FILE> is a relative path, then that relative path is part of the checkpoint.

5.11.4 Enabling the Fetching and Use of OAuth2 Credentials

HTCondor supports two distinct methods for using OAuth2 credentials. One uses its own native OAuth client and
credential monitor, and one uses a separate Hashicorp Vault server as the OAuth client and secure refresh token storage.
Each method uses a separate credmon implementation and rpm and have their own advantages and disadvantages.

If the native OAuth client is used with a remote token issuer, then each time a new refresh token is needed the user has
to re-authorize it through a web browser. An hour after all jobs of a user are stopped (by default), the refresh tokens
are deleted. The resulting access tokens are only available inside HTCondor jobs.

If on the other hand a Vault server is used as the OAuth client, it stores the refresh token long term (typically about
a month since last use) for multiple use cases. It can be used both by multiple HTCondor access points and by other
client commands that need access tokens. Submit machines keep a medium term vault token (typically about a week)
so at most users have to authorize in their web browser once a week. If Kerberos is also available, new vault tokens
can be obtained automatically without any user intervention. The HTCondor vault credmon also stores a longer lived
vault token for use as long as jobs might run.

Using the native OAuth client

HTCondor can be configured to allow users to request and securely store credentials from most OAuth2 service
providers. Users’ jobs can then request these credentials to be securely transferred to job sandboxes, where they can be
used by file transfer plugins or be accessed by the users’ executable(s).

There are three steps to fully setting up HTCondor to enable users to be able to request credentials from OAuth2
services:

1. Enabling the condor_credd and condor_credmon_oauth daemons,

2. Optionally enabling the companion OAuth2 credmon WSGI application, and

3. Setting up API clients and related configuration.

458 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

First, to enable the condor_credd and condor_credmon_oauth daemons, the easiest way is to install the
condor-credmon-oauth rpm. This installs the condor_credmon_oauth daemon and enables both it and condor_credd
with reasonable defaults via the use feature: oauth configuration template.

Second, a token issuer, an HTTPS-enabled web server running on the submit machine needs to be configured to
execute its wsgi script as the user condor. An example configuration is available at the path found with rpm -ql
condor-credmon-oauth|grep "condor_credmon_oauth\.conf" which you can copy to an apache webserver’s
configuration directory.

Third, for each OAuth2 service that one wishes to configure, an OAuth2 client application should be registered for
each access point on each service’s API console. For example, for Box.com, a client can be registered by logging in
to https://app.box.com/developers/console, creating a new “Custom App”, and selecting “Standard OAuth 2.0 (User
Authentication).”

For each client, store the client ID in the HTCondor configuration under . Store the client secret in a file only readable
by root, then point to it using . For our Box.com example, this might look like:

BOX_CLIENT_ID = ex4mpl3cl13nt1d
BOX_CLIENT_SECRET_FILE = /etc/condor/.secrets/box_client_secret

ls -l /etc/condor/.secrets/box_client_secret
-r-------- 1 root root 33 Jan 1 10:10 /etc/condor/.secrets/box_client_secret
cat /etc/condor/.secrets/box_client_secret
EXAmpL3ClI3NtS3cREt

Each service will need to redirect users back to a known URL on the access point after each user has approved access
to their credentials. For example, Box.com asks for the “OAuth 2.0 Redirect URI.” This should be set to match such
that the user is returned to https://<submit_hostname>/<return_url_suffix>. The return URL suffix should
be composed using the directory where the WSGI application is running, the subdirectory return/, and then the name
of the OAuth2 service. For our Box.com example, if running the WSGI application at the root of the webserver (/),
this should be BOX_RETURN_URL_SUFFIX = /return/box.

The condor_credmon_oauth and its companion WSGI application need to know where to send users to fetch their
initial credentials and where to send API requests to refresh these credentials. Some well known service providers
(condor_config_val -dump TOKEN_URL) already have their authorization and token URLs predefined in the default
HTCondor config. Other service providers will require searching through API documentation to find these URLs, which
then must be added to the HTCondor configuration. For example, if you search the Box.com API documentation, you
should find the following authorization and token URLs, and these URLs could be added them to the HTCondor config
as below:

BOX_AUTHORIZATION_URL = https://account.box.com/api/oauth2/authorize
BOX_TOKEN_URL = https://api.box.com/oauth2/token

After configuring OAuth2 clients, make sure users know which names (<OAuth2ServiceName>s) have been config-
ured so that they know what they should put under use_oauth_services in their job submit files.

5.11. Third Party/Delegated file, credential and checkpoint transfer 459

https://app.box.com/developers/console

HTCondor Manual, Release 23.6.2

Using Vault as the OAuth client

To instead configure HTCondor to use Vault as the OAuth client, install the condor-credmon-vault rpm. Also install
the htgettoken (https://github.com/fermitools/htgettoken) rpm on the access point. Additionally, on the access point
set the configuration option to -a <vault.name> where <vault.name> is the fully qualified domain name of the Vault
machine. users will then be able to select the oauth services that are defined on the Vault server. See the htvault-config
(https://github.com/fermitools/htvault-config) documentation to see how to set up and configure the Vault server.

5.11.5 Automatic Issuance of SciTokens Credentials

The condor-credmon-local rpm package includes a SciTokens “local issuer.” Once enabled, no web browser au-
thorization is needed for users to be issued a SciToken when submitting a job. The claims of the SciToken are entirely
controlled by the HTCondor configuration (as read by the condor_credmon_oauth daemon), users may not specify
custom scopes, audiences, etc. in a locally-issued token.

There are three (or four) steps to setting up the SciTokens local issuer:

1. Generate a SciTokens private/public key pair.

2. Upload the generated public key to a public HTTPS address.

3. Modify the HTCondor configuration to generate valid tokens with desired claims using the generated private key.

4. (Optional) Modify the HTCondor configuration to automatically generate tokens on submit.

Generating a SciTokens key pair

The python3-scitokens package, which is installed as a dependency to the condor-credmon-local package,
contains the command line tool scitokens-admin-create-key which can generate private and public keys for Sci-
Tokens. Start by generating a private key, for example:

$ scitokens-admin-create-key --ec --create-keys --pem-private > my-private-key.pem

In this example, my-private-key.pem contains a private key that can be used to sign tokens. Next, generate a corre-
sponding public key in JWKS format, for example:

$ scitokens-admin-create-key --ec --private-keyfile=my-private-key.pem --jwks-public >␣
→˓my-public-key.jwks

In this example, my-public-key.jwks is a JWKS file (JSON Web Key Set file) that contains the public key informa-
tion needed to validate tokens generated by the private key in my-private-key.pem.

Uploading the public key

The JWKS file containing the public key file needs to be made available at a public HTTPS address so that any services
that consume the SciTokens signed by the private key are able to validate the tokens’ signatures. This “issuer URL”
must have a subdirectory .well-known/ containing a JSON file openid-configuration that contains a single object
with the properties issuer and jwks_uri. These properties should have values that point to the parent (issuer) URL
and the location of the JWKS file, respectively.

For example, suppose that you want the issuer URL to be https://example.com/scitokens, that the web server at
example.com is already serving files on port 443 with a valid certificate issued by a trusted CA, and that you have the
ability to place files at that site. To make this a valid issuer, you could:

1. Create the https://example.com/scitokens/.well-known directory,

460 Chapter 5. Administrators’ Manual

https://github.com/fermitools/htgettoken
https://github.com/fermitools/htvault-config

HTCondor Manual, Release 23.6.2

2. Upload your JWKS file (e.g. my-public.key.jwks) to this .well-known directory, and

3. Create https://example.com/scitokens/.well-known/openid-configuration with the following
contents:

{
"issuer":"https://example.com/scitokens",
"jwks_uri":"https://example.com/scitokens/.well-known/my-public-key.jwks"

}

Configuring HTCondor to generate valid SciTokens

The condor-credmon-local package places 40-oauth-credmon.conf in the $(ETC)/config.d directory, which
contains most of the relevant configuration commented out. To begin, add (or uncomment) the following:

LOCAL_CREDMON_PROVIDER_NAME = scitokens
SEC_PROCESS_SUBMIT_TOKENS = false

Note that this will create token files named scitokens.use, change the value of LOCAL_CREDMON_PROVIDER_NAME
if a different name is desired.

Also make sure that SEC_DEFAULT_ENCRYPTION = REQUIRED is set and working in your configuration as encryption
is required to securely send tokens from the access point to job sandboxes on the execution points.

Next, place your private key file in an appropriate location, make it owned by root, and set file permissions so that it
can only be read by root. For example:

$ sudo mv my-private-key.pem /etc/condor/scitokens-private.pem
$ sudo chown root: /etc/condor/scitokens-private.pem
$ sudo chmod 0400 /etc/condor/scitokens-private.pem

Then point LOCAL_CREDMON_PRIVATE_KEY to the location of the private key file:

LOCAL_CREDMON_PRIVATE_KEY = /etc/condor/scitokens-private.pem

Next, set the audience claim of the locally-issued SciTokens. This claim should encompass the set of services that will
consume these tokens. Version 2.0+ of the SciTokens specification requires that the audience claim be set for tokens to
be valid.

LOCAL_CREDMON_TOKEN_AUDIENCE = https://example.com https://anotherserver.edu

Next, HTCondor must know the “issuer URL” that contains the pointer (.well-known/openid-configuration) to
the public key file and the key id to use when signing tokens. The key id is the value of the “kid” property in the public
key JWKS file. For example, if the “kid” is “abc0”:

LOCAL_CREDMON_ISSUER = https://example.com/scitokens
LOCAL_CREDMON_KEY_ID = abc0

Finally, set the lifetime and scopes of the tokens. A templating system is available for setting scopes
based on the submitter’s system username. Optionally, if LOCAL_CREDMON_AUTHZ_GROUP_TEMPLATE and
LOCAL_CREDMON_AUTHZ_GROUP_MAPFILE are set, a mapfile can be used to append additional scopes based on all
of the values that the submitter’s system username maps to, which is typically useful for group-accessed locations.

LOCAL_CREDMON_TOKEN_LIFETIME = 1200
LOCAL_CREDMON_AUTHZ_TEMPLATE = read:/user/{username} write:/user/{username}

(continues on next page)

5.11. Third Party/Delegated file, credential and checkpoint transfer 461

HTCondor Manual, Release 23.6.2

(continued from previous page)

LOCAL_CREDMON_AUTHZ_GROUP_TEMPLATE = read:/groups/{groupname} write:/groups/{groupname}
LOCAL_CREDMON_AUTHZ_GROUP_MAPFILE = /etc/condor/local_credmon_group_map

For example, suppose that user “bob” should have access to /groups/projectA and /group/projectB and “alice”
should have access to /groups/projectB, the mapfile (/etc/condor/local_credmon_group_map) might look
like:

* bob projectA,projectB
* alice projectB

Configuring HTCondor to automatically create SciTokens for jobs

At this point, the local issuer is configured to be able to generate valid SciTokens. A final, optional step is to install a
job transform that tells HTCondor to automatically create tokens and send them along with every submitted job. The
following example is such a job transform that will do this for all vanilla, container, and local universe jobs:

JOB_TRANSFORM_AddSciToken @=end
[

Requirements = (JobUniverse == 5 || JobUniverse == 12);
Eval_Set_OAuthServicesNeeded = strcat("scitokens ", OAuthServicesNeeded ?: "");

]
@end
JOB_TRANSFORM_NAMES = $(JOB_TRANSFORM_NAMES) AddSciToken

This example also assumes that LOCAL_CREDMON_PROVIDER_NAME = scitokens, replace "scitokens " in the
strcat function to match this name if different.

5.11.6 Using HTCondor with Kerberos and AFS

Configuration variables that allow machines to interact with and use a shared file system are given at the Shared File
System Configuration File Macros section.

Limitations with AFS occur because HTCondor does not currently have a way to authenticate itself to AFS. This is
true of the HTCondor daemons that would like to authenticate as the AFS user condor.

However, there is support for HTCondor to manage kerberos tickets for users’ jobs, such that a running job can access
a valid kerberos ticket to autheticate to kerberified services such as AFS and GSSAPI.

Setting up Kerberos, AFS usage for running jobs

For HTCondor to forward kerberos tokens from the AP to the user’s jobs, just set the feature metaknob “KRB” on the
AP and the EP. That is,

use feature: KRB

in AP and EP config files.

462 Chapter 5. Administrators’ Manual

HTCondor Manual, Release 23.6.2

Detail of how KRB works under the hood

To see the parameters the “use feature:KRB” sets, you can run the command use feature:krb. This feature relies on
a script which we believe works at most sites, but may need to be modified depending on the site-specific kerberos
configuration.

The first step is for to obtain the kerberos uberticket. It will do this by executing an external program specified in the
condor_config file as . This program takes no arguments, and writes its output to stdout. condor_submit will capture
this output and use it as the uberticket. The program must exit with status zero on success and non-zero status on
failure. condor_submit will send the uberticket to the condor_credd daemon, and will block for a configurable amount
of time until the condor_credd signals that everything is ready.

The condor_credd daemon runs on the same machine as the condor_schedd. The condor_master on that machine will
launch the Credential Monitor as root to maintain the user’s credentials on the submit side. There will be one Credential
Monitor per machine that is shared by all users. The Credential Monitor takes a directory as input and monitors all
credentials in that directory. The condor_master will find the program specified in the condor_config as and launch
it as root. The one command line flag to that program is “<directory_to_monitor>”. If the Credential Monitor exits
for any reason, it will be restarted by the condor_master after a short delay. The exit status of the Credenital Monitor
is logged but is otherwise ignored. The Credential Monitor must handle a SIGHUP signal which informs it that the
contents of the directory it is monitoring have changed and it should rescan the directory and perform whatever actions
are necessary

HTCondor will determine the directory in which to store ubertickets using the directory specified in the condor_config
as . The files in this directory will be owned by the user ‘root’ and have permissions 0600 or 0400. All files written into
this directory must be written atomically. Files with the extension .tmp should be created first and then rename(2)ed
into place.

The condor_credd will atomically place credentials into that directory when the user has jobs in the queue that need
to run, and will remove credentials from that directory when a given user has no more jobs. The ubertickets will
be named “<username>.cred”. The Credential Monitor will notice the new uberticket, either periodically or upon
receiving SIGHUP, and obtain a TGT and atomically place it in a krb5 credential cache in the credential directory
under the filename “<username>.cc”. HTCondor will know it has a valid TGT and AFS token for the user when the
file “<user>.cc” is present in that directory. If the file “<username>.cc” is not present, HTCondor will assume that
user does not have valid credentials and it should NOT try to perform any actions on that user’s behalf. The Credential
Monitor does not need to do anything when an uberticket is removed from the credential directory

Once the job is about to start runnning on the execute side, The condor_master on the execute machine will launch the
Credential Monitor as root to maintain the user’s credentials on the execute side. There will be one Credential Monitor
per machine shared by all users. The Credential Monitor takes a directory as input and monitors all credentials in
that directory. The condor_master will find the program specified in the condor_config as and launch it as root. The
one command line flag to that program is “<directory_to_monitor>”. If the Credential Monitor exits for any reason,
it will be restarted by the condor_master after a short delay. The exit status of the Credenital Monitor is logged but
is otherwise ignored. The Credential Monitor must handle a SIGHUP signal which informs it that the contents of the
directory it is monitoring have changed and it sho

The condor_starter will atomically place credentials into that directory when the user has jobs scheduled to run on that
execute machine, and will remove credentials from that directory when a given user has no more jobs for that execute
machine. The uberticket will be named “<username>.cred”. The Credential Monitor will notice the uberticket, either
periodically or upon receiving SIGHUP, and will obtain a TGT and atomically place it in a krb5 credential cache in the
credential directory under the filename “<username>.cc”. HTCondor will know it has a valid TGT and AFS token for
the user when the file “<user>.cc” is present in that directory. If the file “<username>.cc” is not present, HTCondor
will assume that user does not have valid credentials and it should NOT try to perform any actions on that user’s behalf.
The Credential Monitor does not need to do anything when an uberticket is removed from the credential directory.

When HTCondor executes the job, it will copy the user’s credential cache into the job sandbox and set the environment
variable KRB5CCNAME to point to the credential cache. The condor_starter will also monitor the .cc file in the
credential directory and place fresh copies into the job sandbox as needed.

5.11. Third Party/Delegated file, credential and checkpoint transfer 463

HTCondor Manual, Release 23.6.2

464 Chapter 5. Administrators’ Manual

CHAPTER

SIX

CLASSADS

This chapter presents HTCondor’s ClassAd mechanism in three parts.

The first part may be of interest to advanced job submitters as well as HTCondor administrators: it describes how to
write ClassAds and ClassAd expressions, including details of the ClassAd language syntax, evaluation semantics, and
its built-in functions.

The second part is likely only of interest to HTCondor administrators: it describes the generic mechanism provided by
HTCondor to transform ClassAds, as used in the schedd and the job routers, and as available via a command-line tool.

The third part describes how to format ClassAds for printing from command-line tools like condor_q, condor_history,
and condor_status. Advanced users may specify their own custom formats, or administrators may set custom defaults.

Note: A video which completely describes classads and their uses in HTCondor is available at https://www.youtube.
com/watch?v=Y8aHj8q56ik

6.1 HTCondor’s ClassAd Mechanism

ClassAds are a flexible mechanism for representing the characteristics and constraints of machines and jobs in the
HTCondor system. ClassAds are used extensively in the HTCondor system to represent jobs, resources, submitters
and other HTCondor daemons. An understanding of this mechanism is required to harness the full flexibility of the
HTCondor system.

A ClassAd is a set of uniquely named expressions. Each named expression is called an attribute. The following shows
ten attributes, a portion of an example ClassAd.

MyType = "Machine"
TargetType = "Job"
Machine = "froth.cs.wisc.edu"
Arch = "INTEL"
OpSys = "LINUX"
Disk = 35882
Memory = 128
KeyboardIdle = 173
LoadAvg = 0.1000
Requirements = TARGET.Owner=="smith" || LoadAvg<=0.3 && KeyboardIdle>15*60

ClassAd expressions look very much like expressions in C, and are composed of literals and attribute references com-
posed with operators and functions. The difference between ClassAd expressions and C expressions arise from the fact
that ClassAd expressions operate in a much more dynamic environment. For example, an expression from a machine’s

465

https://www.youtube.com/watch?v=Y8aHj8q56ik
https://www.youtube.com/watch?v=Y8aHj8q56ik

HTCondor Manual, Release 23.6.2

ClassAd may refer to an attribute in a job’s ClassAd, such as TARGET.Owner in the above example. The value and
type of the attribute is not known until the expression is evaluated in an environment which pairs a specific job ClassAd
with the machine ClassAd.

ClassAd expressions handle these uncertainties by defining all operators to be total operators, which means that they
have well defined behavior regardless of supplied operands. This functionality is provided through two distinguished
values, UNDEFINED and ERROR, and defining all operators so that they can operate on all possible values in the ClassAd
system. For example, the multiplication operator which usually only operates on numbers, has a well defined behavior
if supplied with values which are not meaningful to multiply. Thus, the expression 10 * “A string” evaluates to the
value ERROR. Most operators are strict with respect to ERROR, which means that they evaluate to ERROR if any of their
operands are ERROR. Similarly, most operators are strict with respect to UNDEFINED.

6.1.1 ClassAds: Old and New

ClassAds have existed for quite some time in two forms: Old and New. Old ClassAds were the original form and were
used in HTCondor until HTCondor version 7.5.0. They were heavily tied to the HTCondor development libraries. New
ClassAds added new features and were designed as a stand-alone library that could be used apart from HTCondor.

In HTCondor version 7.5.1, HTCondor switched to using the New ClassAd library for all use of ClassAds within
HTCondor. The library is placed into a compatibility mode so that HTCondor 7.5.1 is still able to exchange ClassAds
with older versions of HTCondor.

All user interaction with tools (such as) as well as output of tools is still compatible with Old ClassAds. Before HT-
Condor version 7.5.1, New ClassAds were used only in the Job Router. There are some syntax and behavior differences
between Old and New ClassAds, all of which should remain invisible to users of HTCondor.

A complete description of New ClassAds can be found at http://htcondor.org/classad/classad.html, and in the ClassAd
Language Reference Manual found on that web page.

Some of the features of New ClassAds that are not in Old ClassAds are lists, nested ClassAds, time values, and matching
groups of ClassAds. HTCondor has avoided using these features, as using them makes it difficult to interact with older
versions of HTCondor. But, users can start using them if they do not need to interact with versions of HTCondor older
than 7.5.1.

The syntax varies slightly between Old and New ClassAds. Here is an example ClassAd presented in both forms. The
Old form:

Foo = 3
Bar = "ab\"cd\ef"
Moo = Foo =!= Undefined

The New form:

[
Foo = 3;
Bar = "ab\"cd\\ef";
Moo = Foo isnt Undefined;
]

HTCondor will convert to and from Old ClassAd syntax as needed.

466 Chapter 6. ClassAds

http://htcondor.org/classad/classad.html

HTCondor Manual, Release 23.6.2

New ClassAd Attribute References

Expressions often refer to ClassAd attributes. These attribute references work differently in Old ClassAds as compared
with New ClassAds. In New ClassAds, an unscoped reference is looked for only in the local ClassAd. An unscoped
reference is an attribute that does not have a MY. or TARGET. prefix. The local ClassAd may be described by an example.
Matchmaking uses two ClassAds: the job ClassAd and the machine ClassAd. The job ClassAd is evaluated to see if it
is a match for the machine ClassAd. The job ClassAd is the local ClassAd. Therefore, in the Requirements attribute
of the job ClassAd, any attribute without the prefix TARGET. is looked up only in the job ClassAd. With New ClassAd
evaluation, the use of the prefix MY. is eliminated, as an unscoped reference can only refer to the local ClassAd.

The MY. and TARGET. scoping prefixes only apply when evaluating an expression within the context of two ClassAds.
Two examples that exemplify this are matchmaking and machine policy evaluation. When evaluating an expression
within the context of a single ClassAd, MY. and TARGET. are not defined. Using them within the context of a single
ClassAd will result in a value of Undefined. Two examples that exemplify evaluating an expression within the context
of a single ClassAd are during user job policy evaluation, and with the -constraint option to command-line tools.

New ClassAds have no attribute. If needed, use the time() function instead. In order to mimic Old ClassAd semantics
in current versions of HTCondor, all ClassAds have an implicit attribute, with a value of time().

In current versions of HTCondor, New ClassAds will mimic the evaluation behavior of Old ClassAds. No configuration
variables or submit description file contents should need to be changed. To eliminate this behavior and use only the
semantics of New ClassAds, set the configuration variable to True. This permits testing expressions to see if any
adjustment is required, before a future version of HTCondor potentially makes New ClassAds evaluation behavior the
default or the only option.

6.1.2 ClassAd Syntax

ClassAd expressions are formed by composing literals, attribute references and other sub-expressions with operators
and functions.

Composing Literals

Literals in the ClassAd language may be of integer, real, string, undefined or error types. The syntax of these literals is
as follows:

Integer
A sequence of continuous digits (i.e., [0-9]). Additionally, the keywords TRUE and FALSE (case
insensitive) are syntactic representations of the integers 1 and 0 respectively.

Real
Two sequences of continuous digits separated by a period (i.e., [0-9]+.[0-9]+).

String
A double quote character, followed by a list of characters terminated by a double quote character. A
backslash character inside the string causes the following character to be considered as part of the
string, irrespective of what that character is.

Undefined
The keyword UNDEFINED (case insensitive) represents the UNDEFINED value.

Error
The keyword ERROR (case insensitive) represents the ERROR value.

6.1. HTCondor’s ClassAd Mechanism 467

HTCondor Manual, Release 23.6.2

Attributes

Every expression in a ClassAd is named by an attribute name. Together, the (name,expression) pair is called an attribute.
An attribute may be referred to in other expressions through its attribute name.

Attribute names are sequences of alphabetic characters, digits and underscores, and may not begin with a digit. All
characters in the name are significant, but case is not significant. Thus, Memory, memory and MeMoRy all refer to the
same attribute.

An attribute reference consists of the name of the attribute being referenced, and an optional scope resolution prefix.
The prefixes that may be used are MY. and TARGET.. The case used for these prefixes is not significant. The semantics
of supplying a prefix are discussed in ClassAd Evaluation Semantics.

Expression Operators

The operators that may be used in ClassAd expressions are similar to those available in C. The available operators and
their relative precedence is shown in the following example:

- (unary negation) (high precedence)
* / %
+ - (addition, subtraction)
< <= >= >
== != =?= is =!= isnt
&&
|| (low precedence)

The operator with the highest precedence is the unary minus operator. The only operators which are unfamiliar are the
=?=, is, =!= and isnt operators, which are discussed in ClassAd Evaluation Semantics.

Predefined Functions

Any ClassAd expression may utilize predefined functions. Function names are case insensitive. Parameters to functions
and a return value from a function may be typed (as given) or not. Nested or recursive function calls are allowed.

Here are descriptions of each of these predefined functions. The possible types are the same as itemized in ClassAd
Syntax. Where the type may be any of these literal types, it is called out as AnyType. Where the type is Integer, but
only returns the value 1 or 0 (implying True or False), it is called out as Boolean. The format of each function is
given as

ReturnType FunctionName(ParameterType parameter1, ParameterType parameter2, ...)

Optional parameters are given within square brackets.

AnyType eval(AnyType Expr)
Evaluates Expr as a string and then returns the result of evaluating the contents of the string as a ClassAd
expression. This is useful when referring to an attribute such as slotX_State where X, the desired slot number
is an expression, such as SlotID+10. In such a case, if attribute is 5, the value of the attribute slot15_State
can be referenced using the expression eval(strcat("slot", SlotID+10,"_State")). Function strcat()
calls function string() on the second parameter, which evaluates the expression, and then converts the integer

468 Chapter 6. ClassAds

HTCondor Manual, Release 23.6.2

result 15 to the string "15". The concatenated string returned by strcat() is "slot15_State", and this string is
then evaluated.

Note that referring to attributes of a job from within the string passed to eval() in the Requirements or Rank
expressions could cause inaccuracies in HTCondor’s automatic auto-clustering of jobs into equivalent groups for
matchmaking purposes. This is because HTCondor needs to determine which ClassAd attributes are significant
for matchmaking purposes, and indirect references from within the string passed to eval() will not be counted.

String unparse(Attribute attr)
This function looks up the value of the provided attribute and returns the unparsed version as a string. The
attribute’s value is not evaluated. If the attribute’s value is x + 3, then the function would return the string "x
+ 3". If the provided attribute cannot be found, an empty string is returned.

This function returns ERROR if other than exactly 1 argument is given or the argument is not an attribute reference.

String unresolved(Attribute attr)
This function returns the external attribute references and unresolved attribute references of the expression that
is the value of the provided attribute. If the provided attribute cannot be found, then undefined is returned.

For example, in a typical job ClassAd if the Requirements expression has the value OpSys == "LINUX"
&& TARGET.Arch == "ARM" && Cpus >= RequestCpus, then unresolved(Requirements) will return
"Arch,Cpus,OpSys" because those will not be attributes of the job ClassAd.

Boolean unresolved(Attribute attr, String pattern)
This function returns True when at least one of the external or unresolved attribute references of the expression
that is the value of the provided attribute matches the given Perl regular expression pattern. If none of the
references match the pattern, then False is returned. If the provided attribute cannot be found, then undefined
is returned.

For example, in a typical job ClassAd if the Requirements expression has the value OpSys ==
"LINUX" && Arch == "ARM", then unresolved(Requirements, "^OpSys") will return True, and
unresolved(Requirements, "OpSys.+") will return False.

The intended use of this function is to make it easier to apply a submit transform to a job only when the job does
not already reference a certain attribute. For instance

JOB_TRANSFORM_DefPlatform @=end
Apply this transform only when the job requirements does not reference OpSysAndver␣

→˓or OpSysName
REQUIREMENTS ! unresolved(Requirements, "OpSys.+")
Add a clause to the job requirements to match only CentOs7 machines
SET Requirements $(MY.Requirements) && OpSysAndVer == "CentOS7"

@end

AnyType ifThenElse(AnyType IfExpr,AnyType ThenExpr, AnyType ElseExpr)
A conditional expression is described by IfExpr. The following defines return values, when IfExpr evaluates
to

• True. Evaluate and return the value as given by ThenExpr.

• False. Evaluate and return the value as given by ElseExpr.

• UNDEFINED. Return the value UNDEFINED.

• ERROR. Return the value ERROR.

6.1. HTCondor’s ClassAd Mechanism 469

HTCondor Manual, Release 23.6.2

• 0.0. Evaluate, and return the value as given by ElseExpr.

• non-0.0 Real values. Evaluate, and return the value as given by ThenExpr.

Where IfExpr evaluates to give a value of type String, the function returns the value ERROR. The implemen-
tation uses lazy evaluation, so expressions are only evaluated as defined.

This function returns ERROR if other than exactly 3 arguments are given.

Boolean isUndefined(AnyType Expr)
Returns True, if Expr evaluates to UNDEFINED. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isError(AnyType Expr)
Returns True, if Expr evaluates to ERROR. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isString(AnyType Expr)
Returns True, if the evaluation of Expr gives a value of type String. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isInteger(AnyType Expr)
Returns True, if the evaluation of Expr gives a value of type Integer. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isReal(AnyType Expr)
Returns True, if the evaluation of Expr gives a value of type Real. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isList(AnyType Expr)
Returns True, if the evaluation of Expr gives a value of type List. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isClassAd(AnyType Expr)
Returns True, if the evaluation of Expr gives a value of type ClassAd. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isBoolean(AnyType Expr)
Returns True, if the evaluation of Expr gives the integer value 0 or 1. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

470 Chapter 6. ClassAds

HTCondor Manual, Release 23.6.2

Boolean isAbstime(AnyType Expr)
Returns True, if the evaluation of Expr returns an abstime type. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isReltime(AnyType Expr)
Returns True, if the evaluation of Expr returns an relative time type. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean member(AnyType m, ListType l)
Returns error if m does not evalute to a scalar, or l does not evaluate to a list. Otherwise the elements of l are
evaluted in order, and if an element is equal to m in the sense of == the result of the function is True. Otherwise
the function returns false.

Boolean anyCompare(string op, list l, AnyType t)
Returns error if op does not evalute to one of <, <=, ==, >, >=, !-, is or isnt. Returns error if l isn’t a list,
or t isn’t a scalar Otherwise the elements of l are evaluted and compared to t using the corresponding operator
defined by op. If any of the members of l evaluate to true, the result is True. Otherwise the function returns
False.

Boolean allCompare(string op, list l, AnyType t)
Returns error if op does not evalute to one of <, <=, ==, >, >=, !-, is or isnt. Returns error if l isn’t a list, or t
isn’t a scalar Otherwise the elements of l are evaluted and compared to t using the corresponding operator defined
by op. If all of the members of l evaluate to true, the result is True. Otherwise the function returns False.

Boolean identicalMember(AnyType m, ListType l)
Returns error if m does not evalute to a scalar, or l does not evaluate to a list. Otherwise the elements of l are
evaluted in order, and if an element is equal to m in the sense of =?= the result of the function is True. Otherwise
the function returns false.

Integer int(AnyType Expr)
Returns the integer value as defined by Expr. Where the type of the evaluated Expr is Real, the value is truncated
(round towards zero) to an integer. Where the type of the evaluated Expr is String, the string is converted to an
integer using a C-like atoi() function. When this result is not an integer, ERROR is returned. Where the evaluated
Expr is ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Real real(AnyType Expr)
Returns the real value as defined by Expr. Where the type of the evaluated Expr is Integer, the return value
is the converted integer. Where the type of the evaluated Expr is String, the string is converted to a real value
using a C-like atof() function. When this result is not a real, ERROR is returned. Where the evaluated Expr is
ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

6.1. HTCondor’s ClassAd Mechanism 471

HTCondor Manual, Release 23.6.2

String string(AnyType Expr)
Returns the string that results from the evaluation of Expr. Converts a non-string value to a string. Where the
evaluated Expr is ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Bool bool(AnyType Expr)
Returns the boolean that results from the evaluation of Expr. Converts a non-boolean value to a bool. A string
expression that evaluates to the string “true” yields true, and “false” returns

This function returns ERROR if other than exactly 1 argument is given.

AbsTime absTime(AnyType t [, int z])
Creates an AbsTime value corresponding to time t an time-zone offset z. If t is a String, then z must be omitted,
and t is parsed as a specification as follows.

The operand t is parsed as a specification of an instant in time (date and time). This function accepts the canonical
native representation of AbsTime values, but minor variations in format are allowed. The default format is yyyy-
mm-ddThh:mm:sszzzzz where zzzzz is a time zone in the format +hh:mm or -hh:mm

If t and z are both omitted, the result is an AbsTime value representing the time and place where the function
call is evaluated. Otherwise, t is converted to a Real by the function “real”, and treated as a number of seconds
from the epoch, Midnight January 1, 1970 UTC. If z is specified, it is treated as a number of seconds east of
Greenwich. Otherwise, the offset is calculated from t according to the local rules for the place where the function
is evaluated.

RelTime relTime(AnyType t)
If the operand t is a String, it is parsed as a specification of a time interval. This function accepts the canonical
native representation of RelTime values, but minor variations in format are allowed.

Otherwise, t is converted to a Real by the function real, and treated as a number of seconds. The default string
format is [-]days+hh:mm:ss.fff, where leading components and the fraction .fff are omitted if they are zero. In
the default syntax, days is a sequence of digits starting with a non-zero digit, hh, mm, and ss are strings of exactly
two digits (padded on the left with zeros if necessary) with values less than 24, 60, and 60, respectively and fff
is a string of exactly three digits.

Integer floor(AnyType Expr)
Returns the integer that results from the evaluation of Expr, where the type of the evaluated Expr is Integer.
Where the type of the evaluated Expr is not Integer, function real(Expr) is called. Its return value is then
used to return the largest magnitude integer that is not larger than the returned value. Where real(Expr) returns
ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Integer ceiling(AnyType Expr)
Returns the integer that results from the evaluation of Expr, where the type of the evaluated Expr is Integer.
Where the type of the evaluated Expr is not Integer, function real(Expr) is called. Its return value is then
used to return the smallest magnitude integer that is not less than the returned value. Where real(Expr) returns
ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

472 Chapter 6. ClassAds

HTCondor Manual, Release 23.6.2

Integer pow(Integer base, Integer exponent) OR Real pow(Integer base, Integer exponent)
OR Real pow(Real base, Real exponent)

Calculates base raised to the power of exponent. If exponent is an integer value greater than or equal to 0,
and base is an integer, then an integer value is returned. If exponent is an integer value less than 0, or if either
base or exponent is a real, then a real value is returned. An invocation with exponent=0 or exponent=0.0,
for any value of base, including 0 or 0.0, returns the value 1 or 1.0, type appropriate.

Integer quantize(AnyType a, Integer b) OR Real quantize(AnyType a, Real b) OR AnyType
quantize(AnyType a, AnyType list b)

quantize() computes the quotient of a/b, in order to further compute `` ceiling(quotient) * b``. This computes
and returns an integral multiple of b that is at least as large as a. So, when b >= a, the return value will be b.
The return type is the same as that of b, where b is an Integer or Real.

When b is a list, quantize() returns the first value in the list that is greater than or equal to a. When no value
in the list is greater than or equal to a, this computes and returns an integral multiple of the last member in the
list that is at least as large as a.

This function returns ERROR if a or b, or a member of the list that must be considered is not an Integer or Real.

Here are examples:

8 = quantize(3, 8)
4 = quantize(3, 2)
0 = quantize(0, 4)
6.8 = quantize(1.5, 6.8)
7.2 = quantize(6.8, 1.2)
10.2 = quantize(10, 5.1)

4 = quantize(0, {4})
2 = quantize(2, {1, 2, "A"})
3.0 = quantize(3, {1, 2, 0.5})
3.0 = quantize(2.7, {1, 2, 0.5})
ERROR = quantize(3, {1, 2, "A"})

Integer round(AnyType Expr)
Returns the integer that results from the evaluation of Expr, where the type of the evaluated Expr is Integer.
Where the type of the evaluated Expr is not Integer, function real(Expr) is called. Its return value is then
used to return the integer that results from a round-to-nearest rounding method. The nearest integer value to the
return value is returned, except in the case of the value at the exact midpoint between two integer values. In this
case, the even valued integer is returned. Where real(Expr) returns ERROR or UNDEFINED, or the integer value
does not fit into 32 bits, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Integer random([AnyType Expr])
Where the optional argument Expr evaluates to type Integer or type Real (and called x), the return value is the
integer or real r randomly chosen from the interval 0 <= r < x. With no argument, the return value is chosen
with random(1.0). Returns ERROR in all other cases.

This function returns ERROR if greater than 1 argument is given.

Number sum([List l])
The elements of l are evaluated, producing a list l of values. Undefined values are removed. If the resulting l is

6.1. HTCondor’s ClassAd Mechanism 473

HTCondor Manual, Release 23.6.2

composed only of numbers, the result is the sum of the values, as a Real if any value is Real, and as an Integer
otherwise. If the list is empty, the result is 0. If the list has only Undefined values, the result is UNDEFINED. In
other cases, the result is ERROR.

This function returns ERROR if greater than 1 argument is given.

Number avg([List l])
The elements of l are evaluated, producing a list l of values. Undefined values are removed. If the resulting l is
composed only of numbers, the result is the average of the values, as a Real. If the list is empty, the result is 0.
If the list has only Undefined values, the result is UNDEFINED. In other cases, the result is ERROR.

Number min([List l])
The elements of l are evaluated, producing a list l of values. Undefined values are removed. If the resulting l
is composed only of numbers, the result is the minimum of the values, as a Real if any value is Real, and as an
Integer otherwise. If the list is empty, the result is UNDEFINED. In other cases, the result is ERROR.

Number max([List l])
The elements of l are evaluated, producing a list l of values. Undefined values are removed. If the resulting l is
composed only of numbers, the result is the maximum of the values, as a Real if any value is Real, and as an
Integer otherwise. If the list is empty, the result is UNDEFINED. In other cases, the result is ERROR.

String strcat(AnyType Expr1 [, AnyType Expr2 ...])
Returns the string which is the concatenation of all arguments, where all arguments are converted to type String
by function string(Expr). Returns ERROR if any argument evaluates to UNDEFINED or ERROR.

String join(String sep, AnyType Expr1 [, AnyType Expr2 ...]) OR String join(String sep,
List list OR String join(List list

Returns the string which is the concatenation of all arguments after the first one. The first argument is the
separator, and it is inserted between each of the other arguments during concatenation. All arguments which
are not undefined are converted to type String by function string(Expr) before concatenation. Undefined
arguments are skipped. When there are exactly two arguments, If the second argument is a List, all members of
the list are converted to strings and then joined using the separator. When there is only one argument, and the
argument is a List, all members of the list are converted to strings and then concatenated.

Returns ERROR if any argument evaluates to UNDEFINED or ERROR.

For example:

"a, b, c" = join(", ", "a", "b", "c")
"abc" = join(split("a b c"))
"a;b;c" = join(";", split("a b c"))

String substr(String s, Integer offset [, Integer length])
Returns the substring of s, from the position indicated by offset, with (optional) length characters. The first
character within s is at offset 0. If the optional length argument is not present, the substring extends to the
end of the string. If offset is negative, the value (length - offset) is used for the offset. If length is
negative, an initial substring is computed, from the offset to the end of the string. Then, the absolute value
of length characters are deleted from the right end of the initial substring. Further, where characters of this

474 Chapter 6. ClassAds

HTCondor Manual, Release 23.6.2

resulting substring lie outside the original string, the part that lies within the original string is returned. If the
substring lies completely outside of the original string, the null string is returned.

This function returns ERROR if greater than 3 or less than 2 arguments are given.

Integer strcmp(AnyType Expr1, AnyType Expr2)
Both arguments are converted to type String by function string(Expr). The return value is an integer that
will be

• less than 0, if Expr1 is lexicographically less than Expr2

• equal to 0, if Expr1 is lexicographically equal to Expr2

• greater than 0, if Expr1 is lexicographically greater than Expr2

Case is significant in the comparison. Where either argument evaluates to ERROR or UNDEFINED, ERROR is
returned.

This function returns ERROR if other than 2 arguments are given.

Integer stricmp(AnyType Expr1, AnyType Expr2)
This function is the same as strcmp, except that letter case is not significant.

Integer versioncmp(String left, String right)
This function version-compares two strings. It returns an integer

• less than zero if left is an earlier version than right

• zero if the strings are identical

• more than zero if left is a later version than right.

A version comparison is a lexicographic comparison unless the first difference between the two strings occurs
in a string of digits, in which case, sort by the value of that number (assuming that more leading zeroes mean
smaller numbers). Thus 7.x is earlier than 7.y, 7.9 is earlier than 7.10, and the following sequence is in order:
000, 00, 01, 010, 09, 0, 1, 9, 10.

Boolean versionGT(String left, String right) Boolean versionLT(String left, String right)
Boolean versionGE(String left, String right) Boolean versionLE(String left, String right)
Boolean versionEQ(String left, String right)

As versioncmp() (above), but for a specific comparison and returning a boolean. The two letter codes
stand for “Greater Than”, “Less Than”, “Greater than or Equal”, “Less than or Equal”, and “EQual”,
respectively.

Boolean version_in_range(String version, String min, String max)

Equivalent to versionLE(min, version) && versionLE(version, max).

String toUpper(AnyType Expr)
The single argument is converted to type String by function string(Expr). The return value is this string,
with all lower case letters converted to upper case. If the argument evaluates to ERROR or UNDEFINED, ERROR is
returned.

6.1. HTCondor’s ClassAd Mechanism 475

HTCondor Manual, Release 23.6.2

This function returns ERROR if other than exactly 1 argument is given.

String toLower(AnyType Expr)
The single argument is converted to type String by function string(Expr). The return value is this string,
with all upper case letters converted to lower case. If the argument evaluates to ERROR or UNDEFINED, ERROR is
returned.

This function returns ERROR if other than exactly 1 argument is given.

Integer size(AnyType Expr)
If Expr evaluates to a string, return the number of characters in the string. If Expr evaluate to a list, return the
number of elements in the list. If Expr evaluate to a classad, return the number of entries in the ad. Otherwise,
ERROR is returned.

List split(String s [, String tokens])
Returns a list of the substrings of s that have been split up by using any of the characters within string tokens.
If tokens is not specified, then all white space characters are used to delimit the string.

List splitUserName(String Name)
Returns a list of two strings. Where Name includes an @ character, the first string in the list will be the substring
that comes before the @ character, and the second string in the list will be the substring that comes after. Thus, if
Name is "user@domain", then the returned list will be {“user”, “domain”}. If there is no @ character in Name,
then the first string in the list will be Name, and the second string in the list will be the empty string. Thus, if
Name is "username", then the returned list will be {“username”, “”}.

List splitSlotName(String Name)
Returns a list of two strings. Where Name includes an @ character, the first string in the list will be the substring
that comes before the @ character, and the second string in the list will be the substring that comes after. Thus,
if Name is "slot1@machine", then the returned list will be {“slot1”, “machine”}. If there is no @ character in
Name, then the first string in the list will be the empty string, and the second string in the list will be Name, Thus,
if Name is "machinename", then the returned list will be {“”, “machinename”}.

Integer time()
Returns the current coordinated universal time. This is the time, in seconds, since midnight of January 1, 1970.

String formatTime([Integer time] [, String format])
Returns a formatted string that is a representation of time. The argument time is interpreted as coordinated
universal time in seconds, since midnight of January 1, 1970. If not specified, time will default to the current
time.

The argument format is interpreted similarly to the format argument of the ANSI C strftime function. It consists
of arbitrary text plus placeholders for elements of the time. These placeholders are percent signs (%) followed by
a single letter. To have a percent sign in the output, use a double percent sign (%%). If format is not specified,
it defaults to %c.

Because the implementation uses strftime() to implement this, and some versions implement extra, non-ANSI
C options, the exact options available to an implementation may vary. An implementation is only required to
implement the ANSI C options, which are:

476 Chapter 6. ClassAds

HTCondor Manual, Release 23.6.2

%a
abbreviated weekday name

%A
full weekday name

%b
abbreviated month name

%B
full month name

%c
local date and time representation

%d
day of the month (01-31)

%H
hour in the 24-hour clock (0-23)

%I
hour in the 12-hour clock (01-12)

%j
day of the year (001-366)

%m
month (01-12)

%M
minute (00-59)

%p
local equivalent of AM or PM

%S
second (00-59)

%U
week number of the year (Sunday as first day of week) (00-53)

%w
weekday (0-6, Sunday is 0)

%W
week number of the year (Monday as first day of week) (00-53)

%x
local date representation

%X
local time representation

%y
year without century (00-99)

%Y
year with century

%Z
time zone name, if any

6.1. HTCondor’s ClassAd Mechanism 477

HTCondor Manual, Release 23.6.2

String interval(Integer seconds)
Uses seconds to return a string of the form days+hh:mm:ss. This represents an interval of time. Leading values
that are zero are omitted from the string. For example, seconds of 67 becomes “1:07”. A second example,
seconds of 1472523 = 17*24*60*60 + 1*60*60 + 2*60 + 3, results in the string “17+1:02:03”.

String evalInEachContext(Expression expr, List contexts)
This function evaluates its first argument as an expression in the context of each Classad in the second argument
and returns a list that is the result of each evaluation. The first argument should be an expression. If the second
argument does not evaluate to a list of ClassAds, ERROR is returned.

For example:

{true, false} = evalInEachContext(Prio > 2, { [Prio=3;], [Prio=1;] })
{3, 1} = evalInEachContext(Prio, { [Prio=3;], [Prio=1;] })
ERROR = evalInEachContext(Prio > 2, { [Prio=3;], UNDEFINED })
ERROR = evalInEachContext(Prio > 2, UNDEFINED)

String countMatches(Expression expr, List contexts)
This function evaluates its first argument as an expression in the context of each Classad in the second argument
and returns a count of the results that evaluated to True. The first argument should be an expression. The second
argument should be a list of ClassAds or a list of attribute references to classAds, or should evaluate to a list
of ClassAds. This function will always return a integer value when the first argument is defined and the second
argument is not ERROR.

For example:

1 = countMatches(Prio > 2, { [Prio=3;], [Prio=1;] })
1 = countMatches(Prio > 2, { [Prio=3;], UNDEFINED })
0 = countMatches(Prio > 2, UNDEFINED)

AnyType debug(AnyType expression)
This function evaluates its argument, and it returns the result. Thus, it is a no-operation. However, a side-effect
of the function is that information about the evaluation is logged to the evaluating program’s log file, at the
D_FULLDEBUG debug level. This is useful for determining why a given ClassAd expression is evaluating the way
it does. For example, if a condor_startd expression is unexpectedly evaluating to UNDEFINED, then wrapping the
expression in this debug() function will log information about each component of the expression to the log file,
making it easier to understand the expression.

String envV1ToV2(String old_env)
This function converts a set of environment variables from the old HTCondor syntax to the new syntax. The
single argument should evaluate to a string that represents a set of environment variables using the old HTCondor
syntax (usually stored in the job ClassAd attribute). The result is the same set of environment variables using the
new HTCondor syntax (usually stored in the job ClassAd attribute). If the argument evaluates to UNDEFINED,
then the result is also UNDEFINED.

String mergeEnvironment(String env1 [, String env2, ...])
This function merges multiple sets of environment variables into a single set. If multiple arguments include the
same variable, the one that appears last in the argument list is used. Each argument should evaluate to a string
which represents a set of environment variables using the new HTCondor syntax or UNDEFINED, which is treated

478 Chapter 6. ClassAds

HTCondor Manual, Release 23.6.2

like an empty string. The result is a string that represents the merged set of environment variables using the new
HTCondor syntax (suitable for use as the value of the job ClassAd attribute).

For the following functions, a delimiter is represented by a string. Each character within the delimiter string delimits
individual strings within a list of strings that is given by a single string. The default delimiter contains the comma and
space characters. A string within the list is ended (delimited) by one or more characters within the delimiter string.

Integer stringListSize(String list [, String delimiter])
Returns the number of elements in the string list, as delimited by the optional delimiter string. Returns
ERROR if either argument is not a string.

This function returns ERROR if other than 1 or 2 arguments are given.

Integer stringListSum(String list [, String delimiter]) OR Real stringListSum(String
list [, String delimiter])

Sums and returns the sum of all items in the string list, as delimited by the optional delimiter string. If all
items in the list are integers, the return value is also an integer. If any item in the list is a real value (noninteger),
the return value is a real. If any item does not represent an integer or real value, the return value is ERROR.

Real stringListAvg(String list [, String delimiter])
Sums and returns the real-valued average of all items in the string list, as delimited by the optional delimiter
string. If any item does not represent an integer or real value, the return value is ERROR. A list with 0 items (the
empty list) returns the value 0.0.

Integer stringListMin(String list [, String delimiter]) OR Real stringListMin(String
list [, String delimiter])

Finds and returns the minimum value from all items in the string list, as delimited by the optional delimiter
string. If all items in the list are integers, the return value is also an integer. If any item in the list is a real value
(noninteger), the return value is a real. If any item does not represent an integer or real value, the return value is
ERROR. A list with 0 items (the empty list) returns the value UNDEFINED.

Integer stringListMax(String list [, String delimiter]) OR Real stringListMax(String
list [, String delimiter])

Finds and returns the maximum value from all items in the string list, as delimited by the optional delimiter
string. If all items in the list are integers, the return value is also an integer. If any item in the list is a real value
(noninteger), the return value is a real. If any item does not represent an integer or real value, the return value is
ERROR. A list with 0 items (the empty list) returns the value UNDEFINED.

Boolean stringListMember(String x, String list [, String delimiter])
Returns TRUE if item x is in the string list, as delimited by the optional delimiter string. Returns FALSE if
item x is not in the string list. Comparison is done with strcmp(). The return value is ERROR, if any of the
arguments are not strings.

Boolean stringListIMember(String x, String list [, String delimiter])
Same as stringListMember(), but comparison is done with stricmp(), so letter case is not relevant.

6.1. HTCondor’s ClassAd Mechanism 479

HTCondor Manual, Release 23.6.2

Integer stringListsIntersect(String list1, String list2 [, String delimiter])
Returns TRUE if the lists contain any matching elements, and returns FALSE if the lists do not contain any matching
elements. Returns ERROR if either argument is not a string or if an incorrect number of arguments are given.

Boolean stringListSubsetMatch(String list1, String list2 [, String delimiter])
Returns TRUE if all item in the string list1 are also in the string list2, as delimited by the optional delimiter
string. Returns FALSE if list1 has any items that are not in list2. Both lists are treated as sets. Empty items
and duplicate items are ignored. The return value is TRUE if list1 is UNDEFINED or empty and list2 is any
string value. The return value is FALSE if list1 is any string value and list2 is UNDEFINED. The return value
is UNDEFINED if both list1 and list2 are UNDEFINED. The return value is ERROR, if any of the arguments are
not either strings or UNDEFINED

Boolean stringListISubsetMatch(String list1, String list2 [, String delimiter])
Same as stringListSubsetMatch(), but the sets are case-insensitive.

The following six functions utilize regular expressions as defined and supported by the PCRE library. See http://www.
pcre.org for complete documentation of regular expressions.

The options argument to these functions is a string of special characters that modify the use of the regular expressions.
Inclusion of characters other than these as options are ignored.

I or i
Ignore letter case.

M or m
Modifies the interpretation of the caret (^) and dollar sign ($) characters. The caret character matches the start
of a string, as well as after each newline character. The dollar sign character matches before a newline character.

S or s
The period matches any character, including the newline character.

F or f
When doing substitution, return the full target string with substitutions applied. Normally, only the substitute
text is returned.

G or g
When doing substitution, apply the substitution for every matching portion of the target string (that doesn’t overlap
a previous match).

Boolean regexp(String pattern, String target [, String options])
Uses the regular expression given by string pattern to scan through the string target. Returns TRUE when
target matches the regular expression given by pattern. Returns FALSE otherwise. If any argument is not a
string, or if pattern does not describe a valid regular expression, returns ERROR.

Boolean regexpMember(String pattern, List targetStrings [, String options])
Uses the description of a regular expression given by string pattern to scan through a List of string n
targetStrings. Returns TRUE when target matches a regular expression given by pattern. If no strings
match, and at least one item in targetString evaluated to undefined, returns undefined. If any item in targetString
before a match evaluated to neither a string nor undefined, returns ERROR.

String regexps
(String pattern, String target, String substitute [, String options]) Uses the regular

480 Chapter 6. ClassAds

http://www.pcre.org
http://www.pcre.org

HTCondor Manual, Release 23.6.2

expression given by string pattern to scan through the string target. When target matches the regular
expression given by pattern, the string substitute is returned, with backslash expansion performed. If any
argument is not a string, returns ERROR.

String replace
(String pattern, String target, String substitute [, String options]) Uses the regular
expression given by string pattern to scan through the string target. Returns a modified version of target,
where the first substring that matches pattern is replaced by the string substitute, with backslash expansion
performed. Equivalent to regexps() with the f option. If any argument is not a string, returns ERROR.

String replaceall
(String pattern, String target, String substitute [, String options]) Uses the regular
expression given by string pattern to scan through the string target. Returns a modified version of target,
where every substring that matches pattern is replaced by the string substitute, with backslash expansion
performed. Equivalent to regexps() with the fg options. If any argument is not a string, returns ERROR.

Boolean stringList_regexpMember
(String pattern, String list [, String delimiter] [, String options]) Uses the de-
scription of a regular expression given by string pattern to scan through the list of strings in list. Returns
TRUE when one of the strings in list is a regular expression as described by pattern. The optional delimiter
describes how the list is delimited, and string options modifies how the match is performed. Returns FALSE if
pattern does not match any entries in list. The return value is ERROR, if any of the arguments are not strings,
or if pattern is not a valid regular expression.

String userHome(String userName [, String default])
Returns the home directory of the given user as configured on the current system (determined using the getp-
wdnam() call). (Returns default if the default argument is passed and the home directory of the user is not
defined.)

List userMap(String mapSetName, String userName)
Map an input string using the given mapping set. Returns a string containing the list of groups to which the user
belongs separated by commas or undefined if the user was not found in the map file.

String userMap(String mapSetName, String userName, String preferredGroup)
Map an input string using the given mapping set. Returns a string, which is the preferred group if the user is in
that group; otherwise it is the first group to which the user belongs, or undefined if the user belongs to no groups.

String userMap(String mapSetName, String userName, String preferredGroup, String
defaultGroup)

Map an input string using the given mapping set. Returns a string, which is the preferred group if the user is
in that group; the first group to which the user belongs, if any; and the default group if the user belongs to no
groups.

The maps for the userMap() function are defined by the following configuration macros: , and (see the
HTCondor-wide Configuration File Entries section).

6.1. HTCondor’s ClassAd Mechanism 481

HTCondor Manual, Release 23.6.2

6.1.3 ClassAd Evaluation Semantics

The ClassAd mechanism’s primary purpose is for matching entities that supply constraints on candidate matches. The
mechanism is therefore defined to carry out expression evaluations in the context of two ClassAds that are testing each
other for a potential match. For example, the condor_negotiator evaluates the Requirements expressions of machine
and job ClassAds to test if they can be matched. The semantics of evaluating such constraints is defined below.

Evaluating Literals

Literals are self-evaluating, Thus, integer, string, real, undefined and error values evaluate to themselves.

Attribute References

Since the expression evaluation is being carried out in the context of two ClassAds, there is a potential for name space
ambiguities. The following rules define the semantics of attribute references made by ClassAd A that is being evaluated
in a context with another ClassAd B:

1. If the reference is prefixed by a scope resolution prefix,

• If the prefix is MY., the attribute is looked up in ClassAd A. If the named attribute does not exist in A, the
value of the reference is UNDEFINED. Otherwise, the value of the reference is the value of the expression
bound to the attribute name.

• Similarly, if the prefix is TARGET., the attribute is looked up in ClassAd B. If the named attribute does not
exist in B, the value of the reference is UNDEFINED. Otherwise, the value of the reference is the value of the
expression bound to the attribute name.

2. If the reference is not prefixed by a scope resolution prefix,

• If the attribute is defined in A, the value of the reference is the value of the expression bound to the attribute
name in A.

• Otherwise, if the attribute is defined in B, the value of the reference is the value of the expression bound to
the attribute name in B.

• Otherwise, if the attribute is defined in the ClassAd environment, the value from the environment is re-
turned. This is a special environment, to be distinguished from the Unix environment. Currently, the only
attribute of the environment is , which evaluates to the integer value returned by the system call time(2).

• Otherwise, the value of the reference is UNDEFINED.

3. Finally, if the reference refers to an expression that is itself in the process of being evaluated, there is a circular
dependency in the evaluation. The value of the reference is ERROR.

ClassAd Operators

All operators in the ClassAd language are total, and thus have well defined behavior regardless of the supplied operands.
Furthermore, most operators are strict with respect to ERROR and UNDEFINED, and thus evaluate to ERROR or UNDEFINED
if either of their operands have these exceptional values.

• Arithmetic operators:

1. The operators *, /, + and - operate arithmetically only on integers and reals.

482 Chapter 6. ClassAds

HTCondor Manual, Release 23.6.2

2. Arithmetic is carried out in the same type as both operands, and type promotions from integers to reals are
performed if one operand is an integer and the other real.

3. The operators are strict with respect to both UNDEFINED and ERROR.

4. If either operand is not a numerical type, the value of the operation is ERROR.

• Comparison operators:

1. The comparison operators ==, !=, <=, <, >= and > operate on integers, reals and strings.

2. String comparisons are case insensitive for most operators. The only exceptions are the operators =?= and
=!=, which do case sensitive comparisons assuming both sides are strings.

3. Comparisons are carried out in the same type as both operands, and type promotions from integers to reals
are performed if one operand is a real, and the other an integer. Strings may not be converted to any other
type, so comparing a string and an integer or a string and a real results in ERROR.

4. The operators ==, !=, <=, <, >=, and > are strict with respect to both UNDEFINED and ERROR.

5. In addition, the operators =?=, is, =!=, and isnt behave similar to == and !=, but are not strict. Semanti-
cally, the =?= and is test if their operands are “identical,” i.e., have the same type and the same value. For
example, 10 == UNDEFINED and UNDEFINED == UNDEFINED both evaluate to UNDEFINED, but 10 =?=
UNDEFINED and UNDEFINED is UNDEFINED evaluate to FALSE and TRUE respectively. The =!= and isnt
operators test for the “is not identical to” condition.

=?= and is have the same behavior as each other. And isnt and =!= behave the same as each other. The
ClassAd unparser will always use =?= in preference to is and =!= in preference to isnt when printing out
ClassAds.

• Logical operators:

1. The logical operators && and || operate on integers and reals. The zero value of these types are considered
FALSE and non-zero values TRUE.

2. The operators are not strict, and exploit the “don’t care” properties of the operators to squash UNDEFINED
and ERROR values when possible. For example, UNDEFINED && FALSE evaluates to FALSE, but
UNDEFINED || FALSE evaluates to UNDEFINED.

3. Any string operand is equivalent to an ERROR operand for a logical operator. In other words, TRUE &&
"foobar" evaluates to ERROR.

• The Ternary operator:

1. The Ternary operator (expr1 ? expr2 : expr3) operate with expressions. If all three expressions are
given, the operation is strict.

2. However, if the middle expression is missing, eg. expr1 ?: expr3, then, when expr1 is defined, that
defined value is returned. Otherwise, when expr1 evaluated to UNDEFINED, the value of expr3 is evaluated
and returned. This can be a convenient shortcut for writing what would otherwise be a much longer classad
expression.

6.1. HTCondor’s ClassAd Mechanism 483

HTCondor Manual, Release 23.6.2

Expression Examples

The =?= operator is similar to the == operator. It checks if the left hand side operand is identical in both type and value
to the right hand side operand, returning TRUE when they are identical.

Caution: For strings, the comparison is case-insensitive with the == operator and case-sensitive with the =?
= operator. A key point in understanding is that the =?= operator only produces evaluation results of TRUE and
FALSE, where the == operator may produce evaluation results TRUE, FALSE, UNDEFINED, or ERROR.

Table 4.1 presents examples that define the outcome of the == operator. Table 4.2 presents examples that define the
outcome of the =?= operator.

expression evaluated result
(10 == 10) TRUE
(10 == 5) FALSE
(10 == "ABC") ERROR
"ABC" == "abc" TRUE
(10 == UNDEFINED) UNDEFINED
(UNDEFINED == UNDEFINED) UNDEFINED

Table 4.1: Evaluation examples for the == operator

expression evaluated result
(10 =?= 10) TRUE
(10 =?= 5) FALSE
(10 =?= "ABC") FALSE
"ABC" =?= "abc" FALSE
(10 =?= UNDEFINED) FALSE
(UNDEFINED =?= UNDEFINED) TRUE

Table 4.2: Evaluation examples for the =?= operator

The =!= operator is similar to the != operator. It checks if the left hand side operand is not identical in both type and
value to the the right hand side operand, returning FALSE when they are identical.

Caution: For strings, the comparison is case-insensitive with the != operator and case-sensitive with the =!=
operator. A key point in understanding is that the =!= operator only produces evaluation results of TRUE and
FALSE, where the != operator may produce evaluation results TRUE, FALSE, UNDEFINED, or ERROR.

Table 4.3 presents examples that define the outcome of the != operator. Table 4.4 presents examples that define the
outcome of the =!= operator.

expression evaluated result
(10 != 10) FALSE
(10 != 5) TRUE
(10 != "ABC") ERROR
"ABC" != "abc" FALSE
(10 != UNDEFINED) UNDEFINED
(UNDEFINED != UNDEFINED) UNDEFINED

484 Chapter 6. ClassAds

HTCondor Manual, Release 23.6.2

Table 4.3: Evaluation examples for the != operator

expression evaluated result
(10 =!= 10) FALSE
(10 =!= 5) TRUE
(10 =!= "ABC") TRUE
"ABC" =!= "abc" TRUE
(10 =!= UNDEFINED) TRUE
(UNDEFINED =!= UNDEFINED) FALSE

Table 4.4: Evaluation examples for the =!= operator

6.1.4 Old ClassAds in the HTCondor System

The simplicity and flexibility of ClassAds is heavily exploited in the HTCondor system. ClassAds are not only used to
represent machines and jobs in the HTCondor pool, but also other entities that exist in the pool such as submitters of
jobs and master daemons. Since arbitrary expressions may be supplied and evaluated over these ClassAds, users have
a uniform and powerful mechanism to specify constraints over these ClassAds. These constraints can take the form of
Requirements expressions in resource and job ClassAds, or queries over other ClassAds.

Constraints and Preferences

The requirements and rank expressions within the submit description file are the mechanism by which users specify
the constraints and preferences of jobs. For machines, the configuration determines both constraints and preferences
of the machines.

For both machine and job, the rank expression specifies the desirability of the match (where higher numbers mean
better matches). For example, a job ClassAd may contain the following expressions:

Requirements = (Arch == "INTEL") && (OpSys == "LINUX")
Rank = TARGET.Memory + TARGET.Mips

In this case, the job requires a 32-bit Intel processor running a Linux operating system. Among all such computers, the
customer prefers those with large physical memories and high MIPS ratings. Since the Rank is a user-specified metric,
any expression may be used to specify the perceived desirability of the match. The condor_negotiator daemon runs
algorithms to deliver the best resource (as defined by the rank expression), while satisfying other required criteria.

Similarly, the machine may place constraints and preferences on the jobs that it will run by setting the machine’s
configuration. For example,

Friend = Owner == "tannenba" || Owner == "wright"
ResearchGroup = Owner == "jbasney" || Owner == "raman"
Trusted = Owner != "rival" && Owner != "riffraff"
START = Trusted && (ResearchGroup || LoadAvg < 0.3 && KeyboardIdle > 15*60)
RANK = Friend + ResearchGroup*10

The above policy states that the computer will never run jobs owned by users rival and riffraff, while the computer will
always run a job submitted by members of the research group. Furthermore, jobs submitted by friends are preferred to
other foreign jobs, and jobs submitted by the research group are preferred to jobs submitted by friends.

6.1. HTCondor’s ClassAd Mechanism 485

HTCondor Manual, Release 23.6.2

Note: Because of the dynamic nature of ClassAd expressions, there is no a priori notion of an integer-valued expression,
a real-valued expression, etc. However, it is intuitive to think of the Requirements and Rank expressions as integer-
valued and real-valued expressions, respectively. If the actual type of the expression is not of the expected type, the
value is assumed to be zero.

Querying with ClassAd Expressions

The flexibility of this system may also be used when querying ClassAds through the and tools which allow users to
supply ClassAd constraint expressions from the command line.

Needed syntax is different on Unix and Windows platforms, due to the interpretation of characters in forming command-
line arguments. The expression must be a single command-line argument, and the resulting examples differ for the
platforms. For Unix shells, single quote marks are used to delimit a single argument. For a Windows command window,
double quote marks are used to delimit a single argument. Within the argument, Unix escapes the double quote mark
by prepending a backslash to the double quote mark. Windows escapes the double quote mark by prepending another
double quote mark. There may not be spaces in between.

Here are several examples. To find all computers which have had their keyboards idle for more than 60 minutes and
have more than 4000 MB of memory, the desired ClassAd expression is

KeyboardIdle > 60*60 && Memory > 4000

On a Unix platform, the command appears as

$ condor_status -const 'KeyboardIdle > 60*60 && Memory > 4000'

Name OpSys Arch State Activity LoadAv Mem ActvtyTime
100
slot1@altair.cs.wi LINUX X86_64 Owner Idle 0.000 8018 13+00:31:46
slot2@altair.cs.wi LINUX X86_64 Owner Idle 0.000 8018 13+00:31:47
...
...
slot1@athena.stat. LINUX X86_64 Unclaimed Idle 0.000 7946 0+00:25:04
slot2@athena.stat. LINUX X86_64 Unclaimed Idle 0.000 7946 0+00:25:05
...
...

The Windows equivalent command is

> condor_status -const "KeyboardIdle > 60*60 && Memory > 4000"

Here is an example for a Unix platform that utilizes a regular expression ClassAd function to list specific information.
A file contains ClassAd information. is used to inject this information, and constrains the search with an expression
that contains a ClassAd function.

$ cat ad
MyType = "Generic"
FauxType = "DBMS"
Name = "random-test"
Machine = "f05.cs.wisc.edu"
MyAddress = "<128.105.149.105:34000>"
DaemonStartTime = 1153192799
UpdateSequenceNumber = 1

(continues on next page)

486 Chapter 6. ClassAds

HTCondor Manual, Release 23.6.2

(continued from previous page)

$ condor_advertise UPDATE_AD_GENERIC ad

$ condor_status -any -constraint 'FauxType=="DBMS" && regexp("random.*", Name, "i")'

MyType TargetType Name

Generic None random-test

The ClassAd expression describing a machine that advertises a Windows operating system:

OpSys == "WINDOWS"

Here are three equivalent ways on a Unix platform to list all machines advertising a Windows operating system. Spaces
appear in these examples to show where they are permitted.

$ condor_status -constraint ' OpSys == "WINDOWS" '

$ condor_status -constraint OpSys==\"WINDOWS\"

$ condor_status -constraint "OpSys==\"WINDOWS\""

The equivalent command on a Windows platform to list all machines advertising a Windows operating system must
delimit the single argument with double quote marks, and then escape the needed double quote marks that identify the
string within the expression. Spaces appear in this example where they are permitted.

> condor_status -constraint " OpSys == ""WINDOWS"" "

6.1.5 Extending ClassAds with User-written Functions

The ClassAd language provides a rich set of functions. It is possible to add new functions to the ClassAd language
without recompiling the HTCondor system or the ClassAd library. This requires implementing the new function in the
C++ programming language, compiling the code into a shared library, and telling HTCondor where in the file system
the shared library lives.

While the details of the ClassAd implementation are beyond the scope of this document, the ClassAd source distribu-
tion ships with an example source file that extends ClassAds by adding two new functions, named todays_date() and
double(). This can be used as a model for users to implement their own functions. To deploy this example extension,
follow the following steps on Linux:

• Download the ClassAd source distribution from http://www.cs.wisc.edu/condor/classad.

• Unpack the tarball.

• Inspect the source file shared.cpp. This one file contains the whole extension.

• Build shared.cpp into a shared library. On Linux, the command line to do so is

$ g++ -DWANT_CLASSAD_NAMESPACE -I. -shared -o shared.so \
-Wl,-soname,shared.so -o shared.so -fPIC shared.cpp

• Copy the file shared.so to a location that all of the HTCondor tools and daemons can read.

$ cp shared.so `condor_config_val LIBEXEC`

6.1. HTCondor’s ClassAd Mechanism 487

http://www.cs.wisc.edu/condor/classad

HTCondor Manual, Release 23.6.2

• Tell HTCondor to load the shared library into all tools and daemons, by setting the configuration variable to the
full name of the shared library. In this case,

CLASSAD_USER_LIBS = $(LIBEXEC)/shared.so

• Restart HTCondor.

• Test the new functions by running

$ condor_status -format "%s\n" todays_date()

6.2 ClassAd Transforms

HTCondor has a general purpose language for transforming ClassAds, this language is used by the condor_schedd for
submit transforms, and as of version 8.9.7 by the job router for routes and pre and post route transforms.

There is also a stand alone tool condor_transform_ads than can read ClassAds from a file or pipe, transform them,
and write the resulting ClassAds to a file or pipe.

The transform language is build on the same basic macro expansion engine use by HTCondor configuration and by and
shares many of the same features such as $() macro expansion and if statements.

This transform language is a superset of an earlier transform language based on New ClassAds. The condor_schedd
and condor_job_router will still allow the earlier transform language, and they will automatically convert configuration
from earlier New ClassAds style transforms to the to the native transform language when they read the configuration.

6.2.1 General Concepts

Transforms consists of a sequence of lines containing key=value pairs or transform commands such as SET. Transform
commands execute in order from top to bottom and may make use of macro values set by earlier statements using
$(var) macro substitution. Unlike configuration files, Transform commands will use the value of $(var) defined at
the time, rather than the last value defined in the configuration file.

If/else statements and macro functions such as $INT(var) can be used in transforms, but include may not be used.

A macro expansion of the form $(MY.<attr>) will expand as the value of the attribute <attr> of the ClassAd that is
being transformed. Expansion will expand simple string values without quotes but will not evaluate expressions. Use
$STRING(MY.<attr>) or $INT(MY.<attr>) if you need to evaluate the ClassAd attribute before expanding it.

The existence of an attribute in the ClassAd being transformed can be tested by using if defined MY.<attr>

In the definitions below.

<attr> must be a valid ClassAd attribute name

<newattr> must be a valid ClassAd attribute name

<expr>must be a valid ClassAd expression after $()macro expansion. Don’t forget to quote string values!

<var> must be a valid macro name

<regex> is a regular expression

<attrpat> is a regular expression substitution pattern, which may include capture groups \0, \1, etc.

488 Chapter 6. ClassAds

HTCondor Manual, Release 23.6.2

6.2.2 Transform Commands

<var> = <value>
Sets the temporary macro variable <var> to <value>. This is the same sort of macro assignment used in
configuration and submit files, the value is everything after the = until then end of the line with leading and
trailing whitespace removed. Variables set in this way do not directly affect the resulting transformed ClassAd,
but they can be used later in the transform by $(var) macro expansion. In the condor_job_router some macro
variable names will affect the way the router behaves. For a list of macro variable names have special meaning
to the condor_job_router see the Routing Table Entry Commands and Macro values section.

REQUIREMENTS <expr>
Apply the transform only if the expression given by <expr> evaluates to true when evaluated against the untrans-
formed ClassAd.

SET <attr> <expr>
Sets the ClassAd value of <attr> to <expr> in the ClassAd being transformed.

DEFAULT <attr> <expr>
Sets the ClassAd value of <attr> to <expr> in the ClassAd being transformed if that ClassAd does not currently
have <attr> or if it is currently set to undefined. This is equivalent to

if ! defined MY.<Attr>
SET <Attr> <value>

endif

EVALSET <attr> <expr>
Evaluate <expr> and set the ClassAd value of <attr> to the result of the evaluation. Use this when the Clas-
sAd value of <attr> must be a simple value rather than expression, or when you need to capture the result of
evaluating at transform time. Note that it is usually better to use SET with macro expansions when you want to
modify a ClassAd attribute as part of a transform.

EVALMACRO <var> <expr>
Evaluate <expr> and set the temporary macro variable <var> to the result of evaluation. $(var) can the be
used in later transform statements such as SET or if.

COPY <attr> <newattr>
Copies the ClassAd value of <attr> to a new ClassAd attribute <newattr>. This will result in two attributes
that have the same value at this step of the transform.

COPY /<regex>/ <attrpat>
Copies all ClassAd attributes that have names matching the regular expression <regex> to new attribute names.
The new attribute names are defined by <attrpat> which may have regular expression capture groups to sub-
stitute portions of the original attribute name. \0 Is the entire attribute name, and \1 is the first capture, etc. For
example

copy all attributes whose names begin with Resource to new attribute with names␣
→˓that begin with OriginalResource
COPY /Resource(.+)/ OriginalResource\1

RENAME <attr> <newattr>
Renames the attribute <attr> to a new attribute name <newattr>. This is the equivalent of a COPY statement
followed by a DELETE statement.

RENAME /<regex>/ <attrpat>
Renames all ClassAd attributes that match the regular expression <regex> to new attribute names given by the
substitution pattern <attrpat>.

6.2. ClassAd Transforms 489

HTCondor Manual, Release 23.6.2

DELETE <attr>
Deletes the ClassAd attribute <attr> from the transformed ClassAd.

DELETE /<regex>/
Deletes all ClassAd attributes whose names match the regular expression <regex> from the transformed Clas-
sAd.

6.3 Print Formats

Many HTCondor tools that work with ClassAds use a formatting engine called the ClassAd pretty printer. Tools that
have a -format or -autoformat argument use those arguments to configure the ClassAd pretty printer, and then use the
pretty printer to produce output from ClassAds.

The , and tools, as well as others that have a -print-format or -pr argument can configure the ClassAd pretty using a
file. The syntax of this file is described below.

Not all tools support all of the print format options.

6.3.1 Syntax

A print format file consists of a heading line and zero or more formatting lines followed by optional constraint, sort and
summary lines. These sections of the format file begin with the keywords SELECT, WHERE, GROUP, or SUMMARY which
must be in that order if they appear. These keywords must be all uppercase and must be the first word on the line.

A line beginning with # is treated as a comment

A custom print format file must begin with the SELECT keyword. The SELECT keyword can be followed by options
to qualify the type of query, the global formatting options and whether or not there will be column headings. The
prototype for the SELECT line is:

SELECT [FROM AUTOCLUSTER | UNIQUE] [BARE | NOTITLE | NOHEADER | NOSUMMARY] [LABEL [SEP-
ARATOR <string>]] [<separators>]

The first two optional keywords indicate the query type. These options work only in .

FROM AUTOCLUSTER
Used with condor_q to query the schedd’s default autocluster set.

UNIQUE
Used with condor_q to ask the condor_schedd to count unique values. This option tells the schedd to building a
new FROM AUTOCLUSTER set using the given attributes

The next set of optional keywords enable or disable various things that are normally printed before or after the classad
output.

NOTITLE
Disables the title on tools that have a title, like the Schedd name from .

NOHEADER
Disables column headers.

NOSUMMARY
Disables the summary output such as the totals by job stats at the bottom of normal output.

BARE
Shorthand for NOTITLE NOHEADER NOSUMMARY

490 Chapter 6. ClassAds

HTCondor Manual, Release 23.6.2

In the descriptions below <string> is text. If the text starts with a single quote, then it continues to the next single
quote. If it starts with a double quote, it continues to the next double quote. If it starts with neither, then it continues
until the next space or tab. a n, r or t inside the string will be converted into a newline, carriage return or tab character
respectively.

LABEL [SEPARATOR <string>]
Use item labels rather than column headers. The separator between the label and the value will be = unless the
SEPARATOR is used to define a different one.

RECORDPREFIX <string>
The value of <string> will be printed before each ClassAd. The default is to print nothing.

RECORDSUFFIX <string>
The value of <string> will be printed after each ClassAd. The default is to print the newline character.

FIELDPREFIX <string>
The value of <string> will be printed before each attribute or expression. The default is to print nothing.

FIELDSUFFIX <string>
The value of <string> will be printed after each attribute or expression. The default is to print a single space.

After the SELECT line, there should be zero or more formatting lines one line for each field in the output. Each formatting
line is a ClassAd attribute or expression followed by zero or more keywords that control formatting, the first valid
keyword ends the expression. Keywords are all uppercase and space delimited. The prototype for each formatting line
is:

<expr> [AS <label>] [PRINTF <format-string> | PRINTAS <function-name> [ALWAYS] | WIDTH [AUTO | [-
]<INT>]] [FIT | TRUNCATE] [LEFT | RIGHT] [NOPREFIX] [NOSUFFIX]

AS <string>
defines the label or column heading. if the formatting line has no AS keyword, then <expr> will be used as the
label or column heading

PRINTF <string>
<string> should be a c++ printf format string, the same as used by the -format command line arguments for
tools

PRINTAS <function>
Format using the built-in function. The Valid function names for PRINTAS are defined by the code and differ
between the various tools, refer to the table at the end of this page.

WIDTH [-]<int>
Align the data to the given width, negative values left align.

WIDTH AUTO
Use a width sized to fit the largest item.

FIT
Adjust column width to fit the data, normally used with WIDTH AUTO

TRUNCATE
If the data is larger than the given width, truncate it

LEFT
Left align the data to the given width

RIGHT
Right align the data to the given width

NOPREFIX
Do not include the FIELDPREFIX string for this field

6.3. Print Formats 491

HTCondor Manual, Release 23.6.2

NOSUFFIX
Do not include the FIELDSUFFIX string for this field

OR <char>[<char>]
if the field data is undefined, print <char>, if <char> is doubled, fill the column with <char>. Allowed values
for <char> are space or one of the following ?*.-_#0

After the field formatting lines, there may be sections in the file that define a query constraint, sorting and grouping
and the summary line. These sections can be multiple lines, but must begin with a keyword.

WHERE <constraint-expr>
Display only ClassAds where the expression <constraint-expr> evaluates to true.

GROUP BY <sort-expr> [ASCENDING | DESCENDING]
Sort the ClassAds by evaluating <sort-expr>. If multiple sort keys are desired, the GROUP BY line can be
followed by lines containing additional expressions, for example

GROUP BY
Owner
ClusterId DESCENDING

SUMMARY [STANDARD | NONE]
Enable or disable the summary totals. The summary can also be disabled using NOSUMMARY or BARE keywords
on the SELECT line.

6.3.2 Examples

This print format file produces the default -nobatch output of

queue.cpf
produce the standard output of condor_q
SELECT

ClusterId AS " ID" NOSUFFIX WIDTH AUTO
ProcId AS " " NOPREFIX PRINTF ".%-3d"
Owner AS "OWNER" WIDTH -14 PRINTAS OWNER
QDate AS " SUBMITTED" WIDTH 11 PRINTAS QDATE
RemoteUserCpu AS " RUN_TIME" WIDTH 12 PRINTAS CPU_TIME
JobStatus AS ST PRINTAS JOB_STATUS
JobPrio AS PRI
ImageSize AS SIZE WIDTH 6 PRINTAS MEMORY_USAGE
Cmd AS CMD PRINTAS JOB_DESCRIPTION

SUMMARY STANDARD

This print format file produces only totals

q_totals.cpf
show only totals with condor_q
SELECT NOHEADER NOTITLE
SUMMARY STANDARD

This print format file shows typical fields of the Schedd autoclusters.

negotiator_autocluster.cpf
SELECT FROM AUTOCLUSTER

Owner AS OWNER WIDTH -14 PRINTAS OWNER
(continues on next page)

492 Chapter 6. ClassAds

HTCondor Manual, Release 23.6.2

(continued from previous page)

JobCount AS COUNT PRINTF %5d
AutoClusterId AS " ID" WIDTH 3
JobUniverse AS UNI PRINTF %3d
RequestMemory AS REQ_MEMORY WIDTH 10 PRINTAS READABLE_MB
RequestDisk AS REQUEST_DISK WIDTH 12 PRINTAS READABLE_KB
JobIDs AS JOBIDS

GROUP BY Owner

This print format file shows the use of SELECT UNIQUE

count_jobs_by_owner.cpf
aggregate by the given attributes, return unique values plus count and jobids.
This query builds an autocluster set in the schedd on the fly using all of the␣
→˓displayed attributes
And all of the GROUP BY attributes (except JobCount and JobIds)
SELECT UNIQUE NOSUMMARY

Owner AS OWNER WIDTH -20
JobUniverse AS "UNIVERSE " PRINTAS JOB_UNIVERSE
JobStatus AS STATUS PRINTAS JOB_STATUS_RAW
RequestCpus AS CPUS
RequestMemory AS MEMORY
JobCount AS COUNT PRINTF %5d
JobIDs

GROUP BY
Owner

6.3.3 PRINTAS functions for condor_q

Some of the tools that interpret a print format file have specialized formatting functions for certain ClassAd attributes.
These are selected by using the PRINTAS keyword followed by the function name. Available function names depend
on the tool. Some functions implicitly use the value of certain attributes, often multiple attributes. The list for is.

BATCH_NAME
Used for the BATCH_NAME column of the default output of . This function constructs a batch name string using
value of the attribute if it exists, otherwise it constructs a batch name from , , , and DAGNodeName.

BUFFER_IO_MISC
Used for the MISC column of the -io output of . This function constructs an IO string that varies by . It refers to
, and .

CPU_TIME
Used for the RUN_TIME or CPU_TIME column of the default output. The result of the function depends on whether
the -currentrun argument is used with . If is undefined, this function returns undefined. It returns the value
of if it is non-zero. Otherwise it reports the amount of time that the condor_shadow has been alive. If the
-currentrun argument is used with , this will be the shadow lifetime for the current run only. If it is not, then
the result is the sum of and the current shadow lifetime. The result is then formatted using the %T format.

CPU_UTIL
Used for the CPU_UTIL column of the default output. This function returns divided by if is non-zero. It returns
undefined if is undefined, zero or negative. The result is then formatted using the %.1f format.

DAG_OWNER
Used for the column of default output. This function returns the value of the attribute when the -dag option is

6.3. Print Formats 493

HTCondor Manual, Release 23.6.2

not passed to . When the -dag option is passed, it returns the value of DAGNodeName for jobs that have a defined,
and for all other jobs.

GRID_JOB_ID
Used for the GRID_JOB_ID column of the -grid output of . This function extracts and returns the job id from
the GridJobId attribute.

GRID_RESOURCE
Used for the GRID->MANAGER HOST column of the -grid output of . This function extracts and returns the
manager and host from the attribute. For ec2 jobs the host will be the value of attribute.

GRID_STATUS
Used for the STATUS column of the -grid output of . This function renders the status of grid jobs from the
attribute. If the attribute has a string value it is reported unmodified. Otherwise, if is an integer, it is presumed
to be a condor job status and converted to a string.

JOB_DESCRIPTION
Used for the column of the default output of . This function renders a job description from the
MATCH_EXP_JobDescription, or and or job attributes.

JOB_FACTORY_MODE
Used for the MODE column of the -factory output of . This function renders an integer value into a string value
using the conversion for JobMaterializePaused modes.

JOB_ID
Used for the ID column of the default output of . This function renders a string job id from the and attributes of
the job.

JOB_STATUS
Used for the ST column of the default output of . This function renders a one or two character job status from
the , , , and attributes of the job.

JOB_STATUS_RAW
This function converts an integer to a string using the conversion for values.

JOB_UNIVERSE
Used for the UNIVERSE column of the -idle and -autocluster output of . This function converts an integer
to a string using the conversion for values. Values that are outside the range of valid universes are rendered as
Unknown.

MEMORY_USAGE
Used for the SIZE column of the default output of . This function renders a memory usage value in megabytes
the or attributes of the job.

Used for the column of the default output of . This function renders an Owner string from the attribute of the
job. Prior to 8.9.9, this function would modify the result based on the attribute of the job, but it no longer does
so.

Used for the SUBMITTED column of the default output of . This function converts a Unix timestamp to a string
date and time with 2 digit month, day, hour and minute values.

READABLE_BYTES
Used for the INPUT and OUTPUT columns of the -io output of This function renders a numeric byte value into a
string with an appropriate B, KB, MB, GB, or TB suffix.

READABLE_KB
This function renders a numeric Kibibyte value into a string with an appropriate B, KB, MB, GB, or TB suffix.
Use this for Job attributes that are valued in Kb, such as .

494 Chapter 6. ClassAds

HTCondor Manual, Release 23.6.2

READABLE_MB
This function renders a numeric Mibibyte value into a string with an appropriate B, KB, MB, GB, or TB suffix.
Use this for Job attributes that are valued in Mb, such as .

REMOTE_HOST
Used for the HOST(S) column of the -run output of . This function extracts the host name from a job attribute
appropriate to the value of the job. For Local and Scheduler universe jobs, the Schedd that was queried is
used using a variable internal to . For grid universe jobs, the or attributes are used. for all other universes the
RemoteHost job attribute is used.

STDU_GOODPUT
Used for the GOODPUT column of the -goodput output of . This function renders a floating point goodput time
in seconds from the , , ShadowBDay, LastCkptTime, and attributes.

STDU_MPBS
Used for the Mb/s column of the -goodput output of . This function renders a Megabytes per second good-
put value from the BytesSent, BytesRecvd job attributes and total job execution time as calculated by the
STDU_GOODPUT output.

6.3.4 PRINTAS functions for condor_status

ACTIVITY_CODE
Render a two character machine state and activity code from the and attributes of the machine ad. The letter
codes for are:

~ None
O Owner
U Unclaimed
M Matched
C Claimed
P Preempting
S Shutdown
X Delete
F Backfill
D Drained
<undefined>
? <error>

The letter codes for are:

0 None
i Idle
b Busy
r Retiring
v Vacating
s Suspended
b Benchmarking
k Killing
<undefined>
? <error>

For example if is Claimed and is Idle, then this function returns Ci.

6.3. Print Formats 495

HTCondor Manual, Release 23.6.2

ACTIVITY_TIME
Used for the ActvtyTime column of the default output of . The function renders the given Unix timestamp as
an elapsed time since the MyCurrentTime or LastHeardFrom attribute.

CONDOR_PLATFORM
Used for the optional Platform column of the -master output of . This function extracts the Arch and Opsys
information from the given string.

CONDOR_VERSION
Used for the Version column of the -master output of . This function extract the version number and build id
from the given string.

DATE
This function converts a Unix timestamp to a string date and time with 2 digit month, day, hour and minute
values.

DUE_DATE
This function converts an elapsed time to a Unix timestamp by adding the LastHeardFrom attribute to it, and
then converts it to a string date and time with 2 digit month, day, hour and minute values.

ELAPSED_TIME
Used in multiple places, for instance the Uptime column of the -master output of . This function converts a
Unix timestamp to an elapsed time by subtracting it from the LastHeardFrom attribute, then formats it as a
human readable elapsed time.

LOAD_AVG
Used for the LoadAv column of the default output of Render the given floating point value using %.3f format.

PLATFORM
Used for the Platform column of the -compact output of . Render a compact platform name from the value of
the , , and attributes.

READABLE_KB
This function renders a numeric Kibibyte value into a string with an appropriate B, KB, MB, GB, or TB suffix.
Use this for Job attributes that are valued in Kb, such as .

READABLE_MB
This function renders a numeric Mibibyte value into a string with an appropriate B, KB, MB, GB, or TB suffix.
Use this for Job attributes that are valued in Mb, such as .

STRINGS_FROM_LIST
Used for the Offline Universes column of the -offline output of . This function converts a ClassAd list
into a string containing a comma separated list of items.

TIME
Used for the KbdIdle column of the default output of . This function converts a numeric time in seconds into a
string time including number of days, hours, minutes and seconds.

UNIQUE
Used for the Users column of the compact -claimed output of This function converts a classad list into a string
containing a comma separate list of unique items.

496 Chapter 6. ClassAds

CHAPTER

SEVEN

DAGMAN WORKFLOWS

DAGMan is a HTCondor tool that allows multiple jobs to be organized in workflows, represented as a directed acyclic
graph (DAG). A DAGMan workflow automatically submits jobs in a particular order, such that certain jobs need to
complete before others start running. This allows the outputs of some jobs to be used as inputs for others, and makes
it easy to replicate a workflow multiple times in the future.

Example DAG Visualized

A simple example is a workflow that requires output from job A to become input for job B. This can be described as a
DAGMan workflow as follows:

Example DAGMan Workflow
JOB A produce_data.sub
JOB B process_data.sub

PARENT A CHILD B

Note: A video introducing the DAGman tool for beginners is available at https://www.youtube.com/watch?
v=1MvVHxRs7iU and another video, for intermediate users, is available at https://www.youtube.com/watch?v=
C2RkdxE_ph0 . A link to the slides is available in the videos’ description.

7.1 DAGMan Introduction

7.1.1 Describing Workflows with DAGMan

A DAGMan workflow is described in a DAG input file. The input file specifies the nodes of the DAG as well as the
dependencies that order the DAG.

A node within a DAG represents a unit of work. It contains the following:

• Job: An HTCondor job, defined in a submit file.

• PRE script (optional): A script that runs before the job starts. Typically used to verify that all inputs are valid.

497

https://www.youtube.com/watch?v=1MvVHxRs7iU
https://www.youtube.com/watch?v=1MvVHxRs7iU
https://www.youtube.com/watch?v=C2RkdxE_ph0
https://www.youtube.com/watch?v=C2RkdxE_ph0

HTCondor Manual, Release 23.6.2

• POST script (optional): A script that runs after the job finishes. Typically used to verify outputs and clean up
temporary files.

The following diagram illustrates the elements of a node – every node must contain a job, with an optional pre and an
optional post script.

An edge in DAGMan describes a dependency between two nodes. DAG edges are directional; each has a parent and
a child, where the parent node must finish running before the child starts. Any node can have an unlimited number of
parents and children.

Example: Diamond DAG

Diamond DAG

A simple diamond-shaped DAG, as shown on the right, will be used in examples. This four node DAG would be
described as the following in the DAG input file:

File name: diamond.dag

JOB A A.sub
JOB B B.sub
JOB C C.sub
JOB D D.sub
PARENT A CHILD B C
PARENT B C CHILD D

7.1.2 JOB

The JOB command specifies an HTCondor job that becomes the core of a node in the DAG. The syntax used for each
JOB command is:

JOB NodeName SubmitDescription [DIR directory] [NOOP] [DONE]

A JOB entry maps a NodeName to an HTCondor submit description. The NodeName uniquely identifies nodes within
the DAG input file and in output messages. Each node name, given by NodeName, within the DAG must be unique.

The values defined for NodeName and SubmitDescription are case sensitive, as file names in a file system are case
sensitive. The NodeName can be any string that contains no white space, except for the strings PARENT and CHILD
(in upper, lower, or mixed case). NodeName also cannot contain special characters (. & +) which are reserved for
system use.

The optional DIR keyword specifies a working directory for this node, from which the HTCondor job will be submitted,
and from which a PRE and/or POST script will be run. If a relative directory is specified, it is relative to the current
working directory as the DAG is submitted.

Note: DAG containing DIR specifications cannot be run in conjunction with the -usedagdir command-line argument
to .

The optional NOOP keyword identifies a no-operation node. Meaning the nodes job will not be submitted to HTCondor.
DAGMan will still execute any PRE and/or POST scripts associated with the node. Marking a node with NOOP is useful
for debugging complex DAG structures without changing the flow of the DAG.

498 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

The optional DONE keyword identifies a node as being already completed. Meaning neither the nodes job nor scripts
will be executed. This is mainly used by Rescue DAGs generated by DAGMan itself, in the event of a failure to complete
the workflow.

7.1.3 PARENT/CHILD Relationships

The command specifies the dependencies within the DAG. Nodes are parents and/or children within the DAG. A parent
node must be completed successfully before any of its children may be started. A child node may only be started once
all its parents have successfully completed.

The syntax used for each dependency (PARENT/CHILD) command is

PARENT ParentNodeName [ParentNodeName2 ...] CHILD ChildNodeName [ChildNodeName2 ...]

Creating Multiple Dependencies for Nodes

Multiple node dependencies can easily be made in a single line as shown below:

PARENT p1 p2 CHILD c1 c2

The PARENT keyword is followed by one or more ParentNodeName(s). The CHILD keyword is followed by one or
more ChildNodeName(s). Each child job depends on every parent job within the line. A single line in the input file can
specify the dependencies from one or more parents to one or more children. The diamond-shaped DAG example may
specify the dependencies with

PARENT A CHILD B C
PARENT B C CHILD D

An alternative specification for the diamond-shaped DAG may specify some or all of the dependencies on separate
lines:

PARENT A CHILD B C
PARENT B CHILD D
PARENT C CHILD D

7.1.4 Scripts

The optional SCRIPT command specifies processing that is done either before a job within a node is submitted, after a
job within a node completes its execution, or when a job goes on hold. All scripts run on the Access Point and not the
Execution Point where the node job is likely to run.

7.1. DAGMan Introduction 499

HTCondor Manual, Release 23.6.2

Script Types

Processing done before a job is submitted is called a PRE script. Processing done after a job completes its execution
is called a POST script. The PRE and POST script are considered part of the DAG node structure. Additionally, there
is a HOLD script that runs when a node job goes into the held state which are not considered part of the DAG workflow
and are run on a best-effort basis. If one does not complete successfully, it has no effect on the overall workflow and
no error will be reported.

Note: The script executable does not have to be a shell script (Unix) or batch file (Windows); but should be light
weight since it runs directly on the AP.

The syntax used for SCRIPT commands is

PRE-Script
SCRIPT [DEFER status time] [DEBUG filename type] PRE <NodeName | ALL_NODES>␣
→˓ExecutableName [arguments]
POST-Script
SCRIPT [DEFER status time] [DEBUG filename type] POST <NodeName | ALL_NODES>␣
→˓ExecutableName [arguments]
HOLD-Script
SCRIPT [DEFER status time] [DEBUG filename type] HOLD <NodeName | ALL_NODES>␣
→˓ExecutableName [arguments]

The SCRIPT command can use the PRE, POST, or HOLD keyword, which specifies the relative timing of when the
script is to be run. The NodeName identifies the node to which the script is attached. The ExecutableName specifies
the executable (e.g., shell script or batch file) to be executed, and may not contain spaces. The optional arguments
are command line arguments to the script, and spaces delimiting the arguments. Both ExecutableName and optional
arguments are case sensitive.

Scripts are commonly used to do simple tasks such as the following:

• PRE: Verify inputs for a node job that are produced by a parent node.

• POST: Turn a job execution failure into a successful node completion so the DAG doesn’t fail given a specific
node job failure.

• HOLD: Notify the user of a held node via email.

DEFER retries

The optional DEFER keyword causes a retry of only the script, if the execution of the script exits with the exit code
given by status. The retry occurs after at least time seconds, rather than being considered failed. While waiting for the
retry, the script does not count against a maxpre or maxpost limit.

Note: The ordering of the DEFER keyword within the SCRIPT specification is fixed. It must come directly after the
SCRIPT keyword; this is done to avoid backward compatibility issues for any DAG with a NodeName of DEFER.

500 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

DEBUG file

The optional DEBUG keyword will capture a scripts specified standard output streams (STDOUT and/or STDERR)
and write them to a specified debug file. This keyword is followed by two pieces of information:

1. Filename: File to write captured output into.

2. Type: Type of output to capture. Takes one the following options:

1. STDOUT

2. STDERR

3. ALL (Both STDOUT & STDERR)

This keyword is fixed to appear prior to the script type (PRE, POST, HOLD) and after any declared DEFER retries.

Note: It is safe to have multiple scripts write to the same file as DAGMan captures all of the scripts output and
writes everything at one time. This write also includes a dividing banner with useful information regarding that scripts
execution.

Scripts as part of a DAG workflow

Scripts are executed on the access point; the access point is not necessarily the same machine upon which the node’s
job is run. Further, a single cluster of HTCondor jobs may be spread across several machines.

If the PRE script fails, then the HTCondor job associated with the node is not submitted, and the POST script is not run
either (by default). However, if the job is submitted, and there is a POST script, the POST script is always run once the
job finishes. The behavior when the PRE script fails may be changed to run the POST script by setting configuration
variable to True or by passing the -AlwaysRunPost argument to .

Examples that use PRE or POST scripts

Examples use the diamond-shaped DAG. A first example uses a PRE script to expand a compressed file needed as input
to each of the HTCondor jobs of nodes B and C. The DAG input file:

File name: diamond.dag

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
SCRIPT PRE B pre.sh $JOB .gz
SCRIPT PRE C pre.sh $JOB .gz
PARENT A CHILD B C
PARENT B C CHILD D

The script pre.sh uses its command line arguments to form the file name of the compressed file. The script contains

#!/bin/sh
gunzip ${1}${2}

Therefore, the PRE script invokes

7.1. DAGMan Introduction 501

HTCondor Manual, Release 23.6.2

gunzip B.gz

for node B, which uncompresses file B.gz, placing the result in file B.

A second example uses the $RETURN macro. The DAG input file contains the POST script specification:

SCRIPT POST A stage-out job_status $RETURN

If the HTCondor job of node A exits with the value -1, the POST script is invoked as

stage-out job_status -1

The slightly different example POST script specification in the DAG input file

SCRIPT POST A stage-out job_status=$RETURN

invokes the POST script with

$ stage-out job_status=$RETURN

This example shows that when there is no space between the = sign and the variable $RETURN, there is no substitution
of the macro’s value.

Special Script Argument Macros

DAGMan provides the following macros to be used for node script arguments. The use of these macros are limited to
being used as individual command line arguments surrounded by spaces:

All Scripts $JOB $RETRY $DAG_STATUS
$FAILED_COUNT $MAX_RETRIES

POST Scripts $JOBID $RETURN $PRE_SCRIPT_RETURN

The special macros for all scripts:

• $JOB evaluates to the (case sensitive) string defined for NodeName.

• $RETRY evaluates to an integer value set to 0 the first time a node is run, and is incremented each time the node
is retried. See Node Success/Failure for the description of how to cause nodes to be retried.

• $MAX_RETRIES evaluates to an integer value set to the maximum number of retries for the node. Defaults to 0 if
retries aren’t specified for a node.

Useful Information

Note: The macro $DAG_STATUS value and definition is unrelated to the attribute named DagStatus as defined
for use in a node status file.

• $DAG_STATUS is the status of the DAG that is recorded in the DAGMan scheduler universe job’s Classad as .
This macro may have the following values:

– 0: OK

502 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

– 1: error; an error condition different than those listed here

– 2: one or more nodes in the DAG have failed

– 3: the DAG has been aborted by an ABORT-DAG-ON specification

– 4: removed; the DAG has been removed by

– 5: cycle; a cycle was found in the DAG

– 6: halted; the DAG has been halted (see Suspending a Running DAG)

• $FAILED_COUNT is defined by the number of nodes that have failed in the DAG.

Macros for POST Scripts only:

• $JOBID evaluates to a representation of the HTCondor job ID [ClusterId.ProcId] of the node job. For nodes with
multiple jobs in the same cluster, the value is the one of the last job within the cluster.

• $RETURN variable evaluates to the return value of the HTCondor job, if there is a single job within a cluster. With
multiple jobs within the same cluster, the value will be 0 if all jobs within the cluster are successful. Otherwise,
the value is the exit value of the first job in the cluster to write a terminate event.

A job that dies due to a signal is reported with a $RETURN value representing the additive inverse of the signal
number. For example, SIGKILL (signal 9) is reported as -9. A job whose batch system submission fails is
reported as -1001. A job that is externally removed from the batch system queue (by something other than) is
reported as -1002.

• $PRE_SCRIPT_RETURN variable evaluates to the return value of the PRE script of a node, if there is one. If there
is no PRE script, this value will be -1. If the node job was skipped because of failure of the PRE script, the value
of $RETURN will be -1004 and this will evaluate to the exit value of the PRE script.

Example Diamond DAG Using Inline Descriptions

File name: diamond.dag

Job A using personal inline
submit description
JOB A {

executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log

}

JOB B B.sub
JOB C C.sub
JOB D D.sub

PARENT A CHILD B C
PARENT B C CHILD D

7.1. DAGMan Introduction 503

HTCondor Manual, Release 23.6.2

File name: diamond.dag

Shared submit description
SUBMIT-DESCRIPTION DiamondDesc {

executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

}

JOB A DiamondDesc
JOB B DiamondDesc
JOB C DiamondDesc
JOB D DiamondDesc

PARENT A CHILD B C
PARENT B C CHILD D

7.1.5 Node Submit Descriptions

Inline Submit Descriptions

Instead of using a submit description file, you can alternatively include an inline submit description directly inside
the .dag file. An inline submit description should be wrapped in { and } braces, with each argument appearing on a
separate line, just like the contents of a regular submit file.

This can be helpful when trying to manage lots of submit descriptions, so they can all be described in the same file
instead of needed to regularly shift between many files.

SUBMIT-DESCRIPTION command

In addition to declaring inline submit descriptions as part of a job, they can be declared independently of jobs using the
SUBMIT-DESCRIPTION command. This can be helpful to reduce the size and readability of a .dag file when many
nodes are running the same job.

A SUBMIT-DESCRIPTION can be defined using the following syntax:

SUBMIT-DESCRIPTION DescriptionName {
submit attributes go here

}

An independently declared submit description must have a unique name that is not used by any of the jobs. It can then
be linked to a job as follows:

JOB NodeName DescriptionName

504 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

Note: Both inline submit descriptions and the SUBMIT-DESCRIPTION command don’t allow a queue statement
resulting in only a single instance of the job being submitted to HTCondor.

Both inline submit descriptions and the SUBMIT_DESCRIPTION command can only be used when = True.

Example Diamond DAG Using External Submit File

File name: diamond_job.sub

executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log
request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue

File name: diamond.dag

JOB A diamond_job.sub
JOB B diamond_job.sub
JOB C diamond_job.sub
JOB D diamond_job.sub
PARENT A CHILD B C
PARENT B C CHILD D

External File Descriptions

Each node in a DAG may use a submit description file like one that a user may use in to submit via .

$ condor_submit submit_file.sub

A key limitation is that each HTCondor submit description file must submit jobs described by a single cluster number;
DAGMan cannot deal with a submit description file producing multiple job clusters.

DAGMan does allow the submission of multi-proc job clusters when submitting a node job described in an external
file. However, it is recommended that a node job only contains a single proc to the cluster because multi-proc nodes
will have there entire job removed by DAGMan if a single proc fails.

Since each node uses the same HTCondor submit description file, this implies that each node within the DAG runs
the same job. The $(Cluster) macro produces unique file names for each job’s output because each node is it’s own
cluster.

7.1. DAGMan Introduction 505

HTCondor Manual, Release 23.6.2

DAGMan Specific Information Macros

When submitting a node job on behalf of the user, DAGMan will create custom submit description macros that the job
can utilize for make descisions. The following macros are referencable by the job submit description:

• JOB: The node name of which this job belongs.

• RETRY: The current retry attempt number. First execution is 0.

• FAILED_COUNT: The current number of failed nodes in the DAG (Intended for Final nodes).

DAGMan will also add the following information to the jobs ClassAd:

• : Job-Id of the DAGMan job that submitted this job.

• : The node name of which this job belongs.

• : The nodes current retry number. First execution is 0. This is only included if includes Retry.

• : List of parent node names. Note depending on the number of parent nodes this may be left empty.

• : Current DAG status (Intended for Final Nodes).

7.2 Running and Managing DAGMan

Once once a workflow has been setup in a .dag file, all that is left is to submit the prepared workflow. A key concept
to understand regarding the submission and management of a DAGMan workflow is that the DAGMan process itself
is ran as a HTCondor Scheduler universe job that runs under the schedd on the AP (often referred to as the DAGMan
proper job) that will in turn manage and submit all the various jobs and scripts defined in the workflow.

7.2.1 Basic DAG Controls

DAG Submission

Example: Submitting Diamond DAG

$ condor_submit_dag diamond.dag

To submit a DAG simply use with the DAG input file from the current working directory that the DAG input file is
stored. This will automatically generate an HTCondor scheduler universe job submit file to execute and submit this
job to HTCondor. This file generated submit file is named <DAG Input Filename>.condor.sub. If desired, the
generated submit description file can be modified prior to job submission by doing the following:

$ condor_submit_dag -no_submit diamond.dag
$ vim diamond.dag.condor.sub
$ condor_submit diamond.dag.condor.sub

Since the process is an actual HTCondor job, all jobs managed by DAGMan are marked with the DAGMan proper jobs
. This value is set to the managed jobs ClassAd attribute .

506 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

Warning: Do not submit the same DAG, with the same DAG input file, from the same working directory at the
same time. This will cause unpredictable behavior and failures since both DAGMan jobs will attempt to use the
same files to execute.

Single Submission of Multiple, Independent DAGs

Example: Submitting Multiple Independent DAGs

$ condor_submit_dag A.dag B.dag C.dag

Multiple independent DAGs described in various DAG input files can be submitted in a single instance of resulting in
one job managing all DAGs. This is done by internally combining all independent DAGs into one large DAG with no
inter-dependencies between the individual DAGs. To avoid possible node name collisions when producing the large
DAG, DAGMan renames all the nodes. The renaming of nodes is controlled by .

When multiple DAGs are submitted like this, DAGMan sets the first DAG description file provided on the command
line as it’s primary DAG file, and uses the primary DAG file when writing various files such as the *.dagman.out.
In the case of failure, DAGMan will produce a rescue file named <Primary DAG>_multi.rescue<XXX>. See The
Rescue DAG section for more information.

The success or failure of the independent DAGs is well defined. When multiple, independent DAGs are submitted with
a single command, the success of the composite DAG is defined as the logical AND of the success of each independent
DAG, and failure is defined as the logical OR of the failure of any of the independent DAGs.

DAG Monitoring

After submission, the progress of the DAG can be monitored by looking at the job event log file(s), observing the e-mail
that job submission to HTCondor causes, or by using . Using just while a DAGMan workflow is running will display
condensed information regarding the overall workflow progress under the DAGMan proper job as follows:

$ condor_q
$ OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
$ Cole diamond.dag+1024 1/1 12:34 1 2 - 4 1025.0 ... 1026.0

Using with the -dag and -nobatch flags will display information about the DAGMan proper job and all jobs currently
submitted/running as part of the DAGMan workflow as follows:

$ condor_q -dag -nobatch
$ ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
$ 1024.0 Cole 1/1 12:34 0+01:13:19 R 0 0.4 condor_dagman ...
$ 1025.0 |-Node_B 1/1 13:44 0+00:03:19 R 0 0.4 diamond.sh ...
$ 1026.0 |-Node_C 1/1 13:45 0+00:02:19 R 0 0.4 diamond.sh ...

In addition to basic job management, the DAGMan proper job holds a lot of extra information within its job classad that
can queried with the -l or the more recommended -af <Attributes> flags for in association with the DAGMan proper
Job Id.

7.2. Running and Managing DAGMan 507

HTCondor Manual, Release 23.6.2

$ condor_q <dagman-job-id> -af Attribute-1 ... Attribute-N
$ condor_q -l <dagman-job-id>

A large amount of information about DAG progress and errors can be found in the debug log file named <DAG Input
File>.dagman.out. This file should be saved if errors occur. This file also doesn’t get removed between DAG new
executions, and all logged messages are appended to the file.

Status Information for the DAG in a ClassAd

View DAG Progress

Get a detailed DAG status report via :

$ htcondor dag status <dagman-job-id>

DAG 1024 [diamond.dag] has been running for 00:00:49
DAG has submitted 3 job(s), of which:

1 is submitted and waiting for resources.
1 is running.
1 has completed.

DAG contains 4 node(s) total, of which:
[#] 1 has completed.
[=] 2 are running: 2 jobs.
[-] 1 is waiting on other nodes to finish.

DAG is running normally.
[#########===================----------] DAG is 25.00% complete.

The job places information about its status in its ClassAd as the following job ad attributes:

DAG Info

Node Info

DAG Process Info

508 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

Note: Most of this information is also available in the dagman.out file, and DAGMan updates these classad attributes
every 2 minutes.

Removing a DAG

Removing a DAG

$ condor_q -nobatch
-- Submitter: user.cs.wisc.edu : <128.105.175.125:36165> : user.cs.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
9.0 taylor 10/12 11:47 0+00:01:32 R 0 8.7 condor_dagman -f ...

11.0 taylor 10/12 11:48 0+00:00:00 I 0 3.6 B.exe

2 jobs; 1 idle, 1 running, 0 held
$ condor_rm 9.0

To remove a DAG simply use on the job. This will remove both the DAGMan proper job and all node jobs, including
sub-DAGs, from the HTCondor queue.

A removed DAG will be considered failed unless the DAG has a FINAL node that succeeds.

In the case where a machine is scheduled to go down, DAGMan will clean up memory and exit. However, it will leave
any submitted jobs in the HTCondor queue.

Suspending a Running DAG

It may be desired to temporarily suspend a running DAG. For example, the load may be high on the access point, and
therefore it is desired to prevent DAGMan from submitting any more jobs until the load goes down. There are two ways
to suspend (and resume) a running DAG.

• Use / on the job.

After placing the job on hold, no new node jobs will be submitted, and no scripts will be run. Any
node jobs already in the HTCondor queue will continue undisturbed. Any running PRE or POST
scripts will be killed. If the job is left on hold, it will remain in the HTCondor queue after all of the
currently running node jobs are finished. To resume the DAG, use on the job.

Note: While the job is on hold, no updates will be made to the *.dagman.out file.

• Use a DAG halt file.

A DAG can be suspended by halting it with a halt file. This is a special file named <DAG Input
Filename>.halt that DAGMan will periodically check exists. If found then the DAG enters the
halted state where no PRE scripts are not run and node jobs stop being submitted. Running node jobs
will continue undisturbed, POST scripts will run, and the *.dagman.out log will still be updated.

Once all running node jobs and POST scripts have finished, DAGMan will write a Rescue DAG and
exit.

7.2. Running and Managing DAGMan 509

HTCondor Manual, Release 23.6.2

Note: If a halt file exists at DAG submission time, it it removed.

Warning: Neither nor a DAG halt is propagated to sub-DAGS. In other word if a parent DAG is held or halted,
any sub-DAGs will continue to submit node jobs. However, these effects are applied to DAG splices since they are
merged into the parent DAG and are controlled by a single instance.

7.2.2 File Paths in DAGs

Example File Paths with DAGMan

A DAG and its node job submit file in the same example directory. Once ran, A.out and A.log are expected in
the directory.

sample.dag
JOB A A.submit

A.submit
executable = programA
input = A.in
output = A.out
log = A.log

example/
A.input
A.submit
sample.dag
programA

assumes all relative paths in a DAG input file and its node job submit descriptions are relative to the current working
directory where was ran. Meaning all files declared in a DAG or its jobs are expected to be found or will be written
relative to the DAGs working directory. All jobs will be submitted and all scripts will be ran from the DAGs working
directory.

For simple DAG structures this may be alright, but not for complex DAGs. To help reduce confusion of where things
run or files are written, the JOB command takes an option keyword DIR <path>. This will cause DAGMan to submit
the node job and run the node scripts from the directory specified.

JOB A A.submit DIR dirA

example/
sample.dag
dirA

A.input
A.submit
programA

510 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

If dealing with multiple independent DAGs separated into different directories as described below then a single submis-
sion from the parent directory will fail to successfully execute since all paths are now relative to the parent directory.

Example Paths with Independent DAGs

Given the directory structure on the left, the following will fail

$ cd parent
$ condor_submit_dag dag1/one.dag dag2/two.dag

But using -UseDagDir will execute each individual DAG as intended

$ cd parent
$ condor_submit_dag -usedagdir dag1/one.dag dag2/two.dag

parent/
dag1

A.input
A.submit
one.dag
programA

dag2
B.input
B.submit
programB
two.dag

Use the -UseDagDir flag to execute each individual DAG in there relative directories. For this example, one.dag
would run from the dag1 directory and two.dag would run from dag2. All produced DAGMan files will be relative
to the primary DAG (first DAG specified on the command line).

Warning: Use of -usedagdir does not work in conjunction with a JOB command that specifies a working directory
via the DIR keyword. Using both will be detected and generate an error.

7.2.3 Managing Large Numbers of Jobs

DAGMan provides lots of useful mechanisms to help submit and manage large numbers of jobs. This can be useful
whether a DAG is structured via dependencies or just a bag of loose jobs. Notable features of DAGMan are:

• Throttling
Throttling limits the number of submitted jobs at any point in time.

• Retry of jobs that fail
Automatically re-run a failed job to attempt a successful execution. For more information visit Retrying
Failed Nodes.

• Scripts associated with node jobs
Perform simple tasks on the Access Point before and/or after a node jobs execution. For more information
visit DAGMan Scripts.

7.2. Running and Managing DAGMan 511

HTCondor Manual, Release 23.6.2

Example Large DAG Unique Submit File

Generated Submit: job2.sub
executable = /path/to/executable
log = job2.log
input = job2.in
output = job2.out
arguments = "-file job2.out"
request_cpus = 1
request_memory = 1024M
request_disk = 10240K
queue

It is common for a large grouping of similar jobs to ran under a DAG. It is also very common for some external program
or script to produce these large DAGs and needed files. There are generally two ways of organizing DAGs with large
number of jobs to manage:

1. Using a unique submit description for each job in the DAG
In this setup, a single DAG input file containing n jobs with a unique submit description file (see right) for
each node such as:

Large DAG Example: sweep.dag w/ unique submit files
JOB job0 job0.sub
JOB job1 job1.sub
JOB job2 job2.sub
...
JOB job999 job999.sub

The benefit of this method is the individual jobs can easily be submitted separately at any time but at the
cost of producing n unique files that need to be stored and managed.

Example Large DAG Shared Submit File

Generic Submit: common.sub
executable = /path/to/executable
log = job$(runnumber).log
input = job$(runnumber).in
output = job$(runnumber).out
arguments = "-file job$(runnumber).out"
request_cpus = 1
request_memory = 1024M
request_disk = 10240K
queue

1. Using a shared submit description file and Custom Job Macros for Nodes
In this setup, a single DAG input file containing n jobs share a single submit description (see right) and
utilize custom macros added to each job for variance by DAGMan is described such as:

Large DAG example: sweep.dag w/ shared submit file
JOB job0 common.sub
VARS job0 runnumber="0"
JOB job1 common.sub

(continues on next page)

512 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

(continued from previous page)

VARS job1 runnumber="1"
JOB job2 common.sub
VARS job2 runnumber="2"
...
JOB job999 common.sub
VARS job999 runnumber="999"

The benefit to this method is that less files need to be produced, stored, and managed at the cost of more
complexity and a double in size to the DAG input file.

Note: Even though DAGMan can assist with the management of large number of jobs, DAGs managing several
thousands worth of jobs will produce lots of various files making directory traversal difficult. Consider how the directory
structure should look for large DAGs prior to creating and running.

DAGMan Throttling

To prevent possible overloading of the condor_schedd and resources on the Access Point that executes on, DAGMan
comes with built in capabilities to help throttle/limit the load on the Access Point.

Throttling at DAG Submission

1. Total nodes/clusters:
The total number of DAG nodes that can be submitted to the HTCondor queue at a time. This is specified
either at submit time via s -maxjobs option or via the configuration option .

2. Idle procs:
The total number of idle procs associated with jobs managed by DAGMan in the HTCondor queue at a
time. If DAGMan submits a job that goes over this limit then DAGMan will wait until the number of idle
procs under its management drops below this max value prior to submitting ready jobs. This is specified
either at submit time via s -maxidle option or via the configuration option .

3. PRE/POST script:
The total number of PRE and POST scripts DAGMan will execute at a time on the Access Point. These
limits can either be specified via s -maxpre and -maxpost options or via the configuration options and .

Editing DAG Throttles

The following throttling properties of a running DAG can be changed after the workflow has been started. The values
of these properties are published in the job ad; changing any of these properties using will also update the internal
DAGMan value.

Edit DAGMan Limits

To edit one of these properties, use the tool with the job ID of the

$ condor_qedit <dagman-job-id> DAGMan_MaxJobs 1000

7.2. Running and Managing DAGMan 513

HTCondor Manual, Release 23.6.2

Currently, you can change the following attributes:

Attribute Name Attribute Description
Maximum number of running jobs

Maximum number of idle jobs

Maximum number of running PRE scripts

Maximum number of running POST scripts

Throttling Nodes by Category

Throttling by Category

CATEGORY and MAXJOBS command syntax

CATEGORY <NodeName | ALL_NODES> CategoryName

MAXJOBS CategoryName MaxJobsValue

Note: Category names cannot contain white space. Please see Splice Limitations in association with categories.

DAGMan also allows the limiting of the number of running nodes (submitted job clusters) within a DAG at a finer
grained control with the CATEGORY and MAXJOBS commands. The CATEGORY command will assign a DAG
node to a category that can be referenced by the MAXJOBS command to limit the number of submitted job clusters
on a per category basis.

If the number of submitted job clusters for a given category reaches the limit, no further job clusters in that category
will be submitted until other job clusters within the category terminate. If MAXJOBS is not set for a defined category,
then there is no limit placed on the number of submissions within that category.

The configuration variable and the -maxjobs command-line option are still enforced if these CATEGORY and
MAXJOBS throttles are used.

7.3 DAGMan Completion

Node Success/Failure

Table 2.1 Node Success or Failure definition with = False (the default).

PRE JOB POST Node
- S - S
- F - F
- S S S
- S F F
- F S S
- F F F
S S - S
S F - F
S S S S
S S F F
S F S S
S F F F
F not run - F
F not run not run F

514 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

Table 2.2 Node Success or Failure definition with = True

PRE JOB POST Node
F not run - F
F not run S S
F not run F F

DAGMan exits the job queue when it has successfully completed, or when it can no longer make forward progress.
The latter case is considered failure. Successful completion happens when every node in the DAG has successfully
completed. In the case of a DAGman failure, you can resubmit the dag so that only the incomplete work is run.
Alternatively, you can re-run a DAG from pre-specified save points, and re-run previously completed nodes.

7.3.1 Node Success/Failure

Progress towards completion of the DAG is based upon the success of the nodes within the DAG. The success of a
node is based upon the success of the job(s), PRE script, and POST script. A job, PRE script, or POST script with
an exit value not equal to 0 is considered failed. The exit value of whatever component of the node was run last
determines the success or failure of the node.

Table 2.1 lists the definition of node success and failure for all variations of script and job success and failure, when
is set to False. In this table, a dash (-) represents the case where a script does not exist for the DAG, S represents
success, and F represents failure.

Table 2.2 lists the definition of node success and failure only for the cases where the PRE script fails, when DAGMan
is configured to always run POST scripts.

If Node jobs are multi-proc and one fails then the entire cluster is removed and the node job is considered failed.

PRE_SKIP

The behavior of DAGMan with respect to node success or failure can be changed with the addition of a PRE_SKIP
command. A PRE_SKIP line within the DAG input file uses the syntax:

PRE_SKIP <NodeName | ALL_NODES> non-zero-exit-code

The PRE script of a node identified by NodeName that exits with the value given by non-zero-exit-code skips the
remainder of the node entirely. Neither the job associated with the node nor the POST script will be executed, and the
node will be marked as successful.

Retrying Failed Nodes

DAGMan can retry any failed node in a DAG by specifying the node in the DAG input file with the RETRY command.
The syntax for retry is

Example Diamond DAG Using RETRY

7.3. DAGMan Completion 515

HTCondor Manual, Release 23.6.2

File name: diamond.dag

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
RETRY C 3

If marked as failed, node C will retry execution until either success or the maximum number of retries (3) are
attempted.

RETRY <NodeName | ALL_NODES> NumberOfRetries [UNLESS-EXIT value]

where NodeName identifies the node. NumberOfRetries is an integer number of times to retry the node after failure.

The implied number of retries for any node is 0, the same as not having a retry line in the file. Retry causes the whole
node to be rerun (i.e. PRE Script, job, and POST Script).

Retry of a node may be short circuited using the optional keyword UNLESS-EXIT, followed by an integer exit value. If
the node exits with the specified integer exit value, then no further processing will be done on the node.

Stopping the DAG on Node Failure

The ABORT-DAG-ON command provides a way to abort the entire DAG if a given node returns a specific exit code.
The syntax for ABORT-DAG-ON is

Example Diamond DAG Using ABORT-DAG-ON

File name: diamond.dag

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
RETRY C 3
ABORT-DAG-ON C 10 RETURN 1

If node C exits with return value 10 then the DAG is aborted with an exit value of 1.

ABORT-DAG-ON <NodeName | ALL_NODES> AbortExitValue [RETURN DAGReturnValue]

If the return value for the specified node matches AbortExitValue, the DAG is immediately aborted. Meaning the DAG
stops all currently running nodes, cleans up, writes a rescue DAG, and exits with the optional specified return value. If
no DAG return value is specified then DAGMan exits with the node return value that caused the abort.

A DAG return value other than 0, 1, or 2 will cause the job to stay in the queue after it exits and get retried, unless the
expression in the *.condor.sub file is manually modified.

516 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

The behavior differs based on the existence of PRE and/or POST scripts:

• If a PRE script returns the AbortExitValue value, the DAG is immediately aborted.

• If the HTCondor job within a node returns the AbortExitValue value, the DAG is aborted if the node has no POST
script.

• If the POST script returns the AbortExitValue value, the DAG is aborted.

Note: An abort overrides node retries. If a node returns the abort exit value, the DAG is aborted, even if the node has
retry specified.

7.3.2 Resubmitting a Failed DAG

Check DAG Successful Exit

To determine successful completion of a DAG that has left the queue, the final line in the *.dagman.out file
should appear as similar to:

(condor_DAGMAN) pid 445 EXITING WITH STATUS 0

DAGMan has two ways of restarting a failed DAG: Rescue and Recovery. Rescue mode is most common for resubmit-
ting a DAG manually while recovery mode is most likely to occur automatically if a crash or something occurs.

If the DAG has failed, it can be be restarted such that work that needs to be executed (including previously failed part)
are ran. Resubmission should be done via a Rescue DAG if the file exists, otherwise DAGMan will use Recovery mode.
To determine if Rescue mode is possible check the DAG working directory for a Rescue DAG. A Rescue DAG is has a
file name ending in .rescue<XXX>, where <XXX> is replaced by a 3-digit number.

The Rescue DAG

Any time a DAG exits unsuccessfully, DAGMan generates a Rescue DAG. The Rescue DAG records the state of the
DAG, with information such as which nodes completed successfully, and the Rescue DAG will be used when the DAG
is again submitted. With the Rescue DAG, nodes that have already successfully completed are not re-run. Nodes that
are re-run will execute every part of the node (PRE Script, job(s), and POST Script) even if one part had previously
completed successfully. There are a variety of circumstances under which a Rescue DAG is generated:

Rescue DAG On Removal

Warning: On Windows no Rescue DAG is produced upon the removal of the DAGMan proper job, but
re-submitting the original DAG will invoke recovery mode.

1. If a node in the DAG fails then DAGMan will continue executing until no more forward progress can be made.
At this point, DAGMan produces the Rescue DAG and exits.

2. A Rescue DAG is produced when the job itself is removed via . This only occurs on Unix platforms.

3. A Rescue DAG is produced when a node triggers an ABORT-DAG-ON with a non-zero value.

7.3. DAGMan Completion 517

HTCondor Manual, Release 23.6.2

If the Rescue DAG file is generated before all retries of a node are completed, then the Rescue DAG file will also contain
RETRY entries. The number of retries will be set to the appropriate remaining number of retries. The configuration
variable controls whether or not node retries are reset in a Rescue DAG.

Statistics about the failed DAG execution are presented as comments at the beginning of the Rescue DAG input file.

By default, if a Rescue DAG exists, it will be used when the DAG is submitted specifying the original DAG input file.
If more than one Rescue DAG exists, the newest one will be used. By using the Rescue DAG, DAGMan will avoid
re-running nodes that completed successfully in the previous run.

Note: Passing the -force option to or will cause DAGMman to not use any existing Rescue DAG’s. This means that
previously-completed node jobs will be re-run.

Rescue DAG Naming

Example Rescue Diamond DAG

If the diamond.dag was submitted and failed then the Rescue DAG diamond.dag.rescue001 should be pro-
duced. Simply resubmit the DAG to re-run in rescue mode.

$ condor_submit_dag diamond.dag
//Failure occurs

$ ls
diamond.dag diamond.dag.rescue001 ...

$ condor_submit_dag diamond.dag

If the resubmitted DAG fails again then diamond.dag.rescue002 should be produced. This will then be used
with the next resubmission.

The file name of the Rescue DAG is <DAG Input File>.rescue<XXX>. Where <XXX> starts at 001 and increments
with each new failure until the maximum value is hit. The maximum value is defined by the configuration option . If
this limit is reached then the last Rescue DAG file is overwritten upon failure of the DAG.

If multiple independent DAGs are submitted at one time via then the Rescue DAG file will be named <Primary
DAG>_multi.rescue<XXX> where the primary DAG is the first DAG input file specified on the command line. This
multi-DAG rescue file will encompass all the nodes provided by the multiple independent DAG files.

If a Rescue DAG exists when the original DAG is re-submitted, the Rescue DAG with the largest magnitude value for
<XXX> will be used, and its usage is implied.

Using an Older Rescue DAG

If a DAG has failed multiple times and produced many Rescue DAG files, specific Rescue DAGs can be specified to
re-run the DAG from rather than the rescue with the highest magnitude. This is achieved by using the -DoRescueFrom
option for .

$ condor_submit_dag -DoRescueFrom 2 diamond.dag

When an older rescue file is specified and the DAG fails, all existing rescue DAG files of a higher magnitude will be
renamed with the .old suffix. So, diamond.dag.rescue003 will become diamond.dag.rescue003.old.

518 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

Special Cases

1. If multiple DAG input files are provided on the command line, a single Rescue DAG encompassing all of the
input DAG’s is generated. The primary DAG (first DAG specified in the command line) will be used as the base
of the Rescue DAG name.

2. A DAG file that contains DAG splices also only produces a single Rescue DAG file since the spliced DAG nodes
are inherited by the top-level DAG.

3. A DAG that contains sub-DAG’s will produce one Rescue DAG file per sub-DAG since each sub-DAG is it’s
own job running in the queue along with the top-level DAG. The Rescue DAG files will be created relative to the
specified DAG input files.

Partial versus Full Rescue DAGs

By default the Rescue DAG file is written as a partial DAG file that is not intended to be used directly as a DAG
input file. This partial file only contains information about completed nodes and remaining retries for non-completed
nodes. Partial Rescue DAG files are parsed in combination of the original DAG input file that contains the actual DAG
structure. This allows updates to the original DAG files structure to take effect when ran in rescues mode.

Note: If a partial Rescue DAG contains a DONE specification for a node that is removed from the original DAG input
file will produce and error unless is set to zero in which case a warning will be produced. Commenting out the DONE
line in the Rescue DAG file will avoid an error or warning.

If the default of writing a partial Rescue DAG is turned off by setting to False, then DAGMan will produce a full
Rescue DAG that contains the majority DAG information (i.e. DAG structure, state, Scripts, VARS, etc.). In contrary
to the partial Rescue DAG that is parsed in combination with the original DAG input file, a full Rescue DAG is to be
submitted via the command line as the DAG input. For example:

$ condor_submit_dag diamond.dag.rescue002

Attempting to re-submit the original DAG file, if the Rescue DAG file is a complete DAG, will result in a parse failure.

Warning: The full Rescue DAG functionality is deprecated and slated to be removed during the lifetime of the
HTCondor V24 feature series.

Rescue for Parse Failure

Example Parse Failure Rescue DAG

$ condor_submit_dag -DumpRescue diamond.dag

The following example would produce the file diamond.dag.parse_failed if the diamond.dag failed to parse.

Note: The parse failure Rescue DAG cannot be used when resubmitting a failed DAG.

7.3. DAGMan Completion 519

HTCondor Manual, Release 23.6.2

When using the -DumpRescue flag for or , DAGMan will produce a special Rescue DAG file if a the parsing of DAG
input files fail. This special Rescue DAG file will contain whatever DAGMan has successfully parsed up to the point
of failure. This may be helpful for debugging parse errors with complex DAG’s. Especially DAG’s using splices.

To distinguish between a usable Rescue DAG file and a parse failure DAG file, the parse failure Rescue DAG file has
a different naming scheme. In which the file is named <dag file>.parse_failed. Further more, the parse failure
rescue DAG contains the REJECT command which prevents the parse failure Rescue DAG from being executed by
DAGMan. This is because the special Rescue DAG is written in the full format regardless of . Due to the nature of the
full Recuse file being syntactically correct DAG file, it will be perceived as a successfully executed workflow despite
being an incomplete DAG.

DAG Recovery

DAG recovery restores the state of a DAG upon resubmission by reading the *.nodes.log file that is used to enforce
the dependencies of the DAG. Once state is restore, DAGMan will continue the execution of the DAG.

Recovery is appropriate when no Rescue DAG has been created. The Rescue DAG will fail to write if a crash occurs
(Host machine, condor_schedd, or job) or if the job is put on hold.

Most of the time, when a not-completed DAG is re-submitted, it will automatically be placed into recovery mode due
to the existence and contents of a lock file created as the DAG is first run. In recovery mode, the *.nodes.log is used
to identify nodes that have completed and should not be re-submitted.

DAGMan can be told to work in recovery mode by including the -DoRecovery option on the command line.

$ condor_submit_dag diamond.dag -DoRecovery

Example DAG Save Point Files

Given the following DAG file, if ran from my_work directory then the following save files will be produced:

File: savepointEx.dag
JOB A node.sub
JOB B node.sub
JOB C node.sub
JOB D node.sub

PARENT A B C CHILD D

#SAVE_POINT_FILE NodeName [Filename]
SAVE_POINT_FILE A
SAVE_POINT_FILE B Node-B_custom.save
SAVE_POINT_FILE C ../example/Node-C_custom.save
SAVE_POINT_FILE D ./Node-D_custom.save

Directory Tree Visualized
Home

example
Node-C_custom.save

my_work
savepointEx.dag
savepointEx.dag.condor.sub
savepointEx.dag.dagman.out
...
Node-D_custom.save
save_files

A-savepointEx.dag.save
Node-B_custom.save

520 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

7.3.3 DAG Save Point Files

A successfully completed DAG can be re-run from a specific saved state if the DAG originally run contained
save point nodes. Save point nodes are DAG nodes that have an associate SAVE_POINT_FILE command. The
SAVE_POINT_FILE syntax is as follows:

SAVE_POINT_FILE NodeName [filename]

This file is written in the exact same format as the partial Rescue DAG except all retries are reset. The save file is
written as follows:

1. When:
The save point file is written the first time a DAG node starts meaning it will not be written during a retry.

2. Named:
If provided a filename then DAGMan will write the status to that provided file name otherwise the save file
will be named [Node Name]-[DAG Input File].save. Where the DAG input file is the DAG file that
the save point was declared.

3. Where:
If a path is provided in the save point filename then DAGMan will attempt to write to that location. If the
path is relative then the file is written relative to the DAGs working directory. Otherwise, DAGMan will
write the save file to a new directory call save_files which is created in the DAGs working directory.

Note: The use of s -UseDagDir option will effect where the save_files directory is created and where save files
with relative paths are written since -UseDagDir changes alters the DAG working directory.

Once a DAG has ran and produced save point files, the DAG can be re-run from a specific save point via the -load_save
option for . DAGMan will try attempt to read the save file from any path that is provided otherwise DAGMan will
assume the specified save file is located in the save_files directory. The paths for the specified save file is checked
relative to the DAGs working directory.

If a save file already exists at the time DAGMan goes to write it then DAGMan will first rename the current file of the
same name with the suffix .old. This happens whether the DAG is being re-run or if the same save filename is with
multiple nodes allowing for a progressing save file. For example, A progressing save point file can be set up as the
following:

File: progressSavefile.dag
JOB A node.sub
JOB B node.sub
JOB C node.sub
...
SAVE_POINT_FILE A dag-progress.save
SAVE_POINT_FILE B dag-progress.save
SAVE_POINT_FILE C dag-progress.save

Fig. 1: Progressing Save File DAG Actions

7.3. DAGMan Completion 521

HTCondor Manual, Release 23.6.2

7.4 Composing Workflows from DAGs

HTCondor DAGMan can compose large DAG workflows from various smaller sub-workflows defined in individual
DAG files. This may be beneficial for the following reasons:

• Easily incorporate pre-existing DAGs

• Easily reuse a specific DAG sub-structure multiple times within a larger workflow

• Encapsulate parts of DAG workflow into easier managed sub-parts

• Dynamically create parts of the workflow (Sub-DAGs Only)

• Retry multiple nodes as a unit (Sub-DAGs Only)

• Short-circuit part of the workflow (Sub-DAGs Only)

There are two ways that DAGs can be nested within other DAGs:

1. Sub-DAGs:
A Sub-DAG is a DAG that is submitted via and managed by a parent DAG as a single node. Each Sub-DAG
has its own job submitted to the HTCondor queue that executes on the Access Point. As a result, scalability
is a concern because a DAG comprised of hundreds to thousands of Sub-DAGs can overload the Access
Point and its resources (i.e. memory, disk, cpu, etc.).

2. Splices:
A Splice is a DAG that has all of its nodes directly incorporated to its parent DAG. Meaning all splices get
merged into a single job reducing the stress and resource consumption on the Access Point.

Note: Sub-DAGs and Splices can be combined in a single workflow, and to any depth, but be careful to avoid recursion
which will cause problems.

It is recommended to use Splices if the workflow doesn’t require special functionality because splices don’t produce
the same scaling issue as Sub-DAGs. When determining how to incorporate DAGs into larger workflows consider the
following pros and cons list:

Splice Dependencies

When DAGMan incorporates a Splice into its workflow, any parent/child relationships declared on a Splice is
passed on to the Splices initial and terminal nodes (see definitions below).

For example if the following DAGs Splice sub-workflow (sub-workflow.dag) has 1,000 initial nodes and 1,000
terminal nodes then 2,000 dependencies are created when a single parent/child relationship is declared between
two instances of this Splice. If = False then 1 million dependencies would be created.

Example DAG with Splices
SPLICE A sub-workflow.dag
SPLICE B sub-workflow.dag

PARENT A CHILD B

Initial Node: A node in a DAG with no Parent node dependencies

Terminal Node: A node in a DAG with no Child node dependencies

522 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

Feature Sub-DAGs Splices
Ability to incorporate separate sub-workflow files Yes Yes
Rescue DAG(s) created upon failure Yes Yes
DAG Recovery (e.g. from AP host crash) Yes Yes
Creates multiple instances Yes No
Possible explosion of dependencies (see right) No Yes
Sub-workflow DAG file must exist at submission No Yes
PRE/POST Script allowed for sub-workflow Yes No
Ability to retry sub-workflow Yes No
Job/Script throttling applies across entire workflow No Yes
Separate job/script throttling for sub-workflows Yes No
Node categories apply across entire workflow No Yes
Ability to set priority for sub-workflows Yes No
Ability to have unique final nodes for sub-workflows Yes No
Ability to abort sub-workflows individually Yes No
Ability to associate variables with sub-workflow nodes Yes No
Ability to configure sub-workflows individually Yes No
Separate DAGMan files for sub-workflow Yes No
Halt file or suspends entire workflow No Yes

7.4.1 Terminology

Terminology Example

In the common case of DAG A incorporates DAG B, DAG A can be referred to as the top-level, high-level, outer,
and/or parent DAG while DAG B is the low-level/inner DAG.

Note: Even with the provided terminology, once multiple DAGs are incorporated at various nested depths it can
become difficult to keep track of which DAG is being referenced.

To help distinguish which DAG is being discussed in a workflow comprised of sub-workflows, the following terminol-
ogy is used:

1. Top-level DAG:
The highest level DAG that was manually submitted by the user.

2. High-level/Outer DAG:
A DAG that is abstractly higher in the nest of DAGs. This refers to the DAG that includes other DAG
sub-workflows.

3. Low-level/Inner DAG:
A DAG that is abstractly lower in the nest of DAGs. This refers to the DAG that is incorporated into another
DAG workflow.

4. Parent DAG:
The specific DAG that incorporates/declared the current DAG the workflow.

7.4. Composing Workflows from DAGs 523

HTCondor Manual, Release 23.6.2

7.4.2 A DAG Within a DAG Is a SUBDAG

To declare a Sub-DAG simply use the following syntax for the SUBDAG command:

SUBDAG EXTERNAL JobName DagFileName [DIR directory] [NOOP] [DONE]

Since a Sub-DAG is run as a separate job, the parent DAG views the entire sub-workflow as a single node in its workflow.
For this reason, the DIR, NOOP, and DONE keywords work exactly the same the regular node JOB command. The
main difference is instead of an HTCondor submit description the Sub-DAG takes DAG input file.

Note: The EXTERNAL keyword is required, and represents that the DAG is run externally as its own job. This is the
only option for Sub-DAGs currently.

Example SUBDAG

As stated earlier, DAGMan views a Sub-DAG as just another node. So, when the Sub-DAG is ready to run, DAGMan
submits the DAG via and watches for the job to complete and exit the queue.

In the following example DAG files, the outer DAG is submitted by the user while the inner DAG is submitted auto-
matically once Node Y is ready to start.

Outer DAG: line.dag
JOB X job.sub
SUBDAG EXTERNAL Y diamond.dag
JOB Z job.sub

PARENT X CHILD Y
PARENT Y CHILD Z

Inner DAG: diamond.dag
JOB A job.sub
JOB B job.sub
JOB C job.sub
JOB D job.sub

PARENT A CHILD B C
PARENT B C CHILD D

$ condor_submit_dag line.dag

SUBDAG Submit Description Generation

Since a Sub-DAG is another job, a submit description file needs to be generated. By default this will get generated at
Sub-DAG submission time when DAGMan executes . This has the added benefit in the fact that the DAG input file
can be created/modified dynamically during the life of a higher-level DAGs lifetime; although the Sub-DAG input file
needs to be defined at the submission time of the top-level DAG, the inner DAG input file only needs to exist just before
node job submission time.

Note: Sub-DAG submit files can be pre-generated before workflow submission via s options -no_submit and -
do_recurse.

524 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

Special Case Option Preservation

If a Sub-DAG submit file is pre-generated then the following and -update_submit is set then the following are
preserved for the specific DAG:

-MaxJobs -MaxIdle
-MaxPre -MaxPost

Note: If -Force is specified then the above listed options are not preserved.

Preserved DAGMan Options

The following options for specified at submission time of the top-level DAG are preserved and passed down to all
Sub-DAGs in the workflow:

-Force -UseDagDir -BatchName
-AutoRescue -DoRescueFrom -Verbose
-import_env -include_env -insert_env
-Notification -suppress_notification dont_suppress_notification
-outfile_dir -update_submit -AllowVersionMismatch
-DAGMan -do_recurse -no_recurse

SUBDAGs and Rescue

Each Sub-DAG in the workflow will produce its own rescue DAG file upon failure. Once the Sub-DAG has failed,
written a rescue DAG, and exited, the failure will cascade upwards to the top-level DAG. The final result is each DAG
having a unique rescue DAG file that will be automatically detected upon re-run.

SUBDAG Working Directory

Unless the DIR keyword is specified when declaring a Sub-DAG, the low-level DAG utilizes the current working
directory of its parent DAG. Otherwise, the specified directory is the Sub-DAGs working directory.

Nested Splice Node Naming

Each level of splice is added to the hierarchal scope from highest to lowest level. Meaning node
TOP+HIGH+MIDDLE+BOTTOM+NODE was spliced multiple times as such:

7.4. Composing Workflows from DAGs 525

HTCondor Manual, Release 23.6.2

7.4.3 DAG Splicing

To Splice a DAG into the current DAG being described simply follow the syntax for the SPLICE command:

SPLICE SpliceName DagFileName [DIR directory]

A splice is a named instance of a subgraph which is specified in a separate DAG file. The splice is treated as an entity
for dependency specification in the including DAG. Although a splice can have dependencies, it is not required. If no
dependencies are specified then the splice will become a disjointed graph.

The same DAG file can be reused as differently named splices, each one incorporating a copy of the same DAG structure.

To prevent name collisions of nodes being spliced into a DAG, DAGMan adds hierarchal scopes to the name of the
node using the splice name. This scope is delimited with +. For example, if a DAG containing NodeY was spliced into
another DAG as SpliceX then the resulting node added to the top-level DAG will be named SpliceX+NodeY.

Warning: HTCondor does not detect nor support splices that form a cycle within the DAG. A DAGMan job that
causes a cyclic inclusion of splices will eventually exhaust available memory and crash.

The following series of examples illustrate potential uses of splicing. To simplify the examples, presume that each and
every job uses the same, simple HTCondor submit description file:

BEGIN SUBMIT FILE simple-job.sub
executable = /bin/echo
arguments = OK
output = $(JOB).out
error = $(JOB).err
log = submit.log
notification = NEVER

request_cpus = 1
request_memory = 1024M
request_disk = 10240K

queue
END SUBMIT FILE simple-job.sub

Splice DIR Option

When the DIR keyword is specified for a splice, the splice will be parsed from that directory and all nodes in the spliced
DAG will be submitted from. If the nodes in the spliced DAG specify their own working directory as a relative path
then DAGMan will use the splice directory as a prefix to the nodes directory. Absolute paths are untouched.

Diamond DAG spliced between two nodes

526 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

Simple SPLICE Example

This first simple example splices a diamond-shaped DAG in between the two nodes of a top level DAG. Given the
following DAG input files, a single DAGMan workflow will be created as shown on the right.

Inner DAG: diamond.dag
JOB A simple-job.sub
JOB B simple-job.sub
JOB C simple-job.sub
JOB D simple-job.sub

PARENT A CHILD B C
PARENT B C CHILD D

Outer DAG: topLevel.dag
JOB X simple-job.sub
JOB Y simple-job.sub

This is an instance of diamond.dag, given the symbolic name DIAMOND
SPLICE DIAMOND diamond.dag

Set up a relationship between the nodes in this dag and the splice
PARENT X CHILD DIAMOND
PARENT DIAMOND CHILD Y

X-shaped DAG

SPLICING one DAG Twice Example

This next example illustrates the reuse of a DAG in multiple splices for a single workflow. Below we have the X-shaped
DAG input file which can be visualized on the right.

Example: X.dag
JOB A simple-job.sub
JOB B simple-job.sub
JOB C simple-job.sub
JOB D simple-job.sub
JOB E simple-job.sub
JOB F simple-job.sub
JOB G simple-job.sub

Make an X-shaped dependency graph
PARENT A B C CHILD D
PARENT D CHILD E F G

Splicing one DAG Multiple Times

Fig. 2: The DAG described by s1.dag

7.4. Composing Workflows from DAGs 527

HTCondor Manual, Release 23.6.2

Described below is a top-level DAG (s1.dag) that uses the above described X-shaped DAG for two unique splice
instances. The full workflow is visualized on the right. Pay particular attention to the notion that each named splice
creates a new graph, even when the same DAG input file is specified.

Top-level DAG: s1.dag
JOB A simple-job.sub
JOB B simple-job.sub

name two individual splices of the X-shaped DAG
SPLICE X1 X.dag
SPLICE X2 X.dag

Define dependencies
A must complete before the initial nodes in X1 can start
PARENT A CHILD X1
All terminal nodes in X1 must finish before
the initial nodes in X2 can begin
PARENT X1 CHILD X2
All terminal nodes in X2 must finish before B may begin.
PARENT X2 CHILD B

Disjointed SPLICE Example

For this final example, the top level DAG in the hierarchy (toplevel.dag) contains a self defined diamond structure
that leads into a spliced X-shaped DAG and a disjointed splice s1.dag as described in the previous example. This S3
splice is considered disjointed due to its lack of declared dependencies.

This shows how three simple DAG structures (Diamond, X-shaped, and line) can be spliced together to create a more
complex workflow. Notice how the hierarchal scoped naming scheme is applied to the various nodes in the workflow
especially in the disjointed S3 splice.

Outer DAG: toplevel.dag
JOB A simple-job.sub
JOB B simple-job.sub
JOB C simple-job.sub
JOB D simple-job.sub

a diamond-shaped DAG
PARENT A CHILD B C
PARENT B C CHILD D

This splice of the X-shaped DAG can only run after
the diamond dag finishes
SPLICE S2 X.dag
PARENT D CHILD S2

Since there are no dependencies for S3,
the following splice is disjoint
SPLICE S3 s1.dag

Fig. 3: Disjointed Splice Example Visualized

528 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

Splice Limitations

1. Spliced DAGs do not produce Rescue DAGs
Because the nodes of a splice are directly incorporated into the DAG containing the SPLICE command,
splices do not generate their own rescue DAGs, unlike SUBDAG EXTERNALs. However, all progress for
nodes in the splice DAG will be written in the parent DAGs rescue DAG file.

2. Spliced DAGs must exist at submit time
DAG files referenced as splices must exist at the submit time of its parent DAG since DAGMan needs to
know the whole DAG structure at parse time.

Note: If the splice is part of a Sub-DAG it doesn’t have to exist at submit time of the top-level DAG, but
rather of the Sub-DAG that declares the splice.

3. Splices and Scripts (PRE/POST)
Although splices are considered and entity in the parent DAG, they do not contain the ability to have PRE
and POST scripts applied to the entire sub-workflow . This is because once all the splice nodes are parsed
and and incorporated into the parent DAG, there is no one node that represents the entire sub-workflow like
a Sub-DAG. Nodes within the spliced DAG can contain scripts.

A work around to this problem is to add NOOP nodes with the desired PRE/POST scripts before and after
the spliced DAG.

Outer DAG: example.dag
Names a node with no associated node job, a NOOP node
Note that the file noop.sub does not need to exist
JOB OnlyPreNode noop.sub NOOP
JOB OnlyPostNode noop.sub NOOP

Attach Scripts to NOOP Nodes
SCRIPT PRE OnlyPreNode prescript.sh
SCRIPT POST OnlyPostNode postscript.sh

Define the splice
SPLICE TheSplice thenode.dag

Define the dependency
PARENT OnlyPreNode CHILD TheSplice
PARENT TheSplice CHILD OnlyPostNode

4. Splices and various DAG commands
For the same reason as why PRE and POST scripts can’t be applied to an entire spliced sub-workflow (see
above limitation), the following DAG commands can’t be applied to a spliced DAG, but the nodes described
in a splice can use all available commands.

1. RETRY

2. VARS

3. PRIORITY

4. SAVE_POINT_FILE

The following commands in a spliced DAG do not take effect since they are processed at time.

1. SET_JOB_ATTR

2. CONFIG

7.4. Composing Workflows from DAGs 529

HTCondor Manual, Release 23.6.2

3. ENV

5. Splice Interaction with Categories and MAXJOBS
While a category can be set up to refer only to nodes internal to a splice, DAGMan has the ability for
categories to include nodes from more than one splice. This is done by prefixing the category name with a
+ to make it a global category. The MAXJOBS declaration using a cross-splice category can be specified
in either the parent DAG or the spliced DAG, but is recommended to be put in the parent DAG.

Here is an example which applies a single limitation on submitted jobs, identifying the category with +init.

relevant portion of file name: upper.dag
SPLICE A splice1.dag
SPLICE B splice2.dag

MAXJOBS +init 2

relevant portion of file name: splice1.dag
JOB C C.sub
CATEGORY C +init
JOB D D.sub
CATEGORY D +init

relevant portion of file name: splice2.dag
JOB X X.sub
CATEGORY X +init
JOB Y Y.sub
CATEGORY Y +init

For both global and non-global category throttles, settings at a higher level in the DAG override settings at
a lower level. For example, the following will result in the throttle settings of 2 for the +catY category and
10 for the A+catX category in splice.

relevant portion of file name: upper.dag
SPLICE A lower.dag
MAXJOBS A+catX 10
MAXJOBS +catY 2

relevant portion of file name: lower.dag
MAXJOBS catX 5
MAXJOBS +catY 1

Note: Non-global category names are prefixed with their splice name(s), so to refer to a non-global cate-
gory at a higher level, the splice name must be included.

530 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

7.5 Advance DAGMan Functionality

7.5.1 Custom Job Macros for Nodes

HTCondor has the ability for submit description files to include custom macros $(macroname) that can be set at submit
time by passing key=value pairs of information to . DAGMan can be what told key=value pairs to pass at node job
submit time allowing a single submit description to easily be used for multiple nodes in a DAG with variance.

Macro Variables for Nodes

Example Diamond DAG with VARS

File name: diamond.dag
JOB A A.submit
JOB B B.submit
JOB C C.submit
JOB D D.submit
VARS A state="Wisconsin"
PARENT A CHILD B C
PARENT B C CHILD D

file name: A.submit
executable = A.exe
log = A.log
arguments = "$(state)"
queue

The above DAG file and A.submit description will result in the job evoking the following:

$ A.exe Wisconsin

DAGMan can specify key=value pairs of information to be used within a node job submit description as a referable
macro via the VARS command. This information is defined on a per-node basis using the following syntax:

VARS <NodeName | ALL_NODES> [PREPEND | APPEND] macroname="string" [macroname2="string2" .
→˓..]

A macroname may contain alphanumeric characters (a-z, A-Z, and 0-9) and the underscore character. A restriction is
that the macroname itself cannot begin with the string queue, in any combination of upper or lower case letters.

Correct syntax requires that the value string must be enclosed in double quotes. To use a double quote mark within a
string, escape the double quote mark with the backslash character (\"). To add the backslash character itself, use two
backslashes (\\).

Multiple key=value pairs can be specified in a single VARS line with a space in between each pair. Multiple individual
VARS lines can also be used for the same node.

The use of VARS to provide information for submit description macros is very useful to reduce the number of submit
files needed when multiple nodes have job submit descriptions with simple variance. The following example shows
this behavior for a DAG with jobs that only vary in filenames.

7.5. Advance DAGMan Functionality 531

HTCondor Manual, Release 23.6.2

File: example.dag
JOB A shared.sub
JOB B shared.sub
JOB C shared.sub

VARS A filename="alpha"
VARS B filename="beta"
VARS C filename="charlie"

Generic submit description: shared.sub
executable = progX
output = $(filename).out
error = $(filename).err
log = $(filename).log
queue

For a DAG such as above, but with thousands of nodes, the ability to write and maintain a single submit description
file together with a single DAG input file is worthwhile.

Prepend or Append Variables to Node

Example Conditional Submit Description

Submit Description: conditional.sub
executable = progX

if defined var1
This will occur due to PREPEND
Arguments = "$(var1) was prepended"

else
This will occur due to APPEND
Arguments = "No variables prepended"

endif

var2 = "C"

output = results-$(var2).out
error = error.txt
log = job.log
queue

The VARS command can take either the optional PREPEND or APPEND keyword to specify how the following variable
information is passed to a node at job submission time.

• APPEND will add the variable after the submit description is read. Resulting in the passed variable being added
as a macro overwriting any already existing variable values.

• PREPEND will add the variable before the submit description file is read. This allows the variable to be used in
submit description conditionals.

For example, a DAG such as the following in conjunction with the submit description on the right will result in the jobs
to be A was prepended and the output file being named results-B.out.

532 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

JOB A conditional.sub

VARS A PREPEND var1="A"
VARS A APPEND var2="B"

If instead var1 used APPEND and var2 used PREPEND then will become No variables prepended and the output
file will be named results-C.out.

Note: If neither PREPEND nor APPEND is used in the VARS line then the variable will either be prepended or
appended based on the configuration variable .

Multiple macroname definitions

If a node has defined the same macroname multiple times in a DAG then a warning will be written to the log and the
last defined instance will be used for the variables value. Given the following example, custom_macro will be set to
bar and output the following warning message.

File: example.dag
JOB ONLY sample.sub
VARS ONLY custom_macro="foo"
VARS ONLY custom_macro="bar"

Warning: VAR custom_macro is already defined in job ONLY
Discovered at file "example.dag", line 4

Variables for Job Arguments

The value provided for a variable is capable of containing whitespace such as spaces and tabs, single and double quotes,
and backslashes. To use these special characters in the line for use the appropriate syntax and/or character escaping
mechanisms.

Note: Regardless of chosen syntax, the variable value is surrounded in double quotes. Meaning proper double quote
escaping must be provided to utilize double quotes in a node jobs .

DAG Passing VARS in Both Argument Syntaxes

New Syntax
VARS NodeA first="Alberto Contador"
VARS NodeA second="\"\"Andy Schleck\"\""
VARS NodeA third="Lance\\ Armstrong"
VARS NodeA fourth="Vincenzo ''The Shark'' Nibali"
VARS NodeA misc="!@#$%^&*()_-=+=[]{}?/"

Old Syntax
VARS NodeB first="Lance_Armstrong"
VARS NodeB second="\\\"Andreas_Kloden\\\""

7.5. Advance DAGMan Functionality 533

HTCondor Manual, Release 23.6.2

VARS NodeB third="Ivan_Basso"
VARS NodeB fourth="Bernard_'The_Badger'_Hinault"
VARS NodeB misc="!@#$%^&*()_-=+=[]{}?/"

New Syntax with single quote delimiting
VARS NodeC args="'Nairo Quintana' 'Chris Froome'"

Note: The macro second for NodeA contains a tab

Single quotes can be used in three ways for :

• in Old Syntax, within a macro’s value specification

• in New Syntax, within a macro’s value specification

• in New Syntax only, to delimit an argument containing white space

• in New Syntax only, escape a single quote with another to pass a single quote as part of an argument. Example
provided in NodeA’s fourth macro (see right).

Provided the example DAG input file on the right, the following would occur:

1. NodeA using the New Syntax:
The following line would produce the subsequent values passed to NodeA’s executable. The single quotes
around each variable reference are only necessary if the variable value may contain spaces or tabs.

arguments = "'$(first)' '$(second)' '$(third)' '($fourth)' '$(misc)'"

Alberto Contador
"Andy Schleck"
Lance\ Armstrong
Vincenzo 'The Shark' Nibali
!@#$%^&*()_-=+=[]{}?/

2. NodeB using the Old Syntax:
The following line would produce the subsequent values passed to NodeB’s executable.

arguments = $(first) $(second) $(third) $(fourth) $(misc)

Lance_Armstrong
"Andreas_Kloden"
Ivan_Basso
Bernard_'The_Badger'_Hinault
!@#$%^&*()_-=+=[]{}?/

3. NodeC using the New Syntax for single quote delimiting:
The following line would produce the subsequent values passed to NodeC’s executable.

arguments = "$(args)"

Nairo Quintana
Chris Froome

534 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

Referencing Macros Within a Definition

Special DAGMan Macros

DAGMan passes the following special macros at node job submission time:

1. JOB: Represents the fully scoped node name to which this job belongs.

2. RETRY: The current node retry value. Value is 0 the first time the node is run and increments for each
subsequent execution.

3. DAG_STATUS: The current status of the DAG as represented by . Intended for the FINAL node.

4. FAILED_COUNT: The current number of failed nodes in the DAG. Intended for the FINAL node.

The variables value can contain an HTCondor Job Submit Language (JSL) macro expansion $(<macroname>) allow-
ing for the DAGMan provided macros to utilize other existing macros like the following:

File: example.dag
JOB A sample.sub
VARS A test_case="$(JOB)-$(ClusterId)"

File: sample.sub
executable = progX
arguments = $(args)
output = $(test_case).out
error = $(test_case).err
log = $(test_case).log

queue

Given the example listed above, if the job is 42 then the output file would be A-42.out, the error file would be A-42.
err, and the log file would be A-42.log.

Using VARS to Define ClassAd Attributes

Old Plus Syntax

The VARS macro name can utilize the old + syntax to define a Classad attribute, but it is recommended to use the
My. syntax.

VARS NodeA +name="\"Cole\""

The macroname may also begin with a My., in which case it names a ClassAd attribute. For example, the VARS
specification

VARS NodeA My.name="\"Greg\""

results in the the NodeA job ClassAd attribute

A = "Greg"

7.5. Advance DAGMan Functionality 535

HTCondor Manual, Release 23.6.2

7.5.2 Special Node Types

While most DAGMan nodes are the standard JOB type that run a job and possibly a PRE or POST script, special nodes
can be specified in the DAG submit description to help manage the DAG and its resources in various ways.

FINAL Node

Exception for Running FINAL Node

The only case in which the FINAL node is not run is when a cycle is detected in the DAG at startup time. This
detection is only run when is True.

The FINAL node is a single and special node that is always run at the end of the DAG, even if previous nodes in the
DAG have failed or the DAG is removed via (On Unix systems). The FINAL node can be used for tasks such as cleaning
up intermediate files and checking the output of previous nodes. To declare a FINAL node simply use the following
syntax for the FINAL command:

FINAL NodeName SubmitDescription [DIR directory] [NOOP]

Like the JOB command the FINAL command produces a node with name NodeName and an associated job submit
description. The DIR and NOOP keywords work exactly like they do detailed in the JOB command.

Warning: There can only be one FINAL node in a DAG. If multiple are defined then DAGMan will log a parse
error and fail.

FINAL Nope Restrictions

The FINAL node can not be referenced with the following DAG commands:

• PARENT/CHILD

• RETRY

• ABORT-DAG-ON

• PRIORITY

• CATEGORY

The success or failure of the FINAL node determines the success or failure of the entire DAG. This includes any status
specified by any ABORT-DAG-ON specification that has taken effect. If some nodes of a DAG fail, but the FINAL
node succeeds, the DAG will be considered successful. Therefore, it is important to be careful about setting the exit
status of the FINAL node.

The FINAL node can utilize the special macros DAG_STATUS and/or FAILED_COUNT in the job submit description or
the script (PRE/POST) arguments to help determine the correct exit behavior of the FINAL node, and subsequently the
DAG as a whole.

If DAGMan is removed via then DAGMan will allow two submit attempts of the FINAL nodes job (On Unix only).

536 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

PROVISIONER Node

The PROVISIONER node is a single and special node that is always run at the beginning of a DAG. It can be used to
provision resources (i.e. Amazon EC2 instances, in-memory database servers) that can then be used by the remainder
of the nodes in the workflow. The syntax used for the PROVISIONER command is

PROVISIONER NodeName SubmitDescription

When the PROVISIONER node is defined in a DAG, DAGMan will run the PROVISIONER node before all other
nodes and wait for the PROVISIONER job to state it is ready. To achieve this, the PROVISIONER job must set it’s
job ClassAd attribute to the enumerated value ProvisionerState::PROVISIONING_COMPLETE (currently: 2). Once
notified, DAGMan will begin running the other nodes.

The PROVISIONER runs for a set amount of time defined in its job. It does not get terminated automatically at the end
of a DAG workflow. The expectation is that it needs to explicitly de-provision any resources, such as expensive cloud
computing instances that should not be allowed to run indefinitely.

Warning: Currently only one PROVISIONER node may exist for a DAG. If multiple are defined in a DAG then
an error will be logged and the DAG will fail.

SERVICE Node

A SERVICE node is a special type of node that is always run at the beginning of a DAG. These are typically used to
run tasks that need to run alongside a DAGMan workflow (i.e. progress monitoring) without any direct dependencies
to the other nodes in the workflow.

The syntax used for the SERVICE command is

SERVICE NodeName SubmitDescription

If a DAGMan workflow finishes while there are SERVICE nodes still running, it will remove all running SERVICE
nodes and exit.

While the SERVICE node is started before other nodes in the DAG, there is no guarantee that it will start running before
any of the other nodes. However, running it directly on the access point by setting to Local will make it more likely to
begin running prior to other nodes.

Note: A SERVICE node runs on a best-effort basis. If this node fails to submit correctly, this will not register as an
error and the DAG workflow will continue normally.

7.5. Advance DAGMan Functionality 537

HTCondor Manual, Release 23.6.2

7.5.3 Node Priorities

Example Diamond DAG with Node Priority

The following example Node C’s priority of 1 will result in Node C being submitted and most likely running before
Node B. If no priority was set then Node B would be run first due to it be defined earlier in the DAG input file.

File name: diamond.dag

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
RETRY C 3
PRIORITY C 1

DAGMan workflows can assign a priority to a node in its DAG. Doing so will determine which nodes, who’s PARENT
dependencies have completed, will be submitted. Just like the Job Priority for a job in the queue, the priority value is
an integer (which can be negative). Where a larger numerical priority is better. The default priority is 0. To assign a
nodes priority follow the syntax for the PRIORITY command as follows:

PRIORITY <NodeName | ALL_NODES> PriorityValue

Node priorities are most relevant when DAGMan Throttling is being utilized or if there are not enough resources in the
pool to run all recently submitted node jobs.

Properties of Setting Node Priority

• If a node priority is set, then at submission time DAGMan will set the via . This is passed before processing the
submit description.

• When a Sub-DAG has an associated node PRIORITY, the Sub-DAG priority will affect all priorities for nodes
in the Sub-DAG. See Effective node priorities.

• Splices cannot be assigned priorities, but individual nodes within a splice can.

• DAGs containing PRE scripts may not submit the nodes in exact priority order, even if doing so would satisfy
the DAG dependencies.

Note: When using an external submit file for a node (not inline or submit-description), any declared take precedence
over the DAGMan value passed at job submission time.

Note: Node priorities do not override DAG PARENT/CHILD dependencies and are not guarantees of the relative
order in which node jobs are run.

538 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

Effective node priorities

When a Sub-DAG has an associated node priority, all of the node priorities within the Sub-DAG get modified to become
the effective node priority. The effective node priority is calculated by adding the Sub-DAGs priority to each internal
nodes priority. The default Sub-DAG priority is 0.

File: priorities.dag
JOB A sample.sub
SUBDAG EXTERNAL B lower.dag

PRIORITY A 25
PRIORITY B 100

File: lower.dag
JOB lowA sample.sub
JOB lowB sample.sub

PRIORITY lowA 10
PRIORITY lowB 50

Provided the DAGs described on the above, the effective node priorities (not including the Sub-DAG node B) are as
follows:

Node Effective Prio
A 25
lowA 110
lowB 150

Adding Accounting Information at DAG Submit

The and values can be specified using the -append flag to , for example:

$ condor_submit_dag \
-append accounting_group=group_physics \
-append accounting_group_user=albert \
relativity.dag

7.5.4 DAGMan and Accounting Groups

will propagate it’s and values down to all nodes within the DAG (including Sub-DAGs). Any explicitly set accounting
group information within DAGMan node job submit descriptions will take precedence over the propagated accounting
information. This allows for easy setting of accounting information for all DAG nodes while giving a way for specific
nodes to run with different accounting information.

For more information about HTCondor’s accounting behavior see Group Accounting and/or Accounting Groups with
Hierarchical Group Quotas.

7.5. Advance DAGMan Functionality 539

HTCondor Manual, Release 23.6.2

7.5.5 ALL_NODES Option

ALL_NODES Limitations

Due to how DAGMan parses DAG files and sets up, the ALL_NODES keyword will not be applied to nodes across
splices, Sub-DAGs, and multiple DAGs submitted in a single instance. Each separate DAG (via splice or Sub-DAG)
can utilize ALL_NODES individually.

Certain DAG input file commands take the alternative case insensitive keyword ALL_NODES in place of a specific
node name. This allows for common node property to be applied to all nodes (excluding service and the FINAL node).
The following commands can utilize ALL_NODES:

SCRIPT PRE_SKIP RETRY
VARS PRIORITY
CATEGORY ABORT-DAG-ON

When multiple commands set a DAG nodes property, the last one defined takes precedent overriding other earlier
definitions. For example:

Multi-Command Definition Node Info

Final node properties for nodes defined in DAG described to the left.

Node # Retries $(name) PRE Script Exe
A 10 A my_script A
B 3 nodeB my_script B
C 3 C my_script C

File: sample.dag
JOB A node.sub
JOB B node.sub
JOB C node.sub

SCRIPT PRE ALL_NODES my_script $JOB

VARS A name="alphaNode"

VARS ALL_NODES name="$(JOB)"

This overrides the above VARS command for node B.
VARS B name="nodeB"

RETRY all_nodes 3

RETRY A 10

540 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

7.5.6 INCLUDE

Example DAG INCLUDE

Provided the two following DAGs, DAGMan will produce a single DAGMan process containing nodes A,B, and
C.
File: foo.dag
JOB A A.sub
INCLUDE bar.dag

File: bar.dag
JOB B B.sub
JOB C C.sub

The INCLUDE command allows the contents of one DAG file to be parsed inline as if they were physically included
in the referencing DAG file. The syntax for INCLUDE is

INCLUDE FileName

The INCLUDE command allows for easier DAG management and ability to easily change the DAG without losing the
older setup. For example, a DAG could describe all the nodes to be executed in the workflow and include a file the
describes the PARENT/CHILD relationships. If multiple different DAG structure files were created then by simply
changing the INCLUDE line can modify the entire DAG structure without manually changing each line in between
executions.

All INCLUDE files must contain proper DAG syntax, and INCLUDEs can nested to any depth (be careful of creating
a cycle).

Warning: INCLUDE does not modify node names like splicing which will result in a parse error if the same node
name is used more than once.

7.5.7 DAG Manager Job Specifications

While most DAG commands modify/describe the DAG workflow and its various pieces, some commands modify the
DAGMan proper job itself.

Setting Job Ad Attributes

Example Setting DAGMan Proper Job Ad Attribute

The following will set the attribute TestNumber to 17 in the DAGMan proper job’s ClassAd.

SET_JOB_ATTR TestNumber = 17

The SET_JOB_ATTR command sets an attribute/value pair to be set in the DAGMan proper job’s ClassAd. The
syntax is:

7.5. Advance DAGMan Functionality 541

HTCondor Manual, Release 23.6.2

SET_JOB_ATTR AttributeName = AttributeValue

The SET_JOB_ATTR attribute is not propagated down to node jobs of the DAG.

The provided value can contain spaces when contained in single or double quotes. These quote marks will become part
of the value.

If the same attribute is specified multiple times then the last-specified value is utilized. An attribute set in the DAG file
can be overridden at submit time as follows:

$ condor_submit_dag -append 'My.<attribute> = <value>'

Controlling the Job Environment

The ENV command is used to specify environment variables to set into the DAGMan jobs environment or get from
the environment that the DAGMan job was submitted from. It is important to know that the environment variables in
the DAG manager jobs environment effect scripts and node jobs that rely environment variables since scripts and node
jobs are submitted from the DAGMan jobs environment. The syntax is:

ENV GET VAR-1 [VAR-2 ...]
or
ENV SET Key=Value;Key=Value; ...

• GET Keyword:
Takes a list of environment variable names to be added to the DAGMan jobs command in the *.condor.
sub file.

• SET Keyword:
Takes a semi-colon delimited list of key=value pairs of information to explicitly add to the DAGMan jobs
command in the *.condor.sub file.

Note: The added key=value pairs must follow the normal HTCondor job environment rules.

7.5.8 DAG Specific Configuration

Example Custom DAGMan Configuration

File: sample.dag
CONFIG dagman.conf

File: dagman.conf
DAGMAN_MAX_JOBS_IDLE = 10

DAGMan allows for all DAGMan Configuration File Entries to be applied on a per DAG basis. To apply custom
configuration for a DAGMan workflow simply create a custom configuration file to provide the the command.

542 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

Only one configuration file is permitted per DAGMan process. If multiple DAGs are submitted at one time or a workflow
is comprised of Splices then a fatal error will occur upon detection of more than one configuration file. Sub-DAGs run
as their own DAGMan process allowing Sub-DAGs to have there own configuration files.

Custom configuration values are applied for the entire DAG workflow. So, if multiple DAGs are submitted at one time
then all of the DAGs will use the custom configuration even though some DAGs didn’t specify a custom config file.

Note: Only configuration options that apply specifically to DAGMan or to DaemonCore (like debug log levels) take
effect when added to a custom DAG configuration file.

Given there are many layers of configuration processing, and some options that have the same effect as a DAGMan
configuration options, the values DAGMan uses is dictated by the following ordered list where elements processed
later take precedence:

1. HTCondor system configuration as set up by the AP administrator(s).

2. Configuration options passed as special HTCondor environment variables _CONDOR_<config
option>=Value.

3. Custom configuration provided by the CONFIG command or s -config option.

4. options that control the same behavior as a configuration option such as and -maxjobs.

7.5.9 Visualizing DAGs

Example DAG DOT File

Provided the following DAG file declaration, DAGMan will produce a dot file named dag.dot.

DOT dag.dot

The dag.dot file can then be used with the Graphiz package as follows to produce a visual of the DAG.

$ dot -Tps dag.dot -o dag.ps

To help visualize a DAG, DAGMan has the ability to create a dot input file for the AT&T Research Labs Graphiz
package to draw the DAG. DAGMan will produce dot files when the DOT command is declared with the following
syntax:

DOT filename [UPDATE | DONT-UPDATE] [OVERWRITE | DONT-OVERWRITE] [INCLUDE
→˓<dot-file-header>]

The DOT command can take several optional parameters as follows:

• UPDATE This will update the dot file every time a significant update happens.

• DONT-UPDATE Creates a single dot file, when the DAGMan begins executing. This is the default if the pa-
rameter UPDATE is not used.

• OVERWRITE Overwrites the dot file each time it is created. This is the default, unless DONT-OVERWRITE
is specified.

• DONT-OVERWRITE Creates a new dot file each time one is written as <filename>.<num>. Where the
number increases with each write such as dag.dot.0 to dag.dot.1.

7.5. Advance DAGMan Functionality 543

https://www.graphviz.org/

HTCondor Manual, Release 23.6.2

• INCLUDE Includes the contents of the specified file in the produced dot file after the graphs label line.

7.6 Informational Files

7.6.1 Workflow Metrics

Example Metrics File Contents

{
"client":"condor_dagman",
"version":"23.5.0",
"type":"metrics",
"start_time":1375313459.603,
"end_time":1375313491.498,
"duration":31.895,
"exitcode":1,
"dagman_id":"26",
"parent_dagman_id":"11",
"rescue_dag_number":0,
"jobs":4,
"jobs_failed":1,
"jobs_succeeded":3,
"dag_jobs":0,
"dag_jobs_failed":0,
"dag_jobs_succeeded":0,
"total_jobs":4,
"total_jobs_run":4,
"dag_status":2

}

For every DAG, a JSON formatted metrics file named <DAG input file>.metrics is created when DAGMan exits.
In a workflow with nested DAGs, each nested DAG will create its own metrics file. The metrics file will contain the
following information:

• client: The name of the client workflow software ().

• version: The version of the client workflow software ().

• type: The type of data, "metrics".

• start_time: The start time of the client, in epoch seconds, with millisecond precision.

• end_time: The end time of the client, in epoch seconds, with millisecond precision.

• duration: The duration of the client, in seconds, with millisecond precision.

• exitcode: The exit code.

• dagman_id: The instances value.

• parent_dagman_id: The value of this DAGs parent instance; empty if this DAG is not a SUBDAG.

• rescue_dag_number: The number of the Rescue DAG being run; 0 if not running a Rescue DAG.

544 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

• jobs: The number of nodes in the DAG input file, not including SUBDAG nodes.

• jobs_failed: The number of failed nodes in the workflow, not including SUBDAG nodes.

• jobs_succeeded: The number of successful nodes in the workflow, not including SUBDAG nodes; this includes
jobs that succeeded after retries.

• dag_jobs: The number of SUBDAG nodes in the DAG input file.

• dag_jobs_failed: The number of SUBDAG nodes that failed.

• dag_jobs_succeeded: The number of SUBDAG nodes that succeeded.

• total_jobs: The total number of jobs in the DAG input file.

• total_jobs_run: The total number of nodes executed in a DAG. It should be equal to jobs_succeeded +
jobs_failed + dag_jobs_succeeded + dag_jobs_failed.

• dag_status: The final of the DAG.

If is set to True then the additionally following metrics will be recorded:

• graph_height: The height of the DAG.

• graph_width: The width of the DAG.

• graph_num_edges: The number of edges (connections) in the DAG.

• graph_num_vertices: The number of vertices (nodes) in the DAG.

Sample Node Status File Contents
[
Type = "DagStatus";
DagFiles = {
"diamond.dag"

};
Timestamp = 1399674138;
DagStatus = 3;
NodesTotal = 12;
NodesDone = 11;
NodesPre = 0;
NodesQueued = 1;
NodesPost = 0;
NodesReady = 0;
NodesUnready = 0;
NodesFailed = 0;
JobProcsHeld = 0;
JobProcsIdle = 1;

]
[
Type = "NodeStatus";
Node = "A";
NodeStatus = 5;
StatusDetails = "";
RetryCount = 0;
JobProcsQueued = 0;
JobProcsHeld = 0;

]
...

7.6. Informational Files 545

HTCondor Manual, Release 23.6.2

[
Type = "NodeStatus";
Node = "D";
NodeStatus = 3;
StatusDetails = "idle";
RetryCount = 0;
JobProcsQueued = 1;
JobProcsHeld = 0;

]
[
Type = "StatusEnd";
EndTime = 1399674138;
NextUpdate = 1399674141;

]

7.6.2 Current Node Status File

DAGMan has the option to write the DAG and its node statuses to a file periodically. This is intended for a user or script
to use for monitoring the DAG. To have DAGMan write the node status file simply use the NODE_STATUS_FILE
commands syntax as follows:

NODE_STATUS_FILE filename [minimumUpdateTime] [ALWAYS-UPDATE]

The node status file is a collection of ClassAds in New ClassAd format. There is one ClassAd for the overall status
of the DAG, one ClassAd for the status of each node, and one ClassAd with the time at which the node status file was
completed as well as the time of the next update.

The status file may be updated once per in combination with the optional minimumUpdateTime value which defaults
to 60 seconds. The status file is also updated a final time when the DAG completes either successfully or not.

Normally the node status file is only updated if the status of some node has changed since the last file update. If
provided the optional ALWAYS-UPDATE keyword then DAGMan will always update the status file even if no nodes
have changed status.

The following example would result the file my.dag.status that will be rewritten with the current DAG status infor-
mation at intervals of 30 seconds or more:

NODE_STATUS_FILE my.dag.status 30

Possible DagStatus and NodeStatus attribute values are:

• 0 (STATUS_NOT_READY): At least one parent has not yet finished or the node is a FINAL node.

• 1 (STATUS_READY): All parents have finished, but the node is not yet running.

• 2 (STATUS_PRERUN): The node’s PRE script is running.

• 3 (STATUS_SUBMITTED): The node’s HTCondor job(s) are in the queue.

• 4 (STATUS_POSTRUN): The node’s POST script is running.

• 5 (STATUS_DONE): The node has completed successfully.

• 6 (STATUS_ERROR): The node has failed.

• 7 (STATUS_FUTILE): The node will never run because an ancestor node failed.

546 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

An ancestor is a node that a another node depends on either directly or indirectly through a chain of PARENT/CHILD
relationships. Provided the DAG visualized below, node G’s ancestors are nodes A, B, D, and F.

Fig. 4: DAG Ancestor Tree Visualized

Note: A NODE_STATUS_FILE command inside any splice is ignored, and if multiple DAG files are specified then
the first specification takes precedence.

7.6.3 Machine-Readable Event History

DAGMan can produce a machine-readable history of events called the job state log. This log was designed for use by
the Pegasus Workflow Management System which operates as a layer on top of DAGMan. The job state log can be used
to monitor the state of the DAGMan workflow. The job state log is produced when the JOBSTATE_LOG command
is declared with the following syntax:

JOBSTATE_LOG filename

The job state log is a filtered and easily machine-readable version of the *.dagman.out debug log file. It contains all
the node events and some additional meta information. Unlike the node status file, the job state log is appended to.
Meaning it contains the entire DAG history rather than just the current snapshot.

There are 5 line types in the job state log. Each line begins with a Unix timestamp in the form of seconds since the
Epoch. Fields within each line are separated by a single space character.

1. DAGMan Start:
A meta-event identifying the job start. Where DAGJobId is the and of the DAGMan job.

timestamp INTERNAL *** DAGMAN_STARTED DAGJobID ***

2. DAGMan Exit:
A meta-event identifying the job exit. Where ExitCode is the DAGMan jobs exit code.

timestamp INTERNAL *** DAGMAN_FINISHED ExitCode ***

3. Recovery Started:
A meta-event identifying DAGMan has entered recovery mode. While in recovery, node events are only
printed if they were not already printed prior to recovery mode start.

timestamp INTERNAL *** RECOVERY_STARTED ***

4. Recovery Finish/Failure:
A meta-event identifying DAGMan recovery mode completion or failure.

timestamp INTERNAL *** RECOVERY_FINISHED ***
or

timestamp INTERNAL *** RECOVERY_FAILURE ***

5. Node Events:
A meta-event identifying job and script events of a specified node.

7.6. Informational Files 547

https://pegasus.isi.edu/

HTCondor Manual, Release 23.6.2

timestamp NodeName EventName CondorID JobTag - SequenceNumber

The NodeName is the DAG identifier for the node as specified by the JOB command.

The EventName is one of the many defined event or meta-events as listed below:

PRE_SCRIPT_STARTED PRE_SCRIPT_SUCCESS PRE_SCRIPT_FAILURE
SUBMIT_FAILURE JOB_SUCCESS JOB_FAILURE
POST_SCRIPT_STARTED POST_SCRIPT_SUCCESS POST_SCRIPT_FAILURE

The CondorId is the node job’s and . Meta-events that take prior to successful job submission will not have
an assigned CondorId.

The JobTag is an externally defined tag to assist any workflow managers built on top of the job state log.
JobTag defaults to the dash character (-) when no tag is specified. This is defined by setting the following
custom job ad attributes in the job’s submit description:

+job_tag_name = "+job_tag_value"
+job_tag_value = "<JobTag>"

If utilizing Pegasus this can be bypassed by setting:

+pegasus_site = "<JobTag>"

The SequenceNumber is a monotonically-increasing number that represents each node run attempt due to
retries or if the DAG is rerun from a rescue file.

Below is example contents of a job state log assuming JobTag was set to local:

1292620511 INTERNAL *** DAGMAN_STARTED 4972.0 ***
1292620523 NodeA PRE_SCRIPT_STARTED - local - 1
1292620523 NodeA PRE_SCRIPT_SUCCESS - local - 1
1292620525 NodeA SUBMIT 4973.0 local - 1
1292620525 NodeA EXECUTE 4973.0 local - 1
1292620526 NodeA JOB_TERMINATED 4973.0 local - 1
1292620526 NodeA JOB_SUCCESS 0 local - 1
1292620526 NodeA POST_SCRIPT_STARTED 4973.0 local - 1
1292620531 NodeA POST_SCRIPT_TERMINATED 4973.0 local - 1
1292620531 NodeA POST_SCRIPT_SUCCESS 4973.0 local - 1
1292620535 INTERNAL *** DAGMAN_FINISHED 0 ***

Note: Only one job state log can exist per DAGMan process. If multiple are declared then the first one found will take
effect and the remainder will output a warning at parse time.

548 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

7.7 Quick Reference

7.7.1 DAG Commands

General

¶INCLUDE (see Full Description)
Parse the provided file as if it was inline to the current file.

INCLUDE filename

¶JOB (see Full Description)
Create a normal DAG node to execute a specified HTCondor job.

JOB NodeName SubmitDescription [DIR directory] [NOOP] [DONE]

¶PARENT/CHILD (see Full Description)
Create dependencies between two or more DAG nodes.

PARENT ParentNodeName [ParentNodeName2 ...] CHILD ChildNodeName [ChildNodeName2 ..
→˓.]

¶SPLICE (see Full Description)
Incorporate the specified DAG file into the structure of another DAG.

SPLICE SpliceName DagFileName [DIR directory]

¶SUBDAG (see Full Description)
Specify a DAG workflow to be submitted by and managed by a parent DAG.

SUBDAG EXTERNAL JobName DagFileName [DIR directory] [NOOP] [DONE]

¶SUBMIT-DESCRIPTION (see Full Description)
Create an inline job submit description that can be applied to multiple DAG nodes.

SUBMIT-DESCRIPTION DescriptionName {
submit attributes go here

}

Node Behavior

¶DONE
Mark a DAG node as done causing neither the associated job or scripts to execute.

DONE NodeName

¶PRE_SKIP (see Full Description)
Inform DAGMan to skip the remaining node execution if that nodes specified PRE script exits with a specified
code.

PRE_SKIP <NodeName | ALL_NODES> non-zero-exit-code

¶PRIORITY (see Full Description)
Assign a node priority to control DAGMan node submission.

7.7. Quick Reference 549

HTCondor Manual, Release 23.6.2

PRIORITY <NodeName | ALL_NODES> PriorityValue

¶RETRY (see Full Description)
Inform DAGMan to retry a node up to a specified number of times when a failure occurs.

RETRY <NodeName | ALL_NODES> NumberOfRetries [UNLESS-EXIT value]

¶SCRIPT (see Full Description)
Apply a script to be executed on the AP for a specified node.

PRE-Script
SCRIPT [DEFER status time] [DEBUG filename type] PRE <NodeName | ALL_NODES>␣
→˓ExecutableName [arguments]
POST-Script
SCRIPT [DEFER status time] [DEBUG filename type] POST <NodeName | ALL_NODES>␣
→˓ExecutableName [arguments]
HOLD-Script
SCRIPT [DEFER status time] [DEBUG filename type] HOLD <NodeName | ALL_NODES>␣
→˓ExecutableName [arguments]

¶VARS (see Full Description)
Specify a list of key=”Value” pairs of information to be applied to the specified node as referable submit macros.

VARS <NodeName | ALL_NODES> [PREPEND | APPEND] macroname="string"␣
→˓[macroname2="string2" ...]

Special Nodes

¶FINAL (see Full Description)
Create a DAG node guaranteed to run at the end of a DAG regardless of successful or failed execution.

FINAL NodeName SubmitDescription [DIR directory] [NOOP]

¶PROVISIONER (see Full Description)
Create a DAG node responsible for provisioning resources to be utilized by other DAG nodes. Guaranteed to
start before all other nodes.

PROVISIONER NodeName SubmitDescription

¶SERVICE (see Full Description)
Create a DAG node for specialized management/monitoring tasks. All service nodes are submitted prior to
normal nodes.

550 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

SERVICE NodeName SubmitDescription

Throttling

¶CATEGORY (see Full Description)
Assign a specified node to a DAG category.

CATEGORY <NodeName | ALL_NODES> CategoryName

¶MAXJOBS (see Full Description)
Set the max number of submitted set of jobs for a specified

MAXJOBS CategoryName MaxJobsValue

DAG Control

¶ABORT-DAG-ON (see Full Description)
Inform DAGMan to write a rescue file and exit when specified node exits with the specified value.

ABORT-DAG-ON <NodeName | ALL_NODES> AbortExitValue [RETURN DAGReturnValue]

¶CONFIG (see Full Description)
Specify custom DAGMan configuration file for the DAG.

CONFIG filename

¶ENV (see Full Description)
Modify the DAGMan proper job’s environment by explicitly setting environment variables or filtering variables
from the s environment at submit time.

ENV GET VAR-1 [VAR-2 ...]
or
ENV SET Key=Value;Key=Value; ...

¶SET_JOB_ATTR (see Full Description)
Set a ClassAd attribute in the DAGMan proper job’s ad.

SET_JOB_ATTR AttributeName = AttributeValue

¶REJECT
Mark the DAG input file as rejected to prevent execution.

REJECT

7.7. Quick Reference 551

HTCondor Manual, Release 23.6.2

Special Files

¶DOT (see Full Description)
Inform DAGMan to produce a Graphiz Dot file for visualizing a DAG.

DOT filename [UPDATE | DONT-UPDATE] [OVERWRITE | DONT-OVERWRITE] [INCLUDE
→˓<dot-file-header>]

¶JOBSTATE_LOG (see Full Description)
Inform DAGMan to produce a machine-readable history file.

JOBSTATE_LOG filename

¶NODE_STATUS_FILE (see Full Description)
Inform DAGMan to produce a snapshot status file for the DAG nodes.

NODE_STATUS_FILE filename [minimumUpdateTime] [ALWAYS-UPDATE]

¶SAVE_POINT_FILE (see Full Description)
Inform DAGMan to write a save file the first time the specified node starts.

SAVE_POINT_FILE NodeName [Filename]

7.7.2 Produced Files

The following are always produced automatically by DAGMan on execution. Where the primary DAG is the only or
first DAG file specified at submit time.

1. scheduler universe job files:

<Primary DAG>.condor.sub | DAGMan proper jobs submit description file.
<Primary DAG>.dagman.log | DAGMan proper jobs event file.
<Primary DAG>.lib.out | DAGMan proper jobs file.
<Primary DAG>.lib.err | DAGMan proper jobs file.

2. DAGMan informational files:

<Primary DAG>.dagman.out | DAGMan processes debug log file.
<Primary DAG>.nodes.log | Shared job event log file for all jobs managed by␣
→˓DAGMan (Heart of DAGMan).
<Primary DAG>.metrics | JSON formatted file containing DAGMan metrics␣
→˓outputted at DAGMan exit.

3. Other:

<Primary DAG>.rescue<XXX> | Rescue DAG file denoting completed work from␣
→˓previous execution (see The Rescue DAG).

552 Chapter 7. DAGMan Workflows

HTCondor Manual, Release 23.6.2

7.7.3 Referable DAG Information

DAGMan provides various pieces of DAG information to scripts and jobs in the form of special referable macros and
job ClassAd attributes.

Job Macros

Macros referable by job submit description as $(<macro>)

JOB | Name of the node this job is associated with.
RETRY | Current node retry attempt value. Set to 0 on first execution.
FAILED_COUNT | Number of failed nodes currently in the DAG (intended for Final Node).
DAG_STATUS | Current (intended for Final Node).

Job ClassAd Attributes

ClassAd attributes added to the job ad of all jobs managed by DAGMan.

| Job-Id of the DAGMan job that submitted this job.
| The node name of which this job belongs.

| The nodes current retry number. First execution is 0. This is only included if ␣
→˓includes Retry.
| List of parent node names. Note depending on the number of parent nodes this may be␣
→˓left empty.

| Current DAG status (Intended for Final Nodes).

Script Macros

Macros that can be passed to a script as optional arguments like $<macro>

For All Scripts:
JOB | Name of the node this script is associated with.
RETRY | The nodes current retry number. Set to 0 on first execution.
MAX_RETRIES | Maximum number of retries allowed for the node.
FAILED_COUNT | Current number of failed nodes in the DAG.
DAG_STATUS | The current .

Only for POST Scripts:
JOBID | The Job-Id of the job executed by node. It is the and of the␣

→˓last job in the set.
RETURN | The exit code of the first failed job in the set or 0 for a␣

→˓successful job execution.
PRE_SCRIPT_RETURN | Return value of the associated node's PRE Script.

7.7. Quick Reference 553

HTCondor Manual, Release 23.6.2

7.7.4 DAG Submission and Management

Tip for Querying All Jobs in a DAG

When doing job queries to the AP queue or history, the constraint -const “DAGManJobId==<DAG Job Id>”
can be used to return job ads for only the jobs submitted and managed by the specified DAG.

<DAG Job Id> should be replaced with the of the DAGMan proper job.

For more in depth explanation of controlling a DAG see Basic DAG Controls

DAG Submission

To submit a DAGMan workflow simply use an input file describing the DAG.

$ condor_submit_dag diamond.dag

DAG Monitoring

All the jobs managed by the DAG and the DAGMan proper job itself can be monitored with the tools listed below. by
default returns a condensed overview of jobs managed by DAGMan currently in the queue. To see all jobs individually
use the -nobatch flag.

Stopping a DAG

Pause/Restart
A DAG can temporarily be stopped by using on the DAGMan proper job. To restart the DAG simply use .

Remove
To remove a DAG simply use on the DAGMan proper job.

554 Chapter 7. DAGMan Workflows

CHAPTER

EIGHT

PYTHON BINDINGS

The HTCondor Python bindings expose a Pythonic interface to the HTCondor client libraries. They utilize the same
C++ libraries as HTCondor itself, meaning they have nearly the same behavior as the command line tools.

Installing the Bindings
Instructions on installing the HTCondor Python bindings.

HTCondor Python Bindings Tutorials
Learn how to use the HTCondor Python bindings.

Python Bindings version 2 API Reference
Documentation for htcondor2 and classad2.

classad API Reference
Documentation for classad .

htcondor API Reference
Documentation for htcondor.

htcondor.htchirp API Reference
Documentation for htcondor.htchirp.

htcondor.dags API Reference
Documentation for htcondor.dags.

htcondor.personal API Reference
Documentation for htcondor.personal.

8.1 Installing the Bindings

The HTCondor Python bindings are available from a variety of sources, depending on what platform you are on and
what tool you want to use to do the installation.

8.1.1 Linux System Packages

Availability: Enterprise Linux; Debian; Ubuntu

The bindings are available as a package in various Linux system package repositories. The packages will automatically
be installed if you install HTCondor itself from our repositories. This method will let you use the Python bindings in
your system Python installation.

555

https://htcondor.org/downloads/htcondor

HTCondor Manual, Release 23.6.2

8.1.2 Windows Installer

Availability: Windows

The bindings are packaged in the Windows installer. Download the .msi for the version of your choice from the
table here and run it. After installation, the bindings packages will be in lib\python in your install directory (e.g.,
C:\condor\lib\python). Add this directory to your PYTHONPATH environment variable to use the bindings.

8.1.3 PyPI

Availability: Linux

The bindings are available on PyPI. To install from PyPI using pip, run

python -m pip install htcondor

8.1.4 Conda

Availability: Linux

The bindings are available on conda-forge. To install using conda, run

conda install -c conda-forge python-htcondor

8.2 HTCondor Python Bindings Tutorials

These tutorials are also available as a series of runnable Jupyter notebooks via Binder:

If Binder is not working for some reason, you can also try running them using the instructions in the GitHub repository.

The HTCondor Python bindings provide a powerful mechanism to interact with HTCondor from a Python program.
They utilize the same C++ libraries as HTCondor itself, meaning they have nearly the same behavior as the command
line tools.

In these tutorials you will learn the basics of the Python bindings and how to use them. They are broken down into a
few major sections:

• Introductory Topics, quick overviews of the major features of the bindings.

• Advanced Topics, in-depth examinations of the nooks and crannies of the system.

556 Chapter 8. Python Bindings

https://htcondor.org/downloads/htcondor
https://htcondor.org/downloads/htcondor
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://pypi.org/project/htcondor/
https://pypi.org/project/htcondor/
https://anaconda.org/conda-forge/htcondor
https://anaconda.org/conda-forge/htcondor
https://anaconda.org/conda-forge/python-htcondor
https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/index.ipynb
https://github.com/htcondor/htcondor-python-bindings-tutorials

HTCondor Manual, Release 23.6.2

8.2.1 Introductory Tutorials

These tutorials cover the basics of the Python bindings and how to use them through a quick overview of the major
components.

1. Submitting and Managing Jobs - How to submit and manage HTCondor jobs from Python.

2. ClassAds Introduction - The essentials of the ClassAd language.

3. HTCondor Introduction - How to interact with the individual HTCondor daemons.

8.2.2 Advanced Tutorials

The advanced tutorials are in-depth looks at specific pieces of the Python bindings. Each is meant to be stand-alone
and should only require knowledge from the introductory tutorials.

1. Advanced Job Submission and Management - More details on submitting and managing jobs from Python.

2. Advanced Schedd Interaction - Performing transactions in the schedd and querying history.

3. Interacting with Daemons - Generic commands that work with any HTCondor daemon.

4. Scalable Job Tracking - Techniques for keeping close track of many jobs without overloading the schedd.

5. DAG Creation and Submission - Using htcondor.dags to create and submit a DAG.

6. Personal Pools - Using htcondor.personal to create and manage a “personal” HTCondor pool.

Submitting and Managing Jobs

Launch this tutorial in a Jupyter Notebook on Binder:

What is HTCondor?

An HTCondor pool provides a way for you (as a user) to submit units of work, called jobs, to be executed on a distributed
network of computing resources. HTCondor provides tools to monitor your jobs as they run, and make certain kinds
of changes to them after submission, which we call “managing” jobs.

In this tutorial, we will learn how to submit and manage jobs from Python. We will see how to submit jobs with various
toy executables, how to ask HTCondor for information about them, and how to tell HTCondor to do things with them.
All of these things are possible from the command line as well, using tools like condor_submit, condor_qedit, and
condor_hold. However, working from Python instead of the command line gives us access to the full power of Python
to do things like generate jobs programmatically based on user input, pass information consistently from submission
to management, or even expose an HTCondor pool to a web application.

We start by importing the HTCondor Python bindings modules, which provide the functions we will need to talk to
HTCondor.

[1]: import htcondor # for submitting jobs, querying HTCondor daemons, etc.
import classad # for interacting with ClassAds, HTCondor's internal data format

8.2. HTCondor Python Bindings Tutorials 557

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Submitting-and-Managing-Jobs.ipynb

HTCondor Manual, Release 23.6.2

Submitting a Simple Job

To submit a job, we must first describe it. A submit description is held in a Submit object. Submit objects consist of
key-value pairs, and generally behave like Python dictionaries. If you’re familiar with HTCondor’s submit file syntax,
you should think of each line in the submit file as a single key-value pair in the Submit object.

Let’s start by writing a Submit object that describes a job that executes the hostname command on an execute node,
which prints out the “name” of the node. Since hostname prints its results to standard output (stdout), we will capture
stdout and bring it back to the submit machine so we can see the name.

[2]: hostname_job = htcondor.Submit({
"executable": "/bin/hostname", # the program to run on the execute node
"output": "hostname.out", # anything the job prints to standard output will␣

→˓end up in this file
"error": "hostname.err", # anything the job prints to standard error will end␣

→˓up in this file
"log": "hostname.log", # this file will contain a record of what happened␣

→˓to the job
"request_cpus": "1", # how many CPU cores we want
"request_memory": "128MB", # how much memory we want
"request_disk": "128MB", # how much disk space we want

})

print(hostname_job)

executable = /bin/hostname
output = hostname.out
error = hostname.err
log = hostname.log
request_cpus = 1
request_memory = 128MB
request_disk = 128MB

The available descriptors are documented in the condor_submit manual page. The keys of the Python dictionary
you pass to htcondor.Submit should be the same as for the submit descriptors, and the values should be strings
containing exactly what would go on the right-hand side.

Note that we gave the Submit object several relative filepaths. These paths are relative to the directory containing this
Jupyter notebook (or, more generally, the current working directory). When we run the job, you should see those files
appear in the file browser on the left as HTCondor creates them.

Now that we have a job description, let’s submit a job. The htcondor.Schedd.submit method returns a
SubmitResult object that contains information about the job, such as its ClusterId.

[3]: schedd = htcondor.Schedd() # get the Python representation of the␣
→˓scheduler
submit_result = schedd.submit(hostname_job) # submit the job
print(submit_result.cluster()) # print the job's ClusterId

12

The job’s ClusterId uniquely identifies this submission. Later in this module, we will use it to ask the HTCondor
scheduler for information about our jobs.

For now, our job will hopefully have finished running. You should be able to see the files in the file browser on the left.
Try opening one of them and seeing what’s inside.

558 Chapter 8. Python Bindings

https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html

HTCondor Manual, Release 23.6.2

We can also look at the output from inside Python:

[4]: import os
import time

output_path = "hostname.out"

this is a crude way to wait for the job to finish
see the Advanced tutorial "Scalable Job Tracking" for better methods!
while not os.path.exists(output_path):

print("Output file doesn't exist yet; sleeping for one second")
time.sleep(1)

with open(output_path, mode = "r") as f:
print(f.read())

2a8198d0534b

If you got some text, it worked!

If the file never shows up, it means your job didn’t run. You might try looking at the log or error files specified in
the submit description to see if there is any useful information in them about why the job failed.

Submitting Multiple Jobs

By default, each submit will submit a single job. A more common use case is to submit many jobs at once, often
sharing some base submit description. Let’s write a new submit description which runs sleep.

When we have multiple jobs in a single cluster, each job will be identified not just by its ClusterId but also by a
ProcID. We can use the ProcID to separate the output and error files for each individual job. Anything that looks like
$(...) in a submit description is a macro, a placeholder which will be “expanded” later by HTCondor into a real
value for that particular job. The ProcID expands to a series of incrementing integers, starting at 0. So the first job in
a cluster will have ProcID 0, the next will have ProcID 1, etc.

[5]: sleep_job = htcondor.Submit({
"executable": "/bin/sleep",
"arguments": "10s", # sleep for 10 seconds
"output": "sleep-$(ProcId).out", # output and error for each job, using the

→˓$(ProcId) macro
"error": "sleep-$(ProcId).err",
"log": "sleep.log", # we still send all of the HTCondor logs for every␣

→˓job to the same file (not split up!)
"request_cpus": "1",
"request_memory": "128MB",
"request_disk": "128MB",

})

print(sleep_job)

executable = /bin/sleep
arguments = 10s
output = sleep-$(ProcId).out
error = sleep-$(ProcId).err
log = sleep.log

(continues on next page)

8.2. HTCondor Python Bindings Tutorials 559

HTCondor Manual, Release 23.6.2

(continued from previous page)

request_cpus = 1
request_memory = 128MB
request_disk = 128MB

We will submit 10 of these jobs. All we need to change from our previous submit call is to add the count keyword
argument.

[6]: schedd = htcondor.Schedd()
submit_result = schedd.submit(sleep_job, count=10) # submit 10 jobs

print(submit_result.cluster())

13

Now that we have a bunch of jobs in flight, we might want to check how they’re doing. We can ask the HTCondor
scheduler about jobs by using its query method. We give it a constraint, which tells it which jobs to look for, and a
projection, which tells it what information to return.

[7]: schedd.query(
constraint=f"ClusterId == {submit_result.cluster()}",
projection=["ClusterId", "ProcId", "Out"],

)

[7]: [[ProcId = 0; Out = "sleep-0.out"; ClusterId = 13; ServerTime = 1695159772],
[ProcId = 1; Out = "sleep-1.out"; ClusterId = 13; ServerTime = 1695159772],
[ProcId = 2; Out = "sleep-2.out"; ClusterId = 13; ServerTime = 1695159772],
[ProcId = 3; Out = "sleep-3.out"; ClusterId = 13; ServerTime = 1695159772],
[ProcId = 4; Out = "sleep-4.out"; ClusterId = 13; ServerTime = 1695159772],
[ProcId = 5; Out = "sleep-5.out"; ClusterId = 13; ServerTime = 1695159772],
[ProcId = 6; Out = "sleep-6.out"; ClusterId = 13; ServerTime = 1695159772],
[ProcId = 7; Out = "sleep-7.out"; ClusterId = 13; ServerTime = 1695159772],
[ProcId = 8; Out = "sleep-8.out"; ClusterId = 13; ServerTime = 1695159772],
[ProcId = 9; Out = "sleep-9.out"; ClusterId = 13; ServerTime = 1695159772]]

There are a few things to notice here: - Depending on how long it took you to run the cell, you may only get a few of
your 10 jobs in the query. Jobs that have finished leave the queue, and will no longer show up in queries. To see those
jobs, you must use the history method instead, which behaves like query, but only looks at jobs that have left the
queue. - The results may not have come back in ProcID-sorted order. If you want to guarantee the order of the results,
you must do so yourself. - Attributes are often renamed between the submit description and the actual job description
in the queue. See the manual for a description of the job attribute names. - The objects returned by the query are
instances of ClassAd. ClassAds are the common data exchange format used by HTCondor. In Python, they mostly
behave like dictionaries.

560 Chapter 8. Python Bindings

https://htcondor.readthedocs.io/en/latest/classad-attributes/job-classad-attributes.html

HTCondor Manual, Release 23.6.2

Using Itemdata to Vary Over Parameters

By varying some part of the submit description using the ProcID, we can change how each individual job behaves.
Perhaps it will use a different input file, or a different argument. However, we often want more flexibility than that.
Perhaps our input files are named after different cities, or by timestamp, or some other naming scheme that already
exists.

To use such information in the submit description, we need to use itemdata. Itemdata lets us pass arbitrary extra
information when we queue, which we can reference with macros inside the submit description. This lets use the full
power of Python to generate the submit descriptions for our jobs.

Let’s mock this situation out by generating some files with randomly-chosen names. We’ll also switch to using
pathlib.Path, Python’s more modern file path manipulation library.

[8]: from pathlib import Path
import random
import string
import shutil

def random_string(length):
"""Produce a random lowercase ASCII string with the given length."""
return "".join(random.choices(string.ascii_lowercase, k = length))

make a directory to hold the input files, clearing away any existing directory
input_dir = Path.cwd() / "inputs"
shutil.rmtree(input_dir, ignore_errors = True)
input_dir.mkdir()

make 5 input files
for idx in range(5):

rs = random_string(5)
input_file = input_dir / "{}.txt".format(rs)
input_file.write_text("Hello from job {}".format(rs))

Now we’ll get a list of all the files we just created in the input directory. This is precisely the kind of situation where
Python affords us a great deal of flexibility over a submit file: we can use Python instead of the HTCondor submit
language to generate and inspect the information we’re going to put into the submit description.

[9]: input_files = list(input_dir.glob("*.txt"))

for path in input_files:
print(path)

/home/jovyan/tutorials/inputs/kaffh.txt
/home/jovyan/tutorials/inputs/glmws.txt
/home/jovyan/tutorials/inputs/qrxxw.txt
/home/jovyan/tutorials/inputs/acxvc.txt
/home/jovyan/tutorials/inputs/efnkm.txt

Now we’ll make our submit description. Our goal is just to print out the text held in each file, which we can do using
cat.

We will tell HTCondor to transfer the input file to the execute location by including it in transfer_input_files.
We also need to call cat on the right file via arguments. Keep in mind that HTCondor will move the files in
transfer_input_files directly to the scratch directory on the execute machine, so instead of the full path, we
just need the file’s “name”, the last component of its path. pathlib will make it easy to extract this information.

8.2. HTCondor Python Bindings Tutorials 561

HTCondor Manual, Release 23.6.2

[10]: cat_job = htcondor.Submit({
"executable": "/bin/cat",
"arguments": "$(input_file_name)", # we will pass in the value for this␣

→˓macro via itemdata
"transfer_input_files": "$(input_file)", # we also need HTCondor to move the file␣

→˓to the execute node
"should_transfer_files": "yes", # force HTCondor to transfer files even␣

→˓though we're running entirely inside a container (and it normally wouldn't need to)
"output": "cat-$(ProcId).out",
"error": "cat-$(ProcId).err",
"log": "cat.log",
"request_cpus": "1",
"request_memory": "128MB",
"request_disk": "128MB",

})

print(cat_job)

executable = /bin/cat
arguments = $(input_file_name)
transfer_input_files = $(input_file)
should_transfer_files = yes
output = cat-$(ProcId).out
error = cat-$(ProcId).err
log = cat.log
request_cpus = 1
request_memory = 128MB
request_disk = 128MB

The itemdata should be passed as a list of dictionaries, where the keys are the macro names to replace in the submit
description. In our case, the keys are input_file and input_file_name, so should have a list of 10 dictionaries,
each with two entries. HTCondor expects the input file list to be a comma-separated list of POSIX-style paths, so we
explicitly convert our Path to a POSIX string.

[11]: itemdata = [{"input_file": path.as_posix(), "input_file_name": path.name} for path in␣
→˓input_files]

for item in itemdata:
print(item)

{'input_file': '/home/jovyan/tutorials/inputs/kaffh.txt', 'input_file_name': 'kaffh.txt'}
{'input_file': '/home/jovyan/tutorials/inputs/glmws.txt', 'input_file_name': 'glmws.txt'}
{'input_file': '/home/jovyan/tutorials/inputs/qrxxw.txt', 'input_file_name': 'qrxxw.txt'}
{'input_file': '/home/jovyan/tutorials/inputs/acxvc.txt', 'input_file_name': 'acxvc.txt'}
{'input_file': '/home/jovyan/tutorials/inputs/efnkm.txt', 'input_file_name': 'efnkm.txt'}

Now we’ll submit the jobs, adding the itemdata parameter to the submit call:

[12]: schedd = htcondor.Schedd()
submit_result = schedd.submit(cat_job, itemdata = iter(itemdata)) # submit one job for␣
→˓each item in the itemdata

print(submit_result.cluster())

562 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

14

Let’s do a query to make sure we got the itemdata right (these jobs run fast, so you might need to re-run the jobs if your
first run has already left the queue):

[13]: schedd.query(
constraint=f"ClusterId == {submit_result.cluster()}",
projection=["ClusterId", "ProcId", "Out", "Args", "TransferInput"],

)

[13]: [[ProcId = 0; Args = "kaffh.txt"; Out = "cat-0.out"; ClusterId = 14; TransferInput = "/
→˓home/jovyan/tutorials/inputs/kaffh.txt"; ServerTime = 1695159772],
[ProcId = 1; Args = "glmws.txt"; Out = "cat-1.out"; ClusterId = 14; TransferInput = "/
→˓home/jovyan/tutorials/inputs/glmws.txt"; ServerTime = 1695159772],
[ProcId = 2; Args = "qrxxw.txt"; Out = "cat-2.out"; ClusterId = 14; TransferInput = "/
→˓home/jovyan/tutorials/inputs/qrxxw.txt"; ServerTime = 1695159772],
[ProcId = 3; Args = "acxvc.txt"; Out = "cat-3.out"; ClusterId = 14; TransferInput = "/
→˓home/jovyan/tutorials/inputs/acxvc.txt"; ServerTime = 1695159772],
[ProcId = 4; Args = "efnkm.txt"; Out = "cat-4.out"; ClusterId = 14; TransferInput = "/
→˓home/jovyan/tutorials/inputs/efnkm.txt"; ServerTime = 1695159772]]

And let’s take a look at all the output:

[14]: # again, this is very crude - see the advanced tutorials!
while not len(list(Path.cwd().glob("cat-*.out"))) == len(itemdata):

print("Not all output files exist yet; sleeping for one second")
time.sleep(1)

for output_file in Path.cwd().glob("cat-*.out"):
print(output_file, "->", output_file.read_text())

/home/jovyan/tutorials/cat-0.out -> Hello from job dlbgw
/home/jovyan/tutorials/cat-3.out -> Hello from job mvgmu
/home/jovyan/tutorials/cat-1.out -> Hello from job pyidg
/home/jovyan/tutorials/cat-2.out -> Hello from job sxpny
/home/jovyan/tutorials/cat-4.out -> Hello from job dumud

Managing Jobs

Once a job is in queue, the scheduler will try its best to execute it to completion. There are several cases where you
may want to interrupt the normal flow of jobs. Perhaps the results are no longer needed; perhaps the job needs to be
edited to correct a submission error. These actions fall under the purview of job management.

There are two Schedd methods dedicated to job management:

• edit(): Change an attribute for a set of jobs.

• act(): Change the state of a job (remove it from the queue, hold it, suspend it, etc.).

The act method takes an argument from the JobAction enum. Commonly-used values include:

• Hold: put a job on hold, vacating a running job if necessary. A job will stay in the hold state until told otherwise.

• Release: Release a job from the hold state, returning it to Idle.

• Remove: Remove a job from the queue. If it is running, it will stop running. This requires the execute node to
acknowledge it has successfully vacated the job, so Remove may not be instantaneous.

8.2. HTCondor Python Bindings Tutorials 563

HTCondor Manual, Release 23.6.2

• Vacate: Cause a running job to be killed on the remote resource and return to the Idle state. With Vacate, jobs
may be given significant time to cleanly shut down.

To play with this, let’s bring back our sleep submit description, but increase the sleep time significantly so that we have
time to interact with the jobs.

[15]: long_sleep_job = htcondor.Submit({
"executable": "/bin/sleep",
"arguments": "10m", # sleep for 10 minutes
"output": "sleep-$(ProcId).out",
"error": "sleep-$(ProcId).err",
"log": "sleep.log",
"request_cpus": "1",
"request_memory": "128MB",
"request_disk": "128MB",

})

print(long_sleep_job)

executable = /bin/sleep
arguments = 10m
output = sleep-$(ProcId).out
error = sleep-$(ProcId).err
log = sleep.log
request_cpus = 1
request_memory = 128MB
request_disk = 128MB

[16]: schedd = htcondor.Schedd()
submit_result = schedd.submit(long_sleep_job, count=5)

As an experiment, let’s set an arbitrary attribute on the jobs and check that it worked. When we’re really working, we
could do things like change the amount of memory a job has requested by editing its RequestMemory attribute. The
job attributes that are built-in to HTCondor are described here, but your site may specify additional, custom attributes
as well.

[17]: # sets attribute foo to the string "bar" for all of our jobs
note the nested quotes around bar! The outer "" make it a Python string; the inner ""␣
→˓make it a ClassAd string.
schedd.edit(f"ClusterId == {submit_result.cluster()}", "foo", "\"bar\"")

do a query to check the value of attribute foo
schedd.query(

constraint=f"ClusterId == {submit_result.cluster()}",
projection=["ClusterId", "ProcId", "JobStatus", "foo"],

)

[17]: [[ProcId = 0; foo = "bar"; ClusterId = 15; JobStatus = 1; ServerTime = 1695159772],
[ProcId = 1; foo = "bar"; ClusterId = 15; JobStatus = 1; ServerTime = 1695159772],
[ProcId = 2; foo = "bar"; ClusterId = 15; JobStatus = 1; ServerTime = 1695159772],
[ProcId = 3; foo = "bar"; ClusterId = 15; JobStatus = 1; ServerTime = 1695159772],
[ProcId = 4; foo = "bar"; ClusterId = 15; JobStatus = 1; ServerTime = 1695159772]]

Although the job status appears to be an attribute, we cannot edit it directly. As mentioned above, we must instead
act on the job. Let’s hold the first two jobs so that they stop running, but leave the others going.

564 Chapter 8. Python Bindings

https://htcondor.readthedocs.io/en/latest/classad-attributes/job-classad-attributes.html

HTCondor Manual, Release 23.6.2

[18]: # hold the first two jobs
schedd.act(htcondor.JobAction.Hold, f"ClusterId == {submit_result.
→˓cluster()} && ProcID <= 1")

check the status of the jobs
ads = schedd.query(

constraint=f"ClusterId == {submit_result.cluster()}",
projection=["ClusterId", "ProcId", "JobStatus"],

)

for ad in ads:
the ClassAd objects returned by the query act like dictionaries, so we can extract␣

→˓individual values out of them using []
print(f"ProcID = {ad['ProcID']} has JobStatus = {ad['JobStatus']}")

ProcID = 0 has JobStatus = 5
ProcID = 1 has JobStatus = 5
ProcID = 2 has JobStatus = 1
ProcID = 3 has JobStatus = 1
ProcID = 4 has JobStatus = 1

The various job statuses are represented by numbers. 1 means Idle, 2 means Running, and 5 means Held. If you see
JobStatus = 5 above for ProcID = 0 and ProcID = 1, then we succeeded!

The opposite of JobAction.Hold is JobAction.Release. Let’s release those jobs and let them go back to Idle.

[19]: schedd.act(htcondor.JobAction.Release, f"ClusterId == {submit_result.cluster()}")

ads = schedd.query(
constraint=f"ClusterId == {submit_result.cluster()}",
projection=["ClusterId", "ProcId", "JobStatus"],

)

for ad in ads:
the ClassAd objects returned by the query act like dictionaries, so we can extract␣

→˓individual values out of them using []
print(f"ProcID = {ad['ProcID']} has JobStatus = {ad['JobStatus']}")

ProcID = 0 has JobStatus = 1
ProcID = 1 has JobStatus = 1
ProcID = 2 has JobStatus = 1
ProcID = 3 has JobStatus = 1
ProcID = 4 has JobStatus = 1

Note that we simply released all the jobs in the cluster. Releasing a job that is not held doesn’t do anything, so we don’t
have to be extremely careful.

Finally, let’s clean up after ourselves:

[20]: schedd.act(htcondor.JobAction.Remove, f"ClusterId == {submit_result.cluster()}")

[20]: [TotalChangedAds = 1; TotalJobAds = 0; TotalPermissionDenied = 0; TotalAlreadyDone = 0;␣
→˓TotalBadStatus = 0; TotalNotFound = 0; TotalSuccess = 5; TotalError = 0]

8.2. HTCondor Python Bindings Tutorials 565

HTCondor Manual, Release 23.6.2

Exercises

Now let’s practice what we’ve learned.

• In each exercise, you will be given a piece of code and a test that does not yet pass.

• The exercises are vaguely in order of increasing difficulty.

• Modify the code, or add new code to it, to pass the test. Do whatever it takes!

• You can run the test by running the block it is in.

• Feel free to look at the test for clues as to how to modify the code.

• Many of the exercises can be solved either by using Python to generate inputs, or by using advanced features of
the ClassAd language. Either way is valid!

• Don’t modify the test. That’s cheating!

Exercise 1: Incrementing Sleeps

Submit five jobs which sleep for 5, 6, 7, 8, and 9 seconds, respectively.

[21]: # MODIFY OR ADD TO THIS BLOCK...

incrementing_sleep = htcondor.Submit({
"executable": "/bin/sleep",
"arguments": "1",
"output": "ex1-$(ProcId).out",
"error": "ex1-$(ProcId).err",
"log": "ex1.log",
"request_cpus": "1",
"request_memory": "128MB",
"request_disk": "128MB",

})

schedd = htcondor.Schedd()
submit_result = schedd.submit(incrementing_sleep)

[22]: # ... TO MAKE THIS TEST PASS

expected = [str(i) for i in range(5, 10)]
print("Expected ", expected)

ads = schedd.query(f"ClusterId == {submit_result.cluster()}", projection = ["Args"])
arguments = sorted(ad["Args"] for ad in ads)
print("Got ", arguments)

assert arguments == expected, "Arguments were not what we expected!"
print("The test passed. Good job!")

Expected ['5', '6', '7', '8', '9']
Got ['1']

AssertionError Traceback (most recent call last)

(continues on next page)

566 Chapter 8. Python Bindings

https://htcondor.readthedocs.io/en/latest/classads/classad-mechanism.html#htcondor-s-classad-mechanism

HTCondor Manual, Release 23.6.2

(continued from previous page)

/tmp/ipykernel_404/3067880786.py in <module>
8 print("Got ", arguments)
9

---> 10 assert arguments == expected, "Arguments were not what we expected!"
11 print("The test passed. Good job!")

AssertionError: Arguments were not what we expected!

Exercise 2: Echo to Target

Run a job that makes the text Echo to Target appear in a file named ex3.txt.

[23]: # MODIFY OR ADD TO THIS BLOCK...

echo = htcondor.Submit({
"request_cpus": "1",
"request_memory": "128MB",
"request_disk": "128MB",

})

schedd = htcondor.Schedd()
submit_result = schedd.submit(echo)

HTCondorInternalError Traceback (most recent call last)
/tmp/ipykernel_404/2917236442.py in <module>

8
9 schedd = htcondor.Schedd()

---> 10 submit_result = schedd.submit(echo)

/opt/conda/lib/python3.9/site-packages/htcondor/_lock.py in wrapper(*args, **kwargs)
68 acquired = LOCK.acquire()
69

---> 70 rv = func(*args, **kwargs)
71
72 # if the function returned a context manager,

HTCondorInternalError: No 'executable' parameter was provided

[24]: # ... TO MAKE THIS TEST PASS

does_file_exist = os.path.exists("ex3.txt")
assert does_file_exist, "ex3.txt does not exist!"

expected = "Echo to Target"
print("Expected ", expected)

contents = open("ex3.txt", mode = "r").read().strip()
print("Got ", contents)

assert expected in contents, "Contents were not what we expected!"
(continues on next page)

8.2. HTCondor Python Bindings Tutorials 567

HTCondor Manual, Release 23.6.2

(continued from previous page)

print("The test passed. Good job!")

AssertionError Traceback (most recent call last)
/tmp/ipykernel_404/1707749984.py in <module>

2
3 does_file_exist = os.path.exists("ex3.txt")

----> 4 assert does_file_exist, "ex3.txt does not exist!"
5
6 expected = "Echo to Target"

AssertionError: ex3.txt does not exist!

Exercise 3: Holding Odds

Hold all of the odd-numbered jobs in this large cluster.

• Note that the test block removes all of the jobs you own when it runs, to prevent these long-running jobs from
corrupting other tests!

[25]: # MODIFY OR ADD TO THIS BLOCK...

long_sleep = htcondor.Submit({
"executable": "/bin/sleep",
"arguments": "10m",
"output": "ex2-$(ProcId).out",
"error": "ex2-$(ProcId).err",
"log": "ex2.log",
"request_cpus": "1",
"request_memory": "128MB",
"request_disk": "128MB",

})

schedd = htcondor.Schedd()
submit_result = schedd.submit(long_sleep, count=100)

[26]: # ... TO MAKE THIS TEST PASS

import getpass

try:
ads = schedd.query(f"ClusterId == {submit_result.cluster()}", projection = ["ProcID",

→˓ "JobStatus"])
proc_to_status = {int(ad["ProcID"]): ad["JobStatus"] for ad in sorted(ads, key =␣

→˓lambda ad: ad["ProcID"])}

for proc, status in proc_to_status.items():
print("Proc {} has status {}".format(proc, status))

assert len(proc_to_status) == 100,␣
(continues on next page)

568 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

(continued from previous page)

→˓"Wrong number of jobs (perhaps you need to resubmit them?)."
assert all(status == 5 for proc, status in proc_to_status.items() if proc % 2 != 0),␣

→˓"Not all odd jobs were held."
assert all(status != 5 for proc, status in proc_to_status.items() if proc % 2 == 0),␣

→˓"An even job was held."

print("The test passed. Good job!")
finally:

schedd.act(htcondor.JobAction.Remove, f'Owner=="{getpass.getuser()}"')

Proc 0 has status 1
Proc 1 has status 1
Proc 2 has status 1
Proc 3 has status 1
Proc 4 has status 1
Proc 5 has status 1
Proc 6 has status 1
Proc 7 has status 1
Proc 8 has status 1
Proc 9 has status 1
Proc 10 has status 1
Proc 11 has status 1
Proc 12 has status 1
Proc 13 has status 1
Proc 14 has status 1
Proc 15 has status 1
Proc 16 has status 1
Proc 17 has status 1
Proc 18 has status 1
Proc 19 has status 1
Proc 20 has status 1
Proc 21 has status 1
Proc 22 has status 1
Proc 23 has status 1
Proc 24 has status 1
Proc 25 has status 1
Proc 26 has status 1
Proc 27 has status 1
Proc 28 has status 1
Proc 29 has status 1
Proc 30 has status 1
Proc 31 has status 1
Proc 32 has status 1
Proc 33 has status 1
Proc 34 has status 1
Proc 35 has status 1
Proc 36 has status 1
Proc 37 has status 1
Proc 38 has status 1
Proc 39 has status 1
Proc 40 has status 1
Proc 41 has status 1

(continues on next page)

8.2. HTCondor Python Bindings Tutorials 569

HTCondor Manual, Release 23.6.2

(continued from previous page)

Proc 42 has status 1
Proc 43 has status 1
Proc 44 has status 1
Proc 45 has status 1
Proc 46 has status 1
Proc 47 has status 1
Proc 48 has status 1
Proc 49 has status 1
Proc 50 has status 1
Proc 51 has status 1
Proc 52 has status 1
Proc 53 has status 1
Proc 54 has status 1
Proc 55 has status 1
Proc 56 has status 1
Proc 57 has status 1
Proc 58 has status 1
Proc 59 has status 1
Proc 60 has status 1
Proc 61 has status 1
Proc 62 has status 1
Proc 63 has status 1
Proc 64 has status 1
Proc 65 has status 1
Proc 66 has status 1
Proc 67 has status 1
Proc 68 has status 1
Proc 69 has status 1
Proc 70 has status 1
Proc 71 has status 1
Proc 72 has status 1
Proc 73 has status 1
Proc 74 has status 1
Proc 75 has status 1
Proc 76 has status 1
Proc 77 has status 1
Proc 78 has status 1
Proc 79 has status 1
Proc 80 has status 1
Proc 81 has status 1
Proc 82 has status 1
Proc 83 has status 1
Proc 84 has status 1
Proc 85 has status 1
Proc 86 has status 1
Proc 87 has status 1
Proc 88 has status 1
Proc 89 has status 1
Proc 90 has status 1
Proc 91 has status 1
Proc 92 has status 1
Proc 93 has status 1

(continues on next page)

570 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

(continued from previous page)

Proc 94 has status 1
Proc 95 has status 1
Proc 96 has status 1
Proc 97 has status 1
Proc 98 has status 1
Proc 99 has status 1

AssertionError Traceback (most recent call last)
/tmp/ipykernel_404/4042351238.py in <module>

11
12 assert len(proc_to_status) == 100, "Wrong number of jobs (perhaps you need␣

→˓to resubmit them?)."
---> 13 assert all(status == 5 for proc, status in proc_to_status.items() if proc %␣
→˓2 != 0), "Not all odd jobs were held."

14 assert all(status != 5 for proc, status in proc_to_status.items() if proc %␣
→˓2 == 0), "An even job was held."

15

AssertionError: Not all odd jobs were held.

ClassAds Introduction

Launch this tutorial in a Jupyter Notebook on Binder:

In this tutorial, we will learn the basics of the ClassAd language, the policy and data exchange language that under-
pins all of HTCondor. ClassAds are fundamental in the HTCondor ecosystem, so understanding them will be good
preparation for future tutorials.

The Python implementation of the ClassAd language is in the classad module:

[1]: import classad

Expressions

The ClassAd language is built around values and expressions. If you know Python, both concepts are familiar. Examples
of familiar values include: - Integers (1, 2, 3), - Floating point numbers (3.145, -1e-6) - Booleans (true and false).

Examples of expressions are: - Attribute references: foo - Boolean expressions: a && b - Arithmetic expressions:
123 + c - Function calls: ifThenElse(foo == 123, 3.14, 5.2)

Expressions can be evaluated to values. Unlike many programming languages, expressions are lazily-evaluated: they
are kept in memory as expressions until a value is explicitly requested. ClassAds holding expressions to be evaluated
later are how many internal parts of HTCondor, like job requirements, are expressed.

Expressions are represented in Python with ExprTree objects. The desired ClassAd expression is passed as a string
to the constructor:

[2]: arith_expr = classad.ExprTree("1 + 4")
print(f"ClassAd arithemetic expression: {arith_expr} (of type {type(arith_expr)})")

ClassAd arithemetic expression: 1 + 4 (of type <class 'classad.classad.ExprTree'>)

Expressions can be evaluated on-demand:

8.2. HTCondor Python Bindings Tutorials 571

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/ClassAds-Introduction.ipynb
https://htcondor.org/classad/classad.html

HTCondor Manual, Release 23.6.2

[3]: print(arith_expr.eval())

5

Here’s an expression that includes a ClassAd function:

[4]: function_expr = classad.ExprTree("ifThenElse(4 > 6, 123, 456)")
print(f"Function expression: {function_expr}")

value = function_expr.eval()
print(f"Corresponding value: {value} (of type {type(value)})")

Function expression: ifThenElse(4 > 6,123,456)
Corresponding value: 456 (of type <class 'int'>)

Notice that, when possible, we convert ClassAd values to Python values. Hence, the result of evaluating the expression
above is the Python int 456.

There are two important values in the ClassAd language that have no direct equivalent in Python: Undefined and
Error.

Undefined occurs when a reference occurs to an attribute that is not defined; it is analogous to a NameError exception
in Python (but there is no concept of an exception in ClassAds). For example, evaluating an unset attribute produces
Undefined:

[5]: print(classad.ExprTree("foo").eval())

Undefined

Error occurs primarily when an expression combines two different types or when a function call occurs with the
incorrect arguments. Note that even in this case, no Python exception is raised!

[6]: print(classad.ExprTree('5 + "bar"').eval())
print(classad.ExprTree('ifThenElse(1, 2, 3, 4, 5)').eval())

Error
Error

ClassAds

The concept that makes the ClassAd language special is, of course, the ClassAd!

The ClassAd is analogous to a Python or JSON dictionary. Unlike a dictionary, which is a set of unique key-value pairs,
the ClassAd object is a set of key-expression pairs. The expressions in the ad can contain attribute references to other
keys in the ad, which will be followed when evaluated.

There are two common ways to represent ClassAds in text. The “new ClassAd” format:

[
a = 1;
b = "foo";
c = b

]

And the “old ClassAd” format:

572 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

a = 1
b = "foo"
c = b

Despite the “new” and “old” monikers, “new” is over a decade old. HTCondor command line tools utilize the “old”
representation. The Python bindings default to “new”.

A ClassAd object may be initialized via a string in either of the above representation. As a ClassAd is so similar to a
Python dictionary, they may also be constructed from a dictionary.

Let’s construct some ClassAds!

[7]: ad1 = classad.ClassAd("""
[
a = 1;
b = "foo";
c = b;
d = a + 4;

]""")
print(ad1)

[
a = 1;
b = "foo";
c = b;
d = a + 4

]

We can construct the same ClassAd from a dictionary:

[8]: ad_from_dict = classad.ClassAd(
{

"a": 1,
"b": "foo",
"c": classad.ExprTree("b"),
"d": classad.ExprTree("a + 4"),

})
print(ad_from_dict)

[
d = a + 4;
c = b;
b = "foo";
a = 1

]

ClassAds are quite similar to dictionaries; in Python, the ClassAd object behaves similarly to a dictionary and has
similar convenience methods:

[9]: print(ad1["a"])
print(ad1["not_here"])

1

8.2. HTCondor Python Bindings Tutorials 573

HTCondor Manual, Release 23.6.2

KeyError Traceback (most recent call last)
/tmp/ipykernel_282/3690994919.py in <module>

1 print(ad1["a"])
----> 2 print(ad1["not_here"])

KeyError: 'not_here'

[10]: print(ad1.get("not_here", 5))

5

[11]: ad1.update({"e": 8, "f": True})
print(ad1)

[
f = true;
e = 8;
a = 1;
b = "foo";
c = b;
d = a + 4

]

Remember our example of an Undefined attribute above? We now can evaluate references within the context of the
ad:

[12]: print(ad1.eval("d"))

5

Note that an expression is still not evaluated until requested, even if it is invalid:

[13]: ad1["g"] = classad.ExprTree("b + 5")
print(ad1["g"])
print(type(ad1["g"]))
print(ad1.eval("g"))

b + 5
<class 'classad.classad.ExprTree'>
Error

Onto HTCondor!

ClassAds and expressions are core concepts in interacting with HTCondor. Internally, machines and jobs are repre-
sented as ClassAds; expressions are used to filter objects and to define policy.

There’s much more to learn in ClassAds! For now, you have enough background to continue to the next tutorial -
HTCondor Introduction.

574 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

HTCondor Introduction

Launch this tutorial in a Jupyter Notebook on Binder:

Let’s start interacting with the HTCondor daemons!

We’ll cover the basics of two daemons, the Collector and the Schedd:

• The Collector maintains an inventory of all the pieces of the HTCondor pool. For example, each machine that
can run jobs will advertise a ClassAd describing its resources and state. In this module, we’ll learn the basics of
querying the collector for information and displaying results.

• The Schedd maintains a queue of jobs and is responsible for managing their execution. We’ll learn the basics of
querying the schedd.

There are several other daemons - particularly, the Startd and the Negotiator - that the Python bindings can interact
with. We’ll cover those in the advanced modules.

If you are running these tutorials in the provided Docker container or on Binder, a local HTCondor pool has been started
in the background for you to interact with.

To get start, let’s import the htcondor modules.

[1]: import htcondor
import classad

Collector

We’ll start with the Collector, which gathers descriptions of the states of all the daemons in your HTCondor pool. The
collector provides both service discovery and monitoring for these daemons.

Let’s try to find the Schedd information for your HTCondor pool. First, we’ll create a Collector object, then use the
locate method:

[2]: coll = htcondor.Collector() # create the object representing the collector
schedd_ad = coll.locate(htcondor.DaemonTypes.Schedd) # locate the default schedd

print(schedd_ad)

[
CondorPlatform = "$CondorPlatform: X86_64-CentOS_7.9 $";
MyType = "Scheduler";
Machine = "fa6c829ace67";
Name = "jovyan@fa6c829ace67";
CondorVersion = "$CondorVersion: 10.7.0 2023-07-31 BuildID: UW_Python_Wheel_

→˓Build $";
MyAddress = "<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=fa6c829ace67&noUDP&

→˓sock=schedd_82_2342>"
]

The locate method takes a type of daemon and (optionally) a name, returning a ClassAd that describes how to contact
the daemon.

A few interesting points about the above example: - Because we didn’t provide the collector with a constructor, we used
the default collector in the container’s configuration file. If we wanted to instead query a non-default collector, we could
have done htcondor.Collector("collector.example.com"). - We used the DaemonTypes enumeration to pick
the kind of daemon to return. - If there were multiple schedds in the pool, the locate query would have failed. In such

8.2. HTCondor Python Bindings Tutorials 575

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/HTCondor-Introduction.ipynb

HTCondor Manual, Release 23.6.2

a case, we need to provide an explicit name to the method. E.g., coll.locate(htcondor.DaemonTypes.Schedd,
"schedd.example.com"). - The MyAddress field in the ad is the actual address information. You may be surprised
that this is not simply a hostname:port; to help manage addressing in the today’s complicated Internet (full of NATs,
private networks, and firewalls), a more flexible structure was needed. HTCondor developers sometimes refer to this
as the sinful string; here, sinful is a play on a Unix data structure, not a moral judgement.

The locate method often returns only enough data to contact a remote daemon. Typically, a ClassAd records sig-
nificantly more attributes. For example, if we wanted to query for a few specific attributes, we would use the query
method instead:

[3]: coll.query(htcondor.AdTypes.Schedd, projection=["Name", "MyAddress",␣
→˓"DaemonCoreDutyCycle"])

[3]: [[DaemonCoreDutyCycle = 1.150843433815885E-02; Name = "jovyan@fa6c829ace67"; MyAddress␣
→˓= "<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=fa6c829ace67&noUDP&sock=schedd_82_2342>
→˓"]]

Here, query takes an AdType (slightly more generic than the DaemonTypes, as many kinds of ads are in the collector)
and several optional arguments, then returns a list of ClassAds.

We used the projection keyword argument; this indicates what attributes you want returned. The collector may
automatically insert additional attributes (here, only MyType); if an ad is missing a requested attribute, it is simply not
set in the returned ClassAd object. If no projection is specified, then all attributes are returned.

WARNING: when possible, utilize the projection to limit the data returned. Some ads may have hundreds of attributes,
making returning the entire ad an expensive operation.

The projection filters the returned keys; to filter out unwanted ads, utilize the constraint option. Let’s do the same
query again, but specify our hostname explicitly:

[4]: import socket # We'll use this to automatically fill in our hostname

name = classad.quote(f"jovyan@{socket.getfqdn()}")
coll.query(

htcondor.AdTypes.Schedd,
constraint=f"Name =?= {name}",
projection=["Name", "MyAddress", "DaemonCoreDutyCycle"],

)

[4]: [[DaemonCoreDutyCycle = 1.150843433815885E-02; Name = "jovyan@fa6c829ace67"; MyAddress␣
→˓= "<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=fa6c829ace67&noUDP&sock=schedd_82_2342>
→˓"]]

Notes: - constraint accepts either an ExprTree or string object; the latter is automatically parsed as an expression.
- We used the classad.quote function to properly quote the hostname string. In this example, we’re relatively certain
the hostname won’t contain quotes. However, it is good practice to use the quote function to avoid possible SQL-
injection-type attacks. Consider what would happen if the host’s FQDN contained spaces and doublequotes, such as
foo.example.com" || true!

576 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

Schedd

Let’s try our hand at querying the schedd!

First, we’ll need a schedd object. You may either create one out of the ad returned by locate above or use the default
in the configuration file:

[5]: schedd = htcondor.Schedd(schedd_ad)
print(schedd)

<htcondor.htcondor.Schedd object at 0x7ffa2c15ee50>

Unfortunately, as there are no jobs in our personal HTCondor pool, querying the schedd will be boring. Let’s submit
a few jobs (note the API used below will be covered by the next module; it’s OK if you don’t understand it now):

[6]: sub = htcondor.Submit(
executable = "/bin/sleep",
arguments = "5m",

)
schedd.submit(sub, count=10)

[6]: <htcondor.htcondor.SubmitResult at 0x7ffa3c46fc10>

We should now have 10 jobs in queue, each of which should take 5 minutes to complete.

Let’s query for the jobs, paying attention to the jobs’ ID and status:

[7]: for job in schedd.query(projection=['ClusterId', 'ProcId', 'JobStatus']):
print(repr(job))

[ProcId = 8; ClusterId = 7; JobStatus = 1; ServerTime = 1695159746]
[ProcId = 9; ClusterId = 7; JobStatus = 1; ServerTime = 1695159746]
[ProcId = 0; ClusterId = 7; JobStatus = 2; ServerTime = 1695159746]
[ProcId = 1; ClusterId = 7; JobStatus = 2; ServerTime = 1695159746]
[ProcId = 2; ClusterId = 7; JobStatus = 2; ServerTime = 1695159746]
[ProcId = 3; ClusterId = 7; JobStatus = 1; ServerTime = 1695159746]
[ProcId = 4; ClusterId = 7; JobStatus = 1; ServerTime = 1695159746]
[ProcId = 5; ClusterId = 7; JobStatus = 1; ServerTime = 1695159746]
[ProcId = 6; ClusterId = 7; JobStatus = 1; ServerTime = 1695159746]
[ProcId = 7; ClusterId = 7; JobStatus = 1; ServerTime = 1695159746]

The JobStatus is an integer; the integers map into the following states: - 1: Idle (I) - 2: Running (R) - 3: Removed
(X) - 4: Completed (C) - 5: Held (H) - 6: Transferring Output - 7: Suspended

Depending on how quickly you executed the above cell, you might see all jobs idle (JobStatus = 1) or some jobs
running (JobStatus = 2) above.

As with the Collector’s query method, we can also filter out jobs using query:

[8]: for ad in schedd.query(constraint = 'ProcId >= 5', projection=['ProcId']):
print(ad.get('ProcId'))

8
9
5
6
7

Finally, let’s clean up after ourselves (this will remove all of the jobs you own from the queue).

8.2. HTCondor Python Bindings Tutorials 577

HTCondor Manual, Release 23.6.2

[9]: import getpass

schedd.act(htcondor.JobAction.Remove, f'Owner == "{getpass.getuser()}"')

[9]: [TotalChangedAds = 1; TotalJobAds = 0; TotalPermissionDenied = 0; TotalAlreadyDone = 0;␣
→˓TotalBadStatus = 0; TotalNotFound = 0; TotalSuccess = 10; TotalError = 0]

On Job Submission

Congratulations! You can now perform simple queries against the collector for worker and submit hosts, as well as
simple job queries against the submit host!

It is now time to move on to advanced job submission and management.

Advanced Job Submission and Management

Launch this tutorial in a Jupyter Notebook on Binder:

The two most common HTCondor command line tools are condor_q and condor_submit. In the previous module, we
learned about the query() method that corresponds to condor_q. Here, we will learn the Python binding equivalent
of condor_submit in greater detail.

We start by importing the relevant modules:

[1]: import htcondor

Submitting Jobs

We will submit jobs utilizing the dedicated Submit object.

Submit objects consist of key-value pairs. Unlike ClassAds, the values do not have an inherent type (such as strings,
integers, or booleans); they are evaluated with macro expansion at submit time. Where reasonable, they behave like
Python dictionaries:

[2]: sub = htcondor.Submit({"foo": "1", "bar": "2", "baz": "$(foo)"})
print(sub)

foo = 1
bar = 2
baz = $(foo)

[3]: sub["qux"] = 3
print(sub)

foo = 1
bar = 2
baz = $(foo)
qux = 3

[4]: print(sub.expand("baz"))

578 Chapter 8. Python Bindings

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Advanced-Job-Submission-And-Management.ipynb

HTCondor Manual, Release 23.6.2

1

The available attributes and their semantics are documented in the condor_submit manual, sowe won’t repeat them
here. A minimal realistic submit object may look like the following:

[5]: sub = htcondor.Submit({
"executable": "/bin/sleep",
"arguments": "5m"

})

To go from a submit object to job in a schedd, one must use the submit method of a htcondor.Schedd:

[6]: schedd = htcondor.Schedd() # create a schedd object connected to the local␣
→˓schedd
submit_result = schedd.submit(sub) # queue one job
print(submit_result.cluster()) # print the job's ClusterId

8

By default, each invocation of submit will submit a single job. A more common use case is to submit many jobs at
once - often identical. Suppose we don’t want to submit a single “sleep” job, but 10; instead of writing a for-loop
around the submit method, we can use the count argument:

[7]: submit_result = schedd.submit(sub, count=10)

print(submit_result.cluster())

9

We can now query for those jobs in the queue:

[8]: schedd.query(
constraint='ClusterId =?= {}'.format(submit_result.cluster()),
projection=["ClusterId", "ProcId", "JobStatus", "EnteredCurrentStatus"],

)

[8]: [[ProcId = 0; EnteredCurrentStatus = 1695159748; ClusterId = 9; JobStatus = 1;␣
→˓ServerTime = 1695159748],
[ProcId = 1; EnteredCurrentStatus = 1695159748; ClusterId = 9; JobStatus = 1;␣
→˓ServerTime = 1695159748],
[ProcId = 2; EnteredCurrentStatus = 1695159748; ClusterId = 9; JobStatus = 1;␣
→˓ServerTime = 1695159748],
[ProcId = 3; EnteredCurrentStatus = 1695159748; ClusterId = 9; JobStatus = 1;␣
→˓ServerTime = 1695159748],
[ProcId = 4; EnteredCurrentStatus = 1695159748; ClusterId = 9; JobStatus = 1;␣
→˓ServerTime = 1695159748],
[ProcId = 5; EnteredCurrentStatus = 1695159748; ClusterId = 9; JobStatus = 1;␣
→˓ServerTime = 1695159748],
[ProcId = 6; EnteredCurrentStatus = 1695159748; ClusterId = 9; JobStatus = 1;␣
→˓ServerTime = 1695159748],
[ProcId = 7; EnteredCurrentStatus = 1695159748; ClusterId = 9; JobStatus = 1;␣
→˓ServerTime = 1695159748],
[ProcId = 8; EnteredCurrentStatus = 1695159748; ClusterId = 9; JobStatus = 1;␣
→˓ServerTime = 1695159748],

(continues on next page)

8.2. HTCondor Python Bindings Tutorials 579

https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html

HTCondor Manual, Release 23.6.2

(continued from previous page)

[ProcId = 9; EnteredCurrentStatus = 1695159748; ClusterId = 9; JobStatus = 1;␣
→˓ServerTime = 1695159748]]

It’s not entirely useful to submit many identical jobs – but rather each one needs to vary slightly based on its ID (the
“process ID”) within the job cluster. For this, the Submit object in Python behaves similarly to submit files: references
within the submit command are evaluated as macros at submit time.

For example, suppose we want the argument to sleep to vary based on the process ID:

[9]: sub = htcondor.Submit({"executable": "/bin/sleep", "arguments": "$(Process)s"})

Here, the $(Process) string will be substituted with the process ID at submit time.

[10]: submit_result = schedd.submit(sub, count=10)

print(submit_result.cluster())

schedd.query(
constraint='ClusterId=?={}'.format(submit_result.cluster()),
projection=["ClusterId", "ProcId", "JobStatus", "Args"],

)

10

[10]: [[Args = "0s"; ProcId = 0; ClusterId = 10; JobStatus = 1; ServerTime = 1695159748],
[Args = "1s"; ProcId = 1; ClusterId = 10; JobStatus = 1; ServerTime = 1695159748],
[Args = "2s"; ProcId = 2; ClusterId = 10; JobStatus = 1; ServerTime = 1695159748],
[Args = "3s"; ProcId = 3; ClusterId = 10; JobStatus = 1; ServerTime = 1695159748],
[Args = "4s"; ProcId = 4; ClusterId = 10; JobStatus = 1; ServerTime = 1695159748],
[Args = "5s"; ProcId = 5; ClusterId = 10; JobStatus = 1; ServerTime = 1695159748],
[Args = "6s"; ProcId = 6; ClusterId = 10; JobStatus = 1; ServerTime = 1695159748],
[Args = "7s"; ProcId = 7; ClusterId = 10; JobStatus = 1; ServerTime = 1695159748],
[Args = "8s"; ProcId = 8; ClusterId = 10; JobStatus = 1; ServerTime = 1695159748],
[Args = "9s"; ProcId = 9; ClusterId = 10; JobStatus = 1; ServerTime = 1695159748]]

The macro evaluation behavior (and the various usable tricks and techniques) are identical between the python bindings
and the condor_submit executable.

Managing Jobs

Once a job is in queue, the schedd will try its best to execute it to completion. There are several cases where a user may
want to interrupt the normal flow of jobs. Perhaps the results are no longer needed; perhaps the job needs to be edited
to correct a submission error. These actions fall under the purview of job management.

There are two Schedd methods dedicated to job management:

• edit(): Change an attribute for a set of jobs to a given expression. If invoked within a transaction, multiple
calls to edit are visible atomically.

– The set of jobs to change can be given as a ClassAd expression. If no jobs match the filter, then an exception
is thrown.

• act(): Change the state of a job to a given state (remove, hold, suspend, etc).

580 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

Both methods take a job specification: either a ClassAd expression (such as Owner =?= "janedoe") or a list of
job IDs (such as ["1.1", "2.2", "2.3"]). The act method takes an argument from the JobAction enum. The
commonly-used values are:

• Hold: put a job on hold, vacating a running job if necessary. A job will stay in the hold state until explicitly
acted upon by the admin or owner.

• Release: Release a job from the hold state, returning it to Idle.

• Remove: Remove a job from the Schedd’s queue, cleaning it up first on the remote host (if running). This requires
the remote host to acknowledge it has successfully vacated the job, meaning Remove may not be instantaneous.

• Vacate: Cause a running job to be killed on the remote resource and return to idle state. With Vacate, jobs
may be given significant time to cleanly shut down.

Here’s an example of job management in action:

[11]: submit_result = schedd.submit(sub, count=5) # queues 5 copies of this job
schedd.edit([f"{submit_result.cluster()}.{idx}" for idx in range(2)], "foo", '"bar"') #␣
→˓sets attribute foo to the string "bar" for the first two jobs

for ad in schedd.query(
constraint=f"ClusterId == {submit_result.cluster()}",
projection=["ProcId", "JobStatus", "foo"],

):
print(repr(ad))

[foo = "bar"; ProcId = 0; JobStatus = 1; ServerTime = 1695159748]
[foo = "bar"; ProcId = 1; JobStatus = 1; ServerTime = 1695159748]
[ProcId = 2; JobStatus = 1; ServerTime = 1695159748]
[ProcId = 3; JobStatus = 1; ServerTime = 1695159748]
[ProcId = 4; JobStatus = 1; ServerTime = 1695159748]

[12]: schedd.act(htcondor.JobAction.Hold, f"ClusterId == {submit_result.
→˓cluster()} && ProcId >= 2")

for ad in schedd.query(
constraint=f"ClusterId == {submit_result.cluster()}",
projection=["ProcId", "JobStatus", "foo"],

):
print(repr(ad))

[foo = "bar"; ProcId = 0; JobStatus = 1; ServerTime = 1695159748]
[foo = "bar"; ProcId = 1; JobStatus = 1; ServerTime = 1695159748]
[ProcId = 2; JobStatus = 5; ServerTime = 1695159748]
[ProcId = 3; JobStatus = 5; ServerTime = 1695159748]
[ProcId = 4; JobStatus = 5; ServerTime = 1695159748]

Finally, let’s clean up after ourselves (this will remove all of the jobs you own from the queue).

[13]: import getpass

schedd.act(htcondor.JobAction.Remove, f'Owner == "{getpass.getuser()}"')

[13]: [TotalChangedAds = 1; TotalJobAds = 0; TotalPermissionDenied = 0; TotalAlreadyDone = 0;␣
→˓TotalBadStatus = 0; TotalNotFound = 0; TotalSuccess = 26; TotalError = 0]

8.2. HTCondor Python Bindings Tutorials 581

HTCondor Manual, Release 23.6.2

That’s It!

You’ve made it through the very basics of the Python bindings. While there are many other features the Python
module has to offer, we have covered enough to replace the command line tools of condor_q, condor_submit,
condor_status, condor_rm and others.

Advanced Schedd Interaction

Launch this tutorial in a Jupyter Notebook on Binder:

The introductory tutorial only scratches the surface of what the Python bindings can do with the condor_schedd; this
module focuses on covering a wider range of functionality:

• Job and history querying.

• Advanced job submission.

• Python-based negotiation with the Schedd.

As usual, we start by importing the relevant modules:

[1]: import htcondor
import classad

Job and History Querying

In HTCondor Introduction, we covered the Schedd.query method and its two most important keywords:

• requirements: Filters the jobs the schedd should return.

• projection: Filters the attributes returned for each job.

For those familiar with SQL queries, requirements performs the equivalent as the WHERE clause while projection
performs the equivalent of the column listing in SELECT.

There are two other keywords worth mentioning:

• limit: Limits the number of returned ads; equivalent to SQL’s LIMIT.

• opts: Additional flags to send to the schedd to alter query behavior. The only flag currently defined is
QueryOpts.AutoCluster; this groups the returned results by the current set of “auto-cluster” attributes used
by the pool. It’s analogous to GROUP BY in SQL, except the columns used for grouping are controlled by the
schedd.

To illustrate these additional keywords, let’s first submit a few jobs:

[2]: schedd = htcondor.Schedd()
sub = htcondor.Submit({

"executable": "/bin/sleep",
"arguments": "5m",
"hold": "True",

})
submit_result = schedd.submit(sub, count=10)
print(submit_result.cluster())

19

582 Chapter 8. Python Bindings

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Advanced-Schedd-Interactions.ipynb

HTCondor Manual, Release 23.6.2

Note: In this example, we used the hold submit command to indicate that the jobs should start out in the
condor_schedd in the Hold state; this is used simply to prevent the jobs from running to completion while you
are running the tutorial.

We now have 10 jobs running under cluster_id; they should all be identical:

[3]: print(len(schedd.query(projection=["ProcID"], constraint=f"ClusterId=={submit_result.
→˓cluster()}")))

10

History Queries

After a job has finished in the Schedd, it moves from the queue to the history file. The history can be queried (locally
or remotely) with the Schedd.history method:

[4]: schedd = htcondor.Schedd()
for ad in schedd.history(

constraint='true',
projection=['ProcId', 'ClusterId', 'JobStatus'],
match=2, # limit to 2 returned results

):
print(ad)

[
JobStatus = 3;
ProcId = 99;
ClusterId = 18

]

[
JobStatus = 3;
ProcId = 98;
ClusterId = 18

]

Interacting With Daemons

Launch this tutorial in a Jupyter Notebook on Binder:

In this module, we’ll look at how the HTCondor Python bindings can be used to interact with running daemons.

As usual, we start by importing the relevant modules:

[1]: import htcondor

8.2. HTCondor Python Bindings Tutorials 583

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Interacting-With-Daemons.ipynb

HTCondor Manual, Release 23.6.2

Configuration

The HTCondor configuration is exposed to Python in two ways:

• The local process’s configuration is available in the module-level param object.

• A remote daemon’s configuration may be queried using a RemoteParam

The param object emulates a Python dictionary:

[2]: print(htcondor.param["SCHEDD_LOG"]) # prints the schedd's current log file
print(htcondor.param.get("TOOL_LOG")) # print None, since TOOL_LOG isn't set by default

/home/jovyan/.condor/local/log/SchedLog
None

[3]: htcondor.param["TOOL_LOG"] = "/tmp/log" # sets TOOL_LOG to /tmp/log
print(htcondor.param["TOOL_LOG"]) # prints /tmp/log, as set above

/tmp/log

Note that assignments to param will persist only in memory; if we use reload_config to re-read the configuration
files from disk, our change to TOOL_LOG disappears:

[4]: print(htcondor.param.get("TOOL_LOG"))
htcondor.reload_config()
print(htcondor.param.get("TOOL_LOG"))

/tmp/log
None

In HTCondor, a configuration prefix may indicate that a setting is specific to that daemon. By default, the Python
binding’s prefix is TOOL. If you would like to use the configuration of a different daemon, utilize the set_subsystem
function:

[5]: htcondor.param["TEST_FOO"] = "foo" # sets the default value of TEST_FOO to foo
htcondor.param["SCHEDD.TEST_FOO"] = "bar" # the schedd has a special setting for TEST_
→˓FOO

[6]: print(htcondor.param['TEST_FOO']) # default access; should be 'foo'

foo

[7]: htcondor.set_subsystem('SCHEDD') # changes the running process to identify as a␣
→˓schedd.
print(htcondor.param['TEST_FOO']) # since we now identify as a schedd, should use␣
→˓the special setting of 'bar'

bar

Between param, reload_config, and set_subsystem, we can explore the configuration of the local host.

584 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

Remote Configuration

What happens if we want to test the configuration of a remote daemon? For that, we can use the RemoteParam class.

The object is first initialized from the output of the Collector.locate method:

[8]: master_ad = htcondor.Collector().locate(htcondor.DaemonTypes.Master)
print(master_ad['MyAddress'])
master_param = htcondor.RemoteParam(master_ad)

<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=fa6c829ace67&noUDP&sock=master_16_de02>

Once we have the master_param object, we can treat it like a local dictionary to access the remote daemon’s config-
uration.

NOTE that the htcondor.param object attempts to infer type information for configuration values from the compile-
time metadata while the RemoteParam object does not:

[9]: print(repr(master_param['UPDATE_INTERVAL'])) # returns a string
print(repr(htcondor.param['UPDATE_INTERVAL'])) # returns an integer

'5'
5

In fact, we can even set the daemon’s configuration using the RemoteParam object. . . if we have permission. By
default, this is disabled for security reasons:

[10]: master_param['UPDATE_INTERVAL'] = '500'

HTCondorReplyError Traceback (most recent call last)
/tmp/ipykernel_49/743935840.py in <module>
----> 1 master_param['UPDATE_INTERVAL'] = '500'

/opt/conda/lib/python3.9/site-packages/htcondor/_lock.py in wrapper(*args, **kwargs)
68 acquired = LOCK.acquire()
69

---> 70 rv = func(*args, **kwargs)
71
72 # if the function returned a context manager,

HTCondorReplyError: Failed to set remote daemon parameter.

Logging Subsystem

The logging subsystem is available to the Python bindings; this is often useful for debugging network connection issues
between the client and server.

NOTE Jupyter notebooks discard output from library code; hence, you will not see the results of enable_debug
below.

[11]: htcondor.set_subsystem("TOOL")
htcondor.param['TOOL_DEBUG'] = 'D_FULLDEBUG'
htcondor.param['TOOL_LOG'] = '/tmp/log'
htcondor.enable_log() # Send logs to the log file (/tmp/foo)

(continues on next page)

8.2. HTCondor Python Bindings Tutorials 585

HTCondor Manual, Release 23.6.2

(continued from previous page)

htcondor.enable_debug() # Send logs to stderr; this is ignored by the web notebook.
print(open("/tmp/log").read()) # Print the log's contents.

Sending Daemon Commands

An administrator can send administrative commands directly to the remote daemon. This is useful if you’d like a certain
daemon restarted, drained, or reconfigured.

Because we have a personal HTCondor instance, we are the administrator - and we can test this out!

To send a command, use the top-level send_command function, provide a daemon location, and provide a specific
command from the DaemonCommands enumeration. For example, we can reconfigure:

[12]: print(master_ad['MyAddress'])

htcondor.send_command(master_ad, htcondor.DaemonCommands.Reconfig)

<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=fa6c829ace67&noUDP&sock=master_16_de02>

09/19/23 21:41:27 SharedPortClient: sent connection request to <172.17.0.2:9618> for␣
→˓shared port id master_16_de02

[13]: import time

time.sleep(1)

log_lines = open(htcondor.param['MASTER_LOG']).readlines()
print(log_lines[-4:])

['09/19/23 21:41:27 Sent SIGHUP to NEGOTIATOR (pid 20)\n', '09/19/23 21:41:27 Sent␣
→˓SIGHUP to SCHEDD (pid 21)\n', '09/19/23 21:41:27 Sent SIGHUP to SHARED_PORT (pid 18)\n
→˓', '09/19/23 21:41:27 Sent SIGHUP to STARTD (pid 24)\n']

We can also instruct the master to shut down a specific daemon:

[14]: htcondor.send_command(master_ad, htcondor.DaemonCommands.DaemonOff, "SCHEDD")

time.sleep(1)

log_lines = open(htcondor.param['MASTER_LOG']).readlines()
print(log_lines[-1])

09/19/23 21:41:28 SharedPortClient: sent connection request to <172.17.0.2:9618> for␣
→˓shared port id master_16_de02
09/19/23 21:41:28 Can't open directory "/etc/condor/passwords.d" as PRIV_ROOT, errno: 13␣
→˓(Permission denied)
09/19/23 21:41:28 Can't open directory "/etc/condor/passwords.d" as PRIV_ROOT, errno: 13␣
→˓(Permission denied)

09/19/23 21:41:28 The SCHEDD (pid 21) exited with status 0

Or even turn off the whole HTCondor instance:

586 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

[15]: htcondor.send_command(master_ad, htcondor.DaemonCommands.OffFast)

time.sleep(10)

log_lines = open(htcondor.param['MASTER_LOG']).readlines()
print(log_lines[-1])

09/19/23 21:41:29 SharedPortClient: sent connection request to <172.17.0.2:9618> for␣
→˓shared port id master_16_de02

09/19/23 21:41:29 **** condor_master (condor_MASTER) pid 16 EXITING WITH STATUS 0

Let’s turn HTCondor back on for future tutorials:

[16]: import os
os.system("condor_master")
time.sleep(10) # give condor a few seconds to get started

Scalable Job Tracking

Launch this tutorial in a Jupyter Notebook on Binder:

The Python bindings provide two scalable mechanisms for tracking jobs:

• Poll-based tracking: The Schedd can be periodically polled through the use of Schedd.query to get job status
information.

• Event-based tracking: Using the job’s user log, Python can see all job events and keep an in-memory represen-
tation of the job status.

Both poll- and event-based tracking have their strengths and weaknesses; the intrepid user can even combine both
methodologies to have extremely reliable, low-latency job status tracking.

In this module, we outline the important design considerations behind each approach and walk through examples.

Poll-based Tracking

Poll-based tracking involves periodically querying the schedd(s) for jobs of interest. We have covered the technical
aspects of querying the Schedd in prior tutorials. Beside the technical means of polling, important aspects to consider
are how often the poll should be performed and how much data should be retrieved.

Note: When Schedd.query is used, the query will cause the schedd to fork up to SCHEDD_QUERY_WORKERS simulta-
neous workers. Beyond that point, queries will be handled in a non-blocking manner inside the main condor_schedd
process. Thus, the memory used by many concurrent queries can be reduced by decreasing SCHEDD_QUERY_WORKERS.

A job tracking system should not query the Schedd more than once a minute. Aim to minimize the data returned from
the query through the use of the projection; minimize the number of jobs returned by using a query constraint. Better
yet, use the AutoCluster flag to have Schedd.query return a list of job summaries instead of individual jobs.

Advantages:

• A single entity can poll all condor_schedd instances in a pool; using htcondor.poll, multiple Schedds can
be queried simultaneously.

• The tracking is resilient to bugs or crashes. All tracked state is replaced at the next polling cycle.

Disadvantages:

8.2. HTCondor Python Bindings Tutorials 587

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Scalable-Job-Tracking.ipynb

HTCondor Manual, Release 23.6.2

• The amount of work to do is a function of the number of jobs in the schedd; may scale poorly once more than
100,000 simultaneous jobs are tracked.

• Each job state transition is not seen; only snapshots of the queue in time.

• If a job disappears from the Schedd, it may be difficult to determine why (Did it finish? Was it removed?)

• Only useful for tracking jobs at the minute-level granularity.

Event-based Tracking

Each job in the Schedd can specify the UserLog attribute; the Schedd will atomically append a machine-parseable
event to the specified file for every state transition the job goes through. By keeping track of the events in the logs, we
can build an in-memory representation of the job queue state.

Advantages:

• No interaction with the condor_schedd process is needed to read the event logs; the job tracking effectively
places no burden on the Schedd.

• In most cases, the Schedd writes to the log synchronously after the event occurs. Hence, the latency of receiving
an update can be sub-second.

• The job tracking scales as a function of the event rate, not the total number of jobs.

• Each job state is seen, even after the job has left the queue.

Disadvantages:

• Only the local condor_schedd can be tracked; there is no mechanism to receive the event log remotely.

• Log files must be processed from the beginning, with no rotations or truncations possible. Large files can take a
large amount of CPU time to process.

• If every job writes to a separate log file, the job tracking software may have to keep an enormous number of open
file descriptors. If every job writes to the same log file, the log file may grow to many gigabytes.

• If the job tracking software misses an event (or an unknown bug causes the condor_schedd to fail to write the
event), then the job tracker may believe a job incorrectly is stuck in the wrong state.

At a technical level, event tracking is implemented with the htcondor.JobEventLog class.

>>> jel = htcondor.JobEventLog("/tmp/job_one.log")
>>> for event in jel.events(stop_after=0):
... print event

The return value of JobEventLog.events() is an iterator over htcondor.JobEvent objects. The example above does
not block.

DAG Creation and Submission

Launch this tutorial in a Jupyter Notebook on Binder:

In this tutorial, we will learn how to use htcondor.dags to create and submit an HTCondor DAGMan workflow. Our
goal will be to create an image of the Mandelbrot set. This is a perfect problem for high-throughput computing because
each point in the image can be calculated completely independently of any other point, so we are free to divide the
image creation up into patches, each created by a single HTCondor job. DAGMan will enter the picture to coordinate
stitching the image patches we create back into a single image.

588 Chapter 8. Python Bindings

https://htcondor.readthedocs.io/en/latest/apis/python-bindings/api/htcondor.html#htcondor.JobEventLog
https://htcondor.readthedocs.io/en/latest/apis/python-bindings/api/htcondor.html#htcondor.JobEvent
https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/DAG-Creation-And-Submission.ipynb

HTCondor Manual, Release 23.6.2

Making a Mandelbrot set image locally

We’ll use goatbrot (https://github.com/beejjorgensen/goatbrot) to make the image. goatbrot can be run from the
command line, and takes a series of options to specify which part of the Mandelbrot set to draw, as well as the properties
of the image itself.

goatbrot options: - -i 1000 The number of iterations. - -c 0,0 The center point of the image region. - -w 3 The
width of the image region. - -s 1000,1000 The pixel dimensions of the image. - -o test.ppm The name of the
output file to generate.

We can run a shell command from Jupyter by prefixing it with a !:

[1]: ! ./goatbrot -i 10 -c 0,0 -w 3 -s 500,500 -o test.ppm
! convert test.ppm test.png

Complex image:
Center: 0 + 0i
Width: 3

Height: 3
Upper Left: -1.5 + 1.5i
Lower Right: 1.5 + -1.5i

Output image:
Filename: test.ppm

Width, Height: 500, 500
Theme: beej

Antialiased: no

Mandelbrot:
Max Iterations: 10

Continuous: no

Goatbrot:
Multithreading: not supported in this build

Completed: 100.0%

Let’s take a look at the test image. It won’t be very good, because we didn’t run for very many iterations. We’ll use
HTCondor to produce a better image!

[2]: from IPython.display import Image

Image('test.png')

8.2. HTCondor Python Bindings Tutorials 589

https://github.com/beejjorgensen/goatbrot

HTCondor Manual, Release 23.6.2

nbsphinx-code-borderwhite[2]:- −

What is the workflow?

We can parallelize this calculation by drawing rectangular sub-regions of the full region (“tiles”) we want and stitching
them together into a single image using montage. Let’s draw this out as a graph, showing how data (image patches)
will flow through the system. (Don’t worry about this code, unless you want to know how to make dot diagrams in
Python!)

[3]: from graphviz import Digraph
import itertools

num_tiles_per_side = 2

dot = Digraph()

dot.node('montage')
for x, y in itertools.product(range(num_tiles_per_side), repeat = 2):

n = f'tile_{x}-{y}'
dot.node(n)
dot.edge(n, 'montage')

dot

590 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

nbsphinx-code-borderwhite[3]:- −

Since we can chop the image up however we’d like, we have as many tiles per side as we’d like (try changing
num_tiles_per_side above). The “shape” of the DAG is the same: there is a “layer” of goatbrot jobs that calcu-
late tiles, which all feed into montage. Now that we know the structure of the problem, we can start describing it to
HTCondor.

Describing goatbrot as an HTCondor job

We describe a job using a Submit object. It corresponds to the submit file used by the command line tools. It mostly
behaves like a standard Python dictionary, where the keys and values correspond to submit descriptors.

[4]: import htcondor

tile_description = htcondor.Submit(
executable = 'goatbrot', # the program we want to run
arguments =␣

→˓'-i 10000 -c $(x),$(y) -w $(w) -s 500,500 -o tile_$(tile_x)-$(tile_y).ppm', # the␣
→˓arguments to pass to the executable

log = 'mandelbrot.log', # the HTCondor job event log
output = 'goatbrot.out.$(tile_x)_$(tile_y)', # stdout from the job goes here
error = 'goatbrot.err.$(tile_x)_$(tile_y)', # stderr from the job goes here
request_cpus = '1', # resource requests; we don't need much per job for this␣

→˓problem
request_memory = '128MB',
request_disk = '1GB',

)

print(tile_description)

executable = goatbrot
arguments = -i 10000 -c $(x),$(y) -w $(w) -s 500,500 -o tile_$(tile_x)-$(tile_y).ppm
log = mandelbrot.log
output = goatbrot.out.$(tile_x)_$(tile_y)
error = goatbrot.err.$(tile_x)_$(tile_y)
request_cpus = 1
request_memory = 128MB
request_disk = 1GB

Notice the heavy use of macros like $(x) to specify the tile. Those aren’t built-in submit macros; instead, we will plan
on passing their values in through vars. Vars will let us customize each individual job in the tile layer by filling in
those macros individually. Each job will recieve a dictionary of macro values; our next goal is to make a list of those
dictionaries.

We will do this using a function that takes the number of tiles per side as an argument. As mentioned above, the
structure of the DAG is the same no matter how “wide” the tile layer is. This is why we define a function to produce
the tile vars instead of just calculating them once: we can vary the width of the DAG by passing different arguments
to make_tile_vars. More customizations could be applied to make different images (for example, you could make it
possible to set the center point of the image).

[5]: def make_tile_vars(num_tiles_per_side, width = 3):
width_per_tile = width / num_tiles_per_side

(continues on next page)

8.2. HTCondor Python Bindings Tutorials 591

HTCondor Manual, Release 23.6.2

(continued from previous page)

centers = [
width_per_tile * (n + 0.5 - (num_tiles_per_side / 2))
for n in range(num_tiles_per_side)

]

vars = []
for (tile_y, y), (tile_x, x) in itertools.product(enumerate(centers), repeat = 2):

var = dict(
w = width_per_tile,
x = x,
y = -y, # image coordinates vs. Cartesian coordinates
tile_x = str(tile_x).rjust(5, '0'),
tile_y = str(tile_y).rjust(5, '0'),

)

vars.append(var)

return vars

[6]: tile_vars = make_tile_vars(2)
for var in tile_vars:

print(var)

{'w': 1.5, 'x': -0.75, 'y': 0.75, 'tile_x': '00000', 'tile_y': '00000'}
{'w': 1.5, 'x': 0.75, 'y': 0.75, 'tile_x': '00001', 'tile_y': '00000'}
{'w': 1.5, 'x': -0.75, 'y': -0.75, 'tile_x': '00000', 'tile_y': '00001'}
{'w': 1.5, 'x': 0.75, 'y': -0.75, 'tile_x': '00001', 'tile_y': '00001'}

If we want to increase the number of tiles per side, we just pass in a larger number. Because the tile_description
is parameterized in terms of these variables, it will work the same way no matter what we pass in as vars.

[7]: tile_vars = make_tile_vars(4)
for var in tile_vars:

print(var)

{'w': 0.75, 'x': -1.125, 'y': 1.125, 'tile_x': '00000', 'tile_y': '00000'}
{'w': 0.75, 'x': -0.375, 'y': 1.125, 'tile_x': '00001', 'tile_y': '00000'}
{'w': 0.75, 'x': 0.375, 'y': 1.125, 'tile_x': '00002', 'tile_y': '00000'}
{'w': 0.75, 'x': 1.125, 'y': 1.125, 'tile_x': '00003', 'tile_y': '00000'}
{'w': 0.75, 'x': -1.125, 'y': 0.375, 'tile_x': '00000', 'tile_y': '00001'}
{'w': 0.75, 'x': -0.375, 'y': 0.375, 'tile_x': '00001', 'tile_y': '00001'}
{'w': 0.75, 'x': 0.375, 'y': 0.375, 'tile_x': '00002', 'tile_y': '00001'}
{'w': 0.75, 'x': 1.125, 'y': 0.375, 'tile_x': '00003', 'tile_y': '00001'}
{'w': 0.75, 'x': -1.125, 'y': -0.375, 'tile_x': '00000', 'tile_y': '00002'}
{'w': 0.75, 'x': -0.375, 'y': -0.375, 'tile_x': '00001', 'tile_y': '00002'}
{'w': 0.75, 'x': 0.375, 'y': -0.375, 'tile_x': '00002', 'tile_y': '00002'}
{'w': 0.75, 'x': 1.125, 'y': -0.375, 'tile_x': '00003', 'tile_y': '00002'}
{'w': 0.75, 'x': -1.125, 'y': -1.125, 'tile_x': '00000', 'tile_y': '00003'}
{'w': 0.75, 'x': -0.375, 'y': -1.125, 'tile_x': '00001', 'tile_y': '00003'}
{'w': 0.75, 'x': 0.375, 'y': -1.125, 'tile_x': '00002', 'tile_y': '00003'}
{'w': 0.75, 'x': 1.125, 'y': -1.125, 'tile_x': '00003', 'tile_y': '00003'}

592 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

Describing montage as an HTCondor job

Now we can write the montage job description. The problem is that the arguments and input files depend on how many
tiles we have, which we don’t know ahead-of-time. We’ll take the brute-force approach of just writing a function that
takes the tile vars we made in the previous section and using them to build the montage job description.

Not that some of the work of building up the submit description is done in Python. This is a major advantage of
communicating with HTCondor via Python: you can do the hard work in Python instead of in submit language!

One area for possible improvement here is to remove the duplication of the format of the input file names, which is
repeated here from when it was first used in the goatbrot submit object. When building a larger, more complicated
workflow, it is important to reduce duplication of information to make it easier to modify the workflow in the future.

[8]: def make_montage_description(tile_vars):
num_tiles_per_side = int(len(tile_vars) ** .5)

input_files = [f'tile_{d["tile_x"]}-{d["tile_y"]}.ppm' for d in tile_vars]

return htcondor.Submit(
executable = '/usr/bin/montage',
arguments = f'{" ".join(input_files)} -mode Concatenate -tile {num_tiles_per_

→˓side}x{num_tiles_per_side} mandelbrot.png',
transfer_input_files = ', '.join(input_files),
log = 'mandelbrot.log',
output = 'montage.out',
error = 'montage.err',
request_cpus = '1',
request_memory = '128MB',
request_disk = '1GB',

)

[9]: montage_description = make_montage_description(make_tile_vars(2))

print(montage_description)

executable = /usr/bin/montage
arguments = tile_00000-00000.ppm tile_00001-00000.ppm tile_00000-00001.ppm tile_00001-
→˓00001.ppm -mode Concatenate -tile 2x2 mandelbrot.png
transfer_input_files = tile_00000-00000.ppm, tile_00001-00000.ppm, tile_00000-00001.ppm,␣
→˓tile_00001-00001.ppm
log = mandelbrot.log
output = montage.out
error = montage.err
request_cpus = 1
request_memory = 128MB
request_disk = 1GB

8.2. HTCondor Python Bindings Tutorials 593

HTCondor Manual, Release 23.6.2

Describing the DAG using htcondor.dags

Now that we have the job descriptions, all we have to do is use htcondor.dags to tell DAGMan about the dependencies
between them. htcondor.dags is a subpackage of the HTCondor Python bindings that lets you write DAG descriptions
using a higher-level language than raw DAG description file syntax. Incidentally, it also lets you use Python to drive
the creation process, increasing your flexibility.

Important Concept: the code from dag = dags.DAG() onwards only defines the topology (or structure) of the
DAG. The tile layer can be flexibly grown or shrunk by adjusting the tile_vars without changing the topology,
and this can be clearly expressed in the code. The tile_vars are driving the creation of the DAG. Try changing
num_tiles_per_side to some other value!

[10]: from htcondor import dags

num_tiles_per_side = 2

create the tile vars early, since we need to pass them to multiple places later
tile_vars = make_tile_vars(num_tiles_per_side)

dag = dags.DAG()

create the tile layer, passing in the submit description for a tile job and the tile␣
→˓vars
tile_layer = dag.layer(

name = 'tile',
submit_description = tile_description,
vars = tile_vars,

)

create the montage "layer" (it only has one job in it, so no need for vars)
note that the submit description is created "on the fly"!
montage_layer = tile_layer.child_layer(

name = 'montage',
submit_description = make_montage_description(tile_vars),

)

We can get a textual description of the DAG structure by calling the describe method:

[11]: print(dag.describe())

Type Name # Nodes # Children Parents
Layer tile 4 1
Layer montage 1 0 tile[ManyToMany]

Write the DAG to disk

We still need to write the DAG to disk to get DAGMan to work with it. We also need to move some files around so that
the jobs know where to find them.

[12]: from pathlib import Path
import shutil

dag_dir = (Path.cwd() / 'mandelbrot-dag').absolute()
(continues on next page)

594 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

(continued from previous page)

blow away any old files
shutil.rmtree(dag_dir, ignore_errors = True)

make the magic happen!
dag_file = dags.write_dag(dag, dag_dir)

the submit files are expecting goatbrot to be next to them, so copy it into the dag␣
→˓directory
shutil.copy2('goatbrot', dag_dir)

print(f'DAG directory: {dag_dir}')
print(f'DAG description file: {dag_file}')

DAG directory: /home/jovyan/tutorials/mandelbrot-dag
DAG description file: /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag

Submit the DAG via the Python bindings

Now that we have written out the DAG description file, we can submit it for execution using the standard Python
bindings submit mechanism. The Submit class has a static method which can read a DAG description and generate a
corresponding Submit object:

[13]: dag_submit = htcondor.Submit.from_dag(str(dag_file), {'force': 1})

print(dag_submit)

universe = scheduler
executable = /usr/bin/condor_dagman
getenv = CONDOR_CONFIG,_CONDOR_*,PATH,PYTHONPATH,PERL*,PEGASUS_*,TZ,HOME,USER,LANG,LC_ALL
output = /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.lib.out
error = /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.lib.err
log = /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.dagman.log
remove_kill_sig = SIGUSR1
MY.OtherJobRemoveRequirements = "DAGManJobId =?= $(cluster)"
on_exit_remove = (ExitSignal =?= 11 || (ExitCode =!= UNDEFINED && ExitCode >=0 &&␣
→˓ExitCode <= 2))
arguments = "-p 0 -f -l . -Lockfile /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.
→˓lock -AutoRescue 1 -DoRescueFrom 0 -Dag /home/jovyan/tutorials/mandelbrot-dag/dagfile.
→˓dag -Suppress_notification -CsdVersion $CondorVersion:' '10.7.0' '2023-07-31' 'BuildID:
→˓' 'UW_Python_Wheel_Build' '$ -Dagman /usr/bin/condor_dagman"
environment = "_CONDOR_DAGMAN_LOG=/home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.
→˓dagman.out _CONDOR_MAX_DAGMAN_LOG=0"

Now we can enter the DAG directory and submit the DAGMan job, which will execute the graph:

[14]: import os
os.chdir(dag_dir)

schedd = htcondor.Schedd()
cluster_id = schedd.submit(dag_submit).cluster()

(continues on next page)

8.2. HTCondor Python Bindings Tutorials 595

HTCondor Manual, Release 23.6.2

(continued from previous page)

print(f"DAGMan job cluster is {cluster_id}")

os.chdir('..')

DAGMan job cluster is 1

Let’s wait for the DAGMan job to complete by reading it’s event log:

[15]: dag_job_log = f"{dag_file}.dagman.log"
print(f"DAG job log file is {dag_job_log}")

DAG job log file is /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.dagman.log

[16]: # read events from the log, waiting forever for the next event
dagman_job_events = htcondor.JobEventLog(str(dag_job_log)).events(None)

this event stream only contains the events for the DAGMan job itself, not the jobs it␣
→˓submits
for event in dagman_job_events:

print(event)

stop waiting when we see the terminate event
if event.type is htcondor.JobEventType.JOB_TERMINATED and event.cluster == cluster_

→˓id:
break

000 (001.000.000) 2023-09-19 21:41:54 Job submitted from host: <172.17.0.2:9618?
→˓addrs=172.17.0.2-9618&alias=fa6c829ace67&noUDP&sock=schedd_82_2342>

001 (001.000.000) 2023-09-19 21:41:57 Job executing on host: <172.17.0.2:9618?addrs=172.
→˓17.0.2-9618&alias=fa6c829ace67&noUDP&sock=schedd_82_2342>

005 (001.000.000) 2023-09-19 21:42:23 Job terminated.
(1) Normal termination (return value 0)

Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

0 - Run Bytes Sent By Job
0 - Run Bytes Received By Job
0 - Total Bytes Sent By Job
0 - Total Bytes Received By Job

Let’s look at the final image!

[17]: Image(dag_dir / "mandelbrot.png")

596 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

nbsphinx-code-borderwhite[17]:- −

Personal Pools

Launch this tutorial in a Jupyter Notebook on Binder:

A Personal HTCondor Pool is an HTCondor Pool that has a single owner, who is: - The pool’s administrator. - The
only submitter who is allowed to submit jobs to the pool. - The owner of all resources managed by the pool.

The HTCondor Python bindings provide a submodule, htcondor.personal, which allows you to manage personal
pools from Python. Personal pools are useful for: - Utilizing local computational resources (i.e., all of the cores on a lab
server). - Created an isolated testing/development environment for HTCondor workflows. - Serving as an entrypoint
to other computational resources, like annexes or flocked pools (not yet implemented).

We can start a personal pool by instantiating a PersonalPool. This object represents the personal pool and lets us
manage its “lifecycle”: start up and shut down. We can also use the PersonalPool to interact with the HTCondor
pool once it has been started up.

Each Personal Pool must have a unique “local directory”, corresponding to the HTCondor configuration parameter
LOCAL_DIR. For this tutorial, we’ll put it in the current working directory so that it’s easy to find.

Advanced users can configure the personal pool using the PersonalPool constructor. See the documen-
tation for details on the available options.

8.2. HTCondor Python Bindings Tutorials 597

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Personal-Pools.ipynb

HTCondor Manual, Release 23.6.2

[1]: import htcondor
from htcondor.personal import PersonalPool
from pathlib import Path

[2]: pool = PersonalPool(local_dir = Path.cwd() / "personal-condor")
pool

[2]: PersonalPool(local_dir=./personal-condor, state=INITIALIZED)

To tell the personal pool to start running, call the start() method:

[3]: pool.start()

[3]: PersonalPool(local_dir=./personal-condor, state=READY)

start() doesn’t return until the personal pool is READY, which means that it can accept commands (e.g., job submis-
sion).

Schedd and Collector objects for the personal pool are available as properties on the PersonalPool:

[4]: pool.schedd

[4]: <htcondor.htcondor.Schedd at 0x7faf80bfa040>

[5]: pool.collector

[5]: <htcondor.htcondor.Collector at 0x7faf80bf6e00>

For example, we can submit jobs using pool.schedd:

[6]: sub = htcondor.Submit(
executable = "/bin/sleep",
arguments = "$(ProcID)s",

)

schedd = pool.schedd
submit_result = schedd.submit(sub, count=10)

print(f"ClusterID is {submit_result.cluster()}")

ClusterID is 2

And we can query for the state of those jobs:

[7]: for ad in pool.schedd.query(
constraint = f"ClusterID == {submit_result.cluster()}",
projection = ["ClusterID", "ProcID", "JobStatus"]

):
print(repr(ad))

[ProcID = 0; ClusterID = 2; JobStatus = 1; ServerTime = 1695159761]
[ProcID = 1; ClusterID = 2; JobStatus = 1; ServerTime = 1695159761]
[ProcID = 2; ClusterID = 2; JobStatus = 1; ServerTime = 1695159761]
[ProcID = 3; ClusterID = 2; JobStatus = 1; ServerTime = 1695159761]
[ProcID = 4; ClusterID = 2; JobStatus = 1; ServerTime = 1695159761]
[ProcID = 5; ClusterID = 2; JobStatus = 1; ServerTime = 1695159761]

(continues on next page)

598 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

(continued from previous page)

[ProcID = 6; ClusterID = 2; JobStatus = 1; ServerTime = 1695159761]
[ProcID = 7; ClusterID = 2; JobStatus = 1; ServerTime = 1695159761]
[ProcID = 8; ClusterID = 2; JobStatus = 1; ServerTime = 1695159761]
[ProcID = 9; ClusterID = 2; JobStatus = 1; ServerTime = 1695159761]

We can use the collector to query the state of pool:

[8]: # get 3 random ads from the daemons in the pool
for ad in pool.collector.query()[:3]:

print(ad)

[
AuthenticatedIdentity = "condor@family";
EffectiveQuota = 0.0;
Priority = 5.000000000000000E+02;
Requested = 0.0;
UpdateSequenceNumber = 3;
PriorityFactor = 1.000000000000000E+03;
AuthenticationMethod = "FAMILY";
AccountingGroup = "<none>";
Name = "<none>";
SubtreeQuota = 0.0;
IsAccountingGroup = true;
MyType = "Accounting";
NegotiatorName = "jovyan@fa6c829ace67";
GroupSortKey = 0.0;
ResourcesUsed = 0;
ConfigQuota = 0.0;
DaemonStartTime = 1695159756;
BeginUsageTime = 0;
LastHeardFrom = 1695159760;
WeightedAccumulatedUsage = 0.0;
AccumulatedUsage = 0.0;
TargetType = "none";
WeightedResourcesUsed = 0.0;
DaemonLastReconfigTime = 1695159756;
SurplusPolicy = "byquota";
LastUsageTime = 0;
LastUpdate = 1695159760

]

[
UpdatesLost_Collector = 0;
UpdatesInitial_Collector = 1;
ActiveQueryWorkers = 0;
SubmitterAds = 0;
RecentUpdatesLostRatio = 0.0;
DetectedCpus = 16;
UpdatesLost = 0;
CCBReconnects = 0;
MachineAdsPeak = 0;
MaxJobsRunningPVM = 0;

(continues on next page)

8.2. HTCondor Python Bindings Tutorials 599

HTCondor Manual, Release 23.6.2

(continued from previous page)

RecentUpdatesLost_Accouting = 0;
RecentCCBReconnects = 0;
MaxJobsRunningPipe = 0;
UpdatesInitial_Accouting = 1;
UpdatesInitial_Schedd = 1;
StatsLastUpdateTime = 1695159757;
CurrentJobsRunningLinda = 0;
StatsLifetime = 1;
MonitorSelfTime = 1695159756;
RecentUpdatesInitial_Negotiator = 1;
CurrentJobsRunningStandard = 0;
MaxJobsRunningAll = 0;
CondorPlatform = "$CondorPlatform: X86_64-Ubuntu_20.04 $";
CCBRequests = 0;
MaxJobsRunningVM = 0;
AddressV1 = "{[p=\"primary\"; a=\"172.17.0.2\"; port=46071; n=\"Internet\";␣

→˓alias=\"fa6c829ace67\"; spid=\"collector\"; noUDP=true;], [p=\"IPv4\"; a=\"172.17.0.
→˓2\"; port=46071; n=\"Internet\"; alias=\"fa6c829ace67\"; spid=\"collector\";␣
→˓noUDP=true;]}";

UpdatesTotal_Accouting = 1;
HostsUnclaimed = 0;
MaxJobsRunningJava = 0;
UpdatesInitial = 4;
MaxJobsRunningGrid = 0;
DetectedMemory = 32180;
MaxJobsRunningPVMD = 0;
RecentUpdatesLostMax = 0;
RecentUpdatesTotal = 4;
MaxJobsRunningStandard = 0;
UpdatesTotal_Negotiator = 1;
RecentUpdatesInitial_Accouting = 1;
CurrentJobsRunningVM = 0;
RecentUpdatesLost_Negotiator = 0;
RecentUpdatesLost_Collector = 0;
MaxJobsRunningUnknown = 0;
CurrentJobsRunningPipe = 0;
RecentCCBRequestsSucceeded = 0;
CurrentJobsRunningLocal = 0;
RecentUpdatesInitial = 4;
RunningJobs = 0;
CollectorIpAddr = "<172.17.0.2:46071?addrs=172.17.0.2-46071&alias=fa6c829ace67&

→˓noUDP&sock=collector>";
UpdatesLost_Schedd = 0;
Machine = "fa6c829ace67";
CCBRequestsFailed = 0;
CurrentJobsRunningPVMD = 0;
MyCurrentTime = 1695159756;
UpdatesLostRatio = 0.0;
TargetType = "";
MonitorSelfSecuritySessions = 2;
LastHeardFrom = 1695159757;
UpdateInterval = 21600;

(continues on next page)

600 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

(continued from previous page)

CurrentJobsRunningParallel = 0;
CCBRequestsSucceeded = 0;
MonitorSelfImageSize = 16092;
CurrentJobsRunningScheduler = 0;
CurrentJobsRunningAll = 0;
MonitorSelfCPUUsage = 2.600000000000000E+01;
UpdatesLost_Accouting = 0;
SubmitterAdsPeak = 0;
ForkQueriesFromCOLLECTOR = 2;
UpdatesLost_Negotiator = 0;
CurrentJobsRunningVanilla = 0;
CCBEndpointsConnected = 0;
CurrentJobsRunningPVM = 0;
DaemonCoreDutyCycle = 4.107288524954678E-03;
RecentStatsLifetime = 1;
MonitorSelfRegisteredSocketCount = 2;
RecentUpdatesLost = 0;
RecentUpdatesInitial_Schedd = 1;
MaxJobsRunningParallel = 0;
RecentForkQueriesFromCOLLECTOR = 2;
MaxJobsRunningLinda = 0;
DroppedQueries = 0;
CurrentJobsRunningUnknown = 0;
HostsTotal = 0;
CCBEndpointsRegistered = 0;
UpdatesTotal = 4;
RecentUpdatesTotal_Accouting = 1;
ActiveQueryWorkersPeak = 1;
MyType = "Collector";
MonitorSelfResidentSetSize = 10940;
HostsOwner = 0;
RecentUpdatesLost_Schedd = 0;
RecentUpdatesTotal_Negotiator = 1;
RecentCCBRequestsNotFound = 0;
CondorAdmin = "root@fa6c829ace67";
UpdatesTotal_Collector = 1;
CCBEndpointsConnectedPeak = 0;
RecentCCBRequests = 0;
UpdatesTotal_Schedd = 1;
CCBRequestsNotFound = 0;
RecentDroppedQueries = 0;
MachineAds = 0;
RecentUpdatesTotal_Schedd = 1;
IdleJobs = 0;
CCBEndpointsRegisteredPeak = 0;
CurrentJobsRunningJava = 0;
RecentDaemonCoreDutyCycle = 4.107288524954678E-03;
CurrentJobsRunningMPI = 0;
PendingQueriesPeak = 0;
RecentUpdatesInitial_Collector = 1;
PendingQueries = 0;
UpdatesLostMax = 0;

(continues on next page)

8.2. HTCondor Python Bindings Tutorials 601

HTCondor Manual, Release 23.6.2

(continued from previous page)

CondorVersion = "$CondorVersion: 8.9.11 Dec 29 2020 BuildID: Debian-8.9.11-1.2␣
→˓PackageID: 8.9.11-1.2 Debian-8.9.11-1.2 $";

RecentUpdatesTotal_Collector = 1;
MaxJobsRunningLocal = 0;
RecentCCBRequestsFailed = 0;
MaxJobsRunningVanilla = 0;
Name = "My Pool - 127.0.0.1@fa6c829ace67";
MyAddress = "<172.17.0.2:46071?addrs=172.17.0.2-46071&alias=fa6c829ace67&noUDP&

→˓sock=collector>";
CurrentJobsRunningGrid = 0;
MaxJobsRunningMPI = 0;
HostsClaimed = 0;
MaxJobsRunningScheduler = 0;
UpdatesInitial_Negotiator = 1;
MonitorSelfAge = 1

]

[
LastHeardFrom = 1695159760;
LastBenchmark = 0;
TotalVirtualMemory = 32952448;
HasReconnect = true;
has_sse4_2 = true;
OpSysMajorVer = 20;
has_sse4_1 = true;
DaemonCoreDutyCycle = 0.0;
Disk = 362403396;
CondorVersion = "$CondorVersion: 8.9.11 Dec 29 2020 BuildID: Debian-8.9.11-1.2␣

→˓PackageID: 8.9.11-1.2 Debian-8.9.11-1.2 $";
SlotTypeID = 1;
Machine = "fa6c829ace67";
HasPerFileEncryption = true;
TotalSlotGPUs = 0;
TotalGPUs = 0;
Activity = "Idle";
TotalCondorLoadAvg = 0.0;
CpuCacheSize = 512;
MonitorSelfCPUUsage = 7.000000000000001E+00;
OpSys = "LINUX";
SlotType = "Partitionable";
UtsnameVersion = "#1 SMP Debian 4.19.132-1 (2020-07-24)";
AuthenticationMethod = "FAMILY";
CpuModelNumber = 1;
MyCurrentTime = 1695159760;
Name = "slot1@fa6c829ace67";
Unhibernate = MY.MachineLastMatchTime isnt undefined;
IsWakeOnLanSupported = false;
HasJobDeferral = true;
UtsnameNodename = "fa6c829ace67";
ChildDSlotId =

{
};

(continues on next page)

602 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

(continued from previous page)

ChildRemoteUser =
{
};

HasJICLocalConfig = true;
DaemonStartTime = 1695159756;
ChildRetirementTimeRemaining =

{
};

HibernationSupportedStates = "S3,S4,S5";
NextFetchWorkDelay = -1;
TotalMemory = 32180;
has_avx2 = true;
HasTransferInputRemaps = true;
RetirementTimeRemaining = 0;
FileSystemDomain = "fa6c829ace67";
StartdIpAddr = "<172.17.0.2:46071?addrs=172.17.0.2-46071&alias=fa6c829ace67&

→˓noUDP&sock=startd_326_2ff6>";
RecentJobRankPreemptions = 0;
ClockDay = 2;
TotalLoadAvg = 6.800000000000000E-01;
HasJobTransferPlugins = true;
Cpus = 16;
CondorLoadAvg = 0.0;
MaxJobRetirementTime = 0;
NumDynamicSlots = 0;
StarterAbilityList = "HasFileTransferPluginMethods,HasVM,HasMPI,HasFileTransfer,

→˓HasJobDeferral,HasJobTransferPlugins,HasPerFileEncryption,HasReconnect,HasTDP,
→˓HasJICLocalStdin,HasTransferInputRemaps,HasSelfCheckpointTransfers,HasJICLocalConfig";

HardwareAddress = "02:42:ac:11:00:02";
ChildMemory =

{
};

HasTDP = true;
ClockMin = 1302;
AcceptedWhileDraining = false;
TimeToLive = 2147483647;
EnteredCurrentActivity = 1695159760;
Arch = "X86_64";
SlotWeight = Cpus;
MyType = "Machine";
JobRankPreemptions = 0;
HasIOProxy = true;
TotalSlotMemory = 32180;
Requirements = START && (WithinResourceLimits);
UtsnameSysname = "Linux";
NumPids = 0;
TargetType = "Job";
JobUserPrioPreemptions = 0;
LastFetchWorkCompleted = 0;
UpdatesHistory = "00000000000000000000000000000000";
RecentJobUserPrioPreemptions = 0;
COLLECTOR_HOST_STRING = "127.0.0.1:0";

(continues on next page)

8.2. HTCondor Python Bindings Tutorials 603

HTCondor Manual, Release 23.6.2

(continued from previous page)

PslotRollupInformation = true;
ChildAccountingGroup =

{
};

Rank = 0.0;
CpuBusyTime = 0;
ExpectedMachineQuickDrainingCompletion = 1695159760;
MonitorSelfResidentSetSize = 11572;
MachineMaxVacateTime = 10 * 60;
IsWakeOnLanEnabled = false;
ChildName =

{
};

has_ssse3 = true;
HasSelfCheckpointTransfers = true;
GPUs = 0;
MachineResources = "Cpus Memory Disk Swap GPUs";
WakeOnLanEnabledFlags = "NONE";
has_avx = true;
ExpectedMachineGracefulDrainingBadput = 0;
CurrentRank = 0.0;
HasFileTransfer = true;
EnteredCurrentState = 1695159760;
MonitorSelfSecuritySessions = 3;
HasJICLocalStdin = true;
CpuBusy = ((LoadAvg - CondorLoadAvg) >= 5.000000000000000E-01);
DetectedMemory = 32180;
MonitorSelfTime = 1695159760;
CpuFamily = 23;
OpSysShortName = "Ubuntu";
HasVM = false;
CanHibernate = true;
ChildGPUs =

{
};

DetectedCpus = 16;
MonitorSelfRegisteredSocketCount = 0;
CpuIsBusy = true;
SlotID = 1;
OpSysLongName = "Ubuntu 20.04.2 LTS";
UtsnameMachine = "x86_64";
ExpectedMachineGracefulDrainingCompletion = 1695159760;
AuthenticatedIdentity = "condor@family";
OpSysVer = 2004;
OpSysAndVer = "Ubuntu20";
UpdatesSequenced = 0;
HibernationState = "NONE";
UpdateSequenceNumber = 1;
RecentJobPreemptions = 0;
HibernationLevel = 0;
HasMPI = true;
WithinResourceLimits = (MY.Cpus > 0 && TARGET.RequestCpus <= MY.Cpus && MY.

(continues on next page)

604 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

(continued from previous page)

→˓Memory > 0 && TARGET.RequestMemory <= MY.Memory && MY.Disk > 0 && TARGET.RequestDisk
→˓<= MY.Disk && (TARGET.RequestGPUs is undefined || MY.GPUs >= TARGET.RequestGPUs));

MonitorSelfImageSize = 16564;
OpSysLegacy = "LINUX";
ChildCurrentRank =

{
};

LoadAvg = 6.800000000000000E-01;
JobPreemptions = 0;
ChildDisk =

{
};

Memory = 32180;
MonitorSelfAge = 4;
ChildRemoteOwner =

{
};

UpdatesLost = 0;
ChildCpus =

{
};

ChildState =
{
};

TotalDisk = 362403396;
TotalSlotDisk = 3.624033960000000E+08;
OpSysName = "Ubuntu";
UpdatesTotal = 1;
ChildActivity =

{
};

CondorPlatform = "$CondorPlatform: X86_64-Ubuntu_20.04 $";
HasFileTransferPluginMethods = "box,https,gdrive,dav,davs,http,onedrive,data,ftp,

→˓file,s3";
DaemonLastReconfigTime = 1695159756;
MyAddress = "<172.17.0.2:46071?addrs=172.17.0.2-46071&alias=fa6c829ace67&noUDP&

→˓sock=startd_326_2ff6>";
DetectedGPUs = 0;
KeyboardIdle = 1695159760;
WakeOnLanSupportedFlags = "NONE";
State = "Unclaimed";
PartitionableSlot = true;
JobStarts = 0;
RecentDaemonCoreDutyCycle = 0.0;
Start = true;
UtsnameRelease = "4.19.0-10-amd64";
TotalSlots = 1;
UidDomain = "fa6c829ace67";
SubnetMask = "255.255.0.0";
IsWakeAble = false;
RecentJobStarts = 0;
AddressV1 = "{[p=\"primary\"; a=\"172.17.0.2\"; port=46071; n=\"Internet\";␣

(continues on next page)

8.2. HTCondor Python Bindings Tutorials 605

HTCondor Manual, Release 23.6.2

(continued from previous page)

→˓alias=\"fa6c829ace67\"; spid=\"startd_326_2ff6\"; noUDP=true;], [p=\"IPv4\"; a=\"172.
→˓17.0.2\"; port=46071; n=\"Internet\"; alias=\"fa6c829ace67\"; spid=\"startd_326_2ff6\";
→˓ noUDP=true;]}";

TotalCpus = 1.600000000000000E+01;
TotalSlotCpus = 16;
ChildEnteredCurrentState =

{
};

IsLocalStartd = false;
LastFetchWorkSpawned = 0;
VirtualMemory = 32952448;
ExpectedMachineQuickDrainingBadput = 0;
ConsoleIdle = 1695159760

]

When you’re done using the personal pool, you can stop() it:

[9]: pool.stop()

[9]: PersonalPool(local_dir=./personal-condor, state=STOPPED)

stop(), like start() will not return until the personal pool has actually stopped running. The personal pool will
also automatically be stopped if the PersonalPool object is garbage-collected, or when the Python interpreter stops
running.

To prevent the pool from being automatically stopped in these situations, call the detach() method. The
corresponding attach() method can be used to “re-connect” to a detached personal pool.

When working with a personal pool in a script, you may want to use it as a context manager. This pool will automatically
start and stop at the beginning and end of the context:

[10]: with PersonalPool(local_dir = Path.cwd() / "another-personal-condor") as pool: # note:␣
→˓no need to call start()

print(pool.get_config_val("LOCAL_DIR"))

/home/jovyan/tutorials/another-personal-condor

8.3 Python Bindings version 2 API Reference

This documentation is the exhaustive definition of version 2 of HTCondor’s Python API. It is not intended as a tutorial
for new users.

8.3.1 classad2 Module Reference

This documentation is the exhaustive definition of the classad2 API. It is not intended as a tutorial for new users.

606 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

classad2 Members

ClassAd Class

ExprTree Class

classad2 Enumerations

This page exhaustively defines and documents the enumerations in the classad2module. It is not intended as a tutorial
for new users.

8.3.2 htcondor2 Module Reference

This documentation is the exhaustive definition of the htcondor2 API. It is not intended as a tutorial for new users.

htcondor2 Members

htcondor2.param

A collections.abc.MutableMapping of the HTCondor configuration. Changes are reflected in the current
process’s memory immediately, but are never written to disk. To change another process’s configuration (e.g., a
running daemon’s), use RemoteParam.

Collector Class

CredCheck Class

Credd Class

JobEvent Class

JobEventLog Class

Negotiator Class

Schedd Class

Startd Class

Submit Class

SubmitResult Class

htcondor2 Enumerations

8.3.3 Examples of Using the htcondor2 and/or classad2 Modules

Although this documentation is not intended for new users, sometimes a dozen lines of code is worth a thousand words.

8.3. Python Bindings version 2 API Reference 607

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping

HTCondor Manual, Release 23.6.2

Using htcondor2.JobEventLog

The following is a complete example of submitting a job and waiting (forever) for it to finish. The next example
implements a time-out.

Note: Both examples were originally written for the version 1 API. Both examples import htcondor2 as
htcondor to help show that the version 1 and version 2 APIs are mostly compatible, but are otherwise identical to
the version 1 examples at the time of writing.

#!/usr/bin/env python3

import htcondor2 as htcondor

Create a job description. It _must_ set `log` to create a job event log.
logFileName = "sleep.log"
submit = htcondor.Submit(

f"""
executable = /bin/sleep
transfer_executable = false
arguments = 5

log = {logFileName}
"""

)

Submit the job description, creating the job.
result = htcondor.Schedd().submit(submit, count=1)
clusterID = result.cluster()

Wait (forever) for the job to finish.
jel = htcondor.JobEventLog(logFileName)
for event in jel.events(stop_after=None):

HTCondor appends to job event logs by default, so if you run
this example more than once, there will be more than one job
in the log. Make sure we have the right one.
if event.cluster != clusterID or event.proc != 0:

continue

if event.type == htcondor.JobEventType.JOB_TERMINATED:
if(event["TerminatedNormally"]):

print(f"Job terminated normally with return value {event['ReturnValue']}.")
else:

print(f"Job terminated on signal {event['TerminatedBySignal']}.");
break

if event.type in { htcondor.JobEventType.JOB_ABORTED,
htcondor.JobEventType.JOB_HELD,
htcondor.JobEventType.CLUSTER_REMOVE }:

print("Job aborted, held, or removed.")
break

(continues on next page)

608 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

(continued from previous page)

We expect to see the first three events in this list, and allow
don't consider the others to be terminal.
if event.type not in { htcondor.JobEventType.SUBMIT,

htcondor.JobEventType.EXECUTE,
htcondor.JobEventType.IMAGE_SIZE,
htcondor.JobEventType.JOB_EVICTED,
htcondor.JobEventType.JOB_SUSPENDED,
htcondor.JobEventType.JOB_UNSUSPENDED }:

print(f"Unexpected job event: {event.type}!");
break

The following example includes a deadline for the job to finish. To make it quick to run the example, the deadline is only
ten seconds; real jobs will almost always take considerably longer. You can change arguments = 20 to arguments
= 5 to verify that this example correctly detects the job finishing. For the same reason, we check once a second to
see if the deadline has expired. In practice, you should check much less frequently, depending on how quickly your
script needs to react and how long you expect the job to last. In most cases, even once a minute is more frequent than
necessary or appropriate on shared resources; every five minutes is better.

#!/usr/bin/env python3
import time
import htcondor2 as htcondor

Create a job description. It _must_ set `log` to create a job event log.
logFileName = "sleep.log"
submit = htcondor.Submit(

f"""
executable = /bin/sleep
transfer_executable = false
arguments = 20

log = {logFileName}
"""

)

Submit the job description, creating the job.
result = htcondor.Schedd().submit(submit, count=1)
clusterID = result.cluster()

def waitForJob(deadline):
jel = htcondor.JobEventLog(logFileName)
while time.time() < deadline:

In real code, this should be more like stop_after=300; see above.
for event in jel.events(stop_after=1):

HTCondor appends to job event logs by default, so if you run
this example more than once, there will be more than one job
in the log. Make sure we have the right one.
if event.cluster != clusterID or event.proc != 0:

continue
if event.type == htcondor.JobEventType.JOB_TERMINATED:

if(event["TerminatedNormally"]):
␣

→˓print(f"Job terminated normally with return value {event['ReturnValue']}.")
(continues on next page)

8.3. Python Bindings version 2 API Reference 609

HTCondor Manual, Release 23.6.2

(continued from previous page)

else:
print(f"Job terminated on signal {event['TerminatedBySignal']}.");

return True
if event.type in { htcondor.JobEventType.JOB_ABORTED,

htcondor.JobEventType.JOB_HELD,
htcondor.JobEventType.CLUSTER_REMOVE }:

print("Job aborted, held, or removed.")
return True

We expect to see the first three events in this list, and allow
don't consider the others to be terminal.
if event.type not in { htcondor.JobEventType.SUBMIT,

htcondor.JobEventType.EXECUTE,
htcondor.JobEventType.IMAGE_SIZE,
htcondor.JobEventType.JOB_EVICTED,
htcondor.JobEventType.JOB_SUSPENDED,
htcondor.JobEventType.JOB_UNSUSPENDED }:

print(f"Unexpected job event: {event.type}!");
return True

else:
print("Deadline expired.")
return False

Wait no more than 10 seconds for the job finish.
waitForJob(time.time() + 10);

Note that which job events are terminal, expected, or allowed may vary somewhat from job to job; for instance, it’s
possible to submit a job which releases itself from certain hold conditions.

8.4 classad API Reference

This page is an exhaustive reference of the API exposed by the classad module. It is not meant to be a tutorial for
new users but rather a helpful guide for those who already understand the basic usage of the module.

8.4.1 ClassAd Representation

ClassAds are individually represented by the ClassAd class. Their attribute are key-value pairs, as in a standard Python
dictionary. The keys are strings, and the values may be either Python primitives corresponding to ClassAd data types
(string, bool, etc.) or ExprTree objects, which correspond to un-evaluated ClassAd expressions.

class classad.ClassAd(input)
The ClassAd object is the Python representation of a ClassAd. Where possible, ClassAd attempts to mimic a
Python dict. When attributes are referenced, they are converted to Python values if possible; otherwise, they
are represented by a ExprTree object.

New ClassAd objects can be initialized via a string (which is parsed as an ad) or a dictionary-like object con-
taining attribute-value pairs.

The ClassAd object is iterable (returning the attributes) and implements the dictionary protocol. The items,
keys, values, get, setdefault, and update methods have the same semantics as a dictionary.

610 Chapter 8. Python Bindings

https://docs.python.org/3/library/stdtypes.html#dict

HTCondor Manual, Release 23.6.2

Note: Where possible, we recommend using the dedicated parsing functions (parseOne(), parseNext(), or
parseAds()) instead of using the constructor.

Parameters
input (str or dict) – A string or dictionary which will be interpreted as a classad.

eval(attr)→ object :
Evaluate an attribute to a Python object. The result will not be an ExprTree but rather an built-in type
such as a string, integer, boolean, etc.

Parameters
attr (str) – Attribute to evaluate.

Returns
The Python object corresponding to the evaluated ClassAd attribute

Raises
ValueError – if unable to evaluate the object.

lookup(attr)→ ExprTree :
Look up the ExprTree object associated with attribute.

No attempt will be made to convert to a Python object.

Parameters
attr (str) – Attribute to evaluate.

Returns
The ExprTree object referenced by attr.

printOld()→ str :
Serialize the ClassAd in the old ClassAd format.

Returns
The ‘old ClassAd’ representation of the ad.

Return type
str

printJson(arg1)→ str :
Serialize the ClassAd as a string in JSON format.

Returns
The JSON representation of the ad.

Return type
str

flatten(expr)→ object :
Given ExprTree object expression, perform a partial evaluation. All the attributes in expression and defined
in this ad are evaluated and expanded. Any constant expressions, such as 1 + 2, are evaluated; undefined
attributes are not evaluated.

Parameters
expr (ExprTree) – The expression to evaluate in the context of this ad.

Returns
The partially-evaluated expression.

8.4. classad API Reference 611

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

Return type
ExprTree

matches(ad)→ bool :
Lookup the Requirements attribute of given ad return True if the Requirements evaluate to True in
our context.

Parameters
ad (ClassAd) – ClassAd whose Requirements we will evaluate.

Returns
True if we satisfy ad’s requirements; False otherwise.

Return type
bool

symmetricMatch(ad)→ bool :
Check for two-way matching between given ad and ourselves.

Equivalent to self.matches(ad) and ad.matches(self).

Parameters
ad (ClassAd) – ClassAd to check for matching.

Returns
True if both ads’ requirements are satisfied.

Return type
bool

externalRefs(expr)→ list :
Returns a Python list of external references found in expr.

An external reference is any attribute in the expression which is not defined by the ClassAd object.

Parameters
expr (ExprTree) – Expression to examine.

Returns
A list of external attribute references.

Return type
list[str]

internalRefs(expr)→ list :
Returns a Python list of internal references found in expr.

An internal reference is any attribute in the expression which is defined by the ClassAd object.

Parameters
expr (ExprTree) – Expression to examine.

Returns
A list of internal attribute references.

Return type
list[str]

__eq__(arg1, arg2)→ bool :
One ClassAd is equivalent to another if they have the same number of attributes, and each attribute is the
sameAs() the other.

612 Chapter 8. Python Bindings

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

__ne__(arg1, arg2)→ bool :
The opposite of __eq__().

class classad.ExprTree(expr)
The ExprTree class represents an expression in the ClassAd language.

The ExprTree constructor takes an ExprTree, or a string, which it will attempt to parse into a ClassAd expression.
str(expr) will turn the ExprTree back into its string representation. int, float, and bool behave similarly,
evaluating as necessary.

As with typical ClassAd semantics, lazy-evaluation is used. So, the expression 'foo' + 1 does not produce an
error until it is evaluated with a call to bool() or the ExprTree.eval() method.

Note: The Python operators for ExprTree have been overloaded so, if e1 and e2 are ExprTree objects, then
e1 + e2 is also an ExprTree object. However, Python short-circuit evaluation semantics for e1 && e2 cause
e1 to be evaluated. In order to get the ‘logical and’ of the two expressions without evaluating, use e1.and_(e2).
Similarly, e1.or_(e2) results in the ‘logical or’.

and_(expr)→ ExprTree :
Return a new expression, formed by self && expr.

Parameters
expr (ExprTree) – Right-hand-side expression to ‘and’

Returns
A new expression, defined to be self && expr.

Return type
ExprTree

or_(expr)→ ExprTree :
Return a new expression, formed by self || expr.

Parameters
expr (ExprTree) – Right-hand-side expression to ‘or’

Returns
A new expression, defined to be self || expr.

Return type
ExprTree

is_(expr)→ ExprTree :
Logical comparison using the ‘meta-equals’ operator.

Parameters
expr (ExprTree) – Right-hand-side expression to =?= operator.

Returns
A new expression, formed by self =?= expr.

Return type
ExprTree

isnt_(expr)→ ExprTree :
Logical comparison using the ‘meta-not-equals’ operator.

Parameters
expr (ExprTree) – Right-hand-side expression to =!= operator.

8.4. classad API Reference 613

HTCondor Manual, Release 23.6.2

Returns
A new expression, formed by self =!= expr.

Return type
ExprTree

sameAs(expr)→ bool :
Returns True if given ExprTree is same as this one.

Parameters
expr (ExprTree) – Expression to compare against.

Returns
True if and only if expr is equivalent to this object.

Return type
bool

eval(scope)→ object :
Evaluate the expression and return as a ClassAd value, typically a Python object.

Warning: If scope is passed and is not the ClassAd this ExprTree might belong to, this method is
not thread-safe.

Parameters
scope (ClassAd) – Optionally, the ClassAd context in which to evaluate. Unnecessary if
the ExprTree comes from its own ClassAd, in which case it will be evaluated in the scope
of that ad, or if the ExprTree can be evaluated without a context.

If passed, scope must be a classad.ClassAd.

Returns
The evaluated expression as a Python object.

simplify(scope, target)→ ExprTree :
Evaluate the expression and return as a ExprTree.

Warning: If scope is passed and is not the ClassAd this ExprTree might belong to, this method is
not thread-safe.

Warning: It is erroneous for scope to be a temporary; the lifetime of the returned object may depend
on the lifetime of the scope object.

Parameters

• scope (ClassAd) – Optionally, the ClassAd context in which to evaluate. Unnecessary
if the ExprTree comes from its own ClassAd, in which case it will be evaluated in the
scope of that ad, or if the ExprTree can be evaluated without a context.

If passed, scope must be a classad.ClassAd.

• target (ClassAd) – Optionally, the ClassAd TARGET ad.

If passed, target must be a classAd.ClassAd.

614 Chapter 8. Python Bindings

https://docs.python.org/3/library/functions.html#bool

HTCondor Manual, Release 23.6.2

Returns
The evaluated expression as an ExprTree.

class classad.Value

An enumeration of the two special ClassAd values Undefined and Error.

The values of the enumeration are:

Undefined

Error

8.4.2 Parsing and Creating ClassAds

classad provides a variety of utility functions that can help you construct ClassAd expressions and parse string rep-
resentations of ClassAds.

classad.parseAds(input, parser=classad.classad.Parser.Auto)→ object :
Parse the input as a series of ClassAds.

Parameters

• input (str or file) – Serialized ClassAd input; may be a file-like object.

• parser (Parser) – Controls behavior of the ClassAd parser.

Returns
An iterator that produces ClassAd.

classad.parseNext(input, parser=classad.classad.Parser.Auto)→ object :
Parse the next ClassAd in the input string. Advances the input to point after the consumed ClassAd.

Parameters

• input (str or file) – Serialized ClassAd input; may be a file-like object.

• parser (Parser) – Controls behavior of the ClassAd parser.

Returns
An iterator that produces ClassAd.

classad.parseOne(input, parser=classad.classad.Parser.Auto)→ ClassAd :
Parse the entire input into a single ClassAd object.

In the presence of multiple ClassAds or blank lines in the input, continue to merge ClassAds together until the
entire input is consumed.

Parameters

• input (str or file) – Serialized ClassAd input; may be a file-like object.

• parser (Parser) – Controls behavior of the ClassAd parser.

Returns
Corresponding ClassAd object.

Return type
ClassAd

classad.quote(input)→ str :
Converts the Python string into a ClassAd string literal; this handles all the quoting rules for the ClassAd language.
For example:

8.4. classad API Reference 615

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

>>> classad.quote('hello'world')
''hello\\'world''

This allows one to safely handle user-provided strings to build expressions. For example:

>>> classad.ExprTree('Foo =?= %s' % classad.quote('hello'world'))
Foo is 'hello\'world'

Parameters
input (str) – Input string to quote.

Returns
The corresponding string literal as a Python string.

Return type
str

classad.unquote(input)→ str :
Converts a ClassAd string literal, formatted as a string, back into a Python string. This handles all the quoting
rules for the ClassAd language.

Parameters
input (str) – Input string to unquote.

Returns
The corresponding Python string for a string literal.

Return type
str

classad.Attribute(name)→ ExprTree :
Given an attribute name, construct an ExprTree object which is a reference to that attribute.

Note: This may be used to build ClassAd expressions easily from python. For example, the ClassAd expression
foo == 1 can be constructed by the Python code Attribute('foo') == 1.

Parameters
name (str) – Name of attribute to reference.

Returns
Corresponding expression consisting of an attribute reference.

Return type
ExprTree

classad.Function()

Given function name name, and zero-or-more arguments, construct an ExprTree which is a function call ex-
pression. The function is not evaluated.

For example, the ClassAd expression strcat('hello ', 'world') can be constructed by the Python expres-
sion Function('strcat', 'hello ', 'world').

Returns
Corresponding expression consisting of a function call.

Return type
ExprTree

616 Chapter 8. Python Bindings

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

classad.Literal(obj)→ ExprTree :
Convert a given Python object to a ClassAd literal.

Python strings, floats, integers, and booleans have equivalent literals in the ClassAd language.

Parameters
obj – Python object to convert to an expression.

Returns
Corresponding expression consising of a literal.

Return type
ExprTree

classad.lastError()→ str :
Return the string representation of the last error to occur in the ClassAd library.

As the ClassAd language has no concept of an exception, this is the only mechanism to receive detailed error
messages from functions.

classad.register(function, name=None)→ None :
Given the Python function, register it as a function in the ClassAd language. This allows the invocation of the
Python function from within a ClassAd evaluation context.

Parameters

• function – A callable object to register with the ClassAd runtime.

• name (str) – Provides an alternate name for the function within the ClassAd library. The
default, None, indicates to use the built-in function name.

classad.registerLibrary(arg1)→ None :
Given a file system path, attempt to load it as a shared library of ClassAd functions. See the upstream documenta-
tion for configuration variable CLASSAD_USER_LIBS for more information about loadable libraries for ClassAd
functions.

Parameters
path (str) – The library to load.

8.4.3 Parser Control

The behavior of parseAds(), parseNext(), and parseOne() can be controlled by giving them different values of
the Parser enumeration.

class classad.Parser

An enumeration that controls the behavior of the ClassAd parser. The values of the enumeration are. . .

Auto

The parser should automatically determine the ClassAd representation.

Old

The parser should only accept the old ClassAd format.

New

The parser should only accept the new ClassAd format.

8.4. classad API Reference 617

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

8.4.4 Utility Functions

classad.version()→ str :
Return the version of the linked ClassAd library.

8.4.5 Exceptions

For backwards-compatibility, the exceptions in this module inherit from the built-in exceptions raised in earlier (pre-
v8.9.9) versions.

class classad.ClassAdException

Never raised. The parent class of all exceptions raised by this module.

class classad.ClassAdEnumError

Raised when a value must be in an enumeration, but isn’t.

class classad.ClassAdEvaluationError

Raised when the ClassAd library fails to evaluate an expression.

class classad.ClassAdInternalError

Raised when the ClassAd library encounters an internal error.

class classad.ClassAdOSError

Raised instead of OSError for backwards compatibility.

class classad.ClassAdParseError

Raised when the ClassAd library fails to parse a (putative) ClassAd.

class classad.ClassAdTypeError

Raised instead of TypeError for backwards compatibility.

class classad.ClassAdValueError

Raised instead of ValueError for backwards compatibility.

8.4.6 Deprecated Functions

The functions in this section are deprecated; new code should not use them and existing code should be rewritten to
use their replacements.

classad.parse(input)→ ClassAd :

Warning: This function is deprecated.

Parse input, in the new ClassAd format, into a ClassAd object.

Parameters
input (str or file) – A string-like object or a file pointer.

Returns
Corresponding ClassAd object.

Return type
ClassAd

618 Chapter 8. Python Bindings

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

classad.parseOld(input)→ ClassAd :

Warning: This function is deprecated.

Parse input, in the old ClassAd format, into a ClassAd object.

Parameters
input (str or file) – A string-like object or a file pointer.

Returns
Corresponding ClassAd object.

Return type
ClassAd

8.5 htcondor API Reference

This page is an exhaustive reference of the API exposed by the htcondor module. It is not meant to be a tutorial for
new users but rather a helpful guide for those who already understand the basic usage of the module.

8.5.1 Interacting with Collectors

class htcondor.Collector(pool)
Client object for a remote condor_collector. The Collector can be used to:

• Locate a daemon.

• Query the condor_collector for one or more specific ClassAds.

• Advertise a new ad to the condor_collector.

Parameters
pool (str or list[str]) – A host:port pair specified for the remote collector (or a list of
pairs for HA setups). If omitted, the value of configuration parameter COLLECTOR_HOST is used.

locate(daemon_type, name)→ object :
Query the condor_collector for a particular daemon.

Parameters

• daemon_type (DaemonTypes) – The type of daemon to locate.

• name (str) – The name of daemon to locate. If not specified, it searches for the local
daemon.

Returns
a minimal ClassAd of the requested daemon, sufficient only to contact the daemon; typically,
this limits to the MyAddress attribute.

Return type
ClassAd

locateAll(daemon_type)→ object :
Query the condor_collector daemon for all ClassAds of a particular type. Returns a list of matching Clas-
sAds.

8.5. htcondor API Reference 619

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

Parameters
daemon_type (DaemonTypes) – The type of daemon to locate.

Returns
Matching ClassAds

Return type
list[ClassAd]

query(ad_type=htcondor.htcondor.AdTypes.Any, constraint='', projection=[], statistics='')→ object :
Query the contents of a condor_collector daemon. Returns a list of ClassAds that match the constraint
parameter.

Parameters

• ad_type (AdTypes) – The type of ClassAd to return. If not specified, the type will be
ANY_AD.

• constraint (str or ExprTree) – A constraint for the collector query; only ads matching
this constraint are returned. If not specified, all matching ads of the given type are returned.

• projection (list[str]) – A list of attributes to use for the projection. Only these at-
tributes, plus a few server-managed, are returned in each ClassAd.

• statistics (list[str]) – Statistics attributes to include, if they exist for the specified
daemon.

Returns
A list of matching ads.

Return type
list[ClassAd]

directQuery(daemon_type, name='', projection=[], statistics='')→ object :
Query the specified daemon directly for a ClassAd, instead of using the ClassAd from the condor_collector
daemon. Requires the client library to first locate the daemon in the collector, then querying the remote
daemon.

Parameters

• daemon_type (DaemonTypes) – Specifies the type of the remote daemon to query.

• name (str) – Specifies the daemon’s name. If not specified, the local daemon is used.

• projection (list[str]) – is a list of attributes requested, to obtain only a subset of the
attributes from the daemon’s ClassAd.

• statistics (str) – Statistics attributes to include, if they exist for the specified daemon.

Returns
The ad of the specified daemon.

Return type
ClassAd

advertise(ad_list, command='UPDATE_AD_GENERIC', use_tcp=True)→ None :
Advertise a list of ClassAds into the condor_collector.

Parameters

• ad_list (list[ClassAds]) – ClassAds to advertise.

620 Chapter 8. Python Bindings

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

• command (str) – An advertise command for the remote condor_collector. It defaults to
UPDATE_AD_GENERIC. Other commands, such as UPDATE_STARTD_AD, may require dif-
ferent authorization levels with the remote daemon.

• use_tcp (bool) – When set to True, updates are sent via TCP. Defaults to True.

class htcondor.DaemonTypes

An enumeration of different types of daemons available to HTCondor.

The values of the enumeration are:

None

Any

Any type of daemon; useful when specifying queries where all matching daemons should be returned.

Master

Ads representing the condor_master.

Schedd

Ads representing the condor_schedd.

Startd

Ads representing the resources on a worker node.

Collector

Ads representing the condor_collector.

Negotiator

Ads representing the condor_negotiator.

HAD

Ads representing the high-availability daemons (condor_had).

Generic

All other ads that are not categorized as above.

Credd

class htcondor.AdTypes

A list of different types of ads that may be kept in the condor_collector.

The values of the enumeration are:

None

Any

Type representing any matching ad. Useful for queries that match everything in the collector.

Generic

Generic ads, associated with no particular daemon.

Startd

Startd ads, produced by the condor_startd daemon. Represents the available slots managed by the startd.

StartdPrivate

The “private” ads, containing the claim IDs associated with a particular slot. These require additional
authorization to read as the claim ID may be used to run jobs on the slot.

8.5. htcondor API Reference 621

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

HTCondor Manual, Release 23.6.2

Schedd

Schedd ads, produced by the condor_schedd daemon.

Master

Master ads, produced by the condor_master daemon.

Collector

Ads from the condor_collector daemon.

Negotiator

Negotiator ads, produced by the condor_negotiator daemon.

Submitter

Ads describing the submitters with available jobs to run; produced by the condor_schedd and read by the
condor_negotiator to determine which users need a new negotiation cycle.

Grid

Ads associated with the grid universe.

HAD

Ads produced by the condor_had.

License

License ads. These do not appear to be used by any modern HTCondor daemon.

Credd

Defrag

Accounting

8.5.2 Interacting with Schedulers

class htcondor.Schedd(location_ad)
Client object for a condor_schedd.

Parameters
location_ad (ClassAd or DaemonLocation) – A ClassAd describing the location of the re-
mote condor_schedd daemon, as returned by the Collector.locate() method, or a tuple of
type DaemonLocation as returned by Schedd.location(). If the parameter is omitted, the
local condor_schedd daemon is used.

transaction()

Warning: Schedd.transaction() was deprecated in version 10.7.0 and will be removed in a future
release. Use Schedd.submit() instead.

transaction((Schedd)self [, (TransactionFlags)flags=0 [, (bool)continue_txn=False]]) -> Transaction :

This method is DEPRECATED. Use Schedd.submit() instead.

Start a transaction with the condor_schedd.

Starting a new transaction while one is ongoing is an error unless the continue_txn flag is set.

param flags
Flags controlling the behavior of the transaction, defaulting to 0.

622 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

type flags
TransactionFlags

param bool continue_txn
Set to True if you would like this transaction to extend any pre-existing transaction; de-
faults to False. If this is not set, starting a transaction inside a pre-existing transaction
will cause an exception to be thrown.

return
A Transaction object.

query(constraint='true', projection=[], callback=None, limit=-1,
opts=htcondor.htcondor.QueryOpts.Default)→ object :

Query the condor_schedd daemon for job ads. Job ads may be quite large and there may be tens of thousands
of them, so you may want to specify a projection. In memory-constrained environments, you may also need
to impose a strict constraint and make more than one query.

Parameters

• constraint (str or ExprTree) – A query constraint. Only jobs matching this constraint
will be returned. Defaults to 'true', which means all jobs will be returned.

• projection (list[str]) – Attributes that will be returned for each job in the query. At
least the attributes in this list will be returned, but additional ones may be returned as well.
An empty list (the default) returns all attributes.

• callback – A callable object; if provided, it will be invoked for each ClassAd. The return
value (if not None) will be added to the returned list instead of the ad.

• limit (int) – The maximum number of ads to return; the default (-1) is to return all ads.

• opts (QueryOpts.) – Additional flags for the query; these may affect the behavior of the
condor_schedd.

Returns
ClassAds representing the matching jobs.

Return type
list[ClassAd]

xquery()

Warning: Schedd.xquery() was deprecated in version 10.7.0 and will be removed in a future release.

xquery((Schedd)self [, (object)constraint=’true’ [, (list)projection=[] [, (int)limit=-1 [, (Query-
Opts)opts=htcondor.htcondor.QueryOpts.Default [, (object)name=None]]]]]) -> QueryIterator :

Warning: This function is deprecated.

Query the condor_schedd daemon for job ads.

Warning: This returns an iterator of ClassAd objects, which means you may not need to
hold all of the ads returned by the query in memory simultaneously. However, this method
holds a connection open to the schedd, and a fork of the schedd will remain active, until you

8.5. htcondor API Reference 623

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 23.6.2

finish iterating. If you are not retrieving many large ads, consider using query() instead to
reduce load on the schedd.

param constraint
A query constraint. Only jobs matching this constraint will be returned. Defaults to
'true', which means all jobs will be returned.

type constraint
str or ExprTree

param projection
Attributes that will be returned for each job in the query. At least the attributes in this
list will be returned, but additional ones may be returned as well. An empty list (the
default) returns all attributes.

type projection
list[str]

param int limit
A limit on the number of matches to return. The default (-1) indicates all matching
jobs should be returned.

param opts
Additional flags for the query, from QueryOpts.

type opts
QueryOpts

param str name
A tag name for the returned query iterator. This string will always be returned from
the QueryIterator.tag() method of the returned iterator. The default value is the
condor_schedd’s name. This tag is useful to identify different queries when using the
poll() function.

return
An iterator for the matching job ads

rtype
QueryIterator

act(action, job_spec, reason=None)→ object :
Change status of job(s) in the condor_schedd daemon. The return value is a ClassAd object describing the
number of jobs changed.

This will throw an exception if no jobs are matched by the constraint.

Parameters

• action (JobAction) – The action to perform; must be of the enum JobAction.

• job_spec (list[str] or str) – The job specification. It can either be a list of job IDs,
or an ExprTree or string specifying a constraint. Only jobs matching this description will
be acted upon.

• reason (str) – The reason for the action. If omitted, the reason will be “Python-initiated
action”.

edit(job_spec, attr, value, flags=0)→ EditResult :
Edit one or more jobs in the queue.

This will throw an exception if no jobs are matched by the job_spec constraint.

624 Chapter 8. Python Bindings

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

Parameters

• job_spec (list[str] or str) – The job specification. It can either be a list of job IDs
or a string specifying a constraint. Only jobs matching this description will be acted upon.

• attr (str) – The name of the attribute to edit.

• value (str or ExprTree) – The new value of the attribute. It should be a string, which
will be converted to a ClassAd expression, or an ExprTree object. Be mindful of quoting
issues; to set the value to the string foo, one would set the value to ''foo''

• flags (TransactionFlags) – Flags controlling the behavior of the transaction, default-
ing to 0.

Returns
An EditResult containing the number of jobs that were edited.

Return type
EditResult

history(constraint, projection, match=-1, since=None)→ HistoryIterator :
Fetch history records from the condor_schedd daemon.

Parameters

• constraint (str or ExprTree) – A query constraint. Only jobs matching this constraint
will be returned. None will return all jobs.

• projection (list[str]) – Attributes that will be returned for each job in the query. At
least the attributes in this list will be returned, but additional ones may be returned as well.
An empty list returns all attributes.

• match (int) – A limit on the number of jobs to include; the default (-1) indicates to return
all matching jobs. The schedd may return fewer than match jobs because of its setting of
HISTORY_HELPER_MAX_HISTORY (default 10,000).

• since (int, str, or ExprTree) – A cluster ID, job ID, or expression. If a cluster ID (passed as
an int) or job ID (passed a str in the format {clusterID}.{procID}), only jobs recorded
in the history file after (and not including) the matching ID will be returned. If an expression
(passed as a str or ExprTree), jobs will be returned, most-recently-recorded first, until the
expression becomes true; the job making the expression become true will not be returned.
Thus, 1038 and clusterID == 1038 return the same set of jobs.

Returns
All matching ads in the Schedd history, with attributes according to the projection keyword.

Return type
HistoryIterator

jobEpochHistory(constraint, projection, match=-1, since=None)→ HistoryIterator :
Fetch per job run instance (epoch) history records from the condor_schedd daemon.

Parameters

• constraint (str or ExprTree) – A query constraint. Only jobs matching this constraint
will be returned. None will return all jobs.

• projection (list[str]) – Attributes that will be returned for each job in the query. At
least the attributes in this list will be returned, but additional ones may be returned as well.
An empty list returns all attributes.

8.5. htcondor API Reference 625

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

• match (int) – A limit on the number of jobs to include; the default (-1) indicates to return
all matching jobs. The schedd may return fewer than match jobs because of its setting of
HISTORY_HELPER_MAX_HISTORY (default 10,000).

• since (int, str, or ExprTree) – A cluster ID, job ID, or expression. If a cluster ID (passed as
an int) or job ID (passed a str in the format {clusterID}.{procID}), only jobs recorded
in the history file after (and not including) the matching ID will be returned. If an expression
(passed as a str or ExprTree), jobs will be returned, most-recently-recorded first, until the
expression becomes true; the job making the expression become true will not be returned.
Thus, 1038 and clusterID == 1038 return the same set of jobs.

Returns
All matching ads in the Schedd history, with attributes according to the projection keyword.

Return type
HistoryIterator

submit(description, count=1, spool=False, ad_results=None, itemdata=None)→ object :
Submit one or more jobs to the condor_schedd daemon.

This method requires the invoker to provide a Submit object that describes the jobs to submit. The return
value will be a SubmitResult that contains the cluster ID and ClassAd of the submitted jobs.

For backward compatibility, this method will also accept a ClassAd that describes a single job to submit,
but use of this form of is DEPRECATED. If the deprecated form is used the return value will be the cluster
ID, and ad_results will optionally be the actual job ClassAds that were submitted.

Parameters

• description (Submit (or DEPRECATED ClassAd)) – The Submit description or Clas-
sAd describing the job cluster.

• count (int) – The number of jobs to submit to the job cluster. Defaults to 1.

• spool (bool) – If True, jobs will be submitted in a spooling hold mode so that input files
can be spooled to a remote condor_schedd daemon before starting the jobs. This parameter
is necessary for jobs submitted to a remote condor_schedd that use HTCondor file transfer.
When True, job will be left in the HOLD state until the spool() method is called.

• ad_results (list[ClassAd]) – DEPRECATED. If set to a list and a raw job ClassAd is
passed as the first argument, the list object will contain the job ads that were submitted.

Returns
a SubmitResult, containing the cluster ID, cluster ClassAd and range of Job ids of the
submitted job(s). If using the deprecated first argument, the return value will be an int and
ad_results may contain submitted jobs ClassAds.

Return type
SubmitResult or int

submitMany(cluster_ad, proc_ads, spool=False, ad_results=None)→ int :
Submit multiple jobs to the condor_schedd daemon, possibly including several distinct processes.

Parameters

• cluster_ad (ClassAd) – The base ad for the new job cluster; this is the same format as
in the submit() method.

• proc_ads (list) – A list of 2-tuples; each tuple has the format of (proc_ad, count).
For each list entry, this will result in count jobs being submitted inheriting from both
cluster_ad and proc_ad.

626 Chapter 8. Python Bindings

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

HTCondor Manual, Release 23.6.2

• spool (bool) – If True, the client inserts the necessary attributes into the job for it to have
the input files spooled to a remote condor_schedd daemon. This parameter is necessary
for jobs submitted to a remote condor_schedd that use HTCondor file transfer. When True,
job will be left in the HOLD state until the spool() method is called.

• ad_results (list[ClassAd]) – If set to a list, the list object will contain the job ads resulting
from the job submission.

Returns
The newly created cluster ID.

Return type
int

spool(ad_list)→ None :
Spools the files specified in a list of job ClassAds to the condor_schedd.

Parameters
ad_list (list[ClassAds]) – A list of job descriptions; typically, this is the list returned by
the jobs() method on the submit result object.

Raises
RuntimeError – if there are any errors.

retrieve(arg1, arg2)→ None :
Retrieve the output sandbox from one or more jobs.

Parameters
job_spec (str or list[ClassAd]) – An expression matching the list of job output sandboxes
to retrieve.

refreshGSIProxy(cluster, proc, proxy_filename, lifetime)→ int :
Refresh the GSI proxy of a job; the job’s proxy will be replaced the contents of the provided
proxy_filename.

Note: Depending on the lifetime of the proxy in proxy_filename, the resulting lifetime may be shorter
than the desired lifetime.

Parameters

• cluster (int) – Cluster ID of the job to alter.

• proc (int) – Process ID of the job to alter.

• proxy_filename (str) – The name of the file containing the new proxy for the job.

• lifetime (int) – Indicates the desired lifetime (in seconds) of the delegated proxy. A
value of 0 specifies to not shorten the proxy lifetime. A value of -1 specifies to use the
value of configuration variable DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME.

reschedule()→ None :
Send reschedule command to the schedd.

export_jobs(job_spec, export_dir, new_spool_dir)→ object :
Export one or more job clusters from the queue to put those jobs into the externally managed state.

Parameters

8.5. htcondor API Reference 627

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 23.6.2

• job_spec (list[str] or str or ExprTree) – The job specification. It can either be
a list of job IDs or a string specifying a constraint. Only jobs matching this description will
be acted upon.

• export_dir (str) – The path to the directory that exported jobs will be written into.

• new_spool_dir (str) – The path to the base directory that exported jobs will use as IWD
while they are exported

Returns
A ClassAd containing information about the export operation.

Return type
ClassAd

import_exported_job_results(import_dir)→ object :
Import results from previously exported jobs, and take those jobs back out of the externally managed state.

Parameters
import_dir (str) – The path to the modified form of a previously-exported directory.

Returns
A ClassAd containing information about the import operation.

Return type
ClassAd

unexport_jobs(job_spec)→ object :
Unexport one or more job clusters that were previously exported from the queue.

Parameters
job_spec (list[str] or str or ExprTree) – The job specification. It can either be a
list of job IDs or a string specifying a constraint. Only jobs matching this description will be
acted upon.

Returns
A ClassAd containing information about the unexport operation.

Return type
ClassAd

class htcondor.JobAction

An enumeration describing the actions that may be performed on a job in queue.

The values of the enumeration are:

Hold

Put a job on hold, vacating a running job if necessary. A job will stay in the hold state until explicitly acted
upon by the admin or owner.

Release

Release a job from the hold state, returning it to Idle.

Suspend

Suspend the processes of a running job (on Unix platforms, this triggers a SIGSTOP). The job’s processes
stay in memory but no longer get scheduled on the CPU.

Continue

Continue a suspended jobs (on Unix, SIGCONT). The processes in a previously suspended job will be sched-
uled to get CPU time again.

628 Chapter 8. Python Bindings

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

Remove

Remove a job from the Schedd’s queue, cleaning it up first on the remote host (if running). This requires the
remote host to acknowledge it has successfully vacated the job, meaning Remove may not be instantaneous.

RemoveX

Immediately remove a job from the schedd queue, even if it means the job is left running on the remote
resource.

Vacate

Cause a running job to be killed on the remote resource and return to idle state. With Vacate, jobs may be
given significant time to cleanly shut down.

VacateFast

Vacate a running job as quickly as possible, without providing time for the job to cleanly terminate.

class htcondor.Transaction

Warning: Transaction was deprecated in version 10.7.0 and will be removed in a future release.

DEPRECATED. An ongoing transaction in the HTCondor schedd.

class htcondor.TransactionFlags

Enumerated flags affecting the characteristics of a transaction.

The values of the enumeration are:

NonDurable

Non-durable transactions are changes that may be lost when the condor_schedd crashes. NonDurable is
used for performance, as it eliminates extra fsync() calls.

SetDirty

This marks the changed ClassAds as dirty, causing an update notification to be sent to the condor_shadow
and the condor_gridmanager, if they are managing the job.

ShouldLog

Causes any changes to the job queue to be logged in the relevant job event log.

class htcondor.QueryOpts

Enumerated flags sent to the condor_schedd during a query to alter its behavior.

The values of the enumeration are:

Default

Queries should use default behaviors, and return jobs for all users.

AutoCluster

Instead of returning job ads, return an ad per auto-cluster.

GroupBy

Instead of returning job ads, return an ad for each unique combination of values for the attributes in the
projection. Similar to AutoCluster, but using the projection as the significant attributes for auto-clustering.

DefaultMyJobsOnly

Queries should use all default behaviors, and return jobs only for the current user.

SummaryOnly

Instead of returning job ads, return only the final summary ad.

8.5. htcondor API Reference 629

HTCondor Manual, Release 23.6.2

IncludeClusterAd

Query should return raw cluster ads as well as job ads if the cluster ads match the query constraint.

class htcondor.BlockingMode

An enumeration that controls the behavior of query iterators once they are out of data.

The values of the enumeration are:

Blocking

Sets the iterator to block until more data is available.

NonBlocking

Sets the iterator to return immediately if additional data is not available.

class htcondor.HistoryIterator

An iterator over ads in the history produced by Schedd.history().

class htcondor.QueryIterator

An iterator class for managing results of the Schedd.query() and Schedd.xquery() methods.

nextAdsNonBlocking()→ list :
Retrieve as many ads are available to the iterator object.

If no ads are available, returns an empty list. Does not throw an exception if no ads are available or the
iterator is finished.

Returns
Zero-or-more job ads.

Return type
list[ClassAd]

tag()→ str :
Retrieve the tag associated with this iterator; when using the poll() method, this is useful to distinguish
multiple iterators.

Returns
The query’s tag.

done()→ bool :

Returns
True if the iterator is finished; False otherwise.

Return type
bool

watch()→ int :
Returns an inotify-based file descriptor; if this descriptor is given to a select() instance, select will
indicate this file descriptor is ready to read whenever there are more jobs ready on the iterator.

If inotify is not available on this platform, this will return -1.

Returns
A file descriptor associated with this query.

Return type
int

630 Chapter 8. Python Bindings

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 23.6.2

htcondor.poll(queries, timeout_ms=20000)→ BulkQueryIterator :
Wait on the results of multiple query iterators.

This function returns an iterator which yields the next ready query iterator. The returned iterator stops when all
results have been consumed for all iterators.

Parameters
active_queries (list[QueryIterator]) – Query iterators as returned by xquery().

Returns
An iterator producing the ready QueryIterator.

Return type
BulkQueryIterator

class htcondor.BulkQueryIterator

Returned by poll(), this iterator produces a sequence of QueryIterator objects that have ads ready to be read
in a non-blocking manner.

Once there are no additional available iterators, poll() must be called again.

class htcondor.JobStatus(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

An enumeration of HTCondor job status values.

IDLE

RUNNING

REMOVED

COMPLETED

HELD

TRANSFERRING_OUTPUT

SUSPENDED

8.5.3 Submitting Jobs

class htcondor.Submit

An object representing a job submit description. It uses the same submit language as condor_submit.

The submit description contains key = value pairs and implements the python dictionary protocol, including
the get, setdefault, update, keys, items, and values methods. Values in the submit discription language
have no data type; they are all stored as strings.

object __init__(tuple args, dict kwds) :

param input
Submit descriptors as a string containing the text of a submit file or as key = value
pairs in a dictionary, or as keyword arguments.

Only the single multi-line string form can contain a QUEUE statement.

For example, these calls all produce identical submit descriptions:

8.5. htcondor API Reference 631

HTCondor Manual, Release 23.6.2

from_file = htcondor.Submit(
"""
executable = /bin/sleep
arguments = 5s
log = $(ClusterId).log
My.CustomAttribute = "foobar"
"""

)

create an empty submit object, then populate it as a dict
use of classad.quote here insures that the value is properly␣
→˓escaped as a classad string
submit_dict = htcondor.Submit()
submit_dict["executable"] = "/bin/sleep"
submit_dict["arguments"] = "5s"
submit_dict["log"] = "$(ClusterId).log"
submit_dict["My.CustomAttribute"] = classad.quote("foobar")

initialize a submit object from a python dict
note that values should be strings
mydict = {

"executable": "/bin/sleep",
"arguments": "5s",
"log": "$(ClusterId).log",
"My.CustomAttribute": classad.quote("foobar"),

}
from_dict = htcondor.Submit(mydict)

initialize a submit object from keyword arguments
the **{} is a trick to get a keyword argument that contains a .
from_kwargs = htcondor.Submit(

executable="/bin/sleep",
arguments="5s",
log="$(ClusterId).log",
**{ "My.CustomAttribute": classad.quote("foobar") }

)

If a string initalizer is used, it may include a single condor_submit QUEUE statement at
the end. If omitted, the submit description is initially empty.

The arguments to the QUEUE statement will be stored in the QArgs member of this class
and can be passed to schedd.Submit() as the itemdata iterator like this

sub = htcondor.Submit(
"""
executable = /bin/sleep
QUEUE arguments in (1s, 10s, 5m)
"""

)
schedd.Submit(sub, count=1, itemdata=sub.itemdata())

type input
dict or str

queue()

632 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

Warning: Submit.queue() was deprecated in version 10.7.0 and will be removed in a future release.
Use Schedd.submit() instead.

queue((Submit)self, (Transaction)txn [, (int)count=0 [, (object)ad_results=None]]) -> int :

This method is DEPRECATED. Use Schedd.submit() instead.

Submit the current object to a remote queue.

param txn
An active transaction object (see Schedd.transaction()).

type txn
Transaction

param int count
The number of jobs to create (defaults to 0). If not specified, or a value of 0 is given
the QArgs member of this class is used to determine the number of procs to submit. If
no QArgs were specified, one job is submitted.

param ad_results
A list to receive the ClassAd resulting from this submit. As with Schedd.submit(),
this is often used to later spool the input files.

return
The ClusterID of the submitted job(s).

rtype
int

raises RuntimeError
if the submission fails.

queue_with_itemdata()

Warning: Submit.queue_with_itemdata() was deprecated in version 10.7.0 and will be removed in a
future release. Use Schedd.submit() instead.

queue_with_itemdata((Submit)self, (Transaction)txn [, (int)count=1 [, (object)itemdata=None [,
(bool)spool=False]]]) -> SubmitResult :

This method is DEPRECATED. Use Schedd.submit() instead.

Submit the current object to a remote queue.

param txn
An active transaction object (see Schedd.transaction()).

type txn
Transaction

param int count
A queue count for each item from the iterator, defaults to 1.

param from
an iterator of strings or dictionaries containing the itemdata for each job as in queue
in or queue from.

8.5. htcondor API Reference 633

HTCondor Manual, Release 23.6.2

param bool spool
Modify the job ClassAds to indicate that it should wait for input before starting. de-
faults to false.

return
a SubmitResult, containing the cluster ID, cluster ClassAd and range of Job ids Clus-
ter ID of the submitted job(s).

rtype
SubmitResult

raises RuntimeError
if the submission fails.

expand(attr)→ str :
Expand all macros for the given attribute.

Parameters
attr (str) – The name of the relevant attribute.

Returns
The value of the given attribute; all macros are expanded.

Return type
str

jobs(count=0, itemdata=None, clusterid=1, procid=0, qdate=0, owner='')→ SubmitJobsIterator :
Turn the current object into a sequence of simulated job ClassAds

Parameters

• count (int) – the queue count for each item in the from list, defaults to 1

• from – a iterator of strings or dictionaries containing the itemdata for each job e.g. ‘queue
in’ or ‘queue from’

• clusterid (int) – the value to use for ClusterId when making job ads, defaults to 1

• procid (int) – the initial value for ProcId when making job ads, defaults to 0

• qdate (str) – a UNIX timestamp value for the QDATE attribute of the jobs, 0 means use
the current time.

• owner (str) – a string value for the Owner attribute of the job

Returns
An iterator for the resulting job ads.

Raises
RuntimeError – if valid job ads cannot be made

procs(count=0, itemdata=None, clusterid=1, procid=0, qdate=0, owner='')→ SubmitJobsIterator :
Turn the current object into a sequence of simulated job proc ClassAds. The first ClassAd will be the cluster
ad plus a ProcId attribute

Parameters

• count (int) – the queue count for each item in the from list, defaults to 1

• from – a iterator of strings or dictionaries containing the foreach data e.g. ‘queue in’ or
‘queue from’

• clusterid (int) – the value to use for ClusterId when making job ads, defaults to 1

• procid (int) – the initial value for ProcId when making job ads, defaults to 0

634 Chapter 8. Python Bindings

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 23.6.2

• qdate (str) – a UNIX timestamp value for the QDATE attribute of the jobs, 0 means use
the current time.

• owner (str) – a string value for the Owner attribute of the job

Returns
An iterator for the resulting job ads.

Raises
RuntimeError – if valid job ads cannot be made

itemdata(qargs='')→ QueueItemsIterator :
Create an iterator over itemdata derived from a queue statement.

For example itemdata("matching *.dat") would return an iterator of filenames that end in .dat from
the current directory. This is the same iterator used by condor_submit when processing QUEUE statements.

Parameters
queue (str) – a submit file queue statement, or the arguments to a submit file queue state-
ment.

Returns
An iterator for the resulting items

getQArgs()→ str :
Returns arguments specified in the QUEUE statement passed to the constructor. These are the arguments
that will be used by the Submit.itemdata() method if not overridden.

setQArgs(args)→ None :
Sets the arguments to be used by subsequent calls to the Submit.itemdata().

Parameters
args (str) – The arguments to pass to the QUEUE statement.

static from_dag(filename, options={})→ Submit :
Constructs a new Submit that could be used to submit the DAG described by the file found at filename.

This static method essentially does the first half of the work that condor_submit_dag does: it produces
the submit description for the DAGMan job that will execute the DAG. However, in addition to writing
this submit description to disk, it also produces a Submit object with the same information that can be
submitted via the normal Python bindings submit machinery.

Parameters

• filename (str) – The path to the DAG description file.

• options (dict) – Additional arguments to condor_submit_dag. Supports dagman
(str), force (bool), schedd-daemon-ad-file (str), schedd-address-file (str),
AlwaysRunPost (bool), maxidle (int), maxjobs (int), MaxPre (int), MaxPost (int),
UseDagDir (bool), debug (int), outfile_dir (str), config (str), batch-name (str),
load_save (str), AutoRescue (bool), DoRescueFrom (int), AllowVersionMismatch
(bool), do_recurse (bool), update_submit (bool), import_env (bool), include_env
(str), insert_env (str), DumpRescue (bool), valgrind (bool), priority (int),
suppress_notification (bool), DoRecov (bool)

Returns
A Submit description for the DAG described in filename

Return type
Submit

8.5. htcondor API Reference 635

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

HTCondor Manual, Release 23.6.2

setSubmitMethod(method_value=-1, allow_reserved_values=False)→ None :
Sets the Job Ad attribute JobSubmitMethod to passed over number. method_value is recommended to
be set to a value of 100 or greater to avoid confusion to pre-set values. Negative numbers will result in
JobSubmitMethod to not be defined in the Job Ad. If wanted, any number can be set by passing True
to allow_reserved_values. This allows any positive number to be set to JobSubmitMethod. This
includes all reserved numbers. Note~ Setting of JobSubmitMethod must occur before job is submitted to
Schedd.

Parameters

• method_value (int) – Value set to JobSubmitMethod.

• allow_reserved_values (bool) – Boolean that allows any number to be set to
JobSubmitMethod.

getSubmitMethod()→ int :

Returns
JobSubmitMethod attribute value. See table or use condor_q -help Submit for values.

Return type
int

class htcondor.QueueItemsIterator

An iterator over itemdata produced by Submit.itemdata().

class htcondor.SubmitResult

cluster()→ int :

Returns
the ClusterID of the submitted jobs.

Return type
int

clusterad()→ ClassAd :

Returns
the cluster Ad of the submitted jobs.

Return type
classad.ClassAd

first_proc()→ int :

Returns
the first ProcID of the submitted jobs.

Return type
int

num_procs()→ int :

Returns
the number of submitted jobs.

Return type
int

636 Chapter 8. Python Bindings

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 23.6.2

8.5.4 Interacting with Negotiators

class htcondor.Negotiator(ad)
This class provides a query interface to the condor_negotiator. It primarily allows one to query and set various
parameters in the fair-share accounting.

Parameters
location_ad (ClassAd or DaemonLocation) – A ClassAd or DaemonLocation describing the
condor_negotiator location and version. If omitted, the default pool negotiator is assumed.

deleteUser(user)→ None :
Delete all records of a user from the Negotiator’s fair-share accounting.

Parameters
user (str) – A fully-qualified user name (USER@DOMAIN).

getPriorities(rollup)→ list :
Retrieve the pool accounting information, one per entry. Returns a list of accounting ClassAds.

Parameters
rollup (bool) – Set to True if accounting information, as applied to hierarchical group
quotas, should be summed for groups and subgroups.

Returns
A list of accounting ads, one per entity.

Return type
list[ClassAd]

getResourceUsage(user)→ list :
Get the resources (slots) used by a specified user.

Parameters
user (str) – A fully-qualified user name (USER@DOMAIN).

Returns
List of ads describing the resources (slots) in use.

Return type
list[ClassAd]

resetAllUsage()→ None :
Reset all usage accounting. All known user records in the negotiator are deleted.

resetUsage(user)→ None :
Reset all usage accounting of the specified user.

Parameters
user (str) – A fully-qualified user name (USER@DOMAIN).

setBeginUsage(user, value)→ None :
Manually set the time that a user begins using the pool.

Parameters

• user (str) – A fully-qualified user name (USER@DOMAIN).

• value (int) – The Unix timestamp of initial usage.

8.5. htcondor API Reference 637

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 23.6.2

setCeiling(user, ceiling)→ None :
Set the submitter ceiling of a specified user.

Parameters

• user (str) – A fully-qualified user name (USER@DOMAIN).

• ceiling (float) – The ceiling t be set for the submitter; must be greater-than or equal-to
-1.0.

setLastUsage(user, value)→ None :
Manually set the time that a user last used the pool.

Parameters

• user (str) – A fully-qualified user name (USER@DOMAIN).

• value (int) – The Unix timestamp of last usage.

setFactor(user, factor)→ None :
Set the priority factor of a specified user.

Parameters

• user (str) – A fully-qualified user name (USER@DOMAIN).

• factor (float) – The priority factor to be set for the user; must be greater-than or equal-to
1.0.

setPriority(user, prio)→ None :
Set the real priority of a specified user.

Parameters

• user (str) – A fully-qualified user name (USER@DOMAIN).

• prio (float) – The priority to be set for the user; must be greater-than 0.0.

setUsage(user, usage)→ None :
Set the accumulated usage of a specified user.

Parameters

• user (str) – A fully-qualified user name (USER@DOMAIN).

• usage (float) – The usage, in hours, to be set for the user.

8.5.5 Managing Starters and Claims

class htcondor.Startd(ad=None)
A class that represents a Startd.

Parameters
locaton_ad – A ClassAd or DaemonLocation describing the the startd location and version. If
omitted, the local startd is assumed.

drainJobs(drain_type=0, on_completion=0, check_expr='true', start_expr='false', reason='by command')
→ str :

Begin draining jobs from the startd.

Parameters

638 Chapter 8. Python Bindings

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

HTCondor Manual, Release 23.6.2

• drain_type (DrainTypes) – How fast to drain the jobs. Defaults to DRAIN_GRACEFUL if
not specified.

• on_completion (int) – Whether the startd should start accepting jobs again once draining
is complete. Otherwise, it will remain in the drained state. Values are 0 for Nothing, 1 for
Resume, 2 for Exit, 3 for Restart. Defaults to 0.

• check_expr (str or ExprTree) – An expression string that must evaluate to true for all
slots for draining to begin. Defaults to 'true'.

• start_expr (str or ExprTree) – The expression that the startd should use while draining.

• reason (str) – A string describing the reason for draining. defaults to “by command”

Returns
An opaque request ID that can be used to cancel draining via Startd.cancelDrainJobs()

Return type
str

cancelDrainJobs(request_id='')→ None :
Cancel a draining request.

Parameters
request_id (str) – Specifies a draining request to cancel. If not specified, all draining
requests for this startd are canceled.

class htcondor.DrainTypes

Draining policies that can be sent to a condor_startd.

The values of the enumeration are:

Fast

Graceful

Quick

class htcondor.VacateTypes

Vacate policies that can be sent to a condor_startd.

The values of the enumeration are:

Fast

Graceful

8.5.6 Security Management

class htcondor.Credd(ad=None)
A class for sending Credential commands to a Credd, Schedd or Master.

Parameters
location_ad () – A ClassAd or DaemonLocation describing the Credd, Schedd or Master lo-
cation. If omitted, the local schedd is assumed.

class htcondor.CredTypes

The types of credentials that can be managed by a condor_credd.

The values of the enumeration are:

8.5. htcondor API Reference 639

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

Password

Kerberos

OAuth

class htcondor.CredCheck

class htcondor.CredStatus

class htcondor.SecMan(arg1)
A class that represents the internal HTCondor security state.

If a security session becomes invalid, for example, because the remote daemon restarts, reuses the same port, and
the client continues to use the session, then all future commands will fail with strange connection errors. This is
the only mechanism to invalidate in-memory sessions.

The SecMan can also behave as a context manager; when created, the object can be used to set temporary security
configurations that only last during the lifetime of the security object.

invalidateAllSessions()→ None :
Invalidate all security sessions. Any future connections to a daemon will cause a new security session to
be created.

ping(ad, command='DC_NOP')→ ClassAd :
Perform a test authorization against a remote daemon for a given command.

Parameters

• ad (str or ClassAd) – The ClassAd of the daemon as returned by Collector.locate();
alternately, the sinful string can be given directly as the first parameter.

• command – The DaemonCore command to try; if not given, 'DC_NOP' will be used.

Returns
An ad describing the results of the test security negotiation.

Return type
ClassAd

getCommandString(command_int)→ str :
Return the string name corresponding to a given integer command.

Parameters
command_int (int) – The integer command to get the string name of.

setConfig(key, value)→ None :
Set a temporary configuration variable; this will be kept for all security sessions in this thread for as long
as the SecMan object is alive.

Parameters

• key (str) – Configuration key to set.

• value (str) – Temporary value to set.

setPoolPassword(new_pass)→ None :
Set the pool password.

Parameters
new_pass (str) – Updated pool password to use for new security negotiations.

640 Chapter 8. Python Bindings

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

setTag(tag)→ None :
Set the authentication context tag for the current thread.

All security sessions negotiated with the same tag will only be utilized when that tag is active.

For example, if thread A has a tag set to 'Joe' and thread B has a tag set to 'Jane', then all security
sessions negotiated for thread A will not be used for thread B.

Parameters
tag (str) – New tag to set.

setToken(token)→ None :
Set the token used for auth.

Parameters
token (Token) – The object representing the token contents

class htcondor.Token(contents)
A class representing a generated HTCondor authentication token.

Parameters
contents (str) – The contents of the token.

write(tokenfile=None)→ None :
Write the contents of the token into the appropriate token directory on disk.

Parameters
tokenfile – Filename inside the user token directory where the token will be written.

class htcondor.TokenRequest(identity='', bounding_set=None, lifetime=-1)
A class representing a request for a HTCondor authentication token.

Parameters

• identity (str) – Requested identity from the remote daemon (the empty string implies
condor user).

• bounding_set (list[str]) – A list of authorizations that the token is restricted to.

• lifetime (int) – Requested lifetime, in seconds, that the token will be valid for.

done()→ bool :
Check to see if the token request has completed.

Returns
True if the request is complete; False otherwise. May throw an exception.

Return type
bool

property request_id

The ID of the request at the remote daemon.

result(timeout=0)→ Token :
Return the result of the token request. Will block until the token request is approved or the timeout is hit (a
timeoute of 0, the default, indicates this method may block indefinitely).

Returns
The token resulting from this request.

Return type
Token

8.5. htcondor API Reference 641

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

HTCondor Manual, Release 23.6.2

submit(ad=None)→ None :
Submit the token request to a remote daemon.

Parameters
ad (ClassAd) – ClassAd describing the location of the remote daemon.

8.5.7 Reading Job Events

The following is a complete example of submitting a job and waiting (forever) for it to finish. The next example
implements a time-out.

#!/usr/bin/env python3

import htcondor

Create a job description. It _must_ set `log` to create a job event log.
logFileName = "sleep.log"
submit = htcondor.Submit(

f"""
executable = /bin/sleep
transfer_executable = false
arguments = 5

log = {logFileName}
"""

)

Submit the job description, creating the job.
result = htcondor.Schedd().submit(submit, count=1)
clusterID = result.cluster()

Wait (forever) for the job to finish.
jel = htcondor.JobEventLog(logFileName)
for event in jel.events(stop_after=None):

HTCondor appends to job event logs by default, so if you run
this example more than once, there will be more than one job
in the log. Make sure we have the right one.
if event.cluster != clusterID or event.proc != 0:

continue

if event.type == htcondor.JobEventType.JOB_TERMINATED:
if(event["TerminatedNormally"]):

print(f"Job terminated normally with return value {event['ReturnValue']}.")
else:

print(f"Job terminated on signal {event['TerminatedBySignal']}.");
break

if event.type in { htcondor.JobEventType.JOB_ABORTED,
htcondor.JobEventType.JOB_HELD,
htcondor.JobEventType.CLUSTER_REMOVE }:

print("Job aborted, held, or removed.")
break

(continues on next page)

642 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

(continued from previous page)

We expect to see the first three events in this list, and allow
don't consider the others to be terminal.
if event.type not in { htcondor.JobEventType.SUBMIT,

htcondor.JobEventType.EXECUTE,
htcondor.JobEventType.IMAGE_SIZE,
htcondor.JobEventType.JOB_EVICTED,
htcondor.JobEventType.JOB_SUSPENDED,
htcondor.JobEventType.JOB_UNSUSPENDED }:

print(f"Unexpected job event: {event.type}!");
break

The following example includes a deadline for the job to finish. To make it quick to run the example, the deadline is only
ten seconds; real jobs will almost always take considerably longer. You can change arguments = 20 to arguments
= 5 to verify that this example correctly detects the job finishing. For the same reason, we check once a second to
see if the deadline has expired. In practice, you should check much less frequently, depending on how quickly your
script needs to react and how long you expect the job to last. In most cases, even once a minute is more frequent than
necessary or appropriate on shared resources; every five minutes is better.

#!/usr/bin/env python3

import time
import htcondor

Create a job description. It _must_ set `log` to create a job event log.
logFileName = "sleep.log"
submit = htcondor.Submit(

f"""
executable = /bin/sleep
transfer_executable = false
arguments = 20

log = {logFileName}
"""

)

Submit the job description, creating the job.
result = htcondor.Schedd().submit(submit, count=1)
clusterID = result.cluster()

def waitForJob(deadline):
jel = htcondor.JobEventLog(logFileName)
while time.time() < deadline:

In real code, this should be more like stop_after=300; see above.
for event in jel.events(stop_after=1):

HTCondor appends to job event logs by default, so if you run
this example more than once, there will be more than one job
in the log. Make sure we have the right one.
if event.cluster != clusterID or event.proc != 0:

continue
if event.type == htcondor.JobEventType.JOB_TERMINATED:

if(event["TerminatedNormally"]):
␣

(continues on next page)

8.5. htcondor API Reference 643

HTCondor Manual, Release 23.6.2

(continued from previous page)

→˓print(f"Job terminated normally with return value {event['ReturnValue']}.")
else:

print(f"Job terminated on signal {event['TerminatedBySignal']}.");
return True

if event.type in { htcondor.JobEventType.JOB_ABORTED,
htcondor.JobEventType.JOB_HELD,
htcondor.JobEventType.CLUSTER_REMOVE }:

print("Job aborted, held, or removed.")
return True

We expect to see the first three events in this list, and allow
don't consider the others to be terminal.
if event.type not in { htcondor.JobEventType.SUBMIT,

htcondor.JobEventType.EXECUTE,
htcondor.JobEventType.IMAGE_SIZE,
htcondor.JobEventType.JOB_EVICTED,
htcondor.JobEventType.JOB_SUSPENDED,
htcondor.JobEventType.JOB_UNSUSPENDED }:

print(f"Unexpected job event: {event.type}!");
return True

else:
print("Deadline expired.")
return False

Wait no more than 10 seconds for the job finish.
waitForJob(time.time() + 10);

Note that which job events are terminal, expected, or allowed may vary somewhat from job to job; for instance, it’s
possible to submit a job which releases itself from certain hold conditions.

class htcondor.JobEventLog(filename)
Reads user job event logs from filename.

By default, it blocks waiting for new events, but it may be used to poll for them:

import htcondor

jel = htcondor.JobEventLog("file.log")

Read all currently-available events without blocking.
for event in jel.events(stop_after=0):

print(event)

print("We found the the end of file")

A pickled JobEventLog resumes iterating over events where it left off if and only if, after being unpickled, the
job event log file is identical except for appended events.

Parameters
filename (str) – A file containing a user job event log.

events(stop_after)→ object :
Return an iterator over JobEvent objects from the filename given in the constructor. By default, the iterator
blocks forever waiting for new events.

644 Chapter 8. Python Bindings

https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

Parameters
stop_after (int) – After how many seconds should the iterator stop waiting for new events?

If None (the default), wait forever.

If 0, never wait. Does not block.

For any other value, wait (block) for that many seconds for a new event, raising
StopIteration if one does not appear. (This does not invalidate the iterator.)

close()→ None :
Closes any open underlying file. This object will no longer iterate.

class htcondor.JobEvent

Represents a single job event from the job event log. Use JobEventLog to get an iterator over the job events
from a file.

Because all events have type, cluster, proc, and timestamp, those are accessed via attributes (see below).

The rest of the information in the JobEvent can be accessed by key. JobEvent behaves like a read-only
Python dict, with get, keys, items, and values methods, and supports len and in (if "attribute" in
job_event, for example).

Attention: Although the attribute type is a JobEventType type, when acting as dictionary, a JobEvent
object returns types as if it were a ClassAd, so comparisons to enumerated values must use the == operator.
(No current event type has ExprTree values.)

type

The event type.

Return type
JobEventType

cluster

The clusterid of the job the event is for.

Return type
int

proc

The procid of the job the event is for.

Return type
int

timestamp

The timestamp of the event.

Return type
str

get(key, default=None)→ object :
As dict.get().

keys()→ list :
As dict.keys().

values()→ list :
As dict.values().

8.5. htcondor API Reference 645

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict.get
https://docs.python.org/3/library/stdtypes.html#dict.keys
https://docs.python.org/3/library/stdtypes.html#dict.values

HTCondor Manual, Release 23.6.2

items()→ list :
As dict.items().

class htcondor.JobEventType

The type event of a user log event; corresponds to ULogEventNumber in the C++ source.

The values of the enumeration are:

SUBMIT

EXECUTE

EXECUTABLE_ERROR

CHECKPOINTED

JOB_EVICTED

JOB_TERMINATED

IMAGE_SIZE

SHADOW_EXCEPTION

GENERIC

JOB_ABORTED

JOB_SUSPENDED

JOB_UNSUSPENDED

JOB_HELD

JOB_RELEASED

NODE_EXECUTE

NODE_TERMINATED

POST_SCRIPT_TERMINATED

GLOBUS_SUBMIT

GLOBUS_SUBMIT_FAILED

GLOBUS_RESOURCE_UP

GLOBUS_RESOURCE_DOWN

REMOTE_ERROR

JOB_DISCONNECTED

JOB_RECONNECTED

JOB_RECONNECT_FAILED

GRID_RESOURCE_UP

GRID_RESOURCE_DOWN

646 Chapter 8. Python Bindings

https://docs.python.org/3/library/stdtypes.html#dict.items

HTCondor Manual, Release 23.6.2

GRID_SUBMIT

JOB_AD_INFORMATION

JOB_STATUS_UNKNOWN

JOB_STATUS_KNOWN

JOB_STAGE_IN

JOB_STAGE_OUT

ATTRIBUTE_UPDATE

PRESKIP

CLUSTER_SUBMIT

CLUSTER_REMOVE

FACTORY_PAUSED

FACTORY_RESUMED

NONE

FILE_TRANSFER

RESERVE_SPACE

RELEASE_SPACE

FILE_COMPLETE

FILE_USED

FILE_REMOVED

class htcondor.FileTransferEventType

The event type for file transfer events; corresponds to FileTransferEventType in the C++ source.

The values of the enumeration are:

IN_QUEUED

IN_STARTED

IN_FINISHED

OUT_QUEUED

OUT_STARTED

OUT_FINISHED

8.5. htcondor API Reference 647

HTCondor Manual, Release 23.6.2

8.5.8 HTCondor Configuration

htcondor.param = <htcondor.htcondor._Param object>

Provides dictionary-like access the HTCondor configuration.

An instance of _Param. Upon importing the htcondor module, the HTCondor configuration files are parsed
and populate this dictionary-like object.

htcondor.reload_config()→ None :
Reload the HTCondor configuration from disk.

class htcondor._Param

A dictionary-like object for the local HTCondor configuration; the keys and values of this object are the keys and
values of the HTCondor configuration.

The get, setdefault, update, keys, items, and values methods of this class have the same semantics as a
Python dictionary.

Writing to a _Param object will update the in-memory HTCondor configuration.

class htcondor.RemoteParam(ad)
The RemoteParam class provides a dictionary-like interface to the configuration of an HTCondor daemon. The
get, setdefault, update, keys, items, and valuesmethods of this class have the same semantics as a Python
dictionary.

Parameters
ad (ClassAd) – An ad containing the location of the remote daemon.

refresh()→ None :
Rebuilds the dictionary based on the current configuration of the daemon.

htcondor.platform()→ str :
Returns the platform of HTCondor this module is running on.

htcondor.version()→ str :
Returns the version of HTCondor this module is linked against.

8.5.9 HTCondor Logging

htcondor.enable_debug()→ None :
Enable debugging output from HTCondor, where output is sent to stderr. The logging level is controlled by
the TOOL_DEBUG parameter.

htcondor.enable_log()→ None :
Enable debugging output from HTCondor, where output is sent to a file. The log level is controlled by the
parameter TOOL_DEBUG, and the file used is controlled by TOOL_LOG.

htcondor.log(level, msg)→ None :
Log a message using the HTCondor logging subsystem.

Parameters

• level (LogLevel) – The log category and formatting indicator. Multiple LogLevel enum
attributes may be OR’d together.

• msg (str) – A message to log.

648 Chapter 8. Python Bindings

https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

class htcondor.LogLevel

The log level attribute to use with log(). Note that HTCondor mixes both a class (debug, network, all) and the
header format (Timestamp, PID, NoHeader) within this enumeration.

The values of the enumeration are:

Always

Audit

Config

DaemonCore

Error

FullDebug

Hostname

Job

Machine

Network

NoHeader

PID

Priv

Protocol

Security

Status

SubSecond

Terse

Timestamp

Verbose

8.5.10 Esoteric Functionality

htcondor.send_command(ad, dc, target)→ None :
Send a command to an HTCondor daemon specified by a location ClassAd.

Parameters

• ad (ClassAd) – Specifies the location of the daemon (typically, found by using Collector.
locate()).

• dc (DaemonCommands) – A command type

• target (str) – An additional command to send to a daemon. Some commands require
additional arguments; for example, sending DaemonOff to a condor_master requires one to
specify which subsystem to turn off.

8.5. htcondor API Reference 649

https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

class htcondor.DaemonCommands

An enumeration of various state-changing commands that can be sent to a HTCondor daemon using
send_command().

The values of the enumeration are:

DaemonOn

DaemonOff

DaemonOffFast

DaemonOffPeaceful

DaemonsOn

DaemonsOff

DaemonsOffFast

DaemonsOffPeaceful

OffFast

OffForce

OffGraceful

OffPeaceful

Reconfig

Restart

RestartPeacful

SetForceShutdown

SetPeacefulShutdown

htcondor.send_alive([ad=None, pid=None, timeout=None)→ None :
Send a keep alive message to an HTCondor daemon.

This is used when the python process is run as a child daemon under the condor_master.

Parameters

• ad (ClassAd) – A ClassAd specifying the location of the daemon. This ad is typically found
by using Collector.locate().

• pid (int) – The process identifier for the keep alive. The default value of None uses the
value from os.getpid().

• timeout (int) – The number of seconds that this keep alive is valid. If a new keep alive is
not received by the condor_master in time, then the process will be terminated. The default
value is controlled by configuration variable NOT_RESPONDING_TIMEOUT.

htcondor.set_subsystem(subsystem, type=htcondor.htcondor.SubsystemType(15))→ None :
Set the subsystem name for the object.

The subsystem is primarily used for the parsing of the HTCondor configuration file.

Parameters

650 Chapter 8. Python Bindings

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/os.html#os.getpid
https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 23.6.2

• name (str) – The subsystem name.

• daemon_type (SubsystemType) – The HTCondor daemon type. The default value of Auto
infers the type from the name parameter.

class htcondor.SubsystemType

An enumeration of known subsystem names.

The values of the enumeration are:

Collector

Daemon

Dagman

GAHP

Job

Master

Negotiator

Schedd

Shadow

SharedPort

Startd

Starter

Submit

Tool

8.5.11 Exceptions

For backwards-compatibility, the exceptions in this module inherit from the built-in exceptions raised in earlier (pre-
v8.9.9) versions.

class htcondor.HTCondorException

Never raised. The parent class of all exceptions raised by this module.

class htcondor.HTCondorEnumError

Raised when a value must be in an enumeration, but isn’t.

class htcondor.HTCondorInternalError

Raised when HTCondor encounters an internal error.

class htcondor.HTCondorIOError

Raised instead of IOError for backwards compatibility.

class htcondor.HTCondorLocateError

Raised when HTCondor cannot locate a daemon.

8.5. htcondor API Reference 651

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#IOError

HTCondor Manual, Release 23.6.2

class htcondor.HTCondorReplyError

Raised when HTCondor received an invalid reply from a daemon, or the daemon’s reply indicated that it encoun-
tered an error.

class htcondor.HTCondorTypeError

Raised instead of TypeError for backwards compatibility.

class htcondor.HTCondorValueError

Raised instead of ValueError for backwards compatibility.

8.5.12 Thread Safety

Most of the htcondor module is protected by a lock that prevents multiple threads from executing locked functions at
the same time. When two threads both want to call locked functions or methods, they will wait in line to execute them
one at a time (the ordering between threads is not guaranteed beyond “first come first serve”). Examples of locked
functions include: Schedd.query(), Submit.queue(), and Schedd.edit().

Threads that are not trying to execute locked htcondor functions will be allowed to proceed normally.

This locking may cause unexpected slowdowns when using htcondor from multiple threads simultaneously.

8.6 htcondor.htchirp API Reference

htcondor.htchirp is a Python Chirp client compatible with the condor_starter Chirp proxy server. It is intended for
use inside a running HTCondor job to access files on the submit machine or to query and modify job ClassAd attributes.
Files can be read, written, or removed. Job attributes can be read, and most attributes can be updated.

Jobs that use htcondor.htchirp module must have the attribute WantIOProxy set to true in the job ClassAd
(want_io_proxy = true in the submit description). htcondor.htchirp only works for jobs run in the vanilla,
paralllel, and java universes.

htcondor.htchirp provides two objects for interacting with the condor_starter Chirp proxy server, HTChirp and
condor_chirp().

We recommend using HTChirp as a context manager, which automatically handles openining and closing the connec-
tion to the condor_starter Chirp proxy server:

from htcondor.htchirp import HTChirp

with HTChirp() as chirp:
inside this block, the connection is open
i = chirp.get_job_attr("IterationNum")
chirp.set_job_attr("IterationNum") = i + 1

The connection may be manually opened and closed using HTChirp.connect() and HTChirp.disconnect().

condor_chirp() is a wrapper around HTChirp that takes a string containing a condor_chirp command (with argu-
ments) and returns the value from the relevant HTChirp method.

class htcondor.htchirp.HTChirp(host=None, port=None, auth=['cookie'], cookie=None, timeout=10)
Chirp client for HTCondor

A Chirp client compatible with the HTCondor Chirp implementation.

If the host and port of a Chirp server are not specified, you are assumed to be running in a HTCondor job with
$_CONDOR_CHIRP_CONFIG that contains the host, port, and cookie for connecting to the embedded chirp proxy.

652 Chapter 8. Python Bindings

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

HTCondor Manual, Release 23.6.2

Parameters

• host – the hostname or ip of the Chirp server

• port – the port of the Chirp server

• auth – a list of authentication methods to try

• cookie – the cookie string, if trying cookie authentication

• timeout – socket timeout, in seconds

connect(auth_method=None)
Connect to and authenticate with the Chirp server

Parameters
auth_method – If set, try the specific authentication method

is_connected()

Check if Chirp client is connected.

disconnect()

Close connection with the Chirp server

fetch(remote_file, local_file)
Copy a file from the submit machine to the execute machine.

Parameters

• remote_file – Path to file to be sent from the submit machine

• local_file – Path to file to be written to on the execute machine

Returns
Bytes written

put(local_file, remote_file, flags='wct', mode=None)
Copy a file from the execute machine to the submit machine.

Specifying flags other than ‘wct’ (i.e. ‘create or truncate file’) when putting large files is not recommended
as the entire file must be read into memory.

To put individual bytes into a file on the submit machine instead of an entire file, see the write() method.

Parameters

• local_file – Path to file to be sent from the execute machine

• remote_file – Path to file to be written to on the submit machine

• flags – File open modes (one or more of ‘rwatcx’) [default: ‘wct’]

• mode – Permission mode to set [default: 0777]

Returns
Size of written file

remove(remote_file)
Remove a file from the submit machine.

Parameters
remote_file – Path to file on the submit machine

8.6. htcondor.htchirp API Reference 653

HTCondor Manual, Release 23.6.2

get_job_attr(job_attribute)
Get the value of a job ClassAd attribute.

Parameters
job_attribute – The job attribute to query

Returns
The value of the job attribute as a string

set_job_attr(job_attribute, attribute_value)
Set the value of a job ClassAd attribute.

Parameters

• job_attribute – The job attribute to set

• attribute_value – The job attribute’s new value

get_job_attr_delayed(job_attribute)
Get the value of a job ClassAd attribute from the local Starter.

This may differ from the value in the Schedd.

Parameters
job_attribute – The job attribute to query

Returns
The value of the job attribute as a string

set_job_attr_delayed(job_attribute, attribute_value)
Set the value of a job ClassAd attribute.

This variant of set_job_attr will not push the update immediately, but rather as a non-durable update during
the next communication between starter and shadow.

Parameters

• job_attribute – The job attribute to set

• attribute_value – The job attribute’s new value

ulog(text)
Log a generic string to the job log.

Parameters
text – String to log

read(remote_path, length, offset=None, stride_length=None, stride_skip=None)
Read up to ‘length’ bytes from a file on the remote machine.

Optionally, start at an offset and/or retrieve data in strides.

Parameters

• remote_path – Path to file

• length – Number of bytes to read

• offset – Number of bytes to offset from beginning of file

• stride_length – Number of bytes to read per stride

• stride_skip – Number of bytes to skip per stride

Returns
Data read from file

654 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

write(data, remote_path, flags='w', mode=None, length=None, offset=None, stride_length=None,
stride_skip=None)

Write bytes to a file on the remote matchine.

Optionally, specify the number of bytes to write, start at an offset, and/or write data in strides.

Parameters

• data – Bytes to write

• remote_path – Path to file

• flags – File open modes (one or more of ‘rwatcx’) [default: ‘w’]

• mode – Permission mode to set [default: 0777]

• length – Number of bytes to write [default: len(data)]

• offset – Number of bytes to offset from beginning of file

• stride_length – Number of bytes to write per stride

• stride_skip – Number of bytes to skip per stride

Returns
Number of bytes written

rename(old_path, new_path)
Rename (move) a file on the remote machine.

Parameters

• old_path – Path to file to be renamed

• new_path – Path to new file name

unlink(remote_file)
Delete a file on the remote machine.

Parameters
remote_file – Path to file

rmdir(remote_path, recursive=False)
Delete a directory on the remote machine.

The directory must be empty unless recursive is set to True.

Parameters

• remote_path – Path to directory

• recursive – If set to True, recursively delete remote_path

rmall(remote_path)
Recursively delete an entire directory on the remote machine.

Parameters
remote_path – Path to directory

mkdir(remote_path, mode=None)
Create a new directory on the remote machine.

Parameters

• remote_path – Path to new directory

8.6. htcondor.htchirp API Reference 655

HTCondor Manual, Release 23.6.2

• mode – Permission mode to set [default: 0777]

getfile(remote_file, local_file)
Retrieve an entire file efficiently from the remote machine.

Parameters

• remote_file – Path to file to be sent from remote machine

• local_file – Path to file to be written to on local machine

Returns
Bytes written

putfile(local_file, remote_file, mode=None)
Store an entire file efficiently to the remote machine.

This method will create or overwrite the file on the remote machine. If you want to append to a file, use the
write() method.

Parameters

• local_file – Path to file to be sent from local machine

• remote_file – Path to file to be written to on remote machine

• mode – Permission mode to set [default: 0777]

Returns
Size of written file

getdir(remote_path, stat_dict=False)
List a directory on the remote machine.

Parameters

• remote_path – Path to directory

• stat_dict – If set to True, return a dict of file metadata

Returns
List of files, unless stat_dict is True

getlongdir(remote_path)
List a directory and all its file metadata on the remote machine.

Parameters
remote_path – Path to directory

Returns
A dict of file metadata

whoami()

Get the user’s current identity with respect to this server.

Returns
The user’s identity

whoareyou(remote_host)
Get the server’s identity with respect to the remote host.

Parameters
remote_host – Remote host

656 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

Returns
The server’s identity

link(old_path, new_path, symbolic=False)
Create a link on the remote machine.

Parameters

• old_path – File path to link from on the remote machine

• new_path – File path to link to on the remote machine

• symbolic – If set to True, use a symbolic link

symlink(old_path, new_path)
Create a symbolic link on the remote machine.

Parameters

• old_path – File path to symlink from on the remote machine

• new_path – File path to symlink to on the remote machine

readlink(remote_path)
Read the contents of a symbolic link.

Parameters
remote_path – File path on the remote machine

Returns
Contents of the link

stat(remote_path)
Get metadata for file on the remote machine.

If remote_path is a symbolic link, examine its target.

Parameters
remote_path – Path to file

Returns
Dict of file metadata

lstat(remote_path)
Get metadata for file on the remote machine.

If remote path is a symbolic link, examine the link.

Parameters
remote_path – Path to file

Returns
Dict of file metadata

statfs(remote_path)
Get metadata for a file system on the remote machine.

Parameters
remote_path – Path to examine

Returns
Dict of filesystem metadata

8.6. htcondor.htchirp API Reference 657

HTCondor Manual, Release 23.6.2

access(remote_path, mode_str)
Check access permissions.

Parameters

• remote_path – Path to examine

• mode_str – Mode to check (one or more of ‘frwx’)

Raises
NotAuthorized – If any access mode is not authorized

chmod(remote_path, mode)
Change permission mode of a path on the remote machine.

Parameters

• remote_path – Path

• mode – Permission mode to set

chown(remote_path, uid, gid)
Change the UID and/or GID of a path on the remote machine.

If remote_path is a symbolic link, change its target.

Parameters

• remote_path – Path

• uid – UID

• gid – GID

lchown(remote_path, uid, gid)
Changes the ownership of a file or directory.

If the path is a symbolic link, change the link.

Parameters

• remote_path – Path

• uid – UID

• gid – GID

truncate(remote_path, length)
Truncates a file on the remote machine to a given number of bytes.

Parameters

• remote_path – Path to file

• length – Truncated length

utime(remote_path, actime, mtime)
Change the access and modification times of a file on the remote machine.

Parameters

• remote_path – Path to file

• actime – Access time, in seconds (Unix epoch)

• mtime – Modification time, in seconds (Unix epoch)

658 Chapter 8. Python Bindings

HTCondor Manual, Release 23.6.2

htcondor.htchirp.condor_chirp(chirp_args, return_exit_code=False)
Call HTChirp methods using condor_chirp-style commands

See https://htcondor.readthedocs.io/en/latest/man-pages/condor_chirp.html for a list of commands, or use a
Python interpreter to run htchirp.py --help.

Parameters

• chirp_args – List or string of arguments as would be passed to condor_chirp

• return_exit_code – If True, format and print return value in condor_chirp-style, and
return 0 (success) or 1 (failure) (defaults to False).

Returns
Return value from the HTChirp method called, unless return_exit_code=True (see above).

8.7 htcondor.dags API Reference

Attention: This is not documentation for DAGMan itself! If you run into DAGMan jargon that isn’t explained
here, see DAGMan Introduction.

8.7.1 Creating DAGs

class htcondor.dags.DAG(dagman_config=None, dagman_job_attributes=None, max_jobs_by_category=None,
dot_config=None, jobstate_log=None, node_status_file=None)

This object represents the entire DAGMan workflow, including both the execution graph and miscellaneous
configuration options.

It contains the individual NodeLayer and SubDAG that are the “logical” nodes in the graph, created by the
layer() and subdag() methods respectively.

Parameters

• dagman_config (Optional[Mapping[str, Any], None]) – A mapping of DAGMan con-
figuration options.

• dagman_job_attributes (Optional[Mapping[str, Any], None]) – A mapping that de-
scribes additional HTCondor JobAd attributes for the DAGMan job itself.

• max_jobs_by_category (Optional[Mapping[str, int], None]) – A mapping that de-
scribes the maximum number of jobs (values) that should be run simultaneously from each
category (keys).

• dot_config (Optional[DotConfig, None]) – Configuration options for writing a DOT
file, as a DotConfig.

• jobstate_log (Optional[Path, None]) – The path to the jobstate log. If not given, the
jobstate log will not be written.

• node_status_file (Optional[NodeStatusFile, None]) – Configuration options for the
node status file, as a NodeStatusFile.

describe()

Return a tabular description of the DAG’s structure.

Return type
str

8.7. htcondor.dags API Reference 659

https://htcondor.readthedocs.io/en/latest/man-pages/condor_chirp.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 23.6.2

property edges: Iterator[Tuple[Tuple[BaseNode, BaseNode], BaseEdge]]

Iterate over ((parent, child), edge) tuples, for every edge in the graph.

Return type
Iterator[Tuple[Tuple[BaseNode, BaseNode], BaseEdge]]

final(**kwargs)
Create the FINAL node of the DAG. A DAG can only have one FINAL node; if you call this method mul-
tiple times, it will override any previous calls. To customize the FINAL node after creation, modify the
FinalNode instance that it returns.

Return type
FinalNode

glob(pattern)
Return a Nodes of the nodes in the DAG whose names match the glob pattern.

Return type
Nodes

layer(**kwargs)
Create a new NodeLayer in the graph with no parents or children. Keyword arguments are forwarded to
NodeLayer.

Return type
NodeLayer

property leaves: Nodes

A Nodes of the nodes in the DAG that have no children.

Return type
Nodes

property node_to_children: Dict[BaseNode, Nodes]

Return a dictionary that maps each node to a Nodes containing its children. The Nodes will be empty if
the node has no children.

Return type
Dict[BaseNode, Nodes]

property node_to_parents: Dict[BaseNode, Nodes]

Return a dictionary that maps each node to a Nodes containing its parents. The Nodes will be empty if the
node has no parents.

Return type
Dict[BaseNode, Nodes]

property nodes: Nodes

Iterate over all of the nodes in the DAG, in no particular order.

Return type
Nodes

property roots: Nodes

A Nodes of the nodes in the DAG that have no parents.

Return type
Nodes

660 Chapter 8. Python Bindings

https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict

HTCondor Manual, Release 23.6.2

select(selector)
Return a Nodes of the nodes in the DAG that satisfy selector. selector should be a function which
takes a single BaseNode and returns True (will be included) or False (will not be included).

Return type
Nodes

subdag(**kwargs)
Create a new SubDAG in the graph with no parents or children. Keyword arguments are forwarded to
SubDAG.

Return type
SubDAG

walk(order=WalkOrder.DEPTH_FIRST)
Iterate over all of the nodes in the DAG, starting from the roots (i.e., the nodes with no parents), in either
depth-first or breadth-first order.

Sibling order is not specified, and may be different in different calls to this method.

Parameters
order (WalkOrder) – Walk depth-first (children before siblings) or breadth-first (siblings
before children).

Return type
Iterator[BaseNode]

walk_ancestors(node, order=WalkOrder.DEPTH_FIRST)
Iterate over all of the ancestors (i.e., parents, parents of parents, etc.) of some node, in either depth-first or
breadth-first order.

Sibling order is not specified, and may be different in different calls to this method.

Parameters

• node (BaseNode) – The node to begin walking from. It will not be included in the results.

• order (WalkOrder) – Walk depth-first (parents before siblings) or breadth-first (siblings
before parents).

Return type
Iterator[BaseNode]

walk_descendants(node, order=WalkOrder.DEPTH_FIRST)
Iterate over all of the descendants (i.e., children, children of children, etc.) of some node, in either depth-first
or breadth-first order.

Sibling order is not specified, and may be different in different calls to this method.

Parameters

• node (BaseNode) – The node to begin walking from. It will not be included in the results.

• order (WalkOrder) – Walk depth-first (children before siblings) or breadth-first (siblings
before children).

Return type
Iterator[BaseNode]

class htcondor.dags.WalkOrder(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

An enumeration for keeping track of which order to walk through a graph. Depth-first means that parents/children
will be visited before siblings. Breadth-first means that siblings will be visited before parents/children.

8.7. htcondor.dags API Reference 661

https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Iterator

HTCondor Manual, Release 23.6.2

BREADTH_FIRST = 'BREADTH'

DEPTH_FIRST = 'DEPTH'

Nodes and Node-likes

class htcondor.dags.BaseNode(dag, *, name, dir=None, noop=False, done=False, retries=None,
retry_unless_exit=None, pre=None, post=None, pre_skip_exit_code=None,
priority=0, category=None, abort=None)

This is the superclass for all node-like objects (things that can be the logical nodes in a DAG, like NodeLayer and
SubDAG).

Generally, you do not need to construct nodes yourself; instead, they are created by calling methods like DAG.
layer(), DAG.subdag(), BaseNode.child_layer(), and so forth. These methods automatically attach the
new node to the same DAG as the node you called the method on.

Parameters

• dag (DAG) – Which DAG to attach this node to.

• name (str) – The human-readable name of this node.

• dir (Optional[Path, None]) – The directory to submit from. If None, it will be the direc-
tory the DAG itself was submitted from.

• noop (Union[bool, Mapping[int, bool]]) – If this is True, this node will be skipped and
marked as completed, no matter what it says it does. For a NodeLayer, this can be dictionary
mapping individual underlying node indices to their desired value.

• done (Union[bool, Mapping[int, bool]]) – If this is True, this node will be considered
already completed. For a NodeLayer, this can be dictionary mapping individual underlying
node indices to their desired value.

• retries (Optional[int, None]) – The number of times to retry the node if it fails (defined
by retry_unless_exit).

• retry_unless_exit (Optional[int, None]) – If the node exits with this code, it will not
be retried.

• pre (Optional[Script, None]) – A Script to run before the node itself.

• post (Optional[Script, None]) – A Script to run after the node itself.

• pre_skip_exit_code (Optional[int, None]) – If the pre-script exits with this code, the
node will be skipped.

• priority (int) – The internal priority for DAGMan to run this node.

• category (Optional[str, None]) – Which CATEGORY this node belongs to.

• abort (Optional[DAGAbortCondition, None]) – A DAGAbortCondition which may
cause the entire DAG to stop if this node exits in a certain way.

add_children(*nodes, edge=None)
Makes all of the nodes children of this node.

Parameters

• nodes – The nodes to make children of this node.

• edge (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

662 Chapter 8. Python Bindings

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None

HTCondor Manual, Release 23.6.2

Returns
self – This method returns self.

Return type
BaseNode

add_parents(*nodes, edge=None)
Makes all of the nodes parents of this node.

Parameters

• nodes – The nodes to make parents of this node.

• edge (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

Returns
self – This method returns self.

Return type
BaseNode

child_layer(edge=None, **kwargs)
Create a new NodeLayer which is a child of this node.

Parameters

• edge (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the NodeLayer constructor.

Returns
node_layer – The newly-created node layer.

Return type
NodeLayer

child_subdag(edge=None, **kwargs)
Create a new SubDAG which is a child of this node.

Parameters

• edge (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the SubDAG constructor.

Returns
subdag – The newly-created sub-DAG.

Return type
SubDAG

property children: Nodes

Return a Nodes containing all of the children of this node.

Return type
Nodes

parent_layer(edge=None, **kwargs)
Create a new NodeLayer which is a parent of this node.

Parameters

8.7. htcondor.dags API Reference 663

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None

HTCondor Manual, Release 23.6.2

• edge (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the NodeLayer constructor.

Returns
node_layer – The newly-created node layer.

Return type
NodeLayer

parent_subdag(edge=None, **kwargs)
Create a new SubDAG which is a parent of this node.

Parameters

• edge (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the SubDAG constructor.

Returns
subdag – The newly-created sub-DAG.

Return type
SubDAG

property parents: Nodes

Return a Nodes containing all of the parents of this node.

Return type
Nodes

remove_children(*nodes)
Makes sure that the nodes are not children of this node.

Parameters
nodes – The nodes to remove edges from.

Returns
self – This method returns self.

Return type
BaseNode

remove_parents(*nodes)
Makes sure that the nodes are not parents of this node.

Parameters
nodes – The nodes to remove edges from.

Returns
self – This method returns self.

Return type
BaseNode

walk_ancestors(order=WalkOrder.DEPTH_FIRST)
Walk over all of the ancestors of this node, in the given order.

Return type
Iterator[BaseNode]

664 Chapter 8. Python Bindings

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterator

HTCondor Manual, Release 23.6.2

walk_descendants(order=WalkOrder.DEPTH_FIRST)
Walk over all of the descendants of this node, in the given order.

Return type
Iterator[BaseNode]

class htcondor.dags.NodeLayer(dag, *, submit_description=None, vars=None, **kwargs)
Bases: BaseNode

Represents a “layer” of actual JOB nodes that share a submit description and edge relationships. Each underlying
actual node’s attributes may be customized using vars.

Parameters

• dag (DAG) – The DAG to connect this node to.

• submit_description (Union[Submit, None, Path]) – The HTCondor submit description
for this node. Can be either an htcondor.Submit object or a Path to an existing submit
file on disk.

• vars (Optional[Iterable[Dict[str, str]], None]) – The VARS for this logical node; one
actual node will be created for each dictionary in the vars.

• kwargs – Additional keyword arguments are passed to the BaseNode constructor.

class htcondor.dags.SubDAG(dag, *, dag_file, **kwargs)
Bases: BaseNode

Represents a SUBDAG in the graph.

See SUBDAG EXTERNAL for more information on sub-DAGs.

Parameters

• dag (DAG) – The DAG to connect this node to.

• dag_file (Path) – The pathlib.Path to where the sub-DAG’s DAG description file is (or
will be).

• kwargs – Additional keyword arguments are passed to the BaseNode constructor.

class htcondor.dags.FinalNode(dag, submit_description=None, **kwargs)
Bases: BaseNode

Represents the FINAL node in a DAG.

See Final Node for more information on the FINAL node.

Parameters

• dag (DAG) – The DAG to connect this node to.

• submit_description (Union[Submit, None, Path]) – The HTCondor submit description
for this node. Can be either an htcondor.Submit object or a Path to an existing submit
file on disk.

• kwargs – Additional keyword arguments are passed to the BaseNode constructor.

class htcondor.dags.Nodes(*nodes)
This class represents an arbitrary collection of BaseNode. In many cases, especially when manipulating the
structure of the graph, it can be used as a replacement for directly iterating over collections of nodes.

Parameters
nodes (Union[BaseNode, Iterable[BaseNode]]) – The logical nodes that will be in this
Nodes.

8.7. htcondor.dags API Reference 665

https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Iterable

HTCondor Manual, Release 23.6.2

add_children(*nodes, type=None)
Makes all of the nodes children of all of the nodes in this Nodes.

Parameters

• nodes – The nodes to make children of this Nodes.

• type (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

Returns
self – This method returns self.

Return type
Nodes

add_parents(*nodes, type=None)
Makes all of the nodes parents of all of the nodes in this Nodes.

Parameters

• nodes – The nodes to make parents of this Nodes.

• type (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

Returns
self – This method returns self.

Return type
Nodes

child_layer(type=None, **kwargs)
Create a new NodeLayer which is a child of all of the nodes in this Nodes.

Parameters

• type (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the NodeLayer constructor.

Returns
node_layer – The newly-created node layer.

Return type
NodeLayer

child_subdag(type=None, **kwargs)
Create a new SubDAG which is a child of all of the nodes in this Nodes.

Parameters

• type (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the SubDAG constructor.

Returns
subdag – The newly-created sub-DAG.

Return type
SubDAG

666 Chapter 8. Python Bindings

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None

HTCondor Manual, Release 23.6.2

parent_layer(type=None, **kwargs)
Create a new NodeLayer which is a parent of all of the nodes in this Nodes.

Parameters

• type (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the NodeLayer constructor.

Returns
node_layer – The newly-created node layer.

Return type
NodeLayer

parent_subdag(type=None, **kwargs)
Create a new SubDAG which is a parent of all of the nodes in this Nodes.

Parameters

• type (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the SubDAG constructor.

Returns
subdag – The newly-created sub-DAG.

Return type
SubDAG

remove_children(*nodes)
Makes sure that the nodes are not children of all of the nodes in this Nodes.

Parameters
nodes – The nodes to remove edges from.

Returns
self – This method returns self.

Return type
Nodes

remove_parents(*nodes)
Makes sure that the nodes are not parents of any of the nodes in this Nodes.

Parameters
nodes – The nodes to remove edges from.

Returns
self – This method returns self.

Return type
Nodes

walk_ancestors(order=WalkOrder.DEPTH_FIRST)
Walk over all of the ancestors of all of the nodes in this Nodes, in the given order.

walk_descendants(order=WalkOrder.DEPTH_FIRST)
Walk over all of the descendants of all of the nodes in this Nodes, in the given order.

8.7. htcondor.dags API Reference 667

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None

HTCondor Manual, Release 23.6.2

Edges

class htcondor.dags.BaseEdge

An abstract class that represents the edge between two logical nodes in the DAG.

abstract get_edges(parent, child, join_factory)
This abstract method is used by the writer to figure out which nodes in the parent and child should be
connected by an actual DAGMan edge. It should yield (or simply return an iterable of) individual edge
specifications.

Each edge specification is a tuple containing two elements: the first is a group of parent node indices, the
second is a group of child node indices. Either (but not both) may be replaced by a special JoinNode object
provided by JoinFactory.get_join_node(). An instance of this class is passed into this function by
the writer; you should not create one yourself.

You may yield any number of edge specifications, but the more compact you can make the representation
(i.e., fewer edge specifications, each with fewer elements), the better. This is where join nodes are helpful:
they can turn “many-to-many” relationships into a significantly smaller number of actual edges (2𝑁 instead
of 𝑁2).

A SubDAG or a zero-vars NodeLayer both implicitly have a single node index, 0. See the source code of
ManyToMany for a simple pattern for dealing with this.

Parameters

• parent (BaseNode) – The parent, a concrete subclass of BaseNode.

• child (BaseNode) – The child, a concrete subclass of BaseNode.

• join_factory (JoinFactory) – An instance of JoinFactory that will be provided by
the writer.

Return type
Iterable[Union[Tuple[Tuple[int], Tuple[int]], Tuple[Tuple[int], JoinNode],
Tuple[JoinNode, Tuple[int]]]]

class htcondor.dags.OneToOne

This edge connects two layers “linearly”: each underlying node in the child layer is a child of the corresponding
underlying node with the same index in the parent layer. The parent and child layers must have the same number
of underlying nodes.

class htcondor.dags.ManyToMany

This edge connects two layers “densely”: every node in the child layer is a child of every node in the parent layer.

class htcondor.dags.Grouper(parent_chunk_size=1, child_chunk_size=1)
This edge connects two layers in “chunks”. The nodes in each layer are divided into chunks based on their
respective chunk sizes (given in the constructor). Chunks are then connected like a OneToOne edge.

The number of chunks in each layer must be the same, and each layer must be evenly-divided into chunks (no
leftover underlying nodes).

When both chunk sizes are 1 this is identical to a OneToOne edge, and you should use that edge instead because
it produces a more compact representation.

Parameters

• parent_chunk_size (int) – The number of nodes in each chunk in the parent layer.

• child_chunk_size (int) – The number of nodes in each chunk in the child layer.

668 Chapter 8. Python Bindings

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 23.6.2

class htcondor.dags.Slicer(parent_slice=slice(None, None, None), child_slice=slice(None, None, None))
This edge connects individual nodes in the layers, selected by slices. Each node from the parent layer that is in
the parent slice is joined, one-to-one, with the matching node from the child layer that is in the child slice.

Parameters

• parent_slice (slice) – The slice to use for the parent layer.

• child_slice (slice) – The slice to use for the child layer.

Node Configuration

class htcondor.dags.Script(executable, arguments=None, retry=False, retry_status=1, retry_delay=0)

Parameters

• executable (Union[str, Path]) – The path to the executable to run.

• arguments (Optional[List[str], None]) – The individual arguments to the executable.
Keep in mind that these are evaluated as soon as the Script is created!

• retry (bool) – True if the script can be retried on failure.

• retry_status (int) – If the script exits with this status, the script run will be considered
a failure for the purposes of retrying.

• retry_delay (int) – The number of seconds to wait after a script failure before retrying.

class htcondor.dags.DAGAbortCondition(node_exit_value, dag_return_value=None)
Represents the configuration of a node’s DAG abort condition.

See ABORT-DAG-ON for more information about DAG aborts.

Parameters

• node_exit_value (int) – If the underlying node exits with this value, the DAG will be
aborted.

• dag_return_value (Optional[int, None]) – If the DAG is aborted via this condition, it
will exit with this code, if given. If not given, it will exit with the same return value that the
node did.

Writing a DAG to Disk

htcondor.dags.write_dag(dag, dag_dir, dag_file_name='dagfile.dag', node_name_formatter=None)
Write out the given DAG to the given directory. This includes the DAG description file itself, as well as any
associated submit descriptions.

Parameters

• dag (DAG) – The DAG to write the description for.

• dag_dir (Path) – The directory to write the DAG files to.

• dag_file_name (Optional[str, None]) – The name of the DAG description file itself.

• node_name_formatter (Optional[NodeNameFormatter, None]) – The
NodeNameFormatter to use for generating underlying node names. If not provided,
the default is SimpleFormatter.

8.7. htcondor.dags API Reference 669

https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None

HTCondor Manual, Release 23.6.2

Returns
dag_file_path – The path to the DAG description file; can be passed to htcondor.Submit.
from_dag() if you convert it to a string, like Submit.from_dag(str(write_dag(...))).

Return type
pathlib.Path

class htcondor.dags.NodeNameFormatter

An abstract base class that represents a certain way of formatting and parsing underlying node names.

abstract generate(layer_name, node_index)
This method should generate a single node name, given the name of the layer and the index of the underlying
node inside the layer.

Return type
str

abstract parse(node_name)
This method should convert a single node name back into a layer name and underlying node index. Node
names must be invertible for rescue() to work.

Return type
Tuple[str, int]

class htcondor.dags.SimpleFormatter(separator=':', index_format='{:d}', offset=0)
A no-frills NodeNameFormatter that produces underlying node names like LayerName-5.

8.7.2 DAG Configuration

class htcondor.dags.DotConfig(path, update=False, overwrite=True, include_file=None)
A DotConfig holds the configuration options for whether and how DAGMan will produce a DOT file represent-
ing its execution graph.

See Visualizing DAGs for more information.

Parameters

• path (Path) – The path to write the DOT file to.

• update (bool) – If True, the DOT file will be updated as the DAG executes. If False, it
will be written once at startup.

• overwrite (bool) – If True, the DOT file will be updated in-place. If False, new DOT
files will be created next to the original.

• include_file (Optional[Path, None]) – Include the contents of the file at this path in the
DOT file.

class htcondor.dags.NodeStatusFile(path, update_time=None, always_update=False)
A NodeStatusFile holds the configuration options for whether and how DAGMan will write a file containing
node status information.

See Current Node Status File for more information.

Parameters

• path (Path) – The path to write the node status file to.

• update_time (Optional[int, None]) – The minimum interval to write new information
to the node status file.

670 Chapter 8. Python Bindings

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

HTCondor Manual, Release 23.6.2

• always_update (Optional[bool, None]) – Always update the node status file after the
update_time, even if there are no changes from the previous update.

8.7.3 Rescue DAGs

htcondor.dags can read information from a DAGMan rescue file and apply it to your DAG as it is being constructed.

See The Rescue DAG for more information on Rescue DAGs.

htcondor.dags.rescue(dag, rescue_file, formatter=None)
Applies state recorded in a DAGMan rescue file to the dag. The dag will be modified in-place.

Warning: Running this function on a DAG replaces any existing DONE information on all of its nodes. Every
node will have a dictionary for its done attribute. If you want to edit this information manually, always run
this function first, then make the desired changes on top.

Warning: This function cannot detect changes in node names. If node names are different in the rescue file
compared to the DAG, this function will not behave as expected.

Parameters

• dag (DAG) – The DAG to apply the rescue state to.

• rescue_file (Path) – The file to get rescue state from. Use the find_rescue_file()
helper function to find the right rescue file.

• formatter (Optional[NodeNameFormatter, None]) – The node name formatter that was
used to write out the original DAG.

Return type
None

htcondor.dags.find_rescue_file(dag_dir, dag_file_name='dagfile.dag')
Finds the latest rescue file in a DAG directory (just like DAGMan itself would).

Parameters

• dag_dir (Path) – The directory to search in.

• dag_file_name (str) – The base name of the DAG description file; the same name you
would pass to write_dag().

Returns
rescue_file – The path to the latest rescue file found in the dag_dir.

Return type
pathlib.Path

8.7. htcondor.dags API Reference 671

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

HTCondor Manual, Release 23.6.2

8.8 htcondor.personal API Reference

class htcondor.personal.PersonalPool(local_dir=None, config=None, raw_config=None, detach=False,
use_config=True)

A PersonalPool is responsible for managing the lifecycle of a personal HTCondor pool. It can be used to start
and stop a personal pool, and can also “attach” to an existing personal pool that is already running.

Parameters

• local_dir (Optional[Path, None]) – The local directory for the personal HTCondor pool.
All configuration and state for the personal pool will be stored in this directory.

• config (Mapping[str, str]) – HTCondor configuration parameters to inject, as a mapping
of key-value pairs.

• raw_config (Optional[str, None]) – Raw HTCondor configuration language to inject, as
a string.

• detach (bool) – If True, the personal HTCondor pool will not be shut down when this
object is destroyed (e.g., by stopping Python). Defaults to False.

• use_config (bool) – If True, the environment variable CONDOR_CONFIGwill be set during
initialization, such that this personal pool appears to be the local HTCondor pool for all
operations in this Python session, even ones that don’t go through the PersonalPool object.
The personal pool will also be initialized. Defaults to True.

classmethod attach(local_dir=None)
Make a new PersonalPool attached to an existing personal pool that is already running in local_dir.

Parameters
local_dir (Optional[Path, None]) – The local directory for the existing personal pool.

Returns
self – This method returns self.

Return type
PersonalPool

property collector

The htcondor.Collector for the personal pool’s collector.

detach()

Detach the personal pool (as in the constructor argument), and return self.

Return type
PersonalPool

get_config_val(macro, default=None)
Get the value of a configuration macro. The value will be “evaluated”, meaning that other configuration
macros or functions inside it will be expanded.

Parameters

• macro (str) – The configuration macro to look up the value for.

• default (Optional[str, None]) – If not None, and the config macro has no value, return
this instead. If None, a KeyError will be raised instead.

Returns
value – The evaluated value of the configuration macro.

672 Chapter 8. Python Bindings

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError

HTCondor Manual, Release 23.6.2

Return type
str

initialize(overwrite_config=True)
Initialize the personal pool by creating its local directory and writing out configuration files.

The contents of the local directory (except for the configuration file if overwrite_config=True) will not
be overridden.

Parameters
overwrite_config – If True, the existing configuration file will be overwritten with the
configuration set up in the constructor. If False and there is an existing configuration file,
an exception will be raised. Defaults to True.

Returns
self – This method returns self.

Return type
PersonalPool

run_command(args, stdout=-1, stderr=-1, universal_newlines=True, **kwargs)
Execute a command in a subprocess against this personal pool, using subprocess.run() with good de-
faults for executing HTCondor commands. All of the keyword arguments of this function are passed directly
to subprocess.run().

Parameters

• args (List[str]) – The command to run, and its arguments, as a list of strings.

• kwargs – All keyword arguments (including stdout, stderr, and
universal_newlines) are passed to subprocess.run().

Returns
completed_process

Return type
subprocess.CompletedProcess

property schedd

The htcondor.Schedd for the personal pool’s schedd.

start()

Start the personal condor (bringing it to the READY state from either UNINITIALIZED or INITIALIZED).

Returns
self – This method returns self.

Return type
PersonalPool

property state

The current PersonalPoolState of the personal pool.

stop()

Stop the personal condor, bringing it from the READY state to STOPPED.

Returns
self – This method returns self.

Return type
PersonalPool

8.8. htcondor.personal API Reference 673

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/subprocess.html#subprocess.run
https://docs.python.org/3/library/subprocess.html#subprocess.run
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/subprocess.html#subprocess.run
https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess

HTCondor Manual, Release 23.6.2

use_config()

Returns a SetCondorConfig context manager that sets CONDOR_CONFIG to point to the configuration file
for this personal pool.

who()

Return the result of condor_who -quick, as a classad.ClassAd. If condor_who -quick fails, or the
output can’t be parsed into a sensible who ad, this method returns an empty ad.

Return type
ClassAd

class htcondor.personal.PersonalPoolState(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Bases: str, Enum

An enumeration of the possible states that a PersonalPool can be in.

UNINITIALIZED = 'UNINITIALIZED'

INITIALIZED = 'INITIALIZED'

STARTING = 'STARTING'

READY = 'READY'

STOPPING = 'STOPPING'

STOPPED = 'STOPPED'

class htcondor.personal.SetCondorConfig(config_file)
A context manager. Inside the block, the Condor config file is the one given to the constructor. After the block,
it is reset to whatever it was before the block was entered.

Parameters
config_file (Path) – The path to an HTCondor configuration file.

674 Chapter 8. Python Bindings

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/pathlib.html#pathlib.Path

CHAPTER

NINE

CLOUD COMPUTING

Although HTCondor has long supported accessing cloud resources as though they were part of the Grid, the differences
between clouds and the Grid have made it difficult to convert access into utility; a job in the Grid universe starts a virtual
machine, rather than the user’s executable.

We offer two solutions to this problem. The first, a tool called , helps users or administrators extend an existing
HTCondor pool with cloud resources. The second is an easy way to create an entire HTCondor pool from scratch on
the cloud, using our Google Cloud Marketplace Entry.

The rest of this chapter is concerned with using the tool to add nodes to an existing HTCondor pool; it includes in-
structions on how to create a single-node HTCondor installation as a normal user so that you can expand it with cloud
resources. It also discusses how to manually construct a HTCondor in the Cloud using .

9.1 Introduction

To be clear, our concern throughout this chapter is with commercial services which rent computational resources over
the Internet at short notice and charge in small increments (by the minute or the hour). Currently, the tool supports only
AWS. AWS can start booting a new virtual machine as quickly as a few seconds after the request; barring hardware
failure, you will be able to continue renting that VM until you stop paying the hourly charge. The other cloud services
are broadly similar.

If you already have access to the Grid, you may wonder why you would want to begin cloud computing. The cloud
services offer two major advantages over the Grid: first, cloud resources are typically available more quickly and in
greater quantity than from the Grid; and second, because cloud resources are virtual machines, they are considerably
more customizable than Grid resources. The major disadvantages are, of course, cost and complexity (although we
hope that reduces the latter).

We illustrate these advantages with what we anticipate will be the most common uses for .

9.1.1 Use Case: Deadlines

With the ability to acquire computational resources in seconds or minutes and retain them for days or weeks, it becomes
possible to rapidly adjust the size - and cost - of an HTCondor pool. Giving this ability to the end-user avoids the
problems of deciding who will pay for expanding the pool and when to do so. We anticipate that the usual cause for
doing so will be deadlines; the end-user has the best knowledge of their own deadlines and how much, in monetary
terms, it’s worth to complete their work by that deadline.

675

HTCondor Manual, Release 23.6.2

9.1.2 Use Case: Capabilities

Cloud services may offer (virtual) hardware in configurations unavailable in the local pool, or in quantities that it
would be prohibitively expensive to provide on an on-going basis. Examples (from 2017) may include GPU-based
computation, or computations requiring a terabyte of main memory. A cloud service may also offer fast and cloud-local
storage for shared data, which may have substantial performance benefits for some workflows. Some cloud providers
(for example, AWS) have pre-populated this storage with common public datasets, to further ease adoption.

By using cloud resources, an HTCondor pool administrator may also experiment with or temporarily offer different
software and configurations. For example, a pool may be configured with a maximum job runtime, perhaps to reduce
the latency of fair-share adjustments or to protect against hung jobs. Adding cloud resources which permit longer-
running jobs may be the least-disruptive way to accommodate a user whose jobs need more time.

9.1.3 Use Case: Capacities

It may be possible for an HTCondor administrator to lower the cost of their pool by increasing utilization and meeting
peak demand with cloud computing.

9.1.4 Use Case: Experimental Convenience

Although you can experiment with many different HTCondor configurations using and HTCondor running as a normal
user, some configurations may require elevated privileges. In other situations, you may not be to create an unprivileged
HTCondor pool on a machine because that would violate the acceptable-use policies, or because you can’t change the
firewall, or because you’d use too much bandwidth. In those cases, you can instead “seed” the cloud with a single-node
HTCondor installation and expand it using . See HTCondor in the Cloud for instructions.

9.2 HTCondor Annex User’s Guide

A user of may be a regular job submitter, or she may be an HTCondor pool administrator. This guide will cover basic
usage first, followed by advanced usage that may be of less interest to the submitter. Users interested in customizing
should consult the HTCondor Annex Customization Guide.

9.2.1 Considerations and Limitations

When you run , you are adding (virtual) machines to an HTCondor pool. As a submitter, you probably don’t have
permission to add machines to the HTCondor pool you’re already using; generally speaking, security concerns will
forbid this. If you’re a pool administrator, you can of course add machines to your pool as you see fit. By default,
however, instances will only start jobs submitted by the user who started the annex, so pool administrators using on
their users’ behalf will probably want to use the -owners option or -no-owner flag; see the condor_annex man page.
Once the new machines join the pool, they will run jobs as normal.

Submitters, however, will have to set up their own personal HTCondor pool, so that has a pool to join, and then work
with their pool administrator if they want to move their existing jobs to their new pool. Otherwise, jobs will have to
be manually divided (removed from one and resubmitted to the other) between the pools. For instructions on creating
a personal HTCondor pool, preparing an AWS account for use by , and then configuring to use that account, see the
Using condor_annex for the First Time section.

Starting in v8.7.1, will check for inbound access to the collector (usually port 9618) before starting an annex (it does
not support other network topologies). When checking connectivity from AWS, the IP(s) used by the AWS Lambda

676 Chapter 9. Cloud Computing

HTCondor Manual, Release 23.6.2

function implementing this check may not be in the same range(s) as those used by AWS instance; please consult AWS’s
list of all their IP2 when configuring your firewall.

Starting in v8.7.2, requires that the AWS secret (private) key file be owned by the submitting user and not readable by
anyone else. This helps to ensure proper attribution.

9.2.2 Basic Usage

This section assumes you’re logged into a Linux machine an that you’ve already configured . If you haven’t, see the
Using condor_annex for the First Time section.

All the terminal commands (shown in a box without a title) and file edits (shown in a box with an emphasized filename
for a title) in this section take place on the Linux machine. In this section, we follow the common convention that the
commands you type are preceded by ‘$’ to distinguish them from any expected output; don’t copy that part of each of
the following lines. (Lines which end in a ‘\’ continue on the following line; be sure to copy both lines. Don’t copy the
‘\’ itself.)

What You’ll Need to Know

To create a HTCondor annex with on-demand instances, you’ll need to know two things:

1. A name for it. “MyFirstAnnex” is a fine name for your first annex.

2. How many instances you want. For your first annex, when you’re checking to make sure things work, you may
only want one instance.

9.2.3 Start an Annex

Entering the following command will start an annex named “MyFirstAnnex” with one instance. will print out what it’s
going to do, and then ask you if that’s OK. You must type ‘yes’ (and hit enter) at the prompt to start an annex; if you
do not, will print out instructions about how to change whatever you may not like about what it said it was going to do,
and then exit.

$ condor_annex -count 1 -annex-name MyFirstAnnex
Will request 1 m4.large on-demand instance for 0.83 hours. Each instance will
terminate after being idle for 0.25 hours.
Is that OK? (Type 'yes' or 'no'): yes
Starting annex...
Annex started. Its identity with the cloud provider is
'TestAnnex0_f2923fd1-3cad-47f3-8e19-fff9988ddacf'. It will take about three
minutes for the new machines to join the pool.

You won’t need to know the annex’s identity with the cloud provider unless something goes wrong.

Before starting the annex, (v8.7.1 and later) will check to make sure that the instances will be able to contact your pool.
Contact the Linux machine’s administrator if reports a problem with this step.

2 https://ip-ranges.amazonaws.com/ip-ranges.json

9.2. HTCondor Annex User’s Guide 677

https://ip-ranges.amazonaws.com/ip-ranges.json

HTCondor Manual, Release 23.6.2

Instance Types

Each instance type provides a different number (and/or type) of CPU cores, amount of RAM, local storage, and the
like. We recommend starting with ‘m4.large’, which has 2 CPU cores and 8 GiB of RAM, but you can see the
complete list of instance types at the following URL:
https://aws.amazon.com/ec2/instance-types/
You can specify an instance type with the -aws-on-demand-instance-type flag.

Leases

By default, arranges for your annex’s instances to be terminated after 0.83 hours (50 minutes) have passed. Once it’s in
place, this lease doesn’t depend on the Linux machine, but it’s only checked every five minutes, so give your deadlines
a lot of cushion to make you don’t get charged for an extra hour. The lease is intended to help you conserve money by
preventing the annex instances from accidentally running forever. You can specify a lease duration (in decimal hours)
with the -duration flag.

If you need to adjust the lease for a particular annex, you may do so by specifying an annex name and a duration, but not
a count. When you do so, the new duration is set starting at the current time. For example, if you’d like “MyFirstAnnex”
to expire eight hours from now:

$ condor_annex -annex-name MyFirstAnnex -duration 8
Lease updated.

Idle Time

By default, will configure your annex’s instances to terminate themselves after being idle for 0.25 hours (fifteen min-
utes). This is intended to help you conserve money in case of problems or an extended shortage of work. As noted in
the example output above, you can specify a max idle time (in decimal hours) with the -idle flag. considers an instance
idle if it’s unclaimed (see condor_startd Policy Configuration for a definition), so it won’t get tricked by jobs with long
quiescent periods.

Tagging your Annex’s Instances

By default, adds a tag, htcondor:AnnexName, to each instance in the annex; its value is the annex’s name (as entered
on the command line). You may add additional tags via the command-line option -tag, which must be followed by a
tag name and a value for that tag (as separate arguments). You may specify any number of tags (up to the maximum
supported by the cloud provider) by adding additional -tag options to the command line.

Starting Multiple Annexes

You may have up to fifty (or fewer, depending what else you’re doing with your AWS account) differently-named
annexes running at the same time. Running again with the same annex name before stopping that annex will both add
instances to it and change its duration. Only instances which start up after an invocation of will respect that invocation’s
max idle time. That may include instances still starting up from your previous (first) invocation of , so be sure your
instances have all joined the pool before running again with the same annex name if you’re changing the max idle time.
Each invocation of requests a certain number of instances of a given type; you may specify the instance type, the count,
or both with each invocation, but doing so does not change the instance type or count of any previous request.

678 Chapter 9. Cloud Computing

https://aws.amazon.com/ec2/instance-types/

HTCondor Manual, Release 23.6.2

9.2.4 Monitor your Annex

You can find out if an instance has successfully joined the pool in the following way:

$ condor_annex status
Name OpSys Arch State Activity Load

slot1@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Benchmarking 0.0
slot2@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.0

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 2 0 0 2 0 0 0 0
Total 2 0 0 2 0 0 0 0

This example shows that the annex instance you requested has joined your pool. (The default annex image configures
one static slot for each CPU it finds on start-up.)

You may instead use :

$ condor_status -annex MyFirstAnnex
slot1@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767
slot2@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain
X86_64/LINUX 2 0 0 2 0 0 0 0
Total 2 0 0 2 0 0 0 0

You can also get a report about the instances which have not joined your pool:

$ condor_annex -annex MyFirstAnnex -status
STATE COUNT
pending 1
TOTAL 1
Instances not in the pool, grouped by state:
pending i-06928b26786dc7e6e

Monitoring Multiple Annexes

The following command reports on all annex instance which have joined the pool, regardless of which annex they’re
from:

$ condor_status -annex
slot1@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767
slot2@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767
slot1@ip-111-48-85-13.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767
slot2@ip-111-48-85-13.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain
X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0

The following command reports about instance which have not joined the pool, regardless of which annex they’re from:

9.2. HTCondor Annex User’s Guide 679

HTCondor Manual, Release 23.6.2

$ condor_annex -status
NAME TOTAL running
NamelessTestA 2 2
NamelessTestB 3 3
NamelessTestC 1 1

NAME STATUS INSTANCES...
NamelessTestA running i-075af9ccb40efb162 i-0bc5e90066ed62dd8
NamelessTestB running i-02e69e85197f249c2 i-0385f59f482ae6a2e
i-06191feb755963edd
NamelessTestC running i-09da89d40cde1f212

The ellipsis in the last column (INSTANCES. . .) is to indicate that it’s a very wide column and may wrap (as it has in
the example), not that it has been truncated.

The following command combines these two reports:

$ condor_annex status
Name OpSys Arch State Activity Load

slot1@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Benchmarking 0.0
slot2@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.0

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 2 0 0 2 0 0 0 0
Total 2 0 0 2 0 0 0 0

Instance ID not in Annex Status Reason (if known)
i-075af9ccb40efb162 NamelessTestA running -
i-0bc5e90066ed62dd8 NamelessTestA running -
i-02e69e85197f249c2 NamelessTestB running -
i-0385f59f482ae6a2e NamelessTestB running -
i-06191feb755963edd NamelessTestB running -
i-09da89d40cde1f212 NamelessTestC running -

9.2.5 Run a Job

Starting in v8.7.1, the default behavior for an annex instance is to run only jobs submitted by the user who ran the
command. If you’d like to allow other users to run jobs, list them (separated by commas; don’t forget to include
yourself) as arguments to the -owner flag when you start the instance. If you’re creating an annex for general use, use
the -no-owner flag to run jobs from anyone.

Also starting in v8.7.1, the default behavior for an annex instance is to run only jobs which have the MayUseAWS
attribute set (to true). To submit a job with MayUseAWS set to true, add +MayUseAWS = TRUE to the submit file
somewhere before the queue command. To allow an existing job to run in the annex, use condor_q_edit. For instance,
if you’d like cluster 1234 to run on AWS:

$ condor_qedit 1234 "MayUseAWS = TRUE"
Set attribute "MayUseAWS" for 21 matching jobs.

680 Chapter 9. Cloud Computing

HTCondor Manual, Release 23.6.2

9.2.6 Stop an Annex

The following command shuts HTCondor off on each instance in the annex; if you’re using the default annex image,
doing so causes each instance to shut itself down. HTCondor does not provide a direct method terminating instances.

$ condor_off -annex MyFirstAnnex
Sent "Kill-Daemon" command for "master" to master ip-172-31-48-84.ec2.internal

Stopping Multiple Annexes

The following command turns off all annex instances in your pool, regardless of which annex they’re from:

$ condor_off -annex
Sent "Kill-Daemon" command for "master" to master ip-172-31-48-84.ec2.internal
Sent "Kill-Daemon" command for "master" to master ip-111-48-85-13.ec2.internal

9.2.7 Using Different or Multiple AWS Regions

It sometimes advantageous to use multiple AWS regions, or convenient to use an AWS region other than the default,
which is us-east-1. To change the default, set the configuration macro to the new default. (If you used the automatic
setup, you can edit the user_config file in .condor directory in your home directory; this file uses the normal
HTCondor configuration file syntax. (See Ordered Evaluation to Set the Configuration.) Once you do this, you’ll have
to re-do the setup, as setup is region-specific.

If you’d like to use multiple AWS regions, you can specify which reason to use on the command line with the -aws-
region flag. Each region may have zero or more annexes active simultaneously.

9.2.8 Advanced Usage

The previous section covered using what AWS calls “on-demand” instances. (An “instance” is “a single occurrence of
something,” in this case, a virtual machine. The intent is to distinguish between the active process that’s pretending to
be a real piece of hardware - the “instance” - and the template it used to start it up, which may also be called a virtual
machine.) An on-demand instance has a price fixed by AWS; once acquired, AWS will let you keep it running as long
as you continue to pay for it.

In contrast, a “Spot” instance has a price determined by an (automated) auction; when you request a “Spot” instance,
you specify the most (per hour) you’re willing to pay for that instance. If you get an instance, however, you pay only
what the spot price is for that instance; in effect, AWS determines the spot price by lowering it until they run out of
instances to rent. AWS advertises savings of up to 90% over on-demand instances.

There are two drawbacks to this cheaper type of instance: first, you may have to wait (indefinitely) for instances to
become available at your preferred price-point; the second is that your instances may be taken away from you before
you’re done with them because somebody else will pay more for them. (You won’t be charged for the hour in which
AWS kicks you off an instance, but you will still owe them for all of that instance’s previous hours.) Both drawbacks
can be mitigated (but not eliminated) by bidding the on-demand price for an instance; of course, this also minimizes
your savings.

Determining an appropriate bidding strategy is outside the purview of this manual.

9.2. HTCondor Annex User’s Guide 681

HTCondor Manual, Release 23.6.2

Using AWS Spot Fleet

supports Spot instances via an AWS technology called “Spot Fleet”. Normally, when you request instances, you request
a specific type of instance (the default on-demand instance is, for instance, ‘m4.large’.) However, in many cases, you
don’t care too much about how many cores an instance has - HTCondor will automatically advertise the right number
and schedule jobs appropriately, so why would you? In such cases - or in other cases where your jobs will run acceptably
on more than one type of instance - you can make a Spot Fleet request which says something like “give me a thousand
cores as cheaply as possible”, and specify that an ‘m4.large’ instance has two cores, while ‘m4.xlarge’ has four, and so
on. (The interface actually allows you to assign arbitrary values - like HTCondor slot weights - to each instance type1,
but the default value is core count.) AWS will then divide the current price for each instance type by its core count and
request spot instances at the cheapest per-core rate until the number of cores (not the number of instances!) has reached
a thousand, or that instance type is exhausted, at which point it will request the next-cheapest instance type.

(At present, a Spot Fleet only chooses the cheapest price within each AWS region; you would have to start a Spot Fleet
in each AWS region you were willing to use to make sure you got the cheapest possible price. For fault tolerance, each
AWS region is split into independent zones, but each zone has its own price. Spot Fleet takes care of that detail for
you.)

In order to create an annex via a Spot Fleet, you’ll need a file containing a JSON blob which describes the Spot Fleet
request you’d like to make. (It’s too complicated for a reasonable command-line interface.) The AWS web console can
be used to create such a file; the button to download that file is (currently) in the upper-right corner of the last page
before you submit the Spot Fleet request; it is labeled ‘JSON config’. You may need to create an IAM role the first time
you make a Spot Fleet request; please do so before running .

• You must select the instance role profile used by your on-demand instances for to work. This value will have
been stored in the configuration macro by the setup procedure.

• You must select a security group which allows inbound access on HTCondor’s port (9618) for to work. You
may use the value stored in the configuration macro ANNEX_DEFAULT_ODI_SECURITY_GROUP_IDS by the setup
procedure; this security group also allows inbound SSH access.

• If you wish to be able to SSH to your instances, you must select an SSH key pair (for which you have the
corresponding private key); this is not required for . You may use the value stored in the configuration macro
ANNEX_DEFAULT_ODI_KEY_NAME by the setup procedure.

Specify the JSON configuration file using -aws-spot-fleet-config-file, or set the configuration macro to the full path
of the file you just downloaded, if you’d like it to become your default configuration for Spot annexes. Be aware that
does not alter the validity period if one is set in the Spot Fleet configuration file. You should remove the references to
‘ValidFrom’ and ‘ValidTo’ in the JSON file to avoid confusing surprises later.

Additionally, be aware that uses the Spot Fleet API in its “request” mode, which means that an annex created with
Spot Fleet has the same semantics with respect to replacement as it would otherwise: if an instance terminates for any
reason, including AWS taking it away to give to someone else, it is not replaced.

You must specify the number of cores (total instance weight; see above) using -slots. You may also specify -aws-spot-
fleet, if you wish; doing so may make this invocation more self-documenting. You may use other options as normal,
excepting those which begin with -aws-on-demand, which indicates an option specific to on-demand instances.

1 Strictly speaking, to each “launch specification”; see the explanation below, in the section AWS Instance User Data.

682 Chapter 9. Cloud Computing

HTCondor Manual, Release 23.6.2

Custom HTCondor Configuration

When you specify a custom configuration, you specify the full path to a configuration directory which will be copied
to the instance. The customizations performed by will be applied to a temporary copy of this directory before it is
uploaded to the instance. Those customizations consist of creating two files: password_file.pl (named that way to
ensure that it isn’t ever accidentally treated as configuration), and 00ec2-dynamic.config. The former is a password
file for use by the pool password security method, which if configured, will be used by automatically. The latter is an
HTCondor configuration file; it is named so as to sort first and make it easier to over-ride with whatever configuration
you see fit.

AWS Instance User Data

HTCondor doesn’t interfere with this in any way, so if you’d like to set an instance’s user data, you may do so. However,
as of v8.7.2, the -user-data options don’t work for on-demand instances (the default type). If you’d like to specify user
data for your Spot Fleet -driven annex, you may do so in four different ways: on the command-line or from a file, and
for all launch specifications or for only those launch specifications which don’t already include user data. These two
choices correspond to the absence or presence of a trailing -file and the absence or presence of -default immediately
preceding -user-data.

A “launch specification,” in this context, means one of the virtual machine templates you told Spot Fleet would be an
acceptable way to accommodate your resource request. This usually corresponds one-to-one with instance types, but
this is not required.

Expert Mode

The condor_annex manual page lists the “expert mode” options.

Four of the “expert mode” options set the URLs used to access AWS services, not including the CloudFormation URL
needed by the -setup flag. You may change the CloudFormation URL by changing the HTCondor configuration macro
, or by supplying the URL as the third parameter after the -setup flag. If you change any of the URLs, you may need to
change all of the URLs - Lambda functions and CloudWatch events in one region don’t work with instances in another
region.

You may also temporarily specify a different AWS account by using the access (-aws-access-key-file) and secret key
(-aws-secret-key-file) options. Regular users may have an accounting reason to do this.

The options labeled “developers only” control implementation details and may change without warning; they are prob-
ably best left unused unless you’re a developer.

9.3 Using condor_annex for the First Time

This guide assumes that you already have an AWS account, as well as a log-in account on a Linux machine with a
public address and a system administrator who’s willing to open a port for you. All the terminal commands (shown in
a box) and file edits (show in a box whose first line begins with a # and names a file) take place on the Linux machine.
You can perform the web-based steps from wherever is convenient, although it will save you some copying if you run
the browser on the Linux machine.

If your Linux machine will be an EC2 instance, read Using Instance Credentials first; by taking some care in how you
start the instance, you can save yourself some drudgery.

Before using for the first time, you’ll have to do three things:

1. install a personal HTCondor

2. prepare your AWS account

9.3. Using condor_annex for the First Time 683

HTCondor Manual, Release 23.6.2

3. configure

Instructions for each follow.

9.3.1 Install a Personal HTCondor

We recommend that you install a personal HTCondor to make use of ; it’s simpler to configure that way. Follow
the Hand-Installation of HTCondor on a Single Machine with User Privileges instructions. Make sure you install
HTCondor version 8.7.8 or later.

Once you have a working personal HTCondor installation, continue with the additional setup instructions below, that
are specific to using .

In the following instructions, it is assumed that the local installation has been done in the folder ~/
condor-8.7.8. Change this path depending on your HTCondor version and how you followed the in-
stallation instructions.

Configure Public Interface

The default personal HTCondor uses the “loopback” interface, which basically just means it won’t talk to anyone other
than itself. For to work, your personal HTCondor needs to use the Linux machine’s public interface. In most cases,
that’s as simple as adding the following lines:

~/condor-8.7.8/local/condor_config.local

NETWORK_INTERFACE = *
CONDOR_HOST = $(FULL_HOSTNAME)

Restart HTCondor to force the changes to take effect:

$ condor_restart
Sent "Restart" command to local master

To verify that this change worked, repeat the steps under the Install a Personal HTCondor section. Then proceed onto
the next section.

Configure a Pool Password

In this section, you’ll configure your personal HTCondor to use a pool password. This is a simple but effective method
of securing HTCondor’s communications to AWS.

Add the following lines:

~/condor-8.7.8/local/condor_config.local

SEC_PASSWORD_FILE = $(LOCAL_DIR)/condor_pool_password

SEC_DAEMON_INTEGRITY = REQUIRED
SEC_DAEMON_AUTHENTICATION = REQUIRED
SEC_DAEMON_AUTHENTICATION_METHODS = PASSWORD
SEC_NEGOTIATOR_INTEGRITY = REQUIRED
SEC_NEGOTIATOR_AUTHENTICATION = REQUIRED
SEC_NEGOTIATOR_AUTHENTICATION_METHODS = PASSWORD

(continues on next page)

684 Chapter 9. Cloud Computing

HTCondor Manual, Release 23.6.2

(continued from previous page)

SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD
ALLOW_DAEMON = condor_pool@*

You also need to run the following command, which prompts you to enter a password:

$ condor_store_cred -c add -f `condor_config_val SEC_PASSWORD_FILE`
Enter password:

Enter a password.

Tell HTCondor about the Open Port

By default, HTCondor will use port 9618. If the Linux machine doesn’t already have HTCondor installed, and the
admin is willing to open that port, then you don’t have to do anything. Otherwise, you’ll need to add a line like the
following, replacing ‘9618’ with whatever port the administrator opened for you.

~/condor-8.7.8/local/condor_config.local

COLLECTOR_HOST = $(FULL_HOSTNAME):9618

Activate the New Configuration

Force HTCondor to read the new configuration by restarting it:

$ condor_restart

9.3.2 Prepare your AWS account

Since v8.7.1, the tool has included a -setup command which will prepare your AWS account.

Using Instance Credentials

If you will not be running on an EC2 instance, skip to Obtaining an Access Key.

When you start an instance on EC21, you can grant it some of your AWS privileges, for instance, for starting instances.
This (usually) means that any user logged into the instance can, for instance, start instances (as you). A given collection
of privileges is called an “instance profile”; a full description of them is outside the scope of this document. If, however,
you’ll be the only person who can log into the instance you’re creating and on which you will be running , it may be
simpler to start an instance with your privileges than to deal with Obtaining an Access Key.

You will need a privileged instance profile; if you don’t already have one, you will only need to create it once. When
launching an instance with the EC2 console, step 3 (labelled ‘Configure Instance Details’) includes an entry for ‘IAM
role’; the AWS web interface creates the corresponding instance profile for you automatically. If you’ve already created
a privileged role, select it here and carry on launching your instance as usual. If you haven’t:

1. Follow the ‘Create new IAM role’ link.

2. Click the ‘Create Role’ button.
1 You may assign an instance profile to an EC2 instance when you launch it, or at any subsequent time, through the AWS web console (or other

interfaces with which you may be familiar). If you start the instance using HTCondor’s EC2 universe, you may specify the IAM instance profile with
the or submit commands.

9.3. Using condor_annex for the First Time 685

https://console.aws.amazon.com/ec2/

HTCondor Manual, Release 23.6.2

3. Select ‘EC2’ under “the service that will use this role”.

4. Click the ‘Next: Permissions’ button.

5. Select ‘Administrator Access’ and click the ‘Next: Tags’ button.

6. Click the ‘Next: Review’ button.

7. Enter a role name; ‘HTCondorAnnexRole’ is fine.

8. Click the ‘Create role’ button.

When you switch back to the previous tab, you may need to click the circular arrow (refresh) icon before you can select
the role name you entered in the second-to-last step.

If you’d like step-by-step instructions for creating a HTCondor-in-the-Cloud, see HTCondor in the Cloud.

You can skip to Configure condor_annex once you’ve completed these steps.

Obtaining an Access Key

In order to use AWS, needs a pair of security tokens (like a user name and password). Like a user name, the “access
key” is (more or less) public information; the corresponding “secret key” is like a password and must be kept a secret.
To help keep both halves secret, (and HTCondor) are never told these keys directly; instead, you tell HTCondor which
file to look in to find each one.

Create those two files now; we’ll tell you how to fill them in shortly. By convention, these files exist in your ~/.condor
directory, which is where the -setup command will store the rest of the data it needs.

$ mkdir ~/.condor
$ cd ~/.condor
$ touch publicKeyFile privateKeyFile
$ chmod 600 publicKeyFile privateKeyFile

The last command ensures that only you can read or write to those files.

To download a new pair of security tokens for to use, go to the IAM console at the following URL; log in if you need
to:

https://console.aws.amazon.com/iam/home?region=us-east-1#/users

The following instructions assume you are logged in as a user with the privilege to create new users. (The ‘root’ user
for any account has this privilege; other accounts may as well.)

1. Click the “Add User” button.

2. Enter name in the User name box; “annex-user” is a fine choice.

3. Click the check box labelled “Programmatic access”.

4. Click the button labelled “Next: Permissions”.

5. Select “Attach existing policies directly”.

6. Type “AdministratorAccess” in the box labelled “Filter”.

7. Click the check box on the single line that will appear below (labelled “AdministratorAccess”).

8. Click the “Next: review” button (you may need to scroll down).

9. Click the “Create user” button.

10. From the line labelled “annex-user”, copy the value in the column labelled “Access key ID” to the file publicK-
eyFile.

686 Chapter 9. Cloud Computing

https://console.aws.amazon.com/iam/home?region=us-east-1#/users

HTCondor Manual, Release 23.6.2

11. On the line labelled “annex-user”, click the “Show” link in the column labelled “Secret access key”; copy the
revealed value to the file privateKeyFile.

12. Hit the “Close” button.

The ‘annex-user’ now has full privileges to your account.

9.3.3 Configure condor_annex

The following command will setup your AWS account. It will create a number of persistent components, none of
which will cost you anything to keep around. These components can take quite some time to create; checks each for
completion every ten seconds and prints an additional dot (past the first three) when it does so, to let you know that
everything’s still working.

$ condor_annex -setup
Creating configuration bucket (this takes less than a minute)....... complete.
Creating Lambda functions (this takes about a minute)........ complete.
Creating instance profile (this takes about two minutes)................... complete.
Creating security group (this takes less than a minute)..... complete.
Setup successful.

Checking the Setup

You can verify at this point (or any later time) that the setup procedure completed successfully by running the following
command.

$ condor_annex -check-setup
Checking for configuration bucket... OK.
Checking for Lambda functions... OK.
Checking for instance profile... OK.
Checking for security group... OK.

You’re ready to run !

Undoing the Setup Command

There is not as yet a way to undo the setup command automatically, but it won’t cost you anything extra to leave your
account setup for indefinitely. If, however, you want to be tidy, you may delete the components setup created by going to
the CloudFormation console at the following URL and deleting the entries whose names begin with ‘HTCondorAnnex-
‘:

https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks?filter=active

The setup procedure also creates an SSH key pair which may be useful for debugging; the private key was stored in
~/.condor/HTCondorAnnex-KeyPair.pem. To remove the corresponding public key from your AWS account, go to the
key pair console at the following URL and delete the ‘HTCondorAnnex-KeyPair’ key:

https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#KeyPairs:sort=keyName

9.3. Using condor_annex for the First Time 687

https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks?filter=active
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#KeyPairs:sort=keyName

HTCondor Manual, Release 23.6.2

9.4 HTCondor Annex Customization Guide

Aside from the configuration macros (see the HTCondor Annex Configuration section), the major way to customize
is my customizing the default disk image. Because the implementation of varies from service to service, and that
implementation determines the constraints on the disk image, the this section is divided by service.

9.4.1 Amazon Web Services

Requirements for an Annex-compatible AMI are driven by how securely transports HTCondor configuration and secu-
rity tokens to the instances; we will discuss that implementation briefly, to help you understand the requirements, even
though it will hopefully never matter to you.

Resource Requests

For on-demand or Spot instances, we begin by making a single resource request whose client token is the annex name
concatenated with an underscore and then a newly-generated GUID. This construction allows us to terminate on-demand
instances belonging to a particular annex (by its name), as well as discover the annex name from inside an instance.

An on-demand instance may obtain its instance ID directly from the AWS metadata server, and then ask another AWS
API for that instance ID’s client token. Since GUIDs do not contain underscores, we can be certain that anything to the
left of the last underscore is the annex’s name.

An instance started by a Spot Fleet has a client token generated by the Spot Fleet. Instead of performing a direct lookup,
a Spot Fleet instance must therefore determine which Spot Fleet started it, and then obtain that Spot Fleet’s client token.
A Spot Fleet will tag an instance with the Spot Fleet’s identity after the instance starts up. This usually only takes a
few minutes, but the default image waits for up to 50 minutes, since you’re already paying for the first hour anyway.

Secure Transport

At this point, the instance knows its annex’s name. This allows the instance to construct the name of the tarball it should
download (config-AnnexName.tar.gz), but does not tell it from where a file with that name should be downloaded.

(Because the user data associated with resource request is not secure, and because we want to leave the user data
available for its normal usage, we can’t just encode the tarball or its location in the user data.)

The instance determines from which S3 bucket to download by asking the metadata server which role the instance
is playing. (An instance without a role is unable to make use of any AWS services without acquiring valid AWS
tokens through some other method.) The instance role created by the setup procedure includes permission to read files
matching the pattern config-*.tar.gz from a particular private S3 bucket. If the instance finds permissions matching
that pattern, it assumes that the corresponding S3 bucket is the one from which it should download, and does so; if
successful, it untars the file in /etc/condor/config.d.

In v8.7.1, the script executing these steps is named 49ec2-instance.sh, and is called during configuration when
HTCondor first starts up.

In v8.7.2, the script executing these steps is named condor-annex-ec2, and is called during system start-up.

The HTCondor configuration and security tokens are at this point protected on the instance’s disk by the usual filesys-
tem permissions. To prevent HTCondor jobs from using the instance’s permissions to do anything, but in particular
download their own copy of the security tokens, the last thing the script does is use the Linux kernel firewall to forbid
any non-root process from accessing the metadata server.

688 Chapter 9. Cloud Computing

HTCondor Manual, Release 23.6.2

Image Requirements

Thus, to work with , an AWS AMI must:

• Fetch the HTCondor configuration and security tokens from S3;

• configure HTCondor to turn off after it’s been idle for too long;

• and turn off the instance when the HTCondor master daemon exits.

The second item could be construed as optional, but if left unimplemented, will disable the -idle command-line option.

The default disk image implements the above as follows:

• with a configuration script (/etc/condor/49ec2-instance.sh);

• with a single configuration item ();

• with a configuration item () and the corresponding script (/etc/condor/master_shutdown.sh), which just turns
around and runs shutdown -h now.

We also strongly recommend that every disk image:

• Advertise, in the master and startd, the instance ID.

• Use the instance’s public IP, by setting .

• Turn on communications integrity and encryption.

• Encrypt the run directories.

• Restrict access to the EC2 meta-data server to root.

The default disk image is configured to do all of this.

Instance Roles

To explain the last point immediately above, EC2 stores (temporary) credentials for the role, if any, associated with
an instance on that instance’s meta-data server, which may be accessed via HTTP at a well-known address (currently
169.254.169.254). Unless otherwise configured, any process in the instance can access the meta-data server and
thereby make use of the instance’s credentials.

Until version 8.9.0, there was no HTCondor-based reason to run an EC2 instance with an instance role. Starting in 8.9.0,
however, HTCondor gained the ability to use the instance role’s credentials to run EC2 universe jobs and commands.
This has several advantages over copying credentials into the instance: it may be more convenient, and if you’re the
only user of the instance, it’s more secure, because the instance’s credentials expire when the instance does.

However, wanting to allow (other) users to run jobs on or submit jobs to your instance may not mean you want them
to able to act with the instance’s privileges (e.g., starting more instances on your account). Although securing your
instances ultimately remains your responsibility, the default images we provide for , and the condor-annex-ec2 package,
both use the kernel-level firewall to prevent access to the metadata server by any process not owned by root. Because
this firewall rule is added during the boot sequence, it will be in place before HTCondor can start any user jobs, and
should therefore be effective in preventing access to the instance’s credentials by normal users or their jobs.

9.4. HTCondor Annex Customization Guide 689

HTCondor Manual, Release 23.6.2

9.5 HTCondor Annex Configuration

While the configuration macros in this section may be set by the HTCondor administrator, they are intended for the
user-specific HTCondor configuration file (usually ~/.condor/user_config). Although we document every macro,
we expect that users will generally only want to change a few of them, listed in the User Settings section; the entries
required in by in other sections will be generated by its setup procedure.

Subsequent sections deal with logging (Logging), are for expert users (Expert Settings), or for HTCondor developers
(Developer Settings).

9.5.1 User Settings

ANNEX_DEFAULT_AWS_REGION¶
The default region when using AWS. Defaults to ‘us-east-1’.

ANNEX_DEFAULT_LEASE_DURATION¶
The duration of an annex if not specified on the command-line; specified in seconds. Defaults to 50 minutes.

ANNEX_DEFAULT_UNCLAIMED_TIMEOUT¶
How long an annex instances should stay idle before shutting down; specified in seconds. Defaults to 15 minutes.

ANNEX_DEFAULT_ODI_KEY_NAME¶
The name of the SSH key pair should use by default. No default.

ANNEX_DEFAULT_ODI_INSTANCE_TYPE¶
The AWS instance type to use for on-demand instances if not specified. No default, but the setup procedure sets
this to ‘m4.large’.

ANNEX_DEFAULT_ODI_IMAGE_ID¶
The AWS AMI to use for on-demand instance if not specified. No default, but the setup procedure sets this to
‘ami-35b13223’.

ANNEX_DEFAULT_SFR_CONFIG_FILE¶
The JSON configuration file use by when creating a Spot-based annex. No default.

9.5.2 Logging

By default, running creates three logs: the log, the annex GAHP log, and the annex audit log. The default location for
these logs is the same directory as the user-specific HTCondor configuration file (usually ~/.condor/user_config). sets
the macro to this directory when reading its configuration.

The log is a daemon-style log. It is configured as if were a daemon with subsystem type ANNEX; see Daemon Logging
Configuration File Entries for details.

uses special helper programs, called GAHPs, to interact with the different cloud services. These programs do their
own logging, writing to the annex GAHP log. The annex GAHP log is configured as if it were a daemon, but with
subsystem type ANNEX_GAHP; see Daemon Logging Configuration File Entries for details.

The annex audit log records two lines for each invocation of : the command as issued and the results as returned. The
location of the audit log is set by ANNEX_AUDIT_LOG¶ , which is the AUDIT-level log for the ANNEX subsystem;
see (in Daemon Logging Configuration File Entries) for details. Because annex creation commands typically make
extensive use of values set in configuration, will write the configuration it used for annex creation commands into the
audit log if ANNEX_DEBUG includes D_AUDIT:2.

690 Chapter 9. Cloud Computing

HTCondor Manual, Release 23.6.2

9.5.3 Expert Settings

ANNEX_DEFAULT_EC2_URL¶
The AWS EC2 endpoint that should use. Defaults to ‘https://ec2.us-east-1.amazonaws.com’.

ANNEX_DEFAULT_CWE_URL¶
The AWS CloudWatch Events endpoint that should use. Defaults to ‘https://events.us-east-1.amazonaws.com’.

ANNEX_DEFAULT_LAMBDA_URL¶
The AWS Lambda endpoint that should use. Defaults to ‘https://lambda.us-east-1.amazonaws.com’.

ANNEX_DEFAULT_S3_URL¶
The AWS S3 endpoint that should use. Defaults to ‘https://s3.amazonaws.com’.

ANNEX_DEFAULT_CF_URL¶
The AWS CloudFormation endpoint that should use. Defaults to ‘https://cloudformation.us-east-1.amazonaws.
com’.

ANNEX_DEFAULT_ACCESS_KEY_FILE¶
The full path to the AWS access key file should use. No default. If “FROM INSTANCE”, will assume it’s running
on an EC2 instance and try to use that instance’s credentials.

ANNEX_DEFAULT_SECRET_KEY_FILE¶
The full path to the AWS secret key file should use. No default. If “FROM INSTANCE”, will assume it’s running
on an EC2 instance and try to use that instance’s credentials.

ANNEX_DEFAULT_S3_BUCKET¶
A private S3 bucket that the ANNEX_DEFAULT_ACCESS_KEY_FILE and ANNEX_DEFAULT_SECRET_KEY_FILE
may write to. No default.

ANNEX_DEFAULT_ODI_SECURITY_GROUP_IDS¶
The default security group for on-demand annexes. Must permit inbound HTCondor (port 9618).

9.5.4 Developer Settings

ANNEX_DEFAULT_CONNECTIVITY_FUNCTION_ARN¶
The name (or ARN) of the Lambda function on AWS which should use to check if the configured collector can
be contacted from AWS.

ANNEX_DEFAULT_ODI_INSTANCE_PROFILE_ARN¶
The ARN of the instance profile should use. No default.

ANNEX_DEFAULT_ODI_LEASE_FUNCTION_ARN¶
The Lambda function which implements the lease (duration) for on-demand instances. No default.

ANNEX_DEFAULT_SFR_LEASE_FUNCTION_ARN¶
The Lambda function which implements the lease (duration) for Spot instances. No default.

9.5. HTCondor Annex Configuration 691

https://ec2.us-east-1.amazonaws.com
https://events.us-east-1.amazonaws.com
https://lambda.us-east-1.amazonaws.com
https://s3.amazonaws.com
https://cloudformation.us-east-1.amazonaws.com
https://cloudformation.us-east-1.amazonaws.com

HTCondor Manual, Release 23.6.2

9.6 HTCondor in the Cloud

Although any HTCondor pool for which each node was running on a cloud resource could fairly be described as a
“HTCondor in the Cloud”, in this section we concern ourselves with creating such pools using . The basic idea is start
only a single instance manually – the “seed” node – which constitutes all of the HTCondor infrastructure required to
run both and jobs.

9.6.1 The HTCondor in the Cloud Seed

A seed node hosts the HTCondor pool infrastructure (the parts that aren’t execute nodes). While HTCondor will try to
reconnect to running jobs if the instance hosting the schedd shuts down, you would need to take additional precautions –
making sure the seed node is automatically restarted, that it comes back quickly (faster than the job reconnect timeout),
and that it comes back with the same IP address(es), among others – to minimize the amount of work-in-progress lost.
We therefore recommend against using an interruptible instance for the seed node.

9.6.2 Security

Your cloud provider may allow you grant an instance privileges (e.g., the privilege of starting new instances). This can
be more convenient (because you don’t have to manually copy credentials into the instance), but may be risky if you
allow others to log into the instance (possibly allowing them to take advantage of the instance’s privileges). Conversely,
copying credentials into the instance makes it easy to forget to remove them before creating an image of that instance
(if you do).

9.6.3 Making a HTCondor in the Cloud

The general instructions are simple:

1. Start an instance from a seed image. Grant it privileges if you want. (See above).

2. If you did not grant the instance privileges, copy your credentials to the instance.

3. Run .

AWS-Specific Instructions

The following instructions create a HTCondor-in-the-Cloud using the default seed image.

1. Go to the EC2 console.

2. Click the ‘Launch Instance’ button.

3. Click on ‘Community AMIs’.

4. Search for Condor-in-the-Cloud Seed. (The AMI ID is ami-00eeb25291cfad66f.) Click the ‘Select’
button.

5. Choose an instance type. (Select m5.large if you have no preference.)

6. Click the ‘Next: Configure Instance Details’ button.

7. For ‘IAM Role’, select the role you created in Using Instance Credentials, or follow those instructions now.

8. Click ‘6. Configure Security Group’. This creates a firewall rule to allow you to log into your instance.

9. Click the ‘Review and Launch’ button.

692 Chapter 9. Cloud Computing

https://console.aws.amazon.com/ec2/?region=us-east-1

HTCondor Manual, Release 23.6.2

10. Click the ‘Launch’ button.

11. Select an existing key pair if you have one; you will need the corresponding private key file to log in to your
instance. If you don’t have one, select ‘Create a new key pair’ and enter a name; ‘HTCondor Annex’ is fine.
Click ‘Download key pair’. Save the file some place you can access easily but others can’t; you’ll need it later.

12. Click through, then click the button labelled ‘View Instances’.

13. The IPv4 address of your seed instance will be display. Use SSH to connect to that address as the ‘ec2-user’ with
the key pair from two steps ago.

To grow your new HTCondor-in-the-Cloud from this seed, follow the instructions for using for the first time, starting
with Configure condor_annex. You can than proceed to Start an Annex.

9.6.4 Creating a Seed

A seed image is simply an image with:

• HTCondor installed

• HTCondor configured to:

– be a central manager

– be a submit node

– allow can add nodes

• a small script to set to the instance’s public IP address when the instance starts up.

More-detailed instructions for constructing a seed node on AWS are available. A RHEL 7.6 image built according to
those instructions is available as public AMI ami-00eeb25291cfad66f.

9.7 Google Cloud Marketplace Entry

A solution for provisioning a pool using HTCondor 8.8 was made available on the Google Cloud Marketplace. It has
been deprecated and will be removed at a future date.

9.8 Google Cloud HPC Toolkit

The Cloud HPC Toolkit is an Open Source solution for provisioning HPC and HTC solutions on Google Cloud Platform
(GCP). Please consult the following resources for using the Toolkit to provision HTCondor on GCP:

• Cloud HPC Toolkit HTCondor Tutorial

• Cloud HPC Toolkit source code

9.7. Google Cloud Marketplace Entry 693

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=CondorInTheCloudSeedConstruction
https://goo.gle/hpc-toolkit-docs
https://cloud.google.com
https://cloud.google.com
https://github.com/GoogleCloudPlatform/hpc-toolkit/tree/main/docs/tutorials#htcondor-tutorial
https://goo.gle/hpc-toolkit

HTCondor Manual, Release 23.6.2

694 Chapter 9. Cloud Computing

CHAPTER

TEN

GRID COMPUTING

10.1 Introduction

A goal of grid computing is to allow an authorized batch scheduler to send jobs to run on some remote pool, even when
that remote pool is running a non-HTCondor system.

There are several mechanisms in HTCondor to do this.

Flocking allows HTCondor jobs submitted from one pool to execute on another, separate HTCondor pool. Flocking is
enabled by configuration on both of the pools. An advantage to flocking is that jobs migrate from one pool to another
based on the availability of machines to execute jobs. When the local HTCondor pool is not able to run the job (due to
a lack of currently available machines), the job flocks to another pool. A second advantage to using flocking is that the
submitting user does not need to be concerned with any aspects of the job. The user’s submit description file (and the
job’s) are independent of the flocking mechanism. Flocking only works when the remote pool is also an HTCondor
pool.

Glidein is the technique where condor_startds are submitted as jobs to some remote batch systems, and configured
with report to, and expand the local HTCondor batch system. We call these jobs that run startds “pilot jobs”, to
distinguish them from the “payload jobs” which run the real user’s domain work. HTCondor itself does not provide an
implementation of glidein, there is a very complete implementation the HEP community has built, named GlideinWMS,
and several HTCondor users have written their own glidein systems.

Other forms of grid computing are enabled by using the grid universe and further specified with the grid_type. For
any HTCondor job, the job is submitted on a machine in the local HTCondor pool. The location where it is executed is
identified as the remote machine or remote resource. These various grid computing mechanisms offered by HTCondor
are distinguished by the software running on the remote resource. Often implementations of Glidein use grid universe
to send the pilot jobs to a remote system.

When HTCondor is running on the remote resource, and the desired grid computing mechanism is to move the job
from the local pool’s job queue to the remote pool’s job queue, it is called HTCondor-C. The job is submitted using
the grid universe, and the grid_type is condor. HTCondor-C jobs have the advantage that once the job has moved
to the remote pool’s job queue, a network partition does not affect the execution of the job. A further advantage of
HTCondor-C jobs is that the universe of the job at the remote resource is not restricted.

One disadvantage of grid universe is the destination must be declared in the submit file when condor_submit is run,
locking the job to that remote site. The condor job router is a condor daemon which can periodically scan the scheduler’s
job queue, and change a vanilla universe job intended to run on the local cluster into a grid job, destined for a remote
cluster. It can also be configured so that if this grid job is idle for too long, it can undo the transformation, so that the
job isn’t stuck forever in a remote queue.

Further specification of a grid universe job is done within the command in a submit description file.

695

HTCondor Manual, Release 23.6.2

10.2 Connecting HTCondor Pools with Flocking

Flocking is HTCondor’s way of allowing jobs that cannot immediately run within the pool of machines where the job
was submitted to instead run on a different HTCondor pool. If a machine within HTCondor pool A can send jobs to
be run on HTCondor pool B, then we say that jobs from machine A flock to pool B. Flocking can occur in a one way
manner, such as jobs from machine A flocking to pool B, or it can be set up to flock in both directions. Configuration
variables allow the condor_schedd daemon (which runs on each machine that may submit jobs) to implement flocking.

NOTE: Flocking to pools which use HTCondor’s high availability mechanisms is not advised. See High Availability
of the Central Manager for a discussion of the issues.

10.2.1 Flocking Configuration

The simplest flocking configuration sets a few configuration variables. If jobs from machine A are to flock to pool B,
then in machine A’s configuration, set the following configuration variables:

is a comma separated list of the central manager machines of the pools that jobs from machine A may flock to.

is the list of condor_collector daemons within the pools that jobs from machine A may flock to. In most cases,
it is the same as FLOCK_TO, and it would be defined with

FLOCK_COLLECTOR_HOSTS = $(FLOCK_TO)

is the list of condor_negotiator daemons within the pools that jobs from machine A may flock to. In most cases,
it is the same as FLOCK_TO, and it would be defined with

FLOCK_NEGOTIATOR_HOSTS = $(FLOCK_TO)

provides an access level and authorization list for the condor_schedd daemon to allow negotiation (for security
reasons) with the machines within the pools that jobs from machine A may flock to. This configuration variable
will not likely need to change from its default value as given in the sample configuration:

Now, with flocking we need to let the SCHEDD trust the other
negotiators we are flocking with as well. You should normally
not have to change this either.
ALLOW_NEGOTIATOR_SCHEDD = $(CONDOR_HOST), $(FLOCK_NEGOTIATOR_HOSTS), $(IP_ADDRESS)

This example configuration presumes that the condor_collector and condor_negotiator daemons are running on
the same machine. See the Authorization section for a discussion of security macros and their use.

The configuration macros that must be set in pool B are ones that authorize jobs from machine A to flock to pool B.

The configuration variables are more easily set by introducing a list of machines where the jobs may flock from. is
a comma separated list of machines, and it is used in the default configuration setting of the security macros that do
authorization:

ALLOW_WRITE_COLLECTOR = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_WRITE_STARTD = $(ALLOW_WRITE), $(FLOCK_FROM)

(continues on next page)

696 Chapter 10. Grid Computing

HTCondor Manual, Release 23.6.2

(continued from previous page)

ALLOW_READ_COLLECTOR = $(ALLOW_READ), $(FLOCK_FROM)
ALLOW_READ_STARTD = $(ALLOW_READ), $(FLOCK_FROM)

Wild cards may be used when setting the FLOCK_FROM configuration variable. For example, *.cs.wisc.edu specifies all
hosts from the cs.wisc.edu domain.

Further, if using Kerberos or SSL authentication, then the setting becomes:

ALLOW_NEGOTIATOR = condor@$(UID_DOMAIN)/$(COLLECTOR_HOST)

To enable flocking in both directions, consider each direction separately, following the guidelines given.

10.2.2 Job Considerations

A particular job will only flock to another pool when it cannot currently run in the current pool.

The submission of jobs must consider the location of input, output and error files. The common case will be that
machines within separate pools do not have a shared file system. Therefore, when submitting jobs, the user will need
to enable file transfer mechanisms. These mechanisms are discussed in the Submitting Jobs Without a Shared File
System: HTCondor’s File Transfer Mechanism section.

10.3 The Grid Universe

10.3.1 HTCondor-C, The condor Grid Type

HTCondor-C allows jobs in one machine’s job queue to be moved to another machine’s job queue. These machines may
be far removed from each other, providing powerful grid computation mechanisms, while requiring only HTCondor
software and its configuration.

HTCondor-C is highly resistant to network disconnections and machine failures on both the submission and remote
sides. An expected usage sets up Personal HTCondor on a laptop, submits some jobs that are sent to an HTCondor
pool, waits until the jobs are staged on the pool, then turns off the laptop. When the laptop reconnects at a later time,
any results can be pulled back.

HTCondor-C scales gracefully when compared with HTCondor’s flocking mechanism. The machine upon which jobs
are submitted maintains a single process and network connection to a remote machine, without regard to the number
of jobs queued or running.

10.3. The Grid Universe 697

HTCondor Manual, Release 23.6.2

HTCondor-C Configuration

There are two aspects to configuration to enable the submission and execution of HTCondor-C jobs. These two aspects
correspond to the endpoints of the communication: there is the machine from which jobs are submitted, and there is
the remote machine upon which the jobs are placed in the queue (executed).

Configuration of a machine from which jobs are submitted requires a few extra configuration variables:

CONDOR_GAHP = $(SBIN)/condor_c-gahp
C_GAHP_LOG = /tmp/CGAHPLog.$(USERNAME)
C_GAHP_WORKER_THREAD_LOG = /tmp/CGAHPWorkerLog.$(USERNAME)
C_GAHP_WORKER_THREAD_LOCK = /tmp/CGAHPWorkerLock.$(USERNAME)

The acronym GAHP stands for Grid ASCII Helper Protocol. A GAHP server provides grid-related services for a
variety of underlying middle-ware systems. The configuration variable gives a full path to the GAHP server utilized by
HTCondor-C. The configuration variable defines the location of the log that the HTCondor GAHP server writes. The
log for the HTCondor GAHP is written as the user on whose behalf it is running; thus the configuration variable must
point to a location the end user can write to.

A submit machine must also have a condor_collector daemon to which the condor_schedd daemon can submit a query.
The query is for the location (IP address and port) of the intended remote machine’s condor_schedd daemon. This
facilitates communication between the two machines. This condor_collector does not need to be the same collector
that the local condor_schedd daemon reports to.

The machine upon which jobs are executed must also be configured correctly. This machine must be running a con-
dor_schedd daemon. Unless specified explicitly in a submit file, must point to a condor_collector daemon that it can
write to, and the machine upon which jobs are submitted can read from. This facilitates communication between the
two machines.

An important aspect of configuration is the security configuration relating to authentication. HTCondor-C on the remote
machine relies on an authentication protocol to know the identity of the user under which to run a job. The following is
a working example of the security configuration for authentication. This authentication method, CLAIMTOBE, trusts
the identity claimed by a host or IP address.

SEC_DEFAULT_NEGOTIATION = OPTIONAL
SEC_DEFAULT_AUTHENTICATION_METHODS = CLAIMTOBE

Other working authentication methods are SSL, KERBEROS, and FS.

HTCondor-C Job Submission

Job submission of HTCondor-C jobs is the same as for any HTCondor job. The universe is grid. The submit command
specifies the remote condor_schedd daemon to which the job should be submitted, and its value consists of three fields.
The first field is the grid type, which is condor. The second field is the name of the remote condor_schedd daemon.
Its value is the same as the condor_schedd ClassAd attribute Name on the remote machine. The third field is the name
of the remote pool’s condor_collector.

The following represents a minimal submit description file for a job.

minimal submit description file for an HTCondor-C job
universe = grid

(continues on next page)

698 Chapter 10. Grid Computing

HTCondor Manual, Release 23.6.2

(continued from previous page)

executable = myjob
output = myoutput
error = myerror
log = mylog

grid_resource = condor joe@remotemachine.example.com remotecentralmanager.example.com
+remote_jobuniverse = 5
+remote_requirements = True
+remote_ShouldTransferFiles = "YES"
+remote_WhenToTransferOutput = "ON_EXIT"
queue

The remote machine needs to understand the attributes of the job. These are specified in the submit description file
using the ‘+’ syntax, followed by the string remote_. At a minimum, this will be the job’s universe and the job’s
requirements. It is likely that other attributes specific to the job’s universe (on the remote pool) will also be necessary.
Note that attributes set with ‘+’ are inserted directly into the job’s ClassAd. Specify attributes as they must appear in
the job’s ClassAd, not the submit description file. For example, the is specified using an integer assigned for a job
ClassAd . Similarly, place quotation marks around string expressions. As an example, a submit description file would
ordinarily contain

when_to_transfer_output = ON_EXIT

This must appear in the HTCondor-C job submit description file as

+remote_WhenToTransferOutput = "ON_EXIT"

For convenience, the specific entries of universe and remote_grid_resource may be specified as remote_ commands
without the leading ‘+’. Instead of

+remote_universe = 5

the submit description file command may appear as

remote_universe = vanilla

Similarly, the command

+remote_gridresource = "condor schedd.example.com cm.example.com"

may be given as

remote_grid_resource = condor schedd.example.com cm.example.com

For the given example, the job is to be run as a vanilla universe job at the remote pool. The (remote pool’s) con-
dor_schedd daemon is likely to place its job queue data on a local disk and execute the job on another machine within
the pool of machines. This implies that the file systems for the resulting submit machine (the machine specified by
remote_schedd) and the execute machine (the machine that runs the job) will not be shared. Thus, the two inserted
ClassAd attributes

+remote_ShouldTransferFiles = "YES"
+remote_WhenToTransferOutput = "ON_EXIT"

are used to invoke HTCondor’s file transfer mechanism.

10.3. The Grid Universe 699

HTCondor Manual, Release 23.6.2

For communication between condor_schedd daemons on the submit and remote machines, the location of the remote
condor_schedd daemon is needed. This information resides in the condor_collector of the remote machine’s pool. The
third field of the command in the submit description file says which condor_collector should be queried for the remote
condor_schedd daemon’s location. An example of this submit command is

grid_resource = condor schedd.example.com machine1.example.com

If the remote condor_collector is not listening on the standard port (9618), then the port it is listening on needs to be
specified:

grid_resource = condor schedd.example.com machine1.example.com:12345

File transfer of a job’s executable, stdin, stdout, and stderr are automatic. When other files need to be transferred
using HTCondor’s file transfer mechanism (see the Submitting Jobs Without a Shared File System: HTCondor’s File
Transfer Mechanism section), the mechanism is applied based on the resulting job universe on the remote machine.

HTCondor-C Jobs Between Differing Platforms

HTCondor-C jobs given to a remote machine running Windows must specify the Windows domain of the remote
machine. This is accomplished by defining a ClassAd attribute for the job. Where the Windows domain is different at
the submit machine from the remote machine, the submit description file defines the Windows domain of the remote
machine with

+remote_NTDomain = "DomainAtRemoteMachine"

A Windows machine not part of a domain defines the Windows domain as the machine name.

10.3.2 The arc Grid Type

NorduGrid is a project to develop free grid middleware named the Advanced Resource Connector (ARC). See the
NorduGrid web page (http://www.nordugrid.org) for more information about NorduGrid software.

NorduGrid ARC supports multiple job submission interfaces. The arc grid type uses their new REST interface.

HTCondor jobs may be submitted to ARC CE resources using the grid universe. The command specifies the name of
the ARC CE service as follows:

grid_resource = arc https://arc.example.com:443/arex/rest/1.0

Only the hostname portion of the URL is required. Appropriate defaults will be used for the other components.

ARC accepts X.509 credentials and SciTokens for authentication. You must specify one of these two credential types
for your arc grid jobs. The submit description file command may be used to give the full path name of an X.509 proxy
file. The submit description file command may be used to give the full path name of a SciTokens file. If both an X.509
proxy and a SciTokens file are provided, then only the SciTokens file is used for authentication. Whenever an X.509
proxy is provided, it is delegated to the ARC CE for use by the job.

ARC CE allows sites to define Runtime Environment (RTE) labels that alter the environment in which a job runs. Jobs
can request one or move of these labels. For example, the ENV/PROXY label makes the user’s X.509 proxy available to
the job when it executes. Some of these labels have optional parameters for customization. The submit description file
command can be used to request one of more of these labels. It is a comma-delimited list. If a label supports optional
parameters, they can be provided after the label separated by spaces. Here is an example showing use of two standard
RTE labels, one with an optional parameter:

700 Chapter 10. Grid Computing

http://www.nordugrid.org

HTCondor Manual, Release 23.6.2

arc_rte = ENV/RTE,ENV/PROXY USE_DELEGATION_DB

ARC CE uses ADL (Activity Description Language) syntax to describe jobs. The specification of the language can be
found here. HTCondor constructs an ADL description of the job based on attributes in the job ClassAd, but some ADL
elements don’t have an equivalent job ClassAd attribute. The submit description file command can be used to specify
these elements if they fall under the <Resources> element of the ADL. The value should be a chunk of XML text that
could be inserted inside the <Resources> element. For example:

arc_resources = <NetworkInfo>gigabitethernet</NetworkInfo>

Similarly, submit description file command can be used to specify these elements if they fall under the <Application>
element of the ADL.

10.3.3 The batch Grid Type (for SLURM, PBS, LSF, and SGE)

The batch grid type is used to submit to a local SLURM, PBS, LSF, or SGE system using the grid universe and the
command by placing a variant of the following into the submit description file.

grid_resource = batch slurm

The second argument on the right hand side will be one of slurm, pbs, lsf, or sge.

Submission to a batch system on a remote machine using SSH is also possible. This is described below.

The batch GAHP server is a piece of software called the blahp. The configuration parameters and specify the locations
of the main blahp binary and its dependent files, respectively. The blahp has its own configuration file, located at
/etc/blah.config ($(RELEASE_DIR)/etc/blah.config for a tarball release).

The batch GAHP supports translating certain job ClassAd attributes into the corresponding batch system submission
parameters. However, note that not all parameters are supported.

The following table summarizes how job ClassAd attributes will be translated into the corresponding Slurm job pa-
rameters.

Job ClassAd Slurm
RequestMemory --mem
BatchRuntime --time
BatchProject --account
Queue --partition
Queue --clusters
Unsupported --cpus-per-task

Note that for Slurm, Queue is used for both --partition and --clusters. If you use the partition@cluster
syntax, the partition will be set to whatever is before the @, and the cluster to whatever is after the @. If you only wish
to set the cluster, leave out the partition (e.g. use @cluster).

You can specify batch system parameters that HTCondor doesn’t have translations for using the
batch_extra_submit_args command in the submit description file.

batch_extra_submit_args = --cpus-per-task=4 --qos=fast

The command line tool will take PBS/SGE style batch files or command line arguments and submit the job to HTCondor
instead. See the condor_qsub manual page for details.

10.3. The Grid Universe 701

https://www.nordugrid.org/documents/EMI-ES-Specification_v1.16.pdf

HTCondor Manual, Release 23.6.2

Remote batch Job Submission via SSH

HTCondor can submit jobs to a batch system on a remote machine via SSH. This requires an initial setup step that
installs some binaries under your home directory on the remote machine and creates an SSH key that allows SSH
authentication without the user typing a password. The setup command is , which you should run at the command line.

condor_remote_cluster --add alice@login.example.edu slurm

Once this setup command finishes successfully, you can submit jobs for the remote batch system by including the
username and hostname in the grid_resource command in your submit description file.

grid_resource = batch slurm alice@login.example.edu

Remote batch Job Submission via Reverse SSH

Submission to a batch system on a remote machine requires that HTCondor be able to establish an SSH connection using
just an ssh key for authentication. If the remote machine doesn’t allow ssh keys or requires Multi-Factor Authentication
(MFA), then the SSH connection can be established in the reverse connection using the Reverse GAHP. This requires
some extra setup and maintenance, and is not recommended if the normal SSH connection method can be made to
work.

For the Reverse GAHP to work, your local machine must be reachable on the network from the remote machine on the
SSH and HTCondor ports (22 and 9618, respectively). Also, your local machine must allow SSH logins using just an
ssh key for authentication.

First, run the as you would for a regular remote SSH setup.

condor_remote_cluster --add alice@login.example.edu slurm

Second, create an ssh key that’s authorized to login to your account on your local machine and save the private key
on the remote machine. The private key should not be protected with a passphrase. In the following examples, we’ll
assume the ssh private key is named ~/.ssh/id_rsa_rvgahp.

Third, select a pathname on your local machine for a unix socket file that will be used by the Reverse GAHP components
to communicate with each other. The Reverse GAHP programs will create the file as your user identity, so we suggest
using a location under your home directory or /tmp. In the following examples, we’ll use /tmp/alice.rvgahp.
socket.

Fourth, on the remote machine, create a ~/bosco/glite/bin/rvgahp_ssh shell script like this:

#!/bin/bash
exec ssh -o "ServerAliveInterval 60" -o "BatchMode yes" -i ~/.ssh/id_rsa_rvgahp␣
→˓alice@submithost "/usr/sbin/rvgahp_proxy /tmp/alice.rvgahp.sock"

Run this script manually to ensure it works. It should print a couple messages from the rvgahp_proxy started on your
local machine. You can kill the program once it’s working correctly.

2022-03-23 13:06:08.304520 rvgahp_proxy[8169]: rvgahp_proxy starting...
2022-03-23 13:06:08.304766 rvgahp_proxy[8169]: UNIX socket: /tmp/alice.rvgahp.sock

Finally, run the rvgahp_server program on the remote machine. You must ensure it remains running during the entire
time you are submitting and running jobs on the batch system.

~/bosco/glite/bin/rvgahp_server -b ~/bosco/glite

702 Chapter 10. Grid Computing

HTCondor Manual, Release 23.6.2

Now, you can submit jobs for the remote batch system. Adding the –rvgahp-socket option to your grid_resource
submit command tells HTCondor to use the Reverse GAHP for the SSH connection.

grid_resource =␣
→˓batch slurm alice@login.example.edu --rvgahp-socket /tmp/alice.rvgahp.sock

10.3.4 The EC2 Grid Type

HTCondor jobs may be submitted to clouds supporting Amazon’s Elastic Compute Cloud (EC2) interface. The EC2
interface permits on-line commercial services that provide the rental of computers by the hour to run computational
applications. They run virtual machine images that have been uploaded to Amazon’s online storage service (S3 or
EBS). More information about Amazon’s EC2 service is available at http://aws.amazon.com/ec2.

The ec2 grid type uses the EC2 Query API, also called the EC2 REST API.

EC2 Job Submission

HTCondor jobs are submitted to an EC2 service with the grid universe, setting the command to ec2, followed by the
service’s URL. For example, partial contents of the submit description file may be

grid_resource = ec2 https://ec2.us-east-1.amazonaws.com/

(Replace ‘us-east-1’ with the AWS region you’d like to use.)

Since the job is a virtual machine image, most of the submit description file commands specifying input or output files
are not applicable. The command is still required, but its value is ignored. It can be used to identify different jobs in
the output of .

The VM image for the job must already reside in one of Amazon’s storage service (S3 or EBS) and be registered with
EC2. In the submit description file, provide the identifier for the image using

This grid type requires access to user authentication information, in the form of path names to files containing the
appropriate keys, with one exception, described below.

The ec2 grid type has two different authentication methods. The first authentication method uses the EC2 API’s built-in
authentication. Specify the service with expected http:// or https:// URL, and set the EC2 access key and secret
access key as follows:

ec2_access_key_id = /path/to/access.key
ec2_secret_access_key = /path/to/secret.key

The euca3:// and euca3s:// protocols must use this authentication method. These protocols exist to work correctly
when the resources do not support the InstanceInitiatedShutdownBehavior parameter.

The second authentication method for the EC2 grid type is X.509. Specify the service with an x509:// URL, even
if the URL was given in another form. Use to specify the path to the X.509 public key (certificate), which is not the
same as the built-in authentication’s access key. specifies the path to the X.509 private key, which is not the same as
the built-in authentication’s secret key. The following example illustrates the specification for X.509 authentication:

grid_resource = ec2 x509://service.example
ec2_access_key_id = /path/to/x.509/public.key
ec2_secret_access_key = /path/to/x.509/private.key

10.3. The Grid Universe 703

http://aws.amazon.com/ec2

HTCondor Manual, Release 23.6.2

If using an X.509 proxy, specify the proxy in both places.

The exception to both of these cases applies when submitting EC2 jobs to an HTCondor running in an EC2 instance.
If that instance has been configured with sufficient privileges, you may specify FROM INSTANCE for either or , and
HTCondor will use the instance’s credentials. (AWS grants an EC2 instance access to temporary credentials, renewed
over the instance’s lifetime, based on the instance’s assigned IAM (instance) profile and the corresponding IAM role.
You may specify the this information when launching an instance or later, during its lifetime.)

HTCondor can use the EC2 API to create an SSH key pair that allows secure log in to the virtual machine once it is
running. If the command is set in the submit description file, HTCondor will write an SSH private key into the indicated
file. The key can be used to log into the virtual machine. Note that modification will also be needed of the firewall
rules for the job to incoming SSH connections.

An EC2 service uses a firewall to restrict network access to the virtual machine instances it runs. Typically, no incoming
connections are allowed. One can define sets of firewall rules and give them names. The EC2 API calls these security
groups. If utilized, tell HTCondor what set of security groups should be applied to each VM using the submit descrip-
tion file command. If not provided, HTCondor uses the security group default. This command specifies security group
names; to specify IDs, use This may be necessary when specifying a Virtual Private Cloud (VPC) instance.

To run an instance in a VPC, set to the the desired VPC’s specification string. The instance’s IP address may also be
specified by setting:subcom:ec2_vpc_id[definition].

The EC2 API allows the choice of different hardware configurations for instances to run on. Select which configuration
to use for the ec2 grid type with the submit description file command. HTCondor provides no default.

Certain instance types provide additional block devices whose names must be mapped to kernel device names in order
to be used. The submit description file command allows specification of these maps. A map is a device name followed
by a colon, followed by kernel name; maps are separated by a commas, and/or spaces. For example, to specify that the
first ephemeral device should be /dev/sdb and the second /dev/sdc:

ec2_block_device_mapping = ephemeral0:/dev/sdb, ephemeral1:/dev/sdc

Each virtual machine instance can be given up to 16 KiB of unique data, accessible by the instance by connecting to a
well-known address. This makes it easy for many instances to share the same VM image, but perform different work.
This data can be specified to HTCondor in one of two ways. First, the data can be provided directly in the submit
description file using the command. Second, the data can be stored in a file, and the file name is specified with the
submit description file command. This second option allows the use of binary data. If both options are used, the two
blocks of data are concatenated, with the data from ec2_user_data occurring first. HTCondor performs the base64
encoding that EC2 expects on the data.

Amazon also offers an Identity and Access Management (IAM) service. To specify an IAM (instance) profile for an
EC2 job, use submit commands or

Termination of EC2 Jobs

A protocol defines the shutdown procedure for jobs running as EC2 instances. The service is told to shut down the
instance, and the service acknowledges. The service then advances the instance to a state in which the termination is
imminent, but the job is given time to shut down gracefully.

Once this state is reached, some services other than Amazon cannot be relied upon to actually terminate the job.
Thus, HTCondor must check that the instance has terminated before removing the job from the queue. This avoids the
possibility of HTCondor losing track of a job while it is still accumulating charges on the service.

HTCondor checks after a fixed time interval that the job actually has terminated. If the job has not terminated after a
total of four checks, the job is placed on hold.

704 Chapter 10. Grid Computing

HTCondor Manual, Release 23.6.2

Using Spot Instances

EC2 jobs may also be submitted to clouds that support spot instances. A spot instance differs from a conventional,
or dedicated, instance in two primary ways. First, the instance price varies according to demand. Second, the cloud
provider may terminate the instance prematurely. To start a spot instance, the submitter specifies a bid, which represents
the most the submitter is willing to pay per hour to run the VM. Within HTCondor, the submit command specifies this
floating point value. For example, to bid 1.1 cents per hour on Amazon:

ec2_spot_price = 0.011

Note that the EC2 API does not specify how the cloud provider should interpret the bid. Empirically, Amazon uses
fractional US dollars.

Other submission details for a spot instance are identical to those for a dedicated instance.

A spot instance will not necessarily begin immediately. Instead, it will begin as soon as the price drops below the bid.
Thus, spot instance jobs may remain in the idle state for much longer than dedicated instance jobs, as they wait for the
price to drop. Furthermore, if the price rises above the bid, the cloud service will terminate the instance.

More information about Amazon’s spot instances is available at http://aws.amazon.com/ec2/spot-instances/.

EC2 Advanced Usage

Additional control of EC2 instances is available in the form of permitting the direct specification of instance creation
parameters. To set an instance creation parameter, first list its name in the submit command a space or comma separated
list. The parameter may need to be properly capitalized. Also tell HTCondor the parameter’s value, by specifying it
as a submit command whose name begins with ec2_parameter_; dots within the parameter name must be written as
underscores in the submit command name.

For example, the submit description file commands to set parameter IamInstanceProfile.Name to value
ExampleProfile are

ec2_parameter_names = IamInstanceProfile.Name
ec2_parameter_IamInstanceProfile_Name = ExampleProfile

EC2 Configuration Variables

The configuration variables and must be set, and by default are equal to $(SBIN)/ec2_gahp and
/tmp/EC2GahpLog.$(USERNAME), respectively.

The configuration variable is optional and defaults to D_PID; we recommend you keep D_PID if you change the default,
to disambiguate between the logs of different resources specified by the same user.

Communicating with an EC2 Service

The ec2 grid type does not presently permit the explicit use of an HTTP proxy.

By default, HTCondor assumes that EC2 services are reliably available. If an attempt to contact a service during
the normal course of operation fails, HTCondor makes a special attempt to contact the service. If this attempt fails,
the service is marked as down, and normal operation for that service is suspended until a subsequent special attempt
succeeds. The jobs using that service do not go on hold. To place jobs on hold when their service becomes unavailable,
set configuration variable to the number of seconds to delay before placing the job on hold. The default value of -1 for
this variable implements an infinite delay, such that the job is never placed on hold. When setting this value, consider
the value of configuration variable , which sets the number of seconds that HTCondor will wait after each special
contact attempt before trying again.

10.3. The Grid Universe 705

http://aws.amazon.com/ec2/spot-instances/

HTCondor Manual, Release 23.6.2

By default, the EC2 GAHP enforces a 100 millisecond interval between requests to the same service. This helps ensure
reliable service. You may configure this interval with the configuration variable , which must be an integer number
of milliseconds. Adjusting the interval may result in higher or lower throughput, depending on the service. Too short
of an interval may trigger rate-limiting by the service; while HTCondor will react appropriately (by retrying with an
exponential back-off), it may be more efficient to configure a longer interval.

Secure Communication with an EC2 Service

The specification of a service with an https://, an x509://, or an euca3s:// URL validates that service’s cer-
tificate, checking that a trusted certificate authority (CA) signed it. Commercial EC2 service providers generally use
certificates signed by widely-recognized CAs. These CAs will usually work without any additional configuration. For
other providers, a specification of trusted CAs may be needed. Without, errors such as the following will be in the EC2
GAHP log:

06/13/13 15:16:16 curl_easy_perform() failed (60):
'Peer certificate cannot be authenticated with given CA certificates'.

Specify trusted CAs by including their certificates in a group of trusted CAs either in an on disk directory or in a single
file. Either of these alternatives may contain multiple certificates. Which is used will vary from system to system,
depending on the system’s SSL implementation. HTCondor uses libcurl; information about the libcurl specification of
trusted CAs is available at

http://curl.haxx.se/libcurl/c/curl_easy_setopt.html

The behavior when specifying both a directory and a file is undefined, although the EC2 GAHP allows it.

The EC2 GAHP will set the CA file to whichever variable it finds first, checking these in the following order:

1. The environment variable X509_CERT_FILE, set when the starts up.

2. The HTCondor configuration variable .

The EC2 GAHP supplies no default value, if it does not find a CA file.

The EC2 GAHP will set the CA directory given whichever of these variables it finds first, checking in the following
order:

1. The environment variable X509_CERT_DIR, set when the starts up.

2. The HTCondor configuration variable .

The EC2 GAHP supplies no default value, if it does not find a CA directory.

EC2 GAHP Statistics

The EC2 GAHP tracks, and reports in the corresponding grid resource ad, statistics related to resource’s rate limit.

NumRequests:
The total number of requests made by HTCondor to this resource.

NumDistinctRequests:
The number of distinct requests made by HTCondor to this resource. The difference between this and NumRe-
quests is the total number of retries. Retries are not unusual.

NumRequestsExceedingLimit:
The number of requests which exceeded the service’s rate limit. Each such request will cause a retry, unless the
maximum number of retries is exceeded, or if the retries have already taken so long that the signature on the
original request has expired.

706 Chapter 10. Grid Computing

http://curl.haxx.se/libcurl/c/curl_easy_setopt.html

HTCondor Manual, Release 23.6.2

NumExpiredSignatures:
The number of requests which the EC2 GAHP did not even attempt to send to the service because signature
expired. Signatures should not, generally, expire; a request’s retries will usually - eventually - succeed.

10.3.5 The GCE Grid Type

HTCondor jobs may be submitted to the Google Compute Engine (GCE) cloud service. GCE is an on-line commercial
service that provides the rental of computers by the hour to run computational applications. Its runs virtual machine
images that have been uploaded to Google’s servers. More information about Google Compute Engine is available at
http://cloud.google.com/Compute.

GCE Job Submission

HTCondor jobs are submitted to the GCE service with the grid universe, setting the command to gce, followed by the
service’s URL, your GCE project, and the desired GCE zone to be used. The submit description file command will be
similar to:

grid_resource = gce https://www.googleapis.com/compute/v1 my_proj us-central1-a

Since the HTCondor job is a virtual machine image, most of the submit description file commands specifying input or
output files are not applicable. The still required, but its value is ignored. It identifies different jobs in the output of .

The VM image for the job must already reside in Google’s Cloud Storage service and be registered with GCE. In the
submit description file, provide the identifier for the image using the command.

This grid type requires granting HTCondor permission to use your Google account. The easiest way to do this is to use
the gcloud command-line tool distributed by Google. Find gcloud and documentation for it at https://cloud.google.
com/compute/docs/gcloud-compute/. After installation of gcloud, run gcloud auth login and follow its directions.
Once done with that step, the tool will write authorization credentials to the file .config/gcloud/credentials
under your HOME directory.

Given an authorization file, specify its location in the submit description file using the command, as in the example:

gce_auth_file = /path/to/auth-file

GCE allows the choice of different hardware configurations for instances to run on. Select which configuration to use
for the gce grid type with the submit description file command. HTCondor provides no default.

Each virtual machine instance can be given a unique set of metadata, which consists of name/value pairs, similar to the
environment variables of regular jobs. The instance can query its metadata via a well-known address. This makes it easy
for many instances to share the same VM image, but perform different work. This data can be specified to HTCondor
in one of two ways. First, the data can be provided directly in the submit description file using the command. The value
should be a comma-separated list of name=value settings, as the example:

gce_metadata = setting1=foo,setting2=bar

Second, the data can be stored in a file, and the file name is specified with the submit description file command. This
second option allows a wider range of characters to be used in the metadata values. Each name=value pair should be
on its own line. No white space is removed from the lines, except for the newline that separates entries.

Both options can be used at the same time, but do not use the same metadata name in both places.

HTCondor sets the following elements when describing the instance to the GCE server: machineType, name, schedul-
ing, disks, metadata, and networkInterfaces. You can provide additional elements to be included in the instance

10.3. The Grid Universe 707

http://cloud.google.com/Compute
https://cloud.google.com/compute/docs/gcloud-compute/
https://cloud.google.com/compute/docs/gcloud-compute/

HTCondor Manual, Release 23.6.2

description as a block of JSON. Write the additional elements to a file, and specify the filename in your submit file
with the command. The contents of the file are inserted into HTCondor’s JSON description of the instance, between a
comma and the closing brace.

Here’s a sample JSON file that sets two additional elements:

"canIpForward": True,
"description": "My first instance"

GCE Configuration Variables

The following configuration parameters are specific to the gce grid type. The values listed here are the defaults. Dif-
ferent values may be specified in the HTCondor configuration files. To work around an issue where long-running
gce_gahp processes have trouble authenticating, the gce_gahp self-restarts periodically, with the default value of 24
hours. You can set the number of seconds between restarts using GCE_GAHP_LIFETIME, where zero means to never
restart. Restarting the gce_gahp does not affect the jobs themselves.

GCE_GAHP = $(SBIN)/gce_gahp
GCE_GAHP_LOG = /tmp/GceGahpLog.$(USERNAME)
GCE_GAHP_LIFETIME = 86400

10.3.6 The Azure Grid Type

HTCondor jobs may be submitted to the Microsoft Azure cloud service. Azure is an on-line commercial service that
provides the rental of computers by the hour to run computational applications. It runs virtual machine images that
have been uploaded to Azure’s servers. More information about Azure is available at https://azure.microsoft.com.

Azure Job Submission

HTCondor jobs are submitted to the Azure service with the grid universe, setting the command to azure, followed by
your Azure subscription id. The submit description file command will be similar to:

grid_resource = azure 4843bfe3-1ebe-423e-a6ea-c777e57700a9

Since the HTCondor job is a virtual machine image, most of the submit description file commands specifying input or
output files are not applicable. The still required, but its value is ignored. It identifies different jobs in the output of .

The VM image for the job must already be registered a virtual machine image in Azure. In the submit description file,
provide the identifier for the image using the command.

This grid type requires granting HTCondor permission to use your Azure account. The easiest way to do this is to use
the az command-line tool distributed by Microsoft. Find az and documentation for it at https://docs.microsoft.com/
en-us/cli/azure/?view=azure-cli-latest. After installation of az, run az login and follow its directions. Once done with
that step, the tool will write authorization credentials in a file under your HOME directory. HTCondor will use these
credentials to communicate with Azure.

You can also set up a service account in Azure for HTCondor to use. This lets you limit the level of access HTCondor
has to your Azure account. Instructions for creating a service account can be found here: https://htcondor.org/gahp/
AzureGAHPSetup.docx.

Once you have created a file containing the service account credentials, you can specify its location in the submit
description file using the command, as in the example:

708 Chapter 10. Grid Computing

https://azure.microsoft.com
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://htcondor.org/gahp/AzureGAHPSetup.docx
https://htcondor.org/gahp/AzureGAHPSetup.docx

HTCondor Manual, Release 23.6.2

azure_auth_file = /path/to/auth-file

Azure allows the choice of different hardware configurations for instances to run on. Select which configuration to use
for the azure grid type with the submit description file command. HTCondor provides no default.

Azure has many locations where instances can be run (i.e. multiple data centers distributed throughout the world). You
can select which location to use with the submit description file command.

Azure creates an administrator account within each instance, which you can log into remote via SSH. You can select
the name of the account with the command. You can supply the name of a file containing an SSH public key that will
allow access to the administrator account with the command.

10.4 The HTCondor Job Router

The HTCondor Job Router is an add-on to the condor_schedd that transforms jobs from one type into another according
to a configurable policy. This process of transforming the jobs is called job routing.

One example of how the Job Router can be used is for the task of sending excess jobs to one or more remote grid sites.
The Job Router can transform the jobs such as vanilla universe jobs into grid universe jobs that use any of the grid types
supported by HTCondor. The rate at which jobs are routed can be matched roughly to the rate at which the site is able
to start running them. This makes it possible to balance a large work flow across multiple grid sites, a local HTCondor
pool, and any flocked HTCondor pools, without having to guess in advance how quickly jobs will run and complete in
each of the different sites.

Job Routing is most appropriate for high throughput work flows, where there are many more jobs than computers, and
the goal is to keep as many of the computers busy as possible. Job Routing is less suitable when there are a small
number of jobs, and the scheduler needs to choose the best place for each job, in order to finish them as quickly as
possible. The Job Router does not know which site will run the jobs faster, but it can decide whether to send more
jobs to a site, based on whether jobs already submitted to that site are sitting idle or not, as well as whether the site has
experienced recent job failures.

10.4.1 Routing Mechanism

The condor_job_router daemon and configuration determine a policy for which jobs may be transformed and sent to
grid sites. By default, a job is transformed into a grid universe job by making a copy of the original job ClassAd, and
modifying some attributes in this copy of the job. The copy is called the routed copy, and it shows up in the job queue
under a new job id.

Until the routed copy finishes or is removed, the original copy of the job passively mirrors the state of the routed job.
During this time, the original job is not available for matchmaking, because it is tied to the routed copy. The original job
also does not evaluate periodic expressions, such as PeriodicHold. Periodic expressions are evaluated for the routed
copy. When the routed copy completes, the original job ClassAd is updated such that it reflects the final status of the
job. If the routed copy is removed, the original job returns to the normal idle state, and is available for matchmaking
or rerouting. If, instead, the original job is removed or goes on hold, the routed copy is removed.

Although the default mode routes vanilla universe jobs to grid universe jobs, the routing rules may be configured to do
some other transformation of the job. It is also possible to edit the job in place rather than creating a new transformed
version of the job.

The condor_job_router daemon utilizes a routing table, in which a ClassAd transform describes each site to where jobs
may be sent.

There is also a list of pre-route and post-route transforms that are applied whenever a job is routed.

10.4. The HTCondor Job Router 709

HTCondor Manual, Release 23.6.2

The routing table is given as a set of configuration macros. Each configuration macro is given in the job transform
language. This is the same transform language used by the condor_schedd for job transforms. This language is similar
to the language, but has commands to describe the transform steps and optional macro values such as MaxJobs that
can control the way the route is used.

When a route matches a job, and the condor_job_router is about to apply the routing transform, it will first apply all
of the pre-route transforms that match that job, then it will apply the routing transform, then it will apply all of the
post-route transforms that match the job.

In older versions the routing table was given as a list of ClassAds, and for backwards compatibility this form of con-
figuration is still supported - It will be converted automatically into a set of job transforms.

10.4.2 Job Submission with Job Routing Capability

If Job Routing is set up, then the following items ought to be considered for jobs to have the necessary prerequisites to
be considered for routing.

• Jobs appropriate for routing to the grid must not rely on access to a shared file system, or other services that are
only available on the local pool. The job will use HTCondor’s file transfer mechanism, rather than relying on a
shared file system to access input files and write output files. In the submit description file, to enable file transfer,
there will be a set of commands similar to

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = input1, input2
transfer_output_files = output1, output2

Vanilla universe jobs and most types of grid universe jobs differ in the set of files transferred back when the job
completes. Vanilla universe jobs transfer back all files created or modified, while all grid universe jobs, except
for HTCondor-C, only transfer back the file, as well as those explicitly listed with Therefore, when routing jobs to
grid universes other than HTCondor-C, it is important to explicitly specify all output files that must be transferred
upon job completion.

• One configuration for routed jobs requires the jobs to identify themselves as candidates for Job Routing. This may
be accomplished by inventing a ClassAd attribute that the configuration utilizes in setting the policy for job iden-
tification, and the job defines this attribute to identify itself. If the invented attribute is called WantJobRouter,
then the job identifies itself as a job that may be routed by placing in the submit description file:

+WantJobRouter = True

This implementation can be taken further, allowing the job to first be rejected within the local pool, before being
a candidate for Job Routing:

+WantJobRouter = LastRejMatchTime =!= UNDEFINED

• As appropriate to the potential grid site, create a grid proxy, and specify it in the submit description file:

x509userproxy = /tmp/x509up_u275

This is not necessary if the condor_job_router daemon is configured to add a grid proxy on behalf of jobs.

Job submission does not change for jobs that may be routed.

$ condor_submit job1.sub

where job1.sub might contain:

710 Chapter 10. Grid Computing

HTCondor Manual, Release 23.6.2

universe = vanilla
executable = my_executable
output = job1.stdout
error = job1.stderr
log = job1.ulog
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
+WantJobRouter = LastRejMatchTime =!= UNDEFINED
x509userproxy = /tmp/x509up_u275
queue

The status of the job may be observed as with any other HTCondor job, for example by looking in the job’s log file.
Before the job completes, shows the job’s status. Should the job become routed, a second job will enter the job queue.
This is the routed copy of the original job. The command shows a more specialized view of routed jobs, as this example
shows:

$ condor_router_q -S
JOBS ST Route GridResource
40 I Site1 site1.edu/jobmanager-condor
10 I Site2 site2.edu/jobmanager-pbs
2 R Site3 condor submit.site3.edu condor.site3.edu

summarizes the history of routed jobs, as this example shows:

$ condor_router_history
Routed job history from 2007-06-27 23:38 to 2007-06-28 23:38

Site Hours Jobs Runs
Completed Aborted

Site1 10 2 0
Site2 8 2 1
Site3 40 6 0

TOTAL 58 10 1

10.4.3 An Example Configuration

The following sample configuration sets up potential job routing to three routes (grid sites). Definitions of the config-
uration variables specific to the Job Router are in the condor_job_router Configuration File Entries section. One route
a local SLURM cluster. A second route is cluster accessed via ARC CE. The third site is an HTCondor site accessed
by HTCondor-C. The condor_job_router daemon does not know which site will be best for a given job. The policy
implemented in this sample configuration stops sending more jobs to a site, if ten jobs that have already been sent to
that site are idle.

These configuration settings belong in the local configuration file of the machine where jobs are submitted. Check that
the machine can successfully submit grid jobs before setting up and using the Job Router. Typically, the single required
element that needs to be added for SSL authentication is an X.509 trusted certification authority directory, in a place
recognized by HTCondor (for example, /etc/grid-security/certificates).

Note that, as of version 8.5.6, the configuration language supports multi-line values, as shown in the example below
(see the Multi-Line Values section for more details).

The list of enabled routes is specified by , routes will be considered in the order given by this configuration variable.

10.4. The HTCondor Job Router 711

HTCondor Manual, Release 23.6.2

define a global constraint, only jobs that match this will be considered for routing
JOB_ROUTER_SOURCE_JOB_CONSTRAINT = WantJobRouter

define a default maximum number of jobs that will be matched to each route
and a limit on the number of idle jobs a route may have before we stop using it.
JOB_ROUTER_DEFAULT_MAX_JOBS_PER_ROUTE = 200
JOB_ROUTER_DEFAULT_MAX_IDLE_JOBS_PER_ROUTE = 10

This could be made an attribute of the job, rather than being hard-coded
ROUTED_JOB_MAX_TIME = 1440

Now we define each of the routes to send jobs to
JOB_ROUTER_ROUTE_NAMES = Site1 Site2 CondorSite

JOB_ROUTER_ROUTE_Site1 @=rt
GridResource = "batch slurm"

@rt

JOB_ROUTER_ROUTE_Site2 @=rt
GridResource = "arc site2.edu"
SET ArcRte = "ENV/PROXY"

@rt

JOB_ROUTER_ROUTE_CondorSite @=rt
MaxIdleJobs = 20
GridResource = "condor submit.site3.edu cm.site3.edu"
SET remote_jobuniverse = 5

@rt

define a pre-route transform that does the transforms all routes should do
JOB_ROUTER_PRE_ROUTE_TRANSFORM_NAMES = Defaults

JOB_ROUTER_TRANSFORM_Defaults @=jrd
remove routed job if it goes on hold or stays idle for over 6 hours
SET PeriodicRemove = JobStatus == 5 || \

(JobStatus == 1 && (time() - QDate) > 3600*6))
delete the global SOURCE_JOB_CONSTRAINT attribute so that routed jobs will not be␣

→˓routed again
DELETE WantJobRouter
SET Requirements = true

@jrd

Reminder: you must restart HTCondor for changes to DAEMON_LIST to take effect.
DAEMON_LIST = $(DAEMON_LIST) JOB_ROUTER

For testing, set this to a small value to speed things up.
Once you are running at large scale, set it to a higher value
to prevent the JobRouter from using too much cpu.
JOB_ROUTER_POLLING_PERIOD = 10

#It is good to save lots of schedd queue history
#for use with the router_history command.

(continues on next page)

712 Chapter 10. Grid Computing

HTCondor Manual, Release 23.6.2

(continued from previous page)

MAX_HISTORY_ROTATIONS = 20

10.4.4 Routing Table Entry Commands and Macro values

A route consists of a sequence of Macro values and commands which are applied in order to produce the routed job
ClassAd. Certain macro names have special meaning when used in a router transform. These special macro names
are listed below along a brief listing of the the transform commands. For a more detailed description of the transform
commands refer to the Transform Commands section.

The conversion of a job to a routed copy will usually require the job ClassAd to be modified. The Routing Table
specifies attributes of the different possible routes and it may specify specific modifications that should be made to the
job when it is sent along a specific route. In addition to this mechanism for transforming the job, external programs
may be invoked to transform the job. For more information, see below: ref:grid-computing/job-router:hooks for the
job router

The following attributes and instructions for modifying job attributes may appear in a Routing Table entry.

GridResource = <string>
Specifies the value for the attribute that will be inserted into the routed copy of the job’s ClassAd.

Requirements = <expr>
A Requirements expression that identifies jobs that may be matched to the route. If there is a then only jobs
that match that constraint and this Requirements expression can match this route.

MaxJobs = <integer>
An integer maximum number of jobs permitted on the route at one time. The default is 100.

MaxIdleJobs = <integer>
An integer maximum number of routed jobs in the idle state. At or above this value, no more jobs will be
sent to this site. This is intended to prevent too many jobs from being sent to sites which are too busy to run
them. If the value set for this attribute is too small, the rate of job submission to the site will slow, because the
condor_job_router daemon will submit jobs up to this limit, wait to see some of the jobs enter the running state,
and then submit more. The disadvantage of setting this attribute’s value too high is that a lot of jobs may be sent
to a site, only to site idle for hours or days. The default value is 50.

FailureRateThreshold = <float>
A maximum tolerated rate of job failures. Failure is determined by the expression sets for the attribute
JobFailureTest expression. The default threshold is 0.03 jobs/second. If the threshold is exceeded, sub-
mission of new jobs is throttled until jobs begin succeeding, such that the failure rate is less than the threshold.
This attribute implements black hole throttling, such that a site at which jobs are sent only to fail (a black hole)
receives fewer jobs.

JobFailureTest = <boolean expr>
An expression evaluated for each job that finishes, to determine whether it was a failure. The default value
if no expression is defined assumes all jobs are successful. Routed jobs that are removed are considered to

10.4. The HTCondor Job Router 713

HTCondor Manual, Release 23.6.2

be failures. An example expression to treat all jobs running for less than 30 minutes as failures is target.
RemoteWallClockTime < 1800. A more flexible expression might reference a property or expression of the
job that specifies a failure condition specific to the type of job.

SendIDTokens = <string expr>
A string expression that lists the names of the IDTOKENS to add to the input file transfer list of the routed
job. The string should list one or more of the IDTOKEN names specified by the configuration variable. if
SendIDTokens is not specified, then the value of the JobRouter configuration variable will be used.

UseSharedX509UserProxy = <boolean epr>
A boolean expression that when True causes the value of SharedX509UserProxy to be the X.509 user proxy
for the routed job. Note that if the condor_job_router daemon is running as root, the copy of this file that is given
to the job will have its ownership set to that of the user running the job. This requires the trust of the user. It is
therefore recommended to avoid this mechanism when possible. Instead, require users to submit jobs with set in
the submit description file. If this feature is needed, use the boolean expression to only allow specific values of
target.Owner to use this shared proxy file. The shared proxy file should be owned by the condor user. Currently,
to use a shared proxy, the job must also turn on sandboxing by having the attribute JobShouldBeSandboxed.

SharedX509UserProxy = <string>
A string representing file containing the X.509 user proxy for the routed job.

JobShouldBeSandboxed = <boolean expr>
A boolean expression that when True causes the created copy of the job to be sandboxed. A copy of the input
files will be placed in the condor_schedd daemon’s spool area for the target job, and when the job runs, the
output will be staged back into the spool area. Once all of the output has been successfully staged back, it will
be copied again, this time from the spool area of the sandboxed job back to the original job’s output locations.
By default, sandboxing is turned off. Only to turn it on if using a shared X.509 user proxy or if direct staging of
remote output files back to the final output locations is not desired.

EditJobInPlace = <boolean expr>
A boolean expression that, when True, causes the original job to be transformed in place rather than creating a
new transformed version (a routed copy) of the job. In this mode, the Job Router Hook and transformation rules in
the routing table are applied during the job transformation. The routing table attribute is ignored, and there is no
default transformation of the job from a vanilla job to a grid universe job as there is otherwise. Once transformed,
the job is still a candidate for matching routing rules, so it is up to the routing logic to control whether the job
may be transformed multiple times or not. For example, to transform the job only once, an attribute could be set
in the job ClassAd to prevent it from matching the same routing rule in the future. To transform the job multiple
times with limited frequency, a timestamp could be inserted into the job ClassAd marking the time of the last
transformation, and the routing entry could require that this timestamp either be undefined or older than some
limit.

UNIVERSE <value>
A universe name or integer value specifying the desired universe for the routed copy of the job. The default value
is 9, which is the grid universe.

SET <attr> <expr>
Sets the value of <attr> in the routed copy’s job ClassAd to the specified value. An example of an attribute that

714 Chapter 10. Grid Computing

HTCondor Manual, Release 23.6.2

might be set is PeriodicRemove. For example, if the routed job goes on hold or stays idle for too long, remove
it and return the original copy of the job to a normal state.

DEFAULT <attr> <expr>
Sets the value of <attr> if the value is currently missing or undefined. This is equivalent to

if ! defined MY.<Attr>
SET <Attr> <value>

endif

EVALSET <attr> <expr>
Defines an expression. The expression is evaluated, and the resulting value sets the value of the routed copy’s job
ClassAd attribute <attr>. Use this when the attribute must not be an expression or when information available
only to the condor_job_router is needed to determine the value.

EVALMACRO <var> <expr>
Defines an expression. The expression is evaluated, and the resulting value is store in the temporary variable
<var>. $(var) can the be used in later statements in this route or in a later transform that is part of this route.
This is often use to evaluate complex expressions that can later be used in if statements in the route.

COPY <attr> <newattr>
Copies the value of <attr> from the original attribute name to a new attribute name in the routed copy. Useful
to save the value of an expression that you intend to change as part of the route so that the value prior to routing
is still visible in the job ClassAd.

COPY /<regex>/ <attrpat>
Copies all attributes that match the regular expression <regex> to new attribute names.

RENAME <attr> <newattr>
Renames the attribute <attr> to a new attribute name. This is the equivalent of a COPY statement followed by
a DELETE statement.

RENAME /<regex>/ <attrpat>
Renames all attributes that match the regular expression <regex> to new attribute names.

DELETE <attr>
Deletes <attr> from the routed copy of the job ClassAd.

DELETE /<regex>/
Deletes all attributes that match the regular expression <regex> from the routed copy of the job.

10.4. The HTCondor Job Router 715

HTCondor Manual, Release 23.6.2

10.4.5 Deprecated router configuration

Warning: The deprecated job router configuration macro JOB_ROUTER_DEFAULTS will be removed during
the lifetime of the HTCondor V23 feature series in preparation of HTCondor V24.

Prior to version 8.9.7 the condor_job_router used a list of ClassAds to configure the routes. This form of configuration
is still supported, but is disabled by default. To enable it, set configuration parameter to True. The old syntax will be
converted at load time to the new syntax.

A good place to learn about the syntax of ClassAds is the Informal Language Description in the C++ ClassAds tu-
torial: http://htcondor.org/classad/c++tut.html. Two essential differences distinguish the ClassAd syntax used by the
condor_job_router from the syntax used in most other areas of HTCondor. In the router configuration, each ClassAd
is surrounded by square brackets. And each assignment statement ends with a semicolon. Newlines are ignored by the
parser. Thus When the ClassAd is embedded in an HTCondor configuration file, it may appear all on a single line,
but the readability is often improved by inserting line continuation characters after each assignment statement. This is
done in the examples. Unfortunately, this makes the insertion of comments into the configuration file awkward, because
of the interaction between comments and line continuation characters in configuration files. An alternative is to use
C-style comments (/* ...*/). Another alternative is to read in the routing table entries from a separate file, rather
than embedding them in the HTCondor configuration file.

Note that, as of version 8.5.6, the configuration language supports multi-line values, as shown in the example below
(see the Multi-Line Values section for more details).

As of version 8.8.7, the order in which routes are considered can be configured by specifying
JOB_ROUTER_ROUTE_NAMES. Prior to that version the order in which routes were considered could not be
specified and so routes were normally given mutually exclusive requirements.

These settings become the default settings for all routes
because they are merged with each route before the route is applied
JOB_ROUTER_DEFAULTS @=jrd
[
requirements=target.WantJobRouter is True;
MaxIdleJobs = 10;
MaxJobs = 200;

/* now modify routed job attributes */
/* remove routed job if it goes on hold or stays idle for over 6 hours */
set_PeriodicRemove = JobStatus == 5 ||

(JobStatus == 1 && (time() - QDate) > 3600*6);
delete_WantJobRouter = true;
set_requirements = true;

]
@jrd

This could be made an attribute of the job, rather than being hard-coded
ROUTED_JOB_MAX_TIME = 1440

Now we define each of the routes to send jobs on
JOB_ROUTER_ENTRIES @=jre
[GridResource = "batch slurm";
name = "Site_1";

]
[GridResource = "arc site2.edu";

(continues on next page)

716 Chapter 10. Grid Computing

http://htcondor.org/classad/c++tut.html

HTCondor Manual, Release 23.6.2

(continued from previous page)

name = "Site_2";
set_ArcRte = "ENV/PROXY";

]
[GridResource = "condor submit.site3.edu cm.site3.edu";
name = "Site_3";
set_remote_jobuniverse = 5;

]
@jre

Optionally define the order that routes should be considered
uncomment this line to declare the order
#JOB_ROUTER_ROUTE_NAMES = Site_1 Site_2 Site_3

10.4.6 Deprecated Routing Table Entry ClassAd Attributes

Warning: The deprecated job router configuration macros JOB_ROUTER_ENTRIES,
JOB_ROUTER_ENTRIES_FILE, and JOB_ROUTER_ENTRIES_CMD will be removed during the lifetime of
the HTCondor V23 feature series in preparation of HTCondor V24.

In the deprecated condor_job_router configuration, each route is the result of merging the JOB_ROUTER_DEFAULTS
ClassAd with one of the JOB_ROUTER_ENTRIES ClassAds, with attributes specified in JOB_ROUTER_ENTRIES
overriding those specified in JOB_ROUTER_DEFAULTS.

Name
An optional identifier that will be used in log messages concerning this route. If no name is specified, the default
used will be the value of . The condor_job_router distinguishes routes and advertises statistics based on this
attribute’s value.

TargetUniverse
An integer value specifying the desired universe for the routed copy of the job. The default value is 9, which is
the grid universe.

OverrideRoutingEntry
A boolean value that when True, indicates that this entry in the routing table replaces any previous entry in
the table with the same name. When False, it indicates that if there is a previous entry by the same name, the
previous entry should be retained and this entry should be ignored. The default value is True.

Set_<ATTR>
Sets the value of <ATTR> in the routed copy’s job ClassAd to the specified value. An example of an attribute that
might be set is PeriodicRemove. For example, if the routed job goes on hold or stays idle for too long, remove
it and return the original copy of the job to a normal state.

Eval_Set_<ATTR>
Defines an expression. The expression is evaluated, and the resulting value sets the value of the routed copy’s job

10.4. The HTCondor Job Router 717

HTCondor Manual, Release 23.6.2

ClassAd attribute <ATTR>. Use this attribute to set a custom or local value, especially for modifying an attribute
which may have been already specified in a default routing table.

Copy_<ATTR>
Defined with the name of a routed copy ClassAd attribute. Copies the value of <ATTR> from the original job
ClassAd into the specified attribute named of the routed copy. Useful to save the value of an expression, before
replacing it with something else that references the original expression.

Delete_<ATTR>
Deletes <ATTR> from the routed copy ClassAd. A value assigned to this attribute in the routing table entry is
ignored.

10.4.7 Hooks for the Job Router

Job Router Hooks allow for an alternate transformation and/or monitoring than the condor_job_router daemon imple-
ments. Routing is still managed by the condor_job_router daemon, but if the Job Router Hooks are specified, then
these hooks will be used to transform and monitor the job instead.

Job Router Hooks are similar in concept to Fetch Work Hooks, but they are limited in their scope. A hook is an external
program or script invoked by the condor_job_router daemon at various points during the life cycle of a routed job.

The following sections describe how and when these hooks are used, what hooks are invoked at various stages of the
job’s life, and how to configure HTCondor to use these Hooks.

Hooks Invoked for Job Routing

The Job Router Hooks allow for replacement of the transformation engine used by HTCondor for routing a job. Since
the external transformation engine is not controlled by HTCondor, additional hooks provide a means to update the job’s
status in HTCondor, and to clean up upon exit or failure cases. This allows one job to be transformed to just about any
other type of job that HTCondor supports, as well as to use execution nodes not normally available to HTCondor.

It is important to note that if the Job Router Hooks are utilized, then HTCondor will not ignore or work around a failure
in any hook execution. If a hook is configured, then HTCondor assumes its invocation is required and will not continue
by falling back to a part of its internal engine. For example, if there is a problem transforming the job using the hooks,
HTCondor will not fall back on its transformation accomplished without the hook to process the job.

There are 2 ways in which the Job Router Hooks may be enabled. A job’s submit description file may cause the hooks
to be invoked with

+HookKeyword = "HOOKNAME"

Adding this attribute to the job’s ClassAd causes the condor_job_router daemon on the access point to invoke hooks
prefixed with the defined keyword. HOOKNAME is a string chosen as an example; any string may be used.

The job’s ClassAd attribute definition of takes precedence, but if not present, hooks may be enabled by defining on the
access point the configuration variable

JOB_ROUTER_HOOK_KEYWORD = HOOKNAME

718 Chapter 10. Grid Computing

HTCondor Manual, Release 23.6.2

Like the example attribute above, HOOKNAME represents a chosen name for the hook, replaced as desired or appropriate.

There are 4 hooks that the Job Router can be configured to use. Each hook will be described below along with data
passed to the hook and expected output. All hooks must exit successfully.

• The hook defined by the configuration variable is invoked when the Job Router has determined that a job meets
the definition for a route. This hook is responsible for doing the transformation of the job and configuring any
resources that are external to HTCondor if applicable.

Command-line arguments passed to the hook
None.

Standard input given to the hook
The first line will be the information on route that the job matched including the route name.
This information will be formatted as a classad. If the route has a TargetUniverse or they will
be included in the classad. The route information classad will be followed by a separator line of
dashes like ------ followed by a newline. The remainder of the input will be the job ClassAd.

Expected standard output from the hook
The transformed job.

Exit status of the hook
0 for success, any non-zero value on failure.

• The hook defined by the configuration variable is invoked to provide status on the specified routed job when the
Job Router polls the status of routed jobs at intervals set by .

Command-line arguments passed to the hook
None.

Standard input given to the hook
The routed job ClassAd that is to be updated.

Expected standard output from the hook
The job attributes to be updated in the routed job, or nothing, if there was no update. To prevent
clashing with HTCondor’s management of job attributes, only attributes that are not managed by
HTCondor should be output from this hook.

Exit status of the hook
0 for success, any non-zero value on failure.

• The hook defined by the configuration variable is invoked when the Job Router has found that the job has com-
pleted. Any output from the hook is treated as an update to the source job.

Command-line arguments passed to the hook
None.

Standard input given to the hook
The source job ClassAd, followed by the routed copy Classad that completed, separated by the
string “——” and a new line.

Expected standard output from the hook
An updated source job ClassAd, or nothing if there was no update.

Exit status of the hook
0 for success, any non-zero value on failure.

10.4. The HTCondor Job Router 719

HTCondor Manual, Release 23.6.2

• The hook defined by the configuration variable is invoked when the Job Router finishes managing the job. This
hook will be invoked regardless of whether the job completes successfully or not, and must exit successfully.

Command-line arguments passed to the hook
None.

Standard input given to the hook
The job ClassAd that the Job Router is done managing.

Expected standard output from the hook
None.

Exit status of the hook
0 for success, any non-zero value on failure.

720 Chapter 10. Grid Computing

CHAPTER

ELEVEN

PLATFORM-SPECIFIC INFORMATION

The HTCondor Team strives to make HTCondor work the same way across all supported platforms. However, because
HTCondor is a very low-level system which interacts closely with the internals of the operating systems on which
it runs, this goal is not always possible to achieve. The following sections provide detailed information about using
HTCondor on different computing platforms and operating systems.

11.1 Linux

This section provides information specific to the Linux port of HTCondor.

11.1.1 The condor_kbdd on Linux Platforms

The HTCondor keyboard daemon, condor_kbdd, monitors X events on machines where the operating system does
not provide a way of monitoring the idle time of the keyboard or mouse. On Linux platforms, it is needed to detect
USB keyboard activity. Otherwise, it is not needed. On Windows platforms, the condor_kbdd is the primary way of
monitoring the idle time of both the keyboard and mouse.

On Linux platforms, great measures have been taken to make the condor_kbdd as robust as possible, but the X window
system was not designed to facilitate such a need, and thus is not as efficient on machines where many users frequently
log in and out on the console.

In order to work with X authority, which is the system by which X authorizes processes to connect to X servers,
the condor_kbdd needs to run with super user privileges. Currently, the condor_kbdd assumes that X uses the HOME
environment variable in order to locate a file named .Xauthority. This file contains keys necessary to connect to an
X server. The keyboard daemon attempts to set HOME to various users’ home directories in order to gain a connection
to the X server and monitor events. This may fail to work if the keyboard daemon is not allowed to attach to the X
server, and the state of a machine may be incorrectly set to idle when a user is, in fact, using the machine.

In some environments, the condor_kbdd will not be able to connect to the X server because the user currently logged
into the system keeps their authentication token for using the X server in a place that no local user on the current
machine can get to. This may be the case for files on AFS, because the user’s .Xauthority file is in an AFS home
directory.

There may also be cases where the condor_kbdd may not be run with super user privileges because of political reasons,
but it is still desired to be able to monitor X activity. In these cases, change the XDM configuration in order to start up
the condor_kbdd with the permissions of the logged in user. If running X11R6.3, the files to edit will probably be in
/usr/X11R6/lib/X11/xdm. The .xsession file should start up the condor_kbdd at the end, and the .Xreset file
should shut down the condor_kbdd. The -l option can be used to write the daemon’s log file to a place where the user
running the daemon has permission to write a file. The file’s recommended location will be similar to $HOME/.kbdd.
log, since this is a place where every user can write, and the file will not get in the way. The -pidfile and -k options

721

HTCondor Manual, Release 23.6.2

allow for easy shut down of the condor_kbdd by storing the process ID in a file. It will be necessary to add lines to the
XDM configuration similar to

$ condor_kbdd -l $HOME/.kbdd.log -pidfile $HOME/.kbdd.pid

This will start the condor_kbdd as the user who is currently logged in and write the log to a file in the directory $HOME/
.kbdd.log/. This will also save the process ID of the daemon to ~/.kbdd.pid, so that when the user logs out, XDM
can do:

$ condor_kbdd -k $HOME/.kbdd.pid

This will shut down the process recorded in file ~/.kbdd.pid and exit.

To see how well the keyboard daemon is working, review the log for the daemon and look for successful connections
to the X server. If there are none, the condor_kbdd is unable to connect to the machine’s X server.

11.2 Microsoft Windows

Windows is a strategic platform for HTCondor, and therefore we have been working toward a complete port to Windows.
Our goal is to make HTCondor every bit as capable on Windows as it is on Unix – or even more capable.

Porting HTCondor from Unix to Windows is a formidable task, because many components of HTCondor must interact
closely with the underlying operating system.

This section contains additional information specific to running HTCondor on Windows. In order to effectively use
HTCondor, first read the Overview chapter and the Users’ Manual. If administrating or customizing the policy and set
up of HTCondor, also read the Administrators’ Manual chapter. After reading these chapters, review the information
in this chapter for important information and differences when using and administrating HTCondor on Windows. For
information on installing HTCondor for Windows, see Windows (as Administrator).

11.2.1 Limitations under Windows

In general, this release for Windows works the same as the release of HTCondor for Unix. However, the following
items are not supported in this version:

• grid universe jobs may not be submitted from a Windows platform, unless the grid type is condor.

• Accessing files via a network share that requires a Kerberos ticket (such as AFS) is not yet supported.

11.2.2 Supported Features under Windows

Except for those items listed above, most everything works the same way in HTCondor as it does in the Unix release.
This release is based on the HTCondor Version 23.6.2 source tree, and thus the feature set is the same as HTCondor
Version 23.6.2 for Unix. For instance, all of the following work in HTCondor:

• The ability to submit, run, and manage queues of jobs running on a cluster of Windows machines.

• All tools such as , , , are included.

• The ability to customize job policy using ClassAds. The machine ClassAds contain all the information included
in the Unix version, including current load average, RAM and virtual memory sizes, integer and floating-point

722 Chapter 11. Platform-Specific Information

HTCondor Manual, Release 23.6.2

performance, keyboard/mouse idle time, etc. Likewise, job ClassAds contain a full complement of information,
including system dependent entries such as dynamic updates of the job’s image size and CPU usage.

• Everything necessary to run an HTCondor central manager on Windows.

• Security mechanisms.

• HTCondor for Windows can run jobs at a lower operating system priority level. Jobs can be suspended, soft-killed
by using a WM_CLOSE message, or hard-killed automatically based upon policy expressions. For example,
HTCondor can automatically suspend a job whenever keyboard/mouse or non-HTCondor created CPU activity
is detected, and continue the job after the machine has been idle for a specified amount of time.

• HTCondor correctly manages jobs which create multiple processes. For instance, if an HTCondor job spawns
multiple processes and HTCondor needs to kill the job, all processes created by the job will be terminated.

• In addition to interactive tools, users and administrators can receive information from HTCondor by e-mail
(standard SMTP) and/or by log files.

• HTCondor includes a friendly GUI installation and set up program, which can perform a full install or deinstall
of HTCondor. Information specified by the user in the set up program is stored in the system registry. The set
up program can update a current installation with a new release using a minimal amount of effort.

• HTCondor can give a job access to the running user’s Registry hive.

11.2.3 Secure Password Storage

In order for HTCondor to operate properly, it must at times be able to act on behalf of users who submit jobs. This is
required on submit machines, so that HTCondor can access a job’s input files, create and access the job’s output files,
and write to the job’s log file from within the appropriate security context. On Unix systems, arbitrarily changing what
user HTCondor performs its actions as is easily done when HTCondor is started with root privileges. On Windows,
however, performing an action as a particular user or on behalf of a particular user requires knowledge of that user’s
password, even when running at the maximum privilege level. HTCondor provides secure password storage through
the use of the tool. Passwords managed by HTCondor are encrypted and stored in a secure location within the Windows
registry. When HTCondor needs to perform an action as or on behalf of a particular user, it uses the securely stored
password to do so. This implies that a password is stored for every user that will submit jobs from the Windows submit
machine.

A further feature permits HTCondor to execute the job itself under the security context of its submitting user, specifying
the command in the job’s submit description file. With this feature, it is necessary to configure and run a centralized
condor_credd daemon to manage the secure password storage. This makes each user’s password available, via an
encrypted connection to the condor_credd, to any execute machine that may need it.

By default, the secure password store for a submit machine when no condor_credd is running is managed by the
condor_schedd. This approach works in environments where the user’s password is only needed on the submit machine.

11.2.4 Executing Jobs as the Submitting User

By default, HTCondor executes jobs on Windows using dedicated run accounts that have minimal access rights and
privileges, and which are recreated for each new job. As an alternative, HTCondor can be configured to allow users to
run jobs using their Windows login accounts. This may be useful if jobs need access to files on a network share, or to
other resources that are not available to the low-privilege run account.

This feature requires use of a condor_credd daemon for secure password storage and retrieval. With the condor_credd
daemon running, the user’s password must be stored, using the tool. Then, a user that wants a job to run using their
own account places into the job’s submit description file

11.2. Microsoft Windows 723

HTCondor Manual, Release 23.6.2

run_as_owner = True

11.2.5 The condor_credd Daemon

The condor_credd daemon manages secure password storage. A single running instance of the condor_credd within
an HTCondor pool is necessary in order to provide the feature described in Executing Jobs as the Submitting User,
where a job runs as the submitting user, instead of as a temporary user that has strictly limited access capabilities.

It is first necessary to select the single machine on which to run the condor_credd. Often, the machine acting as the
pool’s central manager is a good choice. An important restriction, however, is that the condor_credd host must be a
machine running Windows.

All configuration settings necessary to enable the condor_credd are contained in the example file
etc\condor_config.local.credd from the HTCondor distribution. Copy these settings into a local configuration
file for the machine that will run the condor_credd. Run condor_restart for these new settings to take effect, then
verify (via Task Manager) that a condor_credd process is running.

A second set of configuration variables specify security for the communication among HTCondor daemons. These
variables must be set for all machines in the pool. The following example settings are in the comments contained in
the etc\condor_config.local.credd example file. These sample settings rely on the PASSWORD method for authentication
among daemons, including communication with the condor_credd daemon. The variable must be customized to point
to the machine hosting the condor_credd and the variable will be customized, if needed, to refer to an administrative
account that exists on all HTCondor nodes.

CREDD_HOST = credd.cs.wisc.edu
CREDD_CACHE_LOCALLY = True

STARTER_ALLOW_RUNAS_OWNER = True

ALLOW_CONFIG = Administrator@*
SEC_CLIENT_AUTHENTICATION_METHODS = NTSSPI, PASSWORD
SEC_CONFIG_NEGOTIATION = REQUIRED
SEC_CONFIG_AUTHENTICATION = REQUIRED
SEC_CONFIG_ENCRYPTION = REQUIRED
SEC_CONFIG_INTEGRITY = REQUIRED

The example above can be modified to meet the needs of your pool, providing the following conditions are met:

1. The requesting client must use an authenticated connection

2. The requesting client must have an encrypted connection

3. The requesting client must be authorized for DAEMON level access.

724 Chapter 11. Platform-Specific Information

HTCondor Manual, Release 23.6.2

Using a pool password on Windows

In order for PASSWORD authenticated communication to work, a pool password must be chosen and distributed. The
chosen pool password must be stored identically for each machine. The pool password first should be stored on the
condor_credd host, then on the other machines in the pool.

To store the pool password on a Windows machine, run

$ condor_store_cred add -c

when logged in with the administrative account on that machine, and enter the password when prompted. If the ad-
ministrative account is shared across all machines, that is if it is a domain account or has the same password on all
machines, logging in separately to each machine in the pool can be avoided. Instead, the pool password can be securely
pushed out for each Windows machine using a command of the form

$ condor_store_cred add -c -n exec01.cs.wisc.edu

Once the pool password is distributed, but before submitting jobs, all machines must reevaluate their configuration, so
execute

$ condor_reconfig -all

from the central manager. This will cause each execute machine to test its ability to authenticate with the condor_credd.
To see whether this test worked for each machine in the pool, run the command

$ condor_status -f "%s\t" Name -f "%s\n" ifThenElse(isUndefined(LocalCredd),\"UNDEF\",
→˓LocalCredd)

Any rows in the output with the UNDEF string indicate machines where secure communication is not working properly.
Verify that the pool password is stored correctly on these machines.

Regardless of how Condor’s authentication is configured, the pool password can always be set locally by running the

$ condor_store_cred add -c

command as the local SYSTEM account. Third party tools such as PsExec can be used to accomplish this. When
condor_store_cred is run as the local SYSTEM account, it bypasses the network authentication and writes the pool
password to the registry itself. This allows the other condor daemons (also running under the SYSTEM account) to
access the pool password when authenticating against the pool’s collector. In case the pool is remote and no initial
communication can be established due to strong security, the pool password may have to be set using the above method
and following command:

$ condor_store_cred -u condor_pool@poolhost add

11.2.6 Executing Jobs with the User’s Profile Loaded

HTCondor can be configured when using dedicated run accounts, to load the account’s profile. A user’s profile includes
a set of personal directories and a registry hive loaded under HKEY_CURRENT_USER.

This may be useful if the job requires direct access to the user’s registry entries. It also may be useful when the job re-
quires an application, and the application requires registry access. This feature is always enabled on the condor_startd,
but it is limited to the dedicated run account. For security reasons, the profile is cleaned before a subsequent job which
uses the dedicated run account begins. This ensures that malicious jobs cannot discover what any previous job has
done, nor sabotage the registry for future jobs. It also ensures the next job has a fresh registry hive.

11.2. Microsoft Windows 725

HTCondor Manual, Release 23.6.2

A job that is to run with a profile uses the command in the job’s submit description file:

load_profile = True

This feature is currently not compatible with , and will be ignored if both are specified.

11.2.7 Using Windows Scripts as Job Executables

HTCondor has added support for scripting jobs on Windows. Previously, HTCondor jobs on Windows were limited to
executables or batch files. With this new support, HTCondor determines how to interpret the script using the file name’s
extension. Without a file name extension, the file will be treated as it has been in the past: as a Windows executable.

This feature may not require any modifications to HTCondor’s configuration. An example that does not require admin-
istrative intervention are Perl scripts using ActivePerl.

Windows Scripting Host scripts do require configuration to work correctly. The configuration variables set values to be
used in registry look up, which results in a command that invokes the correct interpreter, with the correct command line
arguments for the specific scripting language. In Microsoft nomenclature, verbs are actions that can be taken upon a
given a file. The familiar examples of Open, Print, and Edit, can be found on the context menu when a user right clicks
on a file. The command lines to be used for each of these verbs are stored in the registry under the HKEY_CLASSES_ROOT
hive. In general, a registry look up uses the form:

HKEY_CLASSES_ROOT\<FileType>\Shell\<OpenVerb>\Command

Within this specification, <FileType> is the name of a file type (and therefore a scripting language), and is obtained
from the file name extension. <OpenVerb> identifies the verb, and is obtained from the HTCondor configuration.

The HTCondor configuration sets the selection of a verb, to aid in the registry look up. The file name extension sets
the name of the HTCondor configuration variable. This variable name is of the form:

OPEN_VERB_FOR_<EXT>_FILES

<EXT> represents the file name extension. The following configuration example uses the Open2 verb for a Windows
Scripting Host registry look up for several scripting languages:

OPEN_VERB_FOR_JS_FILES = Open2
OPEN_VERB_FOR_VBS_FILES = Open2
OPEN_VERB_FOR_VBE_FILES = Open2
OPEN_VERB_FOR_JSE_FILES = Open2
OPEN_VERB_FOR_WSF_FILES = Open2
OPEN_VERB_FOR_WSH_FILES = Open2

In this example, HTCondor specifies the Open2 verb, instead of the default Open verb, for a script with the file name
extension of wsh. The Windows Scripting Host ‘s Open2 verb allows standard input, standard output, and standard
error to be redirected as needed for HTCondor jobs.

A common difficulty is encountered when a script interpreter requires access to the user’s registry. Note that the user’s
registry is different than the root registry. If not given access to the user’s registry, some scripts, such as Windows
Scripting Host scripts, will fail. The failure error message appears as:

CScript Error: Loading your settings failed. (Access is denied.)

The fix for this error is to give explicit access to the submitting user’s registry hive. This can be accomplished with the
addition of the command in the job’s submit description file:

726 Chapter 11. Platform-Specific Information

HTCondor Manual, Release 23.6.2

load_profile = True

With this command, there should be no registry access errors. This command should also work for other interpreters.
Note that not all interpreters will require access. For example, ActivePerl does not by default require access to the user’s
registry hive.

11.2.8 How HTCondor for Windows Starts and Stops a Job

This section provides some details on how HTCondor starts and stops jobs. This discussion is geared for the HTCondor
administrator or advanced user who is already familiar with the material in the Administrator’s Manual and wishes to
know detailed information on what HTCondor does when starting and stopping jobs.

When HTCondor is about to start a job, the condor_startd on the execute machine spawns a condor_starter process.
The condor_starter then creates:

1. a run account on the machine with a login name of condor-slot<X>, where <X> is the slot number of the con-
dor_starter. This account is added to group Users by default. The default group may be changed by setting
configuration variable . This step is skipped if the job is to be run using the submitting user’s account, as speci-
fied in Executing Jobs as the Submitting User.

2. a new temporary working directory for the job on the execute machine. This directory is named dir_XXX, where
XXX is the process ID of the condor_starter. The directory is created in the $(EXECUTE) directory, as specified
in HTCondor’s configuration file. HTCondor then grants write permission to this directory for the user account
newly created for the job.

3. a new, non-visible Window Station and Desktop for the job. Permissions are set so that only the account that
will run the job has access rights to this Desktop. Any windows created by this job are not seen by anyone; the
job is run in the background. Setting to True will allow the job to access the default desktop instead of a newly
created one.

Next, the condor_starter daemon contacts the condor_shadow daemon, which is running on the submitting machine,
and the condor_starter pulls over the job’s executable and input files. These files are placed into the temporary working
directory for the job. After all files have been received, the condor_starter spawns the user’s executable. Its current
working directory set to the temporary working directory.

While the job is running, the condor_starter closely monitors the CPU usage and image size of all processes started by
the job. Every 20 minutes the condor_starter sends this information, along with the total size of all files contained in
the job’s temporary working directory, to the condor_shadow. The condor_shadow then inserts this information into
the job’s ClassAd so that policy and scheduling expressions can make use of this dynamic information.

If the job exits of its own accord (that is, the job completes), the condor_starter first terminates any processes started
by the job which could still be around if the job did not clean up after itself. The condor_starter examines the job’s
temporary working directory for any files which have been created or modified and sends these files back to the con-
dor_shadow running on the submit machine. The condor_shadow places these files into the specified in the submit
description file; if no was specified, the files go into the directory where the user invoked . Once all the output files are
safely transferred back, the job is removed from the queue. If, however, the condor_startd forcibly kills the job before
all output files could be transferred, the job is not removed from the queue but instead switches back to the Idle state.

If the condor_startd decides to vacate a job prematurely, the condor_starter sends a WM_CLOSE message to the job.
If the job spawned multiple child processes, the WM_CLOSE message is only sent to the parent process. This is the
one started by the condor_starter. The WM_CLOSE message is the preferred way to terminate a process on Windows,
since this method allows the job to clean up and free any resources it may have allocated. When the job exits, the
condor_starter cleans up any processes left behind. At this point, if

is set to ON_EXIT (the default) in the job’s submit description file, the job switches states, from Running to Idle, and no
files are transferred back. If is set to ON_EXIT_OR_EVICT, then files in the job’s temporary working directory which

11.2. Microsoft Windows 727

HTCondor Manual, Release 23.6.2

were changed or modified are first sent back to the submitting machine. If exactly which files to transfer is specified
with , then this modifies the files transferred and can affect the state of the job if the specified files do not exist. On an
eviction, the condor_shadow places these intermediate files into a subdirectory created in the $(SPOOL) directory on
the submitting machine. The job is then switched back to the Idle state until HTCondor finds a different machine on
which to run. When the job is started again, HTCondor places into the job’s temporary working directory the executable
and input files as before, plus any files stored in the submit machine’s $(SPOOL) directory for that job.

Note: A Windows console process can intercept a WM_CLOSE message via the Win32 SetConsoleCtrlHan-
dler() function, if it needs to do special cleanup work at vacate time; a WM_CLOSE message generates a
CTRL_CLOSE_EVENT. See SetConsoleCtrlHandler() in the Win32 documentation for more info.

Note: The default handler in Windows for a WM_CLOSE message is for the process to exit. Of course, the job could
be coded to ignore it and not exit, but eventually the condor_startd will become impatient and hard-kill the job, if that
is the policy desired by the administrator.

Finally, after the job has left and any files transferred back, the condor_starter deletes the temporary working directory,
the temporary account if one was created, the Window Station and the Desktop before exiting. If the condor_starter
should terminate abnormally, the condor_startd attempts the clean up. If for some reason the condor_startd should
disappear as well (that is, if the entire machine was power-cycled hard), the condor_startd will clean up when HTCondor
is restarted.

11.2.9 Security Considerations in HTCondor for Windows

On the execute machine (by default), the user job is run using the access token of an account dynamically created by
HTCondor which has bare-bones access rights and privileges. For instance, if your machines are configured so that
only Administrators have write access to C:\WINNT, then certainly no HTCondor job run on that machine would be
able to write anything there. The only files the job should be able to access on the execute machine are files accessible
by the Users and Everyone groups, and files in the job’s temporary working directory. Of course, if the job is configured
to run using the account of the submitting user (as described in Executing Jobs as the Submitting User), it will be able
to do anything that the user is able to do on the execute machine it runs on.

On the submit machine, HTCondor impersonates the submitting user, therefore the File Transfer mechanism has the
same access rights as the submitting user. For example, say only Administrators can write to C:\WINNT on the submit
machine, and a user gives the following to :

executable = mytrojan.exe
initialdir = c:\winnt
output = explorer.exe
queue

Unless that user is in group Administrators, HTCondor will not permit explorer.exe to be overwritten.

If for some reason the submitting user’s account disappears between the time was run and when the job runs, HTCondor
is not able to check and see if the now-defunct submitting user has read/write access to a given file. In this case,
HTCondor will ensure that group “Everyone” has read or write access to any file the job subsequently tries to read or
write. This is in consideration for some network setups, where the user account only exists for as long as the user is
logged in.

HTCondor also provides protection to the job queue. It would be bad if the integrity of the job queue is compromised,
because a malicious user could remove other user’s jobs or even change what executable a user’s job will run. To guard
against this, in HTCondor’s default configuration all connections to the condor_schedd (the process which manages the
job queue on a given machine) are authenticated using Windows’ eSSPI security layer. The user is then authenticated

728 Chapter 11. Platform-Specific Information

HTCondor Manual, Release 23.6.2

using the same challenge-response protocol that Windows uses to authenticate users to Windows file servers. Once
authenticated, the only users allowed to edit job entry in the queue are:

1. the user who originally submitted that job (i.e. HTCondor allows users to remove or edit their own jobs)

2. users listed in the condor_config file parameter . In the default configuration, only the “SYSTEM” (LocalSys-
tem) account is listed here.

WARNING: Do not remove “SYSTEM” from , or HTCondor itself will not be able to access the job queue when
needed. If the LocalSystem account on your machine is compromised, you have all sorts of problems!

To protect the actual job queue files themselves, the HTCondor installation program will automatically set permissions
on the entire HTCondor release directory so that only Administrators have write access.

Finally, HTCondor has all the security mechanisms present in the full-blown version of HTCondor. See the Authoriza-
tion section for complete information on how to allow/deny access to HTCondor.

11.2.10 Network files and HTCondor

HTCondor can work well with a network file server. The recommended approach to having jobs access files on network
shares is to configure jobs to run using the security context of the submitting user (see Executing Jobs as the Submitting
User). If this is done, the job will be able to access resources on the network in the same way as the user can when
logged in interactively.

In some environments, running jobs as their submitting users is not a feasible option. This section outlines some
possible alternatives. The heart of the difficulty in this case is that on the execute machine, HTCondor creates a
temporary user that will run the job. The file server has never heard of this user before.

Choose one of these methods to make it work:

• METHOD A: access the file server as a different user via a net use command with a login and password

• METHOD B: access the file server as guest

• METHOD C: access the file server with a “NULL” descriptor

• METHOD D: create and have HTCondor use a special account

All of these methods have advantages and disadvantages.

Here are the methods in more detail:

METHOD A - access the file server as a different user via a net use command with a login and password

Example: you want to copy a file off of a server before running it. . . .

@echo off
net use \\myserver\someshare MYPASSWORD /USER:MYLOGIN
copy \\myserver\someshare\my-program.exe
my-program.exe

The idea here is to simply authenticate to the file server with a different login than the temporary HTCondor login.
This is easy with the “net use” command as shown above. Of course, the obvious disadvantage is this user’s password
is stored and transferred as clear text.

METHOD B - access the file server as guest

Example: you want to copy a file off of a server before running it as GUEST

11.2. Microsoft Windows 729

HTCondor Manual, Release 23.6.2

@echo off
net use \\myserver\someshare
copy \\myserver\someshare\my-program.exe
my-program.exe

In this example, you’d contact the server MYSERVER as the HTCondor temporary user. However, if you have the
GUEST account enabled on MYSERVER, you will be authenticated to the server as user “GUEST”. If your file
permissions (ACLs) are setup so that either user GUEST (or group EVERYONE) has access the share “someshare”
and the directories/files that live there, you can use this method. The downside of this method is you need to enable
the GUEST account on your file server. WARNING: This should be done *with extreme caution* and only if your file
server is well protected behind a firewall that blocks SMB traffic.

METHOD C - access the file server with a “NULL” descriptor

One more option is to use NULL Security Descriptors. In this way, you can specify which shares are accessible by
NULL Descriptor by adding them to your registry. You can then use the batch file wrapper like:

net use z: \\myserver\someshare /USER:""
z:\my-program.exe

so long as ‘someshare’ is in the list of allowed NULL session shares. To edit this list, run regedit.exe and navigate to
the key:

HKEY_LOCAL_MACHINE\
SYSTEM\
CurrentControlSet\
Services\
LanmanServer\
Parameters\
NullSessionShares

and edit it. Unfortunately it is a binary value, so you’ll then need to type in the hex ASCII codes to spell out your share.
Each share is separated by a null (0x00) and the last in the list is terminated with two nulls.

Although a little more difficult to set up, this method of sharing is a relatively safe way to have one quasi-public share
without opening the whole guest account. You can control specifically which shares can be accessed or not via the
registry value mentioned above.

METHOD D - create and have HTCondor use a special account

Create a permanent account (called condor-guest in this description) under which HTCondor will run jobs. On all
Windows machines, and on the file server, create the condor-guest account.

On the network file server, give the condor-guest user permissions to access files needed to run HTCondor jobs.

Securely store the password of the condor-guest user in the Windows registry using on all Windows machines.

Tell HTCondor to use the condor-guest user as the owner of jobs, when required. Details for this are in the Security
section.

730 Chapter 11. Platform-Specific Information

HTCondor Manual, Release 23.6.2

The condor_kbdd on Windows Platforms

Windows platforms need to use the condor_kbdd to monitor the idle time of both the keyboard and mouse. By adding
KBDD to configuration variable , the daemon invokes the condor_kbdd, which then does the right thing to monitor
activity given the version of Windows running.

With Windows Vista and more recent version of Windows, user sessions are moved out of session 0. Therefore, the
condor_startd service is no longer able to listen to keyboard and mouse events. The condor_kbdd will run in an
invisible window and should not be noticeable by the user, except for a listing in the task manager. When the user logs
out, the program is terminated by Windows. This implementation also appears in versions of Windows that predate
Vista, because it adds the capability of monitoring keyboard activity from multiple users.

To achieve the auto-start with user login, the HTCondor installer adds a condor_kbdd entry to the registry key at
HKLM\Software\Microsoft\Windows\CurrentVersion\Run. On 64-bit versions of Vista and more recent Windows ver-
sions, the entry is actually placed in HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Run.

In instances where the condor_kbdd is unable to connect to the condor_startd, it is likely because an exception was not
properly added to the Windows firewall.

11.2.11 Interoperability between HTCondor for Unix and HTCondor for Windows

Unix machines and Windows machines running HTCondor can happily co-exist in the same HTCondor pool without
any problems. Jobs submitted on Windows can run on Windows or Unix, and jobs submitted on Unix can run on Unix
or Windows. Without any specification using the command in the submit description file, the default behavior will be
to require the execute machine to be of the same architecture and operating system as the submit machine.

There is absolutely no need to run more than one HTCondor central manager, even if there are both Unix and Windows
machines in the pool. The HTCondor central manager itself can run on either Unix or Windows; there is no advantage
to choosing one over the other.

11.2.12 Some differences between HTCondor for Unix -vs- HTCondor for Windows

• On Unix, we recommend the creation of a condor account when installing HTCondor. On Windows, this is not
necessary, as HTCondor is designed to run as a system service as user LocalSystem.

• On Unix, HTCondor finds the condor_config main configuration file by looking in ~condor, in /etc, or via an
environment variable. On Windows, the location of condor_config file is determined via the registry key
HKEY_LOCAL_MACHINE/Software/Condor. Override this value by setting an environment variable named
CONDOR_CONFIG.

• On Unix, in the vanilla universe at job vacate time, HTCondor sends the job a softkill signal defined in the submit
description file, which defaults to SIGTERM. On Windows, HTCondor sends a WM_CLOSE message to the job
at vacate time.

• On Unix, if one of the HTCondor daemons has a fault, a core file will be created in the $(Log) directory. On
Windows, a core file will also be created, but instead of a memory dump of the process, it will be a very short
ASCII text file which describes what fault occurred and where it happened. This information can be used by the
HTCondor developers to fix the problem.

11.2. Microsoft Windows 731

HTCondor Manual, Release 23.6.2

11.3 Macintosh OS X

This section provides information specific to the Macintosh OS X port of HTCondor. The Macintosh port of HTCondor
is more accurately a port of HTCondor to Darwin, the BSD layer of OS X. It is not well-integrated into the Macintosh
environment beyond that.

HTCondor on the Macintosh has a few shortcomings:

• Users connected to the Macintosh via ssh are not noticed for console activity.

• The memory size of threaded programs is reported incorrectly.

• No Macintosh-based installer is provided.

• The example start up scripts do not follow Macintosh conventions.

11.4 Windows Installer

This section includes detailed information about the options offered by the Windows Installer, including how to run it
unattended for automated installations. If you’re not an experienced user, you may wish to follow the quick start guide’s
instructions instead.

11.4.1 Detailed Installation Instructions Using the MSI Program

This section describes the different HTCondor Installer options in greater detail.

STEP 1: License Agreement.
The first step in installing HTCondor is a welcome screen and license agreement. You are reminded that it is
best to run the installation when no other Windows programs are running. If you need to close other Windows
programs, it is safe to cancel the installation and close them. You are asked to agree to the license. Answer yes
or no. If you should disagree with the License, the installation will not continue.

Also fill in name and company information, or use the defaults as given.

STEP 2: HTCondor Pool Configuration.
The HTCondor configuration needs to be set based upon if this is a new pool or to join an existing one. Choose
the appropriate radio button.

For a new pool, enter a chosen name for the pool. To join an existing pool, enter the host name of the central
manager of the pool.

STEP 3: This Machine’s Roles.
Each machine within an HTCondor pool can either submit jobs or execute submitted jobs, or both submit and
execute jobs. A check box determines if this machine will be a submit point for the pool.

A set of radio buttons determines the ability and configuration of the ability to execute jobs. There are four
choices:

• Do not run jobs on this machine. This machine will not execute HTCondor jobs.

• Always run jobs and never suspend them.

• Run jobs when the keyboard has been idle for 15 minutes.

• Run jobs when the keyboard has been idle for 15 minutes, and the CPU is idle.

732 Chapter 11. Platform-Specific Information

HTCondor Manual, Release 23.6.2

If you are setting up HTCondor as a single installation for testing, make sure you check the box to make the
machine a submit point, and also choose the second option from the list above.

For a machine that is to execute jobs and the choice is one of the last two in the list, HTCondor needs to further
know what to do with the currently running jobs. There are two choices:

• Keep the job in memory and continue when the machine meets the condition chosen for when to run jobs.

• Restart the job on a different machine.

This choice involves a trade off. Restarting the job on a different machine is less intrusive on the workstation
owner than leaving the job in memory for a later time. A suspended job left in memory will require swap space,
which could be a scarce resource. Leaving a job in memory, however, has the benefit that accumulated run time
is not lost for a partially completed job.

STEP 4: The Account Domain.
Enter the machine’s accounting (or UID) domain. On this version of HTCondor for Windows, this setting is only
used for user priorities (see the Configuration for Central Managers section) and to form a default e-mail address
for the user.

STEP 5: E-mail Settings.
Various parts of HTCondor will send e-mail to an HTCondor administrator if something goes wrong and requires
human attention. Specify the e-mail address and the SMTP relay host of this administrator. Please pay close
attention to this e-mail, since it will indicate problems in the HTCondor pool.

STEP 6: Java Settings.
In order to run jobs in the java universe, HTCondor must have the path to the jvm executable on the machine.
The installer will search for and list the jvm path, if it finds one. If not, enter the path. To disable use of the java
universe, leave the field blank.

STEP 7: Access Permission Settings.
Machines within the HTCondor pool will need various types of access permission. The three categories of
permission that can be set here are read, write, and administrator. The values can be usernames, hostnames or IP
address ranges, Wild cards and macros are permitted. It is recommended that you accept the defaults here and
change the values later as needed by modifying the HTCondor configuration files.

Read
Read access allows a machine to obtain information about HTCondor such as the status of ma-
chines in the pool and the job queues. If all of your HTCondor machines and users are in a single
DNS domain or IP Address range, setting this to *.domain an IP address range with wildcards is
a good choice. See ALLOW_READ

Write
Write access is for submitting jobs to the Schedd. Setting this to * will allow any user that can
login to the machine submit jobs. See ALLOW_WRITE

Administrator
Administrator access is for starting and stopping the daemons and sending administrative
commands such as reconfig and drain. By default the installer will give this permission to
the Windows user that runs the installer and to the Windows Adminstrator account. See
ALLOW_ADMINISTRATOR

For more details on these access permissions, and others that can be manually changed in your configuration file,
please see the section titled Setting Up Security in HTCondor in the Authorization section.

STEP 8: VM Universe Setting.
A radio button determines whether this machine will be configured to run vm universe jobs utilizing VMware.
In addition to having the VMware Server installed, HTCondor also needs Perl installed. The resources available
for vm universe jobs can be tuned with these settings, or the defaults listed can be used.

11.4. Windows Installer 733

HTCondor Manual, Release 23.6.2

Version
Use the default value, as only one version is currently supported.

Maximum Memory
The maximum memory that each virtual machine is permitted to use on the target machine.

Maximum Number of VMs
The number of virtual machines that can be run in parallel on the target machine.

Networking Support
The VMware instances can be configured to use network support. There are four options in the pull-down
menu.

• None: No networking support.

• NAT: Network address translation.

• Bridged: Bridged mode.

• NAT and Bridged: Allow both methods.

Path to Perl Executable
The path to the Perl executable.

STEP 9: Choose Setup Type

The next step is where the destination of the HTCondor files will be decided. We recommend that HTCondor
be installed in the location shown as the default in the install choice: C:\Condor. This is due to several hard
coded paths in scripts and configuration files. Clicking on the Custom choice permits changing the installation
directory.

Installation on the local disk is chosen for several reasons. The HTCondor services run as local system, and within
Microsoft Windows, local system has no network privileges. Therefore, for HTCondor to operate, HTCondor
should be installed on a local hard drive, as opposed to a network drive (file server).

The second reason for installation on the local disk is that the Windows usage of drive letters has implications
for where HTCondor is placed. The drive letter used must be not change, even when different users are logged
in. Local drive letters do not change under normal operation of Windows.

While it is strongly discouraged, it may be possible to place HTCondor on a hard drive that is not local, if a
dependency is added to the service control manager such that HTCondor starts after the required file services are
available.

11.4.2 Unattended Installation Procedure Using the MSI Installer

This section details how to run the HTCondor for Windows installer in an unattended batch mode. This mode is one
that occurs completely from the command prompt, without the GUI interface.

The HTCondor for Windows installer uses the Microsoft Installer (MSI) technology, and it can be configured for unat-
tended installs analogous to any other ordinary MSI installer.

The following is a sample batch file that is used to set all the properties necessary for an unattended install.

@echo on
set ARGS=
set ARGS=NEWPOOL="N"
set ARGS=%ARGS% POOLNAME=""
set ARGS=%ARGS% RUNJOBS="C"

(continues on next page)

734 Chapter 11. Platform-Specific Information

HTCondor Manual, Release 23.6.2

(continued from previous page)

set ARGS=%ARGS% VACATEJOBS="Y"
set ARGS=%ARGS% SUBMITJOBS="Y"
set ARGS=%ARGS% CONDOREMAIL="you@yours.com"
set ARGS=%ARGS% SMTPSERVER="smtp.localhost"
set ARGS=%ARGS% ALLOWREAD="*"
set ARGS=%ARGS% ALLOWWRITE="*"
set ARGS=%ARGS% ALLOWADMINISTRATOR="$(IP_ADDRESS)"
set ARGS=%ARGS% INSTALLDIR="C:\Condor"
set ARGS=%ARGS% POOLHOSTNAME="$(IP_ADDRESS)"
set ARGS=%ARGS% ACCOUNTINGDOMAIN="none"
set ARGS=%ARGS% JVMLOCATION="C:\Windows\system32\java.exe"
set ARGS=%ARGS% USEVMUNIVERSE="N"
set ARGS=%ARGS% VMMEMORY="128"
set ARGS=%ARGS% VMMAXNUMBER="$(NUM_CPUS)"
set ARGS=%ARGS% VMNETWORKING="N"
REM set ARGS=%ARGS% LOCALCONFIG="http://my.example.com/condor_config.$(FULL_HOSTNAME)"

msiexec /qb /l* condor-install-log.txt /i condor-8.0.0-133173-Windows-x86.msi %ARGS%

Each property corresponds to answers that would have been supplied while running the interactive installer. The
following is a brief explanation of each property as it applies to unattended installations; see the above explanations for
more detail.

NEWPOOL = < Y | N >
determines whether the installer will create a new pool with the target machine as the central manager.

POOLNAME
sets the name of the pool, if a new pool is to be created. Possible values are either the name or the
empty string “”.

RUNJOBS = < N | A | I | C >
determines when HTCondor will run jobs. This can be set to:

• Never run jobs (N)

• Always run jobs (A)

• Only run jobs when the keyboard and mouse are Idle (I)

• Only run jobs when the keyboard and mouse are idle and the CPU usage is low (C)

VACATEJOBS = < Y | N >
determines what HTCondor should do when it has to stop the execution of a user job. When set to
Y, HTCondor will vacate the job and start it somewhere else if possible. When set to N, HTCondor
will merely suspend the job in memory and wait for the machine to become available again.

SUBMITJOBS = < Y | N >
will cause the installer to configure the machine as a submit node when set to Y.

CONDOREMAIL
sets the e-mail address of the HTCondor administrator. Possible values are an e-mail address or the
empty string “”.

ALLOWREAD
is a list of names that are allowed to issue READ commands to HTCondor daemons. This value
should be set in accordance with the setting in the configuration file, as described in the Authorization
section.

11.4. Windows Installer 735

HTCondor Manual, Release 23.6.2

ALLOWWRITE
is a list of names that are allowed to issue WRITE commands to HTCondor daemons. This value
should be set in accordance with the setting in the configuration file, as described in the Authorization
section.

ALLOWADMINISTRATOR
is a list of names that are allowed to issue ADMINISTRATOR commands to HTCondor daemons.
This value should be set in accordance with the setting in the configuration file, as described in the
Authorization section.

INSTALLDIR
defines the path to the directory where HTCondor will be installed.

POOLHOSTNAME
defines the host name of the pool’s central manager.

ACCOUNTINGDOMAIN
defines the accounting (or UID) domain the target machine will be in.

JVMLOCATION
defines the path to Java virtual machine on the target machine.

SMTPSERVER
defines the host name of the SMTP server that the target machine is to use to send e-mail.

VMMEMORY
an integer value that defines the maximum memory each VM run on the target machine.

VMMAXNUMBER
an integer value that defines the number of VMs that can be run in parallel on the target machine.

VMNETWORKING = < N | A | B | C >
determines if VM Universe can use networking. This can be set to:

• None (N)

• NAT (A)

• Bridged (B)

• NAT and Bridged (C)

USEVMUNIVERSE = < Y | N >
will cause the installer to enable VM Universe jobs on the target machine.

LOCALCONFIG
defines the location of the local configuration file. The value can be the path to a file on the local
machine, or it can be a URL beginning with http. If the value is a URL, then the tool is invoked to
fetch configuration whenever the configuration is read.

PERLLOCATION
defines the path to Perl on the target machine. This is required in order to use the vm universe.

After defining each of these properties for the MSI installer, the installer can be started with the msiexec command.
The following command starts the installer in unattended mode, and it dumps a journal of the installer’s progress to a
log file:

> msiexec /qb /lxv* condor-install-log.txt /i condor-8.0.0-173133-Windows-x86.msi␣
→˓[property=value] ...

More information on the features of msiexec can be found at Microsoft’s website at http://www.microsoft.com/
resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx.

736 Chapter 11. Platform-Specific Information

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx

HTCondor Manual, Release 23.6.2

Manual Installation of HTCondor on Windows

If you are to install HTCondor on many different machines, you may wish to use some other mechanism to install
HTCondor on additional machines rather than running the Setup program described above on each machine.

WARNING: This is for advanced users only! All others should use the Setup program described above.

Here is a brief overview of how to install HTCondor manually without using the provided GUI-based setup program:

The Service
The service that HTCondor will install is called “Condor”. The Startup Type is Automatic. The ser-
vice should log on as System Account, but do not enable “Allow Service to Interact with Desktop”.
The program that is run is condor_master.exe.

The HTCondor service can be installed and removed using the sc.exe tool, which is included in
Windows XP and Windows 2003 Server. The tool is also available as part of the Windows 2000
Resource Kit.

Installation can be done as follows:

> sc create Condor binpath= c:\condor\bin\condor_master.exe

To remove the service, use:

> sc delete Condor

The Registry
HTCondor uses a few registry entries in its operation. The key that HTCondor uses is
HKEY_LOCAL_MACHINE/Software/Condor. The values that HTCondor puts in this registry key
serve two purposes.

1. The values of CONDOR_CONFIG and RELEASE_DIR are used for HTCondor to start its ser-
vice.

CONDOR_CONFIG should point to the condor_config file. In this version of HTCondor, it
must reside on the local disk.

RELEASE_DIR should point to the directory where HTCondor is installed. This is typically
C:\Condor, and again, this must reside on the local disk.

2. The other purpose is storing the entries from the last installation so that they can be used for the
next one.

The File System
The files that are needed for HTCondor to operate are identical to the Unix version of HTCondor,
except that executable files end in .exe. For example the on Unix one of the files is and on HTCondor
the corresponding file is condor_master.exe.

These files currently must reside on the local disk for a variety of reasons. Advanced Windows users
might be able to put the files on remote resources. The main concern is twofold. First, the files must
be there when the service is started. Second, the files must always be in the same spot (including
drive letter), no matter who is logged into the machine.

Note also that when installing manually, you will need to create the directories that HTCondor will
expect to be present given your configuration. This normally is simply a matter of creating the log,
spool, and execute directories. Do not stage other files in any of these directories; any files not
created by HTCondor in these directories are subject to removal.

11.4. Windows Installer 737

HTCondor Manual, Release 23.6.2

For any installation, HTCondor services are installed and run as the Local System account. Running the HTCondor
services as any other account (such as a domain user) is not supported and could be problematic.

738 Chapter 11. Platform-Specific Information

CHAPTER

TWELVE

RECIPES, EXAMPLES, AND OTHER ANSWERS

We’ve divided this section into parts for different audiences.

12.1 Answers for Users

We’re still moving answers over from our old pages, but we’ve prepared a few examples for job submitters already.

12.1.1 Example: Run a Job on a CPU if a GPU is not Available

Some jobs may be able to take advantage of GPU if one is available, but can run on a CPU if there are no slots with
GPUs immediately matchable. The following submit file will match a job in this case, using to prefer a GPU when
both are available.

This example comes from
https://htcondor.readthedocs.io/en/latest/faq/users/prefer-gpu-to-cpu.html

Execution section. You will need to change these for your job
executable = /bin/sleep
arguments = 600

Requirements section. Also, probably needs customization.
request_CPUs = 1
request_Memory = 2G
request_Disk = 20G
require_GPUs = Capability > 4

File transfer section.
should_transfer_files = true
transfer_input_files = input1, input2

Magic section: don't change anything with rank or request_GPUs unless you
understand why it works.
rank = RequestGPUs
If your job requires more than one GPU, you may change both
of the '1's in the next line to some other number.
request_GPUs = countMatches(RequireGPUs, AvailableGPUs) >= 1 ? 1 : 0

Queue section.
queue 1

739

http://htcondor-wiki.cs.wisc.edu/index.cgi/wiki

HTCondor Manual, Release 23.6.2

12.2 Answers for Admins

12.2.1 Recipe: How to Fill a Pool Breadth-First

Some pool administrators prefer a policy where, when there are fewer jobs than total cores in their pool, those jobs
are “spread out” as much as possible, so that each machine is running the fewest number of jobs. If each machine is
identical, such a policy may result in better performance than one in which each machine is “filled up” before assigning
jobs to the next machine, but may use more power to do so.

For a Pool with Partitionable Slots

HTCondor uses partitionable slots by default.

The following recipe assumes that consumption policies have not been enabled.

For efficiency reasons, HTCondor usually tries to match as many jobs to a single machine as it can. The main idea is
to configure HTCondor to instead to prefer to match as many machines it can, given the number of jobs available. The
downside of doing so is that each job can only match one new job per negotiation cycle, so it could take a lot longer to
get jobs started.

On the schedd, you need to unset . Set by default, this macro tells the schedd to try to start as many jobs as it can on
each match given to it by the negotiator. Since the negotiator matches jobs to entire partitionable slots, that could be a
large number.

On the schedd, make the following configuration change. This requires a condor_reconfig of the schedd to take
effect.

CLAIM_PARTITIONABLE_LEFTOVERS = false

On the central manager, you need to unset . Set by default, this macro tells the negotiator to try and match as many jobs
as it can to the same slot. Since the negotiator matches jobs to entire partitionable slots, that could be a large number.

On the central manager, make the following configuration change. This requires a condor_reconfig of the negotiator
to take effect.

NEGOTIATOR_DEPTH_FIRST = false

For a Pool with Static Slots

If you’ve configured your pool with static slots, the situation is much simpler.

The main idea is to set the expression in the negotiator to prefer to give to the schedds machines that are already running
the fewest numbers of jobs. We use instead of so that the job’s RANK expression doesn’t come into play. If you trust
your users to override this policy, you could use instead. (Note that because this policy happens in the negotiator, if is
set to a high value, the schedds are free to reuse the slots they have been assigned for some time, which may cause the
policy to be out of balance for the duration.)

NEGOTIATOR_PRE_JOB_RANK = isUndefined(RemoteOwner) * (- SlotId)

Changing this will require a condor_reconfig of the negotiator to take effect.

740 Chapter 12. Recipes, Examples, and Other Answers

HTCondor Manual, Release 23.6.2

12.2.2 Which platforms does HTCondor support?

Supported platforms are listed in the Availability section.

12.2.3 Is HTCondor cross-platform?

Yes. Any supported version of HTCondor on any supported platform works with any supported version of HTCondor
on any supported platform. However, not all platforms have the same features; see the Platform-Specific Information
for details.

12.2. Answers for Admins 741

HTCondor Manual, Release 23.6.2

742 Chapter 12. Recipes, Examples, and Other Answers

CHAPTER

THIRTEEN

VERSION HISTORY AND RELEASE NOTES

13.1 Introduction to HTCondor Versions

This chapter provides descriptions of what features have been added or bugs fixed for each release of HTCondor.
The first section describes the HTCondor version numbering scheme, what the numbers mean, and what the different
releases are. The rest of the sections each describe the specific releases.

13.1.1 HTCondor Version Number Scheme

We changed the version numbering scheme after the 9.1.3 release: what would have been the next 9.1.x release is
now the 9.2.0 release. We made this change to give us additional flexibility in releasing small updates to address
specific issues without disturbing the normal development of HTCondor. The version number will still retain the
MAJOR.MINOR.PATCH form with slightly different meanings. We have borrowed ideas from Semantic Versioning.

• The MAJOR number increments for each new Long Term Support (LTS) release. A new LTS release may have
backward-incompatible changes and may require updates to configuration files. If the current LTS release is
23.0.6, the next one will be 24.0.0. A new LTS release is expected about every twelve months in August. The
LTS major version number matches the year of initial release.

• The MINOR number increments each feature release. This number stays at 0 for LTS releases. If the current
feature release is 23.2.0, the next one will be 23.3.0. A new feature release is expected every month.

• The PATCH number increments when we have targeted fixes. For the LTS releases, a patch release is expected
every month and may occur more frequently if a serious problem is discovered. For the feature releases, the
frequency of patch releases depends on the demand for quick updates.

Types of Releases

• An LTS release is numbered X.0.0, and is a new long-term support release. The previous LTS release is supported
for six months after a new LTS version is released. The final feature release undergoes a stabilization effort where
the software is run through multiple code quality tools (such as Valgrind) to assure the best possible LTS release.
The MAJOR.0.0 version is not released until the stabilization effort is complete. Paid support contracts are only
available for the LTS release.

• An LTS patch release is numbered X.0.Z, and is an update to the LTS major release. The patches are reviewed
to ensure correctness and compatibility with the LTS release. These releases contain bug fixes and security
updates and are released when a major issue is identified, or just before the next feature release. These releases
go through our entire testing process. Large code changes are not permitted in the LTS release. Enhancements are
not implemented in the LTS release unless there is minimal impact with a major benefit. Ports to new platforms
will appear in the LTS release. The HTCondor team guarantees that patches to the LTS release are compatible.

743

https://semver.org/

HTCondor Manual, Release 23.6.2

• A feature release is numbered X.Y.0 and includes one or more new features. The software goes through our
entire testing process. We use these releases in production at the Center for High Throughput Computing. These
releases contain all the patches from the LTS release and all the patches from the to the feature releases. The
HTCondor development team guarantees protocol compatibility between the feature releases and the LTS release.
However, changes in behavior may be observed, and adjustments to configuration may be required when new
features are implemented.

• A feature patch release is numbered X.Y.Z and contains targeted patches to address a specific issue with a
feature release. specific issue with a feature release. If there is a specific need to be addressed before 23.3.0 is
tested and ready, we would issue a 23.2.1 patch release. These releases have undergone code review and light
testing. These patch releases are cumulative.

• By default, a feature release in the same series is compatible with the previous release. That is, release X.Y+1.x
will be compatible with release X.Y.x, such the nodes in a cluster may be upgraded without losing state infor-
mation. There may be a pause in operation during upgrade. Check the release notes for exceptions prior to
updating nodes.

Support Life Cycle

We plan to release a new LTS version every August. The support life cycles are directly related to the release dates.

Table 1: HTCondor Support Life Cycle
Version Release End of Regular Support End of Security Suport
23.x September 29, 2023 August 2024 August 2024
23.0 September 29, 2023 August 2024 August 2025
10.x November 10, 2022 September 29, 2023 September 29, 2023
10.0 November 10, 2022 September 29, 2023 August 2024

Repositories

These releases will be served out of three repositories.

• The LTS release and its patches (X.0.Z) are in the existing Stable channel.

• The feature releases (X.Y.0) are in the existing Current channel.

• A new Updates channel will contain quick patch releases (X.Y.Z).

Recommendations

If you are new to HTCondor or require maximum stability in your environment, use an LTS release. Updates to the
latest LTS release should be seamless. A new LTS release will appear about every twelve months with clear directions
on issues to address when upgrading to the new LTS release.

If you want to take advantage of the latest features, use the feature releases. This is an opportunity see our development
directions early, and have some influence on the features being implemented. It is what we use in our production
environment.

If you want to run the very latest release, also enable the updates repository to get the targeted fixes. However, these
fixes may come frequently, and you may wish to pick and choose which updates to install.

744 Chapter 13. Version History and Release Notes

HTCondor Manual, Release 23.6.2

13.2 Upgrading from an 10.0 LTS version to an 23.0 LTS version of
HTCondor

Upgrading from a 10.0 LTS version of HTCondor to a 23.0 LTS version will bring new features introduced in the 10.x
versions of HTCondor. These new features include the following (note that this list contains only the most significant
changes; a full list of changes can be found in the version history: Version 10 Feature Releases):

• A condor_startd without any slot types defined will now default to a single partitionable slot rather than a number
of static slots equal to the number of cores as it was in previous versions. The configuration template use
FEATURE : StaticSlots was added for admins wanting the old behavior. (HTCONDOR-2026)

• In an HTCondor Execution Point started by root on Linux, the default for cgroups memory has changed to
be enforcing. This means that jobs that use more then their provisioned memory will be put on hold with an
appropriate hold message. The previous default can be restored by setting = none on the Execution points.
(HTCONDOR-1974)

• Users can now define DAGMan save points to be able to save the state of a DAGs progess to a file and then re-run
a DAG from that saved point of progress. (HTCONDOR-1636)

• DAGMan has much better user control of enviroment variables present in the DAGMan job propers environ-
ment via 's new flags (-include_env & -insert_env) and/or the new DAG file description command ENV.
(HTCONDOR-1955) (HTCONDOR-1580)

• Added the condor_qusers command to monitor and control users at the Access Point. Users disabled at the
Access Point are no longer allowed to submit jobs. Jobs submitted before the user was disabled are allowed to
run to completion. When a user is disabled, an optional reason string can be provided. (HTCONDOR-1723)
(HTCONDOR-1853)

• The condor_negotiator now support setting a minimum floor number of cores that any given submitter should
get, regardless of their fair share. This can be set or queried via the tool, in the same way that the ceiling can be
set or get. (HTCONDOR-557)

• Added a -gpus option to . With this option will show only machines that have GPUs provisioned; and it will
show information about the GPU properties. (HTCONDOR-1958)

• The output of when using the -compact option has been improved to show a separate row for the second and
subsequent slot type for machines that have multiple slot types. Also the totals now count slots that have the
BackfillSlot attribute under the Backfill or BkIdle columns. (HTCONDOR-1957)

• Container universe jobs may now specify the container_image to be an image transferred via a file transfer plugin.
(HTCONDOR-1820)

• Support for Enterprise Linux 9, Amazon Linux 2023, and Debian 12. (HTCONDOR-1285) (HTCONDOR-1742)
(HTCONDOR-1938)

• Administrators can specify a new history file for Access Points that records information about a job for each
execution attempt. If enabled then this information can be queried via -epochs. (HTCONDOR-1104)

• A single HTCondor pool can now have multiple condor_defrag daemons running and they will not interfere with
each other so long as each has that select mutually exclusive subsets of the pool. (HTCONDOR-1903)

• Add tool to generate a short lived SciToken for testing. (HTCONDOR-1115)

• The job’s executable is no longer renamed to condor_exec.exe. (HTCONDOR-1227)

Upgrading from a 10.0 LTS version of HTCondor to a 23.0 LTS version will also introduce changes that administrators
and users of sites running from an older HTCondor version should be aware of when planning an upgrade. Here is
a list of items that administrators should be aware of. To see if any of the following items will affect an upgrade run
condor_upgrade_check.

13.2. Upgrading from an 10.0 LTS version to an 23.0 LTS version of HTCondor 745

../version-history/feature-versions-10-x.html
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2026
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1974
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1636
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1955
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1580
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1723
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1853
https://opensciencegrid.atlassian.net/browse/HTCONDOR-557
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1958
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1957
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1820
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1285
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1742
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1938
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1104
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1903
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1115
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1227

HTCondor Manual, Release 23.6.2

• HTCondor will no longer pass all environment variables to the DAGMan proper manager jobs environment. This
may result in DAGMan and its various parts (primarily PRE, POST,& HOLD Scripts) to start failing or change
behavior due to missing needed environment variables. To revert back to the old behavior or add the missing
environment variables to the DAGMan proper job set the configuration option. (HTCONDOR-1580)

• We added the ability for the condor_schedd to track users over time. Once you have upgraded to HTCondor 23,
you may no longer downgrade to a version before HTCondor 10.5.0 or HTCondor 10.0.4 LTS. (HTCONDOR-
1432)

• Execution Points without any administrator defined slot configuration will now default to creating and utilizing
one partitionable slot. This causes Startd expressions to have no effect. To revert an Execution Point to use static
slots add use FEATURE:StaticSlots to the Execution Point configuration. (HTCONDOR-2026)

• The configuration expression constant CpuBusyTime no longer represents a time delta but rather a timestamp of
when the CPU became busy. The new expression constant CpuBusyTimer now represents the time delta of how
long a CPU has been busy for. (HTCONDOR-1502)

• The configuration expression constants ActivationTimer, ConsoleBusy, CpuBusy, CpuIdle, JustCPU,
KeyboardBusy, KeyboardNotBusy, LastCkpt, MachineBusy, and NonCondorLoadAvg no longer ex-
ist by default for configuration expressions. To re-enable these constants either add use FEATURE:
POLICY_EXPR_FRAGMENTS or one of the desktop policies to the configuration. (HTCONDOR-1502)

• The job router configuration macros , , , and are deprecated and will be removed during the lifetime of the
HTCondor V23 feature series. (HTCONDOR-1968)

13.3 Version 23 Feature Releases

We release new features in these releases of HTCondor. The details of each version are described below.

13.3.1 Version 23.6.2

Release Notes:

• HTCondor version 23.6.2 released on April 16, 2024.

New Features:

• None.

Bugs Fixed:

• Fixed bug where the HoldReasonSubcode was not the documented value for jobs put on hold because of errors
running a file transfer plugin. (HTCONDOR-2373)

13.3.2 Version 23.6.1

Release Notes:

• HTCondor version 23.6.1 released on April 15, 2024.

• NOTE: Soon, IDTOKEN files with permissive file protections will be ignored. In particular, the /etc/condor/
tokens.d directory and the tokens contained within should be only accessible by the root account.

• This version includes all the updates from Version 23.0.8.

New Features:

746 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1580
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1432
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1432
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2026
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1502
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1502
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1968
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2373

HTCondor Manual, Release 23.6.2

• Allow the condor_startd to force a job that doesn’t ask to run inside a docker or apptainer container inside one
with new parameters and (HTCONDOR-2317)

• Added new submit command to allow docker universe jobs to override the entrypoint in the image.
(HTCONDOR-2321)

• -better-analyze now emits the units for memory and disk. (HTCONDOR-2333)

• Updated to allow the aliases lts for stable and feature for current when passed to the –channel option.
(HTCONDOR-775)

• Add htcondor job out, err, and log verbs to the CLI tool. (HTCONDOR-2182)

• The condor_startd now honors the environment variable OMP_NUM_THREADS when setting the number of cores
available. This allows glideins to pass an allocated number of cores from a base batch system to the glidein easily.
(HTCONDOR-727)

• If the EP is started under another batch system that limits the amount of memory to the EP via a cgroup limit,
the condor_startd now advertises this much memory available for jobs. (HTCONDOR-727)

• Added new job ad attribute which contains the filename of the submit file, if any. (HTCONDOR-2319)

• When the is set to host, docker universe now sets the hostname inside the container to the same as the host, to
ease networking from inside the container to outside the container. (HTCONDOR-2294)

• For vanilla universe jobs not running under container universe, that manually start apptainer or singularity, the
environment variables APPTAINER_CACHEDIR and SINGULARITY_CACHEDIR are now set to the scratch directory
to insure any files they create are cleaned up on job exit. (HTCONDOR-2337)

• with the -i (interactive) flag, and also run with a submit file, now transfers the executable to the interactive job.
(HTCONDOR-2315)

• Added the environment variable PYTHON_CPU_COUNT to the set of environment variables set for jobs to indi-
cate how many CPU cores are provisioned. Python 3.13 uses this override the detected count of CPU cores.
(HTCONDOR-2330)

• Added -file option to (HTCONDOR-575)

• The configuration parameter can now be used to relocate files that are normally place under /etc/condor on
Unix platforms. (HTCONDOR-2290)

• The submit file expansion $(CondorScratchDir) now works for local universe. (HTCONDOR-2324)

• For jobs that go through the grid universe or Job Router, the terminate event will now include extended resource
allocation and usage information when available. (HTCONDOR-2281)

• The package containing the Pelican OSDF file transfer plugin is now a weak dependency for HTCondor.
(HTCONDOR-2295)

• Include a weak dependency on bash-completion so the htcondor CLI command has <TAB> completions.
(HTCONDOR-2311)

• DAGMan no longer suppresses email notifications for jobs it manages by default. To revert behavior of suppress-
ing notifications set to True. (HTCONDOR-2323)

• Added configuration knobs and , enabling condor_gangliad to be configured to reset aggregate metrics to a value
of zero when they are no longer being updated. Previously aggregate metrics published to Ganglia retained the
last value published indefinitely. (HTCONDOR-2346)

• The Job Router route keyword GridResource is now always optional. The job attribute GridResource can be
set instead via a SET or similar command in the route definition. (HTCONDOR-2329)

13.3. Version 23 Feature Releases 747

https://opensciencegrid.atlassian.net/browse/HTCONDOR-2317
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2321
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2333
https://opensciencegrid.atlassian.net/browse/HTCONDOR-775
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2182
https://opensciencegrid.atlassian.net/browse/HTCONDOR-727
https://opensciencegrid.atlassian.net/browse/HTCONDOR-727
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2319
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2294
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2337
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2315
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2330
https://opensciencegrid.atlassian.net/browse/HTCONDOR-575
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2290
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2324
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2281
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2295
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2311
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2323
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2346
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2329

HTCondor Manual, Release 23.6.2

• The configuration variables and now apply to partitionable slots but do not count them as slots. As a consequence
of this change, when either of these variables are set equal to the number of CPUs, all slots will be connected.
(HTCONDOR-2331)

Bugs Fixed:

• Fixed a bug in the command that would fail when events were written on leap day. (HTCONDOR-2318)

13.3.3 Version 23.5.3

• HTCondor version 23.5.3 released on March 25, 2024.

• HTCondor tarballs now contain Pelican 7.6.2

New Features:

• None.

Bugs Fixed:

• None.

13.3.4 Version 23.5.2

Release Notes:

• HTCondor version 23.5.2 released on March 14, 2024.

• This version includes all the updates from Version 23.0.6.

• The library libcondorapi has been removed from the distribution. We know of no known user for this C++ event
log reading code, and all of our known users use the Python bindings for this, as we recommend. (HTCONDOR-
2278)

New Features:

• The old ClassAd-based syntax for defining Job Router routes is now disabled by default. It can be enabled by
setting configuration parameter to True. Support for the old syntax will be removed entirely before HTCondor
version 24.0.0. (HTCONDOR-2260)

• Added ability for administrators to specify whether Startd disk enforcement creates thin or thick provisioned
logical volumes for a jobs ephemeral execute directory. This is controlled by the new configuration knob .
(HTCONDOR-1783)

• GPU detection is now enabled by default on all execute nodes via a new configuration variable . This new
configuration variable supplies arguments to condor_gpu_discovery for use when GPU discovery is not otherwise
explicitly enabled in the configuration. (HTCONDOR-2264)

• On Linux systems with cgroup v1 enabled, HTCondor now uses the “devices” cgroup to prevent the job from
accessing unassigned GPUs. This can be disabled by setting the new knob to false. (HTCONDOR-1152)

• Added new submit commands for constraining GPU properties. When these commands are use the RequireGPUs
expression is generated automatically by submit and desired values are stored as job attributes. The new submit
commands are , , and . (HTCONDOR-2201)

• The new submit commands and can be used to have the condor_starter write a second copy of its daemon log
and have that file transferred to the Access Point with the job’s output sandbox. (HTCONDOR-2296)

• During SSL authentication, VOMS attributes can be included when mapping to an HTCondor identity. To do
so, configuration parameters and must be set to True. (HTCONDOR-2256)

• The $CondorVersion string contains the Git SHA for official CHTC builds of HTCondor. (HTCONDOR-532)

748 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-2331
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2318
https://github.com/PelicanPlatform/pelican/releases/tag/v7.6.2
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2278
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2278
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2260
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1783
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2264
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1152
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2201
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2296
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2256
https://opensciencegrid.atlassian.net/browse/HTCONDOR-532

HTCondor Manual, Release 23.6.2

• Added job attributes and to count the number of reconnect attempts in progress, and total for the lifetime of the
job, respectively. (HTCONDOR-2258)

• Improve the reliability of the user log reader code by changing it to do line oriented reads and to seek less.
(HTCONDOR-2254)

Bugs Fixed:

• In some rare cases where docker universe could not start a container, it would not remove that container until the
next time the start restarted. Now it is removed as soon as possible. (HTCONDOR-2263)

• In rare cases, the values of TimeSlotBusy and TimeExecute would be incorrect in the job event log when the job
was disconnected or did not start properly. (HTCONDOR-2265)

• Fixed a bug that can cause the condor_gridmanager to abort when multiple grid universe jobs share the same
proxy file to be used to authenticate with the remote job scheduling service. (HTCONDOR-2334)

13.3.5 Version 23.4.0

Release Notes:

• HTCondor version 23.4.0 released on February 8, 2024.

• This version includes all the updates from Version 23.0.4.

New Features:

• Added configuration parameter , to warn or prevent submitting with RequestDisk or RequestMemory without a
units suffix. (HTCONDOR-1837)

• On RPM-based distributions, a new package condor-credmon-local is now available which provides
the local SciTokens issuer credmon without installing extra packages required by the OAuth credmon.
The condor-credmon-local package is now a dependency of the condor-credmon-oauth package.
(HTCONDOR-2197)

• The command line tools eventlog read command now optionally takes more than one eventlog to process at once.
(HTCONDOR-2220)

• Docker universe now passes –log-driver none by default when running jobs, but can be disabled with knob.
(HTCONDOR-2190)

• Jobs that are assigned nVidia GPUs now have the environment variable NVIDIA_VISIBLE_DEVICES set in
addition to, and with the same value as CUDA_VISIBLE_DEVICES, as newer nVidia run-times prefer the
former. (HTCONDOR-2189)

• Added job classad attribute , a string which is is set to the source of the image transfer. (HTCONDOR-1797)

• If is set, it is now a fatal error to write a historical job to the history file, just like the normal history file.
(HTCONDOR-2027)

• now generates requirements expressions for condor grid universe jobs like it does for vanilla universe jobs. This
can be disabled by setting the new configuration parameter to False. (HTCONDOR-2204)

Bugs Fixed:

• Fixed a bug introduced in 23.3.0 wherein was completely ignored. (HTCONDOR-2245)

13.3. Version 23 Feature Releases 749

https://opensciencegrid.atlassian.net/browse/HTCONDOR-2258
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2254
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2263
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2265
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2334
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1837
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2197
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2220
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2190
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2189
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1797
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2027
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2204
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2245

HTCondor Manual, Release 23.6.2

13.3.6 Version 23.3.1

• HTCondor version 23.3.1 released on January 23, 2024.

• HTCondor tarballs now contain Pelican 7.4.0

New Features:

• None.

Bugs Fixed:

• None.

13.3.7 Version 23.3.0

Release Notes:

• HTCondor version 23.3.0 released on January 4, 2024.

• Limited support for Enterprise Linux 7 in the 23.x feature versions. Since we are developing new features, the
Enterprise Linux 7 build may drop features or be dropped entirely. In particular, Python 2 and OATH credmon
support will be removed during the 23.x development cycle. (HTCONDOR-2194)

• This version includes all the updates from Version 23.0.3.

New Features:

• Improved the -convertoldroutes option of and added a new -help convert option. These changes are
meant to assist in the conversion of CE’s away from the deprecated transform syntax. (HTCONDOR-2146)

• Added ability for DAGMan node script STDOUT and/or STDERR streams be captured in a user defined debug
file. For more information visit DAGMan script DEBUG file (HTCONDOR-2159)

• Improve hold message when jobs on cgroup system exceed their memory limits. (HTCONDOR-1533)

• Startd now advertises when jobs are running with cgroup enforcement in the slot attribute (HTCONDOR-1532)

• START_CRON_LOG_NON_ZERO_EXIT now also logs the stderr of the startd cron job to the StartLog.
(HTCONDOR-1138)

Bugs Fixed:

• Container universe now works when file transfer is disabled or not used. (HTCONDOR-1329)

• Removed confusing message in StartLog at shutdown about trying to kill illegal pid. (HTCONDOR-1012)

13.3.8 Version 23.2.0

Release Notes:

• HTCondor version 23.2.0 released on November 29, 2023.

• This version includes all the updates from Version 23.0.2.

New Features:

• Added periodic_vacate to the submit language and SYSTEM_PERIODIC_VACATE to the configuration system.
Historically, users used periodic_hold/release to evict “stuck” jobs, that is jobs that should finish in some amount
of time, but sometimes run for an arbitrarily long time. Now with this new feature, for improved usability, users
may use this single periodic_vacate submit command instead. (HTCONDOR-2114)

750 Chapter 13. Version History and Release Notes

https://github.com/PelicanPlatform/pelican/releases/tag/v7.4.0
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2194
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2146
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2159
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1533
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1532
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1138
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1329
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1012
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2114

HTCondor Manual, Release 23.6.2

• Linux EPs now advertise the startd attribute HasRotationalScratch to be true when HTCondor detects that the
execute directory is on a rotational hard disk and false when the kernel reports it to be on SSD, NVME, or tmpfs.
(HTCONDOR-2085)

• Added TimeSlotBusy and TimeExecute to the event log terminate events to indicate how much wall time a
job used total (including file transfer) and just for the job execution proper, respectively. (HTCONDOR-2101)

• Most files that HTCondor generates are now written in binary mode on Windows. As a result, each line in these
files will end in just a line feed character, without a preceding carriage return character. Files written by jobs are
unaffected by this change. (HTCONDOR-2098)

• HTCondor now uses the Pelican Platform to do file transfers with the Open Science Data Federation (OSDF).
(HTCONDOR-2100)

• HTCondor now does a better job of cleaning up inner cgroups left behind by glidein pilots. (HTCONDOR-2081)

• Added new configuration option to allow the passing of arguments to specified prepare job hooks. (HTCONDOR-
1851)

• The default trusted CAs for OpenSSL are now always used by default in addition to any specified by , , , and . The
new configuration parameters and can be used to disable use of the default CAs for OpenSSL. (HTCONDOR-
2090)

• Using to set a pool password on Windows now requires ADMINISTRATOR authorization with the (instead of
CONFIG authorization). (HTCONDOR-2106)

• When installs binaries on an EL7 machine, it now uses the latest 23.0.x release. Before, it would fail, as current
feature versions of HTCondor are not available on EL7. (HTCONDOR-2125)

• HTCondor daemons on Linux no longer run very slowly when the ulimit for the maximum number of open files
is very high. (HTCONDOR-2128)

• Somewhat improved the performance of the _DEBUG flag D_FDS. But please don’t use this unless absolutely
needed. (HTCONDOR-2050)

Bugs Fixed:

• None.

13.3.9 Version 23.1.0

Release Notes:

• HTCondor version 23.1.0 released on October 31, 2023.

• This version includes all the updates from Version 23.0.1.

• Enterprise Linux 7 support is discontinued with this release.

• We have added HTCondor Python wheels for the aarch64 CPU architecture on PyPI. (HTCONDOR-2120)

New Features:

• Improved to filter tracked jobs based on cluster IDs either provided by the -clusters option or found in associ-
ation to batch names provided by the -batches option. This helps limit the amount of output lines when using
an aggregate/shared log file. (HTCONDOR-2046)

• Added new -larger-than flag to that filters tracked jobs to only include jobs with cluster IDs greater than or
equal to the provided cluster ID. (HTCONDOR-2046)

• The Access Point can now be told to use a non-standard ssh port when sending jobs to a remote scheduling system
(such as Slurm). You can now specify an alternate ssh port with . (HTCONDOR-2002)

13.3. Version 23 Feature Releases 751

https://opensciencegrid.atlassian.net/browse/HTCONDOR-2085
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2101
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2098
https://pelicanplatform.org/
https://osg-htc.org/services/osdf.html
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2100
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2081
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1851
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1851
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2090
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2090
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2106
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2125
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2128
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2050
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2120
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2046
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2046
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2002

HTCondor Manual, Release 23.6.2

• Laid groundwork to allow an Execution Point running without root access to accurately limit the job’s usage of
CPU and Memory in real time via Linux kernel cgroups. This is particularly interesting for glidein pools. Jobs
running in cgroup v2 systems can now subdivide the cgroup they have been given, so that pilots can enforce
sub-limits of the resources they are given. (HTCONDOR-2058)

• HTCondor file transfers using HTTPS can now utilize CA certificates in a non-standard location. The curl_plugin
tool now recognizes the environment variable X509_CERT_DIR and configures libcurl to search the given direc-
tory for CA certificates. (HTCONDOR-2065)

• Improved performance of condor_schedd, and other daemons, by caching the value in /etc/localtime, so that
debugging logs aren’t always stat’ing that file. (HTCONDOR-2064)

Bugs Fixed:

• None.

13.4 Version 23.0 LTS Releases

These are Long Term Support (LTS) versions of HTCondor. As usual, only bug fixes (and potentially, ports to new
platforms) will be provided in future 23.0.y versions. New features will be added in the 23.x.y feature versions.

Warning: The configuration macros JOB_ROUTER_DEFAULTS, JOB_ROUTER_ENTRIES,
JOB_ROUTER_ENTRIES_CMD, and JOB_ROUTER_ENTRIES_FILE are deprecated and will be removed for
V24 of HTCondor. New configuration syntax for the job router is defined using JOB_ROUTER_ROUTE_NAMES
and JOB_ROUTER_ROUTE_<Name>. Note: The removal will occur during the lifetime of the HTCondor V23
feature series. (HTCONDOR-1968)

The details of each version are described below.

13.4.1 Version 23.0.8

Release Notes:

• HTCondor version 23.0.8 released on April 11, 2024.

New Features:

• None.

Bugs Fixed:

• Fixed a bug that caused ssh-agent processes to be leaked when using grid universe remote batch job submission
over SSH. (HTCONDOR-2286)

• Fixed a bug where DAGMan would crash when the provisioner node was given a parent node. (HTCONDOR-
2291)

• Fixed a bug that prevented the use of ftp: URLs in the file transfer plugin. (HTCONDOR-2273)

• Fixed a bug where a job that’s matched to an offline slot ad remains idle forever. (HTCONDOR-2304)

• Fixed a bug where the condor_shadow would not write a job termination event to the job log for a completed job
if the condor_shadow failed to reconnect to the condor_starter prior to completing cleanup. This would result
in DAGMan workflows being stuck waiting forever for jobs to finish. (HTCONDOR-2292)

• Fixed bug where the Shadow failed to write its job ad to when it failed to reconnect to the Starter. (HTCONDOR-
2289)

752 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-2058
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2065
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2064
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1968
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2286
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2291
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2291
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2273
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2304
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2292
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2289
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2289

HTCondor Manual, Release 23.6.2

• Fixed a bug in the Windows MSI installer that would cause installation to fail when the install path had a space
in the path name, such as when installing to C:\Program Files (HTCONDOR-2302)

• Fixed a bug where the was allowed to create job event log information events with newlines in them, which broke
the event log parser. (HTCONDOR-2305)

• Fixed SyntaxWarning raised by Python 3.12 in condor_adstash. (HTCONDOR-2312)

• Improved use of Vault for job credentials. Reject some invalid use cases and avoid redundant work with frequent
job submission. (HTCONDOR-2038) (HTCONDOR-2232)

• Fixed an issue where HTCondor could not be installed on Debian or Ubuntu platforms if there was more that
one condor user in LDAP. (HTCONDOR-2306)

13.4.2 Version 23.0.6

Release Notes:

• HTCondor version 23.0.6 released on March 14, 2024.

New Features:

• Speed up starting of daemons on Linux systems configured with very large number of file descriptors.
(HTCONDOR-2270)

Bugs Fixed:

• Fixed bug in DAGMan where nodes that had retries would incorrectly set its descendants to the Futile state if the
node job got removed. (HTCONDOR-2240)

• Fixed bug in the event log reader that would rarely cause DAGMan to lose track of a job, and wait forever for a
job that had really finished, with DAGMan not realizing that said job had indeed finished. (HTCONDOR-2236)

• Fixed condor_test_token to access the SciTokens cache as the correct user when run as root. (HTCONDOR-2241)

• Fixed a bug that caused a crash if a configuration file or submit description file contained an empty multi-line
value. (HTCONDOR-2249)

• Fixed a bug where a submit transform or a job router route could crash on a two argument transform statement
that had missing arguments. (HTCONDOR-2280)

• Fixed error handing for the -format and -autoformat options of the condor_qusers tool when the argument
to those options was not a valid expression. (HTCONDOR-2269)

• Fixed a bug where the condor_collector generated an invalid host certificate for itself on macOS. (HTCONDOR-
2272)

13.4.3 Version 23.0.4

Release Notes:

• HTCondor version 23.0.4 released on February 8, 2024.

New Features:

• The condor_starter will now set the environment variable NVIDIA_VISIBLE_DEVICES either to none or to a
list of the full uuid of each GPU device assigned to the slot. (HTCONDOR-2242)

• When the HTCondor Keyboard daemon (condor_kbdd) is installed, a configuration file is included to automat-
ically enable user input monitoring. (HTCONDOR-2255)

13.4. Version 23.0 LTS Releases 753

https://opensciencegrid.atlassian.net/browse/HTCONDOR-2302
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2305
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2312
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2038
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2232
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2306
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2270
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2240
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2236
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2241
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2249
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2280
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2269
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2272
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2272
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2242
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2255

HTCondor Manual, Release 23.6.2

• The condor_starter can now be configured to capture the stdout and stderr of file transfer plugins and write that
output into the StarterLog. (HTCONDOR-1459)

• Updated script for better support and maintainability. This update includes new flags/functionality and removal
of old checks for upgrading between V9 and V10 of HTCondor. (HTCONDOR-2168)

Bugs Fixed:

• Fixed a bug in the HTCondor Keyboard daemon where activity detected by the X Screen Saver extension was
ignored. (HTCONDOR-2255)

• Search engine timeout settings for condor_adstash now apply to all search engine operations, not just the initial
request to the search engine. (HTCONDOR-2167)

• Ensure Perl dependencies are present for the condor_gather_info script. The condor_gather_info script now
properly reports the User login name. Also, report the contents of /etc/os-release`. (HTCONDOR-2094)

• The submit language will no longer treat request_gpu_memory and request_gpus_memory as requests for a
custom resource of type gpu_memory or gpus_memory respectively. (HTCONDOR-2201)

• Fixed bug where DAG node jobs declared inline inside a DAG file would fail to set the Job ClassAd attribute .
(HTCONDOR-2184)

• Fixed SyntaxWarning raised by Python 3.12 in scripts packaged with the Python bindings. (HTCONDOR-
2212)

13.4.4 Version 23.0.3

Release Notes:

• HTCondor version 23.0.3 released on January 4, 2024.

• Preliminary support for openSUSE LEAP 15. (HTCONDOR-2156)

New Features:

• Improve command to display information about a jobs goodput. (HTCONDOR-1982)

• Added ROOT_MAX_THREADS to default value. (HTCONDOR-2137)

Bugs Fixed:

• The file transfer plugin documents that an exit code of 0 is success, 1 is failure, and 2 is reserved for future work
to handle the need to refresh credentials. The definition has now changed so that any non-zero exit codes are
treated as an error putting the job on hold. (HTCONDOR-2205)

• Fixed a bug where any file I/O error (such as disk full) was ignored by the condor_starter when writing the Clas-
sAd file that controlled file transfer plugins. As a result, in rare cases, file transfer plugins could be unknowingly
given incomplete sets of files to transfer. (HTCONDOR-2203)

• Fixed a crash in the Python bindings when job submit fails due to any reason. A common reason might be when
fails. (HTCONDOR-1931)

• There is a fixed size limit of 5120 bytes for chip commands. The starter now returns an error, and the chirp_client
prints out an error when requested to send a chirp command over this limit. Previously, these were silently
ignored. (HTCONDOR-2157)

• Fixed a bug where the Python-based HTChirp client had its max line length set much shorter than is allowed by
the HTCondor Chirp server. The client now also throws a relevant error when this max limit is hit while sending
commands to the server. (HTCONDOR-2142)

754 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1459
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2168
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2255
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2167
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2094
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2201
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2184
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2212
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2212
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2156
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1982
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2137
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2205
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2203
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1931
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2157
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2142

HTCondor Manual, Release 23.6.2

• Linux jobs with a invalid #! interpreter now get a better error message when the Execution Point is running as
root. This was enhanced in 10.0, but a bug prevented the enhancement from fully working on a system installed
Execution Point. (HTCONDOR-1698)

• Fixed a bug where the DAGMan job proper for a DAG with a final node could stay stuck in the removed job state.
(HTCONDOR-2147)

• Correctly identify GPUsAverageUsage and GPUsMemoryUsage as floating point values for . (HTCONDOR-
2170)

• Fixed a bug where would get wedged due to a logging failure. (HTCONDOR-2166)

• Updated the usage and man page of the tool to include information about the -reconfig-on-completion
option. (HTCONDOR-2164)

13.4.5 Version 23.0.2

Release Notes:

• HTCondor version 23.0.2 released on November 20, 2023.

New Features:

• None.

Bugs Fixed:

• Fixed a bug when Hashicorp Vault is configured to issue data transfer tokens (which is not the default), job
submission could hang and then fail. Reverted a change to that disconnected the output stream of to the user’s
console, which broke OIDC flow. (HTCONDOR-2078)

• Fixed a bug that could result in job sandboxes not being cleaned up for batch grid jobs submitted to a remote
cluster. (HTCONDOR-2073)

• Improved cleanup of ssh-agent processes when submitting batch grid universe jobs to a remote cluster via ssh.
(HTCONDOR-2118)

• Fixed a bug where the condor_negotiator could fail to contact a condor_schedd that’s on the same private net-
work. (HTCONDOR-2115)

• Fixed = custom for cgroup v2 systems. (HTCONDOR-2133)

• Implemented support for cgroup v2 systems. (HTCONDOR-2127)

• Fixed a bug in the OAuth and Vault credmons where log files would not rotate according to the configuration.
(HTCONDOR-2013)

• Fixed a bug in the condor_schedd where it would not create a permanent User record when a queue super user
submitted a job for a different owner. This bug would sometimes cause the condor_schedd to crash after a job
for a new user was submitted. (HTCONDOR-2131)

• Fixed a bug that could cause jobs to be created incorrectly when a using initialdir and max_idle or
max_materialize in the same submit file. (HTCONDOR-2092)

• Fixed bug in DAGMan where held jobs that were removed would cause a warning about the internal count of
held job procs being incorrect. (HTCONDOR-2102)

• Fixed a bug in where using the -addr flag would automatically apply the -all flag to transfer all job data back
making the use of -addr with a Job ID constraint fail. (HTCONDOR-2105)

• Fixed warnings about use of deprecated HTCondor Python binding methods in the htcondor dag submit com-
mand. (HTCONDOR-2104)

13.4. Version 23.0 LTS Releases 755

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1698
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2147
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2170
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2170
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2166
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2164
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2078
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2073
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2118
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2115
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2133
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2127
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2013
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2131
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2092
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2102
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2105
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2104

HTCondor Manual, Release 23.6.2

• Fixed several small bugs with Trust On First Use (TOFU) for SSL authentication. Added configuration param-
eter , which can be used to prevent tools from prompting the user about trusting the server’s SSL certificate.
(HTCONDOR-2080)

• Fixed bug in the tool where it would crash when reading logs with parallel universe jobs in it. (HTCONDOR-
2099)

13.4.6 Version 23.0.1

Release Notes:

• HTCondor version 23.0.1 released on October 31, 2023.

• We added a HTCondor Python wheel for Python 3.12 on PyPI. (HTCONDOR-2117)

• The HTCondor tarballs now contain apptainer version 1.2.4. (HTCONDOR-2111)

New Features:

• None.

Bugs Fixed:

• Fixed a bug introduced in HTCondor 10.6.0 that prevented USE_PID_NAMESPACES from working.
(HTCONDOR-2088)

• Fix a bug where HTCondor fails to install on Debian and Ubuntu platforms when the condor user is present and
the /var/lib/condor directory is not. (HTCONDOR-2074)

• Fixed a bug where execution times reported for ARC CE jobs were inflated by a factor of 60. (HTCONDOR-
2068)

• Fixed a bug in DAGMan where Service nodes that failed caused the DAGMan process to fail an assertion check
and crash. (HTCONDOR-2051)

• The job attributes , , and are now updated for Condor-C and Job Router jobs. (HTCONDOR-2069)

• Updated HTCondor Windows binaries that are statically linked to the curl library to use curl version 8.4.0.
The update was due to a report of a vulnerability, CVE-2023-38545, which affects earlier versions of curl.
(HTCONDOR-2084)

• Fixed a bug on Windows where jobs would be inappropriately put on hold with an out of memory error if they
returned an exit code with high bits set (HTCONDOR-2061)

• Fixed a bug where jobs put on hold by the shadow were not writing their ad to the job epoch history file.
(HTCONDOR-2060)

• Fixed a rare race condition where ’ing a parallel universe job would not remove the job if the rm happened after
the job was matched but before it fully started (HTCONDOR-2070)

13.4.7 Version 23.0.0

Release Notes:

• HTCondor version 23.0.0 released on September 29, 2023.

New Features:

• A condor_startd without any slot types defined will now default to a single partitionable slot rather than a number
of static slots equal to the number of cores as it was in previous versions. The configuration template use
FEATURE : StaticSlots was added for admins wanting the old behavior. (HTCONDOR-2026)

756 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-2080
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2099
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2099
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2117
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2111
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2088
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2074
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2068
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2068
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2051
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2069
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2084
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2061
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2060
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2070
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2026

HTCondor Manual, Release 23.6.2

• The attribute is no longer a required attribute in most Classads. It is still used for queries to the condor_collector
and it remains in the Job ClassAd and the Machine ClassAd because of older versions of HTCondor require it to
be present. (HTCONDOR-1997)

• The -dry-run option of will now print the output of a script. This can be useful when developing such a script.
(HTCONDOR-2014)

• Added ability to query epoch history records from the Python bindings. (HTCONDOR-2036)

• The default value of will now be visible in . The default for will inherit from this value, and thus no READ and
CLIENT will no longer automatically have CLAIMTOBE. (HTCONDOR-2047)

• Added new tool , which will create a SciToken with configurable contents (including issuer) which will be ac-
cepted for a short period of time by the local HTCondor daemons. (HTCONDOR-1115)

Bugs Fixed:

• Fixed a bug that would cause the condor_startd to crash in rare cases when jobs go on hold (HTCONDOR-2016)

• Fixed a bug where if a user-level checkpoint could not be transferred from the starter to the AP, the job would go
on hold. Now it will retry, or go back to idle. (HTCONDOR-2034)

• Fixed a bug where the CommittedTime attribute was not set correctly for Docker Universe jobs doing user level
check-pointing. (HTCONDOR-2014)

• Fixed a bug where was deleting files named ‘OfflineAds’ in the spool directory. (HTCONDOR-2019)

• Fixed a bug where the blahpd would incorrectly believe that an LSF batch scheduler was not working.
(HTCONDOR-2003)

• Fixed the Execution Point’s detection of whether libvirt is working properly for the VM universe. (HTCONDOR-
2009)

• Fixed a bug where container universe did not work for late materialization jobs submitted to the condor_schedd
(HTCONDOR-2031)

• Fixed a bug where the condor_startd could crash if a new match is made at the end a drain request.
(HTCONDOR-2032)

13.5 Version 10 Feature Releases

We release new features in these releases of HTCondor. The details of each version are described below.

13.5.1 Version 10.9.0

Release Notes:

• HTCondor version 10.9.0 released on September 28, 2023.

• This version includes all the updates from Version 10.0.9.

New Features:

• None.

Bugs Fixed:

• None.

13.5. Version 10 Feature Releases 757

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1997
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2014
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2036
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2047
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1115
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2016
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2034
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2014
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2019
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2003
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2009
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2009
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2031
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2032

HTCondor Manual, Release 23.6.2

13.5.2 Version 10.8.0

Release Notes:

• HTCondor version 10.8.0 released on September 14, 2023.

• The packaged builds (RPMs and debs) have been reorganized. We no longer wish to support the ClassAd library
and it has been folded into the main condor package. The condor-blahp and condor-procd packages have
also been folded into the condor package. (HTCONDOR-1981)

• On Debian based systems, the HTCondor’s libexec directory has moved to the more standard /usr/libexec/
condor. (HTCONDOR-1981)

• The Debian packaging has been aligned with the RPM packaging. The package names are now condor and
minicondor. The condor-kbdd package has been split out, since many installations are server based and do not
require the keyboard daemon and all of its dependencies on the X Window system. Also, the condor-vm-gahp
package has been split out for sites that do not want to support VM Universe and the libvirt dependencies that
come along with it. (HTCONDOR-1987)

• This version includes all the updates from Version 10.0.8.

New Features:

• In an HTCondor Execution Point started by root on Linux, the default for cgroups memory has changed to
be enforcing. This means that jobs that use more then their provisioned memory will be put on hold with an
appropriate hold message. condor_q -hold will show that message. The previous default can be restored by
setting = none on the Execution points. (HTCONDOR-1974)

• Added a -gpus option to . With this option will show only machines that have GPUs provisioned; and it will
show information about the GPU properties. (HTCONDOR-1958)

• The output of when using the -compact option has been improved to show a separate row for the second and
subsequent slot type for machines that have multiple slot types. Also the totals now count slots that have the
BackfillSlot attribute under the Backfill or BkIdle columns. (HTCONDOR-1957)

• Added new DAG command ENV for DAGMan. This command allows users to specify environment variables to
be added into the DAGMan job proper’s environment either by setting values explicitly or getting them from the
environment the job is submitted from. (HTCONDOR-1955)

• Improved output for htcondor dag status command to include more information about the specified DAG.
(HTCONDOR-1951)

• Updated DAGMan to utilize the -reason flag to add a message about why a job was removed when DAGMan
removes managed jobs via for some reason. (HTCONDOR-1950)

• Partitionable slots can now be directly claimed by a condor_schedd (i.e. the of the partitionable slot changes to
Claimed). While a slot is claimed, no other condor_schedd is able to create new dynamic slots to run jobs. This
is controlled by the new configuration parameter and is disabled by default. (HTCONDOR-1824)

• By default, the user event logs are no longer fsync’d by the condor_schedd. This should improve the performance
of the condor_schedd, especially when the user’s event logs are on non-solid state disks. There is a knob to revert
to the old semantics, ENABLE_USERLOG_FSYNC, which defaults to false. (HTCONDOR-1550)

• A new configuration variable was added to allow administrators to restrict job submission to users that have
already been added to the condor_schedd using the tool. (HTCONDOR-1934)

• Updated condor_upgrade_check script to check and warn about known incompatibilities introduced in the fea-
ture series for HTCondor V10 that can cause issues when upgrading to a newer version (i.e. HTCondor V23).
(HTCONDOR-1960)

• Self-checkpointing jobs may now include the time spent generating successfully-stored checkpoints as part of
their CommittedTime job ad attribute. (HTCONDOR-1942)

758 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1981
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1981
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1987
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1974
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1958
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1957
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1955
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1951
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1950
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1824
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1550
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1934
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1960
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1942

HTCondor Manual, Release 23.6.2

Bugs Fixed:

• Fixed a bug introduced in 10.5.0 that caused jobs to fail to start if they requested an OAuth credential whose
service name included an asterisk. (HTCONDOR-1966)

• Fixed bugs in that could cause it to crash or write incorrect data for the pool password. (HTCONDOR-1587)

• Fixed a bug with where it would fail if the Execution point was behind CCB, and the command was run imme-
diately after the job started. (HTCONDOR-1979)

• Some support scripts for the htcondor annex command are now properly installed as executable.
(HTCONDOR-1984)

• Fixed a bug where could get stuck in a loop while installing files into an NFS directory. (HTCONDOR-2023)

13.5.3 Version 10.7.1

• HTCondor version 10.7.1 released on August 9, 2023.

New Features:

• None.

Bugs Fixed:

• Fixed inefficiency in DAGMan setting a nodes descendants to futile status which would result in DAGMan taking
an extremely long time when a node fails in a very large and bushy DAG. (HTCONDOR-1945)

13.5.4 Version 10.7.0

Release Notes:

• HTCondor version 10.7.0 released on July 31, 2023.

• This version includes all the updates from Version 10.0.7.

• Add support for Debian 12 (bookworm). (HTCONDOR-1938)

New Features:

• A single HTCondor pool can now have multiple condor_defrag daemons running and they will not interfere with
each other so long as each has that select mutually exclusive subsets of the pool. (HTCONDOR-1903)

• If a job does not define any of the periodic policy expressions (like periodic_hold), HTCondor no longer sets a
default value (like false) in the job ad. The system knows that if these aren’t set, to take the default action. This
removes about 10% of the attributes in a job ad, with corresponding benefits for all consumers of the job ad.
(HTCONDOR-1919)

• Added submit command want_io_proxy. This replaces the old command +WantIOProxy. (HTCONDOR-
1875)

• Apptainer is now included in the tarballs. (HTCONDOR-1932)

Bugs Fixed:

• Fixed bug introduced in 10.5.0 on cgroup v1 systems where the user and system CPU time measured was low by
a factor of 10,000. (HTCONDOR-1920)

• Fixed a bug introduced in V10.5.0 of HTCondor where the .job.ad and .machine.ad failed to be writ-
ten to a local universe jobs scratch directory because of the condor_starter having the wrong permissions.
(HTCONDOR-1912)

13.5. Version 10 Feature Releases 759

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1966
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1587
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1979
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1984
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2023
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1945
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1938
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1903
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1919
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1875
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1875
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1932
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1920
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1912

HTCondor Manual, Release 23.6.2

• If the collector is storing offline ads via COLLECTOR_PERSISTENT_AD_LOG the tool will no longer delete
that file (HTCONDOR-1874)

• Fixed a bug where empty execute sandboxes failed to be cleaned up on the Execution Point when using Startd
disk enforcement. (HTCONDOR-1821)

• When using Startd disk enforcement, if a condor_starter running a container or VM universe job is abruptly
killed (like SIGABRT) then the condor_startd would fail to cleanup the running docker container or VM and
underlying logical volume. (HTCONDOR-1895)

13.5.5 Version 10.6.0

Release Notes:

• HTCondor version 10.6.0 released on June 29, 2023.

• This version includes all the updates from Version 10.0.6.

New Features:

• Added the condor_qusers command to monitor and control users at the Access Point. Users disabled at the
Access Point are no longer allowed to submit jobs. Jobs submitted before the user was disabled are allowed
to run to completion. When a user is disabled, an optional reason string can be provided. The reason will be
included in the error message from when submission is refused because the user is disabled. (HTCONDOR-
1723) (HTCONDOR-1835)

• Mitigate a memory leak in the arc_gahp with libcurl when it uses NSS for security. When an arc_gahp process
has handled a certain number of commands, a new arc_gahp is started and old process exits. The number of
commands that triggers a new process is controlled by new configuration parameter . (HTCONDOR-1778)

• Container universe jobs may now specify the container_image to be an image transferred via a file transfer plugin.
(HTCONDOR-1820)

• Added two new functions for using ClassAd expressions. The stringListSubsetMatch and
stringListISubsetMatch functions can be used to check if all of the members of a stringlist are also in a target
stringlist. A single stringListSubsetMatch function call can replace a whole set of stringListMember
calls once the whole pool is updated to 10.6.0. (HTCONDOR-1817)

• Added a new automatic submit file macro $(JobId) which expands to the full id of the submitted job.
(HTCONDOR-1836)

• The job’s executable is no longer renamed to condor_exec.exe when the job’s sandbox is transferred to the Exe-
cution Point. (HTCONDOR-1227)

Bugs Fixed:

• condor_restd service in the htcondor/mini container no longer crashes on startup due to the en_US.UTF-8 locale
being unavailable. (HTCONDOR-1785)

• Fixed a bug that would very rarely cause to hang forever. (HTCONDOR-1792)

760 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1874
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1821
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1895
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1723
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1723
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1835
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1778
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1820
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1817
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1836
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1227
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1785
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1792

HTCondor Manual, Release 23.6.2

13.5.6 Version 10.5.1

• HTCondor version 10.5.1 released on June 6, 2023.

New Features:

• None.

Bugs Fixed:

• For grid universe jobs of type batch, detecting if a Slurm system is functioning now works with older versions
of Slurm. (HTCONDOR-1826)

13.5.7 Version 10.5.0

Release Notes:

• HTCondor version 10.5.0 released on June 5, 2023.

• This version includes all the updates from Version 10.0.4.

• Add support for Amazon Linux 2023. VOMS authentication is omitted on this platform. (HTCONDOR-1742)

New Features:

• Added new Save File functionality to DAGMan which allows users to specify DAG nodes as save points to record
the current DAG’s progress in a file similar to a rescue file. These files can then be specified with the new flag
load_save to re-run the DAG from that point of progression. For more information visit DAG Save Point Files.
(HTCONDOR-1636)

• The admin knob when set to false, now allows submit files to use any value but true for their getenv = ...
commands. (HTCONDOR-1671)

• Improved throughput when submitting a large number of ARC CE jobs. Previously, jobs could remain stalled
for a long time in the ARC CE server waiting for their input sandbox to be transferred while other were being
submitted. (HTCONDOR-1666)

• The arc_gahp can now issue multiple HTTPS requests in parallel in different threads. This is controlled by the
new configuration parameter . (HTCONDOR-1690)

• The Execute event in the user log now prints out slot name, sandbox path and resource quantities of execution
slot. (HTCONDOR-1722)

• Added new submit command ulog_execute_attrs for a jobs submit file. This command takes a comma-
separated list of machine ClassAd attributes to be written to the user logs execute event. (HTCONDOR-1759)

• Added new DAGMan configuration macro to give a list of machine attributes that will be added to DAGMan
submitted jobs for recording in the various produced job ads and userlogs. (HTCONDOR-1717)

• The tool can now read a configuration file containing JOB_TRANSFORM_<name> or JOB_ROUTER_ROUTE_<name>
and then apply any or all of the transforms declared in that file. This makes it easier to test job transforms before
deploying them. (HTCONDOR-1710)

• Linux Cgroup support has been redone in a way that doesn’t depend on using the procd. There should be no user
visible changes in the usual cases. (HTCONDOR-1589)

Bugs Fixed:

• Expanded default list of environment variables to include in the DAGMan proper manager jobs getenv to in-
clude HOME, USER, LANG, and LC_ALL. Thus resulting in these variables appearing in the DAGMan manager jobs
environment. (HTCONDOR-1725)

13.5. Version 10 Feature Releases 761

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1826
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1742
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1636
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1671
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1666
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1690
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1722
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1759
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1717
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1710
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1589
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1725

HTCondor Manual, Release 23.6.2

• Fixed a bug on cgroup v2 systems where memory limits over 2 gigabytes would not be enforced correctly.
(HTCONDOR-1775)

• HTCondor no longer puts jobs using cgroup v1 into the blkio controller. HTCondor never put limits on the i/o,
and some kernel version panicked and crashed when they had active jobs in the blkio controller. (HTCONDOR-
1786)

• Forced condor_ssh_to_job to never try to use a Control Master, which would break ssh_to_job. Also raised the
timeout for ssh_to_job which might be needed for slow WANs. (HTCONDOR-1782)

• Fixed a bug when running with root on a Linux systems with cgroup v1 that would print a warning to the
StarterLog claiming Warning: cannot chown /sys/fs/cgroup/cpu,cpuset (HTCONDOR-1672)

• Fixed a bug where would fail to find history files for a remote query if the various history configuration macros
were specified with subsystem prefixes i.e. SCHEDD.HISTORY = /path (HTCONDOR-1739)

• When started on a systemd system, HTCondor will now wait for the SSSD service to start. Previously it only
waited for ypbind. (HTCONDOR-1655)

• Fixed a bug in that would remove any recorded job epoch history files stored in the spool directory.
(HTCONDOR-1738)

13.5.8 Version 10.4.3

Release Notes:

• HTCondor version 10.4.3 released on May 9, 2023.

• Tarballs in this release contain the recent scitokens-cpp 1.0.1 library. (HTCONDOR-1779)

New Features:

• None.

Bugs Fixed:

• The ce-audit collector plug-in should no longer crash. (HTCONDOR-1774)

13.5.9 Version 10.4.2

• HTCondor version 10.4.2 released on May 2, 2023.

New Features:

• None.

Bugs Fixed:

• Fixed a bug introduced in HTCondor 10.0.3 that caused remote submission of batch grid universe jobs via ssh
to fail when attempting to do file transfer. (HTCONDOR-1747)

• Fixed a bug where the HTCondor-CE would fail to handle any of its jobs after a restart. (HTCONDOR-1755)

762 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1775
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1786
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1786
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1782
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1672
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1739
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1655
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1738
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1779
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1774
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1747
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1755

HTCondor Manual, Release 23.6.2

13.5.10 Version 10.4.1

Release Notes:

• HTCondor version 10.4.1 released on April 12, 2023.

• Preliminary support for Ubuntu 20.04 (Focal Fossa) on PowerPC (ppc64el). (HTCONDOR-1668)

New Features:

• None.

Bugs Fixed:

• now works correctly when the hardware architecture of the remote machine isn’t x86_64. (HTCONDOR-1670)

13.5.11 Version 10.4.0

Release Notes:

• HTCondor version 10.4.0 released on April 6, 2023.

• This version includes all the updates from Version 10.0.3.

• HTCondor will no longer pass all environment variables to the DAGMan proper manager jobs environment. This
may result in DAGMan and its various parts (primarily PRE, POST,& HOLD Scripts) to start failing or change
behavior due to missing needed environment variables. To revert back to the old behavior or add the missing
environment variables to the DAGMan proper jobs environment set the configuration option. (HTCONDOR-
1580)

• The condor_startd will no longer advertise CpuBusy or CpuBusyTime unless the configuration template use
POLICY : DESKTOP or use POLICY : UWCS_DESKTOP is used. Those templates will cause CpuBusyTime to
be advertised as a time value and not a duration value. The policy expressions in those templates have been
modified to account for this fact. If you have written policy expressions of your own that reference CpuBusyTime
you will need to modify them to use $(CpuBusyTimer) from one of those templates or make the equivalent
change. (HTCONDOR-1502)

New Features:

• DAGMan no longer sets getenv = true in the .condor.sub file while adding the ability to better control the
environment passed to the DAGMan proper job. getenv will default to CONDOR_CONFIG,_CONDOR_*,PATH,
PYTHONPATH,PERL*,PEGASUS_*,TZ in the .condor.sub file which can be appended to via the or the new
flag include_env. Also added new flag insert_env to directly set key=value pairs of information into the
.condor.sub environment. (HTCONDOR-1580)

• New configuration parameter SEC_SCITOKENS_FOREIGN_TOKEN_ISSUERS restricts which issuers’ tokens
will be accepted under SEC_SCITOKENS_ALLOW_FOREIGN_TOKEN_TYPES. Updated default values allow EGI
CheckIn tokens to be accepted under the SCITOKENS authentication method. (HTCONDOR-1515)

• The condor_startd can now be configured to evaluate a set of expressions defined by . For each expression, the
last evaluated value will be advertised as well as the time that the evaluation changed to that value. This new
generic mechanism was used to add a new slot attribute NumDynamicSlotsTime that is the last time a dynamic
slot was created or destroyed. (HTCONDOR-1502)

• Add new field ContainerDuration to TransferInput attribute of jobs that measure the number of seconds to
transfer the Apptainer/Singularity image. (HTCONDOR-1588)

• For grid universe jobs of type batch, add detection of when the target batch system is unreachable or not function-
ing. When this is the case, HTCondor marks the resource as unavailable instead of putting the affected jobs on
hold. This matches the behavior for other grid universe job types. Grid ads in the collector now contain attributes
and , which give details about why the remote scheduling system is considered unavailable. (HTCONDOR-1582)

13.5. Version 10 Feature Releases 763

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1668
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1670
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1580
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1580
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1502
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1580
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1515
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1502
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1588
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1582

HTCondor Manual, Release 23.6.2

• Added ability for DAGMan to automatically record the Node Retry attempt in that nodes job ad. This is done by
setting the new configuration option . (HTCONDOR-1634)

Bugs Fixed:

• Fixed a bug where if the docker command emitted warnings to stderr, the condor_startd would not correctly
advertise the amount of used image cache. (HTCONDOR-1645)

• Fixed a bug where would fail if the job history file doesn’t exist. (HTCONDOR-1578)

• Fixed a bug in the view server where it would assert and exit if the view server stats file are deleted at just the
wrong time. (HTCONDOR-1599)

• Fixed a bug where condor_shadow was unable to write the job ad to the file when located in condor owned
directories such as the spool directory. (HTCONDOR-1631)

• Remove warning when installing HTCondor RPMs on Enterprise Linux 9. (HTCONDOR-1571)

13.5.12 Version 10.3.1

• HTCondor version 10.3.1 released on March 7, 2023.

New Features:

• The condor_startd now advertises whether there appears to be a useful /usr/sbin/sshd on the system, in order for
to work. (HTCONDOR-1614)

Bugs Fixed:

• None.

13.5.13 Version 10.3.0

Release Notes:

• HTCondor version 10.3.0 released on March 6, 2023.

• This version includes all the updates from Version 10.0.2.

• When HTCondor is configured to use cgroups, if the system as a whole is out of memory, and the kernel kills a
job with the out of memory killer, HTCondor now checks to see if the job is below the provisioned memory. If
so, HTCondor now evicts the job, and marks it as idle, not held, so that it might start again on a machine with
sufficient resources. Previous, HTCondor would let this job attempt to run, hoping the next time the OOM killer
fired it would pick a different process. (HTCONDOR-1512)

• This version changes the semantics of the output_destination submit command. It no longer sends the files
named by the output or error submit commands to the output destination. Submitters may instead specify
those locations with URLs directly. (HTCONDOR-1365)

New Features:

• When HTCondor has root, and is running with cgroups, the cgroup the job is in is writeable by the job. This
allows the job (perhaps a glidein) to sub-divide the resource limits it has been given, and allocate subsets of those
to its child processes. (HTCONDOR-1496)

• Added capabilities for per job run instance history recording. Where during the condor_shadow daemon’s shut-
down it will write the current job ad to a file designated by and/or a directory specified by . These per run instance
job ad records can be read via using the new -epochs option. This behavior is not turned on by default. Setting
either of the job epoch location config knobs above will turn on this behavior. (HTCONDOR-1104)

764 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1634
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1645
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1578
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1599
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1631
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1571
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1614
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1512
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1365
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1496
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1104

HTCondor Manual, Release 23.6.2

• Added new -search option that takes a filename to find all matching condor time rotated files filename.
YYYYMMDDTHHMMSS to read from instead of using any default files. (HTCONDOR-1514)

• Added new -directory option to use a history sources alternative configured directory knob such as to search
for history. (HTCONDOR-1514)

• Added ability to set a gangliad metrics lifetime (DMAX value) within the metric definition language with the
new Lifetime keyword. (HTCONDOR-1547)

• Added configuration knob to set the minimum value for gangliads calculated metric lifetime (DMAX value) for
all metrics without a specified Lifetime. (HTCONDOR-1547)

• Added an attribute to the condor_schedd classad that advertises the number of late materialization jobs that have
been submitted, but have not yet materialized. The new attribute is called JobsUnmaterialized (HTCONDOR-
1591)

• The linux_kernel_tuning_script, run by the at startup, now tries to increase the value of /proc/sys/fs/pipe-user-
pages-soft to 128k, if it was below this. This improves the scalability of the condor_schedd when running more
than 16k jobs from any one user. (HTCONDOR-1556)

• The linux_kernel_tuning_script, run by the at startup, no longer tries to mount the various cgroup filesys-
tems. We assume that any reasonable Linux system will have done this in a manner that it deems appropriate.
(HTCONDOR-1528)

• Linux worker nodes now advertise DockerCachedImageSizeMb, the number of megabytes that are used in the
docker image cache. (HTCONDOR-1494)

• When a file-transfer plug-in aborts due to lack of progress, the message now includes the https_proxy (or
http_proxy) environment variable, and the phrasing has been changed to avoid suggesting that the plug-in
actually respected it. (HTCONDOR-1473)

Bugs Fixed:

• Added support for older cgroup v2 systems with missing memory.peak files in the memory controller.
(HTCONDOR-1529)

• The HTCondor starter now removes any cgroup that it has created for a job when it exits. (HTCONDOR-1500)

• Fixed bug where condor_history would occasionally fail to display all matching user requested job ids.
(HTCONDOR-1506)

• Fixed bugs in how the condor_collector generated its own CA and host certificate files. Configuration parameter
now defaults to True on Unix platforms. Configuration parameters and can now be a list of files. The first pair
of files with valid credentials is used. (HTCONDOR-1455)

• Added missing environment variables for the SciTokens plugin. (HTCONDOR-1516)

13.5.14 Version 10.2.5

• HTCondor version 10.2.5 released on February 28, 2023.

New Features:

• None.

-Bugs Fixed:

• Fixed an issue where after a condor_schedd restart, the JobsUnmaterialized attribute in the condor_schedd
ad may be an overcount of the number of unmaterialized jobs in rare cases. (HTCONDOR-1606)

13.5. Version 10 Feature Releases 765

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1514
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1514
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1547
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1547
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1591
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1591
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1556
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1528
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1494
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1473
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1529
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1500
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1506
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1455
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1516
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1606

HTCondor Manual, Release 23.6.2

13.5.15 Version 10.2.4

Release Notes:

• HTCondor version 10.2.4 released on February 24, 2023.

New Features:

• None.

Bugs Fixed:

• Fixed an issue where after a condor_schedd restart, the JobsUnmaterialized attribute in the condor_schedd
ad may be an undercount of the number of unmaterialized jobs for previous submissions. (HTCONDOR-1591)

13.5.16 Version 10.2.3

• HTCondor version 10.2.3 released on February 21, 2023.

New Features:

• Added an attribute to the condor_schedd ClassAd that advertises the number of late materialization jobs
that have been submitted, but have not yet materialized. The new attribute is called JobsUnmaterialized.
(HTCONDOR-1591)

Bugs Fixed:

• None.

13.5.17 Version 10.2.2

Release Notes:

• HTCondor version 10.2.2 released on February 7, 2023.

New Features:

• None.

Bugs Fixed:

• Fixed bugs with configuration knob . (HTCONDOR-1574)

13.5.18 Version 10.2.1

• HTCondor version 10.2.1 released on January 24, 2023.

New Features:

• Improved scalability of condor_schedd when running more than 1,000 jobs from the same user. (HTCONDOR-
1549)

• should now work in glidein and other environments where the job or HTCondor is running as a Unix user id that
doesn’t have an entry in the /etc/passwd database. (HTCONDOR-1543)

Bugs Fixed:

• In the Python bindings, the attribute is now included in job ads returned by Schedd.query(). (HTCONDOR-
1531)

• Fixed issue when HTCondor could not be installed on Ubuntu 18.04 (Bionic Beaver). (HTCONDOR-1548)

766 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1591
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1591
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1574
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1549
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1549
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1543
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1531
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1531
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1548

HTCondor Manual, Release 23.6.2

13.5.19 Version 10.2.0

Release Notes:

• HTCondor version 10.2.0 released on January 5, 2023.

• This version includes all the updates from Version 10.0.1.

• We changed the semantics of relative paths in the output, error, and transfer_output_remaps submit file
commands. These commands now create the directories named in relative paths if they do not exist. This could
cause jobs that used to go on hold (because they couldn’t write their output or error files, or a remapped output
file) to instead succeed. (HTCONDOR-1325)

• HTCondor can now put a job in a Linux control (cgroup), not only if it has root privilege, but also if the admin-
istrator or some external entity has made the cgroup HTCondor is configured to use writeable by the non-rootly
user a personal condor or glidein is running as. (HTCONDOR-1465)

• File-transfer plug-ins may no longer take as long as they like to finish. After seconds, the starter will terminate
the transfer and report a time-out failure (with ETIME, 62, as the hold reason subcode). (HTCONDOR-1404)

New Features:

• Add support for Enterprise Linux 9 on x86_64 and aarch64 architectures. (HTCONDOR-1285)

• Add support to the condor_starter for tracking processes via cgroup v2 on Linux distributions that support cgroup
v2. (HTCONDOR-1457)

• The condor_negotiator now support setting a minimum floor number of cores that any given submitter should
get, regardless of their fair share. This can be set or queried via the tool, in the same way that the ceiling can be
set or get (HTCONDOR-557)

• Improved the validity testing of the Singularity / Apptainer container runtime software at condor_startd startup.
If this testing fails, slot attribute will be set to false, and attribute SingularityOfflineReason will contain
error information. Also in the event of Singularity errors, more information is recorded into the condor_starter
log file. (HTCONDOR-1431)

• default behavior of displaying the cumulative run time has changed to now display the current run time for jobs in
running, transferring output, and suspended states while displaying the previous run time for jobs in idle or held
state unless passed -cumulative-time to show the jobs cumulative run time for all runs. (HTCONDOR-1064)

• Docker Universe submit files now support docker_pull_policy = always, so that docker will check to see if the
cached image is out of date. This increases the network activity, may cause increased throttling when pulling
from docker hub, and is recommended to be used with care. (HTCONDOR-1482)

• Added configuration knob . (HTCONDOR-1431)

• will now stop searching history files once all requested job ads are found if passed ClusterIds or ClusterId.ProcId
pairs. (HTCONDOR-1364)

• Improved search speeds when searching for matching jobs, matching clusters, and matching owners.
(HTCONDOR-1382)

• The local issuer credmon can optionally add group authorizations to users’ tokens by setting
LOCAL_CREDMON_AUTHZ_GROUP_TEMPLATE and LOCAL_CREDMON_AUTHZ_GROUP_MAPFILE. (HTCONDOR-
1402)

• The configuration variable now accepts a list of match patterns just like the submit command getenv does.
(HTCONDOR-1339)

• Declaring either container_image or docker_image without a defined universe in a submit file will now
automatically setup job for respective universe based on image type. (HTCONDOR-1401)

13.5. Version 10 Feature Releases 767

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1325
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1465
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1404
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1285
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1457
https://opensciencegrid.atlassian.net/browse/HTCONDOR-557
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1431
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1064
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1482
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1431
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1364
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1382
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1402
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1402
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1339
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1401

HTCondor Manual, Release 23.6.2

• Added new Scheduler ClassAd attribute that represents the condor_collector addresses that a condor_schedd is
actively sending flocked jobs. (HTCONDOR-1389)

• Added new DAGMan node status called Futile that represents a node that will never run due to the failure of a node
that the Futile node depends on either directly or indirectly through a chain of PARENT/CHILD relationships.
Also, added a new ClassAd attribute to count the number of Futile nodes in a DAG. (HTCONDOR-1456)

• Improved error handling in the condor_shadow and condor_starter when they have trouble talking to each other.
(HTCONDOR-1360)

• Added support for plugins that can perform the mapping of a validated SciToken to an HTCondor canonical user
name during security authentication. (HTCONDOR-1463)

• EGI CheckIn tokens can now be used to authenticate via the SCITOKENS authentication method. New config-
uration parameter SEC_SCITOKENS_ALLOW_FOREIGN_TOKEN_TYPES must be set to True to enable this usage.
(HTCONDOR-1498)

Bugs Fixed:

• Fixed bug where would be advertised as true in cases where it wouldn’t work. (HTCONDOR-1274)

13.5.20 Version 10.1.3

Release Notes:

• HTCondor version 10.1.3 limited release on November 22, 2022.

New Features:

• Jobs run in Singularity or Apptainer container runtimes now use the SINGULARITY_VERBOSITY flag, which
controls the verbosity of the runtime logging to the job’s stderr. The default value is “-s” for silent, meaning only
fatal errors are logged. (HTCONDOR-1436)

• The PREPARE_JOB and PREPARE_JOB_BEFORE_TRANSFER job hooks can now return a
HookStatusCode and a HookStatusMessage to give better feedback to the user. See the Startd Cron
manual section. (HTCONDOR-1416)

• The local issuer credmon can optionally add group authorizations to users’ tokens by setting
LOCAL_CREDMON_AUTHZ_GROUP_TEMPLATE and LOCAL_CREDMON_AUTHZ_GROUP_MAPFILE. (HTCONDOR-
1402)

Bugs Fixed:

• None.

13.5.21 Version 10.1.2

• HTCondor version 10.1.2 limited release on November 15, 2022.

New Features:

• OpenCL jobs can now run inside a Singularity container launched by HTCondor if the OpenCL drivers are
present on the host in directory /etc/OpenCL/vendors. (HTCONDOR-1410)

Bugs Fixed:

• None.

768 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1389
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1456
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1360
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1463
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1498
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1274
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1436
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1416
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1402
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1402
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1410

HTCondor Manual, Release 23.6.2

13.5.22 Version 10.1.1

Release Notes:

• HTCondor version 10.1.1 released on November 10, 2022.

New Features:

• Improvements to job hooks, including configuration knob STARTER_DEFAULT_JOB_HOOK_KEYWORD,
the new hook PREPARE_JOB_BEFORE_TRANSFER, and the ability to preserve stderr from job hooks into
the StarterLog or StartdLog. See the Hooks manual section. (HTCONDOR-1400)

Bugs Fixed:

• Fixed bugs in the container universe that prevented apptainer-only systems from running container universe jobs
with Docker repository style images (HTCONDOR-1412)

13.5.23 Version 10.1.0

Release Notes:

• HTCondor version 10.1.0 released on November 10, 2022.

• This version includes all the updates from Version 10.0.0.

New Features:

• None.

Bugs Fixed:

• None.

13.6 Version 10.0 LTS Releases

These are Long Term Support (LTS) versions of HTCondor. As usual, only bug fixes (and potentially, ports to new
platforms) will be provided in future 10.0.y versions. New features will be added in the 10.x.y feature versions.

The details of each version are described below.

13.6.1 Version 10.0.9

Release Notes:

• HTCondor version 10.0.9 released on September 28, 2023.

New Features:

• Updated condor_upgrade_check script to check and warn about known incompatibilities introduced in the fea-
ture series for HTCondor V10 that can cause issues when upgrading to a newer version (i.e. HTCondor V23).
(HTCONDOR-1960)

Bugs Fixed:

• Fixed htcondor.htchirp to find its configuration at _CONDOR_CHIRP_CONFIG instead of at _CON-
DOR_SCRATCH_DIR/.chirp.config. (HTCONDOR-2012)

• Fixed a bug that prevented deletion of stored user passwords with on Windows. (HTCONDOR-1998)

• Fixed misaligned pointers issue for the PowerPC architecture in the configuration system. (HTCONDOR-2001)

13.6. Version 10.0 LTS Releases 769

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1400
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1412
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1960
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2012
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1998
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2001

HTCondor Manual, Release 23.6.2

13.6.2 Version 10.0.8

Release Notes:

• HTCondor version 10.0.8 released on September 14, 2023.

New Features:

• None.

Bugs Fixed:

• Removed cgroup v1 blkio controller support – this prevents a kernel panic in some EL8 kernels. (HTCONDOR-
1985)

• Fixed a bug in DAGMan where service nodes that finish before the DAGs end would result in DAGMan crashing
due to an assertion failure. (HTCONDOR-1909)

• When the file transfer queue is growing too big, HTCondor sends email to the administrator. Prior versions of
HTCondor would send an arbitrarily large number of emails. Now HTCondor will only send one email per day.
(HTCONDOR-1937)

• Fixed a bug where would not import the OpenSearch library properly. (HTCONDOR-1965)

• Fixed a bug that broke the version check for older versions of the Elasticsearch Python library. (HTCONDOR-
1964)

• Fixed a bug in that caused a “unexpected keyword argument” error to occur when new attributes needed to be
added to the index and when using version 8.0.0 or newer of the Elasticsearch Python library. (HTCONDOR-
1930)

• Fixed a bug with parallel universe that would result in the condor_startd rejecting start attempts from the con-
dor_schedd and causing the condor_schedd to crash. (HTCONDOR-1952)

• Preen now preserves all files in the spool directory matching *OfflineLog* so that central managers with multiple
active collectors can have offline ads. (HTCONDOR-1933)

• Fixed a bug that could cause to crash when there were no configuration files. (HTCONDOR-1954)

13.6.3 Version 10.0.7

Release Notes:

• HTCondor version 10.0.7 released on July 25, 2023.

New Features:

• Improved daemon logging for IDTOKENS authentication to make useful messages more prominent.
(HTCONDOR-1776)

• The -summary option of now works with a remote configuration query when the daemon being queried is version
10.0.7 or later. It behaves like -dump when the daemon is older. (HTCONDOR-1879)

Bugs Fixed:

• Fixed bug where condor cron jobs put on hold by the condor_shadow or condor_starter would never start running
again and stay IDLE when released from the HELD state. (HTCONDOR-1869)

• Remove limit on certificate chain length in SSL authentication. (HTCONDOR-1904)

• Print detailed error message when fails to fetch a URL. (HTCONDOR-1884)

• Fixed a bug that caused to crash if configuration parameter PREEN_COREFILE_MAX_SIZE was set to a value
larger than 2 gigabytes. (HTCONDOR-1908)

770 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1985
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1985
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1909
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1937
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1965
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1964
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1964
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1930
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1930
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1952
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1933
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1954
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1776
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1879
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1869
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1904
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1884
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1908

HTCondor Manual, Release 23.6.2

• Fixed a bug where if the $(SPOOL) directory was on a separate file system would delete the special lost+found
directory. (HTCONDOR-1906)

• If the collector is storing offline ads via COLLECTOR_PERSISTENT_AD_LOG the tool will no longer delete
that file (HTCONDOR-1874)

• Fixed a bug when creating the default value for where a secondary daemon such as COLLECTOR01 would not be
considered a DC daemon if the primary daemon was not in . (HTCONDOR-1900)

13.6.4 Version 10.0.6

Release Notes:

• HTCondor version 10.0.6 released on June 22, 2023.

New Features:

• Added configuration parameter , which controls whether the client checks the environment variable
X509_USER_PROXY for the location of a credential to use during SSL authentication with a daemon.
(HTCONDOR-1841)

• During SSL authentication, when the client uses a proxy certificate, the server now uses the End Entity certifi-
cate’s subject as the authenticated identity to map, instead of the proxy certificate’s subject. (HTCONDOR-1866)

Bugs Fixed:

• Fixed a bug in the python bindings where some attributes were omitted from accounting ads queried from the
condor_negotiator. (HTCONDOR-1780)

• Fixed a bug in the python bindings where an incorrect version was being reported. (HTCONDOR-1813)

• The classad functions anycompare, allcompare, sum, min, max, avg and join no longer treat a single unde-
fined input as forcing the result to be undefined. sum, min, max, avg and join will skip over undefined inputs,
while anycompare and allcompare will compare them correctly. (HTCONDOR-1799)

• The submit commands remote_initialdir, transfer_input, transfer_output, and transfer_error now work
properly when submitting a batch grid universe job to a remote system via ssh. (HTCONDOR-1560)

• Fixed bug in condor_pool_job_report script that broke the script and outputted error messages about invalid
constraint expressions due internal use of condor_history specifying a file to read with -f flag instead of full
-file. (HTCONDOR-1812)

• Fixed a bug where the condor_startd would sometimes not remove docker images that had been left behind when
a condor_starter exited abruptly. (HTCONDOR-1814)

• and condor_credmon_vault now reuses existing Vault tokens when down scoping access tokens. (HTCONDOR-
1527)

• Fixed a missing library import in condor_credmon_vault. (HTCONDOR-1527)

• When started on a systemd system, HTCondor will now wait for the SSSD service to start. Previously it only
waited for ypbind. (HTCONDOR-1829)

13.6. Version 10.0 LTS Releases 771

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1906
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1874
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1900
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1841
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1866
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1780
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1813
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1799
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1560
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1812
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1814
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1527
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1527
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1527
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1829

HTCondor Manual, Release 23.6.2

13.6.5 Version 10.0.5

Release Notes:

• HTCondor version 10.0.5 released on June 9, 2023.

• Renamed the upgrade9to10checks.py script to condor_upgrade_check to match standard HTCSS naming
scheme. (HTCONDOR-1828)

New Features:

• None.

Bugs Fixed:

• Fix spurious warning from condor_upgrade_check for regular expressions that contain a space.
(HTCONDOR-1840)

• condor_upgrade_check no longer attempts to check for problems for an HTCondor pool when requesting
checks for an HTCondor-CE. (HTCONDOR-1840)

13.6.6 Version 10.0.4

Release Notes:

• HTCondor version 10.0.4 released on May 30, 2023.

• Ubuntu 18.04 (Bionic Beaver) is no longer supported, since its end of life is April 30th, 2023.

• Preliminary support for Ubuntu 20.04 (Focal Fossa) on PowerPC (ppc64le). (HTCONDOR-1668)

New Features:

• Added new script called upgrade9to10checks.py to help administrators check for known issues that exist and
changes needed for an HTCondor system when upgrading from V9 to V10. This script checks for three well
known breaking changes: changing of the default value for , changing to using PCRE2 for regular expression
matching, and changes to how users request GPUs. (HTCONDOR-1658)

• Added configuration parameter , which allows the client to present an X.509 proxy certificate during SSL au-
thentication with a daemon. (HTCONDOR-1781)

• Added CONFIG_ROOT configuration variable that is set to the directory of the main configuration file before the
configuration files are read. (HTCONDOR-1733)

• Ensure that the SciTokens library can create its cache of token issuer credentials. (HTCONDOR-1757)

Bugs Fixed:

• Fixed a bug where certain errors during file transfer could result in file-transfer processes not being cleaned up.
This would manifest as jobs completing successfully, including final file transfer, but ending up without one of
their output files (the one the error occurred during). (HTCONDOR-1687)

• Fixed a bug where the condor_schedd falsely believed there were too many jobs in the queue and rejected new
job submissions based on . (HTCONDOR-1688)

• Fix a bug where SSL authentication would fail when using a daemon’s private network address when was con-
figured. (HTCONDOR-1713)

• Fixed a bug that could cause a daemon or tool to crash when attempting SSL or SCITOKENS authentication.
(HTCONDOR-1756)

• Fixed a bug where the HTCondor-CE would fail to handle any of its jobs after a restart. (HTCONDOR-1755)

772 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1828
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1840
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1840
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1668
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1658
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1781
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1733
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1757
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1687
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1688
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1713
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1756
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1755

HTCondor Manual, Release 23.6.2

• Fixed a bug where Job Ad Information events weren’t always written when using the Job Router. (HTCONDOR-
1642)

• Fixed a bug where the submit event wasn’t written to the job event log if the job ad didn’t contain a
CondorVersion attribute. (HTCONDOR-1643)

• Fixed a bug where a condor_schedd was denied authorization to send reschedule command to a con-
dor_negotiator with the IDToken authorization levels recommended in the documentation for setting up a condor
pool. (HTCONDOR-1615)

• now works correctly when the hardware architecture of the remote machine isn’t x86_64. (HTCONDOR-1670)

• Fixed condor_c-gahp and condor_job_router to submit jobs in the same way as . (HTCONDOR-1695)

• Fixed a bug introduced in HTCondor 10.0.3 that caused remote submission of batch grid universe jobs via ssh
to fail when attempting to do file transfer. (HTCONDOR-1747)

• When writing a remove event in JSON, the ToE.When field is now seconds since the (Unix) epoch, like all other
events. (HTCONDOR-1763)

• Fixed a bug where DAGMan job submission would fail when not using direct submission due to setting a custom
job ClassAd attribute with the + syntax in a VARS command that doesn’t append the variables i.e. VARS NodeA
PREPEND +customAttr="value" (HTCONDOR-1771)

• The ce-audit collector plug-in should no longer crash. (HTCONDOR-1774)

13.6.7 Version 10.0.3

Release Notes:

• HTCondor version 10.0.3 released on April 6, 2023.

• If you set and use / to mark the beginning and end of a regular expression, the character sequence \\ in the
mapfile now passes a single \ to the regular expression engine. This allows you to pass the sequence \/ to the
regular expression engine (put \\\/ in the map file), which was not previously possible. If the macro above is
set and you have a \\ in your map file, you will need to replace it with \\\\. (HTCONDOR-1573)

• For users: Amazon Web Services is deprecating the Node.js 12.x runtime. If you ran the setup command with
a previous version of HTCondor, you’ll need to update your setup. Go to the AWS CloudFormation console
and look for the stack named HTCondorAnnex-LambdaFunctions. (You may have to switch regions.) Click
on that stack’s radio button, hit the delete button in the table header, and confirm. Wait for the delete to finish.
Then run condor_annex -aws-region region-name-N -setup for the region. Repeat for each region of
interest. (HTCONDOR-1627).

New Features:

• Allow remote submission of batch grid universe jobs via ssh to work with sites that were configured with the
old bosco_cluster tool. (HTCONDOR-1632)

Bugs Fixed:

• Fixed two problems with GPU metrics. First, fixed a bug where reconfiguring a condor_startd caused GPU
metrics to stop being reported. Second, fixed a bug where GPU (core) utilization could be wildly over-reported.
(HTCONDOR-1660)

• Fix bug, introduced in HTCondor version 10.0.2, that prevented new installations of HTCondor from working
on Debian or Ubuntu. (HTCONDOR-1689)

• Fixed bug where a node with RETRY capabilities would instantly restart that node every time it saw a job proc
failure. This would result in nodes with multi-proc jobs to resubmit the entire node multiple times causing
internal issues for DAGMan. (HTCONDOR-1607)

13.6. Version 10.0 LTS Releases 773

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1642
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1642
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1643
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1615
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1670
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1695
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1747
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1763
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1771
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1774
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1573
https://console.aws.amazon.com/cloudformation/
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1627
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1632
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1660
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1689
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1607

HTCondor Manual, Release 23.6.2

• Fixed a rare bug in the late materialization code that could cause a condor_schedd crash. (HTCONDOR-1581)

• Fixed bug where the condor_shadow would crash during job removal. (HTCONDOR-1585)

• Fixed a bug where two condor_schedd daemons in a High Availability configuration could be active at the same
time. (HTCONDOR-1590)

• Improved the HTCondor’s systemd configuration to not start HTCondor until the system attempts (and mostly
likely succeeds) to mount remote filesystems. (HTCONDOR-1594)

• Fixed a bug where the of a glidein submitted to SLURM via HTCondor-CE would try to talk to the con-
dor_gridmanager of the HTCondor-CE. (HTCONDOR-1604)

• Fixed a bug in the condor_schedd that could result in the TotalSubmitProcs attribute of a late material-
ization job being set to a value smaller than the correct value shortly after the condor_schedd was restarted.
(HTCONDOR-1603)

• If a job’s requested credentials are not available when the job is about to start, the job is now placed on hold.
(HTCONDOR-1600)

• Fixed a bug that would cause the condor_schedd to hang if an invalid condor cron argument was submitted
(HTCONDOR-1624)

• Fixed a bug where cron jobs put on hold due to invalid time specifications would be unable to be removed from
the job queue with tools. (HTCONDOR-1629)

• Fixed how the condor_gridmanager handles failed ARC CE jobs. Before, it would endlessly re-query the status
of jobs that failed during submission to the LRMS behind ARC CE. If ARC CE reports a job as FAILED because
the job exited with a non-zero exit code, the condor_gridmanager now treats it as completed. (HTCONDOR-
1583)

• Fixed a bug where values specified with arc_rte in the job’s submit description weren’t properly sent to the ARC
CE service. (HTCONDOR-1648)

• Fixed a bug that can cause a daemon to crash during SciTokens authentication if the configuration parameter
SCITOKENS_SERVER_AUDIENCE isn’t set. (HTCONDOR-1652)

13.6.8 Version 10.0.2

Release Notes:

• HTCondor version 10.0.2 released on March 2, 2023.

• HTCondor Python wheel is now available for Python 3.11 on PyPI. (HTCONDOR-1586)

• The macOS tarball is now being built on macOS 11. (HTCONDOR-1610)

New Features:

• Added configuration option called to allow a transfer output remap to create directories in allowed places if they
do not exist at transfer output time. (HTCONDOR-1480)

• Improved scalability of condor_schedd when running more than 1,000 jobs from the same user. (HTCONDOR-
1549)

• should now work in glidein and other environments where the job or HTCondor is running as a Unix user id that
doesn’t have an entry in the /etc/passwd database. (HTCONDOR-1543)

• VM universe jobs are now configured to pass through the host CPU model to the VM. This change enables VMs
with newer kernels (such as Enterprise Linux 9) to operate in VM Universe. (HTCONDOR-1559)

• The command was updated to fetch the Alma Linux tarballs for Enterprise Linux 8 and 9. (HTCONDOR-1562)

Bugs Fixed:

774 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1581
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1585
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1590
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1594
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1604
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1603
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1600
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1624
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1629
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1583
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1583
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1648
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1652
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1586
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1610
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1480
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1549
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1549
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1543
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1559
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1562

HTCondor Manual, Release 23.6.2

• In the python bindings, the attribute is now included in job ads returned by Schedd.query() to support Fifemon.
(HTCONDOR-1531)

• Fixed issue when HTCondor could not be installed on Ubuntu 18.04 (Bionic Beaver). (HTCONDOR-1548)

• Attempting to use a file-transfer plug-in that doesn’t exist is no longer silently ignored. This could happen due to
different bug, also fixed, where plug-ins specified only in transfer_output_remaps were not automatically
added to a job’s requirements. (HTCONDOR-1501)

• Fixed a bug where condor_now could not use the resources freed by evicting a job if its procID was 1.
(HTCONDOR-1519)

• Fixed a bug that caused the condor_startd to exit when thinpool provisioned filesystems were enabled.
(HTCONDOR-1524)

• Fixed a bug causing a Python warning when installing on Ubuntu 22.04. (HTCONDOR-1534)

• Fixed a bug where the tool would crash when doing a remote query with a constraint expression or specified job
IDs. (HTCONDOR-1564)

13.6.9 Version 10.0.1

Release Notes:

• HTCondor version 10.0.1 released on January 5, 2023.

New Features:

• Add support for Ubuntu 22.04 LTS (Jammy Jellyfish). (HTCONDOR-1304)

• HTCondor now includes a file transfer plugin that support stash:// and osdf:// URLs. (HTCONDOR-1332)

• The Windows installer now uses the localized name of the Users group so that it can be installed on non-English
Windows platforms. (HTCONDOR-1474)

• OpenCL jobs can now run inside a Singularity container launched by HTCondor if the OpenCL drivers are
present on the host in directory /etc/OpenCL/vendors. (HTCONDOR-1410)

• The attribute of jobs is now undefined until such time as the job completes previously it was 0. (HTCONDOR-
1393)

Bugs Fixed:

• Fixed a bug where Debian, Ubuntu and other Linux platforms with swap accounting disabled in the kernel would
never put a job on hold if it exceeded RequestMemory and MEMORY_LIMIT_POLICY was set to hard or soft.
(HTCONDOR-1466)

• Fixed a bug where using the -forcex option with on a scheduler universe job could cause a condor_schedd
crash. (HTCONDOR-1472)

• Fixed bugs in the container universe that prevented apptainer-only systems from running container universe jobs
with Docker repository style images. (HTCONDOR-1412)

• Docker universe and container universe job that use the docker runtime now detect when the Unix uid or gid has
the high bit set, which docker does not support. (HTCONDOR-1421)

• Grid universe batch works again on Debian and Ubuntu. Since 9.5.0, some required files had been missing.
(HTCONDOR-1475)

• Fixed bug in the curl plugin where it would crash on Enterprise Linux 8 systems when using a file:// url type.
(HTCONDOR-1426)

• Fixed bug in where the multi-file curl plugin would fail to timeout due lack of upload or download progress if a
large amount of bytes where transferred at some point. (HTCONDOR-1403)

13.6. Version 10.0 LTS Releases 775

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1531
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1548
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1501
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1519
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1524
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1534
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1564
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1304
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1332
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1474
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1410
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1393
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1393
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1466
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1472
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1412
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1421
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1475
file://
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1426
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1403

HTCondor Manual, Release 23.6.2

• Fixed bug where the multi-file curl plugin would fail to receive a SciToken if it was in raw format rather than
json. (HTCONDOR-1447)

• Fixed a bug that prevented the starter from properly mounting thinpool provisioned ephemeral scratch directories.
(HTCONDOR-1419)

• Fixed a bug where SSL authentication with the condor_collector could fail when the provided hostname is not
a DNS CNAME. (HTCONDOR-1443)

• Fixed a Vault credmon bug where tokens were being refreshed too often. (HTCONDOR-1017)

• Fixed a Vault credmon bug where the CA certificates used were not based on the HTCondor configuration.
(HTCONDOR-1179)

• Fixed the condor_gridmanager to recognize when it has the final data for an ARC job in the FAILED status with
newer versions of ARC CE. Before, the condor_gridmanager would leave the job marked as RUNNING and
retry querying the ARC CE server endlessly. (HTCONDOR-1448)

• Fixed AES encryption failures on macOS Ventura. (HTCONDOR-1458)

• Fixed a bug that would cause tools that have the -printformat argument to segfault when the format file
contained a FIELDPREFIX, FIELDSUFFIX, RECORDPREFIX or RECORDSUFFIX. (HTCONDOR-1464)

• Fixed a bug in the RENAME command of the transform language that could result in a crash of the condor_schedd
or condor_job_router. (HTCONDOR-1486)

• For tarball installations, the script now configures HTCondor to use user based security. (HTCONDOR-1461)

13.6.10 Version 10.0.0

Release Notes:

• HTCondor version 10.0.0 released on November 10, 2022.

New Features:

• The default for , which is used by with IDTOKEN authentication has been changed to $(UID_DOMAIN). If you
have already created IDTOKENs for use in your pool, you should configure to the issuer value of a valid token.
(HTCONDOR-1381)

• The tool now has a -jobtransforms argument that reads transforms from the configuration. This provides a
convenient way to test the JOB_TRANSFORM_<NAME> configuration variables. (HTCONDOR-1312)

• Added new automatic configuration variable DETECTED_CPUS_LIMIT which gets set to the minimum of
DETECTED_CPUS from the configuration and OMP_NUM_THREADS and SLURM_CPU_ON_NODES from the envi-
ronment. (HTCONDOR-1307)

Bugs Fixed:

• Fixed a bug where if a job created a symbolic link to a file, the contents of that file would be counted in the job’s
DiskUsage. Previously, symbolic links to directories were (correctly) ignored, but not symbolic links to files.
(HTCONDOR-1354)

• Fixed a bug where if SINGULARITY_TARGET_DIR is set, condor_ssh_to job would start the interactive shell
in the root directory of the job, not in the current working directory of the job. (HTCONDOR-1406)

• Suppressed a Singularity or Apptainer warning that would appear in a job’s stderr file, warning about the inability
to set the HOME environment variable if the job or the system explicitly tried to set it. (HTCONDOR-1386)

• Fixed a bug where on certain Linux kernels, the ProcLog would be filled with thousands of errors of the form
“Internal cgroup error when retrieving iowait statistics”. This error was harmless, but filled the ProcLog with
noise. (HTCONDOR-1385)

776 Chapter 13. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1447
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1419
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1443
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1017
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1179
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1448
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1458
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1464
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1486
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1461
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1381
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1312
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1307
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1354
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1406
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1386
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1385

HTCondor Manual, Release 23.6.2

• Fixed bug where certain submit file variables like accounting_group and accounting_group_user couldn’t
be declared specifically for DAGMan jobs because DAGMan would always write over the variables at job sub-
mission time. (HTCONDOR-1277)

• Fixed a bug where SciTokens authentication wasn’t available on macOS and Python wheels distributions.
(HTCONDOR-1328)

• Fixed job submission to newer ARC CE releases. (HTCONDOR-1327)

• Fixed a bug where a pre-created security session may not be used when connecting to a daemon over IPv6. The
peers would do a full round of authentication and authorization, which may fail. This primarily happened with
both peers had set to False. (HTCONDOR-1341)

• The condor_negotiator no longer sends the admin capability attribute of machine ads to the condor_schedd.
(HTCONDOR-1349)

• Fixed a bug in DAGMan where Node jobs that could not write to their UserLog would cause the DAG to get
stuck indefinitely while waiting for pending Nodes. (HTCONDOR-1305)

• Fixed a bug where s3:// URLs host or bucket names shorter than 14 characters caused the shadow to dump
core. (HTCONDOR-1378)

• Fixed a bug in the hibernation code that caused HTCondor to ignore the active Suspend-To-Disk option.
(HTCONDOR-1357)

• Fixed a bug where some administrator client tools did not properly use the remote administrator capability (con-
figuration parameter). (HTCONDOR-1371)

• When a JOB_TRANSFORM_* transform changes an attribute at submit time in a late materialization factory, it no
longer marks that attribute as fixed for all jobs. This change makes it possible for a transform to modify rather
than simply replacing an attribute that that the user wishes to vary per job. (HTCONDOR-1369)

• Fixed bug where Collector, Negotiator, and Schedd core files that are naturally large would be deleted by
because the file sizes exceeded the max file size. (HTCONDOR-1377)

• Fixed a bug that could cause a daemon or tool to crash when connecting to a daemon using a security session.
This particularly affected the condor_schedd. (HTCONDOR-1372)

• Fixed a bug that could cause digits to be truncated reading resource usage information from the job event log
via the Python or C++ APIs for reading event logs. Note this only happens for very large values of requested or
allocated disk, memory. (HTCONDOR-1263)

• Fixed a bug where GPUs that were marked as OFFLINE in the Startd would still be available for matchmaking
in the AvailableGPUs attribute. (HTCONDOR-1397)

• The executables within the tarball distribution now use RPATH to find shared libraries. Formerly, RUNPATH was
used and tarballs became susceptible to failures when independently compiled HTCondor libraries were present
in the LD_LIBRARY_PATH. (HTCONDOR-1405)

13.6. Version 10.0 LTS Releases 777

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1277
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1328
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1327
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1341
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1349
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1305
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1378
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1357
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1371
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1369
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1377
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1372
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1263
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1397
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1405

HTCondor Manual, Release 23.6.2

778 Chapter 13. Version History and Release Notes

CHAPTER

FOURTEEN

COMMANDS REFERENCE (MAN PAGES)

HTCondor ships with many command line tools. While the number may seem overwhelming at first, they can be
divided into a few groups:

Fig. 1: A map of all the tools

Commands that manage jobs:

condor_rm, condor_submit, condor_submit_dag, condor_suspend, condor_continue, condor_hold, con-
dor_release, condor_transfer_data, condor_q condor_qedit, condor_history

Commands for managing execution points:

condor_off, condor_on, condor_restart, condor_drain, condor_now, condor_vacate, condor_config_val,
condor_reconfig, condor_status

Commands for working with running jobs:

condor_ssh_to_job, condor_tail, condor_evicted_files, condor_chirp, condor_vacate_job

Commands for debugging and testing:

classad_eval, condor_version, condor_who, condor_top, condor_fetchlog, condor_transform_ads, con-
dor_gpu_discovery, condor_power_state

Commands for managing submitters:

condor_userprio, condor_qusers

14.1 HTCondor’s ClassAd Mechanism

ClassAds are a flexible mechanism for representing the characteristics and constraints of machines and jobs in the
HTCondor system. ClassAds are used extensively in the HTCondor system to represent jobs, resources, submitters
and other HTCondor daemons. An understanding of this mechanism is required to harness the full flexibility of the
HTCondor system.

A ClassAd is a set of uniquely named expressions. Each named expression is called an attribute. The following shows
ten attributes, a portion of an example ClassAd.

MyType = "Machine"
TargetType = "Job"
Machine = "froth.cs.wisc.edu"
Arch = "INTEL"

(continues on next page)

779

HTCondor Manual, Release 23.6.2

(continued from previous page)

OpSys = "LINUX"
Disk = 35882
Memory = 128
KeyboardIdle = 173
LoadAvg = 0.1000
Requirements = TARGET.Owner=="smith" || LoadAvg<=0.3 && KeyboardIdle>15*60

ClassAd expressions look very much like expressions in C, and are composed of literals and attribute references com-
posed with operators and functions. The difference between ClassAd expressions and C expressions arise from the fact
that ClassAd expressions operate in a much more dynamic environment. For example, an expression from a machine’s
ClassAd may refer to an attribute in a job’s ClassAd, such as TARGET.Owner in the above example. The value and
type of the attribute is not known until the expression is evaluated in an environment which pairs a specific job ClassAd
with the machine ClassAd.

ClassAd expressions handle these uncertainties by defining all operators to be total operators, which means that they
have well defined behavior regardless of supplied operands. This functionality is provided through two distinguished
values, UNDEFINED and ERROR, and defining all operators so that they can operate on all possible values in the ClassAd
system. For example, the multiplication operator which usually only operates on numbers, has a well defined behavior
if supplied with values which are not meaningful to multiply. Thus, the expression 10 * “A string” evaluates to the
value ERROR. Most operators are strict with respect to ERROR, which means that they evaluate to ERROR if any of their
operands are ERROR. Similarly, most operators are strict with respect to UNDEFINED.

14.1.1 ClassAds: Old and New

ClassAds have existed for quite some time in two forms: Old and New. Old ClassAds were the original form and were
used in HTCondor until HTCondor version 7.5.0. They were heavily tied to the HTCondor development libraries. New
ClassAds added new features and were designed as a stand-alone library that could be used apart from HTCondor.

In HTCondor version 7.5.1, HTCondor switched to using the New ClassAd library for all use of ClassAds within
HTCondor. The library is placed into a compatibility mode so that HTCondor 7.5.1 is still able to exchange ClassAds
with older versions of HTCondor.

All user interaction with tools (such as) as well as output of tools is still compatible with Old ClassAds. Before HT-
Condor version 7.5.1, New ClassAds were used only in the Job Router. There are some syntax and behavior differences
between Old and New ClassAds, all of which should remain invisible to users of HTCondor.

A complete description of New ClassAds can be found at http://htcondor.org/classad/classad.html, and in the ClassAd
Language Reference Manual found on that web page.

Some of the features of New ClassAds that are not in Old ClassAds are lists, nested ClassAds, time values, and matching
groups of ClassAds. HTCondor has avoided using these features, as using them makes it difficult to interact with older
versions of HTCondor. But, users can start using them if they do not need to interact with versions of HTCondor older
than 7.5.1.

The syntax varies slightly between Old and New ClassAds. Here is an example ClassAd presented in both forms. The
Old form:

Foo = 3
Bar = "ab\"cd\ef"
Moo = Foo =!= Undefined

The New form:

780 Chapter 14. Commands Reference (man pages)

http://htcondor.org/classad/classad.html

HTCondor Manual, Release 23.6.2

[
Foo = 3;
Bar = "ab\"cd\\ef";
Moo = Foo isnt Undefined;
]

HTCondor will convert to and from Old ClassAd syntax as needed.

New ClassAd Attribute References

Expressions often refer to ClassAd attributes. These attribute references work differently in Old ClassAds as compared
with New ClassAds. In New ClassAds, an unscoped reference is looked for only in the local ClassAd. An unscoped
reference is an attribute that does not have a MY. or TARGET. prefix. The local ClassAd may be described by an example.
Matchmaking uses two ClassAds: the job ClassAd and the machine ClassAd. The job ClassAd is evaluated to see if it
is a match for the machine ClassAd. The job ClassAd is the local ClassAd. Therefore, in the Requirements attribute
of the job ClassAd, any attribute without the prefix TARGET. is looked up only in the job ClassAd. With New ClassAd
evaluation, the use of the prefix MY. is eliminated, as an unscoped reference can only refer to the local ClassAd.

The MY. and TARGET. scoping prefixes only apply when evaluating an expression within the context of two ClassAds.
Two examples that exemplify this are matchmaking and machine policy evaluation. When evaluating an expression
within the context of a single ClassAd, MY. and TARGET. are not defined. Using them within the context of a single
ClassAd will result in a value of Undefined. Two examples that exemplify evaluating an expression within the context
of a single ClassAd are during user job policy evaluation, and with the -constraint option to command-line tools.

New ClassAds have no attribute. If needed, use the time() function instead. In order to mimic Old ClassAd semantics
in current versions of HTCondor, all ClassAds have an implicit attribute, with a value of time().

In current versions of HTCondor, New ClassAds will mimic the evaluation behavior of Old ClassAds. No configuration
variables or submit description file contents should need to be changed. To eliminate this behavior and use only the
semantics of New ClassAds, set the configuration variable to True. This permits testing expressions to see if any
adjustment is required, before a future version of HTCondor potentially makes New ClassAds evaluation behavior the
default or the only option.

14.1.2 ClassAd Syntax

ClassAd expressions are formed by composing literals, attribute references and other sub-expressions with operators
and functions.

Composing Literals

Literals in the ClassAd language may be of integer, real, string, undefined or error types. The syntax of these literals is
as follows:

Integer
A sequence of continuous digits (i.e., [0-9]). Additionally, the keywords TRUE and FALSE (case
insensitive) are syntactic representations of the integers 1 and 0 respectively.

Real
Two sequences of continuous digits separated by a period (i.e., [0-9]+.[0-9]+).

String
A double quote character, followed by a list of characters terminated by a double quote character. A

14.1. HTCondor’s ClassAd Mechanism 781

HTCondor Manual, Release 23.6.2

backslash character inside the string causes the following character to be considered as part of the
string, irrespective of what that character is.

Undefined
The keyword UNDEFINED (case insensitive) represents the UNDEFINED value.

Error
The keyword ERROR (case insensitive) represents the ERROR value.

Attributes

Every expression in a ClassAd is named by an attribute name. Together, the (name,expression) pair is called an attribute.
An attribute may be referred to in other expressions through its attribute name.

Attribute names are sequences of alphabetic characters, digits and underscores, and may not begin with a digit. All
characters in the name are significant, but case is not significant. Thus, Memory, memory and MeMoRy all refer to the
same attribute.

An attribute reference consists of the name of the attribute being referenced, and an optional scope resolution prefix.
The prefixes that may be used are MY. and TARGET.. The case used for these prefixes is not significant. The semantics
of supplying a prefix are discussed in ClassAd Evaluation Semantics.

Expression Operators

The operators that may be used in ClassAd expressions are similar to those available in C. The available operators and
their relative precedence is shown in the following example:

- (unary negation) (high precedence)
* / %
+ - (addition, subtraction)
< <= >= >
== != =?= is =!= isnt
&&
|| (low precedence)

The operator with the highest precedence is the unary minus operator. The only operators which are unfamiliar are the
=?=, is, =!= and isnt operators, which are discussed in ClassAd Evaluation Semantics.

Predefined Functions

Any ClassAd expression may utilize predefined functions. Function names are case insensitive. Parameters to functions
and a return value from a function may be typed (as given) or not. Nested or recursive function calls are allowed.

Here are descriptions of each of these predefined functions. The possible types are the same as itemized in ClassAd
Syntax. Where the type may be any of these literal types, it is called out as AnyType. Where the type is Integer, but
only returns the value 1 or 0 (implying True or False), it is called out as Boolean. The format of each function is
given as

ReturnType FunctionName(ParameterType parameter1, ParameterType parameter2, ...)

782 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

Optional parameters are given within square brackets.

AnyType eval(AnyType Expr)
Evaluates Expr as a string and then returns the result of evaluating the contents of the string as a ClassAd
expression. This is useful when referring to an attribute such as slotX_State where X, the desired slot number
is an expression, such as SlotID+10. In such a case, if attribute is 5, the value of the attribute slot15_State
can be referenced using the expression eval(strcat("slot", SlotID+10,"_State")). Function strcat()
calls function string() on the second parameter, which evaluates the expression, and then converts the integer
result 15 to the string "15". The concatenated string returned by strcat() is "slot15_State", and this string is
then evaluated.

Note that referring to attributes of a job from within the string passed to eval() in the Requirements or Rank
expressions could cause inaccuracies in HTCondor’s automatic auto-clustering of jobs into equivalent groups for
matchmaking purposes. This is because HTCondor needs to determine which ClassAd attributes are significant
for matchmaking purposes, and indirect references from within the string passed to eval() will not be counted.

String unparse(Attribute attr)
This function looks up the value of the provided attribute and returns the unparsed version as a string. The
attribute’s value is not evaluated. If the attribute’s value is x + 3, then the function would return the string "x
+ 3". If the provided attribute cannot be found, an empty string is returned.

This function returns ERROR if other than exactly 1 argument is given or the argument is not an attribute reference.

String unresolved(Attribute attr)
This function returns the external attribute references and unresolved attribute references of the expression that
is the value of the provided attribute. If the provided attribute cannot be found, then undefined is returned.

For example, in a typical job ClassAd if the Requirements expression has the value OpSys == "LINUX"
&& TARGET.Arch == "ARM" && Cpus >= RequestCpus, then unresolved(Requirements) will return
"Arch,Cpus,OpSys" because those will not be attributes of the job ClassAd.

Boolean unresolved(Attribute attr, String pattern)
This function returns True when at least one of the external or unresolved attribute references of the expression
that is the value of the provided attribute matches the given Perl regular expression pattern. If none of the
references match the pattern, then False is returned. If the provided attribute cannot be found, then undefined
is returned.

For example, in a typical job ClassAd if the Requirements expression has the value OpSys ==
"LINUX" && Arch == "ARM", then unresolved(Requirements, "^OpSys") will return True, and
unresolved(Requirements, "OpSys.+") will return False.

The intended use of this function is to make it easier to apply a submit transform to a job only when the job does
not already reference a certain attribute. For instance

JOB_TRANSFORM_DefPlatform @=end
Apply this transform only when the job requirements does not reference OpSysAndver␣

→˓or OpSysName
REQUIREMENTS ! unresolved(Requirements, "OpSys.+")
Add a clause to the job requirements to match only CentOs7 machines
SET Requirements $(MY.Requirements) && OpSysAndVer == "CentOS7"

@end

AnyType ifThenElse(AnyType IfExpr,AnyType ThenExpr, AnyType ElseExpr)
A conditional expression is described by IfExpr. The following defines return values, when IfExpr evaluates

14.1. HTCondor’s ClassAd Mechanism 783

HTCondor Manual, Release 23.6.2

to

• True. Evaluate and return the value as given by ThenExpr.

• False. Evaluate and return the value as given by ElseExpr.

• UNDEFINED. Return the value UNDEFINED.

• ERROR. Return the value ERROR.

• 0.0. Evaluate, and return the value as given by ElseExpr.

• non-0.0 Real values. Evaluate, and return the value as given by ThenExpr.

Where IfExpr evaluates to give a value of type String, the function returns the value ERROR. The implemen-
tation uses lazy evaluation, so expressions are only evaluated as defined.

This function returns ERROR if other than exactly 3 arguments are given.

Boolean isUndefined(AnyType Expr)
Returns True, if Expr evaluates to UNDEFINED. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isError(AnyType Expr)
Returns True, if Expr evaluates to ERROR. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isString(AnyType Expr)
Returns True, if the evaluation of Expr gives a value of type String. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isInteger(AnyType Expr)
Returns True, if the evaluation of Expr gives a value of type Integer. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isReal(AnyType Expr)
Returns True, if the evaluation of Expr gives a value of type Real. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isList(AnyType Expr)
Returns True, if the evaluation of Expr gives a value of type List. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isClassAd(AnyType Expr)
Returns True, if the evaluation of Expr gives a value of type ClassAd. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

784 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

Boolean isBoolean(AnyType Expr)
Returns True, if the evaluation of Expr gives the integer value 0 or 1. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isAbstime(AnyType Expr)
Returns True, if the evaluation of Expr returns an abstime type. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isReltime(AnyType Expr)
Returns True, if the evaluation of Expr returns an relative time type. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean member(AnyType m, ListType l)
Returns error if m does not evalute to a scalar, or l does not evaluate to a list. Otherwise the elements of l are
evaluted in order, and if an element is equal to m in the sense of == the result of the function is True. Otherwise
the function returns false.

Boolean anyCompare(string op, list l, AnyType t)
Returns error if op does not evalute to one of <, <=, ==, >, >=, !-, is or isnt. Returns error if l isn’t a list,
or t isn’t a scalar Otherwise the elements of l are evaluted and compared to t using the corresponding operator
defined by op. If any of the members of l evaluate to true, the result is True. Otherwise the function returns
False.

Boolean allCompare(string op, list l, AnyType t)
Returns error if op does not evalute to one of <, <=, ==, >, >=, !-, is or isnt. Returns error if l isn’t a list, or t
isn’t a scalar Otherwise the elements of l are evaluted and compared to t using the corresponding operator defined
by op. If all of the members of l evaluate to true, the result is True. Otherwise the function returns False.

Boolean identicalMember(AnyType m, ListType l)
Returns error if m does not evalute to a scalar, or l does not evaluate to a list. Otherwise the elements of l are
evaluted in order, and if an element is equal to m in the sense of =?= the result of the function is True. Otherwise
the function returns false.

Integer int(AnyType Expr)
Returns the integer value as defined by Expr. Where the type of the evaluated Expr is Real, the value is truncated
(round towards zero) to an integer. Where the type of the evaluated Expr is String, the string is converted to an
integer using a C-like atoi() function. When this result is not an integer, ERROR is returned. Where the evaluated
Expr is ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Real real(AnyType Expr)
Returns the real value as defined by Expr. Where the type of the evaluated Expr is Integer, the return value
is the converted integer. Where the type of the evaluated Expr is String, the string is converted to a real value

14.1. HTCondor’s ClassAd Mechanism 785

HTCondor Manual, Release 23.6.2

using a C-like atof() function. When this result is not a real, ERROR is returned. Where the evaluated Expr is
ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

String string(AnyType Expr)
Returns the string that results from the evaluation of Expr. Converts a non-string value to a string. Where the
evaluated Expr is ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Bool bool(AnyType Expr)
Returns the boolean that results from the evaluation of Expr. Converts a non-boolean value to a bool. A string
expression that evaluates to the string “true” yields true, and “false” returns

This function returns ERROR if other than exactly 1 argument is given.

AbsTime absTime(AnyType t [, int z])
Creates an AbsTime value corresponding to time t an time-zone offset z. If t is a String, then z must be omitted,
and t is parsed as a specification as follows.

The operand t is parsed as a specification of an instant in time (date and time). This function accepts the canonical
native representation of AbsTime values, but minor variations in format are allowed. The default format is yyyy-
mm-ddThh:mm:sszzzzz where zzzzz is a time zone in the format +hh:mm or -hh:mm

If t and z are both omitted, the result is an AbsTime value representing the time and place where the function
call is evaluated. Otherwise, t is converted to a Real by the function “real”, and treated as a number of seconds
from the epoch, Midnight January 1, 1970 UTC. If z is specified, it is treated as a number of seconds east of
Greenwich. Otherwise, the offset is calculated from t according to the local rules for the place where the function
is evaluated.

RelTime relTime(AnyType t)
If the operand t is a String, it is parsed as a specification of a time interval. This function accepts the canonical
native representation of RelTime values, but minor variations in format are allowed.

Otherwise, t is converted to a Real by the function real, and treated as a number of seconds. The default string
format is [-]days+hh:mm:ss.fff, where leading components and the fraction .fff are omitted if they are zero. In
the default syntax, days is a sequence of digits starting with a non-zero digit, hh, mm, and ss are strings of exactly
two digits (padded on the left with zeros if necessary) with values less than 24, 60, and 60, respectively and fff
is a string of exactly three digits.

Integer floor(AnyType Expr)
Returns the integer that results from the evaluation of Expr, where the type of the evaluated Expr is Integer.
Where the type of the evaluated Expr is not Integer, function real(Expr) is called. Its return value is then
used to return the largest magnitude integer that is not larger than the returned value. Where real(Expr) returns
ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Integer ceiling(AnyType Expr)
Returns the integer that results from the evaluation of Expr, where the type of the evaluated Expr is Integer.

786 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

Where the type of the evaluated Expr is not Integer, function real(Expr) is called. Its return value is then
used to return the smallest magnitude integer that is not less than the returned value. Where real(Expr) returns
ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Integer pow(Integer base, Integer exponent) OR Real pow(Integer base, Integer exponent)
OR Real pow(Real base, Real exponent)

Calculates base raised to the power of exponent. If exponent is an integer value greater than or equal to 0,
and base is an integer, then an integer value is returned. If exponent is an integer value less than 0, or if either
base or exponent is a real, then a real value is returned. An invocation with exponent=0 or exponent=0.0,
for any value of base, including 0 or 0.0, returns the value 1 or 1.0, type appropriate.

Integer quantize(AnyType a, Integer b) OR Real quantize(AnyType a, Real b) OR AnyType
quantize(AnyType a, AnyType list b)

quantize() computes the quotient of a/b, in order to further compute `` ceiling(quotient) * b``. This computes
and returns an integral multiple of b that is at least as large as a. So, when b >= a, the return value will be b.
The return type is the same as that of b, where b is an Integer or Real.

When b is a list, quantize() returns the first value in the list that is greater than or equal to a. When no value
in the list is greater than or equal to a, this computes and returns an integral multiple of the last member in the
list that is at least as large as a.

This function returns ERROR if a or b, or a member of the list that must be considered is not an Integer or Real.

Here are examples:

8 = quantize(3, 8)
4 = quantize(3, 2)
0 = quantize(0, 4)
6.8 = quantize(1.5, 6.8)
7.2 = quantize(6.8, 1.2)
10.2 = quantize(10, 5.1)

4 = quantize(0, {4})
2 = quantize(2, {1, 2, "A"})
3.0 = quantize(3, {1, 2, 0.5})
3.0 = quantize(2.7, {1, 2, 0.5})
ERROR = quantize(3, {1, 2, "A"})

Integer round(AnyType Expr)
Returns the integer that results from the evaluation of Expr, where the type of the evaluated Expr is Integer.
Where the type of the evaluated Expr is not Integer, function real(Expr) is called. Its return value is then
used to return the integer that results from a round-to-nearest rounding method. The nearest integer value to the
return value is returned, except in the case of the value at the exact midpoint between two integer values. In this
case, the even valued integer is returned. Where real(Expr) returns ERROR or UNDEFINED, or the integer value
does not fit into 32 bits, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Integer random([AnyType Expr])
Where the optional argument Expr evaluates to type Integer or type Real (and called x), the return value is the

14.1. HTCondor’s ClassAd Mechanism 787

HTCondor Manual, Release 23.6.2

integer or real r randomly chosen from the interval 0 <= r < x. With no argument, the return value is chosen
with random(1.0). Returns ERROR in all other cases.

This function returns ERROR if greater than 1 argument is given.

Number sum([List l])
The elements of l are evaluated, producing a list l of values. Undefined values are removed. If the resulting l is
composed only of numbers, the result is the sum of the values, as a Real if any value is Real, and as an Integer
otherwise. If the list is empty, the result is 0. If the list has only Undefined values, the result is UNDEFINED. In
other cases, the result is ERROR.

This function returns ERROR if greater than 1 argument is given.

Number avg([List l])
The elements of l are evaluated, producing a list l of values. Undefined values are removed. If the resulting l is
composed only of numbers, the result is the average of the values, as a Real. If the list is empty, the result is 0.
If the list has only Undefined values, the result is UNDEFINED. In other cases, the result is ERROR.

Number min([List l])
The elements of l are evaluated, producing a list l of values. Undefined values are removed. If the resulting l
is composed only of numbers, the result is the minimum of the values, as a Real if any value is Real, and as an
Integer otherwise. If the list is empty, the result is UNDEFINED. In other cases, the result is ERROR.

Number max([List l])
The elements of l are evaluated, producing a list l of values. Undefined values are removed. If the resulting l is
composed only of numbers, the result is the maximum of the values, as a Real if any value is Real, and as an
Integer otherwise. If the list is empty, the result is UNDEFINED. In other cases, the result is ERROR.

String strcat(AnyType Expr1 [, AnyType Expr2 ...])
Returns the string which is the concatenation of all arguments, where all arguments are converted to type String
by function string(Expr). Returns ERROR if any argument evaluates to UNDEFINED or ERROR.

String join(String sep, AnyType Expr1 [, AnyType Expr2 ...]) OR String join(String sep,
List list OR String join(List list

Returns the string which is the concatenation of all arguments after the first one. The first argument is the
separator, and it is inserted between each of the other arguments during concatenation. All arguments which
are not undefined are converted to type String by function string(Expr) before concatenation. Undefined
arguments are skipped. When there are exactly two arguments, If the second argument is a List, all members of
the list are converted to strings and then joined using the separator. When there is only one argument, and the
argument is a List, all members of the list are converted to strings and then concatenated.

Returns ERROR if any argument evaluates to UNDEFINED or ERROR.

For example:

"a, b, c" = join(", ", "a", "b", "c")
"abc" = join(split("a b c"))
"a;b;c" = join(";", split("a b c"))

788 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

String substr(String s, Integer offset [, Integer length])
Returns the substring of s, from the position indicated by offset, with (optional) length characters. The first
character within s is at offset 0. If the optional length argument is not present, the substring extends to the
end of the string. If offset is negative, the value (length - offset) is used for the offset. If length is
negative, an initial substring is computed, from the offset to the end of the string. Then, the absolute value
of length characters are deleted from the right end of the initial substring. Further, where characters of this
resulting substring lie outside the original string, the part that lies within the original string is returned. If the
substring lies completely outside of the original string, the null string is returned.

This function returns ERROR if greater than 3 or less than 2 arguments are given.

Integer strcmp(AnyType Expr1, AnyType Expr2)
Both arguments are converted to type String by function string(Expr). The return value is an integer that
will be

• less than 0, if Expr1 is lexicographically less than Expr2

• equal to 0, if Expr1 is lexicographically equal to Expr2

• greater than 0, if Expr1 is lexicographically greater than Expr2

Case is significant in the comparison. Where either argument evaluates to ERROR or UNDEFINED, ERROR is
returned.

This function returns ERROR if other than 2 arguments are given.

Integer stricmp(AnyType Expr1, AnyType Expr2)
This function is the same as strcmp, except that letter case is not significant.

Integer versioncmp(String left, String right)
This function version-compares two strings. It returns an integer

• less than zero if left is an earlier version than right

• zero if the strings are identical

• more than zero if left is a later version than right.

A version comparison is a lexicographic comparison unless the first difference between the two strings occurs
in a string of digits, in which case, sort by the value of that number (assuming that more leading zeroes mean
smaller numbers). Thus 7.x is earlier than 7.y, 7.9 is earlier than 7.10, and the following sequence is in order:
000, 00, 01, 010, 09, 0, 1, 9, 10.

Boolean versionGT(String left, String right) Boolean versionLT(String left, String right)
Boolean versionGE(String left, String right) Boolean versionLE(String left, String right)
Boolean versionEQ(String left, String right)

As versioncmp() (above), but for a specific comparison and returning a boolean. The two letter codes
stand for “Greater Than”, “Less Than”, “Greater than or Equal”, “Less than or Equal”, and “EQual”,
respectively.

Boolean version_in_range(String version, String min, String max)

Equivalent to versionLE(min, version) && versionLE(version, max).

14.1. HTCondor’s ClassAd Mechanism 789

HTCondor Manual, Release 23.6.2

String toUpper(AnyType Expr)
The single argument is converted to type String by function string(Expr). The return value is this string,
with all lower case letters converted to upper case. If the argument evaluates to ERROR or UNDEFINED, ERROR is
returned.

This function returns ERROR if other than exactly 1 argument is given.

String toLower(AnyType Expr)
The single argument is converted to type String by function string(Expr). The return value is this string,
with all upper case letters converted to lower case. If the argument evaluates to ERROR or UNDEFINED, ERROR is
returned.

This function returns ERROR if other than exactly 1 argument is given.

Integer size(AnyType Expr)
If Expr evaluates to a string, return the number of characters in the string. If Expr evaluate to a list, return the
number of elements in the list. If Expr evaluate to a classad, return the number of entries in the ad. Otherwise,
ERROR is returned.

List split(String s [, String tokens])
Returns a list of the substrings of s that have been split up by using any of the characters within string tokens.
If tokens is not specified, then all white space characters are used to delimit the string.

List splitUserName(String Name)
Returns a list of two strings. Where Name includes an @ character, the first string in the list will be the substring
that comes before the @ character, and the second string in the list will be the substring that comes after. Thus, if
Name is "user@domain", then the returned list will be {“user”, “domain”}. If there is no @ character in Name,
then the first string in the list will be Name, and the second string in the list will be the empty string. Thus, if
Name is "username", then the returned list will be {“username”, “”}.

List splitSlotName(String Name)
Returns a list of two strings. Where Name includes an @ character, the first string in the list will be the substring
that comes before the @ character, and the second string in the list will be the substring that comes after. Thus,
if Name is "slot1@machine", then the returned list will be {“slot1”, “machine”}. If there is no @ character in
Name, then the first string in the list will be the empty string, and the second string in the list will be Name, Thus,
if Name is "machinename", then the returned list will be {“”, “machinename”}.

Integer time()
Returns the current coordinated universal time. This is the time, in seconds, since midnight of January 1, 1970.

String formatTime([Integer time] [, String format])
Returns a formatted string that is a representation of time. The argument time is interpreted as coordinated
universal time in seconds, since midnight of January 1, 1970. If not specified, time will default to the current
time.

The argument format is interpreted similarly to the format argument of the ANSI C strftime function. It consists
of arbitrary text plus placeholders for elements of the time. These placeholders are percent signs (%) followed by

790 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

a single letter. To have a percent sign in the output, use a double percent sign (%%). If format is not specified,
it defaults to %c.

Because the implementation uses strftime() to implement this, and some versions implement extra, non-ANSI
C options, the exact options available to an implementation may vary. An implementation is only required to
implement the ANSI C options, which are:

%a
abbreviated weekday name

%A
full weekday name

%b
abbreviated month name

%B
full month name

%c
local date and time representation

%d
day of the month (01-31)

%H
hour in the 24-hour clock (0-23)

%I
hour in the 12-hour clock (01-12)

%j
day of the year (001-366)

%m
month (01-12)

%M
minute (00-59)

%p
local equivalent of AM or PM

%S
second (00-59)

%U
week number of the year (Sunday as first day of week) (00-53)

%w
weekday (0-6, Sunday is 0)

%W
week number of the year (Monday as first day of week) (00-53)

%x
local date representation

%X
local time representation

%y
year without century (00-99)

14.1. HTCondor’s ClassAd Mechanism 791

HTCondor Manual, Release 23.6.2

%Y
year with century

%Z
time zone name, if any

String interval(Integer seconds)
Uses seconds to return a string of the form days+hh:mm:ss. This represents an interval of time. Leading values
that are zero are omitted from the string. For example, seconds of 67 becomes “1:07”. A second example,
seconds of 1472523 = 17*24*60*60 + 1*60*60 + 2*60 + 3, results in the string “17+1:02:03”.

String evalInEachContext(Expression expr, List contexts)
This function evaluates its first argument as an expression in the context of each Classad in the second argument
and returns a list that is the result of each evaluation. The first argument should be an expression. If the second
argument does not evaluate to a list of ClassAds, ERROR is returned.

For example:

{true, false} = evalInEachContext(Prio > 2, { [Prio=3;], [Prio=1;] })
{3, 1} = evalInEachContext(Prio, { [Prio=3;], [Prio=1;] })
ERROR = evalInEachContext(Prio > 2, { [Prio=3;], UNDEFINED })
ERROR = evalInEachContext(Prio > 2, UNDEFINED)

String countMatches(Expression expr, List contexts)
This function evaluates its first argument as an expression in the context of each Classad in the second argument
and returns a count of the results that evaluated to True. The first argument should be an expression. The second
argument should be a list of ClassAds or a list of attribute references to classAds, or should evaluate to a list
of ClassAds. This function will always return a integer value when the first argument is defined and the second
argument is not ERROR.

For example:

1 = countMatches(Prio > 2, { [Prio=3;], [Prio=1;] })
1 = countMatches(Prio > 2, { [Prio=3;], UNDEFINED })
0 = countMatches(Prio > 2, UNDEFINED)

AnyType debug(AnyType expression)
This function evaluates its argument, and it returns the result. Thus, it is a no-operation. However, a side-effect
of the function is that information about the evaluation is logged to the evaluating program’s log file, at the
D_FULLDEBUG debug level. This is useful for determining why a given ClassAd expression is evaluating the way
it does. For example, if a condor_startd expression is unexpectedly evaluating to UNDEFINED, then wrapping the
expression in this debug() function will log information about each component of the expression to the log file,
making it easier to understand the expression.

String envV1ToV2(String old_env)
This function converts a set of environment variables from the old HTCondor syntax to the new syntax. The
single argument should evaluate to a string that represents a set of environment variables using the old HTCondor
syntax (usually stored in the job ClassAd attribute). The result is the same set of environment variables using the
new HTCondor syntax (usually stored in the job ClassAd attribute). If the argument evaluates to UNDEFINED,
then the result is also UNDEFINED.

792 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

String mergeEnvironment(String env1 [, String env2, ...])
This function merges multiple sets of environment variables into a single set. If multiple arguments include the
same variable, the one that appears last in the argument list is used. Each argument should evaluate to a string
which represents a set of environment variables using the new HTCondor syntax or UNDEFINED, which is treated
like an empty string. The result is a string that represents the merged set of environment variables using the new
HTCondor syntax (suitable for use as the value of the job ClassAd attribute).

For the following functions, a delimiter is represented by a string. Each character within the delimiter string delimits
individual strings within a list of strings that is given by a single string. The default delimiter contains the comma and
space characters. A string within the list is ended (delimited) by one or more characters within the delimiter string.

Integer stringListSize(String list [, String delimiter])
Returns the number of elements in the string list, as delimited by the optional delimiter string. Returns
ERROR if either argument is not a string.

This function returns ERROR if other than 1 or 2 arguments are given.

Integer stringListSum(String list [, String delimiter]) OR Real stringListSum(String
list [, String delimiter])

Sums and returns the sum of all items in the string list, as delimited by the optional delimiter string. If all
items in the list are integers, the return value is also an integer. If any item in the list is a real value (noninteger),
the return value is a real. If any item does not represent an integer or real value, the return value is ERROR.

Real stringListAvg(String list [, String delimiter])
Sums and returns the real-valued average of all items in the string list, as delimited by the optional delimiter
string. If any item does not represent an integer or real value, the return value is ERROR. A list with 0 items (the
empty list) returns the value 0.0.

Integer stringListMin(String list [, String delimiter]) OR Real stringListMin(String
list [, String delimiter])

Finds and returns the minimum value from all items in the string list, as delimited by the optional delimiter
string. If all items in the list are integers, the return value is also an integer. If any item in the list is a real value
(noninteger), the return value is a real. If any item does not represent an integer or real value, the return value is
ERROR. A list with 0 items (the empty list) returns the value UNDEFINED.

Integer stringListMax(String list [, String delimiter]) OR Real stringListMax(String
list [, String delimiter])

Finds and returns the maximum value from all items in the string list, as delimited by the optional delimiter
string. If all items in the list are integers, the return value is also an integer. If any item in the list is a real value
(noninteger), the return value is a real. If any item does not represent an integer or real value, the return value is
ERROR. A list with 0 items (the empty list) returns the value UNDEFINED.

Boolean stringListMember(String x, String list [, String delimiter])
Returns TRUE if item x is in the string list, as delimited by the optional delimiter string. Returns FALSE if
item x is not in the string list. Comparison is done with strcmp(). The return value is ERROR, if any of the
arguments are not strings.

14.1. HTCondor’s ClassAd Mechanism 793

HTCondor Manual, Release 23.6.2

Boolean stringListIMember(String x, String list [, String delimiter])
Same as stringListMember(), but comparison is done with stricmp(), so letter case is not relevant.

Integer stringListsIntersect(String list1, String list2 [, String delimiter])
Returns TRUE if the lists contain any matching elements, and returns FALSE if the lists do not contain any matching
elements. Returns ERROR if either argument is not a string or if an incorrect number of arguments are given.

Boolean stringListSubsetMatch(String list1, String list2 [, String delimiter])
Returns TRUE if all item in the string list1 are also in the string list2, as delimited by the optional delimiter
string. Returns FALSE if list1 has any items that are not in list2. Both lists are treated as sets. Empty items
and duplicate items are ignored. The return value is TRUE if list1 is UNDEFINED or empty and list2 is any
string value. The return value is FALSE if list1 is any string value and list2 is UNDEFINED. The return value
is UNDEFINED if both list1 and list2 are UNDEFINED. The return value is ERROR, if any of the arguments are
not either strings or UNDEFINED

Boolean stringListISubsetMatch(String list1, String list2 [, String delimiter])
Same as stringListSubsetMatch(), but the sets are case-insensitive.

The following six functions utilize regular expressions as defined and supported by the PCRE library. See http://www.
pcre.org for complete documentation of regular expressions.

The options argument to these functions is a string of special characters that modify the use of the regular expressions.
Inclusion of characters other than these as options are ignored.

I or i
Ignore letter case.

M or m
Modifies the interpretation of the caret (^) and dollar sign ($) characters. The caret character matches the start
of a string, as well as after each newline character. The dollar sign character matches before a newline character.

S or s
The period matches any character, including the newline character.

F or f
When doing substitution, return the full target string with substitutions applied. Normally, only the substitute
text is returned.

G or g
When doing substitution, apply the substitution for every matching portion of the target string (that doesn’t overlap
a previous match).

Boolean regexp(String pattern, String target [, String options])
Uses the regular expression given by string pattern to scan through the string target. Returns TRUE when
target matches the regular expression given by pattern. Returns FALSE otherwise. If any argument is not a
string, or if pattern does not describe a valid regular expression, returns ERROR.

Boolean regexpMember(String pattern, List targetStrings [, String options])
Uses the description of a regular expression given by string pattern to scan through a List of string n
targetStrings. Returns TRUE when target matches a regular expression given by pattern. If no strings
match, and at least one item in targetString evaluated to undefined, returns undefined. If any item in targetString
before a match evaluated to neither a string nor undefined, returns ERROR.

794 Chapter 14. Commands Reference (man pages)

http://www.pcre.org
http://www.pcre.org

HTCondor Manual, Release 23.6.2

String regexps
(String pattern, String target, String substitute [, String options]) Uses the regular
expression given by string pattern to scan through the string target. When target matches the regular
expression given by pattern, the string substitute is returned, with backslash expansion performed. If any
argument is not a string, returns ERROR.

String replace
(String pattern, String target, String substitute [, String options]) Uses the regular
expression given by string pattern to scan through the string target. Returns a modified version of target,
where the first substring that matches pattern is replaced by the string substitute, with backslash expansion
performed. Equivalent to regexps() with the f option. If any argument is not a string, returns ERROR.

String replaceall
(String pattern, String target, String substitute [, String options]) Uses the regular
expression given by string pattern to scan through the string target. Returns a modified version of target,
where every substring that matches pattern is replaced by the string substitute, with backslash expansion
performed. Equivalent to regexps() with the fg options. If any argument is not a string, returns ERROR.

Boolean stringList_regexpMember
(String pattern, String list [, String delimiter] [, String options]) Uses the de-
scription of a regular expression given by string pattern to scan through the list of strings in list. Returns
TRUE when one of the strings in list is a regular expression as described by pattern. The optional delimiter
describes how the list is delimited, and string options modifies how the match is performed. Returns FALSE if
pattern does not match any entries in list. The return value is ERROR, if any of the arguments are not strings,
or if pattern is not a valid regular expression.

String userHome(String userName [, String default])
Returns the home directory of the given user as configured on the current system (determined using the getp-
wdnam() call). (Returns default if the default argument is passed and the home directory of the user is not
defined.)

List userMap(String mapSetName, String userName)
Map an input string using the given mapping set. Returns a string containing the list of groups to which the user
belongs separated by commas or undefined if the user was not found in the map file.

String userMap(String mapSetName, String userName, String preferredGroup)
Map an input string using the given mapping set. Returns a string, which is the preferred group if the user is in
that group; otherwise it is the first group to which the user belongs, or undefined if the user belongs to no groups.

String userMap(String mapSetName, String userName, String preferredGroup, String
defaultGroup)

Map an input string using the given mapping set. Returns a string, which is the preferred group if the user is
in that group; the first group to which the user belongs, if any; and the default group if the user belongs to no
groups.

The maps for the userMap() function are defined by the following configuration macros: , and (see the
HTCondor-wide Configuration File Entries section).

14.1. HTCondor’s ClassAd Mechanism 795

HTCondor Manual, Release 23.6.2

14.1.3 ClassAd Evaluation Semantics

The ClassAd mechanism’s primary purpose is for matching entities that supply constraints on candidate matches. The
mechanism is therefore defined to carry out expression evaluations in the context of two ClassAds that are testing each
other for a potential match. For example, the condor_negotiator evaluates the Requirements expressions of machine
and job ClassAds to test if they can be matched. The semantics of evaluating such constraints is defined below.

Evaluating Literals

Literals are self-evaluating, Thus, integer, string, real, undefined and error values evaluate to themselves.

Attribute References

Since the expression evaluation is being carried out in the context of two ClassAds, there is a potential for name space
ambiguities. The following rules define the semantics of attribute references made by ClassAd A that is being evaluated
in a context with another ClassAd B:

1. If the reference is prefixed by a scope resolution prefix,

• If the prefix is MY., the attribute is looked up in ClassAd A. If the named attribute does not exist in A, the
value of the reference is UNDEFINED. Otherwise, the value of the reference is the value of the expression
bound to the attribute name.

• Similarly, if the prefix is TARGET., the attribute is looked up in ClassAd B. If the named attribute does not
exist in B, the value of the reference is UNDEFINED. Otherwise, the value of the reference is the value of the
expression bound to the attribute name.

2. If the reference is not prefixed by a scope resolution prefix,

• If the attribute is defined in A, the value of the reference is the value of the expression bound to the attribute
name in A.

• Otherwise, if the attribute is defined in B, the value of the reference is the value of the expression bound to
the attribute name in B.

• Otherwise, if the attribute is defined in the ClassAd environment, the value from the environment is re-
turned. This is a special environment, to be distinguished from the Unix environment. Currently, the only
attribute of the environment is , which evaluates to the integer value returned by the system call time(2).

• Otherwise, the value of the reference is UNDEFINED.

3. Finally, if the reference refers to an expression that is itself in the process of being evaluated, there is a circular
dependency in the evaluation. The value of the reference is ERROR.

ClassAd Operators

All operators in the ClassAd language are total, and thus have well defined behavior regardless of the supplied operands.
Furthermore, most operators are strict with respect to ERROR and UNDEFINED, and thus evaluate to ERROR or UNDEFINED
if either of their operands have these exceptional values.

• Arithmetic operators:

1. The operators *, /, + and - operate arithmetically only on integers and reals.

796 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

2. Arithmetic is carried out in the same type as both operands, and type promotions from integers to reals are
performed if one operand is an integer and the other real.

3. The operators are strict with respect to both UNDEFINED and ERROR.

4. If either operand is not a numerical type, the value of the operation is ERROR.

• Comparison operators:

1. The comparison operators ==, !=, <=, <, >= and > operate on integers, reals and strings.

2. String comparisons are case insensitive for most operators. The only exceptions are the operators =?= and
=!=, which do case sensitive comparisons assuming both sides are strings.

3. Comparisons are carried out in the same type as both operands, and type promotions from integers to reals
are performed if one operand is a real, and the other an integer. Strings may not be converted to any other
type, so comparing a string and an integer or a string and a real results in ERROR.

4. The operators ==, !=, <=, <, >=, and > are strict with respect to both UNDEFINED and ERROR.

5. In addition, the operators =?=, is, =!=, and isnt behave similar to == and !=, but are not strict. Semanti-
cally, the =?= and is test if their operands are “identical,” i.e., have the same type and the same value. For
example, 10 == UNDEFINED and UNDEFINED == UNDEFINED both evaluate to UNDEFINED, but 10 =?=
UNDEFINED and UNDEFINED is UNDEFINED evaluate to FALSE and TRUE respectively. The =!= and isnt
operators test for the “is not identical to” condition.

=?= and is have the same behavior as each other. And isnt and =!= behave the same as each other. The
ClassAd unparser will always use =?= in preference to is and =!= in preference to isnt when printing out
ClassAds.

• Logical operators:

1. The logical operators && and || operate on integers and reals. The zero value of these types are considered
FALSE and non-zero values TRUE.

2. The operators are not strict, and exploit the “don’t care” properties of the operators to squash UNDEFINED
and ERROR values when possible. For example, UNDEFINED && FALSE evaluates to FALSE, but
UNDEFINED || FALSE evaluates to UNDEFINED.

3. Any string operand is equivalent to an ERROR operand for a logical operator. In other words, TRUE &&
"foobar" evaluates to ERROR.

• The Ternary operator:

1. The Ternary operator (expr1 ? expr2 : expr3) operate with expressions. If all three expressions are
given, the operation is strict.

2. However, if the middle expression is missing, eg. expr1 ?: expr3, then, when expr1 is defined, that
defined value is returned. Otherwise, when expr1 evaluated to UNDEFINED, the value of expr3 is evaluated
and returned. This can be a convenient shortcut for writing what would otherwise be a much longer classad
expression.

14.1. HTCondor’s ClassAd Mechanism 797

HTCondor Manual, Release 23.6.2

Expression Examples

The =?= operator is similar to the == operator. It checks if the left hand side operand is identical in both type and value
to the right hand side operand, returning TRUE when they are identical.

Caution: For strings, the comparison is case-insensitive with the == operator and case-sensitive with the =?
= operator. A key point in understanding is that the =?= operator only produces evaluation results of TRUE and
FALSE, where the == operator may produce evaluation results TRUE, FALSE, UNDEFINED, or ERROR.

Table 4.1 presents examples that define the outcome of the == operator. Table 4.2 presents examples that define the
outcome of the =?= operator.

expression evaluated result
(10 == 10) TRUE
(10 == 5) FALSE
(10 == "ABC") ERROR
"ABC" == "abc" TRUE
(10 == UNDEFINED) UNDEFINED
(UNDEFINED == UNDEFINED) UNDEFINED

Table 4.1: Evaluation examples for the == operator

expression evaluated result
(10 =?= 10) TRUE
(10 =?= 5) FALSE
(10 =?= "ABC") FALSE
"ABC" =?= "abc" FALSE
(10 =?= UNDEFINED) FALSE
(UNDEFINED =?= UNDEFINED) TRUE

Table 4.2: Evaluation examples for the =?= operator

The =!= operator is similar to the != operator. It checks if the left hand side operand is not identical in both type and
value to the the right hand side operand, returning FALSE when they are identical.

Caution: For strings, the comparison is case-insensitive with the != operator and case-sensitive with the =!=
operator. A key point in understanding is that the =!= operator only produces evaluation results of TRUE and
FALSE, where the != operator may produce evaluation results TRUE, FALSE, UNDEFINED, or ERROR.

Table 4.3 presents examples that define the outcome of the != operator. Table 4.4 presents examples that define the
outcome of the =!= operator.

expression evaluated result
(10 != 10) FALSE
(10 != 5) TRUE
(10 != "ABC") ERROR
"ABC" != "abc" FALSE
(10 != UNDEFINED) UNDEFINED
(UNDEFINED != UNDEFINED) UNDEFINED

798 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

Table 4.3: Evaluation examples for the != operator

expression evaluated result
(10 =!= 10) FALSE
(10 =!= 5) TRUE
(10 =!= "ABC") TRUE
"ABC" =!= "abc" TRUE
(10 =!= UNDEFINED) TRUE
(UNDEFINED =!= UNDEFINED) FALSE

Table 4.4: Evaluation examples for the =!= operator

14.1.4 Old ClassAds in the HTCondor System

The simplicity and flexibility of ClassAds is heavily exploited in the HTCondor system. ClassAds are not only used to
represent machines and jobs in the HTCondor pool, but also other entities that exist in the pool such as submitters of
jobs and master daemons. Since arbitrary expressions may be supplied and evaluated over these ClassAds, users have
a uniform and powerful mechanism to specify constraints over these ClassAds. These constraints can take the form of
Requirements expressions in resource and job ClassAds, or queries over other ClassAds.

Constraints and Preferences

The requirements and rank expressions within the submit description file are the mechanism by which users specify
the constraints and preferences of jobs. For machines, the configuration determines both constraints and preferences
of the machines.

For both machine and job, the rank expression specifies the desirability of the match (where higher numbers mean
better matches). For example, a job ClassAd may contain the following expressions:

Requirements = (Arch == "INTEL") && (OpSys == "LINUX")
Rank = TARGET.Memory + TARGET.Mips

In this case, the job requires a 32-bit Intel processor running a Linux operating system. Among all such computers, the
customer prefers those with large physical memories and high MIPS ratings. Since the Rank is a user-specified metric,
any expression may be used to specify the perceived desirability of the match. The condor_negotiator daemon runs
algorithms to deliver the best resource (as defined by the rank expression), while satisfying other required criteria.

Similarly, the machine may place constraints and preferences on the jobs that it will run by setting the machine’s
configuration. For example,

Friend = Owner == "tannenba" || Owner == "wright"
ResearchGroup = Owner == "jbasney" || Owner == "raman"
Trusted = Owner != "rival" && Owner != "riffraff"
START = Trusted && (ResearchGroup || LoadAvg < 0.3 && KeyboardIdle > 15*60)
RANK = Friend + ResearchGroup*10

The above policy states that the computer will never run jobs owned by users rival and riffraff, while the computer will
always run a job submitted by members of the research group. Furthermore, jobs submitted by friends are preferred to
other foreign jobs, and jobs submitted by the research group are preferred to jobs submitted by friends.

14.1. HTCondor’s ClassAd Mechanism 799

HTCondor Manual, Release 23.6.2

Note: Because of the dynamic nature of ClassAd expressions, there is no a priori notion of an integer-valued expression,
a real-valued expression, etc. However, it is intuitive to think of the Requirements and Rank expressions as integer-
valued and real-valued expressions, respectively. If the actual type of the expression is not of the expected type, the
value is assumed to be zero.

Querying with ClassAd Expressions

The flexibility of this system may also be used when querying ClassAds through the and tools which allow users to
supply ClassAd constraint expressions from the command line.

Needed syntax is different on Unix and Windows platforms, due to the interpretation of characters in forming command-
line arguments. The expression must be a single command-line argument, and the resulting examples differ for the
platforms. For Unix shells, single quote marks are used to delimit a single argument. For a Windows command window,
double quote marks are used to delimit a single argument. Within the argument, Unix escapes the double quote mark
by prepending a backslash to the double quote mark. Windows escapes the double quote mark by prepending another
double quote mark. There may not be spaces in between.

Here are several examples. To find all computers which have had their keyboards idle for more than 60 minutes and
have more than 4000 MB of memory, the desired ClassAd expression is

KeyboardIdle > 60*60 && Memory > 4000

On a Unix platform, the command appears as

$ condor_status -const 'KeyboardIdle > 60*60 && Memory > 4000'

Name OpSys Arch State Activity LoadAv Mem ActvtyTime
100
slot1@altair.cs.wi LINUX X86_64 Owner Idle 0.000 8018 13+00:31:46
slot2@altair.cs.wi LINUX X86_64 Owner Idle 0.000 8018 13+00:31:47
...
...
slot1@athena.stat. LINUX X86_64 Unclaimed Idle 0.000 7946 0+00:25:04
slot2@athena.stat. LINUX X86_64 Unclaimed Idle 0.000 7946 0+00:25:05
...
...

The Windows equivalent command is

> condor_status -const "KeyboardIdle > 60*60 && Memory > 4000"

Here is an example for a Unix platform that utilizes a regular expression ClassAd function to list specific information.
A file contains ClassAd information. is used to inject this information, and constrains the search with an expression
that contains a ClassAd function.

$ cat ad
MyType = "Generic"
FauxType = "DBMS"
Name = "random-test"
Machine = "f05.cs.wisc.edu"
MyAddress = "<128.105.149.105:34000>"
DaemonStartTime = 1153192799
UpdateSequenceNumber = 1

(continues on next page)

800 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

(continued from previous page)

$ condor_advertise UPDATE_AD_GENERIC ad

$ condor_status -any -constraint 'FauxType=="DBMS" && regexp("random.*", Name, "i")'

MyType TargetType Name

Generic None random-test

The ClassAd expression describing a machine that advertises a Windows operating system:

OpSys == "WINDOWS"

Here are three equivalent ways on a Unix platform to list all machines advertising a Windows operating system. Spaces
appear in these examples to show where they are permitted.

$ condor_status -constraint ' OpSys == "WINDOWS" '

$ condor_status -constraint OpSys==\"WINDOWS\"

$ condor_status -constraint "OpSys==\"WINDOWS\""

The equivalent command on a Windows platform to list all machines advertising a Windows operating system must
delimit the single argument with double quote marks, and then escape the needed double quote marks that identify the
string within the expression. Spaces appear in this example where they are permitted.

> condor_status -constraint " OpSys == ""WINDOWS"" "

14.1.5 Extending ClassAds with User-written Functions

The ClassAd language provides a rich set of functions. It is possible to add new functions to the ClassAd language
without recompiling the HTCondor system or the ClassAd library. This requires implementing the new function in the
C++ programming language, compiling the code into a shared library, and telling HTCondor where in the file system
the shared library lives.

While the details of the ClassAd implementation are beyond the scope of this document, the ClassAd source distribu-
tion ships with an example source file that extends ClassAds by adding two new functions, named todays_date() and
double(). This can be used as a model for users to implement their own functions. To deploy this example extension,
follow the following steps on Linux:

• Download the ClassAd source distribution from http://www.cs.wisc.edu/condor/classad.

• Unpack the tarball.

• Inspect the source file shared.cpp. This one file contains the whole extension.

• Build shared.cpp into a shared library. On Linux, the command line to do so is

$ g++ -DWANT_CLASSAD_NAMESPACE -I. -shared -o shared.so \
-Wl,-soname,shared.so -o shared.so -fPIC shared.cpp

• Copy the file shared.so to a location that all of the HTCondor tools and daemons can read.

$ cp shared.so `condor_config_val LIBEXEC`

14.1. HTCondor’s ClassAd Mechanism 801

http://www.cs.wisc.edu/condor/classad

HTCondor Manual, Release 23.6.2

• Tell HTCondor to load the shared library into all tools and daemons, by setting the configuration variable to the
full name of the shared library. In this case,

CLASSAD_USER_LIBS = $(LIBEXEC)/shared.so

• Restart HTCondor.

• Test the new functions by running

$ condor_status -format "%s\n" todays_date()

14.2 classad_eval

Evaluate the given ClassAd expression(s) in the context of the given ClassAd attributes, and prints the result in ClassAd
format.

14.2.1 Synopsis

classad_eval -help

classad_eval [-[ad]-file <file-name>] [-target-file <file-name>] <ad | assignment | expression | -quiet>+

14.2.2 Description

classad_eval is designed to help you understand and debug ClassAd expressions. You can supply a ClassAd on the
command-line, or via a file, as context for evaluating the expression. You may also construct a ClassAd one argument
at a time, with assignments.

By default, classad_eval will print the ClassAd context used to evaluate the expression before printing the result of
the first expression, and for every expression with a new ClassAd thereafter. You may suppress this behavior with the
-quiet flag, which replaces an ad, assignment, or expression, and quiets every expression after it on the command
line.

Attributes specified on the command line, including those specified as part of a complete ad, replace attributes in the
context ad, which starts empty. You can’t remove attributes from the context ad, but you can set them to undefined.

Options, flags, and arguments may be freely intermixed, and take effect in order.

Note that classad_eval uses the new ClassAd syntax: ClassAds specified in a file must be surrounded by square
brackets and attribute-value pairs must be separated by semicolons. For compability with condor_q -long:new
and condor_status -long:new, classad_eval will use only the first ClassAd if passed a ClassAd list of them.

802 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.2.3 Examples

Almost every ad, assignment, or expression will require you to single quote them. There are some exceptions; for
instance, the following two commands are equivalent:

$ classad_eval 'a = 2' 'a * 2'
$ classad_eval a=2 a*2

You can specify attributes for the context ad in three ways:

$ classad_eval '[a = 2; b = 2]' 'a + b'
$ classad_eval 'a = 2; b = 2' 'a + b'
$ classad_eval 'a = 2' 'b = 2' 'a + b'

You need not supply an empty ad for expressions that don’t reference attributes:

$ classad_eval 'strcat("foo", "bar")'

If you want to evaluate an expression in the context of the job ad, first store the job ad in a file:

$ condor_q -l:new 1227.2 > job.ad
$ classad_eval -quiet -file job.ad 'JobUniverse'

You can extract a machine ad in a similar way:

$ condor_status -l:new slot1@exec-17 > machine.ad
$ classad_eval -quiet -file machine.ad 'Rank'

You may evaluate an expression in order to check a match by using the -target-file option:

$ condor_q -l:new 1227.2 > job.ad
$ condor_status -l:new exec-17 > machine.ad
$ classad_eval -quiet -my-file job.ad -target-ad machine.ad 'MY.requirements'␣
→˓'TARGET.requirements'

Assignments (including whole ClassAds) are all merged into the context ad:

$ classad_eval 'x = y' 'x' 'y = 7' 'x' '[x = 6; z = "foo";]' 'x'
[x = y]
undefined
[y = 7; x = y]
7
[z = "foo"; x = 6; y = 7]
6

You can suppress printing the context ad partway through:

$ classad_eval 'x = y' 'x' -quiet 'y = 7' 'x' '[x = 6; z = "foo";]' 'x'
[x = y]
undefined
7
6

14.2. classad_eval 803

HTCondor Manual, Release 23.6.2

14.2.4 Exit Status

Returns 0 on success.

14.2.5 Author

Center for High Throughput Computing, University of Wisconsin-Madison

14.3 condor_adstash

Gather schedd and/or startd job history ClassAds and push them via a search engine or file interface.

14.3.1 Synopsis

condor_adstash [--help]

condor_adstash [--process_name NAME] [--standalone] [--sample_interval SECONDS] [--checkpoint_file
PATH] [--log_file PATH] [--log_level LEVEL] [--threads THREADS] [--interface {null,elasticsearch,jsonfile}] [--
collectors COLLECTORS] [--schedds SCHEDDS] [--startds STARTDS] [--schedd_history] [--startd_history
] [--ad_file PATH] [--schedd_history_max_ads NUM_ADS] [--startd_history_max_ads NUM_ADS] [-
-schedd_history_timeout SECONDS] [--startd_history_timeout SECONDS] [--se_host HOST[:PORT]]
[--se_url_prefix PREFIX] [--se_username USERNAME] [--se_use_https] [--se_timeout SECONDS] [--
se_bunch_size NUM_DOCS] [--es_index_name INDEX_NAME] [--se_no_log_mappings] [--se_ca_certs PATH]
[--json_dir PATH]

14.3.2 Description

condor_adstash is a tool that assists in monitoring usage by gathering job ClassAds (typically from condor_schedd
and/or condor_startd history queries) and pushing the ClassAds as documents to some target (typically Elasticsearch).

Unless run in --standalone mode, condor_adstash expects to be invoked as a daemon by a condor_master, i.e.
condor_adstash should be invoked in standalone mode when run on the command-line. Whether invoked by con-
dor_master or run standalone, condor_adstash gets its configuration, in increasing priority, from the HTCondor con-
figuration macros beginning with ADSTASH_ (when --process_name is not provided), then environment variables,
and finally command-line options.

condor_adstash must be able to write its --checkpoint_file to a persistent location so that duplicate job ClassAds
are not fetched from the daemons’ histories in consecutive polls.

A named Elasticsearch index will be created if it doesn’t exist, and may be modified if new fields (corresponding to
ClassAd attribute names) need to be added. It is up to the administrator of the Elasticsearch instance to install rollover
policies (e.g. ILM) on the named index and/or to set up the index as an alias.

804 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.3.3 Options

-h, --help
Display the help message and exit.

--process_name PREFIX
Give condor_adstash a different name for looking up HTCondor configuration and environment vari-
able values (see examples).

--standalone
Run condor_adstash in standalone mode (runs once, does not attempt to contact condor_master)

--sample_interval SECONDS
Number of seconds between polling the list(s) of daemons (ignored in standalone mode)

--checkpoint_file PATH
Location of checkpoint file (will be created if missing)

--log_file PATH
Location of log file

--log_level LEVEL
Log level (uses Python logging library levels: CRITICAL/ERROR/WARNING/INFO/DEBUG)

--threads THREADS
Number of parallel threads to use when polling for job ClassAds and when pushing documents to
Elasticsearch

--interface {null,elasticsearch,opensearch,jsonfile}
Push ads via the chosen interface

14.3.4 ClassAd source options

--schedd_history
Poll and push condor_schedd job histories

--startd_history
Poll and push condor_startd job histories

--ad_file PATH
Load Job ClassAds from a file instead of querying daemons (Ignores --schedd_history and --
startd_history.)

14.3.5 Options for HTCondor daemon (Schedd, Startd, etc.) history sources

--collectors COLLECTORS
Comma-separated list of condor_collector addresses to contact to locate condor_schedd and con-
dor_startd daemons

--schedds SCHEDDS
Comma-separated list of condor_schedd names to poll job histories from

--startds STARTDS
Comma-separated list of condor_startd machines to poll job histories from

--schedd_history_max_ads NUM_ADS
Abort after reading NUM_ADS from a condor_schedd

14.3. condor_adstash 805

HTCondor Manual, Release 23.6.2

--startd_history_max_ads NUM_ADS
Abort after reading NUM_ADS from a condor_startd

--schedd_history_timeout SECONDS
Abort if reading from a condor_schedd takes more than this many seconds

--startd_history_timeout SECONDS
Abort if reading from a condor_startd takes more than this many seconds

14.3.6 Search engine (Elasticsearch, OpenSearch, etc.) interface options

--se_host HOST[:PORT]
Search engine host:port

--se_url_prefix PREFIX
Search engine URL prefix

--se_username USERNAME
Search engine username

--se_use_https
Use HTTPS when connecting to search engine

--se_timeout SECONDS
Max time to wait for search engine queries

--se_bunch_size NUM_DOCS
Group ads in bunches of this size to send to search engine

--se_index_name INDEX_NAME
Push ads to this search engine index or alias

--se_no_log_mappings
Don’t write a JSON file with mappings to the log directory

--se_ca_certs PATH
Path to root certificate authority file (will use certifi’s CA if not set)

14.3.7 JSON file interface options

--json_dir PATH
Directory to store JSON files, which are named by timestamp

14.3.8 Examples

Running condor_adstash in standalone mode on the command-line will result in condor_adstash reading its configu-
ration from the current HTCondor configuration:

$ condor_adstash --standalone

By default, condor_adstash looks for HTCondor configuration variables with names are prefixed with ADSTASH_, e.g.
ADSTASH_READ_SCHEDDS = *. These values can be overridden on the command-line:

$ condor_adstash --standalone --schedds=myschedd.localdomain

806 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

condor_adstash configuration variables can be also be named using custom prefixes, with the prefix passed in us-
ing -\-process_name=PREFIX. For example, if the HTCondor configuration contained FOO_SCHEDD_HISTORY
= False and FOO_STARTD_HISTORY = True, condor_adstash can be invoked to read these instead of
ADSTASH_SCHEDD_HISTORY and ADSTASH_STARTD_HISTORY:

$ condor_adstash --standalone --process_name=FOO

Providing a PREFIX to --process_name that does not match any HTCondor configuration variables will cause con-
dor_adstash to fallback to a default set of configuration values, which may be useful in debugging.

The configuration values that condor_adstash reads from the current HTCondor configuration can be previewed by
printing the help message. The values will be listed as the default values for each command-line option:

$ condor_adstash --help
$ condor_adstash --process_name=FOO --help

14.4 condor_advertise

Send a ClassAd to the condor_collector daemon

14.4.1 Synopsis

condor_advertise [-help | -version]

condor_advertise [-pool centralmanagerhostname[:portname]] [-debug] [-tcp] [-udp] [-multiple] [update-
command [classad-filename]]

14.4.2 Description

condor_advertise sends one or more ClassAds to the condor_collector daemon on the central manager machine. The
optional argument update-command says what daemon type’s ClassAd is to be updated; if it is absent, it assumed to
be the update command corresponding to the type of the (first) ClassAd. The optional argument classad-filename is
the file from which the ClassAd(s) should be read. If classad-filename is omitted or is the dash character (‘-‘), then the
ClassAd(s) are read from standard input. You must specify update-command if you do not want to read from standard
input.

When -multiple is specified, multiple ClassAds may be published. Publishing many ClassAds in a single invocation
of condor_advertise is more efficient than invoking condor_advertise once per ClassAd. The ClassAds are expected
to be separated by one or more blank lines. When -multiple is not specified, blank lines are ignored (for backward
compatibility). It is best not to rely on blank lines being ignored, as this may change in the future.

The update-command may be one of the following strings:

UPDATE_STARTD_AD UPDATE_SCHEDD_AD UPDATE_MASTER_AD UP-
DATE_GATEWAY_AD UPDATE_CKPT_SRVR_AD UPDATE_NEGOTIATOR_AD
UPDATE_HAD_AD UPDATE_AD_GENERIC UPDATE_SUBMITTOR_AD UP-
DATE_COLLECTOR_AD UPDATE_LICENSE_AD UPDATE_STORAGE_AD

condor_advertise can also be used to invalidate and delete ClassAds currently held by the condor_collector daemon.
In this case the update-command will be one of the following strings:

14.4. condor_advertise 807

HTCondor Manual, Release 23.6.2

INVALIDATE_STARTD_ADS INVALIDATE_SCHEDD_ADS INVALIDATE_MASTER_ADS
INVALIDATE_GATEWAY_ADS INVALIDATE_CKPT_SRVR_ADS INVALI-
DATE_NEGOTIATOR_ADS INVALIDATE_HAD_ADS INVALIDATE_ADS_GENERIC INVAL-
IDATE_SUBMITTOR_ADS INVALIDATE_COLLECTOR_ADS INVALIDATE_LICENSE_ADS
INVALIDATE_STORAGE_ADS

For any of these INVALIDATE commands, the ClassAd in the required file will look like the following:

MyType = "Query"
TargetType = "Machine"
Name = "condor.example.com"
Requirements = Name == "condor.example.com"

The definition for is always Query. is set to the of the ad to be deleted. This is DaemonMaster for the condor_master
ClassAd, Machine for the condor_startd ClassAd, Scheduler for the condor_schedd ClassAd, and Negotiator for
the condor_negotiator ClassAd.

Requirements is an expression evaluated within the context of ads of . When Requirements evaluates to True, the
matching ad is invalidated. A full example is given below.

14.4.3 Options

-help
Display usage information

-version
Display version information

-debug
Print debugging information as the command executes.

-multiple
Send more than one ClassAd, where the boundary between ClassAds is one or more blank lines.

-pool centralmanagerhostname[:portname]
Specify a pool by giving the central manager’s host name and an optional port number. The default
is the specified in the configuration file.

-tcp
Use TCP for communication. Used by default if is true.

-udp
Use UDP for communication.

14.4.4 General Remarks

The job and machine ClassAds are regularly updated. Therefore, the result of condor_advertise is likely to be over-
written in a very short time. It is unlikely that either HTCondor users (those who submit jobs) or administrators will
ever have a use for this command. If it is desired to update or set a ClassAd attribute, the condor_config_val command
is the proper command to use.

Attributes are defined in Appendix A of the HTCondor manual.

For those administrators who do need condor_advertise, the following attributes may be included:

DaemonStartTime UpdateSequenceNumber

If both of the above are included, the condor_collector will automatically include the following attributes:

808 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

UpdatesTotal UpdatesLost

Affected by .

14.4.5 Examples

Assume that a machine called condor.example.com is turned off, yet its condor_startd ClassAd does not expire for an-
other 20 minutes. To avoid this machine being matched, an administrator chooses to delete the machine’s condor_startd
ClassAd. Create a file (called remove_file in this example) with the three required attributes:

MyType = "Query"
TargetType = "Machine"
Name = "condor.example.com"
Requirements = Name == "condor.example.com"

This file is used with the command:

$ condor_advertise INVALIDATE_STARTD_ADS remove_file

14.4.6 Exit Status

condor_advertise will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure. Success means that all ClassAds were successfully sent to all condor_collector daemons. When there are
multiple ClassAds or multiple condor_collector daemons, it is possible that some but not all publications succeed; in
this case, the exit status is 1, indicating failure.

14.5 condor_annex

Add cloud resources to the pool.

14.5.1 Synopsis

condor_annex -help

condor_annex [-aws-region <region>] -setup [FROM INSTANCE|[/full/path/to/access/key/file
[/full/path/to/secret/key/file]]]

condor_annex [-aws-on-demand] -annex-name <name of the annex> -count <integer number of instances> [-aws-
on-demand-*] [common options]

condor_annex [-aws-spot-fleet] -annex-name <name of the annex> -slots <integer weight> [-aws-spot-fleet-*]
[common options]

condor_annex -annex-name <name of the annex> -duration hours

condor_annex [-annex-name <name of the annex>] -status [-classad]

condor_annex -check-setup

condor_annex <condor_annex options> status <condor_status options>

14.5. condor_annex 809

HTCondor Manual, Release 23.6.2

14.5.2 Description

condor_annex adds clouds resources to the pool. (“The pool” is determined in the usual manner for HTCondor daemons
and tools.) This version supports only Amazon Web Services (‘AWS’). To add “on-demand” instances, use the third
form listed above; to add “spot” instances, use the fourth. For an explanation of terms, consult either the HTCondor
manual in the Cloud Computing chapter or the AWS documentation.

Using condor_annex with AWS requires a one-time setup procedure performed by invoking condor_annex with the
-setup flag (the second form listed above). You may check if this procedure has been performed with the -check-setup
flag (the seventh form listed above). If you use the setup flag on an instance whose role gives it sufficient privileges, you
may, instead of specifying your API keys, pass FROM INSTANCE to -setup to ask condor_annex to use the instance’s
role credentials.

To reset the lease on an existing annex, invoke condor_annex with only the -annex-name option and -duration flag
(the fifth form listed above).

To determine which of the instances previously requested for a particular annex are not currently in the pool, invoke
condor_annex with the -status flag and the -annex-name option (the sixth form listed above). The output of this
command is intended to be human-readable; specifying the -classad flag will produce the same information in ClassAd
format. If you omit -annex-name, information for all annexes will be returned.

Starting in 8.7.3, you may instead invoke condor_annex with status as a command argument (the eighth form listed
above). This will cause condor_annex to use condor_status to present annex instance data. Arguments and options
on the command line after status will be passed unmodified to condor_status, but not all arguments and options will
behave as expected. (See below.) condor_annex will construct an ad for each annex instance and pass that information
to condor_status; condor_status will (unless you specify otherwise using its command line) query the collector for
more information about the instances. Information from the collector will be presented as usual; instances which did
not have ads in the collector will be presented last, in their own table. These instances can not be presented in the usual
way because the annex instance ads generated by condor_annex do not (and can not) have the same information in
them as ads generated by a condor_startd running in the instance. See the condor_status manual page for details about
the “merge” mode of condor_status used by this command argument. Note that both condor_annex and condor_status
have -annex-name options; if you’re interested in a particular annex, put this flag on the command line before the
status command argument to avoid confusing results.

Common options are listed first, followed by options specific to AWS, followed by options specific to AWS’ on-demand
instances, followed by options specific to AWS’ spot instances, followed by options intended for use by experts.

14.5.3 Options

-help
Print a usage reminder.

-setup [/full/path/to/access/key/file/full/path/to/secret/key/file]
Do the first-time setup.

-duration hours
Set the maximum lease duration in decimal hours. After this amount of time, all instances will
terminated, regardless of their idleness. Defaults to 50 minutes.

-idle hours
Set the maximum idle duration in decimal hours. An instance idle for longer than this duration will
terminate itself. Defaults to 15 minutes.

-yes
Start the annex automatically without a yes/no confirmation prompt.

810 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-tag name value
Add a tag named name with value value to each instance in the requested annex. Only works at annex
creation. This option may be specified more than once.

-config-dir /full/path/to/directory
Copy the contents of /full/path/to/directory to each instance’s configuration directory.

-owner owner[, owner]*
Configure the annex so that only owner may start jobs there. By default, configure the annex so that
only the user running condor_annex may start jobs there.

-no-owner
Configure the annex so that anyone in the pool may use the annex.

-aws-region region
Specify the region in which to create the annex.

-aws-user-data user-data
Set the instance user data to user-data.

-aws-user-data-file /full/path/to/file
Set the instance user data to the contents of the file /full/path/to/file.

-aws-default-user-data user-data
Set the instance user data to user-data, if it’s not already set. Only applies to spot fleet requests.

-aws-default-user-data-file /full/path/to/file
Set the instance user data to the contents of the file /full/path/to/file, if it’s not already set. Only
applies to spot fleet requests.

-aws-on-demand-instance-type instance-type
This annex will requests instances of type instance-type. The default for v8.7.1 is ‘m4.large’.

-aws-on-demand-ami-id ami-id
This annex will start instances of the AMI ami-id. The default for v8.7.1 is ‘ami-35b13223’, a GPU-
compatible Amazon Linux image with HTCondor pre-installed.

-aws-on-demand-security-group-ids group-id[,group-id]
This annex will start instances with the listed security group IDs. The default is the security group
created by -setup.

-aws-on-demand-key-name key-name
This annex will start instances with the key pair named key-name. The default is the key pair created
by -setup.

-aws-spot-fleet-config-file /full/path/to/file
Use the JSON blob in /full/path/to/file for the spot fleet request.

-aws-access-key-file /full/path/to/access-key-file
Experts only.

-aws-secret-key-file /full/path/to/secret-key-file
Experts only.

-aws-ec2-url https://ec2.<region>.amazonaws.com
Experts only.

-aws-events-url https://events.<region>.amazonaws.com
Experts only.

-aws-lambda-url https://lambda.<region>.amazonaws.com
Experts only.

14.5. condor_annex 811

HTCondor Manual, Release 23.6.2

-aws-s3-url https://s3.<region>.amazonaws.com
Experts only.

-aws-spot-fleet-lease-function-arn sfr-lease-function-arn
Developers only.

-aws-on-demand-lease-function-arn odi-lease-function-arn
Developers only.

-aws-on-demand-instance-profile-arn instance-profile-arn
Developers only.

14.5.4 General Remarks

Currently, only AWS is supported. The AMI configured by setup runs HTCondor v8.6.10 on Amazon Linux 2016.09,
and the default instance type is “m4.large”. The default AMI has the appropriate drivers for AWS’ GPU instance types.

14.5.5 Examples

To start an on-demand annex named ‘MyFirstAnnex’ with one core, using the default AMI and instance type, run

$ condor_annex -count 1 -annex-name MyFirstAnnex

You will be asked to confirm that the defaults are what you want.

As of 2017-04-17, the following example will cost a minimum of $90.

To start an on-demand annex with 100 GPUs that job owners ‘big’ and ‘little’ may use (be sure to include yourself!),
run

$ condor_annex -count 100 -annex-name MySecondAnnex \
-aws-on-demand-instance-type p2.xlarge -owner "big, little"

14.5.6 Exit Status

condor_annex will exit with a status value of 0 (zero) on success.

14.6 condor_check_password

Examine HTCondor key files, looking for keys that prior version of HTCondor will not fully read.

812 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.6.1 Synopsis

condor_check_password <-h | --help>

condor_check_password [--truncate] [key]

14.6.2 Description

Versions of HTCondor before 8.9.12 contained contained a bug in the code used to read the pool password (hence the
name of the tool): in some cases the read would be truncated before end of the file. Because the same code is used to
read IDTOKENS signing keys, this bug affects the IDTOKENS authorization method, as well.

There was no backwards-compatible fix: versions 8.9.12 and later may read the same file differently than earlier ver-
sions, meaning that tokens issued before 8.9.12 may not be recognized by later versions.

This tool detects key files which will not be fully read by earlier versions of HTCondor. IDTOKENS generated by such
a key will not be accepted by later versions (which read the whole key file). If you choose to truncate these files on
disk, later version of HTCondor will read only the same bits as earlier versions, allowing them to accept tokens issued
by earlier versions, at the cost of weakening your pool’s resistance to brute-force attacks.

By default, this tool checks all the key files that will be found by the current HTCondor configuration; you may specify
a specific key or keys to check, instead.

14.6.3 Options

-h, --help
Print a usage reminder.

--truncate
When a potentially insecure key is encountered, truncate it to match the behavior prior to version
8.9.12.

14.6.4 Exit Status

Exits with code 0 if there were no signing keys to check or if all of the checked keys were OK. Exits with code 1 if at
least one checked key was not OK. Exits non-zero if a problem was encountered along the way.

14.7 condor_check_userlogs

Check job event log files for errors

14.7.1 Synopsis

condor_check_userlogs UserLogFile1 [UserLogFile2 . . .UserLogFileN]

14.7. condor_check_userlogs 813

HTCondor Manual, Release 23.6.2

14.7.2 Description

condor_check_userlogs is a program for checking a job event log or a set of job event logs for errors. Output includes
an indication that no errors were found within a log file, or a list of errors such as an execute or terminate event without
a corresponding submit event, or multiple terminated events for the same job.

condor_check_userlogs is especially useful for debugging condor_dagman problems. If condor_dagman reports an
error it is often useful to run condor_check_userlogs on the relevant log files.

14.7.3 Exit Status

condor_check_userlogs will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

14.8 condor_chirp

Access files or job ClassAd from an executing job

14.8.1 Synopsis

condor_chirp <Chirp-Command>

14.8.2 Description

condor_chirp is not intended for use as a command-line tool. It is most often invoked by an HTCondor job, while the
job is executing. It accesses files or job ClassAd attributes on the access point. Files can be read, written or removed.
Job attributes can be read, and most attributes can be updated.

When invoked by an HTCondor job, the command-line arguments describe the operation to be performed. Each of
these arguments is described below within the section on Chirp Commands. Descriptions using the terms local and
remote are given from the point of view of the executing job.

If the input file name for put or write is a dash, condor_chirp uses standard input as the source. If the output file name
for fetch is a dash, condor_chirp writes to standard output instead of a local file.

Jobs that use condor_chirp must have the attribute WantIOProxy set to True in the job ClassAd. To do this, place

want_io_proxy = true

in the submit description file of the job.

condor_chirp only works for jobs run in the vanilla, parallel and java universes.

814 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.8.3 Chirp Commands

fetch RemoteFileName LocalFileName
Copy the RemoteFileName from the access point to the execute machine, naming it LocalFileName.

put [-mode mode] [-perm UnixPerm] LocalFileName RemoteFileName
Copy the LocalFileName from the execute machine to the submit machine, naming it RemoteFile-
Name. The optional -perm UnixPerm argument describes the file access permissions in a Unix
format; 660 is an example Unix format.

The optional -mode mode argument is one or more of the following characters describing the Re-
moteFileName file: w, open for writing; a, force all writes to append; t, truncate before use; c, create
the file, if it does not exist; x, fail if c is given and the file already exists.

remove RemoteFileName
Remove the RemoteFileName file from the access point.

get_job_attr JobAttributeName
Prints the named job ClassAd attribute to standard output.

set_job_attr JobAttributeName AttributeValue
Sets the named job ClassAd attribute with the given attribute value.

get_job_attr_delayed JobAttributeName
Prints the named job ClassAd attribute to standard output, potentially reading the cached value from
a recent set_job_attr_delayed.

set_job_attr_delayed JobAttributeName AttributeValue
Sets the named job ClassAd attribute with the given attribute value, but does not immediately syn-
chronize the value with the submit side. It can take 15 minutes before the synchronization occurs.
This has much less overhead than the non delayed version. With this option, jobs do not need Clas-
sAd attribute WantIOProxy set. With this option, job attribute names are restricted to begin with the
case sensitive substring Chirp.

ulog Message
Appends Message to the job event log.

read [-offset offset] [-stride length skip] RemoteFileName Length
Read Length bytes from RemoteFileName. Optionally, implement a stride by starting the read at
offset and reading length bytes with a stride of skip bytes.

write [-offset offset] [-stride length skip] RemoteFileName LocalFileName [numbytes
] Write the contents of LocalFileName to RemoteFileName. Optionally, start writing to the remote
file at offset and write length bytes with a stride of skip bytes. If the optional numbytes follows
LocalFileName, then the write will halt after numbytes input bytes have been written. Otherwise, the
entire contents of LocalFileName will be written.

rmdir [-r] RemotePath
Delete the directory specified by RemotePath. If the optional -r is specified, recursively delete the
entire directory.

getdir [-l] RemotePath
List the contents of the directory specified by RemotePath. If -l is specified, list all metadata as well.

whoami
Get the user’s current identity.

whoareyou RemoteHost
Get the identity of RemoteHost.

14.8. condor_chirp 815

HTCondor Manual, Release 23.6.2

link [-s] OldRemotePath NewRemotePath
Create a hard link from OldRemotePath to NewRemotePath. If the optional -s is specified, create a
symbolic link instead.

readlink RemoteFileName
Read the contents of the file defined by the symbolic link RemoteFileName.

stat RemotePath
Get metadata for RemotePath. Examines the target, if it is a symbolic link.

lstat RemotePath
Get metadata for RemotePath. Examines the file, if it is a symbolic link.

statfs RemotePath
Get file system metadata for RemotePath.

access RemotePath Mode
Check access permissions for RemotePath. Mode is one or more of the characters r, w, x, or f,
representing read, write, execute, and existence, respectively.

chmod RemotePath UnixPerm
Change the permissions of RemotePath to UnixPerm. UnixPerm describes the file access permissions
in a Unix format; 660 is an example Unix format.

chown RemotePath UID GID
Change the ownership of RemotePath to UID and GID. Changes the target of RemotePath, if it is a
symbolic link.

lchown RemotePath UID GID
Change the ownership of RemotePath to UID and GID. Changes the link, if RemotePath is a symbolic
link.

truncate RemoteFileName Length
Truncates RemoteFileName to Length bytes.

utime RemotePath AccessTime ModifyTime
Change the access to AccessTime and modification time to ModifyTime of RemotePath.

14.8.4 Examples

To copy a file from the access point to the execute machine while the user job is running, run

$ condor_chirp fetch remotefile localfile

To print to standard output the value of the Requirements expression from within a running job, run

$ condor_chirp get_job_attr Requirements

Note that the remote (submit-side) directory path is relative to the submit directory, and the local (execute-side) directory
is relative to the current directory of the running program.

To append the word “foo” to a file called RemoteFile on the submit machine, run

$ echo foo | condor_chirp put -mode wa - RemoteFile

To append the message “Hello World” to the job event log, run

$ condor_chirp ulog "Hello World"

816 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.8.5 Exit Status

condor_chirp will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.9 condor_configure

Configure or install HTCondor

14.9.1 Synopsis

condor_configure or condor_install [–help] [–usage]

condor_configure or condor_install [--install[=<path/to/release>]] [--install-dir=<path>] [--prefix=<path>] [-
-local-dir=<path>] [--make-personal-condor] [--bosco] [--type = < submit, execute, manager >] [--central-
manager = < hostname>] [--owner = < ownername >] [--maybe-daemon-owner] [--install-log = < file >] [--
overwrite] [--ignore-missing-libs] [--force] [--no-env-scripts] [--env-scripts-dir = < directory >] [--backup] [--
credd] [--verbose]

14.9.2 Description

condor_configure and condor_install refer to a single script that installs and/or configures HTCondor on Unix machines.
As the names imply, condor_install is intended to perform a HTCondor installation, and condor_configure is intended
to configure (or reconfigure) an existing installation. Both will run with Perl 5.6.0 or more recent versions.

condor_configure (and condor_install) are designed to be run more than one time where required. It can install HT-
Condor when invoked with a correct configuration via

$ condor_install

or

$ condor_configure --install

or, it can change the configuration files when invoked via

$ condor_configure

Note that changes in the configuration files do not result in changes while HTCondor is running. To effect changes while
HTCondor is running, it is necessary to further use the condor_reconfig or condor_restart command. condor_reconfig
is required where the currently executing daemons need to be informed of configuration changes. condor_restart is
required where the options –make-personal-condor or –type are used, since these affect which daemons are running.

Running condor_configure or condor_install with no options results in a usage screen being printed. The –help option
can be used to display a full help screen.

Within the options given below, the phrase release directories is the list of directories that are released with HTCondor.
This list includes: bin, etc, examples, include, lib, libexec, man, sbin, sql and src.

14.9. condor_configure 817

HTCondor Manual, Release 23.6.2

14.9.3 Options

-help
Print help screen and exit

-usage
Print short usage and exit

-install[=<path/to/release>]
Perform installation, assuming that the current working directory contains the release directory, if
the optional =<path/to/release> is not specified. Without further options, the configuration is
that of a Personal HTCondor, a complete one-machine pool. If used as an upgrade within an existing
installation directory, existing configuration files and local directory are preserved. This is the default
behavior of condor_install.

-install-dir=<path>
Specifies the path where HTCondor should be installed or the path where it already is installed. The
default is the current working directory.

-prefix=<path>
This is an alias for -install-dir.

-local-dir=<path>
Specifies the location of the local directory, which is the directory that generally contains the lo-
cal (machine-specific) configuration file as well as the directories where HTCondor daemons write
their run-time information (spool, log, execute). This location is indicated by the variable in the
configuration file. When installing (that is, if -install is specified), condor_configure will properly
create the local directory in the location specified. If none is specified, the default value is given by
the evaluation of $(RELEASE_DIR)/local.$(HOSTNAME).

During subsequent invocations of condor_configure (that is, without the -install option), if the -local-
dir option is specified, the new directory will be created and the log, spool and execute directories
will be moved there from their current location.

-make-personal-condor
Installs and configures for Personal HTCondor, a fully-functional, one-machine pool.

-bosco
Installs and configures Bosco, a personal HTCondor that submits jobs to remote batch systems.

-type= < submit, execute, manager >
One or more of the types may be listed. This determines the roles that a machine may play in a pool.
In general, any machine can be a submit and/or execute machine, and there is one central manager
per pool. In the case of a Personal HTCondor, the machine fulfills all three of these roles.

-central-manager=<hostname>
Instructs the current HTCondor installation to use the specified machine as the central manager. This
modifies the configuration variable to point to the given host name. The central manager machine’s
HTCondor configuration needs to be independently configured to act as a manager using the option
-type=manager.

-owner=<ownername>
Set configuration such that HTCondor daemons will be executed as the given owner. This modifies
the ownership on the log, spool and execute directories and sets the value in the configuration
file, to ensure that HTCondor daemons start up as the specified effective user. The section on secu-
rity within the HTCondor manual discusses UIDs in HTCondor. This is only applicable when con-
dor_configure is run by root. If not run as root, the owner is the user running the condor_configure
command.

818 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-maybe-daemon-owner
If -owner is not specified and no appropriate user can be found to run Condor, then this option will
allow the daemon user to be selected. This option is rarely needed by users but can be useful for
scripts that invoke condor_configure to install Condor.

-install-log=<file>
Save information about the installation in the specified file. This is normally only needed when
condor_configure is called by a higher-level script, not when invoked by a person.

-overwrite
Always overwrite the contents of the sbin directory in the installation directory. By default, con-
dor_install will not install if it finds an existing sbin directory with HTCondor programs in it. In
this case, condor_install will exit with an error message. Specify -overwrite or -backup to tell
condor_install what to do.

This prevents condor_install from moving an sbin directory out of the way that it should not move.
This is particularly useful when trying to install HTCondor in a location used by other things (/usr,
/usr/local, etc.) For example: condor_install -prefix=/usr will not move /usr/sbin out of the
way unless you specify the -backup option.

The -backup behavior is used to prevent condor_install from overwriting running daemons - Unix
semantics will keep the existing binaries running, even if they have been moved to a new directory.

-backup
Always backup the sbin directory in the installation directory. By default, condor_install will not
install if it finds an existing sbin directory with HTCondor programs in it. In this case, condor_install
with exit with an error message. You must specify -overwrite or -backup to tell condor_install what
to do.

This prevents condor_install from moving an sbin directory out of the way that it should not move.
This is particularly useful if you’re trying to install HTCondor in a location used by other things (/
usr, /usr/local, etc.) For example: condor_install -prefix=/usr will not move /usr/sbin out of
the way unless you specify the -backup option.

The -backup behavior is used to prevent condor_install from overwriting running daemons - Unix
semantics will keep the existing binaries running, even if they have been moved to a new directory.

-ignore-missing-libs
Ignore missing shared libraries that are detected by condor_install. By default, condor_install will
detect missing shared libraries such as libstdc++.so.5 on Linux; it will print messages and exit
if missing libraries are detected. The -ignore-missing-libs will cause condor_install to not exit, and
to proceed with the installation if missing libraries are detected.

-force
This is equivalent to enabling both the -overwrite and -ignore-missing-libs command line options.

-no-env-scripts
By default, condor_configure writes simple sh and csh shell scripts which can be sourced by their
respective shells to set the user’s PATH and CONDOR_CONFIG environment variables. This option
prevents condor_configure from generating these scripts.

-env-scripts-dir=<directory>
By default, the simple sh and csh shell scripts (see -no-env-scripts for details) are created in the
root directory of the HTCondor installation. This option causes condor_configure to generate these
scripts in the specified directory.

-credd
Configure the the condor_credd daemon (credential manager daemon).

14.9. condor_configure 819

HTCondor Manual, Release 23.6.2

-verbose
Print information about changes to configuration variables as they occur.

14.9.4 Exit Status

condor_configure will exit with a status value of 0 (zero) upon success, and it will exit with a nonzero value upon
failure.

14.9.5 Examples

Install HTCondor on the machine (machine1@cs.wisc.edu) to be the pool’s central manager. On machine1, within the
directory that contains the unzipped HTCondor distribution directories:

$ condor_install --type=submit,execute,manager

This will allow the machine to submit and execute HTCondor jobs, in addition to being the central manager of the pool.

To change the configuration such that machine2@cs.wisc.edu is an execute-only machine (that is, a dedicated
computing node) within a pool with central manager on machine1@cs.wisc.edu, issue the command on that ma-
chine2@cs.wisc.edu from within the directory where HTCondor is installed:

$ condor_configure --central-manager=machine1@cs.wisc.edu --type=execute

To change the location of the directory in the configuration file, do (from the directory where HTCondor is installed):

$ condor_configure --local-dir=/path/to/new/local/directory

This will move the log,spool,execute directories to /path/to/new/local/directory from the current local di-
rectory.

14.10 condor_config_val

Query or set a given HTCondor configuration variable

14.10.1 Synopsis

condor_config_val <help option>

condor_config_val [<location options>] <edit option>

condor_config_val [<location options>] [<view options>] vars

condor_config_val use category [:template_name] [-expand]

820 Chapter 14. Commands Reference (man pages)

mailto:machine1@cs.wisc.edu
mailto:machine2@cs.wisc.edu
mailto:machine1@cs.wisc.edu
mailto:machine2@cs.wisc.edu
mailto:machine2@cs.wisc.edu

HTCondor Manual, Release 23.6.2

14.10.2 Description

condor_config_val can be used to quickly see what the current HTCondor configuration is on any given machine. Given
a space separated set of configuration variables with the vars argument, condor_config_val will report what each of
these variables is currently set to. If a given variable is not defined, condor_config_val will halt on that variable, and
report that it is not defined. By default, condor_config_val looks in the local machine’s configuration files in order to
evaluate the variables. Variables and values may instead be queried from a daemon specified using a location option.

Raw output of condor_config_val displays the string used to define the configuration variable. This is what is on
the right hand side of the equals sign (=) in a configuration file for a variable. The default output is an expanded one.
Expanded output recursively replaces any macros within the raw definition of a variable with the macro’s raw definition.

Each daemon remembers settings made by a successful invocation of condor_config_val. The configuration file is not
modified.

condor_config_val can be used to persistently set or unset configuration variables for a specific daemon on a given
machine using a -set or -unset edit option. Persistent settings remain when the daemon is restarted. Configuration
variables for a specific daemon on a given machine may be set or unset for the time period that the daemon continues
to run using a -rset or -runset edit option. These runtime settings will override persistent settings until the daemon is
restarted. Any changes made will not take effect until condor_reconfig is invoked.

In general, modifying a host’s configuration with condor_config_val requires the CONFIG access level, which is disabled
on all hosts by default. Administrators have more fine-grained control over which access levels can modify which
settings. See the Security section for more details on security settings. Further, security considerations require proper
settings of configuration variables , , and in order to use condor_config_val to change any configuration variable.

It is generally wise to test a new configuration on a single machine to ensure that no syntax or other errors in the
configuration have been made before the reconfiguration of many machines. Having bad syntax or invalid configuration
settings is a fatal error for HTCondor daemons, and they will exit. It is far better to discover such a problem on a single
machine than to cause all the HTCondor daemons in the pool to exit. condor_config_val can help with this type of
testing.

14.10.3 Options

-help
(help option) Print usage information and exit.

-version
(help option) Print the HTCondor version information and exit.

-set “var = value”
(edit option) Sets one or more persistent configuration file variables. The new value remains if the
daemon is restarted. One or more variables can be set; the syntax requires double quote marks to
identify the pairing of variable name to value, and to permit spaces.

-unset var
(edit option) Each of the persistent configuration variables listed reverts to its previous value.

-rset “var = value”
(edit option) Sets one or more configuration file variables. The new value remains as long as the
daemon continues running. One or more variables can be set; the syntax requires double quote
marks to identify the pairing of variable name to value, and to permit spaces.

-runset var
(edit option) Each of the configuration variables listed reverts to its previous value as long as the
daemon continues running.

14.10. condor_config_val 821

HTCondor Manual, Release 23.6.2

-summary[:detected]
(view option) For all configuration variables that differ from default value, print out the name and
value. The values are grouped by the file that last set the variable, and in the order that they were
set in that file. If the detected option is added, then variables such as $(OPSYSANDVER) that are
detected at runtime are included in the ouput.

-dump
(view option) For all configuration variables that match vars, display the variables and their values.
If no vars are listed, then display all configuration variables and their values. The values will be raw
unless -expand, -default, or -evaluate are used.

-default
(view option) Default values are displayed.

-expand
(view option) Expanded values are displayed. This is the default unless -dump is used.

-raw
(view option) Raw values are displayed.

-verbose
(view option) Display configuration file name and line number where the variable is set, along with
the raw, expanded, and default values of the variable.

-debug[:<opts>]
(view option) Send output to stderr, overriding a set value of .

-evaluate
(view option) Applied only when a location option specifies a daemon. The value of the requested
parameter will be evaluated with respect to the ClassAd of that daemon.

-used
(view option) Applied only when a location option specifies a daemon. Modifies which variables
are displayed to only those used by the specified daemon.

-unused
(view option) Applied only when a location option specifies a daemon. Modifies which variables
are displayed to only those not used by the specified daemon.

-config
(view option) Applied only when the configuration is read from files (the default), and not when
applied to a specific daemon. Display the current configuration file that set the variable.

-writeconfig[:upgrade] filename
(view option) For the configuration read from files (the default), write to file filename all configura-
tion variables. Values that are the same as internal, compile-time defaults will be preceded by the
comment character. If the :upgrade o ption is specified, then values that are the same as the internal,
compile-time defaults are omitted. Variables are in the same order as the they were read from the
original configuration files.

-macro[:path]
(view option) Macro expand the text in vars as the configuration language would. You can use ex-
pansion functions such as $F(<var>). If the :path o ption is specified, treat the result as a path and
return the canonical form.

-mixedcase
(view option) Applied only when the configuration is read from files (the default), and not when
applied to a specific daemon. Print variable names with the same letter case used in the variable’s
definition.

822 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-local-name <name>
(view option) Applied only when the configuration is read from files (the default), and not when
applied to a specific daemon. Inspect the values of attributes that use local names, which is useful to
distinguish which daemon when there is more than one of the particular daemon running.

-subsystem <daemon>
(view option) Applied only when the configuration is read from files (the default), and not when
applied to a specific daemon. Specifies the subsystem or daemon name to query, with a default value
of the TOOL subsystem.

-address <ip:port>
(location option) Connect to the given IP address and port number.

-pool centralmanagerhostname[:portnumber]
(location option) Use the given central manager and an optional port number to find daemons.

-name <machine_name>
(location option) Query the specified machine’s condor_master daemon for its configuration. Does
not function together with any of the options: -dump, -config, or -verbose.

-master | -schedd | -startd | -collector | -negotiator
(location option) The specific daemon to query.

use category [:set name] [-expand]
Display information about configuration templates (see Configuration Templates). Specifying only
a category will list the template_names available for that category. Specifying a category and a tem-
plate_name will display the definition of that configuration template. Adding the -expand option
will display the expanded definition (with macro substitutions). (-expand has no effect if a tem-
plate_name is not specified.) Note that there is no dash before use and that spaces are not allowed
next to the colon character separating category and template_name.

14.10.4 Exit Status

condor_config_val will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.10.5 Examples

Here is a set of examples to show a sequence of operations using condor_config_val. To request the condor_schedd
daemon on host perdita to display the value of the configuration variable:

$ condor_config_val -name perdita -schedd MAX_JOBS_RUNNING
500

To request the condor_schedd daemon on host perdita to set the value of the configuration variable to the value 10.

$ condor_config_val -name perdita -schedd -set "MAX_JOBS_RUNNING = 10"
Successfully set configuration "MAX_JOBS_RUNNING = 10" on
schedd perdita.cs.wisc.edu <128.105.73.32:52067>.

A command that will implement the change just set in the previous example.

$ condor_reconfig -schedd perdita
Sent "Reconfig" command to schedd perdita.cs.wisc.edu

A re-check of the configuration variable reflects the change implemented:

14.10. condor_config_val 823

HTCondor Manual, Release 23.6.2

$ condor_config_val -name perdita -schedd MAX_JOBS_RUNNING
10

To set the configuration variable back to what it was before the command to set it to 10:

$ condor_config_val -name perdita -schedd -unset MAX_JOBS_RUNNING
Successfully unset configuration "MAX_JOBS_RUNNING" on
schedd perdita.cs.wisc.edu <128.105.73.32:52067>.

A command that will implement the change just set in the previous example.

$ condor_reconfig -schedd perdita
Sent "Reconfig" command to schedd perdita.cs.wisc.edu

A re-check of the configuration variable reflects that variable has gone back to is value before initial set of the variable:

$ condor_config_val -name perdita -schedd MAX_JOBS_RUNNING
500

Getting a list of template_names for the role configuration template category:

$ condor_config_val use role
use ROLE accepts
CentralManager
Execute
Personal
Submit

Getting the definition of role:personal configuration template:

$ condor_config_val use role:personal
use ROLE:Personal is

CONDOR_HOST=127.0.0.1
COLLECTOR_HOST=$(CONDOR_HOST):0
DAEMON_LIST=MASTER COLLECTOR NEGOTIATOR STARTD SCHEDD
RunBenchmarks=0

14.11 condor_continue

continue suspended jobs from the HTCondor queue

14.11.1 Synopsis

condor_continue [-help | -version]

condor_continue [-debug] [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] **

824 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.11.2 Description

condor_continue continues one or more suspended jobs from the HTCondor job queue. If the -name option is specified,
the named condor_schedd is targeted for processing. Otherwise, the local condor_schedd is targeted. The job(s) to be
continued are identified by one of the job identifiers, as described below. For any given job, only the owner of the job
or one of the queue super users (defined by the macro) can continue the job.

14.11.3 Options

-help
Display usage information

-version
Display version information

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name scheddname
Send the command to a machine identified by scheddname

-addr “<a.b.c.d:port>”
Send the command to a machine located at “<a.b.c.d:port>”

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

cluster
Continue all jobs in the specified cluster

cluster.process
Continue the specific job in the cluster

user
Continue jobs belonging to specified user

-constraint expression
Continue all jobs which match the job ClassAd expression constraint

-all
Continue all the jobs in the queue

14.11.4 Exit Status

condor_continue will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.11. condor_continue 825

HTCondor Manual, Release 23.6.2

14.11.5 Examples

To continue all jobs except for a specific user:

$ condor_continue -constraint 'Owner =!= "foo"'

14.12 condor_dagman

meta scheduler of the jobs submitted as the nodes of a DAG or DAGs

14.12.1 Synopsis

condor_dagman -f -t -l . -help

condor_dagman -version

condor_dagman -f -l . -csdversion version_string [-debug level] [-dryrun] [-maxidle numberOfProcs] [-maxjobs
numberOfJobs] [-maxpre NumberOfPreScripts] [-maxpost NumberOfPostScripts] [-maxhold NumberOfHoldScripts]
[-usedagdir] -lockfile filename [-waitfordebug] [-autorescue 0|1] [-dorescuefrom number] [-load_save file-
name] [-allowversionmismatch] [-DumpRescue] [-verbose] [-force] [-notification value] [-suppress_notification
] [-dont_suppress_notification] [-dagman DagmanExecutable] [-outfile_dir directory] [-update_submit] [-
import_env] [-include_env Variables] [-insert_env Key=Value] [-priority number] [-DontAlwaysRunPost] [-
AlwaysRunPost] [-DoRecovery] [-dot] -dag dag_file [-dag dag_file_2 . . . -dag dag_file_n]

14.12.2 Description

condor_dagman is a meta scheduler for the HTCondor jobs within a DAG (directed acyclic graph) (or multiple DAGs).
In typical usage, a submitter of jobs that are organized into a DAG submits the DAG using condor_submit_dag. con-
dor_submit_dag does error checking on aspects of the DAG and then submits condor_dagman as an HTCondor job.
condor_dagman uses log files to coordinate the further submission of the jobs within the DAG.

All command line arguments to the DaemonCore library functions work for condor_dagman. When invoked from the
command line, condor_dagman requires the arguments -f -l . to appear first on the command line, to be processed by
DaemonCore. The csdversion must also be specified; at start up, condor_dagman checks for a version mismatch with
the condor_submit_dag version in this argument. The -t argument must also be present for the -help option, such that
output is sent to the terminal.

Arguments to condor_dagman are either automatically set by condor_submit_dag or they are specified as command-
line arguments to condor_submit_dag and passed on to condor_dagman. The method by which the arguments are set
is given in their description below.

condor_dagman can run multiple, independent DAGs. This is done by specifying multiple -dag a rguments. Pass
multiple DAG input files as command-line arguments to condor_submit_dag.

Debugging output may be obtained by using the -debug level option. Level values and what they produce is described
as

• level = 0; never produce output, except for usage info

• level = 1; very quiet, output severe errors

• level = 2; normal output, errors and warnings

• level = 3; output errors, as well as all warnings

• level = 4; internal debugging output

826 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

• level = 5; internal debugging output; outer loop debugging

• level = 6; internal debugging output; inner loop debugging; output DAG input file lines as they are parsed

• level = 7; internal debugging output; rarely used; output DAG input file lines as they are parsed

14.12.3 Options

-help
Display usage information and exit.

-version
Display version information and exit.

-csdversion VersionString
Sets the version of condor_submit_dag command used to submit the DAGMan workflow. Used to
help identify version mismatching.

-debug level
An integer level of debugging output. level is an integer, with values of 0-7 inclusive, where 7 is the
most verbose output. This command-line option to condor_submit_dag is passed to condor_dagman
or defaults to the value 3.

-dryrun
Inform DAGMan to do a dry run. Where the DAG is ran but node jobs are not actually submitted.

-maxidle NumberOfProcs
Sets the maximum number of idle procs allowed before condor_dagman stops submitting more node
jobs. If this option is omitted then the number of idle procs is limited by the configuration variable
which defaults to 1000. To disable this limit, set NumberOfProcs to 0. The NumberOfProcs can be
exceeded if a nodes job has a queue command with more than one proc to queue. i.e. queue 500will
submit all procs even if NumberOfProcs is 250. In this case DAGMan will wait for for the number
of idle procs to fall below 250 before submitting more jobs to the condor_schedd.

-maxjobs NumberOfClusters
Sets the maximum number of clusters within the DAG that will be submitted to HTCondor at one
time. Each cluster is associated with one node job no matter how many individual procs are in the
cluster. NumberOfClusters is a non-negative integer. If this option is omitted then the number of
clusters is limited by the configuration variable which defaults to 0 (unlimited).

-maxpre NumberOfPreScripts
Sets the maximum number of PRE scripts within the DAG that may be running at one time. Num-
berOfPreScripts is a non-negative integer. If this option is omitted, the number of PRE scripts is
limited by the configuration variable which defaults to 20.

-maxpost NumberOfPostScripts
Sets the maximum number of POST scripts within the DAG that may be running at one time. Num-
berOfPostScripts is a non-negative integer. If this option is omitted, the number of POST scripts is
limited by the configuration variable which defaults to 20.

-maxhold NumberOfHoldScripts
Sets the maximum number of HOLD scripts within the DAG that may be running at one time. Num-
berOfHoldscripts is a non-negative integer. If this option is omitted, the number of HOLD scripts is
limited by the configuration variable , which defaults to 0 (unlimited).

-usedagdir
This optional argument causes condor_dagman to run each specified DAG as if the directory con-
taining that DAG file was the current working directory. This option is most useful when running
multiple DAGs in a single condor_dagman.

14.12. condor_dagman 827

HTCondor Manual, Release 23.6.2

-lockfile filename
Names the file created and used as a lock file. The lock file prevents execution of two of the same
DAG, as defined by a DAG input file. A default lock file ending with the suffix .dag.lock is passed
to condor_dagman by condor_submit_dag.

-waitfordebug
This optional argument causes condor_dagman to wait at startup until someone attaches to the pro-
cess with a debugger and sets the wait_for_debug variable in main_init() to false.

-autorescue 0|1
Whether to automatically run the newest rescue DAG for the given DAG file, if one exists (0 = false,
1 = true).

-dorescuefrom number
Forces condor_dagman to run the specified rescue DAG number for the given DAG. A value of 0 is
the same as not specifying this option. Specifying a nonexistent rescue DAG is a fatal error.

-load_save filename
Specify a file with saved DAG progress to re-run the DAG from. If given a path DAGMan will
attempt to read that file following that path. Otherwise, DAGMan will check for the file in the DAG’s
save_files sub-directory.

-allowversionmismatch
This optional argument causes condor_dagman to allow a version mismatch between con-
dor_dagman itself and the .condor.sub file produced by condor_submit_dag (or, in other words,
between condor_submit_dag and condor_dagman). WARNING! This option should be used only if
absolutely necessary. Allowing version mismatches can cause subtle problems when running DAGs.

-DumpRescue
This optional argument causes condor_dagman to immediately dump a Rescue DAG and then exit,
as opposed to actually running the DAG. This feature is mainly intended for testing. The Rescue
DAG file is produced whether or not there are parse errors reading the original DAG input file. The
name of the file differs if there was a parse error.

-verbose
(This argument is included only to be passed to condor_submit_dag if lazy submit file generation is
used for nested DAGs.) Cause condor_submit_dag to give verbose error messages.

-force
(This argument is included only to be passed to condor_submit_dag if lazy submit file generation
is used for nested DAGs.) Require condor_submit_dag to overwrite the files that it produces, if the
files already exist. Note that dagman.out will be appended to, not overwritten. If new-style rescue
DAG mode is in effect, and any new-style rescue DAGs exist, the -force flag will cause them to be
renamed, and the original DAG will be run. If old-style rescue DAG mode is in effect, any existing
old-style rescue DAGs will be deleted, and the original DAG will be run. See the HTCondor manual
section on Rescue DAGs for more information.

-notification value
This argument is only included to be passed to condor_submit_dag if lazy submit file generation
is used for nested DAGs. Sets the e-mail notification for DAGMan itself. This information will
be used within the HTCondor submit description file for DAGMan. This file is produced by con-
dor_submit_dag. The notification option is described in the condor_submit manual page.

-suppress_notification
Causes jobs submitted by condor_dagman to not send email notification for events. The same effect
can be achieved by setting the configuration variable to True. This command line option is indepen-
dent of the -notification command line option, which controls notification for the condor_dagman
job itself. This flag is generally superfluous, as defaults to True.

828 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-dont_suppress_notification
Causes jobs submitted by condor_dagman to defer to content within the submit description file
when deciding to send email notification for events. The same effect can be achieved by setting
the configuration variable to False. This command line flag is independent of the -notification
command line option, which controls notification for the condor_dagman job itself. If both -
dont_suppress_notification and -suppress_notification are specified within the same command
line, the last argument is used.

-dagman DagmanExecutable
(This argument is included only to be passed to condor_submit_dag if lazy submit file generation
is used for nested DAGs.) Allows the specification of an alternate condor_dagman executable to be
used instead of the one found in the user’s path. This must be a fully qualified path.

-outfile_dir directory
(This argument is included only to be passed to condor_submit_dag if lazy submit file generation
is used for nested DAGs.) Specifies the directory in which the .dagman.out file will be written.
The directory may be specified relative to the current working directory as condor_submit_dag is
executed, or specified with an absolute path. Without this option, the .dagman.out file is placed in
the same directory as the first DAG input file listed on the command line.

-update_submit
(This argument is included only to be passed to condor_submit_dag if lazy submit file generation is
used for nested DAGs.) This optional argument causes an existing .condor.sub file to not be treated
as an error; rather, the .condor.sub file will be overwritten, but the existing values of -maxjobs,
-maxidle, -maxpre, and -maxpost will be preserved.

-import_env
(This argument is included only to be passed to condor_submit_dag if lazy submit file generation
is used for nested DAGs.) This optional argument causes condor_submit_dag to import the current
environment into the environment command of the .condor.sub file it generates.

-include_env Variables
This optional argument takes a comma separated list of enviroment variables to add to .condor.sub
getenv environment filter which causes found matching environment variables to be added to the
DAGMan manager jobs environment.

-insert_env Key=Value
This optional argument takes a delimited string of Key=Value pairs to explicitly set into the .condor.
sub files macro. The base delimiter is a semicolon that can be overriden by setting the first character
in the string to a valid delimiting character. If multiple -insert_env flags contain the same Key then
the last occurances Value will be set in the DAGMan jobs environment.

-priority number
Sets the minimum job priority of node jobs submitted and running under this condor_dagman job.

-DontAlwaysRunPost
This option causes condor_dagman to not run the POST script of a node if the PRE script fails.

-AlwaysRunPost
This option causes condor_dagman to always run the POST script of a node, even if the PRE script
fails.

-DoRecovery
Causes condor_dagman to start in recovery mode. This means that it reads the relevant job user
log(s) and catches up to the given DAG’s previous state before submitting any new jobs.

-dot
Run condor_dagman up until the point when a DOT file is produced.

14.12. condor_dagman 829

HTCondor Manual, Release 23.6.2

-dag filename
filename is the name of the DAG input file that is set as an argument to condor_submit_dag, and
passed to condor_dagman.

14.12.4 Exit Status

condor_dagman will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.12.5 Examples

condor_dagman is normally not run directly, but submitted as an HTCondor job by running condor_submit_dag. See
the condor_submit_dag manual page for examples.

14.13 condor_drain

Control draining of an execute machine

14.13.1 Synopsis

condor_drain [-help]

condor_drain [-debug] [-pool pool-name] [-graceful | -quick | -fast] [-reason reason-text] [-resume-on-completion
| -restart-on-completion | -reconfig-on-completion | -exit-on-completion] [-check expr] [-start expr] machine-name

condor_drain [-debug] [-pool pool-name] -cancel [-request-id id] machine-name

14.13.2 Description

condor_drain is an administrative command used to control the draining of all slots on an execute machine. When a
machine is draining, it will not accept any new jobs unless the -start expression specifies otherwise. Which machine
to drain is specified by the argument machine-name, and will be the same as the machine ClassAd attribute Machine.

How currently running jobs are treated depends on the draining schedule that is chosen with a command-line option:

-graceful
Initiate a graceful eviction of the job. This means all promises that have been made to the job are
honored, including MaxJobRetirementTime. The eviction of jobs is coordinated to reduce idle
time. This means that if one slot has a job with a long retirement time and the other slots have jobs
with shorter retirement times, the effective retirement time for all of the jobs is the longer one. If no
draining schedule is specified, -graceful is chosen by default.

-quick
MaxJobRetirementTime is not honored. Eviction of jobs is immediately initiated. Jobs are given
time to shut down according to the usual policy, that is, given by .

-fast
Jobs are immediately hard-killed, with no chance to gracefully shut down.

If you specify -graceful, you may also specify -start. On a gracefully-draining machine, some jobs may finish retir-
ing before others. By default, the resources used by the newly-retired jobs do not become available for use by other
jobs until the machine exits the draining state (see below). The -start expression you supply replaces the draining

830 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

machine’s normal expression for the duration of the draining state, potentially making those resources available. See
the condor_startd Policy Configuration section for more information.

Once draining is complete, the machine will enter the Drained/Idle state. To resume normal operation (negotiation) at
that time or any previous time during draining, the -cancel option may be used. The -resume-on-completion option
results in automatic resumption of normal operation once draining has completed, and may be used when initiating
draining. This is useful for forcing a machine with a partitionable slots to join all of the resources back together into
one machine, facilitating de-fragmentation and whole machine negotiation.

14.13.3 Options

-help
Display brief usage information and exit.

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-pool pool-name
Specify an alternate HTCondor pool, if the default one is not desired.

-graceful
(the default) Honor the maximum vacate and retirement time policy.

-quick
Honor the maximum vacate time, but not the retirement time policy.

-fast
Honor neither the maximum vacate time policy nor the retirement time policy.

-reason reason-text
Set the drain reason to reason-text. While the condor_startd is draining it will advertise the given
reason. If this option is not used the reason defaults to the name of the user that started the drain.

-resume-on-completion
When done draining, resume normal operation, such that potentially the whole machine could be
claimed.

-restart-on-completion
When done draining, restart the condor_startd daemon so that configuration changes will take effect.

-reconfig-on-completion
When done draining, reconfig and then resume normal operation. A reconfig will not change the
resources assigned to slots, but most other configuration changes will be applied, including changes
to the expression and to offline GPUs and universes.

-exit-on-completion
When done draining, shut down the condor_startd daemon and tell the condor_master not to restart
it automatically.

-check expr
Abort draining, if expr is not true for all slots to be drained.

-start expr
The expression to use while the machine is draining. You can’t reference the machine’s existing
expression.

-cancel
Cancel a prior draining request, to permit the condor_negotiator to use the machine again.

14.13. condor_drain 831

HTCondor Manual, Release 23.6.2

-request-id id
Specify a specific draining request to cancel, where id is given by the machine ClassAd attribute.

14.13.4 Exit Status

condor_drain will exit with a non-zero status value if it fails and zero status if it succeeds.

14.14 condor_evicted_files

Inspect the file(s) that HTCondor is holding on to as a result of a job being evicted when when_to_transfer_output
= ON_EXIT_OR_EVICT, or checkpointing when CheckpointExitCode is set.

14.14.1 Synopsis

condor_evicted_files [COMMAND] <clusterID>.<procID>[<clusterID.<procID>]*

14.14.2 Description

Print the directory or directories HTCondor is using to store files for the specified job or jobs. COMMAND may be
one of dir, list, or get:

• dir: Print the directory (for each job) in which the file(s) are stored.

• list: List the contents of the directory (for each job).

• get: Copy the contents of the directory to a subdirectory named after each job’s ID.

14.14.3 General Remarks

The tool presently has a number of limitations:

• It must be run the same machine as the job’s schedd.

• The schedd must NOT have ALTERNATE_JOB_SPOOL set

• You can’t name the destination directory for the get command.

• The tool can’t distinguish between an invalid job ID and a job for which HTCondor never held any files.

14.14.4 Exit Status

Returns 0 on success.

832 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.14.5 Author

Center for High Throughput Computing, University of Wisconsin-Madison

14.15 condor_fetchlog

Retrieve a daemon’s log file that is located on another computer

14.15.1 Synopsis

condor_fetchlog [-help | -version]

condor_fetchlog [-pool centralmanagerhostname[:portnumber]] [-master | -startd | -schedd | -collector | -negotiator
| -kbdd] machine-name subsystem[.extension]

14.15.2 Description

condor_fetchlog contacts HTCondor running on the machine specified by machine-name, and asks it to return a log
file from that machine. Which log file is determined from the subsystem[.extension] argument. The log file is printed
to standard output. This command eliminates the need to remotely log in to a machine in order to retrieve a daemon’s
log file.

For security purposes of authentication and authorization, this command requires ADMINISTRATOR level of access.

The subsystem[.extension] argument is utilized to construct the log file’s name. Without an optional .extension, the
value of the configuration variable named subsystem _LOG defines the log file’s name. When specified, the .extension
is appended to this value.

The subsystem argument is any value $(SUBSYSTEM) that has a defined configuration variable of $(SUBSYSTEM)_LOG,
or any of

• NEGOTIATOR_MATCH

•

•

A value for the optional .extension to the subsystem argument is typically one of the three strings:

1. .old

2. .slot<X>

3. .slot<X>.old

Within these strings, <X> is substituted with the slot number.

A subsystem argument of fetches all condor_startd history by concatenating all instances of log files resulting from
rotation.

14.15. condor_fetchlog 833

HTCondor Manual, Release 23.6.2

14.15.3 Options

-help
Display usage information

-version
Display version information

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-master
Send the command to the condor_master daemon (default)

-startd
Send the command to the condor_startd daemon

-schedd
Send the command to the condor_schedd daemon

-collector
Send the command to the condor_collector daemon

-kbdd
Send the command to the condor_kbdd daemon

14.15.4 Examples

To get the condor_negotiator daemon’s log from a host named head.example.com from within the current pool:

$ condor_fetchlog head.example.com NEGOTIATOR

To get the condor_startd daemon’s log from a host named execute.example.com from within the current pool:

$ condor_fetchlog execute.example.com STARTD

This command requested the condor_startd daemon’s log from the condor_master. If the condor_master has crashed
or is unresponsive, ask another daemon running on that computer to return the log. For example, ask the condor_startd
daemon to return the condor_master ‘s log:

$ condor_fetchlog -startd execute.example.com MASTER

14.15.5 Exit Status

condor_fetchlog will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

834 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.16 condor_findhost

find machine(s) in the pool that can be used with minimal impact on currently running HTCondor jobs and best meet
any specified constraints

14.16.1 Synopsis

condor_findhost [-help] [-m] [-n num] [-c c_expr] [-r r_expr] [-p centralmanagerhostname]

14.16.2 Description

condor_findhost searches an HTCondor pool of machines for the best machine or machines that will have the minimum
impact on running HTCondor jobs if the machine or machines are taken out of the pool. The search may be limited to
the machine or machines that match a set of constraints and rank expression.

condor_findhost returns a fully-qualified domain name for each machine. The search is limited (constrained) to a
specific set of machines using the -c option. The search can use the -r option for rank, the criterion used for selecting
a machine or machines from the constrained list.

14.16.3 Options

-help
Display usage information and exit

-m
Only search for entire machines. Slots within an entire machine are not considered.

-n num
Find and list up to num machines that fulfill the specification. num is an integer greater than zero.

-c c_expr
Constrain the search to only consider machines that result from the evaluation of c_expr. c_expr is a
ClassAd expression.

-r r_expr
r_expr is the rank expression evaluated to use as a basis for machine selection. r_expr is a ClassAd
expression.

-p centralmanagerhostname
Specify the pool to be searched by giving the central manager’s host name. Without this option, the
current pool is searched.

14.16.4 General Remarks

condor_findhost is used to locate a machine within a pool that can be taken out of the pool with the least disturbance
of the pool.

An administrator should set preemption requirements for the HTCondor pool. The expression

(Interactive =?= TRUE)

will let condor_findhost know that it can claim a machine even if HTCondor would not normally preempt a job running
on that machine.

14.16. condor_findhost 835

HTCondor Manual, Release 23.6.2

14.16.5 Exit Status

The exit status of condor_findhost is zero on success. If not able to identify as many machines as requested, it returns
one more than the number of machines identified. For example, if 8 machines are requested, and condor_findhost only
locates 6, the exit status will be 7. If not able to locate any machines, or an error is encountered, condor_findhost will
return the value 1.

14.16.6 Examples

To find and list four machines, preferring those with the highest mips (on Drystone benchmark) rating:

$ condor_findhost -n 4 -r "mips"

To find and list 24 machines, considering only those where the attribute is not defined:

$ condor_findhost -n 24 -c "kflops=?=undefined"

14.17 condor_gather_info

Gather information about an HTCondor installation and a queued job

14.17.1 Synopsis

condor_gather_info [–jobid ClusterId.ProcId] [–scratch /path/to/directory]

14.17.2 Description

condor_gather_info is a Linux-only tool that will collect and output information about the machine it is run upon,
about the HTCondor installation local to the machine, and optionally about a specified HTCondor job. The information
gathered by this tool is most often used as a debugging aid for the developers of HTCondor.

Without the –jobid option, information about the local machine and its HTCondor installation is gathered and placed
into the file called condor-profile.txt, in the current working directory. The information gathered is under the
category of Identity.

With the –jobid option, additional information is gathered about the job given in the command line argument and
identified by its and ClassAd attributes. The information includes both categories, Identity and Job information. As
the quantity of information can be extensive, this information is placed into a compressed tar file. The file is placed
into the current working directory, and it is named using the format

cgi-<username>-jid<ClusterId>.<ProcId>-<year>-<month>-<day>-<hour>_<minute>_<second>-<TZ>
→˓.tar.gz

All values within <> are substituted with current values. The building of this potentially large tar file can require a fair
amount of temporary space. If the –scratch option is specified, it identifies a directory in which to build the tar file. If
the –scratch option is not specified, then the directory will be /tmp/cgi-<PID>, where the process ID is that of the
condor_gather_info executable.

The information gathered by this tool:

1. Identity

836 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

• User name who generated the report

• Script location and machine name

• Date of report creation

• uname -a

• Contents of /etc/issue

• Contents of /etc/redhat-release

• Contents of /etc/debian_version

• Contents of $(LOG)/MasterLog

• Contents of $(LOG)/ShadowLog

• Contents of $(LOG)/SchedLog

• Output of ps -auxww -forest

• Output of df -h

• Output of iptables -L

• Output of ls 'condor_config_val LOG'

• Output of ldd 'condor_config_val SBIN'/condor_schedd

• Contents of /etc/hosts

• Contents of /etc/nsswitch.conf

• Output of ulimit -a

• Output of uptime

• Output of free

• Network interface configuration (ifconfig)

• HTCondor version

• Location of HTCondor configuration files

• HTCondor configuration variables

– All variables and values

– Definition locations for each configuration variable

2. Job Information

• Output of condor_q jobid

• Output of condor_q -l jobid

• Output of condor_q -analyze jobid

• Job event log, if it exists

– Only events pertaining to the job ID

• If condor_gather_info has the proper permissions, it runs condor_fetchlog on the machine where the job
most recently ran, and includes the contents of the logs from the condor_master, condor_startd, and con-
dor_starter.

14.17. condor_gather_info 837

HTCondor Manual, Release 23.6.2

14.17.3 Options

-jobid <ClusterId.ProcId>
Data mine information about this HTCondor job from the local HTCondor installation and con-
dor_schedd.

-scratch /path/to/directory
A path to temporary space needed when building the output tar file. Defaults to /tmp/cgi-<PID>,
where <PID> is replaced by the process ID of condor_gather_info.

14.17.4 Files

• condor-profile.txtThe Identity portion of the information gathered when condor_gather_info is run without
arguments.

• cgi-<username>-jid<cluster>.<proc>-<year>-<month>-<day>-<hour>_<minute>_<second>-<TZ>.
tar.gz The output file which contains all of the information produced by this tool.

14.17.5 Exit Status

condor_gather_info will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.18 condor_gpu_discovery

Output GPU-related ClassAd attributes

14.18.1 Synopsis

condor_gpu_discovery -help

condor_gpu_discovery [<options>]

14.18.2 Description

condor_gpu_discovery outputs ClassAd attributes corresponding to a host’s GPU capabilities. It can presently report
CUDA and OpenCL devices; which type(s) of device(s) it reports is determined by which libraries, if any, it can find
when it runs; this reflects what GPU jobs will find on that host when they run. (Note that some HTCondor configuration
settings may cause the environment to differ between jobs and the HTCondor daemons in ways that change library
discovery.)

If CUDA_VISIBLE_DEVICES or GPU_DEVICE_ORDINAL is set in the environment when condor_gpu_discovery is run,
it will report only devices present in the those lists.

This tool is not available for MAC OS platforms.

With no command line options, the single ClassAd attribute DetectedGPUs is printed. If the value is 0, no GPUs were
detected. If one or more GPUS were detected, the value is a string, presented as a comma and space separated list of
the GPUs discovered, where each is given a name further used as the prefix string in other attribute names. Where there
is more than one GPU of a particular type, the prefix string includes an GPU id value identifying the device; these can
be integer values that monotonically increase from 0 when the -by-index option is used or globally unique identifiers
when the -short-uuid or -uuid argument is used.

838 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

For example, a discovery of two GPUs with -by-index may output

DetectedGPUs="CUDA0, CUDA1"

Further command line options use "CUDA" either with or without one of the integer values 0 or 1 as the name of the
device properties ad for -nested properties, or as the prefix string in attribute names when -not-nested properties
are chosen.

For machines with more than one or two NVIDIA devices, it is recommended that you also use the -short-uuid or
-uuid option. The uuid value assigned by NVIDA to each GPU is unique, so using this option provides stable device
identifiers for your devices. The -short-uuid option uses only part of the uuid, but it is highly likely to still be unique
for devices on a single machine. As of HTCondor 9.0 -short-uuid is the default. When -short-uuid is used,
discovery of two GPUs may look like this

DetectedGPUs="GPU-ddc1c098, GPU-9dc7c6d6"

Any NVIDIA runtime library later than 9.0 will accept the above identifiers in the CUDA_VISIBLE_DEVICES environ-
ment variable.

If the NVML libary is available, and a multi-instance GPU (MIG) -capable device is present, has MIG enabled, and
has created compute instances for each MIG instance, condor_gpu_discovery will report those instance as distinct
devices. Their names will be in the long UUID form unless the -short-uuid option is used, because they can not be
enumerated via CUDA. MIG instances don’t have some of the properties reported by the -properties, -extra, and
-dynamic options; these properties will be omitted. If MIG is enabled on any GPU in the system, some properties
become unavailable for every GPU in the system; condor_gpu_discovery will report what it can.

14.18.3 Options

-help
Print usage information and exit.

-properties
In addition to the DetectedGPUs attribute, display some of the attributes of the GPUs. Each of these
attributes will be in a nested ClassAd (-nested) or have a prefix string at the beginning of its name
(-not-nested). The displayed CUDA attributes are Capability, DeviceName, DriverVersion,
ECCEnabled, GlobalMemoryMb, and RuntimeVersion. The displayed Open CL attributes are
DeviceName, ECCEnabled, OpenCLVersion, and GlobalMemoryMb.

-nested

Default. Display properties that are common to all GPUs in a Common nested ClassAd,
and properties that are not common to all in a nested ClassAd using the GPUid as the Clas-
sAd name. Use the -not-nested argument to disable nested ClassAds and return to the older
behavior of using a prefix string for individual property attributes.

-not-nested

Display properties that are common to all GPUs using a CUDA or OCL as
the attribute prefix, and properties that are not common to all using a GPUid prefix. Versions of
condor_gpu_discovery prior to 9.11.0 support only this mode.

-extra
Display more attributes of the GPUs. Each of these attributes will be added to a nested property
ClassAd (-nested) or have a prefix string at the beginning of its name (-not-nested). The addi-
tional CUDA attributes are ClockMhz, ComputeUnits, and CoresPerCU. The additional Open CL
attributes are ClockMhz and ComputeUnits.

14.18. condor_gpu_discovery 839

HTCondor Manual, Release 23.6.2

-dynamic
Display attributes of NVIDIA devices that change values as the GPU is working. Each of these
attributes will be added to the the nested property ClassAd (-nested) or have a prefix string at
the beginning of its name (-not-nested). These are FanSpeedPct, BoardTempC, DieTempC,
EccErrorsSingleBit, and EccErrorsDoubleBit.

-mixed
When displaying attribute values, assume that the machine has a heterogeneous set of GPUs, so
always include the integer value in the prefix string.

-device <N>
Display properties only for GPU device <N>, where <N> is the integer value defined for the prefix
string. This option may be specified more than once; additional <N> are listed along with the first.
This option adds to the devices(s) specified by the environment variables CUDA_VISIBLE_DEVICES
and GPU_DEVICE_ORDINAL, if any.

-tag string
Set the resource tag portion of the intended machine ClassAd attribute Detected<ResourceTag>
to be string. If this option is not specified, the resource tag is "GPUs", resulting in attribute name
DetectedGPUs.

-prefix str
When naming -not-nested attributes, use str as the prefix string. When this option is not specified,
the prefix string is either CUDA or OCL unless -uuid or -short-uuid is also used.

-by-index
Use the prefix and device index as the device identifier.

-short-uuid
Use the first 8 characters of the NVIDIA uuid as the device identifier. When this option is used,
devices will be shown as GPU-<xxxxxxxx>where <xxxxxxxx> is the first 8 hex digits of the NVIDIA
device uuid. Unlike device indices, the uuid of a device will not change of other devices are taken
offline or drained.

-uuid
Use the full NVIDIA uuid as the device identifier rather than the device index.

-simulate:[D,N[,D2,. . .]]
For testing purposes, assume that N devices of type D were detected, And N2 devices of type D2,
etc. No discovery software is invoked. D can be a value from 0 to 6 which selects a simulated a GPU
from the following table.

Table 1: Simulated GPUs
DeviceName Capability GlobalMemo-

ryMB
0 GeForce GT 330 1.2 1024
1 GeForce GTX 480 2.0 1536
2 Tesla V100-PCIE-16GB 7.0 24220
3 TITAN RTX 7.5 24220
4 A100-SXM4-40GB 8.0 40536
5 NVIDIA A100-SXM4-40GB MIG 3g.20gb 8.0 20096
6 NVIDIA A100-SXM4-40GB MIG 1g.5gb 8.0 4864

-opencl
Prefer detection via OpenCL rather than CUDA. Without this option, CUDA detection software is
invoked first, and no further Open CL software is invoked if CUDA devices are detected.

840 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-cuda
Do only CUDA detection.

-nvcuda
For Windows platforms only, use a CUDA driver rather than the CUDA run time.

-config
Output in the syntax of HTCondor configuration, instead of ClassAd language. An additional at-
tribute is produced NUM_DETECTED_GPUs which is set to the number of GPUs detected.

-repeat [N]
Repeat listed GPUs N (default 2) times. This results in a list that looks like CUDA0, CUDA1, CUDA0,
CUDA1.

If used with -divide, the last one on the command-line wins, but you must specify 2 if you want it;
the default value only applies to the first flag.

-divide [N]
Like -repeat, except also divide the attribute GlobalMemoryMb by N. This may help you avoid over-
committing your GPU’s memory.

If used with -repeat, the last one on the command-line wins, but you must specify 2 if you want it;
the default value only applies to the first flag.

-packed
When repeating GPUs, repeat each GPU N times, not the whole list. This results in a list that looks
like CUDA0, CUDA0, CUDA1, CUDA1.

-cron
This option suppresses the DetectedGpus attribute so that the output is suitable for use with con-
dor_startd cron. Combine this option with the -dynamic option to periodically refresh the dynamic
Gpu information such as temperature. For example, to refresh GPU temperatures every 5 minutes

use FEATURE : StartdCronPeriodic(DYNGPUS, 5*60, $(LIBEXEC)/condor_gpu_
→˓discovery, -dynamic -cron)

-verbose
For interactive use of the tool, output extra information to show detection while in progress.

-diagnostic
Show diagnostic information, to aid in tool development.

14.18.4 Exit Status

condor_gpu_discovery will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.19 condor_history

View log of HTCondor jobs completed to date

14.19. condor_history 841

HTCondor Manual, Release 23.6.2

14.19.1 Synopsis

condor_history [-help]

condor_history [-name name] [-pool centralmanagerhostname[:portnumber]] [-backwards] [-forwards] [-
constraint expr] [-file filename] [-userlog filename] [-search path] [-dir | -directory] [-local] [-startd] [-epochs]
[-format formatString AttributeName] [-autoformat[:jlhVr,tng] attr1 [attr2 . . .]] [-l | -long | -xml | -json | -jsonl]
[-match | -limit number] [-attributes attr1[,attr2. . .]] [-print-format file] [-wide] [-since time_or_jobid] [-
completedsince time_expr] [-scanlimit number] [cluster | cluster.process | owner]

14.19.2 Description

condor_history displays a summary of all HTCondor jobs listed in the specified history files. If no history files are
specified with the -file option, the local history file as specified in HTCondor’s configuration file ($(SPOOL)/history by
default) is read. The default listing summarizes in reverse chronological order each job on a single line, and contains
the following items:

ID
The cluster/process id of the job.

OWNER
The owner of the job.

SUBMITTED
The month, day, hour, and minute the job was submitted to the queue.

RUN_TIME
Remote wall clock time accumulated by the job to date in days, hours, minutes, and seconds, given
as the job ClassAd attribute .

ST
Completion status of the job (C = completed and X = removed).

COMPLETED
The time the job was completed.

CMD
The name of the executable.

If a job ID (in the form of cluster_id or cluster_id.proc_id) or an owner is provided, output will be restricted to jobs
with the specified IDs and/or submitted by the specified owner. The -constraint option can be used to display jobs that
satisfy a specified boolean expression.

14.19.3 Options

-help
Display usage information and exit.

-name name
Query the named condor_schedd daemon. If used with -startd, query the named condor_startd
daemon

-pool centralmanagerhostname[:portnumber]
Use the centralmanagerhostname as the central manager to locate condor_schedd daemons. The
default is the , as specified in the configuration.

842 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-backwards
List jobs in reverse chronological order. The job most recently added to the history file is first. This
is the default ordering.

-forwards
List jobs in chronological order. The job most recently added to the history file is last. At least 4
characters must be given to distinguish this option from the -file and -format options.

-constraint expr
Display jobs that satisfy the expression.

-since jobid or expr
Stop scanning when the given jobid is found or when the expression becomes true.

-completedsince time_expr
Scan until the first job that completed on or before the given unix timestamp. The argument can be
any expression that evaluates to a unix timestamp. This option is equivalent to -since ‘Completion-
Date<=time_expr’.

-scanlimit Number
Stop scanning when the given number of ads have been read.

-limit Number
Limit the number of jobs displayed to Number. Same option as -match.

-match Number
Limit the number of jobs displayed to Number. Same option as -limit.

-local
Read from local history files even if there is a SCHEDD_HOST configured.

-startd
Read from Startd history files rather than Schedd history files. If used with the -name option, query
is sent as a command to the given Startd which must be version 9.0 or later.

-epochs[:d]
Read per job run instance recording also known as job epochs instead of default history file. The
-epochs option may be followed by a colon character for extra functionality:

d Delete job epoch files after finished reading. This option only deletes epoch files store within , and
can not be used with -match, -limit, or -scanlimit.

-file filename
Use the specified file instead of the default history file.

-userlog filename
Display jobs, with job information coming from a job event log, instead of from the default history
file. A job event log does not contain all of the job information, so some fields in the normal output
of condor_history will be blank.

-search path
Use the specified path to filename and all matching condor time rotated files filename.
YYYYMMDDTHHMMSS instead of the default history file. If used with -dir option then condor_history
will use the provided path as the directory to search for specific pattern matching history files.

-dir or -directory
Search for files in a sources alternate directory configuration knob to read from instead of default
history file. Note: only applies to -epochs.

-format formatString AttributeName
Display jobs with a custom format. See the condor_q man page -format option for details.

14.19. condor_history 843

HTCondor Manual, Release 23.6.2

-autoformat[:jlhVr,tng] attr1 [attr2 . . .] or -af[:jlhVr,tng] attr1 [attr2 . . .]
(output option) Display attribute(s) or expression(s) formatted in a default way according to attribute
types. This option takes an arbitrary number of attribute names as arguments, and prints out their
values, with a space between each value and a newline character after the last value. It is like the
-format option without format strings.

It is assumed that no attribute names begin with a dash character, so that the next word that begins
with dash is the start of the next option. The autoformat option may be followed by a colon character
and formatting qualifiers to deviate the output formatting from the default:

j print the job ID as the first field,

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The l and h characters may not be used
together.

-print-format file
Read output formatting information from the given custom print format file. see Print Formats for
more information about custom print format files.

-l or -long
Display job ClassAds in long format.

-attributes attrs
Display only the given attributes when the -long o ption is used.

-xml
Display job ClassAds in XML format. The XML format is fully defined in the reference manual,
obtained from the ClassAds web page, with a link at http://htcondor.org/classad/classad.html.

-json
Display job ClassAds in JSON format.

-jsonl
Display job ClassAds in JSON-Lines format: one job ad per line.

-wide[:number]
Restrict output to the given column width. Default width is 80 columns, if -wide is used without the
optional number argument, the width of the output is not restricted.

844 Chapter 14. Commands Reference (man pages)

http://htcondor.org/classad/classad.html

HTCondor Manual, Release 23.6.2

14.19.4 Exit Status

condor_history will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.20 condor_hold

put jobs in the queue into the hold state

14.20.1 Synopsis

condor_hold [-help | -version]

condor_hold [-debug] [-reason reasonstring] [-subcode number] [-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”] cluster. . . | cluster.process. . . | user. . . | -constraint expression . . .

condor_hold [-debug] [-reason reasonstring] [-subcode number] [-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”] -all

14.20.2 Description

condor_hold places jobs from the HTCondor job queue in the hold state. If the -name option is specified, the named
condor_schedd is targeted for processing. Otherwise, the local condor_schedd is targeted. The jobs to be held are
identified by one or more job identifiers, as described below. For any given job, only the owner of the job or one of the
queue super users (defined by the macro) can place the job on hold.

A job in the hold state remains in the job queue, but the job will not run until released with condor_release.

A currently running job that is placed in the hold state by condor_hold is sent a hard kill signal.

14.20.3 Options

-help
Display usage information

-version
Display version information

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name scheddname
Send the command to a machine identified by scheddname

-addr “<a.b.c.d:port>”
Send the command to a machine located at “<a.b.c.d:port>”

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-reason reasonstring
Sets the job ClassAd attribute to the value given by reasonstring. reasonstring will be delimited by
double quote marks on the command line, if it contains space characters.

14.20. condor_hold 845

HTCondor Manual, Release 23.6.2

-subcode number
Sets the job ClassAd attribute to the integer value given by number.

cluster
Hold all jobs in the specified cluster

cluster.process
Hold the specific job in the cluster

user
Hold all jobs belonging to specified user

-constraint expression
Hold all jobs which match the job ClassAd expression constraint (within quotation marks). Note that
quotation marks must be escaped with the backslash characters for most shells.

-all
Hold all the jobs in the queue

14.20.4 See Also

condor_release

14.20.5 Examples

To place on hold all jobs (of the user that issued the condor_hold command) that are not currently running:

$ condor_hold -constraint "JobStatus!=2"

Multiple options within the same command cause the union of all jobs that meet either (or both) of the options to be
placed in the hold state. Therefore, the command

$ condor_hold Mary -constraint "JobStatus!=2"

places all of Mary’s queued jobs into the hold state, and the constraint holds all queued jobs not currently running.
It also sends a hard kill signal to any of Mary’s jobs that are currently running. Note that the jobs specified by the
constraint will also be Mary’s jobs, if it is Mary that issues this example condor_hold command.

14.20.6 Exit Status

condor_hold will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.21 condor_install

Configure or install HTCondor

846 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.21.1 Synopsis

condor_configure or condor_install [–help] [–usage]

condor_configure or condor_install [--install[=<path/to/release>]] [--install-dir=<path>] [--prefix=<path>] [-
-local-dir=<path>] [--make-personal-condor] [--bosco] [--type = < submit, execute, manager >] [--central-
manager = < hostname>] [--owner = < ownername >] [--maybe-daemon-owner] [--install-log = < file >] [--
overwrite] [--ignore-missing-libs] [--force] [--no-env-scripts] [--env-scripts-dir = < directory >] [--backup] [--
credd] [--verbose]

14.21.2 Description

condor_configure and condor_install refer to a single script that installs and/or configures HTCondor on Unix machines.
As the names imply, condor_install is intended to perform a HTCondor installation, and condor_configure is intended
to configure (or reconfigure) an existing installation. Both will run with Perl 5.6.0 or more recent versions.

condor_configure (and condor_install) are designed to be run more than one time where required. It can install HT-
Condor when invoked with a correct configuration via

$ condor_install

or

$ condor_configure --install

or, it can change the configuration files when invoked via

$ condor_configure

Note that changes in the configuration files do not result in changes while HTCondor is running. To effect changes while
HTCondor is running, it is necessary to further use the condor_reconfig or condor_restart command. condor_reconfig
is required where the currently executing daemons need to be informed of configuration changes. condor_restart is
required where the options –make-personal-condor or –type are used, since these affect which daemons are running.

Running condor_configure or condor_install with no options results in a usage screen being printed. The –help option
can be used to display a full help screen.

Within the options given below, the phrase release directories is the list of directories that are released with HTCondor.
This list includes: bin, etc, examples, include, lib, libexec, man, sbin, sql and src.

14.21.3 Options

-help
Print help screen and exit

-usage
Print short usage and exit

-install
Perform installation, assuming that the current working directory contains the release directories.
Without further options, the configuration is that of a Personal HTCondor, a complete one-machine
pool. If used as an upgrade within an existing installation directory, existing configuration files and
local directory are preserved. This is the default behavior of condor_install.

14.21. condor_install 847

HTCondor Manual, Release 23.6.2

-install-dir=<path>
Specifies the path where HTCondor should be installed or the path where it already is installed. The
default is the current working directory.

-prefix=<path>
This is an alias for -install-dir.

-local-dir=<path>
Specifies the location of the local directory, which is the directory that generally contains the lo-
cal (machine-specific) configuration file as well as the directories where HTCondor daemons write
their run-time information (spool, log, execute). This location is indicated by the variable in the
configuration file. When installing (that is, if -install is specified), condor_configure will properly
create the local directory in the location specified. If none is specified, the default value is given by
the evaluation of $(RELEASE_DIR)/local.$(HOSTNAME).

During subsequent invocations of condor_configure (that is, without the -install option), if the -local-
dir option is specified, the new directory will be created and the log, spool and execute directories
will be moved there from their current location.

-make-personal-condor
Installs and configures for Personal HTCondor, a fully-functional, one-machine pool.

-bosco
Installs and configures Bosco, a personal HTCondor that submits jobs to remote batch systems.

-type= < submit, execute, manager >
One or more of the types may be listed. This determines the roles that a machine may play in a pool.
In general, any machine can be a submit and/or execute machine, and there is one central manager
per pool. In the case of a Personal HTCondor, the machine fulfills all three of these roles.

-central-manager=<hostname>
Instructs the current HTCondor installation to use the specified machine as the central manager. This
modifies the configuration variable to point to the given host name. The central manager machine’s
HTCondor configuration needs to be independently configured to act as a manager using the option
-type=manager.

-owner=<ownername>
Set configuration such that HTCondor daemons will be executed as the given owner. This modifies
the ownership on the log, spool and execute directories and sets the value in the configuration file,
to ensure that HTCondor daemons start up as the specified effective user. This is only applicable when
condor_configure is run by root. If not run as root, the owner is the user running the condor_configure
command.

-maybe-daemon-owner
If -owner is not specified and no appropriate user can be found to run Condor, then this option will
allow the daemon user to be selected. This option is rarely needed by users but can be useful for
scripts that invoke condor_configure to install Condor.

-install-log=<file>
Save information about the installation in the specified file. This is normally only needed when
condor_configure is called by a higher-level script, not when invoked by a person.

-overwrite
Always overwrite the contents of the sbin directory in the installation directory. By default, con-
dor_install will not install if it finds an existing sbin directory with HTCondor programs in it. In
this case, condor_install will exit with an error message. Specify -overwrite or -backup to tell
condor_install what to do.

This prevents condor_install from moving an sbin directory out of the way that it should not move.
This is particularly useful when trying to install HTCondor in a location used by other things (/usr,

848 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

/usr/local, etc.) For example: condor_install -prefix=/usr will not move /usr/sbin out of the
way unless you specify the -backup option.

The -backup behavior is used to prevent condor_install from overwriting running daemons - Unix
semantics will keep the existing binaries running, even if they have been moved to a new directory.

-backup
Always backup the sbin directory in the installation directory. By default, condor_install will not
install if it finds an existing sbin directory with HTCondor programs in it. In this case, condor_install
with exit with an error message. You must specify -overwrite or -backup to tell condor_install what
to do.

This prevents condor_install from moving an sbin directory out of the way that it should not move.
This is particularly useful if you’re trying to install HTCondor in a location used by other things (/
usr, /usr/local, etc.) For example: condor_install -prefix=/usr will not move /usr/sbin out of
the way unless you specify the -backup option.

The -backup behavior is used to prevent condor_install from overwriting running daemons - Unix
semantics will keep the existing binaries running, even if they have been moved to a new directory.

-ignore-missing-libs
Ignore missing shared libraries that are detected by condor_install. By default, condor_install will
detect missing shared libraries such as libstdc++.so.5 on Linux; it will print messages and exit
if missing libraries are detected. The -ignore-missing-libs will cause condor_install to not exit, and
to proceed with the installation if missing libraries are detected.

-force
This is equivalent to enabling both the -overwrite and -ignore-missing-libs command line options.

-no-env-scripts
By default, condor_configure writes simple sh and csh shell scripts which can be sourced by their
respective shells to set the user’s PATH and CONDOR_CONFIG environment variables. This option
prevents condor_configure from generating these scripts.

-env-scripts-dir=<directory>
By default, the simple sh and csh shell scripts (see -no-env-scripts for details) are created in the
root directory of the HTCondor installation. This option causes condor_configure to generate these
scripts in the specified directory.

-credd
Configure the the condor_credd daemon (credential manager daemon).

-verbose
Print information about changes to configuration variables as they occur.

14.21.4 Exit Status

condor_configure will exit with a status value of 0 (zero) upon success, and it will exit with a nonzero value upon
failure.

14.21. condor_install 849

HTCondor Manual, Release 23.6.2

14.21.5 Examples

Install HTCondor on the machine (machine1@cs.wisc.edu) to be the pool’s central manager. On machine1, within the
directory that contains the unzipped HTCondor distribution directories:

$ condor_install --type=submit,execute,manager

This will allow the machine to submit and execute HTCondor jobs, in addition to being the central manager of the pool.

To change the configuration such that machine2@cs.wisc.edu is an execute-only machine (that is, a dedicated
computing node) within a pool with central manager on machine1@cs.wisc.edu, issue the command on that ma-
chine2@cs.wisc.edu from within the directory where HTCondor is installed:

$ condor_configure --central-manager=machine1@cs.wisc.edu --type=execute

To change the location of the directory in the configuration file, do (from the directory where HTCondor is installed):

$ condor_configure --local-dir=/path/to/new/local/directory

This will move the log,spool,execute directories to /path/to/new/local/directory from the current local di-
rectory.

14.22 condor_job_router_info

Discover and display information related to job routing

14.22.1 Synopsis

condor_job_router_info [-help | -version]

condor_job_router_info -config

condor_job_router_info -match-jobs -jobads inputfile [-ignore-prior-routing]

condor_job_router_info -route-jobs outputfile -jobads inputfile [-ignore-prior-routing] [-log-steps]

14.22.2 Description

condor_job_router_info displays information about job routing. The information will be either the available, configured
routes or the routes for specified jobs. condor_job_router_info can also be used to simulate routing by supplying a job
classad in a file. This can be used to test the router configuration offline.

14.22.3 Options

-help
Display usage information and exit.

-version
Display HTCondor version information and exit.

-config
Display configured routes.

850 Chapter 14. Commands Reference (man pages)

mailto:machine1@cs.wisc.edu
mailto:machine2@cs.wisc.edu
mailto:machine1@cs.wisc.edu
mailto:machine2@cs.wisc.edu
mailto:machine2@cs.wisc.edu

HTCondor Manual, Release 23.6.2

-match-jobs
For each job listed in the file specified by the -jobads option, display the first route found.

-route-jobs filename
For each job listed in the file specified by the -jobads option, apply the first route found and print the
routed jobs to the specified output file. if filename is - the routed jobs are printed to stdout.

-log-steps
When used with the -route-jobs option, print each transform step as the job transforms are applied.

-ignore-prior-routing
For each job, remove any existing routing ClassAd attributes, and set attribute to the Idle state before
finding the first route.

-jobads filename
Read job ClassAds from file filename. If filename is -, then read from stdin.

14.22.4 Exit Status

condor_job_router_info will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

14.23 condor_master

The master HTCondor Daemon

14.23.1 Synopsis

condor_master

14.23.2 Description

This daemon is responsible for keeping all the rest of the HTCondor daemons running on each machine in your pool.
It spawns the other daemons, and periodically checks to see if there are new binaries installed for any of them. If there
are, the condor_master will restart the affected daemons. In addition, if any daemon crashes, the condor_master will
send e-mail to the HTCondor Administrator of your pool and restart the daemon. The condor_master also supports
various administrative commands that let you start, stop or reconfigure daemons remotely. The condor_master will run
on every machine in your HTCondor pool, regardless of what functions each machine are performing. Additionally,
on Linux platforms, if you start the condor_master as root, it will tune (but never decrease) certain kernel parameters
important to HTCondor’s performance.

The configuration macro is used by the condor_master to provide a per-machine list of daemons that should be started
and kept running. For daemons that are specified in the configuration macro, the condor_master daemon will spawn
them automatically appending a -f argument. For those listed in , but not in , there will be no -f argument.

The condor_master creates certain directories necessary for its proper functioning on start-up if they don’t already
exist, using the values of the configuration settings , , LOCAL_DISK_LOCK_DIR, , , , , , , , , and .

14.23. condor_master 851

HTCondor Manual, Release 23.6.2

14.23.3 Options

-n name
Provides an alternate name for the condor_master to override that given by the configuration variable.

14.24 condor_now

Start a job now.

14.24.1 Synopsis

condor_now -help

condor_now [-name] [-debug**] now-job vacate-job [vacate-job+]

14.24.2 Description

condor_now tries to run the now-job now. The vacate-job is immediately vacated; after it terminates, if the schedd still
has the claim to the vacated job’s slot - and it usually will - the schedd will immediately start the now-job on that slot.

If you specify multiple vacate-job s, each will be immediately vacated; after they all terminate, the schedd will try to
coalesce their slots into a single, larger, slot and then use that slot to run the now-job.

You must specify each job using both the cluster and proc IDs.

14.24.3 Options

-help
Print a usage reminder.

-debug
Print debugging output. Control the verbosity with the environment variables _CON-
DOR_TOOL_DEBUG, as usual.

-name **
Specify the scheduler(‘s name) and (optionally) the pool to find it in.

14.24.4 General Remarks

The now-job and the vacated-job must have the same owner; if you are not the queue super-user, you must own both
jobs. The jobs must be on the same schedd, and both jobs must be in the vanilla universe. The now-job must be idle
and the vacated-job must be running.

852 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.24.5 Examples

To begin running job 17.3 as soon as possible using job 4.2’s slot:

$ condor_now 17.3 4.2

To try to figure out why that doesn’t work for the ‘magic’ scheduler in the ‘gandalf’ pool, set the environment variable
_CONDOR_TOOL_DEBUG to ‘D_FULLDEBUG’ and then:

$ condor_now -debug -schedd magic -pool gandalf 17.3 4.2

14.24.6 Exit Status

condor_now will exit with a status value of 0 (zero) if the schedd accepts its request to vacate the vacate-job and start
the now-job in its place. It does not wait for the now-job to have started running.

14.25 condor_off

Shutdown HTCondor daemons

14.25.1 Synopsis

condor_off [-help | -version]

condor_off [-graceful | -fast | -peaceful | -force-graceful | -drain] [-annex name] [-debug[:opts]] [-pool centralman-
agerhostname[:portnumber]] [-name hostname | hostname | -addr “<a.b.c.d:port>” | “<a.b.c.d:port>” | -constraint
expression | -all] [-daemon daemonname | -master] [-exec name] [-reason “reason-string”] [-request-id id] [-check
expr] [-start expr]

14.25.2 Description

condor_off shuts down a set of the HTCondor daemons running on a set of one or more machines. By default, it does
this cleanly, so that jobs have time to shut down.

The command condor_off without any arguments will shut down all daemons except condor_master, unless -annex
name is specified. The condor_master can then handle both local and remote requests to restart the other HTCondor
daemons if need be. To restart HTCondor running on a machine, see the condor_on command.

When the -drain option is chosen, draining options can be specified by using the optional -reason, -request-id, -check,
and -start arguments.

With the -daemon master option, condor_off will shut down all daemons including the condor_master. Specification
using the -daemon option will shut down only the specified daemon.

When shutting down all daemons including the condor_master, the -exec argument can be used to tell the master to
run a configured script before it exits.

For security reasons of authentication and authorization, this command requires ADMINISTRATOR level of access.

14.25. condor_off 853

HTCondor Manual, Release 23.6.2

14.25.3 Options

-help
Display usage information

-version
Display version information

-graceful
The default. If jobs are running, wait for up to the configured grace period for them to finish, then
exit

-fast
Quickly shutdown daemons, immediately evicting any running jobs. A minimum of the first two
characters of this option must be specified, to distinguish it from the -force-graceful command.

-peaceful
Wait indefinitely for jobs to finish

-force-graceful
Force a graceful shutdown, even after issuing a -peaceful command. A minimum of the first two
characters of this option must be specified, to distinguish it from the -fast command.

-drain
Send a condor_drain command with the -exit-on-completion option to all condor_startd daemons
that are managed by this master. Then wait for all condor_startd daemons to exit before before
shutting down other daemons.

-reason “reason-string”
Use with -drain to set a -reason “reason-string” value for the condor_drain command.

-request-id id
Use with -drain to set a -request-id id value for the condor_drain command.

-check expr
Use with -drain to set a -check expr value for the condor_drain command.

-start expr
Use with -drain to set a -start expr value for the condor_drain command.

-annex name
Turn off master daemons in the specified annex. By default this will result in the corresponding
instances shutting down.

-debug[:opts]
Causes debugging information to be sent to stderr. The debug level can be set by specifying an
optional opts value. Otherwise, the configuration variable sets the debug level.

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name hostname
Send the command to a machine identified by hostname

hostname
Send the command to a machine identified by hostname

-addr “<a.b.c.d:port>”
Send the command to a machine’s master located at “<a.b.c.d:port>”

“<a.b.c.d:port>”
Send the command to a machine located at “<a.b.c.d:port>”

854 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-constraint expression
Apply this command only to machines matching the given ClassAd expression

-all
Send the command to all machines in the pool

-master
Shutdown the condor_master after shutting down all other daemons.

-exec name
When used with -master, the condor_master will run the program configured as after shutting down
all other daemons.

-daemon daemonname
Send the command to the named daemon. Without this option, the command is sent to the con-
dor_master daemon.

14.25.4 Graceful vs. Peaceful vs Fast

A “fast” shutdown will cause the requested daemon to exit. Jobs running under a startd that is shutdown fast will be
evicted. Jobs running on a schedd that is shutdown fast will be left running for their job lease duration (default of 20
minutes). (That is, assuming the corresponding startd is not also being shut down). If that schedd restarts before the
job lease expires, it will reconnect to these running jobs and continue to run them, as long as the schedd and startd are
running.

A “graceful” shutdown of a schedd is functionally the same as a “fast” shutdown of a schedd.

A “graceful” shutdown of a startd that has jobs running under it causes the startd to wait for the jobs to exit of their
own accord, up to the MaxJobRetirementTime. After the MaxJobRetirementTime, the startd will evict any remaining
running jobs and exit.

A “peaceful” shutdown of a startd or schedd will cause that daemon to wait indefinitely for all existing jobs to exit
before shutting down. During this time, no new jobs will start.

14.25.5 Exit Status

condor_off will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.25.6 Examples

To shut down all daemons (other than condor_master) on the local host:

$ condor_off

To shut down only the condor_collector on three named machines:

$ condor_off cinnamon cloves vanilla -daemon collector

To shut down daemons within a pool of machines other than the local pool, use the -pool option. The argument is
the name of the central manager for the pool. Note that one or more machines within the pool must be specified as
the targets for the command. This command shuts down all daemons except the condor_master on the single machine
named cae17 within the pool of machines that has condor.cae.wisc.edu as its central manager:

$ condor_off -pool condor.cae.wisc.edu -name cae17

14.25. condor_off 855

HTCondor Manual, Release 23.6.2

14.26 condor_on

Start up HTCondor daemons

14.26.1 Synopsis

condor_on [-help | -version]

condor_on [-debug] [-pool centralmanagerhostname[:portnumber]] [-name hostname | hostname | -addr
“<a.b.c.d:port>” | “<a.b.c.d:port>” | -constraint expression | -all] [-daemon daemonname]

14.26.2 Description

condor_on starts up a set of the HTCondor daemons on a set of machines. This command assumes that the con-
dor_master is already running on the machine. If this is not the case, condor_on will fail complaining that it cannot
find the address of the master. The command condor_on with no arguments or with the -daemon master option will
tell the condor_master to start up the HTCondor daemons specified in the configuration variable . If a daemon other
than the condor_master is specified with the -daemon option, condor_on starts up only that daemon.

This command cannot be used to start up the condor_master daemon.

For security reasons of authentication and authorization, this command requires ADMINISTRATOR level of access.

14.26.3 Options

-help
Display usage information

-version
Display version information

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name hostname
Send the command to a machine identified by hostname

hostname
Send the command to a machine identified by hostname

-addr “<a.b.c.d:port>”
Send the command to a machine’s master located at “<a.b.c.d:port>”

“<a.b.c.d:port>”
Send the command to a machine located at “<a.b.c.d:port>”

-constraint expression
Apply this command only to machines matching the given ClassAd expression

-all
Send the command to all machines in the pool

856 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-daemon daemonname
Send the command to the named daemon. Without this option, the command is sent to the con-
dor_master daemon.

14.26.4 Exit Status

condor_on will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.26.5 Examples

To begin running all daemons (other than condor_master) given in the configuration variable on the local host:

$ condor_on

To start up only the condor_negotiator on two named machines:

$ condor_on robin cardinal -daemon negotiator

To start up only a daemon within a pool of machines other than the local pool, use the -pool option. The argument
is the name of the central manager for the pool. Note that one or more machines within the pool must be specified as
the targets for the command. This command starts up only the condor_schedd daemon on the single machine named
cae17 within the pool of machines that has condor.cae.wisc.edu as its central manager:

$ condor_on -pool condor.cae.wisc.edu -name cae17 -daemon schedd

14.27 condor_ping

Attempt a security negotiation to determine if it succeeds

14.27.1 Synopsis

condor_ping [-help | -version]

condor_ping [-debug] [-address <a.b.c.d:port>] [-pool host name] [-name daemon name] [-type subsystem] [-config
filename] [-quiet | -table | -verbose] token [token [. . .]]

14.27.2 Description

condor_ping attempts a security negotiation to discover whether the configuration is set such that the negotiation suc-
ceeds. The target of the negotiation is defined by one or a combination of the address, pool, name, or type options. If
no target is specified, the default target is the condor_schedd daemon on the local machine.

One or more token s may be listed, thereby specifying one or more authorization level to impersonate in security
negotiation. A token is the value ALL, an authorization level, a command name, or the integer value of a command.
The many command names and their associated integer values will more likely be used by experts, and they are defined
in the file condor_includes/condor_commands.h.

An authorization level may be one of the following strings. If ALL is listed, then negotiation is attempted for each of
these possible authorization levels. Note that OWNER is no longer used in HTCondor, but is kept here for use when
talking to older daemons (prior to 9.9.0).

14.27. condor_ping 857

HTCondor Manual, Release 23.6.2

READ WRITE ADMINISTRATOR SOAP CONFIG OWNER DAEMON NEGOTIATOR ADVER-
TISE_MASTER ADVERTISE_STARTD ADVERTISE_SCHEDD CLIENT

14.27.3 Options

-help
Display usage information

-version
Display version information

-debug
Print extra debugging information as the command executes.

-config filename
Attempt the negotiation based on the contents of the configuration file contents in file filename.

-address <a.b.c.d:port>
Target the given IP address with the negotiation attempt.

-pool hostname
Target the given host with the negotiation attempt. May be combined with specifications defined by
name and type options.

-name daemonname
Target the daemon given by daemonname with the negotiation attempt.

-type subsystem
Target the daemon identified by subsystem, one of the values of the predefined $(SUBSYSTEM)macro.

-quiet
Set exit status only; no output displayed.

-table
Output is displayed with one result per line, in a table format.

-verbose
Display all available output.

14.27.4 Examples

The example Unix command

$ condor_ping -address "<127.0.0.1:9618>" -table READ WRITE DAEMON

places double quote marks around the sinful string to prevent the less than and the greater than characters from causing
redirect of input and output. The given IP address is targeted with 3 attempts to negotiate: one at the READ authorization
level, one at the WRITE authorization level, and one at the DAEMON authorization level.

858 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.27.5 Exit Status

condor_ping will exit with the status value of the negotiation it attempted, where 0 (zero) indicates success, and 1 (one)
indicates failure. If multiple security negotiations were attempted, the exit status will be the logical OR of all values.

14.28 condor_pool_job_report

generate report about all jobs that have run in the last 24 hours on all execute hosts

14.28.1 Synopsis

condor_pool_job_report

14.28.2 Description

condor_pool_job_report is a Linux-only tool that is designed to be run nightly using cron. It is intended to be run
on the central manager, or another machine that has administrative permissions, and is able to fetch the condor_startd
history logs from all of the condor_startd daemons in the pool. After fetching these logs, condor_pool_job_report
then generates a report about job run times and mails it to administrators, as defined by configuration variable .

14.28.3 Exit Status

condor_pool_job_report will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

14.29 condor_power

send packet intended to wake a machine from a low power state

14.29.1 Synopsis

condor_power [-h]

condor_power [-d] [-i] [-m MACaddress] [-s subnet] [ClassAdFile]

14.29.2 Description

condor_power sends one UDP Wake on LAN (WOL) packet to a machine specified either by command line arguments
or by the contents of a machine ClassAd. The machine ClassAd may be in a file, where the file name specified by
the optional argument ClassAdFile is given on the command line. With no command line arguments to specify the
machine, and no file specified, condor_power quietly presumes that standard input is the file source which will specify
the machine ClassAd that includes the public IP address and subnet of the machine.

condor_power needs a complete specification of the machine to be successful. If a MAC address is provided on the
command line, but no subnet is given, then the default value for the subnet is used. If a subnet is provided on the
command line, but no MAC address is given, then condor_power falls back to taking its information in the form of

14.28. condor_pool_job_report 859

HTCondor Manual, Release 23.6.2

the machine ClassAd as provided in a file or on standard input. Note that this case implies that the command line
specification of the subnet is ignored.

condor_power relies on the router receiving the WOL packet to correctly broadcast the request. Since routers are often
configured to ignore requests to broadcast messages on a different subnet than the sender, the send of a WOL packet to
a machine on a different subnet may fail.

14.29.3 Options

-h
Print usage information and exit.

-d
Enable debugging messages.

-i
Read a ClassAd that is piped in through standard input.

-m MACaddress
Specify the MAC address in the standard format of six groups of two hexadecimal digits separated
by colons.

-s subnet
Specify the subnet in the standard form of a mask for an IPv4 address. Without this option, a global
broadcast will be sent.

14.29.4 Exit Status

condor_power will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.30 condor_preen

remove extraneous files from HTCondor directories

14.30.1 Synopsis

condor_preen [-mail] [-remove] [-verbose] [-debug] [-log <filename>]

14.30.2 Description

condor_preen examines the directories belonging to HTCondor, and removes extraneous files and directories which
may be left over from HTCondor processes which terminated abnormally either due to internal errors or a system
crash. The directories checked are the , , and directories as defined in the HTCondor configuration files. condor_preen
is intended to be run as user root or user condor periodically as a backup method to ensure reasonable file system
cleanliness in the face of errors. This is done automatically by default by the condor_master daemon. It may also be
explicitly invoked on an as needed basis.

When condor_preen cleans the directory, it always leaves behind the files specified in the configuration variables and , as
given by the configuration. For the directory, the only files removed or reported are those listed within the configuration
variable list. The reason for this difference is that, in general, the files in the directory ought to be left alone, with few
exceptions. An example of exceptions are core files. As there are new log files introduced regularly, it is less effort to
specify those that ought to be removed than those that are not to be removed.

860 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.30.3 Options

-mail
Send mail to the user defined in the configuration variable, instead of writing to the standard output.

-remove
Remove the offending files and directories rather than reporting on them.

-verbose
List all files or directories found in the Condor directories and considered for deletion, even those
which are not extraneous. This option also modifies the output produced by the -debug and -log
options

-debug
Print extra debugging information to stderr as the command executes.

-log <filename>
Write extra debugging information to <filename> as the command executes.

14.30.4 Exit Status

condor_preen will exit with a status value of 0 (zero) upon success, and it will exit with a non-zero value upon failure.
An exit status of 2 indicates that condor_preen attempted to send email about deleted files but was unable to. This
usually indicates an error in the configuration for sending email. An exit status of 1 indicates a general failure.

14.31 condor_prio

change priority of jobs in the HTCondor queue

14.31.1 Synopsis

condor_prio -p priority | +value | -value [-n schedd_name] [username | ClusterId]

14.31.2 Description

condor_prio changes the priority of one or more jobs in the HTCondor queue. If the job identification is given by
cluster.process, condor_prio attempts to change the priority of the single job with job ClassAd attributes and . If
described by cluster, condor_prio attempts to change the priority of all processes with the given job ClassAd attribute.
If username is specified, condor_prio attempts to change priority of all jobs belonging to that user. For -a, condor_prio
attempts to change priority of all jobs in the queue.

The user must set a new priority with the -p option, or specify a priority adjustment.

The priority of a job can be any integer, with higher numbers corresponding to greater priority. For adjustment of the
current priority, +value increases the priority by the amount given with value. -value decreases the priority by the
amount given with value.

Only the owner of a job or the super user can change the priority.

The priority changed by condor_prio is only used when comparing to the priority jobs owned by the same user and
submitted from the same machine.

14.31. condor_prio 861

HTCondor Manual, Release 23.6.2

14.31.3 Options

-a
Change priority of all jobs in the queue

-n schedd_name
Change priority of jobs queued at the specified condor_schedd in the local pool.

-pool pool_name -n schedd_name
Change priority of jobs queued at the specified condor_schedd in the specified pool.

14.31.4 Exit Status

condor_prio will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.32 condor_procd

Track and manage process families

14.32.1 Synopsis

condor_procd -h

condor_procd -A address-file [options]

14.32.2 Description

condor_procd tracks and manages process families on behalf of the HTCondor daemons. It may track families of PIDs
via relationships such as: direct parent/child, environment variables, UID, and supplementary group IDs. Management
of the PID families include

• registering new families or new members of existing families

• getting usage information

• signaling families for operations such as suspension, continuing, or killing the family

• getting a snapshot of the tree of families

In a regular HTCondor installation, this program is not intended to be used or executed by any human.

The required argument, -A address-file, is the path and file name of the address file which is the named pipe that clients
must use to speak with the condor_procd.

862 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.32.3 Options

-h
Print out usage information and exit.

-D
Wait for the debugger. Initially sleep 30 seconds before beginning normal function.

-C principal
The principal is the UID of the owner of the named pipe that clients must use to speak to the con-
dor_procd.

-L log-file
A file the condor_procd will use to write logging information.

-E
When specified, another tool such as the procd_ctl tool must allocate the GID associated with a
process. When this option is not specified, the condor_procd will allocate the GID itself.

-P PID
If not specified, the condor_procd will use the condor_procd ‘s parent, which may not be PID 1 on
Unix, as the parent of the condor_procd and the root of the tracking family. When not specified, if
the condor_procd ‘s parent PID dies, the condor_procd exits. When specified, the condor_procd
will track this PID family in question and not also exit if the PID exits.

-S seconds
The maximum number of seconds the condor_procd will wait between taking snapshots of the tree
of families. Different clients to the condor_procd can specify different snapshot times. The quickest
snapshot time is the one performed by the condor_procd. When this option is not specified, a default
value of 60 seconds is used.

-G min-gid max-gid
If the -E option is not specified, then track process families using a self-allocated, free GID out of
the inclusive range specified by min-gid and max-gid. This means that if a new process shows up
using a previously known GID, the new process will automatically associate into the process family
assigned that GID. If the -E option is specified, then instead of self-allocating the GID, the procd_ctl
tool must be used to associate the GID with the PID root of the family. The associated GID must still
be in the range specified. This is a Linux-only feature.

-K windows-softkill-binary
This is the path and executable name of the condor_softkill.exe binary. It is used to send softkill
signals to process families. This is a Windows-only feature.

14.32.4 Dealing with Short Reads

For unknown reasons, on Linux, attemps to read the list of PIDs from the /proc filesystem do not always return all of
the PIDs on the system. The condor_procd attempts to detect when this occurs, using two methods.

If the list of PIDs does not include PID 1, the condor_procd’s own PID, or the PID of the condor_procd’s parent (which
may be PID 1), then the list must be incomplete, and the condor_procd immediately retries the read.

Additionally, the condor_procd compares the number of PIDs it just read to the number of PIDs from the last time
it (successfully) checked. If the number is too much smaller, it immediately retries. The default threshold is 0.90,
meaning that if the current read has 90% or fewer of the last read’s PIDs, it’s considered invalid. In our testing, this
threshold was met by roughly 1 in 4000 reads, but successfully detected all real short reads. If you need to adjust the
threshold, you may do so by setting the environment variable _CONDOR_PROCAPI_RETRY_FRACTION. (In the
normal case, simply have it in the environment when the condor_master starts up.)

14.32. condor_procd 863

HTCondor Manual, Release 23.6.2

If a retried read is incomplete (according to either method), the condor_procd returns the results of the previous read.

14.32.5 General Remarks

This program may be used in a stand alone mode, independent of HTCondor, to track process families. The programs
procd_ctl and gidd_alloc are used with the condor_procd in stand alone mode to interact with the daemon and to
inquire about certain state of running processes on the machine, respectively.

14.32.6 Exit Status

condor_procd will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.33 condor_q

Display information about jobs in queue

14.33.1 Synopsis

condor_q [-help [Universe | State]]

condor_q [-debug] [general options] [restriction list] [output options] [analyze options]

14.33.2 Description

condor_q displays information about jobs in the HTCondor job queue. By default, condor_q queries the local job
queue, but this behavior may be modified by specifying one of the general options.

As of version 8.5.2, condor_q defaults to querying only the current user’s jobs. This default is overrid-
den when the restriction list has usernames and/or job ids, when the -submitter or -allusers arguments are
specified, or when the current user is a queue superuser. It can also be overridden by setting the CON-
DOR_Q_ONLY_MY_JOBS configuration macro to False.

As of version 8.5.6, condor_q defaults to batch-mode output (see -batch in the Options section below). The old
behavior can be obtained by specifying -nobatch on the command line. To change the default back to its pre-8.5.6
value, set the new configuration variable CONDOR_Q_DASH_BATCH_IS_DEFAULT to False.

14.33.3 Batches of jobs

As of version 8.5.6, condor_q defaults to displaying information about batches of jobs, rather than individual jobs. The
intention is that this will be a more useful, and user-friendly, format for users with large numbers of jobs in the queue.
Ideally, users will specify meaningful batch names for their jobs, to make it easier to keep track of related jobs.

(For information about specifying batch names for your jobs, see the condor_submit and condor_submit_dag manual
pages.)

A batch of jobs is defined as follows:

• An entire workflow (a DAG or hierarchy of nested DAGs) (note that condor_dagman now specifies a default
batch name for all jobs in a given workflow)

• All jobs in a single cluster

864 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

• All jobs submitted by a single user that have the same executable specified in their submit file (unless submitted
with different batch names)

• All jobs submitted by a single user that have the same batch name specified in their submit file or on the con-
dor_submit or condor_submit_dag command line.

14.33.4 Output

There are many output options that modify the output generated by condor_q. The effects of these options, and the
meanings of the various output data, are described below.

Output options

If the -long option is specified, condor_q displays a long description of the queried jobs by printing the entire job
ClassAd for all jobs matching the restrictions, if any. Individual attributes of the job ClassAd can be displayed by means
of the -format option, which displays attributes with a printf(3) format, or with the -autoformat option. Multiple -
format options may be specified in the option list to display several attributes of the job.

For most output options (except as specified), the last line of condor_q output contains a summary of the queue: the
total number of jobs, and the number of jobs in the completed, removed, idle, running, held and suspended states.

If no output options are specified, condor_q now defaults to batch mode, and displays the following columns of infor-
mation, with one line of output per batch of jobs:

OWNER, BATCH_NAME, SUBMITTED, DONE, RUN, IDLE, [HOLD,] TOTAL, JOB_IDS

Note that the HOLD column is only shown if there are held jobs in the output or if there are no jobs in the output.

If the -nobatch option is specified, condor_q displays the following columns of information, with one line of output
per job:

ID, OWNER, SUBMITTED, RUN_TIME, ST, PRI, SIZE, CMD

If the -dag option is specified (in conjunction with -nobatch), condor_q displays the following columns of information,
with one line of output per job; the owner is shown only for top-level jobs, and for all other jobs (including sub-DAGs)
the node name is shown:

ID, OWNER/NODENAME, SUBMITTED, RUN_TIME, ST, PRI, SIZE, CMD

If the -run option is specified (in conjunction with -nobatch), condor_q displays the following columns of information,
with one line of output per running job:

ID, OWNER, SUBMITTED, RUN_TIME, HOST(S)

Also note that the -run option disables output of the totals line.

If the -grid option is specified, condor_q displays the following columns of information, with one line of output per
job:

ID, OWNER, STATUS, GRID->MANAGER, HOST, GRID_JOB_ID

If the -grid:ec2 option is specified, condor_q displays the following columns of information, with one line of output
per job:

ID, OWNER, STATUS, INSTANCE ID, CMD

14.33. condor_q 865

HTCondor Manual, Release 23.6.2

If the -goodput option is specified, condor_q displays the following columns of information, with one line of output
per job:

ID, OWNER, SUBMITTED, RUN_TIME, GOODPUT, CPU_UTIL, Mb/s

If the -io option is specified, condor_q displays the following columns of information, with one line of output per job:

ID, OWNER, RUNS, ST, INPUT, OUTPUT, RATE, MISC

If the -cputime option is specified (in conjunction with -nobatch), condor_q displays the following columns of infor-
mation, with one line of output per job:

ID, OWNER, SUBMITTED, CPU_TIME, ST, PRI, SIZE, CMD

If the -hold option is specified, condor_q displays the following columns of information, with one line of output per
job:

ID, OWNER, HELD_SINCE, HOLD_REASON

If the -totals option is specified, condor_q displays only one line of output no matter how many jobs and batches of
jobs are in the queue. That line of output contains the total number of jobs, and the number of jobs in the completed,
removed, idle, running, held and suspended states.

Output data

The available output data are as follows:

ID
(Non-batch mode only) The cluster/process id of the HTCondor job.

OWNER
The owner of the job or batch of jobs.

OWNER/NODENAME
(-dag only) The owner of a job or the DAG node name of the job.

BATCH_NAME
(Batch mode only) The batch name of the job or batch of jobs.

SUBMITTED
The month, day, hour, and minute the job was submitted to the queue.

DONE
(Batch mode only) The number of job procs that are done, but still in the queue.

RUN
(Batch mode only) The number of job procs that are running.

IDLE
(Batch mode only) The number of job procs that are in the queue but idle.

HOLD
(Batch mode only) The number of job procs that are in the queue but held.

TOTAL
(Batch mode only) The total number of job procs in the queue, unless the batch is a DAG, in which
case this is the total number of clusters in the queue. Note: for non-DAG batches, the TOTAL column
contains correct values only in version 8.5.7 and later.

866 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

JOB_IDS
(Batch mode only) The range of job IDs belonging to the batch.

RUN_TIME
(Non-batch mode only) Wall-clock time accumulated by the job currently running in days, hours,
minutes, and seconds. When the job is idle or held the jobs previous accumulated time will be
displayed.

ST
(Non-batch mode only) Current status of the job, which varies somewhat according to the job universe
and the timing of updates. H = on hold, R = running, I = idle (waiting for a machine to execute on),
C = completed, X = removed, S = suspended (execution of a running job temporarily suspended on
execute node), < = transferring input (or queued to do so), and > = transferring output (or queued to
do so).

PRI
(Non-batch mode only) User specified priority of the job, displayed as an integer, with higher numbers
corresponding to better priority.

SIZE
(Non-batch mode only) The peak amount of memory in Mbytes consumed by the job; note this value
is only refreshed periodically. The actual value reported is taken from the job ClassAd attribute if
this attribute is defined, and from job attribute otherwise.

CMD
(Non-batch mode only) The name of the executable. For EC2 jobs, this field is arbitrary.

HOST(S)
(-run only) The host where the job is running.

STATUS
(-grid only) The state that HTCondor believes the job is in. Possible values are grid-type specific,
but include:

PENDING
The job is waiting for resources to become available in order to run.

ACTIVE
The job has received resources, and the application is executing.

FAILED
The job terminated before completion because of an error, user-triggered cancel, or
system-triggered cancel.

DONE
The job completed successfully.

SUSPENDED
The job has been suspended. Resources which were allocated for this job may have
been released due to a scheduler-specific reason.

STAGE_IN
The job manager is staging in files, in order to run the job.

STAGE_OUT
The job manager is staging out files generated by the job.

UNKNOWN
Unknown

GRID->MANAGER
(-grid only) A guess at what remote batch system is running the job. It is a guess, because HTCondor

14.33. condor_q 867

HTCondor Manual, Release 23.6.2

looks at the jobmanager contact string to attempt identification. If the value is fork, the job is running
on the remote host without a jobmanager. Values may also be condor, lsf, or pbs.

HOST
(-grid only) The host to which the job was submitted.

GRID_JOB_ID
(-grid only) (More information needed here.)

INSTANCE ID
(-grid:ec2 only) Usually EC2 instance ID; may be blank or the client token, depending on job
progress.

GOODPUT
(-goodput only) The percentage of RUN_TIME for this job which has been saved in a checkpoint.
A low GOODPUT value indicates that the job is failing to checkpoint. If a job has not yet attempted
a checkpoint, this column contains [?????].

CPU_UTIL
(-goodput only) The ratio of CPU_TIME to RUN_TIME for checkpointed work. A low CPU_UTIL
indicates that the job is not running efficiently, perhaps because it is I/O bound or because the job re-
quires more memory than available on the remote workstations. If the job has not (yet) checkpointed,
this column contains [??????].

Mb/s
(-goodput only) The network usage of this job, in Megabits per second of run-time. READ The
total number of bytes the application has read from files and sockets. WRITE The total number of
bytes the application has written to files and sockets. SEEK The total number of seek operations the
application has performed on files. XPUT The effective throughput (average bytes read and written
per second) from the application’s point of view. BUFSIZE The maximum number of bytes to be
buffered per file. BLOCKSIZE The desired block size for large data transfers. These fields are
updated when a job produces a checkpoint or completes. If a job has not yet produced a checkpoint,
this information is not available.

INPUT
(-io only) BytesRecvd.

OUTPUT
(-io only) BytesSent.

RATE
(-io only) BytesRecvd+BytesSent.

MISC
(-io only) JobUniverse.

CPU_TIME
(-cputime only) The remote CPU time accumulated by the job to date (which has been stored in a
checkpoint) in days, hours, minutes, and seconds. (If the job is currently running, time accumulated
during the current run is not shown. If the job has not produced a checkpoint, this column contains
0+00:00:00.)

HELD_SINCE
(-hold only) Month, day, hour and minute at which the job was held.

HOLD_REASON
(-hold only) The hold reason for the job.

868 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

Analyze

The -analyze or -better-analyze options can be used to determine why certain jobs are not running by performing an
analysis on a per machine basis for each machine in the pool. The reasons can vary among failed constraints, insufficient
priority, resource owner preferences and prevention of preemption by the expression. If the analyze option -verbose
is specified along with the -analyze option, the reason for failure is displayed on a per machine basis. -better-analyze
differs from -analyze in that it will do matchmaking analysis on jobs even if they are currently running, or if the reason
they are not running is not due to matchmaking. -better-analyze also produces more thorough analysis of complex
Requirements and shows the values of relevant job ClassAd attributes. When only a single machine is being analyzed
via -machine or -mconstraint, the values of relevant attributes of the machine ClassAd are also displayed.

14.33.5 Restrictions

To restrict the display to jobs of interest, a list of zero or more restriction options may be supplied. Each restriction
may be one of:

• cluster.process, which matches jobs which belong to the specified cluster and have the specified process number;

• cluster (without a process), which matches all jobs belonging to the specified cluster;

• owner, which matches all jobs owned by the specified owner;

• -constraint expression, which matches all jobs that satisfy the specified ClassAd expression;

• -unmatchable expression, which matches all jobs that do not match any slot that would be considered by -
better-analyze ;

• -allusers, which overrides the default restriction of only matching jobs submitted by the current user.

If cluster or cluster.process is specified, and the job matching that restriction is a condor_dagman job, information for
all jobs of that DAG is displayed in batch mode (in non-batch mode, only the condor_dagman job itself is displayed).

If no owner restrictions are present, the job matches the restriction list if it matches at least one restriction in the list.
If owner restrictions are present, the job matches the list if it matches one of the owner restrictions and at least one
non-owner restriction.

14.33.6 Options

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-batch
(output option) Show a single line of progress information for a batch of jobs, where a batch is defined
as follows:

• An entire workflow (a DAG or hierarchy of nested DAGs)

• All jobs in a single cluster

• All jobs submitted by a single user that have the same executable specified in their submit file

• All jobs submitted by a single user that have the same batch name specified in their submit file
or on the condor_submit or condor_submit_dag command line.

Also change the output columns as noted above.

Note that, as of version 8.5.6, -batch is the default, unless the configuration variable is set to False.

14.33. condor_q 869

HTCondor Manual, Release 23.6.2

-nobatch
(output option) Show a line for each job (turn off the -batch option).

-global
(general option) Queries all job queues in the pool.

-submitter submitter
(general option) List jobs of a specific submitter in the entire pool, not just for a single condor_schedd.

-name name
(general option) Query only the job queue of the named condor_schedd daemon.

-pool centralmanagerhostname[:portnumber]
(general option) Use the centralmanagerhostname as the central manager to locate condor_schedd
daemons. The default is the , as specified in the configuration.

-jobads file
(general option) Display jobs from a list of ClassAds from a file, instead of the real ClassAds from
the condor_schedd daemon. This is most useful for debugging purposes. The ClassAds appear as if
condor_q -long is used with the header stripped out.

-userlog file
(general option) Display jobs, with job information coming from a job event log, instead of from the
real ClassAds from the condor_schedd daemon. This is most useful for automated testing of the status
of jobs known to be in the given job event log, because it reduces the load on the condor_schedd.
A job event log does not contain all of the job information, so some fields in the normal output of
condor_q will be blank.

-factory
(output option) Display information about late materialization job factories in the condor_shedd.

-autocluster
(output option) Output condor_schedd daemon auto cluster information. For each auto cluster, output
the unique ID of the auto cluster along with the number of jobs in that auto cluster. This option is
intended to be used together with the -long option to output the ClassAds representing auto clusters.
The ClassAds can then be used to identify or classify the demand for sets of machine resources,
which will be useful in the on-demand creation of execute nodes for glidein services.

-cputime
(output option) Instead of wall-clock allocation time (RUN_TIME), display remote CPU time accu-
mulated by the job to date in days, hours, minutes, and seconds. If the job is currently running, time
accumulated during the current run is not shown. Note that this option has no effect unless used in
conjunction with -nobatch.

-currentrun
(output option) If this option is specified, RUN_TIME displays the time accumulated so far on this
current run unless the job is in IDLE or HELD state then RUN_TIME will display the previous
runs time. Note that this is the base behavior and is not required, and this option cannot be used in
conjunction with -cumulative-time.

-cumulative-time
(output option) Normally, RUN_TIME contains the current or previous runs accumulated wall-clock
time. If this option is specified, RUN_TIME displays the accumulated time for the current run plus
all previous runs. Note that this option cannot be used in conjunction with -currentrun.

-dag
(output option) Display DAG node jobs under their DAGMan instance. Child nodes are listed using
indentation to show the structure of the DAG. Note that this option has no effect unless used in
conjunction with -nobatch.

870 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-expert
(output option) Display shorter error messages.

-grid
(output option) Get information only about jobs submitted to grid resources.

-grid:ec2
(output option) Get information only about jobs submitted to grid resources and display it in a format
better-suited for EC2 than the default.

-goodput
(output option) Display job goodput statistics.

-help [Universe | State]
(output option) Print usage info, and, optionally, additionally print job universes or job states.

-hold
(output option) Get information about jobs in the hold state. Also displays the time the job was placed
into the hold state and the reason why the job was placed in the hold state.

-limit Number
(output option) Limit the number of items output to Number.

-io
(output option) Display job input/output summaries.

-long
(output option) Display entire job ClassAds in long format (one attribute per line).

-idle
(output option) Get information about idle jobs. Note that this option implies -nobatch.

-run
(output option) Get information about running jobs. Note that this option implies -nobatch.

-stream-results
(output option) Display results as jobs are fetched from the job queue rather than storing results in
memory until all jobs have been fetched. This can reduce memory consumption when fetching large
numbers of jobs, but if condor_q is paused while displaying results, this could result in a timeout in
communication with condor_schedd.

-totals
(output option) Display only the totals.

-version
(output option) Print the HTCondor version and exit.

-wide
(output option) If this option is specified, and the command portion of the output would cause the
output to extend beyond 80 columns, display beyond the 80 columns.

-xml
(output option) Display entire job ClassAds in XML format.

-json
(output option) Display entire job ClassAds in JSON format.

-attributes Attr1[,Attr2 . . .]
(output option) Explicitly list the attributes, by name in a comma separated list, which should be
displayed when using the -xml, -json or -long options. Limiting the number of attributes increases
the efficiency of the query.

14.33. condor_q 871

https://htcondor.readthedocs.io/en/latest/classads/classad-mechanism.html
https://htcondor.readthedocs.io/en/latest/classads/classad-mechanism.html

HTCondor Manual, Release 23.6.2

-format fmt attr
(output option) Display attribute or expression attr in format fmt. To display the attribute or expres-
sion the format must contain a single printf(3)-style conversion specifier. Attributes must be from
the job ClassAd. Expressions are ClassAd expressions and may refer to attributes in the job ClassAd.
If the attribute is not present in a given ClassAd and cannot be parsed as an expression, then the format
option will be silently skipped. %r prints the unevaluated, or raw values. The conversion specifier
must match the type of the attribute or expression. %s is suitable for strings such as , %d for integers
such as , and %f for floating point numbers such as . %v identifies the type of the attribute, and then
prints the value in an appropriate format. %V identifies the type of the attribute, and then prints the
value in an appropriate format as it would appear in the -long format. As an example, strings used
with %V will have quote marks. An incorrect format will result in undefined behavior. Do not use
more than one conversion specifier in a given format. More than one conversion specifier will result
in undefined behavior. To output multiple attributes repeat the -format option once for each desired
attribute. Like printf(3) style formats, one may include other text that will be reproduced directly.
A format without any conversion specifiers may be specified, but an attribute is still required. Include
a backslash followed by an ‘n’ to specify a line break.

-autoformat[:jlhVr,tng] attr1 [attr2 . . .] or -af[:jlhVr,tng] attr1 [attr2 . . .]
(output option) Display attribute(s) or expression(s) formatted in a default way according to attribute
types. This option takes an arbitrary number of attribute names as arguments, and prints out their
values, with a space between each value and a newline character after the last value. It is like the
-format option without format strings. This output option does not work in conjunction with any of
the options -run, -currentrun, -hold, -grid, -goodput, or -io.

It is assumed that no attribute names begin with a dash character, so that the next word that begins
with dash is the start of the next option. The autoformat option may be followed by a colon character
and formatting qualifiers to deviate the output formatting from the default:

j print the job ID as the first field,

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The l and h characters may not be used
together.

-print-format file
Read output formatting information from the given custom print format file. see Print Formats for
more information about custom print format files.

-analyze[:<qual>]
(analyze option) Perform a matchmaking analysis on why the requested jobs are not running. First a
simple analysis determines if the job is not running due to not being in a runnable state. If the job is
in a runnable state, then this option is equivalent to -better-analyze. <qual> is a comma separated
list containing one or more of

872 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

priority to consider user priority during the analysis

summary to show a one line summary for each job or machine

reverse to analyze machines, rather than jobs

-better-analyze[:<qual>]
(analyze option) Perform a more detailed matchmaking analysis to determine how many resources are
available to run the requested jobs. This option is never meaningful for Scheduler universe jobs and
only meaningful for grid universe jobs doing matchmaking. When this option is used in conjunction
with the -unmatchable option, The output will be a list of job ids that don’t match any of the available
slots. <qual> is a comma separated list containing one or more of

priority to consider user priority during the analysis

summary to show a one line summary for each job or machine

reverse to analyze machines, rather than jobs

-machine name
(analyze option) When doing matchmaking analysis, analyze only machine ClassAds that have slot
or machine names that match the given name.

-mconstraint expression
(analyze option) When doing matchmaking analysis, match only machine ClassAds which match the
ClassAd expression constraint.

-slotads file
(analyze option) When doing matchmaking analysis, use the machine ClassAds from the file instead
of the ones from the condor_collector daemon. This is most useful for debugging purposes. The
ClassAds appear as if condor_status -long is used.

-userprios file
(analyze option) When doing matchmaking analysis with priority, read user priorities from the file
rather than the ones from the condor_negotiator daemon. This is most useful for debugging purposes
or to speed up analysis in situations where the condor_negotiator daemon is slow to respond to
condor_userprio requests. The file should be in the format produced by condor_userprio -long.

-nouserprios
(analyze option) Do not consider user priority during the analysis.

-reverse-analyze
(analyze option) Analyze machine requirements against jobs.

-verbose
(analyze option) When doing analysis, show progress and include the names of specific machines in
the output.

14.33. condor_q 873

HTCondor Manual, Release 23.6.2

14.33.7 General Remarks

The default output from condor_q is formatted to be human readable, not script readable. In an effort to make the
output fit within 80 characters, values in some fields might be truncated. Furthermore, the HTCondor Project can (and
does) change the formatting of this default output as we see fit. Therefore, any script that is attempting to parse data
from condor_q is strongly encouraged to use the -format option (described above, examples given below).

Although -analyze provides a very good first approximation, the analyzer cannot diagnose all possible situations,
because the analysis is based on instantaneous and local information. Therefore, there are some situations such as
when several submitters are contending for resources, or if the pool is rapidly changing state which cannot be accurately
diagnosed.

It is possible to hold jobs that are in the X state. To avoid this it is best to construct a -constraint expression that option
contains JobStatus != 3 if the user wishes to avoid this condition.

14.33.8 Examples

The -format option provides a way to specify both the job attributes and formatting of those attributes. There must
be only one conversion specification per -format option. As an example, to list only Jane Doe’s jobs in the queue,
choosing to print and format only the owner of the job, the command line arguments for the job, and the process ID of
the job:

$ condor_q -submitter jdoe -format "%s" Owner -format " %s " Args -format␣
→˓" ProcId = %d\n" ProcId
jdoe 16386 2800 ProcId = 0
jdoe 16386 3000 ProcId = 1
jdoe 16386 3200 ProcId = 2
jdoe 16386 3400 ProcId = 3
jdoe 16386 3600 ProcId = 4
jdoe 16386 4200 ProcId = 7

To display only the JobID’s of Jane Doe’s jobs you can use the following.

$ condor_q -submitter jdoe -format "%d." ClusterId -format "%d\n" ProcId
27.0
27.1
27.2
27.3
27.4
27.7

An example that shows the analysis in summary format:

$ condor_q -analyze:summary

-- Submitter: submit-1.chtc.wisc.edu : <192.168.100.43:9618?sock=11794_95bb_3> :
submit-1.chtc.wisc.edu
Analyzing matches for 5979 slots

Autocluster Matches Machine Running Serving
JobId Members/Idle Reqmnts Rejects Job Users Job Other User Avail Owner
---------- ------------ -------- ------------ ---------- ---------- ----- -----
25764522.0 7/0 5910 820 7/10 5046 34 smith
25764682.0 9/0 2172 603 9/9 1531 29 smith

(continues on next page)

874 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

(continued from previous page)

25765082.0 18/0 2172 603 18/9 1531 29 smith
25765900.0 1/0 2172 603 1/9 1531 29 smith

An example that shows summary information by machine:

$ condor_q -ana:sum,rev

-- Submitter: s-1.chtc.wisc.edu : <192.168.100.43:9618?sock=11794_95bb_3> : s-1.chtc.
→˓wisc.edu
Analyzing matches for 2885 jobs

Slot Slot's Req Job's Req Both
Name Type Matches Job Matches Slot Match %
------------------------ ---- ------------ ------------ ----------
slot1@INFO.wisc.edu Stat 2729 0 0.00
slot2@INFO.wisc.edu Stat 2729 0 0.00
slot1@aci-001.chtc.wisc.edu Part 0 2793 0.00
slot1_1@a-001.chtc.wisc.edu Dyn 2644 2792 91.37
slot1_2@a-001.chtc.wisc.edu Dyn 2623 2601 85.10
slot1_3@a-001.chtc.wisc.edu Dyn 2644 2632 85.82
slot1_4@a-001.chtc.wisc.edu Dyn 2644 2792 91.37
slot1@a-002.chtc.wisc.edu Part 0 2633 0.00
slot1_10@a-002.chtc.wisc.edu Den 2623 2601 85.10

An example with two independent DAGs in the queue:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:35169?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
wenger DAG: 3696 2/12 11:55 _ 10 _ 10 3698.0 ... 3707.0
wenger DAG: 3697 2/12 11:55 1 1 1 10 3709.0 ... 3710.0

14 jobs; 0 completed, 0 removed, 1 idle, 13 running, 0 held, 0 suspended

Note that the “13 running” in the last line is two more than the total of the RUN column, because the two condor_dagman
jobs themselves are counted in the last line but not the RUN column.

Also note that the “completed” value in the last line does not correspond to the total of the DONE column, because the
“completed” value in the last line only counts jobs that are completed but still in the queue, whereas the DONE column
counts jobs that are no longer in the queue.

Here’s an example with a held job, illustrating the addition of the HOLD column to the output:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS
wenger CMD: /bin/slee 9/13 16:25 _ 3 _ 1 4 599.0 ...

4 jobs; 0 completed, 0 removed, 0 idle, 3 running, 1 held, 0 suspended

Here are some examples with a nested-DAG workflow in the queue, which is one of the most complicated cases. The
workflow consists of a top-level DAG with nodes NodeA and NodeB, each with two two-proc clusters; and a sub-DAG
SubZ with nodes NodeSA and NodeSB, each with two two-proc clusters.

14.33. condor_q 875

HTCondor Manual, Release 23.6.2

First of all, non-batch mode with all of the node jobs in the queue:

$ condor_q -nobatch

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
591.0 wenger 9/13 16:05 0+00:00:13 R 0 2.4 condor_dagman -p 0
592.0 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 60
592.1 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 300
593.0 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 60
593.1 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 300
594.0 wenger 9/13 16:05 0+00:00:07 R 0 2.4 condor_dagman -p 0
595.0 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 60
595.1 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 300
596.0 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 60
596.1 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 300

10 jobs; 0 completed, 0 removed, 0 idle, 10 running, 0 held, 0 suspended

Now non-batch mode with the -dag option (unfortunately, condor_q doesn’t do a good job of grouping procs in the
same cluster together):

$ condor_q -nobatch -dag

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
591.0 wenger 9/13 16:05 0+00:00:27 R 0 2.4 condor_dagman -
592.0 |-NodeA 9/13 16:05 0+00:00:21 R 0 0.0 sleep 60
593.0 |-NodeB 9/13 16:05 0+00:00:21 R 0 0.0 sleep 60
594.0 |-SubZ 9/13 16:05 0+00:00:21 R 0 2.4 condor_dagman -
595.0 |-NodeSA 9/13 16:05 0+00:00:15 R 0 0.0 sleep 60
596.0 |-NodeSB 9/13 16:05 0+00:00:15 R 0 0.0 sleep 60
592.1 |-NodeA 9/13 16:05 0+00:00:21 R 0 0.0 sleep 300
593.1 |-NodeB 9/13 16:05 0+00:00:21 R 0 0.0 sleep 300
595.1 |-NodeSA 9/13 16:05 0+00:00:15 R 0 0.0 sleep 300
596.1 |-NodeSB 9/13 16:05 0+00:00:15 R 0 0.0 sleep 300

10 jobs; 0 completed, 0 removed, 0 idle, 10 running, 0 held, 0 suspended

Now, finally, the non-batch (default) mode:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
wenger ex1.dag+591 9/13 16:05 _ 8 _ 5 592.0 ... 596.1

10 jobs; 0 completed, 0 removed, 0 idle, 10 running, 0 held, 0 suspended

There are several things about this output that may be slightly confusing:

• The TOTAL column is less than the RUN column. This is because, for DAG node jobs, their contribution to the
TOTAL column is the number of clusters, not the number of procs (but their contribution to the RUN column
is the number of procs). So the four DAG nodes (8 procs) contribute 4, and the sub-DAG contributes 1, to the
TOTAL column. (But, somewhat confusingly, the sub-DAG job is not counted in the RUN column.)

876 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

• The sum of the RUN and IDLE columns (8) is less than the 10 jobs listed in the totals line at the bottom. This is
because the top-level DAG and sub-DAG jobs are not counted in the RUN column, but they are counted in the
totals line.

Now here is non-batch mode after proc 0 of each node job has finished:

$ condor_q -nobatch

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
591.0 wenger 9/13 16:05 0+00:01:19 R 0 2.4 condor_dagman -p 0
592.1 wenger 9/13 16:05 0+00:01:13 R 0 0.0 sleep 300
593.1 wenger 9/13 16:05 0+00:01:13 R 0 0.0 sleep 300
594.0 wenger 9/13 16:05 0+00:01:13 R 0 2.4 condor_dagman -p 0
595.1 wenger 9/13 16:05 0+00:01:07 R 0 0.0 sleep 300
596.1 wenger 9/13 16:05 0+00:01:07 R 0 0.0 sleep 300

6 jobs; 0 completed, 0 removed, 0 idle, 6 running, 0 held, 0 suspended

The same state also with the -dag option:

$ condor_q -nobatch -dag

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
591.0 wenger 9/13 16:05 0+00:01:30 R 0 2.4 condor_dagman -
592.1 |-NodeA 9/13 16:05 0+00:01:24 R 0 0.0 sleep 300
593.1 |-NodeB 9/13 16:05 0+00:01:24 R 0 0.0 sleep 300
594.0 |-SubZ 9/13 16:05 0+00:01:24 R 0 2.4 condor_dagman -
595.1 |-NodeSA 9/13 16:05 0+00:01:18 R 0 0.0 sleep 300
596.1 |-NodeSB 9/13 16:05 0+00:01:18 R 0 0.0 sleep 300

6 jobs; 0 completed, 0 removed, 0 idle, 6 running, 0 held, 0 suspended

And, finally, that state in batch (default) mode:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
wenger ex1.dag+591 9/13 16:05 _ 4 _ 5 592.1 ... 596.1

6 jobs; 0 completed, 0 removed, 0 idle, 6 running, 0 held, 0 suspended

14.33. condor_q 877

HTCondor Manual, Release 23.6.2

14.33.9 Exit Status

condor_q will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.34 condor_qedit

modify job attributes

14.34.1 Synopsis

condor_qedit [-debug] [-n schedd-name] [-pool pool-name] [-forward] {cluster | cluster.proc | owner | -constraint
constraint} edit-list

14.34.2 Description

condor_qedit modifies job ClassAd attributes of queued HTCondor jobs. The jobs are specified either by cluster
number, job ID, owner, or by a ClassAd constraint expression. The edit-list can take one of 3 forms

• attribute-name attribute-value . . .
This is the older form, which behaves the same as the format below.

• attribute-name=attribute-value . . .
The attribute-value may be any ClassAd expression. String expressions must be surrounded by double
quotes. Multiple attribute value pairs may be listed on the same command line.

• -edits[:auto|long|xml|json|new] file-name
The file indicated by file-name is read as a classad of the given format. If no format is specified or auto is
specified the format will be detected. if file-name is - standard input will be read.

To ensure security and correctness, condor_qedit will not allow modification of the following ClassAd attributes:

•

•

•

•

•

•

Since may not be changed with condor_qedit, use condor_hold to place a job in the hold state, and use condor_release
to release a held job, instead of attempting to modify directly.

If a job is currently running, modified attributes for that job will not affect the job until it restarts. As an example, for
PeriodicRemove to affect when a currently running job will be removed from the queue, that job must first be evicted
from a machine and returned to the queue. The same is true for other periodic expressions, such as PeriodicHold
and PeriodicRelease.

condor_qedit validates both attribute names and attribute values, checking for correct ClassAd syntax. An error mes-
sage is printed, and no attribute is set or changed if any name or value is invalid.

878 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.34.3 Options

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-n schedd-name
Modify job attributes in the queue of the specified schedd

-pool pool-name
Modify job attributes in the queue of the schedd specified in the specified pool

-forward
Forward modifications to shadow/gridmanager

14.34.4 Examples

$ condor_qedit -name north.cs.wisc.edu -pool condor.cs.wisc.edu 249.0 answer 42
Set attribute "answer".
$ condor_qedit -name perdita 1849.0 In '"myinput"'
Set attribute "In".
% condor_qedit jbasney OnExitRemove=FALSE
Set attribute "OnExitRemove".
% condor_qedit -constraint 'JobUniverse == 1'␣
→˓'Requirements=(Arch == "INTEL") && (OpSys == "SOLARIS26") && (Disk >= ExecutableSize) && (VirtualMemory >= ImageSize)'
Set attribute "Requirements".

14.34.5 General Remarks

A job’s ClassAd attributes may be viewed with

$ condor_q -long

14.34.6 Exit Status

condor_qedit will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.35 condor_qusers

add, enable and disable or show Users in the AP

14.35. condor_qusers 879

HTCondor Manual, Release 23.6.2

14.35.1 Synopsis

condor_qusers [-help] [-version] [-debug] [-name schedd-name] [-pool pool-name] [-long | --af {attrs} | -format
fmt attr] [-add | -enable | --disable [-reason reason-string]] {users}

14.35.2 Description

condor_qusers adds, enables or eisables or shows User records in the AP. Which user records are specified by name.
The tool will do only one of these things at a time. It will print user records if no add, enable, or disable option is
chosen.

14.35.3 Options

-help
Print useage then exit.

-version
Print the version and then exit.

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-name schedd-name
Modify job attributes in the queue of the specified schedd

-pool pool-name
Modify job attributes in the queue of the schedd specified in the specified pool

-long
Print User ClassAds in long form

-format fmt attr
Print selected attribute of the User ClassAds using the given format.

-autoformat[:lhVr,tng] attr1 [attr2 . . .] or -af[:lhVr,tng] attr1 [attr2 . . .]
(output option) Display attribute(s) or expression(s) formatted in a default way according to attribute
types. This option takes an arbitrary number of attribute names as arguments, and prints out their
values, with a space between each value and a newline character after the last value. It is like the
-format option without format strings. This output option does not work in conjunction with any of
the options -add, -enable, or -disable

It is assumed that no attribute names begin with a dash character, so that the next word that begins
with dash is the start of the next option. The autoformat option may be followed by a colon character
and formatting qualifiers to deviate the output formatting from the default:

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

880 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

g add a newline character between ClassAds, and suppress spaces before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The l and h characters may not be used
together.

-add user1 [user2 . . .]
Add User ClassAds for the given users.

-enable user1 [user2 . . .]
Enable the given users, adding them if necessary.

-disable user1 [user2 . . .]
Disable the given users. Disabled users cannot submit jobs.

-reason reason-string
Provide a reason for disabling when used with -disable. The disable reason will be included in the
error message when submit fails because a user is disabled.

14.35.4 Examples

$ condor_qusers -name north.cs.wisc.edu -pool condor.cs.wisc.edu
Print users from north.cs.wisc.edu in the condor.cs.wisc.edu pool
$ condor_qusers -name perdita
Print users from perdition in the local pool
% condor_qusers -add bob
Add user bob to the local AP
% condor_qusers -disable -bob -reason "talk to admin"
Disable user bob with the reason "talk to admin"

14.35.5 General Remarks

An APs User ClassAds have attributes that count the number of jobs that user has in the queue, as well as enable/disable
and the short and fully-qualified user name. The full set of attributes can can be viewed with

$ condor_qusers -long

14.35.6 Exit Status

condor_qusers will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.35. condor_qusers 881

HTCondor Manual, Release 23.6.2

14.36 condor_qsub

Queue jobs that use PBS/SGE-style submission

14.36.1 Synopsis

condor_qsub [–version]

condor_qsub [Specific options] [Directory options] [Environmental options] [File options] [Notification options
] [Resource options] [Status options] [Submission options] commandfile

14.36.2 Description

condor_qsub submits an HTCondor job. This job is specified in a PBS/Torque style or an SGE style. condor_qsub
permits the submission of dependent jobs without the need to specify the full dependency graph at submission time.
Doing things this way is neither as efficient as HTCondor’s DAGMan, nor as functional as SGE’s qsub or qalter.
condor_qsub serves as a minimal translator to be able to use software originally written to interact with PBS, Torque,
and SGE in an HTCondor pool.

condor_qsub attempts to behave like qsub. Less than half of the qsub functionality is implemented. Option descriptions
describe the differences between the behavior of qsub and condor_qsub. qsub options not listed here are not supported.
Some concepts present in PBS and SGE do not apply to HTCondor, and so these options are not implemented.

For a full listing of qsub options, please see

POSIX
: http://pubs.opengroup.org/onlinepubs/9699919799/utilities/qsub.html

SGE
: http://gridscheduler.sourceforge.net/htmlman/htmlman1/qsub.html

PBS/Torque
: http://docs.adaptivecomputing.com/torque/4-1-3/Content/topics/commands/qsub.htm

condor_qsub accepts either command line options or the single file, commandfile, that contains all of the commands.

condor_qsub does the opposite of job submission within the grid universe batch grid type, which takes HTCondor
jobs submitted with HTCondor syntax and submits them to PBS, SGE, or LSF.

14.36.3 Options

-a date_time
(Submission option) Specify a deferred execution date and time. The PBS/Torque syntax of date_time
is a string in the form [[[[CC]YY]MM]DD]hhmm[.SS]. The portions of this string which are optional
are CC, YY, MM, DD, and SS. For SGE, MM and DD are not optional. For PBS, MM and DD are
optional. condor_qsub follows the PBS style.

-A account_string
(Status option) Uses group accounting where the string account_string is the accounting group as-
sociated with this job. Unlike SGE, there is no default group of "sge".

-b y|n
(Submission option) Using the SGE definition of its -b option, a value of y causes condor_qsub to
not parse the file for additional condor_qsub commands. The default value is n. If the command line
argument -f filename is also specified, it negates a value of y.

882 Chapter 14. Commands Reference (man pages)

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/qsub.html
http://gridscheduler.sourceforge.net/htmlman/htmlman1/qsub.html
http://docs.adaptivecomputing.com/torque/4-1-3/Content/topics/commands/qsub.htm

HTCondor Manual, Release 23.6.2

-condor-keep-files
(Specific option) Directs HTCondor to not remove temporary files generated by condor_qsub, such
as HTCondor submit files and sentinel jobs. These temporary files may be important for debugging.

-cwd
(Directory option) Specifies the initial directory in which the job will run to be the current directory
from which the job was submitted. This sets for condor_submit.

-d path or -wd path
(Directory option) Specifies the initial directory in which the job will run to be path. This sets for
condor_submit.

-e filename
(File option) Specifies the condor_submit command , the file where stderr is written. If not spec-
ified, set to the default name of `` <commandfile>.e<ClusterId>``, where <commandfile> is the
condor_qsub argument, and `` <ClusterId>`` is the job attribute assigned for the job.

-f qsub_file
(Specific option) Parse qsub_file to search for and set additional condor_submit commands. Within
the file, commands will appear as #PBS or #SGE. condor_qsub will parse the batch file listed as
qsub_file.

-h
(Status option) Placed submitted job directly into the hold state.

-help
(Specific option) Print usage information and exit.

-hold_jid <jid>
(Status option) Submits a job in the hold state. This job is released only when a previously submitted
job, identified by its cluster ID as <jid>, exits successfully. Successful completion is defined as not
exiting with exit code 100. In implementation, there are three jobs that define this SGE feature. The
first job is the previously submitted job. The second job is the newly submitted one that is waiting
for the first to finish successfully. The third job is what SGE calls a sentinel job; this is an HTCondor
local universe job that watches the history for the first job’s exit code. This third job will exit once
it has seen the exit code and, for a successful termination of the first job, run condor_release on the
second job. If the first job is an array job, the second job will only be released after all individual
jobs of the first job have completed.

-i [hostname:]filename
(File option) Specifies the condor_submit command , the file from which stdin is read.

-j characters
(File option) Acceptable characters for this option are e, o, and n. The only sequence that is relevant
is eo; it specifies that both standard output and standard error are to be sent to the same file. The file
will be the one specified by the -o option, if both the -o and -e options exist. The file will be the one
specified by the -e option, if only the -e option is provided. If neither the -o nor the -e options are
provided, the file will be the default used for the -o option.

-l resource_spec
(Resource option) Specifies requirements for the job, such as the amount of RAM and the number
of CPUs. Only PBS-style resource requests are supported. resource_spec is a comma separated list
of key/value pairs. Each pair is of the form resource_name=value. resource_name and value
may be +————————–+————————–+————————–+ | resource_name
| value | Description | +————————–+————————–+————————–+
| arch | string | Sets machine | | | | attribute. Enclose in | | | | double quotes. |
+————————–+————————–+————————–+ | file | size | Disk
space requested. | +————————–+————————–+————————–+
| host | string | Host machine on which | | | | the job must run. |

14.36. condor_qsub 883

HTCondor Manual, Release 23.6.2

+————————–+————————–+————————–+ | mem | size | Amount of
memory | | | | requested. | +————————–+————————–+————————–+
| nodes | {<node_count> | <hostn | Number and/or properties | | |
ame>} [:ppn=<ppn>] [:gpu | of nodes to be used. For | | | s=<gpu>] [:
<property> [: | examples, please see | | | <property>] ...] [+ ...] |
http://docs.adaptivecom | | | | puting.com/torque/4-1-3/ | | | | Content/topics/2-jobs/re | | | |
questingRes.htm#qsub | +————————–+————————–+————————–+
| opsys | string | Sets machine | | | | attribute. Enclose in | | | | double quotes. |
+————————–+————————–+————————–+ | procs | integer | Num-
ber of CPUs | | | | requested. | +————————–+————————–+————————–+

A size value is an integer specified in bytes, following the PBS/Torque default. Append Kb, Mb, Gb,
or Tb to specify the value in powers of two quantities greater than bytes.

-m a|e|n
(Notification option) Identify when HTCondor sends notification e-mail. If a, send e-mail when the
job terminates abnormally. If e, send e-mail when the job terminates. If n, never send e-mail.

-M e-mail_address
(Notification option) Sets the destination address for HTCondor e-mail.

-o filename
(File option) Specifies the condor_submit command , the file where stdout is written. If not spec-
ified, set to the default name of `` <commandfile>.o<ClusterId>``, where <commandfile> is the
condor_qsub argument, and `` <ClusterId>`` is the job attribute assigned for the job.

-p integer
(Status option) Sets the submit command for the job, with 0 being the default. Jobs with higher
numerical priority will run before jobs with lower numerical priority.

-print
(Specific option) Send to stdout the contents of the HTCondor submit description file that con-
dor_qsub generates.

-r y|n
(Status option) The default value of y implements the default HTCondor policy of assuming that
jobs that do not complete are placed back in the queue to be run again. When n, job submission is
restricted to only running the job if the job ClassAd attribute is currently 0. This identifies the job as
not re-runnable, limiting it to start once.

-S shell
(Submission option) Specifies the path and executable name of a shell. Alters the HTCondor submit
description file produced, such that the executable becomes a wrapper script. Within the submit
description file will be executable = <shell> and arguments = <commandfile>.

-t start [-stop:step]
(Submission option) Queues a set of nearly identical jobs. The SGE-style syntax is supported. start,
stop, and step are all integers. start is the starting index of the jobs, stop is the ending index (inclusive)
of the jobs, and step is the step size through the indices. Note that using more than one processor or
node in a job will not work with this option.

-test
(Specific option) With the intention of testing a potential job submission, parse files and commands
to generate error output. Produces, but then removes the HTCondor submit description file. Never
submits the job, even if no errors are encountered.

-v variable list
(Environmental option) Used to set the submit command for the job. variable list is as that defined

884 Chapter 14. Commands Reference (man pages)

ht||||tp://docs.adaptivecomput||||ing.com/torque/4-1-3/Con||||tent/topics/2-jobs/reque||||stingRes.htm#qsub
ht||||tp://docs.adaptivecomput||||ing.com/torque/4-1-3/Con||||tent/topics/2-jobs/reque||||stingRes.htm#qsub

HTCondor Manual, Release 23.6.2

for the submit command. Note that the syntax needed is specialized to deal with quote marks and
white space characters.

-V
(Environmental option) Sets getenv = True in the submit description file.

-W attr_name=attr_value[,attr_name=attr_value. . .]
(File option) PBS/Torque supports a number of attributes. However, condor_qsub only supports
the names stagein and stageout for attr_name. The format of attr_value for stagein and stageout is
local_file@hostname:remote_file[,...] and we strip it to remote_file[,...]. HTCon-
dor’s file transfer mechanism is then used if needed.

-version
(Specific option) Print version information for the condor_qsub program and exit. Note that con-
dor_qsub has its own version numbers which are separate from those of HTCondor.

14.36.4 Exit Status

condor_qsub will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure
to submit a job.

14.37 condor_reconfig

Reconfigure HTCondor daemons

14.37.1 Synopsis

condor_reconfig [-help | -version]

condor_reconfig [-debug] [-pool centralmanagerhostname[:portnumber]] [-name hostname | hostname | -addr
“<a.b.c.d:port>” | “<a.b.c.d:port>” | -constraint expression | -all] [-daemon daemonname]

14.37.2 Description

condor_reconfig reconfigures all of the HTCondor daemons in accordance with the current status of the HTCondor
configuration file(s). Once reconfiguration is complete, the daemons will behave according to the policies stated in
the configuration file(s). The main exception is with the variable, which will only be updated if the condor_restart
command is used. Other configuration variables that can only be changed if the HTCondor daemons are restarted
are listed in the HTCondor manual in the section on configuration. In general, condor_reconfig should be used when
making changes to the configuration files, since it is faster and more efficient than restarting the daemons.

The command condor_reconfig with no arguments or with the -daemon master option will cause the reconfiguration
of the condor_master daemon and all the child processes of the condor_master.

For security reasons of authentication and authorization, this command requires ADMINISTRATOR level of access.

14.37. condor_reconfig 885

HTCondor Manual, Release 23.6.2

14.37.3 Options

-help
Display usage information

-version
Display version information

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name hostname
Send the command to a machine identified by hostname

hostname
Send the command to a machine identified by hostname

-addr “<a.b.c.d:port>”
Send the command to a machine’s master located at “<a.b.c.d:port>”

“<a.b.c.d:port>”
Send the command to a machine located at “<a.b.c.d:port>”

-constraint expression
Apply this command only to machines matching the given ClassAd expression

-all
Send the command to all machines in the pool

-daemon daemonname
Send the command to the named daemon. Without this option, the command is sent to the con-
dor_master daemon.

14.37.4 Exit Status

condor_reconfig will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.37.5 Examples

To reconfigure the condor_master and all its children on the local host:

$ condor_reconfig

To reconfigure only the condor_startd on a named machine:

$ condor_reconfig -name bluejay -daemon startd

To reconfigure a machine within a pool other than the local pool, use the -pool option. The argument is the name
of the central manager for the pool. Note that one or more machines within the pool must be specified as the targets
for the command. This command reconfigures the single machine named cae17 within the pool of machines that has
condor.cae.wisc.edu as its central manager:

886 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

$ condor_reconfig -pool condor.cae.wisc.edu -name cae17

14.38 condor_release

release held jobs in the HTCondor queue

14.38.1 Synopsis

condor_release [-help | -version]

condor_release [-debug] [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] cluster. . . | cluster.process. . . | user. . . | -constraint expression . . .

condor_release [-debug] [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] -all

14.38.2 Description

condor_release releases jobs from the HTCondor job queue that were previously placed in hold state. If the -name op-
tion is specified, the named condor_schedd is targeted for processing. Otherwise, the local condor_schedd is targeted.
The jobs to be released are identified by one or more job identifiers, as described below. For any given job, only the
owner of the job or one of the queue super users (defined by the macro) can release the job.

14.38.3 Options

-help
Display usage information

-version
Display version information

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name scheddname
Send the command to a machine identified by scheddname

-addr “<a.b.c.d:port>”
Send the command to a machine located at “<a.b.c.d:port>”

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

cluster
Release all jobs in the specified cluster

cluster.process
Release the specific job in the cluster

user
Release jobs belonging to specified user

14.38. condor_release 887

HTCondor Manual, Release 23.6.2

-constraint expression
Release all jobs which match the job ClassAd expression constraint

-all
Release all the jobs in the queue

14.38.4 See Also

condor_hold

14.38.5 Examples

To release all of the jobs of a user named Mary:

$ condor_release Mary

14.38.6 Exit Status

condor_release will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.39 condor_remote_cluster

Manage and configure the clusters to be accessed.

14.39.1 Synopsis

condor_remote_cluster [-h || –help]

condor_remote_cluster [-l || –list] [-a || –add <host> [schedd]] [-r || –remove <host>] [-s || –status <host>] [-t ||
–test <host>]

14.39.2 Description

condor_remote_cluster is part of a feature for accessing high throughput computing resources from a local desktop
using only an SSH connection.

condor_remote_cluster enables management and configuration of the access point of the remote computing resource.
After initial setup, jobs can be submitted to the local job queue, which are then forwarded to the remote system.

A <host> is of the form [user@]fqdn.example.com[:22].

888 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.39.3 Options

-help
Print usage information and exit.

-list
List all installed clusters.

-remove <host>
Remove an already installed cluster, where the cluster is identified by <host>.

-add <host> [scheduler]
Install and add a cluster defined by <host>. The optional scheduler specifies the scheduler on the
cluster. Valid values are pbs, lsf, condor, sge or slurm. If not given, the default will be pbs.

-status <host>
Query and print the status of an already installed cluster, where the cluster is identified by <host>.

-test <host>
Attempt to submit a test job to an already installed cluster, where the cluster is identified by <host>.

14.40 condor_reschedule

Update scheduling information to the central manager

14.40.1 Synopsis

condor_reschedule [-help | -version]

condor_reschedule [-debug] [-pool centralmanagerhostname[:portnumber]] [-name hostname | hostname | -addr
“<a.b.c.d:port>” | “<a.b.c.d:port>” | -constraint expression | -all]

14.40.2 Description

condor_reschedule updates the information about a set of machines’ resources and jobs to the central manager. This
command is used to force an update before viewing the current status of a machine. Viewing the status of a machine
is done with the condor_status command. condor_reschedule also starts a new negotiation cycle between resource
owners and resource providers on the central managers, so that jobs can be matched with machines right away. This
can be useful in situations where the time between negotiation cycles is somewhat long, and an administrator wants to
see if a job in the queue will get matched without waiting for the next negotiation cycle.

A new negotiation cycle cannot occur more frequently than every 20 seconds. Requests for new negotiation cycle
within that 20 second window will be deferred until 20 seconds have passed since that last cycle.

14.40. condor_reschedule 889

HTCondor Manual, Release 23.6.2

14.40.3 Options

-help
Display usage information

-version
Display version information

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name hostname
Send the command to a machine identified by hostname

hostname
Send the command to a machine identified by hostname

-addr “<a.b.c.d:port>”
Send the command to a machine’s master located at “<a.b.c.d:port>”

“<a.b.c.d:port>”
Send the command to a machine located at “<a.b.c.d:port>”

-constraint expression
Apply this command only to machines matching the given ClassAd expression

-all
Send the command to all machines in the pool

14.40.4 Exit Status

condor_reschedule will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.40.5 Examples

To update the information on three named machines:

$ condor_reschedule robin cardinal bluejay

To reschedule on a machine within a pool other than the local pool, use the -pool option. The argument is the name
of the central manager for the pool. Note that one or more machines within the pool must be specified as the targets
for the command. This command reschedules the single machine named cae17 within the pool of machines that has
condor.cae.wisc.edu as its central manager:

$ condor_reschedule -pool condor.cae.wisc.edu -name cae17

890 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.41 condor_restart

Restart a set of HTCondor daemons

14.41.1 Synopsis

condor_restart [-help | -version]

condor_restart [-debug[:opts]]] [-graceful | -fast | -peaceful | -drain] [-pool centralmanagerhost-
name[:portnumber]] [-name hostname | hostname | -addr “<a.b.c.d:port>” | “<a.b.c.d:port>” | -constraint ex-
pression | -all] [-daemon daemonname | -master] [-exec name] [-reason “reason-string”] [-request-id id] [-check
expr] [-start expr]

14.41.2 Description

condor_restart restarts a set of HTCondor daemons on a set of machines. The daemons will be put into a consistent
state, killed, and then invoked anew.

If, for example, the condor_master needs to be restarted again with a fresh state, this is the command that should be used
to do so. If the variable in the configuration file has been changed, this command is used to restart the condor_master in
order to see this change. The condor_reconfigure command cannot be used in the case where the expression changes.

The command condor_restart with no arguments or with the -daemon master option will safely shut down all running
jobs and all submitted jobs from the machine(s) being restarted, then shut down all the child daemons of the con-
dor_master, and then restart the condor_master. This, in turn, will allow the condor_master to start up other daemons
as specified in the configuration file entry.

When restarting down all daemons including the condor_master, the -exec argument can be used to tell the master to
run a configured script before it restarts.

When the -drain option is chosen, draining options can be specified by using the optional -reason, -request-id, -check,
and -start arguments.

For security reasons of authentication and authorization, this command requires ADMINISTRATOR level of access.

14.41.3 Options

-help
Display usage information

-version
Display version information

-debug[:opts]
Causes debugging information to be sent to stderr. The debug level can be set by specifying an
optional opts value. Otherwise, the configuration variable sets the debug level.

-graceful
Gracefully shutdown daemons (the default) before restarting them

-fast
Quickly shutdown daemons before restarting them

-peaceful
Wait indefinitely for jobs to finish before shutting down daemons, prior to restarting them

14.41. condor_restart 891

HTCondor Manual, Release 23.6.2

-drain
Send a condor_drain command with the -exit-on-completion option to all condor_startd daemons
that are managed by this master. Then wait for all condor_startd daemons to exit before before
restarting.

-reason “reason-string”
Use with -drain to set a -reason “reason-string” value for the condor_drain command.

-request-id id
Use with -drain to set a -request-id id value for the condor_drain command.

-check expr
Use with -drain to set a -check expr value for the condor_drain command.

-start expr
Use with -drain to set a -start expr value for the condor_drain command.

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name hostname
Send the command to a machine identified by hostname

hostname
Send the command to a machine identified by hostname

-addr “<a.b.c.d:port>”
Send the command to a machine’s master located at “<a.b.c.d:port>”

“<a.b.c.d:port>”
Send the command to a machine located at “<a.b.c.d:port>”

-constraint expression
Apply this command only to machines matching the given ClassAd expression

-all
Send the command to all machines in the pool

-master
Restart the condor_master after shutting down all other daemons. This will have the effect of restart-
ing all of the daemons.

-exec name
When used with -master, the condor_master will run the program configured as after shutting down
all other daemons.

-daemon daemonname
Send the command to the named daemon. Without this option, the command is sent to the con-
dor_master daemon.

14.41.4 Exit Status

condor_restart will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

892 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.41.5 Examples

To restart the condor_master and all its children on the local host:

$ condor_restart

To restart only the condor_startd on a named machine:

$ condor_restart -name bluejay -daemon startd

To restart a machine within a pool other than the local pool, use the -pool option. The argument is the name of the central
manager for the pool. Note that one or more machines within the pool must be specified as the targets for the command.
This command restarts the single machine named cae17 within the pool of machines that has condor.cae.wisc.edu as
its central manager:

$ condor_restart -pool condor.cae.wisc.edu -name cae17

14.42 condor_rm

remove jobs from the HTCondor queue

14.42.1 Synopsis

condor_rm [-help | -version]

condor_rm [-debug] [-forcex] [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] cluster. . . | cluster.process. . . | user. . . | -constraint expression . . .

condor_rm [-debug] [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] -all

14.42.2 Description

condor_rm removes one or more jobs from the HTCondor job queue. If the -name option is specified, the named
condor_schedd is targeted for processing. Otherwise, the local condor_schedd is targeted. The jobs to be removed are
identified by one or more job identifiers, as described below. For any given job, only the owner of the job or one of the
queue super users (defined by the macro) can remove the job.

When removing a grid job, the job may remain in the “X” state for a very long time. This is normal, as HTCondor
is attempting to communicate with the remote scheduling system, ensuring that the job has been properly cleaned up.
If it takes too long, or in rare circumstances is never removed, the job may be forced to leave the job queue by using
the -forcex option. This forcibly removes jobs that are in the “X” state without attempting to finish any clean up at the
remote scheduler.

14.42. condor_rm 893

HTCondor Manual, Release 23.6.2

14.42.3 Options

-help
Display usage information

-version
Display version information

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name scheddname
Send the command to a machine identified by scheddname

-addr “<a.b.c.d:port>”
Send the command to a machine located at “<a.b.c.d:port>”

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-forcex
Force the immediate local removal of jobs in the ‘X’ state (only affects jobs already being removed)

cluster
Remove all jobs in the specified cluster

cluster.process
Remove the specific job in the cluster

user
Remove jobs belonging to specified user

-constraint expression
Remove all jobs which match the job ClassAd expression constraint

-all
Remove all the jobs in the queue

14.42.4 General Remarks

Use the -forcex argument with caution, as it will remove jobs from the local queue immediately, but can orphan parts
of the job that are running remotely and have not yet been stopped or removed.

14.42.5 Examples

For a user to remove all their jobs that are not currently running:

$ condor_rm -constraint 'JobStatus =!= 2'

894 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.42.6 Exit Status

condor_rm will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.43 condor_rmdir

Windows-only no-fail deletion of directories

14.43.1 Synopsis

condor_rmdir [/HELP | /?]

condor_rmdir @filename

condor_rmdir [/VERBOSE] [/DIAGNOSTIC] [/PATH:<path>] [/S] [/C] [/Q] [/NODEL] directory

14.43.2 Description

condor_rmdir can delete a specified directory, and will not fail if the directory contains files that have ACLs that deny
the SYSTEM process delete access, unlike the built-in Windows rmdir command.

The directory to be removed together with other command line arguments may be specified within a file named filename,
prefixing this argument with an @ character.

The condor_rmdir.exe executable is is intended to be used by HTCondor with the /S /C options, which cause it to
recurse into subdirectories and continue on errors.

14.43.3 Options

/HELP
Print usage information.

/?
Print usage information.

/VERBOSE
Print detailed output.

/DIAGNOSTIC
Print out the internal flow of control information.

/PATH:<path>
Remove the directory given by <path>.

/S
Include subdirectories in those removed.

/C
Continue even if access is denied.

/Q
Print error output only.

/NODEL
Do not remove directories. ACLs may still be changed.

14.43. condor_rmdir 895

HTCondor Manual, Release 23.6.2

14.43.4 Exit Status

condor_rmdir will exit with a status value of 0 (zero) upon success, and it will exit with the standard HRESULT error
code upon failure.

14.44 condor_router_history

Display the history for routed jobs

14.44.1 Synopsis

condor_router_history [–h]

condor_router_history [–show_records] [–show_iwd] [–age days] [–days days] [–start “YYYY-MM-DD HH:MM”]

14.44.2 Description

condor_router_history summarizes statistics for routed jobs over the previous 24 hours. With no command line options,
statistics for run time, number of jobs completed, and number of jobs aborted are listed per route (site).

14.44.3 Options

-h
Display usage information and exit.

-show_records
Displays individual records in addition to the summary.

-show_iwd
Include working directory in displayed records.

-age days
Set the ending time of the summary to be days days ago.

-days days
Set the number of days to summarize.

-start “YYYY-MM-DD HH:MM”
Set the start time of the summary.

14.44.4 Exit Status

condor_router_history will exit with a status of 0 (zero) upon success, and non-zero otherwise.

896 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.45 condor_router_q

Display information about routed jobs in the queue

14.45.1 Synopsis

condor_router_q [-S] [-R] [-I] [-H] [-route name] [-idle] [-held] [-constraint X] [condor_q options]

14.45.2 Description

condor_router_q displays information about jobs managed by the condor_job_router that are in the HTCondor job
queue. The functionality of this tool is that of condor_q, with additional options specialized for routed jobs. Therefore,
any of the options for condor_q may also be used with condor_router_q.

14.45.3 Options

-S
Summarize the state of the jobs on each route.

-R
Summarize the running jobs on each route.

-I
Summarize the idle jobs on each route.

-H
Summarize the held jobs on each route.

-route name
Display only the jobs on the route identified by name.

-idle
Display only the idle jobs.

-held
Display only the held jobs.

-constraint X
Display only the jobs matching constraint X.

14.45.4 Exit Status

condor_router_q will exit with a status of 0 (zero) upon success, and non-zero otherwise.

14.45. condor_router_q 897

HTCondor Manual, Release 23.6.2

14.46 condor_router_rm

Remove jobs being managed by the HTCondor Job Router

14.46.1 Synopsis

condor_router_rm [router_rm options] [condor_rm options]

14.46.2 Description

condor_router_rm is a script that provides additional features above those offered by condor_rm, for removing jobs
being managed by the HTCondor Job Router.

The options that may be supplied to condor_router_rm belong to two groups:

• router_rm options provide the additional features

• condor_rm options are those options already offered by condor_rm. See the condor_rm manual page for spec-
ification of these options.

14.46.3 Options

-constraint X
(router_rm option) Remove jobs matching the constraint specified by X

-held
(router_rm option) Remove only jobs in the hold state

-idle
(router_rm option) Remove only idle jobs

-route name
(router_rm option) Remove only jobs on specified route

14.46.4 Exit Status

condor_router_rm will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.47 condor_run

Submit a shell command-line as an HTCondor job

898 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.47.1 Synopsis

condor_run [-u universe] [-a submitcmd] “shell command”

14.47.2 Description

condor_run bundles a shell command line into an HTCondor job and submits the job. The condor_run command waits
for the HTCondor job to complete, writes the job’s output to the terminal, and exits with the exit status of the HTCondor
job. No output appears until the job completes.

Enclose the shell command line in double quote marks, so it may be passed to condor_run without modification.
condor_run will not read input from the terminal while the job executes. If the shell command line requires input,
redirect the input from a file, as illustrated by the example

$ condor_run "myprog < input.data"

condor_run jobs rely on a shared file system for access to any necessary input files. The current working directory of
the job must be accessible to the machine within the HTCondor pool where the job runs.

Specialized environment variables may be used to specify requirements for the machine where the job may run.

CONDOR_ARCH
Specifies the architecture of the required platform. Values will be the same as the machine ClassAd
attribute.

CONDOR_OPSYS
Specifies the operating system of the required platform. Values will be the same as the machine
ClassAd attribute.

CONDOR_REQUIREMENTS
Specifies any additional requirements for the HTCondor job. It is recommended that the value defined
for CONDOR_REQUIREMENTS be enclosed in parenthesis.

When one or more of these environment variables is specified, the job is submitted with:

Requirements = $CONDOR_REQUIREMENTS && Arch == $CONDOR_ARCH && OpSys == $CONDOR_OPSYS

Without these environment variables, the job receives the default requirements expression, which requests a machine
of the same platform as the machine on which condor_run is executed.

All environment variables set when condor_run is executed will be included in the environment of the HTCondor job.

condor_run removes the HTCondor job from the queue and deletes its temporary files, if condor_run is killed before
the HTCondor job completes.

14.47.3 Options

-u universe
Submit the job under the specified universe. The default is vanilla. While any universe may be
specified, only the vanilla, scheduler, and local universes result in a submit description file that may
work properly.

-a submitcmd
Add the specified submit command to the implied submit description file for the job. To include
spaces within submitcmd, enclose the submit command in double quote marks. And, to include
double quote marks within submitcmd, enclose the submit command in single quote marks.

14.47. condor_run 899

HTCondor Manual, Release 23.6.2

14.47.4 Examples

condor_run may be used to compile an executable on a different platform. As an example, first set the environment
variables for the required platform:

$ export CONDOR_ARCH="SUN4u"
$ export CONDOR_OPSYS="SOLARIS28"

Then, use condor_run to submit the compilation as in the following two examples.

$ condor_run "f77 -O -o myprog myprog.f"

or

$ condor_run "make"

14.47.5 Files

condor_run creates the following temporary files in the user’s working directory. The placeholder <pid> is replaced
by the process id of condor_run.

.condor_run.<pid>
A shell script containing the shell command line.

.condor_submit.<pid>
The submit description file for the job.

.condor_log.<pid>
The HTCondor job’s log file; it is monitored by condor_run, to determine when the job exits.

.condor_out.<pid>
The output of the HTCondor job before it is output to the terminal.

.condor_error.<pid>
Any error messages for the HTCondor job before they are output to the terminal.

condor_run removes these files when the job completes. However, if condor_run fails, it is possible that these files
will remain in the user’s working directory, and the HTCondor job may remain in the queue.

14.47.6 General Remarks

condor_run is intended for submitting simple shell command lines to HTCondor. It does not provide the full function-
ality of condor_submit. Therefore, some condor_submit errors and system failures may not be handled correctly.

All processes specified within the single shell command line will be executed on the single machine matched with the
job. HTCondor will not distribute multiple processes of a command line pipe across multiple machines.

condor_run will use the shell specified in the SHELL environment variable, if one exists. Otherwise, it will use /bin/sh
to execute the shell command-line.

By default, condor_run expects Perl to be installed in /usr/bin/perl. If Perl is installed in another path, ask the
Condor administrator to edit the path in the condor_run script, or explicitly call Perl from the command line:

$ perl path-to-condor/bin/condor_run "shell-cmd"

900 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.47.7 Exit Status

condor_run exits with a status value of 0 (zero) upon complete success. The exit status of condor_run will be non-zero
upon failure. The exit status in the case of a single error due to a system call will be the error number (errno) of the
failed call.

14.48 condor_set_shutdown

Set a program to execute upon condor_master shut down

14.48.1 Synopsis

condor_set_shutdown [-help | -version]

condor_set_shutdown -exec programname [-debug] [-pool centralmanagerhostname[:portnumber]] [-name host-
name | hostname | -addr “<a.b.c.d:port>” | “<a.b.c.d:port>” | -constraint expression | -all]

14.48.2 Description

condor_set_shutdown sets a program (typically a script) to execute when the condor_master daemon shuts down. The
-exec programname argument is required, and specifies the program to run. The string programname must match
the string that defines Name in the configuration variable in the condor_master daemon’s configuration. If it does not
match, the condor_master will log an error and ignore the request.

For security reasons of authentication and authorization, this command requires ADMINISTRATOR level of access.

14.48.3 Options

-help
Display usage information

-version
Display version information

-exec name
Select the program the master should exec the next time it shuts down. The master will run the
program configured as MASTER_SHUTDOWN_<name> from the configuration of the condor_master.

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name hostname
Send the command to a machine identified by hostname

hostname
Send the command to a machine identified by hostname

-addr “<a.b.c.d:port>”
Send the command to a machine’s master located at “<a.b.c.d:port>”

14.48. condor_set_shutdown 901

HTCondor Manual, Release 23.6.2

“<a.b.c.d:port>”
Send the command to a machine located at “<a.b.c.d:port>”

-constraint expression
Apply this command only to machines matching the given ClassAd expression

-all
Send the command to all machines in the pool

14.48.4 Exit Status

condor_set_shutdown will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.48.5 Examples

To have all condor_master daemons run the program /bin/reboot upon shut down, configure the condor_master to
contain a definition similar to:

MASTER_SHUTDOWN_REBOOT = /sbin/reboot

where REBOOT is an invented name for this program that the condor_master will execute. On the command line, run

$ condor_set_shutdown -exec reboot -all
$ condor_off -graceful -all

where the string reboot matches the invented name.

14.49 condor_sos

Issue a command that will be serviced with a higher priority

14.49.1 Synopsis

condor_sos [-help | -version]

condor_sos [-debug] [-timeoutmult value] condor_command

14.49.2 Description

condor_sos sends the condor_command in such a way that the command is serviced ahead of other waiting commands.
It appears to have a higher priority than other waiting commands.

condor_sos is intended to give administrators a way to query the condor_schedd and condor_collector daemons when
they are under such a heavy load that they are not responsive.

There must be a special command port configured, in order for a command to be serviced with priority. The con-
dor_schedd and condor_collector always have the special command port. Other daemons require configuration by
setting configuration variable .

902 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.49.3 Options

-help
Display usage information

-version
Display version information

-debug
Print extra debugging information as the command executes.

-timeoutmult value
Multiply any timeouts set for the command by the integer value.

14.49.4 Examples

The example command

$ condor_sos -timeoutmult 5 condor_hold -all

causes the condor_hold -all command to be handled by the condor_schedd with priority over any other commands
that the condor_schedd has waiting to be serviced. It also extends any set timeouts by a factor of 5.

14.49.5 Exit Status

condor_sos will exit with the value 1 on error and with the exit value of the invoked command when the command is
successfully invoked.

14.50 condor_ssh_start

14.50.1 Synopsis

condor_ssh_start

14.50.2 Description

condor_ssh_start is part of a system for accessing high throughput computing resources from a local desktop.

This command is not meant to be executed on the command line by users.

14.50. condor_ssh_start 903

HTCondor Manual, Release 23.6.2

14.51 condor_ssh_to_job

create an ssh session to a running job

14.51.1 Synopsis

condor_ssh_to_job [-help]

condor_ssh_to_job [-debug] [-name schedd-name] [-pool pool-name] [-ssh ssh-command] [-keygen-options ssh-
keygen-options] [-shells shell1,shell2,. . .] [-auto-retry] [-remove-on-interrupt] cluster | cluster.process | clus-
ter.process.node [remote-command]

14.51.2 Description

condor_ssh_to_job creates an ssh session to a running job. The job is specified with the argument. If only the job
cluster id is given, then the job process id defaults to the value 0.

condor_ssh_to_job is available in Unix HTCondor distributions, and only works with jobs in the vanilla, container,
docker, vm, java, local, or parallel universes. In the grid universe it only works with EC2 resources. It will not work
with other grid universe jobs.

The user must be the owner of the job or must be a queue super user, and both the condor_schedd and condor_starter
daemons must be configured to allow condor_ssh_to_job access. If no remote-command is specified, an interactive
shell is created. An alternate ssh program such as sftp may be specified, using the -ssh option, for uploading and
downloading files.

The remote command or shell runs with the same user id as the running job, and it is initialized with the same working di-
rectory. The environment is initialized to be the same as that of the job, plus any changes made by the shell setup scripts
and any environment variables passed by the ssh client. In addition, the environment variable _CONDOR_JOB_PIDS is
defined. It is a space-separated list of PIDs associated with the job. At a minimum, the list will contain the PID of the
process started when the job was launched, and it will be the first item in the list. It may contain additional PIDs of
other processes that the job has created.

If the job is a docker or container universe job, the interactive shell will be launched inside the container, and as much
as possible should have all the access and visibility that the job proper does. Note this requires the container image to
have a shell inside it, condor_ssh_to_job will fail if the container lacks a shell.

The ssh session and all processes it creates are treated by HTCondor as though they are processes belonging to the job.
If the slot is preempted or suspended, the ssh session is killed or suspended along with the job. If the job exits before
the ssh session finishes, the slot remains in the Claimed Busy state and is treated as though not all job processes have
exited until all ssh sessions are closed. Multiple ssh sessions may be created to the same job at the same time. Resource
consumption of the sshd process and all processes spawned by it are monitored by the condor_starter as though these
processes belong to the job, so any policies such as that enforce a limit on resource consumption also take into account
resources consumed by the ssh session.

condor_ssh_to_job stores ssh keys in temporary files within a newly created and uniquely named directory. The newly
created directory will be within the directory defined by the environment variable TMPDIR. When the ssh session is
finished, this directory and the ssh keys contained within it are removed.

See the HTCondor administrator’s manual section on configuration for details of the configuration variables related to
condor_ssh_to_job.

An ssh session works by first authenticating and authorizing a secure connection between condor_ssh_to_job and the
condor_starter daemon, using HTCondor protocols. The condor_starter generates an ssh key pair and sends it securely
to condor_ssh_to_job. Then the condor_starter spawns sshd in inetd mode with its stdin and stdout attached to the TCP
connection from condor_ssh_to_job. condor_ssh_to_job acts as a proxy for the ssh client to communicate with sshd,

904 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

using the existing connection authorized by HTCondor. At no point is sshd listening on the network for connections
or running with any privileges other than that of the user identity running the job. If CCB is being used to enable
connectivity to the execute node from outside of a firewall or private network, condor_ssh_to_job is able to make use
of CCB in order to form the ssh connection.

The sshd command HTCondor runs on the EP requires an entry in the /etc/passwd file with a valid shell and home
directory. As these are often missing, the condor_starter uses the LD_PRELOAD environment variable to inject an
implementation of the libc getpwnam function call into the ssh that forces the shell to be /bin/sh and the home directory
to be the scratch directory for that user. This can be disabled on the EP by setting to false.

condor_ssh_to_job is intended to work with OpenSSH as installed in typical environments. It does not work on Win-
dows platforms. If the ssh programs are installed in non-standard locations, then the paths to these programs will need
to be customized within the HTCondor configuration. Versions of ssh other than OpenSSH may work, but they will
likely require additional configuration of command-line arguments, changes to the sshd configuration template file, and
possibly modification of the $(LIBEXEC)/condor_ssh_to_job_sshd_setup script used by the condor_starter to set up
sshd.

For jobs in the grid universe which use EC2 resources, a request that HTCondor have the EC2 service create a new
key pair for the job by specifying causes condor_ssh_to_job to attempt to connect to the corresponding instance via
ssh. This attempts invokes ssh directly, bypassing the HTCondor networking layer. It supplies ssh with the public DNS
name of the instance and the name of the file with the new key pair’s private key. For the connection to succeed, the
instance must have started an ssh server, and its security group(s) must allow connections on port 22. Conventionally,
images will allow logins using the key pair on a single specific account. Because ssh defaults to logging in as the current
user, the -l <username> option or its equivalent for other versions of ssh will be needed as part of the remote-command
argument. Although the -X option does not apply to EC2 jobs, adding -X or -Y to the remote-command argument can
duplicate the effect.

14.51.3 Options

-help
Display brief usage information and exit.

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-name schedd-name
Specify an alternate condor_schedd, if the default (local) one is not desired.

-pool pool-name
Specify an alternate HTCondor pool, if the default one is not desired. Does not apply to EC2 jobs.

-ssh ssh-command
Specify an alternate ssh program to run in place of ssh, for example sftp or scp. Additional arguments
are specified as ssh-command. Since the arguments are delimited by spaces, place double quote
marks around the whole command, to prevent the shell from splitting it into multiple arguments to
condor_ssh_to_job. If any arguments must contain spaces, enclose them within single quotes. Does
not apply to EC2 jobs.

-keygen-options ssh-keygen-options
Specify additional arguments to the ssh_keygen program, for creating the ssh key that is used for the
duration of the session. For example, a different number of bits could be used, or a different key type
than the default. Does not apply to EC2 jobs.

-shells shell1,shell2,. . .
Specify a comma-separated list of shells to attempt to launch. If the first shell does not exist on the
remote machine, then the following ones in the list will be tried. If none of the specified shells can be

14.51. condor_ssh_to_job 905

HTCondor Manual, Release 23.6.2

found, /bin/sh is used by default. If this option is not specified, it defaults to the environment variable
SHELL from within the condor_ssh_to_job environment. Does not apply to EC2 jobs.

-auto-retry
Specifies that if the job is not yet running, condor_ssh_to_job should keep trying periodically until
it succeeds or encounters some other error.

-remove-on-interrupt
If specified, attempt to remove the job from the queue if condor_ssh_to_job is interrupted via a
CTRL-c or otherwise terminated abnormally.

-X
Enable X11 forwarding. Does not apply to EC2 jobs.

-x
Disable X11 forwarding.

14.51.4 Examples

$ condor_ssh_to_job 32.0
Welcome to slot2@tonic.cs.wisc.edu!
Your condor job is running with pid(s) 65881.
$ gdb -p 65881
(gdb) where
...
$ logout
Connection to condor-job.tonic.cs.wisc.edu closed.

To upload or download files interactively with sftp:

$ condor_ssh_to_job -ssh sftp 32.0
Connecting to condor-job.tonic.cs.wisc.edu...
sftp> ls
...
sftp> get outputfile.dat

This example shows downloading a file from the job with scp. The string “remote” is used in place of a host name in
this example. It is not necessary to insert the correct remote host name, or even a valid one, because the connection to
the job is created automatically. Therefore, the placeholder string “remote” is perfectly fine.

$ condor_ssh_to_job -ssh scp 32 remote:outputfile.dat .

This example uses condor_ssh_to_job to accomplish the task of running rsync to synchronize a local file with a remote
file in the job’s working directory. Job id 32.0 is used in place of a host name in this example. This causes rsync to
insert the expected job id in the arguments to condor_ssh_to_job.

$ rsync -v -e "condor_ssh_to_job" 32.0:outputfile.dat .

Note that condor_ssh_to_job was added to HTCondor in version 7.3. If one uses condor_ssh_to_job to connect to a
job on an execute machine running a version of HTCondor older than the 7.3 series, the command will fail with the
error message

Failed to send CREATE_JOB_OWNER_SEC_SESSION to starter

906 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.51.5 Exit Status

condor_ssh_to_job will exit with a non-zero status value if it fails to set up an ssh session. If it succeeds, it will exit
with the status value of the remote command or shell.

14.52 condor_ssl_fingerprint

list the fingerprint of X.509 certificates for use with SSL authentication

14.52.1 Synopsis

condor_ssl_fingerprint [FILE]

14.52.2 Description

condor_ssl_fingerprint parses provided file for X.509 certificcates and prints prints them to stdout. If no file is
provided, then it defaults to printing out the user’s known_hosts file (typically, in ~/.condor/known_hosts).

If a single PEM-formatted X.509 certificate is found, then its fingerprint is printed.

The X.509 fingerprints can be used to verify the authenticity of an SSL authentication with a remote daemon.

14.52.3 Examples

To print the fingerprint of a host certificate

$ condor_token_list
Header: {"alg":"HS256","kid":"POOL"} Payload: {"exp":1565576872,"iat":1565543872,"iss":
→˓"htcondor.cs.wisc.edu","scope":"condor:\/DAEMON","sub":"k8sworker@wisc.edu"} File: /
→˓home/bucky/.condor/tokens.d/token1
Header: {"alg":"HS256","kid":"POOL"} Payload: {"iat":1572414350,"iss":"htcondor.cs.wisc.
→˓edu","scope":"condor:\/WRITE","sub":"bucky@wisc.edu"} File: /home/bucky/.condor/tokens.
→˓d/token2

14.52.4 Exit Status

condor_token_list will exit with a non-zero status value if it fails to read the token directory, tokens are improperly
formatted, or if it experiences some other error. Otherwise, it will exit 0.

14.52.5 See also

condor_token_create(1), condor_token_fetch(1), condor_token_request(1)

14.52. condor_ssl_fingerprint 907

HTCondor Manual, Release 23.6.2

14.52.6 Author

Center for High Throughput Computing, University of Wisconsin-Madison

14.53 condor_stats

Display historical information about the HTCondor pool

14.53.1 Synopsis

condor_stats [-f filename] [-orgformat] [-pool centralmanagerhostname[:portnumber]] [time-range] query-type

14.53.2 Description

condor_stats displays historic information about an HTCondor pool. Based on the type of information requested, a
query is sent to the condor_collector daemon, and the information received is displayed using the standard output. If
the -f option is used, the information will be written to a file instead of to standard output. The -pool option can be
used to get information from other pools, instead of from the local (default) pool. The condor_stats tool is used to
query resource information (single or by platform), submitter and user information. If a time range is not specified, the
default query provides information for the previous 24 hours. Otherwise, information can be retrieved for other time
ranges such as the last specified number of hours, last week, last month, or a specified date range.

The information is displayed in columns separated by tabs. The first column always represents the time, as a percentage
of the range of the query. Thus the first entry will have a value close to 0.0, while the last will be close to 100.0. If the
-orgformat option is used, the time is displayed as number of seconds since the Unix epoch. The information in the
remainder of the columns depends on the query type.

Note that logging of pool history must be enabled in the condor_collector daemon, otherwise no information will be
available.

One query type is required. If multiple queries are specified, only the last one takes effect.

14.53.3 Time Range Options

-lastday
Get information for the last day.

-lastweek
Get information for the last week.

-lastmonth
Get information for the last month.

-lasthours n
Get information for the n last hours.

-from m d y
Get information for the time since the beginning of the specified date. A start date prior to the Unix
epoch causes condor_stats to print its usage information and quit.

-to m d y
Get information for the time up to the beginning of the specified date, instead of up to now. A finish
date in the future causes condor_stats to print its usage information and quit.

908 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.53.4 Query Type Arguments

The query types that do not list all of a category require further specification as given by an argument.

-resourcequery hostname
A single resource query provides information about a single machine. The information also includes
the keyboard idle time (in seconds), the load average, and the machine state.

-resourcelist
A query of a single list of resources to provide a list of all the machines for which the condor_collector
daemon has historic information within the query’s time range.

-resgroupquery arch/opsys | “Total”
A query of a specified group to provide information about a group of machines based on their platform
(operating system and architecture). The architecture is defined by the machine ClassAd , and the
operating system is defined by the machine ClassAd . The string “Total” ask for information about
all platforms.

The columns displayed are the number of machines that are unclaimed, matched, claimed, preempt-
ing, owner, shutdown, delete, backfill, and drained state.

-resgrouplist
Queries for a list of all the group names for which the condor_collector has historic information
within the query’s time range.

-userquery email_address/submit_machine
Query for a specific submitter on a specific machine. The information displayed includes the number
of running jobs and the number of idle jobs. An example argument appears as

-userquery jondoe@sample.com/onemachine.sample.com

-userlist
Queries for the list of all submitters for which the condor_collector daemon has historic information
within the query’s time range.

-usergroupquery email_address | “Total”
Query for all jobs submitted by the specific user, regardless of the machine they were submitted from,
or all jobs. The information displayed includes the number of running jobs and the number of idle
jobs.

-usergrouplist
Queries for the list of all users for which the condor_collector has historic information within the
query’s time range.

14.53.5 Options

-f filename
Write the information to a file instead of the standard output.

-pool centralmanagerhostname[:portnumber]
Contact the specified central manager instead of the local one.

-orgformat
Display the information in an alternate format for timing, which presents timestamps since the Unix
epoch. This argument only affects the display of resoursequery, resgroupquery, userquery, and user-
groupquery.

14.53. condor_stats 909

HTCondor Manual, Release 23.6.2

14.53.6 Exit Status

condor_stats will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.54 condor_status

Display status of the HTCondor pool

14.54.1 Synopsis

condor_status [-debug] [help options] [query options] [display options] [custom options] [name . . .]

14.54.2 Description

condor_status is a versatile tool that may be used to monitor and query the HTCondor pool. The condor_status tool
can be used to query resource information, submitter information, and daemon master information. The specific query
sent and the resulting information display is controlled by the query options supplied. Queries and display formats can
also be customized.

The options that may be supplied to condor_status belong to five groups:

• Help options provide information about the condor_status tool.

• Query options control the content and presentation of status information.

• Display options control the display of the queried information.

• Custom options allow the user to customize query and display information.

• Host options specify specific machines to be queried

At any time, only one help option, one query option and one display option may be specified. Any number of custom
options and host options may be specified.

14.54.3 Options

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-help
(Help option) Display usage information.

-diagnose
(Help option) Print out ClassAd query without performing the query.

-absent
(Query option) Query for and display only absent resources.

-ads filename
(Query option) Read the set of ClassAds in the file specified by filename, instead of querying the
condor_collector.

-annex name
(Query option) Query for and display only resources in the named annex.

910 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-any
(Query option) Query all ClassAds and display their type, target type, and name.

-avail
(Query option) Query condor_startd ClassAds and identify resources which are available.

-claimed
(Query option) Query condor_startd ClassAds and print information about claimed resources.

-cod
(Query option) Display only machine ClassAds that have COD claims. Information displayed in-
cludes the claim ID, the owner of the claim, and the state of the COD claim.

-collector
(Query option) Query condor_collector ClassAds and display attributes.

-defrag
(Query option) Query condor_defrag ClassAds.

-direct hostname
(Query option) Go directly to the given host name to get the ClassAds to display. By default, returns
the condor_startd ClassAd. If -schedd is also given, return the condor_schedd ClassAd on that host.

-grid
(Query option) Query grid resource ClassAds.

-java
(Query option) Display only Java-capable resources.

-license
(Query option) Display license attributes.

-master
(Query option) Query condor_master ClassAds and display daemon master attributes.

-negotiator
(Query option) Query condor_negotiator ClassAds and display attributes.

-pool centralmanagerhostname[:portnumber]
(Query option) Query the specified central manager using an optional port number. condor_status
queries the machine specified by the configuration variable by default.

-run
(Query option) Display information about machines currently running jobs.

-schedd
(Query option) Query condor_schedd ClassAds and display attributes.

-server
(Query option) Query condor_startd ClassAds and display resource attributes.

-startd
(Query option) Query condor_startd ClassAds.

-state
(Query option) Query condor_startd ClassAds and display resource state information.

-statistics WhichStatistics
(Query option) Can only be used if the -direct option has been specified. Identifies which Statistics
attributes to include in the ClassAd. WhichStatistics is specified using the same syntax as defined for
. A definition is in the HTCondor Administrator’s manual section on configuration (HTCondor-wide
Configuration File Entries).

14.54. condor_status 911

HTCondor Manual, Release 23.6.2

-storage
(Query option) Display attributes of machines with network storage resources.

-submitters
(Query option) Query ClassAds sent by submitters and display important submitter attributes.

-subsystem type
(Query option) If type is one of collector, negotiator, master, schedd, or startd, then behavior is the
same as the query option without the -subsystem option. For example, -subsystem collector is the
same as -collector. A value of type of CkptServer, Machine, DaemonMaster, or Scheduler targets
that type of ClassAd.

-vm
(Query option) Query condor_startd ClassAds, and display only VM-enabled machines. Information
displayed includes the machine name, the virtual machine software version, the state of machine, the
virtual machine memory, and the type of networking.

-offline
(Query option) Query condor_startd ClassAds, and display, for each machine with at least one offline
universe, which universes are offline for it.

-attributes Attr1[,Attr2 . . .]
(Display option) Explicitly list the attributes in a comma separated list which should be displayed
when using the -xml, -json or -long options. Limiting the number of attributes increases the effi-
ciency of the query.

-expert
(Display option) Display shortened error messages.

-long
(Display option) Display entire ClassAds. Implies that totals will not be displayed.

-limit num
(Query option) At most num results should be displayed.

-sort expr
(Display option) Change the display order to be based on ascending values of an evaluated expression
given by expr. Evaluated expressions of a string type are in a case insensitive alphabetical order. If
multiple -sort arguments appear on the command line, the primary sort will be on the leftmost one
within the command line, and it is numbered 0. A secondary sort will be based on the second expres-
sion, and it is numbered 1. For informational or debugging purposes, the ClassAd output to be dis-
played will appear as if the ClassAd had two additional attributes. CondorStatusSortKeyExpr<N>
is the expression, where <N> is replaced by the number of the sort. CondorStatusSortKey<N> gives
the result of evaluating the sort expression that is numbered <N>.

-total
(Display option) Display totals only.

-xml
(Display option) Display entire ClassAds, in XML format. The XML format is fully defined in the
reference manual, obtained from the ClassAds web page, with a link at http://htcondor.org/classad/
classad.html.

-json
(Display option) Display entire ClassAds in JSON format.

-constraint const
(Custom option) Add constraint expression.

-compact
(Custom option) Show compact form, with a single line per machine using information from the

912 Chapter 14. Commands Reference (man pages)

http://htcondor.org/classad/classad.html
http://htcondor.org/classad/classad.html

HTCondor Manual, Release 23.6.2

partitionable slot. Some information will be incorrect if the machine has static slots.

-format fmt attr
(Custom option) Display attribute or expression attr in format fmt. To display the attribute or ex-
pression the format must contain a single printf(3)-style conversion specifier. Attributes must be
from the resource ClassAd. Expressions are ClassAd expressions and may refer to attributes in the
resource ClassAd. If the attribute is not present in a given ClassAd and cannot be parsed as an ex-
pression, then the format option will be silently skipped. %r prints the unevaluated, or raw values.
The conversion specifier must match the type of the attribute or expression. %s is suitable for strings
such as Name, %d for integers such as LastHeardFrom, and %f for floating point numbers such as .
%v identifies the type of the attribute, and then prints the value in an appropriate format. %V identi-
fies the type of the attribute, and then prints the value in an appropriate format as it would appear in
the -long format. As an example, strings used with %V will have quote marks. An incorrect format
will result in undefined behavior. Do not use more than one conversion specifier in a given format.
More than one conversion specifier will result in undefined behavior. To output multiple attributes
repeat the -format option once for each desired attribute. Like printf(3)-style formats, one may
include other text that will be reproduced directly. A format without any conversion specifiers may
be specified, but an attribute is still required. Include a backslash followed by an ‘n’ to specify a line
break.

-autoformat[:lhVr,tng] attr1 [attr2 . . .] or -af[:lhVr,tng] attr1 [attr2 . . .]
(Output option) Display attribute(s) or expression(s) formatted in a default way according to attribute
types. This option takes an arbitrary number of attribute names as arguments, and prints out their
values, with a space between each value and a newline character after the last value. It is like the
-format option without format strings. This output option does not work in conjunction with the
-run option.

It is assumed that no attribute names begin with a dash character, so that the next word that begins
with dash is the start of the next option. The autoformat option may be followed by a colon character
and formatting qualifiers to deviate the output formatting from the default:

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The l and h characters may not be used
together.

-print-format file
Read output formatting information from the given custom print format file. see Print Formats for
more information about custom print format files.

-target filename
(Custom option) Where evaluation requires a target ClassAd to evaluate against, file filename contains
the target ClassAd.

14.54. condor_status 913

HTCondor Manual, Release 23.6.2

-merge filename
(Custom option) Ads will be read from filename, which may be - to indicate standard in, and com-
pared to the ads selected by the query specified by the remainder of the command line. Ads will be
considered the same if their sort keys match; sort keys may be specified with [-sort <key>]. This
option will cause up to three tables to print, in the following order, depending on where a given ad
appeared: first, the ads which appeared in the query but not in filename; second, the ads which ap-
peared in both the query and in filename; third, the ads which appeared in filename but not in the
query.

By default, banners will label each table. If -xml is also given, the same banners will separate three
valid XML documents, one for each table. If -json is also given, a single JSON object will be
produced, with the usual JSON output for each table labeled as an element in the object.

The -annex option changes this default so that the banners are not printed and the tables are formatted
differently. In this case, the ads in filename are expected to have different contents from the ads in
the query, so many others will behave strangely.

14.54.4 General Remarks

• The default output from condor_status is formatted to be human readable, not script readable. In an effort to
make the output fit within 80 characters, values in some fields might be truncated. Furthermore, the HTCondor
Project can (and does) change the formatting of this default output as we see fit. Therefore, any script that is
attempting to parse data from condor_status is strongly encouraged to use the -format option (described above).

• The information obtained from condor_startd and condor_schedd daemons may sometimes appear to be in-
consistent. This is normal since condor_startd and condor_schedd daemons update the HTCondor manager at
different rates, and since there is a delay as information propagates through the network and the system.

• Note that the ActivityTime in the Idle state is not the amount of time that the machine has been idle. See
the section on condor_startd states in the Administrator’s Manual for more information (Starting Up, Shutting
Down and Reconfiguring the System).

• When using condor_status on a pool with SMP machines, you can either provide the host name, in which case
you will get back information about all slots that are represented on that host, or you can list specific slots by
name. See the examples below for details.

• If you specify host names, without domains, HTCondor will automatically try to resolve those host names into
fully qualified host names for you. This also works when specifying specific nodes of an SMP machine. In this
case, everything after the “@” sign is treated as a host name and that is what is resolved.

• You can use the -direct option in conjunction with almost any other set of options. However, at this time, not all
daemons will respond to direct queries for its ad(s). The condor_startd will respond to requests for Startd ads.
The condor_schedd will respond to requests for Schedd and Submitter ads. So the only options currently not
supported with -direct are -master and -collector. Most other options use startd ads for their information, so
they work seamlessly with -direct. The only other restriction on -direct is that you may only use 1 -direct option
at a time. If you want to query information directly from multiple hosts, you must run condor_status multiple
times.

• Unless you use the local host name with -direct, condor_status will still have to contact a collector to find the
address where the specified daemon is listening. So, using a -pool option in conjunction with -direct just tells
condor_status which collector to query to find the address of the daemon you want. The information actually
displayed will still be retrieved directly from the daemon you specified as the argument to -direct. Do not use
-direct to query the Collector ad, just use -pool and -collector.

914 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.54.5 Examples

Example 1 To view information from all nodes of an SMP machine, use only the host name. For example, if you had a
4-CPU machine, named vulture.cs.wisc.edu, you might see

$ condor_status vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@vulture.cs.w LINUX INTEL Claimed Busy 1.050 512 0+01:47:42
slot2@vulture.cs.w LINUX INTEL Claimed Busy 1.000 512 0+01:48:19
slot3@vulture.cs.w LINUX INTEL Unclaimed Idle 0.070 512 1+11:05:32
slot4@vulture.cs.w LINUX INTEL Unclaimed Idle 0.000 512 1+11:05:34

Total Owner Claimed Unclaimed Matched Preempting Backfill

INTEL/LINUX 4 0 2 2 0 0 0

Total 4 0 2 2 0 0 0

Example 2 To view information from a specific nodes of an SMP machine, specify the node directly. You do this by
providing the name of the slot. This has the form slot#@hostname. For example:

$ condor_status slot3@vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot3@vulture.cs.w LINUX INTEL Unclaimed Idle 0.070 512 1+11:10:32

Total Owner Claimed Unclaimed Matched Preempting Backfill

INTEL/LINUX 1 0 0 1 0 0 0

Total 1 0 0 1 0 0 0

Example 3 The -compact option gives a one line summary of each machine using information from the partitionable
slot. If the normal output is this

$ condor_status vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@vulture.cs.w LINUX X86_64 Unclaimed Idle 0.000 679 1+03:18:58
slot1_1@vulture.cs LINUX X86_64 Claimed Busy 1.160 1152 0+03:21:02
slot1_2@vulture.cs LINUX X86_64 Claimed Busy 1.150 2560 0+10:20:50
slot1_3@vulture.cs LINUX X86_64 Claimed Busy 1.160 2816 0+01:32:08
slot1_4@vulture.cs LINUX X86_64 Claimed Busy 0.000 5081 0+00:00:00

Machines Owner Claimed Unclaimed Matched Preempting Drain

X86_64/LINUX 5 0 4 1 0 0 0

Total 5 0 4 1 0 0 0

For the same machine in the same state the -compact option will show this

14.54. condor_status 915

HTCondor Manual, Release 23.6.2

$ condor_status -compact vulture

Machine Platform Slots Cpus Gpus TotalGb FreCpu FreeGb CpuLoad ST Jobs/
→˓Min MaxSlotGb

vulture.cs.wisc.ed x64/CentOS7 4 8 2 12 0 .66 .98 Cb .
→˓25 4.96

Machines Owner Claimed Unclaimed Matched Preempting Drain

X86_64/CentOS7 4 0 4 1 0 0 0

Total 4 0 4 1 0 0 0

The Slots column shows that 4 slots have been carved out of the partitionable slot, leaving 0 cpus and .66 Gigabytes
of memory free. Static slots will not be counted in the Slots column.

The ST column shows the consensus state of the dynamic slots using a two character code. The first character is the
State, the second is the activity. If there is not a consensus for either the state or activity, then # will be shown. The
example shows Cb for Claimed/Busy since all of the dynamic slots are in that state. If one of the dynamic slots were
Idle, then C# would be shown.

The Jobs/Min shows the recent job start rate for the machine. A large number here is normal for a machine that just
came online, but if this number stays above 1 for more than a minute, that can be an indication of a machine is acting
as a black hole for jobs, starting them quickly and then failing them just as quickly.

The MaxSlotGb column shows the memory allocated to the largest slot in Gigabytes, If the memory allocated for the
largest slot cannot be determined, * will be displayed. Static slots are not counted in the MaxSlotGb column.

Constraint option examples

The Unix command to use the constraint option to see all machines with the of "LINUX":

$ condor_status -constraint OpSys==\"LINUX\"

Note that quotation marks must be escaped with the backslash characters for most shells.

The Windows command to do the same thing:

> condor_status -constraint " OpSys==""LINUX"" "

Note that quotation marks are used to delimit the single argument which is the expression, and the quotation marks that
identify the string must be escaped by using a set of two double quote marks without any intervening spaces.

To see all machines that are currently in the Idle state, the Unix command is

$ condor_status -constraint State==\"Idle\"

To see all machines that are bench marked to have a MIPS rating of more than 750, the Unix command is

$ condor_status -constraint 'Mips>750'

-cod option example

The -cod option displays the status of COD claims within a given HTCondor pool.

916 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

Name ID ClaimState TimeInState RemoteUser JobId Keyword
astro.cs.wi COD1 Idle 0+00:00:04 wright
chopin.cs.w COD1 Running 0+00:02:05 wright 3.0 fractgen
chopin.cs.w COD2 Suspended 0+00:10:21 wright 4.0 fractgen

Total Idle Running Suspended Vacating Killing
INTEL/LINUX 3 1 1 1 0 0

Total 3 1 1 1 0 0

-format option example To display the name and memory attributes of each job ClassAd in a format that is easily
parsable by other tools:

$ condor_status -format "%s " Name -format "%d\n" Memory

To do the same with the autoformat option, run

$ condor_status -autoformat Name Memory

14.54.6 Exit Status

condor_status will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.55 condor_store_cred

securely stash a credential

14.55.1 Synopsis

condor_store_cred -h

condor_store_cred action [options]

14.55.2 Description

condor_store_cred stores credentials in a secure manner. There are three actions, each of which can optionally be
followed by a hyphen and one of three types.

The actions are:

add[-type]
Add credential to secure storage

delete[-type]
Remove credential from secure storage

query[-type]
Check if a credential has been stored

The types are:

-pwd
Credential is a password (default)

14.55. condor_store_cred 917

HTCondor Manual, Release 23.6.2

-krb
Credential is a Kerberos/AFS token

-oauth
Credential is Scitoken or Oauth2 token

Credentials are stashed in a persistent manner; they are maintained across system reboots. When adding a credential,
if there is already a credential stashed, the old credential will be overwritten by the new one.

There are two separate uses of the password actions of condor_store_cred:

1. A shared pool password is needed in order to implement the PASSWORD authentication method. con-
dor_store_cred using the -c option deals with the password for the implied condor_pool@$(UID_DOMAIN)
user name.

On a Unix machine, condor_store_cred add[-pwd] with the -f option is used to set the pool password, as needed
when used with the PASSWORD authentication method. The pool password is placed in a file specified by the
configuration variable.

2. In order to submit a job from a Windows platform machine, or to execute a job on a Windows platform machine
utilizing the functionality, condor_store_cred add[-pwd] stores the password of a user/domain pair securely in
the Windows registry. Using this stored password, HTCondor may act on behalf of the submitting user to access
files, such as writing output or log files. HTCondor is able to run jobs with the user ID of the submitting user.
The password is stored in the same manner as the system does when setting or changing account passwords.

Unless the -p argument is used with the add or add-pwd action, the user is prompted to enter the password twice for
confirmation, and characters are not echoed.

The add-krb and add-oauth actions must be used with the -i argument to specify a filename to read from.

The -oauth actions require a -s service name argument. The -S and -A options may be used with add-oauth to add scopes
and/or audience to the credentials or with query-oauth to make sure that the scopes or audience match the previously
stored credentials. If either -S or -A are used then the credentials must be in JSON format.

14.55.3 Options

-h
Displays a brief summary of command options.

-c
[-pwd] actions refer to the pool password, as used in the PASSWORD authentication method.

-f filename
For Unix machines only, generates a pool password file named filename that may be used with the
PASSWORD authentication method.

-i filename
Read credential from filename. If filename is -, read from stdin. Required for add-krb and add-oauth.

-s service
The Oauth2 service. Required for all -oauth actions.

-H handle
Specify a handle for the given OAuth2 service.

-S scopes
Optional comma-separated list of scopes to request for add-oauth action. If used with the query-
oauth action, makes sure that the same scopes were requested in the original credential. Requires
credentials to be in JSON format.

918 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-A audience
Optional audience to request for add-oauth action. If used with the query-oauth action, makes sure
that the same audience was requested in the original credential. Requires credentials to be in JSON
format.

-n machinename
Apply the command on the given machine.

-p password
Stores password, rather than prompting the user to enter a password.

-u username
Specify the user name.

14.55.4 Exit Status

condor_store_cred will exit with a status value of 0 (zero) upon success. If the query-oauth action finds a credential
but the scopes or audience don’t match, condor_store_cred will exit with a status value 2 (two). Otherwise, it will exit
with the value 1 (one) upon failure.

14.56 condor_submit

Queue jobs for execution under HTCondor

14.56.1 Synopsis

condor_submit [-terse] [-verbose] [-unused] [-file submit_file] [-name schedd_name] [-remote schedd_name]
[-addr <ip:port>] [-pool pool_name] [-disable] [-password passphrase] [-debug] [-append command . . .][-
batch-name batch_name] [-spool] [-dump filename] [-interactive] [-factory] [-allow-crlf-script] [-dry-run
file] [-maxjobs number-of-jobs] [-single-cluster] [<submit-variable>=<value>] [submit description file] [-queue
queue_arguments]

14.56.2 Description

condor_submit is the program for submitting jobs for execution under HTCondor. condor_submit requires one or more
submit description commands to direct the queuing of jobs. These commands may come from a file, standard input, the
command line, or from some combination of these. One submit description may contain specifications for the queuing
of many HTCondor jobs at once. A single invocation of condor_submit may cause one or more clusters. A cluster
is a set of jobs specified in the submit description between commands for which the executable is not changed. It is
advantageous to submit multiple jobs as a single cluster because the schedd uses much less memory to hold the jobs.

Multiple clusters may be specified within a single submit description. Each cluster must specify a single executable.

The job ClassAd attribute identifies a cluster.

The submit description file argument is the path and file name of the submit description file. If this optional argument
is the dash character (-), then the commands are taken from standard input. If - is specified for the submit description
file, -verbose is implied; this can be overridden by specifying -terse.

If no submit description file argument is given, and no -queue argument is given, commands are taken automatically
from standard input.

Note that submission of jobs from a Windows machine requires a stashed password to allow HTCondor to impersonate
the user submitting the job. To stash a password, use the condor_store_cred command. See the manual page for details.

14.56. condor_submit 919

HTCondor Manual, Release 23.6.2

For lengthy lines within the submit description file, the backslash (\) is a line continuation character. Placing the
backslash at the end of a line causes the current line’s command to be continued with the next line of the file. Submit
description files may contain comments. A comment is any line beginning with a pound character (#).

14.56.3 Options

-terse
Terse output - display JobId ranges only.

-verbose
Verbose output - display the created job ClassAd

-unused
As a default, causes no warnings to be issued about user-defined macros not being used within the
submit description file. The meaning reverses (toggles) when the configuration variable is set to
the non default value of False. Printing the warnings can help identify spelling errors of submit
description file commands. The warnings are sent to stderr.

-file submit_file
Use submit_file as the submit description file. This is equivalent to providing submit_file as an argu-
ment without the preceding -file.

-name schedd_name
Submit to the specified condor_schedd. Use this option to submit to a condor_schedd other than the
default local one. schedd_name is the value of the Name ClassAd attribute on the machine where the
condor_schedd daemon runs.

-remote schedd_name
Submit to the specified condor_schedd, spooling all required input files over the network connection.
schedd_name is the value of the Name ClassAd attribute on the machine where the condor_schedd
daemon runs. This option is equivalent to using both -name and -spool.

-addr <ip:port>
Submit to the condor_schedd at the IP address and port given by the sinful string argument <ip:port>.

-pool pool_name
Look in the specified pool for the condor_schedd to submit to. This option is used with -name or
-remote.

-disable
Disable file permission checks when submitting a job for read permissions on all input files, such as
those defined by commands and , as well as write permission to output files, such as a log file defined
by and output files defined with or .

-debug
Cause debugging information to be sent to stderr, based on the value of the configuration variable
.

-append command
Augment the commands in the submit description file with the given command. This command will
be considered to immediately precede the queue command within the submit description file, and
come after all other previous commands. If the command specifies a queue command, as in the
example

condor_submit mysubmitfile -append "queue input in A, B, C"

then the entire -append command line option and its arguments are converted to

condor_submit mysubmitfile -queue input in A, B, C

920 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

The submit description file is not modified. Multiple commands are specified by using the -append
option multiple times. Each new command is given in a separate -append option. Commands with
spaces in them will need to be enclosed in double quote marks.

-batch-name batch_name
Set the batch name for this submit. The batch name is displayed by condor_q -batch. It is intended
for use by users to give meaningful names to their jobs and to influence how condor_q groups jobs for
display. Use of this argument takes precedence over a batch name specified in the submit description
file itself.

-spool
Spool all required input files, job event log, and proxy over the connection to the condor_schedd.
After submission, modify local copies of the files without affecting your jobs. Any output files for
completed jobs need to be retrieved with condor_transfer_data.

-dump filename
Sends all ClassAds to the specified file, instead of to the condor_schedd.

-interactive
Indicates that the user wants to run an interactive shell on an execute machine in the pool. This
is equivalent to creating a submit description file of a vanilla universe sleep job, and then running
condor_ssh_to_job by hand. Without any additional arguments, condor_submit with the -interactive
flag creates a dummy vanilla universe job that sleeps, submits it to the local scheduler, waits for the
job to run, and then launches condor_ssh_to_job to run a shell. If the user would like to run the shell
on a machine that matches a particular

expression, the submit description file is specified, and it will contain the expression. Note that all
policy expressions specified in the submit description file are honored, but any or commands are
overwritten to be sleep and vanilla. The job ClassAd attribute InteractiveJob is set to True to
identify interactive jobs for condor_startd policy usage.

-factory
Sends all of the jobs as a late materialization job factory. A job factory consists of a single cluster
classad and a digest containing the submit commands necessary to describe the differences between
jobs. If the Queue statement has itemdata, then the itemdata will be sent. Using this option is
equivalent to using the submit command.

-allow-crlf-script
Changes the check for an invalid line ending on the executable script’s #! line from an ERROR to
a WARNING. The #! line will be ignored by Windows, so it won’t matter if it is invalid; but Unix
and Linux will not run a script that has a Windows/DOS line ending on the first line of the script. So
condor_submit will not allow such a script to be submitted as the job’s executable unless this option
is supplied.

-dry-run file
Parse the submit description file, sending the resulting job ClassAd to the file given by file, but do
not submit the job(s). This permits observation of the job specification, and it facilitates debugging
the submit description file contents. If file is -, the output is written to stdout.

-maxjobs number-of-jobs
If the total number of jobs specified by the submit description file is more than the integer value given
by number-of-jobs, then no jobs are submitted for execution and an error message is generated. A 0
or negative value for the number-of-jobs causes no limit to be imposed.

-single-cluster
If the jobs specified by the submit description file causes more than a single cluster value to be
assigned, then no jobs are submitted for execution and an error message is generated.

<submit-variable>=<value>

14.56. condor_submit 921

HTCondor Manual, Release 23.6.2

Defines a submit command or submit variable with a value, and parses it as if it was placed at the
beginning of the submit description file. The submit description file is not changed. To correctly
parse the condor_submit command line, this option must be specified without white space characters
before and after the equals sign (=), or the entire option must be surrounded by double quote marks.

-queue queue_arguments
A command line specification of how many jobs to queue, which is only permitted if the submit
description file does not have a queue command. The queue_arguments are the same as may be
within a submit description file. The parsing of the queue_arguments finishes at the end of the line
or when a dash character (-) is encountered. Therefore, its best placement within the command line
will be at the end of the command line.

On a Unix command line, the shell expands file globs before parsing occurs.

14.56.4 Submit Description File Commands

Note: more information on submitting HTCondor jobs can be found here: Submitting a Job.

The condor_submit language supports multi-line values in commands. The syntax is the same as the configuration
language (see more details here: Multi-Line Values).

Each submit description file describes one or more clusters of jobs to be placed in the HTCondor execution pool.
All jobs in a cluster must share the same executable, but they may have different input and output files, and different
program arguments. The submit description file is generally the last command-line argument to condor_submit. If the
submit description file argument is omitted, condor_submit will read the submit description from standard input.

The submit description file must contain at least one executable command and at least one queue command. All of the
other commands have default actions.

Note that a submit file that contains more than one executable command will produce multiple clusters when
submitted. This is not generally recommended, and is not allowed for submit files that are run as DAG node jobs
by condor_dagman.

The commands which can appear in the submit description file are numerous. They are listed here in alphabetical order
by category.

BASIC COMMANDS

¶arguments = <argument_list>
List of arguments to be supplied to the executable as part of the command line.

In the java universe, the first argument must be the name of the class containing main.

There are two permissible formats for specifying arguments, identified as the old syntax and the new
syntax. The old syntax supports white space characters within arguments only in special circum-
stances; when used, the command line arguments are represented in the job ClassAd attribute . The
new syntax supports uniform quoting of white space characters within arguments; when used, the
command line arguments are represented in the job ClassAd attribute .

Old Syntax

In the old syntax, individual command line arguments are delimited (separated) by space characters.
To allow a double quote mark in an argument, it is escaped with a backslash; that is, the two character
sequence \” becomes a single double quote mark within an argument.

Further interpretation of the argument string differs depending on the operating system. On Win-
dows, the entire argument string is passed verbatim (other than the backslash in front of double quote

922 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

marks) to the Windows application. Most Windows applications will allow spaces within an argu-
ment value by surrounding the argument with double quotes marks. In all other cases, there is no
further interpretation of the arguments.

Example:

arguments = one \"two\" 'three'

Produces in Unix vanilla universe:

argument 1: one
argument 2: "two"
argument 3: 'three'

New Syntax

Here are the rules for using the new syntax:

1. The entire string representing the command line arguments is surrounded by double quote marks.
This permits the white space characters of spaces and tabs to potentially be embedded within
a single argument. Putting the double quote mark within the arguments is accomplished by
escaping it with another double quote mark.

2. The white space characters of spaces or tabs delimit arguments.

3. To embed white space characters of spaces or tabs within a single argument, surround the entire
argument with single quote marks.

4. To insert a literal single quote mark, escape it within an argument already delimited by single
quote marks by adding another single quote mark.

Example:

arguments = "3 simple arguments"

Produces:

argument 1: 3
argument 2: simple
argument 3: arguments

Another example:

arguments = "one 'two with spaces' 3"

Produces:

argument 1: one
argument 2: two with spaces
argument 3: 3

And yet another example:

arguments = "one ""two"" 'spacey ''quoted'' argument'"

Produces:

14.56. condor_submit 923

HTCondor Manual, Release 23.6.2

argument 1: one
argument 2: "two"
argument 3: spacey 'quoted' argument

Notice that in the new syntax, the backslash has no special meaning. This is for the convenience of
Windows users.

¶environment = <parameter_list>
List of environment variables.

There are two different formats for specifying the environment variables: the old format and the new
format. The old format is retained for backward-compatibility. It suffers from a platform-dependent
syntax and the inability to insert some special characters into the environment.

The new syntax for specifying environment values:

1. Put double quote marks around the entire argument string. This distinguishes the new syntax
from the old. The old syntax does not have double quote marks around it. Any literal double
quote marks within the string must be escaped by repeating the double quote mark.

2. Each environment entry has the form

<name>=<value>

3. Use white space (space or tab characters) to separate environment entries.

4. To put any white space in an environment entry, surround the space and as much of the sur-
rounding entry as desired with single quote marks.

5. To insert a literal single quote mark, repeat the single quote mark anywhere inside of a section
surrounded by single quote marks.

Example:

environment = "one=1 two=""2"" three='spacey ''quoted'' value'"

Produces the following environment entries:

one=1
two="2"
three=spacey 'quoted' value

Under the old syntax, there are no double quote marks surrounding the environment specification.
Each environment entry remains of the form

<name>=<value>

Under Unix, list multiple environment entries by separating them with a semicolon (;). Under Win-
dows, separate multiple entries with a vertical bar (|). There is no way to insert a literal semicolon
under Unix or a literal vertical bar under Windows. Note that spaces are accepted, but rarely de-
sired, characters within parameter names and values, because they are treated as literal characters,
not separators or ignored white space. Place spaces within the parameter list only if required.

A Unix example:

environment = one=1;two=2;three="quotes have no 'special' meaning"

924 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

This produces the following:

one=1
two=2
three="quotes have no 'special' meaning"

If the environment is set with the environment command and getenv is also set, values specified
with environment override values in the submitter’s environment (regardless of the order of the
environment and getenv commands).

¶error = <pathname>
A path and file name used by HTCondor to capture any error messages the program would normally
write to the screen (that is, this file becomes stderr). A path is given with respect to the file system
of the machine on which the job is submitted. The file is written (by the job) in the remote scratch
directory of the machine where the job is executed. When the job exits, the resulting file is transferred
back to the machine where the job was submitted, and the path is utilized for file placement. If
you specify a relative path, the final path will be relative to the job’s initial working directory, and
HTCondor will create directories as necessary to transfer the file. If not specified, the default value
of /dev/null is used for submission to a Unix machine. If not specified, error messages are ignored
for submission to a Windows machine. More than one job should not use the same error file, since
this will cause one job to overwrite the errors of another. If HTCondor detects that the error and
output files for a job are the same, it will run the job such that the output and error data is merged.

¶executable = <pathname>
An optional path and a required file name of the executable file for this job cluster. Only one exe-
cutable command within a submit description file is guaranteed to work properly. More than one
often works.

If no path or a relative path is used, then the executable file is presumed to be relative to the current
working directory of the user as the condor_submit command is issued.

¶batch_name = <batch_name>
Set the batch name for this submit. The batch name is displayed by condor_q -batch. It is intended
for use by users to give meaningful names to their jobs and to influence how condor_q groups jobs
for display. This value in a submit file can be overridden by specifying the -batch-name argument
on the condor_submit command line.

¶getenv = <<matchlist> | True | False>
If getenv is set to True, then condor_submit will copy all of the user’s current shell environment
variables at the time of job submission into the job ClassAd. The job will therefore execute with the
same set of environment variables that the user had at submit time. Defaults to False. A wholesale
import of the user’s environment is very likely to lead to problems executing the job on a remote
machine unless there is a shared file system for users’ home directories between the access point
and execute machine. So rather than setting getenv to True, it is much better to set it to a list of
environment variables to import.

Matchlist is a comma, semicolon or space separated list of environment variable names and name
patterns that match or reject names. Matchlist members are matched case-insensitively to each name
in the environment and those that match are imported. Matchlist members can contain * as wildcard
character which matches anything at that position. Members can have two * characters if one of them
is at the end. Members can be prefixed with ! to force a matching environment variable to not be
imported. The order of members in the Matchlist has no effect on the result. getenv = true is
equivalent to getenv = *

Prior to HTCondor 8.9.7 getenv allows only True or False as values.

Examples:

14.56. condor_submit 925

HTCondor Manual, Release 23.6.2

import everything except PATH and INCLUDE (also path, include and other␣
→˓case-variants)
getenv = !PATH, !INCLUDE

import everything with CUDA in the name
getenv = *cuda*

Import every environment variable that starts with P or Q, except PATH
getenv = !path, P*, Q*

If the environment is set with the environment command and getenv is also set, values specified
with environment override values in the submitter’s environment (regardless of the order of the
environment and getenv commands).

¶ input = <pathname>
HTCondor assumes that its jobs are long-running, and that the user will not wait at the terminal for
their completion. Because of this, the standard files which normally access the terminal, (stdin,
stdout, and stderr), must refer to files. Thus, the file name specified with input should contain
any keyboard input the program requires (that is, this file becomes stdin). A path is given with
respect to the file system of the machine on which the job is submitted. The file is transferred before
execution to the remote scratch directory of the machine where the job is executed. If not specified,
the default value of /dev/null is used for submission to a Unix machine. If not specified, input is
ignored for submission to a Windows machine.

Note that this command does not refer to the command-line arguments of the program. The
command-line arguments are specified by the arguments command.

¶ log = <pathname>
Use log to specify a file name where HTCondor will write a log file of what is happening with this
job cluster, called a job event log. For example, HTCondor will place a log entry into this file when
and where the job begins running, when it transfers files, if the job is evicted, and when the job
completes. Most users find specifying a log file to be handy; its use is recommended. If no log entry
is specified, HTCondor does not create a log for this cluster. If a relative path is specified, it is relative
to the current working directory as the job is submitted or the directory specified by submit command
initialdir on the access point.

¶notification = <Always | Complete | Error | Never>
Owners of HTCondor jobs are notified by e-mail when certain events occur. If defined by Always or
Complete, the owner will be notified when the job terminates. If defined by Error, the owner will
only be notified if the job terminates abnormally, (as defined by JobSuccessExitCode, if defined)
or if the job is placed on hold because of a failure, and not by user request. If defined by Never (the
default), the owner will not receive e-mail, regardless to what happens to the job. The HTCondor
User’s manual documents statistics included in the e-mail.

¶notify_user = <email-address>
Used to specify the e-mail address to use when HTCondor sends e-mail about a job. If not specified,
HTCondor defaults to using the e-mail address defined by

job-owner@UID_DOMAIN

where the configuration variable is specified by the HTCondor site administrator. If has not been
specified, HTCondor sends the e-mail to:

job-owner@submit-machine-name

926 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

¶output = <pathname>
The output file captures any information the program would ordinarily write to the screen (that is,
this file becomes stdout). A path is given with respect to the file system of the machine on which
the job is submitted. The file is written (by the job) in the remote scratch directory of the machine
where the job is executed. When the job exits, the resulting file is transferred back to the machine
where the job was submitted, and the path is utilized for file placement. If you specify a relative
path, the final path will be relative to the job’s initial working directory, and HTCondor will create
directories as necessary to transfer the file. If not specified, the default value of /dev/null is used
for submission to a Unix machine. If not specified, output is ignored for submission to a Windows
machine. Multiple jobs should not use the same output file, since this will cause one job to overwrite
the output of another. If HTCondor detects that the error and output files for a job are the same, it
will run the job such that the output and error data is merged.

Note that if a program explicitly opens and writes to a file, that file should not be specified as the
output file.

¶priority = <integer>
An HTCondor job priority can be any integer, with 0 being the default. Jobs with higher numerical
priority will run before jobs with lower numerical priority. Note that this priority is on a per user
basis. One user with many jobs may use this command to order his/her own jobs, and this will have
no effect on whether or not these jobs will run ahead of another user’s jobs.

Note that the priority setting in an HTCondor submit file will be overridden by condor_dagman if
the submit file is used for a node in a DAG, and the priority of the node within the DAG is non-zero
(see Node Priorities for more details).

¶queue [<int expr>]
Places zero or more copies of the job into the HTCondor queue.

queue
[<int expr>] [<varname>] in [slice] <list of items> Places zero or more copies of the job in the
queue based on items in a <list of items>

queue
[<int expr>] [<varname>] matching [files | dirs] [slice] <list of items with file globbing>]
Places zero or more copies of the job in the queue based on files that match a <list of items with file
globbing>

queue
[<int expr>] [<list of varnames>] from [slice] <file name> | <list of items>] Places zero or more
copies of the job in the queue based on lines from the submit file or from <file name>

The optional argument <int expr> specifies how many times to repeat the job submission for a given
set of arguments. It may be an integer or an expression that evaluates to an integer, and it defaults to
1. All but the first form of this command are various ways of specifying a list of items. When these
forms are used <int expr> jobs will be queued for each item in the list. The in, matching and from
keyword indicates how the list will be specified.

• in The list of items is an explicit comma and/or space separated <list of items>. If the <list of
items> begins with an open paren, and the close paren is not on the same line as the open, then
the list continues until a line that begins with a close paren is read from the submit file.

• matching Each item in the <list of items with file globbing> will be matched against the names
of files and directories relative to the current directory, the set of matching names is the resulting
list of items.

– files Only filenames will matched.

– dirs Only directory names will be matched.

14.56. condor_submit 927

HTCondor Manual, Release 23.6.2

• from <file name> | <list of items> Each line from <file name> or <list of items> is a single
item, this allows for multiple variables to be set for each item. Lines from <file name> or <list
of items> will be split on comma and/or space until there are values for each of the variables
specified in <list of varnames>. The last variable will contain the remainder of the line. When
the <list of items> form is used, the list continues until the first line that begins with a close
paren, and lines beginning with pound sign (‘#’) will be skipped. When using the <file name>
form, if the <file name> ends with |, then it will be executed as a script whatever the script writes
to stdout will be the list of items.

The optional argument <varname> or <list of varnames> is the name or names of of variables that
will be set to the value of the current item when queuing the job. If no <varname> is specified the
variable ITEM will be used. Leading and trailing whitespace be trimmed. The optional argument
<slice> is a python style slice selecting only some of the items in the list of items. Negative step
values are not supported.

A submit file may contain more than one queue statement, and if desired, any commands may be
placed between subsequent queue commands, such as new input, output, error, initialdir, or ar-
guments commands. This is handy when submitting multiple runs into one cluster with one submit
description file.

¶universe = <vanilla | scheduler | local | grid | java | vm | parallel | docker | container>
Specifies which HTCondor universe to use when running this job. The HTCondor universe specifies
an HTCondor execution environment.

The vanilla universe is the default (except where the configuration variable defines it otherwise).

The scheduler universe is for a job that is to run on the machine where the job is submitted. This
universe is intended for a job that acts as a metascheduler and will not be preempted.

The local universe is for a job that is to run on the machine where the job is submitted. This universe
runs the job immediately and will not preempt the job.

The grid universe forwards the job to an external job management system. Further specification of
the grid universe is done with the grid_resource command.

The java universe is for programs written to the Java Virtual Machine.

The vm universe facilitates the execution of a virtual machine.

The parallel universe is for parallel jobs (e.g. MPI) that require multiple machines in order to run.

The docker universe runs a docker container as an HTCondor job.

The container universe runs a container as an HTCondor job using a supported container runtime
system on the Execution Point.

¶max_materialize = <limit>
Submit jobs as a late materialization factory and instruct the condor_schedd to keep the given number
of jobs materialized. Use this option to reduce the load on the condor_schedd when submitting a
large number of jobs. The limit can be an expression but it must evaluate to a constant at submit
time. A limit less than 1 will be treated as unlimited. The condor_schedd can be configured to have
a materialization limit as well, the lower of the two limits will be used. (see Submitting Lots of Jobs
for more details).

¶max_idle = <limit>
Submit jobs as a late materialization factory and instruct the condor_schedd to keep the given num-
ber of non-running jobs materialized. Use this option to reduce the load on the condor_schedd when
submitting a large number of jobs. The limit may be an expression but it must evaluate to a con-
stant at submit time. Jobs in the Held state are considered to be Idle for this limit. A limit of less
than 1 will prevent jobs from being materialized although the factory will still be submitted to the
condor_schedd. (see Submitting Lots of Jobs for more details).

928 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

COMMANDS FOR MATCHMAKING

¶rank = <ClassAd Float Expression>
A ClassAd Floating-Point expression that states how to rank machines which have already met the
requirements expression. Essentially, rank expresses preference. A higher numeric value equals
better rank. HTCondor will give the job the machine with the highest rank. For example,

request_memory = max({60, Target.TotalSlotMemory})
rank = Memory

asks HTCondor to find all available machines with more than 60 megabytes of memory and give to the
job the machine with the most amount of memory. The HTCondor User’s Manual contains complete
information on the syntax and available attributes that can be used in the ClassAd expression.

¶request_cpus = <num-cpus>
A requested number of CPUs (cores). If not specified, the number requested will be 1. If specified,
the expression

&& (RequestCpus <= Target.Cpus)

is appended to the requirements expression for the job.

For pools that enable dynamic condor_startd provisioning, specifies the minimum number of CPUs
requested for this job, resulting in a dynamic slot being created with this many cores.

¶request_disk = <quantity>
The requested amount of disk space in KiB requested for this job. If not specified, it will be set to
the job ClassAd attribute . The expression

&& (RequestDisk <= Target.Disk)

is appended to the requirements expression for the job.

For pools that enable dynamic condor_startd provisioning, a dynamic slot will be created with at
least this much disk space.

Characters may be appended to a numerical value to indicate units. K or KB indicates KiB, 210 num-
bers of bytes. M or MB indicates MiB, 220 numbers of bytes. G or GB indicates GiB, 230 numbers of
bytes. T or TB indicates TiB, 240 numbers of bytes.

¶request_gpus = <num-gpus>
A requested number of GPUs. If not specified, no GPUs will be requested. If specified one of the
expressions below

&& (TARGET.GPUs >= RequestGPUs)
or

&& (countMatches(MY.RequireGPUs,TARGET.AvailableGPUs) >= RequestGPUs)

is appended to the requirements expression for the job. The first expression above is used when
there is no constraint on the GPU properties specified in the submit file. The second expression is
used when or one of the GPU property constraints such as is used.

For pools that enable dynamic condor_startd provisioning, request_gpus specifies the minimum
number of GPUs requested for this job, resulting in a dynamic slot being created with this many
GPUs with the required properties.

¶require_gpus = <constraint-expression>
A constraint on the properties of GPUs when used with a non-zero value. This expression will be

14.56. condor_submit 929

HTCondor Manual, Release 23.6.2

combined with constraints generated by the use of one or more of , , , or . If not specified, no constraint
on GPUs will be added to the job. If specified and request_gpus is non-zero, the expression

&& (countMatches(MY.RequireGPUs, TARGET.AvailableGPUs) >= RequestGPUs)

is appended to the requirements expression for the job. This expression cannot be evaluated by
HTCondor prior to version 9.8.0. A warning to this will effect will be printed when condor_submit
detects this condition.

For pools that enable dynamic condor_startd provisioning and are at least version 9.8.0, the constraint
will be tested against the properties of AvailableGPUs and only those that match will be assigned to
the dynamic slot.

¶request_memory = <quantity>
The required amount of memory in MiB that this job needs to avoid excessive swapping. If not spec-
ified and the submit command vm_memory is specified, then the value specified for vm_memory
defines request_memory , If neither request_memory nor vm_memory is specified, the value is
set by the configuration variable The actual amount of memory used by a job is represented by the
job ClassAd attribute .

For pools that enable dynamic condor_startd provisioning, a dynamic slot will be created with at
least this much RAM.

The expression

&& (RequestMemory <= Target.Memory)

is appended to the requirements expression for the job.

Characters may be appended to a numerical value to indicate units. K or KB indicates KiB, 210 num-
bers of bytes. M or MB indicates MiB, 220 numbers of bytes. G or GB indicates GiB, 230 numbers of
bytes. T or TB indicates TiB, 240 numbers of bytes.

¶ request_GPUs

¶request_<name> = <quantity>
The required amount of the custom machine resource identified by <name> that this job needs. The
custom machine resource is defined in the machine’s configuration. Machines that have available
GPUs will define <name> to be GPUs. <name> must be at least two characters, and must not begin
with _. If <name> is either Cpu or Gpu a warning will be printed since these are common typos.

¶gpus_minimum_capability = <version> ¶gpus_maximum_capability = <version>
The mininum or maximum required Capability value of the GPU, inclusive. Specified as a floating
point value (for example 8.5). Use of one or more of these commands will create or modify the
expression unless that expression already references the GPU property Capabilities. When is not
used, these commands are ignored.

¶gpus_minimum_memory = <quantity>
The mininum quantity of GPU memory in MiB that a GPU must have in order to run the job.

Characters may be appended to a numerical value to indicate units. K or KB indicates KiB, 210 num-
bers of bytes. M or MB indicates MiB, 220 numbers of bytes. G or GB indicates GiB, 230 numbers of
bytes. T or TB indicates TiB, 240 numbers of bytes.

Use of this command will create or modify the expression unless that expression already references
the GPU property GlobalMemoryMB. When is not used, this command is ignored.

¶gpus_minimum_runtime = <version>
The version of the GPU (usually CUDA) runtime used or required by this job, specified as <major>.
<minor> (for example, 9.1). If the minor version number is zero, you may specify only the major

930 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

version number. A single version number of 1000 or higher is assumed to be the integer-coded
version number using the Nvida convention of (major * 1000 + (minor * 10)). Use of this
command will create or modify the expression unless that expression already references the GPU
property MaxSupportedVersion. When is not used, this command is ignored.

¶cuda_version = <version>
The version of the CUDA runtime, if any, used or required by this job, specified as <major>.
<minor> (for example, 9.1). If the minor version number is zero, you may specify only the ma-
jor version number. A single version number of 1000 or higher is assumed to be the integer-coded
version number (major * 1000 + (minor % 100)).

This command has been superceeded by , but it will still work if machines advertise the
CUDAMaxSupportedVersion attribute. This does not arrange for the CUDA runtime to be present,
only for the job to run on a machine whose driver supports the specified version.

¶requirements = <ClassAd Boolean Expression>
The requirements command is a boolean ClassAd expression which uses C-like operators. In order
for any job in this cluster to run on a given machine, this requirements expression must evaluate to
true on the given machine.

For scheduler and local universe jobs, the requirements expression is evaluated against the
Scheduler ClassAd which represents the the condor_schedd daemon running on the access point,
rather than a remote machine. Like all commands in the submit description file, if multiple require-
ments commands are present, all but the last one are ignored. By default, condor_submit appends
the following clauses to the requirements expression:

1. Arch and OpSys are set equal to the Arch and OpSys of the submit machine. In other words:
unless you request otherwise, HTCondor will give your job machines with the same architecture
and operating system version as the machine running condor_submit.

2. Cpus >= RequestCpus, if the job ClassAd attribute is defined.

3. Disk >= RequestDisk, if the job ClassAd attribute is defined. Otherwise, Disk >= DiskUsage is
appended to the requirements. The attribute is initialized to the size of the executable plus the
size of any files specified in a transfer_input_files command. It exists to ensure there is enough
disk space on the target machine for HTCondor to copy over both the executable and needed
input files. The attribute represents the maximum amount of total disk space required by the
job in kilobytes. HTCondor automatically updates the attribute approximately every 20 minutes
while the job runs with the amount of space being used by the job on the execute machine.

4. Memory >= RequestMemory, if the job ClassAd attribute is defined.

5. If Universe is set to Vanilla, FileSystemDomain is set equal to the access point’s FileSystemDo-
main.

View the requirements of a job which has already been submitted (along with everything else about
the job ClassAd) with the command condor_q -l; see the command reference for condor_q. Also,
see the HTCondor Users Manual for complete information on the syntax and available attributes that
can be used in the ClassAd expression.

FILE TRANSFER COMMANDS

¶dont_encrypt_input_files = < file1,file2,file. . . >
A comma and/or space separated list of input files that are not to be network encrypted when trans-
ferred with the file transfer mechanism. Specification of files in this manner overrides configuration
that would use encryption. Each input file must also be in the list given by transfer_input_files.
When a path to an input file or directory is specified, this specifies the path to the file on the submit
side. A single wild card character (*) may be used in each file name.

14.56. condor_submit 931

HTCondor Manual, Release 23.6.2

¶dont_encrypt_output_files = < file1,file2,file. . . >
A comma and/or space separated list of output files that are not to be network encrypted when trans-
ferred back with the file transfer mechanism. Specification of files in this manner overrides config-
uration that would use encryption. The output file(s) must also either be in the list given by trans-
fer_output_files or be discovered and to be transferred back with the file transfer mechanism. When
a path to an output file or directory is specified, this specifies the path to the file on the execute side.
A single wild card character (*) may be used in each file name.

¶encrypt_execute_directory = <True | False>
Defaults to False. If set to True, HTCondor will encrypt the contents of the remote scratch directory
of the machine where the job is executed. This encryption is transparent to the job itself, but ensures
that files left behind on the local disk of the execute machine, perhaps due to a system crash, will
remain private. In addition, condor_submit will append to the job’s requirements expression

&& (TARGET.HasEncryptExecuteDirectory)

to ensure the job is matched to a machine that is capable of encrypting the contents of the execute
directory. This support is limited to Windows platforms that use the NTFS file system and Linux
platforms with the ecryptfs-utils package installed.

¶encrypt_input_files = < file1,file2,file. . . >
A comma and/or space separated list of input files that are to be network encrypted when transferred
with the file transfer mechanism. Specification of files in this manner overrides configuration that
would not use encryption. Each input file must also be in the list given by transfer_input_files.
When a path to an input file or directory is specified, this specifies the path to the file on the submit
side. A single wild card character (*) may be used in each file name. The method of encryption
utilized will be as agreed upon in security negotiation; if that negotiation failed, then the file transfer
mechanism must also fail for files to be network encrypted.

¶encrypt_output_files = < file1,file2,file. . . >
A comma and/or space separated list of output files that are to be network encrypted when transferred
back with the file transfer mechanism. Specification of files in this manner overrides configuration
that would not use encryption. The output file(s) must also either be in the list given by trans-
fer_output_files or be discovered and to be transferred back with the file transfer mechanism. When
a path to an output file or directory is specified, this specifies the path to the file on the execute side. A
single wild card character (*) may be used in each file name. The method of encryption utilized will
be as agreed upon in security negotiation; if that negotiation failed, then the file transfer mechanism
must also fail for files to be network encrypted.

¶erase_output_and_error_on_restart = < true | false>
If false, and when_to_transfer_output is ON_EXIT_OR_EVICT, HTCondor will append to the
output and error logs rather than erase (truncate) them when the job restarts.

¶max_transfer_input_mb = <ClassAd Integer Expression>
This integer expression specifies the maximum allowed total size in MiB of the input files that are
transferred for a job. This expression does not apply to grid universe or files transferred via file
transfer plug-ins. The expression may refer to attributes of the job. The special value -1 indicates no
limit. If not defined, the value set by configuration variable is used. If the observed size of all input
files at submit time is larger than the limit, the job will be immediately placed on hold with a value of
32. If the job passes this initial test, but the size of the input files increases or the limit decreases so
that the limit is violated, the job will be placed on hold at the time when the file transfer is attempted.

932 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

¶max_transfer_output_mb = <ClassAd Integer Expression>
This integer expression specifies the maximum allowed total size in MiB of the output files that are
transferred for a job. This expression does not apply to grid universe or files transferred via file
transfer plug-ins. The expression may refer to attributes of the job. The special value -1 indicates no
limit. If not set, the value set by configuration variable is used. If the total size of the job’s output
files to be transferred is larger than the limit, the job will be placed on hold with a value of 33. The
output will be transferred up to the point when the limit is hit, so some files may be fully transferred,
some partially, and some not at all.

¶output_destination = <destination-URL>
When present, defines a URL that specifies both a plug-in and a destination for the transfer of
the entire output sandbox or a subset of output files as specified by the submit command trans-
fer_output_files. The plug-in does the transfer of files, and no files are sent back to the access point.
The HTCondor Administrator’s manual has full details.

¶should_transfer_files = <YES | NO | IF_NEEDED >
The should_transfer_files setting is used to define if HTCondor should transfer files to and from
the remote machine where the job runs. The file transfer mechanism is used to run jobs on machines
which do not have a shared file system with the submit machine. should_transfer_files equal to
YES will cause HTCondor to always transfer files for the job. NO disables HTCondor’s file transfer
mechanism. IF_NEEDED will not transfer files for the job if it is matched with a resource in the
same as the access point (and therefore, on a machine with the same shared file system). If the job is
matched with a remote resource in a different , HTCondor will transfer the necessary files.

For more information about this and other settings related to transferring files, see the HTCondor
User’s manual section on the file transfer mechanism.

Note that should_transfer_files is not supported for jobs submitted to the grid universe.

¶skip_filechecks = <True | False>
When True, file permission checks for the submitted job are disabled. When False, file permissions
are checked; this is the behavior when this command is not present in the submit description file. File
permissions are checked for read permissions on all input files, such as those defined by commands
input and transfer_input_files, and for write permission to output files, such as a log file defined by
log and output files defined with output or transfer_output_files.

¶stream_error = <True | False>
If True, then stderr is streamed back to the machine from which the job was submitted. If False,
stderr is stored locally and transferred back when the job completes. This command is ignored
if the job ClassAd attribute is False. The default value is False. This command must be used in
conjunction with error, otherwise stderr will sent to /dev/null on Unix machines and ignored
on Windows machines.

¶stream_input = <True | False>
If True, then stdin is streamed from the machine on which the job was submitted. The default
value is False. The command is only relevant for jobs submitted to the vanilla or java universes, and
it is ignored by the grid universe. This command must be used in conjunction with input, otherwise
stdin will be /dev/null on Unix machines and ignored on Windows machines.

¶stream_output = <True | False>
If True, then stdout is streamed back to the machine from which the job was submitted. If False,
stdout is stored locally and transferred back when the job completes. This command is ignored
if the job ClassAd attribute is False. The default value is False. This command must be used in
conjunction with output, otherwise stdout will sent to /dev/null on Unix machines and ignored
on Windows machines.

14.56. condor_submit 933

HTCondor Manual, Release 23.6.2

¶transfer_executable = <True | False>
This command is applicable to jobs submitted to the grid and vanilla universes. If trans-
fer_executable is set to False, then HTCondor looks for the executable on the remote machine,
and does not transfer the executable over. This is useful for an already pre-staged executable; HT-
Condor behaves more like rsh. The default value is True.

¶transfer_input_files = < file1,file2,file. . . >
A comma-delimited list of all the files and directories to be transferred into the working directory for
the job, before the job is started. By default, the file specified in the executable command and any
file specified in the input command (for example, stdin) are transferred.

When a path to an input file or directory is specified, this specifies the path to the file on the sub-
mit side. The file is placed in the job’s temporary scratch directory on the execute side, and it is
named using the base name of the original path. For example, /path/to/input_file becomes
input_file in the job’s scratch directory.

When a directory is specified, the behavior depends on whether there is a trailing path separator
character. When a directory is specified with a trailing path separator, it is as if each of the items
within the directory were listed in the transfer list. Therefore, the contents are transferred, but the
directory itself is not. When there is no trailing path separator, the directory itself is transferred with
all of its contents inside it. On platforms such as Windows where the path separator is not a forward
slash (/), a trailing forward slash is treated as equivalent to a trailing path separator. An example of
an input directory specified with a trailing forward slash is input_data/.

For grid universe jobs other than HTCondor-C, the transfer of directories is not currently supported.

Symbolic links to files are transferred as the files they point to. Transfer of symbolic links to direc-
tories is not currently supported.

For vanilla and vm universe jobs only, a file may be specified by giving a URL, instead of a file name.
The implementation for URL transfers requires both configuration and available plug-in.

If you have a plugin which handles https:// URLs (and HTCondor ships with one enabled), HT-
Condor supports pre-signing S3 URLs. This allows you to specify S3 URLs for this command, for
transfer_output_remaps, and for output_destination. By pre-signing the URLs on the sub-
mit node, HTCondor avoids transferring your S3 credentials to the execute node. You must specify
aws_access_key_id_file and aws_secret_access_key_file; you may specify aws_region,
if necessary; see below. To use the S3 service provided by AWS, use S3 URLs of the following forms:

For older buckets that aren't region-specific.
s3://<bucket>/<key>

For newer, region-specific buckets.
s3://<bucket>.s3.<region>.amazonaws.com/<key>

To use other S3 services, where <host> must contain a .:

s3://<host>/<key>

If necessary
aws_region = <region>

You may specify the corresponding access key ID and secret access key with
s3_access_key_id_file and s3_secret_access_key_file if you prefer (which may
reduce confusion, if you’re not using AWS).

If you must access S3 using temporary credentials, you may specify the temporary credentials us-
ing aws_access_key_id_file and aws_secret_access_key_file for the files containing the

934 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

corresponding temporary token, and +EC2SessionToken for the file containing the session token.

Temporary credentials have a limited lifetime. If you are using S3 only to download input files, the
job must start before the credentials expire. If you are using S3 to upload output files, the job must
finish before the credentials expire. HTCondor does not know when the credentials will expire; if
they do so before they are needed, file transfer will fail.

HTCondor does not presently support transferring entire buckets or directories from S3.

HTCondor supports Google Cloud Storage URLs – gs:// – via Google’s “interoperability” API.
You may specify gs:// URLs as if they were s3:// URLs, and they work the same way. You may
specify the corresponding access key ID and secret access key with gs_access_key_id_file and
gs_secret_access_key_file if you prefer (which may reduce confusion).

Note that (at present), you may not provide more than one set of credentials for s3:// or gs:// file
transfer; this implies that all such URLs download from or upload to the same service.

¶public_input_files = <file, file2>
A list of files on the AP that HTCondor should use a pre-configured HTTP server on the AP to
transfer. These files will not be encrypted, and will be publically fetchable by anyone who knows
their name.

¶transfer_output_files = < file1,file2,file. . . >
This command forms an explicit list of output files and directories to be transferred back from the
temporary working directory on the execute machine to the access point. If there are multiple files,
they must be delimited with commas. Setting transfer_output_files to the empty string (“”) means
that no files are to be transferred.

For HTCondor-C jobs and all other non-grid universe jobs, if transfer_output_files is not specified,
HTCondor will automatically transfer back all files in the job’s temporary working directory which
have been modified or created by the job. Subdirectories are not scanned for output, so if output from
subdirectories is desired, the output list must be explicitly specified. For grid universe jobs other
than HTCondor-C, desired output files must also be explicitly listed. Another reason to explicitly list
output files is for a job that creates many files, and the user wants only a subset transferred back.

For grid universe jobs other than with grid type condor, to have files other than standard output
and standard error transferred from the execute machine back to the access point, do use trans-
fer_output_files, listing all files to be transferred. These files are found on the execute machine in
the working directory of the job.

When a path to an output file or directory is specified, it specifies the path to the file on the execute
side. As a destination on the submit side, the file is placed in the job’s initial working directory, and it
is named using the base name of the original path. For example, path/to/output_file becomes
output_file in the job’s initial working directory. The name and path of the file that is written on
the submit side may be modified by using transfer_output_remaps. Note that this remap function
only works with files but not with directories.

When a directory is specified, the behavior depends on whether there is a trailing path separator
character. When a directory is specified with a trailing path separator, it is as if each of the items
within the directory were listed in the transfer list. Therefore, the contents are transferred, but the
directory itself is not. When there is no trailing path separator, the directory itself is transferred with
all of its contents inside it. On platforms such as Windows where the path separator is not a forward
slash (/), a trailing forward slash is treated as equivalent to a trailing path separator. An example of
an input directory specified with a trailing forward slash is input_data/.

For grid universe jobs other than HTCondor-C, the transfer of directories is not currently supported.

Symbolic links to files are transferred as the files they point to. Transfer of symbolic links to direc-
tories is not currently supported.

14.56. condor_submit 935

HTCondor Manual, Release 23.6.2

¶transfer_checkpoint_files = < file1,file2,file3. . . >
If present, this command defines the list of files and/or directories which constitute the job’s check-
point. When the job successfully checkpoints – see checkpoint_exit_code – these files will be
transferred to the submit node’s spool.

If this command is absent, the output is transferred instead.

If no files or directories are specified, nothing will be transferred. This is generally not useful.

The list is interpreted like transfer_output_files, but there is no corresponding remaps com-
mand.

¶checkpoint_destination = <destination-URL>
When present, defines a URL that specifies both a plug-in and a destination for the transfer of the
entire checkpoint of a job. The plug-in does the transfer of files, and no files are sent back to the
access point.

¶preserve_relative_paths = < True | False >
For vanilla and Docker -universe jobs (and others that use the shadow), this command modifies the
behavior of the file transfer commands. When set to true, the destination for an entry that is a relative
path in a file transfer list becomes its relative path, not its basename. For example, input_data/b
(and its contents, if it is a directory) will be transferred to input_data/b, not b. This applies to the
input, output, and checkpoint lists.

Trailing slashes are ignored when preserve_relative_paths is set.

¶transfer_output_remaps = < ” name = newname ; name2 = newname2 . . . “>
This specifies the name (and optionally path) to use when downloading output files from the com-
pleted job. Normally, output files are transferred back to the initial working directory with the same
name they had in the execution directory. This gives you the option to save them with a different
path or name. If you specify a relative path, the final path will be relative to the job’s initial working
directory, and HTCondor will create directories as necessary to transfer the file.

name describes an output file name produced by your job, and newname describes the file name it
should be downloaded to. Multiple remaps can be specified by separating each with a semicolon. If
you wish to remap file names that contain equals signs or semicolons, these special characters may
be escaped with a backslash. You cannot specify directories to be remapped.

Note that whether an output file is transferred is controlled by transfer_output_files. Listing a file
in transfer_output_remaps is not sufficient to cause it to be transferred.

¶transfer_plugins = < tag=plugin ; tag2,tag3=plugin2 . . . >
Specifies the file transfer plugins (see Third Party/Delegated file, credential and checkpoint transfer)
that should be transferred along with the input files prior to invoking file transfer plugins for files
specified in transfer_input_files. tag should be a URL prefix that is used in transfer_input_files, and
plugin is the path to a file transfer plugin that will handle that type of URL transfer.

¶when_to_transfer_output = < ON_EXIT | ON_EXIT_OR_EVICT | ON_SUCCESS >
Setting when_to_transfer_output to ON_EXIT will cause HTCondor to transfer the job’s output
files back to the submitting machine when the job completes (exits on its own). If a job is evicted
and started again, the subsequent execution will start with only the executable and input files in the
scratch directory sandbox. If transfer_output_files is not set, HTCondor considers all new
files in the sandbox’s top-level directory to be the output; subdirectories and their contents will not
be transferred.

Setting when_to_transfer_output to ON_EXIT_OR_EVICT will cause HTCondor to transfer the
job’s output files when the job completes (exits on its own) and when the job is evicted. When the
job is evicted, HTCondor will transfer the output files to a temporary directory on the submit node

936 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

(determined by the configuration variable). When the job restarts, these files will be transferred
instead of the input files. If transfer_output_files is not set, HTCondor considers all files
in the sandbox’s top-level directory to be the output; subdirectories and their contents will not be
transferred.

Setting when_to_transfer_output to ON_SUCCESSwill cause HTCondor to transfer the job’s out-
put files when the job completes successfully. Success is defined by the success_exit_code com-
mand, which must be set, even if the successful value is the default 0. If transfer_output_files
is not set, HTCondor considers all new files in the sandbox’s top-level directory to be the output;
subdirectories and their contents will not be transferred.

In all three cases, the job will go on hold if transfer_output_files specifies a file which does
not exist at transfer time.

¶aws_access_key_id_file , ¶s3_access_key_id_file
One of these commands is required if you specify an s3:// URL; they specify the file containing
the access key ID (and only the access key ID) used to pre-sign the URLs. Use only one.

¶aws_secret_access_key_file , ¶s3_secret_access_key_file
One of these commands is required if you specify an s3:// URL; they specify the file containing
the secret access key (and only the secret access key) used to pre-sign the URLs. Use only one.

¶aws_region
Optional if you specify an S3 URL (and ignored otherwise), this command specifies the region to
use if one is not specified in the URL.

¶gs_access_key_id_file
Required if you specify a gs:// URLs, this command specifies the file containing the access key ID
(and only the access key ID) used to pre-sign the URLs.

¶gs_secret_access_key_file
Required if you specify a gs:// URLs, this command specifies the file containing the secret access
key (and only the secret access key) used to pre-sign the URLs.

POLICY COMMANDS

¶allowed_execute_duration = <integer>
The longest time for which a job may be executing. Jobs which exceed this duration will go on hold.
This time does not include file-transfer time. Jobs which self-checkpoint have this long to write out
each checkpoint.

This attribute is intended to help minimize the time wasted by jobs which may erroneously run forever.

¶allowed_job_duration = <integer>
The longest time for which a job may continuously be in the running state. Jobs which exceed this
duration will go on hold. Exiting the running state resets the job duration used by this command.

This command is intended to help minimize the time wasted by jobs which may erroneously run
forever.

¶max_retries = <integer>
The maximum number of retries allowed for this job (must be non-negative). If the job fails (does
not exit with the success_exit_code exit code) it will be retried up to max_retries times (unless
retries are ceased because of the retry_until command). If max_retries is not defined, and either
retry_until or success_exit_code is, the value of will be used for the maximum number of retries.

The combination of the max_retries, retry_until, and success_exit_code commands causes an
appropriate OnExitRemove expression to be automatically generated. If retry command(s) and
on_exit_remove are both defined, the OnExitRemove expression will be generated by OR’ing the
expression specified in OnExitRemove and the expression generated by the retry commands.

14.56. condor_submit 937

HTCondor Manual, Release 23.6.2

¶retry_until = <Integer | ClassAd Boolean Expression>
An integer value or boolean expression that prevents further retries from taking place, even if
max_retries have not been exhausted. If retry_until is an integer, the job exiting with that exit
code will cause retries to cease. If retry_until is a ClassAd expression, the expression evaluating to
True will cause retries to cease. For example, if you only want to retry exit codes 17, 34, and 81:

max_retries = 5
retry_until = !member(ExitCode, {17, 34, 81})

¶success_exit_code = <integer>
The exit code that is considered successful for this job. Defaults to 0 if not defined.

Note: non-zero values of success_exit_code should generally not be used for DAG node jobs, unless
when_to_transfer_output is set to ON_SUCCESS in order to avoid failed jobs going on hold.

At the present time, condor_dagman does not take into account the value of success_exit_code. This
means that, if success_exit_code is set to a non-zero value, condor_dagman will consider the job
failed when it actually succeeds. For single-proc DAG node jobs, this can be overcome by using
a POST script that takes into account the value of success_exit_code (although this is not recom-
mended). For multi-proc DAG node jobs, there is currently no way to overcome this limitation.

¶checkpoint_exit_code = <integer>
The exit code which indicates that the executable has exited after successfully taking a checkpoint.
The checkpoint will transferred and the executable restarted. See Self-Checkpointing Applications
for details.

¶hold = <True | False>
If hold is set to True, then the submitted job will be placed into the Hold state. Jobs in the Hold
state will not run until released by condor_release. Defaults to False.

¶keep_claim_idle = <integer>
An integer number of seconds that a job requests the condor_schedd to wait before releasing its claim
after the job exits or after the job is removed.

The process by which the condor_schedd claims a condor_startd is somewhat time-consuming. To
amortize this cost, the condor_schedd tries to reuse claims to run subsequent jobs, after a job using
a claim is done. However, it can only do this if there is an idle job in the queue at the moment the
previous job completes. Sometimes, and especially for the node jobs when using DAGMan, there is
a subsequent job about to be submitted, but it has not yet arrived in the queue when the previous job
completes. As a result, the condor_schedd releases the claim, and the next job must wait an entire
negotiation cycle to start. When this submit command is defined with a non-negative integer, when
the job exits, the condor_schedd tries as usual to reuse the claim. If it cannot, instead of releasing the
claim, the condor_schedd keeps the claim until either the number of seconds given as a parameter,
or a new job which matches that claim arrives, whichever comes first. The condor_startd in question
will remain in the Claimed/Idle state, and the original job will be “charged” (in terms of priority) for
the time in this state.

¶ leave_in_queue = <ClassAd Boolean Expression>
When the ClassAd Expression evaluates to True, the job is not removed from the queue upon comple-
tion. This allows the user of a remotely spooled job to retrieve output files in cases where HTCondor
would have removed them as part of the cleanup associated with completion. The job will only exit
the queue once it has been marked for removal (via condor_rm, for example) and the leave_in_queue,
expression has become False. leave_in_queue defaults to False.

As an example, if the job is to be removed once the output is retrieved with condor_transfer_data,
then use

938 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

leave_in_queue = (JobStatus == 4) && ((StageOutFinish =?= UNDEFINED) ||\
(StageOutFinish == 0))

¶next_job_start_delay = <ClassAd Boolean Expression>
This expression specifies the number of seconds to delay after starting up this job before the next job
is started. The maximum allowed delay is specified by the HTCondor configuration variable , which
defaults to 10 minutes. This command does not apply to scheduler or local universe jobs.

This command has been historically used to implement a form of job start throttling from the job
submitter’s perspective. It was effective for the case of multiple job submission where the transfer
of extremely large input data sets to the execute machine caused machine performance to suffer.
This command is no longer useful, as throttling should be accomplished through configuration of the
condor_schedd daemon.

¶on_exit_hold = <ClassAd Boolean Expression>
The ClassAd expression is checked when the job exits, and if True, places the job into the Hold
state. If False (the default value when not defined), then nothing happens and the on_exit_remove
expression is checked to determine if that needs to be applied.

For example: Suppose a job is known to run for a minimum of an hour. If the job exits after less than
an hour, the job should be placed on hold and an e-mail notification sent, instead of being allowed to
leave the queue.

on_exit_hold = (time() - JobStartDate) < (60 * $(MINUTE))

This expression places the job on hold if it exits for any reason before running for an hour. An e-mail
will be sent to the user explaining that the job was placed on hold because this expression became
True.

periodic_* expressions take precedence over on_exit_* expressions, and *_hold expressions
take precedence over a *_remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd expression. This expression is
available for the vanilla, java, parallel, grid, local and scheduler universes.

¶on_exit_hold_reason = <ClassAd String Expression>
When the job is placed on hold due to the on_exit_hold expression becoming True, this expression
is evaluated to set the value of in the job ClassAd. If this expression is UNDEFINED or produces an
empty or invalid string, a default description is used.

¶on_exit_hold_subcode = <ClassAd Integer Expression>
When the job is placed on hold due to the on_exit_hold expression becoming True, this expression
is evaluated to set the value of in the job ClassAd. The default subcode is 0. The will be set to 3,
which indicates that the job went on hold due to a job policy expression.

¶on_exit_remove = <ClassAd Boolean Expression>
The ClassAd expression is checked when the job exits, and if True (the default value when unde-
fined), then it allows the job to leave the queue normally. If False, then the job is placed back into
the Idle state. If the user job runs under the vanilla universe, then the job restarts from the beginning.

For example, suppose a job occasionally segfaults, but chances are that the job will finish successfully
if the job is run again with the same data. The on_exit_remove expression can cause the job to run
again with the following command. Assume that the signal identifier for the segmentation fault is 11
on the platform where the job will be running.

on_exit_remove = (ExitBySignal == False) || (ExitSignal != 11)

14.56. condor_submit 939

HTCondor Manual, Release 23.6.2

This expression lets the job leave the queue if the job was not killed by a signal or if it was killed by
a signal other than 11, representing segmentation fault in this example. So, if the exited due to signal
11, it will stay in the job queue. In any other case of the job exiting, the job will leave the queue as
it normally would have done.

As another example, if the job should only leave the queue if it exited on its own with status 0, this
on_exit_remove expression works well:

on_exit_remove = (ExitBySignal == False) && (ExitCode == 0)

If the job was killed by a signal or exited with a non-zero exit status, HTCondor would leave the job
in the queue to run again.

periodic_* expressions take precedence over on_exit_* expressions, and *_hold expressions
take precedence over a *_remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd expression.

¶periodic_hold = <ClassAd Boolean Expression>
This expression is checked periodically when the job is not in the Held state. If it becomes True, the
job will be placed on hold. If unspecified, the default value is False.

periodic_* expressions take precedence over on_exit_* expressions, and *_hold expressions
take precedence over a *_remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd expression. Note that, by de-
fault, this expression is only checked once every 60 seconds. The period of these evaluations can be
adjusted by setting the , , and configuration macros.

¶periodic_hold_reason = <ClassAd String Expression>
When the job is placed on hold due to the periodic_hold expression becoming True, this expression
is evaluated to set the value of in the job ClassAd. If this expression is UNDEFINED or produces an
empty or invalid string, a default description is used.

¶periodic_hold_subcode = <ClassAd Integer Expression>
When the job is placed on hold due to the periodic_hold expression becoming true, this expression
is evaluated to set the value of in the job ClassAd. The default subcode is 0. The will be set to 3,
which indicates that the job went on hold due to a job policy expression.

¶periodic_release = <ClassAd Boolean Expression>
This expression is checked periodically when the job is in the Held state. If the expression becomes
True, the job will be released. If the job was held via condor_hold (i.e. is 1), then this expression is
ignored.

Only job ClassAd attributes will be defined for use by this ClassAd expression. Note that, by de-
fault, this expression is only checked once every 60 seconds. The period of these evaluations can be
adjusted by setting the , , and configuration macros.

¶periodic_remove = <ClassAd Boolean Expression>
This expression is checked periodically. If it becomes True, the job is removed from the queue. If
unspecified, the default value is False.

See the Examples section of this manual page for an example of a periodic_remove expression.

periodic_* expressions take precedence over on_exit_* expressions, and *_hold expressions
take precedence over a *_remove expressions. So, the periodic_remove expression takes prece-
dent over the on_exit_remove expression, if the two describe conflicting actions.

Only job ClassAd attributes will be defined for use by this ClassAd expression. Note that, by de-
fault, this expression is only checked once every 60 seconds. The period of these evaluations can be
adjusted by setting the , , and configuration macros.

940 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

periodic_vacate = <ClassAd Boolean Expression>
This expression is checked periodically for running jobs. If it becomes True, job is evicted from the
machine it is running on, and return to the queue, in an Idle state. If unspecified, the default value is
False.

Only job ClassAd attributes will be defined for use by this ClassAd expression. Note that, by de-
fault, this expression is only checked once every 60 seconds. The period of these evaluations can be
adjusted by setting the , , and configuration macros.

COMMANDS FOR THE GRID

¶arc_application = <XML-string>
For grid universe jobs of type arc, provides additional XML attributes under the <Application>
section of the ARC ADL job description which are not covered by regular submit description file
parameters.

¶arc_resources = <XML-string>
For grid universe jobs of type arc, provides additional XML attributes under the <Resources>
section of the ARC ADL job description which are not covered by regular submit description file
parameters.

¶arc_rte = < rte1 option,rte2 >
For grid universe jobs of type arc, provides a list of Runtime Environment names that the job requires
on the ARC system. The list is comma-delimited. If a Runtime Environment name supports options,
those can be provided after the name, separated by spaces. Runtime Environment names are defined
by the ARC server.

¶azure_admin_key = <pathname>
For grid type azure jobs, specifies the path and file name of a file that contains an SSH public key.
This key can be used to log into the administrator account of the instance via SSH.

¶azure_admin_username = <account name>
For grid type azure jobs, specifies the name of an administrator account to be created in the instance.
This account can be logged into via SSH.

¶azure_auth_file = <pathname>
For grid type azure jobs, specifies a path and file name of the authorization file that grants permission
for HTCondor to use the Azure account. If it’s not defined, then HTCondor will attempt to use the
default credentials of the Azure CLI tools.

¶azure_image = <image id>
For grid type azure jobs, identifies the disk image to be used for the boot disk of the instance. This
image must already be registered within Azure.

¶azure_location = <image id>
For grid type azure jobs, identifies the location within Azure where the instance should be run. As
an example, one current location is centralus.

¶azure_size = <machine type>
For grid type azure jobs, the hardware configuration that the virtual machine instance is to run on.

¶batch_extra_submit_args = <command-line arguments>
Used for batch grid universe jobs. Specifies additional command-line arguments to be given to the
target batch system’s job submission command.

¶batch_project = <projectname>
Used for batch grid universe jobs. Specifies the name of the PBS/LSF/SGE/SLURM project, ac-
count, or allocation that should be charged for the resources used by the job.

14.56. condor_submit 941

HTCondor Manual, Release 23.6.2

¶batch_queue = <queuename>
Used for batch grid universe jobs. Specifies the name of the PBS/LSF/SGE/SLURM job queue into
which the job should be submitted. If not specified, the default queue is used. For a multi-cluster
SLURM configuration, which cluster to use can be specified by supplying the name after an @ symbol.
For example, to submit a job to the debug queue on cluster foo, you would use the value debug@foo.

¶batch_runtime = <seconds>
Used for batch grid universe jobs. Specifies a limit in seconds on the execution time of the job. This
limit is enforced by the PBS/LSF/SGE/SLURM scheduler.

¶cloud_label_names = <name0,name1,name. . .>
For grid type gce jobs, specifies the case of tag names that will be associated with the running in-
stance. This is only necessary if a tag name case matters. By default the list will be automatically
generated.

¶cloud_label_<name> = <value>
For grid type gce jobs, specifies a label and value to be associated with the running instance. The
label name will be lower-cased; use cloud_label_names to change the case.

¶delegate_job_GSI_credentials_lifetime = <seconds>
Specifies the maximum number of seconds for which delegated proxies should be valid. The default
behavior when this command is not specified is determined by the configuration variable , which
defaults to one day. A value of 0 indicates that the delegated proxy should be valid for as long
as allowed by the credential used to create the proxy. This setting currently only applies to proxies
delegated for non-grid jobs and for HTCondor-C jobs. This variable has no effect if the configuration
variable is False, because in that case the job proxy is copied rather than delegated.

¶ec2_access_key_id = <pathname>
For grid type ec2 jobs, identifies the file containing the access key.

¶ec2_ami_id = <EC2 xMI ID>
For grid type ec2 jobs, identifies the machine image. Services compatible with the EC2 Query API
may refer to these with abbreviations other than AMI, for example EMI is valid for Eucalyptus.

¶ec2_availability_zone = <zone name>
For grid type ec2 jobs, specifies the Availability Zone that the instance should be run in. This com-
mand is optional, unless ec2_ebs_volumes is set. As an example, one current zone is us-east-1b.

¶ec2_block_device_mapping = <block-device>:<kernel-device>,<block-device>:<kernel-device>,
. . .

For grid type ec2 jobs, specifies the block device to kernel device mapping. This command is op-
tional.

¶ec2_ebs_volumes = <ebs name>:<device name>,<ebs name>:<device name>,. . .
For grid type ec2 jobs, optionally specifies a list of Elastic Block Store (EBS) volumes to be made
available to the instance and the device names they should have in the instance.

¶ec2_elastic_ip = <elastic IP address>
For grid type ec2 jobs, and optional specification of an Elastic IP address that should be assigned to
this instance.

¶ec2_iam_profile_arn = <IAM profile ARN>
For grid type ec2 jobs, an Amazon Resource Name (ARN) identifying which Identity and Access
Management (IAM) (instance) profile to associate with the instance.

¶ec2_iam_profile_name = <IAM profile name>
For grid type ec2 jobs, a name identifying which Identity and Access Management (IAM) (instance)
profile to associate with the instance.

¶ec2_instance_type = <instance type>
For grid type ec2 jobs, identifies the instance type. Different services may offer different instance

942 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

types, so no default value is set.

¶ec2_keypair = <ssh key-pair name>
For grid type ec2 jobs, specifies the name of an SSH key-pair that is already registered with the EC2
service. The associated private key can be used to ssh into the virtual machine once it is running.

¶ec2_keypair_file = <pathname>
For grid type ec2 jobs, specifies the complete path and file name of a file into which HTCondor will
write an SSH key for use with ec2 jobs. The key can be used to ssh into the virtual machine once it
is running. If ec2_keypair is specified for a job, ec2_keypair_file is ignored.

¶ec2_parameter_names = ParameterName1, ParameterName2, . . .
For grid type ec2 jobs, a space or comma separated list of the names of additional parameters to pass
when instantiating an instance.

¶ec2_parameter_<name> = <value>
For grid type ec2 jobs, specifies the value for the correspondingly named (instance instantiation) pa-
rameter. <name> is the parameter name specified in the submit command ec2_parameter_names,
but with any periods replaced by underscores.

¶ec2_secret_access_key = <pathname>
For grid type ec2 jobs, specifies the path and file name containing the secret access key.

¶ec2_security_groups = group1, group2, . . .
For grid type ec2 jobs, defines the list of EC2 security groups which should be associated with the
job.

¶ec2_security_ids = id1, id2, . . .
For grid type ec2 jobs, defines the list of EC2 security group IDs which should be associated with
the job.

¶ec2_spot_price = <bid>
For grid type ec2 jobs, specifies the spot instance bid, which is the most that the job submitter is
willing to pay per hour to run this job.

¶ec2_tag_names = <name0,name1,name. . .>
For grid type ec2 jobs, specifies the case of tag names that will be associated with the running in-
stance. This is only necessary if a tag name case matters. By default the list will be automatically
generated.

¶ec2_tag_<name> = <value>
For grid type ec2 jobs, specifies a tag to be associated with the running instance. The tag name will
be lower-cased; use ec2_tag_names to change the case.

¶WantNameTag = <True | False>
For grid type ec2 jobs, a job may request that its ‘name’ tag be (not) set by HTCondor. If the job
does not otherwise specify any tags, not setting its name tag will eliminate a call by the EC2 GAHP,
improving performance.

¶ec2_user_data = <data>
For grid type ec2 jobs, provides a block of data that can be accessed by the virtual machine. If both
ec2_user_data and ec2_user_data_file are specified for a job, the two blocks of data are concate-
nated, with the data from this ec2_user_data submit command occurring first.

¶ec2_user_data_file = <pathname>
For grid type ec2 jobs, specifies a path and file name whose contents can be accessed by the virtual
machine. If both ec2_user_data and ec2_user_data_file are specified for a job, the two blocks of
data are concatenated, with the data from that ec2_user_data submit command occurring first.

¶ec2_vpc_ip = <a.b.c.d>
For grid type ec2 jobs, that are part of a Virtual Private Cloud (VPC), an optional specification of

14.56. condor_submit 943

HTCondor Manual, Release 23.6.2

the IP address that this instance should have within the VPC.

¶ec2_vpc_subnet = <subnet specification string>
For grid type ec2 jobs, an optional specification of the Virtual Private Cloud (VPC) that this instance
should be a part of.

¶gce_account = <account name>
For grid type gce jobs, specifies the Google cloud services account to use. If this submit command
isn’t specified, then a random account from the authorization file given by gce_auth_file will be used.

¶gce_auth_file = <pathname>
For grid type gce jobs, specifies a path and file name of the authorization file that grants permission
for HTCondor to use the Google account. If this command is not specified, then the default file of
the Google command-line tools will be used.

¶gce_image = <image id>
For grid type gce jobs, the identifier of the virtual machine image representing the HTCondor job to
be run. This virtual machine image must already be register with GCE and reside in Google’s Cloud
Storage service.

¶gce_json_file = <pathname>
For grid type gce jobs, specifies the path and file name of a file that contains JSON elements that
should be added to the instance description submitted to the GCE service.

¶gce_machine_type = <machine type>
For grid type gce jobs, the long form of the URL that describes the machine configuration that the
virtual machine instance is to run on.

¶gce_metadata = <name=value,. . . ,name=value>
For grid type gce jobs, a comma separated list of name and value pairs that define metadata for a
virtual machine instance that is an HTCondor job.

¶gce_metadata_file = <pathname>
For grid type gce jobs, specifies a path and file name of the file that contains metadata for a virtual
machine instance that is an HTCondor job. Within the file, each name and value pair is on its own
line; so, the pairs are separated by the newline character.

¶gce_preemptible = <True | False>
For grid type gce jobs, specifies whether the virtual machine instance should be preemptible. The
default is for the instance to not be preemptible.

¶grid_resource = <grid-type-string> <grid-specific-parameter-list>
For each grid-type-string value, there are further type-specific values that must specified. This
submit description file command allows each to be given in a space-separated list. Allowable grid-
type-string values are arc, azure, batch, condor, ec2, and gce. The HTCondor manual chapter on
Grid Computing details the variety of grid types.

For a grid-type-string of batch, the single parameter is the name of the local batch system, and will
be one of pbs, lsf, slurm, or sge.

For a grid-type-string of condor, the first parameter is the name of the remote condor_schedd
daemon. The second parameter is the name of the pool to which the remote condor_schedd daemon
belongs.

For a grid-type-string of ec2, one additional parameter specifies the EC2 URL.

For a grid-type-string of arc, the single parameter is the name of the ARC resource to be used.

¶transfer_error = <True | False>
For jobs submitted to the grid universe only. If True, then the error output (from stderr) from
the job is transferred from the remote machine back to the access point. The name of the file after

944 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

transfer is given by the error command. If False, no transfer takes place (from the remote machine
to access point), and the name of the file is given by the error command. The default value is True.

¶transfer_input = <True | False>
For jobs submitted to the grid universe only. If True, then the job input (stdin) is transferred
from the machine where the job was submitted to the remote machine. The name of the file that is
transferred is given by the input command. If False, then the job’s input is taken from a pre-staged
file on the remote machine, and the name of the file is given by the input command. The default
value is True.

For transferring files other than stdin, see transfer_input_files.

¶transfer_output = <True | False>
For jobs submitted to the grid universe only. If True, then the output (from stdout) from the job is
transferred from the remote machine back to the access point. The name of the file after transfer is
given by the output command. If False, no transfer takes place (from the remote machine to access
point), and the name of the file is given by the output command. The default value is True.

For transferring files other than stdout, see transfer_output_files,

¶use_x509userproxy = <True | False>
Set this command to True to indicate that the job requires an X.509 user proxy. If x509userproxy
is set, then that file is used for the proxy. Otherwise, the proxy is looked for in the standard loca-
tions. If x509userproxy is set or if the job is a grid universe job of grid type arc, then the value of
use_x509userproxy is forced to True. Defaults to False.

¶x509userproxy = <full-pathname>
Used to override the default path name for X.509 user certificates. The default location for X.509
proxies is the /tmp directory, which is generally a local file system. Setting this value would al-
low HTCondor to access the proxy in a shared file system (for example, AFS). HTCondor will use
the proxy specified in the submit description file first. If nothing is specified in the submit descrip-
tion file, it will use the environment variable X509_USER_PROXY. If that variable is not present,
it will search in the default location. Note that proxies are only valid for a limited time. Con-
dor_submit will not submit a job with an expired proxy, it will return an error. Also, if the con-
figuration parameter CRED_MIN_TIME_LEFT is set to some number of seconds, and if the proxy
will expire before that many seconds, condor_submit will also refuse to submit the job. That is, if
CRED_MIN_TIME_LEFT is set to 60, condor_submit will refuse to submit a job whose proxy will
expire 60 seconds from the time of submission.

x509userproxy is relevant when the universe is vanilla, or when the universe is grid and the type
of grid system is one of condor, or arc. Defining a value causes the proxy to be delegated to the
execute machine. Further, VOMS attributes defined in the proxy will appear in the job ClassAd.

¶use_scitokens = <True | False | Auto>
Set this command to True to indicate that the job requires a scitoken. If scitokens_file is set, then
that file is used for the scitoken filename. Otherwise, the the scitoken filename is looked for in the
BEARER_TOKEN_FILE environment variable. If scitokens_file is set then the value of use_scitokens
defaults to True. If the filename is not defined in on one of these two places, then condor_submit
will fail with an error message. Set this command to Auto to indicate that the job will use a scitoken
if scitokens_file or the BEARER_TOKEN_FILE environment variable is set, but it will not be an error
if no file is specified.

¶scitokens_file = <full-pathname>
Used to set the path to the file containing the scitoken that the job needs, or to override the path to
the scitoken contained in the BEARER_TOKEN_FILE environment variable.

COMMANDS FOR PARALLEL, JAVA, and SCHEDULER UNIVERSES

¶hold_kill_sig = <signal-number>

14.56. condor_submit 945

HTCondor Manual, Release 23.6.2

For the scheduler universe only, signal-number is the signal delivered to the job when the job is put
on hold with condor_hold. signal-number may be either the platform-specific name or value of the
signal. If this command is not present, the value of kill_sig is used.

¶jar_files = <file_list>
Specifies a list of additional JAR files to include when using the Java universe. JAR files will be
transferred along with the executable and automatically added to the classpath.

¶java_vm_args = <argument_list>
Specifies a list of additional arguments to the Java VM itself, When HTCondor runs the Java program,
these are the arguments that go before the class name. This can be used to set VM-specific arguments
like stack size, garbage-collector arguments and initial property values.

¶machine_count = <max>
For the parallel universe, a single value (max) is required. It is neither a maximum or minimum, but
the number of machines to be dedicated toward running the job.

¶remove_kill_sig = <signal-number>
For the scheduler universe only, signal-number is the signal delivered to the job when the job is
removed with condor_rm. signal-number may be either the platform-specific name or value of the
signal. This example shows it both ways for a Linux signal:

remove_kill_sig = SIGUSR1
remove_kill_sig = 10

If this command is not present, the value of kill_sig is used.

COMMANDS FOR THE VM UNIVERSE

¶vm_disk = file1:device1:permission1, file2:device2:permission2:format2, . . .
A list of comma separated disk files. Each disk file is specified by 4 colon separated fields. The first
field is the path and file name of the disk file. The second field specifies the device. The third field
specifies permissions, and the optional fourth field specifies the image format. If a disk file will be
transferred by HTCondor, then the first field should just be the simple file name (no path information).

An example that specifies two disk files:

vm_disk = /myxen/diskfile.img:sda1:w,/myxen/swap.img:sda2:w

¶vm_checkpoint = <True | False>
A boolean value specifying whether or not to take checkpoints. If not specified, the default value is
False. In the current implementation, setting both vm_checkpoint and vm_networking to True
does not yet work in all cases. Networking cannot be used if a vm universe job uses a checkpoint in
order to continue execution after migration to another machine.

¶vm_macaddr = <MACAddr>
Defines that MAC address that the virtual machine’s network interface should have, in the standard
format of six groups of two hexadecimal digits separated by colons.

¶vm_memory = <MBytes-of-memory>
The amount of memory in MBytes that a vm universe job requires.

¶vm_networking = <True | False>
Specifies whether to use networking or not. In the current implementation, setting both
vm_checkpoint and vm_networking to True does not yet work in all cases. Networking cannot
be used if a vm universe job uses a checkpoint in order to continue execution after migration to
another machine.

946 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

¶vm_networking_type = <nat | bridge >
When vm_networking is True, this definition augments the job’s requirements to match only ma-
chines with the specified networking. If not specified, then either networking type matches.

¶vm_no_output_vm = <True | False>
When True, prevents HTCondor from transferring output files back to the machine from which the
vm universe job was submitted. If not specified, the default value is False.

¶vm_type = <xen | kvm>
Specifies the underlying virtual machine software that this job expects.

¶xen_initrd = <image-file>
When xen_kernel gives a file name for the kernel image to use, this optional command may specify
a path to a ramdisk (initrd) image file. If the image file will be transferred by HTCondor, then the
value should just be the simple file name (no path information).

¶xen_kernel = <included | path-to-kernel>
A value of included specifies that the kernel is included in the disk file. If not one of these values,
then the value is a path and file name of the kernel to be used. If a kernel file will be transferred by
HTCondor, then the value should just be the simple file name (no path information).

¶xen_kernel_params = <string>
A string that is appended to the Xen kernel command line.

¶xen_root = <string>
A string that is appended to the Xen kernel command line to specify the root device. This string is
required when xen_kernel gives a path to a kernel. Omission for this required case results in an error
message during submission.

COMMANDS FOR THE DOCKER UNIVERSE

¶docker_image = < image-name >
Defines the name of the Docker image that is the basis for the docker container.

¶docker_network_type = < host | none | custom_admin_defined_value>
If docker_network_type is set to the string host, then the job is run using the host’s network. If
docker_network_type is set to the string none, then the job is run with no network. If this is not
set, each job gets a private network interface. Some administrators may define site specific docker
networks on a given worker node. When this is the case, additional values may be valid here.

¶docker_pull_policy = < always >
if docker_pull_policy is set to always, when a docker universe job starts on a worker node, the option
“–pull always” will be passed to the docker run command. This only impacts worker nodes which
already have a locally cached version of the image. With this option, docker will always check with
the repo to see if the cached version is out of date. This requires more network connectivity, and may
cause docker hub to throttle future pull requests. It is generally recommened to never mutate docker
image tag name, and avoid needing this option.

¶container_service_names = <service-name>[, <service-name>]*
A string- or comma- separated list of service names. Each service-name must have a correspond-
ing <service-name>_container_port command specifying a port number (an integer from 0 to
65535). HTCondor will ask Docker to forward from a host port to the specified port inside the con-
tainer. When Docker has done so, HTCondor will add an attribute to the job ad for each service,
<service-name>HostPort, which contains the port number on the host forwarding to the corre-
sponding service.

¶<service-name>_container_port = port_number
See above.

14.56. condor_submit 947

HTCondor Manual, Release 23.6.2

¶<service-name>_HostPort = port_number
See above.

¶docker_override_entrypoint = <True | False>
If docker_override_entrypoint is set to True and executable is not empty, the image entrypoint is
replaced with the executable. The default value (False) follows the same logic as the docker engine
uses with images (see docker run):

• Without entrypoint, executable runs as main PID

• With entrypoint, it is launched with the excutable as first argument

Any additional arguments will follow the executable.

COMMANDS FOR THE CONTAINER UNIVERSE

¶container_image = < image-name >
Defines the name of the container image. Can be a singularity .sif file, a singularity exploded direc-
tory, or a path to an image in a docker style repository

¶container_target_dir = < path-to-directory-inside-container >
Defines the working directory of the job inside the container. Will be mapped to the scratch directory
on the worker node.

ADVANCED COMMANDS

¶accounting_group = <accounting-group-name>
Causes jobs to negotiate under the given accounting group. This value is advertised in the job ClassAd
as . The HTCondor Administrator’s manual contains more information about accounting groups.

¶accounting_group_user = <accounting-group-user-name>
Sets the name associated with this job to be used for resource usage accounting purposes, such as
computation of fair-share priority and reporting via condor_userprio. If not set, defaults to the
value of the job ClassAd attribute User. This value is advertised in the job ClassAd as .

¶concurrency_limits = <string-list>
A list of resources that this job needs. The resources are presumed to have concurrency limits placed
upon them, thereby limiting the number of concurrent jobs in execution which need the named re-
source. Commas and space characters delimit the items in the list. Each item in the list is a string
that identifies the limit, or it is a ClassAd expression that evaluates to a string, and it is evaluated in
the context of machine ClassAd being considered as a match. Each item in the list also may specify a
numerical value identifying the integer number of resources required for the job. The syntax follows
the resource name by a colon character (:) and the numerical value. Details on concurrency limits
are in the HTCondor Administrator’s manual.

¶concurrency_limits_expr = <ClassAd String Expression>
A ClassAd expression that represents the list of resources that this job needs after evaluation. The
ClassAd expression may specify machine ClassAd attributes that are evaluated against a matched
machine. After evaluation, the list sets concurrency_limits.

¶copy_to_spool = <True | False>
If copy_to_spool is True, then condor_submit copies the executable to the local spool directory be-
fore running it on a remote host. As copying can be quite time consuming and unnecessary, the default
value is False for all job universes. When False, condor_submit does not copy the executable to a
local spool directory.

¶coresize = <size>
Should the user’s program abort and produce a core file, coresize specifies the maximum size in
bytes of the core file which the user wishes to keep. If coresize is not specified in the command file,
this is set to 0 (meaning no core will be generated).

948 Chapter 14. Commands Reference (man pages)

https://docs.docker.com/engine/reference/run/#default-command-and-options

HTCondor Manual, Release 23.6.2

¶cron_day_of_month = <Cron-evaluated Day>
The set of days of the month for which a deferral time applies. The HTCondor User’s manual section
on Time Scheduling for Job Execution has further details.

¶cron_day_of_week = <Cron-evaluated Day>
The set of days of the week for which a deferral time applies. The HTCondor User’s manual section
on Time Scheduling for Job Execution has further details.

¶cron_hour = <Cron-evaluated Hour>
The set of hours of the day for which a deferral time applies. The HTCondor User’s manual section
on Time Scheduling for Job Execution has further details.

¶cron_minute = <Cron-evaluated Minute>
The set of minutes within an hour for which a deferral time applies. The HTCondor User’s manual
section on Time Scheduling for Job Execution has further details.

¶cron_month = <Cron-evaluated Month>
The set of months within a year for which a deferral time applies. The HTCondor User’s manual
section on Time Scheduling for Job Execution has further details.

¶cron_prep_time = <ClassAd Integer Expression>
Analogous to deferral_prep_time. The number of seconds prior to a job’s deferral time that the job
may be matched and sent to an execution machine.

¶cron_window = <ClassAd Integer Expression>
Analogous to the submit command deferral_window. It allows cron jobs that miss their deferral
time to begin execution.

The HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

¶dagman_log = <pathname>
DAGMan inserts this command to specify an event log that it watches to maintain the state of the
DAG. If the log command is not specified in the submit file, DAGMan uses the log command to
specify the event log.

¶deferral_prep_time = <ClassAd Integer Expression>
The number of seconds prior to a job’s deferral time that the job may be matched and sent to an
execution machine.

The HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

¶deferral_time = <ClassAd Integer Expression>
Allows a job to specify the time at which its execution is to begin, instead of beginning execution as
soon as it arrives at the execution machine. The deferral time is an expression that evaluates to a Unix
Epoch timestamp (the number of seconds elapsed since 00:00:00 on January 1, 1970, Coordinated
Universal Time). Deferral time is evaluated with respect to the execution machine. This option delays
the start of execution, but not the matching and claiming of a machine for the job. If the job is not
available and ready to begin execution at the deferral time, it has missed its deferral time. A job that
misses its deferral time will be put on hold in the queue.

The HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

Due to implementation details, a deferral time may not be used for scheduler universe jobs.

¶deferral_window = <ClassAd Integer Expression>
The deferral window is used in conjunction with the deferral_time command to allow jobs that miss
their deferral time to begin execution.

The HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

14.56. condor_submit 949

HTCondor Manual, Release 23.6.2

¶description = <string>
A string that sets the value of the job ClassAd attribute . When set, tools which display the executable
such as condor_q will instead use this string.

¶email_attributes = <list-of-job-ad-attributes>
A comma-separated list of attributes from the job ClassAd. These attributes and their values will be
included in the e-mail notification of job completion.

¶ image_size = <size>
Advice to HTCondor specifying the maximum virtual image size to which the job will grow during
its execution. HTCondor will then execute the job only on machines which have enough resources,
(such as virtual memory), to support executing the job. If not specified, HTCondor will automatically
make a (reasonably accurate) estimate about the job’s size and adjust this estimate as the program
runs. If specified and underestimated, the job may crash due to the inability to acquire more address
space; for example, if malloc() fails. If the image size is overestimated, HTCondor may have difficulty
finding machines which have the required resources. size is specified in KiB. For example, for an
image size of 8 MiB, size should be 8000.

¶ initialdir = <directory-path>
Used to give jobs a directory with respect to file input and output. Also provides a directory (on the
machine from which the job is submitted) for the job event log, when a full path is not specified.

For vanilla universe jobs where there is a shared file system, it is the current working directory on
the machine where the job is executed.

For vanilla or grid universe jobs where file transfer mechanisms are utilized (there is not a shared
file system), it is the directory on the machine from which the job is submitted where the input files
come from, and where the job’s output files go to.

For scheduler universe jobs, it is the directory on the machine from which the job is submitted where
the job runs; the current working directory for file input and output with respect to relative path
names.

Note that the path to the executable is not relative to initialdir if it is a relative path, it is relative to
the directory in which the condor_submit command is run.

¶job_ad_information_attrs = <attribute-list>
A comma-separated list of job ClassAd attribute names. The named attributes and their values are
written to the job event log whenever any event is being written to the log. This implements the same
thing as the configuration variable EVENT_LOG_INFORMATION_ATTRS (see the Daemon Logging
Configuration File Entries page), but it applies to the job event log, instead of the system event
log.

¶job_lease_duration = <number-of-seconds>
For vanilla, parallel, VM, and java universe jobs only, the duration in seconds of a job lease. The
default value is 2,400, or forty minutes. If a job lease is not desired, the value can be explicitly set to
0 to disable the job lease semantics. The value can also be a ClassAd expression that evaluates to an
integer. The HTCondor User’s manual section on Special Environment Considerations has further
details.

¶job_machine_attrs = <attr1, attr2, . . . >
A comma and/or space separated list of machine attribute names that should be recorded in the
job ClassAd in addition to the ones specified by the condor_schedd daemon’s system configuration
variable . When there are multiple run attempts, history of machine attributes from previous run
attempts may be kept. The number of run attempts to store may be extended beyond the system-
specified history length by using the submit file command

¶job_machine_attrs_history_length
A machine attribute named X will be inserted into the job ClassAd as an attribute named

950 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

MachineAttrX0. The previous value of this attribute will be named MachineAttrX1, the previ-
ous to that will be named MachineAttrX2, and so on, up to the specified history length. A history
of length 1 means that only MachineAttrX0will be recorded. The value recorded in the job ClassAd
is the evaluation of the machine attribute in the context of the job ClassAd when the condor_schedd
daemon initiates the start up of the job. If the evaluation results in an Undefined or Error result,
the value recorded in the job ad will be Undefined or Error, respectively.

¶want_graceful_removal = <boolean expression>
If true, this job will be given a chance to shut down cleanly when removed. The job will be given
as much time as the administrator of the execute resource allows, which may be none. The default is
false. For details, see the configuration setting .

¶kill_sig = <signal-number>
When HTCondor needs to kick a job off of a machine, it will send the job the signal specified by
signal-number, which needs to be an integer which represents a valid signal on the execution ma-
chine. The default value is SIGTERM, which is the standard way to terminate a program in Unix.

¶kill_sig_timeout = <seconds>
This submit command should no longer be used. job_max_vacate_time instead. If
job_max_vacate_time is not defined, this defines the number of seconds that HTCondor should
wait following the sending of the kill signal defined by kill_sig and forcibly killing the job. The
actual amount of time between sending the signal and forcibly killing the job is the smallest of this
value and the configuration variable , as defined on the execute machine.

¶ load_profile = <True | False>
When True, loads the account profile of the dedicated run account for Windows jobs. May not be
used with run_as_owner.

¶ log_xml = <True | False>
If log_xml is True, then the job event log file will be written in ClassAd XML. If not specified,
XML is not used. Note that the file is an XML fragment; it is missing the file header and footer. Do
not mix XML and non-XML within a single file. If multiple jobs write to a single job event log file,
ensure that all of the jobs specify this option in the same way.

¶match_list_length = <integer value>
Defaults to the value zero (0). When match_list_length is defined with an integer value greater than
zero (0), attributes are inserted into the job ClassAd. The maximum number of attributes defined is
given by the integer value. The job ClassAds introduced are given as

LastMatchName0 = "most-recent-Name"
LastMatchName1 = "next-most-recent-Name"

The value for each introduced ClassAd is given by the value of the Name attribute from the machine
ClassAd of a previous execution (match). As a job is matched, the definitions for these attributes will
roll, with LastMatchName1 becoming LastMatchName2, LastMatchName0 becoming LastMatch-
Name1, and LastMatchName0 being set by the most recent value of the Name attribute.

An intended use of these job attributes is in the requirements expression. The requirements can allow
a job to prefer a match with either the same or a different resource than a previous match.

¶job_max_vacate_time = <integer expression>
An integer-valued expression (in seconds) that may be used to adjust the time given to an evicted
job for gracefully shutting down. If the job’s setting is less than the machine’s, the job’s is used. If
the job’s setting is larger than the machine’s, the result depends on whether the job has any excess
retirement time. If the job has more retirement time left than the machine’s max vacate time setting,
then retirement time will be converted into vacating time, up to the amount requested by the job.

Setting this expression does not affect the job’s resource requirements or preferences. For a job to
only run on a machine with a minimum , or to preferentially run on such machines, explicitly specify

14.56. condor_submit 951

HTCondor Manual, Release 23.6.2

this in the requirements and/or rank expressions.

¶manifest = <True | False>
For vanilla and Docker -universe jobs (and others that use the shadow), specifies if HTCondor (the
starter) should produce a “manifest”, which is directory containing three files: the list of files and
directories at the top level of the sandbox when file transfer in completes (in), the same when file
transfer out begins (out), and a dump of the environment set for the job ().

This feature is not presently available for Windows.

¶manifest_dir = <directory name>
For vanilla and Docker -universe jobs (and others that use the shadow), specifies the directory in
which to record the manifest. Specifying this enables the creation of a manifest. By default, the
manifest directory is named <cluster>_<proc>_manifest, to avoid conflicts.

This feature is not presently available for Windows.

¶max_job_retirement_time = <integer expression>
An integer-valued expression (in seconds) that does nothing unless the machine that runs the job
has been configured to provide retirement time. Retirement time is a grace period given to a job
to finish when a resource claim is about to be preempted. The default behavior in many cases is to
take as much retirement time as the machine offers, so this command will rarely appear in a submit
description file.

When a resource claim is to be preempted, this expression in the submit file specifies the maximum
run time of the job (in seconds, since the job started). This expression has no effect, if it is greater
than the maximum retirement time provided by the machine policy. If the resource claim is not
preempted, this expression and the machine retirement policy are irrelevant. If the resource claim
is preempted the job will be allowed to run until the retirement time expires, at which point it is
hard-killed. The job will be soft-killed when it is getting close to the end of retirement in order to
give it time to gracefully shut down. The amount of lead-time for soft-killing is determined by the
maximum vacating time granted to the job.

Any jobs running with priority have a default max_job_retirement_time of 0, so no retirement
time is utilized by default. In all other cases, no default value is provided, so the maximum amount
of retirement time is utilized by default.

Setting this expression does not affect the job’s resource requirements or preferences. For a job to
only run on a machine with a minimum MaxJobRetirementTime, or to preferentially run on such
machines, explicitly specify this in the requirements and/or rank expressions.

¶nice_user = <True | False>
Normally, when a machine becomes available to HTCondor, HTCondor decides which job to run
based upon user and job priorities. Setting nice_user equal to True tells HTCondor not to use your
regular user priority, but that this job should have last priority among all users and all jobs. So jobs
submitted in this fashion run only on machines which no other non-nice_user job wants - a true
bottom-feeder job! This is very handy if a user has some jobs they wish to run, but do not wish to
use resources that could instead be used to run other people’s HTCondor jobs. Jobs submitted in this
fashion have an accounting group. The accounting group is configurable by setting which defaults
to nice-user The default value is False.

¶noop_job = <ClassAd Boolean Expression>
When this boolean expression is True, the job is immediately removed from the queue, and HTCon-
dor makes no attempt at running the job. The log file for the job will show a job submitted event and
a job terminated event, along with an exit code of 0, unless the user specifies a different signal or exit
code.

¶noop_job_exit_code = <return value>
When noop_job is in the submit description file and evaluates to True, this command allows the

952 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

job to specify the return value as shown in the job’s log file job terminated event. If not speci-
fied, the job will show as having terminated with status 0. This overrides any value specified with
noop_job_exit_signal.

¶noop_job_exit_signal = <signal number>
When noop_job is in the submit description file and evaluates to True, this command allows the job
to specify the signal number that the job’s log event will show the job having terminated with.

¶remote_initialdir = <directory-path>
The path specifies the directory in which the job is to be executed on the remote machine.

¶rendezvousdir = <directory-path>
Used to specify the shared file system directory to be used for file system authentication when sub-
mitting to a remote scheduler. Should be a path to a preexisting directory.

¶run_as_owner = <True | False>
A boolean value that causes the job to be run under the login of the submitter, if supported by the joint
configuration of the submit and execute machines. On Unix platforms, this defaults to True, and on
Windows platforms, it defaults to False. May not be used with load_profile. See the HTCondor
manual Platform-Specific Information chapter for administrative details on configuring Windows to
support this option.

¶stack_size = <size in bytes>
This command applies only to Linux platforms. An integer number of bytes, representing the amount
of stack space to be allocated for the job. This value replaces the default allocation of stack space,
which is unlimited in size.

¶starter_debug = <log levels>
This command causes the condor_starter to write a separate copy of its daemon log in the job scratch
directory. If the value is True, then the logging level is the same that the condor_starter is configured
to use for its normal daemon log. Any other value will be interpreted the same way as to set the
logging level.

¶starter_log = <pathname>
When the condor_starter is writing a job-specific daemon log (see), this command causes the log
file to be transferred to the Access Point along with the job’s output sandbox. The log is written to
the given pathname. If isn’t set, then it will be set to True.

¶submit_event_notes = <note>
A string that is appended to the submit event in the job’s log file. For DAGMan jobs, the string DAG
Node: and the node’s name is automatically defined for submit_event_notes, causing the logged
submit event to identify the DAG node job submitted.

¶ulog_execute_attrs = <attribute-list>
A comma-separated list of machine ClassAd attribute names. The named attributes and their values
are written as part of the execution event in the job event log.

¶use_oauth_services = <list of credential service names>
A comma-separated list of credential-providing service names for which the job should be provided
credentials for the job execution environment. The credential service providers must be configured
by the pool admin.

¶<credential_service_name>_oauth_permissions [_<handle>] = <scope>
A string containing the scope(s) that should be requested for the credential named <creden-
tial_service_name>[_<handle>], where <handle> is optionally provided to differentiate between
multiple credentials from the same credential service provider.

¶<credential_service_name>_oauth_resource [_<handle>] = <resource>
A string containing the resource (or “audience”) that should be requested for the credential named

14.56. condor_submit 953

HTCondor Manual, Release 23.6.2

<credential_service_name>[_<handle>], where <handle> is optionally provided to differentiate be-
tween multiple credentials from the same credential service provider.

MY.<attribute> = <value> or +<attribute> = <value>
A macro that begins with MY. or a line that begins with a ‘+’ (plus) character instructs condor_submit
to insert the given attribute (without + or MY.) into the job ClassAd with the given value. The macro
can be referenced in other submit statements by using $(MY.<attribute>). A +<attribute> is
converted to MY.<attribute> when the file is read.

Note that setting an job attribute in this way should not be used in place of one of the specific com-
mands listed above. Often, the command name does not directly correspond to an attribute name;
furthermore, many submit commands result in actions more complex than simply setting an attribute
or attributes. See Job ClassAd Attributes for a list of HTCondor job attributes.

MACROS AND COMMENTS

In addition to commands, the submit description file can contain macros and comments.

Macros
Parameterless macros in the form of $(macro_name:default initial value)may be used any-
where in HTCondor submit description files to provide textual substitution at submit time. Macros
can be defined by lines in the form of

<macro_name> = <string>

Several pre-defined macros are supplied by the submit description file parser. The $(Cluster)
or $(ClusterId) macro supplies the value of the job ClassAd attribute, and the $(Process) or
$(ProcId) macro supplies the value of the job ClassAd attribute. The $(JobId) macro supplies
the full job id. It is equivalent to $(ClusterId).$(ProcId). These macros are intended to aid in
the specification of input/output files, arguments, etc., for clusters with lots of jobs, and/or could be
used to supply an HTCondor process with its own cluster and process numbers on the command line.

The $(Node) macro is defined for parallel universe jobs, and is especially relevant for MPI applica-
tions. It is a unique value assigned for the duration of the job that essentially identifies the machine
(slot) on which a program is executing. Values assigned start at 0 and increase monotonically. The
values are assigned as the parallel job is about to start.

Recursive definition of macros is permitted. An example of a construction that works is the following:

foo = bar
foo = snap $(foo)

As a result, foo = snap bar.

Note that both left- and right- recursion works, so

foo = bar
foo = $(foo) snap

has as its result foo = bar snap.

The construction

foo = $(foo) bar

by itself will not work, as it does not have an initial base case. Mutually recursive constructions such
as:

954 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

B = bar
C = $(B)
B = $(C) boo

will not work, and will fill memory with expansions.

A default value may be specified, for use if the macro has no definition. Consider the example

D = $(E:24)

Where E is not defined within the submit description file, the default value 24 is used, resulting in

D = 24

This is useful for creating submit templates where values can be passed on the condor_submit com-
mand line, but that have a default value as well. In the above example, if you give a value for E on
the command line like this

condor_submit E=99 <submit-file>

The value of 99 is used for E, resulting in

D = 99

To use the dollar sign character ($) as a literal, without macro expansion, use

$(DOLLAR)

In addition to the normal macro, there is also a special kind of macro called a substitution macro
that allows the substitution of a machine ClassAd attribute value defined on the resource machine
itself (gotten after a match to the machine has been made) into specific commands within the submit
description file. The substitution macro is of the form:

$$(attribute)

As this form of the substitution macro is only evaluated within the context of the machine ClassAd,
use of a scope resolution prefix TARGET. or MY. is not allowed.

A common use of this form of the substitution macro is for the heterogeneous submission of an
executable:

executable = povray.$$(OpSys).$$(Arch)

Values for the and attributes are substituted at match time for any given resource. This example allows
HTCondor to automatically choose the correct executable for the matched machine.

An extension to the syntax of the substitution macro provides an alternative string to use if the ma-
chine attribute within the substitution macro is undefined. The syntax appears as:

$$(attribute:string_if_attribute_undefined)

An example using this extended syntax provides a path name to a required input file. Since the file
can be placed in different locations on different machines, the file’s path name is given as an argument
to the program.

14.56. condor_submit 955

HTCondor Manual, Release 23.6.2

arguments = $$(input_file_path:/usr/foo)

On the machine, if the attribute input_file_path is not defined, then the path /usr/foo is used
instead.

As a special case that only works within the submit file environment command, the string $$(Con-
dorScratchDir) is expanded to the value of the job’s scratch directory. This does not work for sched-
uler universe or grid universe jobs.

For example, to set PYTHONPATH to a subdirectory of the job scratch dir, one could set

environment = PYTHONPATH=$$(CondorScratchDir)/some/directory

A further extension to the syntax of the substitution macro allows the evaluation of a ClassAd ex-
pression to define the value. In this form, the expression may refer to machine attributes by prefacing
them with the TARGET. scope resolution prefix. To place a ClassAd expression into the substitution
macro, square brackets are added to delimit the expression. The syntax appears as:

$$([ClassAd expression])

An example of a job that uses this syntax may be one that wants to know how much memory it
can use. The application cannot detect this itself, as it would potentially use all of the memory on
a multi-slot machine. So the job determines the memory per slot, reducing it by 10% to account
for miscellaneous overhead, and passes this as a command line argument to the application. In the
submit description file will be

arguments = --memory $$([TARGET.Memory * 0.9])

To insert two dollar sign characters ($$) as literals into a ClassAd string, use

$$(DOLLARDOLLAR)

The environment macro, $ENV, allows the evaluation of an environment variable to be used in setting
a submit description file command. The syntax used is

$ENV(variable)

An example submit description file command that uses this functionality evaluates the submitter’s
home directory in order to set the path and file name of a log file:

log = $ENV(HOME)/jobs/logfile

The environment variable is evaluated when the submit description file is processed.

The $RANDOM_CHOICE macro allows a random choice to be made from a given list of parameters
at submission time. For an expression, if some randomness needs to be generated, the macro may
appear as

$RANDOM_CHOICE(0,1,2,3,4,5,6)

When evaluated, one of the parameters values will be chosen.

956 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

Comments
Blank lines and lines beginning with a pound sign (‘#’) character are ignored by the submit descrip-
tion file parser.

14.56.5 Submit Variables

While processing the command in a submit file or from the command line, condor_submit will set the values of several
automatic submit variables so that they can be referred to by statements in the submit file. With the exception of Cluster
and Process, if these variables are set by the submit file, they will not be modified during processing.

ClusterId
Set to the integer value that the attribute that the job ClassAd will have when the job is submitted.
All jobs in a single submit will normally have the same value for the . If the -dry-run argument is
specified, The value will be 1.

Cluster
Alternate name for the ClusterId submit variable. Before HTCondor version 8.4 this was the only
name.

ProcId
Set to the integer value that the attribute of the job ClassAd will have when the job is submitted. The
value will start at 0 and increment by 1 for each job submitted.

Process
Alternate name for the ProcId submit variable. Before HTCondor version 8.4 this was the only name.

JobId
Set to $(ClusterId).$(ProcId) so that it will expand to the full id of the job.

Node
For parallel universes, set to the value #pArAlLeLnOdE# or #MpInOdE# depending on the parallel
universe type For other universes it is set to nothing.

Step
Set to the step value as it varies from 0 to N-1 where N is the number provided on the argument. This
variable changes at the same rate as ProcId when it changes at all. For submit files that don’t make
use of the queue number option, Step will always be 0. For submit files that don’t make use of any
of the foreach options, Step and ProcId will always be the same.

ItemIndex
Set to the index within the item list being processed by the various queue foreach options. For submit
files that don’t make use of any queue foreach list, ItemIndex will always be 0 For submit files that
make use of a slice to select only some items in a foreach list, ItemIndex will only be set to selected
values.

Row
Alternate name for ItemIndex.

Item
when a queue foreach option is used and no variable list is supplied, this variable will be set to the
value of the current item.

The automatic variables below are set before parsing the submit file, and will not vary during processing unless
the submit file itself sets them.

ARCH
Set to the CPU architecture of the machine running condor_submit. The value will be the same as
the automatic configuration variable of the same name.

14.56. condor_submit 957

HTCondor Manual, Release 23.6.2

OPSYS
Set to the name of the operating system on the machine running condor_submit. The value will be
the same as the automatic configuration variable of the same name.

OPSYSANDVER
Set to the name and major version of the operating system on the machine running condor_submit.
The value will be the same as the automatic configuration variable of the same name.

OPSYSMAJORVER
Set to the major version of the operating system on the machine running condor_submit. The value
will be the same as the automatic configuration variable of the same name.

OPSYSVER
Set to the version of the operating system on the machine running condor_submit. The value will be
the same as the automatic configuration variable of the same name.

SPOOL
Set to the full path of the HTCondor spool directory. The value will be the same as the automatic
configuration variable of the same name.

IsLinux
Set to true if the operating system of the machine running condor_submit is a Linux variant. Set to
false otherwise.

IsWindows
Set to true if the operating system of the machine running condor_submit is a Microsoft Windows
variant. Set to false otherwise.

SUBMIT_FILE
Set to the full pathname of the submit file being processed by condor_submit. If submit statements
are read from standard input, it is set to nothing.

SUBMIT_TIME
Set to the unix timestamp of the current time when the job is submitted.

YEAR
Set to the 4 digit year when the job is submitted.

MONTH
Set to the 2 digit month when the job is submitted.

DAY
Set to the 2 digit day when the job is submitted.

958 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.56.6 Exit Status

condor_submit will exit with a status value of 0 (zero) upon success, and a non-zero value upon failure.

14.56.7 Examples

• Submit Description File Example 1: This submit description file example queues 150 runs of program foo which
must have been compiled and linked for an Intel x86 processor running RHEL 3. HTCondor will not attempt to
run the processes on machines which have less than 32 Megabytes of physical memory, and it will run them on
machines which have at least 64 Megabytes, if such machines are available. Stdin, stdout, and stderr will refer to
in.0, out.0, and err.0 for the first run of this program (process 0). Stdin, stdout, and stderr will refer to in.1,
out.1, and err.1 for process 1, and so forth. A log file containing entries about where and when HTCondor
runs, transfers file, if it’s evicted, and when it terminates, among other things, the various processes in this cluster
will be written into file foo.log.

####################
#
Example 2: Show off some fancy features including
use of pre-defined macros and logging.
#
####################

Executable = foo
Universe = vanilla
Requirements = OpSys == "LINUX" && Arch =="INTEL"
Rank = Memory >= 64
Request_Memory = 32 Mb
Image_Size = 28 Mb

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = foo.log
Queue 150

• Submit Description File Example 2: This example targets the /bin/sleep program to run only on a platform
running a RHEL 6 operating system. The example presumes that the pool contains machines running more than
one version of Linux, and this job needs the particular operating system to run correctly.

####################
#
Example 3: Run on a RedHat 6 machine
#
####################
Universe = vanilla
Executable = /bin/sleep
Arguments = 30
Requirements = (OpSysAndVer == "RedHat6")

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)

(continues on next page)

14.56. condor_submit 959

HTCondor Manual, Release 23.6.2

(continued from previous page)

Log = sleep.log
Queue

• Command Line example: The following command uses the -append option to add two commands before the
job(s) is queued. A log file and an error log file are specified. The submit description file is unchanged.

$ condor_submit -a "log = out.log" -a "error = error.log" mysubmitfile

Note that each of the added commands is contained within quote marks because there are space characters within
the command.

• periodic_remove example: A job should be removed from the queue, if the total suspension time of the job is
more than half of the run time of the job.

Including the command

periodic_remove = CumulativeSuspensionTime >
((RemoteWallClockTime - CumulativeSuspensionTime) / 2.0)

in the submit description file causes this to happen.

14.56.8 General Remarks

• For security reasons, HTCondor will refuse to run any jobs submitted by user root (UID = 0) or by a user whose
default group is group wheel (GID = 0). Jobs submitted by user root or a user with a default group of wheel will
appear to sit forever in the queue in an idle state.

• All path names specified in the submit description file must be less than 256 characters in length, and command
line arguments must be less than 4096 characters in length; otherwise, condor_submit gives a warning message
but the jobs will not execute properly.

• Somewhat understandably, behavior gets bizarre if the user makes the mistake of requesting multiple HTCondor
jobs to write to the same file, and/or if the user alters any files that need to be accessed by an HTCondor job
which is still in the queue. For example, the compressing of data or output files before an HTCondor job has
completed is a common mistake.

14.56.9 See Also

HTCondor User Manual

14.57 condor_submit_dag

Manage and queue jobs within a specified DAG for execution on remote machines

960 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.57.1 Synopsis

condor_submit_dag [-help | -version]

condor_submit_dag [-no_submit] [-verbose] [-force] [-dagman DagmanExecutable] [-maxidle NumberOfProcs]
[-maxjobs NumberOfClusters] [-maxpre NumberOfPreScripts] [-maxpost NumberOfPostScripts] [-notification
value] [-r schedd_name] [-debug level] [-usedagdir] [-outfile_dir directory] [-config ConfigFileName] [-
insert_sub_file FileName] [-append Command] [-batch-name batch_name] [-autorescue 0|1] [-dorescuefrom num-
ber] [-load_save filename] [-allowversionmismatch] [-no_recurse] [-do_recurse] [-update_submit] [-import_env
] [-include_env Variables] [-insert_env Key=Value] [-DumpRescue] [-valgrind] [-DontAlwaysRunPost] [-
AlwaysRunPost] [-priority number] [-schedd-daemon-ad-file FileName] [-schedd-address-file FileName] [-
suppress_notification] [-dont_suppress_notification] [-DoRecovery] DAGInputFile1 [DAGInputFile2 . . . DAG-
InputFileN]

14.57.2 Description

condor_submit_dag is the program for submitting a DAG (directed acyclic graph) of jobs for execution under HTCon-
dor. The program enforces the job dependencies defined in one or more DAGInputFiles. Each DAGInputFile contains
commands to direct the submission of jobs implied by the nodes of a DAG to HTCondor. Extensive documentation is
in the HTCondor User Manual section on DAGMan.

Some options may be specified on the command line or in the configuration or in a node job’s submit description file.
Precedence is given to command line options or configuration over settings from a submit description file. An example
is e-mail notifications. When configuration variable is its default value of True, and a node job’s submit description
file contains

notification = Complete

e-mail will not be sent upon completion, as the value of is enforced.

14.57.3 Options

-help
Display usage information and exit.

-version
Display version information and exit.

-no_submit
Produce the HTCondor submit description file for DAGMan, but do not submit DAGMan as an HT-
Condor job.

-verbose
Cause condor_submit_dag to give verbose error messages.

-force
Require condor_submit_dag to overwrite the files that it produces, if the files already exist. Note that
dagman.out will be appended to, not overwritten. If rescue files exist then DAGMan will run the
original DAG and rename the rescue files. Any old-style rescue files will be deleted.

-dagman DagmanExecutable
Allows the specification of an alternate condor_dagman executable to be used instead of the one
found in the user’s path. This must be a fully qualified path.

-maxidle NumberOfProcs
Sets the maximum number of idle procs allowed before condor_dagman stops submitting more node

14.57. condor_submit_dag 961

HTCondor Manual, Release 23.6.2

jobs. If this option is omitted then the number of idle procs is limited by the configuration variable
which defaults to 1000. To disable this limit, set NumberOfProcs to 0. The NumberOfProcs can be
exceeded if a nodes job has a queue command with more than one proc to queue. i.e. queue 500will
submit all procs even if NumberOfProcs is 250. In this case DAGMan will wait for for the number
of idle procs to fall below 250 before submitting more jobs to the condor_schedd.

-maxjobs NumberOfClusters
Sets the maximum number of clusters within the DAG that will be submitted to HTCondor at one
time. Each cluster is associated with one node job no matter how many individual procs are in the
cluster. NumberOfClusters is a non-negative integer. If this option is omitted then the number of
clusters is limited by the configuration variable which defaults to 0 (unlimited).

-maxpre NumberOfPreScripts
Sets the maximum number of PRE scripts within the DAG that may be running at one time. Num-
berOfPreScripts is a non-negative integer. If this option is omitted, the number of PRE scripts is
limited by the configuration variable which defaults to 20.

-maxpost NumberOfPostScripts
Sets the maximum number of POST scripts within the DAG that may be running at one time. Num-
berOfPostScripts is a non-negative integer. If this option is omitted, the number of POST scripts is
limited by the configuration variable which defaults to 20.

-notification value
Sets the e-mail notification for DAGMan itself. This information will be used within the HTCondor
submit description file for DAGMan. This file is produced by condor_submit_dag. See the descrip-
tion of notification within condor_submit manual page for a specification of value.

-r schedd_name
Submit condor_dagman to a condor_schedd on a remote machine. It is assumed that any necessary
files will be present on the remote machine via some method like a shared filesystem between the local
and remote machines. The user also requires the correct permissions to submit remotely similarly to
condor_submit’s -remote option. If other options are desired, including transfer of other input files,
consider using the -no_submit option and modifying the resulting submit file for specific needs
before using condor_submit on the prouduced DAGMan job submit file.

-debug level
Passes the the level of debugging output desired to condor_dagman. level is an integer, with values of
0-7 inclusive, where 7 is the most verbose output. See the condor_dagman manual page for detailed
descriptions of these values. If not specified, no -debug Value is passed to condor_dagman.

-usedagdir
This optional argument causes condor_dagman to run each specified DAG as if condor_submit_dag
had been run in the directory containing that DAG file. This option is most useful when running
multiple DAGs in a single condor_dagman. Note that the -usedagdir flag must not be used when
running an old-style Rescue DAG.

-outfile_dir directory
Specifies the directory in which the .dagman.out file will be written. The directory may be specified
relative to the current working directory as condor_submit_dag is executed, or specified with an
absolute path. Without this option, the .dagman.out file is placed in the same directory as the first
DAG input file listed on the command line.

-config ConfigFileName
Specifies a configuration file to be used for this DAGMan run. This configuration will apply to all
DAGs submitted in via DAGMan. Note that only one custom configuration file can be specified for
a DAGMan workflow which will cause a failure if used in conjuntion with a DAG using the CONFIG
command.

962 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-insert_sub_file FileName
Specifies a file to insert into the .condor.sub file created by condor_submit_dag. The specified file
must contain only legal submit file commands. Only one file can be inserted. The specified file will
override the file set by the configuration variable . The specified file is inserted into the .condor.sub
file before the queue command and any commands specified with the -append option.

-append Command
Specifies a command to append to the .condor.sub file created by condor_submit_dag. The spec-
ified command is appended to the .condor.sub file immediately before the queue command and
after any commands added via -insert_sub_file or . Multiple commands are specified by using the
-append option multiple times. Commands with spaces in them must be enclosed in double quotes.

-batch-name batch_name
Set the batch name for this DAG/workflow. The batch name is displayed by condor_q. If omitted
DAGMan will set the batch name to DagFile+ClusterIdwhere DagFile is the name of the primary
DAG submitted DAGMan and ClusterId is the DAGMan proper jobs . The batch name is set in all
jobs submitted by DAGMan and propagated down into sub-DAGs. Note: set the batch name to ‘ ‘
(space) to avoid overriding batch names specified in node job submit files.

-autorescue 0|1
Whether to automatically run the newest rescue DAG for the given DAG file, if one exists (0 = false,
1 = true).

-dorescuefrom number
Forces condor_dagman to run the specified rescue DAG number for the given DAG. A value of 0 is
the same as not specifying this option. Specifying a non-existent rescue DAG is a fatal error.

-load_save filename
Specify a file with saved DAG progress to re-run the DAG from. If given a path DAGMan will
attempt to read that file following that path. Otherwise, DAGMan will check for the file in the DAG’s
save_files sub-directory.

-allowversionmismatch
This optional argument causes condor_dagman to allow a version mismatch between con-
dor_dagman itself and the .condor.sub file produced by condor_submit_dag (or, in other words,
between condor_submit_dag and condor_dagman). WARNING! This option should be used only if
absolutely necessary. Allowing version mismatches can cause subtle problems when running DAGs.

-no_recurse
This optional argument causes condor_submit_dag to not run itself recursively on nested DAGs (this
is now the default; this flag has been kept mainly for backwards compatibility).

-do_recurse
This optional argument causes condor_submit_dag to run itself recursively on nested DAGs to pre-
produce their .condor.sub files. DAG nodes specified with the SUBDAG EXTERNAL keyword
or with submit file names ending in .condor.sub are considered nested DAGs. This flag is useful
when the configuration variable is False (Not default).

-update_submit
This optional argument causes an existing .condor.sub file to not be treated as an error; rather, the
.condor.sub file will be overwritten, but the existing values of -maxjobs, -maxidle, -maxpre, and
-maxpost will be preserved.

-import_env
This optional argument causes condor_submit_dag to import the current environment into the envi-
ronment command of the .condor.sub file it generates.

-include_env Variables
This optional argument takes a comma separated list of enviroment variables to add to .condor.sub

14.57. condor_submit_dag 963

HTCondor Manual, Release 23.6.2

getenv environment filter which causes found matching environment variables to be added to the
DAGMan manager jobs environment.

-insert_env Key=Value
This optional argument takes a delimited string of Key=Value pairs to explicitly set into the .condor.
sub files macro. The base delimiter is a semicolon that can be overriden by setting the first character
in the string to a valid delimiting character. If multiple -insert_env flags contain the same Key then
the last occurances Value will be set in the DAGMan jobs environment.

-DumpRescue
This optional argument tells condor_dagman to immediately dump a rescue DAG and then exit, as
opposed to actually running the DAG. This feature is mainly intended for testing. The Rescue DAG
file is produced whether or not there are parse errors reading the original DAG input file. The name
of the file differs if there was a parse error.

-valgrind
This optional argument causes the submit description file generated for the submission of con-
dor_dagman to be modified. The executable becomes valgrind run on condor_dagman, with a spe-
cific set of arguments intended for testing condor_dagman. Note that this argument is intended for
testing purposes only. Using the -valgrind option without the necessary valgrind software installed
will cause the DAG to fail. If the DAG does run, it will run much more slowly than usual.

-DontAlwaysRunPost
This option causes the submit description file generated for the submission of condor_dagman to be
modified. It causes condor_dagman to not run the POST script of a node if the PRE script fails.

-AlwaysRunPost
This option causes the submit description file generated for the submission of condor_dagman to be
modified. It causes condor_dagman to always run the POST script of a node, even if the PRE script
fails.

-priority number
Sets the minimum job priority of node jobs submitted and running under the condor_dagman job
submitted by this condor_submit_dag command.

-schedd-daemon-ad-file FileName
Specifies a full path to a daemon ad file dropped by a condor_schedd. Therefore this allows submis-
sion to a specific scheduler if several are available without repeatedly querying the condor_collector.
The value for this argument defaults to the configuration attribute .

-schedd-address-file FileName
Specifies a full path to an address file dropped by a condor_schedd. Therefore this allows submission
to a specific scheduler if several are available without repeatedly querying the condor_collector. The
value for this argument defaults to the configuration attribute .

-suppress_notification
Causes jobs submitted by condor_dagman to not send email notification for events. The same effect
can be achieved by setting configuration variable to True. This command line option is independent
of the -notification command line option, which controls notification for the condor_dagman job
itself.

-dont_suppress_notification
Causes jobs submitted by condor_dagman to defer to content within the submit description file
when deciding to send email notification for events. The same effect can be achieved by set-
ting configuration variable to False. This command line flag is independent of the -notification
command line option, which controls notification for the condor_dagman job itself. If both -
dont_suppress_notification and -suppress_notification are specified with the same command line,
the last argument is used.

964 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-DoRecovery
Causes condor_dagman to start in recovery mode. This means that DAGMan reads the relevant
.nodes.log file to restore its previous state of node completions and failures to continue running.

14.57.4 Exit Status

condor_submit_dag will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.57.5 Examples

To run a single DAG:

$ condor_submit_dag diamond.dag

To run a DAG when it has already been run and the output files exist:

$ condor_submit_dag -force diamond.dag

To run a DAG, limiting the number of idle node jobs in the DAG to a maximum of five:

$ condor_submit_dag -maxidle 5 diamond.dag

To run a DAG, limiting the number of concurrent PRE scripts to 10 and the number of concurrent POST scripts to five:

$ condor_submit_dag -maxpre 10 -maxpost 5 diamond.dag

To run two DAGs, each of which is set up to run in its own directory:

$ condor_submit_dag -usedagdir dag1/diamond1.dag dag2/diamond2.dag

14.58 condor_suspend

suspend jobs from the HTCondor queue

14.58.1 Synopsis

condor_suspend [-help | -version]

condor_suspend [-debug] [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] **

14.58. condor_suspend 965

HTCondor Manual, Release 23.6.2

14.58.2 Description

condor_suspend suspends one or more jobs from the HTCondor job queue. When a job is suspended, the match between
the condor_schedd and machine is not been broken, such that the claim is still valid. But, the job is not making any
progress and HTCondor is no longer generating a load on the machine. If the -name option is specified, the named
condor_schedd is targeted for processing. Otherwise, the local condor_schedd is targeted. The job(s) to be suspended
are identified by one of the job identifiers, as described below. For any given job, only the owner of the job or one of
the queue super users (defined by the macro) can suspend the job.

14.58.3 Options

-help
Display usage information

-version
Display version information

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name scheddname
Send the command to a machine identified by scheddname

-addr “<a.b.c.d:port>”
Send the command to a machine located at “<a.b.c.d:port>”

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

cluster
Suspend all jobs in the specified cluster

cluster.process
Suspend the specific job in the cluster

user
Suspend jobs belonging to specified user

-constraint expression
Suspend all jobs which match the job ClassAd expression constraint

-all
Suspend all the jobs in the queue

14.58.4 Exit Status

condor_suspend will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

966 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.58.5 Examples

To suspend all jobs except for a specific user:

$ condor_suspend -constraint 'Owner =!= "foo"'

Run condor_continue to continue execution.

14.59 condor_tail

Display the last contents of a running job’s standard output or file

14.59.1 Synopsis

condor_tail [-help] | [-version]

condor_tail [-pool centralmanagerhostname[:portnumber]] [-name name] [-debug] [-maxbytes numbytes] [-auto-
retry] [-follow] [-no-stdout] [-stderr] job-ID [filename1] [filename2 . . .]

14.59.2 Description

condor_tail displays the last bytes of a file in the sandbox of a running job identified by the command line argument
job-ID. stdout is tailed by default. The number of bytes displayed is limited to 1024, unless changed by specifying
the -maxbytes option. This limit is applied for each individual tail of a file; for example, when following a file, the
limit is applied each subsequent time output is obtained.

If you specify filename, that name must be specifically listed in the job’s transfer_output_files.

14.59.3 Options

-help
Display usage information and exit.

-version
Display version information and exit.

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number.

-name name
Query the condor_schedd daemon identified with name.

-debug
Display extra debugging information.

-maxbytes numbytes
Limits the maximum number of bytes transferred per tail access. If not specified, the maximum
number of bytes is 1024.

-auto-retry
Retry the tail of the file(s) every 2 seconds, if the job is not yet running.

-follow
Repetitively tail the file(s), until interrupted.

14.59. condor_tail 967

HTCondor Manual, Release 23.6.2

-no-stdout
Do not tail stdout.

-stderr
Tail stderr instead of stdout.

14.59.4 Exit Status

The exit status of condor_tail is zero on success.

14.60 condor_test_token

Create a short-lived SciToken to authenticate with local HTCondor daemons

14.60.1 Synopsis

condor_test_token [–help]

condor_test_token –issuer issuer-url –scope scopes [–subject subject] [–lifetime lifetime] [–audience audience]
[–cache cache-location]

14.60.2 Description

condor_test_token generates a temporary signing key, adds it to the local SciTokens cache for the given issuer, creates
a short-lived token signed by the key, and prints the token to stdout. Local HTCondor daemons will treat this token
like any reguluar token generated by the given issuer for a short period of time (one hour).

If the HTCondor daemons were started as root, then the tool must be run as the condor user.

14.60.3 Options

–help
Display usage information

–issuer issuer-url
Specify the issuer to impersonate

–scope scopes
Specify the scope claim for the token

–subject subject
specify the sub claim for the token (default is no sub claim)

–lifetime lifetime
Specify the lifetime of the token in seconds (default 1 hour)

–audience audience
Specify the aud claim for the token (default is no aud claim)

–cache cache-location
Specify the SciTokens cache location (default is to find cache via HTCondor configuration files)

968 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.60.4 Examples

To create a SciToken with WRITE-level access for user Alice that appears to be issued by the SciTokens demo issuer:

$ condor_test_token --issuer https://demo.scitokens.org \
--scope condor:/WRITE --sub alice@foo.org --aud ANY

14.60.5 Exit Status

condor_test_token will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.61 condor_token_create

given a password file, create an authentication token for the IDTOKENS authentication method

14.61.1 Synopsis

condor_token_create -identity user@domain [-key keyid] [-authz authz . . .] [-lifetime value] [-token filename] [-
debug]

condor_token_create [-help]

14.61.2 Description

condor_token_create will read an HTCondor password file inside the SEC_PASSWORD_DIRECTORY (by default, this
is the pool password) and use it to create an authentication token. The authentication token may be subsequently used
by clients to authenticate against a remote HTCondor server. Tokens allow fine-grained authentication as individual
HTCondor users as opposed to pool password, where anything in possession of the pool password will authenticate as
the same user.

An identity must be specified for the token; this will be the client’s resulting identity at the remote HTCondor server.
If the -lifetime or (one or more) -authz options are specified, the token will contain additional restrictions that limit
what the client will be authorized to do. If an attacker is able to access the token, they will be able to authenticate with
the identity listed in the token (subject to the restrictions above).

If successful, the resulting token will be sent to stdout; by specifying the -token option, it will instead be written
to the user’s token directory. If written to SEC_TOKEN_SYSTEM_DIRECTORY (default /etc/condor/tokens.d),
then the token can be used for daemon-to-daemon authentication.

condor_token_create is only currently supported on Unix platforms.

14.61. condor_token_create 969

HTCondor Manual, Release 23.6.2

14.61.3 Options

-authz authz
Adds a restriction to the token so it is only valid to be used for a given authorization level (such
as READ, WRITE, DAEMON, ADVERTISE_STARTD). If multiple authorizations are needed, then -authz
must be specified multiple times. If -authz is not specified, no authorization restrictions are added
and authorization will be solely based on the token’s identity. NOTE that -authz cannot be used to
give an identity additional permissions at the remote host. If the server’s admin only permits the user
READ authorization, then specifying -authz WRITE in a token will not allow the user to perform
writes.

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-help
Display brief usage information and exit.

-identity user@domain
Set a specific client identity to be written into the token; a client will authenticate as this identity with
a remote server.

-key keyid
Specify a key file to use under the directory specified by the SEC_PASSWORD_DIRECTORY con-
figuration variable. The key name must match a file in the password directory; the file’s contents
must be created with condor_store_cred and will be used to sign the resulting token. If -key is not
set, then the default pool password will be used.

-lifetime value
Specify the lifetime, in seconds, for the token to be valid (the token validity will start when the token
is signed). After the lifetime expires, the token cannot be used for authentication. If not specified,
the token will contain no lifetime restrictions.

-token filename
Specifies a filename, relative to the directory in the SEC_TOKEN_DIRECTORY configuration vari-
able (for example, on Linux this defaults to ~/.condor/tokens.d), where the resulting token is
stored. If not specified, the token will be sent to stdout.

14.61.4 Examples

To create a token for jane@cs.wisc.edu with no additional restrictions:

$ condor_token_create -identity jane@cs.wisc.edu
eyJhbGciOiJIUzI1NiIsImtpZCI6Il....bnu3NoO9BGM

To create a token for worker-node@cs.wisc.edu that may advertise either a condor_startd or a condor_master:

$ condor_token_create -identity worker-node@cs.wisc.edu \
-authz ADVERTISE_STARTD \
-authz ADVERTISE_MASTER

eyJhbGciOiJIUzI1NiIsImtpZC.....8wkstyj_OnM0SHsOdw

To create a token for friend@cs.wisc.edu that is only valid for 10 minutes, and then to save it to ~/.condor/
tokens.d/friend:

970 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

$ condor_token_create -identity friend@cs.wisc.edu -lifetime 600 -token friend

If the administrator would like to create a specific key for signing tokens, token_key, distinct from the default pool
password, they would first use condor_store_cred to create the key:

$ openssl rand -base64 32 | condor_store_cred -f /etc/condor/passwords.d/token_key

Note, in this case, we created a random 32 character key using SSL instead of providing a human-friendly password.

Next, the administrator would run run condor_token_create:

$ condor_token_create -identity frida@cs.wisc.edu -key token_key
eyJhbGciOiJIUzI1NiIsImtpZCI6I.....eyJpYXQiOUzlN6QA

If the token_key file is deleted from the SEC_PASSWORD_DIRECTORY, then all of the tokens issued with that key
will be invalidated.

14.61.5 Exit Status

condor_token_create will exit with a non-zero status value if it fails to read the password file, sign the token, write the
output, or experiences some other error. Otherwise, it will exit 0.

14.61.6 See also

condor_store_cred(1), condor_token_fetch(1), condor_token_request(1), condor_token_list(1)

14.61.7 Author

Center for High Throughput Computing, University of Wisconsin-Madison

14.62 condor_token_fetch

obtain a token from a remote daemon for the IDTOKENS authentication method

14.62.1 Synopsis

condor_token_fetch [-authz authz . . .] [-lifetime value] [-pool pool_name] [-name hostname] [-type type] [-token
filename] [-key signing_key]

condor_token_fetch [-help]

14.62. condor_token_fetch 971

HTCondor Manual, Release 23.6.2

14.62.2 Description

condor_token_fetch will attempt to fetch an authentication token from a remote daemon. If successful, the identity
embedded in the token will be the same as client’s identity at the remote daemon.

Authentication tokens are a useful mechanism to limit an identity’s authorization or to establish an alternate authenti-
cation method. For example, an administrator may utilize condor_token_fetch to create a token for a monitoring host
that is limited to only the READ authorization. A user may use condor_token_fetch while they are logged in to a submit
host then use the resulting token to submit remotely from their personal laptop.

If the -lifetime or (one or more) -authz options are specified, the token will contain additional restrictions that limit
what the client will be authorized to do.

By default, condor_token_fetch will query the local condor_schedd; by specifying a combination of -pool, -name, or
-type, the tool can request tokens in other pools, on other hosts, or different daemon types.

If successful, the resulting token will be sent to stdout; by specifying the -token option, it will instead be written to
the user’s token directory.

14.62.3 Options

-authz authz
Adds a restriction to the token so it is only valid to be used for a given authorization level (such
as READ, WRITE, DAEMON, ADVERTISE_STARTD). If multiple authorizations are needed, then -authz
must be specified multiple times. If -authz is not specified, no authorization restrictions are added
and authorization will be solely based on the token’s identity. NOTE that -authz cannot be used to
give an identity additional permissions at the remote host. If the server’s admin only permits the user
READ authorization, then specifying -authz WRITE in a token will not allow the user to perform
writes.

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-help
Display brief usage information and exit.

-lifetime value
Specify the lifetime, in seconds, for the token to be valid (the token validity will start when the token
is signed). After the lifetime expires, the token cannot be used for authentication. If not specified,
the token will contain no lifetime restrictions.

-name hostname
Request a token from the daemon named hostname in the pool. If not specified, the locally-running
daemons will be used.

-pool pool_name
Request a token from a daemon in a non-default pool pool_name.

-token filename
Specifies a filename, relative to the directory in the SEC_TOKEN_DIRECTORY configuration vari-
able (defaulting to ~/.condor/tokens.d), where the resulting token is stored. If not specified, the
token will be sent to stdout.

-type type
Request a token from a specific daemon type type. If not given, a condor_schedd is used.

972 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-key signing_key
Request a token signed by the signing key named signing_key. If not given, the daemon’s default key
will be used.

14.62.4 Examples

To obtain a token with a lifetime of 10 minutes from the default condor_schedd:

$ condor_token_fetch -lifetime 600
eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.eyJpYX...ii7lAfCA

To request a token from bird.cs.wisc.edu which is limited to READ and WRITE:

$ condor_token_fetch -name bird.cs.wisc.edu \
-authz READ -authz WRITE

eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.eyJpYX...lJTj54

To create a token from the collector in the htcondor.cs.wisc.edu pool and then to save it to ~/.condor/tokens.
d/friend:

$ condor_token_fetch -identity friend@cs.wisc.edu -lifetime 600 -token friend

14.62.5 Exit Status

condor_token_fetch will exit with a non-zero status value if it fails to request or read the token. Otherwise, it will exit
0.

14.62.6 See also

condor_token_create(1), condor_token_request(1), condor_token_list(1)

14.62.7 Author

Center for High Throughput Computing, University of Wisconsin-Madison

14.63 condor_token_list

list all available tokens for IDTOKENS auth

14.63. condor_token_list 973

HTCondor Manual, Release 23.6.2

14.63.1 Synopsis

condor_token_list [-dir directory]

condor_token_list -help

14.63.2 Description

condor_token_list parses the tokens available to the current user and prints them to stdout.

The tokens are stored in files in the directory referenced by SEC_TOKEN_DIRECTORY ; multiple tokens may be saved
in each file (one per line).

The output format is a list of the deserialized contents of each token, along with the file name containing the token, one
per line. It should not be considered machine readable and will be subject to change in future release of HTCondor.

14.63.3 Options

-help
Display brief usage information and exit.

-dir
Read tokens from an alternate directory.

14.63.4 Examples

To list all tokens as the current user:

$ condor_token_list
Header: {"alg":"HS256","kid":"POOL"} Payload: {"exp":1565576872,"iat":1565543872,"iss":
→˓"htcondor.cs.wisc.edu","scope":"condor:\/DAEMON","sub":"k8sworker@wisc.edu"} File: /
→˓home/bucky/.condor/tokens.d/token1
Header: {"alg":"HS256","kid":"POOL"} Payload: {"iat":1572414350,"iss":"htcondor.cs.wisc.
→˓edu","scope":"condor:\/WRITE","sub":"bucky@wisc.edu"} File: /home/bucky/.condor/tokens.
→˓d/token2

14.63.5 Exit Status

condor_token_list will exit with a non-zero status value if it fails to read the token directory, tokens are improperly
formatted, or if it experiences some other error. Otherwise, it will exit 0.

14.63.6 See also

condor_token_create(1), condor_token_fetch(1), condor_token_request(1)

974 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.63.7 Author

Center for High Throughput Computing, University of Wisconsin-Madison

14.64 condor_token_request

interactively request a token from a remote daemon for the IDTOKENS authentication method

14.64.1 Synopsis

condor_token_request [-identity user@domain] [-authz authz . . .] [-lifetime value] [-pool pool_name] [-name host-
name] [-type type] [-token filename]

condor_token_request [-help]

14.64.2 Description

condor_token_request will request an authentication token from a remote daemon. Token requests must be approved by
the daemon’s administrator using condor_token_request_approve. Unlike condor_token_fetch, the user doesn’t need
an existing identity with the remote daemon when using condor_token_request (an anonymous method, such as SSL
without a client certificate will suffice).

If the request is successfully enqueued, the request ID will be printed to stderr; the administrator will need to know
the ID to approve the request. condor_token_request will wait until the request is approved, timing out after an hour.

The token request mechanism provides a powerful way to bootstrap authentication in a HTCondor pool - a remote user
can request an identity, verify the authenticity of the request out-of-band with the remote daemon’s administrator, and
then securely recieve their authentication token.

By default, condor_token_request will query the local condor_collector; by specifying a combination of -pool, -name,
or -type, the tool can request tokens in other pools, on other hosts, or different daemon types.

If successful, the resulting token will be sent to stdout; by specifying the -token option, it will instead be written to
the user’s token directory.

14.64.3 Options

-authz authz
Adds a restriction to the token so it is only valid to be used for a given authorization level (such
as READ, WRITE, DAEMON, ADVERTISE_STARTD). If multiple authorizations are needed, then -authz
must be specified multiple times. If -authz is not specified, no authorization restrictions are added
and authorization will be solely based on the token’s identity. NOTE that -authz cannot be used to
give an identity additional permissions at the remote host. If the server’s admin only permits the user
READ authorization, then specifying -authz WRITE in a token will not allow the user to perform
writes.

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-help
Display brief usage information and exit.

14.64. condor_token_request 975

HTCondor Manual, Release 23.6.2

-identity user@domain
Request a specific identity from the daemon; a client using the resulting token will authenticate as
this identity with a remote server. If not specified, the token will be issued for the condor identity.

-lifetime value
Specify the lifetime, in seconds, for the token to be valid (the token validity will start when the token
is signed). After the lifetime expires, the token cannot be used for authentication. If not specified,
the token will contain no lifetime restrictions.

-name hostname
Request a token from the daemon named hostname in the pool. If not specified, the locally-running
daemons will be used.

-pool pool_name
Request a token from a daemon in a non-default pool pool_name.

-token filename
Specifies a filename, relative to the directory in the SEC_TOKEN_DIRECTORY configuration vari-
able (defaulting to ~/.condor/tokens.d), where the resulting token is stored. If not specified, the
token will be sent to stdout.

-type type
Request a token from a specific daemon type type. If not given, a condor_collector is used.

14.64.4 Examples

To obtain a token with a lifetime of 10 minutes from the default condor_collector (the token is not returned until the
daemon’s administrator takes action):

$ condor_token_request -lifetime 600
Token request enqueued. Ask an administrator to please approve request 6108900.
eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.eyJpYX...ii7lAfCA

To request a token from bird.cs.wisc.edu which is limited to READ and WRITE:

$ condor_token_request -name bird.cs.wisc.edu \
-identity bucky@cs.wisc.edu
-authz READ -authz WRITE

Token request enqueued. Ask an administrator to please approve request 2578154
eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.eyJpYX...lJTj54

To create a token from the collector in the htcondor.cs.wisc.edu pool and then to save it to ~/.condor/tokens.
d/friend:

$ condor_token_request -pool htcondor.cs.wisc.edu \
-identity friend@cs.wisc.edu \
-lifetime 600 -token friend

Token request enqueued. Ask an administrator to please approve request 2720841.

976 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.64.5 Exit Status

condor_token_request will exit with a non-zero status value if it fails to request or recieve the token. Otherwise, it will
exit 0.

14.64.6 See also

condor_token_create(1), condor_token_fetch(1), condor_token_request_approve(1),
condor_token_request_auto_approve(1), condor_token_list(1)

14.64.7 Author

Center for High Throughput Computing, University of Wisconsin-Madison

14.65 condor_token_request_approve

approve a token request at a remote daemon

14.65.1 Synopsis

condor_token_request_approve [-reqid val] [-pool pool_name] [-name hostname] [-type type] [-debug]

condor_token_request_approve [-help]

14.65.2 Description

condor_token_request_approve will approve an request for an authentication token queued at a remote daemon. Once
approved, the requester will be able to fetch a fully signed token from the daemon and use it to authenticate with the
IDTOKENS method.

NOTE that any user can request a very powerful token, even allowing them to be the HTCondor administrator; such
requests can only be approved by an administrator. Review token requests carefully to ensure you understand what
identity you are approving. The only safe way to approve a request is to have the request ID communicated out-of-band
and verify it matches the expected, request contents, ensuring the request’s authenticity.

By default, users can only approve requests for their own identity (that is, a user authenticating as bucky@cs.wisc.edu
can only approve token requests for the identity bucky@cs.wisc.edu). Users with ADMINISTRATOR authorization can
approve any request.

If you want to approve multiple requests at once, do not provide the -reqid flag; in that case, the utility will iterate
through all known requests.

By default, condor_token_request_approve will query the local condor_collector; by specifying a combination of -
pool, -name, or -type, the tool can request tokens in other pools, on other hosts, or different daemon types.

14.65. condor_token_request_approve 977

HTCondor Manual, Release 23.6.2

14.65.3 Options

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-help
Display brief usage information and exit.

-name hostname
Request a token from the daemon named hostname in the pool. If not specified, the locally-running
daemons will be used.

-pool pool_name
Request a token from a daemon in a non-default pool pool_name.

-reqid val
Provides the specific request ID to approve. Request IDs should be communicated out of band to the
administrator through a trusted channel.

-type type
Request a token from a specific daemon type type. If not given, a condor_collector is used.

14.65.4 Examples

To approve the tokens at the default condor_collector, one-by-one:

$ condor_token_request_approve
RequestedIdentity = "bucky@cs.wisc.edu"
AuthenticatedIdentity = "anonymous@ssl"
PeerLocation = "10.0.0.42"
ClientId = "bird.cs.wisc.edu-516"
RequestId = "8414912"

To approve, please type 'yes'
yes
Request 8414912 approved successfully.

When a token is approved, the corresponding condor_token_request process will complete. Note the printed request
includes both the requested identity (which will be written into the issued token) and the authenticated identity of the
token requester. In this case, anonymous@ssl indicates the connection was established successfully over SSL but the
remote side is anonymous (did not contain a client SSL certificate).

14.65.5 Exit Status

condor_token_request_approve will exit with a non-zero status value if it fails to communicate with the remote daemon.
Otherwise, it will exit 0.

978 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.65.6 See also

condor_token_request(1), condor_token_fetch(1), condor_token_request_auto_approve(1)

14.65.7 Author

Center for High Throughput Computing, University of Wisconsin-Madison

14.66 condor_token_request_auto_approve

generate a new rule to automatically approve token requests

14.66.1 Synopsis

condor_token_request_auto_approve -netblock network -lifetime val [-pool pool_name] [-name hostname] [-type
type] [-debug]

condor_token_request_auto_approve [-help]

14.66.2 Description

condor_token_request_auto_approve will install a temporary auto-approval rule for token requests. Any token request
matching the auto-approval rule will be immediately approved instead of requiring administrator approval

Automatic request approval is intended to help administrators initially setup their cluster. To install a new rule, you
must specify both a network and a lifetime; requests are only approved if they come from that given source network,
are within the rule lifetime, are limited to ADVERTISE_SCHEDD or ADVERTISE_STARTD permissions, and are for the
condor identity. When a condor_startd or condor_schedd is started and cannot communicate with the collector, they
will automatically generate token requests that meet the last two conditions.

It is not safe to enable auto-approval when users have access to any of the involved hosts or networks.

To remove auto-approval rules, run condor_reconfig against the remote daemon.:

By default, condor_token_request_auto_approve will install rules at the local condor_collector; by specifying a com-
bination of -pool, -name, or -type, the tool can request tokens in other pools, on other hosts, or different daemon
types.

14.66.3 Options

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-help
Display brief usage information and exit.

-lifetime value
Specify the lifetime, in seconds, for the auto-request rule to be valid.

-name hostname
Request a token from the daemon named hostname in the pool. If not specified, the locally-running
daemons will be used.

14.66. condor_token_request_auto_approve 979

HTCondor Manual, Release 23.6.2

-netblock network
A netblock of the form IP_ADDRESS / SUBNET_MASK specifying the source of authorized requests.
Examples may include 129.93.12.0/24 or 10.0.0.0/26.

-pool pool_name
Request a token from a daemon in a non-default pool pool_name.

-type type
Request a token from a specific daemon type type. If not given, a condor_collector is used.

14.66.4 Examples

To automatically approve token requests to the default condor_collector coming from the 10.0.0.0/26 subnet for the
next 10 minutes:

$ condor_token_request_auto_approve -lifetime 600 -netblock 10.0.0.0/26
Successfully installed auto-approval rule for netblock 10.0.0.0/26 with lifetime of 0.17␣
→˓hours
Remote daemon reports no un-approved requests pending.

14.66.5 Exit Status

condor_token_request_auto_approve will exit with a non-zero status value if it fails to communicate with the remote
daemon or has insufficient authorization. Otherwise, it will exit 0.

14.66.6 See also

condor_token_request(1), condor_token_request_approve(1)

14.66.7 Author

Center for High Throughput Computing, University of Wisconsin-Madison

14.67 condor_token_request_list

list all token requests at a remote daemon

14.67.1 Synopsis

condor_token_request_list [-pool pool_name] [-name hostname] [-type type] [-json] [-debug]

condor_token_request_list [-help]

980 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.67.2 Description

condor_token_request_list will list all requests for tokens currently queued at a remote daemon. This allows the
administrator to review token requests; these requests may be subsequently approved with an invocation of con-
dor_token_request_approve.

An individual with ADMINISTRATOR authorization may see all queued token requests; otherwise, users can only see
token requests for their own identity.

By default, condor_token_request_list will query the local condor_collector; by specifying a combination of -pool,
-name, or -type, the tool can request tokens in other pools, on other hosts, or different daemon types.

14.67.3 Options

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-help
Display brief usage information and exit.

-name hostname
Request a token from the daemon named hostname in the pool. If not specified, the locally-running
daemons will be used.

-pool pool_name
Request a token from a daemon in a non-default pool pool_name.

-json
Causes all pending requests to be printed as JSON objects.

-type type
Request a token from a specific daemon type type. If not given, a condor_collector is used.

14.67.4 Examples

To list the tokens at the default condor_collector:

$ condor_token_request_list
RequestId = "4303687"
ClientId = "worker0000.wisc.edu-960"
PeerLocation = "10.0.4.13"
AuthenticatedIdentity = "anonymous@ssl"
RequestedIdentity = "condor@cs.wisc.edu"
LimitAuthorization = "ADVERTISE_STARTD"

RequestedIdentity = "bucky@cs.wisc.edu"
AuthenticatedIdentity = "bucky@cs.wisc.edu"
PeerLocation = "129.93.244.211"
ClientId = "desktop0001.wisc.edu-712"
RequestId = "4413973"

14.67. condor_token_request_list 981

HTCondor Manual, Release 23.6.2

14.67.5 Exit Status

condor_token_request_list will exit with a non-zero status value if it fails to communicate with the remote daemon or
fails to authenticate. Otherwise, it will exit 0.

14.67.6 See also

condor_token_request(1), condor_token_request_approve(1), condor_token_list(1)

14.67.7 Author

Center for High Throughput Computing, University of Wisconsin-Madison

14.68 condor_top

Display status and runtime statistics of a HTCondor daemon

14.68.1 Synopsis

condor_top [-h]

condor_top [-l] [-p centralmanagerhostname[:portname]] [-n name] [-d delay] [-c columnset] [-s sortcolumn]
[–attrs=<attr1,attr2,. . . >] [daemon options]

condor_top [-c columnset] [-s sortcolumn] [–attrs=<attr1,attr2,. . . >] [classad-filename classad-filename]

14.68.2 Description

condor_top displays the status (e.g. memory usage and duty cycle) of a HTCondor daemon and calculates and displays
runtime statistics for the daemon’s subprocesses.

When no arguments are specified, condor_top displays the status for the primary daemon based on the role of the
current machine by scanning the configuration setting. If multiple daemons are listed, condor_top will monitor one of
(in decreasing priority): condor_schedd, condor_startd, condor_collector, condor_negotiator, condor_master.

If the condor_collector returns multiple ClassAds for the chosen daemon type, condor_top will display stats from the
first ClassAd returned. Results can be constrained by passing the NAME of a specific daemon with -n.

The default delay is , which is 4 minutes (240 seconds) in a default HTCondor configuration. Setting the delay smaller
can be helpful for finding spikes of activity, but setting the delay too small will lead to poor measurements of the duty
cycle and of the runtime statistics.

condor_top can run in a top-like “live” mode by passing -l. The live mode is similar to the *nix top command, with
stats updating every delay seconds. Redirecting stdout will disable live mode even if -l is set. To exit condor_top while
in live mode, issue Ctrl-C.

condor_top can be passed two files containing ClassAds from the same HTCondor daemon, in which case the con-
dor_collector will not be queried but rather the statistics will be computed and displayed immediately from the two
ClassAds. Only -c, -s, and -attrs options are considered when passing ClassAds via files.

The following subprocess stat columns may be displayed (*default):

982 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

Item
*Name of the subprocess

InstRt
*Total runtime between the two ClassAds

InstAvg
*Mean runtime per execution between the two ClassAds

TotalRt
Total runtime since daemon start

TotAvg
*Mean runtime per execution since daemon start

TotMax
*Max runtime per execution since daemon start

TotMin
Min runtime per execution since daemon start

RtPctAvg
*Percent of mean runtime per execution. The ratio of InstAvg to TotAvg, expressed as a percentage

RtPctMax
Percent of max runtime per execution. The ratio of (InstAvg - TotMin) to (TotMax - TotMin), ex-
pressed as a percentage

RtSigmas
Standard deviations from mean runtime. The ratio of (InstAvg - TotAvg) to the standard deviation in
runtime per execution since daemon start

InstCt
Executions between the two ClassAds

InstRate
*Executions per second between the two ClassAds

TotalCt
Total executions (counts) since daemon start

AvgRate
*Mean count rate. Executions per second since daemon start

CtPctAvg
Percent of mean count rate. The ratio of InstRate to AvgRate, expressed as a percentage.

14.68.3 Options

-h
Displays the list of options.

-l
Puts condor_top in to a live, continually updating mode.

-p centralmanagerhostname[:portname]
Query the daemon via the specified central manager. If omitted, the value of the configuration vari-
able is used.

14.68. condor_top 983

HTCondor Manual, Release 23.6.2

-n name
Query the daemon named name. If omitted, the value used will depend on the type of daemon queried
(see Daemon Options).

-d delay
Specifies the delay between ClassAd updates, in integer seconds. If omitted, the value of the config-
uration variable is used.

-c columnset
Display columnset set of columns. Valid columnset s are: default, runtime, count, all.

-s sortcolumn
Sort table by sortcolumn. Defaults to InstRt.

-attrs=<attr1,attr2,. . . >

Comma-delimited list of additional ClassAd attributes to monitor.

Daemon Options

-collector
Monitor condor_collector ClassAds. If -n is not set, the constraint “Machine == ” will be used.

-negotiator
Monitor condor_negotiator ClassAds. If -n is not set, the constraint “Machine == ” will be used.

-master
Monitor condor_master ClassAds. If -n is not set, the constraint “Machine == ” will be used.

-schedd
Monitor condor_schedd ClassAds. If -n is not set, the constraint “Machine == FULL_HOSTNAME”
will be tried, otherwise the first condor_schedd ClassAd returned from the condor_collector will be
used.

-startd
Monitor condor_startd ClassAds. If -n is not set, the constraint “Machine == FULL_HOSTNAME” will
be tried, otherwise the first condor_startd ClassAd returned from the condor_collector will be used.

14.69 condor_transfer_data

transfer spooled data

14.69.1 Synopsis

condor_transfer_data [-help | -version]

condor_transfer_data [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] cluster. . . | cluster.process. . . | user. . . | -constraint expression . . .

condor_transfer_data [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] -all

984 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.69.2 Description

condor_transfer_data causes HTCondor to transfer spooled data. It is meant to be used in conjunction with the -spool
option of condor_submit, as in

$ condor_submit -spool mysubmitfile

Submission of a job with the -spool option causes HTCondor to spool all input files, the job event log, and any proxy
across a connection to the machine where the condor_schedd daemon is running. After spooling these files, the machine
from which the job is submitted may disconnect from the network or modify its local copies of the spooled files.

When the job finishes, the job has = 4, meaning that the job has completed. The output of the job is spooled, and
condor_transfer_data retrieves the output of the completed job.

14.69.3 Options

-help
Display usage information

-version
Display version information

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name scheddname
Send the command to a machine identified by scheddname

-addr “<a.b.c.d:port>”
Send the command to a machine located at “<a.b.c.d:port>”

cluster
Transfer spooled data belonging to the specified cluster

cluster.process
Transfer spooled data belonging to a specific job in the cluster

user
Transfer spooled data belonging to the specified user

-constraint expression
Transfer spooled data for jobs which match the job ClassAd expression constraint

-all
Transfer all spooled data

14.69.4 Exit Status

condor_transfer_data will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.69. condor_transfer_data 985

HTCondor Manual, Release 23.6.2

14.70 condor_transform_ads

Transform ClassAds according to specified rules, and output the transformed ClassAds.

14.70.1 Synopsis

condor_transform_ads [-help [rules]]

condor_transform_ads [-rules rules-file] [-jobtransforms name-list] [-jobroute route-name] [-in[:<form>] ** *in-
file*] [-out[:<form>[, nosort]] ** outfile] [<key>=<value>] [-long] [-json] [-xml] [-verbose] [-terse] [-debug]
[-unit-test] [-testing] [-convertoldroutes] [infile1 . . . infileN]

Note that one or more transforms must be specified in the form of a rules file or a JOB_TRANSFORM_ or
JOB_ROUTER_ROUTE_ name and at least one input file must be specified. Transforms will be applied in the order
they are given on the command line. If a rules file has a TRANSFORM statement with arguments it must be the last
rules file. If no output file is specified, output will be written to stdout.

14.70.2 Description

condor_transform_ads reads ClassAds from a set of input files, transforms them according to rules defined in a rules
files or read from configuration, and outputs the resulting transformed ClassAds.

See the ClassAd Transforms section for a description of the transform language.

14.70.3 Options

-help [rules | convert]
Display usage information and exit. -help rules displays information about the available transforma-
tion rules. -help convert displays information about the -convertoldroutes option.

-rules rules-file
Specifies the file containing definitions of the transformation rules, or configuration that declares
a JOB_TRANSFORM_<name> or JOB_ROUTER_ROUTE_<name> variable for use in a subsequent
-jobtransforms <name> or -jobroute <name> argument.

-jobtransforms name-list
A comma-separated list of more transform names. The transform rules will be read from a previous
rules file or the configured JOB_TRANSFORM_<name> values

-jobroute name
A job route. The transform rules will be read from a previous rules file or the configured
JOB_ROUTER_ROUTE_<name> values

-in[:<form>] infile
Specifies an input file containing ClassAd(s) to be transformed. <form>, if specified, is one of:

• long: traditional long form (default)

• xml: XML form

• json: JSON ClassAd form

• new: “new” ClassAd form without newlines

• auto: guess format by reading the input

986 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

If - is specified for infile, input is read from stdin.

-out[:<form>[, nosort] outfile
Specifies an output file to receive the transformed ClassAd(s). <form>, if specified, is one of:

• long: traditional long form (default)

• xml: XML form

• json: JSON ClassAd form

• new: “new” ClassAd form without newlines

• auto: use the same format as the first input

ClassAds are storted by attribute unless nosort is specified.

[<key>=<value>]
Assign key/value pairs before rules file is parsed; can be used to pass arguments to rules. (More
detail needed here.)

-long
Use long form for both input and output ClassAd(s). (This is the default.)

-json
Use JSON form for both input and output ClassAd(s).

-xml
Use XML form for both input and output ClassAd(s).

-verbose
Verbose mode, echo to stderr the transform names as they are applied and individual transform rules
as they are executed.

-terse
Disable the -verbose option.

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

14.70.4 Exit Status

condor_transform_ads will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.70. condor_transform_ads 987

HTCondor Manual, Release 23.6.2

14.70.5 Examples

Here’s a simple example that transforms the given input ClassAds according to the given rules:

File: my_input
ResidentSetSize = 500
DiskUsage = 2500000
NumCkpts = 0
TransferrErr = false
Err = "/dev/null"

File: my_rules
EVALSET MemoryUsage (ResidentSetSize / 100)
EVALMACRO WantDisk = (DiskUsage * 2)
SET RequestDisk ($(WantDisk) / 1024)
RENAME NumCkpts NumCheckPoints
DELETE /(.+)Err/

Command:
condor_transform_ads -rules my_rules -in my_input

Output:
DiskUsage = 2500000
Err = "/dev/null"
MemoryUsage = 5
NumCheckPoints = 0
RequestDisk = (5000000 / 1024)
ResidentSetSize = 500

14.71 condor_update_machine_ad

update a machine ClassAd

14.71.1 Synopsis

condor_update_machine_ad [-help | -version]

condor_update_machine_ad [-pool centralmanagerhostname[:portnumber]] [-name startdname] path/to/update-ad

14.71.2 Description

condor_update_machine_ad modifies the specified condor_startd daemon’s machine ClassAd. The ClassAd in the file
given by path/to/update-ad represents the changed attributes. The changes persists until the condor_startd restarts.
If no file is specified on the command line, condor_update_machine_ad reads the update ClassAd from stdin.

Contents of the file or stdin must contain a complete ClassAd. Each line must be terminated by a newline character,
including the last line of the file. Lines are of the form

<attribute> = <value>

Changes to certain ClassAd attributes will cause the condor_startd to regenerate values for other ClassAd attributes.
An example of this is setting . This will cause , , and to change.

988 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.71.3 Options

-help
Display usage information and exit

-version
Display the HTCondor version and exit

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name startdname
Send the command to a machine identified by startdname

14.71.4 General Remarks

This tool is intended for the use of system administrators when dealing with offline universes.

14.71.5 Examples

To re-enable matching with the VM universe jobs, place on stdin a complete ClassAd (including the ending newline
character) to change the value of ClassAd attribute :

$ echo "HasVM = True
" | condor_update_machine_ad

To prevent vm universe jobs from matching with the machine:

$ echo "HasVM = False
" | condor_update_machine_ad

To prevent vm universe jobs from matching with the machine and specify a reason:

$ echo "HasVM = False
VMOfflineReason = \"Cosmic rays.\"
" | condor_update_machine_ad

Note that the quotes around the reason are required by ClassAds, and they must be escaped because of the shell. Using
a file instead of stdin may be preferable in these situations, because neither quoting nor escape characters are needed.

14.71.6 Exit Status

condor_update_machine_ad will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

14.71. condor_update_machine_ad 989

HTCondor Manual, Release 23.6.2

14.72 condor_updates_stats

Display output from condor_status

14.72.1 Synopsis

condor_updates_stats [–help | -h] | [–version]

condor_updates_stats [–long | -l] [–history=<min>-<max>] [–interval=<seconds>] [–notime] [–time]
[–summary | -s]

14.72.2 Description

condor_updates_stats parses the output from condor_status, and it displays the information relating to update statistics
in a useful format. The statistics are displayed with the most recent update first; the most recent update is numbered
with the smallest value.

The number of historic points that represent updates is configurable on a per-source basis by configuration variable .

14.72.3 Options

-help
Display usage information and exit.

-h
Same as -help.

-version
Display HTCondor version information and exit.

-long
All update statistics are displayed. Without this option, the statistics are condensed.

-l
Same as -long.

-history=<min>-<max>
Sets the range of update numbers that are printed. By default, the entire history is displayed. To limit
the range, the minimum and/or maximum number may be specified. If a minimum is not specified,
values from 0 to the maximum are displayed. If the maximum is not specified, all values after the
minimum are displayed. When both minimum and maximum are specified, the range to be displayed
includes the endpoints as well as all values in between. If no = sign is given, command-line parsing
fails, and usage information is displayed. If an = sign is given, with no minimum or maximum values,
the default of the entire history is displayed.

-interval=<seconds>
The assumed update interval, in seconds. Assumed times for the the updates are displayed, making
the use of the -time option together with the -interval option redundant.

-notime
Do not display assumed times for the the updates. If more than one of the options -notime and -time
are provided, the final one within the command line parsed determines the display.

-time
Display assumed times for the the updates. If more than one of the options -notime and -time are
provided, the final one within the command line parsed determines the display.

990 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-summary
Display only summary information, not the entire history for each machine.

-s
Same as -summary.

14.72.4 Exit Status

condor_updates_stats will exit with a status value of 0 (zero) upon success, and it will exit with a nonzero value upon
failure.

14.72.5 Examples

Assuming the default of 128 updates kept, and assuming that the update interval is 5 minutes, condor_updates_stats
displays:

$ condor_status -l host1 | condor_updates_stats -\-interval=300
(Reading from stdin)
*** Name/Machine = 'HOST1.cs.wisc.edu' MyType = 'Machine' ***
Type: Main
Stats: Total=2277, Seq=2276, Lost=3 (0.13%)
0 @ Mon Feb 16 12:55:38 2004: Ok

...
28 @ Mon Feb 16 10:35:38 2004: Missed
29 @ Mon Feb 16 10:30:38 2004: Ok

...
127 @ Mon Feb 16 02:20:38 2004: Ok

Within this display, update numbered 27, which occurs later in time than the missed update numbered 28, is Ok. Each
change in state, in reverse time order, displays in this condensed version.

14.73 condor_upgrade_check

Check a current install of HTCondor for incompatibilites that may cause issues when upgrading to a new major version.

14.73.1 Synopsis

condor_upgrade_check [–help]

condor_upgrade_check [–CE] [–all] [–ignore TAG {TAG. . . }] [–only TAG {TAG. . . }] [–tags] [–warnings] [–no-
warnings] [–dump] [–verbose]

14.73. condor_upgrade_check 991

HTCondor Manual, Release 23.6.2

14.73.2 Description

condor_upgrade_check is a tool intended to be used by administrators before upgrading an HTCondor install to a
new major version. This tool will perform various checks for the current installation against known incompatibilities
introduced in the Feature series of HTCondor for a given major version. If a check fails, indicating the current install
will have issues with an upgrade, then the tool will do its best to suggest a course of action to take.

condor_upgrade_check is intended to be ran on a per-host basis for upgrading a system. Since the CHTC recommends
upgrading between major versions in steps (i.e. V23 -> V24 -> V25), the available checks change between major
versions. New ones will be added and old ones removed.

Some checks ran by condor_upgrade_check are classified as warnings. These checks output warnings about incom-
patibilites that the tool is not capable of testing and thus give accurrate feedback. Warnings tend to unconditionally
output information.

Note: Some checks ran by this tool require the tool to be ran as root. If this tool is executed with out root privileges
or on a Windows host then any checks that require root will be skipped.

14.73.3 Options

-h/–help
Display condor_upgrade_checks usage to the terminal

–CE
Run available checks for installed HTCondor-CE on host

-a/–all
Run all available checks ignoring the version check to run

-i/–ignore TAG [TAG . . .]
Ignore checks with a matching TAG. Takes precendence over -only

-o/–only TAG [TAG . . .]
Only run checks with a matching TAG. If given the TAG WARNINGS then only checks classified as
warnings will be ran.

-w/–warnings/–no-warnings
Enable/disable output of checks classified as warnings. Default is enabled.

-t/–tags
Display all available check TAGS to be used by –only and –ignore

-d/–dump
Display information about all available checks.

-v/–verbose
Increase tool verbosity

992 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.73.4 Examples

Check hosts installed HTCondor for potential issues caused by incompatibilities when upgrading between major ver-
sions.

condor_upgrade_check

Check hosts installed HTCondor-CE for potential issues caused by incompatibilites when upgrading between major
versions.

condor_upgrade_check -ce

List all available check TAGS

condor_upgrade_check --tags

List information about all available checks

condor_upgrade_check --dump

Run checks while ignoring specific checks for a host installed HTCondor

condor_upgrade_check --ignore BAR BAZ

Run only checks classified as warnings for a host installed HTCondor

condor_upgrade_check --only warnings

14.73.5 Exit Status

Returns 0 when tool is finished running. Returns 1 for fatal internal errors.

14.74 condor_urlfetch

fetch configuration given a URL

14.74.1 Synopsis

condor_urlfetch [-<daemon>] url local-url-cache-file

14.74.2 Description

Depending on the command line arguments, condor_urlfetch sends the result of a query from the url to both standard
output and to a file specified by local-url-cache-file, or it sends the contents of the file specified by local-url-cache-file
to standard output.

condor_urlfetch is intended to be used as the program to run when defining configuration, such as in the nonfunctional
example:

LOCAL_CONFIG_FILE = $(LIBEXEC)/condor_urlfetch -$(SUBSYSTEM) \
http://www.example.com/htcondor-baseconfig local.config |

14.74. condor_urlfetch 993

HTCondor Manual, Release 23.6.2

The pipe character (|) at the end of this definition of the location of a configuration file changes the use of the definition.
It causes the command listed on the right hand side of this assignment statement to be invoked, and standard output
becomes the configuration. The value of $(SUBSYSTEM) becomes the daemon that caused this configuration to be
read. If $(SUBSYSTEM) evaluates to MASTER, then the URL query always occurs, and the result is sent to standard
output as well as written to the file specified by argument local-url-cache-file. When $(SUBSYSTEM) evaluates to a
daemon other than MASTER, then the URL query only occurs if the file specified by local-url-cache-file does not exist.
If the file specified by local-url-cache-file does exist, then the contents of this file is sent to standard output.

Note that if the configuration kept at the URL site changes, and reconfiguration is requested, the -<daemon> argument
needs to be -MASTER. This is the only way to guarantee that there will be a query of the changed URL contents, such
that they will make their way into the configuration.

14.74.3 Options

-<daemon>
The upper case name of the daemon issuing the request for the configuration output. If -MASTER,
then the URL query always occurs. If a daemon other than -MASTER, for example STARTD or SCHEDD,
then the URL query only occurs if the file defined by local-url-cache-file does not exist.

14.74.4 Exit Status

condor_urlfetch will exit with a status value of 0 (zero) upon success and non zero otherwise.

14.75 condor_userlog

Display and summarize job statistics from job log files.

14.75.1 Synopsis

condor_userlog [-help] [-total | -raw] [-debug] [-evict] [-j cluster | cluster.proc] [-all] [-hostname] logfile . . .

14.75.2 Description

condor_userlog parses the information in job log files and displays summaries for each workstation allocation and for
each job. See the condor_submit manual page for instructions for specifying that HTCondor write a log file for your
jobs.

If -total is not specified, condor_userlog will first display a record for each workstation allocation, which includes the
following information:

Job
The cluster/process id of the HTCondor job.

Host
The host where the job ran. By default, the host’s IP address is displayed. If -hostname is specified,
the host name will be displayed instead.

Start Time
The time (month/day hour:minute) when the job began running on the host.

Evict Time
The time (month/day hour:minute) when the job was evicted from the host.

994 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

Wall Time
The time (days+hours:minutes) for which this workstation was allocated to the job.

Good Time
The allocated time (days+hours:min) which contributed to the completion of this job. If the job
exited during the allocation, then this value will equal “Wall Time.” Otherwise, it will 0+00:00;
self-checkpoint are presently ignored.

CPU Usage
The CPU time (days+hours:min) which contributed to the completion of this job.

condor_userlog will then display summary statistics per host:

Host/Job
The IP address or host name for the host.

Wall Time
The workstation time (days+hours:minutes) allocated by this host to the jobs specified in the query.
By default, all jobs in the log are included in the query.

Good Time
The time (days+hours:minutes) allocated on this host which contributed to the completion of the jobs
specified in the query.

CPU Usage
The CPU time (days+hours:minutes) obtained from this host which contributed to the completion of
the jobs specified in the query.

Avg Alloc
The average length of an allocation on this host (days+hours:minutes).

Avg Lost
The average amount of work lost (days+hours:minutes) when a job was evicted from this host.

Goodput
This percentage is computed as Good Time divided by Wall Time.

Util.
This percentage is computed as CPU Usage divided by Good Time.

condor_userlog will then display summary statistics per job:

Host/Job
The cluster/process id of the HTCondor job.

Wall Time
The total workstation time (days+hours:minutes) allocated to this job.

Good Time
The total time (days+hours:minutes) allocated to this job which contributed to the job’s completion.

CPU Usage
The total CPU time (days+hours:minutes) which contributed to this job’s completion.

Avg Alloc
The average length of a workstation allocation obtained by this job in minutes (days+hours:minutes).

Avg Lost
The average amount of work lost (days+hours:minutes) when this job was evicted from a host; self-
checkpoints are presently ignored.

Goodput
This percentage is computed as Good Time divided by Wall Time.

14.75. condor_userlog 995

HTCondor Manual, Release 23.6.2

Util.
This percentage is computed as CPU Usage divided by Good Time.

Finally, condor_userlog will display a summary for all hosts and jobs.

14.75.3 Options

-help
Get a brief description of the supported options

-total
Only display job totals

-raw
Display raw data only

-debug
Debug mode

-j
Select a specific cluster or cluster.proc

-evict
Select only allocations which ended due to eviction

-all
Select all clusters and all allocations

-hostname
Display host name instead of IP address

14.75.4 General Remarks

Since the HTCondor job log file format does not contain a year field in the timestamp, all entries are assumed to occur
in the current year. Allocations which begin in one year and end in the next will be silently ignored.

14.75.5 Exit Status

condor_userlog will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.76 condor_userprio

Manage user priorities

996 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.76.1 Synopsis

condor_userprio -help

condor_userprio [-name negotiatorname] [-pool centralmanagerhostname[:portnumber]] [Edit option] | [Display
options [username]] [-inputfile filename]

14.76.2 Description

condor_userprio either modifies priority-related information or displays priority-related information. Displayed in-
formation comes from the accountant log, where the condor_negotiator daemon stores historical usage information
in the file at $(SPOOL)/Accountantnew.log. Which fields are displayed changes based on command line arguments.
condor_userprio with no arguments, lists the active users along with their priorities, in increasing priority order. The
-all option can be used to display more detailed information about each user, resulting in a rather wide display, and
includes the following columns:

Effective Priority
The effective priority value of the user, which is used to calculate the user’s share when allocating
resources. A lower value means a higher priority, and the minimum value (highest priority) is 0.5.
The effective priority is calculated by multiplying the real priority by the priority factor.

Real Priority
The value of the real priority of the user. This value follows the user’s resource usage.

Priority Factor
The system administrator can set this value for each user, thus controlling a user’s effective priority
relative to other users. This can be used to create different classes of users.

Res Used
The number of resources currently used.

Accumulated Usage
The accumulated number of resource-hours used by the user since the usage start time.

Usage Start Time
The time since when usage has been recorded for the user. This time is set when a user job runs for
the first time. It is reset to the present time when the usage for the user is reset.

Last Usage Time
The most recent time a resource usage has been recorded for the user.

By default only users for whom usage was recorded in the last 24 hours, or whose priority is greater than the minimum
are listed.

The -pool option can be used to contact a different central manager than the local one (the default).

Options that do not begin with a - are treated as a username and results will restricted to users that match the given
name. More than one username can be specified.

For security purposes of authentication and authorization, specifying an Edit Option requires the ADMINISTRATOR
level of access.

14.76. condor_userprio 997

HTCondor Manual, Release 23.6.2

14.76.3 Options

-help
Display usage information and exit.

-name negotiatorname
When querying ads from the condor_collector, only retrieve ads that came from the negotiator with
the given name.

-pool centralmanagerhostname[:portnumber]
Contact the specified centralmanagerhostname with an optional port number, instead of the local
central manager. This can be used to check other pools. NOTE: The host name (and optional port)
specified refer to the host name (and port) of the condor_negotiator to query for user priorities. This
is slightly different than most HTCondor tools that support a -pool option, and instead expect the
host name (and port) of the condor_collector.

-inputfile filename
Introduced for debugging purposes, read priority information from filename. The contents of file-
name are expected to be the same as captured output from running a condor_userprio -long
command.

-delete username
(Edit option) Remove the specified username from HTCondor’s accounting.

-resetall
(Edit option) Reset the accumulated usage of all the users to zero.

-resetusage username
(Edit option) Reset the accumulated usage of the user specified by username to zero.

-setaccum username value
(Edit option) Set the accumulated usage of the user specified by username to the specified floating
point value.

-setbegin username value
(Edit option) Set the begin usage time of the user specified by username to the specified value.

-setfactor username value
(Edit option) Set the priority factor of the user specified by username to the specified value.

-setlast username value
(Edit option) Set the last usage time of the user specified by username to the specified value.

-setprio username value
(Edit option) Set the real priority of the user specified by username to the specified value.

-setfloor username value
(Edit option) Set the floor for the user specified by username to the specified value. This value is the
sum of the SlotWeight (See: SLOT_WEIGHT in condor_startd Configuration File Macros) of all
running jobs. By default, the slot weight of a running job is the number of cores allocated to that job.

-setceil username value
(Edit option) Set the ceiling for the user specified by username to the specified value. This value is
the sum of the SlotWeight (See: SLOT_WEIGHT in condor_startd Configuration File Macros) of
all running jobs. By default, the slot weight of a running job is the number of cores allocated to that
job.

-activefrom month day year
(Display option) Display information for users who have some recorded accumulated usage since the
specified date.

998 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-all
(Display option) Display all available fields about each group or user.

-allusers
(Display option) Display information for all the users who have some recorded accumulated usage.

-negotiator
(Display option) Force the query to come from the negotiator instead of the collector.

-autoformat[:jlhVr,tng] attr1 [attr2 . . .] or -af[:jlhVr,tng] attr1 [attr2 . . .]
(Display option) Display attribute(s) or expression(s) formatted in a default way according to attribute
types. This option takes an arbitrary number of attribute names as arguments, and prints out their
values, with a space between each value and a newline character after the last value. It is like the
-format option without format strings.

It is assumed that no attribute names begin with a dash character, so that the next word that begins
with dash is the start of the next option. The autoformat option may be followed by a colon character
and formatting qualifiers to deviate the output formatting from the default:

j print the job ID as the first field,

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The l and h characters may not be used
together.

-constraint <expr>
(Display option) To be used in conjunction with the -long -modular or the -autoformat options.
Displays users and groups that match the <expr>.

-debug[:<opts>]
(Display option) Without :<opts> specified, use configured debug level to send debugging output to
stderr. With :<opts> specified, these options are debug levels that override any configured debug
levels for this command’s execution to send debugging output to stderr.

-flat
(Display option) Display information such that users within hierarchical groups are not listed with
their group.

-getreslist username
(Display option) Display all the resources currently allocated to the user specified by username.

-grouporder
(Display option) Display submitter information with accounting group entries at the top of the list,
and in breadth-first order within the group hierarchy tree.

14.76. condor_userprio 999

HTCondor Manual, Release 23.6.2

-grouprollup
(Display option) For hierarchical groups, the display shows sums as computed for groups, and these
sums include sub groups.

-hierarchical
(Display option) Display information such that users within hierarchical groups are listed with their
group.

-legacy
(Display option) For use with the -long option, displays attribute names and values as a single Clas-
sAd.

-long
(Display option) A verbose output which displays entire ClassAds.

-modular
(Display option) Modifies the display when using the -long option, such that attribute names and
values are shown as distinct ClassAds.

-most
(Display option) Display fields considered to be the most useful. This is the default set of fields
displayed.

-priority
(Display option) Display fields with user priority information.

-quotas
(Display option) Display fields relevant to hierarchical group quotas.

-usage
(Display option) Display usage information for each group or user.

14.76.4 Examples

Example 1 Since the output varies due to command line arguments, here is an example of the default output for a pool
that does not use Hierarchical Group Quotas. This default output is the same as given with the -most Display option.

Last Priority Update: 1/19 13:14
Effective Priority Res Total Usage Time Since

User Name Priority Factor In Use (wghted-hrs) Last Usage
---------------------- ------------ --------- ------ ------------ ----------
www-cndr@cs.wisc.edu 0.56 1.00 0 591998.44 0+16:30
joey@cs.wisc.edu 1.00 1.00 1 990.15 <now>
suzy@cs.wisc.edu 1.53 1.00 0 261.78 0+09:31
leon@cs.wisc.edu 1.63 1.00 2 12597.82 <now>
raj@cs.wisc.edu 3.34 1.00 0 8049.48 0+01:39
jose@cs.wisc.edu 3.62 1.00 4 58137.63 <now>
betsy@cs.wisc.edu 13.47 1.00 0 1475.31 0+22:46
petra@cs.wisc.edu 266.02 500.00 1 288082.03 <now>
carmen@cs.wisc.edu 329.87 10.00 634 2685305.25 <now>
carlos@cs.wisc.edu 687.36 10.00 0 76555.13 0+14:31
ali@proj1.wisc.edu 5000.00 10000.00 0 1315.56 0+03:33
apu@nnland.edu 5000.00 10000.00 0 482.63 0+09:56
pop@proj1.wisc.edu 26688.11 10000.00 1 49560.88 <now>
franz@cs.wisc.edu 29352.06 500.00 109 600277.88 <now>
martha@nnland.edu 58030.94 10000.00 0 48212.79 0+12:32

(continues on next page)

1000 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

(continued from previous page)

izzi@nnland.edu 62106.40 10000.00 0 6569.75 0+02:26
marta@cs.wisc.edu 62577.84 500.00 29 193706.30 <now>
kris@proj1.wisc.edu 100597.94 10000.00 0 20814.24 0+04:26
boss@proj1.wisc.edu 318229.25 10000.00 3 324680.47 <now>
---------------------- ------------ --------- ------ ------------ ----------
Number of users: 19 784 4969073.00 0+23:59

Example 2 This is an example of the default output for a pool that uses hierarchical groups, and the groups accept
surplus. This leads to a very wide display.

$ condor_userprio -pool crane.cs.wisc.edu -allusers
Last Priority Update: 1/19 13:18
Group Config Use Effective Priority Res ␣
→˓Total Usage Time Since
User Name Quota Surplus Priority Factor In Use␣

→˓(wghted-hrs) Last Usage
------------------------------------ --------- ------- ------------ --------- ------ ----
→˓-------- ----------
<none> 0.00 yes 1.00 0 ␣
→˓ 6.78 9+03:52
johnsm@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 6.62 9+19:42
John.Smith@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.02 9+03:52
Sedge@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.05 13+03:03
Duck@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.02 31+00:28
other@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.04 16+03:42
Duck 2.00 no 1.00 0 ␣
→˓ 0.02 13+02:57
goose@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.02 13+02:57
Sedge 4.00 no 1.00 0 ␣
→˓ 0.17 9+03:07
johnsm@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.13 9+03:08
Half@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.02 31+00:02
John.Smith@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.05 9+03:07
other@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.01 28+19:34
------------------------------------ --------- ------- ------------ --------- ------ ----
→˓-------- ----------
Number of users: 10 ByQuota 0 ␣
→˓ 6.97

14.76. condor_userprio 1001

HTCondor Manual, Release 23.6.2

14.76.5 Exit Status

condor_userprio will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.77 condor_vacate

Vacate jobs that are running on the specified hosts

14.77.1 Synopsis

condor_vacate [-help | -version]

condor_vacate [-graceful | -fast] [-debug] [-pool centralmanagerhostname[:portnumber]] [-name hostname | host-
name | -addr “<a.b.c.d:port>” | “<a.b.c.d:port>” | -constraint expression | -all]

14.77.2 Description

condor_vacate causes HTCondor force jobs to vacate from a given set of machines. The job(s) remains in the submitting
machine’s job queue.

Given the (default) -graceful option, jobs are killed and HTCondor restarts the job from the beginning somewhere else.
condor_vacate has no effect on a machine with no HTCondor job currently running.

There is generally no need for the user or administrator to explicitly run condor_vacate. HTCondor takes care of jobs
in this way automatically following the policies given in configuration files.

14.77.3 Options

-help
Display usage information

-version
Display version information

-graceful
Give the job a change to shut down cleanly, then soft-kill it.

-fast
Hard-kill jobs instead of giving them to shut down cleanly.

-debug
Causes debugging information to be sent to stderr, based on the value of the configuration variable
.

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name hostname
Send the command to a machine identified by hostname

hostname
Send the command to a machine identified by hostname

1002 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-addr “<a.b.c.d:port>”
Send the command to a machine’s master located at “<a.b.c.d:port>”

“<a.b.c.d:port>”
Send the command to a machine located at “<a.b.c.d:port>”

-constraint expression
Apply this command only to machines matching the given ClassAd expression

-all
Send the command to all machines in the pool

14.77.4 Exit Status

condor_vacate will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.77.5 Examples

To send a condor_vacate command to two named machines:

$ condor_vacate robin cardinal

To send the condor_vacate command to a machine within a pool of machines other than the local pool, use the -pool
option. The argument is the name of the central manager for the pool. Note that one or more machines within the pool
must be specified as the targets for the command. This command sends the command to a the single machine named
cae17 within the pool of machines that has condor.cae.wisc.edu as its central manager:

$ condor_vacate -pool condor.cae.wisc.edu -name cae17

14.78 condor_vacate_job

vacate jobs in the HTCondor queue from the hosts where they are running

14.78.1 Synopsis

condor_vacate_job [-help | -version]

condor_vacate_job [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr “<a.b.c.d:port>”]
[-fast] cluster. . . | cluster.process. . . | user. . . | -constraint expression . . .

condor_vacate_job [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr “<a.b.c.d:port>”]
[-fast] -all

14.78. condor_vacate_job 1003

HTCondor Manual, Release 23.6.2

14.78.2 Description

condor_vacate_job finds one or more jobs from the HTCondor job queue and vacates them from the host(s) where they
are currently running. The jobs remain in the job queue and return to the idle state.

A running job running will be sent a soft kill signal (SIGTERM by default, or whatever is defined as the SoftKillSig
in the job ClassAd), and HTCondor will restart the job from the beginning somewhere else.

If the -fast option is used, the job(s) will be immediately killed.

If the -name option is specified, the named condor_schedd is targeted for processing. If the -addr option is used, the
condor_schedd at the given address is targeted for processing. Otherwise, the local condor_schedd is targeted. The
jobs to be vacated are identified by one or more job identifiers, as described below. For any given job, only the owner
of the job or one of the queue super users (defined by the macro) can vacate the job.

Using condor_vacate_job on jobs which are not currently running has no effect.

14.78.3 Options

-help
Display usage information

-version
Display version information

-pool centralmanagerhostname[:portnumber]
Specify a pool by giving the central manager’s host name and an optional port number

-name scheddname
Send the command to a machine identified by scheddname

-addr “<a.b.c.d:port>”
Send the command to a machine located at “<a.b.c.d:port>”

cluster
Vacate all jobs in the specified cluster

cluster.process
Vacate the specific job in the cluster

user
Vacate jobs belonging to specified user

-constraint expression
Vacate all jobs which match the job ClassAd expression constraint

-all
Vacate all the jobs in the queue

-fast
Perform a fast vacate and hard kill the jobs

1004 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

14.78.4 General Remarks

Do not confuse condor_vacate_job with condor_vacate. condor_vacate is given a list of hosts to vacate, regardless
of what jobs happen to be running on them. Only machine owners and administrators have permission to use con-
dor_vacate to evict jobs from a given host. condor_vacate_job is given a list of job to vacate, regardless of which
hosts they happen to be running on. Only the owner of the jobs or queue super users have permission to use con-
dor_vacate_job.

14.78.5 Examples

To vacate job 23.0:

$ condor_vacate_job 23.0

To vacate all jobs of a user named Mary:

$ condor_vacate_job mary

To vacate all vanilla universe jobs owned by Mary:

$ condor_vacate_job -constraint 'JobUniverse == 5 && Owner == "mary"'

Note that the entire constraint, including the quotation marks, must be enclosed in single quote marks for most shells.

14.78.6 Exit Status

condor_vacate_job will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

14.79 condor_version

print HTCondor version and platform information

14.79.1 Synopsis

condor_version [-help]

condor_version [-arch] [-opsys] [-syscall]

14.79.2 Description

With no arguments, condor_version prints the currently installed HTCondor version number and platform information.
The version number includes a build identification number, as well as the date built.

14.79. condor_version 1005

HTCondor Manual, Release 23.6.2

14.79.3 Options

-help
Print usage information

-arch
Print this machine’s ClassAd value for

-opsys
Print this machine’s ClassAd value for

-syscall
Get any requested version and/or platform information from the libcondorsyscall.a that this
HTCondor pool is configured to use, instead of using the values that are compiled into the tool itself.
This option may be used in combination with any other options to modify where the information is
coming from.

14.79.4 Exit Status

condor_version will exit with a status value of 0 (zero) upon success, and it should never exit with a failing value.

14.80 condor_wait

Wait for jobs to finish

14.80.1 Synopsis

condor_wait [-help | -version]

condor_wait [-debug] [-status] [-echo] [-wait seconds] [-num number-of-jobs] log-file [job ID]

14.80.2 Description

condor_wait watches a job event log file (created with the log command within a submit description file) and returns
when one or more jobs from the log have completed or aborted.

Because condor_wait expects to find at least one job submitted event in the log file, at least one job must have been
successfully submitted with condor_submit before condor_wait is executed.

condor_wait will wait forever for jobs to finish, unless a shorter wait time is specified.

14.80.3 Options

-help
Display usage information

-version
Display version information

-debug
Show extra debugging information.

1006 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

-status
Show job start and terminate information.

-echo
Print the events out to stdout.

-wait seconds
Wait no more than the integer number of seconds. The default is unlimited time.

-num number-of-jobs
Wait for the integer number-of-jobs jobs to end. The default is all jobs in the log file.

log file
The name of the log file to watch for information about the job.

job ID
A specific job or set of jobs to watch. If the job ID is only the job ClassAd attribute , then condor_wait
waits for all jobs with the given . If the job ID is a pair of the job ClassAd attributes, given by ., then
condor_wait waits for the specific job with this job ID. If this option is not specified, all jobs that
exist in the log file when condor_wait is invoked will be watched.

14.80.4 General Remarks

condor_wait is an inexpensive way to test or wait for the completion of a job or a whole cluster, if you are trying to get
a process outside of HTCondor to synchronize with a job or set of jobs.

It can also be used to wait for the completion of a limited subset of jobs, via the -num option.

14.80.5 Examples

$ condor_wait logfile

This command waits for all jobs that exist in logfile to complete.

$ condor_wait logfile 40

This command waits for all jobs that exist in logfile with a job ClassAd attribute of 40 to complete.

$ condor_wait -num 2 logfile

This command waits for any two jobs that exist in logfile to complete.

$ condor_wait logfile 40.1

This command waits for job 40.1 that exists in logfile to complete.

$ condor_wait -wait 3600 logfile 40.1

This waits for job 40.1 to complete by watching logfile, but it will not wait more than one hour (3600 seconds).

14.80. condor_wait 1007

HTCondor Manual, Release 23.6.2

14.80.6 Exit Status

condor_wait exits with 0 if and only if the specified job or jobs have completed or aborted. condor_wait returns 1
if unrecoverable errors occur, such as a missing log file, if the job does not exist in the log file, or the user-specified
waiting time has expired.

14.81 condor_watch_q

Track the status of jobs over time.

14.81.1 Synopsis

condor_watch_q [-help]

condor_watch_q [general options] [display options] [behavior options] [tracking options]

14.81.2 Description

condor_watch_q is a tool for tracking the status of jobs over time without repeatedly querying the condor_schedd. It
does this by reading job event log files. These files may be specified directly (the -files option), or indirectly via a
single query to the condor_schedd when condor_watch_q starts up (options like -users or -clusters).

condor_watch_q provides a variety of options for output formatting, including: colorized output, tabular information,
progress bars, and text summaries. These display options are highly-customizable via command line options.

condor_watch_q also provides a minimal language for exiting when certain conditions are met by the tracked jobs.
For example, it can be configured to exit when all of the tracked jobs have terminated.

14.81.3 Examples

If no users, cluster ids, or event logs are given, condor_watch_q will default to tracking all of the current user’s jobs.
Thus, with no arguments,

condor_watch_q

will track all of your currently-active clusters.

To track jobs from a specific cluster, use the -clusters option, passing the cluster ID:

condor_watch_q -clusters 12345

To track jobs from a specific user, use the -users option, passing the user’s name the actual query will be the for the
job ad attribute):

condor_watch_q -users jane

To track jobs from a specific event log file, use the -files option, passing the path to the event log:

condor_watch_q -users /home/jane/events.log

To track jobs from a specific batch, use the -batches option, passing the batch name:

1008 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

condor_watch_q -batches BatchOfJobsFromTuesday

All of the above “tracking” options can be used together, and multiple values may be passed to each one. For example,
to track all of the jobs that are: owned by jane or jim, in cluster 12345, or in the event log /home/jill/events.log,
run

condor_watch_q -users jane jim -clusters 12345 -files /home/jill/events.log

By default, condor_watch_q will never exit on its own (unless it encounters an error or it is not tracking any jobs). You
can tell it to exit when certain conditions are met. For example, to exit with status 0 when all of the jobs it is tracking
are done or with status 1 when any job is held, you could run

condor_watch_q -exit all,done,0 -exit any,held,1

14.81.4 Options

General Options

-help
Display the help message and exit.

-debug
Causes debugging information to be sent to stderr.

Tracking Options

These options control which jobs condor_watch_q will track, and how it discovers them.

-users USER [USER . . .]
Choose which users to track jobs for. All of the user’s jobs will be tracked. One or more user names
may be passed.

-clusters CLUSTER_ID [CLUSTER_ID . . .]
Which cluster IDs to track jobs for. One or more cluster ids may be passed.

-larger-than CLUSTER_ID
Track jobs for all cluster IDs greater than or equal to the specified CLUSTER_ID. Note: This option
does not discover how to track jobs.

-files FILE [FILE . . .]
Which job event log files (i.e., the log file from condor_submit) to track jobs from. One or more
file paths may be passed.

-batches BATCH_NAME [BATCH_NAME . . .]
Which job batch names to track jobs for. One or more batch names may be passed.

-collector COLLECTOR
Which collector to contact to find the schedd, if needed. Defaults to the local collector.

-schedd SCHEDD
Which schedd to contact for queries, if needed. Defaults to the local schedd.

14.81. condor_watch_q 1009

HTCondor Manual, Release 23.6.2

Behavior Options

-exit GROUPER,JOB_STATUS[,EXIT_STATUS]
Specify conditions under which condor_watch_q should exit. GROUPER is one of all, any or none.
JOB_STATUS is one of active, done, idle, or held. The “active” status means “in the queue”, and
includes jobs in the idle, running, and held states. EXIT_STATUS may be any valid exit status integer.
To specify multiple exit conditions, pass this option multiple times. condor_watch_q will exit when
any of the conditions are satisfied.

Display Options

These options control how condor_watch_q formats its output. Many of them are “toggles”: -x enables option “x”,
and -no-x disables it.

-groupby {batch, log, cluster}
How to group jobs into rows for display in the table. Must be one of batch (group by job batch
name), log (group by event log file path), or cluster (group by cluster ID). Defaults to batch.

-table/-no-table
Enable/disable the table. Enabled by default.

-progress/-no-progress
Enable/disable the progress bar. Enabled by default.

-row-progress/-no-row-progress
Enable/disable the progress bar for each row. Enabled by default.

-summary/-no-summary
Enable/disable the summary line. Enabled by default.

-summary-type {totals, percentages}
Choose what to display on the summary line, totals (the number of each jobs in each state), or
percentages (the percentage of jobs in each state, of the total number of tracked jobs) By default,
show totals.

-updated-at/-no-updated-at
Enable/disable the “updated at” line. Enabled by default.

-abbreviate/-no-abbreviate
Enable/disable abbreviating path components to the shortest somewhat-unique prefix. Disabled by
default.

-color/-no-color
Enable/disable colored output. Enabled by default if connected to a tty. Disabled on Windows if
colorama is not available (https://pypi.org/project/colorama/).

-refresh/-no-refresh
Enable/disable refreshing output. If refreshing is disabled, output will be appended instead. Enabled
by default if connected to a tty.

1010 Chapter 14. Commands Reference (man pages)

https://pypi.org/project/colorama/

HTCondor Manual, Release 23.6.2

14.81.5 Exit Status

Returns 0 when sent a SIGINT (keyboard interrupt).

Returns 0 if no jobs are found to track.

Returns 1 for fatal internal errors.

Can be configured via the -exit option to return any valid exit status when a certain condition is met.

14.81.6 Author

Center for High Throughput Computing, University of Wisconsin-Madison

14.82 condor_who

Display information about owners of jobs and jobs running on an execute machine

14.82.1 Synopsis

condor_who [help options] [address options] [display options]

14.82.2 Description

condor_who queries and displays information about the user that owns the jobs running on a machine. It is intended to
be run on an execute machine.

The options that may be supplied to condor_who belong to three groups:

• Help options provide information about the condor_who tool.

• Address options allow destination specification for query.

• Display options control the formatting and which of the queried information to display.

At any time, only one help option and one address option may be specified. Any number of display options may be
specified.

condor_who obtains its information about jobs by talking to one or more condor_startd daemons. So, condor_who
must identify the command port of any condor_startd daemons. An address option provides this information. If no
address option is given on the command line, then condor_who searches using this ordering:

1. A defined value of the environment variable CONDOR_CONFIG specifies the directory where log and address files
are to be scanned for needed information.

2. With the aim of finding all condor_startd daemons, condor_who utilizes the same algorithm it would using the
-allpids option. The Linux ps or the Windows tasklist program obtains all PIDs. As Linux root or Windows
administrator, the Linux lsof or the Windows netstat identifies open sockets and from there the PIDs of listen
sockets. Correlating the two lists of PIDs results in identifying the command ports of all condor_startd daemons.

14.82. condor_who 1011

HTCondor Manual, Release 23.6.2

14.82.3 Options

-help
(help option) Display usage information

-daemons
(help option) Display information about the daemons running on the specified machine, including
the daemon’s PID, IP address and command port

-diagnostic
(help option) Display extra information helpful for debugging

-verbose
(help option) Display PIDs and addresses of daemons

-address hostaddress
(address option) Identify the condor_startd host address to query

-allpids
(address option) Query all local condor_startd daemons

-logdir directoryname
(address option) Specifies the directory containing log and address files that condor_who will scan
to search for command ports of condor_start daemons to query

-pid PID
(address option) Use the given PID to identify the condor_startd daemon to query

-long
(display option) Display entire ClassAds

-wide
(display option) Displays fields without truncating them in order to fit screen width

-format fmt attr
(display option) Display attribute attr in format fmt. To display the attribute or expression the format
must contain a single printf(3)-style conversion specifier. Attributes must be from the resource
ClassAd. Expressions are ClassAd expressions and may refer to attributes in the resource ClassAd.
If the attribute is not present in a given ClassAd and cannot be parsed as an expression, then the
format option will be silently skipped. %r prints the unevaluated, or raw values. The conversion
specifier must match the type of the attribute or expression. %s is suitable for strings such as Name,
%d for integers such as LastHeardFrom, and %f for floating point numbers such as . %v identifies
the type of the attribute, and then prints the value in an appropriate format. %V identifies the type
of the attribute, and then prints the value in an appropriate format as it would appear in the -long
format. As an example, strings used with %V will have quote marks. An incorrect format will result
in undefined behavior. Do not use more than one conversion specifier in a given format. More than
one conversion specifier will result in undefined behavior. To output multiple attributes repeat the -
format option once for each desired attribute. Like printf(3)-style formats, one may include other
text that will be reproduced directly. A format without any conversion specifiers may be specified,
but an attribute is still required. Include a backslash followed by an ‘n’ to specify a line break.

-autoformat[:lhVr,tng] attr1 [attr2 . . .] or -af[:lhVr,tng] attr1 [attr2 . . .]
(display option) Display attribute(s) or expression(s) formatted in a default way according to attribute
types. This option takes an arbitrary number of attribute names as arguments, and prints out their
values, with a space between each value and a newline character after the last value. It is like the
-format option without format strings.

It is assumed that no attribute names begin with a dash character, so that the next word that begins
with dash is the start of the next option. The autoformat option may be followed by a colon character
and formatting qualifiers to deviate the output formatting from the default:

1012 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The l and h characters may not be used
together.

14.82.4 Examples

Example 1 Sample output from the local machine, which is running a single HTCondor job. Note that the output of
the PROGRAM field will be truncated to fit the display, similar to the artificial truncation shown in this example output.

$ condor_who

OWNER CLIENT SLOT JOB RUNTIME PID PROGRAM
smith1@crane.cs.wisc.edu crane.cs.wisc.edu 2 320.0 0+00:00:08 7776 D:\scratch\condor\
→˓execut

Example 2 Verbose sample output.

$ condor_who -verbose

LOG directory "D:\scratch\condor\master\test/log"

Daemon PID Exit Addr Log, Log.Old
------ --- ---- ---- ---, -------
Collector 6788 <128.105.136.32:7977> CollectorLog, CollectorLog.old
Credd 8148 <128.105.136.32:9620> CredLog, CredLog.old
Master 5976 <128.105.136.32:64980> MasterLog,
Match MatchLog, MatchLog.old
Negotiator 6600 NegotiatorLog, NegotiatorLog.old
Schedd 6336 <128.105.136.32:64985> SchedLog, SchedLog.old
Shadow ShadowLog,
Slot1 StarterLog.slot1,
Slot2 7272 <128.105.136.32:65026> StarterLog.slot2,
Slot3 StarterLog.slot3,
Slot4 StarterLog.slot4,
SoftKill SoftKillLog,
Startd 7416 <128.105.136.32:64984> StartLog, StartLog.old
Starter StarterLog,
TOOL TOOLLog,

(continues on next page)

14.82. condor_who 1013

HTCondor Manual, Release 23.6.2

(continued from previous page)

OWNER CLIENT SLOT JOB RUNTIME PID PROGRAM
smith1@crane.cs.wisc.edu crane.cs.wisc.edu 2 320.0 0+00:01:28 7776 D:\scratch\condor\
→˓execut

14.82.5 Exit Status

condor_who will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.83 get_htcondor

Install and configure HTCondor on Linux machines.

14.83.1 Synopsis

get_htcondor <-h | --help>

get_htcondor [–[no-]dry-run] [--channel name] [--minicondor | [--central-manager | --submit | --execute] central-
manager-name] [--shared-filesystem-domain filesystem-domain-name]

get_htcondor --dist

14.83.2 Description

This tool installs and configure HTCondor on Linux machines. See https://htcondor.readthedocs.io/en/latest/
getting-htcondor for detailed instructions. This page is intended as a quick reference to its options; it also includes
a section about the reasons for the configurations it installs.

14.83.3 Options

-help
Print a usage reminder.

--dry-run
Do not issue commands, only print them. [default]

--no-dry-run
Issue all the commands needed to install HTCondor.

--channel name
Specify channel name to install; name may be current, the most recent release with new features
[default] or stable, the most recent release with only bug-fixes

--dist
Display the detected operating system and exit.

--minicondor
Configure as a single-machine (“mini”) HTCondor. [default]

--central-manager central-manager-name

1014 Chapter 14. Commands Reference (man pages)

https://htcondor.readthedocs.io/en/latest/getting-htcondor
https://htcondor.readthedocs.io/en/latest/getting-htcondor

HTCondor Manual, Release 23.6.2

--submit central-manager-name

--execute central-manager-name

Configure this installation with the central manager, submit, or execute role.

--shared-filesystem-domain filesystem-domain-name

Configure this installation to assume that machines specifying the same filesystem-domain-
name share a filesystem.

14.83.4 Exit Status

On success, exits with code 0. Failures detected by get_htcondor will result in exit code 1. Other failures may have
other exit codes.

14.83.5 Installed Configuration

This tool may install four different configurations. We discuss the single-machine configuration first, and then the three
parts of the multi-machine configuration as a group. Our goal is to document the reasoning behind the details, because
the details can obscure that reasoning, and because the details will change as we continue to improve HTCondor.

As a general note, the configurations this tool installs make extensive use of metaknobs, lines in HTCondor
configuration files that look like use x : y. To determine exactly what configuration a metaknob sets, run
condor_config_val use x:y.

Single-Machine Installation

The single-machine installation performed by get_htcondor uses the minicondor package. (A “mini” HTCondor
is a single-machine HTCondor system installed with administrative privileges.) Because the different roles in the
HTCondor system are all on the same machine, we configure all network communications to occur over the loopback
device, where we don’t have to worry about eavesdropping or requiring encryption. We use the FS method, which
depends on the local filesytem, to identify which user is attempting to connect, and restrict access correspondingly.

The get_htcondor tool installs the standard minicondor package from the HTCondor repositories; see the file it creates,
/etc/condor/config.d/00-minicondor, for details.

Multi-Machine Installation

Because the three roles must communicate over the network to form a complete pool in this case„ security is a much
bigger concern; we therefore require authentication and encryption on every connection. Thankfully, almost all of the
network communication is daemon-to-daemon, so we don’t have to burden individual users with that aspect of security.
Instead, users submit jobs on the submit-role machine, using FS to authenticate. Users may also need to contact the
central manager (when running condor_status, for example), but they never need to write anything to it, so we’ve
configured authentication for read-only commands to be optional.

Daemon-to-daemon communication is authenticated with the IDTOKENS method. (If a user needs to submit jobs re-
motely, they can also use the IDTOKENS method, it’s just more work; see condor_token_fetch.) Each role installed
by this tool has a copy of the password, which is used to generate an IDTOKEN, which is used for all daemon-to-daemon
authentication; both the password and the IDTOKEN can only be read by privileged processes. An IDTOKEN can
only be validated by the holder of the corresponding password, so each daemon in the pool has to have both.

This tool installs the role-specific configuration in the files /etc/condor/config.d/01-central-manager.
config, /etc/condor/config.d/01-submit.config, and /etc/condor/config.d/01-execute.config;
consult them for details.

14.83. get_htcondor 1015

HTCondor Manual, Release 23.6.2

14.84 gidd_alloc

find a GID within the specified range which is not used by any process

14.84.1 Synopsis

gidd_alloc min-gid max-gid

14.84.2 Description

This program will scan the alive PIDs, looking for which GID is unused in the supplied, inclusive range specified by
the required arguments min-gid and max-gid. Upon finding one, it will add the GID to its own supplementary group
list, and then scan the PIDs again expecting to find only itself using the GID. If no collision has occurred, the program
exits, otherwise it retries.

14.84.3 General Remarks

This is a program only available for the Linux ports of HTCondor.

14.84.4 Exit Status

gidd_alloc will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.85 htcondor

Manage HTCondor jobs, job sets, dags, event logs, and resources

14.85.1 Synopsis

htcondor [-h | --help] [-v | -q]

htcondor job submit [--resource resource-type] [--runtime time-seconds] [--email email-address] submit_file
htcondor job status [--resource resource-type] [--skip-history] job_id
htcondor job out [--resource resource-type] [--skip-history] job_id
htcondor job error [--resource resource-type] [--skip-history] job_id
htcondor job log [--resource resource-type] [--skip-history] job_id
htcondor job resources [--resource resource-type] [--skip-history] job_id

htcondor jobset submit description-file
htcondor jobset list [--allusers]
htcondor jobset status job-set-name [--owner user-name] [--nobatch] [--skip-history]
htcondor jobset remove job-set-name [--owner user-name]

1016 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

htcondor dag submit dag-file
htcondor dag status dagman-job-id

htcondor eventlog read [-csv | -json] [--groupby attribute] eventlog [eventlog2 [eventlog3 . . .]]
htcondor eventlog follow [-csv | -json] [--groupby attribute] eventlog

14.85.2 Description

htcondor is a tool for managing HTCondor jobs, job sets, resources, event logs, and DAGs. It can replace con-
dor_submit, condor_submit_dag, condor_q, condor_status, and condor_userlog, as well as all-new functionality and
features. The user interface is more consistent than its predecessor tools.

The first argument of the htcondor command (ignoring any global options) is the noun representing an object in the
HTCondor system to be operated on. The nouns include an individual job, jobset, eventlog, or a dag. Each noun is
then followed by a noun-specific verb that describe the operation on that noun.

One of the following optional global option may appear before the noun:

14.85.3 Global Options

htcondor -h, htcondor --help
Display the help message. Can also be specified after any verb to display the options available for
each verb.

htcondor -q . . .
Reduce verbosity of log messages.

htcondor -v . . .
Increase verbosity of log messages.

A noun-specific verb appears after each noun; the verbs are sorted by noun in the list, which includes with their indi-
vidual option flags.

14.85.4 Job Verbs

htcondor job submit submit_file
Takes as an argument a submit file in the condor_submit job submit description language, and places
a new job in an Access Point

htcondor job submit options

htcondor job submit --resource resource_type submit_file
Resource type used to run this job. Currently supports Slurm and EC2. Assumes the
necessary setup is complete and security tokens available.

htcondor job submit --runtime runtime_in_seconds submit_file
Amount of time in seconds to allocate resources. Used in conjunction with the --
resource flag.

htcondor job submit --email address submit_file
Email address to receive notification messages. Used in conjunction with the --resource
flag.

14.85. htcondor 1017

HTCondor Manual, Release 23.6.2

htcondor job status
Takes as an argument a job id in the form of clusterid.procid, and returns a human readable presen-
tation of the status of that job.

job status option

htcondor job status --skip-history job.id

Passed to the status verb to skip checking history if job not found in the active job
queue.

htcondor job out
Takes as an argument a job id in the form of clusterid.procid, and prints out the contents of that job’s
standard output file, assuming that it exists on the AP.

htcondor job err
Takes as an argument a job id in the form of clusterid.procid, and prints out the contents of that job’s
standard error file, assuming that it exists on the AP.

htcondor job log
Takes as an argument a job id in the form of clusterid.procid, and prints out the contents of that job’s
event log file. If the job shared an event log file with other jobs, the complete event log file will be
printed, which may contain events for other jobs.

htcondor job resources
Takes as an argument a job id in the form of clusterid.procid, and returns a human readable presen-
tation the machine resource used by this job.

14.85.5 Jobset Verbs

htcondor jobset submit submit_file
Takes as an argument a submit file in the condor_submit job submit description language, and places
a new job set in an Access Point

htcondor jobset list
Succinctly lists all the jobsets in the queue which are owned by the current user.

htcondor jobset list options

htcondor jobset list --allusers
Shows jobs from all users, not just those owned by the current user.

htcondor jobset status submit_file
Takes as an argument a job set name, and shows detailed information about that job set.

htcondor jobset status options

htcondor jobset status --nobatch
Shows jobs in a more detailed view, one line per job

htcondor jobset status --owner ownername
Shows jobs from the specified job owner.

htcondor jobset status --skiphistory
Shows detailed information only about active jobs in the queue, and ignore historical
jobs which have left the queue. This runs much faster.

htcondor jobset remove job_name
Takes as an argument a job_name in the queue, and removes it from the Access Point.

htcondor jobsets remove options

1018 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

htcondor jobset remove --owner=owner_name Removes all jobs owned by the given
owner.

14.85.6 Eventlog Verbs

htcondor eventlog read logfile optional-other-logfile
Takes one or more arguments, which are event log files to process. It may be the per-job or per-jobset
eventlog, which was specified by the log = some_file in the submit description language. For a dag,
it may also be the nodes.log file that all dags generate. Or, if the global event log is enabled by an
administrator with the EVENT_LOG configuration knob, it may be the global event log, containing
information about all jobs on the Access point.

Given this, htcondor eventlog read returns information about all the contained jobs, and their status.
It runs much faster than condor_history, because these logs are more concise than the history files.
Unlike condor_history, it will also show information about jobs that have not yet left the queue.

htcondor eventlog follow logfile
Takes as an argument an event log to process, as above, but instead of processing that file to comple-
tion, it does the equivalent of tail -f, and runs until interruption, emitting information about jobs as
it appears in the file.

Eventlog Options

--csv
By default, htcondor eventlog read emits a table of information in human read-
able format. With this option, the output is in a command separated value format,
suitable for injestion by a spreadsheet or database.

--json
Emits output in the json format. Only one of -csv or -json should be given.

--group-by attributeName
With a job ad attribute name, instead of one line per job, emit one line summariz-
ing all jobs that share the same value for the attribute name given. In the OSG, the
GLIDEIN_SITE attribute is injected into all jobs, so one can quickly get a count of all
jobs running, idle and exitted per site by using this option.

14.85.7 Examples

$ htcondor eventlog read logfile

Job Host Start Time Evict Time Evictions Wall Time Good Time ␣
→˓ CPU Usage
19989.0 slot1_1@speedy 5/18 12:34 5/18 12:54 0 0+00:20:00 0+00:20:00␣
→˓ 0+00:00:00
19990.0 slot1_1@lumpy 5/22 18:51 5/22 18:51 1 0+00:02:00 0+00:00:00␣
→˓ 0+00:00:43
20003.0 slot1_1@chtc 8/9 23:33 8/9 23:37 1 0+00:04:00 0+00:00:00␣
→˓ 0+00:00:00
20004.0 slot1_1@wisc 8/9 23:38 8/9 23:58 0 0+00:20:00 0+00:20:00␣
→˓ 0+00:00:00

14.85. htcondor 1019

HTCondor Manual, Release 23.6.2

14.85.8 Exit Status

htcondor will exit with a non-zero status value if it fails and zero status if it succeeds.

14.86 procd_ctl

command line interface to the condor_procd

14.86.1 Synopsis

procd_ctl -h

procd_ctl -A address-file [command]

14.86.2 Description

This is a programmatic interface to the condor_procd daemon. It may be used to cause the condor_procd to do anything
that the condor_procd is capable of doing, such as tracking and managing process families.

This is a program only available for the Linux ports of HTCondor.

The -h option prints out usage information and exits. The address-file specification within the -A argument specifies
the path and file name of the address file which the named pipe clients must use to speak with the condor_procd.

One command is given to the condor_procd. The choices for the command are defined by the Options.

14.86.3 Options

TRACK_BY_ASSOCIATED_GID GID [PID]
Use the specified GID to track the specified family rooted at PID. If the optional PID is not specified,
then the PID used is the one given or assumed by condor_procd.

GET_USAGE [PID]
Get the total usage information about the PID family at PID. If the optional PID is not specified, then
the PID used is the one given or assumed by condor_procd.

DUMP [PID]
Print out information about both the root PID being watched and the tree of processes under this
root PID. If the optional PID is not specified, then the PID used is the one given or assumed by
condor_procd.

LIST [PID]
With no PID given, print out information about all the watched processes. If the optional PID is
specified, print out information about the process specified by PID and all its child processes.

SIGNAL_PROCESS signal [PID]
Send the signal to the process specified by PID. If the optional PID is not specified, then the PID
used is the one given or assumed by condor_procd.

SUSPEND_FAMILY PID
Suspend the process family rooted at PID.

CONTINUE_FAMILY PID
Continue execution of the process family rooted at PID.

1020 Chapter 14. Commands Reference (man pages)

HTCondor Manual, Release 23.6.2

KILL_FAMILY PID
Kill the process family rooted at PID.

UNREGISTER_FAMILY PID
Stop tracking the process family rooted at PID.

SNAPSHOT
Perform a snapshot of the tracked family tree.

QUIT
Disconnect from the condor_procd and exit.

14.86.4 General Remarks

This program may be used in a standalone mode, independent of HTCondor, to track process families. The programs
procd_ctl and gidd_alloc are used with the condor_procd in standalone mode to interact with the daemon and inquire
about certain state of running processes on the machine, respectively.

14.86.5 Exit Status

procd_ctl will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

14.86. procd_ctl 1021

HTCondor Manual, Release 23.6.2

1022 Chapter 14. Commands Reference (man pages)

CHAPTER

FIFTEEN

CLASSAD ATTRIBUTES

15.1 ClassAd Types

ClassAd attributes vary, depending on the entity producing the ClassAd. Therefore, each ClassAd has an attribute
named , which describes the type of ClassAd. In addition, the condor_collector appends attributes to any daemon’s
ClassAd, whenever the condor_collector is queried. These additional attributes are listed in the unnumbered subsection
labeled ClassAd Attributes Added by the condor_collector on the ClassAd Attributes Added by the condor_collector
page.

Here is a list of defined values for , as well as a reference to a list attributes relevant to that type.

Accounting
The condor_negotiator keeps persistent records for every submitter who has every submitted a job to the pool,
containing total usage and priority information. Attributes in the accounting ad are listed and described in Ac-
counting ClassAd Attributes The accounting ads for active users can be queried with the command, or the account-
ing ads for all users, including historical ones can be queried with -negotiator. Accounting ads hold information
about total usage over the user’s HTCondor lifetime, but submitter ads hold instantaneous information.

Collector
Each condor_collector daemon describes its state. ClassAd attributes that appear in a Collector ClassAd are
listed and described in the unnumbered subsection labeled Collector ClassAd Attributes on the Collector ClassAd
Attributes page. These ads can be shown by running condor_status -collector.

DaemonMaster
Each daemon describes its state. ClassAd attributes that appear in a DaemonMaster ClassAd are listed and de-
scribed in the unnumbered subsection labeled DaemonMaster ClassAd Attributes on the DaemonMaster ClassAd
Attributes. These ads can be shown by running condor_status -master.

Defrag
Each condor_defrag daemon describes its state. ClassAd attributes that appear in a Defrag ClassAd are listed
and described in the unnumbered subsection labeled Defrag ClassAd Attributes on the Defrag ClassAd Attributes
page. This ad can be shown by running condor_status -defrag.

Grid
The condor_gridmanager describes the state of each remote service to which it submits grid universe jobs.
ClassAd attributes that appear in a Grid ClassAd are listed and described in the unnumbered subsection labeled
Grid ClassAd Attributes on the Grid ClassAd Attributes page. These ad can be shown by running condor_status
-grid.

1023

HTCondor Manual, Release 23.6.2

Job
Each submitted job describes its state, for use by the condor_negotiator daemon in finding a machine upon
which to run the job. ClassAd attributes that appear in a job ClassAd are listed and described in the unnumbered
subsection labeled Job ClassAd Attributes on the Job ClassAd Attributes page. These ads can be shown by
running condor_q.

Slot or Machine
Each slot of a condor_startd daemon describes its state. For HTCondor version 23.2 and later these are Slot
ClassAds and describe only the slot state; and there is a separate StartDaemonClassAd that describes the overall
state of the condor_startd. These ClassAds are used for matchmaking and there are usually multiple ClassAds for
each condor_startd. There is no single daemon ad for a condor_startd prior to version 23.2, instead the Machine
ad is dual purpose, describing both the state of a slot and the overall state of the condor_startd daemon. ClassAd
attributes that appear in a Slot or Machine ClassAd are listed and described in the unnumbered subsection labeled
Machine ClassAd Attributes on the Machine ClassAd Attributes page. These ads can be shown by running
condor_status.

StartDaemon
Each condor_startd daemon describes its state. This ClassAd type was introduced in HTCondor version 23.2.
Prior to that version, the Machine ClassAd described the state of both the slot and the condor_startd over-
all. The StartDaemon classad is used for monitoring and for commands that affect the whole daemon such as
condor_reconfig. ClassAd attributes that appear in a StartDaemon ClassAd are listed and described in the
unnumbered subsection labeled Machine ClassAd Attributes on the Machine ClassAd Attributes These ads can
be shown by running condor_status -to-be-determined.

Negotiator
Each condor_negotiator daemon describes its state. ClassAd attributes that appear in a Negotiator ClassAd
are listed and described in the unnumbered subsection labeled Negotiator ClassAd Attributes on the Negotiator
ClassAd Attributes page. This ad can be shown by running condor_status -negotiator.

Scheduler
Each condor_schedd daemon describes its state. ClassAd attributes that appear in a Scheduler ClassAd are listed
and described in the unnumbered subsection labeled Scheduler ClassAd Attributes on the Scheduler ClassAd
Attributes page. These ads can be shown by running condor_status -scheduler.

Submitter
Each submitter is described by a ClassAd. ClassAd attributes that appear in a Submitter ClassAd are listed
and described in the unnumbered subsection labeled Submitter ClassAd Attributes on the Submitter ClassAd
Attributes page. These ads can be shown run running condor_status -submitter.

In addition, statistics are published for each DaemonCore daemon. These attributes are listed and described in the un-
numbered subsection labeled DaemonCore Statistics Attributes on the :doc:/classad-attributes/daemon-core-statistics-
attributes` page.

1024 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

15.2 Accounting ClassAd Attributes

The condor_negotiator keeps information about each submitter and group in accounting ads that are also sent to the
condor_collector. Th condor_userprio command queries and displays these ads. For example, to see the full set of
raw accounting ads, run the command:

$ condor_userprio -l

¶
If this record is for an accounting group with quota, the name of the group.

¶
The total number of seconds this submitter has used since they first arrived in the pool. Note this is not weighted
by cpu cores – an eight core job running for one hour has a usage of 3600, compare with WeightedAccumulate-
dUsage

¶
The Unix epoch time in seconds when this user claimed resources in the system. This is persistent and survives
reboots and HTCondor upgrades.

¶
If this record is for an accounting group with quota, the amount of quota statically configured.

¶
A boolean which is true if this record represents an accounting group

¶
The unix epoch time, in seconds, when this submitter last had claimed resources.

¶
The fully qualified name of the user or accounting group. It will be of the form name@submit.domain.

¶
The current effective priority of this user.

¶
The priority factor of this user.

¶
The current number of slots claimed.

¶
When the negotiator computes the fair share of the pool that each user should get, assuming they have infinite
jobs and every job matches every slot, the SubmitterShare is the fraction of the pool this user should get. A
floating point number from 0 to 1.0.

¶
When the negotiator computes the fair share of the pool that each user should get, assuming they have infinite
jobs and every job matches every slot, the SubmitterLimit is the absolute number of cores this user should get.

¶
The total amount of core-seconds used by this user since they arrived in the system, assuming SLOT_WEIGHT =
CPUS

¶
A total number of requested cores across all running jobs from the submitter.

15.2. Accounting ClassAd Attributes 1025

HTCondor Manual, Release 23.6.2

15.3 Job ClassAd Attributes

Both active HTCondor jobs (those in a condor_schedd) and historical jobs (those in the history file), are described by
classads. Active jobs can be queried and displayed with the condor_q command, and historical jobs are queried with
the condor_history command, as in the examples below. Note that not all job attributes are described here, some are
for internal HTCondor use, and are subject to change. Also, not all jobs contain all attributes.

$ condor_history -l username
$ condor_q -l

¶
Boolean set to true True if the ad is absent.

¶
The accounting group name, as set in the submit description file via the command. This attribute is only present
if an accounting group was requested by the submission. See the Configuration for Central Managers section
for more information about accounting groups.

¶
The user name associated with the accounting group. This attribute is only present if an accounting group was
requested by the submission.

¶
Formally, the length of time in seconds from when the shadow sends a claim activation to when the shadow
receives a claim deactivation.

Informally, this is how much time HTCondor’s fair-share mechanism will charge the job for, plus one round-trip
over the network.

This attribute may not be used in startd policy expressions and is not computed until complete.

¶
Formally, the length of time in seconds from when the shadow received notification that the job had been spawned
to when the shadow received notification that the spawned process has exited.

Informally, this is the duration limited by .

This attribute may not be used in startd policy expressions and is not computed until complete.

¶
Formally, the length of time in seconds from when the shadow sends a claim activation to when the shadow it
notified that the job was spawned.

Informally, this is how long it took the starter to prepare to execute the job. That includes file transfer, so the
difference between this duration and the duration of input file transfer is (roughly) the execute-side overhead of
preparing to start the job.

This attribute may not be used in startd policy expressions and is not computed until complete.

¶
Formally, the length of time in seconds from when the shadow received notification that the spawned process
exited to when the shadow received a claim deactivation.

Informally, this is how long it took the starter to finish up after the job. That includes file transfer, so the difference
between this duration and the duration of output file transfer is (roughly) the execute-side overhead of handling
job termination.

This attribute may not be used in startd policy expressions and is not computed until complete.

1026 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
The longest time for which a job may be executing. Jobs which exceed this duration will go on hold. This time
does not include file-transfer time. Jobs which self-checkpoint have this long to write out each checkpoint.

This attribute is intended to help minimize the time wasted by jobs which may erroneously run forever.

¶
The longest time for which a job may continuously be in the running state. Jobs which exceed this duration will
go on hold. Exiting the running state resets the job duration measured by this attribute.

This attribute is intended to help minimize the time wasted by jobs which may erroneously run forever.

¶
String containing a comma-separated list of all the remote machines running a parallel or mpi universe job.

¶
A string representing the command line arguments passed to the job, when those arguments are specified using
the old syntax, as specified in the condor_submit section.

¶
A string representing the command line arguments passed to the job, when those arguments are specified using
the new syntax, as specified in the condor_submit section.

¶
A string recording the subject in the authentication token (IDTOKENS or SCITOKENS) used to submit the job.

¶
A string recording the issuer in the authentication token (IDTOKENS or SCITOKENS) used to submit the job.

¶
A string recording the groups in the authentication token (IDTOKENS or SCITOKENS) used to submit the job.

¶
A string recording the scopes in the authentication token (IDTOKENS or SCITOKENS) used to submit the job.

¶
A string recording the unique identifier of the authentication token (IDTOKENS or SCITOKENS) used to submit
the job.

¶
For batch grid universe jobs, additional command-line arguments to be given to the target batch system’s job
submission command.

¶
For batch grid universe jobs, the name of the project/account/allocation that should be charged for the job’s
resource usage.

¶
For batch grid universe jobs, the name of the queue in the remote batch system.

¶
For batch grid universe jobs, a limit in seconds on the job’s execution time, enforced by the remote batch system.

¶
The integer number of KiB read from disk for this job.

¶
The integer number of disk blocks read for this job.

¶
The integer number of KiB written to disk for this job.

15.3. Job ClassAd Attributes 1027

HTCondor Manual, Release 23.6.2

¶
The integer number of blocks written to disk for this job.

¶
A URL, as defined by submit command checkpoint_destination.

¶
Used for grid type gce jobs; a string taken from the definition of the submit description file command Defines
the set of labels associated with the GCE instance.

¶
Integer cluster identifier for this job. A cluster is a group of jobs that were submitted together. Each job has its
own unique job identifier within the cluster, but shares a common cluster identifier. The value changes each time
a job or set of jobs are queued for execution under HTCondor.

¶
The path to and the file name of the job to be executed.

¶
The number of seconds of wall clock time that the job has been allocated a machine, excluding the time spent on
run attempts that were evicted. Like , this includes time the job spent in a suspended state, so the total committed
wall time spent running is

CommittedTime - CommittedSuspensionTime

¶
This attribute is identical to except that the time is multiplied by the of the machine(s) that ran the job. This relies
on being listed in

¶
A running total of the number of seconds the job has spent in suspension during time in which the job was not
evicted. This number is updated when the job exits.

¶
The time when the job completed, or undefined if the job has not yet completed. Measured in the number of
seconds since the epoch (00:00:00 UTC, Jan 1, 1970). Note that older versions of HTCondor initialized to the
integer 0, so job ads from older versions of HTCondor might have a 0 CompletionDate for jobs which haven’t
completed.

¶
A string list, delimited by commas and space characters. The items in the list identify named resources that the
job requires. The value can be a ClassAd expression which, when evaluated in the context of the job ClassAd
and a matching machine ClassAd, results in a string list.

¶
A string that describes the operating system version that the condor_submit command that submitted this job
was built for. Note this may be different that the operating system that is actually running.

¶
A string that describes the HTCondor version of the condor_submit command that created this job. Note this
may be different than the version of the HTCondor daemon that runs the job.

¶
For Container universe jobs, the string that names the container image source Is “local” for non-transfered images
or “cedar” for transfered files. “docker” or “http” might be other common values.

¶
For Container universe jobs, a filename that becomes the working directory of the job. Mapped to the scratch
directory.

1028 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
This attribute is identical to except that the time is multiplied by the of the machine(s) that ran the job. This relies
on being listed in

¶
A running total of the number of seconds the job has spent in suspension for the life of the job.

¶
The total time, in seconds, that condor has spent transferring the input and output sandboxes for the life of the
job.

¶
The number of hosts in the claimed state, due to this job.

¶
For a DAGMan node job only, the job ClassAd attribute of the job which is the parent of this node job. For nested
DAGs, this attribute holds only the of the job’s immediate parent.

¶
For a DAGMan node job only, a comma separated list of each JobName which is a parent node of this job’s node.
This attribute is passed through to the job via the command line, if it does not exceed the line length defined with
_POSIX_ARG_MAX. For example, if a node job has two parents with JobName s B and C, the command line will
contain

-append +DAGParentNodeNames="B,C"

¶
For a DAGMan node job only, gives the path to an event log used exclusively by DAGMan to monitor the state
of the DAG’s jobs. Events are written to this log file in addition to any log file specified in the job’s submit
description file.

¶
Name of the DAG node that this job is associated with.

¶
For a DAGMan node job only, a comma-separated list of the event codes that should be written to the log specified
by , known as the auxiliary log. All events not specified in the string are not written to the auxiliary event log.
The value of this attribute is determined by DAGMan, and it is passed to the job via the command line. By
default, the following events are written to the auxiliary job log:

• Submit, event code is 0

• Execute, event code is 1

• Executable error, event code is 2

• Job evicted, event code is 4

• Job terminated, event code is 5

• Shadow exception, event code is 7

• Job aborted, event code is 9

• Job suspended, event code is 10

• Job unsuspended, event code is 11

• Job held, event code is 12

• Job released, event code is 13

15.3. Job ClassAd Attributes 1029

HTCondor Manual, Release 23.6.2

• Post script terminated, event code is 16

• Grid submit, event code is 27

If is not defined, it has no effect. The value of does not affect events recorded in the job event log file referred to
by .

¶
For a DAGMan node job only, the current retry attempt number for the node that this job belongs. This attribute
is only included if specified by configuration option.

¶
An integer representing the number of seconds before the jobs to which the job may be matched with a machine.

¶
A Unix Epoch timestamp that represents the exact time HTCondor should attempt to begin executing the job.

¶
An integer representing the number of seconds after the jobs to allow the job to arrive at the execute machine
before automatically being evicted due to missing its .

¶
An integer that specifies the maximum number of seconds for which delegated proxies should be valid. The
default behavior is determined by the configuration setting which defaults to one day. A value of 0 indicates that
the delegated proxy should be valid for as long as allowed by the credential used to create the proxy. This setting
currently only applies to proxies delegated for non-grid jobs and HTCondor-C jobs. This setting has no effect if
the configuration setting is false, because in that case the job proxy is copied rather than delegated.

¶
Amount of disk space (KiB) in the HTCondor execute directory on the execute machine that this job has used.
An initial value may be set at the job’s request, placing into the job’s submit description file a setting such as

1 megabyte initial value
+DiskUsage = 1024

vm universe jobs will default to an initial value of the disk image size. If not initialized by the job, non-vm
universe jobs will default to an initial value of the sum of the job’s executable and all input files.

¶
For Docker and Container universe jobs, a string that names the docker image to run inside the container.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Defines
the path and file name of the file containing the EC2 Query API’s access key.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Identifies
the machine image of the instance.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Defines
the map from block device names to kernel device names for the instance.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Specifies
an Elastic IP address to associate with the instance.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Specifies
the IAM (instance) profile to associate with this instance.

1030 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Specifies
the IAM (instance) profile to associate with this instance.

¶
Used for grid type ec2 jobs; a string set for the job once the instance starts running, as assigned by the EC2
service, that represents the unique ID assigned to the instance by the EC2 service.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Specifies
a service-specific instance type.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Defines
the key pair associated with the EC2 instance.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Contains
a space or comma separated list of the names of additional parameters to pass when instantiating an instance.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Defines
the maximum amount per hour a job submitter is willing to pay to run this job.

¶
Used for grid type ec2 jobs; identifies the spot request HTCondor made on behalf of this job.

¶
Used for grid type ec2 jobs; reports the reason for the most recent EC2-level state transition. Can be used to
determine if a spot request was terminated due to a rise in the spot price.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Defines
the set, and case, of tags associated with the EC2 instance.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Defines
the path and file name of the file into which to write the SSH key used to access the image, once it is running.

¶
Used for grid type ec2 jobs; a string set for the job once the instance starts running, as assigned by the EC2
service, that represents the host name upon which the instance runs, such that the user can communicate with
the running instance.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Defines
that path and file name of the file containing the EC2 Query API’s secret access key.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Defines
the list of EC2 security groups which should be associated with the job.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Defines
the list of EC2 security group IDs which should be associated with the job.

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Defines
a block of data that can be accessed by the virtual machine.

15.3. Job ClassAd Attributes 1031

HTCondor Manual, Release 23.6.2

¶
Used for grid type ec2 jobs; a string taken from the definition of the submit description file command . Specifies
a path and file name of a file containing data that can be accessed by the virtual machine.

¶
A string containing a comma-separated list of job ClassAd attributes. For each attribute name in the list, its value
will be included in the e-mail notification upon job completion.

¶
A boolean value taken from the submit description file command . It specifies if HTCondor should encrypt the
remote scratch directory on the machine where the job executes.

¶
An integer containing the epoch time of when the job entered into its current status So for example, if the job is
on hold, the ClassAd expression

time() - EnteredCurrentStatus

will equal the number of seconds that the job has been on hold.

¶
A string representing the environment variables passed to the job, when those arguments are specified using the
old syntax, as specified in the condor_submit section.

¶
A string representing the environment variables passed to the job, when those arguments are specified using the
new syntax, as specified in the condor_submit section.

¶
A boolean. If missing or true, HTCondor will erase (truncate) the error and output logs when the job restarts. If
this attribute is false, and when_to_transfer_output is ON_EXIT_OR_EVICT, HTCondor will instead append
to those files.

¶
Size of the executable in KiB.

¶
An attribute that is True when a user job exits via a signal and False otherwise. For some grid universe jobs,
how the job exited is unavailable. In this case, is set to False.

¶
When a user job exits by means other than a signal, this is the exit return code of the user job. For some grid
universe jobs, how the job exited is unavailable. In this case, is set to 0.

¶
When a user job exits by means of an unhandled signal, this attribute takes on the numeric value of the signal.
For some grid universe jobs, how the job exited is unavailable. In this case, will be undefined.

¶
The way that HTCondor previously dealt with a job’s exit status. This attribute should no longer be used. It is
not always accurate in heterogeneous pools, or if the job exited with a signal. Instead, see the attributes: , , and .

¶
Used for grid type gce jobs; a string taken from the definition of the submit description file command . Defines
the path and file name of the file containing authorization credentials to use the GCE service.

¶
Used for grid type gce jobs; a string taken from the definition of the submit description file command . Identifies
the machine image of the instance.

1032 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
Used for grid type gce jobs; a string taken from the definition of the submit description file command . Specifies
the path and file name of a file containing a set of JSON object members that should be added to the instance
description submitted to the GCE service.

¶
Used for grid type gce jobs; a string taken from the definition of the submit description file command . Specifies
the hardware profile that should be used for a GCE instance.

¶
Used for grid type gce jobs; a string taken from the definition of the submit description file command . Defines
a set of name/value pairs that can be accessed by the virtual machine.

¶
Used for grid type gce jobs; a string taken from the definition of the submit description file command . Specifies
a path and file name of a file containing a set of name/value pairs that can be accessed by the virtual machine.

¶
Used for grid type gce jobs; a boolean taken from the definition of the submit description file command . Specifies
whether the virtual machine instance created in GCE should be preemptible.

¶
A string intended to be a unique job identifier within a pool. It currently contains the condor_schedd
daemon Name attribute, a job identifier composed of attributes and separated by a period, and the job’s
submission time in seconds since 1970-01-01 00:00:00 UTC, separated by # characters. The value sub-
mit.example.com#152.3#1358363336 is an example. While HTCondor guarantees this string will be globally
unique, the contents are subject to change, and users should not parse out components of this string.

¶
A floating point value indicating the maximum Capability value of a GPU permitted by this job. This attribute
is referenced by the RequireGPUs job attribute in order to constrain which slots containing GPUs a job is matched
to. Set this attribute in a job by using the submit command

¶
A floating point value indicating the minimum Capability value of a GPU needed by this job. This attribute is
referenced by the RequireGPUs job attribute in order to constrain which slots containing GPUs a job is matched
to. Set this attribute in a job by using the submit command

¶
A integer value in megabytes indicating the minimum GlobalMemoryMB amount a GPU must have to run this
job. This attribute is referenced by the RequireGPUs job attribute in order to constrain which slots containing
GPUs a job is matched to. Set this attribute in a job by using the submit description file command

¶
A integer encoded version value which is compared to the MaxSupportedVersion value of a GPU to deter-
mine if the runtime needed by the job is supported. The value should be encoded as MajorVersion*1000 + Mi-
norVersion*10. This attribute is referenced by the RequireGPUs job attribute in order to constrain which slots
containing GPUs a job is matched to. Set this attribute in a job by using the submit description file command

¶
A string containing the job’s status as reported by the remote job management system.

¶
A string defined by the right hand side of the submit description file command . It specifies the target grid type,
plus additional parameters specific to the grid type.

¶
Time at which the remote job management system became unavailable. Measured in the number of seconds since
the epoch (00:00:00 UTC, Jan 1, 1970).

15.3. Job ClassAd Attributes 1033

HTCondor Manual, Release 23.6.2

¶
Currently only for scheduler and local universe jobs, a string containing a name of a signal to be sent to the job
if the job is put on hold.

¶
A string containing a human-readable message about why a job is on hold. This is the message that will be
displayed in response to the command condor_q -hold. It can be used to determine if a job should be released
or not.

¶
An integer value that represents the reason that a job was put on hold. The below table defines all possible values
used by attributes , , and .

Integer HoldReasonCode
[NumHoldsByReason Label]

Reason for Hold HoldReasonSubCode

1
[UserRequest]

The user put the job on hold with .

3
[JobPolicy]

The PERIODIC_HOLD expres-
sion evaluated to True. Or,
ON_EXIT_HOLD was true

User Specified

4
[CorruptedCredential]

The credentials for the job are in-
valid.

5
[JobPolicyUndefined]

A job policy expression evaluated
to Undefined.

6
[FailedToCreateProcess]

The condor_starter failed to start
the executable.

The Unix errno number.

7
[UnableToOpenOutput]

The standard output file for the job
could not be opened.

The Unix errno number.

8
[UnableToOpenInput]

The standard input file for the job
could not be opened.

The Unix errno number.

9
[UnableToOpenOutputStream]

The standard output stream for the
job could not be opened.

The Unix errno number.

continues on next page

1034 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

Table 1 – continued from previous page

Integer HoldReasonCode
[NumHoldsByReason Label]

Reason for Hold HoldReasonSubCode

10
[UnableToOpenInputStream]

The standard input stream for the
job could not be opened.

The Unix errno number.

11
[InvalidTransferAck]

An internal HTCondor protocol
error was encountered when trans-
ferring files.

12
[TransferOutputError]

An error occurred while trans-
ferring job output files or self-
checkpoint files.

The Unix errno number, or a plug-
in error number; see below.

13
[TransferInputError]

An error occurred while transfer-
ring job input files.

The Unix errno number, or a plug-
in error number; see below.

14
[IwdError]

The initial working directory of
the job cannot be accessed.

The Unix errno number.

15
[SubmittedOnHold]

The user requested the job be sub-
mitted on hold.

16
[SpoolingInput]

Input files are being spooled.

17
[JobShadowMismatch]

A standard universe job is
not compatible with the con-
dor_shadow version available on
the submitting machine.

18
[InvalidTransferGoAhead]

An internal HTCondor protocol
error was encountered when trans-
ferring files.

19
[HookPrepareJobFailure]

was defined but could not be exe-
cuted or returned failure.

20
[MissedDeferredExecutionTime]

The job missed its deferred exe-
cution time and therefore failed to
run.

continues on next page

15.3. Job ClassAd Attributes 1035

HTCondor Manual, Release 23.6.2

Table 1 – continued from previous page

Integer HoldReasonCode
[NumHoldsByReason Label]

Reason for Hold HoldReasonSubCode

21
[StartdHeldJob]

The job was put on hold because
in the machine policy was true.

22
[UnableToInitUserLog]

Unable to initialize job event log.

23
[FailedToAccessUserAccount]

Failed to access user account.

24
[NoCompatibleShadow]

No compatible shadow.

25
[InvalidCronSettings]

Invalid cron settings.

26
[SystemPolicy]

evaluated to true.

27
[SystemPolicyUndefined]

The system periodic job policy
evaluated to undefined.

32
[MaxTransferInputSizeExceeded]

The maximum total input file
transfer size was exceeded. (See

33

[MaxTransferOutputSizeExceeded]

The maximum total output file
transfer size was exceeded. (See

34
[JobOutOfResources]

Memory usage exceeds a memory
limit.

35
[InvalidDockerImage]

Specified Docker image was in-
valid.

continues on next page

1036 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

Table 1 – continued from previous page

Integer HoldReasonCode
[NumHoldsByReason Label]

Reason for Hold HoldReasonSubCode

36
[FailedToCheckpoint]

Job failed when sent the check-
point signal it requested.

37
[EC2UserError]

User error in the EC2 universe:

Public key file not defined. 1
Private key file not defined. 2
Grid resource string missing EC2
service URL.

4

Failed to authenticate. 9
Can’t use existing SSH keypair
with the given server’s type.

10

You, or somebody like you, can-
celled this request.

20

38
[EC2InternalError]

Internal error in the EC2 universe:

Grid resource type not EC2. 3
Grid resource type not set. 5
Grid job ID is not for EC2. 7
Unexpected remote job status. 21

39
[EC2AdminError]

Administrator error in the EC2
universe:

EC2_GAHP not defined. 6

40
[EC2ConnectionProblem]

Connection problem in the EC2
universe

. . .while creating an SSH keypair. 11

. . .while starting an on-demand
instance.

12

. . .while requesting a spot in-
stance.

17

41
[EC2ServerError]

Server error in the EC2 universe:

Abnormal instance termination
reason.

13

continues on next page

15.3. Job ClassAd Attributes 1037

HTCondor Manual, Release 23.6.2

Table 1 – continued from previous page

Integer HoldReasonCode
[NumHoldsByReason Label]

Reason for Hold HoldReasonSubCode

Unrecognized instance termina-
tion reason.

14

Resource was down for too long. 22

42
[EC2InstancePotentiallyLost]

Instance potentially lost due to an
error in the EC2 universe:

Connection error while terminat-
ing an instance.

15

Failed to terminate instance too
many times.

16

Connection error while terminat-
ing a spot request.

17

Failed to terminated a spot request
too many times.

18

Spot instance request purged be-
fore instance ID acquired.

19

43
[PreScriptFailed]

Pre script failed.

44
[PostScriptFailed]

Post script failed.

45
[SingularityTestFailed]

Test of singularity runtime failed
before launching a job

46
[JobDurationExceeded]

The job’s allowed duration was ex-
ceeded.

47
[JobExecuteExceeded]

The job’s allowed execution time
was exceeded.

48
[HookShadowPrepareJobFailure]

Prepare job shadow hook failed
when it was executed; status code
indicated job should be held.

Note for hold codes 12 [TransferOutputError] and 13 [TransferInputError]: file transfer may invoke file-transfer
plug-ins. If it does, the hold subcodes may additionally be 62 (ETIME), if the file-transfer plug-in timed out; or
the exit code of the plug-in shifted left by eight bits, otherwise.

¶

1038 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

An integer value that represents further information to go along with the , for some values of . See for a table of
possible values.

¶
A string that uniquely identifies a set of job hooks, and added to the ClassAd once a job is fetched.

¶
Maximum observed memory image size (i.e. virtual memory) of the job in KiB. The initial value is equal to
the size of the executable for non-vm universe jobs, and 0 for vm universe jobs. A vanilla universe job’s is
recomputed internally every 15 seconds. How quickly this updated information becomes visible to is controlled
by and .

Under Linux, ProportionalSetSize is a better indicator of memory usage for jobs with significant sharing of
memory between processes, because is simply the sum of virtual memory sizes across all of the processes in the
job, which may count the same memory pages more than once.

¶
I/O wait time of the job recorded by the cgroup controller in seconds.

¶
A boolean expression that controls whether or not HTCondor attempts to flush a access point’s NFS cache, in
order to refresh an HTCondor job’s initial working directory. The value will be True, unless a job explicitly adds
this attribute, setting it to False.

¶
A comma-separated list of attribute names. The named attributes and their values are written in the job
event log whenever any event is being written to the log. This is the same as the configuration setting
EVENT_LOG_INFORMATION_ATTRS (see Daemon Logging Configuration File Entries) but it applies to the job
event log instead of the system event log.

¶
If a job is given a batch name with the -batch-name option to condor_submit, this string valued attribute will
contain the batch name.

¶
Time at which the job most recently finished transferring its input sandbox. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970)

¶
Time at which the job most recently finished transferring its output sandbox. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970)

¶
If a job is currently in disconnected state, and the AP is attempting to reconnect to an EP, this attribute is set
to the retry number. Upon successful reconnection, or if the job has never been disconnected this attribute is
undefined. Note the singular value of “attempt”.

¶
Time at which the job most recently began running. Measured in the number of seconds since the epoch (00:00:00
UTC, Jan 1, 1970).

¶
Time at which the job most recently finished transferring its input sandbox and began executing. Measured in
the number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970)

¶
Time at which the job most recently began transferring its input sandbox. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970)

¶
Time at which the job most recently finished executing and began transferring its output sandbox. Measured in

15.3. Job ClassAd Attributes 1039

HTCondor Manual, Release 23.6.2

the number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970)

¶
A string that may be defined for a job by setting in the submit description file. When set, tools which display the
executable such as will instead use this string. For interactive jobs that do not have a submit description file, this
string will default to "Interactive job".

¶
Time at which the condor_shadow and condor_starter become disconnected. Set to Undefined when a suc-
cessful reconnect occurs. Measured in the number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

¶
The number of seconds set for a job lease, the amount of time that a job may continue running on a remote
resource, despite its submitting machine’s lack of response. See Job Leases for details on job leases.

¶
An integer expression that specifies the time in seconds requested by the job for being allowed to gracefully shut
down.

¶
An integer indicating what events should be emailed to the user. The integer values correspond to the user choices
for the submit command .

Value Notification Value
0 Never
1 Always
2 Complete
3 Error

¶
Integer priority for this job, set by or . The default value is 0. The higher the number, the greater (better) the
priority.

¶
This attribute is retained for backwards compatibility. It may go away in the future. It is equivalent to for all
universes except scheduler. For the scheduler universe, this attribute is equivalent to .

¶
Time at which the job first began running. Measured in the number of seconds since the epoch (00:00:00 UTC,
Jan 1, 1970). Due to a long standing bug in the 8.6 series and earlier, the job classad that is internal to the
condor_startd and condor_starter sets this to the time that the job most recently began executing. This bug is
scheduled to be fixed in the 8.7 series.

¶
Integer which indicates the current status of the job.

Value Idle
1 Idle
2 Running
3 Removing
4 Completed
5 Held
6 Transferring Output
7 Suspended

1040 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
String which names the submit file the job came from, if any.

¶
Integer which indicates how a job was submitted to HTCondor. Users can set a custom value for job via Python
Bindings API.

Value Method of Submission
Undefined Unknown
0

1 DAGMan-Direct
2 Python Bindings
3 htcondor job submit
4 htcondor dag submit
5 htcondor jobset submit
100+ Portal/User-set

¶
Integer which indicates the job universe.

Value Universe
5 vanilla, docker
7 scheduler
8 MPI
9 grid
10 java
11 parallel
12 local
13 vm

¶
An integer value that represents the number of seconds that the condor_schedd will continue to keep a claim, in
the Claimed Idle state, after the job with this attribute defined completes, and there are no other jobs ready to
run from this user. This attribute may improve the performance of linear DAGs, in the case when a dependent
job can not be scheduled until its parent has completed. Extending the claim on the machine may permit the
dependent job to be scheduled with less delay than with waiting for the condor_negotiator to match with a new
machine.

¶
The Unix signal number that the job wishes to be sent before being forcibly killed. It is relevant only for jobs
running on Unix machines.

¶
This attribute is replaced by the functionality in as of HTCondor version 7.7.3. The number of seconds that the
job requests the condor_starter wait after sending the signal defined as and before forcibly removing the job.
The actual amount of time will be the minimum of this value and the execute machine’s configuration variable

¶
An integer containing the epoch time when the job was last successfully matched with a resource (gatekeeper)
Ad.

15.3. Job ClassAd Attributes 1041

HTCondor Manual, Release 23.6.2

¶
If, at any point in the past, this job failed to match with a resource ad, this attribute will contain a string with a
human-readable message about why the match failed.

¶
An integer containing the epoch time when HTCondor-G last tried to find a match for the job, but failed to do so.

¶
The name of the condor_collector of the pool in which a job ran via flocking in the most recent run attempt. This
attribute is not defined if the job did not run via flocking.

¶
Time at which the job last performed a successful suspension. Measured in the number of seconds since the
epoch (00:00:00 UTC, Jan 1, 1970).

¶
Time at which the job was last evicted from a remote workstation. Measured in the number of seconds since the
epoch (00:00:00 UTC, Jan 1, 1970).

¶
A boolean expression that defaults to False, causing the job to be removed from the queue upon completion. An
exception is if the job is submitted using condor_submit -spool. For this case, the default expression causes
the job to be kept in the queue for 10 days after completion.

¶
Machine attribute of name <X> that is placed into this job ClassAd, as specified by the configuration variable .
With the potential for multiple run attempts, <N> represents an integer value providing historical values of this
machine attribute for multiple runs. The most recent run will have a value of <N> equal to 0. The next most
recent run will have a value of <N> equal to 1.

¶
The maximum number of hosts that this job would like to claim. As long as is the same as , no more hosts are
negotiated for.

¶
Maximum time in seconds to let this job run uninterrupted before kicking it off when it is being preempted. This
can only decrease the amount of time from what the corresponding startd expression allows.

¶
This integer expression specifies the maximum allowed total size in Mbytes of the input files that are transferred
for a job. This expression does not apply to grid universe or files transferred via file transfer plug-ins. The
expression may refer to attributes of the job. The special value -1 indicates no limit. If not set, the system setting
is used. If the observed size of all input files at submit time is larger than the limit, the job will be immediately
placed on hold with a value of 32. If the job passes this initial test, but the size of the input files increases or the
limit decreases so that the limit is violated, the job will be placed on hold at the time when the file transfer is
attempted.

¶
This integer expression specifies the maximum allowed total size in Mbytes of the output files that are transferred
for a job. This expression does not apply to grid universe or files transferred via file transfer plug-ins. The
expression may refer to attributes of the job. The special value -1 indicates no limit. If not set, the system setting
is used. If the total size of the job’s output files to be transferred is larger than the limit, the job will be placed
on hold with a value of 33. The output will be transferred up to the point when the limit is hit, so some files may
be fully transferred, some partially, and some not at all.

1042 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
An integer expression in units of Mbytes that represents the peak memory usage for the job. Its purpose is to be
compared with the value defined by a job with the submit command, for purposes of policy evaluation.

¶
The minimum number of hosts that must be in the claimed state for this job, before the job may enter the running
state.

¶
An integer number of seconds delay time after this job starts until the next job is started. The value is limited by
the configuration variable

¶
Boolean value which when True indicates that this job is a nice job, raising its user priority value, thus causing
it to run on a machine only when no other HTCondor jobs want the machine.

¶
A boolean value only relevant to grid universe jobs, which when True tells HTCondor to simply abort (remove)
any problematic job, instead of putting the job on hold. It is the equivalent of doing followed by -forcex any time
the job would have otherwise gone on hold. If not explicitly set to True, the default value will be False.

¶
A string that identifies the NT domain under which a job’s owner authenticates on a platform running Windows.

¶
An integer value that will increment every time a job is placed on hold. It may be undefined until the job has
been held at least once.

¶
The value of this attribute is a (nested) classad containing a count of how many times a job has been placed on
hold grouped by the reason the job went on hold. It may be undefined until the job has been held at least once.
Each attribute name in this classad is a NumHoldByReason label; see the table above under the documentation
for job attribute for a table of possible values. Each attribute value is an integer stating how many times the job
went on hold for that specific reason. An example:

NumHoldsByReason = [UserRequest = 2; JobPolicy = 110; UnableToOpenInput = 1]

¶
An integer, initialized to zero, that is incremented by the condor_shadow each time the job’s executable exits of
its own accord, with or without errors, and successfully completes file transfer (if requested). Jobs which have
done so normally enter the completed state; this attribute is therefore normally only of use when, for example,
on_exit_remove or on_exit_hold is set.

¶
An integer that is incremented by the condor_schedd each time the job is matched with a resource ad by the
negotiator.

¶
An integer count of the number of times a job successfully reconnected after being disconnected. This occurs
when the condor_shadow and condor_starter lose contact, for example because of transient network failures or
a condor_shadow or condor_schedd restart. This attribute is only defined for jobs that can reconnected: those
in the vanilla and java universes.

¶
An integer count of the number of times the job started executing.

¶
A count of the number of child processes that this job has.

15.3. Job ClassAd Attributes 1043

HTCondor Manual, Release 23.6.2

¶
A count of the number of restarts from a checkpoint attempted by this job during its lifetime. Currently updated
only for VM universe jobs.

¶
An integer count of the number of times the condor_shadow daemon had a fatal error for a given job.

¶
An integer count of the number of times a condor_shadow daemon was started for a given job. This attribute is
not defined for scheduler universe jobs, since they do not have a condor_shadow daemon associated with them.
For local universe jobs, this attribute is defined, even though the process that manages the job is technically
a condor_starter rather than a condor_shadow. This keeps the management of the local universe and other
universes as similar as possible. Note that this attribute is incremented every time the job is matched, even
if the match is rejected by the execute machine; in other words, the value of this attribute may be greater
than the number of times the job actually ran.

¶
An integer that is incremented each time HTCondor-G places a job on hold due to some sort of error condi-
tion. This counter is useful, since HTCondor-G will always place a job on hold when it gives up on some error
condition. Note that if the user places the job on hold using the command, this attribute is not incremented.

¶
A string that defines a list of jobs. When the job with this attribute defined is removed, all other jobs defined by
the list are also removed. The string is an expression that defines a constraint equivalent to the one implied by
the command

$ condor_rm -constraint <constraint>

This attribute is used for jobs managed with to ensure that node jobs of the DAG are removed when the job itself
is removed. Note that the list of jobs defined by this attribute must not form a cyclic removal of jobs, or the
condor_schedd will go into an infinite loop when any of the jobs is removed.

¶
A URL, as defined by submit command output_destination.

¶
String describing the user who submitted this job.

¶
A string that is only relevant to parallel universe jobs. Without this attribute defined, the default policy applied to
parallel universe jobs is to consider the whole job completed when the first node exits, killing processes running
on all remaining nodes. If defined to the following strings, HTCondor’s behavior changes:

"WAIT_FOR_ALL"
HTCondor will wait until every node in the parallel job has completed to consider the job finished.

¶
Defines the command-line arguments for the post command using the old argument syntax, as specified in con-
dor_submit. If both and exists, the former is ignored.

¶
Defines the command-line arguments for the post command using the new argument syntax, as specified in
condor_submit, excepting that double quotes must be escaped with a backslash instead of another double quote.
If both and exists, the former is ignored.

¶
A job in the vanilla, Docker, Java, or virtual machine universes may specify a command to run after the has
exited, but before file transfer is started. Unlike a DAGMan POST script command, this command is run on the

1044 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

execute machine; however, it is not run in the same environment as the . Instead, its environment is set by or .
Like the DAGMan POST script command, this command is not run in the same universe as the ; in particular,
this command is not run in a Docker container, nor in a virtual machine, nor in Java. This command is also not
run with any of vanilla universe’s features active, including (but not limited to): cgroups, PID namespaces, bind
mounts, CPU affinity, Singularity, or job wrappers. This command is not automatically transferred with the job,
so if you’re using file transfer, you must add it to the list.

If the specified command is in the job’s execute directory, or any sub-directory, you should not set , as that will
delete all the files in the job’s execute directory before this command has a chance to run. If you don’t want any
output back from your VM universe job, but you do want to run a post command, do not set and instead delete
the job’s execute directory in your post command.

¶
If or were set, and the post command has run, this attribute will true if the post command exited on a signal and
false if it did not. It is otherwise unset.

¶
If or were set, the post command has run, and the post command did not exit on a signal, then this attribute will
be set to the exit code. It is otherwise unset.

¶
If or were set, the post command has run, and the post command exited on a signal, then this attribute will be set
to that signal. It is otherwise unset.

¶
Defines the environment for the Postscript using the Old environment syntax. If both and exist, the former is
ignored.

¶
Defines the environment for the Postscript using the New environment syntax. If both and exist, the former is
ignored.

¶
Defines the command-line arguments for the pre command using the old argument syntax, as specified in con-
dor_submit. If both and exists, the former is ignored.

¶
Defines the command-line arguments for the pre command using the new argument syntax, as specified in con-
dor_submit, excepting that double quotes must be escape with a backslash instead of another double quote. If
both and exists, the former is ignored.

¶
A job in the vanilla, Docker, Java, or virtual machine universes may specify a command to run after file transfer
(if any) completes but before the is started. Unlike a DAGMan PRE script command, this command is run on
the execute machine; however, it is not run in the same environment as the . Instead, its environment is set by or
. Like the DAGMan POST script command, this command is not run in the same universe as the ; in particular,
this command is not run in a Docker container, nor in a virtual machine, nor in Java. This command is also not
run with any of vanilla universe’s features active, including (but not limited to): cgroups, PID namespaces, bind
mounts, CPU affinity, Singularity, or job wrappers. This command is not automatically transferred with the job,
so if you’re using file transfer, you must add it to the list.

¶
If or were set, and the pre command has run, this attribute will true if the pre command exited on a signal and
false if it did not. It is otherwise unset.

¶
If or were set, the pre command has run, and the pre command did not exit on a signal, then this attribute will be
set to the exit code. It is otherwise unset.

15.3. Job ClassAd Attributes 1045

HTCondor Manual, Release 23.6.2

¶
If or were set, the pre command has run, and the pre command exited on a signal, then this attribute will be set
to that signal. It is otherwise unset.

¶
Defines the environment for the prescript using the Old environment syntax. If both and exist, the former is
ignored.

¶
Defines the environment for the prescript using the New environment syntax. If both and exist, the former is
ignored.

¶
An integer value representing a user’s priority to affect of choice of jobs to run. A larger value gives higher
priority. When not explicitly set for a job, 0 is used for comparison purposes. This attribute, when set, is
considered first: before , before , before , before , and before .

¶
An integer value representing a user’s priority to affect of choice of jobs to run. A larger value gives higher
priority. When not explicitly set for a job, 0 is used for comparison purposes. This attribute, when set, is
considered after , but before , before , before , and before .

¶
An integer value representing a user’s priority to affect of choice of jobs to run. A larger value gives higher
priority. When not explicitly set for a job, 0 is used for comparison purposes. This attribute, when set, is
considered after , after , and after , but before , and before .

¶
An integer value representing a user’s priority to affect of choice of jobs to run. A larger value gives higher
priority. When not explicitly set for a job, 0 is used for comparison purposes. This attribute, when set, is
considered after , after , after , and after , but before .

¶
When True, the condor_starter will not prepend Iwd to , when is a relative path name and is False. The default
value is False. This attribute is primarily of interest for users of for the purpose of allowing an executable’s
location to be resolved by the user’s path in the job wrapper.

¶
When True, entries in the file transfer lists that are relative paths will be transferred to the same relative path on
the destination machine (instead of the basename).

¶
Integer process identifier for this job. Within a cluster of many jobs, each job has the same , but will have a
unique . Within a cluster, assignment of a value will start with the value 0. The job (process) identifier described
here is unrelated to operating system PIDs.

¶
On Linux execute machines with kernel version more recent than 2.6.27, this is the maximum observed propor-
tional set size (PSS) in KiB, summed across all processes in the job. If the execute machine does not support
monitoring of PSS or PSS has not yet been measured, this attribute will be undefined. PSS differs from in how
memory shared between processes is accounted. The PSS for one process is the sum of that process’ memory
pages divided by the number of processes sharing each of the pages. is the same, except there is no division by
the number of processes sharing the pages.

¶
The current state of a DAGs PROVISIONER Node as set by the job itself via chirp. This is an enumerated value to
inform DAGMan of the provisioner node jobs state to act accordingly (i.e. begin workflow). Current enumeration
values are as follows:

1046 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

Provisioning Started 1
Provisioning Completed 2
De-Provisioning Started 3
De-Provisioning Completed 4

Note: HTCondor does not set this value. The job is responsible for setting this so DAGMan works correctly.

¶
Time at which the job was submitted to the job queue. Measured in the number of seconds since the epoch
(00:00:00 UTC, Jan 1, 1970).

¶ .
The integer number of KiB read from disk for this job over the previous time interval defined by configuration
variable .

¶ .
The integer number of disk blocks read for this job over the previous time interval defined by configuration
variable .

¶ .
The integer number of KiB written to disk for this job over the previous time interval defined by configuration
variable .

¶ .
The integer number of blocks written to disk for this job over the previous time interval defined by configuration
variable .

¶
A string containing a human-readable message about why the job was released from hold.

¶
The path to the directory in which a job is to be executed on a remote machine.

¶
The name of the condor_collector of the pool in which a job is running via flocking. This attribute is not defined
if the job is not running via flocking.

¶
The total number of seconds of system CPU time (the time spent at system calls) the job used on remote machines.
This does not count time spent on run attempts that were evicted.

¶
The total number of seconds of system CPU time the job used on remote machines, summed over all execution
attempts.

¶
The total number of seconds of user CPU time the job used on remote machines. This does not count time spent
on run attempts that were evicted. A job in the virtual machine universe will only report this attribute if run on
a KVM hypervisor.

¶
The total number of seconds of user CPU time the job used on remote machines, summed over all execution
attempts.

¶
Cumulative number of seconds the job has been allocated a machine. This also includes time spent in suspension
(if any), so the total real time spent running is

15.3. Job ClassAd Attributes 1047

HTCondor Manual, Release 23.6.2

RemoteWallClockTime - CumulativeSuspensionTime

Note that this number does not get reset to zero when a job is forced to migrate from one machine to another. ,
on the other hand, is just like except it does get reset to 0 whenever the job is evicted.

¶
Number of seconds the job was allocated a machine for its most recent completed execution. This attribute is set
after the job exits or is evicted. It will be undefined until the first execution attempt completes or is terminated.
When a job has been allocated a machine and is still running, the value will be undefined or will be the value
from the previous execution attempt rather than the current one.

¶
Currently only for scheduler universe jobs, a string containing a name of a signal to be sent to the job if the job
is removed.

¶
The number of CPUs requested for this job. If dynamic condor_startd provisioning is enabled, it is the minimum
number of CPUs that are needed in the created dynamic slot.

¶
The amount of disk space in KiB requested for this job. If dynamic condor_startd provisioning is enabled, it is
the minimum amount of disk space needed in the created dynamic slot.

¶
The number of GPUs requested for this job. If dynamic condor_startd provisioning is enabled, it is the minimum
number of GPUs that are needed in the created dynamic slot.

¶
Constraint on the properties of GPUs requested for this job. If dynamic condor_startd provisioning is enabled,
This constraint will be tested against the property attributes of the AvailableGPUs attribute of the partitionable
slot when choosing which GPUs for the dynamic slot.

¶
A full path to the directory that the job requests the condor_starter use as an argument to chroot().

¶
The amount of memory space in MiB requested for this job. If dynamic condor_startd provisioning is enabled,
it is the minimum amount of memory needed in the created dynamic slot. If not set by the job, its definition is
specified by configuration variable

Requirements
A classad expression evaluated by the condor_negotiator, condor_schedd, and condor_startd in the context of
slot ad. If true, this job is eligible to run on that slot. If the job requirements does not mention the (startd)
attribute , the schedd will append a clause to Requirements forcing the job to match the same as the access point.
The schedd appends a similar clause to match the . The schedd parameter , will, if set, append that value to every
job’s requirements expression.

¶
Maximum observed physical memory in use by the job in KiB while running.

¶
The path and filename containing a SciToken to use for a Condor-C job.

¶
Number of files and directories in the jobs’ Scratch directory. The value is updated periodically while the job is
running.

1048 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
This is the current time, in Unix epoch seconds. It is added by the condor_schedd to the job ads that it sends in
reply to a query (e.g. sent to). Since it not present in the job ad in the condor_schedd, it should not be used in
any expressions that will be evaluated by the condor_schedd.

¶
Utilized for Linux jobs only, the number of bytes allocated for stack space for this job. This number of bytes
replaces the default allocation of 512 Mbytes.

¶
An attribute representing a Unix epoch time that is defined for a job that is spooled to a remote site using
condor_submit -spool or HTCondor-C and causes HTCondor to hold the output in the spool while the job
waits in the queue in the Completed state. This attribute is defined when retrieval of the output finishes.

¶
An attribute representing a Unix epoch time that is defined for a job that is spooled to a remote site using
condor_submit -spool or HTCondor-C and causes HTCondor to hold the output in the spool while the job
waits in the queue in the Completed state. This attribute is defined when retrieval of the output begins.

¶
This attribute causes the condor_starter to write a job-specific copy of its daemon log in the job’s scratch di-
rectory. If the value is True, then the the logging level matches that of the regular daemon log. If the value is a
string, then it specifies a different logging level following the syntax of .

¶
When the condor_starter is creating a job-specific copy of its dameon log (see), this attribute causes the log to
be transferred to the Access Point with the job’s output sandbox, and written to the given pathname.

¶
The default value is False. If True, and is True, then standard error is streamed back to the access point, instead
of doing the transfer (as a whole) after the job completes. If False, then standard error is transferred back to the
submit machine (as a whole) after the job completes. If is False, then this job attribute is ignored.

¶
The default value is False. If True, and is True, then job output is streamed back to the access point, instead
of doing the transfer (as a whole) after the job completes. If False, then job output is transferred back to the
access point (as a whole) after the job completes. If is False, then this job attribute is ignored.

¶
A boolean attribute defined by the condor_negotiator when it makes a match. It will be True if the resource was
claimed via negotiation when the configuration variable was True. It will be False otherwise.

¶
When HTCondor-C submits a job to a remote condor_schedd, it sets this attribute in the remote job ad to match
the attribute of the original, local job.

¶
The accounting group name defined by the condor_negotiator when it makes a match.

¶
The accounting group name under which the resource negotiated when it was claimed, as set by the con-
dor_negotiator.

¶
Specifies if the executable exits with a signal after a successful self-checkpoint.

¶
Specifies the exit code, if any, with which the executable exits after a successful self-checkpoint.

15.3. Job ClassAd Attributes 1049

HTCondor Manual, Release 23.6.2

¶
Specifies the signal, if any, by which the executable exits after a successful self-checkpoint.

¶
Specifies if a successful pre command must exit with a signal.

¶
Specifies the code with which the pre command must exit to be considered successful. Pre commands which
are not successful cause the job to go on hold with set to . The exit status of a pre command without one of or
defined is ignored.

¶
Specifies the signal on which the pre command must exit be considered successful. Pre commands which are not
successful cause the job to go on hold with set to . The exit status of a pre command without one of or defined
is ignored.

¶
Specifies if a successful post command must exit with a signal.

¶
Specifies the code with which the post command must exit to be considered successful. Post commands which
are not successful cause the job to go on hold with set to . The exit status of a post command without one of or
defined is ignored.

¶
Specifies the signal on which the post command must exit be considered successful. Post commands which are
not successful cause the job to go on hold with set to . The exit status of a post command without one of or
defined is ignored.

¶
ToE stands for Ticket of Execution, and is itself a nested classad that describes how a job was terminated by the
execute machine. See the Managing a Job section for full details.

¶
The total number of reconnection attempts over the lifetime of the job. If there have never been any, this attribute
is undefined. Note the plural nature of “Attempts”.

¶
A count of the number of times this job has been suspended during its lifetime.

¶
A string attribute containing a comma separated list of directories and/or files that should be transferred from the
execute machine to the access point’s spool when the job successfully checkpoints.

¶
A boolean expression that controls whether the HTCondor should transfer the container image from the submit
node to the worker node.

¶
An attribute utilized only for grid universe jobs. The default value is True. If True, then the error output from
the job is transferred from the remote machine back to the access point. The name of the file after transfer is the
file referred to by job attribute Err. If False, no transfer takes place (remote to access point), and the name of
the file is the file referred to by job attribute Err.

¶
An attribute utilized only for grid universe jobs. The default value is True. If True, then the job executable
is transferred from the access point to the remote machine. The name of the file (on the access point) that is
transferred is given by the job attribute . If False, no transfer takes place, and the name of the file used (on the
remote machine) will be as given in the job attribute .

1050 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
An attribute utilized only for grid universe jobs. The default value is True. If True, then the job input is
transferred from the access point to the remote machine. The name of the file that is transferred is given by the
job attribute In. If False, then the job’s input is taken from a file on the remote machine (pre-staged), and the
name of the file is given by the job attribute In.

¶
A string attribute containing a comma separated list of directories, files and/or URLs that should be transferred
from the access point to the remote machine when input file transfer is enabled.

¶
When the job finished the most recent transfer of its input sandbox, measured in seconds from the epoch.
(00:00:00 UTC Jan 1, 1970).

¶
If the job’s most recent transfer of its input sandbox was queued, this attribute says when, measured in seconds
from the epoch (00:00:00 UTC Jan 1, 1970).

¶
: When the job actually started to transfer files, the most recent time it transferred its input sandbox, measured
in seconds from the epoch. This will be later than (if set). (00:00:00 UTC Jan 1, 1970).

¶
The total size in Mbytes of input files to be transferred for the job. Files transferred via file transfer plug-ins are
not included. This attribute is automatically set by ; jobs submitted via other submission methods, such as SOAP,
may not define this attribute.

¶
The value of this classad attribute is a nested classad, whose values contain several attributes about HTCondor-
managed file transfer. These refer to the transfer of the sandbox from the AP submit point to the worker node, or
the EP.

Each attribute name has a prefix, either “Cedar”, for the HTCondor built-in file transfer method, or the prefix of
the file transfer plugin method (such as HTTP). For each of these types of file transfer there is an attribute with
that prefix whose body is “FilesCount”, the number of files transfered by that method during the last transfer, and
“FilesCountTotal”, the sum of FilesCount over all execution attempts. In addition, for container universe jobs,
there is a sub-attribute `ContainerDuration`, the number of seconds it took to transfer the container image
(if transfered), and `ContainerDurationTotal`, the sum over all execution attempts.

¶
An attribute utilized only for grid universe jobs. The default value is True. If True, then the output from the
job is transferred from the remote machine back to the access point. The name of the file after transfer is the file
referred to by job attribute Out. If False, no transfer takes place (remote to access point), and the name of the
file is the file referred to by job attribute Out.

¶
A string attribute containing a comma separated list of files and/or URLs that should be transferred from the
remote machine to the access point when output file transfer is enabled.

¶
When the job finished the most recent transfer of its output sandbox, measured in seconds from the epoch.
(00:00:00 UTC Jan 1, 1970).

¶
If the job’s most recent transfer of its output sandbox was queued, this attribute says when, measured in seconds
from the epoch (00:00:00 UTC Jan 1, 1970).

¶
The value of this classad attribute is a nested classad, whose values mirror those for :ad-attr:`TransferInputStats`,
but for the transfer from the EP worker node back to the AP submit point.

15.3. Job ClassAd Attributes 1051

HTCondor Manual, Release 23.6.2

¶
When the job actually started to transfer files, the most recent time it transferred its output sandbox, measured in
seconds from the epoch. This will be later than (if set). (00:00:00 UTC Jan 1, 1970).

¶
A boolean value that indicates whether the job is currently transferring input files. The value is Undefined if
the job is not scheduled to run or has not yet attempted to start transferring input. When this value is True, to
see whether the transfer is active or queued, check .

¶
A boolean value that indicates whether the job is currently transferring output files. The value is Undefined if
the job is not scheduled to run or has not yet attempted to start transferring output. When this value is True, to
see whether the transfer is active or queued, check .

¶
A string value containing a semicolon separated list of file transfer plugins to be supplied by the job. Each entry
in this list will be of the form TAG1[,TAG2[,...]]=/path/to/plugin were TAG values are URL prefixes like
HTTP, and /path/to/plugin is the path that the transfer plugin is to be transferred from. The files mentioned
in this list will be transferred to the job sandbox before any file transfer plugins are invoked. A transfer plugin
supplied in this will way will be used even if the execute node has a file transfer plugin installed that handles that
URL prefix.

¶
A string value containing a comma separated list of file transfer plugin URL prefixes that are needed by the job
but not supplied via the attribute. This attribute is intended to provide a convenient way to match against jobs
that need a certain transfer plugin.

¶
A boolean value that indicates whether the job is currently waiting to transfer files because of limits placed by
or .

¶
The full path and file name on the access point of the log file of job events.

¶
A boolean that when true, tells HTCondor to run this job in container universe. Note that container universe jobs
are a “topping” above vanilla universe, and the JobUniverse attribute of container jobs will be 5 (vanilla)

¶
A boolean that when true, tells HTCondor to run this job in docker universe. Note that docker universe jobs are
a “topping” above vanilla universe, and the JobUniverse attribute of docker jobs will be 5 (vanilla)

¶
A boolean that, when True, specifies that when the executable exits as described by , , and , HTCondor should
do (output) file transfer and immediately continue the job in the same sandbox by restarting executable with
the same arguments as the first time.

¶
A boolean expression that, when True, specifies that a graceful shutdown of the job should be done when the
job is removed or put on hold.

¶
An integer, extracted from the platform type of the machine upon which this job is submitted, representing a
major version number (currently 5 or 6) for a Windows operating system. This attribute only exists for jobs
submitted from Windows machines.

¶
An integer, extracted from the platform type of the machine upon which this job is submitted, representing a build
number for a Windows operating system. This attribute only exists for jobs submitted from Windows machines.

1052 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
An integer, extracted from the platform type of the machine upon which this job is submitted, representing a
minor version number (currently 0, 1, or 2) for a Windows operating system. This attribute only exists for jobs
submitted from Windows machines.

¶
The full path and file name of the file containing the X.509 user proxy.

¶
For a job with an X.509 proxy credential, this is the email address extracted from the proxy.

¶
For a job that defines the submit description file command , this is the time at which the indicated X.509 proxy
credential will expire, measured in the number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

¶
For a vanilla or grid universe job that defines the submit description file command , this is the VOMS Fully
Qualified Attribute Name (FQAN) of the primary role of the credential. A credential may have multiple roles
defined, but by convention the one listed first is the primary role.

¶
For a vanilla or grid universe job that defines the submit description file command , this is a serialized list of the
DN and all FQAN. A comma is used as a separator, and any existing commas in the DN or FQAN are replaced
with the string ,. Likewise, any ampersands in the DN or FQAN are replaced with &.

¶
For a vanilla or grid universe job that defines the submit description file command , this attribute contains the
Distinguished Name (DN) of the credential used to submit the job.

¶
For a vanilla or grid universe job that defines the submit description file command , this is the name of the VOMS
virtual organization (VO) that the user’s credential is part of.

The following job ClassAd attributes appear in the job ClassAd only for declared cron jobs. These represent various
allotted job start times that will be used to calculate the jobs . These attributes can be represented as an integer, a list
of integers, a range of integers, a step (intervals of a range), or an * for all allowed values. For more information visit
Time Scheduling for Job Execution.

¶
The minutes in an hour when the cron job is allowed to start running. Represented by the numerical values 0 to
59.

¶
The hours in the day when the cron job is allowed to start running. Represented by the numerical values 0 to 23.

¶
The days of the month when the cron job is allowed to start running. Represented by the numerical values 1 to
31.

¶
The months of the year when the cron job is allowed to start running. Represented by numerical values 1 to 12.

¶
The days of the week when the cron job is allowed to start running. Represented by numerical values 0 to 7.
Both 0 and 7 represent Sunday.

The following job ClassAd attributes are relevant only for vm universe jobs.

¶
The MAC address of the virtual machine’s network interface, in the standard format of six groups of two hex-
adecimal digits separated by colons. This attribute is currently limited to apply only to Xen virtual machines.

15.3. Job ClassAd Attributes 1053

HTCondor Manual, Release 23.6.2

The following job ClassAd attributes appear in the job ClassAd only for the job submitted under DAGMan. They
represent status information for the DAG.

¶
The value 1 if the DAG is in recovery mode, and The value 0 otherwise.

¶
The number of DAG nodes that have finished successfully. This means that the entire node has finished, not only
an actual HTCondor job or jobs.

¶
The number of DAG nodes that have failed. This value includes all retries, if there are any.

¶
The number of DAG nodes for which a POST script is running or has been deferred because of a POST script
throttle setting.

¶
The number of DAG nodes for which a PRE script is running or has been deferred because of a PRE script throttle
setting.

¶
The number of DAG nodes for which the actual HTCondor job or jobs are queued. The queued jobs may be in
any state.

¶
The number of DAG nodes that are ready to run, but which have not yet started running.

¶
The total number of nodes in the DAG, including the FINAL node, if there is a FINAL node.

¶
The number of DAG nodes that are not ready to run. This is a node in which one or more of the parent nodes has
not yet finished.

¶
The number of DAG nodes that will never run due to the failure of an ancestor node. Where an ancestor is a node
that a another node depends on either directly or indirectly through a chain of PARENT/CHILD relationships.

¶
The overall status of the DAG, with the same values as the macro $DAG_STATUS used in DAGMan FINAL nodes.

0 OK
1 An error has occured
2 One or more nodes in the DAG have failed
3 the DAG has been aborted by an ABORT-DAG-ON specification
4 DAG was removed via
5 A cycle was detected within the DAG
6 DAG is halted (see Suspending a Running DAG)

¶
A timestamp for when the DAGMan process last sent an update of internal information to its job ad.

The following job ClassAd attributes appear in the job ClassAd only for the job submitted under DAGMan. They
represent job process information about the DAG. These values will reset when a DAG is run via rescue and be retained
when a DAG is run via recovery mode.

¶
The total number of job processes submitted by all the nodes in the DAG.

1054 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
The number of job processes currently idle within the DAG.

¶
The number of job processes currently held within the DAG.

¶
The number of job processes currently executing within the DAG.

¶
The total number of job processes within the DAG that have successfully completed.

The following job ClassAd attributes appear in the job ClassAd for the job submitted under DAGMan. These values
represent throttling limits active for the specified DAGMan workflow. Using to modify these value will take effect in
the DAGMan workflow.

¶
The maximum number of job clusters DAGMan will have submitted at any point of time. This can be viewed as
the max number of running Nodes in a DAG since each Node has one cluster of jobs associated with it.

¶
The maximum number of Idle job procs submitted by DAGMan. If this number of passed upon submitting a
Node job then DAGMan will pause submitting new jobs.

¶
The maximum number of PRE-Scripts DAGMan will execute at a single point in time.

¶
The maximum number of POST-Scripts DAGMan will execute at a single point in time.

The following job ClassAd attributes do not appear in the job ClassAd as kept by the condor_schedd daemon. They
appear in the job ClassAd written to the job’s execute directory while the job is running.

¶
The number of Cpus allocated to the job. With statically-allocated slots, it is the number of Cpus allocated to the
slot. With dynamically-allocated slots, it is based upon the job attribute , but may be larger due to the minimum
given to a dynamic slot.

¶
CpusUsage (Note the plural Cpus) is a floating point value that represents the number of cpu cores fully used over
the lifetime of the job. A cpu-bound, single-threaded job will have a CpusUsage of 1.0. A job that is blocked on
I/O for half of its life and is cpu bound for the other have will have a CpusUsage of 0.5. A job that uses two cores
fully will have a CpusUsage of 2.0. Jobs with unexpectedly low CpusUsage may be showing lowered throughput
due to blocking on network or disk.

¶
The amount of disk space in KiB allocated to the job. With statically-allocated slots, it is the amount of disk
space allocated to the slot. With dynamically-allocated slots, it is based upon the job attribute , but may be larger
due to the minimum given to a dynamic slot.

¶
The amount of memory in MiB allocated to the job. With statically-allocated slots, it is the amount of memory
space allocated to the slot. With dynamically-allocated slots, it is based upon the job attribute , but may be larger
due to the minimum given to a dynamic slot.

¶
The amount of the custom resource identified by <Name> allocated to the job. For jobs using GPUs, <Name> will
be GPUs. With statically-allocated slots, it is the amount of the resource allocated to the slot. With dynamically-
allocated slots, it is based upon the job attribute Request<Name>, but may be larger due to the minimum given
to a dynamic slot.

15.3. Job ClassAd Attributes 1055

HTCondor Manual, Release 23.6.2

15.4 Machine ClassAd Attributes

¶
Boolean which indicates if the slot accepted its current job while the machine was draining.

¶
String which describes HTCondor job activity on the machine. Can have one of the following values:

"Idle"
There is no job activity

"Busy"
A job is busy running

"Suspended"
A job is currently suspended

"Vacating"
A job is currently vacating

"Killing"
A job is currently being killed

"Benchmarking"
The startd is running benchmarks

"Retiring"
Waiting for a job to finish or for the maximum retirement time to expire

¶
String with the architecture of the machine. Currently supported architectures have the following string defini-
tions:

"INTEL"
Intel x86 CPU (Pentium, Xeon, etc).

"X86_64"
AMD/Intel 64-bit X86

¶
On X86_64 Linux machines, this advertises the x86_64 microarchitecture, like x86_64-v2. See https://en.
wikipedia.org/wiki/X86-64#Microarchitecture_levels for details.

¶
The condor_startd has the capability to shut down or hibernate a machine when certain configurable criteria are
met. However, before the condor_startd can shut down a machine, the hardware itself must support hibernation,
as must the operating system. When the condor_startd initializes, it checks for this support. If the machine has
the ability to hibernate, then this boolean ClassAd attribute will be True. By default, it is False.

¶
If a job is running inside a per-job cgroup, this boolean attribute is True.

¶
The time at which the slot will leave the Claimed state. Currently, this only applies to partitionable slots. This
is measured in the number of integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

¶
The day of the week, where 0 = Sunday, 1 = Monday, . . . , and 6 = Saturday.

¶
The number of minutes passed since midnight.

1056 Chapter 15. ClassAd Attributes

https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels

HTCondor Manual, Release 23.6.2

¶
The load average contributed by HTCondor, either from remote jobs or running benchmarks.

¶
A string containing the HTCondor version number for the condor_startd daemon, the release date, and the build
identification number.

¶
The number of seconds since activity on the system console keyboard or console mouse has last been detected.
The value can be modified with as defined in the condor_startd Configuration File Macros section.

¶
The number of CPUs (cores) in this slot. It is 1 for a single CPU slot, 2 for a dual CPU slot, etc. For a partitionable
slot, it is the remaining number of CPUs in the partitionable slot.

¶
On Linux machines, the Cpu family, as defined in the /proc/cpuinfo file.

¶
On Linux machines, the Cpu model number, as defined in the /proc/cpuinfo file.

¶
On Linux machines, the size of the L3 cache, in kbytes, as defined in the /proc/cpuinfo file.

¶
A float which represents this machine owner’s affinity for running the HTCondor job which it is currently hosting.
If not currently hosting an HTCondor job, is 0.0. When a machine is claimed, the attribute’s value is computed
by evaluating the machine’s Rank expression with respect to the current job’s ClassAd.

¶
Set by the value of configuration variable DETECTED_CORES

¶
Set by the value of configuration variable Specified in MiB.

¶
The amount of disk space on this machine available for the job in KiB (for example, 23000 = 23 MiB). Specifi-
cally, this is the amount of disk space available in the directory specified in the HTCondor configuration files by
the macro, minus any space reserved with the macro. For static slots, this value will be the same as machine Clas-
sAd attribute . For partitionable slots, this value will be the quantity of disk space remaining in the partitionable
slot.

¶
This attribute is True when the slot is draining and undefined if not.

¶
This attribute contains a string that is the request id of the draining request that put this slot in a draining state.
It is undefined if the slot is not draining.

¶
The .NET framework versions currently installed on this computer. Default format is a comma delimited list.
Current definitions:

"1.1"
for .Net Framework 1.1

"2.0"
for .Net Framework 2.0

"3.0"
for .Net Framework 3.0

15.4. Machine ClassAd Attributes 1057

HTCondor Manual, Release 23.6.2

"3.5"
for .Net Framework 3.5

"4.0Client"
for .Net Framework 4.0 Client install

"4.0Full"
for .Net Framework 4.0 Full install

¶
For SMP machines that allow dynamic partitioning of a slot, this boolean value identifies that this dynamic slot
may be partitioned.

¶
Time at which the machine entered the current Activity (see entry above). On all platforms (including NT), this
is measured in the number of integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

¶
The job run time in cpu-seconds that would be lost if graceful draining were initiated at the time this ClassAd
was published. This calculation assumes that jobs will run for the full retirement time and then be evicted.

¶
The estimated time at which graceful draining of the machine could complete if it were initiated at the time this
ClassAd was published and there are no active claims. This is measured in the number of integer seconds since
the Unix epoch (00:00:00 UTC, Jan 1, 1970). This value is computed with the assumption that the machine
policy will not suspend jobs during draining while the machine is waiting for the job to use up its retirement
time. If suspension happens, the upper bound on how long draining could take is unlimited. To avoid suspension
during draining, the and expressions could be configured to pay attention to the attribute.

¶
The job run time in cpu-seconds that would be lost if quick or fast draining were initiated at the time this ClassAd
was published. This calculation assumes that all evicted jobs will not save a checkpoint.

¶
Time at which quick or fast draining of the machine could complete if it were initiated at the time this ClassAd
was published and there are no active claims. This is measured in the number of integer seconds since the Unix
epoch (00:00:00 UTC, Jan 1, 1970).

¶
A domain name configured by the HTCondor administrator which describes a cluster of machines which all
access the same, uniformly-mounted, networked file systems usually via NFS or AFS. This is useful for Vanilla
universe jobs which require remote file access.

¶
A boolean value set to True if the machine is capable of executing container universe jobs.

¶
A boolean value set to True if the machine is capable of executing docker universe jobs.

¶
An integer value containing the number of megabytes of space used by the docker image cache for cached images
used by a worker node. Excludes any images that may be in the cache that were not placed there by HTCondor.

¶
A boolean value set to True if the machine is capable of executing container universe jobs with a singularity
“sandbox” image type

¶
A boolean value set to True if the machine is capable of executing container universe jobs with a singularity
“SIF” image type

1058 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
A boolean value set to True if the machine is capable of encrypting execute directories.

¶
A boolean value that when True identifies that the machine can use the file transfer mechanism.

¶
A string of comma-separated file transfer protocols that the machine can support. The value can be modified
with as defined in condor_starter Configuration File Entries.

¶
A boolean when true indicates that this machine’s EXECUTE directory is on a rotational hard disk. When
false, the EXECUTE directory is on a SSD, NVMe, tmpfs or other storage system, generally with much better
performance than a rotational disk.

¶
A boolean value that when True identifies that the jobs on this machine can create user namespaces without root
privileges.

¶
A boolean value set to True if the machine being advertised supports the SSE 4.1 instructions, and Undefined
otherwise.

¶
A boolean value set to True if the machine being advertised supports the SSE 4.2 instructions, and Undefined
otherwise.

¶
A boolean value set to True if the machine being advertised supports the SSSE 3 instructions, and Undefined
otherwise.

¶
A boolean value set to True if the machine being advertised supports the avx instructions, and Undefined
otherwise.

¶
A boolean value set to True if the machine being advertised supports the avx2 instructions, and Undefined
otherwise.

¶
A boolean value set to True if the machine being advertised support the avx512f (foundational) instructions.

¶
A boolean value set to True if the machine being advertised support the avx512dq instructions.

¶
A boolean value set to True if the machine being advertised support the avx512dnni instructions.

¶
A boolean value set to True if the machine being advertised supports transferring (checkpoint) files (to the submit
node) when the job successfully self-checkpoints.

¶
A boolean value set to True if the machine being advertised supports running jobs within Singularity containers.

¶
A boolean value set to True if the machine has a /usr/sbin/sshd installed. If False, is unlikely to function.

¶
If the configuration triggers the detection of virtual machine software, a boolean value reporting the success
thereof; otherwise undefined. May also become False if HTCondor determines that it can’t start a VM (even if
the appropriate software is detected).

15.4. Machine ClassAd Attributes 1059

HTCondor Manual, Release 23.6.2

¶
A boolean value that when True identifies that the machine has the capability to be woken into a fully powered
and running state by receiving a Wake On LAN (WOL) packet. This ability is a function of the operating system,
the network adapter in the machine (notably, wireless network adapters usually do not have this function), and
BIOS settings. When the condor_startd initializes, it tries to detect if the operating system and network adapter
both support waking from hibernation by receipt of a WOL packet. The default value is False.

¶
If the hardware and software have the capacity to be woken into a fully powered and running state by receiving a
Wake On LAN (WOL) packet, this feature can still be disabled via the BIOS or software. If BIOS or the operating
system have disabled this feature, the condor_startd sets this boolean attribute to False.

¶
The Average lifetime of all jobs, including transfer time. This is determined by measuring the lifetime of each
condor_starter that has exited. This attribute will be undefined until the first time a condor_starter has exited.

¶
attribute. This is also the total number times a condor_starter has exited.

¶
The Maximum lifetime of all jobs, including transfer time. This is determined by measuring the lifetime of each
condor_starter s that has exited. This attribute will be undefined until the first time a condor_starter has exited.

¶
The Minimum lifetime of all jobs, including transfer time. This is determined by measuring the lifetime of each
condor_starter that has exited. This attribute will be undefined until the first time a condor_starter has exited.

¶
The Average lifetime of all jobs that have exited in the last 20 minutes, including transfer time. This is determined
by measuring the lifetime of each condor_starter that has exited in the last 20 minutes. This attribute will be
undefined if no condor_starter has exited in the last 20 minutes.

¶
The total number of jobs used to calculate the attribute. This is also the total number times a condor_starter has
exited in the last 20 minutes.

¶
The Maximum lifetime of all jobs that have exited in the last 20 minutes, including transfer time. This is deter-
mined by measuring the lifetime of each condor_starter s that has exited in the last 20 minutes. This attribute
will be undefined if no condor_starter has exited in the last 20 minutes.

¶
The Minimum lifetime of all jobs, including transfer time. This is determined by measuring the lifetime of each
condor_starter that has exited. This attribute will be undefined if no condor_starter has exited in the last 20
minutes.

¶
The Average lifetime time of all jobs, not including time spent transferring files. This attribute will be undefined
until the first time a job exits. Jobs that never start (because they fail to transfer input, for instance) will not be
included in the average.

¶
attribute. This is also the total number times a job has exited. Jobs that never start (because input transfer fails,
for instance) are not included in the count.

¶
The lifetime of the longest lived job that has exited. This attribute will be undefined until the first time a job exits.

¶
The lifetime of the shortest lived job that has exited. This attribute will be undefined until the first time a job

1060 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

exits.

¶
The Average lifetime time of all jobs, not including time spent transferring files, that have exited in the last 20
minutes. This attribute will be undefined if no job has exited in the last 20 minutes.

¶
The total number of jobs used to calculate the attribute. This is the total number of jobs that began execution and
have exited in the last 20 minutes.

¶
The lifetime of the longest lived job that has exited in the last 20 minutes. This attribute will be undefined if no
job has exited in the last 20 minutes.

¶
The lifetime of the shortest lived job that has exited in the last 20 minutes. This attribute will be undefined if no
job has exited in the last 20 minutes.

¶
The total number of times a running job has been preempted on this machine.

¶
The total number of times a running job has been preempted on this machine due to the machine’s rank of jobs
since the condor_startd started running.

¶
The total number of jobs which have been started on this machine since the condor_startd started running.

¶
The total number of times a running job has been preempted on this machine based on a fair share allocation of
the pool since the condor_startd started running.

¶
An attribute defined if a vm universe job is running on this slot. Defined by the number of virtualized CPUs in
the virtual machine.

¶
The number of seconds since activity on any keyboard or mouse associated with this machine has last been
detected. Unlike , also takes activity on pseudo-terminals into account. Pseudo-terminals have virtual keyboard
activity from telnet and rlogin sessions. Note that will always be equal to or less than . The value can be modified
with as defined in the condor_startd Configuration File Macros section.

¶
Relative floating point performance as determined via a Linpack benchmark.

¶
Time when draining of this condor_startd was last initiated (e.g. due to condor_defrag or).

¶
Time when draining of this condor_startd was last stopped (e.g. by being cancelled).

¶
Time when the HTCondor central manager last received a status update from this machine. Expressed as the
number of integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970). Note: This attribute is only
inserted by the central manager once it receives the ClassAd. It is not present in the condor_startd copy of the
ClassAd. Therefore, you could not use this attribute in defining condor_startd expressions (and you would not
want to).

¶
A floating point number representing the current load average over time. This number goes up by 1.0 for every
runnable thread. More concretely, if a single-core machine has a load average of 1.0, it means the one cpu is fully

15.4. Machine ClassAd Attributes 1061

HTCondor Manual, Release 23.6.2

utilized. In other words, on average, there is one running thread at all times. If that same single core machine has
a load average of 2.0, it means there are, over time, 2 runnable threads contending for CPU time, and thus each
is probably running at half the speed they would be if the other one was not there. This is not scaled by number
of cores on the system, thus a load average of 10.0 might indicated An overloaded 4 core system, but on a 128
core system, there would still be plenty of headroom. Note that threads that are sleeping blocked on long-term
i/o do not count to the load average.

¶
A string with the machine’s fully qualified host name.

¶
An integer expression that specifies the time in seconds the machine will allow the job to gracefully shut down.

¶
The maximum number of seconds that the slot may remain in the Claimed state before returning to the Unclaimed
state. Currently, this only applies to partitionable slots.

¶
When the condor_startd wants to kick the job off, a job which has run for less than this number of seconds will
not be hard-killed. The condor_startd will wait for the job to finish or to exceed this amount of time, whichever
comes sooner. If the job vacating policy grants the job X seconds of vacating time, a preempted job will be
soft-killed X seconds before the end of its retirement time, so that hard-killing of the job will not happen until
the end of the retirement time if the job does not finish shutting down before then. This is an expression evaluated
in the context of the job ClassAd, so it may refer to job attributes as well as machine attributes.

¶
The amount of RAM in MiB in this slot. For static slots, this value will be the same as in . For a partitionable
slot, this value will be the quantity remaining in the partitionable slot.

¶
Relative integer performance as determined via a Dhrystone benchmark.

¶
The number of seconds that this daemon has been running.

¶
The fraction of recent CPU time utilized by this daemon.

¶
The amount of virtual memory consumed by this daemon in KiB.

¶
The current number of sockets registered by this daemon.

¶
The amount of resident memory used by this daemon in KiB.

¶
The number of open (cached) security sessions for this daemon.

¶
The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at
which this daemon last checked and set the attributes with names that begin with the string MonitorSelf.

¶
String with the IP and port address of the condor_startd daemon which is publishing this machine ClassAd.
When using CCB, condor_shared_port, and/or an additional private network interface, that information will be
included here as well.

¶
The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at

1062 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

which the condor_startd daemon last sent a ClassAd update to the condor_collector.

¶
The ClassAd type; always set to the literal string "Machine".

¶
The name of this resource; typically the same value as the Machine attribute, but could be customized
by the site administrator. On SMP machines, the condor_startd will divide the CPUs up into separate
slots, each with a unique name. These names will be of the form “slot#@full.hostname”, for example,
“slot1@vulture.cs.wisc.edu”, which signifies slot number 1 from vulture.cs.wisc.edu.

¶
A string that lists specific instances of a user-defined machine resource, identified by name. Each instance is
currently unavailable for purposes of match making.

¶
A ClassAd list that specifies which job universes are presently offline, both as strings and as the corresponding
job universe number. Could be used the startd to refuse to start jobs in offline universes:

START = OfflineUniverses is undefined || (! member(JobUniverse, OfflineUniverses))

May currently only contain "VM" and 13.

¶
String describing the operating system running on this machine. Currently supported operating systems have the
following string definitions:

"LINUX"
for LINUX 2.0.x, LINUX 2.2.x, LINUX 2.4.x, LINUX 2.6.x, or LINUX 3.10.0 kernel systems,
as well as Scientific Linux, Ubuntu versions 14.04, and Debian 7.0 (wheezy) and 8.0 (jessie)

"OSX"
for Darwin

"FREEBSD7"
for FreeBSD 7

"FREEBSD8"
for FreeBSD 8

"WINDOWS"
for all versions of Windows

¶
A string indicating an operating system and a version number.

For Linux operating systems, it is the value of the attribute concatenated with the string version of the attribute:

"RedHat5"
for RedHat Linux version 5

"RedHat6"
for RedHat Linux version 6

"RedHat7"
for RedHat Linux version 7

"Fedora16"
for Fedora Linux version 16

"Debian6"
for Debian Linux version 6

15.4. Machine ClassAd Attributes 1063

mailto:slot#@full.hostname
mailto:slot1@vulture.cs.wisc.edu

HTCondor Manual, Release 23.6.2

"Debian7"
for Debian Linux version 7

"Debian8"
for Debian Linux version 8

"Debian9"
for Debian Linux version 9

"Ubuntu14"
for Ubuntu 14.04

"SL5"
for Scientific Linux version 5

"SL6"
for Scientific Linux version 6

"SLFermi5"
for Fermi’s Scientific Linux version 5

"SLFermi6"
for Fermi’s Scientific Linux version 6

"SLCern5"
for CERN’s Scientific Linux version 5

"SLCern6"
for CERN’s Scientific Linux version 6

For MacOS operating systems, it is the value of the attribute concatenated with the string version of the attribute:

"MacOSX605"
for MacOS version 10.6.5 (Snow Leopard)

"MacOSX703"
for MacOS version 10.7.3 (Lion)

For BSD operating systems, it is the value of the attribute concatenated with the string version of the attribute:

"FREEBSD7"
for FreeBSD version 7

"FREEBSD8"
for FreeBSD version 8

For Windows operating systems, it is the value of the attribute concatenated with the string version of the attribute:

"WINDOWS500"
for Windows 2000

"WINDOWS501"
for Windows XP

"WINDOWS502"
for Windows Server 2003

"WINDOWS600"
for Windows Vista

"WINDOWS601"
for Windows 7

1064 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
A string that holds the long-standing values for the attribute. Currently supported operating systems have the
following string definitions:

"LINUX"
for LINUX 2.0.x, LINUX 2.2.x, LINUX 2.4.x, LINUX 2.6.x, or LINUX 3.10.0 kernel systems,
as well as Scientific Linux, Ubuntu versions 14.04, and Debian 7 and 8

"OSX"
for Darwin

"FREEBSD7"
for FreeBSD version 7

"FREEBSD8"
for FreeBSD version 8

"WINDOWS"
for all versions of Windows

¶
A string giving a full description of the operating system. For Linux platforms, this is generally the string taken
from /etc/hosts, with extra characters stripped off Debian versions.

"Red Hat Enterprise Linux Server release 6.2 (Santiago)"
for RedHat Linux version 6

"Red Hat Enterprise Linux Server release 7.0 (Maipo)"
for RedHat Linux version 7.0

"Ubuntu 14.04.1 LTS"
for Ubuntu 14.04 point release 1

"Debian GNU/Linux 8"
for Debian 8.0 (jessie)

"Fedora release 16 (Verne)"
for Fedora Linux version 16

"MacOSX 7.3"
for MacOS version 10.7.3 (Lion)

"FreeBSD8.2-RELEASE-p3"
for FreeBSD version 8

"Windows XP SP3"
for Windows XP

"Windows 7 SP2"
for Windows 7

¶
An integer value representing the major version of the operating system.

5
for RedHat Linux version 5 and derived platforms such as Scientific Linux

6
for RedHat Linux version 6 and derived platforms such as Scientific Linux

7
for RedHat Linux version 7

15.4. Machine ClassAd Attributes 1065

HTCondor Manual, Release 23.6.2

14
for Ubuntu 14.04

7
for Debian 7

8
for Debian 8

16
for Fedora Linux version 16

6
for MacOS version 10.6.5 (Snow Leopard)

7
for MacOS version 10.7.3 (Lion)

7
for FreeBSD version 7

8
for FreeBSD version 8

501
for Windows XP

600
for Windows Vista

601
for Windows 7

¶
A string containing a terse description of the operating system.

"RedHat"
for RedHat Linux version 6 and 7

"Fedora"
for Fedora Linux version 16

"Ubuntu"
for Ubuntu versions 14.04

"Debian"
for Debian versions 7 and 8

"SnowLeopard"
for MacOS version 10.6.5 (Snow Leopard)

"Lion"
for MacOS version 10.7.3 (Lion)

"FREEBSD"
for FreeBSD version 7 or 8

"WindowsXP"
for Windows XP

"WindowsVista"
for Windows Vista

1066 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

"Windows7"
for Windows 7

"SL"
for Scientific Linux

"SLFermi"
for Fermi’s Scientific Linux

"SLCern"
for CERN’s Scientific Linux

¶
A string containing a short name for the operating system.

"RedHat"
for RedHat Linux version 5, 6 or 7

"Fedora"
for Fedora Linux version 16

"Debian"
for Debian Linux version 6 or 7 or 8

"Ubuntu"
for Ubuntu versions 14.04

"MacOSX"
for MacOS version 10.6.5 (Snow Leopard) or for MacOS version 10.7.3 (Lion)

"FreeBSD"
for FreeBSD version 7 or 8

"XP"
for Windows XP

"Vista"
for Windows Vista

"7"
for Windows 7

"SL"
for Scientific Linux

"SLFermi"
for Fermi’s Scientific Linux

"SLCern"
for CERN’s Scientific Linux

¶
An integer value representing the operating system version number.

700
for RedHat Linux version 7.0

602
for RedHat Linux version 6.2

1600
for Fedora Linux version 16.0

15.4. Machine ClassAd Attributes 1067

HTCondor Manual, Release 23.6.2

1404
for Ubuntu 14.04

700
for Debian 7.0

800
for Debian 8.0

704
for FreeBSD version 7.4

802
for FreeBSD version 8.2

605
for MacOS version 10.6.5 (Snow Leopard)

703
for MacOS version 10.7.3 (Lion)

500
for Windows 2000

501
for Windows XP

502
for Windows Server 2003

600
for Windows Vista or Windows Server 2008

601
for Windows 7 or Windows Server 2008

¶
For SMP machines, a boolean value identifying that this slot may be partitioned.

¶
The total number of jobs which have been preempted from this machine in the last twenty minutes.

¶
The total number of times a running job has been preempted on this machine due to the machine’s rank of jobs
in the last twenty minutes.

¶
The total number of jobs which have been started on this machine in the last twenty minutes.

¶
The total number of times a running job has been preempted on this machine based on a fair share allocation of
the pool in the last twenty minutes.

¶
A boolean, which when evaluated within the context of the machine ClassAd and a job ClassAd, must evaluate
to TRUE before HTCondor will allow the job to use this machine.

¶ when the
running job can be evicted. MaxJobRetirementTime is the expression of how much retirement time the machine
offers to new jobs, whereas is the negotiated amount of time remaining for the current running job. This may
be less than the amount offered by the machine’s MaxJobRetirementTime expression, because the job may ask
for less.

1068 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
A string containing the version of Singularity available, if the machine being advertised supports running jobs
within a Singularity container (see).

¶
For SMP machines, the integer that identifies the slot. The value will be X for the slot with

name="slotX@full.hostname"

For non-SMP machines with one slot, the value will be 1.

¶
For SMP machines with partitionable slots, the partitionable slot will have this attribute set to "Partitionable
", and all dynamic slots will have this attribute set to "Dynamic".

¶
This specifies the weight of the slot when calculating usage, computing fair shares, and enforcing group quotas.
For example, claiming a slot with SlotWeight = 2 is equivalent to claiming two SlotWeight = 1 slots. See
the description of in condor_startd Configuration File Macros.

¶
String with the IP and port address of the condor_startd daemon which is publishing this machine ClassAd.
When using CCB, condor_shared_port, and/or an additional private network interface, that information will be
included here as well.

¶
String which publishes the machine’s HTCondor state. Can be:

"Owner"
The machine owner is using the machine, and it is unavailable to HTCondor.

"Unclaimed"
The machine is available to run HTCondor jobs, but a good match is either not available or not
yet found.

"Matched"
The HTCondor central manager has found a good match for this resource, but an HTCondor
scheduler has not yet claimed it.

"Claimed"
The machine is claimed by a remote condor_schedd and is probably running a job.

"Preempting"
An HTCondor job is being preempted in order to clear the machine for either a higher priority
job or because the machine owner wants the machine back.

"Drained"
This slot is not accepting jobs, because the machine is being drained.

¶
Describes what type of ClassAd to match with. Always set to the string literal "Job", because machine ClassAds
always want to be matched with jobs, and vice-versa.

¶
The load average contributed by HTCondor summed across all slots on the machine, either from remote jobs or
running benchmarks.

¶
The number of CPUs (cores) that are on the machine. This is in contrast with , which is the number of CPUs in
the slot.

15.4. Machine ClassAd Attributes 1069

HTCondor Manual, Release 23.6.2

¶
The quantity of disk space in KiB available across the machine (not the slot). For partitionable slots, where there
is one partitionable slot per machine, this value will be the same as machine ClassAd attribute .

¶
A floating point number representing the current load average summed across all slots on the machine.

¶
The total job runtime in cpu-seconds that has been lost due to job evictions caused by draining since this con-
dor_startd began executing. In this calculation, it is assumed that jobs are evicted without checkpointing.

¶
The total machine-wide time in cpu-seconds that has not been used (i.e. not matched to a job submitter) due to
draining since this condor_startd began executing.

¶
The quantity of RAM in MiB available across the machine (not the slot). For partitionable slots, where there is
one partitionable slot per machine, this value will be the same as machine ClassAd attribute .

¶
The number of CPUs (cores) in this slot. For static slots, this value will be the same as in .

¶
The quantity of disk space in KiB given to this slot. For static slots, this value will be the same as machine
ClassAd attribute . For partitionable slots, where there is one partitionable slot per machine, this value will be
the same as machine ClassAd attribute .

¶
The quantity of RAM in MiB given to this slot. For static slots, this value will be the same as machine ClassAd
attribute . For partitionable slots, where there is one partitionable slot per machine, this value will be the same
as machine ClassAd attribute .

¶
A sum of the static slots, partitionable slots, and dynamic slots on the machine at the current time.

¶
The number of seconds that this machine (slot) has accumulated within the backfill busy state and activity pair
since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶
The number of seconds that this machine (slot) has accumulated within the backfill idle state and activity pair
since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶
The number of seconds that this machine (slot) has accumulated within the backfill killing state and activity pair
since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶
The number of seconds that this machine (slot) has accumulated within the claimed busy state and activity pair
since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶
The number of seconds that this machine (slot) has accumulated within the claimed idle state and activity pair
since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶
The number of seconds that this machine (slot) has accumulated within the claimed retiring state and activity
pair since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶
The number of seconds that this machine (slot) has accumulated within the claimed suspended state and activity

1070 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

pair since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶
The number of seconds that this machine (slot) has accumulated within the matched idle state and activity pair
since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶
The number of seconds that this machine (slot) has accumulated within the owner idle state and activity pair
since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶
The number of seconds that this machine (slot) has accumulated within the preempting killing state and activity
pair since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶
The number of seconds that this machine (slot) has accumulated within the preempting vacating state and activity
pair since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶
The number of seconds that this machine (slot) has accumulated within the unclaimed benchmarking state and
activity pair since the condor_startd began executing. This attribute will only be defined if it has a value greater
than 0.

¶
The number of seconds that this machine (slot) has accumulated within the unclaimed idle state and activity pair
since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶
file entries, and therefore all have the same logins.

¶
The amount of currently available virtual memory (swap space) expressed in KiB. On Linux platforms, it is the
sum of paging space and physical memory, which more accurately represents the virtual memory size of the
machine.

¶
The maximum number of vm universe jobs that can be started on this machine. This maximum is set by the
configuration variable .

¶
An attribute defined if a vm universe job is running on this slot. Defined by the amount of memory in use by the
virtual machine, given in Mbytes.

¶
Gives the amount of memory available for starting additional VM jobs on this machine, given in Mbytes. The
maximum value is set by the configuration variable .

¶
A boolean value indicating whether networking is allowed for virtual machines on this machine.

¶
The type of virtual machine software that can run on this machine. The value is set by the configuration variable

¶
The reason the VM universe went offline (usually because a VM universe job failed to launch).

¶
The time that the VM universe went offline.

15.4. Machine ClassAd Attributes 1071

HTCondor Manual, Release 23.6.2

¶
An integer, extracted from the platform type, representing a build number for a Windows operating system. This
attribute only exists on Windows machines.

¶
An integer, extracted from the platform type, representing a major version number (currently 5 or 6) for a Win-
dows operating system. This attribute only exists on Windows machines.

¶
An integer, extracted from the platform type, representing a minor version number (currently 0, 1, or 2) for a
Windows operating system. This attribute only exists on Windows machines.

In addition, there are a few attributes that are automatically inserted into the machine ClassAd whenever a resource is
in the Claimed state:

¶
The host name of the machine that has claimed this resource

¶
A boolean attribute which is True if this resource was claimed via negotiation when the configuration variable
is True. It is False otherwise.

¶
The accounting group name corresponding to the submitter that claimed this resource.

¶
The accounting group name under which this resource negotiated when it was claimed. This attribute will
frequently be the same as attribute , but it may differ in cases such as when configuration variable is True,
in which case it will have the name of the root group, identified as <none>.

¶
The name of the user who originally claimed this resource.

¶
The name of the user who is currently using this resource. In general, this will always be the same as the , but in
some cases, a resource can be claimed by one entity that hands off the resource to another entity which uses it.
In that case, would hold the name of the entity currently using the resource, while would hold the name of the
entity that claimed the resource.

¶
The name of the condor_schedd which claimed this resource.

¶
The name of the user who is preempting the job that is currently running on this resource.

¶
The name of the user who is preempting the job that is currently running on this resource. The relationship
between and is the same as the relationship between and .

¶
A float which represents this machine owner’s affinity for running the HTCondor job which is waiting for the
current job to finish or be preempted. If not currently hosting an HTCondor job, is undefined. When a machine
is claimed and there is already a job running, the attribute’s value is computed by evaluating the machine’s Rank
expression with respect to the preempting job’s ClassAd.

¶
A running total of the amount of time (in seconds) that all jobs (under the same claim) ran (have spent in the
Claimed/Busy state).

1072 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
A running total of the amount of time (in seconds) that all jobs (under the same claim) have been suspended (in
the Claimed/Suspended state).

¶
A running total of the amount of time (in seconds) that a single job ran (has spent in the Claimed/Busy state).

¶
A running total of the amount of time (in seconds) that a single job has been suspended (in the Claimed/Suspended
state).

There are a few attributes that are only inserted into the machine ClassAd if a job is currently executing. If the resource
is claimed but no job are running, none of these attributes will be defined.

¶
The job’s identifier (for example, 152.3), as seen from on the submitting machine.

¶
The time stamp in integer seconds of when the job began executing, since the Unix epoch (00:00:00 UTC, Jan
1, 1970). For idle machines, the value is UNDEFINED.

¶
If the job has performed a periodic checkpoint, this attribute will be defined and will hold the time stamp of when
the last periodic checkpoint was begun. If the job has yet to perform a periodic checkpoint, or cannot checkpoint
at all, the attribute will not be defined.

There are a few attributes that are applicable to machines that are offline, that is, hibernating.

¶
The Unix epoch time when this offline ClassAd would have been matched to a job, if the machine were online.
In addition, the slot1 ClassAd of a multi-slot machine will have slot<X>_MachineLastMatchTime defined,
where <X> is replaced by the slot id of each of the slots with defined.

Offline
A boolean value, that when True, indicates this machine is in an offline state in the condor_collector. Such
ClassAds are stored persistently, such that they will continue to exist after the condor_collector restarts.

¶
A boolean expression that specifies when a hibernating machine should be woken up, for example, by con-
dor_rooster.

For machines with user-defined or custom resource specifications, including GPUs, the following attributes will be in
the ClassAd for each slot. In the name of the attribute, <name> is substituted with the configured name given to the
resource.

¶
A space separated list that identifies which of these resources are currently assigned to slots.

¶
A space separated list that indicates which of these resources is unavailable for match making.

¶
An integer quantity of the total number of these resources.

For machines with custom resource specifications that include GPUs, the following attributes may be in the ClassAd for
each slot, depending on the value of configuration variable and what GPUs are detected. In the name of the attribute,
<name> is substituted with the prefix string assigned for the GPU.

15.4. Machine ClassAd Attributes 1073

HTCondor Manual, Release 23.6.2

¶
For NVIDIA devices, a dynamic attribute representing the temperature in Celsius of the board containing the
GPU.

¶
The CUDA-defined capability for the GPU.

¶
For CUDA or Open CL devices, the integer clocking speed of the GPU in MHz.

¶
For CUDA or Open CL devices, the integer number of compute units per GPU.

¶
For CUDA devices, the integer number of cores per compute unit.

¶
For CUDA or Open CL devices, a string representing the manufacturer’s proprietary device name.

¶
For NVIDIA devices, a dynamic attribute representing the temperature in Celsius of the GPU die.

¶
For CUDA devices, a string representing the manufacturer’s driver version.

¶
For CUDA or Open CL devices, a boolean value representing whether error correction is enabled.

¶
For NVIDIA devices, a count of the number of double bit errors detected for this GPU.

¶
For NVIDIA devices, a count of the number of single bit errors detected for this GPU.

¶
For NVIDIA devices, a value between 0 and 100 (inclusive), used to represent the level of fan operation as
percentage of full fan speed.

¶
For CUDA or Open CL devices, the quantity of memory in Mbytes in this GPU.

¶
For Open CL devices, a string representing the manufacturer’s version number.

¶
For CUDA devices, a string representing the manufacturer’s version number.

The following attributes are advertised for a machine in which partitionable slot preemption is enabled.

¶
A ClassAd list containing the values of the attribute for each dynamic slot of the partitionable slot.

¶
A ClassAd list containing the values of the attribute for each dynamic slot of the partitionable slot.

¶
A ClassAd list containing the values of the attribute for each dynamic slot of the partitionable slot.

¶
A ClassAd list containing the values of the attribute for each dynamic slot of the partitionable slot.

¶
A ClassAd list containing the values of the EnteredCurrentState attribute for each dynamic slot of the parti-
tionable slot.

1074 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
A ClassAd list containing the values of the attribute for each dynamic slot of the partitionable slot.

¶
A ClassAd list containing the values of the Name attribute for each dynamic slot of the partitionable slot.

¶
A ClassAd list containing the values of the attribute for each dynamic slot of the partitionable slot.

¶
A ClassAd list containing the values of the attribute for each dynamic slot of the partitionable slot.

¶
A ClassAd list containing the values of the attribute for each dynamic slot of the partitionable slot.

¶
A ClassAd list containing the values of the attribute for each dynamic slot of the partitionable slot.

¶
A boolean value set to True in both the partitionable and dynamic slots, when configuration variable is True,
such that the condor_negotiator knows when partitionable slot preemption is possible and can directly preempt
a dynamic slot when appropriate.

The single attribute, , is defined by the ClassAd environment.

¶
Evaluates to the number of integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

Common Cloud Attributes

The following attributes are advertised when use feature:CommonCloudAttributesGoogle or use feature:
CommonCloudAttributesAWS is enabled. All values are strings.

¶
Identifies the VM image. (“image” or “AMI ID”)

¶
Identifies the type of resource allocated. (“machine type” or “instance type”)

¶
Identifies the geographic area in which the instance is running.

¶
Identifies a specific (“availability”) zone within the region.

¶
Presently, either "Google" or "AWS".

¶
Presently, either "GCE" or "EC2".

¶
The instance’s identifier with its provider (on its platform).

¶
"True" if the instance, and "False" otherwise.

15.4. Machine ClassAd Attributes 1075

HTCondor Manual, Release 23.6.2

15.5 DaemonMaster ClassAd Attributes

¶
A string containing the HTCondor version number, the release date, and the build identification number.

¶
The time that this daemon was started, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶
The time that this daemon was configured, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶
A hexadecimal formatted string that holds all set effective Linux capabilities bit mask. This hex string can be
decoded using capsh. Only exists if running on a Linux OS.

¶
A string with the machine’s fully qualified host name.

¶
String with the IP and port address of the daemon which is publishing this DaemonMaster ClassAd.

¶
The number of seconds that this daemon has been running.

¶
The fraction of recent CPU time utilized by this daemon.

¶
The amount of virtual memory consumed by this daemon in Kbytes.

¶
The current number of sockets registered by this daemon.

¶
The amount of resident memory used by this daemon in Kbytes.

¶
The number of open (cached) security sessions for this daemon.

¶
The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at
which this daemon last checked and set the attributes with names that begin with the string MonitorSelf.

¶
String with the IP and port address of the daemon which is publishing this ClassAd.

¶
The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at
which the daemon last sent a ClassAd update to the condor_collector.

¶
The name of this resource; typically the same value as the Machine attribute, but could be customized
by the site administrator. On SMP machines, the condor_startd will divide the CPUs up into separate
slots, each with a unique name. These names will be of the form “slot#@full.hostname”, for example,
“slot1@vulture.cs.wisc.edu”, which signifies slot number 1 from vulture.cs.wisc.edu.

¶
Description is not yet written.

1076 Chapter 15. ClassAd Attributes

mailto:slot#@full.hostname
mailto:slot1@vulture.cs.wisc.edu

HTCondor Manual, Release 23.6.2

¶
The UID under which the is started.

¶
An integer, starting at zero, and incremented with each ClassAd update sent to the condor_collector. The con-
dor_collector uses this value to sequence the updates it receives.

15.6 Scheduler ClassAd Attributes

¶
A Statistics attribute defining the number of active autoclusters.

¶
The name of the main condor_collector which this condor_schedd daemon reports to, as copied from . If a con-
dor_schedd flocks to other condor_collector daemons, this attribute still represents the “home” condor_collector,
so this value can be used to discover if a condor_schedd is currently flocking.

¶
A string containing the HTCondor version number, the release date, and the build identification number.

¶
A Statistics attribute defining the ratio of the time spent handling messages and events to the elapsed time for the
time period defined by of this condor_schedd. A value near 0.0 indicates an idle daemon, while a value near 1.0
indicates a daemon running at or above capacity.

¶
The time that this daemon was started, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶
The time that this daemon was configured, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶
The number of detected machine CPUs/cores.

¶
The amount of detected machine RAM in MBytes.

¶
A comma separated list of condor_collector addresses to which condor_schedd jobs are actively flocking.

¶
This attribute contains the Unix epoch time when the job_queue.log file which stores the scheduler’s database
was first created.

¶
A Statistics attribute defining the sum of the all of the time jobs which did not complete successfully have spent
running over the lifetime of this condor_schedd.

¶
A Statistics attribute defining the sum of the all of the time jobs which did not complete successfully due to
condor_shadow exceptions have spent running over the lifetime of this condor_schedd.

¶ .
A Statistics attribute defining the sum of the all of the time jobs have spent running in the time interval defined
by attribute .

15.6. Scheduler ClassAd Attributes 1077

HTCondor Manual, Release 23.6.2

¶ .
A Statistics attribute defining the sum of all the time jobs have spent waiting to start in the time interval defined
by attribute .

¶
A Statistics attribute defining a histogram count of jobs that did not complete successfully, as classified by time
spent running, over the lifetime of this condor_schedd. Counts within the histogram are separated by a comma
and a space, where the time interval classification is defined in the ClassAd attribute .

¶
A Statistics attribute defining a histogram count of jobs that did not complete successfully, as classified by image
size, over the lifetime of this condor_schedd. Counts within the histogram are separated by a comma and a space,
where the size classification is defined in the ClassAd attribute .

¶
A Statistics attribute defining the number of times jobs that have exited with a condor_shadow exit code of
JOB_CKPTED in the time interval defined by attribute .

¶
A Statistics attribute defining the number of jobs successfully completed in the time interval defined by attribute
.

¶
A Statistics attribute defining a histogram count of jobs that completed successfully as classified by time spent
running, over the lifetime of this condor_schedd. Counts within the histogram are separated by a comma and a
space, where the time interval classification is defined in the ClassAd attribute .

¶
A Statistics attribute defining a histogram count of jobs that completed successfully as classified by image size,
over the lifetime of this condor_schedd. Counts within the histogram are separated by a comma and a space,
where the size classification is defined in the ClassAd attribute .

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_COREDUMPED in the time interval defined by attribute .

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
DPRINTF_ERROR in the time interval defined by attribute .

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_EXEC_FAILED in the time interval defined by attribute .

¶
A Statistics attribute defining the number of times that jobs that exited (successfully or not) in the time interval
defined by attribute .

¶
A Statistics attribute defining the number of times jobs have exited with a condor_shadow exit code of
JOB_EXITED_AND_CLAIM_CLOSING in the time interval defined by attribute .

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_EXITED or with an exit code of JOB_EXITED_AND_CLAIM_CLOSING in the time interval defined by attribute
.

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_EXCEPTION or with an unknown status in the time interval defined by attribute .

1078 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_KILLED in the time interval defined by attribute .

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_MISSED_DEFERRAL_TIME in the time interval defined by attribute .

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_NOT_STARTED in the time interval defined by attribute .

¶
A Statistics attribute defining the number of condor_startd daemons the condor_schedd is currently attempting
to reconnect to, in order to recover a job that was running when the condor_schedd was restarted.

¶
A Statistics attribute defining a histogram count of condor_startd daemons that the condor_schedd could not
reconnect to in order to recover a job that was running when the condor_schedd was restarted, as classified by
the time the job spent running. Counts within the histogram are separated by a comma and a space, where the
time interval classification is defined in the ClassAd attribute .

¶
A Statistics attribute defining the number of condor_startd daemons the condor_schedd tried and failed to re-
connect to in order to recover a job that was running when the condor_schedd was restarted.

¶
A Statistics attribute defining the number of condor_startd daemons the condor_schedd attempted to recon-
nect to, in order to recover a job that was running when the condor_schedd was restarted, but the attempt was
interrupted, for example, because the job was removed.

¶
A Statistics attribute defining the number of condor_startd daemons the condor_schedd could not attempt to
reconnect to, in order to recover a job that was running when the condor_schedd was restarted, because the job
lease had already expired.

¶
A Statistics attribute defining the number of condor_startd daemons the condor_schedd has successfully recon-
nected to, in order to recover a job that was running when the condor_schedd was restarted.

¶
A Statistics attribute representing the number of jobs currently running.

¶
A Statistics attribute defining a histogram count of jobs currently running, as classified by elapsed runtime.
Counts within the histogram are separated by a comma and a space, where the time interval classification is
defined in the ClassAd attribute .

¶
A Statistics attribute defining a histogram count of jobs currently running, as classified by image size. Counts
within the histogram are separated by a comma and a space, where the size classification is defined in the ClassAd
attribute .

¶
A Statistics attribute defining the predefined bucket boundaries for histogram statistics that classify run times.
Defined as

JobsRuntimesHistogramBuckets = "30Sec, 1Min, 3Min, 10Min, 30Min, 1Hr, 3Hr, 6Hr,␣
→˓12Hr, 1Day, 2Day, 4Day, 8Day, 16Day"

15.6. Scheduler ClassAd Attributes 1079

HTCondor Manual, Release 23.6.2

¶
A Statistics attribute defining the number of times that jobs have exited because there was not enough memory
to start the condor_shadow in the time interval defined by attribute .

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_SHOULD_HOLD in the time interval defined by attribute .

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_SHOULD_REMOVE in the time interval defined by attribute .

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_SHOULD_REQUEUE in the time interval defined by attribute .

¶
A Statistics attribute defining the predefined bucket boundaries for histogram statistics that classify image sizes.
Defined as

JobsSizesHistogramBuckets = "64Kb, 256Kb, 1Mb, 4Mb, 16Mb, 64Mb, 256Mb, 1Gb, 4Gb,␣
→˓16Gb, 64Gb, 256Gb"

Note that these values imply powers of two in numbers of bytes.

¶ .
A Statistics attribute defining the number of jobs started in the time interval defined by attribute .

¶ .
A Statistics attribute defining the number of jobs submitted in the time interval defined by attribute .

¶ .
A Statistics attribute defining the number of jobs submitted as late materialization jobs that have not yet materi-
alized.

¶
A string with the machine’s fully qualified host name.

¶
The same integer value as set by the evaluation of the configuration variable . See the definition in the con-
dor_schedd Configuration File Entries section.

¶
The number of seconds that this daemon has been running.

¶
The fraction of recent CPU time utilized by this daemon.

¶
The amount of virtual memory consumed by this daemon in Kbytes.

¶
The current number of sockets registered by this daemon.

¶
The amount of resident memory used by this daemon in Kbytes.

¶
The number of open (cached) security sessions for this daemon.

1080 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at
which this daemon last checked and set the attributes with names that begin with the string MonitorSelf.

¶
String with the IP and port address of the condor_schedd daemon which is publishing this ClassAd.

¶
The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at
which the condor_schedd daemon last sent a ClassAd update to the condor_collector.

¶
The name of this resource; typically the same value as the Machine attribute, but could be customized
by the site administrator. On SMP machines, the condor_startd will divide the CPUs up into separate
slots, each with a unique name. These names will be of the form “slot#@full.hostname”, for example,
“slot1@vulture.cs.wisc.edu”, which signifies slot number 1 from vulture.cs.wisc.edu.

¶
The number times a job requiring a condor_shadow daemon could have been started, but was not started because
of the values of configuration variables and

¶
The number of machines (condor_startd daemons) matched to this condor_schedd daemon, which this con-
dor_schedd knows about, but has not yet managed to claim.

¶
The integer number of distinct users with jobs in this condor_schedd ‘s queue.

¶
This is the public network address of this daemon.

¶
A Statistics attribute defining the ratio of the time spent handling messages and events to the elapsed time in the
previous time interval defined by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the sum of the all of the time that jobs which did not complete successfully have
spent running in the previous time interval defined by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the sum of the all of the time jobs which have exited in the previous time interval
defined by attribute RecentStatsLifetime spent running.

¶
A Statistics attribute defining the sum of all the time jobs which have exited in the previous time interval defined
by attribute RecentStatsLifetime had spent waiting to start.

¶
A Statistics attribute defining a histogram count of jobs that did not complete successfully, as classified by time
spent running, in the previous time interval defined by attribute RecentStatsLifetime. Counts within the
histogram are separated by a comma and a space, where the time interval classification is defined in the ClassAd
attribute .

¶
A Statistics attribute defining a histogram count of jobs that did not complete successfully, as classified by image
size, in the previous time interval defined by attribute RecentStatsLifetime. Counts within the histogram are
separated by a comma and a space, where the size classification is defined in the ClassAd attribute .

¶
A Statistics attribute defining the number of times jobs that have exited with a condor_shadow exit code of
JOB_CKPTED in the previous time interval defined by attribute RecentStatsLifetime.

15.6. Scheduler ClassAd Attributes 1081

mailto:slot#@full.hostname
mailto:slot1@vulture.cs.wisc.edu

HTCondor Manual, Release 23.6.2

¶
A Statistics attribute defining the number of jobs successfully completed in the previous time interval defined by
attribute RecentStatsLifetime.

¶
A Statistics attribute defining a histogram count of jobs that completed successfully, as classified by time spent
running, in the previous time interval defined by attribute RecentStatsLifetime. Counts within the histogram
are separated by a comma and a space, where the time interval classification is defined in the ClassAd attribute .

¶
A Statistics attribute defining a histogram count of jobs that completed successfully, as classified by image size,
in the previous time interval defined by attribute RecentStatsLifetime. Counts within the histogram are
separated by a comma and a space, where the size classification is defined in the ClassAd attribute .

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_COREDUMPED in the previous time interval defined by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
DPRINTF_ERROR in the previous time interval defined by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_EXEC_FAILED in the previous time interval defined by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the number of times that jobs have exited normally in the previous time interval
defined by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_EXITED_AND_CLAIM_CLOSING in the previous time interval defined by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_EXITED or with an exit code of JOB_EXITED_AND_CLAIM_CLOSING in the previous time interval defined
by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit
code of JOB_EXCEPTION or with an unknown status in the previous time interval defined by attribute
RecentStatsLifetime.

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_KILLED in the previous time interval defined by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_MISSED_DEFERRAL_TIME in the previous time interval defined by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_NOT_STARTED in the previous time interval defined by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the number of times that jobs have exited because there was not enough memory
to start the condor_shadow in the previous time interval defined by attribute RecentStatsLifetime.

1082 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_SHOULD_HOLD in the previous time interval defined by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_SHOULD_REMOVE in the previous time interval defined by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_SHOULD_REQUEUE in the previous time interval defined by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the number of jobs started in the previous time interval defined by attribute
RecentStatsLifetime.

¶
A Statistics attribute defining the number of jobs submitted in the previous time interval defined by attribute
RecentStatsLifetime.

¶
A Statistics attribute defining the number of times that condor_shadow daemons lost connection to their
condor_starter daemons and successfully reconnected in the previous time interval defined by attribute
RecentStatsLifetime. This statistic only appears in the Scheduler ClassAd if the level of verbosity set by
the configuration variable is set to 2 or higher.

¶
A Statistics attribute defining the number of times condor_shadow processes have been recycled for use with a
new job in the previous time interval defined by attribute RecentStatsLifetime. This statistic only appears
in the Scheduler ClassAd if the level of verbosity set by the configuration variable is set to 2 or higher.

¶
A Statistics attribute defining the number of condor_shadow daemons started in the previous time interval defined
by attribute RecentStatsLifetime.

¶
A Statistics attribute defining the time in seconds over which statistics values have been collected for attributes
with names that begin with Recent. This value starts at 0, and it may grow to a value as large as the value defined
for attribute .

¶
A Statistics attribute defining the time that attributes with names that begin with Recent were last updated,
represented as the number of seconds elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970). This statistic
only appears in the Scheduler ClassAd if the level of verbosity set by the configuration variable is set to 2 or
higher.

¶
A Statistics attribute defining the maximum time in seconds over which attributes with names that begin with
Recent are collected. The value is set by the configuration variable , which defaults to 1200 seconds (20 minutes).
This statistic only appears in the Scheduler ClassAd if the level of verbosity set by the configuration variable is
set to 2 or higher.

¶
String with the IP and port address of the condor_schedd daemon which is publishing this Scheduler ClassAd.

¶
A Statistics attribute defining the number of times condor_shadow s lost connection to their condor_starter s
and successfully reconnected in the previous seconds. This statistic only appears in the Scheduler ClassAd if the
level of verbosity set by the configuration variable is set to 2 or higher.

15.6. Scheduler ClassAd Attributes 1083

HTCondor Manual, Release 23.6.2

¶
A Statistics attribute defining the number of times condor_shadow processes have been recycled for use with a
new job in the previous seconds. This statistic only appears in the Scheduler ClassAd if the level of verbosity set
by the configuration variable is set to 2 or higher.

¶
A Statistics attribute defining the number of condor_shadow daemons currently running that are owned by this
condor_schedd.

¶
A Statistics attribute defining the maximum number of condor_shadow daemons running at one time that were
owned by this condor_schedd over the lifetime of this condor_schedd.

¶
A Statistics attribute defining the number of condor_shadow daemons started in the previous time interval defined
by attribute .

¶
The same boolean value as set in the configuration variable . See the definition in the condor_schedd Configu-
ration File Entries section.

¶
The same boolean value as set in the configuration variable . See the definition in the condor_schedd Configu-
ration File Entries section.

¶
A Statistics attribute defining the time that statistics about jobs were last updated, represented as the number of
seconds elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970). This statistic only appears in the Scheduler
ClassAd if the level of verbosity set by the configuration variable is set to 2 or higher.

¶
A Statistics attribute defining the time in seconds over which statistics have been collected for attributes with
names that do not begin with Recent. This statistic only appears in the Scheduler ClassAd if the level of verbosity
set by the configuration variable is set to 2 or higher.

¶
The total number of jobs from this condor_schedd daemon that are currently flocked to other pools.

¶
The total number of jobs from this condor_schedd daemon that are currently on hold.

¶
The total number of jobs from this condor_schedd daemon that are currently idle, not including local or scheduler
universe jobs.

¶
The total number of all jobs (in all states) from this condor_schedd daemon.

¶
The total number of local jobs from this condor_schedd daemon that are currently idle.

¶
The total number of local jobs from this condor_schedd daemon that are currently running.

¶
The current number of all running jobs from this condor_schedd daemon that have remove requests.

¶
The total number of jobs from this condor_schedd daemon that are currently running, not including local or
scheduler universe jobs.

1084 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
The total number of scheduler jobs from this condor_schedd daemon that are currently idle.

¶
The total number of scheduler jobs from this condor_schedd daemon that are currently running.

¶
A ClassAd expression that provides the name of the transfer queue that the condor_schedd will be using for job
file transfer.

¶
The interval, in seconds, between publication of this condor_schedd ClassAd and the previous publication.

¶
An integer, starting at zero, and incremented with each ClassAd update sent to the condor_collector. The con-
dor_collector uses this value to sequence the updates it receives.

¶
Description is not yet written.

¶ causes the condor_negotiator
daemon to send to this condor_schedd daemon a full machine ClassAd corresponding to a matched job.

When using file transfer concurrency limits, the following additional I/O usage statistics are published. These includes
the sum and rate of bytes transferred as well as time spent reading and writing to files and to the network. These statistics
are reported for the sum of all users and may also be reported individually for recently active users by increasing the
verbosity level STATISTICS_TO_PUBLISH = TRANSFER:2. Each of the per-user statistics is prefixed by a user name
in the form Owner_<username>_FileTransferUploadBytes. In this case, the attribute represents activity by the
specified user. The published user name is actually the file transfer queue name, as defined by configuration variable .
This expression defaults to Owner_ followed by the name of the job owner. The attributes that are rates have a suffix
that specifies the time span of the exponential moving average. By default the time spans that are published are 1m,
5m, 1h, and 1d. This can be changed by configuring configuration variable . These attributes are only reported once a
full time span has accumulated.

¶
The exponential moving average of the disk load that exceeds the upper limit set for the disk load throttle. Periods
of time in which there is no excess and no waiting transfers do not contribute to the average. This attribute is
published only if configuration variable is defined.

¶
The desired upper limit for the disk load from file transfers, as configured by This attribute is published only if
configuration variable is defined.

¶
The current concurrency limit set by the disk load throttle. The limit is applied to the sum of uploads and
downloads. This attribute is published only if configuration variable is defined.

¶
The lower limit for the disk load from file transfers, as configured by This attribute is published only if configu-
ration variable is defined.

¶
The exponential moving average of the disk load that falls below the upper limit set for the disk load throttle.
Periods of time in which there is no excess and no waiting transfers do not contribute to the average. This attribute
is published only if configuration variable is defined.

¶
Total number of bytes downloaded as output from jobs since this condor_schedd was started. If contains
TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name

15.6. Scheduler ClassAd Attributes 1085

HTCondor Manual, Release 23.6.2

Owner_<username>_FileTransferDownloadBytes. The published user name is actually the file transfer
queue name, as defined by configuration variable

¶
Exponential moving average over the specified time span of the rate at which bytes have been downloaded
as output from jobs. The time spans that are published are configured by , which defaults to 1m, 5m, 1h,
and 1d. When less than one full time span has accumulated, the attribute is not published. If contains
TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferDownloadBytesPerSecond_<timespan>. The published user name is
actually the file transfer queue name, as defined by configuration variable

¶
Exponential moving average over the specified time span of the rate at which submit-side file transfer processes
have spent time reading from files to be transferred as input to jobs. One file transfer process spending nearly
all of its time reading files will generate a load close to 1.0. The time spans that are published are configured
by , which defaults to 1m, 5m, 1h, and 1d. When less than one full time span has accumulated, the attribute is
not published. If contains TRANSFER:2, for each active user, this attribute is also published prefixed by the user
name, with the name Owner_<username>_FileTransferFileReadLoad_<timespan>. The published user
name is actually the file transfer queue name, as defined by configuration variable

¶
Total number of submit-side transfer process seconds spent reading from files to be transferred as input to jobs
since this condor_schedd was started. If contains TRANSFER:2, for each active user, this attribute is also pub-
lished prefixed by the user name, with the name Owner_<username>_FileTransferFileReadSeconds. The
published user name is actually the file transfer queue name, as defined by configuration variable

¶
Exponential moving average over the specified time span of the rate at which submit-side file transfer processes
have spent time writing to files transferred as output from jobs. One file transfer process spending nearly all of
its time writing to files will generate a load close to 1.0. The time spans that are published are configured by ,
which defaults to 1m, 5m, 1h, and 1d. When less than one full time span has accumulated, the attribute is not
published. If contains TRANSFER:2, for each active user, this attribute is also published prefixed by the user
name, with the name Owner_<username>_FileTransferFileWriteLoad_<timespan>. The published user
name is actually the file transfer queue name, as defined by configuration variable

¶
Total number of submit-side transfer process seconds spent writing to files transferred as output from jobs since
this condor_schedd was started. If contains TRANSFER:2, for each active user, this attribute is also published
prefixed by the user name, with the name Owner_<username>_FileTransferFileWriteSeconds. The pub-
lished user name is actually the file transfer queue name, as defined by configuration variable

¶
Exponential moving average over the specified time span of the rate at which submit-side file transfer pro-
cesses have spent time reading from the network when transferring output from jobs. One file transfer pro-
cess spending nearly all of its time reading from the network will generate a load close to 1.0. The rea-
son a file transfer process may spend a long time writing to the network could be a network bottleneck on
the path between the submit and execute machine. It could also be caused by slow reads from the disk
on the execute side. The time spans that are published are configured by , which defaults to 1m, 5m, 1h,
and 1d. When less than one full time span has accumulated, the attribute is not published. If contains
TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferNetReadLoad_<timespan>. The published user name is actually the file
transfer queue name, as defined by configuration variable

¶
Total number of submit-side transfer process seconds spent reading from the network when transferring
output from jobs since this condor_schedd was started. The reason a file transfer process may spend a
long time writing to the network could be a network bottleneck on the path between the submit and ex-

1086 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

ecute machine. It could also be caused by slow reads from the disk on the execute side. If contains
TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferNetReadSeconds. The published user name is actually the file transfer
queue name, as defined by configuration variable

¶
Exponential moving average over the specified time span of the rate at which submit-side file transfer processes
have spent time writing to the network when transferring input to jobs. One file transfer process spending nearly
all of its time writing to the network will generate a load close to 1.0. The reason a file transfer process may spend
a long time writing to the network could be a network bottleneck on the path between the submit and execute
machine. It could also be caused by slow writes to the disk on the execute side. The time spans that are published
are configured by , which defaults to 1m, 5m, 1h, and 1d. When less than one full time span has accumulated,
the attribute is not published. If contains TRANSFER:2, for each active user, this attribute is also published
prefixed by the user name, with the name Owner_<username>_FileTransferNetWriteLoad_<timespan>.
The published user name is actually the file transfer queue name, as defined by configuration variable

¶
Total number of submit-side transfer process seconds spent writing to the network when transferring input to
jobs since this condor_schedd was started. The reason a file transfer process may spend a long time writing
to the network could be a network bottleneck on the path between the submit and execute machine. It could
also be caused by slow writes to the disk on the execute side. The time spans that are published are configured
by , which defaults to 1m, 5m, 1h, and 1d. When less than one full time span has accumulated, the attribute
is not published. If contains TRANSFER:2, for each active user, this attribute is also published prefixed by the
user name, with the name Owner_<username>_FileTransferNetWriteSeconds. The published user name
is actually the file transfer queue name, as defined by configuration variable

¶
Total number of bytes uploaded as input to jobs since this condor_schedd was started. If contains
TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferUploadBytes. The published user name is actually the file transfer queue
name, as defined by configuration variable

¶
Exponential moving average over the specified time span of the rate at which bytes have been uploaded
as input to jobs. The time spans that are published are configured by , which defaults to 1m, 5m, 1h,
and 1d. When less than one full time span has accumulated, the attribute is not published. If contains
TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferUploadBytesPerSecond_<timespan>. The published user name is ac-
tually the file transfer queue name, as defined by configuration variable

¶
Number of megabytes of output files waiting to be downloaded.

¶
Number of megabytes of input files waiting to be uploaded.

¶
The time waiting in the transfer queue for the job that has been waiting to transfer output files the longest.

¶
The time waiting in the transfer queue for the job that has been waiting to transfer input files the longest.

¶
Number of jobs waiting to transfer output files.

¶
Number of jobs waiting to transfer input files.

15.6. Scheduler ClassAd Attributes 1087

HTCondor Manual, Release 23.6.2

¶
Number of jobs transfering output files.

¶
Number of jobs transfering input files.

¶
Maximum number of jobs transfering output files concurrently.

¶
Maximum number of jobs transfering input files concurrently.

15.7 Negotiator ClassAd Attributes

¶
A string containing the HTCondor version number, the release date, and the build identification number.

¶
The time that this daemon was started, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶
The time that this daemon was configured, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶
The integer number of submitters the condor_negotiator attempted to negotiate with in the negotiation cycle.
The number <X> appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

¶
The number of slot ClassAds after filtering by . This is the number of slots actually considered for matching.
The number <X> appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

¶
The number of seconds that it took to complete the negotiation cycle. The number <X> appended to the attribute
name indicates how many negotiation cycles ago this cycle happened.

¶
The time, represented as the number of seconds since the Unix epoch, at which the negotiation cycle ended. The
number <X> appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

¶
The number of successful matches that were made in the negotiation cycle. The number <X> appended to the
attribute name indicates how many negotiation cycles ago this cycle happened.

¶
The number of matched jobs divided by the duration of this cycle giving jobs per second. The number <X>
appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

¶
The number of matched jobs divided by the period of this cycle giving jobs per second. The period is the time
elapsed between the end of the previous cycle and the end of this cycle, and so this rate includes the interval
between cycles. The number <X> appended to the attribute name indicates how many negotiation cycles ago this
cycle happened.

1088 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
The number of idle jobs considered for matchmaking. The number <X> appended to the attribute name indicates
how many negotiation cycles ago this cycle happened.

¶
The number of jobs requests returned from the schedulers for consideration. The number <X> appended to the
attribute name indicates how many negotiation cycles ago this cycle happened.

¶
The number of individual schedulers negotiated with during matchmaking. The number <X> appended to the
attribute name indicates how many negotiation cycles ago this cycle happened.

¶
The number of seconds elapsed between the end of the previous negotiation cycle and the end of this cycle. The
number <X> appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

¶
The duration, in seconds, of Phase 1 of the negotiation cycle: the process of getting submitter and machine
ClassAds from the condor_collector. The number <X> appended to the attribute name indicates how many
negotiation cycles ago this cycle happened.

¶
The duration, in seconds, of Phase 2 of the negotiation cycle: the process of filtering slots and processing ac-
counting group configuration. The number <X> appended to the attribute name indicates how many negotiation
cycles ago this cycle happened.

¶
The duration, in seconds, of Phase 3 of the negotiation cycle: sorting submitters by priority. The number <X>
appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

¶
The duration, in seconds, of Phase 4 of the negotiation cycle: the process of matching slots to jobs in conjunction
with the schedulers. The number <X> appended to the attribute name indicates how many negotiation cycles ago
this cycle happened.

¶
The number of rejections that occurred in the negotiation cycle. The number <X> appended to the attribute name
indicates how many negotiation cycles ago this cycle happened.

¶
The number of iterations performed during the negotiation cycle. Each iteration includes the reallocation of
remaining slots to accounting groups, as defined by the implementation of hierarchical group quotas, together
with the negotiation for those slots. The maximum number of iterations is limited by the configuration variable .
The number <X> appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

¶
A string containing a space and comma-separated list of the names of all submitters who failed to ne-
gotiate in the negotiation cycle. One possible cause of failure is a communication timeout. This
list does not include submitters who ran out of time due to . Those are listed separately in
LastNegotiationCycleSubmittersOutOfTime<X>. The number <X> appended to the attribute name in-
dicates how many negotiation cycles ago this cycle happened.

¶
A string containing a space and comma separated list of the names of all submitters who ran out of time due to

15.7. Negotiator ClassAd Attributes 1089

HTCondor Manual, Release 23.6.2

in the negotiation cycle. The number <X> appended to the attribute name indicates how many negotiation cycles
ago this cycle happened.

¶
A string containing a space and comma separated list of names of submitters who encountered their fair-share
slot limit during the negotiation cycle. The number <X> appended to the attribute name indicates how many
negotiation cycles ago this cycle happened.

¶
The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970),
at which the negotiation cycle started. The number <X> appended to the attribute name indicates how many
negotiation cycles ago this cycle happened.

¶
The total number of slot ClassAds received by the condor_negotiator. The number <X> appended to the attribute
name indicates how many negotiation cycles ago this cycle happened.

¶
The number of slot ClassAds left after trimming currently claimed slots (when enabled). The number <X>
appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

¶
A string with the machine’s fully qualified host name.

¶
String with the IP and port address of the condor_negotiator daemon which is publishing this ClassAd.

¶
The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at
which the condor_schedd daemon last sent a ClassAd update to the condor_collector.

¶
The name of this resource; typically the same value as the Machine attribute, but could be customized by the
site administrator. On SMP machines, the condor_startd will divide the CPUs up into separate slots, each with
a unique name. These names will be of the form slot#@full.hostname, for example, slot1@vulture.cs.
wisc.edu, which signifies slot number 1 from vulture.cs.wisc.edu.

¶
String with the IP and port address of the condor_negotiator daemon which is publishing this Negotiator ClassAd.

¶
Description is not yet written.

¶
An integer, starting at zero, and incremented with each ClassAd update sent to the condor_collector. The con-
dor_collector uses this value to sequence the updates it receives.

15.8 Submitter ClassAd Attributes

¶
A string containing the HTCondor version number, the release date, and the build identification number.

¶
The number of jobs from this submitter that are running in another pool.

¶
The number of jobs from this submitter that are in the hold state.

1090 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
The number of jobs from this submitter that are now idle. Scheduler and Local universe jobs are not included in
this count.

¶
The number of Local universe jobs from this submitter that are now idle.

¶
The number of Local universe jobs from this submitter that are running.

¶
The IP address associated with the condor_schedd daemon used by the submitter.

¶
The fully qualified name of the user or accounting group. It will be of the form name@submit.domain.

¶
The number of jobs from this submitter that are running now. Scheduler and Local universe jobs are not included
in this count.

¶
The IP address associated with the condor_schedd daemon used by the submitter. This attribute is obsolete Use
MyAddress instead.

¶
The fully qualified host name of the machine that the submitter submitted from. It will be of the form submit.
domain.

¶
The number of Scheduler universe jobs from this submitter that are now idle.

¶
The number of Scheduler universe jobs from this submitter that are running.

¶
The fully qualified host name of the central manager of the pool used by the submitter, if the job flocked to the
local pool. Or, it will be the empty string if submitter submitted from within the local pool.

¶
A total number of requested cores across all Idle jobs from the submitter, weighted by the slot weight. As an
example, if SLOT_WEIGHT = CPUS, and a job requests two CPUs, the weight of that job is two.

¶
A total number of requested cores across all Running jobs from the submitter.

15.9 Defrag ClassAd Attributes

¶
Fraction of time CPUs in the pool have spent on jobs that were killed during draining of the machine. This is
calculated in each polling interval by looking at . Therefore, it treats evictions of jobs that do and do not produce
checkpoints the same. When the condor_startd restarts, its counters start over from 0, so the average is only over
the time since the daemons have been alive.

¶
Fraction of time CPUs in the pool have spent unclaimed by a user during draining of the machine. This is
calculated in each polling interval by looking at . When the condor_startd restarts, its counters start over from
0, so the average is only over the time since the daemons have been alive.

15.9. Defrag ClassAd Attributes 1091

HTCondor Manual, Release 23.6.2

¶
The time that this daemon was started, represented as the number of seconds elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶
The time that this daemon was configured, represented as the number of seconds elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶
A count of the number of fully drained machines which have arrived during the run time of this condor_defrag
daemon.

¶
Total count of failed attempts to initiate draining during the lifetime of this condor_defrag daemon.

¶
Total count of successful attempts to initiate draining during the lifetime of this condor_defrag daemon.

¶
A string with the machine’s fully qualified host name.

¶
Number of machines that were observed to be draining in the last polling interval.

¶
Largest number of machines that were ever observed to be draining.

¶
The mean time in seconds between arrivals of fully drained machines.

¶
The number of seconds that this daemon has been running.

¶
The fraction of recent CPU time utilized by this daemon.

¶
The amount of virtual memory consumed by this daemon in KiB.

¶
The current number of sockets registered by this daemon.

¶
The amount of resident memory used by this daemon in KiB.

¶
The number of open (cached) security sessions for this daemon.

¶
The time, represented as the number of seconds elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at
which this daemon last checked and set the attributes with names that begin with the string MonitorSelf.

¶
String with the IP and port address of the condor_defrag daemon which is publishing this ClassAd.

¶
The time, represented as the number of seconds elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at
which the condor_defrag daemon last sent a ClassAd update to the condor_collector.

¶
The name of this daemon; typically the same value as the Machine attribute, but could be customized by the site
administrator via the configuration variable .

1092 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
A ClassAd list of ClassAds describing the last ten cancel commands sent by this daemon. Attributes include
when, as the number of seconds since the Unix epoch; and who, the Name of the slot being drained.

¶
Count of failed attempts to initiate draining during the past RecentStatsLifetime seconds.

¶
Count of successful attempts to initiate draining during the past RecentStatsLifetime seconds.

¶
A ClassAd list of ClassAds describing the last ten drain commands sent by this daemon. Attributes include when,
as the number of seconds since the Unix epoch; who, the Name of the slot being drained; and what, one of the
three strings graceful, quick, or fast.

¶
A Statistics attribute defining the time in seconds over which statistics values have been collected for attributes
with names that begin with Recent.

¶
An integer, starting at zero, and incremented with each ClassAd update sent to the condor_collector. The con-
dor_collector uses this value to sequence the updates it receives.

¶
Number of machines that were observed to be defragmented in the last polling interval.

¶
Largest number of machines that were ever observed to be simultaneously defragmented.

15.10 Grid ClassAd Attributes

¶
A Statistics attribute defining the time it takes for commands issued to the GAHP server to complete.

¶
A Statistics attribute defining the number of commands issued to the GAHP server that haven’t completed yet.

¶
A Statistics attribute defining the total number of commands that have been issued to the GAHP server.

¶
A Statistics attribute defining the number of commands the condor_gridmanager is refraining from issuing to
the GAHP server due to configuration parameter .

¶
A Statistics attribute defining the number of commands issued to the GAHP server that didn’t complete within
the timeout period set by configuration parameter .

¶
The process id of the GAHP server used to interact with the grid service.

¶
Time at which the grid service became unavailable. Measured in the number of seconds since the epoch (00:00:00
UTC, Jan 1, 1970).

¶
A string giving details as to why the grid service is currently considered unavailable.

¶
An integer classifying the type of error that caused the grid service to be considered unavailable.

15.10. Grid ClassAd Attributes 1093

HTCondor Manual, Release 23.6.2

Value Failure Type
1 GAHP PING command failed
2 Failed to start GAHP server

¶
The number of idle jobs currently submitted to the grid service by this condor_gridmanager.

¶
The maximum number of jobs this condor_gridmanager will submit to the grid service at a time. This is con-
trolled by configuration parameter .

¶
The number of jobs this condor_gridmanager is managing that are intended for the grid service.

¶
The number of jobs this condor_gridmanager currently has submitted to the grid resource.

¶
The number of jobs this condor_gridmanager has refrained from submitting to the grid resource due to .

15.11 Collector ClassAd Attributes

¶
Current number of forked child processes handling queries.

¶
Peak number of forked child processes handling queries since collector startup or statistics reset.

¶
Total number of queries aborted since collector startup (or statistics reset) because exceeded, or exceeded, or
client closed TCP socket while request was pending. This statistic is also available as RecentDroppedQueries
which represents a count of recently dropped queries that occurred within a recent time window (default of 20
minutes).

¶
String with the IP and port address of the condor_collector daemon which is publishing this ClassAd.

¶
A string containing the HTCondor version number, the release date, and the build identification number.

¶
The current number of active forks of the Collector. The Windows version of the Collector does not fork and
will not have this statistic.

¶
An integer value representing the sum of all jobs running under all universes.

¶
An integer value representing the current number of jobs running under the universe which forms the attribute
name. For example

CurrentJobsRunningVanilla = 567

1094 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

identifies that the condor_collector counts 567 vanilla universe jobs currently running. <universe> is one of
Unknown, Vanilla, Scheduler, Java, Parallel, VM, or Local. There are other universes, but they are not
listed here, as they represent ones that are no longer used in Condor.

¶
The time that this daemon was started, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶
The time that this daemon was configured, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶
Number of locate queries the Collector has handled without forking since it started.

¶
Total time spent handling locate queries without forking since the Collector started. This attribute also has
minimum, maximum, average and standard deviation statistics with Min, Max, Avg and Std suffixes respectively.

¶
Number of locate queries the Collector has handled by forking since it started. The Windows operating system
does not fork and will not have this statistic.

¶
Total time spent forking to handle locate queries since the Collector started. This attribute also has minimum,
maximum, average and standard deviation statistics with Min, Max, Avg and Std suffixes respectively. The
Windows operating system does not fork and will not have this statistic.

¶
Number of locate queries the Collector received since the Collector started that could not be handled immediately
because there were already too many forked child processes. The Windows operating system does not fork and
will not have this statistic.

¶
Total time spent queuing pending locate queries that could not be immediately handled by forking since the
Collector started. This attribute also has minimum, maximum, average and standard deviation statistics with
Min, Max, Avg and Std suffixes respectively. The Windows operating system does not fork and will not have this
statistic.

¶
Number of queries that are not locate queries the Collector has handled without forking since it started.

¶
Total time spent handling queries that are not locate queries without forking since the Collector started. This
attribute also has minimum, maximum, average and standard deviation statistics with Min, Max, Avg and Std
suffixes respectively.

¶
Number of queries that are not locate queries the Collector has handled by forking since it started. The Windows
operating system does not fork and will not have this statistic.

¶
Total time spent forking to handle queries that are not locate queries since the Collector started. This attribute
also has minimum, maximum, average and standard deviation statistics with Min, Max, Avg and Std suffixes
respectively. The Windows operating system does not fork and will not have this statistic.

¶
Number of queries that are not locate queries the Collector received since the Collector started that could not
be handled immediately because there were already too many forked child processes. The Windows operating
system does not fork and will not have this statistic.

15.11. Collector ClassAd Attributes 1095

HTCondor Manual, Release 23.6.2

¶
Total time spent queuing pending non-locate queries that could not be immediately handled by forking since the
Collector started. This attribute also has minimum, maximum, average and standard deviation statistics with
Min, Max, Avg and Std suffixes respectively. The Windows operating system does not fork and will not have this
statistic.

¶
Description is not yet written.

¶
Description is not yet written.

¶
Description is not yet written.

¶
Description is not yet written.

¶
Description is not yet written.

¶
A string with the machine’s fully qualified host name.

¶
An integer value representing the sum of all MaxJobsRunning<universe> values.

¶
An integer value representing largest number of currently running jobs ever seen under the universe which forms
the attribute name, over the life of this condor_collector process. For example

MaxJobsRunningVanilla = 401

identifies that the condor_collector saw 401 vanilla universe jobs currently running at one point in time, and
that was the largest number it had encountered. <universe> is one of Unknown, Vanilla, Scheduler, Java,
Parallel, VM, or Local. There are other universes, but they are not listed here, as they represent ones that are
no longer used in Condor.

¶
String with the IP and port address of the condor_collector daemon which is publishing this ClassAd.

¶
The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at
which the condor_schedd daemon last sent a ClassAd update to the condor_collector.

¶
The name of this resource; typically the same value as the Machine attribute, but could be customized
by the site administrator. On SMP machines, the condor_startd will divide the CPUs up into separate
slots, each with a unique name. These names will be of the form “slot#@full.hostname”, for example,
“slot1@vulture.cs.wisc.edu”, which signifies slot number 1 from vulture.cs.wisc.edu.

¶
The maximum number of active forks of the Collector at any time since the Collector started. The Windows
version of the Collector does not fork and will not have this statistic.

¶
Number of queries pending that are waiting to fork.

¶
Peak number of queries pending that are waiting to fork since collector startup or statistics reset.

1096 Chapter 15. ClassAd Attributes

mailto:slot#@full.hostname
mailto:slot1@vulture.cs.wisc.edu

HTCondor Manual, Release 23.6.2

¶
Definition not yet written.

¶
The integer number of unique condor_startd daemon ClassAds counted at the most recent time the con-
dor_collector updated its own ClassAd.

¶
The largest integer number of unique condor_startd daemon ClassAds seen at any one time, since the con-
dor_collector began executing.

¶
The integer number of unique submitters counted at the most recent time the condor_collector updated its own
ClassAd.

¶
The largest integer number of unique submitters seen at any one time, since the condor_collector began executing.

¶
Description is not yet written.

¶
An integer that begins at 0, and increments by one each time the same ClassAd is again advertised.

¶
A Statistics attribute representing a count of unique ClassAds seen, over the lifetime of this condor_collector.
Counts per ClassAd are advertised in attributes named by ClassAd type as UpdatesInitial_<ClassAd-Name>.
<ClassAd-Name> is each of CkptSrvr, Collector, Defrag, Master, Schedd, Start, StartdPvt, and
Submittor.

¶
A Statistics attribute representing the count of updates lost, over the lifetime of this condor_collector.
Counts per ClassAd are advertised in attributes named by ClassAd type as UpdatesLost_<ClassAd-Name>.
<ClassAd-Name> is each of CkptSrvr, Collector, Defrag, Master, Schedd, Start, StartdPvt, and
Submittor.

¶
A Statistics attribute defining the largest number of updates lost at any point in time, over the lifetime of this
condor_collector. ClassAd sequence numbers are used to detect lost ClassAds.

¶
A Statistics attribute defining the floating point ratio of the total number of updates to the number of updates lost
over the lifetime of this condor_collector. ClassAd sequence numbers are used to detect lost ClassAds. A value
of 1 indicates that all ClassAds have been lost.

¶
A Statistics attribute representing the count of the number of ClassAd updates received over the lifetime
of this condor_collector. Counts per ClassAd are advertised in attributes named by ClassAd type as
UpdatesTotal_<ClassAd-Name>. <ClassAd-Name> is each of CkptSrvr, Collector, Defrag, Master,
Schedd, Start, StartdPvt, and Submittor.

15.11. Collector ClassAd Attributes 1097

HTCondor Manual, Release 23.6.2

15.12 ClassAd Attributes Added by the condor_collector

¶
The authenticated name assigned by the condor_collector to the daemon that published the ClassAd.

¶
The authentication method used by the condor_collector to determine the .

¶
The time inserted into a daemon’s ClassAd representing the time that this condor_collector last received a mes-
sage from the daemon. Time is represented as the number of second elapsed since the Unix epoch (00:00:00
UTC, Jan 1, 1970). This attribute is added if is True.

¶
A bitmap representing the status of the most recent updates received from the daemon. This attribute is only
added if is non-zero. See the condor_collector Configuration File Entries section for more information on this
setting. This attribute is added if is True.

¶
An integer count of the number of updates from the daemon that the condor_collector can definitively determine
were lost since the condor_collector started running. This attribute is added if is True.

¶
An integer count of the number of updates received from the daemon, for which the condor_collector can tell
how many were or were not lost, since the condor_collector started running. This attribute is added if is True.

¶
An integer count started when the condor_collector started running, representing the sum of the number of
updates actually received from the daemon plus the number of updates that the condor_collector determined
were lost. This attribute is added if is True.

15.13 DaemonCore Statistics Attributes

Every HTCondor daemon keeps a set of operational statistics, some of which are common to all daemons, others are
specific to the running of a particular daemon. In some cases, the statistics can reveal buggy or slow performance of
the HTCondor system. The following statistics are available for all daemons, and can be accessed directly with the
condor_status command with a direct query, such as

$ condor_status -direct somehostname.example.com -schedd -statistics DC:2 -l

¶
This attribute is the number of bytes in the incoming UDP receive queue for this daemon, if it has a UDP command
port. This attribute is polled once a minute by default, so may be out of date. The attribute DCUdpQueueDepth-
Peak records the peak depth since the daemon has started.

¶
This attribute is the count of debugging messages printed to the daemon’s debug log, such as the ScheddLog.
There is a moderate cost to writing these logging messages, if the debug level is very high for an active daemon,
the logging will slow performance. The corresponding attribute RecentDebugOuts is the count of the messages
in the last 20 minutes.

¶
This attribute is the number of messages received on a Unix pipe by this daemon since start time. The corre-
sponding attribute RecentPipeMessages is the count of message in the last 20 minutes.

1098 Chapter 15. ClassAd Attributes

HTCondor Manual, Release 23.6.2

¶
This attribute represents the total number of wall clock seconds this daemon has spent processing pipe message
since start. The corresponding attribute RecentPipeRuntime is the total time in the last 20 minutes.

¶
This attribute represents the total number of wall clock seconds this daemon has spent completely idle, waiting
to process incoming requests or internal timers. The attribute DaemonCoreDutyCycle, which may be easier to
write policy around, is based off of this.

¶
This attribute respresents the total number of wall clock time seconds this daemon has spent processing signals
since start. The corresponding attribute RecentSignalRuntime is the total time in the last 20 minutes.

¶
This attribute is the number of signals, either Unix signals, or HTCondor simulated signals received by this
daemon since start time. The corresponding attribute RecentSignals is the number of signals in the last 20
minutes.

¶
This attribute respresents the total number of wall clock time seconds this daemon has spent processing socket
messages since start. The corresponding attribute RecentTimerRuntime is the total time in the last 20 minutes.

¶
This attribute is the number of messages received on socket by this daemon since start time. The corresponding
attribute RecentSockMessages is the count of message in the last 20 minutes.

¶
This attribute respresents the total number of wall clock time seconds this daemon has spent processing timers
since start. The corresponding attribute RecentTimerRuntime is the total time in the last 20 minutes.

¶
This attribute is the number of internal timers which have fired in this daemon during the most recent pass of the
event loop. The corresponding attribute TimersFiredPeak is the maximum number of timers fired in one pass of
the event loop since daemon start time.

15.13. DaemonCore Statistics Attributes 1099

HTCondor Manual, Release 23.6.2

1100 Chapter 15. ClassAd Attributes

CHAPTER

SIXTEEN

CODES AND OTHER NEEDED VALUES

16.1 condor_shadow Exit Codes

When a condor_shadow daemon exits, the condor_shadow exit code is recorded in the condor_schedd log, and it
identifies why the job exited. Prose in the log appears of the form

Shadow pid XXXXX for job XX.X exited with status YYY

where YYY is the exit code, or

Shadow pid XXXXX for job XX.X reports job exit reason 100.

where the exit code is the value 100. The following table lists these codes:

Value Error Name Description
4 JOB_EXCEPTION the job exited with an exception
44 DPRINTF_ERROR there was a fatal error with dprintf()
100 JOB_EXITED the job exited (not killed)
101 JOB_CKPTED no longer used
102 JOB_KILLED the job was killed
103 JOB_COREDUMPED the job was killed and a core file was produced
105 JOB_NO_MEM not enough memory to start the condor_shadow
106 JOB_SHADOW_USAGEincorrect arguments to condor_shadow
107 JOB_NOT_CKPTED no longer used
107 JOB_SHOULD_REQUEUEsame number as JOB_NOT_CKPTED, to achieve the same behavior. This exit code

implies that we want the job to be put back in the job queue and run again.
108 JOB_NOT_STARTED can not connect to the condor_startd or request refused
109 JOB_BAD_STATUS job status != RUNNING on start up
110 JOB_EXEC_FAILED exec failed for some reason other than ENOMEM
111 JOB_NO_CKPT_FILE no longer used
112 JOB_SHOULD_HOLD the job should be put on hold
113 JOB_SHOULD_REMOVEthe job should be removed
114 JOB_MISSED_DEFERRAL_TIMEthe job goes on hold, because it did not run within the specified window of time
115 JOB_EXITED_AND_CLAIM_CLOSINGthe job exited (not killed) but the condor_startd is not accepting any more jobs on

this claim
116 JOB_RECONNECT_FAILEDthe condor_shadow was started in reconnect mode, and yet failed to reconnect to

the starter

1101

HTCondor Manual, Release 23.6.2

16.2 Job Event Log Codes

Table B.2 lists codes that appear as the first

These are all of the events that can show up in a job log file:

Event Number: 000
Event Name: Job submitted
Event Description: This event occurs when a user submits a job. It is the first event you will see for a job, and it
should only occur once.

Event Number: 001
Event Name: Job executing
Event Description: This shows up when a job is running. It might occur more than once.

Event Number: 002
Event Name: Error in executable
Event Description: The job could not be run because the executable was bad.

Event Number: 003
Event Name: Job was checkpointed
Event Description: No longer used.

Event Number: 004
Event Name: Job evicted from machine
Event Description: A job was removed from a machine before it finished, usually for a policy reason. Perhaps an
interactive user has claimed the computer, or perhaps another job is higher priority.

Event Number: 005
Event Name: Job terminated
Event Description: The job has completed.

Event Number: 006
Event Name: Image size of job updated
Event Description: An informational event, to update the amount of memory that the job is using while running. It
does not reflect the state of the job.

Event Number: 007
Event Name: Shadow exception
Event Description: The condor_shadow, a program on the submit computer that watches over the job and performs
some services for the job, failed for some catastrophic reason. The job will leave the machine and go back into the
queue.

1102 Chapter 16. Codes and Other Needed Values

HTCondor Manual, Release 23.6.2

Event Number: 008
Event Name: Generic log event
Event Description: Not used.

Event Number: 009
Event Name: Job aborted
Event Description: The user canceled the job.

Event Number: 010
Event Name: Job was suspended
Event Description: The job is still on the computer, but it is no longer executing. This is usually for a policy reason,
such as an interactive user using the computer.

Event Number: 011
Event Name: Job was unsuspended
Event Description: The job has resumed execution, after being suspended earlier.

Event Number: 012
Event Name: Job was held
Event Description: The job has transitioned to the hold state. This might happen if the user applies the command to
the job.

Event Number: 013
Event Name: Job was released
Event Description: The job was in the hold state and is to be re-run.

Event Number: 014
Event Name: Parallel node executed
Event Description: A parallel universe program is running on a node.

Event Number: 015
Event Name: Parallel node terminated
Event Description: A parallel universe program has completed on a node.

Event Number: 016
Event Name: POST script terminated
Event Description: A node in a DAGMan work flow has a script that should be run after a job. The script is run on
the submit host. This event signals that the post script has completed.

Event Number: 021
Event Name: Remote error
Event Description: The condor_starter (which monitors the job on the execution machine) has failed.

16.2. Job Event Log Codes 1103

HTCondor Manual, Release 23.6.2

Event Number: 022
Event Name: Remote system call socket lost
Event Description: The condor_shadow and condor_starter (which communicate while the job runs) have lost
contact.

Event Number: 023
Event Name: Remote system call socket reestablished
Event Description: The condor_shadow and condor_starter (which communicate while the job runs) have been able
to resume contact before the job lease expired.

Event Number: 024
Event Name: Remote system call reconnect failure
Event Description: The condor_shadow and condor_starter (which communicate while the job runs) were unable to
resume contact before the job lease expired.

Event Number: 025
Event Name: Grid Resource Back Up
Event Description: A grid resource that was previously unavailable is now available.

Event Number: 026
Event Name: Detected Down Grid Resource
Event Description: The grid resource that a job is to run on is unavailable.

Event Number: 027
Event Name: Job submitted to grid resource
Event Description: A job has been submitted, and is under the auspices of the grid resource.

Event Number: 028
Event Name: Job ad information event triggered.
Event Description: Extra job ClassAd attributes are noted. This event is written as a supplement to other events
when the configuration parameter is set.

Event Number: 029
Event Name: The job’s remote status is unknown
Event Description: No updates of the job’s remote status have been received for 15 minutes.

Event Number: 030
Event Name: The job’s remote status is known again
Event Description: An update has been received for a job whose remote status was previous logged as unknown.

Event Number: 031
Event Name: Job stage in

1104 Chapter 16. Codes and Other Needed Values

HTCondor Manual, Release 23.6.2

Event Description: A grid universe job is doing the stage in of input files.

Event Number: 032
Event Name: Job stage out
Event Description: A grid universe job is doing the stage out of output files.

Event Number: 033
Event Name: Job ClassAd attribute update
Event Description: A Job ClassAd attribute is changed due to action by the condor_schedd daemon. This includes
changes by .

Event Number: 034
Event Name: Pre Skip event
Event Description: For DAGMan, this event is logged if a PRE SCRIPT exits with the defined PRE_SKIP value in
the DAG input file. This makes it possible for DAGMan to do recovery in a workflow that has such an event, as it
would otherwise not have any event for the DAGMan node to which the script belongs, and in recovery, DAGMan’s
internal tables would become corrupted.

Event Number: 035
Event Name: Cluster Submit
Event Description: This event occurs when a user submits a cluster with multiple procs.

Event Number: 036
Event Name: Cluster Remove
Event Description: This event occurs after all the jobs in a multi-proc cluster have completed, or when the cluster is
removed (by).

Event Number: 037
Event Name: Factory Paused
Event Description: This event occurs when job materialization for a cluster has been paused.

Event Number: 038
Event Name: Factory Resumed
Event Description: This event occurs when job materialization for a cluster has been resumed

Event Number: 039
Event Name: None
Event Description: This event should never occur in a log but may be returned by log reading code in certain
situations (e.g., timing out while waiting for a new event to appear in the log).

Event Number: 040
Event Name: File Transfer

16.2. Job Event Log Codes 1105

HTCondor Manual, Release 23.6.2

Event Description: This event occurs when a file transfer event occurs: transfer queued, transfer started, or transfer
finished, for both the input and output sandboxes.

Table B.2: Event Codes in a Job Event Log

001 EXECUTE Execute
002 EXECUTABLE_ERROR Executable error
003 CHECKPOINTED no longer used
004 JOB_EVICTED Job evicted
005 JOB_TERMINATED Job terminated
006 IMAGE_SIZE Image size
007 SHADOW_EXCEPTION Shadow exception
009 JOB_ABORTED Job aborted
010 JOB_SUSPENDED Job suspended
011 JOB_UNSUSPENDED Job unsuspended
012 JOB_HELD Job held
013 JOB_RELEASED Job released
014 NODE_EXECUTE Node execute
015 NODE_TERMINATED Node terminated
016 POST_SCRIPT_TERMINATED Post script terminated
021 REMOTE_ERROR Remote error
022 JOB_DISCONNECTED Job disconnected
023 JOB_RECONNECTED Job reconnected
024 JOB_RECONNECT_FAILED Job reconnect failed
025 GRID_RESOURCE_UP Grid resource up
026 GRID_RESOURCE_DOWN Grid resource down
027 GRID_SUBMIT Grid submit
028 JOB_AD_INFORMATION Job ClassAd attribute values added to event log
029 JOB_STATUS_UNKNOWN Job status unknown
030 JOB_STATUS_KNOWN Job status known
031 JOB_STAGE_IN Grid job stage in
032 JOB_STAGE_OUT Grid job stage out
033 ATTRIBUTE_UPDATE Job ClassAd attribute update
034 PRESKIP DAGMan PRE_SKIP defined
035 CLUSTER_SUBMIT Cluster submitted
036 CLUSTER_REMOVE Cluster removed
037 FACTORY_PAUSED Factory paused
038 FACTORY_RESUMED Factory resumed
039 NONE No event could be returned
040 FILE_TRANSFER File transfer

1106 Chapter 16. Codes and Other Needed Values

HTCondor Manual, Release 23.6.2

16.3 Job Universe Numbers

Table B.3: Job Universe Numbers (job attribute JobUniverse)

Number Job Universe
1 Standard (no longer used)
2 Pipe (no longer used)
3 Linda (no longer used)
4 PVM (no longer used)
5 Vanilla
6 PVMD (no longer used)
7 Scheduler
8 MPI
9 Grid
10 Java
11 Parallel
12 Local
13 VM

16.4 DaemonCore Command Numbers

Table B.4: DaemonCore Commands

60000 DC_RAISESIGNAL
60001 DC_PROCESSEXIT
60002 DC_CONFIG_PERSIST
60003 DC_CONFIG_RUNTIME
60004 DC_RECONFIG
60005 DC_OFF_GRACEFUL
60006 DC_OFF_FAST
60007 DC_CONFIG_VAL
60008 DC_CHILDALIVE
60009 DC_SERVICEWAITPIDS
60010 DC_AUTHENTICATE
60011 DC_NOP
60012 DC_RECONFIG_FULL
60013 DC_FETCH_LOG
60014 DC_INVALIDATE_KEY
60015 DC_OFF_PEACEFUL
60016 DC_SET_PEACEFUL_SHUTDOWN
60017 DC_TIME_OFFSET
60018 DC_PURGE_LOG

16.3. Job Universe Numbers 1107

HTCondor Manual, Release 23.6.2

16.5 DaemonCore Daemon Exit Codes

Table B.5: DaemonCore Daemon Exit Codes

Exit Code Description
0 Normal exit of daemon
4 Daemon fatal internal error
44 Failure to write to daemon log
99 evaluated to True

1108 Chapter 16. Codes and Other Needed Values

CHAPTER

SEVENTEEN

GLOSSARY

AP (Access Point)
An Access Point (AP) is the machine where users place jobs to be queued to be run. It usually runs the con-
dor_schedd and other daemons.

Classad
A classad is a set of key value pairs. Every object in an HTCSS is described by a classad. Classad values can
also be an expression, which can be evaluated in the context of another classad, in order to provide matching or
ranking policy.

CM (Central Manager)
The Central Manager (CM) is the machine with the central in-memory database (condor_collector) of all the
services, an accountant and condor_negotiator.

Daemon
A long-running process often operating in the background. An older term for “service”. The , condor_collector,
condor_schedd, condor_starter and condor_shadow are some of the daemon in HTCSS.

EP (Execution Point)
The Execution Point (EP), sometimes called the worker node is where jobs run. It is managed by the con-
dor_startd daemon, which is responsible for dividing all of the resources the machine into slot.

Glidein
The HTCondor Software Suite does not provide glideins as a first class entity itself, but implements tools that
users can build glideins from. A glidein is a set of scripts which creates a short-lived, usually unprivileged EP
that runs as a job under HTCondor or some other batch system. This glidein EP then reports to a different batch
pool that end users can submit jobs to. Glideins are one way to build a larger HTCondor pool from different sets
of resources that a user or group may have access to. One advantage of glideins is that they provide late binding,
that is, glideins may sit idle in a foreign queue for a very long time, but an idle user job does not select an EP
to run on until it is ready to accept work. One example glidein system is GlideinWMS, though there are many
others.

Job
Job has a very specific meaning in the HTCSS. It is the atomic unit of work in HTCSS. A job is defined by a
job classad, which is usually created by and a submit file. A job can have defined input files, which HTCSS will
transfer to the EP. One or more operating system processes can run inside a job. Every job is a member of a
cluster of jobs, which have cluster id. Each job also has a “proc id”. The job id uniquely identifies every job on
an AP, the id is the cluster id followed by a dot followed by the proc id.

Sandbox
Every job has a sandbox associated with it, which is a set of files. The input sandbox is the set of files the
job needs as input, and should be transferred to the EP when the job starts. As the job runs, any scratch files
created by the job are added to the sandbox. If the job is evicted after running, and WhenToTransferFiles is set
to OnExitOrEvict, this sandbox is saved to the AP in the spool directory, and the sandbox is restored to the EP

1109

HTCondor Manual, Release 23.6.2

when the job restarts. Any non-input files in the sandbox that exist when the job exits of its own accord are the
“output sandbox”, which is transferred back to the AP on successful job completion.

Slot
The slot is the location on the EP where the job runs. The condor_starter creates a slot, with sufficient Cpu,
memory, disk, and other resources for the job to run. The resource usage of a job running in a slot is monitored
and reported up to the condor_startd, and back to the AP, and, depending on configuration, may be enforced,
such that a job that uses too many resources will be evicted from the machine.

Universe
A type of job, describing some of the services it may need on an EP. The default universe, with the minimal
additional services needed, is called “vanilla”. Other universes include Container, Grid, and VM.

Workflow
A set, possibly ordered, of activities necessary to complete a larger task. In high-throughput computing, each
activity is a job. For example, consider the task of searching a large genome for a specific pattern. This might
be implemented with 1,000 independent jobs, each searching a subset of the full genome. A different workflow
might assemble a genome from sequences. Workflows may be composed; a third workflow compose the first
two, so that it assembles the genome from sequences, then searches it for a pattern. The requirements for jobs
(or workflows) to run before or after others may be represented by a directed acyclic graph [https://en.wikipedia.
org/wiki/Directed_acyclic_graph] (DAG) See the (DAGMan Introduction) to automatically execute a workflow
represented as a dag.

1110 Chapter 17. Glossary

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph

CHAPTER

EIGHTEEN

INDEX

1111

HTCondor Manual, Release 23.6.2

1112 Chapter 18. Index

CHAPTER

NINETEEN

LICENSING AND COPYRIGHT

HTCondor is released under the Apache License, Version 2.0.

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

For complete information and additional license notices see http://htcondor.org/license.html.

1113

http://www.apache.org/licenses/
http://www.apache.org/licenses/LICENSE-2.0
http://htcondor.org/license.html

HTCondor Manual, Release 23.6.2

1114 Chapter 19. Licensing and Copyright

PYTHON MODULE INDEX

c
classad (Unix, Windows, Mac OS X), 610
classad2, 606

h
htcondor (Unix, Windows, Mac OS X), 619
htcondor.dags, 659
htcondor.htchirp, 652
htcondor.personal, 672
htcondor2, 607

1115

HTCondor Manual, Release 23.6.2

1116 Python Module Index

INDEX

Symbols
_CONDOR_JOB_AD

environment variables for jobs, 87
_CONDOR_JOB_AD environment variable, 87
_CONDOR_JOB_IWD

environment variables for jobs, 87
_CONDOR_JOB_IWD environment variable, 87
_CONDOR_MACHINE_AD

environment variables for jobs, 87
_CONDOR_MACHINE_AD environment variable, 87
_CONDOR_SCRATCH_DIR

environment variables for jobs, 87
_CONDOR_SCRATCH_DIR environment variable, 87
_CONDOR_SLOT

environment variables for jobs, 87
_CONDOR_SLOT environment variable, 87
_CONDOR_WRAPPER_ERROR_FILE

environment variables for jobs, 87
_CONDOR_WRAPPER_ERROR_FILE environment

variable, 87
<DaemonName>_ENVIRONMENT

MASTER Configuration Options, 193
<Keyword>_HOOK_EVICT_CLAIM

HOOKS Configuration Options, 290
<Keyword>_HOOK_FETCH_WORK

HOOKS Configuration Options, 289
<Keyword>_HOOK_JOB_CLEANUP

HOOKS Configuration Options, 291
<Keyword>_HOOK_JOB_EXIT

HOOKS Configuration Options, 290
<Keyword>_HOOK_JOB_EXIT_TIMEOUT

HOOKS Configuration Options, 290
<Keyword>_HOOK_JOB_FINALIZE

HOOKS Configuration Options, 291
<Keyword>_HOOK_PREPARE_JOB

HOOKS Configuration Options, 290
<Keyword>_HOOK_PREPARE_JOB_ARGS

HOOKS Configuration Options, 290
<Keyword>_HOOK_REPLY_CLAIM

HOOKS Configuration Options, 290
<Keyword>_HOOK_REPLY_FETCH

HOOKS Configuration Options, 290

<Keyword>_HOOK_TRANSLATE_JOB
HOOKS Configuration Options, 290

<Keyword>_HOOK_UPDATE_JOB_INFO
HOOKS Configuration Options, 290

<NAME>_LIMIT
NEGOTIATOR Configuration Options, 253

<Name>Provisioned
Job ClassAd Attribute, 1055

<OAuth2Service>_AUTHORIZATION_URL
SCHEDD Configuration Options, 231

<OAuth2Service>_CLIENT_ID
SCHEDD Configuration Options, 231

<OAuth2Service>_CLIENT_SECRET_FILE
SCHEDD Configuration Options, 231

<OAuth2Service>_RETURN_URL_SUFFIX
SCHEDD Configuration Options, 231

<OAuth2Service>_TOKEN_URL
SCHEDD Configuration Options, 232

<PLUGIN>_TEST_URL
STARTER Configuration Options, 237

<SUBSYS>
MASTER Configuration Options, 192

<SUBSYS>_ADDRESS_FILE
Global Configuration Options, 182

<SUBSYS>_ADMIN_EMAIL
Global Configuration Options, 167

<SUBSYS>_ARGS
MASTER Configuration Options, 193

<SUBSYS>_ATTRS
Global Configuration Options, 183

<SUBSYS>_CLASSAD_USER_MAP_NAMES
Global Configuration Options, 173

<SUBSYS>_DAEMON_AD_FILE
Global Configuration Options, 183

<SUBSYS>_DEBUG
Global Configuration Options, 177

<SUBSYS>_LOCK
Global Configuration Options, 176

<SUBSYS>_LOG
Global Configuration Options, 175

<SUBSYS>_LOG_KEEP_OPEN
Global Configuration Options, 175

1117

HTCondor Manual, Release 23.6.2

<SUBSYS>_MAX_FILE_DESCRIPTORS
Network Configuration Options, 186

<SUBSYS>_NOT_RESPONDING_TIMEOUT
Global Configuration Options, 184

<SUBSYS>_SUPER_ADDRESS_FILE
Global Configuration Options, 183

<SUBSYS>_TIMEOUT_MULTIPLIER
Network Configuration Options, 189

<SUBSYS>_USERID
MASTER Configuration Options, 193

<SUBSYS>_<LEVEL>_LOG
Global Configuration Options, 180

<credential_service_name>_oauth_permissions
Submit commands, 953

<credential_service_name>_oauth_resource
Submit commands, 953

<name>BoardTempC
Machine ClassAd Attribute, 1074

<name>Capability
Machine ClassAd Attribute, 1074

<name>ClockMhz
Machine ClassAd Attribute, 1074

<name>ComputeUnits
Machine ClassAd Attribute, 1074

<name>CoresPerCU
Machine ClassAd Attribute, 1074

<name>DeviceName
Machine ClassAd Attribute, 1074

<name>DieTempC
Machine ClassAd Attribute, 1074

<name>DriverVersion
Machine ClassAd Attribute, 1074

<name>ECCEnabled
Machine ClassAd Attribute, 1074

<name>EccErrorsDoubleBit
Machine ClassAd Attribute, 1074

<name>EccErrorsSingleBit
Machine ClassAd Attribute, 1074

<name>FanSpeedPct
Machine ClassAd Attribute, 1074

<name>GlobalMemoryMb
Machine ClassAd Attribute, 1074

<name>OpenCLVersion
Machine ClassAd Attribute, 1074

<name>RuntimeVersion
Machine ClassAd Attribute, 1074

<service-name>_HostPort
Submit commands, 948

<service-name>_container_port
Submit commands, 947

<SUBSYS>_ATTRS, 183
<none> group, 380

A
ABORT_ON_EXCEPTION

Global Configuration Options, 169
ABORT-DAG-ON

DAG Commands, 551
Absent

Job ClassAd Attribute, 1026
absent ClassAd, 397

ClassAd, 397
absent ClassAds

pool management, 397
ABSENT_EXPIRE_ADS_AFTER

COLLECTOR Configuration Options, 248
ABSENT_REQUIREMENTS

COLLECTOR Configuration Options, 247
ABSENT_SUBMITTER_LIFETIME

SCHEDD Configuration Options, 219
ABSENT_SUBMITTER_UPDATE_RATE

SCHEDD Configuration Options, 219
absTime()

ClassAd functions, 472, 786
AcceptedWhileDraining

Machine ClassAd Attribute, 1056
access levels

security, 404
access point, 132
ACCOUNTANT_DATABASE_FILE

NEGOTIATOR Configuration Options, 249
ACCOUNTANT_LOCAL_DOMAIN

NEGOTIATOR Configuration Options, 249
accounting

groups, 379
Accounting (htcondor.AdTypes attribute), 622
Accounting ClassAd Attribute

AccountingGroup, 1025
AccumulatedUsage, 1025
BeginUsageTime, 1025
ConfigQuota, 1025
IsAccountingGroup, 1025
LastUsageTime, 1025
Name, 1025
Priority, 1025
PriorityFactor, 1025
ResourcesUsed, 1025
SubmitterLimit, 1025
SubmitterShare, 1025
WeightedAccumulatedUsage, 1025
WeightedResourcesUsed, 1025

accounting groups, 383
accounting_group

and attribute AcctGroup, 1026
and DAGMan, 539
and negotiation, 380
Submit commands, 948

1118 Index

HTCondor Manual, Release 23.6.2

accounting_group_user
and DAGMan, 539
and negotiation, 380
Submit commands, 948

AccountingGroup
Accounting ClassAd Attribute, 1025

AcctGroup
Job ClassAd Attribute, 1026

AcctGroupUser
Job ClassAd Attribute, 1026

AccumulatedUsage
Accounting ClassAd Attribute, 1025

acknowledgments
HTCondor, 33

ActivationDuration
Job ClassAd Attribute, 1026

ActivationExecutionDuration
Job ClassAd Attribute, 1026

ActivationSetupDuration
Job ClassAd Attribute, 1026

ActivationTeardownDuration
Job ClassAd Attribute, 1026

ActiveQueryWorkers
Collector ClassAd Attribute, 1094

ActiveQueryWorkersPeak
Collector ClassAd Attribute, 1094

activities and state figure, 318
Activity

Machine ClassAd Attribute, 1056
ADD_SIGNIFICANT_ATTRIBUTES

SCHEDD Configuration Options, 228
ADD_WINDOWS_FIREWALL_EXCEPTION

MASTER Configuration Options, 197
administrators manual, 355
Adstash

FEATURE Configuration Templates, 158
adstash, 398
ADVERTISE_IPV4_FIRST

Global Configuration Options, 173
ADVERTISE_PSLOT_ROLLUP_INFORMATION

STARTD Configuration Options, 199
AFS

file system, 462
AfterHours, 334
ALIVE_INTERVAL

SCHEDD Configuration Options, 220
ALL_DEBUG

Global Configuration Options, 180
allCompare()

ClassAd functions, 471, 785
ALLOW

Global Configuration Options, 182
ALLOW_ADMIN_COMMANDS

MASTER Configuration Options, 196

ALLOW_ADMINISTRATOR, 15, 733
ALLOW_PSLOT_PREEMPTION

NEGOTIATOR Configuration Options, 253
ALLOW_READ, 15, 733
ALLOW_SCRIPTS_TO_RUN_AS_EXECUTABLES

Global Configuration Options, 170
ALLOW_SUBMIT_FROM_KNOWN_USERS_ONLY

SCHEDD Configuration Options, 217
ALLOW_TRANSFER_REMAP_TO_MKDIR

SHADOW Configuration Options, 233
ALLOW_WRITE, 15, 733
allowed_execute_duration

Submit commands, 937
allowed_job_duration

Submit commands, 937
AllowedExecuteDuration

Job ClassAd Attribute, 1027
AllowedJobDuration

Job ClassAd Attribute, 1027
AllRemoteHosts

Job ClassAd Attribute, 1027
ALTERNATE_JOB_SPOOL

SCHEDD Configuration Options, 231
Always (htcondor.LogLevel attribute), 649
ALWAYS_REUSEADDR

Network Configuration Options, 189
Always_Run_Jobs

POLICY Configuration Templates, 158
Amazon EC2 Query API, 703
ANNEX Configuration Options

ANNEX_AUDIT_LOG, 690
ANNEX_DEFAULT_ACCESS_KEY_FILE, 691
ANNEX_DEFAULT_AWS_REGION, 690
ANNEX_DEFAULT_CF_URL, 691
ANNEX_DEFAULT_CONNECTIVITY_FUNCTION_ARN,

691
ANNEX_DEFAULT_CWE_URL, 691
ANNEX_DEFAULT_EC2_URL, 691
ANNEX_DEFAULT_LAMBDA_URL, 691
ANNEX_DEFAULT_LEASE_DURATION, 690
ANNEX_DEFAULT_ODI_IMAGE_ID, 690
ANNEX_DEFAULT_ODI_INSTANCE_PROFILE_ARN,

691
ANNEX_DEFAULT_ODI_INSTANCE_TYPE, 690
ANNEX_DEFAULT_ODI_KEY_NAME, 690
ANNEX_DEFAULT_ODI_LEASE_FUNCTION_ARN, 691
ANNEX_DEFAULT_ODI_SECURITY_GROUP_IDS, 691
ANNEX_DEFAULT_S3_BUCKET, 691
ANNEX_DEFAULT_S3_URL, 691
ANNEX_DEFAULT_SECRET_KEY_FILE, 691
ANNEX_DEFAULT_SFR_CONFIG_FILE, 690
ANNEX_DEFAULT_SFR_LEASE_FUNCTION_ARN, 691
ANNEX_DEFAULT_UNCLAIMED_TIMEOUT, 690

ANNEX_AUDIT_LOG

Index 1119

HTCondor Manual, Release 23.6.2

ANNEX Configuration Options, 690
ANNEX_DEFAULT_ACCESS_KEY_FILE

ANNEX Configuration Options, 691
ANNEX_DEFAULT_AWS_REGION

ANNEX Configuration Options, 690
ANNEX_DEFAULT_CF_URL

ANNEX Configuration Options, 691
ANNEX_DEFAULT_CONNECTIVITY_FUNCTION_ARN

ANNEX Configuration Options, 691
ANNEX_DEFAULT_CWE_URL

ANNEX Configuration Options, 691
ANNEX_DEFAULT_EC2_URL

ANNEX Configuration Options, 691
ANNEX_DEFAULT_LAMBDA_URL

ANNEX Configuration Options, 691
ANNEX_DEFAULT_LEASE_DURATION

ANNEX Configuration Options, 690
ANNEX_DEFAULT_ODI_IMAGE_ID

ANNEX Configuration Options, 690
ANNEX_DEFAULT_ODI_INSTANCE_PROFILE_ARN

ANNEX Configuration Options, 691
ANNEX_DEFAULT_ODI_INSTANCE_TYPE

ANNEX Configuration Options, 690
ANNEX_DEFAULT_ODI_KEY_NAME

ANNEX Configuration Options, 690
ANNEX_DEFAULT_ODI_LEASE_FUNCTION_ARN

ANNEX Configuration Options, 691
ANNEX_DEFAULT_ODI_SECURITY_GROUP_IDS

ANNEX Configuration Options, 691
ANNEX_DEFAULT_S3_BUCKET

ANNEX Configuration Options, 691
ANNEX_DEFAULT_S3_URL

ANNEX Configuration Options, 691
ANNEX_DEFAULT_SECRET_KEY_FILE

ANNEX Configuration Options, 691
ANNEX_DEFAULT_SFR_CONFIG_FILE

ANNEX Configuration Options, 690
ANNEX_DEFAULT_SFR_LEASE_FUNCTION_ARN

ANNEX Configuration Options, 691
ANNEX_DEFAULT_UNCLAIMED_TIMEOUT

ANNEX Configuration Options, 690
Any (htcondor.AdTypes attribute), 621
Any (htcondor.DaemonTypes attribute), 621
anyCompare()

ClassAd functions, 471, 785
AP (Access Point), 1109
APPEND_RANK

SUBMIT Configuration Options, 241
APPEND_RANK_VANILLA

SUBMIT Configuration Options, 241
APPEND_REQ_VANILLA

SUBMIT Configuration Options, 241
APPEND_REQUIREMENTES, 1048
APPEND_REQUIREMENTS

SUBMIT Configuration Options, 241
APPTAINER_CACHEDIR

environment variables for jobs, 87
ARC CE, 700
arc_application

definition, 701
Submit commands, 941

ARC_GAHP
GRIDMANAGER Configuration Options, 259

ARC_GAHP_COMMAND_LIMIT
GRIDMANAGER Configuration Options, 259

ARC_GAHP_USE_THREADS
GRIDMANAGER Configuration Options, 259

arc_resources
definitions, 701
Submit commands, 941

arc_rte
arc_resources, 700
Submit commands, 941

ARCH, 154, 1048
Arch

Machine ClassAd Attribute, 1056
Args

Job ClassAd Attribute, 1027
optional attributes, 358

Arguments
Job ClassAd Attribute, 1027

arguments
and DAGMan VARS, 533
and jar file, 105
example, 67
example that fails, 66
example with output, 64
interactive job, 55
Submit commands, 922
with parallel universe, 96

as a literal character in a submit
description file

$, 955
as literal characters in a submit

description file
$$, 956

ASSIGN_CPU_AFFINITY
STARTER Configuration Options, 237

AssignAccountingGroup
FEATURE Configuration Templates, 157

Assigned<name>
Machine ClassAd Attribute, 1073

at a specific time
job execution, 110

ATTR>
Job Router Routing Table ClassAd

attribute, 717
attr>

1120 Index

HTCondor Manual, Release 23.6.2

Job Router Routing Table command, 714, 715
ATTRIBUTE_UPDATE (htcondor.JobEventType attribute),

647
attributes

ClassAd, 116, 468, 782
FetchWork, 357

Audit (htcondor.LogLevel attribute), 649
AUTH_SSL_ALLOW_CLIENT_PROXY

SECURITY Configuration Options, 278
AUTH_SSL_CLIENT_CADIR

SECURITY Configuration Options, 277
AUTH_SSL_CLIENT_CAFILE

SECURITY Configuration Options, 277
AUTH_SSL_CLIENT_CERTFILE

SECURITY Configuration Options, 278
AUTH_SSL_CLIENT_KEYFILE

SECURITY Configuration Options, 278
AUTH_SSL_CLIENT_USE_DEFAULT_CAS

SECURITY Configuration Options, 278
AUTH_SSL_REQUIRE_CLIENT_CERTIFICATE

SECURITY Configuration Options, 278
AUTH_SSL_SERVER_CADIR

SECURITY Configuration Options, 277
AUTH_SSL_SERVER_CAFILE

SECURITY Configuration Options, 277
AUTH_SSL_SERVER_CERTFILE

SECURITY Configuration Options, 278
AUTH_SSL_SERVER_KEYFILE, 278

SECURITY Configuration Options, 278
AUTH_SSL_SERVER_USE_DEFAULT_CAS

SECURITY Configuration Options, 277
AUTH_SSL_USE_CLIENT_PROXY_ENV_VAR

SECURITY Configuration Options, 278
AUTH_SSL_USE_VOMS_IDENTITY

SECURITY Configuration Options, 275
AuthenticatedIdentity

ClassAd Attribute, 1098
authentication, 409, 420

security, 409
authentication methods

ec2, 703
AuthenticationMethod

ClassAd Attribute, 1098
authorization

security, 425
AuthTokenGroups

Job ClassAd Attribute, 1027
AuthTokenId

Job ClassAd Attribute, 1027
AuthTokenIssuer

Job ClassAd Attribute, 1027
AuthTokenScopes

Job ClassAd Attribute, 1027
AuthTokenSubject

Job ClassAd Attribute, 1027
Auto (classad.Parser attribute), 617
AUTO_INCLUDE_SHARED_PORT_IN_DAEMON_LIST

Network Configuration Options, 186
AutoCluster (htcondor.QueryOpts attribute), 629
Autoclusters

Scheduler ClassAd Attribute, 1077
automatic variables

submit description file, 42
available platforms, 33
avg()

ClassAd functions, 474, 788
AvgDrainingBadput

Defrag ClassAd Attribute, 1091
AvgDrainingUnclaimedTime

Defrag ClassAd Attribute, 1091
aws_access_key_id_file

example, 71
Submit commands, 937

aws_region
Submit commands, 937
with non-AWS S3 cloud, 72

aws_secret_access_key_file
example, 71
Submit commands, 937

Azure, 708
azure

grid type, 708
Azure grid jobs, 708
azure_admin_key

definition, 709
Submit commands, 941

azure_admin_username
definition, 709
Submit commands, 941

azure_auth_file
definition, 708
Submit commands, 941

AZURE_GAHP
GRIDMANAGER Configuration Options, 260

azure_image
definition, 708
Submit commands, 941

azure_location
definition, 709
Submit commands, 941

azure_size
definition, 709
Submit commands, 941

B
Backfill, 326

machine activity, 318
machine state, 314, 324

Index 1121

HTCondor Manual, Release 23.6.2

backfill state, 314, 324
BACKFILL_SYSTEM

STARTD Configuration Options, 206
BASE_CGROUP

PROCD Configuration Options, 256
based on user authorization

security, 425
batch grid type, 701
batch ready

job, 38
batch system, 37
batch_extra_submit_args

Submit commands, 941
BATCH_GAHP

GRIDMANAGER Configuration Options, 259
BATCH_GAHP_CHECK_STATUS_ATTEMPTS

GRIDMANAGER Configuration Options, 259
batch_name

Submit commands, 925
batch_project

Submit commands, 941
batch_queue

Submit commands, 942
batch_runtime

Submit commands, 942
BATCH_SYSTEM

environment variables for jobs, 87
BATCH_SYSTEM environment variable, 87
BatchExtraSubmitArgs

Job ClassAd Attribute, 1027
BatchProject

Job ClassAd Attribute, 1027
BatchQueue

Job ClassAd Attribute, 1027
BatchRuntime

Job ClassAd Attribute, 1027
BeginUsageTime

Accounting ClassAd Attribute, 1025
Benchmarking

machine activity, 317
BENCHMARKS_<JobName>_ARGS

HOOKS Configuration Options, 292
BENCHMARKS_<JobName>_CWD

HOOKS Configuration Options, 292
BENCHMARKS_<JobName>_ENV

HOOKS Configuration Options, 292
BENCHMARKS_<JobName>_EXECUTABLE

HOOKS Configuration Options, 292
BENCHMARKS_<JobName>_JOB_LOAD

HOOKS Configuration Options, 292
BENCHMARKS_<JobName>_KILL

HOOKS Configuration Options, 293
BENCHMARKS_<JobName>_MODE

HOOKS Configuration Options, 294

BENCHMARKS_<JobName>_PERIOD
HOOKS Configuration Options, 294

BENCHMARKS_<JobName>_PREFIX
HOOKS Configuration Options, 295

BENCHMARKS_<JobName>_SLOTS
HOOKS Configuration Options, 295

BENCHMARKS_CONFIG_VAL
HOOKS Configuration Options, 291

BENCHMARKS_JOBLIST
HOOKS Configuration Options, 292

BENCHMARKS_MAX_JOB_LOAD
HOOKS Configuration Options, 292

BIN
Global Configuration Options, 164

BIND_ALL_INTERFACES
Network Configuration Options, 185

BLAHPD_LOCATION
GRIDMANAGER Configuration Options, 259

Blocking (htcondor.BlockingMode attribute), 630
BlockReadKbytes

Job ClassAd Attribute, 1027
BlockReads

Job ClassAd Attribute, 1027
BlockWriteKbytes

Job ClassAd Attribute, 1027
BlockWrites

Job ClassAd Attribute, 1028
BOINC Configuration in HTCondor

Backfill, 329
BOINC Installation

Backfill, 328
BOINC Overview

Backfill, 328
BOINC_GAHP

GRIDMANAGER Configuration Options, 260
bool()

ClassAd functions, 472, 786
BOOTSTRAP_SSL_SERVER_TRUST

SECURITY Configuration Options, 278
BOOTSTRAP_SSL_SERVER_TRUST_PROMPT_USER

SECURITY Configuration Options, 279
Busy

machine activity, 317
by group

accounting, 379
negotiation, 380
priority, 379

C
C_GAHP_CONTACT_SCHEDD_DELAY

GRIDMANAGER Configuration Options, 259
C_GAHP_LOG

GRIDMANAGER Configuration Options, 259
C_GAHP_MAX_FILE_REQUESTS

1122 Index

HTCondor Manual, Release 23.6.2

GRIDMANAGER Configuration Options, 259
C_GAHP_WORKER_THREAD_LOG

GRIDMANAGER Configuration Options, 259
cache flush on access point

NFS, 108
CanHibernate

Machine ClassAd Attribute, 1056
CATEGORY

DAG Commands, 551
CCB (HTCondor Connection Brokering), 445
CCB_ADDRESS

Network Configuration Options, 185
CCB_HEARTBEAT_INTERVAL

Network Configuration Options, 185
CCB_POLLING_INTERVAL

Network Configuration Options, 186
CCB_POLLING_MAX_INTERVAL

Network Configuration Options, 186
CCB_POLLING_TIMESLICE

Network Configuration Options, 186
CCB_READ_BUFFER

Network Configuration Options, 186
CCB_RECONNECT_FILE

Network Configuration Options, 186
CCB_REQUIRED_TO_START

Network Configuration Options, 186
CCB_SWEEP_INTERVAL

Network Configuration Options, 186
CCB_TIMEOUT

Network Configuration Options, 186
CCB_WRITE_BUFFER

Network Configuration Options, 186
ceiling()

ClassAd functions, 472, 786
central manager, 131

machine, 131
CentralManager

ROLE Configuration Templates, 156
CERTIFICATE_MAPFILE

SECURITY Configuration Options, 279
CERTIFICATE_MAPFILE_ASSUME_HASH_KEYS

SECURITY Configuration Options, 279
cgroup based process tracking, 309
CGROUP_MEMORY_LIMIT_POLICY

STARTER Configuration Options, 236
CgroupEnforced

Machine ClassAd Attribute, 1056
changing the configuration

security, 433
checkpoint file(s) specified by URL

file transfer mechanism, 936
CHECKPOINT_CLEANUP_TIMEOUT

PREEN Configuration Options, 243
checkpoint_destination

Submit commands, 936
CHECKPOINT_DESTINATION_MAPFILE

SCHEDD Configuration Options, 232
checkpoint_exit_code

definition, 122
delayed, 125
Submit commands, 938

CheckpointDestination
Job ClassAd Attribute, 1028

CHECKPOINTED (htcondor.JobEventType attribute), 646
checkpoints

vm universe, 94
ChildAccountingGroup

Machine ClassAd Attribute, 1074
ChildActivity

Machine ClassAd Attribute, 1074
ChildCpus

Machine ClassAd Attribute, 1074
ChildCurrentRank

Machine ClassAd Attribute, 1074
ChildEnteredCurrentState

Machine ClassAd Attribute, 1074
ChildMemory

Machine ClassAd Attribute, 1075
ChildName

Machine ClassAd Attribute, 1075
ChildRemoteOwner

Machine ClassAd Attribute, 1075
ChildRemoteUser

Machine ClassAd Attribute, 1075
ChildRetirementTimeRemaining

Machine ClassAd Attribute, 1075
ChildState

Machine ClassAd Attribute, 1075
Chirp, 106

API, 128
SDK, 106
Software Developers Kit, 106

Chirp API, 128
Chirp.jar

Chirp, 107
CHIRP_DELAYED_UPDATE_MAX_ATTRS

STARTER Configuration Options, 238
CHIRP_DELAYED_UPDATE_PREFIX

STARTER Configuration Options, 238
ChirpClient

Chirp, 107
ChirpInputStream

Chirp, 106
ChirpOutputStream

Chirp, 106
CHOWN_JOB_SPOOL_FILES

SCHEDD Configuration Options, 231
claim lease, 316

Index 1123

HTCondor Manual, Release 23.6.2

CLAIM_PARTITIONABLE_LEFTOVERS
STARTD Configuration Options, 208

CLAIM_WORKLIFE
STARTD Configuration Options, 200

Claimed
machine state, 314, 321

claimed state, 314, 321
claimed, the claim lease

machine state, 316
ClaimEndTime

Machine ClassAd Attribute, 1056
ClassAd, 32, 33, 116, 465, 488, 779, 802
Classad, 1109
classad

module, 610
ClassAd Attribute

AuthenticatedIdentity, 1098
AuthenticationMethod, 1098
DCUdpQueueDepth, 1098
DebugOuts, 1098
LastHeardFrom, 1098
PipeMessages, 1098
PipeRuntime, 1099
SelectWaittime, 1099
SignalRuntime, 1099
Signals, 1099
SocketRuntime, 1099
SockMessages, 1099
TimerRuntime, 1099
TimersFired, 1099
UpdatesHistory, 1098
UpdatesLost, 1098
UpdatesSequenced, 1098
UpdatesTotal, 1098

ClassAd functions, 468, 782
absTime(), 472, 786
allCompare(), 471, 785
anyCompare(), 471, 785
avg(), 474, 788
bool(), 472, 786
ceiling(), 472, 786
countMatches(), 478, 792
debug(), 478, 792
envV1ToV2(), 478, 792
eval(), 468, 783
evalInEachContext(), 478, 792
floor(), 472, 786
formatTime(), 476, 790
identicalMember(), 471, 785
IfThenElse(), 469, 783
int(), 471, 785
interval(), 477, 792
isAbstime(), 470, 785
isBoolean(), 470, 784

isClassAd(), 470, 784
isError(), 470, 784
isInteger(), 470, 784
isList(), 470, 784
isReal(), 470, 784
isReltime(), 471, 785
isString(), 470, 784
isUndefined(), 470, 784
join(), 474, 788
max(), 474, 788
member(), 471, 785
mergeEnvironment(), 478, 793
min(), 474, 788
pow(), 472, 787
quantize(), 473, 787
random(), 473, 787
real(), 471, 785
regexp(), 480, 794
regexpMember(), 480, 794
regexps(), 480, 795
relTime(), 472, 786
replace(), 481, 795
replaceall(), 481, 795
round(), 473, 787
size(), 476, 790
split(), 476, 790
splitSlotName(), 476, 790
splitUserName(), 476, 790
strcat(), 474, 788
strcmp(), 475, 789
stricmp(), 475, 789
string(), 471, 786
stringList_regexpMember(), 481, 795
stringListAvg(), 479, 793
stringListIMember(), 479, 793
stringListIntersect(), 479, 794
stringListISubsetMatch(), 480, 794
stringListMax(), 479, 793
stringListMember(), 479, 793
stringListMin(), 479, 793
stringListSize(), 479, 793
stringListSubsetMatch(), 480, 794
stringListSum(), 479, 793
substr(), 474, 788
sum(), 473, 788
time(), 476, 790
toLower(), 476, 790
toUpper(), 475, 790
unparse(), 469, 783
unresolved(), 469, 783
userHome(), 481, 795
userMap(), 481, 795
version_in_range(), 475, 789
versioncmp(), 475, 789

1124 Index

HTCondor Manual, Release 23.6.2

versionEQ(), 475, 789
versionGE(), 475, 789
versionGT(), 475, 789
versionLE(), 475, 789
versionLT(), 475, 789

classad2
module, 606

classad_eval
HTCondor commands, 802

classad_eval command, 802
CLASSAD_LIFETIME

COLLECTOR Configuration Options, 243
CLASSAD_LOG_STRICT_PARSING

Global Configuration Options, 169
CLASSAD_USER_LIBS

Global Configuration Options, 171
CLASSAD_USER_MAPDATA_<name>

Global Configuration Options, 173
CLASSAD_USER_MAPFILE_<name>

Global Configuration Options, 173
CLASSAD_USER_PYTHON_LIB

Global Configuration Options, 171
CLASSAD_USER_PYTHON_MODULES

Global Configuration Options, 171
CLIENT_TIMEOUT

COLLECTOR Configuration Options, 244
ClientMachine

Machine ClassAd Attribute, 1072
ClockDay

Machine ClassAd Attribute, 1056
ClockMin

Machine ClassAd Attribute, 1056
cloud_label_<name>

Submit commands, 942
cloud_label_names

and attribute CloudLabelNames, 1028
Submit commands, 942

CloudImage
Machine ClassAd Attribute, 1075

CloudInstanceID
Machine ClassAd Attribute, 1075

CloudInterruptible
Machine ClassAd Attribute, 1075

CloudLabelNames
Job ClassAd Attribute, 1028

CloudPlatform
Machine ClassAd Attribute, 1075

CloudProvider
Machine ClassAd Attribute, 1075

CloudRegion
Machine ClassAd Attribute, 1075

CloudVMType
Machine ClassAd Attribute, 1075

CloudZone

Machine ClassAd Attribute, 1075
cluster identifier

job ID, 954
CLUSTER_REMOVE (htcondor.JobEventType attribute),

647
CLUSTER_SUBMIT (htcondor.JobEventType attribute),

647
ClusterId

ClassAd job attribute, 954
Job ClassAd Attribute, 1028

CM (Central Manager), 1109
CM_IP_ADDR

Global Configuration Options, 169
Cmd

Job ClassAd Attribute, 1028
required attributes, 357

Collector (ClassAd Types), 1023
Collector (htcondor.AdTypes attribute), 622
Collector (htcondor.DaemonTypes attribute), 621
Collector (htcondor.SubsystemType attribute), 651
Collector ClassAd Attribute

ActiveQueryWorkers, 1094
ActiveQueryWorkersPeak, 1094
CollectorIpAddr, 1094
CondorVersion, 1094
CurrentForkWorkers, 1094
CurrentJobsRunning, 1094
CurrentJobsRunningAll, 1094
DaemonLastReconfigTime, 1095
DaemonStartTime, 1095
DroppedQueries, 1094
HandleLocate, 1095
HandleLocateForked, 1095
HandleLocateForkedRuntimeAvg, 1095
HandleLocateMissedFork, 1095
HandleLocateMissedForkRuntimeAvg, 1095
HandleLocateRuntimeAvg, 1095
HandleQuery, 1095
HandleQueryForked, 1095
HandleQueryForkedRuntimeAvg, 1095
HandleQueryMissedFork, 1095
HandleQueryMissedForkRuntimeAvg, 1096
HandleQueryRuntimeAvg, 1095
HostsClaimed, 1096
HostsOwner, 1096
HostsTotal, 1096
HostsUnclaimed, 1096
IdleJobs, 1096
Machine, 1096
MaxJobsRunning, 1096
MaxJobsRunningAll, 1096
MyAddress, 1096
MyCurrentTime, 1096
Name, 1096

Index 1125

HTCondor Manual, Release 23.6.2

PeakForkWorkers, 1096
PendingQueries, 1096
PendingQueriesPeak, 1096
RunningJobs, 1097
StartdAds, 1097
StartdAdsPeak, 1097
SubmitterAds, 1097
SubmitterAdsPeak, 1097
UpdateInterval, 1097
UpdateSequenceNumber, 1097
UpdatesInitial, 1097
UpdatesLost, 1097
UpdatesLostMax, 1097
UpdatesLostRatio, 1097
UpdatesTotal, 1097

COLLECTOR Configuration Options
ABSENT_EXPIRE_ADS_AFTER, 248
ABSENT_REQUIREMENTS, 247
CLASSAD_LIFETIME, 243
CLIENT_TIMEOUT, 244
COLLECTOR_CLASS_HISTORY_SIZE, 246
COLLECTOR_DAEMON_HISTORY_SIZE, 245
COLLECTOR_DAEMON_STATS, 245
COLLECTOR_DEBUG, 247
COLLECTOR_FORWARD_CLAIMED_PRIVATE_ADS,

247
COLLECTOR_FORWARD_FILTERING, 247
COLLECTOR_FORWARD_INTERVAL, 247
COLLECTOR_FORWARD_PROJECTION, 247
COLLECTOR_FORWARD_WATCH_LIST, 247
COLLECTOR_NAME, 244
COLLECTOR_PERSISTENT_AD_LOG, 248
COLLECTOR_QUERY_MAX_WORKTIME, 246
COLLECTOR_QUERY_WORKERS, 246
COLLECTOR_QUERY_WORKERS_PENDING, 246
COLLECTOR_QUERY_WORKERS_RESERVE_FOR_HIGH_PRIO,

246
COLLECTOR_REQUIREMENTS, 243
COLLECTOR_SOCKET_BUFSIZE, 244
COLLECTOR_STATS_SWEEP, 245
COLLECTOR_TCP_SOCKET_BUFSIZE, 244
COLLECTOR_UPDATE_INTERVAL, 244
CONDOR_VIEW_CLASSAD_TYPES, 247
EXPIRE_INVALIDATED_ADS, 248
HANDLE_QUERY_IN_PROC_POLICY, 246
KEEP_POOL_HISTORY, 245
POOL_HISTORY_DIR, 245
POOL_HISTORY_MAX_STORAGE, 245
POOL_HISTORY_SAMPLING_INTERVAL, 245
QUERY_TIMEOUT, 244

COLLECTOR_ADDRESS_FILE, 182
COLLECTOR_BOOTSTRAP_SSL_CERTIFICATE

SECURITY Configuration Options, 278
COLLECTOR_CLASS_HISTORY_SIZE

COLLECTOR Configuration Options, 246
COLLECTOR_DAEMON_HISTORY_SIZE

COLLECTOR Configuration Options, 245
COLLECTOR_DAEMON_STATS

COLLECTOR Configuration Options, 245
COLLECTOR_DEBUG

COLLECTOR Configuration Options, 247
COLLECTOR_FORWARD_CLAIMED_PRIVATE_ADS

COLLECTOR Configuration Options, 247
COLLECTOR_FORWARD_FILTERING

COLLECTOR Configuration Options, 247
COLLECTOR_FORWARD_INTERVAL

COLLECTOR Configuration Options, 247
COLLECTOR_FORWARD_PROJECTION

COLLECTOR Configuration Options, 247
COLLECTOR_FORWARD_WATCH_LIST

COLLECTOR Configuration Options, 247
COLLECTOR_HOST

Global Configuration Options, 163
COLLECTOR_NAME

COLLECTOR Configuration Options, 244
COLLECTOR_PERSISTENT_AD_LOG

COLLECTOR Configuration Options, 248
COLLECTOR_PORT

Global Configuration Options, 163
COLLECTOR_QUERY_MAX_WORKTIME

COLLECTOR Configuration Options, 246
COLLECTOR_QUERY_WORKERS

COLLECTOR Configuration Options, 246
COLLECTOR_QUERY_WORKERS_PENDING

COLLECTOR Configuration Options, 246
COLLECTOR_QUERY_WORKERS_RESERVE_FOR_HIGH_PRIO

COLLECTOR Configuration Options, 246
COLLECTOR_REQUIREMENTS

COLLECTOR Configuration Options, 243
COLLECTOR_SOCKET_BUFSIZE

COLLECTOR Configuration Options, 244
COLLECTOR_STATS_SWEEP

COLLECTOR Configuration Options, 245
COLLECTOR_SUPER_ADDRESS_FILE, 183
COLLECTOR_TCP_SOCKET_BUFSIZE

COLLECTOR Configuration Options, 244
COLLECTOR_UPDATE_INTERVAL

COLLECTOR Configuration Options, 244
COLLECTOR_USES_SHARED_PORT

Network Configuration Options, 186
CollectorHost

Scheduler ClassAd Attribute, 1077
CollectorIpAddr

Collector ClassAd Attribute, 1094
command line arguments

daemoncore, 139
HTCondor daemon, 139

CommittedSlotTime

1126 Index

HTCondor Manual, Release 23.6.2

Job ClassAd Attribute, 1028
CommittedSuspensionTime

Job ClassAd Attribute, 1028
CommittedTime

Job ClassAd Attribute, 1028
CommonCloudAttributesAWS

FEATURE Configuration Templates, 158
CommonCloudAttributesGoogle

FEATURE Configuration Templates, 158
COMPLETED (htcondor.JobStatus attribute), 631
completion

job, 78
CompletionDate

Job ClassAd Attribute, 1028
concurrency limits, 383
CONCURRENCY_LIMIT_DEFAULT

NEGOTIATOR Configuration Options, 253
CONCURRENCY_LIMIT_DEFAULT_<NAME>

NEGOTIATOR Configuration Options, 253
concurrency_limits

definition, 384
Submit commands, 948

concurrency_limits_expr
definition, 384
Submit commands, 948

ConcurrencyLimits
Job ClassAd Attribute, 1028

CONDOR_ADMIN
Global Configuration Options, 167

condor_adstash, 398
HTCondor commands, 804

condor_advertise
HTCondor commands, 807

condor_advertise command, 807
condor_annex

HTCondor commands, 809
condor_annex command, 809
condor_annex configuration variables

configuration, 299
condor_check_password

HTCondor commands, 812
condor_check_password command, 812
condor_check_userlogs

HTCondor commands, 813
condor_check_userlogs command, 813
condor_chirp, 814

HTCondor commands, 814
condor_collector, 447
condor_collector configuration variables

configuration, 243
condor_collector daemon, 133
condor_config_val

HTCondor commands, 820
condor_config_val command, 820

condor_configure
HTCondor commands, 817, 846

condor_configure command, 817, 846
condor_continue

HTCondor commands, 824
condor_continue command, 824
condor_credd configuration variables

configuration, 256
condor_credd daemon, 134, 256, 723, 724
condor_dagman

HTCondor commands, 826
condor_dagman command, 826
condor_defrag configuration variables

configuration, 296
condor_defrag daemon, 134, 385
condor_drain

HTCondor commands, 830
condor_drain command, 830
condor_evicted_files

HTCondor commands, 832
condor_evicted_files command, 832
condor_fetchlog

HTCondor commands, 833
condor_fetchlog command, 833
condor_findhost

HTCondor commands, 835
condor_findhost command, 835
CONDOR_FSYNC

Global Configuration Options, 171
CONDOR_GAHP

GRIDMANAGER Configuration Options, 259
condor_gangliad configuration variables

configuration, 297
condor_gangliad daemon, 297, 394
condor_gather_info

HTCondor commands, 836
condor_gather_info command, 836
condor_gpu_discovery

HTCondor commands, 838
condor_gpu_discovery command, 838
condor_gridmanager configuration variables

configuration, 257
condor_had daemon, 134, 388
condor_history

HTCondor commands, 841
condor_history command, 841
condor_hold

HTCondor commands, 75, 845
with DAGMan, 509

condor_hold command, 845
CONDOR_HOST

Global Configuration Options, 163
CONDOR_IDS

environment variables, 167, 168

Index 1127

HTCondor Manual, Release 23.6.2

Global Configuration Options, 167
CONDOR_IDS environment variable, 167, 168
condor_install

HTCondor commands, 817, 846
condor_install command, 817, 846
condor_job_router configuration variables

configuration, 260
condor_job_router daemon, 134, 709
condor_job_router_info

HTCondor commands, 850
condor_job_router_info command, 850
condor_kbdd daemon, 134
condor_lease_manager configuration

variables
configuration, 264

condor_lease_manager daemon, 134
condor_master

HTCondor commands, 851
condor_master configuration variables

configuration, 192
condor_master daemon, 133, 851
condor_negotiator configuration variables

configuration, 248
condor_negotiator daemon, 133
condor_now

HTCondor commands, 852
condor_now command, 852
condor_off

HTCondor commands, 853
condor_off command, 853
condor_on

HTCondor commands, 856
condor_on command, 856
condor_ping

HTCondor commands, 857
condor_ping command, 857
condor_pool_job_report

HTCondor commands, 859
condor_pool_job_report command, 859
condor_power

HTCondor commands, 859
condor_power command, 859
condor_preen

HTCondor commands, 860
condor_preen command, 860
condor_preen configuration variables

configuration, 242
condor_prio

HTCondor commands, 76, 109, 861
condor_prio command, 861
condor_procd

HTCondor commands, 862
condor_procd command, 862
condor_procd daemon, 134

condor_q
example, 72
HTCondor commands, 864

condor_q command, 864
CONDOR_Q_DASH_BATCH_IS_DEFAULT

SCHEDD Configuration Options, 219
CONDOR_Q_ONLY_MY_JOBS

SCHEDD Configuration Options, 219
CONDOR_Q_SHOW_OLD_SUMMARY

SCHEDD Configuration Options, 219
CONDOR_Q_USE_V3_PROTOCOL

SCHEDD Configuration Options, 219
condor_qedit

HTCondor commands, 878
condor_qedit command, 878
condor_qsub

HTCondor commands, 882
condor_qsub command, 882
condor_qusers

HTCondor commands, 879
condor_qusers command, 879
condor_reconfig

HTCondor commands, 885
condor_reconfig command, 885
condor_release

HTCondor commands, 75, 887
condor_release command, 887
condor_remote_cluster

HTCondor commands, 888
condor_remote_cluster command, 888
condor_replication daemon, 134, 389
condor_reschedule

HTCondor commands, 889
condor_reschedule command, 889
condor_restart

HTCondor commands, 891
condor_restart command, 891
condor_rm

and DAG Final Node, 536
HTCondor commands, 38, 75, 893
Removing a DAG, 509

condor_rm command, 893
condor_rmdir

HTCondor commands, 895
condor_rmdir command, 895
condor_rooster configuration variables

configuration, 287
condor_rooster daemon, 134, 354
condor_router_history, 896

Job Router commands, 896
condor_router_q, 897

Job Router commands, 897
condor_router_rm

HTCondor commands, 898

1128 Index

HTCondor Manual, Release 23.6.2

condor_router_rm command, 898
condor_run

HTCondor commands, 898
condor_run command, 898
condor_schedd configuration variables

configuration, 215
condor_schedd daemon, 133
condor_schedd policy

configuration, 365, 373
condor_set_shutdown

HTCondor commands, 901
condor_set_shutdown command, 901
condor_shadow configuration variables

configuration, 232
condor_shadow daemon, 133
condor_shared_port configuration variables

configuration, 288
condor_shared_port daemon, 134, 441
condor_sos

HTCondor commands, 902
condor_sos command, 902
condor_ssh_start

HTCondor commands, 903
condor_ssh_start command, 903
condor_ssh_to_job

HTCondor commands, 904
condor_ssh_to_job command, 904
condor_ssh_to_job configuration variables

configuration, 286
CONDOR_SSH_TO_JOB_FAKE_PASSWD_ENTRY

STARTER Configuration Options, 238
condor_ssl_fingerprint

HTCondor commands, 907
condor_ssl_fingerprint command, 907
condor_startd, 300
condor_startd configuration variables

configuration, 197
condor_startd daemon, 133
condor_startd policy

configuration, 312
condor_starter configuration variables

configuration, 234
condor_starter daemon, 133
condor_stats

HTCondor commands, 908
condor_stats command, 908
condor_status

example, 73
HTCondor commands, 49, 79, 117, 910

condor_status command, 910
condor_store_cred

HTCondor commands, 917
condor_store_cred command, 917
condor_submit

HTCondor commands, 38, 919
condor_submit command, 919
condor_submit configuration variables

configuration, 240
condor_submit variables, 957
condor_submit_dag

custom DAG Configuration, 543
deep DAG options, 525
HTCondor commands, 960

condor_submit_dag command, 960
CONDOR_SUPPORT_EMAIL

Global Configuration Options, 167
condor_suspend

HTCondor commands, 965
condor_suspend command, 965
condor_tail

HTCondor commands, 967
condor_tail command, 967
condor_test_token

HTCondor commands, 968
condor_test_token command, 968
condor_token_create

HTCondor commands, 969
condor_token_create command, 969
condor_token_fetch

HTCondor commands, 971
condor_token_fetch command, 971
condor_token_list

HTCondor commands, 973
condor_token_list command, 973
condor_token_request

HTCondor commands, 975
condor_token_request command, 975
condor_token_request_approve

HTCondor commands, 977
condor_token_request_approve command, 977
condor_token_request_auto_approve

HTCondor commands, 979
condor_token_request_auto_approve command,

979
condor_token_request_list

HTCondor commands, 980
condor_token_request_list command, 980
condor_top

HTCondor commands, 982
condor_top command, 982
condor_transfer_data

HTCondor commands, 984
condor_transfer_data command, 984
condor_transferer daemon, 134, 389
condor_transform_ads

HTCondor commands, 986
condor_transform_ads command, 986
condor_update_machine_ad

Index 1129

HTCondor Manual, Release 23.6.2

HTCondor commands, 988
condor_update_machine_ad command, 988
condor_updates_stats

HTCondor commands, 990
condor_updates_stats command, 990
condor_upgrade_check

HTCondor commands, 991
condor_urlfetch

HTCondor commands, 993
condor_urlfetch command, 993
condor_userlog

HTCondor commands, 994
condor_userlog command, 994
condor_userprio

HTCondor commands, 996
condor_userprio command, 996
condor_vacate

HTCondor commands, 1002
condor_vacate command, 1002
condor_vacate_job

HTCondor commands, 1003
condor_vacate_job command, 1003
condor_version

HTCondor commands, 1005
condor_version command, 1005
CONDOR_VIEW_CLASSAD_TYPES

COLLECTOR Configuration Options, 247
CONDOR_VIEW_HOST

Global Configuration Options, 164
condor_wait

HTCondor commands, 1006
condor_wait command, 1006
condor_watch_q

HTCondor commands, 1008
condor_watch_q command, 1008
condor_who

HTCondor commands, 1011
condor_who command, 1011
CondorLoadAvg

Machine ClassAd Attribute, 1057
CondorPlatform

Job ClassAd Attribute, 1028
CondorVersion

Collector ClassAd Attribute, 1094
Daemon-master ClassAd Attribute, 1076
Job ClassAd Attribute, 1028
Machine ClassAd Attribute, 1057
Negotiator ClassAd Attribute, 1088
Scheduler ClassAd Attribute, 1077
Submitter ClassAd Attribute, 1090

CONFIG
DAG Commands, 551

Config (htcondor.LogLevel attribute), 649
CONFIG_ROOT, 155

ConfigQuota
Accounting ClassAd Attribute, 1025

configuration
GPUs, 350
HTCondor-C, 698
HTCondorView, 387
multi-core machines, 386
SMP machines, 386
startd, 312

configuration change requiring a restart of
HTCondor, 153

configuration examples
security, 431

Configuration Options
ETC, 165
SUBMIT_REQUEST_MISSING_UNITS, 241

Configuration Templates
FEATURE, 156
POLICY, 158
ROLE, 156
SECURITY, 160

configuration templates
HTCondor, 155

configuration: introduction, 140
configuration: macros, 162
configuration: templates, 155
configuration-intro

HTCondor, 140
configuration-macros

HTCondor, 162
conflicts

port usage, 441
CONSOLE_DEVICES

STARTD Configuration Options, 201
ConsoleIdle

Machine ClassAd Attribute, 1057
consumption policy, 352
CONSUMPTION_<Resource>

STARTD Configuration Options, 211
CONSUMPTION_POLICY

STARTD Configuration Options, 211
contact information

HTCondor, 34
container

universe, 86, 89
container universe, 86, 89
container_image

Submit commands, 948
container_service_names

Submit commands, 947
CONTAINER_SHARED_FS

SUBMIT Configuration Options, 242
container_target_dir

Submit commands, 948

1130 Index

HTCondor Manual, Release 23.6.2

ContainerImageSource
Job ClassAd Attribute, 1028

ContainerTargetDir
Job ClassAd Attribute, 1028

contents of
submit description file, 38

CONTINUE
STARTD Configuration Options, 198

Continue (htcondor.JobAction attribute), 628
ContinuousCronHook

FEATURE Configuration Templates, 158
contributions

HTCondor, 33
Copy_ATTR>

Job Router Routing Table ClassAd
attribute, 718

copy_to_spool
Submit commands, 948

copying current environment
environment variables, 925

CORE_FILE_NAME
Global Configuration Options, 185

coresize
Submit commands, 948

COUNT_HYPERTHREAD_CPUS, 154
STARTD Configuration Options, 203

countMatches()
ClassAd functions, 478, 792

CpuCacheSize
Machine ClassAd Attribute, 1057

CpuFamily
Machine ClassAd Attribute, 1057

CpuModel
Machine ClassAd Attribute, 1057

Cpus
Machine ClassAd Attribute, 1057

CpusProvisioned
Job ClassAd Attribute, 1055

CpusUsage
Job ClassAd Attribute, 1055

CREATE_CORE_FILES
Global Configuration Options, 169

CREATE_LOCKS_ON_LOCAL_DISK
Global Configuration Options, 177

CRED_MIN_TIME_LEFT
SUBMIT Configuration Options, 242

CRED_SUPER_USERS
PROCD Configuration Options, 256

Credd (htcondor.AdTypes attribute), 622
Credd (htcondor.DaemonTypes attribute), 621
CREDD_CACHE_LOCALLY

PROCD Configuration Options, 256
CREDD_HOST

PROCD Configuration Options, 256

CREDD_POLLING_TIMEOUT
PROCD Configuration Options, 256

CREDMON_KRB
PROCD Configuration Options, 256

CREDMON_OAUTH
PROCD Configuration Options, 256

CREDMON_OAUTH_TOKEN_MINIMUM
PROCD Configuration Options, 257

CREDMON_OAUTH_TOKEN_REFRESH
PROCD Configuration Options, 257

cron_day_of_month
definition, 111
Submit commands, 949

cron_day_of_week
definition, 111
Submit commands, 949

cron_hour
definition, 111
Submit commands, 949

cron_minute
definition, 111
Submit commands, 949

cron_month
definition, 111
Submit commands, 949

cron_prep_time
definition, 112
Submit commands, 949

cron_window
definition, 112
Submit commands, 949

CronDayOfMonth
Job ClassAd Attribute, 1053

CronDayOfWeek
Job ClassAd Attribute, 1053

Crondor, 110
CronHour

Job ClassAd Attribute, 1053
CronMinute

Job ClassAd Attribute, 1053
CronMonth

Job ClassAd Attribute, 1053
CronTab job scheduling, 110
CUBACORES

environment variables for jobs, 87
cuda_version

Submit commands, 931
CUDA_VISIBLE_DEVICES

environment variables for jobs, 88
CumulativeRemoteSysCpu

Job ClassAd Attribute, 1047
CumulativeRemoteUserCpu

Job ClassAd Attribute, 1047
CumulativeSlotTime

Index 1131

HTCondor Manual, Release 23.6.2

Job ClassAd Attribute, 1029
CumulativeSuspensionTime

Job ClassAd Attribute, 1029
CumulativeTransferTime

Job ClassAd Attribute, 1029
CURB_MATCHMAKING

SCHEDD Configuration Options, 217
current working directory, 438
CurrentForkWorkers

Collector ClassAd Attribute, 1094
CurrentHosts

Job ClassAd Attribute, 1029
CurrentJobsRunning

Collector ClassAd Attribute, 1094
CurrentJobsRunningAll

Collector ClassAd Attribute, 1094
CurrentRank

Machine ClassAd Attribute, 1057
CurrentTime

Machine ClassAd Attribute, 1075
Custom Print Formats (see Print Format), 490

D
D_COMMAND, 428
D_SECURITY, 428
Daemon, 1109
Daemon (htcondor.SubsystemType attribute), 651
daemon ClassAd hook configuration variables

configuration, 291
Daemon ClassAd Hooks, 340

Hooks, 340
daemon logging configuration variables

configuration, 175
DAEMON_LIST

MASTER Configuration Options, 192
DAEMON_SHUTDOWN

Global Configuration Options, 183
DAEMON_SHUTDOWN_FAST

Global Configuration Options, 184
DAEMON_SOCKET_DIR

SHARED PORT Configuration Options, 288
Daemon-master ClassAd Attribute

CondorVersion, 1076
DaemonLastReconfigTime, 1076
DaemonStartTime, 1076
LinuxCapabilities, 1076
Machine, 1076
MasterIpAddr, 1076
MonitorSelfAge, 1076
MonitorSelfCPUUsage, 1076
MonitorSelfImageSize, 1076
MonitorSelfRegisteredSocketCount, 1076
MonitorSelfResidentSetSize, 1076
MonitorSelfSecuritySessions, 1076

MonitorSelfTime, 1076
MyAddress, 1076
MyCurrentTime, 1076
Name, 1076
PublicNetworkIpAddr, 1076
RealUid, 1077
UpdateSequenceNumber, 1077

daemoncore, 137
DaemonCore (htcondor.LogLevel attribute), 649
DaemonCore configuration variables

configuration, 182
DaemonCoreDutyCycle

Scheduler ClassAd Attribute, 1077
DaemonLastReconfigTime

Collector ClassAd Attribute, 1095
Daemon-master ClassAd Attribute, 1076
Defrag ClassAd Attribute, 1092
Negotiator ClassAd Attribute, 1088
Scheduler ClassAd Attribute, 1077

DaemonMaster (ClassAd Types), 1023
DaemonOff (htcondor.DaemonCommands attribute), 650
DaemonOffFast (htcondor.DaemonCommands at-

tribute), 650
DaemonOffPeaceful (htcondor.DaemonCommands at-

tribute), 650
DaemonOn (htcondor.DaemonCommands attribute), 650
DaemonsOff (htcondor.DaemonCommands attribute),

650
DaemonsOffFast (htcondor.DaemonCommands at-

tribute), 650
DaemonsOffPeaceful (htcondor.DaemonCommands at-

tribute), 650
DaemonsOn (htcondor.DaemonCommands attribute), 650
DaemonStartTime

Collector ClassAd Attribute, 1095
Daemon-master ClassAd Attribute, 1076
Defrag ClassAd Attribute, 1092
Negotiator ClassAd Attribute, 1088
Scheduler ClassAd Attribute, 1077

DAG Commands
ABORT-DAG-ON, 551
ALL_NODES Keyword, 539
CATEGORY, 551
CONFIG, 551
DONE, 549
DOT, 552
ENV, 551
FINAL, 550
INCLUDE, 549
JOB, 549
JOBSTATE_LOG, 552
MAXJOBS, 551
NODE_STATUS_FILE, 552
PARENT/CHILD, 549

1132 Index

HTCondor Manual, Release 23.6.2

PRE_SKIP, 549
PRIORITY, 549
PROVISIONER, 550
REJECT, 551
RETRY, 550
SAVE_POINT_FILE, 552
SCRIPT, 550
SERVICE, 550
SET_JOB_ATTR, 551
SPLICE, 549
SUBDAG, 549
SUBMIT-DESCRIPTION, 549
VARS, 550

DAG_AdUpdateTime
Job ClassAd Attribute, 1054

DAG_InRecovery
Job ClassAd Attribute, 1054

DAG_JobsCompleted
Job ClassAd Attribute, 1055

DAG_JobsHeld
Job ClassAd Attribute, 1055

DAG_JobsIdle
Job ClassAd Attribute, 1055

DAG_JobsRunning
Job ClassAd Attribute, 1055

DAG_JobsSubmitted
Job ClassAd Attribute, 1054

DAG_NodesDone
Job ClassAd Attribute, 1054

DAG_NodesFailed
Job ClassAd Attribute, 1054

DAG_NodesFutile
Job ClassAd Attribute, 1054

DAG_NodesPostrun
Job ClassAd Attribute, 1054

DAG_NodesPrerun
Job ClassAd Attribute, 1054

DAG_NodesQueued
Job ClassAd Attribute, 1054

DAG_NodesReady
Job ClassAd Attribute, 1054

DAG_NodesTotal
Job ClassAd Attribute, 1054

DAG_NodesUnready
Job ClassAd Attribute, 1054

DAG_Status
Job ClassAd Attribute, 1054

DAGMan, 497
Aborting a DAG, 516
Accounting groups, 539
Composing workflows, 522
Configuration specific to a DAG, 542
DAG input file, 497
DAG monitoring, 507

DAG recovery, 520
DAG removal, 509
DAG save point file, 521
DAG status in a job ClassAd, 508
DAG submission, 506
DAGMan Files, 552
DAGMan Quick Reference, 548
DAGs within DAGs, 523
Defined special node macros, 502
Describing dependencies, 499
Editing DAG throttles, 513
File paths in DAGs, 510
FINAL node, 536
HOLD script, 500
Large numbers of jobs, 511
Machine-readable event history, 547
Node job submit description file, 505
Node priorities, 537
Node scripts, 499
Node status file, 546
POST script, 500
PRE script, 500
PROVISIONER node, 536
Rescue DAG, 517
Retrying failed nodes, 515
SERVICE node, 537
Setting ClassAd Attributes in the

DAGMan Job, 541
Setting DAGMan job environment

variables, 542
Single submission of multiple,

independent DAGs, 507
Skipping node execution, 515
Splicing DAGs, 525
Suspending a running DAG, 509
Throttling, 513
Throttling nodes by category, 514
VARS (macro for submit description file), 531
VARS (use of special characters), 533
Visualizing DAGs, 543
Workflow metrics, 544

Dagman (htcondor.SubsystemType attribute), 651
DAGMan Configuration Options

DAGMAN_ABORT_DUPLICATES, 266
DAGMAN_ABORT_ON_SCARY_SUBMIT, 269
DAGMAN_ALLOW_ANY_NODE_NAME_CHARACTERS,

271
DAGMAN_ALLOW_EVENTS, 271
DAGMAN_ALWAYS_RUN_POST, 268
DAGMAN_AUTO_RESCUE, 270
DAGMAN_CONDOR_RM_EXE, 269
DAGMAN_CONDOR_SUBMIT_EXE, 269
DAGMAN_CONFIG_FILE, 266
DAGMAN_COPY_TO_SPOOL, 273

Index 1133

HTCondor Manual, Release 23.6.2

DAGMAN_DEBUG, 272
DAGMAN_DEBUG_CACHE_ENABLE, 272
DAGMAN_DEBUG_CACHE_SIZE, 272
DAGMAN_DEFAULT_APPEND_VARS, 266
DAGMAN_DEFAULT_NODE_LOG, 271
DAGMAN_DEFAULT_PRIORITY, 268
DAGMAN_GENERATE_SUBDAG_SUBMITS, 269
DAGMAN_HOLD_CLAIM_TIME, 269
DAGMAN_INSERT_SUB_FILE, 273
DAGMAN_LOG_ON_NFS_IS_ERROR, 271
DAGMAN_MANAGER_JOB_APPEND_GETENV, 267
DAGMAN_MAX_HOLD_SCRIPTS, 267
DAGMAN_MAX_JOB_HOLDS, 268
DAGMAN_MAX_JOBS_IDLE, 267
DAGMAN_MAX_JOBS_SUBMITTED, 267
DAGMAN_MAX_POST_SCRIPTS, 267
DAGMAN_MAX_PRE_SCRIPTS, 267
DAGMAN_MAX_RESCUE_NUM, 270
DAGMAN_MAX_SUBMIT_ATTEMPTS, 268
DAGMAN_MAX_SUBMITS_PER_INTERVAL, 268
DAGMAN_MUNGE_NODE_NAMES, 269
DAGMAN_NODE_RECORD_INFO, 267
DAGMAN_ON_EXIT_REMOVE, 273
DAGMAN_PENDING_REPORT_INTERVAL, 273
DAGMAN_PROHIBIT_MULTI_JOBS, 269
DAGMAN_PUT_FAILED_JOBS_ON_HOLD, 266
DAGMAN_RECORD_MACHINE_ATTRS, 267
DAGMAN_REMOVE_JOBS_AFTER_LIMIT_CHANGE,

268
DAGMAN_REMOVE_NODE_JOBS, 269
DAGMAN_RESET_RETRIES_UPON_RESCUE, 270
DAGMAN_RETRY_NODE_FIRST, 270
DAGMAN_RETRY_SUBMIT_FIRST, 270
DAGMAN_STARTUP_CYCLE_DETECT, 266
DAGMAN_SUBMIT_DELAY, 269
DAGMAN_SUBMIT_DEPTH_FIRST, 268
DAGMAN_SUPPRESS_JOB_LOGS, 269
DAGMAN_SUPPRESS_NOTIFICATION, 269
DAGMAN_USE_DIRECT_SUBMIT, 266
DAGMAN_USE_JOIN_NODES, 266
DAGMAN_USE_SHARED_PORT, 266
DAGMAN_USE_STRICT, 266
DAGMAN_VERBOSITY, 272
DAGMAN_WRITE_PARTIAL_RESCUE, 270
MAX_DAGMAN_LOG, 273

DAGMan Configuration Sections
Debugging Log, 272
General, 265
HTCondor Attributes, 273
Job Management, 268
Node Semantics, 268
Nodes Log File, 270
Rescue and Retry, 270
Throttling, 267

DAGMAN_ABORT_DUPLICATES
DAGMan Configuration Options, 266

DAGMAN_ABORT_ON_SCARY_SUBMIT
DAGMan Configuration Options, 269

DAGMAN_ALLOW_ANY_NODE_NAME_CHARACTERS
DAGMan Configuration Options, 271

DAGMAN_ALLOW_EVENTS
DAGMan Configuration Options, 271

DAGMAN_ALWAYS_RUN_POST
DAGMan Configuration Options, 268

DAGMAN_AUTO_RESCUE
DAGMan Configuration Options, 270

DAGMAN_CONDOR_RM_EXE
DAGMan Configuration Options, 269

DAGMAN_CONDOR_SUBMIT_EXE
DAGMan Configuration Options, 269

DAGMAN_CONFIG_FILE
DAGMan Configuration Options, 266

DAGMAN_COPY_TO_SPOOL
DAGMan Configuration Options, 273

DAGMAN_DEBUG
DAGMan Configuration Options, 272

DAGMAN_DEBUG_CACHE_ENABLE
DAGMan Configuration Options, 272

DAGMAN_DEBUG_CACHE_SIZE
DAGMan Configuration Options, 272

DAGMAN_DEFAULT_APPEND_VARS
DAGMan Configuration Options, 266

DAGMAN_DEFAULT_NODE_LOG
DAGMan Configuration Options, 271

DAGMAN_DEFAULT_PRIORITY
DAGMan Configuration Options, 268

DAGMAN_GENERATE_SUBDAG_SUBMITS
DAGMan Configuration Options, 269

DAGMAN_HOLD_CLAIM_TIME
DAGMan Configuration Options, 269

DAGMAN_INSERT_SUB_FILE
DAGMan Configuration Options, 273

dagman_log
Submit commands, 949

DAGMAN_LOG_ON_NFS_IS_ERROR
DAGMan Configuration Options, 271

DAGMAN_MANAGER_JOB_APPEND_GETENV
DAGMan Configuration Options, 267

DAGMAN_MAX_HOLD_SCRIPTS
DAGMan Configuration Options, 267

DAGMAN_MAX_JOB_HOLDS
DAGMan Configuration Options, 268

DAGMAN_MAX_JOBS_IDLE
DAGMan Configuration Options, 267

DAGMAN_MAX_JOBS_SUBMITTED
DAGMan Configuration Options, 267

DAGMAN_MAX_POST_SCRIPTS
DAGMan Configuration Options, 267

1134 Index

HTCondor Manual, Release 23.6.2

DAGMAN_MAX_PRE_SCRIPTS
DAGMan Configuration Options, 267

DAGMAN_MAX_RESCUE_NUM
DAGMan Configuration Options, 270

DAGMAN_MAX_SUBMIT_ATTEMPTS
DAGMan Configuration Options, 268

DAGMAN_MAX_SUBMITS_PER_INTERVAL
DAGMan Configuration Options, 268

DAGMan_MaxIdle
Job ClassAd Attribute, 1055

DAGMan_MaxJobs
Job ClassAd Attribute, 1055

DAGMan_MaxPostScripts
Job ClassAd Attribute, 1055

DAGMan_MaxPreScripts
Job ClassAd Attribute, 1055

DAGMAN_MUNGE_NODE_NAMES
DAGMan Configuration Options, 269

DAGMAN_NODE_RECORD_INFO
DAGMan Configuration Options, 267

DAGMAN_ON_EXIT_REMOVE
DAGMan Configuration Options, 273

DAGMAN_PENDING_REPORT_INTERVAL
DAGMan Configuration Options, 273

DAGMAN_PROHIBIT_MULTI_JOBS
DAGMan Configuration Options, 269

DAGMAN_PUT_FAILED_JOBS_ON_HOLD
DAGMan Configuration Options, 266

DAGMAN_RECORD_MACHINE_ATTRS
DAGMan Configuration Options, 267

DAGMAN_REMOVE_JOBS_AFTER_LIMIT_CHANGE
DAGMan Configuration Options, 268

DAGMAN_REMOVE_NODE_JOBS
DAGMan Configuration Options, 269

DAGMAN_REPORT_GRAPH_METRICS
and DAGMan metrics file, 545

DAGMAN_RESET_RETRIES_UPON_RESCUE
DAGMan Configuration Options, 270

DAGMAN_RETRY_NODE_FIRST
DAGMan Configuration Options, 270

DAGMAN_RETRY_SUBMIT_FIRST
DAGMan Configuration Options, 270

DAGMAN_STARTUP_CYCLE_DETECT
and the FINAL Node, 536
DAGMan Configuration Options, 266

DAGMAN_SUBMIT_DELAY
DAGMan Configuration Options, 269

DAGMAN_SUBMIT_DEPTH_FIRST
DAGMan Configuration Options, 268

DAGMAN_SUPPRESS_JOB_LOGS
DAGMan Configuration Options, 269

DAGMAN_SUPPRESS_NOTIFICATION
DAGMan Configuration Options, 269

DAGMAN_USE_DIRECT_SUBMIT

DAGMan Configuration Options, 266
DAGMAN_USE_JOIN_NODES

DAGMan Configuration Options, 266
DAGMAN_USE_SHARED_PORT

DAGMan Configuration Options, 266
DAGMAN_USE_STRICT

DAGMan Configuration Options, 266
DAGMAN_USER_LOG_SCAN_INTERVAL

and the Node Status File, 546
NEGOTIATOR Configuration Options, 268

DAGMAN_VERBOSITY
DAGMan Configuration Options, 272

DAGMAN_WRITE_PARTIAL_RESCUE
DAGMan Configuration Options, 270
Deprecation Warning, 270

DAGManJobId
Job ClassAd Attribute, 1029

DAGManNodeRetry
Job ClassAd Attribute, 1030

DAGManNodesLog
Job ClassAd Attribute, 1029

DAGManNodesMask
Job ClassAd Attribute, 1029

DAGNodeName
Job ClassAd Attribute, 1029

DAGParentNodeNames
Job ClassAd Attribute, 1029

DC_DAEMON_LIST
MASTER Configuration Options, 192

DCUdpQueueDepth
ClassAd Attribute, 1098

DEAD_COLLECTOR_MAX_AVOIDANCE_TIME
Global Configuration Options, 170

debug()
ClassAd functions, 478, 792

DEBUG_TIME_FORMAT
Global Configuration Options, 177

DebugOuts
ClassAd Attribute, 1098

dedicated
scheduling, 97

dedicated scheduling, 368
DEDICATED_EXECUTE_ACCOUNT_REGEXP

FileSystem Configuration Options, 191
DEDICATED_SCHEDULER_USE_FIFO

SCHEDD Configuration Options, 227
DEDICATED_SCHEDULER_WAIT_FOR_SPOOLER

SCHEDD Configuration Options, 227
DedicatedScheduler

STARTD Configuration Options, 204
Default (htcondor.QueryOpts attribute), 629
default policy

HTCondor, 332
default with HTCondor

Index 1135

HTCondor Manual, Release 23.6.2

policy, 332
DEFAULT_CONTAINER_IMAGE

STARTER Configuration Options, 240
DEFAULT_DOMAIN_NAME

Global Configuration Options, 169
DEFAULT_DRAINING_START_EXPR

STARTD Configuration Options, 198
DEFAULT_JOB_MAX_RETRIES

SUBMIT Configuration Options, 241
DEFAULT_MASTER_SHUTDOWN_SCRIPT

MASTER Configuration Options, 194
DEFAULT_PRIO_FACTOR

NEGOTIATOR Configuration Options, 249
DEFAULT_RANK

SUBMIT Configuration Options, 241
DEFAULT_RANK_VANILLA

SUBMIT Configuration Options, 241
DEFAULT_UNIVERSE

SUBMIT Configuration Options, 240
DEFAULT_USERLOG_FORMAT_OPTIONS

Global Configuration Options, 182
DefaultMyJobsOnly (htcondor.QueryOpts attribute),

629
deferral_prep_time

definition, 112, 115
Submit commands, 949

deferral_time
definition, 114
example, 115
Submit commands, 949

deferral_window
definition, 115
q.v. cron_window, 112
Submit commands, 949

DeferralPrepTime
definition, 115
Job ClassAd Attribute, 1030

DeferralTime
definition, 114
Job ClassAd Attribute, 1030

DeferralWindow
definition, 115
Job ClassAd Attribute, 1030

Defining HTCondor policy
Backfill, 327

Defrag (ClassAd Types), 1023
Defrag (htcondor.AdTypes attribute), 622
Defrag ClassAd Attribute

AvgDrainingBadput, 1091
AvgDrainingUnclaimedTime, 1091
DaemonLastReconfigTime, 1092
DaemonStartTime, 1092
DrainedMachines, 1092
DrainFailures, 1092

DrainSuccesses, 1092
Machine, 1092
MachinesDraining, 1092
MachinesDrainingPeak, 1092
MeanDrainedArrived, 1092
MonitorSelfAge, 1092
MonitorSelfCPUUsage, 1092
MonitorSelfImageSize, 1092
MonitorSelfRegisteredSocketCount, 1092
MonitorSelfResidentSetSize, 1092
MonitorSelfSecuritySessions, 1092
MonitorSelfTime, 1092
MyAddress, 1092
MyCurrentTime, 1092
Name, 1092
RecentCancelsList, 1093
RecentDrainFailures, 1093
RecentDrainsList, 1093
RecentDrainSuccesses, 1093
RecentStatsLifetime, 1093
UpdateSequenceNumber, 1093
WholeMachines, 1093
WholeMachinesPeak, 1093

DEFRAG Configuration Options
DEFRAG_CANCEL_REQUIREMENTS, 296
DEFRAG_DRAINING_MACHINES_PER_HOUR, 296
DEFRAG_DRAINING_START_EXPR, 296
DEFRAG_INTERVAL, 297
DEFRAG_LOG, 297
DEFRAG_MAX_CONCURRENT_DRAINING, 297
DEFRAG_MAX_WHOLE_MACHINES, 297
DEFRAG_NAME, 296
DEFRAG_RANK, 296
DEFRAG_REQUIREMENTS, 296
DEFRAG_SCHEDULE, 297
DEFRAG_UPDATE_INTERVAL, 297
DEFRAG_WHOLE_MACHINE_EXPR, 296

DEFRAG_CANCEL_REQUIREMENTS
DEFRAG Configuration Options, 296

DEFRAG_DRAINING_MACHINES_PER_HOUR
DEFRAG Configuration Options, 296

DEFRAG_DRAINING_START_EXPR
DEFRAG Configuration Options, 296

DEFRAG_INTERVAL
DEFRAG Configuration Options, 297

DEFRAG_LOG
DEFRAG Configuration Options, 297

DEFRAG_MAX_CONCURRENT_DRAINING
DEFRAG Configuration Options, 297

DEFRAG_MAX_WHOLE_MACHINES
DEFRAG Configuration Options, 297

DEFRAG_NAME
DEFRAG Configuration Options, 296

DEFRAG_RANK

1136 Index

HTCondor Manual, Release 23.6.2

DEFRAG Configuration Options, 296
DEFRAG_REQUIREMENTS

DEFRAG Configuration Options, 296
DEFRAG_SCHEDULE

DEFRAG Configuration Options, 297
DEFRAG_UPDATE_INTERVAL

DEFRAG Configuration Options, 297
DEFRAG_WHOLE_MACHINE_EXPR, 296

DEFRAG Configuration Options, 296
DELEGATE_FULL_JOB_GSI_CREDENTIALS

SECURITY Configuration Options, 274
DELEGATE_JOB_GSI_CREDENTIALS, 275

SECURITY Configuration Options, 274
DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME, 1030

SECURITY Configuration Options, 274
delegate_job_GSI_credentials_lifetime

and DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME,
275

Submit commands, 942
DELEGATE_JOB_GSI_CREDENTIALS_REFRESH

SECURITY Configuration Options, 275
DelegateJobGSICredentialsLifetime

Job ClassAd Attribute, 1030
Delete_ATTR>

Job Router Routing Table ClassAd
attribute, 718

dependencies within
job, 497

description
and attribute JobDescription, 1040
Submit commands, 950

descriptions
daemon, 133
HTCondor daemon, 133

Desktop
POLICY Configuration Templates, 158

desktop/non-desktop
policy, 334
preemption, 334

DETECTED_CORES, 155
DETECTED_CPUS, 154
DETECTED_CPUS_LIMIT, 154, 203
DETECTED_MEMORY, 155
DETECTED_PHYSICAL_CPUS, 154
DetectedCpus

Machine ClassAd Attribute, 1057
Scheduler ClassAd Attribute, 1077

DetectedMemory
Machine ClassAd Attribute, 1057
Scheduler ClassAd Attribute, 1077

DeviceGPUsAverageUsage
machine attribute, 397

DeviceGPUsMemoryPeakUsage
machine attribute, 398

dir
JOB ROUTER Configuration Options, 264

Directed Acyclic Graph (DAG), 497
Directed Acyclic Graph Manager (DAGMan), 497
DISABLE_SETUID

STARTER Configuration Options, 234
DISABLE_SWAP_FOR_JOB

STARTER Configuration Options, 236
disabling and enabling

preemption, 336
disabling preemption

policy, 336
DISCARD_SESSION_KEYRING_ON_STARTUP

MASTER Configuration Options, 197
DISCONNECTED_KEYBOARD_IDLE_BOOST

STARTD Configuration Options, 207
DISK

Global Configuration Options, 168
Disk

Machine ClassAd Attribute, 1057
DISK usage, 311
DiskProvisioned

Job ClassAd Attribute, 1055
DiskUsage

Job ClassAd Attribute, 1030
DOCKER

STARTD Configuration Options, 213
docker

networking, 91
universe, 86, 90, 343

Docker and Networking, 91
docker universe, 86, 90
DOCKER_CACHE_ADVERTISE_INTERVAL

STARTD Configuration Options, 214
DOCKER_DROP_ALL_CAPABILITIES

STARTD Configuration Options, 214
DOCKER_EXTRA_ARGUMENTS

STARTD Configuration Options, 214
docker_image

definition, 90, 343
Submit commands, 947

DOCKER_IMAGE_CACHE_SIZE
STARTD Configuration Options, 214

DOCKER_LOG_DRIVER_NONE
STARTD Configuration Options, 214

docker_network_type
Submit commands, 947

DOCKER_NETWORKS
STARTD Configuration Options, 214

docker_override_entrypoint
Submit commands, 948

DOCKER_PERFORM_TEST
STARTD Configuration Options, 214

docker_pull_policy

Index 1137

HTCondor Manual, Release 23.6.2

Submit commands, 947
DOCKER_RUN_UNDER_INIT

STARTD Configuration Options, 214
DOCKER_SHM_SIZE

STARTD Configuration Options, 214
DOCKER_VOLUMES

STARTD Configuration Options, 213
DockerCachedImageSizeMb

Machine ClassAd Attribute, 1058
DockerImage

Job ClassAd Attribute, 1030
DONE

DAG Commands, 549
dont_encrypt_input_files

Submit commands, 931
dont_encrypt_output_files

Submit commands, 932
DOT

DAG Commands, 552
DOT_NET_VERSIONS

STARTD Configuration Options, 212
DotNetVersions

Machine ClassAd Attribute, 1057
Drained

machine activity, 318
machine state, 314, 325

drained state, 314, 325
DrainedMachines

Defrag ClassAd Attribute, 1092
DrainFailures

Defrag ClassAd Attribute, 1092
Draining

Machine ClassAd Attribute, 1057
DrainingRequestId

Machine ClassAd Attribute, 1057
DrainSuccesses

Defrag ClassAd Attribute, 1092
DroppedQueries

Collector ClassAd Attribute, 1094
dynamic, 305

slots, 305
dynamic slots, 305
DYNAMIC_RUN_ACCOUNT_LOCAL_GROUP

STARTER Configuration Options, 239
DynamicSlot

Machine ClassAd Attribute, 1058

E
e-mail in DAGs

notification, 961
e-mail related to a job

notification, 926
ec2

grid type, 703

EC2 GAHP Statistics
NumDistinctRequests, 706
NumExpiredSignatures, 706
NumRequests, 706
NumRequestsExceedingLimit, 706

EC2 grid jobs, 703
ec2_access_key_id

and attribute EC2AccessKeyId, 1030
definition, 703
Submit commands, 942

ec2_ami_id
and attribute EC2AmiID, 1030
definition, 703
Submit commands, 942

ec2_availability_zone
Submit commands, 942

ec2_block_device_mapping
and attribute EC2BlockDeviceMapping, 1030
definition, 704
Submit commands, 942

ec2_ebs_volumes
Submit commands, 942

ec2_elastic_ip
and attribute EC2ElasticIp, 1030
Submit commands, 942

EC2_GAHP
GRIDMANAGER Configuration Options, 259

EC2_GAHP_RATE_LIMIT
GRIDMANAGER Configuration Options, 259

ec2_iam_profile_arn
and attribute EC2IamProfileArn, 1030
definition, 704
Submit commands, 942

ec2_iam_profile_name
and attribute EC2IamProfileName, 1031
definition, 704
Submit commands, 942

ec2_instance_type
and attribute EC2InstanceType, 1031
definition, 704
Submit commands, 942

ec2_keypair
and attribute EC2KeyPair, 1031
Submit commands, 943

ec2_keypair_file
and attribute EC2KeyPairFile, 1031
and condor_ssh_to_job, 905
definition, 704
Submit commands, 943

ec2_parameter_<name>
Submit commands, 943

ec2_parameter_names
and attribute EC2ParameterNames, 1031
definition, 705

1138 Index

HTCondor Manual, Release 23.6.2

Submit commands, 943
EC2_RESOURCE_TIMEOUT

GRIDMANAGER Configuration Options, 258
ec2_secret_access_key

and attribute EC2SecretAccessKey, 1031
definition, 703
Submit commands, 943

ec2_security_groups
and attribute EC2SecurityGroups, 1031
definition, 704
Submit commands, 943

ec2_security_ids
and attribute EC2SecurityIDs, 1031
definition, 704
Submit commands, 943

ec2_spot_price
and attribute EC2SpotPrice, 1031
definition, 705
Submit commands, 943

ec2_tag_<name>
Submit commands, 943

ec2_tag_names
and attribute EC2TagNames, 1031
Submit commands, 943

ec2_user_data
and attribute EC2UserData, 1031
definition, 704
Submit commands, 943

ec2_user_data_file
and attribute EC2UserDataFile, 1032
definition, 704
Submit commands, 943

ec2_vpc_ip
Submit commands, 943

ec2_vpc_subnet
definition, 704
Submit commands, 944

EC2AccessKeyId
Job ClassAd Attribute, 1030

EC2AmiID
Job ClassAd Attribute, 1030

EC2BlockDeviceMapping
Job ClassAd Attribute, 1030

EC2ElasticIp
Job ClassAd Attribute, 1030

EC2IamProfileArn
Job ClassAd Attribute, 1030

EC2IamProfileName
Job ClassAd Attribute, 1031

EC2InstanceName
Job ClassAd Attribute, 1031

EC2InstanceType
Job ClassAd Attribute, 1031

EC2KeyPair

Job ClassAd Attribute, 1031
EC2KeyPairFile

Job ClassAd Attribute, 1031
EC2ParameterNames

Job ClassAd Attribute, 1031
EC2RemoteVirtualMachineName

Job ClassAd Attribute, 1031
EC2SecretAccessKey

Job ClassAd Attribute, 1031
EC2SecurityGroups

Job ClassAd Attribute, 1031
EC2SecurityIDs

Job ClassAd Attribute, 1031
EC2SpotPrice

Job ClassAd Attribute, 1031
EC2SpotRequestID

Job ClassAd Attribute, 1031
EC2StatusReasonCode

Job ClassAd Attribute, 1031
EC2TagNames

Job ClassAd Attribute, 1031
EC2UserData

Job ClassAd Attribute, 1031
EC2UserDataFile

Job ClassAd Attribute, 1032
ECRYPTFS_ADD_PASSPHRASE

SECURITY Configuration Options, 276
EditJobInPlace

Job Router Routing Table ClassAd
attribute, 714

effective
UID, 434

effective (EUP)
user priority, 374

effective user priority (EUP), 374
EffectiveFlockList

Scheduler ClassAd Attribute, 1077
Elasticsearch, 398
email_attributes

Submit commands, 950
EMAIL_DOMAIN

Global Configuration Options, 169
EMAIL_SIGNATURE

Global Configuration Options, 167
EmailAttributes

Job ClassAd Attribute, 1032
ENABLE_BACKFILL

STARTD Configuration Options, 206
ENABLE_CHIRP

STARTER Configuration Options, 238
ENABLE_CHIRP_DELAYED

STARTER Configuration Options, 238
ENABLE_CHIRP_IO

STARTER Configuration Options, 238

Index 1139

HTCondor Manual, Release 23.6.2

ENABLE_CHIRP_UPDATES
STARTER Configuration Options, 238

ENABLE_CLAIMABLE_PARTITIONABLE_SLOTS
STARTD Configuration Options, 208

ENABLE_CLASSAD_CACHING
Global Configuration Options, 171

ENABLE_DEPRECATION_WARNINGS
SUBMIT Configuration Options, 242

ENABLE_HISTORY_ROTATION
Global Configuration Options, 168

ENABLE_IPV4
Global Configuration Options, 173

ENABLE_IPV6
Global Configuration Options, 173

ENABLE_KERNEL_TUNING
MASTER Configuration Options, 197

ENABLE_PERSISTENT_CONFIG
Global Configuration Options, 182

ENABLE_RUNTIME_CONFIG
Global Configuration Options, 182

ENABLE_SSH_TO_JOB
SSH_TO_JOB Configuration Options, 286

ENABLE_STARTD_DAEMON_AD
STARTD Configuration Options, 202

ENABLE_URL_TRANSFERS
STARTER Configuration Options, 237

ENABLE_USERLOG_FSYNC
Global Configuration Options, 176

ENABLE_USERLOG_LOCKING
Global Configuration Options, 176

enabling preemption
policy, 336

ENCRYPT_EXECUTE_DIRECTORY
SECURITY Configuration Options, 276

encrypt_execute_directory
and attribute EncryptExecuteDirectory,

1032
and ECRYPTFS_ADD_PASSPHRASE, 276
and ENCRYPT_EXECUTE_DIRECTORY, 276
Submit commands, 932

ENCRYPT_EXECUTE_DIRECTORY_FILENAMES
SECURITY Configuration Options, 276

encrypt_input_files
Submit commands, 932

encrypt_output_files
Submit commands, 932

EncryptExecuteDirectory
Job ClassAd Attribute, 1032

encryption
security, 422

ENFORCE_CPU_AFFINITY
STARTER Configuration Options, 237

EnteredCurrentActivity
Machine ClassAd Attribute, 1058

EnteredCurrentStatus
Job ClassAd Attribute, 1032

entering a low power state
power management, 353

ENV
DAG Commands, 551

Env
Job ClassAd Attribute, 1032
optional attributes, 358

Environment
Job ClassAd Attribute, 1032

environment
condor_qsub, 884
example with getenv, 87
Submit commands, 924
with parallel universe, 96

environment variables, 86
environment variables for jobs

_CONDOR_JOB_AD, 87
_CONDOR_JOB_IWD, 87
_CONDOR_MACHINE_AD, 87
_CONDOR_SCRATCH_DIR, 87
_CONDOR_SLOT, 87
_CONDOR_WRAPPER_ERROR_FILE, 87
APPTAINER_CACHEDIR, 87
BATCH_SYSTEM, 87
CUBACORES, 87
CUDA_VISIBLE_DEVICES, 88
GOMAXPROCS, 87
JULIA_NUM_THREADS, 87
KRB5CCNAME, 463
MKL_NUM_THREADS, 87
NUMEXPR_NUM_THREADS, 87
NVIDIA_VISIBLE_DEVICES, 88
OMP_NUM_THREADS, 87
OMP_THREAD_LIMIT, 87
OPENBLAS_NUM_THREADS, 87
PYTHON_CPU_COUNT, 87
ROOT_MAX_THREADS, 87
SINGULARITY_CACHEDIR, 87
TF_LOOP_PARALLEL_ITERATIONS, 87
TF_NUM_THREADS, 87
X509_USER_PROXY, 87

ENVIRONMENT_FOR_Assigned<name>
STARTD Configuration Options, 209

ENVIRONMENT_VALUE_FOR_UnAssigned<name>
STARTD Configuration Options, 210

envV1ToV2()
ClassAd functions, 478, 792

EP (Execution Point), 1109
erase_output_and_error_on_restart

Submit commands, 932
EraseOutputAndErrorOnRestart

Job ClassAd Attribute, 1032

1140 Index

HTCondor Manual, Release 23.6.2

Err
optional attributes, 358

error
condor_qsub, 883
created at submit, 68
example with paths, 65
Submit commands, 925
vm universe, 92

Error (classad.Value attribute), 615
Error (htcondor.LogLevel attribute), 649
Error and warning configuration syntax, 148
Error and warning syntax

configuration, 148
ETC

Configuration Options, 165
eval()

ClassAd functions, 336, 468, 783
Eval_Set_ATTR>

Job Router Routing Table ClassAd
attribute, 717

evalInEachContext()
ClassAd functions, 478, 792

evaluation order
configuration file, 141

event codes for jobs
log files, 1102

event log file
job, 77

EVENT_LOG
Global Configuration Options, 180

EVENT_LOG_COUNT_EVENTS
Global Configuration Options, 181

EVENT_LOG_FORMAT_OPTIONS
Global Configuration Options, 181

EVENT_LOG_FSYNC
Global Configuration Options, 181

EVENT_LOG_JOB_AD_INFORMATION_ATTRS
Global Configuration Options, 181

EVENT_LOG_LOCKING
Global Configuration Options, 181

EVENT_LOG_MAX_ROTATIONS
Global Configuration Options, 180

EVENT_LOG_MAX_SIZE
Global Configuration Options, 180

EVENT_LOG_ROTATION_LOCK
Global Configuration Options, 180

EVENT_LOG_USE_XML
Global Configuration Options, 181

Evict a claim
Fetch Hooks, 359

EVICT_BACKFILL
STARTD Configuration Options, 206

example
configuration, 313

examples
rank attribute, 50, 485, 799
submit description file, 39, 40

executable
and attribute PostCmd, 1044, 1045
and attribute PreCmd, 1045
and Azure grid, 708
and EC2 grid, 703
and GCE grid, 707
and jar file, 104
and self-checkpointing, 122
and Windows scripts, 170
in docker universe, 90
interactive job, 55
java universe, 103
Submit commands, 925
vm universe, 92
when transfered, 62
with parallel universe, 96

EXECUTABLE_ERROR (htcondor.JobEventType attribute),
646

ExecutableSize
Job ClassAd Attribute, 1032

EXECUTE
Global Configuration Options, 165

Execute
ROLE Configuration Templates, 156

execute
machine, 132

EXECUTE (htcondor.JobEventType attribute), 646
execute point, 132
EXECUTE_LOGIN_IS_DEDICATED

FileSystem Configuration Options, 191
execution environment, 86
ExitBySignal

Job ClassAd Attribute, 1032
ExitCode

Job ClassAd Attribute, 1032
ExitSignal

Job ClassAd Attribute, 1032
ExitStatus

Job ClassAd Attribute, 1032
ExpectedMachineGracefulDrainingBadput

Machine ClassAd Attribute, 1058
ExpectedMachineGracefulDrainingCompletion

Machine ClassAd Attribute, 1058
ExpectedMachineQuickDrainingBadput

Machine ClassAd Attribute, 1058
ExpectedMachineQuickDrainingCompletion

Machine ClassAd Attribute, 1058
EXPIRE_INVALIDATED_ADS

COLLECTOR Configuration Options, 248
expression examples

ClassAd, 484, 798

Index 1141

HTCondor Manual, Release 23.6.2

expression functions
ClassAd, 468, 782

expression operators
ClassAd, 468, 482, 782, 796

expression syntax of Old ClassAds
ClassAd, 467, 781

EXTENDED_SUBMIT_COMMANDS
SCHEDD Configuration Options, 229

EXTENDED_SUBMIT_HELPFILE
SCHEDD Configuration Options, 229

F
FACTORY_PAUSED (htcondor.JobEventType attribute),

647
FACTORY_RESUMED (htcondor.JobEventType attribute),

647
FailureRateThreshold

Job Router Routing Table ClassAd
attribute, 713

Fast (htcondor.DrainTypes attribute), 639
Fast (htcondor.VacateTypes attribute), 639
FEATURE

Configuration Templates, 156
FEATURE Configuration Templates

Adstash, 158
AssignAccountingGroup, 157
CommonCloudAttributesAWS, 158
CommonCloudAttributesGoogle, 158
ContinuousCronHook, 158
GPUs, 157
GPUsMonitor, 157
JobsHaveInstanceIDs, 158
Monitor, 157
OAuth, 158
OneShotCronHook, 158
PartitionableSlot, 157
PeriodicCronHook, 158
Remote_Config, 156
Remote_Runtime_Config, 156
ScheddCronContinuous, 157
ScheddCronOneShot, 157
ScheddCronPeriodic, 157
ScheddUserMapFile, 157
SetJobAttrFromUserMap, 157
StartdCronContinuous, 157
StartdCronOneShot, 157
StartdCronPeriodic, 157
StaticSlots, 157
UWCS_Desktop_Policy_Values, 158

Fetch work
Fetch Hooks, 356

FetchWorkDelay, 360
HOOKS Configuration Options, 290
Job hooks, 360

file
JOB ROUTER Configuration Options, 264

file transfer mechanism, 61
FILE_COMPLETE (htcondor.JobEventType attribute), 647
FILE_LOCK_VIA_MUTEX

Global Configuration Options, 176
FILE_REMOVED (htcondor.JobEventType attribute), 647
FILE_TRANSFER (htcondor.JobEventType attribute), 647
FILE_TRANSFER_DISK_LOAD_THROTTLE

SCHEDD Configuration Options, 218
FILE_TRANSFER_DISK_LOAD_THROTTLE_LONG_HORIZON

SCHEDD Configuration Options, 218
FILE_TRANSFER_DISK_LOAD_THROTTLE_SHORT_HORIZON

SCHEDD Configuration Options, 218
FILE_TRANSFER_DISK_LOAD_THROTTLE_WAIT_BETWEEN_INCREMENTS

SCHEDD Configuration Options, 218
FILE_USED (htcondor.JobEventType attribute), 647
FileSystem Configuration Options

DEDICATED_EXECUTE_ACCOUNT_REGEXP, 191
EXECUTE_LOGIN_IS_DEDICATED, 191
FILESYSTEM_DOMAIN, 191
IGNORE_NFS_LOCK_ERRORS, 192
NOBODY_SLOT_USER, 191
SLOT<N>_USER, 191
SOFT_UID_DOMAIN, 190
STARTER_ALLOW_RUNAS_OWNER, 191
TRUST_LOCAL_UID_DOMAIN, 190
TRUST_UID_DOMAIN, 190
UID_DOMAIN, 190
USE_NFS, 192

FILESYSTEM_DOMAIN, 155
FileSystem Configuration Options, 191

FileSystemDomain
Machine ClassAd Attribute, 1058

FILETRANSFER_PLUGINS
STARTER Configuration Options, 237

FileTransferDiskThrottleExcess_<timespan>
Scheduler ClassAd Attribute, 1085

FileTransferDiskThrottleHigh
Scheduler ClassAd Attribute, 1085

FileTransferDiskThrottleLevel
Scheduler ClassAd Attribute, 1085

FileTransferDiskThrottleLow
Scheduler ClassAd Attribute, 1085

FileTransferDiskThrottleShortfall_<timespan>
Scheduler ClassAd Attribute, 1085

FileTransferDownloadBytes
Scheduler ClassAd Attribute, 1085

FileTransferDownloadBytesPerSecond_<timespan>
Scheduler ClassAd Attribute, 1086

FileTransferFileReadLoad_<timespan>
Scheduler ClassAd Attribute, 1086

FileTransferFileReadSeconds
Scheduler ClassAd Attribute, 1086

1142 Index

HTCondor Manual, Release 23.6.2

FileTransferFileWriteLoad_<timespan>
Scheduler ClassAd Attribute, 1086

FileTransferFileWriteSeconds
Scheduler ClassAd Attribute, 1086

FileTransferNetReadLoad_<timespan>
Scheduler ClassAd Attribute, 1086

FileTransferNetReadSeconds
Scheduler ClassAd Attribute, 1086

FileTransferNetWriteLoad_<timespan>
Scheduler ClassAd Attribute, 1087

FileTransferNetWriteSeconds
Scheduler ClassAd Attribute, 1087

FileTransferUploadBytes
Scheduler ClassAd Attribute, 1087

FileTransferUploadBytesPerSecond_<timespan>
Scheduler ClassAd Attribute, 1087

FINAL
DAG Commands, 550

firewalls
port usage, 440

FLOCK_COLLECTOR_HOSTS
SCHEDD Configuration Options, 223

FLOCK_INCREMENT
SCHEDD Configuration Options, 223

FLOCK_NEGOTIATOR_HOSTS
SCHEDD Configuration Options, 223

FlockedJobs
Submitter ClassAd Attribute, 1090

flocking, 696
HTCondor, 696

floor()
ClassAd functions, 472, 786

for flocking
configuration, 696

for security
authorization, 425

for the docker universe
installation, 343

for the vm universe
installation, 349

formatTime()
ClassAd functions, 476, 790

FS_REMOTE_DIR
SECURITY Configuration Options, 276

ftl
vm universe, 95

FULL_HOSTNAME, 153
FullDebug (htcondor.LogLevel attribute), 649
function macros

configuration, 150
submit description file, 47

G
GAHP (Grid ASCII Helper Protocol), 698

GAHP (htcondor.SubsystemType attribute), 651
GAHP_DEBUG_HIDE_SENSITIVE_DATA

GRIDMANAGER Configuration Options, 258
GAHP_SSL_CADIR

GRIDMANAGER Configuration Options, 259
GAHP_SSL_CAFILE

GRIDMANAGER Configuration Options, 259
GahpCommandRuntime

Grid ClassAd Attribute, 1093
GahpCommandsInFlight

Grid ClassAd Attribute, 1093
GahpCommandsIssued

Grid ClassAd Attribute, 1093
GahpCommandsQueued

Grid ClassAd Attribute, 1093
GahpCommandsTimedOut

Grid ClassAd Attribute, 1093
GahpPid

Grid ClassAd Attribute, 1093
Ganglia monitoring, 394
GANGLIA_CONFIG

GANGLIAD Configuration Options, 298
GANGLIA_GMETRIC

GANGLIAD Configuration Options, 298
GANGLIA_GSTAT_COMMAND

GANGLIAD Configuration Options, 298
GANGLIA_LIB

GANGLIAD Configuration Options, 299
GANGLIA_LIB64_PATH

GANGLIAD Configuration Options, 299
GANGLIA_LIB_PATH

GANGLIAD Configuration Options, 299
GANGLIA_RESET_METRICS_FILE

GANGLIAD Configuration Options, 298
GANGLIA_SEND_DATA_FOR_ALL_HOSTS

GANGLIAD Configuration Options, 299
GANGLIAD Configuration Options

GANGLIA_CONFIG, 298
GANGLIA_GMETRIC, 298
GANGLIA_GSTAT_COMMAND, 298
GANGLIA_LIB, 299
GANGLIA_LIB64_PATH, 299
GANGLIA_LIB_PATH, 299
GANGLIA_RESET_METRICS_FILE, 298
GANGLIA_SEND_DATA_FOR_ALL_HOSTS, 299
GANGLIAD_DEFAULT_CLUSTER, 299
GANGLIAD_DEFAULT_IP, 299
GANGLIAD_DEFAULT_MACHINE, 299
GANGLIAD_INTERVAL, 298
GANGLIAD_LOG, 299
GANGLIAD_METRICS_CONFIG_DIR, 299
GANGLIAD_MIN_METRIC_LIFETIME, 298
GANGLIAD_PER_EXECUTE_NODE_METRICS, 298
GANGLIAD_REQUIREMENTS, 298

Index 1143

HTCondor Manual, Release 23.6.2

GANGLIAD_VERBOSITY, 298
GANGLIAD_WANT_RESET_METRICS, 298

GANGLIAD_DEFAULT_CLUSTER
GANGLIAD Configuration Options, 299

GANGLIAD_DEFAULT_IP
GANGLIAD Configuration Options, 299

GANGLIAD_DEFAULT_MACHINE
GANGLIAD Configuration Options, 299

GANGLIAD_INTERVAL
GANGLIAD Configuration Options, 298

GANGLIAD_LOG
GANGLIAD Configuration Options, 299

GANGLIAD_METRICS_CONFIG_DIR
GANGLIAD Configuration Options, 299

GANGLIAD_MIN_METRIC_LIFETIME
GANGLIAD Configuration Options, 298

GANGLIAD_PER_EXECUTE_NODE_METRICS
GANGLIAD Configuration Options, 298

GANGLIAD_REQUIREMENTS
GANGLIAD Configuration Options, 298

GANGLIAD_VERBOSITY
GANGLIAD Configuration Options, 298

GANGLIAD_WANT_RESET_METRICS
GANGLIAD Configuration Options, 298

gce
grid type, 707

GCE grid jobs, 707
gce_account

Submit commands, 944
gce_auth_file

and attribute GceAuthFile, 1032
definition, 707
Submit commands, 944

GCE_GAHP
GRIDMANAGER Configuration Options, 260

gce_image
and attribute GceImage, 1032
definition, 707
Submit commands, 944

gce_json_file
and attribute GceJsonFile, 1033
definition, 708
Submit commands, 944

gce_machine_type
and attribute GceMachineType, 1033
definition, 707
Submit commands, 944

gce_metadata
and attribute GceMetadata, 1033
definition, 707
Submit commands, 944

gce_metadata_file
and attribute GceMetadataFile, 1033
definition, 707

Submit commands, 944
gce_preemptible

and attribute GcePreemptible, 1033
Submit commands, 944

GceAuthFile
Job ClassAd Attribute, 1032

GceImage
Job ClassAd Attribute, 1032

GceJsonFile
Job ClassAd Attribute, 1033

GceMachineType
Job ClassAd Attribute, 1033

GceMetadata
Job ClassAd Attribute, 1033

GceMetadataFile
Job ClassAd Attribute, 1033

GcePreemptible
Job ClassAd Attribute, 1033

Generic (htcondor.AdTypes attribute), 621
Generic (htcondor.DaemonTypes attribute), 621
GENERIC (htcondor.JobEventType attribute), 646
get_htcondor

HTCondor commands, 1014
get_htcondor command, 1014
getenv

Submit commands, 925
gidd_alloc

HTCondor commands, 1016
gidd_alloc command, 1016
Glidein, 1109
Global Configuration Options

<SUBSYS>_ADDRESS_FILE, 182
<SUBSYS>_ADMIN_EMAIL, 167
<SUBSYS>_ATTRS, 183
<SUBSYS>_CLASSAD_USER_MAP_NAMES, 173
<SUBSYS>_DAEMON_AD_FILE, 183
<SUBSYS>_DEBUG, 177
<SUBSYS>_LOCK, 176
<SUBSYS>_LOG, 175
<SUBSYS>_LOG_KEEP_OPEN, 175
<SUBSYS>_NOT_RESPONDING_TIMEOUT, 184
<SUBSYS>_SUPER_ADDRESS_FILE, 183
<SUBSYS>_<LEVEL>_LOG, 180
ABORT_ON_EXCEPTION, 169
ADVERTISE_IPV4_FIRST, 173
ALL_DEBUG, 180
ALLOW, 182
ALLOW_SCRIPTS_TO_RUN_AS_EXECUTABLES, 170
BIN, 164
CLASSAD_LOG_STRICT_PARSING, 169
CLASSAD_USER_LIBS, 171
CLASSAD_USER_MAPDATA_<name>, 173
CLASSAD_USER_MAPFILE_<name>, 173
CLASSAD_USER_PYTHON_LIB, 171

1144 Index

HTCondor Manual, Release 23.6.2

CLASSAD_USER_PYTHON_MODULES, 171
CM_IP_ADDR, 169
COLLECTOR_HOST, 163
COLLECTOR_PORT, 163
CONDOR_ADMIN, 167
CONDOR_FSYNC, 171
CONDOR_HOST, 163
CONDOR_IDS, 167
CONDOR_SUPPORT_EMAIL, 167
CONDOR_VIEW_HOST, 164
CORE_FILE_NAME, 185
CREATE_CORE_FILES, 169
CREATE_LOCKS_ON_LOCAL_DISK, 177
DAEMON_SHUTDOWN, 183
DAEMON_SHUTDOWN_FAST, 184
DEAD_COLLECTOR_MAX_AVOIDANCE_TIME, 170
DEBUG_TIME_FORMAT, 177
DEFAULT_DOMAIN_NAME, 169
DEFAULT_USERLOG_FORMAT_OPTIONS, 182
DISK, 168
EMAIL_DOMAIN, 169
EMAIL_SIGNATURE, 167
ENABLE_CLASSAD_CACHING, 171
ENABLE_HISTORY_ROTATION, 168
ENABLE_IPV4, 173
ENABLE_IPV6, 173
ENABLE_PERSISTENT_CONFIG, 182
ENABLE_RUNTIME_CONFIG, 182
ENABLE_USERLOG_FSYNC, 176
ENABLE_USERLOG_LOCKING, 176
EVENT_LOG, 180
EVENT_LOG_COUNT_EVENTS, 181
EVENT_LOG_FORMAT_OPTIONS, 181
EVENT_LOG_FSYNC, 181
EVENT_LOG_JOB_AD_INFORMATION_ATTRS, 181
EVENT_LOG_LOCKING, 181
EVENT_LOG_MAX_ROTATIONS, 180
EVENT_LOG_MAX_SIZE, 180
EVENT_LOG_ROTATION_LOCK, 180
EVENT_LOG_USE_XML, 181
EXECUTE, 165
FILE_LOCK_VIA_MUTEX, 176
HISTORY, 168
HISTORY_CONTAINS_JOB_ENVIRONMENT, 168
HISTORY_HELPER_MAX_CONCURRENCY, 168
HISTORY_HELPER_MAX_HISTORY, 168
IGNORE_DNS_PROTOCOL_PREFERENCE, 173
IGNORE_TARGET_PROTOCOL_PREFERENCE, 173
INCLUDE, 164
JOB_QUEUE_LOG, 176
LIB, 164
LIBEXEC, 164
LOCAL_CONFIG_DIR, 166
LOCAL_CONFIG_DIR_EXCLUDE_REGEXP, 166

LOCAL_CONFIG_FILE, 166
LOCAL_DIR, 164
LOCK, 168
LOCK_DEBUG_LOG_TO_APPEND, 176
LOCK_FILE_UPDATE_INTERVAL, 184
LOG, 164
LOG_TO_SYSLOG, 175
LOGS_USE_TIMESTAMP, 177
MAIL, 167
MAIL_FROM, 167
MAX_<SUBSYS>_<LEVEL>_LOG, 180
MAX_<SUBSYS>_LOG, 175
MAX_ACCEPTS_PER_CYCLE, 185
MAX_DEFAULT_LOG, 175
MAX_EVENT_LOG, 180
MAX_HISTORY_LOG, 168
MAX_HISTORY_ROTATIONS, 168
MAX_JOB_QUEUE_LOG_ROTATIONS, 169
MAX_NUM_<SUBSYS>_LOG, 175
MAX_REAPS_PER_CYCLE, 185
MAX_TIME_SKIP, 184
MAX_TIMER_EVENTS_PER_CYCLE, 185
MAX_UDP_MSGS_PER_CYCLE, 185
NEGOTIATOR_HOST, 164
NETWORK_MAX_PENDING_CONNECTS, 170
NO_DNS, 169
NOT_RESPONDING_TIMEOUT, 184
NOT_RESPONDING_WANT_CORE, 184
OPEN_VERB_FOR_<EXT>_FILES, 170
PASSWD_CACHE_REFRESH, 170
PERSISTENT_CONFIG_DIR, 182
PIPE_BUFFER_MAX, 185
PREFER_IPV4, 173
PREFER_OUTBOUND_IPV4, 173
Q_QUERY_TIMEOUT, 170
RELEASE_DIR, 164
REQUIRE_LOCAL_CONFIG_FILE, 166
RESERVED_DISK, 168
RESERVED_SWAP, 167
RUN, 165
SBIN, 164
SCHEDD_HOST, 164
SENDMAIL, 167
SETTABLE_ATTRS_<PERMISSION-LEVEL>, 182
SHUTDOWN_GRACEFUL_TIMEOUT, 182
SIGN_S3_URLS, 174
SLOT<N>_EXECUTE, 165
SMTP_SERVER, 167
SOCKET_LISTEN_BACKLOG, 185
SPOOL, 165
STATISTICS_TO_PUBLISH, 171
STATISTICS_TO_PUBLISH_LIST, 172
STATISTICS_WINDOW_QUANTUM, 172

Index 1145

HTCondor Manual, Release 23.6.2

STATISTICS_WINDOW_QUANTUM_<collection>,
173

STATISTICS_WINDOW_SECONDS, 172
STATISTICS_WINDOW_SECONDS_<collection>,

172
STRICT_CLASSAD_EVALUATION, 171
SUBSYSTEM, 163
SYSAPI_GET_LOADAVG, 170
TCP_KEEPALIVE_INTERVAL, 173
TEMP_DIR, 165
TMP_DIR, 165
TOOL_DEBUG, 180
TOUCH_LOG_INTERVAL, 177
TRUNC_<SUBSYS>_<LEVEL>_LOG_ON_OPEN, 180
TRUNC_<SUBSYS>_LOG_ON_OPEN, 175
USE_CLONE_TO_CREATE_PROCESSES, 184
USER_CONFIG_FILE, 166
USERLOG_FILE_CACHE_CLEAR_INTERVAL, 177
USERLOG_FILE_CACHE_MAX, 176
WANT_UDP_COMMAND_SOCKET, 170

GlobalJobId
Job ClassAd Attribute, 1033

GLOBUS_RESOURCE_DOWN (htcondor.JobEventType
attribute), 646

GLOBUS_RESOURCE_UP (htcondor.JobEventType at-
tribute), 646

GLOBUS_SUBMIT (htcondor.JobEventType attribute), 646
GLOBUS_SUBMIT_FAILED (htcondor.JobEventType

attribute), 646
GOMAXPROCS

environment variables for jobs, 87
Google Compute Engine, 707
GPU monitoring, 397
GPUs

FEATURE Configuration Templates, 157
gpus_maximum_capability

Submit commands, 930
gpus_minimum_capability

Submit commands, 930
gpus_minimum_memory

Submit commands, 930
gpus_minimum_runtime

Submit commands, 930
GPUsMaxCapability

Job ClassAd Attribute, 1033
GPUsMemoryUsage

ClassAd job attribute, 79
GPUsMinCapability

Job ClassAd Attribute, 1033
GPUsMinMemory

Job ClassAd Attribute, 1033
GPUsMinRuntime

Job ClassAd Attribute, 1033
GPUsMonitor

FEATURE Configuration Templates, 157
GPUsUsage

ClassAd job attribute, 79
Graceful (htcondor.DrainTypes attribute), 639
Graceful (htcondor.VacateTypes attribute), 639
GRACEFULLY_REMOVE_JOBS

SCHEDD Configuration Options, 226
green computing, 353, 355
Grid

universe, 84
grid

universe, 85, 698, 1041
Grid (ClassAd Types), 1023
Grid (htcondor.AdTypes attribute), 622
Grid ClassAd Attribute

GahpCommandRuntime, 1093
GahpCommandsInFlight, 1093
GahpCommandsIssued, 1093
GahpCommandsQueued, 1093
GahpCommandsTimedOut, 1093
GahpPid, 1093
GridResourceUnavailableTime, 1093
GridResourceUnavailableTimeReason, 1093
GridResourceUnavailableTimeReasonCode,

1093
IdleJobs, 1094
JobLimit, 1094
NumJobs, 1094
SubmitsAllowed, 1094
SubmitsWanted, 1094

grid_resource
and arc grid, 700
and attribute GridResource, 1033
and Azure grid, 708
and batch grid, 701
and GCE grid, 707
and grid universe, 695
and HTCondor-C, 698, 700
nd EC2 grid, 703
Submit commands, 944

GRID_RESOURCE_DOWN (htcondor.JobEventType at-
tribute), 646

GRID_RESOURCE_UP (htcondor.JobEventType attribute),
646

GRID_SUBMIT (htcondor.JobEventType attribute), 646
GridJobStatus

Job ClassAd Attribute, 1033
GRIDMANAGER Configuration Options

ARC_GAHP, 259
ARC_GAHP_COMMAND_LIMIT, 259
ARC_GAHP_USE_THREADS, 259
AZURE_GAHP, 260
BATCH_GAHP, 259
BATCH_GAHP_CHECK_STATUS_ATTEMPTS, 259

1146 Index

HTCondor Manual, Release 23.6.2

BLAHPD_LOCATION, 259
BOINC_GAHP, 260
C_GAHP_CONTACT_SCHEDD_DELAY, 259
C_GAHP_LOG, 259
C_GAHP_MAX_FILE_REQUESTS, 259
C_GAHP_WORKER_THREAD_LOG, 259
CONDOR_GAHP, 259
EC2_GAHP, 259
EC2_GAHP_RATE_LIMIT, 259
EC2_RESOURCE_TIMEOUT, 258
GAHP_DEBUG_HIDE_SENSITIVE_DATA, 258
GAHP_SSL_CADIR, 259
GAHP_SSL_CAFILE, 259
GCE_GAHP, 260
GRIDMANAGER_CHECKPROXY_INTERVAL, 257
GRIDMANAGER_CONNECT_FAILURE_RETRY_COUNT,

258
GRIDMANAGER_CONTACT_SCHEDD_DELAY, 257
GRIDMANAGER_EMPTY_RESOURCE_DELAY, 258
GRIDMANAGER_GAHP_CALL_TIMEOUT, 258
GRIDMANAGER_GAHP_RESPONSE_TIMEOUT, 258
GRIDMANAGER_JOB_PROBE_INTERVAL, 257
GRIDMANAGER_JOB_PROBE_RATE, 258
GRIDMANAGER_LOG, 257
GRIDMANAGER_LOG_APPEND_SELECTION_EXPR,

257
GRIDMANAGER_MAX_PENDING_REQUESTS, 258
GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE,

258
GRIDMANAGER_MINIMUM_PROXY_TIME, 257
GRIDMANAGER_PROXY_REFRESH_TIME, 257
GRIDMANAGER_RESOURCE_PROBE_INTERVAL, 258
GRIDMANAGER_SELECTION_EXPR, 257
HOLD_JOB_IF_CREDENTIAL_EXPIRES, 257
MAX_C_GAHP_LOG, 259

GRIDMANAGER_CHECKPROXY_INTERVAL
GRIDMANAGER Configuration Options, 257

GRIDMANAGER_CONNECT_FAILURE_RETRY_COUNT
GRIDMANAGER Configuration Options, 258

GRIDMANAGER_CONTACT_SCHEDD_DELAY
GRIDMANAGER Configuration Options, 257

GRIDMANAGER_EMPTY_RESOURCE_DELAY
GRIDMANAGER Configuration Options, 258

GRIDMANAGER_GAHP_CALL_TIMEOUT
GRIDMANAGER Configuration Options, 258

GRIDMANAGER_GAHP_RESPONSE_TIMEOUT
GRIDMANAGER Configuration Options, 258

GRIDMANAGER_JOB_PROBE_INTERVAL
GRIDMANAGER Configuration Options, 257

GRIDMANAGER_JOB_PROBE_RATE
GRIDMANAGER Configuration Options, 258

GRIDMANAGER_LOG
GRIDMANAGER Configuration Options, 257

GRIDMANAGER_LOG_APPEND_SELECTION_EXPR

GRIDMANAGER Configuration Options, 257
GRIDMANAGER_MAX_PENDING_REQUESTS

GRIDMANAGER Configuration Options, 258
GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE

GRIDMANAGER Configuration Options, 258
GRIDMANAGER_MINIMUM_PROXY_TIME

GRIDMANAGER Configuration Options, 257
GRIDMANAGER_PROXY_REFRESH_TIME

GRIDMANAGER Configuration Options, 257
GRIDMANAGER_RESOURCE_PROBE_INTERVAL

GRIDMANAGER Configuration Options, 258
GRIDMANAGER_SELECTION_EXPR

GRIDMANAGER Configuration Options, 257
GridResource

Job ClassAd Attribute, 1033
Job Router Routing Table ClassAd

attribute, 713
GridResourceUnavailableTime

Grid ClassAd Attribute, 1093
Job ClassAd Attribute, 1033

GridResourceUnavailableTimeReason
Grid ClassAd Attribute, 1093

GridResourceUnavailableTimeReasonCode
Grid ClassAd Attribute, 1093

group quotas, 383
GROUP_ACCEPT_SURPLUS

NEGOTIATOR Configuration Options, 254
GROUP_ACCEPT_SURPLUS_<groupname>

NEGOTIATOR Configuration Options, 254
GROUP_AUTOREGROUP, 1049, 1072

NEGOTIATOR Configuration Options, 254
GROUP_AUTOREGROUP_<groupname>

NEGOTIATOR Configuration Options, 254
GROUP_DYNAMIC_MACH_CONSTRAINT

NEGOTIATOR Configuration Options, 251
GROUP_NAMES

NEGOTIATOR Configuration Options, 253
GROUP_PRIO_FACTOR_<groupname>

NEGOTIATOR Configuration Options, 254
GROUP_QUOTA_<groupname>

NEGOTIATOR Configuration Options, 253
GROUP_QUOTA_DYNAMIC_<groupname>

NEGOTIATOR Configuration Options, 253
GROUP_QUOTA_MAX_ALLOCATION_ROUNDS, 1089

NEGOTIATOR Configuration Options, 254
GROUP_QUOTA_ROUND_ROBIN_RATE

NEGOTIATOR Configuration Options, 254
GROUP_SORT_EXPR

NEGOTIATOR Configuration Options, 255
GroupBy (htcondor.QueryOpts attribute), 629
gs_access_key_id_file

Submit commands, 937
gs_secret_access_key_file

Submit commands, 937

Index 1147

HTCondor Manual, Release 23.6.2

H
HA_<SUBSYS>_LOCK_HOLD_TIME

High Availability Configuration Options,
283

HA_<SUBSYS>_LOCK_URL
High Availability Configuration Options,

283
HA_<SUBSYS>_POLL_PERIOD

High Availability Configuration Options,
283

HA_LOCK_HOLD_TIME
High Availability Configuration Options,

283
HA_LOCK_URL

High Availability Configuration Options,
282

HA_POLL_PERIOD
High Availability Configuration Options,

283
HAD

High Availability Configuration Options,
284

HAD (htcondor.AdTypes attribute), 622
HAD (htcondor.DaemonTypes attribute), 621
HAD_ARGS

High Availability Configuration Options,
284

HAD_CONNECTION_TIMEOUT
High Availability Configuration Options,

284
HAD_CONTROLLEE

High Availability Configuration Options,
284

HAD_DEBUG
High Availability Configuration Options,

284
HAD_FIPS_MODE

High Availability Configuration Options,
284

HAD_LIST
High Availability Configuration Options,

284
HAD_LOG

High Availability Configuration Options,
284

HAD_UPDATE_INTERVAL
High Availability Configuration Options,

285
HAD_USE_PRIMARY

High Availability Configuration Options,
284

HAD_USE_REPLICATION
High Availability Configuration Options,

285

HANDLE_QUERY_IN_PROC_POLICY
COLLECTOR Configuration Options, 246

HandleLocate
Collector ClassAd Attribute, 1095

HandleLocateForked
Collector ClassAd Attribute, 1095

HandleLocateForkedRuntimeAvg
Collector ClassAd Attribute, 1095

HandleLocateMissedFork
Collector ClassAd Attribute, 1095

HandleLocateMissedForkRuntimeAvg
Collector ClassAd Attribute, 1095

HandleLocateRuntimeAvg
Collector ClassAd Attribute, 1095

HandleQuery
Collector ClassAd Attribute, 1095

HandleQueryForked
Collector ClassAd Attribute, 1095

HandleQueryForkedRuntimeAvg
Collector ClassAd Attribute, 1095

HandleQueryMissedFork
Collector ClassAd Attribute, 1095

HandleQueryMissedForkRuntimeAvg
Collector ClassAd Attribute, 1096

HandleQueryRuntimeAvg
Collector ClassAd Attribute, 1095

has_avx
Machine ClassAd Attribute, 1059

has_avx2
Machine ClassAd Attribute, 1059

has_avx512dnni
Machine ClassAd Attribute, 1059

has_avx512dq
Machine ClassAd Attribute, 1059

has_avx512f
Machine ClassAd Attribute, 1059

Has_sse4_1
Machine ClassAd Attribute, 1059

Has_sse4_2
Machine ClassAd Attribute, 1059

has_ssse3
Machine ClassAd Attribute, 1059

HasContainer
Machine ClassAd Attribute, 1058

HasDocker
ClassAd machine attribute, 343
Machine ClassAd Attribute, 1058

HasEncryptExecuteDirectory
Machine ClassAd Attribute, 1059

HasFileTransfer
Machine ClassAd Attribute, 1059

HasFileTransferPluginMethods
Machine ClassAd Attribute, 1059

HasRotationalScratch

1148 Index

HTCondor Manual, Release 23.6.2

Machine ClassAd Attribute, 1059
HasSandboxImage

Machine ClassAd Attribute, 1058
HasSelfCheckpointTransfers

Machine ClassAd Attribute, 1059
HasSIF

Machine ClassAd Attribute, 1058
HasSingularity

Machine ClassAd Attribute, 1059
HasSshd

Machine ClassAd Attribute, 1059
HasUserNamespaces

Machine ClassAd Attribute, 1059
HasVM

Machine ClassAd Attribute, 1059
HELD (htcondor.JobStatus attribute), 631
HeldJobs

Submitter ClassAd Attribute, 1090
heterogeneous submit

job, 58
HIBERNATE

STARTD Configuration Options, 212
HIBERNATE_CHECK_INTERVAL

STARTD Configuration Options, 212
HIBERNATION_OVERRIDE_WOL

STARTD Configuration Options, 213
HIBERNATION_PLUGIN

STARTD Configuration Options, 213
HIBERNATION_PLUGIN_ARGS

STARTD Configuration Options, 213
hierarchical group quotas, 380
hierarchical quotas for a group

quotas, 380
High Availability Configuration Options

HA_<SUBSYS>_LOCK_HOLD_TIME, 283
HA_<SUBSYS>_LOCK_URL, 283
HA_<SUBSYS>_POLL_PERIOD, 283
HA_LOCK_HOLD_TIME, 283
HA_LOCK_URL, 282
HA_POLL_PERIOD, 283
HAD, 284
HAD_ARGS, 284
HAD_CONNECTION_TIMEOUT, 284
HAD_CONTROLLEE, 284
HAD_DEBUG, 284
HAD_FIPS_MODE, 284
HAD_LIST, 284
HAD_LOG, 284
HAD_UPDATE_INTERVAL, 285
HAD_USE_PRIMARY, 284
HAD_USE_REPLICATION, 285
MASTER_<SUBSYS>_CONTROLLER, 283
MASTER_HA_LIST, 282
MAX_HAD_LOG, 284

MAX_REPLICATION_LOG, 285
MAX_TRANSFER_LIFETIME, 285
MAX_TRANSFERER_LOG, 286
REPLICATION, 285
REPLICATION_ARGS, 285
REPLICATION_DEBUG, 285
REPLICATION_INTERVAL, 285
REPLICATION_LIST, 284
REPLICATION_LOG, 285
STATE_FILE, 285
TRANSFERER, 285
TRANSFERER_DEBUG, 285
TRANSFERER_LOG, 285

high availability configuration variables
configuration, 282

High-Performance Computing (HPC), 31
High-Throughput Computing (HTC), 31
HIGHPORT

Network Configuration Options, 188
HISTORY

Global Configuration Options, 168
HISTORY_CONTAINS_JOB_ENVIRONMENT

Global Configuration Options, 168
HISTORY_HELPER_MAX_CONCURRENCY

Global Configuration Options, 168
HISTORY_HELPER_MAX_HISTORY

Global Configuration Options, 168
hold

Submit commands, 938
Hold (htcondor.JobAction attribute), 628
Hold_If_Cpus_Exceeded

POLICY Configuration Templates, 159
Hold_If_Disk_Exceeded

POLICY Configuration Templates, 159
Hold_If_Memory_Exceeded

POLICY Configuration Templates, 159
Hold_if_Runtime_Exceeds

POLICY Configuration Templates, 159
HOLD_JOB_IF_CREDENTIAL_EXPIRES

GRIDMANAGER Configuration Options, 257
hold_kill_sig

Submit commands, 945
HoldKillSig

Job ClassAd Attribute, 1034
HoldReason

Job ClassAd Attribute, 1034
HoldReasonCode

Job ClassAd Attribute, 1034
HoldReasonSubCode

Job ClassAd Attribute, 1038
HookKeyword

Job ClassAd Attribute, 1039
Hooks, 343, 355, 364
HOOKS Configuration Options

Index 1149

HTCondor Manual, Release 23.6.2

<Keyword>_HOOK_EVICT_CLAIM, 290
<Keyword>_HOOK_FETCH_WORK, 289
<Keyword>_HOOK_JOB_CLEANUP, 291
<Keyword>_HOOK_JOB_EXIT, 290
<Keyword>_HOOK_JOB_EXIT_TIMEOUT, 290
<Keyword>_HOOK_JOB_FINALIZE, 291
<Keyword>_HOOK_PREPARE_JOB, 290
<Keyword>_HOOK_PREPARE_JOB_ARGS, 290
<Keyword>_HOOK_REPLY_CLAIM, 290
<Keyword>_HOOK_REPLY_FETCH, 290
<Keyword>_HOOK_TRANSLATE_JOB, 290
<Keyword>_HOOK_UPDATE_JOB_INFO, 290
BENCHMARKS_<JobName>_ARGS, 292
BENCHMARKS_<JobName>_CWD, 292
BENCHMARKS_<JobName>_ENV, 292
BENCHMARKS_<JobName>_EXECUTABLE, 292
BENCHMARKS_<JobName>_JOB_LOAD, 292
BENCHMARKS_<JobName>_KILL, 293
BENCHMARKS_<JobName>_MODE, 294
BENCHMARKS_<JobName>_PERIOD, 294
BENCHMARKS_<JobName>_PREFIX, 295
BENCHMARKS_<JobName>_SLOTS, 295
BENCHMARKS_CONFIG_VAL, 291
BENCHMARKS_JOBLIST, 292
BENCHMARKS_MAX_JOB_LOAD, 292
FetchWorkDelay, 290
JOB_ROUTER_HOOK_KEYWORD, 290
SCHEDD_CRON_<JobName>_ARGS, 292
SCHEDD_CRON_<JobName>_CWD, 292
SCHEDD_CRON_<JobName>_ENV, 292
SCHEDD_CRON_<JobName>_EXECUTABLE, 292
SCHEDD_CRON_<JobName>_JOB_LOAD, 292
SCHEDD_CRON_<JobName>_KILL, 293
SCHEDD_CRON_<JobName>_MODE, 294
SCHEDD_CRON_<JobName>_PERIOD, 294
SCHEDD_CRON_<JobName>_PREFIX, 295
SCHEDD_CRON_<JobName>_RECONFIG, 295
SCHEDD_CRON_<JobName>_RECONFIG_RERUN, 295
SCHEDD_CRON_CONFIG_VAL, 291
SCHEDD_CRON_JOBLIST, 292
SCHEDD_CRON_LOG_NON_ZERO_EXIT, 292
SCHEDD_CRON_MAX_JOB_LOAD, 292
SLOT<N>_JOB_HOOK_KEYWORD, 289
STARTD_CRON_<JobName>_ARGS, 292
STARTD_CRON_<JobName>_CONDITION, 292
STARTD_CRON_<JobName>_CWD, 292
STARTD_CRON_<JobName>_ENV, 292
STARTD_CRON_<JobName>_EXECUTABLE, 292
STARTD_CRON_<JobName>_JOB_LOAD, 292
STARTD_CRON_<JobName>_KILL, 293
STARTD_CRON_<JobName>_METRICS, 293
STARTD_CRON_<JobName>_MODE, 294
STARTD_CRON_<JobName>_PERIOD, 294
STARTD_CRON_<JobName>_PREFIX, 295

STARTD_CRON_<JobName>_RECONFIG, 295
STARTD_CRON_<JobName>_RECONFIG_RERUN, 295
STARTD_CRON_<JobName>_SLOTS, 295
STARTD_CRON_AUTOPUBLISH, 291
STARTD_CRON_CONFIG_VAL, 291
STARTD_CRON_JOBLIST, 292
STARTD_CRON_LOG_NON_ZERO_EXIT, 292
STARTD_CRON_MAX_JOB_LOAD, 292
STARTD_JOB_HOOK_KEYWORD, 289

Hooks invoked by HTCondor
Job hooks, 356

HOST_ALIAS
SECURITY Configuration Options, 274

Host_Based
SECURITY Configuration Templates, 160

host-based
security, 429

HOSTNAME, 153
Hostname (htcondor.LogLevel attribute), 649
HostsClaimed

Collector ClassAd Attribute, 1096
HostsOwner

Collector ClassAd Attribute, 1096
HostsTotal

Collector ClassAd Attribute, 1096
HostsUnclaimed

Collector ClassAd Attribute, 1096
HPC (High-Performance Computing), 31
HTC (High-Throughput Computing), 31
htcondor

HTCondor commands, 1016
module, 619

htcondor command, 1016
HTCondor commands

condor_upgrade_check, 991
HTCondor GAHP, 698
htcondor.dags

module, 659
htcondor.htchirp

module, 652
htcondor.personal

module, 672
htcondor2

module, 607
HTCondor-C, 697, 700

grid computing, 697
HTCondor-wide configuration variables

configuration, 163

I
identicalMember()

ClassAd functions, 471, 785
Idle

machine activity, 317

1150 Index

HTCondor Manual, Release 23.6.2

IDLE (htcondor.JobStatus attribute), 631
IdleJobs

Collector ClassAd Attribute, 1096
Grid ClassAd Attribute, 1094
Submitter ClassAd Attribute, 1091

IF/ELSE configuration syntax, 148
IF/ELSE submit commands syntax, 44
IF/ELSE syntax

configuration, 148
example, 44

IfThenElse()
ClassAd functions, 469, 783

IGNORE_DNS_PROTOCOL_PREFERENCE
Global Configuration Options, 173

IGNORE_NFS_LOCK_ERRORS
FileSystem Configuration Options, 192

IGNORE_TARGET_PROTOCOL_PREFERENCE
Global Configuration Options, 173

image_size
Submit commands, 950

IMAGE_SIZE (htcondor.JobEventType attribute), 646
ImageSize

Job ClassAd Attribute, 1039
IMMUTABLE_JOB_ATTRS

SCHEDD Configuration Options, 231
In

optional attributes, 357
in configuration

$RANDOM_INTEGER(), 48, 151
in configuration file

macro, 142
in DAGs

email notification, 961
in HTCondor

security, 399
in machine allocation

priority, 373
in submit description file

automatic variables, 42
ENV, 956
environment variables, 956
macro, 954
substitution macro, 955

IN_FINISHED (htcondor.FileTransferEventType at-
tribute), 647

IN_HIGHPORT
Network Configuration Options, 188

IN_LOWPORT
Network Configuration Options, 188

IN_QUEUED (htcondor.FileTransferEventType attribute),
647

IN_STARTED (htcondor.FileTransferEventType attribute),
647

INCLUDE

DAG Commands, 549
Global Configuration Options, 164

include command, 146
INCLUDE configuration syntax, 147
INCLUDE syntax

configuration, 147
IncludeClusterAd (htcondor.QueryOpts attribute), 629
including commands from elsewhere

submit description file, 44
initialdir

and file transfer, 62
and NFS, 108
and public input files, 68
and security, 438
and transfer input, 63
condor_qsub, 883
eviction on Windows, 727
example with paths, 65
Submit commands, 950

input
and SUBMIT_SKIP_FILECHECKS, 241
condor_qsub, 883
example with paths, 65
Submit commands, 926
vm universe, 92
when transfered, 62

input file specified by URL
file transfer mechanism, 69, 453

input file(s) encryption
file transfer mechanism, 931, 932

int()
ClassAd functions, 471, 785

integrity
security, 424

interaction with
NFS, 108

interactive
job, 55

interactive jobs, 55
INTERACTIVE_SUBMIT_FILE

SUBMIT Configuration Options, 242
interval()

ClassAd functions, 477, 792
INVALID_LOG_FILES

PREEN Configuration Options, 243
IOWait

Job ClassAd Attribute, 1039
IP_ADDRESS, 153
IP_ADDRESS_IS_V6, 153
IPv4 port specification, 438

port usage, 438
IPV4_ADDRESS, 153
IPv6, 447, 449
IPV6_ADDRESS, 153

Index 1151

HTCondor Manual, Release 23.6.2

IS_OWNER
STARTD Configuration Options, 199

isAbstime()
ClassAd functions, 470, 785

IsAccountingGroup
Accounting ClassAd Attribute, 1025

isBoolean()
ClassAd functions, 470, 784

isClassAd()
ClassAd functions, 470, 784

isError()
ClassAd functions, 470, 784

isInteger()
ClassAd functions, 470, 784

isList()
ClassAd functions, 470, 784

isReal()
ClassAd functions, 470, 784

isRelTime()
ClassAd functions, 471, 785

isReltime()
ClassAd functions, 471, 785

isString()
ClassAd functions, 470, 784

isUndefined()
ClassAd functions, 470, 784

IsWakeAble
Machine ClassAd Attribute, 1060

IsWakeEnabled
Machine ClassAd Attribute, 1060

items to be aware of
upgrading, 745

IWD
optional attributes, 357

IwdFlushNFSCache
ClassAd job attribute, 108
Job ClassAd Attribute, 1039

J
jar_files

definition, 104
Submit commands, 946
when transfered, 62

JarFiles
optional attributes, 358

JAVA
STARTD Configuration Options, 211

Java, 102
java

universe, 84, 85, 1041
Java example

Job hooks, 363
Java Virtual Machine, 84, 102
JAVA_CLASSPATH_ARGUMENT

STARTD Configuration Options, 211
JAVA_CLASSPATH_DEFAULT

STARTD Configuration Options, 211
JAVA_CLASSPATH_SEPARATOR

STARTD Configuration Options, 211
JAVA_EXTRA_ARGUMENTS

STARTD Configuration Options, 211
java_vm_args

Submit commands, 946
JOB

DAG Commands, 549
Job, 1109
Job (ClassAd Types), 1024
Job (htcondor.LogLevel attribute), 649
Job (htcondor.SubsystemType attribute), 651
Job ClassAd Attribute

<Name>Provisioned, 1055
Absent, 1026
AcctGroup, 1026
AcctGroupUser, 1026
ActivationDuration, 1026
ActivationExecutionDuration, 1026
ActivationSetupDuration, 1026
ActivationTeardownDuration, 1026
AllowedExecuteDuration, 1027
AllowedJobDuration, 1027
AllRemoteHosts, 1027
Args, 1027
Arguments, 1027
AuthTokenGroups, 1027
AuthTokenId, 1027
AuthTokenIssuer, 1027
AuthTokenScopes, 1027
AuthTokenSubject, 1027
BatchExtraSubmitArgs, 1027
BatchProject, 1027
BatchQueue, 1027
BatchRuntime, 1027
BlockReadKbytes, 1027
BlockReads, 1027
BlockWriteKbytes, 1027
BlockWrites, 1028
CheckpointDestination, 1028
CloudLabelNames, 1028
ClusterId, 1028
Cmd, 1028
CommittedSlotTime, 1028
CommittedSuspensionTime, 1028
CommittedTime, 1028
CompletionDate, 1028
ConcurrencyLimits, 1028
CondorPlatform, 1028
CondorVersion, 1028
ContainerImageSource, 1028

1152 Index

HTCondor Manual, Release 23.6.2

ContainerTargetDir, 1028
CpusProvisioned, 1055
CpusUsage, 1055
CronDayOfMonth, 1053
CronDayOfWeek, 1053
CronHour, 1053
CronMinute, 1053
CronMonth, 1053
CumulativeRemoteSysCpu, 1047
CumulativeRemoteUserCpu, 1047
CumulativeSlotTime, 1029
CumulativeSuspensionTime, 1029
CumulativeTransferTime, 1029
CurrentHosts, 1029
DAG_AdUpdateTime, 1054
DAG_InRecovery, 1054
DAG_JobsCompleted, 1055
DAG_JobsHeld, 1055
DAG_JobsIdle, 1055
DAG_JobsRunning, 1055
DAG_JobsSubmitted, 1054
DAG_NodesDone, 1054
DAG_NodesFailed, 1054
DAG_NodesFutile, 1054
DAG_NodesPostrun, 1054
DAG_NodesPrerun, 1054
DAG_NodesQueued, 1054
DAG_NodesReady, 1054
DAG_NodesTotal, 1054
DAG_NodesUnready, 1054
DAG_Status, 1054
DAGMan_MaxIdle, 1055
DAGMan_MaxJobs, 1055
DAGMan_MaxPostScripts, 1055
DAGMan_MaxPreScripts, 1055
DAGManJobId, 1029
DAGManNodeRetry, 1030
DAGManNodesLog, 1029
DAGManNodesMask, 1029
DAGNodeName, 1029
DAGParentNodeNames, 1029
DeferralPrepTime, 1030
DeferralTime, 1030
DeferralWindow, 1030
DelegateJobGSICredentialsLifetime, 1030
DiskProvisioned, 1055
DiskUsage, 1030
DockerImage, 1030
EC2AccessKeyId, 1030
EC2AmiID, 1030
EC2BlockDeviceMapping, 1030
EC2ElasticIp, 1030
EC2IamProfileArn, 1030
EC2IamProfileName, 1031

EC2InstanceName, 1031
EC2InstanceType, 1031
EC2KeyPair, 1031
EC2KeyPairFile, 1031
EC2ParameterNames, 1031
EC2RemoteVirtualMachineName, 1031
EC2SecretAccessKey, 1031
EC2SecurityGroups, 1031
EC2SecurityIDs, 1031
EC2SpotPrice, 1031
EC2SpotRequestID, 1031
EC2StatusReasonCode, 1031
EC2TagNames, 1031
EC2UserData, 1031
EC2UserDataFile, 1032
EmailAttributes, 1032
EncryptExecuteDirectory, 1032
EnteredCurrentStatus, 1032
Env, 1032
Environment, 1032
EraseOutputAndErrorOnRestart, 1032
ExecutableSize, 1032
ExitBySignal, 1032
ExitCode, 1032
ExitSignal, 1032
ExitStatus, 1032
GceAuthFile, 1032
GceImage, 1032
GceJsonFile, 1033
GceMachineType, 1033
GceMetadata, 1033
GceMetadataFile, 1033
GcePreemptible, 1033
GlobalJobId, 1033
GPUsMaxCapability, 1033
GPUsMinCapability, 1033
GPUsMinMemory, 1033
GPUsMinRuntime, 1033
GridJobStatus, 1033
GridResource, 1033
GridResourceUnavailableTime, 1033
HoldKillSig, 1034
HoldReason, 1034
HoldReasonCode, 1034
HoldReasonSubCode, 1038
HookKeyword, 1039
ImageSize, 1039
IOWait, 1039
IwdFlushNFSCache, 1039
JobAdInformationAttrs, 1039
JobBatchName, 1039
JobCurrentFinishTransferInputDate, 1039
JobCurrentFinishTransferOutputDate, 1039
JobCurrentReconnectAttempt, 1039

Index 1153

HTCondor Manual, Release 23.6.2

JobCurrentStartDate, 1039
JobCurrentStartExecutingDate, 1039
JobCurrentStartTransferInputDate, 1039
JobCurrentStartTransferOutputDate, 1039
JobDescription, 1040
JobDisconnectedDate, 1040
JobLeaseDuration, 1040
JobMaxVacateTime, 1040
JobNotification, 1040
JobPrio, 1040
JobRunCount, 1040
JobStartDate, 1040
JobStarterDebug, 1049
JobStarterLog, 1049
JobStatus, 1040
JobSubmitFile, 1041
JobSubmitMethod, 1041
JobUniverse, 1041
KeepClaimIdle, 1041
KillSig, 1041
KillSigTimeout, 1041
LastMatchTime, 1041
LastRejMatchReason, 1042
LastRejMatchTime, 1042
LastRemotePool, 1042
LastRemoteWallClockTime, 1048
LastSuspensionTime, 1042
LastVacateTime, 1042
LeaveJobInQueue, 1042
MachineAttr<X><N>, 1042
MaxHosts, 1042
MaxJobRetirementTime, 1042
MaxTransferInputMB, 1042
MaxTransferOutputMB, 1042
MemoryProvisioned, 1055
MemoryUsage, 1043
MinHosts, 1043
NextJobStartDelay, 1043
NiceUser, 1043
Nonessential, 1043
NTDomain, 1043
NumHolds, 1043
NumHoldsByReason, 1043
NumJobCompletions, 1043
NumJobMatches, 1043
NumJobReconnects, 1043
NumJobStarts, 1043
NumPids, 1043
NumRestarts, 1044
NumShadowExceptions, 1044
NumShadowStarts, 1044
NumSystemHolds, 1044
OtherJobRemoveRequirements, 1044
OutputDestination, 1044

Owner, 1044
ParallelShutdownPolicy, 1044
PostArgs, 1044
PostArguments, 1044
PostCmd, 1044
PostCmdExitBySignal, 1045
PostCmdExitCode, 1045
PostCmdExitSignal, 1045
PostEnv, 1045
PostEnvironment, 1045
PostJobPrio1, 1046
PostJobPrio2, 1046
PreArgs, 1045
PreArguments, 1045
PreCmd, 1045
PreCmdExitBySignal, 1045
PreCmdExitCode, 1045
PreCmdExitSignal, 1046
PreEnv, 1046
PreEnvironment, 1046
PreJobPrio1, 1046
PreJobPrio2, 1046
PreserveRelativeExecutable, 1046
PreserveRelativePaths, 1046
ProcId, 1046
ProportionalSetSizeKb, 1046
ProvisionerState, 1046
QDate, 1047
RecentBlockReadKbytes, 1047
RecentBlockReads, 1047
RecentBlockWriteKbytes, 1047
RecentBlockWrites, 1047
ReleaseReason, 1047
RemoteIwd, 1047
RemotePool, 1047
RemoteSysCpu, 1047
RemoteUserCpu, 1047
RemoteWallClockTime, 1047
RemoveKillSig, 1048
RequestCpus, 1048
RequestDisk, 1048
RequestedChroot, 1048
RequestGPUs, 1048
RequestMemory, 1048
RequireGPUs, 1048
ResidentSetSize, 1048
ScitokensFile, 1048
ScratchDirFileCount, 1048
ServerTime, 1049
StackSize, 1049
StageOutFinish, 1049
StageOutStart, 1049
StreamErr, 1049
StreamOut, 1049

1154 Index

HTCondor Manual, Release 23.6.2

SubmitterAutoregroup, 1049
SubmitterGlobalJobId, 1049
SubmitterGroup, 1049
SubmitterNegotiatingGroup, 1049
SuccessCheckpointExitBySignal, 1049
SuccessCheckpointExitCode, 1049
SuccessCheckpointExitSignal, 1050
SuccessPostExitBySignal, 1050
SuccessPostExitCode, 1050
SuccessPostExitSignal, 1050
SuccessPreExitBySignal, 1050
SuccessPreExitCode, 1050
SuccessPreExitSignal, 1050
ToE, 1050
TotalJobReconnectAttempts, 1050
TotalSuspensions, 1050
TransferCheckpoint, 1050
TransferContainer, 1050
TransferErr, 1050
TransferExecutable, 1050
TransferIn, 1051
TransferInFinished, 1051
TransferInput, 1051
TransferInputSizeMB, 1051
TransferInputStats, 1051
TransferInQueued, 1051
TransferInStarted, 1051
TransferOut, 1051
TransferOutFinished, 1051
TransferOutput, 1051
TransferOutputStats, 1051
TransferOutQueued, 1051
TransferOutStarted, 1052
TransferPlugins, 1052
TransferQueued, 1052
TransferringInput, 1052
TransferringOutput, 1052
UserLog, 1052
VM_MACAddr, 1053
WantContainer, 1052
WantDocker, 1052
WantFTOnCheckpoint, 1052
WantGracefulRemoval, 1052
WantTransferPluginMethods, 1052
WindowsBuildNumber, 1052
WindowsMajorVersion, 1052
WindowsMinorVersion, 1053
X509UserProxy, 1053
X509UserProxyEmail, 1053
X509UserProxyExpiration, 1053
X509UserProxyFirstFQAN, 1053
X509UserProxyFQAN, 1053
X509UserProxySubject, 1053
X509UserProxyVOName, 1053

job ClassAd attribute
ClusterId, 954
GPUsMemoryUsage, 79
GPUsUsage, 79
JobLeaseDuration, 129

Job Cleanup
Job Router Hooks, 719

job deferral time, 114
job event codes and descriptions

log files, 77
job example

Java, 103
Job exit

Fetch Hooks, 362
Job Finalize

Job Router Hooks, 719
job hook configuration variables

configuration, 289
Job hooks, 355
job hooks that fetch work

Hooks, 355
job lease, 129
Job Router, 289, 709, 718
JOB ROUTER Configuration Options

dir, 264
file, 264
JOB_ROUTER_CREATE_IDTOKEN_<NAME>, 263
JOB_ROUTER_CREATE_IDTOKEN_NAMES, 263
JOB_ROUTER_DEFAULT_MAX_IDLE_JOBS_PER_ROUTE,

262
JOB_ROUTER_DEFAULT_MAX_JOBS_PER_ROUTE,

262
JOB_ROUTER_DEFAULTS, 260
JOB_ROUTER_ENTRIES, 260
JOB_ROUTER_ENTRIES_CMD, 261
JOB_ROUTER_ENTRIES_FILE, 261
JOB_ROUTER_ENTRIES_REFRESH, 261
JOB_ROUTER_IDTOKEN_REFRESH, 263
JOB_ROUTER_LOCK, 261
JOB_ROUTER_MAX_JOBS, 262
JOB_ROUTER_NAME, 262
JOB_ROUTER_POLLING_PERIOD, 262
JOB_ROUTER_POST_ROUTE_TRANSFORM_NAMES,

260
JOB_ROUTER_PRE_ROUTE_TRANSFORM_NAMES, 260
JOB_ROUTER_RELEASE_ON_HOLD, 262
JOB_ROUTER_ROUND_ROBIN_SELECTION, 263
JOB_ROUTER_ROUTE_<NAME>, 260
JOB_ROUTER_ROUTE_NAMES, 260
JOB_ROUTER_SCHEDD1_JOB_QUEUE_LOG, 262
JOB_ROUTER_SCHEDD1_NAME, 263
JOB_ROUTER_SCHEDD1_POOL, 263
JOB_ROUTER_SCHEDD1_SPOOL, 262
JOB_ROUTER_SCHEDD2_JOB_QUEUE_LOG, 263

Index 1155

HTCondor Manual, Release 23.6.2

JOB_ROUTER_SCHEDD2_NAME, 263
JOB_ROUTER_SCHEDD2_POOL, 263
JOB_ROUTER_SCHEDD2_SPOOL, 263
JOB_ROUTER_SEND_ROUTE_IDTOKENS, 264
JOB_ROUTER_SOURCE_JOB_CONSTRAINT, 261
JOB_ROUTER_TRANSFORM_<NAME>, 260
JOB_ROUTER_USE_DEPRECATED_ROUTER_ENTRIES,

260
kid, 263
lifetime, 264
MAX_JOB_MIRROR_UPDATE_LAG, 262
owner, 264
scope, 264
sub, 264

Job Router hooks
Hooks, 718

Job Sets, 118
checking status of, 121
example submit, 118
listing, 120
removing, 121

job submission
HTCondor-C, 698

job transforms, 365
JOB_ABORTED (htcondor.JobEventType attribute), 646
JOB_AD_INFORMATION (htcondor.JobEventType at-

tribute), 647
job_ad_information_attrs

Submit commands, 950
JOB_DEFAULT_LEASE_DURATION

SUBMIT Configuration Options, 240
JOB_DEFAULT_NOTIFICATION

SUBMIT Configuration Options, 240
JOB_DEFAULT_REQUESTCPUS

SUBMIT Configuration Options, 240
JOB_DEFAULT_REQUESTDISK

SUBMIT Configuration Options, 240
JOB_DEFAULT_REQUESTMEMORY, 1048

SUBMIT Configuration Options, 240
JOB_DISCONNECTED (htcondor.JobEventType attribute),

646
JOB_EPOCH_HISTORY

SHADOW Configuration Options, 233
JOB_EPOCH_HISTORY_DIR

SHADOW Configuration Options, 233
JOB_EVICTED (htcondor.JobEventType attribute), 646
JOB_EXECDIR_PERMISSIONS

STARTER Configuration Options, 239
JOB_HELD (htcondor.JobEventType attribute), 646
JOB_INHERITS_STARTER_ENVIRONMENT

STARTER Configuration Options, 236
JOB_IS_FINISHED_COUNT

SCHEDD Configuration Options, 220
JOB_IS_FINISHED_INTERVAL

SCHEDD Configuration Options, 220
job_lease_duration

and JOB_DEFAULT_LEASE_DURATION, 240
definition, 129
Submit commands, 950

job_machine_attrs
and SYSTEM_JOB_MACHINE_ATTRS, 222
Submit commands, 950

job_machine_attrs_history_length
and SYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH,

222
Submit commands, 950

job_max_vacate_time
Submit commands, 951

JOB_QUEUE_LOG
Global Configuration Options, 176

JOB_RECONNECT_FAILED (htcondor.JobEventType
attribute), 646

JOB_RECONNECTED (htcondor.JobEventType attribute),
646

JOB_RELEASED (htcondor.JobEventType attribute), 646
JOB_RENICE_INCREMENT

STARTER Configuration Options, 234
JOB_ROUTER_CREATE_IDTOKEN_<NAME>

JOB ROUTER Configuration Options, 263
JOB_ROUTER_CREATE_IDTOKEN_NAMES

JOB ROUTER Configuration Options, 263
JOB_ROUTER_DEFAULT_MAX_IDLE_JOBS_PER_ROUTE

JOB ROUTER Configuration Options, 262
JOB_ROUTER_DEFAULT_MAX_JOBS_PER_ROUTE

JOB ROUTER Configuration Options, 262
JOB_ROUTER_DEFAULTS

JOB ROUTER Configuration Options, 260
JOB_ROUTER_ENTRIES

JOB ROUTER Configuration Options, 260
JOB_ROUTER_ENTRIES_CMD

JOB ROUTER Configuration Options, 261
JOB_ROUTER_ENTRIES_FILE

JOB ROUTER Configuration Options, 261
JOB_ROUTER_ENTRIES_REFRESH

JOB ROUTER Configuration Options, 261
JOB_ROUTER_HOOK_KEYWORD

HOOKS Configuration Options, 290
JOB_ROUTER_IDTOKEN_REFRESH

JOB ROUTER Configuration Options, 263
JOB_ROUTER_LOCK

JOB ROUTER Configuration Options, 261
JOB_ROUTER_MAX_JOBS

JOB ROUTER Configuration Options, 262
JOB_ROUTER_NAME

JOB ROUTER Configuration Options, 262
JOB_ROUTER_POLLING_PERIOD

JOB ROUTER Configuration Options, 262
JOB_ROUTER_POST_ROUTE_TRANSFORM_NAMES

1156 Index

HTCondor Manual, Release 23.6.2

JOB ROUTER Configuration Options, 260
JOB_ROUTER_PRE_ROUTE_TRANSFORM_NAMES

JOB ROUTER Configuration Options, 260
JOB_ROUTER_RELEASE_ON_HOLD

JOB ROUTER Configuration Options, 262
JOB_ROUTER_ROUND_ROBIN_SELECTION

JOB ROUTER Configuration Options, 263
JOB_ROUTER_ROUTE_<NAME>

JOB ROUTER Configuration Options, 260
JOB_ROUTER_ROUTE_NAMES

JOB ROUTER Configuration Options, 260
JOB_ROUTER_SCHEDD1_JOB_QUEUE_LOG

JOB ROUTER Configuration Options, 262
JOB_ROUTER_SCHEDD1_NAME

JOB ROUTER Configuration Options, 263
JOB_ROUTER_SCHEDD1_POOL

JOB ROUTER Configuration Options, 263
JOB_ROUTER_SCHEDD1_SPOOL

JOB ROUTER Configuration Options, 262
JOB_ROUTER_SCHEDD2_JOB_QUEUE_LOG

JOB ROUTER Configuration Options, 263
JOB_ROUTER_SCHEDD2_NAME

JOB ROUTER Configuration Options, 263
JOB_ROUTER_SCHEDD2_POOL

JOB ROUTER Configuration Options, 263
JOB_ROUTER_SCHEDD2_SPOOL

JOB ROUTER Configuration Options, 263
JOB_ROUTER_SEND_ROUTE_IDTOKENS

JOB ROUTER Configuration Options, 264
JOB_ROUTER_SOURCE_JOB_CONSTRAINT

JOB ROUTER Configuration Options, 261
JOB_ROUTER_TRANSFORM_<NAME>

JOB ROUTER Configuration Options, 260
JOB_ROUTER_USE_DEPRECATED_ROUTER_ENTRIES

JOB ROUTER Configuration Options, 260
job_set

definition, 118
JOB_SPOOL_PERMISSIONS

SCHEDD Configuration Options, 231
JOB_STAGE_IN (htcondor.JobEventType attribute), 647
JOB_STAGE_OUT (htcondor.JobEventType attribute), 647
JOB_START_COUNT

SCHEDD Configuration Options, 220
JOB_START_DELAY

SCHEDD Configuration Options, 220
JOB_STATUS_KNOWN (htcondor.JobEventType attribute),

647
JOB_STATUS_UNKNOWN (htcondor.JobEventType at-

tribute), 647
JOB_STOP_COUNT

SCHEDD Configuration Options, 220
JOB_STOP_DELAY

SCHEDD Configuration Options, 220
JOB_SUSPENDED (htcondor.JobEventType attribute), 646

JOB_TERMINATED (htcondor.JobEventType attribute),
646

JOB_TRANSFORM_<Name>
SCHEDD Configuration Options, 230

JOB_TRANSFORM_NAMES
SCHEDD Configuration Options, 230

JOB_UNSUSPENDED (htcondor.JobEventType attribute),
646

JobAdInformationAttrs
Job ClassAd Attribute, 1039

JobBatchName
Job ClassAd Attribute, 1039

JobBusyTimeAvg
Machine ClassAd Attribute, 1060

JobBusyTimeCount
Machine ClassAd Attribute, 1060

JobBusyTimeMax
Machine ClassAd Attribute, 1060

JobBusyTimeMin
Machine ClassAd Attribute, 1060

JobCurrentFinishTransferInputDate
Job ClassAd Attribute, 1039

JobCurrentFinishTransferOutputDate
Job ClassAd Attribute, 1039

JobCurrentReconnectAttempt
Job ClassAd Attribute, 1039

JobCurrentStartDate
Job ClassAd Attribute, 1039

JobCurrentStartExecutingDate
Job ClassAd Attribute, 1039

JobCurrentStartTransferInputDate
Job ClassAd Attribute, 1039

JobCurrentStartTransferOutputDate
Job ClassAd Attribute, 1039

JobDescription
Job ClassAd Attribute, 1040

JobDisconnectedDate
Job ClassAd Attribute, 1040

JobDurationAvg
Machine ClassAd Attribute, 1060

JobDurationCount
Machine ClassAd Attribute, 1060

JobDurationMax
Machine ClassAd Attribute, 1060

JobDurationMin
Machine ClassAd Attribute, 1060

JobFailureTest
Job Router Routing Table ClassAd

attribute, 713
JobId

Machine ClassAd Attribute, 1073
JobLeaseDuration

ClassAd job attribute, 129
Job ClassAd Attribute, 1040

Index 1157

HTCondor Manual, Release 23.6.2

JobLimit
Grid ClassAd Attribute, 1094

JobMaxVacateTime
Job ClassAd Attribute, 1040

JobNotification
Job ClassAd Attribute, 1040

JobPreemptions
Machine ClassAd Attribute, 1061

JobPrio
Job ClassAd Attribute, 1040

JobQueueBirthdate
Scheduler ClassAd Attribute, 1077

JobRankPreemptions
Machine ClassAd Attribute, 1061

JobRunCount
Job ClassAd Attribute, 1040

JobsAccumBadputTime
Scheduler ClassAd Attribute, 1077

JobsAccumExceptionalBadputTime
Scheduler ClassAd Attribute, 1077

JobsAccumRunningTime
Scheduler ClassAd Attribute, 1077

JobsAccumTimeToStart
Scheduler ClassAd Attribute, 1078

JobsBadputRuntimes
Scheduler ClassAd Attribute, 1078

JobsBadputSizes
Scheduler ClassAd Attribute, 1078

JobsCheckpointed
Scheduler ClassAd Attribute, 1078

JobsCompleted
Scheduler ClassAd Attribute, 1078

JobsCompletedRuntimes
Scheduler ClassAd Attribute, 1078

JobsCompletedSizes
Scheduler ClassAd Attribute, 1078

JobsCoredumped
Scheduler ClassAd Attribute, 1078

JobsDebugLogError
Scheduler ClassAd Attribute, 1078

JobsExecFailed
Scheduler ClassAd Attribute, 1078

JobsExited
Scheduler ClassAd Attribute, 1078

JobsExitedAndClaimClosing
Scheduler ClassAd Attribute, 1078

JobsExitedNormally
Scheduler ClassAd Attribute, 1078

JobsExitException
Scheduler ClassAd Attribute, 1078

JobsHaveInstanceIDs
FEATURE Configuration Templates, 158

JobShouldBeSandboxed

Job Router Routing Table ClassAd
attribute, 714

JobsKilled
Scheduler ClassAd Attribute, 1079

JobsMissedDeferralTime
Scheduler ClassAd Attribute, 1079

JobsNotStarted
Scheduler ClassAd Attribute, 1079

JobsRestartReconnectsAttempting
Scheduler ClassAd Attribute, 1079

JobsRestartReconnectsBadput
Scheduler ClassAd Attribute, 1079

JobsRestartReconnectsFailed
Scheduler ClassAd Attribute, 1079

JobsRestartReconnectsInterrupted
Scheduler ClassAd Attribute, 1079

JobsRestartReconnectsLeaseExpired
Scheduler ClassAd Attribute, 1079

JobsRestartReconnectsSucceeded
Scheduler ClassAd Attribute, 1079

JobsRunning
Scheduler ClassAd Attribute, 1079

JobsRunningRuntimes
Scheduler ClassAd Attribute, 1079

JobsRunningSizes
Scheduler ClassAd Attribute, 1079

JobsRuntimesHistogramBuckets
Scheduler ClassAd Attribute, 1079

JobsShadowNoMemory
Scheduler ClassAd Attribute, 1080

JobsShouldHold
Scheduler ClassAd Attribute, 1080

JobsShouldRemove
Scheduler ClassAd Attribute, 1080

JobsShouldRequeue
Scheduler ClassAd Attribute, 1080

JobsSizesHistogramBuckets
Scheduler ClassAd Attribute, 1080

JobsStarted
Scheduler ClassAd Attribute, 1080

JobsSubmitted
Scheduler ClassAd Attribute, 1080

JobStart
Machine ClassAd Attribute, 1073

JobStartDate
Job ClassAd Attribute, 1040

JobStarterDebug
Job ClassAd Attribute, 1049

JobStarterLog
Job ClassAd Attribute, 1049

JobStarts
Machine ClassAd Attribute, 1061

JOBSTATE_LOG
DAG Commands, 552

1158 Index

HTCondor Manual, Release 23.6.2

JobStatus
Job ClassAd Attribute, 1040

JobSubmitFile
Job ClassAd Attribute, 1041

JobSubmitMethod
Job ClassAd Attribute, 1041

JobsUnmaterialized
Scheduler ClassAd Attribute, 1080

JobUniverse
Job ClassAd Attribute, 1041
optional attributes, 357

JobUserPrioPreemptions
Machine ClassAd Attribute, 1061

JobVM_VCPUS
Machine ClassAd Attribute, 1061

join()
ClassAd functions, 474, 788

JULIA_NUM_THREADS
environment variables for jobs, 87

JVM, 84, 102

K
KBDD_BUMP_CHECK_AFTER_IDLE_TIME

STARTD Configuration Options, 201
KBDD_BUMP_CHECK_SIZE

STARTD Configuration Options, 201
keep_claim_idle

Submit commands, 938
KEEP_POOL_HISTORY

COLLECTOR Configuration Options, 245
KeepClaimIdle

Job ClassAd Attribute, 1041
Kerberos, 462

authentication, 413
Kerberos (htcondor.CredTypes attribute), 640
Kerberos authentication, 413
Kerberos principal

authentication, 414
KERBEROS_CLIENT_KEYTAB

SECURITY Configuration Options, 280
KERBEROS_SERVER_KEYTAB

SECURITY Configuration Options, 280
KERBEROS_SERVER_PRINCIPAL

SECURITY Configuration Options, 280
KERBEROS_SERVER_SERVICE

SECURITY Configuration Options, 280
KERBEROS_SERVER_USER

SECURITY Configuration Options, 280
KERNEL_TUNING_LOG

MASTER Configuration Options, 197
KeyboardIdle

Machine ClassAd Attribute, 1061
keywords

Job hooks, 359

KFlops
Machine ClassAd Attribute, 1061

kid
JOB ROUTER Configuration Options, 263

KILL
STARTD Configuration Options, 198

kill_sig
Submit commands, 951

kill_sig_timeout
Submit commands, 951

Killing
machine activity, 318

KILLING_TIMEOUT, 951
STARTD Configuration Options, 199

KillSig
Job ClassAd Attribute, 1041
optional attributes, 358

KillSigTimeout
Job ClassAd Attribute, 1041

KRB5, 462
KRB5CCNAME

environment variables for jobs, 463

L
LastDrainStartTime

Machine ClassAd Attribute, 1061
LastDrainStopTime

Machine ClassAd Attribute, 1061
LastHeardFrom

ClassAd Attribute, 1098
Machine ClassAd Attribute, 1061

LastMatchTime
Job ClassAd Attribute, 1041

LastNegotiationCycleActiveSubmitterCount
Negotiator ClassAd Attribute, 1088

LastNegotiationCycleCandidateSlots
Negotiator ClassAd Attribute, 1088

LastNegotiationCycleDuration<X>
Negotiator ClassAd Attribute, 1088

LastNegotiationCycleEnd<X>
Negotiator ClassAd Attribute, 1088

LastNegotiationCycleMatches<X>
Negotiator ClassAd Attribute, 1088

LastNegotiationCycleMatchRate<X>
Negotiator ClassAd Attribute, 1088

LastNegotiationCycleMatchRateSustained<X>
Negotiator ClassAd Attribute, 1088

LastNegotiationCycleNumIdleJobs<X>
Negotiator ClassAd Attribute, 1089

LastNegotiationCycleNumJobsConsidered<X>
Negotiator ClassAd Attribute, 1089

LastNegotiationCycleNumSchedulers<X>
Negotiator ClassAd Attribute, 1089

LastNegotiationCyclePeriod<X>

Index 1159

HTCondor Manual, Release 23.6.2

Negotiator ClassAd Attribute, 1089
LastNegotiationCyclePhase1Duration<X>

Negotiator ClassAd Attribute, 1089
LastNegotiationCyclePhase2Duration<X>

Negotiator ClassAd Attribute, 1089
LastNegotiationCyclePhase3Duration<X>

Negotiator ClassAd Attribute, 1089
LastNegotiationCyclePhase4Duration<X>

Negotiator ClassAd Attribute, 1089
LastNegotiationCycleRejections<X>

Negotiator ClassAd Attribute, 1089
LastNegotiationCycleSlotShareIter<X>

Negotiator ClassAd Attribute, 1089
LastNegotiationCycleSubmittersFailed<X>

Negotiator ClassAd Attribute, 1089
LastNegotiationCycleSubmittersOutOfTime<X>

Negotiator ClassAd Attribute, 1089
LastNegotiationCycleSubmittersShareLimit<X>

Negotiator ClassAd Attribute, 1090
LastNegotiationCycleTime<X>

Negotiator ClassAd Attribute, 1090
LastNegotiationCycleTotalSlots<X>

Negotiator ClassAd Attribute, 1090
LastNegotiationCycleTrimmedSlots<X>

Negotiator ClassAd Attribute, 1090
LastPeriodicCheckpoint

Machine ClassAd Attribute, 1073
LastRejMatchReason

Job ClassAd Attribute, 1042
LastRejMatchTime

Job ClassAd Attribute, 1042
LastRemotePool

Job ClassAd Attribute, 1042
LastRemoteWallClockTime

Job ClassAd Attribute, 1048
LastSuspensionTime

Job ClassAd Attribute, 1042
LastUsageTime

Accounting ClassAd Attribute, 1025
LastVacateTime

Job ClassAd Attribute, 1042
late materialization, 56

lots of jobs, 56
LEASE MANAGER Configuration Options

LeaseManager.CLASSAD_LOG, 265
LeaseManager.DEBUG_ADS, 265
LeaseManager.DEFAULT_MAX_LEASE_DURATION,

265
LeaseManager.GETADS_INTERVAL, 264
LeaseManager.MAX_LEASE_DURATION, 265
LeaseManager.MAX_TOTAL_LEASE_DURATION,

265
LeaseManager.PRUNE_INTERVAL, 264
LeaseManager.QUERY_ADTYPE, 265

LeaseManager.QUERY_CONSTRAINTS, 265
LeaseManager.UPDATE_INTERVAL, 264

LeaseManager.CLASSAD_LOG
LEASE MANAGER Configuration Options, 265

LeaseManager.DEBUG_ADS
LEASE MANAGER Configuration Options, 265

LeaseManager.DEFAULT_MAX_LEASE_DURATION
LEASE MANAGER Configuration Options, 265

LeaseManager.GETADS_INTERVAL
LEASE MANAGER Configuration Options, 264

LeaseManager.MAX_LEASE_DURATION
LEASE MANAGER Configuration Options, 265

LeaseManager.MAX_TOTAL_LEASE_DURATION
LEASE MANAGER Configuration Options, 265

LeaseManager.PRUNE_INTERVAL
LEASE MANAGER Configuration Options, 264

LeaseManager.QUERY_ADTYPE
LEASE MANAGER Configuration Options, 265

LeaseManager.QUERY_CONSTRAINTS
LEASE MANAGER Configuration Options, 265

LeaseManager.UPDATE_INTERVAL
LEASE MANAGER Configuration Options, 264

leave_in_queue
Submit commands, 938

LeaveJobInQueue
Job ClassAd Attribute, 1042

leaving a low power state
power management, 354

LEGACY_ALLOW_SEMANTICS
SECURITY Configuration Options, 280

LIB
Global Configuration Options, 164

LIBEXEC
Global Configuration Options, 164

LIBVIRT_XML_SCRIPT
Virtual Machines Configuration Options,

282
LIBVIRT_XML_SCRIPT_ARGS

Virtual Machines Configuration Options,
282

License (htcondor.AdTypes attribute), 622
lifetime

JOB ROUTER Configuration Options, 264
Limit_Job_Runtimes

POLICY Configuration Templates, 159
linda

universe, 1041
Linux

platform-specific information, 721
Linux platform details

power management, 354
LINUX_HIBERNATION_METHOD

STARTD Configuration Options, 213
LINUX_KERNEL_TUNING_SCRIPT

1160 Index

HTCondor Manual, Release 23.6.2

MASTER Configuration Options, 197
LinuxCapabilities

Daemon-master ClassAd Attribute, 1076
load_profile

and scripts, 726
definition, 726
Submit commands, 951

LoadAvg
Machine ClassAd Attribute, 1061

loading account profile
Windows, 725

local
universe, 85, 1041

local universe, 85
LOCAL_CONFIG_DIR

Global Configuration Options, 166
LOCAL_CONFIG_DIR_EXCLUDE_REGEXP

Global Configuration Options, 166
LOCAL_CONFIG_FILE

Global Configuration Options, 166
LOCAL_DIR

Global Configuration Options, 164
LOCAL_UNIV_EXECUTE

SCHEDD Configuration Options, 215
LocalJobsIdle

Submitter ClassAd Attribute, 1091
LocalJobsRunning

Submitter ClassAd Attribute, 1091
location of files

installation, 14, 16, 734
LOCK

Global Configuration Options, 168
LOCK_DEBUG_LOG_TO_APPEND

Global Configuration Options, 176
LOCK_FILE_UPDATE_INTERVAL

Global Configuration Options, 184
LOG, 202, 690

Global Configuration Options, 164
log

and StarterUserLog, 358
and SUBMIT_SKIP_FILECHECKS, 241
definition, 449
Submit commands, 926
with parallel universe, 98

LOG_ON_NFS_IS_ERROR
SUBMIT Configuration Options, 242

LOG_TO_SYSLOG
Global Configuration Options, 175

log_xml
Submit commands, 951

logging, 449
LOGS_USE_TIMESTAMP

Global Configuration Options, 177
lost datagrams

UDP, 447
LOWPORT

Network Configuration Options, 188
LVM_BACKING_FILE

STARTD Configuration Options, 206
LVM_BACKING_FILE_SIZE_MB

STARTD Configuration Options, 206
LVM_HIDE_MOUNT

STARTD Configuration Options, 206
LVM_THIN_LV_EXTRA_SIZE_MB

STARTD Configuration Options, 206
LVM_THINPOOL_NAME

STARTD Configuration Options, 206
LVM_USE_THIN_PROVISIONING

STARTD Configuration Options, 205
LVM_VOLUME_GROUP_NAME

STARTD Configuration Options, 206

M
Machine

Collector ClassAd Attribute, 1096
Daemon-master ClassAd Attribute, 1076
Defrag ClassAd Attribute, 1092
Machine ClassAd Attribute, 1062
Negotiator ClassAd Attribute, 1090
Scheduler ClassAd Attribute, 1080

machine
ClassAd, 116

Machine (ClassAd Types), 1024
Machine (htcondor.LogLevel attribute), 649
machine activity, 317
machine ClassAd, 117
Machine ClassAd Attribute

<name>BoardTempC, 1074
<name>Capability, 1074
<name>ClockMhz, 1074
<name>ComputeUnits, 1074
<name>CoresPerCU, 1074
<name>DeviceName, 1074
<name>DieTempC, 1074
<name>DriverVersion, 1074
<name>ECCEnabled, 1074
<name>EccErrorsDoubleBit, 1074
<name>EccErrorsSingleBit, 1074
<name>FanSpeedPct, 1074
<name>GlobalMemoryMb, 1074
<name>OpenCLVersion, 1074
<name>RuntimeVersion, 1074
AcceptedWhileDraining, 1056
Activity, 1056
Arch, 1056
Assigned<name>, 1073
CanHibernate, 1056
CgroupEnforced, 1056

Index 1161

HTCondor Manual, Release 23.6.2

ChildAccountingGroup, 1074
ChildActivity, 1074
ChildCpus, 1074
ChildCurrentRank, 1074
ChildEnteredCurrentState, 1074
ChildMemory, 1075
ChildName, 1075
ChildRemoteOwner, 1075
ChildRemoteUser, 1075
ChildRetirementTimeRemaining, 1075
ChildState, 1075
ClaimEndTime, 1056
ClientMachine, 1072
ClockDay, 1056
ClockMin, 1056
CloudImage, 1075
CloudInstanceID, 1075
CloudInterruptible, 1075
CloudPlatform, 1075
CloudProvider, 1075
CloudRegion, 1075
CloudVMType, 1075
CloudZone, 1075
CondorLoadAvg, 1057
CondorVersion, 1057
ConsoleIdle, 1057
CpuCacheSize, 1057
CpuFamily, 1057
CpuModel, 1057
Cpus, 1057
CurrentRank, 1057
CurrentTime, 1075
DetectedCpus, 1057
DetectedMemory, 1057
Disk, 1057
DockerCachedImageSizeMb, 1058
DotNetVersions, 1057
Draining, 1057
DrainingRequestId, 1057
DynamicSlot, 1058
EnteredCurrentActivity, 1058
ExpectedMachineGracefulDrainingBadput,

1058
ExpectedMachineGracefulDrainingCompletion,

1058
ExpectedMachineQuickDrainingBadput, 1058
ExpectedMachineQuickDrainingCompletion,

1058
FileSystemDomain, 1058
has_avx, 1059
has_avx2, 1059
has_avx512dnni, 1059
has_avx512dq, 1059
has_avx512f, 1059

Has_sse4_1, 1059
Has_sse4_2, 1059
has_ssse3, 1059
HasContainer, 1058
HasDocker, 1058
HasEncryptExecuteDirectory, 1059
HasFileTransfer, 1059
HasFileTransferPluginMethods, 1059
HasRotationalScratch, 1059
HasSandboxImage, 1058
HasSelfCheckpointTransfers, 1059
HasSIF, 1058
HasSingularity, 1059
HasSshd, 1059
HasUserNamespaces, 1059
HasVM, 1059
IsWakeAble, 1060
IsWakeEnabled, 1060
JobBusyTimeAvg, 1060
JobBusyTimeCount, 1060
JobBusyTimeMax, 1060
JobBusyTimeMin, 1060
JobDurationAvg, 1060
JobDurationCount, 1060
JobDurationMax, 1060
JobDurationMin, 1060
JobId, 1073
JobPreemptions, 1061
JobRankPreemptions, 1061
JobStart, 1073
JobStarts, 1061
JobUserPrioPreemptions, 1061
JobVM_VCPUS, 1061
KeyboardIdle, 1061
KFlops, 1061
LastDrainStartTime, 1061
LastDrainStopTime, 1061
LastHeardFrom, 1061
LastPeriodicCheckpoint, 1073
LoadAvg, 1061
Machine, 1062
MachineLastMatchTime, 1073
MachineMaxVacateTime, 1062
MaxClaimTime, 1062
MaxJobRetirementTime, 1062
Memory, 1062
Microarch, 1056
Mips, 1062
MonitorSelfAge, 1062
MonitorSelfCPUUsage, 1062
MonitorSelfImageSize, 1062
MonitorSelfRegisteredSocketCount, 1062
MonitorSelfResidentSetSize, 1062
MonitorSelfSecuritySessions, 1062

1162 Index

HTCondor Manual, Release 23.6.2

MonitorSelfTime, 1062
MyAddress, 1062
MyCurrentTime, 1062
MyType, 1063
Name, 1063
Offline, 1063
Offline<name>, 1073
OfflineUniverses, 1063
OpSys, 1063
OpSysAndVer, 1063
OpSysLegacy, 1065
OpSysLongName, 1065
OpSysMajorVer, 1065
OpSysName, 1066
OpSysShortName, 1067
OpSysVer, 1067
PartitionableSlot, 1068
PreemptingOwner, 1072
PreemptingRank, 1072
PreemptingUser, 1072
PslotRollupInformation, 1075
RecentJobBusyTimeAvg, 1060
RecentJobBusyTimeCount, 1060
RecentJobBusyTimeMax, 1060
RecentJobBusyTimeMin, 1060
RecentJobDurationAvg, 1061
RecentJobDurationCount, 1061
RecentJobDurationMax, 1061
RecentJobDurationMin, 1061
RecentJobPreemptions, 1068
RecentJobRankPreemptions, 1068
RecentJobStarts, 1068
RecentJobUserPrioPreemptions, 1068
RemoteAutoregroup, 1072
RemoteGroup, 1072
RemoteNegotiatingGroup, 1072
RemoteOwner, 1072
RemoteScheddName, 1072
RemoteUser, 1072
Requirements, 1068
RetirementTimeRemaining, 1068
SingularityVersion, 1069
SlotID, 1069
SlotType, 1069
SlotWeight, 1069
StartdIpAddr, 1069
State, 1069
TargetType, 1069
Total<name>, 1073
TotalClaimRunTime, 1072
TotalClaimSuspendTime, 1073
TotalCondorLoadAvg, 1069
TotalCpus, 1069
TotalDisk, 1070

TotalJobRunTime, 1073
TotalJobSuspendTime, 1073
TotalLoadAvg, 1070
TotalMachineDrainingBadput, 1070
TotalMachineDrainingUnclaimedTime, 1070
TotalMemory, 1070
TotalSlotCpus, 1070
TotalSlotDisk, 1070
TotalSlotMemory, 1070
TotalSlots, 1070
TotalTimeBackfillBusy, 1070
TotalTimeBackfillIdle, 1070
TotalTimeBackfillKilling, 1070
TotalTimeClaimedBusy, 1070
TotalTimeClaimedIdle, 1070
TotalTimeClaimedRetiring, 1070
TotalTimeClaimedSuspended, 1070
TotalTimeMatchedIdle, 1071
TotalTimeOwnerIdle, 1071
TotalTimePreemptingKilling, 1071
TotalTimePreemptingVacating, 1071
TotalTimeUnclaimedBenchmarking, 1071
TotalTimeUnclaimedIdle, 1071
UidDomain, 1071
Unhibernate, 1073
VirtualMemory, 1071
VM_AvailNum, 1071
VM_Guest_Mem, 1071
VM_Memory, 1071
VM_Networking, 1071
VM_Type, 1071
VMOfflineReason, 1071
VMOfflineTime, 1071
WindowsBuildNumber, 1072
WindowsMajorVersion, 1072
WindowsMinorVersion, 1072

machine example
ClassAd, 117

machine state, 314
machine state and activities figure, 318
machine_count

example, 96, 97
Submit commands, 946

MACHINE_RESOURCE_<name>
STARTD Configuration Options, 209

MACHINE_RESOURCE_INVENTORY_<name>
STARTD Configuration Options, 209

MACHINE_RESOURCE_NAMES
STARTD Configuration Options, 208

MachineAttr<X><N>
Job ClassAd Attribute, 1042

MachineLastMatchTime
Machine ClassAd Attribute, 1073

MachineMaxVacateTime

Index 1163

HTCondor Manual, Release 23.6.2

Machine ClassAd Attribute, 1062
STARTD Configuration Options, 200

MachinesDraining
Defrag ClassAd Attribute, 1092

MachinesDrainingPeak
Defrag ClassAd Attribute, 1092

Macintosh OS X
platform-specific information, 732

macro definitions
configuration file, 142

macros
configuration file, 154

MAIL
Global Configuration Options, 167

MAIL_FROM
Global Configuration Options, 167

mailing lists, 34
HTCondor, 34

manifest
Submit commands, 952

manifest_dir
Submit commands, 952

manual install
Windows, 737

Master (htcondor.AdTypes attribute), 622
Master (htcondor.DaemonTypes attribute), 621
Master (htcondor.SubsystemType attribute), 651
MASTER Configuration Options

<DaemonName>_ENVIRONMENT, 193
<SUBSYS>, 192
<SUBSYS>_ARGS, 193
<SUBSYS>_USERID, 193
ADD_WINDOWS_FIREWALL_EXCEPTION, 197
ALLOW_ADMIN_COMMANDS, 196
DAEMON_LIST, 192
DC_DAEMON_LIST, 192
DEFAULT_MASTER_SHUTDOWN_SCRIPT, 194
DISCARD_SESSION_KEYRING_ON_STARTUP, 197
ENABLE_KERNEL_TUNING, 197
KERNEL_TUNING_LOG, 197
LINUX_KERNEL_TUNING_SCRIPT, 197
MASTER_<name>_BACKOFF_CEILING, 195
MASTER_<name>_BACKOFF_CONSTANT, 195
MASTER_<name>_BACKOFF_FACTOR, 195
MASTER_<name>_RECOVER_FACTOR, 195
MASTER_ADDRESS_FILE, 196
MASTER_ATTRS, 196
MASTER_BACKOFF_CEILING, 195
MASTER_BACKOFF_CONSTANT, 195
MASTER_BACKOFF_FACTOR, 195
MASTER_CHECK_NEW_EXEC_INTERVAL, 194
MASTER_DEBUG, 196
MASTER_INSTANCE_LOCK, 196
MASTER_NAME, 196

MASTER_NEW_BINARY_DELAY, 194
MASTER_NEW_BINARY_RESTART, 194
MASTER_RECOVER_FACTOR, 195
MASTER_SHUTDOWN_<Name>, 194
MASTER_UPDATE_INTERVAL, 194
OBITUARY_LOG_LENGTH, 194
PREEN, 193
PREEN_ARGS, 193
PREEN_INTERVAL, 193
PUBLISH_OBITUARIES, 194
SHUTDOWN_FAST_TIMEOUT, 194
START_DAEMONS, 194
START_MASTER, 194
USE_PROCESS_GROUPS, 197
WINDOWS_FIREWALL_FAILURE_RETRY, 197

MASTER_<name>_BACKOFF_CEILING
MASTER Configuration Options, 195

MASTER_<name>_BACKOFF_CONSTANT
MASTER Configuration Options, 195

MASTER_<name>_BACKOFF_FACTOR
MASTER Configuration Options, 195

MASTER_<name>_RECOVER_FACTOR
MASTER Configuration Options, 195

MASTER_<SUBSYS>_CONTROLLER
High Availability Configuration Options,

283
MASTER_ADDRESS_FILE

MASTER Configuration Options, 196
MASTER_ATTRS

MASTER Configuration Options, 196
MASTER_BACKOFF_CEILING

MASTER Configuration Options, 195
MASTER_BACKOFF_CONSTANT

MASTER Configuration Options, 195
MASTER_BACKOFF_FACTOR

MASTER Configuration Options, 195
MASTER_CHECK_NEW_EXEC_INTERVAL

MASTER Configuration Options, 194
MASTER_DEBUG

MASTER Configuration Options, 196
MASTER_HA_LIST

High Availability Configuration Options,
282

MASTER_INSTANCE_LOCK
MASTER Configuration Options, 196

MASTER_NAME
MASTER Configuration Options, 196

MASTER_NEW_BINARY_DELAY
MASTER Configuration Options, 194

MASTER_NEW_BINARY_RESTART
MASTER Configuration Options, 194

MASTER_RECOVER_FACTOR
MASTER Configuration Options, 195

MASTER_SHUTDOWN_<Name>

1164 Index

HTCondor Manual, Release 23.6.2

MASTER Configuration Options, 194
MASTER_UPDATE_INTERVAL

MASTER Configuration Options, 194
MasterIpAddr

Daemon-master ClassAd Attribute, 1076
match_list_length

Submit commands, 951
Matched

machine state, 314, 321
matched state, 314, 321
matchmaking, 32
max()

ClassAd functions, 474, 788
MAX_<SUBSYS>_<LEVEL>_LOG

Global Configuration Options, 180
MAX_<SUBSYS>_LOG

Global Configuration Options, 175
MAX_ACCEPTS_PER_CYCLE

Global Configuration Options, 185
MAX_ACCOUNTANT_DATABASE_SIZE

NEGOTIATOR Configuration Options, 249
MAX_C_GAHP_LOG

GRIDMANAGER Configuration Options, 259
MAX_CHECKPOINT_CLEANUP_PROCS

PREEN Configuration Options, 243
MAX_CLAIM_ALIVES_MISSED

STARTD Configuration Options, 201
MAX_CONCURRENT_DOWNLOADS

SCHEDD Configuration Options, 217
MAX_CONCURRENT_UPLOADS

SCHEDD Configuration Options, 218
MAX_DAGMAN_LOG

DAGMan Configuration Options, 273
MAX_DEFAULT_LOG, 175

Global Configuration Options, 175
MAX_EPOCH_HISTORY_LOG

SHADOW Configuration Options, 233
MAX_EPOCH_HISTORY_ROTATIONS

SHADOW Configuration Options, 233
MAX_EVENT_LOG

Global Configuration Options, 180
MAX_FILE_DESCRIPTORS

Network Configuration Options, 187
MAX_FILE_TRANSFER_PLUGIN_LIFETIME

STARTER Configuration Options, 238
MAX_HAD_LOG

High Availability Configuration Options,
284

MAX_HISTORY_LOG
Global Configuration Options, 168

MAX_HISTORY_ROTATIONS
Global Configuration Options, 168

max_idle
Submit commands, 928

MAX_JOB_MIRROR_UPDATE_LAG
JOB ROUTER Configuration Options, 262

MAX_JOB_QUEUE_LOG_ROTATIONS
Global Configuration Options, 169

max_job_retirement_time
Submit commands, 952

MAX_JOBS_PER_OWNER
SCHEDD Configuration Options, 217

MAX_JOBS_PER_SUBMISSION
SCHEDD Configuration Options, 217

MAX_JOBS_RUNNING
SCHEDD Configuration Options, 216

MAX_JOBS_SUBMITTED
SCHEDD Configuration Options, 217

max_materialize
Submit commands, 928

MAX_NEXT_JOB_START_DELAY, 1043
SCHEDD Configuration Options, 220

MAX_NUM_<SUBSYS>_LOG
Global Configuration Options, 175

MAX_NUM_CPUS
STARTD Configuration Options, 203

MAX_NUM_SCHEDD_AUDIT_LOG
SCHEDD Configuration Options, 229

MAX_NUM_SHARED_PORT_AUDIT_LOG
SHARED PORT Configuration Options, 289

MAX_PARTITIONABLE_SLOT_CLAIM_TIME
STARTD Configuration Options, 208

MAX_PENDING_STARTD_CONTACTS
SCHEDD Configuration Options, 217

MAX_PERIODIC_EXPR_INTERVAL
SCHEDD Configuration Options, 224

MAX_PROCD_LOG
PROCD Configuration Options, 255

MAX_REAPS_PER_CYCLE
Global Configuration Options, 185

MAX_REPLICATION_LOG
High Availability Configuration Options,

285
max_retries

and DEFAULT_JOB_MAX_RETRIES, 241
Submit commands, 937

MAX_RUNNING_SCHEDULER_JOBS_PER_OWNER
SCHEDD Configuration Options, 217

MAX_SCHEDD_AUDIT_LOG
SCHEDD Configuration Options, 228

MAX_SHADOW_EXCEPTIONS
SCHEDD Configuration Options, 217

MAX_SHADOW_STATS_LOG
SHADOW Configuration Options, 233

MAX_SHARED_PORT_AUDIT_LOG
SHARED PORT Configuration Options, 289

MAX_SLOT_TYPES
STARTD Configuration Options, 208

Index 1165

HTCondor Manual, Release 23.6.2

MAX_STARTER_STATS_LOG
STARTER Configuration Options, 239

MAX_TIME_SKIP
Global Configuration Options, 184

MAX_TIMER_EVENTS_PER_CYCLE
Global Configuration Options, 185

MAX_TRACKING_GID
PROCD Configuration Options, 256

MAX_TRANSFER_INPUT_MB, 1042
SCHEDD Configuration Options, 218

max_transfer_input_mb
Submit commands, 932

MAX_TRANSFER_LIFETIME
High Availability Configuration Options,

285
MAX_TRANSFER_OUTPUT_MB, 1042

SCHEDD Configuration Options, 218
max_transfer_output_mb

Submit commands, 933
MAX_TRANSFER_QUEUE_AGE

SCHEDD Configuration Options, 219
MAX_TRANSFERER_LOG

High Availability Configuration Options,
286

MAX_UDP_MSGS_PER_CYCLE
Global Configuration Options, 185

MAX_VM_GAHP_LOG
Virtual Machines Configuration Options,

281
MaxClaimTime

Machine ClassAd Attribute, 1062
MaxHosts

Job ClassAd Attribute, 1042
MaxIdleJobs

Job Router Routing Table ClassAd
attribute, 713

MAXJOBRETIREMENTTIME
STARTD Configuration Options, 200

MaxJobRetirementTime
Job ClassAd Attribute, 1042
Machine ClassAd Attribute, 1062

MAXJOBS
DAG Commands, 551

MaxJobs
Job Router Routing Table ClassAd

attribute, 713
MaxJobsRunning

Collector ClassAd Attribute, 1096
Scheduler ClassAd Attribute, 1080

MaxJobsRunningAll
Collector ClassAd Attribute, 1096

MaxTransferInputMB
Job ClassAd Attribute, 1042

MaxTransferOutputMB

Job ClassAd Attribute, 1042
MeanDrainedArrived

Defrag ClassAd Attribute, 1092
member()

ClassAd functions, 471, 785
MEMORY

STARTD Configuration Options, 203
Memory

Machine ClassAd Attribute, 1062
MEMORY_USAGE_METRIC

STARTER Configuration Options, 238
MEMORY_USAGE_METRIC_VM

STARTER Configuration Options, 238
MemoryProvisioned

Job ClassAd Attribute, 1055
MemoryUsage

Job ClassAd Attribute, 1043
mergeEnvironment()

ClassAd functions, 478, 793
Microarch

Machine ClassAd Attribute, 1056
min()

ClassAd functions, 474, 788
MIN_FLOCK_LEVEL

SCHEDD Configuration Options, 223
MIN_TRACKING_GID

PROCD Configuration Options, 256
MinHosts

Job ClassAd Attribute, 1043
Mips

Machine ClassAd Attribute, 1062
MKL_NUM_THREADS

environment variables for jobs, 87
MODIFY_REQUEST_EXPR_REQUESTCPUS

STARTD Configuration Options, 210
MODIFY_REQUEST_EXPR_REQUESTDISK

STARTD Configuration Options, 210
MODIFY_REQUEST_EXPR_REQUESTMEMORY

STARTD Configuration Options, 210
module

classad, 610
classad2, 606
htcondor, 619
htcondor.dags, 659
htcondor.htchirp, 652
htcondor.personal, 672
htcondor2, 607

Monitor
FEATURE Configuration Templates, 157

monitoring
pool management, 394

monitoring GPUS, 397
monitoring pools, 394
MonitorSelfAge

1166 Index

HTCondor Manual, Release 23.6.2

Daemon-master ClassAd Attribute, 1076
Defrag ClassAd Attribute, 1092
Machine ClassAd Attribute, 1062
Scheduler ClassAd Attribute, 1080

MonitorSelfCPUUsage
Daemon-master ClassAd Attribute, 1076
Defrag ClassAd Attribute, 1092
Machine ClassAd Attribute, 1062
Scheduler ClassAd Attribute, 1080

MonitorSelfImageSize
Daemon-master ClassAd Attribute, 1076
Defrag ClassAd Attribute, 1092
Machine ClassAd Attribute, 1062
Scheduler ClassAd Attribute, 1080

MonitorSelfRegisteredSocketCount
Daemon-master ClassAd Attribute, 1076
Defrag ClassAd Attribute, 1092
Machine ClassAd Attribute, 1062
Scheduler ClassAd Attribute, 1080

MonitorSelfResidentSetSize
Daemon-master ClassAd Attribute, 1076
Defrag ClassAd Attribute, 1092
Machine ClassAd Attribute, 1062
Scheduler ClassAd Attribute, 1080

MonitorSelfSecuritySessions
Daemon-master ClassAd Attribute, 1076
Defrag ClassAd Attribute, 1092
Machine ClassAd Attribute, 1062
Scheduler ClassAd Attribute, 1080

MonitorSelfTime
Daemon-master ClassAd Attribute, 1076
Defrag ClassAd Attribute, 1092
Machine ClassAd Attribute, 1062
Scheduler ClassAd Attribute, 1081

MOUNT_PRIVATE_DEV_SHM
STARTD Configuration Options, 205

MOUNT_UNDER_SCRATCH
STARTD Configuration Options, 205

mpi
universe, 1041

MPI application, 96, 100
multi-core machines

configuration, 304
multiple

network interfaces, 443
multiple class files

Java, 104
multiple collectors

port usage, 441
multiple data sets

job, 32
multiple network interfaces, 443
MUST_MODIFY_REQUEST_EXPRS

STARTD Configuration Options, 210

MY., ClassAd scope resolution prefix, 482, 796
MyAddress

Collector ClassAd Attribute, 1096
Daemon-master ClassAd Attribute, 1076
Defrag ClassAd Attribute, 1092
Machine ClassAd Attribute, 1062
Negotiator ClassAd Attribute, 1090
Scheduler ClassAd Attribute, 1081
Submitter ClassAd Attribute, 1091

MyCurrentTime
Collector ClassAd Attribute, 1096
Daemon-master ClassAd Attribute, 1076
Defrag ClassAd Attribute, 1092
Machine ClassAd Attribute, 1062
Negotiator ClassAd Attribute, 1090
Scheduler ClassAd Attribute, 1081

MyType
Machine ClassAd Attribute, 1063

N
Name

Accounting ClassAd Attribute, 1025
Collector ClassAd Attribute, 1096
Daemon-master ClassAd Attribute, 1076
Defrag ClassAd Attribute, 1092
Job Router Routing Table ClassAd

attribute, 717
Machine ClassAd Attribute, 1063
Negotiator ClassAd Attribute, 1090
Scheduler ClassAd Attribute, 1081
Submitter ClassAd Attribute, 1091

NAMED_CHROOT
STARTER Configuration Options, 236

NEGOTIATE_ALL_JOBS_IN_CLUSTER
SCHEDD Configuration Options, 223

negotiation, 377
negotiation algorithm

matchmaking, 377
NEGOTIATION_CYCLE_STATS_LENGTH

NEGOTIATOR Configuration Options, 248
NEGOTIATOR

NEGOTIATOR Configuration Options, 248
Negotiator (ClassAd Types), 1024
Negotiator (htcondor.AdTypes attribute), 622
Negotiator (htcondor.DaemonTypes attribute), 621
Negotiator (htcondor.SubsystemType attribute), 651
Negotiator ClassAd Attribute

CondorVersion, 1088
DaemonLastReconfigTime, 1088
DaemonStartTime, 1088
LastNegotiationCycleActiveSubmitterCount,

1088
LastNegotiationCycleCandidateSlots, 1088
LastNegotiationCycleDuration<X>, 1088

Index 1167

HTCondor Manual, Release 23.6.2

LastNegotiationCycleEnd<X>, 1088
LastNegotiationCycleMatches<X>, 1088
LastNegotiationCycleMatchRate<X>, 1088
LastNegotiationCycleMatchRateSustained<X>,

1088
LastNegotiationCycleNumIdleJobs<X>, 1089
LastNegotiationCycleNumJobsConsidered<X>,

1089
LastNegotiationCycleNumSchedulers<X>,

1089
LastNegotiationCyclePeriod<X>, 1089
LastNegotiationCyclePhase1Duration<X>,

1089
LastNegotiationCyclePhase2Duration<X>,

1089
LastNegotiationCyclePhase3Duration<X>,

1089
LastNegotiationCyclePhase4Duration<X>,

1089
LastNegotiationCycleRejections<X>, 1089
LastNegotiationCycleSlotShareIter<X>,

1089
LastNegotiationCycleSubmittersFailed<X>,

1089
LastNegotiationCycleSubmittersOutOfTime<X>,

1089
LastNegotiationCycleSubmittersShareLimit<X>,

1090
LastNegotiationCycleTime<X>, 1090
LastNegotiationCycleTotalSlots<X>, 1090
LastNegotiationCycleTrimmedSlots<X>, 1090
Machine, 1090
MyAddress, 1090
MyCurrentTime, 1090
Name, 1090
NegotiatorIpAddr, 1090
PublicNetworkIpAddr, 1090
UpdateSequenceNumber, 1090

NEGOTIATOR Configuration Options
<NAME>_LIMIT, 253
ACCOUNTANT_DATABASE_FILE, 249
ACCOUNTANT_LOCAL_DOMAIN, 249
ALLOW_PSLOT_PREEMPTION, 253
CONCURRENCY_LIMIT_DEFAULT, 253
CONCURRENCY_LIMIT_DEFAULT_<NAME>, 253
DAGMAN_USER_LOG_SCAN_INTERVAL, 268
DEFAULT_PRIO_FACTOR, 249
GROUP_ACCEPT_SURPLUS, 254
GROUP_ACCEPT_SURPLUS_<groupname>, 254
GROUP_AUTOREGROUP, 254
GROUP_AUTOREGROUP_<groupname>, 254
GROUP_DYNAMIC_MACH_CONSTRAINT, 251
GROUP_NAMES, 253
GROUP_PRIO_FACTOR_<groupname>, 254

GROUP_QUOTA_<groupname>, 253
GROUP_QUOTA_DYNAMIC_<groupname>, 253
GROUP_QUOTA_MAX_ALLOCATION_ROUNDS, 254
GROUP_QUOTA_ROUND_ROBIN_RATE, 254
GROUP_SORT_EXPR, 255
MAX_ACCOUNTANT_DATABASE_SIZE, 249
NEGOTIATION_CYCLE_STATS_LENGTH, 248
NEGOTIATOR, 248
NEGOTIATOR_ALLOW_QUOTA_OVERSUBSCRIPTION,

255
NEGOTIATOR_CONSIDER_EARLY_PREEMPTION, 252
NEGOTIATOR_CONSIDER_PREEMPTION, 252
NEGOTIATOR_CYCLE_DELAY, 248
NEGOTIATOR_DEBUG, 251
NEGOTIATOR_DEPTH_FIRST, 252
NEGOTIATOR_DISCOUNT_SUSPENDED_RESOURCES,

249
NEGOTIATOR_INFORM_STARTD, 249
NEGOTIATOR_INTERVAL, 248
NEGOTIATOR_JOB_CONSTRAINT, 251
NEGOTIATOR_MATCH_EXPRS, 252
NEGOTIATOR_MATCHLIST_CACHING, 252
NEGOTIATOR_MAX_TIME_PER_CYCLE, 251
NEGOTIATOR_MAX_TIME_PER_PIESPIN, 252
NEGOTIATOR_MAX_TIME_PER_SCHEDD, 251
NEGOTIATOR_MAX_TIME_PER_SUBMITTER, 251
NEGOTIATOR_MIN_INTERVAL, 248
NEGOTIATOR_NAME, 248
NEGOTIATOR_NUM_THREADS, 249
NEGOTIATOR_POST_JOB_RANK, 250
NEGOTIATOR_PRE_JOB_RANK, 250
NEGOTIATOR_READ_CONFIG_BEFORE_CYCLE, 253
NEGOTIATOR_RESOURCE_REQUEST_LIST_SIZE,

252
NEGOTIATOR_SLOT_CONSTRAINT, 251
NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT, 251
NEGOTIATOR_SOCKET_CACHE_SIZE, 249
NEGOTIATOR_SUBMITTER_CONSTRAINT, 251
NEGOTIATOR_TIMEOUT, 248
NEGOTIATOR_TRIM_SHUTDOWN_THRESHOLD, 251
NEGOTIATOR_UPDATE_AFTER_CYCLE, 253
NEGOTIATOR_UPDATE_INTERVAL, 248
NEGOTIATOR_USE_SLOT_WEIGHTS, 254
NEGOTIATOR_USE_WEIGHTED_DEMAND, 255
NICE_USER_ACCOUNTING_GROUP_NAME, 249
NICE_USER_PRIO_FACTOR, 249
PREEMPTION_RANK, 250
PREEMPTION_RANK_STABLE, 251
PREEMPTION_REQUIREMENTS, 250
PREEMPTION_REQUIREMENTS_STABLE, 250
PRIORITY_HALFLIFE, 249
REMOTE_PRIO_FACTOR, 249
STARTD_AD_REEVAL_EXPR, 253
USE_RESOURCE_REQUEST_COUNTS, 252

1168 Index

HTCondor Manual, Release 23.6.2

NEGOTIATOR_ADDRESS_FILE, 182
NEGOTIATOR_ALLOW_QUOTA_OVERSUBSCRIPTION

NEGOTIATOR Configuration Options, 255
NEGOTIATOR_CONSIDER_EARLY_PREEMPTION

NEGOTIATOR Configuration Options, 252
NEGOTIATOR_CONSIDER_PREEMPTION

NEGOTIATOR Configuration Options, 252
NEGOTIATOR_CYCLE_DELAY

NEGOTIATOR Configuration Options, 248
NEGOTIATOR_DEBUG

NEGOTIATOR Configuration Options, 251
NEGOTIATOR_DEPTH_FIRST

NEGOTIATOR Configuration Options, 252
NEGOTIATOR_DISCOUNT_SUSPENDED_RESOURCES

NEGOTIATOR Configuration Options, 249
NEGOTIATOR_HOST

Global Configuration Options, 164
NEGOTIATOR_INFORM_STARTD

NEGOTIATOR Configuration Options, 249
NEGOTIATOR_INTERVAL

NEGOTIATOR Configuration Options, 248
NEGOTIATOR_JOB_CONSTRAINT

NEGOTIATOR Configuration Options, 251
NEGOTIATOR_MATCH_EXPRS

NEGOTIATOR Configuration Options, 252
NEGOTIATOR_MATCHLIST_CACHING

NEGOTIATOR Configuration Options, 252
NEGOTIATOR_MAX_TIME_PER_CYCLE

NEGOTIATOR Configuration Options, 251
NEGOTIATOR_MAX_TIME_PER_PIESPIN

NEGOTIATOR Configuration Options, 252
NEGOTIATOR_MAX_TIME_PER_SCHEDD

NEGOTIATOR Configuration Options, 251
NEGOTIATOR_MAX_TIME_PER_SUBMITTER, 1089

NEGOTIATOR Configuration Options, 251
NEGOTIATOR_MIN_INTERVAL

NEGOTIATOR Configuration Options, 248
NEGOTIATOR_NAME

NEGOTIATOR Configuration Options, 248
NEGOTIATOR_NUM_THREADS

NEGOTIATOR Configuration Options, 249
NEGOTIATOR_POST_JOB_RANK

NEGOTIATOR Configuration Options, 250
NEGOTIATOR_PRE_JOB_RANK

NEGOTIATOR Configuration Options, 250
NEGOTIATOR_READ_CONFIG_BEFORE_CYCLE

NEGOTIATOR Configuration Options, 253
NEGOTIATOR_RESOURCE_REQUEST_LIST_SIZE

NEGOTIATOR Configuration Options, 252
NEGOTIATOR_SLOT_CONSTRAINT

NEGOTIATOR Configuration Options, 251
NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT, 1088

NEGOTIATOR Configuration Options, 251
NEGOTIATOR_SOCKET_CACHE_SIZE

NEGOTIATOR Configuration Options, 249
NEGOTIATOR_SUBMITTER_CONSTRAINT

NEGOTIATOR Configuration Options, 251
NEGOTIATOR_TIMEOUT

NEGOTIATOR Configuration Options, 248
NEGOTIATOR_TRIM_SHUTDOWN_THRESHOLD

NEGOTIATOR Configuration Options, 251
NEGOTIATOR_UPDATE_AFTER_CYCLE

NEGOTIATOR Configuration Options, 253
NEGOTIATOR_UPDATE_INTERVAL

NEGOTIATOR Configuration Options, 248
NEGOTIATOR_USE_NONBLOCKING_STARTD_CONTACT

Network Configuration Options, 189
NEGOTIATOR_USE_SLOT_WEIGHTS

NEGOTIATOR Configuration Options, 254
NEGOTIATOR_USE_WEIGHTED_DEMAND

NEGOTIATOR Configuration Options, 255
negotiator-side resource consumption policy

partitionable slots, 352
NegotiatorIpAddr

Negotiator ClassAd Attribute, 1090
network, 438
Network (htcondor.LogLevel attribute), 649
Network Configuration Options

<SUBSYS>_MAX_FILE_DESCRIPTORS, 186
<SUBSYS>_TIMEOUT_MULTIPLIER, 189
ALWAYS_REUSEADDR, 189
AUTO_INCLUDE_SHARED_PORT_IN_DAEMON_LIST,

186
BIND_ALL_INTERFACES, 185
CCB_ADDRESS, 185
CCB_HEARTBEAT_INTERVAL, 185
CCB_POLLING_INTERVAL, 186
CCB_POLLING_MAX_INTERVAL, 186
CCB_POLLING_TIMESLICE, 186
CCB_READ_BUFFER, 186
CCB_RECONNECT_FILE, 186
CCB_REQUIRED_TO_START, 186
CCB_SWEEP_INTERVAL, 186
CCB_TIMEOUT, 186
CCB_WRITE_BUFFER, 186
COLLECTOR_USES_SHARED_PORT, 186
HIGHPORT, 188
IN_HIGHPORT, 188
IN_LOWPORT, 188
LOWPORT, 188
MAX_FILE_DESCRIPTORS, 187
NEGOTIATOR_USE_NONBLOCKING_STARTD_CONTACT,

189
NETWORK_HOSTNAME, 187
NETWORK_INTERFACE, 187
NONBLOCKING_COLLECTOR_UPDATE, 189
OUT_HIGHPORT, 188
OUT_LOWPORT, 188

Index 1169

HTCondor Manual, Release 23.6.2

PRIVATE_NETWORK_INTERFACE, 187
PRIVATE_NETWORK_NAME, 187
SHARED_PORT_DEFAULT_ID, 186
TCP_FORWARDING_HOST, 188
TCP_UPDATE_COLLECTORS, 189
UDP_LOOPBACK_FRAGMENT_SIZE, 189
UDP_NETWORK_FRAGMENT_SIZE, 189
UPDATE_COLLECTOR_WITH_TCP, 188
UPDATE_VIEW_COLLECTOR_WITH_TCP, 189

NETWORK_HOSTNAME
Network Configuration Options, 187

NETWORK_INTERFACE
Network Configuration Options, 187

NETWORK_MAX_PENDING_CONNECTS
Global Configuration Options, 170

network-related configuration variables
configuration, 185

New (classad.Parser attribute), 617
next_job_start_delay

Submit commands, 939
NextJobStartDelay

Job ClassAd Attribute, 1043
NFS

file system, 108
nice job

priority, 110
nice_user

and retirement_time, 952
impact on prio, 375
Submit commands, 952

NICE_USER_ACCOUNTING_GROUP_NAME
NEGOTIATOR Configuration Options, 249

NICE_USER_PRIO_FACTOR
NEGOTIATOR Configuration Options, 249

NiceUser
Job ClassAd Attribute, 1043

NICs, 443
NO_DNS

Global Configuration Options, 169
NOBODY_SLOT_USER

FileSystem Configuration Options, 191
NODE_EXECUTE (htcondor.JobEventType attribute), 646
NODE_STATUS_FILE

DAG Commands, 552
NODE_TERMINATED (htcondor.JobEventType attribute),

646
NoHeader (htcondor.LogLevel attribute), 649
NonBlocking (htcondor.BlockingMode attribute), 630
NONBLOCKING_COLLECTOR_UPDATE

Network Configuration Options, 189
NonDurable (htcondor.TransactionFlags attribute), 629
None (htcondor.AdTypes attribute), 621
None (htcondor.DaemonTypes attribute), 621
NONE (htcondor.JobEventType attribute), 647

none> group
group accounting, 380

Nonessential
Job ClassAd Attribute, 1043

nonstandard ports for central managers
port usage, 439

noop_job
Submit commands, 952

noop_job_exit_code
Submit commands, 952

noop_job_exit_signal
Submit commands, 953

not running, on hold
job, 76

NOT_RESPONDING_TIMEOUT
Global Configuration Options, 184

NOT_RESPONDING_WANT_CORE
Global Configuration Options, 184

notification
and attribute JobNotification, 1040
example, 78
Submit commands, 926
submit commands, 962

notify_user
Submit commands, 926

NTDomain
Job ClassAd Attribute, 1043

NUM_CLAIMS
STARTD Configuration Options, 211

NUM_CPUS
STARTD Configuration Options, 203

NUM_SLOTS
STARTD Configuration Options, 210

NUM_SLOTS_TYPE_<N>
STARTD Configuration Options, 210

NumDistinctRequests
EC2 GAHP Statistics, 706

NumExpiredSignatures
EC2 GAHP Statistics, 706

NUMEXPR_NUM_THREADS
environment variables for jobs, 87

NumHolds
Job ClassAd Attribute, 1043

NumHoldsByReason
Job ClassAd Attribute, 1043

NumJobCompletions
Job ClassAd Attribute, 1043

NumJobMatches
Job ClassAd Attribute, 1043

NumJobReconnects
Job ClassAd Attribute, 1043

NumJobs
Grid ClassAd Attribute, 1094

NumJobStarts

1170 Index

HTCondor Manual, Release 23.6.2

Job ClassAd Attribute, 1043
NumJobStartsDelayed

Scheduler ClassAd Attribute, 1081
NumPendingClaims

Scheduler ClassAd Attribute, 1081
NumPids

Job ClassAd Attribute, 1043
NumRequests

EC2 GAHP Statistics, 706
NumRequestsExceedingLimit

EC2 GAHP Statistics, 706
NumRestarts

Job ClassAd Attribute, 1044
NumShadowExceptions

Job ClassAd Attribute, 1044
NumShadowStarts

Job ClassAd Attribute, 1044
NumSystemHolds

Job ClassAd Attribute, 1044
NumUsers

Scheduler ClassAd Attribute, 1081
NVIDIA_VISIBLE_DEVICES

environment variables for jobs, 88

O
OAuth

FEATURE Configuration Templates, 158
OAuth (htcondor.CredTypes attribute), 640
OBITUARY_LOG_LENGTH

MASTER Configuration Options, 194
of a job

deferral time, 114
priority, 76

of a machine
activity, 317
state, 314

of a user
priority, 109

of central manager
High Availability, 388

of condor_shadow
exit codes, 1101

of job queue
High Availability, 371

of job queue, with remote job submission
High Availability, 367

of jobs
cwd, 438

of machines
distributed ownership, 31

of machines, to implement a given policy
configuration, 312

of queued jobs
status, 73

of Unix netgroups
authorization, 427

offer
resource, 32

OffFast (htcondor.DaemonCommands attribute), 650
OffForce (htcondor.DaemonCommands attribute), 650
OffGraceful (htcondor.DaemonCommands attribute),

650
Offline

Machine ClassAd Attribute, 1063
offline ClassAd, 1073
offline machine, 353
OFFLINE_EXPIRE_ADS_AFTER

STARTD Configuration Options, 213
OFFLINE_MACHINE_RESOURCE_<name>

STARTD Configuration Options, 209
Offline<name>

Machine ClassAd Attribute, 1073
OfflineUniverses

Machine ClassAd Attribute, 1063
OffPeaceful (htcondor.DaemonCommands attribute),

650
Old (classad.Parser attribute), 617
OMP_NUM_THREADS

environment variables for jobs, 87
OMP_THREAD_LIMIT

environment variables for jobs, 87
on a different architecture

running a job, 58
on resource usage with cgroup

limits, 310
on_exit_hold

Submit commands, 939
on_exit_hold_reason

Submit commands, 939
on_exit_hold_subcode

Submit commands, 939
on_exit_remove

and crondor, 111, 113
Submit commands, 939

OneShotCronHook
FEATURE Configuration Templates, 158

OnlyRegisteredCheckpointDestinations
POLICY Configuration Templates, 158

OPEN_VERB_FOR_<EXT>_FILES
Global Configuration Options, 170

OPENBLAS_NUM_THREADS
environment variables for jobs, 87

OPENMPI_EXCLUDE_NETWORK_INTERFACES
STARTD Configuration Options, 214

OPENMPI_INSTALL_PATH
STARTD Configuration Options, 214

OPSYS, 154, 1048
OpSys

Index 1171

HTCondor Manual, Release 23.6.2

Machine ClassAd Attribute, 1063
OPSYS_AND_VER, 154
OPSYS_VER, 154
OpSysAndVer

Machine ClassAd Attribute, 1063
OpSysLegacy

Machine ClassAd Attribute, 1065
OpSysLongName

Machine ClassAd Attribute, 1065
OpSysMajorVer

Machine ClassAd Attribute, 1065
OpSysName

Machine ClassAd Attribute, 1066
OpSysShortName

Machine ClassAd Attribute, 1067
OpSysVer

Machine ClassAd Attribute, 1067
Optional attributes

Defining Applications, 357
optional attributes

FetchWork, 357
OtherJobRemoveRequirements

Job ClassAd Attribute, 1044
Out

optional attributes, 358
OUT_FINISHED (htcondor.FileTransferEventType at-

tribute), 647
OUT_HIGHPORT

Network Configuration Options, 188
OUT_LOWPORT

Network Configuration Options, 188
OUT_QUEUED (htcondor.FileTransferEventType attribute),

647
OUT_STARTED (htcondor.FileTransferEventType at-

tribute), 647
output

and job router, 710
and SUBMIT_SKIP_FILECHECKS, 241
condor_qsub, 884
created at submit, 68
example, 39
example with paths, 65
Submit commands, 927
vm universe, 92

output file(s) encryption
file transfer mechanism, 932

output file(s) specified by URL
file transfer mechanism, 69, 453, 933

output_destination
and URLs, 454
definition, 453
Submit commands, 933
with URLs, 69

OutputDestination

Job ClassAd Attribute, 1044
OverrideRoutingEntry

Job Router Routing Table ClassAd
attribute, 717

Overview
Backfill, 327

overview, 31, 33
HTCondor, 31, 33

Owner
Job ClassAd Attribute, 1044
machine state, 314, 319
required attributes, 357

owner
JOB ROUTER Configuration Options, 264
machine, 131
resource, 131

owner state, 314, 319

P
pair RANDOM_CHOICE

config macros, 151
parallel

universe, 84, 86, 1041
parallel scheduling groups, 370
parallel universe, 86, 96, 102
ParallelSchedulingGroup

SCHEDD Configuration Options, 226
ParallelShutdownPolicy

Job ClassAd Attribute, 1044
param (in module htcondor2), 607
PARENT/CHILD

DAG Commands, 549
Usage, 499

partitionable slot preemption, 306
partitionable slots, 305
PartitionableSlot

FEATURE Configuration Templates, 157
Machine ClassAd Attribute, 1068

PASSWD_CACHE_REFRESH
Global Configuration Options, 170

Password (htcondor.CredTypes attribute), 639
PeakForkWorkers

Collector ClassAd Attribute, 1096
PendingQueries

Collector ClassAd Attribute, 1096
PendingQueriesPeak

Collector ClassAd Attribute, 1096
per job

PID namespaces, 308
per job PID namespaces

Linux kernel, 308
namespaces, 308

per job scratch filesystem, 311
PER_JOB_HISTORY_DIR

1172 Index

HTCondor Manual, Release 23.6.2

SCHEDD Configuration Options, 227
PER_JOB_NAMESPACES

STARTER Configuration Options, 239
periodic

job scheduling, 110
PERIODIC_CHECKPOINT

STARTD Configuration Options, 198
PERIODIC_EXPR_INTERVAL

SCHEDD Configuration Options, 223
PERIODIC_EXPR_TIMESLICE

SCHEDD Configuration Options, 224
periodic_hold

Submit commands, 940
periodic_hold_reason

Submit commands, 940
periodic_hold_subcode

Submit commands, 940
periodic_release

and SYSTEM_PERIODIC_RELEASE, 225
and WANT_HOLD, 198
Submit commands, 940

periodic_remove
and WANT_HOLD, 198
Submit commands, 940

periodic_vacate
submit commands, 941

PeriodicCronHook
FEATURE Configuration Templates, 158

PERMISSION-LEVEL, 182
PERMISSION-LEVEL, 433
PERSISTENT_CONFIG_DIR

Global Configuration Options, 182
Personal

ROLE Configuration Templates, 156
PID, 155
PID (htcondor.LogLevel attribute), 649
pie slice, 379

scheduling, 379
pie spin, 379

scheduling, 379
pipe

universe, 1041
PIPE_BUFFER_MAX

Global Configuration Options, 185
PipeMessages

ClassAd Attribute, 1098
PipeRuntime

ClassAd Attribute, 1099
platforms available

HTCondor, 33
platforms supported, 33
POLICY

Configuration Templates, 158
policy configuration

submit host, 365, 373
POLICY Configuration Templates

Always_Run_Jobs, 158
Desktop, 158
Hold_If_Cpus_Exceeded, 159
Hold_If_Disk_Exceeded, 159
Hold_If_Memory_Exceeded, 159
Hold_if_Runtime_Exceeds, 159
Limit_Job_Runtimes, 159
OnlyRegisteredCheckpointDestinations, 158
Preempt_If, 159
Preempt_If_Cpus_Exceeded, 159
Preempt_If_Disk_Exceeded, 159
Preempt_If_Memory_Exceeded, 159
Preempt_if_Runtime_Exceeds, 159
Startd_Publish_CpusUsage, 160
UWCS_Desktop, 158
Want_Hold_If, 160

POLLING_INTERVAL
STARTD Configuration Options, 200

pool
HTCondor, 131

pool monitoring, 394
pool of machines, 131
POOL_HISTORY_DIR

COLLECTOR Configuration Options, 245
POOL_HISTORY_MAX_STORAGE

COLLECTOR Configuration Options, 245
POOL_HISTORY_SAMPLING_INTERVAL

COLLECTOR Configuration Options, 245
port usage, 438
POST_SCRIPT_TERMINATED (htcondor.JobEventType at-

tribute), 646
PostArgs

Job ClassAd Attribute, 1044
PostArguments

Job ClassAd Attribute, 1044
PostCmd

Job ClassAd Attribute, 1044
PostCmdExitBySignal

Job ClassAd Attribute, 1045
PostCmdExitCode

Job ClassAd Attribute, 1045
PostCmdExitSignal

Job ClassAd Attribute, 1045
PostEnv

Job ClassAd Attribute, 1045
PostEnvironment

Job ClassAd Attribute, 1045
PostJobPrio1

Job ClassAd Attribute, 1046
PostJobPrio2

Job ClassAd Attribute, 1046
potential risk running jobs as user nobody

Index 1173

HTCondor Manual, Release 23.6.2

UID, 436
potential security risk with jobs

user nobody, 436
pow()

ClassAd functions, 472, 787
power management, 353, 355
PPID, 155
PRE_SKIP

DAG Commands, 549
pre-defined macros

configuration, 153
configuration file, 153

PreArgs
Job ClassAd Attribute, 1045

PreArguments
Job ClassAd Attribute, 1045

PreCmd
Job ClassAd Attribute, 1045

PreCmdExitBySignal
Job ClassAd Attribute, 1045

PreCmdExitCode
Job ClassAd Attribute, 1045

PreCmdExitSignal
Job ClassAd Attribute, 1046

PREEMPT
STARTD Configuration Options, 198

Preempt_If
POLICY Configuration Templates, 159

Preempt_If_Cpus_Exceeded
POLICY Configuration Templates, 159

Preempt_If_Disk_Exceeded
POLICY Configuration Templates, 159

Preempt_If_Memory_Exceeded
POLICY Configuration Templates, 159

Preempt_if_Runtime_Exceeds
POLICY Configuration Templates, 159

Preempting
machine state, 314, 323

preempting state, 314, 323
PreemptingOwner

Machine ClassAd Attribute, 1072
PreemptingRank

Machine ClassAd Attribute, 1072
PreemptingUser

Machine ClassAd Attribute, 1072
PREEMPTION_RANK

NEGOTIATOR Configuration Options, 250
PREEMPTION_RANK_STABLE

NEGOTIATOR Configuration Options, 251
PREEMPTION_REQUIREMENTS

NEGOTIATOR Configuration Options, 250
PREEMPTION_REQUIREMENTS_STABLE

NEGOTIATOR Configuration Options, 250
PREEN

MASTER Configuration Options, 193
PREEN Configuration Options

CHECKPOINT_CLEANUP_TIMEOUT, 243
INVALID_LOG_FILES, 243
MAX_CHECKPOINT_CLEANUP_PROCS, 243
PREEN_ADMIN, 242
PREEN_CHECKPOINT_CLEANUP_TIMEOUT, 243
SYSTEM_VALID_SPOOL_FILES, 243
VALID_SPOOL_FILES, 242

PREEN_ADMIN
PREEN Configuration Options, 242

PREEN_ARGS
MASTER Configuration Options, 193

PREEN_CHECKPOINT_CLEANUP_TIMEOUT
PREEN Configuration Options, 243

PREEN_INTERVAL
MASTER Configuration Options, 193

PreEnv
Job ClassAd Attribute, 1046

PreEnvironment
Job ClassAd Attribute, 1046

PREFER_IPV4
Global Configuration Options, 173

PREFER_OUTBOUND_IPV4
Global Configuration Options, 173

PreJobPrio1
Job ClassAd Attribute, 1046

PreJobPrio2
Job ClassAd Attribute, 1046

preparation
job, 37

Prepare job
Fetch Hooks, 361

Prepare job before file transfer
Fetch Hooks, 361

preserve_relative_paths
Submit commands, 936

PreserveRelativeExecutable
Job ClassAd Attribute, 1046

PreserveRelativePaths
Job ClassAd Attribute, 1046

PRESKIP (htcondor.JobEventType attribute), 647
Print Format, 490
Print Formats, 496
PRIORITY

DAG Commands, 549
Priority

Accounting ClassAd Attribute, 1025
priority

condor_qsub, 884
job, 76
matchmaking, 375
negotiation, 375
preemption, 109, 375

1174 Index

HTCondor Manual, Release 23.6.2

Submit commands, 927
user, 109

PRIORITY_HALFLIFE
definition, 109
NEGOTIATOR Configuration Options, 249

PriorityFactor
Accounting ClassAd Attribute, 1025

Priv (htcondor.LogLevel attribute), 649
PRIVATE_NETWORK_INTERFACE

Network Configuration Options, 187
PRIVATE_NETWORK_NAME

Network Configuration Options, 187
PROCD Configuration Options

BASE_CGROUP, 256
CRED_SUPER_USERS, 256
CREDD_CACHE_LOCALLY, 256
CREDD_HOST, 256
CREDD_POLLING_TIMEOUT, 256
CREDMON_KRB, 256
CREDMON_OAUTH, 256
CREDMON_OAUTH_TOKEN_MINIMUM, 257
CREDMON_OAUTH_TOKEN_REFRESH, 257
MAX_PROCD_LOG, 255
MAX_TRACKING_GID, 256
MIN_TRACKING_GID, 256
PROCD_ADDRESS, 255
PROCD_LOG, 255
PROCD_MAX_SNAPSHOT_INTERVAL, 255
SKIP_WINDOWS_LOGON_NETWORK, 256
USE_GID_PROCESS_TRACKING, 256
USE_PROCD, 255

PROCD_ADDRESS
PROCD Configuration Options, 255

procd_ctl
HTCondor commands, 1020

procd_ctl command, 1020
PROCD_LOG

PROCD Configuration Options, 255
PROCD_MAX_SNAPSHOT_INTERVAL

PROCD Configuration Options, 255
ProcId

Job ClassAd Attribute, 1046
ProportionalSetSizeKb

Job ClassAd Attribute, 1046
PROTECTED_JOB_ATTRS

SCHEDD Configuration Options, 231
Protocol (htcondor.LogLevel attribute), 649
PROVISIONER

DAG Commands, 550
ProvisionerState

Job ClassAd Attribute, 1046
pslot preemption, 306
PslotRollupInformation

Machine ClassAd Attribute, 1075

public_input_files
example, 68
Submit commands, 935

PublicNetworkIpAddr
Daemon-master ClassAd Attribute, 1076
Negotiator ClassAd Attribute, 1090
Scheduler ClassAd Attribute, 1081

PUBLISH_OBITUARIES
MASTER Configuration Options, 194

pvm
universe, 1041

pvmd
universe, 1041

PYTHON_CPU_COUNT
environment variables for jobs, 87

Q
Q_QUERY_TIMEOUT

Global Configuration Options, 170
QDate

Job ClassAd Attribute, 1047
quantize()

ClassAd functions, 473, 787
QUERY_TIMEOUT

COLLECTOR Configuration Options, 244
queue

and DAGMAN_INSERT_SUB_FILE, 273
and step argument, 957
example, 40
example with glob, 49
interactive job, 55
Submit commands, 927
with parallel universe, 96, 99

QUEUE_ALL_USERS_TRUSTED
SCHEDD Configuration Options, 222

QUEUE_CLEAN_INTERVAL
SCHEDD Configuration Options, 221

QUEUE_SUPER_USER_MAY_IMPERSONATE
SCHEDD Configuration Options, 222

QUEUE_SUPER_USERS
SCHEDD Configuration Options, 222

Quick (htcondor.DrainTypes attribute), 639
quotas

groups, 380

R
random()

ClassAd functions, 473, 787
RANDOM_CHOICE, 48

in submit file, 956
RANK

STARTD Configuration Options, 198
rank

ClassAd attribute, 485, 799

Index 1175

HTCondor Manual, Release 23.6.2

example, 49
Submit commands, 929

rank examples
ClassAd attribute, 50

real
UID, 434

real (RUP)
user priority, 374

real user priority (RUP), 374
real()

ClassAd functions, 471, 785
RealUid

Daemon-master ClassAd Attribute, 1077
RecentBlockReadKbytes

Job ClassAd Attribute, 1047
RecentBlockReads

Job ClassAd Attribute, 1047
RecentBlockWriteKbytes

Job ClassAd Attribute, 1047
RecentBlockWrites

Job ClassAd Attribute, 1047
RecentCancelsList

Defrag ClassAd Attribute, 1093
RecentDaemonCoreDutyCycle

Scheduler ClassAd Attribute, 1081
RecentDrainFailures

Defrag ClassAd Attribute, 1093
RecentDrainsList

Defrag ClassAd Attribute, 1093
RecentDrainSuccesses

Defrag ClassAd Attribute, 1093
RecentDroppedQueries (ClassAd Collector Attribute),

1094
RecentJobBusyTimeAvg

Machine ClassAd Attribute, 1060
RecentJobBusyTimeCount

Machine ClassAd Attribute, 1060
RecentJobBusyTimeMax

Machine ClassAd Attribute, 1060
RecentJobBusyTimeMin

Machine ClassAd Attribute, 1060
RecentJobDurationAvg

Machine ClassAd Attribute, 1061
RecentJobDurationCount

Machine ClassAd Attribute, 1061
RecentJobDurationMax

Machine ClassAd Attribute, 1061
RecentJobDurationMin

Machine ClassAd Attribute, 1061
RecentJobPreemptions

Machine ClassAd Attribute, 1068
RecentJobRankPreemptions

Machine ClassAd Attribute, 1068
RecentJobsAccumBadputTime

Scheduler ClassAd Attribute, 1081
RecentJobsAccumRunningTime

Scheduler ClassAd Attribute, 1081
RecentJobsAccumTimeToStart

Scheduler ClassAd Attribute, 1081
RecentJobsBadputRuntimes

Scheduler ClassAd Attribute, 1081
RecentJobsBadputSizes

Scheduler ClassAd Attribute, 1081
RecentJobsCheckpointed

Scheduler ClassAd Attribute, 1081
RecentJobsCompleted

Scheduler ClassAd Attribute, 1082
RecentJobsCompletedRuntimes

Scheduler ClassAd Attribute, 1082
RecentJobsCompletedSizes

Scheduler ClassAd Attribute, 1082
RecentJobsCoredumped

Scheduler ClassAd Attribute, 1082
RecentJobsDebugLogError

Scheduler ClassAd Attribute, 1082
RecentJobsExecFailed

Scheduler ClassAd Attribute, 1082
RecentJobsExited

Scheduler ClassAd Attribute, 1082
RecentJobsExitedAndClaimClosing

Scheduler ClassAd Attribute, 1082
RecentJobsExitedNormally

Scheduler ClassAd Attribute, 1082
RecentJobsExitException

Scheduler ClassAd Attribute, 1082
RecentJobsKilled

Scheduler ClassAd Attribute, 1082
RecentJobsMissedDeferralTime

Scheduler ClassAd Attribute, 1082
RecentJobsNotStarted

Scheduler ClassAd Attribute, 1082
RecentJobsShadowNoMemory

Scheduler ClassAd Attribute, 1082
RecentJobsShouldHold

Scheduler ClassAd Attribute, 1083
RecentJobsShouldRemove

Scheduler ClassAd Attribute, 1083
RecentJobsShouldRequeue

Scheduler ClassAd Attribute, 1083
RecentJobsStarted

Scheduler ClassAd Attribute, 1083
RecentJobsSubmitted

Scheduler ClassAd Attribute, 1083
RecentJobStarts

Machine ClassAd Attribute, 1068
RecentJobUserPrioPreemptions

Machine ClassAd Attribute, 1068
RecentShadowsReconnections

1176 Index

HTCondor Manual, Release 23.6.2

Scheduler ClassAd Attribute, 1083
RecentShadowsRecycled

Scheduler ClassAd Attribute, 1083
RecentShadowsStarted

Scheduler ClassAd Attribute, 1083
RecentStatsLifetime

Defrag ClassAd Attribute, 1093
Scheduler ClassAd Attribute, 1083

RecentStatsTickTime
Scheduler ClassAd Attribute, 1083

RecentWindowMax
Scheduler ClassAd Attribute, 1083

Reconfig (htcondor.DaemonCommands attribute), 650
reconfiguration

pool management, 137
regexp()

ClassAd functions, 480, 794
regexpMember()

ClassAd functions, 480, 794
regexps()

ClassAd functions, 480, 795
REJECT

DAG Commands, 551
Release (htcondor.JobAction attribute), 628
release notes

Windows, 722
RELEASE_DIR

Global Configuration Options, 164
RELEASE_SPACE (htcondor.JobEventType attribute), 647
ReleaseReason

Job ClassAd Attribute, 1047
relTime()

ClassAd functions, 472, 786
Remote_Config

FEATURE Configuration Templates, 156
REMOTE_ERROR (htcondor.JobEventType attribute), 646
remote_initialdir

Submit commands, 953
REMOTE_PRIO_FACTOR

NEGOTIATOR Configuration Options, 249
Remote_Runtime_Config

FEATURE Configuration Templates, 156
RemoteAutoregroup

ClassAd attribute, ephemeral, 377
Machine ClassAd Attribute, 1072

RemoteGroup
ClassAd attribute, ephemeral, 376
Machine ClassAd Attribute, 1072

RemoteGroupQuota
ClassAd attribute, ephemeral, 376

RemoteGroupResourcesInUse
ClassAd attribute, ephemeral, 376

RemoteIwd
Job ClassAd Attribute, 1047

RemoteNegotiatingGroup
ClassAd attribute, ephemeral, 377
Machine ClassAd Attribute, 1072

RemoteOwner
Machine ClassAd Attribute, 1072

RemotePool
Job ClassAd Attribute, 1047

RemoteScheddName
Machine ClassAd Attribute, 1072

RemoteSysCpu
Job ClassAd Attribute, 1047

RemoteUser
Machine ClassAd Attribute, 1072

RemoteUserCpu
Job ClassAd Attribute, 1047

RemoteUserPrio
ClassAd attribute, ephemeral, 376

RemoteUserResourcesInUse
ClassAd attribute, ephemeral, 376

RemoteWallClockTime
Job ClassAd Attribute, 1047

Remove (htcondor.JobAction attribute), 628
remove_kill_sig

Submit commands, 946
REMOVE_SIGNIFICANT_ATTRIBUTES

SCHEDD Configuration Options, 228
REMOVED (htcondor.JobStatus attribute), 631
RemoveKillSig

Job ClassAd Attribute, 1048
RemoveX (htcondor.JobAction attribute), 629
rendezvousdir

Submit commands, 953
replace()

ClassAd functions, 481, 795
replaceall()

ClassAd functions, 481, 795
REPLICATION

High Availability Configuration Options,
285

REPLICATION_ARGS
High Availability Configuration Options,

285
REPLICATION_DEBUG

High Availability Configuration Options,
285

REPLICATION_INTERVAL
High Availability Configuration Options,

285
REPLICATION_LIST

High Availability Configuration Options,
284

REPLICATION_LOG
High Availability Configuration Options,

285

Index 1177

HTCondor Manual, Release 23.6.2

Reply to fetched work
Fetch Hooks, 359

request
resource, 32

request_<name>
Submit commands, 930

request_<name>
with partitionable slots, 304

REQUEST_CLAIM_TIMEOUT
SCHEDD Configuration Options, 221

request_cpus
and JOB_DEFAULT_REQUESTCPUS, 240
Submit commands, 929
with parallel universe, 102

request_disk
and JOB_DEFAULT_REQUESTDISK, 240
Submit commands, 929

Request_GPUS
definition, 54

request_GPUs
Submit commands, 930

request_gpus
Submit commands, 929

request_memory
and attribute MemoryUsage, 1043
and JOB_DEFAULT_REQUESTMEMORY, 240
Submit commands, 930

RequestCpus
Job ClassAd Attribute, 1048
required attributes, 357

RequestDisk
Job ClassAd Attribute, 1048
required attributes, 357

RequestedChroot
Job ClassAd Attribute, 1048

RequestGPUs
Job ClassAd Attribute, 1048

requesting GPUs for a job
GPUs, 54, 930

requesting OAuth credentials for a job
OAuth, 52

RequestMemory
Job ClassAd Attribute, 1048
required attributes, 357

Require_GPUS
definition, 54

require_gpus
Submit commands, 929

REQUIRE_LOCAL_CONFIG_FILE
Global Configuration Options, 166

Required attributes
Defining Applications, 357

required attributes
FetchWork, 357

RequireGPUs
Job ClassAd Attribute, 1048

Requirements, 215
Job Router Routing Table ClassAd

attribute, 713
Machine ClassAd Attribute, 1068

requirements
and hooks, 364
ClassAd attribute, 485, 799
example, 49
interop with Windows and Unix, 731
Submit commands, 931
with parallel universe, 98, 99

requirements attribute, 485, 799
RESERVE_SPACE (htcondor.JobEventType attribute), 647
RESERVED_DISK

Global Configuration Options, 168
RESERVED_MEMORY

STARTD Configuration Options, 203
RESERVED_SWAP

Global Configuration Options, 167
ResidentSetSize

Job ClassAd Attribute, 1048
resource allocation

HTCondor, 116
resource limits

cgroups, 310
resource limits with cgroups, 310
ResourcesUsed

Accounting ClassAd Attribute, 1025
Restart (htcondor.DaemonCommands attribute), 650
restarting HTCondor

pool management, 136
RestartPeacful (htcondor.DaemonCommands at-

tribute), 650
RetirementTimeRemaining

Machine ClassAd Attribute, 1068
Retiring

machine activity, 317
RETRY

DAG Commands, 550
retry_until

and DEFAULT_JOB_MAX_RETRIES, 241
Submit commands, 938

ROLE
Configuration Templates, 156

ROLE Configuration Templates
CentralManager, 156
Execute, 156
Personal, 156
Submit, 156

ROOSTER Configuration Options
ROOSTER_INTERVAL, 287
ROOSTER_MAX_UNHIBERNATE, 287

1178 Index

HTCondor Manual, Release 23.6.2

ROOSTER_UNHIBERNATE, 287
ROOSTER_UNHIBERNATE_RANK, 287
ROOSTER_WAKEUP_CMD, 287

ROOSTER_INTERVAL
ROOSTER Configuration Options, 287

ROOSTER_MAX_UNHIBERNATE
ROOSTER Configuration Options, 287

ROOSTER_UNHIBERNATE
ROOSTER Configuration Options, 287

ROOSTER_UNHIBERNATE_RANK
ROOSTER Configuration Options, 287

ROOSTER_WAKEUP_CMD
ROOSTER Configuration Options, 287

ROOT_MAX_THREADS
environment variables for jobs, 87

ROTATE_HISTORY_DAILY
SCHEDD Configuration Options, 227

ROTATE_HISTORY_MONTHLY
SCHEDD Configuration Options, 227

round()
ClassAd functions, 473, 787

RUN
Global Configuration Options, 165

run_as_owner
and condor_store_cred, 918
incompatibility with load_profile, 726
on Windows, 723
Submit commands, 953

RUN_FILETRANSFER_PLUGINS_WITH_ROOT
STARTER Configuration Options, 237

RunAsOwner, 436
RUNBENCHMARKS

STARTD Configuration Options, 203
RUNNING (htcondor.JobStatus attribute), 631
running as root, 135

daemon, 135
running jobs as user nobody

security, 436
running MPI applications

parallel universe, 100
running multiple programs, 39
RunningJobs

Collector ClassAd Attribute, 1097
Submitter ClassAd Attribute, 1091

S
s3_access_key_id_file

Submit commands, 937
s3_secret_access_key_file

Submit commands, 937
sample configuration

High Availability, 390
sample configuration using pool password

security, 415

sample configuration using pool password
for startd advertisement

security, 416
Sandbox, 1109
SAVE_POINT_FILE

DAG Commands, 552
SBIN

Global Configuration Options, 164
SCHED Configuration Options

SYSTEM_PERIODIC_HOLD, 224
SCHED_UNIV_RENICE_INCREMENT

SCHEDD Configuration Options, 221
Schedd (htcondor.AdTypes attribute), 621
Schedd (htcondor.DaemonTypes attribute), 621
Schedd (htcondor.SubsystemType attribute), 651
SCHEDD Configuration Options

<OAuth2Service>_AUTHORIZATION_URL, 231
<OAuth2Service>_CLIENT_ID, 231
<OAuth2Service>_CLIENT_SECRET_FILE, 231
<OAuth2Service>_RETURN_URL_SUFFIX, 231
<OAuth2Service>_TOKEN_URL, 232
ABSENT_SUBMITTER_LIFETIME, 219
ABSENT_SUBMITTER_UPDATE_RATE, 219
ADD_SIGNIFICANT_ATTRIBUTES, 228
ALIVE_INTERVAL, 220
ALLOW_SUBMIT_FROM_KNOWN_USERS_ONLY, 217
ALTERNATE_JOB_SPOOL, 231
CHECKPOINT_DESTINATION_MAPFILE, 232
CHOWN_JOB_SPOOL_FILES, 231
CONDOR_Q_DASH_BATCH_IS_DEFAULT, 219
CONDOR_Q_ONLY_MY_JOBS, 219
CONDOR_Q_SHOW_OLD_SUMMARY, 219
CONDOR_Q_USE_V3_PROTOCOL, 219
CURB_MATCHMAKING, 217
DEDICATED_SCHEDULER_USE_FIFO, 227
DEDICATED_SCHEDULER_WAIT_FOR_SPOOLER, 227
EXTENDED_SUBMIT_COMMANDS, 229
EXTENDED_SUBMIT_HELPFILE, 229
FILE_TRANSFER_DISK_LOAD_THROTTLE, 218
FILE_TRANSFER_DISK_LOAD_THROTTLE_LONG_HORIZON,

218
FILE_TRANSFER_DISK_LOAD_THROTTLE_SHORT_HORIZON,

218
FILE_TRANSFER_DISK_LOAD_THROTTLE_WAIT_BETWEEN_INCREMENTS,

218
FLOCK_COLLECTOR_HOSTS, 223
FLOCK_INCREMENT, 223
FLOCK_NEGOTIATOR_HOSTS, 223
GRACEFULLY_REMOVE_JOBS, 226
IMMUTABLE_JOB_ATTRS, 231
JOB_IS_FINISHED_COUNT, 220
JOB_IS_FINISHED_INTERVAL, 220
JOB_SPOOL_PERMISSIONS, 231
JOB_START_COUNT, 220

Index 1179

HTCondor Manual, Release 23.6.2

JOB_START_DELAY, 220
JOB_STOP_COUNT, 220
JOB_STOP_DELAY, 220
JOB_TRANSFORM_<Name>, 230
JOB_TRANSFORM_NAMES, 230
LOCAL_UNIV_EXECUTE, 215
MAX_CONCURRENT_DOWNLOADS, 217
MAX_CONCURRENT_UPLOADS, 218
MAX_JOBS_PER_OWNER, 217
MAX_JOBS_PER_SUBMISSION, 217
MAX_JOBS_RUNNING, 216
MAX_JOBS_SUBMITTED, 217
MAX_NEXT_JOB_START_DELAY, 220
MAX_NUM_SCHEDD_AUDIT_LOG, 229
MAX_PENDING_STARTD_CONTACTS, 217
MAX_PERIODIC_EXPR_INTERVAL, 224
MAX_RUNNING_SCHEDULER_JOBS_PER_OWNER, 217
MAX_SCHEDD_AUDIT_LOG, 228
MAX_SHADOW_EXCEPTIONS, 217
MAX_TRANSFER_INPUT_MB, 218
MAX_TRANSFER_OUTPUT_MB, 218
MAX_TRANSFER_QUEUE_AGE, 219
MIN_FLOCK_LEVEL, 223
NEGOTIATE_ALL_JOBS_IN_CLUSTER, 223
ParallelSchedulingGroup, 226
PER_JOB_HISTORY_DIR, 227
PERIODIC_EXPR_INTERVAL, 223
PERIODIC_EXPR_TIMESLICE, 224
PROTECTED_JOB_ATTRS, 231
QUEUE_ALL_USERS_TRUSTED, 222
QUEUE_CLEAN_INTERVAL, 221
QUEUE_SUPER_USER_MAY_IMPERSONATE, 222
QUEUE_SUPER_USERS, 222
REMOVE_SIGNIFICANT_ATTRIBUTES, 228
REQUEST_CLAIM_TIMEOUT, 221
ROTATE_HISTORY_DAILY, 227
ROTATE_HISTORY_MONTHLY, 227
SCHED_UNIV_RENICE_INCREMENT, 221
SCHEDD_ADDRESS_FILE, 223
SCHEDD_ASSUME_NEGOTIATOR_GONE, 225
SCHEDD_ATTRS, 223
SCHEDD_AUDIT_LOG, 228
SCHEDD_BACKUP_SPOOL, 226
SCHEDD_CHECKPOINT_CLEANUP_TIMEOUT, 232
SCHEDD_CLUSTER_INCREMENT_VALUE, 227
SCHEDD_CLUSTER_INITIAL_VALUE, 227
SCHEDD_CLUSTER_MAXIMUM_VALUE, 227
SCHEDD_COLLECT_STATS_BY_<Name>, 228
SCHEDD_COLLECT_STATS_FOR_<Name>, 228
SCHEDD_DEBUG, 223
SCHEDD_EXECUTE, 223
SCHEDD_EXPIRE_STATS_BY_<Name>, 228
SCHEDD_INTERVAL, 219
SCHEDD_INTERVAL_TIMESLICE, 220

SCHEDD_JOB_QUEUE_LOG_FLUSH_DELAY, 227
SCHEDD_LOCK, 222
SCHEDD_NAME, 222
SCHEDD_PREEMPTION_RANK, 226
SCHEDD_PREEMPTION_REQUIREMENTS, 226
SCHEDD_QUERY_WORKERS, 219
SCHEDD_RESTART_REPORT, 231
SCHEDD_ROUND_ATTR_<xxxx>, 226
SCHEDD_SEND_RESCHEDULE, 228
SCHEDD_SEND_VACATE_VIA_TCP, 227
SCHEDD_USE_SLOT_WEIGHT, 229
SCHEDD_USES_STARTD_FOR_LOCAL_UNIVERSE,

216
SHADOW, 215
SHADOW_RENICE_INCREMENT, 221
SHADOW_SIZE_ESTIMATE, 221
SIGNIFICANT_ATTRIBUTES, 228
START_LOCAL_UNIVERSE, 215
START_SCHEDULER_UNIVERSE, 215
START_VANILLA_UNIVERSE, 216
STARTD_SENDS_ALIVES, 221
STARTER_LOCAL, 215
SUBMIT_REQUIREMENT_<Name>, 230
SUBMIT_REQUIREMENT_<Name>_REASON, 231
SUBMIT_REQUIREMENT_NAMES, 230
SUBMIT_TEMPLATE_<Name>, 230
SUBMIT_TEMPLATE_NAMES, 230
SYSTEM_IMMUTABLE_JOB_ATTRS, 231
SYSTEM_JOB_MACHINE_ATTRS, 222
SYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH,

222
SYSTEM_PERIODIC_HOLD_<Name>, 224
SYSTEM_PERIODIC_HOLD_<Name>_REASON, 224
SYSTEM_PERIODIC_HOLD_<Name>_SUBCODE, 224
SYSTEM_PERIODIC_HOLD_NAMES, 224
SYSTEM_PERIODIC_HOLD_REASON, 224
SYSTEM_PERIODIC_HOLD_SUBCODE, 224
SYSTEM_PERIODIC_RELEASE, 225
SYSTEM_PERIODIC_RELEASE_<Name>, 225
SYSTEM_PERIODIC_RELEASE_NAMES, 224
SYSTEM_PERIODIC_REMOVE, 225
SYSTEM_PERIODIC_REMOVE_<Name>, 225
SYSTEM_PERIODIC_REMOVE_NAMES, 225
SYSTEM_PERIODIC_VACATE, 225
SYSTEM_PERIODIC_VACATE_<Name>, 225
SYSTEM_PERIODIC_VACATE_NAMES, 225
SYSTEM_PROTECTED_JOB_ATTRS, 231
TRANSFER_IO_REPORT_INTERVAL, 219
TRANSFER_IO_REPORT_TIMESPANS, 219
TRANSFER_QUEUE_USER_EXPR, 218
USE_JOBSETS, 232
WALL_CLOCK_CKPT_INTERVAL, 221
WINDOWED_STAT_WIDTH, 220

Schedd Cron, 340, 368

1180 Index

HTCondor Manual, Release 23.6.2

SCHEDD_ADDRESS_FILE
SCHEDD Configuration Options, 223

SCHEDD_ASSUME_NEGOTIATOR_GONE
SCHEDD Configuration Options, 225

SCHEDD_ATTRS
SCHEDD Configuration Options, 223

SCHEDD_AUDIT_LOG
SCHEDD Configuration Options, 228

SCHEDD_BACKUP_SPOOL
SCHEDD Configuration Options, 226

SCHEDD_CHECKPOINT_CLEANUP_TIMEOUT
SCHEDD Configuration Options, 232

SCHEDD_CLUSTER_INCREMENT_VALUE
SCHEDD Configuration Options, 227

SCHEDD_CLUSTER_INITIAL_VALUE
SCHEDD Configuration Options, 227

SCHEDD_CLUSTER_MAXIMUM_VALUE
SCHEDD Configuration Options, 227

SCHEDD_COLLECT_STATS_BY_<Name>
SCHEDD Configuration Options, 228

SCHEDD_COLLECT_STATS_FOR_<Name>
SCHEDD Configuration Options, 228

SCHEDD_CRON_<JobName>_ARGS
HOOKS Configuration Options, 292

SCHEDD_CRON_<JobName>_CWD
HOOKS Configuration Options, 292

SCHEDD_CRON_<JobName>_ENV
HOOKS Configuration Options, 292

SCHEDD_CRON_<JobName>_EXECUTABLE
HOOKS Configuration Options, 292

SCHEDD_CRON_<JobName>_JOB_LOAD
HOOKS Configuration Options, 292

SCHEDD_CRON_<JobName>_KILL
HOOKS Configuration Options, 293

SCHEDD_CRON_<JobName>_MODE
HOOKS Configuration Options, 294

SCHEDD_CRON_<JobName>_PERIOD
HOOKS Configuration Options, 294

SCHEDD_CRON_<JobName>_PREFIX
HOOKS Configuration Options, 295

SCHEDD_CRON_<JobName>_RECONFIG
HOOKS Configuration Options, 295

SCHEDD_CRON_<JobName>_RECONFIG_RERUN
HOOKS Configuration Options, 295

SCHEDD_CRON_CONFIG_VAL
HOOKS Configuration Options, 291

SCHEDD_CRON_JOBLIST
HOOKS Configuration Options, 292

SCHEDD_CRON_LOG_NON_ZERO_EXIT
HOOKS Configuration Options, 292

SCHEDD_CRON_MAX_JOB_LOAD
HOOKS Configuration Options, 292

SCHEDD_DEBUG
SCHEDD Configuration Options, 223

SCHEDD_ENABLE_SSH_TO_JOB
SSH_TO_JOB Configuration Options, 286

SCHEDD_EXECUTE
SCHEDD Configuration Options, 223

SCHEDD_EXPIRE_STATS_BY_<Name>
SCHEDD Configuration Options, 228

SCHEDD_HOST
Global Configuration Options, 164

SCHEDD_INTERVAL
SCHEDD Configuration Options, 219

SCHEDD_INTERVAL_TIMESLICE
SCHEDD Configuration Options, 220

SCHEDD_JOB_QUEUE_LOG_FLUSH_DELAY
SCHEDD Configuration Options, 227

SCHEDD_LOCK
SCHEDD Configuration Options, 222

SCHEDD_NAME
SCHEDD Configuration Options, 222

SCHEDD_PREEMPTION_RANK
SCHEDD Configuration Options, 226

SCHEDD_PREEMPTION_REQUIREMENTS
SCHEDD Configuration Options, 226

SCHEDD_QUERY_WORKERS
SCHEDD Configuration Options, 219

SCHEDD_RESTART_REPORT
SCHEDD Configuration Options, 231

SCHEDD_ROUND_ATTR_<xxxx>
SCHEDD Configuration Options, 226

SCHEDD_SEND_RESCHEDULE
SCHEDD Configuration Options, 228

SCHEDD_SEND_VACATE_VIA_TCP
SCHEDD Configuration Options, 227

SCHEDD_SUPER_ADDRESS_FILE, 183
SCHEDD_USE_SLOT_WEIGHT

SCHEDD Configuration Options, 229
SCHEDD_USES_STARTD_FOR_LOCAL_UNIVERSE

SCHEDD Configuration Options, 216
ScheddCronContinuous

FEATURE Configuration Templates, 157
ScheddCronOneShot

FEATURE Configuration Templates, 157
ScheddCronPeriodic

FEATURE Configuration Templates, 157
ScheddIpAddr

Scheduler ClassAd Attribute, 1083
Submitter ClassAd Attribute, 1091

ScheddName
Submitter ClassAd Attribute, 1091

ScheddUserMapFile
FEATURE Configuration Templates, 157

scheduler
universe, 85, 1041

Scheduler (ClassAd Types), 1024
Scheduler ClassAd Attribute

Index 1181

HTCondor Manual, Release 23.6.2

Autoclusters, 1077
CollectorHost, 1077
CondorVersion, 1077
DaemonCoreDutyCycle, 1077
DaemonLastReconfigTime, 1077
DaemonStartTime, 1077
DetectedCpus, 1077
DetectedMemory, 1077
EffectiveFlockList, 1077
FileTransferDiskThrottleExcess_<timespan>,

1085
FileTransferDiskThrottleHigh, 1085
FileTransferDiskThrottleLevel, 1085
FileTransferDiskThrottleLow, 1085
FileTransferDiskThrottleShortfall_<timespan>,

1085
FileTransferDownloadBytes, 1085
FileTransferDownloadBytesPerSecond_<timespan>,

1086
FileTransferFileReadLoad_<timespan>, 1086
FileTransferFileReadSeconds, 1086
FileTransferFileWriteLoad_<timespan>,

1086
FileTransferFileWriteSeconds, 1086
FileTransferNetReadLoad_<timespan>, 1086
FileTransferNetReadSeconds, 1086
FileTransferNetWriteLoad_<timespan>, 1087
FileTransferNetWriteSeconds, 1087
FileTransferUploadBytes, 1087
FileTransferUploadBytesPerSecond_<timespan>,

1087
JobQueueBirthdate, 1077
JobsAccumBadputTime, 1077
JobsAccumExceptionalBadputTime, 1077
JobsAccumRunningTime, 1077
JobsAccumTimeToStart, 1078
JobsBadputRuntimes, 1078
JobsBadputSizes, 1078
JobsCheckpointed, 1078
JobsCompleted, 1078
JobsCompletedRuntimes, 1078
JobsCompletedSizes, 1078
JobsCoredumped, 1078
JobsDebugLogError, 1078
JobsExecFailed, 1078
JobsExited, 1078
JobsExitedAndClaimClosing, 1078
JobsExitedNormally, 1078
JobsExitException, 1078
JobsKilled, 1079
JobsMissedDeferralTime, 1079
JobsNotStarted, 1079
JobsRestartReconnectsAttempting, 1079
JobsRestartReconnectsBadput, 1079

JobsRestartReconnectsFailed, 1079
JobsRestartReconnectsInterrupted, 1079
JobsRestartReconnectsLeaseExpired, 1079
JobsRestartReconnectsSucceeded, 1079
JobsRunning, 1079
JobsRunningRuntimes, 1079
JobsRunningSizes, 1079
JobsRuntimesHistogramBuckets, 1079
JobsShadowNoMemory, 1080
JobsShouldHold, 1080
JobsShouldRemove, 1080
JobsShouldRequeue, 1080
JobsSizesHistogramBuckets, 1080
JobsStarted, 1080
JobsSubmitted, 1080
JobsUnmaterialized, 1080
Machine, 1080
MaxJobsRunning, 1080
MonitorSelfAge, 1080
MonitorSelfCPUUsage, 1080
MonitorSelfImageSize, 1080
MonitorSelfRegisteredSocketCount, 1080
MonitorSelfResidentSetSize, 1080
MonitorSelfSecuritySessions, 1080
MonitorSelfTime, 1081
MyAddress, 1081
MyCurrentTime, 1081
Name, 1081
NumJobStartsDelayed, 1081
NumPendingClaims, 1081
NumUsers, 1081
PublicNetworkIpAddr, 1081
RecentDaemonCoreDutyCycle, 1081
RecentJobsAccumBadputTime, 1081
RecentJobsAccumRunningTime, 1081
RecentJobsAccumTimeToStart, 1081
RecentJobsBadputRuntimes, 1081
RecentJobsBadputSizes, 1081
RecentJobsCheckpointed, 1081
RecentJobsCompleted, 1082
RecentJobsCompletedRuntimes, 1082
RecentJobsCompletedSizes, 1082
RecentJobsCoredumped, 1082
RecentJobsDebugLogError, 1082
RecentJobsExecFailed, 1082
RecentJobsExited, 1082
RecentJobsExitedAndClaimClosing, 1082
RecentJobsExitedNormally, 1082
RecentJobsExitException, 1082
RecentJobsKilled, 1082
RecentJobsMissedDeferralTime, 1082
RecentJobsNotStarted, 1082
RecentJobsShadowNoMemory, 1082
RecentJobsShouldHold, 1083

1182 Index

HTCondor Manual, Release 23.6.2

RecentJobsShouldRemove, 1083
RecentJobsShouldRequeue, 1083
RecentJobsStarted, 1083
RecentJobsSubmitted, 1083
RecentShadowsReconnections, 1083
RecentShadowsRecycled, 1083
RecentShadowsStarted, 1083
RecentStatsLifetime, 1083
RecentStatsTickTime, 1083
RecentWindowMax, 1083
ScheddIpAddr, 1083
ShadowsReconnections, 1083
ShadowsRecycled, 1084
ShadowsRunning, 1084
ShadowsRunningPeak, 1084
ShadowsStarted, 1084
StartLocalUniverse, 1084
StartSchedulerUniverse, 1084
StatsLastUpdateTime, 1084
StatsLifetime, 1084
TotalFlockedJobs, 1084
TotalHeldJobs, 1084
TotalIdleJobs, 1084
TotalJobAds, 1084
TotalLocalJobsIdle, 1084
TotalLocalJobsRunning, 1084
TotalRemovedJobs, 1084
TotalRunningJobs, 1084
TotalSchedulerJobsIdle, 1085
TotalSchedulerJobsRunning, 1085
TransferQueueDownloadWaitTime, 1087
TransferQueueMaxDownloading, 1088
TransferQueueMaxUploading, 1088
TransferQueueMBWaitingToDownload, 1087
TransferQueueMBWaitingToUpload, 1087
TransferQueueNumDownloading, 1088
TransferQueueNumUploading, 1088
TransferQueueNumWaitingToDownload, 1087
TransferQueueNumWaitingToUpload, 1087
TransferQueueUploadWaitTime, 1087
TransferQueueUserExpr, 1085
UpdateInterval, 1085
UpdateSequenceNumber, 1085
VirtualMemory, 1085
WantResAd, 1085

scheduler universe, 85
SchedulerJobsIdle

Submitter ClassAd Attribute, 1091
SchedulerJobsRunning

Submitter ClassAd Attribute, 1091
SCITOKENS_FILE

SECURITY Configuration Options, 280
scitokens_file

and arc grid, 700

Submit commands, 945
ScitokensFile

Job ClassAd Attribute, 1048
scope

JOB ROUTER Configuration Options, 264
scope of evaluation, MY.

ClassAd, 482, 796
scope of evaluation, TARGET.

ClassAd, 482, 796
ScratchDirFileCount

Job ClassAd Attribute, 1048
SCRIPT

DAG Commands, 550
SEC_*_AUTHENTICATION

SECURITY Configuration Options, 273
SEC_*_AUTHENTICATION_METHODS

SECURITY Configuration Options, 274
SEC_*_CRYPTO_METHODS

SECURITY Configuration Options, 274
SEC_*_ENCRYPTION

SECURITY Configuration Options, 273
SEC_*_INTEGRITY

SECURITY Configuration Options, 274
SEC_*_NEGOTIATION

SECURITY Configuration Options, 274
SEC_<access-level>_SESSION_DURATION

SECURITY Configuration Options, 275
SEC_<access-level>_SESSION_LEASE

SECURITY Configuration Options, 275
SEC_CREDENTIAL_DIRECTORY_KRB

SECURITY Configuration Options, 280
SEC_CREDENTIAL_DIRECTORY_OAUTH

SECURITY Configuration Options, 280
SEC_CREDENTIAL_PRODUCER

SECURITY Configuration Options, 280
SEC_CREDENTIAL_STORER

SECURITY Configuration Options, 280
SEC_CREDENTIAL_SWEEP_DELAY

SECURITY Configuration Options, 280
SEC_DEFAULT_AUTHENTICATION_TIMEOUT

SECURITY Configuration Options, 276
SEC_DEFAULT_SESSION_LEASE, 275
SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION

SECURITY Configuration Options, 279
SEC_ENABLE_REMOTE_ADMINISTRATION

SECURITY Configuration Options, 279
SEC_INVALIDATE_SESSIONS_VIA_TCP

SECURITY Configuration Options, 275
SEC_PASSWORD_DIRECTORY

SECURITY Configuration Options, 276
SEC_PASSWORD_FILE

SECURITY Configuration Options, 276
SEC_SYSTEM_KNOWN_HOSTS

SECURITY Configuration Options, 279

Index 1183

HTCondor Manual, Release 23.6.2

SEC_TCP_SESSION_DEADLINE
SECURITY Configuration Options, 276

SEC_TCP_SESSION_TIMEOUT
SECURITY Configuration Options, 276

SEC_TOKEN_DIRECTORY
SECURITY Configuration Options, 277

SEC_TOKEN_FETCH_ALLOWED_SIGNING_KEYS
SECURITY Configuration Options, 277

SEC_TOKEN_ISSUER_KEY
SECURITY Configuration Options, 277

SEC_TOKEN_POOL_SIGNING_KEY_FILE
SECURITY Configuration Options, 277

SEC_TOKEN_REQUEST_LIMITS
SECURITY Configuration Options, 277

SEC_TOKEN_REVOCATION_EXPR
SECURITY Configuration Options, 277

SEC_TOKEN_SYSTEM_DIRECTORY
SECURITY Configuration Options, 277

SEC_USE_FAMILY_SESSION
SECURITY Configuration Options, 279

SECURITY
Configuration Templates, 160

Security (htcondor.LogLevel attribute), 649
SECURITY Configuration Options

AUTH_SSL_ALLOW_CLIENT_PROXY, 278
AUTH_SSL_CLIENT_CADIR, 277
AUTH_SSL_CLIENT_CAFILE, 277
AUTH_SSL_CLIENT_CERTFILE, 278
AUTH_SSL_CLIENT_KEYFILE, 278
AUTH_SSL_CLIENT_USE_DEFAULT_CAS, 278
AUTH_SSL_REQUIRE_CLIENT_CERTIFICATE, 278
AUTH_SSL_SERVER_CADIR, 277
AUTH_SSL_SERVER_CAFILE, 277
AUTH_SSL_SERVER_CERTFILE, 278
AUTH_SSL_SERVER_KEYFILE, 278
AUTH_SSL_SERVER_USE_DEFAULT_CAS, 277
AUTH_SSL_USE_CLIENT_PROXY_ENV_VAR, 278
AUTH_SSL_USE_VOMS_IDENTITY, 275
BOOTSTRAP_SSL_SERVER_TRUST, 278
BOOTSTRAP_SSL_SERVER_TRUST_PROMPT_USER,

279
CERTIFICATE_MAPFILE, 279
CERTIFICATE_MAPFILE_ASSUME_HASH_KEYS, 279
COLLECTOR_BOOTSTRAP_SSL_CERTIFICATE, 278
DELEGATE_FULL_JOB_GSI_CREDENTIALS, 274
DELEGATE_JOB_GSI_CREDENTIALS, 274
DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME,

274
DELEGATE_JOB_GSI_CREDENTIALS_REFRESH, 275
ECRYPTFS_ADD_PASSPHRASE, 276
ENCRYPT_EXECUTE_DIRECTORY, 276
ENCRYPT_EXECUTE_DIRECTORY_FILENAMES, 276
FS_REMOTE_DIR, 276
HOST_ALIAS, 274

KERBEROS_CLIENT_KEYTAB, 280
KERBEROS_SERVER_KEYTAB, 280
KERBEROS_SERVER_PRINCIPAL, 280
KERBEROS_SERVER_SERVICE, 280
KERBEROS_SERVER_USER, 280
LEGACY_ALLOW_SEMANTICS, 280
SCITOKENS_FILE, 280
SEC_*_AUTHENTICATION, 273
SEC_*_AUTHENTICATION_METHODS, 274
SEC_*_CRYPTO_METHODS, 274
SEC_*_ENCRYPTION, 273
SEC_*_INTEGRITY, 274
SEC_*_NEGOTIATION, 274
SEC_<access-level>_SESSION_DURATION, 275
SEC_<access-level>_SESSION_LEASE, 275
SEC_CREDENTIAL_DIRECTORY_KRB, 280
SEC_CREDENTIAL_DIRECTORY_OAUTH, 280
SEC_CREDENTIAL_PRODUCER, 280
SEC_CREDENTIAL_STORER, 280
SEC_CREDENTIAL_SWEEP_DELAY, 280
SEC_DEFAULT_AUTHENTICATION_TIMEOUT, 276
SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION,

279
SEC_ENABLE_REMOTE_ADMINISTRATION, 279
SEC_INVALIDATE_SESSIONS_VIA_TCP, 275
SEC_PASSWORD_DIRECTORY, 276
SEC_PASSWORD_FILE, 276
SEC_SYSTEM_KNOWN_HOSTS, 279
SEC_TCP_SESSION_DEADLINE, 276
SEC_TCP_SESSION_TIMEOUT, 276
SEC_TOKEN_DIRECTORY, 277
SEC_TOKEN_FETCH_ALLOWED_SIGNING_KEYS, 277
SEC_TOKEN_ISSUER_KEY, 277
SEC_TOKEN_POOL_SIGNING_KEY_FILE, 277
SEC_TOKEN_REQUEST_LIMITS, 277
SEC_TOKEN_REVOCATION_EXPR, 277
SEC_TOKEN_SYSTEM_DIRECTORY, 277
SEC_USE_FAMILY_SESSION, 279
SSL_SKIP_HOST_CHECK, 278
TRUST_DOMAIN, 276
TRUST_DOMAIN_CAFILE, 278
TRUST_DOMAIN_CAKEY, 278
USE_COLLECTOR_HOST_CNAME, 274
USE_VOMS_ATTRIBUTES, 275

SECURITY Configuration Templates
Host_Based, 160
Strong, 160
User_Based, 160
With_Authentication, 160

security configuration variables
configuration, 273

see Daemon ClassAd Hooks
Schedd Cron functionality, 340
Startd Cron functionality, 340

1184 Index

HTCondor Manual, Release 23.6.2

SelectWaittime
ClassAd Attribute, 1099

Self-Checkpointing, 121
SendIDTokens

Job Router Routing Table attribute, 714
sending updates

TCP, 447
SENDMAIL

Global Configuration Options, 167
Server

HTCondorView, 386
ServerTime

Job ClassAd Attribute, 1049
SERVICE

DAG Commands, 550
sessions, 428

security, 428
set up

docker universe, 343
set up for the docker universe

universe, 343
set up for the vm universe

universe, 349
SET_JOB_ATTR

DAG Commands, 551
SetDirty (htcondor.TransactionFlags attribute), 629
SetForceShutdown (htcondor.DaemonCommands at-

tribute), 650
SetJobAttrFromUserMap

FEATURE Configuration Templates, 157
SetPeacefulShutdown (htcondor.DaemonCommands

attribute), 650
SETTABLE_ATTRS_<PERMISSION-LEVEL>

Global Configuration Options, 182
SETTABLE_ATTRS_ADMINISTRATOR, 433
SETTABLE_ATTRS_CONFIG, 182, 433
SETTABLE_ATTRS_WRITE, 433
setting, for a job

environment variables, 924
SHADOW

SCHEDD Configuration Options, 215
Shadow (htcondor.SubsystemType attribute), 651
SHADOW Configuration Options

ALLOW_TRANSFER_REMAP_TO_MKDIR, 233
JOB_EPOCH_HISTORY, 233
JOB_EPOCH_HISTORY_DIR, 233
MAX_EPOCH_HISTORY_LOG, 233
MAX_EPOCH_HISTORY_ROTATIONS, 233
MAX_SHADOW_STATS_LOG, 233
SHADOW_CHECKPROXY_INTERVAL, 233
SHADOW_DEBUG, 232
SHADOW_JOB_CLEANUP_RETRY_DELAY, 233
SHADOW_LAZY_QUEUE_UPDATE, 232
SHADOW_LOCK, 232

SHADOW_MAX_JOB_CLEANUP_RETRIES, 233
SHADOW_QUEUE_UPDATE_INTERVAL, 232
SHADOW_RUN_UNKNOWN_USER_JOBS, 233
SHADOW_STATS_LOG, 233
SHADOW_WORKLIFE, 232

SHADOW_CHECKPROXY_INTERVAL
SHADOW Configuration Options, 233

SHADOW_DEBUG
SHADOW Configuration Options, 232

SHADOW_EXCEPTION (htcondor.JobEventType attribute),
646

SHADOW_JOB_CLEANUP_RETRY_DELAY
SHADOW Configuration Options, 233

SHADOW_LAZY_QUEUE_UPDATE
SHADOW Configuration Options, 232

SHADOW_LOCK
SHADOW Configuration Options, 232

SHADOW_MAX_JOB_CLEANUP_RETRIES
SHADOW Configuration Options, 233

SHADOW_QUEUE_UPDATE_INTERVAL
SHADOW Configuration Options, 232

SHADOW_RENICE_INCREMENT
SCHEDD Configuration Options, 221

SHADOW_RUN_UNKNOWN_USER_JOBS
SHADOW Configuration Options, 233

SHADOW_SIZE_ESTIMATE
SCHEDD Configuration Options, 221

SHADOW_STATS_LOG
SHADOW Configuration Options, 233

SHADOW_WORKLIFE
SHADOW Configuration Options, 232

ShadowsReconnections
Scheduler ClassAd Attribute, 1083

ShadowsRecycled
Scheduler ClassAd Attribute, 1084

ShadowsRunning
Scheduler ClassAd Attribute, 1084

ShadowsRunningPeak
Scheduler ClassAd Attribute, 1084

ShadowsStarted
Scheduler ClassAd Attribute, 1084

shared file system configuration variables
configuration, 190

shared functionality in daemons
HTCondor, 137

SHARED PORT Configuration Options
DAEMON_SOCKET_DIR, 288
MAX_NUM_SHARED_PORT_AUDIT_LOG, 289
MAX_SHARED_PORT_AUDIT_LOG, 289
SHARED_PORT_ARGS, 289
SHARED_PORT_AUDIT_LOG, 289
SHARED_PORT_DAEMON_AD_FILE, 288
SHARED_PORT_MAX_WORKERS, 288
SHARED_PORT_PORT, 288

Index 1185

HTCondor Manual, Release 23.6.2

USE_SHARED_PORT, 288
SHARED_PORT_ARGS

SHARED PORT Configuration Options, 289
SHARED_PORT_AUDIT_LOG

SHARED PORT Configuration Options, 289
SHARED_PORT_DAEMON_AD_FILE

SHARED PORT Configuration Options, 288
SHARED_PORT_DEFAULT_ID

Network Configuration Options, 186
SHARED_PORT_MAX_WORKERS

SHARED PORT Configuration Options, 288
SHARED_PORT_PORT

SHARED PORT Configuration Options, 288
SharedPort (htcondor.SubsystemType attribute), 651
SharedX509UserProxy

Job Router Routing Table ClassAd
attribute, 714

SHELL, 900
should_transfer_files

and SUBMIT_DEFAULT_SHOULD_TRANSFER_FILES,
241

definition, 61
Submit commands, 933
with parallel universe, 101
with URLs, 69

ShouldLog (htcondor.TransactionFlags attribute), 629
SHUTDOWN_FAST_TIMEOUT

MASTER Configuration Options, 194
SHUTDOWN_GRACEFUL_TIMEOUT

Global Configuration Options, 182
shutting down HTCondor

pool management, 136
SIGN_S3_URLS

Global Configuration Options, 174
SignalRuntime

ClassAd Attribute, 1099
Signals

ClassAd Attribute, 1099
SIGNIFICANT_ATTRIBUTES

SCHEDD Configuration Options, 228
single

Slot Type; Dynamic, 301
Slot Type; Partionable, 300
Slot Type; Static, 301

SINGULARITY
STARTER Configuration Options, 239

Singularity, 345
installation, 345

SINGULARITY_BIND_EXPR
STARTER Configuration Options, 239

SINGULARITY_CACHEDIR
environment variables for jobs, 87

SINGULARITY_EXTRA_ARGUMENTS
STARTER Configuration Options, 240

SINGULARITY_IGNORE_MISSING_BIND_TARGET
STARTER Configuration Options, 239

SINGULARITY_IMAGE_EXPR
STARTER Configuration Options, 239

SINGULARITY_JOB
STARTER Configuration Options, 239

SINGULARITY_TARGET_DIR
STARTER Configuration Options, 239

SINGULARITY_USE_PID_NAMESPACES
STARTER Configuration Options, 240

SingularityVersion
Machine ClassAd Attribute, 1069

size()
ClassAd functions, 476, 790

skip_filechecks
Submit commands, 933

SKIP_WINDOWS_LOGON_NETWORK
PROCD Configuration Options, 256

Slot, 1110
Slot (ClassAd Types), 1024
Slot_RemoteUserPrio

ClassAd attribute, ephemeral, 376
SLOT_TYPE_<N>

STARTD Configuration Options, 208
SLOT_TYPE_<N>_PARTITIONABLE

STARTD Configuration Options, 208
SLOT_WEIGHT

STARTD Configuration Options, 211
SLOT<N>_CPU_AFFINITY

STARTER Configuration Options, 237
SLOT<N>_EXECUTE

Global Configuration Options, 165
SLOT<N>_JOB_HOOK_KEYWORD

HOOKS Configuration Options, 289
SLOT<N>_STARTD_ATTRS

STARTD Configuration Options, 202
SLOT<N>_USER

FileSystem Configuration Options, 191
SlotID

Machine ClassAd Attribute, 1069
SLOTS_CONNECTED_TO_CONSOLE

STARTD Configuration Options, 207
SLOTS_CONNECTED_TO_KEYBOARD

STARTD Configuration Options, 207
SlotType

Machine ClassAd Attribute, 1069
SlotWeight, 255

Machine ClassAd Attribute, 1069
SMP machines

configuration, 304
SMTP_SERVER

Global Configuration Options, 167
SOCKET_LISTEN_BACKLOG

Global Configuration Options, 185

1186 Index

HTCondor Manual, Release 23.6.2

SocketRuntime
ClassAd Attribute, 1099

SockMessages
ClassAd Attribute, 1099

SOFT_UID_DOMAIN
FileSystem Configuration Options, 190

SPLICE
DAG Commands, 549

split()
ClassAd functions, 476, 790

splitSlotName()
ClassAd functions, 476, 790

splitUserName()
ClassAd functions, 476, 790

SPOOL
Global Configuration Options, 165

SSH_TO_JOB Configuration Options
ENABLE_SSH_TO_JOB, 286
SCHEDD_ENABLE_SSH_TO_JOB, 286
SSH_TO_JOB_<SSH-CLIENT>_CMD, 286
SSH_TO_JOB_SSH_KEYGEN, 287
SSH_TO_JOB_SSH_KEYGEN_ARGS, 287
SSH_TO_JOB_SSHD, 286
SSH_TO_JOB_SSHD_ARGS, 286
SSH_TO_JOB_SSHD_CONFIG_TEMPLATE, 287

SSH_TO_JOB_<SSH-CLIENT>_CMD
SSH_TO_JOB Configuration Options, 286

SSH_TO_JOB_SSH_KEYGEN
SSH_TO_JOB Configuration Options, 287

SSH_TO_JOB_SSH_KEYGEN_ARGS
SSH_TO_JOB Configuration Options, 287

SSH_TO_JOB_SSHD
SSH_TO_JOB Configuration Options, 286

SSH_TO_JOB_SSHD_ARGS
SSH_TO_JOB Configuration Options, 286

SSH_TO_JOB_SSHD_CONFIG_TEMPLATE
SSH_TO_JOB Configuration Options, 287

SSL
authentication, 412

SSL_SKIP_HOST_CHECK
SECURITY Configuration Options, 278

stack_size
Submit commands, 953

StackSize
Job ClassAd Attribute, 1049

StageOutFinish
Job ClassAd Attribute, 1049

StageOutStart
Job ClassAd Attribute, 1049

standard
universe, 1041

START
STARTD Configuration Options, 197

START_BACKFILL

STARTD Configuration Options, 206
START_DAEMONS

MASTER Configuration Options, 194
START_LOCAL_UNIVERSE

SCHEDD Configuration Options, 215
START_MASTER

MASTER Configuration Options, 194
START_SCHEDULER_UNIVERSE

SCHEDD Configuration Options, 215
START_VANILLA_UNIVERSE

SCHEDD Configuration Options, 216
Startd (htcondor.AdTypes attribute), 621
Startd (htcondor.DaemonTypes attribute), 621
Startd (htcondor.SubsystemType attribute), 651
STARTD Configuration Options

ADVERTISE_PSLOT_ROLLUP_INFORMATION, 199
BACKFILL_SYSTEM, 206
CLAIM_PARTITIONABLE_LEFTOVERS, 208
CLAIM_WORKLIFE, 200
CONSOLE_DEVICES, 201
CONSUMPTION_<Resource>, 211
CONSUMPTION_POLICY, 211
CONTINUE, 198
COUNT_HYPERTHREAD_CPUS, 203
DedicatedScheduler, 204
DEFAULT_DRAINING_START_EXPR, 198
DISCONNECTED_KEYBOARD_IDLE_BOOST, 207
DOCKER, 213
DOCKER_CACHE_ADVERTISE_INTERVAL, 214
DOCKER_DROP_ALL_CAPABILITIES, 214
DOCKER_EXTRA_ARGUMENTS, 214
DOCKER_IMAGE_CACHE_SIZE, 214
DOCKER_LOG_DRIVER_NONE, 214
DOCKER_NETWORKS, 214
DOCKER_PERFORM_TEST, 214
DOCKER_RUN_UNDER_INIT, 214
DOCKER_SHM_SIZE, 214
DOCKER_VOLUMES, 213
DOT_NET_VERSIONS, 212
ENABLE_BACKFILL, 206
ENABLE_CLAIMABLE_PARTITIONABLE_SLOTS, 208
ENABLE_STARTD_DAEMON_AD, 202
ENVIRONMENT_FOR_Assigned<name>, 209
ENVIRONMENT_VALUE_FOR_UnAssigned<name>,

210
EVICT_BACKFILL, 206
HIBERNATE, 212
HIBERNATE_CHECK_INTERVAL, 212
HIBERNATION_OVERRIDE_WOL, 213
HIBERNATION_PLUGIN, 213
HIBERNATION_PLUGIN_ARGS, 213
IS_OWNER, 199
JAVA, 211
JAVA_CLASSPATH_ARGUMENT, 211

Index 1187

HTCondor Manual, Release 23.6.2

JAVA_CLASSPATH_DEFAULT, 211
JAVA_CLASSPATH_SEPARATOR, 211
JAVA_EXTRA_ARGUMENTS, 211
KBDD_BUMP_CHECK_AFTER_IDLE_TIME, 201
KBDD_BUMP_CHECK_SIZE, 201
KILL, 198
KILLING_TIMEOUT, 199
LINUX_HIBERNATION_METHOD, 213
LVM_BACKING_FILE, 206
LVM_BACKING_FILE_SIZE_MB, 206
LVM_HIDE_MOUNT, 206
LVM_THIN_LV_EXTRA_SIZE_MB, 206
LVM_THINPOOL_NAME, 206
LVM_USE_THIN_PROVISIONING, 205
LVM_VOLUME_GROUP_NAME, 206
MACHINE_RESOURCE_<name>, 209
MACHINE_RESOURCE_INVENTORY_<name>, 209
MACHINE_RESOURCE_NAMES, 208
MachineMaxVacateTime, 200
MAX_CLAIM_ALIVES_MISSED, 201
MAX_NUM_CPUS, 203
MAX_PARTITIONABLE_SLOT_CLAIM_TIME, 208
MAX_SLOT_TYPES, 208
MAXJOBRETIREMENTTIME, 200
MEMORY, 203
MODIFY_REQUEST_EXPR_REQUESTCPUS, 210
MODIFY_REQUEST_EXPR_REQUESTDISK, 210
MODIFY_REQUEST_EXPR_REQUESTMEMORY, 210
MOUNT_PRIVATE_DEV_SHM, 205
MOUNT_UNDER_SCRATCH, 205
MUST_MODIFY_REQUEST_EXPRS, 210
NUM_CLAIMS, 211
NUM_CPUS, 203
NUM_SLOTS, 210
NUM_SLOTS_TYPE_<N>, 210
OFFLINE_EXPIRE_ADS_AFTER, 213
OFFLINE_MACHINE_RESOURCE_<name>, 209
OPENMPI_EXCLUDE_NETWORK_INTERFACES, 214
OPENMPI_INSTALL_PATH, 214
PERIODIC_CHECKPOINT, 198
POLLING_INTERVAL, 200
PREEMPT, 198
RANK, 198
RESERVED_MEMORY, 203
RUNBENCHMARKS, 203
SLOT_TYPE_<N>, 208
SLOT_TYPE_<N>_PARTITIONABLE, 208
SLOT_WEIGHT, 211
SLOT<N>_STARTD_ATTRS, 202
SLOTS_CONNECTED_TO_CONSOLE, 207
SLOTS_CONNECTED_TO_KEYBOARD, 207
START, 197
START_BACKFILL, 206
STARTD_ADDRESS_FILE, 202

STARTD_ATTRS, 202
STARTD_CLAIM_ID_FILE, 202
STARTD_DEBUG, 202
STARTD_DETECT_GPUS, 208
STARTD_ENFORCE_DISK_LIMITS, 205
STARTD_HAS_BAD_UTMP, 201
STARTD_HISTORY, 199
STARTD_JOB_ATTRS, 201
STARTD_LATCH_EXPRS, 201
STARTD_NAME, 203
STARTD_NOCLAIM_SHUTDOWN, 204
STARTD_PARTITIONABLE_SLOT_ATTRS, 199
STARTD_PRINT_ADS_FILTER, 203
STARTD_PRINT_ADS_ON_SHUTDOWN, 202
STARTD_PUBLISH_DOTNET, 211
STARTD_PUBLISH_WINREG, 204
STARTD_RESOURCE_PREFIX, 207
STARTD_SHOULD_WRITE_CLAIM_ID_FILE, 202
STARTD_SLOT_ATTRS, 207
STARTER, 199
SUSPEND, 198
THINPOOL_NAME, 215
THINPOOL_VOLUME_GROUP_NAME, 215
UNHIBERNATE, 212
UPDATE_INTERVAL, 200
UPDATE_OFFSET, 200
WANT_HOLD, 198
WANT_HOLD_REASON, 198
WANT_HOLD_SUBCODE, 198
WANT_SUSPEND, 199
WANT_VACATE, 199

Startd Cron, 340
STARTD_AD_REEVAL_EXPR

NEGOTIATOR Configuration Options, 253
STARTD_ADDRESS_FILE

STARTD Configuration Options, 202
STARTD_ATTRS

STARTD Configuration Options, 202
STARTD_CLAIM_ID_FILE

STARTD Configuration Options, 202
STARTD_CRON_<JobName>_ARGS

HOOKS Configuration Options, 292
STARTD_CRON_<JobName>_CONDITION

HOOKS Configuration Options, 292
STARTD_CRON_<JobName>_CWD

HOOKS Configuration Options, 292
STARTD_CRON_<JobName>_ENV

HOOKS Configuration Options, 292
STARTD_CRON_<JobName>_EXECUTABLE

HOOKS Configuration Options, 292
STARTD_CRON_<JobName>_JOB_LOAD

HOOKS Configuration Options, 292
STARTD_CRON_<JobName>_KILL

HOOKS Configuration Options, 293

1188 Index

HTCondor Manual, Release 23.6.2

STARTD_CRON_<JobName>_METRICS
HOOKS Configuration Options, 293

STARTD_CRON_<JobName>_MODE
HOOKS Configuration Options, 294

STARTD_CRON_<JobName>_PERIOD
HOOKS Configuration Options, 294

STARTD_CRON_<JobName>_PREFIX
HOOKS Configuration Options, 295

STARTD_CRON_<JobName>_RECONFIG
HOOKS Configuration Options, 295

STARTD_CRON_<JobName>_RECONFIG_RERUN
HOOKS Configuration Options, 295

STARTD_CRON_<JobName>_SLOTS
HOOKS Configuration Options, 295

STARTD_CRON_AUTOPUBLISH
HOOKS Configuration Options, 291

STARTD_CRON_CONFIG_VAL
HOOKS Configuration Options, 291

STARTD_CRON_JOBLIST
HOOKS Configuration Options, 292

STARTD_CRON_LOG_NON_ZERO_EXIT
HOOKS Configuration Options, 292

STARTD_CRON_MAX_JOB_LOAD
HOOKS Configuration Options, 292

STARTD_DEBUG
STARTD Configuration Options, 202

STARTD_DETECT_GPUS
STARTD Configuration Options, 208

STARTD_ENFORCE_DISK_LIMITS
STARTD Configuration Options, 205

STARTD_HAS_BAD_UTMP
STARTD Configuration Options, 201

STARTD_HISTORY
STARTD Configuration Options, 199

STARTD_JOB_ATTRS
STARTD Configuration Options, 201

STARTD_JOB_HOOK_KEYWORD
HOOKS Configuration Options, 289

STARTD_LATCH_EXPRS
STARTD Configuration Options, 201

STARTD_NAME
STARTD Configuration Options, 203

STARTD_NOCLAIM_SHUTDOWN
STARTD Configuration Options, 204

STARTD_PARTITIONABLE_SLOT_ATTRS
STARTD Configuration Options, 199

STARTD_PRINT_ADS_FILTER
STARTD Configuration Options, 203

STARTD_PRINT_ADS_ON_SHUTDOWN
STARTD Configuration Options, 202

Startd_Publish_CpusUsage
POLICY Configuration Templates, 160

STARTD_PUBLISH_DOTNET
STARTD Configuration Options, 211

STARTD_PUBLISH_WINREG
STARTD Configuration Options, 204

STARTD_RESOURCE_PREFIX
STARTD Configuration Options, 207

STARTD_SENDS_ALIVES
SCHEDD Configuration Options, 221

STARTD_SHOULD_WRITE_CLAIM_ID_FILE
STARTD Configuration Options, 202

STARTD_SLOT_ATTRS
STARTD Configuration Options, 207

StartdAds
Collector ClassAd Attribute, 1097

StartdAdsPeak
Collector ClassAd Attribute, 1097

StartDaemon (ClassAd Types), 1024
StartdCronContinuous

FEATURE Configuration Templates, 157
StartdCronOneShot

FEATURE Configuration Templates, 157
StartdCronPeriodic

FEATURE Configuration Templates, 157
StartdIpAddr

Machine ClassAd Attribute, 1069
StartdPrivate (htcondor.AdTypes attribute), 621
STARTER

STARTD Configuration Options, 199
Starter (htcondor.SubsystemType attribute), 651
STARTER Configuration Options

<PLUGIN>_TEST_URL, 237
ASSIGN_CPU_AFFINITY, 237
CGROUP_MEMORY_LIMIT_POLICY, 236
CHIRP_DELAYED_UPDATE_MAX_ATTRS, 238
CHIRP_DELAYED_UPDATE_PREFIX, 238
CONDOR_SSH_TO_JOB_FAKE_PASSWD_ENTRY, 238
DEFAULT_CONTAINER_IMAGE, 240
DISABLE_SETUID, 234
DISABLE_SWAP_FOR_JOB, 236
DYNAMIC_RUN_ACCOUNT_LOCAL_GROUP, 239
ENABLE_CHIRP, 238
ENABLE_CHIRP_DELAYED, 238
ENABLE_CHIRP_IO, 238
ENABLE_CHIRP_UPDATES, 238
ENABLE_URL_TRANSFERS, 237
ENFORCE_CPU_AFFINITY, 237
FILETRANSFER_PLUGINS, 237
JOB_EXECDIR_PERMISSIONS, 239
JOB_INHERITS_STARTER_ENVIRONMENT, 236
JOB_RENICE_INCREMENT, 234
MAX_FILE_TRANSFER_PLUGIN_LIFETIME, 238
MAX_STARTER_STATS_LOG, 239
MEMORY_USAGE_METRIC, 238
MEMORY_USAGE_METRIC_VM, 238
NAMED_CHROOT, 236
PER_JOB_NAMESPACES, 239

Index 1189

HTCondor Manual, Release 23.6.2

RUN_FILETRANSFER_PLUGINS_WITH_ROOT, 237
SINGULARITY, 239
SINGULARITY_BIND_EXPR, 239
SINGULARITY_EXTRA_ARGUMENTS, 240
SINGULARITY_IGNORE_MISSING_BIND_TARGET,

239
SINGULARITY_IMAGE_EXPR, 239
SINGULARITY_JOB, 239
SINGULARITY_TARGET_DIR, 239
SINGULARITY_USE_PID_NAMESPACES, 240
SLOT<N>_CPU_AFFINITY, 237
STARTER_DEBUG, 234
STARTER_HIDE_GPU_DEVICES, 236
STARTER_JOB_ENVIRONMENT, 236
STARTER_LOCAL_LOGGING, 234
STARTER_LOG_NAME_APPEND, 234
STARTER_NUM_THREADS_ENV_VARS, 234
STARTER_RLIMIT_AS, 238
STARTER_STATS_LOG, 239
STARTER_UPDATE_INTERVAL, 235
STARTER_UPDATE_INTERVAL_MAX, 235
STARTER_UPDATE_INTERVAL_TIMESLICE, 235
STARTER_UPLOAD_TIMEOUT, 237
USE_DEFAULT_CONTAINER, 240
USE_PID_NAMESPACES, 239
USE_PSS, 238
USE_VISIBLE_DESKTOP, 236
USER_JOB_WRAPPER, 235

Starter pre and post scripts, 1044
STARTER_ALLOW_RUNAS_OWNER

FileSystem Configuration Options, 191
STARTER_DEBUG

STARTER Configuration Options, 234
starter_debug

Submit commands, 953
STARTER_HIDE_GPU_DEVICES

STARTER Configuration Options, 236
STARTER_JOB_ENVIRONMENT

STARTER Configuration Options, 236
STARTER_LOCAL

SCHEDD Configuration Options, 215
STARTER_LOCAL_LOGGING

STARTER Configuration Options, 234
starter_log

Submit commands, 953
STARTER_LOG_NAME_APPEND

STARTER Configuration Options, 234
STARTER_NUM_THREADS_ENV_VARS

STARTER Configuration Options, 234
STARTER_RLIMIT_AS

STARTER Configuration Options, 238
STARTER_STATS_LOG

STARTER Configuration Options, 239
STARTER_UPDATE_INTERVAL

STARTER Configuration Options, 235
STARTER_UPDATE_INTERVAL_MAX

STARTER Configuration Options, 235
STARTER_UPDATE_INTERVAL_TIMESLICE

STARTER Configuration Options, 235
STARTER_UPLOAD_TIMEOUT

STARTER Configuration Options, 237
StarterUserLog

optional attributes, 358
StarterUserLogUseXML

optional attributes, 358
starting and stopping a job

Windows, 727
StartLocalUniverse

Scheduler ClassAd Attribute, 1084
StartSchedulerUniverse

Scheduler ClassAd Attribute, 1084
State

Machine ClassAd Attribute, 1069
state

job, 73, 75, 1040
state and activities figure, 318
STATE_FILE

High Availability Configuration Options,
285

StaticSlots
FEATURE Configuration Templates, 157

STATISTICS_TO_PUBLISH
Global Configuration Options, 171

STATISTICS_TO_PUBLISH_LIST
Global Configuration Options, 172

STATISTICS_WINDOW_QUANTUM
Global Configuration Options, 172

STATISTICS_WINDOW_QUANTUM_<collection>
Global Configuration Options, 173

STATISTICS_WINDOW_SECONDS
Global Configuration Options, 172

STATISTICS_WINDOW_SECONDS_<collection>
Global Configuration Options, 172

StatsLastUpdateTime
Scheduler ClassAd Attribute, 1084

StatsLifetime
Scheduler ClassAd Attribute, 1084

Status (htcondor.LogLevel attribute), 649
strcat()

ClassAd functions, 474, 788
strcmp()

ClassAd functions, 475, 789
stream_error

Submit commands, 933
stream_input

Submit commands, 933
stream_output

Submit commands, 933

1190 Index

HTCondor Manual, Release 23.6.2

StreamErr
Job ClassAd Attribute, 1049

StreamOut
Job ClassAd Attribute, 1049

stricmp()
ClassAd functions, 475, 789

STRICT_CLASSAD_EVALUATION
Global Configuration Options, 171

string()
ClassAd functions, 471, 786

stringList_regexpMember()
ClassAd functions, 481, 795

stringListAvg()
ClassAd functions, 479, 793

stringListIMember()
ClassAd functions, 479, 793

stringListIntersect()
ClassAd functions, 479, 794

stringListISubsetMatch()
ClassAd functions, 480, 794

stringListMax()
ClassAd functions, 479, 793

stringListMember()
ClassAd functions, 479, 793

stringListMin()
ClassAd functions, 479, 793

stringListSize()
ClassAd functions, 479, 793

stringListSubsetMatch()
ClassAd functions, 480, 794

stringListSum()
ClassAd functions, 479, 793

Strong
SECURITY Configuration Templates, 160

sub
JOB ROUTER Configuration Options, 264

SUBDAG
DAG Commands, 549

subdividing slots
slots, 305

submission of jobs
shared file system, 51

submission of jobs without one
shared file system, 61

submission using a shared file system
job, 51

submission without a shared file system
job, 61

Submit
ROLE Configuration Templates, 156

submit
machine, 132

SUBMIT (htcondor.JobEventType attribute), 646
Submit (htcondor.SubsystemType attribute), 651

Submit commands
<credential_service_name>_oauth_permissions,

953
<credential_service_name>_oauth_resource,

953
<service-name>_HostPort, 948
<service-name>_container_port, 947
accounting_group, 948
accounting_group_user, 948
allowed_execute_duration, 937
allowed_job_duration, 937
arc_application, 941
arc_resources, 941
arc_rte, 941
arguments, 922
aws_access_key_id_file, 937
aws_region, 937
aws_secret_access_key_file, 937
azure_admin_key, 941
azure_admin_username, 941
azure_auth_file, 941
azure_image, 941
azure_location, 941
azure_size, 941
batch_extra_submit_args, 941
batch_name, 925
batch_project, 941
batch_queue, 942
batch_runtime, 942
checkpoint_destination, 936
checkpoint_exit_code, 938
cloud_label_<name>, 942
cloud_label_names, 942
concurrency_limits, 948
concurrency_limits_expr, 948
container_image, 948
container_service_names, 947
container_target_dir, 948
copy_to_spool, 948
coresize, 948
cron_day_of_month, 949
cron_day_of_week, 949
cron_hour, 949
cron_minute, 949
cron_month, 949
cron_prep_time, 949
cron_window, 949
cuda_version, 931
dagman_log, 949
deferral_prep_time, 949
deferral_time, 949
deferral_window, 949
delegate_job_GSI_credentials_lifetime,

942

Index 1191

HTCondor Manual, Release 23.6.2

description, 950
docker_image, 947
docker_network_type, 947
docker_override_entrypoint, 948
docker_pull_policy, 947
dont_encrypt_input_files, 931
dont_encrypt_output_files, 932
ec2_access_key_id, 942
ec2_ami_id, 942
ec2_availability_zone, 942
ec2_block_device_mapping, 942
ec2_ebs_volumes, 942
ec2_elastic_ip, 942
ec2_iam_profile_arn, 942
ec2_iam_profile_name, 942
ec2_instance_type, 942
ec2_keypair, 943
ec2_keypair_file, 943
ec2_parameter_<name>, 943
ec2_parameter_names, 943
ec2_secret_access_key, 943
ec2_security_groups, 943
ec2_security_ids, 943
ec2_spot_price, 943
ec2_tag_<name>, 943
ec2_tag_names, 943
ec2_user_data, 943
ec2_user_data_file, 943
ec2_vpc_ip, 943
ec2_vpc_subnet, 944
email_attributes, 950
encrypt_execute_directory, 932
encrypt_input_files, 932
encrypt_output_files, 932
environment, 924
erase_output_and_error_on_restart, 932
error, 925
executable, 925
gce_account, 944
gce_auth_file, 944
gce_image, 944
gce_json_file, 944
gce_machine_type, 944
gce_metadata, 944
gce_metadata_file, 944
gce_preemptible, 944
getenv, 925
gpus_maximum_capability, 930
gpus_minimum_capability, 930
gpus_minimum_memory, 930
gpus_minimum_runtime, 930
grid_resource, 944
gs_access_key_id_file, 937
gs_secret_access_key_file, 937

hold, 938
hold_kill_sig, 945
image_size, 950
initialdir, 950
input, 926
jar_files, 946
java_vm_args, 946
job_ad_information_attrs, 950
job_lease_duration, 950
job_machine_attrs, 950
job_machine_attrs_history_length, 950
job_max_vacate_time, 951
keep_claim_idle, 938
kill_sig, 951
kill_sig_timeout, 951
leave_in_queue, 938
load_profile, 951
log, 926
log_xml, 951
machine_count, 946
manifest, 952
manifest_dir, 952
match_list_length, 951
max_idle, 928
max_job_retirement_time, 952
max_materialize, 928
max_retries, 937
max_transfer_input_mb, 932
max_transfer_output_mb, 933
next_job_start_delay, 939
nice_user, 952
noop_job, 952
noop_job_exit_code, 952
noop_job_exit_signal, 953
notification, 926
notify_user, 926
on_exit_hold, 939
on_exit_hold_reason, 939
on_exit_hold_subcode, 939
on_exit_remove, 939
output, 927
output_destination, 933
periodic_hold, 940
periodic_hold_reason, 940
periodic_hold_subcode, 940
periodic_release, 940
periodic_remove, 940
preserve_relative_paths, 936
priority, 927
public_input_files, 935
queue, 927
rank, 929
remote_initialdir, 953
remove_kill_sig, 946

1192 Index

HTCondor Manual, Release 23.6.2

rendezvousdir, 953
request_<name>, 930
request_cpus, 929
request_disk, 929
request_GPUs, 930
request_gpus, 929
request_memory, 930
require_gpus, 929
requirements, 931
retry_until, 938
run_as_owner, 953
s3_access_key_id_file, 937
s3_secret_access_key_file, 937
scitokens_file, 945
should_transfer_files, 933
skip_filechecks, 933
stack_size, 953
starter_debug, 953
starter_log, 953
stream_error, 933
stream_input, 933
stream_output, 933
submit_event_notes, 953
success_exit_code, 938
transfer_checkpoint_files, 936
transfer_error, 944
transfer_executable, 934
transfer_input, 945
transfer_input_files, 934
transfer_output, 945
transfer_output_files, 935
transfer_output_remaps, 936
transfer_plugins, 936
ulog_execute_attrs, 953
universe, 928
use_oauth_services, 953
use_scitokens, 945
use_x509userproxy, 945
vm_checkpoint, 946
vm_disk, 946
vm_macaddr, 946
vm_memory, 946
vm_networking, 946
vm_networking_type, 947
vm_no_output_vm, 947
vm_type, 947
want_graceful_removal, 951
WantNameTag, 943
when_to_transfer_output, 936
x509userproxy, 945
xen_initrd, 947
xen_kernel, 947
xen_kernel_params, 947
xen_root, 947

submit commands, 922
submit commands specific to Xen

vm universe, 93
SUBMIT Configuration Options

APPEND_RANK, 241
APPEND_RANK_VANILLA, 241
APPEND_REQ_VANILLA, 241
APPEND_REQUIREMENTS, 241
CONTAINER_SHARED_FS, 242
CRED_MIN_TIME_LEFT, 242
DEFAULT_JOB_MAX_RETRIES, 241
DEFAULT_RANK, 241
DEFAULT_RANK_VANILLA, 241
DEFAULT_UNIVERSE, 240
ENABLE_DEPRECATION_WARNINGS, 242
INTERACTIVE_SUBMIT_FILE, 242
JOB_DEFAULT_LEASE_DURATION, 240
JOB_DEFAULT_NOTIFICATION, 240
JOB_DEFAULT_REQUESTCPUS, 240
JOB_DEFAULT_REQUESTDISK, 240
JOB_DEFAULT_REQUESTMEMORY, 240
LOG_ON_NFS_IS_ERROR, 242
SUBMIT_ALLOW_GETENV, 242
SUBMIT_ATTRS, 242
SUBMIT_DEFAULT_SHOULD_TRANSFER_FILES, 241
SUBMIT_GENERATE_CONDOR_C_REQUIREMENTS,

241
SUBMIT_GENERATE_CUSTOM_RESOURCE_REQUIREMENTS,

241
SUBMIT_MAX_PROCS_IN_CLUSTER, 242
SUBMIT_SEND_RESCHEDULE, 242
SUBMIT_SKIP_FILECHECKS, 241
WARN_ON_UNUSED_SUBMIT_FILE_MACROS, 241

submit description
file, 38

submit description file, 38
submit requirements, 366
submit warnings, 367
SUBMIT_ALLOW_GETENV

SUBMIT Configuration Options, 242
SUBMIT_ATTRS

SUBMIT Configuration Options, 242
SUBMIT_DEFAULT_SHOULD_TRANSFER_FILES

SUBMIT Configuration Options, 241
submit_event_notes

Submit commands, 953
SUBMIT_GENERATE_CONDOR_C_REQUIREMENTS

SUBMIT Configuration Options, 241
SUBMIT_GENERATE_CUSTOM_RESOURCE_REQUIREMENTS

SUBMIT Configuration Options, 241
SUBMIT_MAX_PROCS_IN_CLUSTER

SUBMIT Configuration Options, 242
SUBMIT_REQUEST_MISSING_UNITS

Configuration Options, 241

Index 1193

HTCondor Manual, Release 23.6.2

SUBMIT_REQUIREMENT_<Name>
SCHEDD Configuration Options, 230

SUBMIT_REQUIREMENT_<Name>_REASON
SCHEDD Configuration Options, 231

SUBMIT_REQUIREMENT_NAMES
SCHEDD Configuration Options, 230

SUBMIT_SEND_RESCHEDULE
SUBMIT Configuration Options, 242

SUBMIT_SKIP_FILECHECKS
SUBMIT Configuration Options, 241

SUBMIT_TEMPLATE_<Name>
SCHEDD Configuration Options, 230

SUBMIT_TEMPLATE_NAMES
SCHEDD Configuration Options, 230

SUBMIT-DESCRIPTION
DAG Commands, 549

SubmitsAllowed
Grid ClassAd Attribute, 1094

SubmitsWanted
Grid ClassAd Attribute, 1094

Submitter (ClassAd Types), 1024
Submitter (htcondor.AdTypes attribute), 622
Submitter ClassAd Attribute

CondorVersion, 1090
FlockedJobs, 1090
HeldJobs, 1090
IdleJobs, 1091
LocalJobsIdle, 1091
LocalJobsRunning, 1091
MyAddress, 1091
Name, 1091
RunningJobs, 1091
ScheddIpAddr, 1091
ScheddName, 1091
SchedulerJobsIdle, 1091
SchedulerJobsRunning, 1091
SubmitterTag, 1091
WeightedIdleJobs, 1091
WeightedRunningJobs, 1091

SubmitterAds
Collector ClassAd Attribute, 1097

SubmitterAdsPeak
Collector ClassAd Attribute, 1097

SubmitterAutoregroup
ClassAd attribute, ephemeral, 377
Job ClassAd Attribute, 1049

SubmitterGlobalJobId
Job ClassAd Attribute, 1049

SubmitterGroup
ClassAd attribute, ephemeral, 376
Job ClassAd Attribute, 1049

SubmitterGroupQuota
ClassAd attribute, ephemeral, 376

SubmitterGroupResourcesInUse

ClassAd attribute, ephemeral, 376
SubmitterLimit

Accounting ClassAd Attribute, 1025
SubmitterNegotiatingGroup

ClassAd attribute, ephemeral, 376
Job ClassAd Attribute, 1049

SubmitterShare
Accounting ClassAd Attribute, 1025

SubmitterTag
Submitter ClassAd Attribute, 1091

SubmitterUserPrio
ClassAd attribute, ephemeral, 376

SubmitterUserResourcesInUse
ClassAd attribute, ephemeral, 376

submitting
job, 38

submitting a job to
heterogeneous pool, 58

submitting jobs to ARC CE
grid computing, 700

submitting jobs to Azure
grid computing, 708

submitting jobs to GCE
grid computing, 707

submitting jobs using the EC2 Query API
grid computing, 703

SubSecond (htcondor.LogLevel attribute), 649
substr()

ClassAd functions, 474, 788
SUBSYSTEM, 154

Global Configuration Options, 163
subsystem names, 154

configuration file, 154
macro, 154

success_exit_code
and DEFAULT_JOB_MAX_RETRIES, 241
Submit commands, 938

SuccessCheckpointExitBySignal
Job ClassAd Attribute, 1049

SuccessCheckpointExitCode
Job ClassAd Attribute, 1049

SuccessCheckpointExitSignal
Job ClassAd Attribute, 1050

SuccessPostExitBySignal
Job ClassAd Attribute, 1050

SuccessPostExitCode
Job ClassAd Attribute, 1050

SuccessPostExitSignal
Job ClassAd Attribute, 1050

SuccessPreExitBySignal
Job ClassAd Attribute, 1050

SuccessPreExitCode
Job ClassAd Attribute, 1050

SuccessPreExitSignal

1194 Index

HTCondor Manual, Release 23.6.2

Job ClassAd Attribute, 1050
sum()

ClassAd functions, 473, 788
SummaryOnly (htcondor.QueryOpts attribute), 629
supported platforms, 33
SUSPEND

STARTD Configuration Options, 198
Suspend (htcondor.JobAction attribute), 628
Suspended

machine activity, 317
SUSPENDED (htcondor.JobStatus attribute), 631
suspending jobs instead of evicting them

policy, 336
SYSAPI_GET_LOADAVG

Global Configuration Options, 170
SYSTEM_IMMUTABLE_JOB_ATTRS

SCHEDD Configuration Options, 231
SYSTEM_JOB_MACHINE_ATTRS, 1028, 1029

SCHEDD Configuration Options, 222
SYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH

SCHEDD Configuration Options, 222
SYSTEM_PERIODIC_HOLD

SCHED Configuration Options, 224
SYSTEM_PERIODIC_HOLD_<Name>

SCHEDD Configuration Options, 224
SYSTEM_PERIODIC_HOLD_<Name>_REASON

SCHEDD Configuration Options, 224
SYSTEM_PERIODIC_HOLD_<Name>_SUBCODE

SCHEDD Configuration Options, 224
SYSTEM_PERIODIC_HOLD_NAMES

SCHEDD Configuration Options, 224
SYSTEM_PERIODIC_HOLD_REASON

SCHEDD Configuration Options, 224
SYSTEM_PERIODIC_HOLD_SUBCODE

SCHEDD Configuration Options, 224
SYSTEM_PERIODIC_RELEASE

SCHEDD Configuration Options, 225
SYSTEM_PERIODIC_RELEASE_<Name>

SCHEDD Configuration Options, 225
SYSTEM_PERIODIC_RELEASE_NAMES

SCHEDD Configuration Options, 224
SYSTEM_PERIODIC_REMOVE

SCHEDD Configuration Options, 225
SYSTEM_PERIODIC_REMOVE_<Name>

SCHEDD Configuration Options, 225
SYSTEM_PERIODIC_REMOVE_NAMES

SCHEDD Configuration Options, 225
SYSTEM_PERIODIC_VACATE

SCHEDD Configuration Options, 225
SYSTEM_PERIODIC_VACATE_<Name>

SCHEDD Configuration Options, 225
SYSTEM_PERIODIC_VACATE_NAMES

SCHEDD Configuration Options, 225
SYSTEM_PROTECTED_JOB_ATTRS

SCHEDD Configuration Options, 231
SYSTEM_VALID_SPOOL_FILES

PREEN Configuration Options, 243

T
TARGET., ClassAd scope resolution prefix,

482, 796
TargetType

Machine ClassAd Attribute, 1069
TargetUniverse

Job Router Routing Table ClassAd
attribute, 717

TCP, 447
TCP_FORWARDING_HOST

Network Configuration Options, 188
TCP_KEEPALIVE_INTERVAL

Global Configuration Options, 173
TCP_UPDATE_COLLECTORS

Network Configuration Options, 189
TEMP_DIR

Global Configuration Options, 165
termination, job, 77
Terse (htcondor.LogLevel attribute), 649
test job

policy, 333
TF_LOOP_PARALLEL_ITERATIONS

environment variables for jobs, 87
TF_NUM_THREADS

environment variables for jobs, 87
THINPOOL_NAME

STARTD Configuration Options, 215
THINPOOL_VOLUME_GROUP_NAME

STARTD Configuration Options, 215
TILDE, 154
time of day

policy, 334
time()

ClassAd functions, 476, 790
TimerRuntime

ClassAd Attribute, 1099
TimersFired

ClassAd Attribute, 1099
Timestamp (htcondor.LogLevel attribute), 649
TMP_DIR

Global Configuration Options, 165
to execute at a specific time

scheduling jobs, 110
to execute periodically

scheduling jobs, 110
to use GPUs

configuration, 350
ToE

Job ClassAd Attribute, 1050
toLower()

Index 1195

HTCondor Manual, Release 23.6.2

ClassAd functions, 476, 790
Tool (htcondor.SubsystemType attribute), 651
TOOL_DEBUG

Global Configuration Options, 180
Total<name>

Machine ClassAd Attribute, 1073
TotalClaimRunTime

Machine ClassAd Attribute, 1072
TotalClaimSuspendTime

Machine ClassAd Attribute, 1073
TotalCondorLoadAvg

Machine ClassAd Attribute, 1069
TotalCpus

Machine ClassAd Attribute, 1069
TotalDisk

Machine ClassAd Attribute, 1070
TotalFlockedJobs

Scheduler ClassAd Attribute, 1084
TotalHeldJobs

Scheduler ClassAd Attribute, 1084
TotalIdleJobs

Scheduler ClassAd Attribute, 1084
TotalJobAds

Scheduler ClassAd Attribute, 1084
TotalJobReconnectAttempts

Job ClassAd Attribute, 1050
TotalJobRunTime

Machine ClassAd Attribute, 1073
TotalJobSuspendTime

Machine ClassAd Attribute, 1073
TotalLoadAvg

Machine ClassAd Attribute, 1070
TotalLocalJobsIdle

Scheduler ClassAd Attribute, 1084
TotalLocalJobsRunning

Scheduler ClassAd Attribute, 1084
TotalMachineDrainingBadput

Machine ClassAd Attribute, 1070
TotalMachineDrainingUnclaimedTime

Machine ClassAd Attribute, 1070
TotalMemory

Machine ClassAd Attribute, 1070
TotalRemovedJobs

Scheduler ClassAd Attribute, 1084
TotalRunningJobs

Scheduler ClassAd Attribute, 1084
TotalSchedulerJobsIdle

Scheduler ClassAd Attribute, 1085
TotalSchedulerJobsRunning

Scheduler ClassAd Attribute, 1085
TotalSlotCpus

Machine ClassAd Attribute, 1070
TotalSlotDisk

Machine ClassAd Attribute, 1070

TotalSlotMemory
Machine ClassAd Attribute, 1070

TotalSlots
Machine ClassAd Attribute, 1070

TotalSuspensions
Job ClassAd Attribute, 1050

TotalTimeBackfillBusy
Machine ClassAd Attribute, 1070

TotalTimeBackfillIdle
Machine ClassAd Attribute, 1070

TotalTimeBackfillKilling
Machine ClassAd Attribute, 1070

TotalTimeClaimedBusy
Machine ClassAd Attribute, 1070

TotalTimeClaimedIdle
Machine ClassAd Attribute, 1070

TotalTimeClaimedRetiring
Machine ClassAd Attribute, 1070

TotalTimeClaimedSuspended
Machine ClassAd Attribute, 1070

TotalTimeMatchedIdle
Machine ClassAd Attribute, 1071

TotalTimeOwnerIdle
Machine ClassAd Attribute, 1071

TotalTimePreemptingKilling
Machine ClassAd Attribute, 1071

TotalTimePreemptingVacating
Machine ClassAd Attribute, 1071

TotalTimeUnclaimedBenchmarking
Machine ClassAd Attribute, 1071

TotalTimeUnclaimedIdle
Machine ClassAd Attribute, 1071

TOUCH_LOG_INTERVAL
Global Configuration Options, 177

toUpper()
ClassAd functions, 475, 790

transfer_checkpoint_files
Submit commands, 936

transfer_error
Submit commands, 944

transfer_executable
interactive job, 55
Submit commands, 934

transfer_input
Submit commands, 945

transfer_input_files
adding additional, 62
and attribute PostCmd, 1045
and attribute PreCmd, 1045
and public input files, 68
and SUBMIT_SKIP_FILECHECKS, 241
and URLs, 454
definition, 453
example that fails, 66

1196 Index

HTCondor Manual, Release 23.6.2

example with paths, 65
java universe, 105
relative to access point, 63
Submit commands, 934
ways to specify, 63
with parallel universe, 101, 102
with S3, 71
with URLs, 69
with xen, 93

TRANSFER_IO_REPORT_INTERVAL
SCHEDD Configuration Options, 219

TRANSFER_IO_REPORT_TIMESPANS
SCHEDD Configuration Options, 219

transfer_output
Submit commands, 945

transfer_output_files
and job router, 710
and SUBMIT_SKIP_FILECHECKS, 241
definition, 61, 453
mixing relative and absolute, 64
Submit commands, 935
when empty string, 62
when files missing, 62

transfer_output_remaps
definition, 64, 69
Submit commands, 936
with S3, 71

transfer_plugins
Submit commands, 936

TRANSFER_QUEUE_USER_EXPR, 1085
SCHEDD Configuration Options, 218

TransferCheckpoint
Job ClassAd Attribute, 1050

TransferContainer
Job ClassAd Attribute, 1050

TRANSFERER
High Availability Configuration Options,

285
TRANSFERER_DEBUG

High Availability Configuration Options,
285

TRANSFERER_LOG
High Availability Configuration Options,

285
TransferErr

Job ClassAd Attribute, 1050
TransferExecutable

Job ClassAd Attribute, 1050
TransferIn

Job ClassAd Attribute, 1051
TransferInFinished

Job ClassAd Attribute, 1051
TransferInput

Job ClassAd Attribute, 1051

TransferInputSizeMB
Job ClassAd Attribute, 1051

TransferInputStats
Job ClassAd Attribute, 1051

TransferInQueued
Job ClassAd Attribute, 1051

TransferInStarted
Job ClassAd Attribute, 1051

TransferOut
Job ClassAd Attribute, 1051

TransferOutFinished
Job ClassAd Attribute, 1051

TransferOutput
Job ClassAd Attribute, 1051

TransferOutputStats
Job ClassAd Attribute, 1051

TransferOutQueued
Job ClassAd Attribute, 1051

TransferOutStarted
Job ClassAd Attribute, 1052

TransferPlugins
Job ClassAd Attribute, 1052

TransferQueued
Job ClassAd Attribute, 1052

TransferQueueDownloadWaitTime
Scheduler ClassAd Attribute, 1087

TransferQueueMaxDownloading
Scheduler ClassAd Attribute, 1088

TransferQueueMaxUploading
Scheduler ClassAd Attribute, 1088

TransferQueueMBWaitingToDownload
Scheduler ClassAd Attribute, 1087

TransferQueueMBWaitingToUpload
Scheduler ClassAd Attribute, 1087

TransferQueueNumDownloading
Scheduler ClassAd Attribute, 1088

TransferQueueNumUploading
Scheduler ClassAd Attribute, 1088

TransferQueueNumWaitingToDownload
Scheduler ClassAd Attribute, 1087

TransferQueueNumWaitingToUpload
Scheduler ClassAd Attribute, 1087

TransferQueueUploadWaitTime
Scheduler ClassAd Attribute, 1087

TransferQueueUserExpr
Scheduler ClassAd Attribute, 1085

transferring files, 61
TRANSFERRING_OUTPUT (htcondor.JobStatus attribute),

631
TransferringInput

Job ClassAd Attribute, 1052
TransferringOutput

Job ClassAd Attribute, 1052
transforms, 488

Index 1197

HTCondor Manual, Release 23.6.2

transitions
activity, 319, 326
machine activity, 319, 326
machine state, 319, 326
state, 319, 326

transitions summary
activity, 325
machine activity, 325
machine state, 325
state, 325

Translate Job
Job Router Hooks, 719

TRUNC_<SUBSYS>_<LEVEL>_LOG_ON_OPEN
Global Configuration Options, 180

TRUNC_<SUBSYS>_LOG_ON_OPEN
Global Configuration Options, 175

TRUST_DOMAIN
SECURITY Configuration Options, 276

TRUST_DOMAIN_CAFILE
SECURITY Configuration Options, 278

TRUST_DOMAIN_CAKEY
SECURITY Configuration Options, 278

TRUST_LOCAL_UID_DOMAIN
FileSystem Configuration Options, 190

TRUST_UID_DOMAIN
FileSystem Configuration Options, 190

U
UDP, 447
UDP_LOOPBACK_FRAGMENT_SIZE

Network Configuration Options, 189
UDP_NETWORK_FRAGMENT_SIZE

Network Configuration Options, 189
UID_DOMAIN, 155

FileSystem Configuration Options, 190
UidDomain

Machine ClassAd Attribute, 1071
UIDs in HTCondor, 434
ulog_execute_attrs

Submit commands, 953
UNAME_ARCH, 154
UNAME_OPSYS, 155
unattended install

installation, 734
unauthenticated, 421, 427
Unclaimed

machine activity, 317
machine state, 314, 320

unclaimed state, 314, 320
Undefined (classad.Value attribute), 615
under the dedicated scheduler

MPI application, 368
UNHIBERNATE, 287

STARTD Configuration Options, 212

Unhibernate
Machine ClassAd Attribute, 1073

unified map file
authentication, 420
security, 420

UNIVERSE
Job Router Routing Table command, 714

Universe, 1110
universe, 84

and attribute TotalLocalJobsIdle, 1084
and attribute TotalLocalJobsRunning, 1084
and attribute TotalSchedulerJobsIdle,

1085
and attribute TotalSchedulerJobsRunning,

1085
and grid universe, 695, 699
choosing, 84
grid, 1041
HTCondor, 84
interactive job, 55
java, 1041
job, 1041
linda, 1041
local, 1041
mpi, 1041
parallel, 1041
pipe, 1041
pvm, 1041
pvmd, 1041
scheduler, 1041
standard, 1041
Submit commands, 928
vanilla, 1041
vm, 1041

Unix signals
daemoncore, 138

unmapped, 421
unparse()

ClassAd functions, 469, 783
unresolved()

ClassAd functions, 469, 783
Update Job Info

Job Router Hooks, 719
Update job info

Fetch Hooks, 362
UPDATE_COLLECTOR_WITH_TCP

Network Configuration Options, 188
UPDATE_INTERVAL

STARTD Configuration Options, 200
UPDATE_OFFSET

STARTD Configuration Options, 200
UPDATE_VIEW_COLLECTOR_WITH_TCP

Network Configuration Options, 189
UpdateInterval

1198 Index

HTCondor Manual, Release 23.6.2

Collector ClassAd Attribute, 1097
Scheduler ClassAd Attribute, 1085

UpdateSequenceNumber
Collector ClassAd Attribute, 1097
Daemon-master ClassAd Attribute, 1077
Defrag ClassAd Attribute, 1093
Negotiator ClassAd Attribute, 1090
Scheduler ClassAd Attribute, 1085

UpdatesHistory
ClassAd Attribute, 1098
ClassAd attribute added by the

condor_collector, 245
UpdatesInitial

Collector ClassAd Attribute, 1097
UpdatesLost

ClassAd Attribute, 1098
ClassAd attribute added by the

condor_collector, 245
Collector ClassAd Attribute, 1097

UpdatesLostMax
Collector ClassAd Attribute, 1097

UpdatesLostRatio
Collector ClassAd Attribute, 1097

UpdatesSequenced
ClassAd Attribute, 1098
ClassAd attribute added by the

condor_collector, 245
UpdatesTotal

ClassAd Attribute, 1098
ClassAd attribute added by the

condor_collector, 245
Collector ClassAd Attribute, 1097

URL file transfer, 69, 453
USE configuration syntax, 156
use in

job ID, 1007
USE syntax

configuration, 156
USE_CLONE_TO_CREATE_PROCESSES

Global Configuration Options, 184
USE_COLLECTOR_HOST_CNAME

SECURITY Configuration Options, 274
USE_DEFAULT_CONTAINER

STARTER Configuration Options, 240
USE_GID_PROCESS_TRACKING

PROCD Configuration Options, 256
USE_JOBSETS

SCHEDD Configuration Options, 232
USE_NFS

FileSystem Configuration Options, 192
use_oauth_services

Submit commands, 953
USE_PID_NAMESPACES

STARTER Configuration Options, 239

USE_PROCD
PROCD Configuration Options, 255

USE_PROCESS_GROUPS
MASTER Configuration Options, 197

USE_PSS
STARTER Configuration Options, 238

USE_RESOURCE_REQUEST_COUNTS
NEGOTIATOR Configuration Options, 252

use_scitokens
Submit commands, 945

USE_SHARED_PORT
SHARED PORT Configuration Options, 288

USE_VISIBLE_DESKTOP
STARTER Configuration Options, 236

USE_VOMS_ATTRIBUTES
SECURITY Configuration Options, 275

use_x509userproxy
Submit commands, 945

user manual, 37
HTCondor, 37

user priority, 373
User_Based

SECURITY Configuration Templates, 160
USER_CONFIG_FILE

Global Configuration Options, 166
USER_JOB_WRAPPER

STARTER Configuration Options, 235
userHome()

ClassAd functions, 481, 795
UserLog

Job ClassAd Attribute, 1052
USERLOG_FILE_CACHE_CLEAR_INTERVAL

Global Configuration Options, 177
USERLOG_FILE_CACHE_MAX

Global Configuration Options, 176
userMap()

ClassAd functions, 481, 795
USERNAME, 155
UseSharedX509UserProxy

Job Router Routing Table ClassAd
attribute, 714

using a file system
authentication, 419

using a remote file system
authentication, 419

using JAR files
Java, 104

using packages
Java, 105

utilizing interactive jobs
policy, 337

UWCS_Desktop
POLICY Configuration Templates, 158

UWCS_Desktop_Policy_Values

Index 1199

HTCondor Manual, Release 23.6.2

FEATURE Configuration Templates, 158

V
vacate, 110

preemption, 110
Vacate (htcondor.JobAction attribute), 629
VacateFast (htcondor.JobAction attribute), 629
VALID_SPOOL_FILES

PREEN Configuration Options, 242
with HA Schedd, 371

vanilla
universe, 84, 85, 1041

var>
Job Router Routing Table command, 715

VARS
DAG Commands, 550

Verbose (htcondor.LogLevel attribute), 649
version_in_range()

ClassAd functions, 475, 789
versioncmp()

ClassAd functions, 475, 789
virtual machine configuration variables

configuration, 281
virtual machine universe, 92, 96
virtual machines, 349
Virtual Machines Configuration Options

LIBVIRT_XML_SCRIPT, 282
LIBVIRT_XML_SCRIPT_ARGS, 282
MAX_VM_GAHP_LOG, 281
VM_GAHP_LOG, 281
VM_GAHP_REQ_TIMEOUT, 281
VM_GAHP_SERVER, 281
VM_MAX_NUMBER, 281
VM_MEMORY, 281
VM_NETWORKING, 281
VM_NETWORKING_BRIDGE_INTERFACE, 282
VM_NETWORKING_DEFAULT_TYPE, 282
VM_NETWORKING_TYPE, 281
VM_RECHECK_INTERVAL, 281
VM_SOFT_SUSPEND, 281
VM_STATUS_INTERVAL, 281
VM_TYPE, 281
XEN_BOOTLOADER, 282

VirtualMemory
Machine ClassAd Attribute, 1071
Scheduler ClassAd Attribute, 1085

vm
universe, 84, 86, 92, 1041

vm universe, 86, 92
VM_AvailNum

Machine ClassAd Attribute, 1071
vm_checkpoint

and PERIODIC_CHECKPOINT, 198
Submit commands, 946

vm_disk
definition, 93
Submit commands, 946
with xen, 93

VM_GAHP_LOG
Virtual Machines Configuration Options,

281
VM_GAHP_REQ_TIMEOUT

Virtual Machines Configuration Options,
281

VM_GAHP_SERVER
Virtual Machines Configuration Options,

281
VM_Guest_Mem

Machine ClassAd Attribute, 1071
VM_MACAddr

Job ClassAd Attribute, 1053
vm_macaddr

definition, 93
Submit commands, 946

VM_MAX_NUMBER, 1071
Virtual Machines Configuration Options,

281
VM_MEMORY, 1071

Virtual Machines Configuration Options,
281

VM_Memory
Machine ClassAd Attribute, 1071

vm_memory
definition, 92, 93
Submit commands, 946

VM_NETWORKING
Virtual Machines Configuration Options,

281
VM_Networking

Machine ClassAd Attribute, 1071
vm_networking

definition, 93
Submit commands, 946

VM_NETWORKING_BRIDGE_INTERFACE
Virtual Machines Configuration Options,

282
VM_NETWORKING_DEFAULT_TYPE

Virtual Machines Configuration Options,
282

VM_NETWORKING_TYPE
Virtual Machines Configuration Options,

281
vm_networking_type

definition, 92, 93
Submit commands, 947

vm_no_output_vm
and attribute PostCmd, 1045
Submit commands, 947

1200 Index

HTCondor Manual, Release 23.6.2

VM_RECHECK_INTERVAL
Virtual Machines Configuration Options,

281
VM_SOFT_SUSPEND

Virtual Machines Configuration Options,
281

VM_STATUS_INTERVAL
Virtual Machines Configuration Options,

281
VM_TYPE

Virtual Machines Configuration Options,
281

VM_Type
Machine ClassAd Attribute, 1071

vm_type
Submit commands, 947

VMOfflineReason
Machine ClassAd Attribute, 1071

VMOfflineTime
Machine ClassAd Attribute, 1071

W
WALL_CLOCK_CKPT_INTERVAL

SCHEDD Configuration Options, 221
want_graceful_removal

and GRACEFULLY_REMOVE_JOBS, 226
Submit commands, 951

WANT_HOLD
STARTD Configuration Options, 198

Want_Hold_If
POLICY Configuration Templates, 160

WANT_HOLD_REASON
STARTD Configuration Options, 198

WANT_HOLD_SUBCODE
STARTD Configuration Options, 198

WANT_SUSPEND
STARTD Configuration Options, 199

WANT_UDP_COMMAND_SOCKET
Global Configuration Options, 170

WANT_VACATE
STARTD Configuration Options, 199

WantContainer
Job ClassAd Attribute, 1052

WantDocker
Job ClassAd Attribute, 1052

WantFTOnCheckpoint
Job ClassAd Attribute, 1052

WantGracefulRemoval
Job ClassAd Attribute, 1052

WantNameTag
Submit commands, 943

WantResAd
Scheduler ClassAd Attribute, 1085

WantTransferPluginMethods

Job ClassAd Attribute, 1052
WARN_ON_UNUSED_SUBMIT_FILE_MACROS

SUBMIT Configuration Options, 241
WeightedAccumulatedUsage

Accounting ClassAd Attribute, 1025
WeightedIdleJobs

Submitter ClassAd Attribute, 1091
WeightedResourcesUsed

Accounting ClassAd Attribute, 1025
WeightedRunningJobs

Submitter ClassAd Attribute, 1091
when_to_transfer_output

definition, 61
delayed, 125
Submit commands, 936
with URLs, 69

who the job runs as
job, 436

WholeMachines
Defrag ClassAd Attribute, 1093

WholeMachinesPeak
Defrag ClassAd Attribute, 1093

WINDOWED_STAT_WIDTH
SCHEDD Configuration Options, 220

Windows
authentication, 419
platform-specific information, 722, 731

WINDOWS Configuration Options
WINDOWS_RMDIR, 295
WINDOWS_RMDIR_OPTIONS, 295

Windows platform configuration variables
configuration, 295

Windows platform troubleshooting
power management, 355

WINDOWS_FIREWALL_FAILURE_RETRY
MASTER Configuration Options, 197

WINDOWS_RMDIR
WINDOWS Configuration Options, 295

WINDOWS_RMDIR_OPTIONS
WINDOWS Configuration Options, 295

WindowsBuildNumber
Job ClassAd Attribute, 1052
Machine ClassAd Attribute, 1072

WindowsMajorVersion
Job ClassAd Attribute, 1052
Machine ClassAd Attribute, 1072

WindowsMinorVersion
Job ClassAd Attribute, 1053
Machine ClassAd Attribute, 1072

with Ganglia
Monitoring, 394

With_Authentication
SECURITY Configuration Templates, 160

Workflow, 1110

Index 1201

HTCondor Manual, Release 23.6.2

WorkHours, 334

X
X509_USER_PROXY

environment variables for jobs, 87
X509_USER_PROXY environment variable, 87
X509UserProxy

Job ClassAd Attribute, 1053
x509userproxy

and arc grid, 700
and attribute X509UserProxyExpiration,

1053
and attribute X509UserProxyFirstFQAN,

1053
and attribute X509UserProxyFQAN, 1053
and attribute X509UserProxySubject, 1053
and attribute X509UserProxyVOName, 1053
environment variable, 87
Submit commands, 945

X509UserProxyEmail
Job ClassAd Attribute, 1053

X509UserProxyExpiration
Job ClassAd Attribute, 1053

X509UserProxyFirstFQAN
Job ClassAd Attribute, 1053

X509UserProxyFQAN
Job ClassAd Attribute, 1053

X509UserProxySubject
Job ClassAd Attribute, 1053

X509UserProxyVOName
Job ClassAd Attribute, 1053

XEN_BOOTLOADER
Virtual Machines Configuration Options,

282
xen_initrd

Submit commands, 947
xen_kernel

definition, 93
Submit commands, 947

xen_kernel_params
Submit commands, 947

xen_root
definition, 94
Submit commands, 947

1202 Index

	Users’ Quick Start Guide
	What is a Job?
	A First HTCondor Job
	The science Job Example
	Expanding the science Job and the Organization of Files
	Where to Go from Here

	Downloading and Installing
	Windows (as Administrator)
	Quickstart Installation Instructions
	Setting Up a Whole Pool with Windows

	Linux (as root)
	Quickstart Installation Instructions
	Setting Up a Whole Pool

	Linux (from our repositories)
	RPM-based Distributions
	deb-based Distributions
	Debian 11, and 12
	Ubuntu 20.04, and 22.04

	Linux or macOS (as user)
	Download
	Install
	Configure
	Using HTCondor

	macOS (as root)
	The condor Service Account
	Download
	Install
	Start the Daemons
	Using HTCondor

	Docker Images
	Quickstart Instructions
	Setting Up a Whole Pool with Docker

	Administrative Quick Start Guide
	The Three Roles
	The Execute Role
	The Submit Role
	The Central Manager Role

	Assigning Roles to Machines
	Creating a Multi-Machine Pool using Windows or Containers

	Where to Go from Here
	What get_htcondor Does to Configure a Role

	Overview
	High-Throughput Computing (HTC) and its Requirements
	HTCondor’s Power
	Exceptional Features
	Availability
	Contributions and Acknowledgments
	Support, Downloads and Bug Reporting
	Downloads
	Support
	Mailing Lists
	Email Support

	Reporting Bugs
	Ticketing System

	Users’ Manual
	Introduction to HTCondor
	Running a Job: the Steps To Take
	Submitting a Job
	Sample submit description files
	Submitting many similar jobs with one queue command
	Variables in the Submit Description File
	Including Submit Commands Defined Elsewhere
	Using Conditionals in the Submit Description File
	Function Macros in the Submit Description File
	About Requirements and Rank
	Rank Expression Examples

	Submitting Jobs Using a Shared File System
	Jobs That Require Credentials
	Credential Scopes
	Credential Handles

	Jobs That Require GPUs
	Interactive Jobs
	Submitting Lots of Jobs
	Materialization log events
	Limitations
	Displaying the Factory
	Removing a Factory
	Editing a Factory

	Heterogeneous Submit: Execution on Differing Architectures
	Vanilla Universe Example for Execution on Differing Architectures
	Vanilla Universe Example for Execution on Differing Operating Systems

	Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism
	Specifying If and When to Transfer Files
	Specifying What Files to Transfer
	File Paths for File Transfer
	Dataflow Jobs
	Public Input Files
	Behavior for Error Cases
	File Transfer Using a URL
	Transferring files using the S3 protocol
	S3 Transfer Recipes

	Managing a Job
	Checking on the progress of jobs
	Peeking in on a running job’s output files
	Starting an interactive shell next to a running job on a remote machine
	Removing a job from the queue
	Placing a job on hold
	Changing the priority of jobs
	Job in the Hold State
	In the Job Event Log File
	Job Termination
	Job Completion
	Summary of all HTCondor users and their jobs

	Automatically managing a job
	Automatically rerunning a failed job
	Automatically removing a job in the queue
	Automatically placing a job on hold
	Automatically releasing a held job
	Automatically evicting a running job
	Holding a completed job

	How To Debug an Always Idle Job
	Jobs that start but are quickly evicted
	Jobs that don’t match any Execution Point
	Not enough priority
	Systemic problems

	Choosing an HTCondor Universe
	Vanilla Universe
	Grid Universe
	Java Universe
	Scheduler Universe
	Local Universe
	Parallel Universe
	VM Universe
	Docker Universe
	Container Universe

	Environment and services for a running job
	Services for Running Jobs
	Environment Variables
	Extra Environment Variables HTCondor sets for Jobs
	Communicating with the Submit machine via Chirp
	When changes to a job made by chirp take effect
	Resource Limitations on a Running Job

	Container Universe Jobs
	Docker Universe Applications
	Docker and Networking

	Virtual Machine Jobs
	The Submit Description File
	Xen-Specific Submit Commands
	Checkpoints
	Xen and KVM
	Job Completion in the vm Universe
	Failures to Launch

	Parallel Jobs (Including MPI Jobs)
	Parallel Jobs and the Dedicated Scheduler
	Submission Examples
	Simplest Example
	Example with Operating System Requirements
	Differing Requirements for the Machines
	Requesting multiple cores per slot
	MPI Applications
	MPI Applications Within HTCondor’s Vanilla Universe

	Java jobs
	A Simple Example Java Application
	Less Simple Java Specifications
	Chirp I/O with Java

	NFS

	Job Scheduling
	Priorities and Preemption
	Job Priority
	User priority
	How Jobs are Vacated

	Time Scheduling for Job Execution
	CronTab Scheduling
	Semantics for CronTab Specification
	Preparation Time and Execution Window
	Scheduling
	Submit Commands Usage Examples
	Submit Commands Limitations
	Job Deferral
	Deferred Execution Time
	Deferral Window
	Preparation Time
	Deferral Usage Examples
	Deferral Limitations

	Matchmaking with ClassAds
	Inspecting Machine ClassAds with condor_status

	Job Sets
	Submitting a job set
	Listing job sets
	Checking on the progress of job sets
	Removing a job set

	Self-Checkpointing Applications
	How To Run Self-Checkpointing Jobs
	Requirements
	Using checkpoint_exit_code
	How Frequently to Checkpoint
	Debugging Self-Checkpointing Jobs
	Working Around the Assumptions
	Other Options
	Delayed Transfers
	Manual Transfers
	Early Checkpoint Exits

	Signals
	Periodic Signals
	Delayed Transfer with Signals

	Submitting to a Remote AP
	Submitting a job to a remote Access Point
	File transfer with remote submission

	Chirp: custom updates to the AP
	Special Environment Considerations
	Job Leases

	Administrators’ Manual
	Introduction
	The Different Roles a Machine Can Play
	The HTCondor Daemons

	Starting Up, Shutting Down and Reconfiguring the System
	Daemons That Do Not Run as root
	Remote Management Features
	DaemonCore
	DaemonCore and Unix signals
	DaemonCore and Command-line Arguments

	Introduction to Configuration
	HTCondor Configuration Files
	Ordered Evaluation to Set the Configuration
	Configuration File Macros
	Comments and Line Continuations
	Multi-Line Values
	Executing a Program to Produce Configuration Macros
	Including Configuration from Elsewhere
	Reporting Errors and Warnings
	Conditionals in Configuration
	Function Macros in Configuration
	Macros That Will Require a Restart When Changed
	Pre-Defined Macros
	Configuration Templates
	Configuration Templates: Using Predefined Sets of Configuration
	Available Configuration Templates
	Configuration Template Transition Syntax
	Configuration Template Examples

	Configuring HTCondor for Multiple Platforms
	Platform-Specific Configuration File Settings
	Other Uses for Platform-Specific Configuration Files

	Configuration Macros
	HTCondor-wide Configuration File Entries
	Daemon Logging Configuration File Entries
	DaemonCore Configuration File Entries
	Network-Related Configuration File Entries
	Shared File System Configuration File Macros
	condor_master Configuration File Macros
	condor_startd Configuration File Macros
	condor_schedd Configuration File Entries
	condor_shadow Configuration File Entries
	condor_starter Configuration File Entries
	condor_submit Configuration File Entries
	condor_preen Configuration File Entries
	condor_collector Configuration File Entries
	condor_negotiator Configuration File Entries
	condor_procd Configuration File Macros
	condor_credd Configuration File Macros
	condor_gridmanager Configuration File Entries
	condor_job_router Configuration File Entries
	condor_lease_manager Configuration File Entries
	DAGMan Configuration File Entries
	General
	Throttling
	Priority, node semantics
	Node job submission/removal
	Rescue/retry
	Log files
	Debug output
	HTCondor attributes

	Configuration File Entries Relating to Security
	Configuration File Entries Relating to Virtual Machines
	Configuration File Entries Relating to High Availability
	Configuration File Entries Relating to condor_ssh_to_job
	condor_rooster Configuration File Macros
	condor_shared_port Configuration File Macros
	Configuration File Entries Relating to Job Hooks
	Configuration File Entries Relating to Daemon ClassAd Hooks: Startd Cron and Schedd Cron
	Configuration File Entries Only for Windows Platforms
	condor_defrag Configuration File Macros
	condor_gangliad Configuration File Macros
	condor_annex Configuration File Macros

	Configuration for Execution Points
	Introduction
	Slots: where jobs run
	Partitionable Slots
	Dynamic Slots
	Static Slots
	Dividing System Resources in Multi-core Machines
	Configuration Specific to Multi-core Machines
	Dynamic Provisioning: Partitionable and Dynamic Slots
	Preemption of Partionable Slots

	Defaults for Partitionable Slot Sizes

	Slot Isolation and Protection
	Per Job PID Namespaces
	Group ID-Based Process Tracking
	Cgroup-Based Process Tracking
	Limiting Resource Usage Using Cgroups
	Startd Disk Enforcement With Per Job Scratch Filesystems

	condor_startd Policy Configuration
	The START Expression
	The RANK Expression
	Machine States
	The Claimed State and Leases
	Machine Activities
	State and Activity Transitions
	Owner State
	Unclaimed State
	Matched State
	Claimed State
	Preempting State
	Backfill State
	Drained State

	State/Activity Transition Expression Summary

	Configuring HTCondor for Running Backfill Jobs
	Overview of Backfill jobs in HTCondor
	Defining the Backfill Policy
	Overview of the BOINC system
	Installing the BOINC client software
	Configuring the BOINC client under HTCondor
	BOINC on Windows
	Examples of Policy Configuration

	Custom and system slot attributes
	Adding custom static attributes with STARTD_ATTRS
	Configuring STARTD_ATTRS on a per-slot basis
	Startd Cron
	Daemon ClassAd Hooks
	Overview
	Job output
	Configuration

	Container/VM support: Docker, Apptainer, Singularity and Xen/VMware
	Docker Universe
	Apptainer and Singularity Support
	The VM Universe
	Xen-Specific and KVM-Specific Configuration
	When a vm Universe Job Fails to Start

	Configuring GPUs
	condor_negotiator-Side Resource Consumption Policies
	Power Management
	Entering a Low Power State
	Returning From a Low Power State
	Keeping a ClassAd for a Hibernating Machine
	Linux Platform Details
	Windows Platform Details

	Hooks
	Job Hooks That Fetch Work
	Work Fetching Hooks Invoked by HTCondor
	Keywords to Define Job Fetch Hooks in the HTCondor Configuration files
	Defining the FetchWorkDelay Expression
	Job Hooks That Modify and Monitor Execution
	Example Hook: Specifying the Executable at Execution Time

	Configuration for Access Points
	condor_schedd Policy Configuration
	Schedd Job Transforms
	Submit Requirements
	Submit Warnings
	Working with Remote Job Submission

	Schedd Cron
	Dedicated Scheduling
	Selecting and Setting Up a Dedicated Scheduler
	Configuration Examples for Dedicated Resources
	Preemption with Dedicated Jobs
	Grouping Dedicated Nodes into Parallel Scheduling Groups

	High Availability of the Job Queue
	Performance Tuning of the AP
	Monitoring AP Performance
	Horizontal Scaling
	Putting the schedd’s database on the fastest disk
	Avoiding shared filesystems for event logs
	Using third party (url / plugin) transfers when able
	Limiting CPU or I/O bound procesing on the AP

	Configuration for Central Managers
	User Priorities and Negotiation
	Real User Priority (RUP)
	Effective User Priority (EUP)
	Priorities in Negotiation and Preemption
	Priority Calculation

	Negotiation
	The Layperson’s Description of the Pie Spin and Pie Slice

	Group Accounting
	Accounting Groups with Hierarchical Group Quotas
	Setting Accounting Group automatically per user
	Concurrency Limits
	Defragmenting Dynamic Slots
	Configuring The HTCondorView Server
	Configuring a Machine to be a HTCondorView Server

	Running Multiple Negotiators in One Pool
	High Availability of the Central Manager
	Interaction with Flocking
	Introduction
	Configuration
	Sample Configuration

	Monitoring with Ganglia, Elasticsearch, etc.
	Ganglia
	Absent ClassAds
	GPUs
	Elasticsearch
	Configuring a Pool to Report to the HTCondorView Server

	Security
	Security Overview
	General Security Flow
	Highlights of New Features In Version 9.0.0
	Introducing: IDTOKENS
	Introducing: AES

	Types of Network Connections
	User-to-Daemon Connections (User Authentication)
	Authenticating using FS
	Authenticating using IDTOKENS

	Daemon-to-Daemon Connections (Daemon Authentication)

	Security Terms
	Quick Configuration of Security
	HTCondor’s Security Model
	Access Level Descriptions

	Security Negotiation
	Configuration
	Configuration for Security Methods

	Authentication
	SSL Authentication
	Bootstrapping SSL Authentication
	Kerberos Authentication
	Password Authentication
	Example Security Configuration Using Pool Password
	Example Using Pool Password for condor_startd Advertisement

	Token Authentication
	File System Authentication
	File System Remote Authentication
	Windows Authentication
	SciTokens Authentication
	Ask MUNGE for Authentication
	Claim To Be Authentication
	Anonymous Authentication

	The Unified Map File for Authentication
	SciTokens Mapping Plugins

	Encryption
	Integrity
	Authorization
	Example of Authorization Security Configuration
	Debugging Security Configuration

	FIPS
	Security Sessions
	Host-Based Security in HTCondor
	Examples of Security Configuration
	Changing the Security Configuration
	User Accounts in HTCondor on Unix Platforms
	Running HTCondor as Non-Root
	Who Jobs Run As
	Working Directories for Jobs

	Networking, Port Usage, and CCB
	Port Usage in HTCondor
	IPv4 Port Specification
	Default Port Usage
	Using a Non Standard, Fixed Port for the condor_collector
	Using a Dynamically Assigned Port for the condor_collector
	Restricting Port Usage to Operate with Firewalls
	Multiple Collectors
	Port Conflicts

	Reducing Port Usage with the condor_shared_port Daemon
	Configuring HTCondor for Machines With Multiple Network Interfaces
	Using BIND_ALL_INTERFACES
	Central Manager with Two or More NICs
	A Client Machine with Multiple Interfaces

	HTCondor Connection Brokering (CCB)
	Example Configuration
	Security and CCB
	Troubleshooting CCB
	Scalability and CCB

	Using TCP to Send Updates to the condor_collector
	Running HTCondor on an IPv6 Network Stack
	IPv6 and Host-Based Security
	IPv6 Address Literals
	IPv6 without DNS

	Files, Directories and Logs
	Job and Daemon Logs
	DAGMan Logs
	Directories
	Directories used by More than One Role
	Directories use by the Submit Role
	Directories use by the Execute Role

	Third Party/Delegated file, credential and checkpoint transfer
	Enabling the Transfer of Files Specified by a URL
	Custom File Transfer Plugins
	Sending File Transfer Plugins With Your Job

	Enabling the Transfer of Public Input Files over HTTP
	Install a web service for public input files
	Configuration knobs for public input files
	Additional HTTP infrastructure for public input files

	Self-Checkpointing Jobs
	Registering a Checkpoint Destination
	Checkpoint Destinations with a Filesystem Mounted on the AP
	Other Checkpoint Destinations

	Enabling the Fetching and Use of OAuth2 Credentials
	Using the native OAuth client
	Using Vault as the OAuth client

	Automatic Issuance of SciTokens Credentials
	Generating a SciTokens key pair
	Uploading the public key
	Configuring HTCondor to generate valid SciTokens
	Configuring HTCondor to automatically create SciTokens for jobs

	Using HTCondor with Kerberos and AFS
	Setting up Kerberos, AFS usage for running jobs
	Detail of how KRB works under the hood

	ClassAds
	HTCondor’s ClassAd Mechanism
	ClassAds: Old and New
	New ClassAd Attribute References

	ClassAd Syntax
	Composing Literals
	Attributes
	Expression Operators
	Predefined Functions

	ClassAd Evaluation Semantics
	Evaluating Literals
	Attribute References
	ClassAd Operators
	Expression Examples

	Old ClassAds in the HTCondor System
	Constraints and Preferences
	Querying with ClassAd Expressions

	Extending ClassAds with User-written Functions

	ClassAd Transforms
	General Concepts
	Transform Commands

	Print Formats
	Syntax
	Examples
	PRINTAS functions for condor_q
	PRINTAS functions for condor_status

	DAGMan Workflows
	DAGMan Introduction
	Describing Workflows with DAGMan
	Example: Diamond DAG

	JOB
	PARENT/CHILD Relationships
	Scripts
	Script Types
	DEFER retries
	DEBUG file
	Scripts as part of a DAG workflow
	Examples that use PRE or POST scripts
	Special Script Argument Macros

	Node Submit Descriptions
	Inline Submit Descriptions
	SUBMIT-DESCRIPTION command
	External File Descriptions
	DAGMan Specific Information Macros

	Running and Managing DAGMan
	Basic DAG Controls
	DAG Submission
	Single Submission of Multiple, Independent DAGs

	DAG Monitoring
	Status Information for the DAG in a ClassAd

	Removing a DAG
	Suspending a Running DAG

	File Paths in DAGs
	Managing Large Numbers of Jobs
	DAGMan Throttling
	Throttling at DAG Submission
	Editing DAG Throttles
	Throttling Nodes by Category

	DAGMan Completion
	Node Success/Failure
	PRE_SKIP
	Retrying Failed Nodes
	Stopping the DAG on Node Failure

	Resubmitting a Failed DAG
	The Rescue DAG
	Rescue DAG Naming
	Using an Older Rescue DAG
	Special Cases
	Partial versus Full Rescue DAGs
	Rescue for Parse Failure

	DAG Recovery

	DAG Save Point Files

	Composing Workflows from DAGs
	Terminology
	A DAG Within a DAG Is a SUBDAG
	Example SUBDAG
	SUBDAG Submit Description Generation
	Preserved DAGMan Options
	SUBDAGs and Rescue
	SUBDAG Working Directory

	DAG Splicing
	Splice DIR Option
	Simple SPLICE Example
	SPLICING one DAG Twice Example
	Disjointed SPLICE Example
	Splice Limitations

	Advance DAGMan Functionality
	Custom Job Macros for Nodes
	Macro Variables for Nodes
	Prepend or Append Variables to Node
	Multiple macroname definitions
	Variables for Job Arguments
	Referencing Macros Within a Definition
	Using VARS to Define ClassAd Attributes

	Special Node Types
	FINAL Node
	PROVISIONER Node
	SERVICE Node

	Node Priorities
	Properties of Setting Node Priority
	Effective node priorities

	DAGMan and Accounting Groups
	ALL_NODES Option
	INCLUDE
	DAG Manager Job Specifications
	Setting Job Ad Attributes
	Controlling the Job Environment

	DAG Specific Configuration
	Visualizing DAGs

	Informational Files
	Workflow Metrics
	Current Node Status File
	Machine-Readable Event History

	Quick Reference
	DAG Commands
	General
	Node Behavior
	Special Nodes
	Throttling
	DAG Control
	Special Files

	Produced Files
	Referable DAG Information
	Job Macros
	Job ClassAd Attributes
	Script Macros

	DAG Submission and Management
	DAG Submission
	DAG Monitoring
	Stopping a DAG

	Python Bindings
	Installing the Bindings
	Linux System Packages
	Windows Installer
	PyPI
	Conda

	HTCondor Python Bindings Tutorials
	Introductory Tutorials
	Advanced Tutorials
	Submitting and Managing Jobs
	What is HTCondor?
	Submitting a Simple Job
	Submitting Multiple Jobs
	Using Itemdata to Vary Over Parameters
	Managing Jobs
	Exercises
	Exercise 1: Incrementing Sleeps
	Exercise 2: Echo to Target
	Exercise 3: Holding Odds

	ClassAds Introduction
	Expressions
	ClassAds
	Onto HTCondor!

	HTCondor Introduction
	Collector
	Schedd
	On Job Submission

	Advanced Job Submission and Management
	Submitting Jobs
	Managing Jobs
	That’s It!

	Advanced Schedd Interaction
	Job and History Querying
	History Queries

	Interacting With Daemons
	Configuration
	Remote Configuration

	Logging Subsystem
	Sending Daemon Commands

	Scalable Job Tracking
	Poll-based Tracking
	Event-based Tracking

	DAG Creation and Submission
	Making a Mandelbrot set image locally
	What is the workflow?
	Describing goatbrot as an HTCondor job
	Describing montage as an HTCondor job
	Describing the DAG using htcondor.dags
	Write the DAG to disk
	Submit the DAG via the Python bindings

	Personal Pools

	Python Bindings version 2 API Reference
	classad2 Module Reference
	classad2 Members
	ClassAd Class
	ExprTree Class
	classad2 Enumerations

	htcondor2 Module Reference
	htcondor2 Members
	Collector Class
	CredCheck Class
	Credd Class
	JobEvent Class
	JobEventLog Class
	Negotiator Class
	Schedd Class
	Startd Class
	Submit Class
	SubmitResult Class
	htcondor2 Enumerations

	Examples of Using the htcondor2 and/or classad2 Modules
	Using htcondor2.JobEventLog

	classad API Reference
	ClassAd Representation
	Parsing and Creating ClassAds
	Parser Control
	Utility Functions
	Exceptions
	Deprecated Functions

	htcondor API Reference
	Interacting with Collectors
	Interacting with Schedulers
	Submitting Jobs
	Interacting with Negotiators
	Managing Starters and Claims
	Security Management
	Reading Job Events
	HTCondor Configuration
	HTCondor Logging
	Esoteric Functionality
	Exceptions
	Thread Safety

	htcondor.htchirp API Reference
	htcondor.dags API Reference
	Creating DAGs
	Nodes and Node-likes
	Edges
	Node Configuration
	Writing a DAG to Disk

	DAG Configuration
	Rescue DAGs

	htcondor.personal API Reference

	Cloud Computing
	Introduction
	Use Case: Deadlines
	Use Case: Capabilities
	Use Case: Capacities
	Use Case: Experimental Convenience

	HTCondor Annex User’s Guide
	Considerations and Limitations
	Basic Usage
	What You’ll Need to Know

	Start an Annex
	Instance Types
	Leases
	Idle Time
	Tagging your Annex’s Instances
	Starting Multiple Annexes

	Monitor your Annex
	Monitoring Multiple Annexes

	Run a Job
	Stop an Annex
	Stopping Multiple Annexes

	Using Different or Multiple AWS Regions
	Advanced Usage
	Using AWS Spot Fleet
	Custom HTCondor Configuration
	AWS Instance User Data
	Expert Mode

	Using condor_annex for the First Time
	Install a Personal HTCondor
	Configure Public Interface
	Configure a Pool Password
	Tell HTCondor about the Open Port
	Activate the New Configuration

	Prepare your AWS account
	Using Instance Credentials
	Obtaining an Access Key

	Configure condor_annex
	Checking the Setup
	Undoing the Setup Command

	HTCondor Annex Customization Guide
	Amazon Web Services
	Resource Requests
	Secure Transport
	Image Requirements
	Instance Roles

	HTCondor Annex Configuration
	User Settings
	Logging
	Expert Settings
	Developer Settings

	HTCondor in the Cloud
	The HTCondor in the Cloud Seed
	Security
	Making a HTCondor in the Cloud
	AWS-Specific Instructions

	Creating a Seed

	Google Cloud Marketplace Entry
	Google Cloud HPC Toolkit

	Grid Computing
	Introduction
	Connecting HTCondor Pools with Flocking
	Flocking Configuration
	Job Considerations

	The Grid Universe
	HTCondor-C, The condor Grid Type
	HTCondor-C Configuration
	HTCondor-C Job Submission
	HTCondor-C Jobs Between Differing Platforms

	The arc Grid Type
	The batch Grid Type (for SLURM, PBS, LSF, and SGE)
	Remote batch Job Submission via SSH
	Remote batch Job Submission via Reverse SSH

	The EC2 Grid Type
	EC2 Job Submission
	Termination of EC2 Jobs
	Using Spot Instances
	EC2 Advanced Usage
	EC2 Configuration Variables
	Communicating with an EC2 Service
	Secure Communication with an EC2 Service
	EC2 GAHP Statistics

	The GCE Grid Type
	GCE Job Submission
	GCE Configuration Variables

	The Azure Grid Type
	Azure Job Submission

	The HTCondor Job Router
	Routing Mechanism
	Job Submission with Job Routing Capability
	An Example Configuration
	Routing Table Entry Commands and Macro values
	Deprecated router configuration
	Deprecated Routing Table Entry ClassAd Attributes
	Hooks for the Job Router
	Hooks Invoked for Job Routing

	Platform-Specific Information
	Linux
	The condor_kbdd on Linux Platforms

	Microsoft Windows
	Limitations under Windows
	Supported Features under Windows
	Secure Password Storage
	Executing Jobs as the Submitting User
	The condor_credd Daemon
	Using a pool password on Windows

	Executing Jobs with the User’s Profile Loaded
	Using Windows Scripts as Job Executables
	How HTCondor for Windows Starts and Stops a Job
	Security Considerations in HTCondor for Windows
	Network files and HTCondor
	The condor_kbdd on Windows Platforms

	Interoperability between HTCondor for Unix and HTCondor for Windows
	Some differences between HTCondor for Unix -vs- HTCondor for Windows

	Macintosh OS X
	Windows Installer
	Detailed Installation Instructions Using the MSI Program
	Unattended Installation Procedure Using the MSI Installer
	Manual Installation of HTCondor on Windows

	Recipes, Examples, and Other Answers
	Answers for Users
	Example: Run a Job on a CPU if a GPU is not Available

	Answers for Admins
	Recipe: How to Fill a Pool Breadth-First
	For a Pool with Partitionable Slots
	For a Pool with Static Slots

	Which platforms does HTCondor support?
	Is HTCondor cross-platform?

	Version History and Release Notes
	Introduction to HTCondor Versions
	HTCondor Version Number Scheme
	Types of Releases
	Support Life Cycle
	Repositories
	Recommendations

	Upgrading from an 10.0 LTS version to an 23.0 LTS version of HTCondor
	Version 23 Feature Releases
	Version 23.6.2
	Version 23.6.1
	Version 23.5.3
	Version 23.5.2
	Version 23.4.0
	Version 23.3.1
	Version 23.3.0
	Version 23.2.0
	Version 23.1.0

	Version 23.0 LTS Releases
	Version 23.0.8
	Version 23.0.6
	Version 23.0.4
	Version 23.0.3
	Version 23.0.2
	Version 23.0.1
	Version 23.0.0

	Version 10 Feature Releases
	Version 10.9.0
	Version 10.8.0
	Version 10.7.1
	Version 10.7.0
	Version 10.6.0
	Version 10.5.1
	Version 10.5.0
	Version 10.4.3
	Version 10.4.2
	Version 10.4.1
	Version 10.4.0
	Version 10.3.1
	Version 10.3.0
	Version 10.2.5
	Version 10.2.4
	Version 10.2.3
	Version 10.2.2
	Version 10.2.1
	Version 10.2.0
	Version 10.1.3
	Version 10.1.2
	Version 10.1.1
	Version 10.1.0

	Version 10.0 LTS Releases
	Version 10.0.9
	Version 10.0.8
	Version 10.0.7
	Version 10.0.6
	Version 10.0.5
	Version 10.0.4
	Version 10.0.3
	Version 10.0.2
	Version 10.0.1
	Version 10.0.0

	Commands Reference (man pages)
	HTCondor’s ClassAd Mechanism
	ClassAds: Old and New
	New ClassAd Attribute References

	ClassAd Syntax
	Composing Literals
	Attributes
	Expression Operators
	Predefined Functions

	ClassAd Evaluation Semantics
	Evaluating Literals
	Attribute References
	ClassAd Operators
	Expression Examples

	Old ClassAds in the HTCondor System
	Constraints and Preferences
	Querying with ClassAd Expressions

	Extending ClassAds with User-written Functions

	classad_eval
	Synopsis
	Description
	Examples
	Exit Status
	Author

	condor_adstash
	Synopsis
	Description
	Options
	ClassAd source options
	Options for HTCondor daemon (Schedd, Startd, etc.) history sources
	Search engine (Elasticsearch, OpenSearch, etc.) interface options
	JSON file interface options
	Examples

	condor_advertise
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_annex
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_check_password
	Synopsis
	Description
	Options
	Exit Status

	condor_check_userlogs
	Synopsis
	Description
	Exit Status

	condor_chirp
	Synopsis
	Description
	Chirp Commands
	Examples
	Exit Status

	condor_configure
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_config_val
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_continue
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_dagman
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_drain
	Synopsis
	Description
	Options
	Exit Status

	condor_evicted_files
	Synopsis
	Description
	General Remarks
	Exit Status
	Author

	condor_fetchlog
	Synopsis
	Description
	Options
	Examples
	Exit Status

	condor_findhost
	Synopsis
	Description
	Options
	General Remarks
	Exit Status
	Examples

	condor_gather_info
	Synopsis
	Description
	Options
	Files
	Exit Status

	condor_gpu_discovery
	Synopsis
	Description
	Options
	Exit Status

	condor_history
	Synopsis
	Description
	Options
	Exit Status

	condor_hold
	Synopsis
	Description
	Options
	See Also
	Examples
	Exit Status

	condor_install
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_job_router_info
	Synopsis
	Description
	Options
	Exit Status

	condor_master
	Synopsis
	Description
	Options

	condor_now
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_off
	Synopsis
	Description
	Options
	Graceful vs. Peaceful vs Fast
	Exit Status
	Examples

	condor_on
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_ping
	Synopsis
	Description
	Options
	Examples
	Exit Status

	condor_pool_job_report
	Synopsis
	Description
	Exit Status

	condor_power
	Synopsis
	Description
	Options
	Exit Status

	condor_preen
	Synopsis
	Description
	Options
	Exit Status

	condor_prio
	Synopsis
	Description
	Options
	Exit Status

	condor_procd
	Synopsis
	Description
	Options
	Dealing with Short Reads
	General Remarks
	Exit Status

	condor_q
	Synopsis
	Description
	Batches of jobs
	Output
	Output options
	Output data
	Analyze

	Restrictions
	Options
	General Remarks
	Examples
	Exit Status

	condor_qedit
	Synopsis
	Description
	Options
	Examples
	General Remarks
	Exit Status

	condor_qusers
	Synopsis
	Description
	Options
	Examples
	General Remarks
	Exit Status

	condor_qsub
	Synopsis
	Description
	Options
	Exit Status

	condor_reconfig
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_release
	Synopsis
	Description
	Options
	See Also
	Examples
	Exit Status

	condor_remote_cluster
	Synopsis
	Description
	Options

	condor_reschedule
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_restart
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_rm
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_rmdir
	Synopsis
	Description
	Options
	Exit Status

	condor_router_history
	Synopsis
	Description
	Options
	Exit Status

	condor_router_q
	Synopsis
	Description
	Options
	Exit Status

	condor_router_rm
	Synopsis
	Description
	Options
	Exit Status

	condor_run
	Synopsis
	Description
	Options
	Examples
	Files
	General Remarks
	Exit Status

	condor_set_shutdown
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_sos
	Synopsis
	Description
	Options
	Examples
	Exit Status

	condor_ssh_start
	Synopsis
	Description

	condor_ssh_to_job
	Synopsis
	Description
	Options
	Examples
	Exit Status

	condor_ssl_fingerprint
	Synopsis
	Description
	Examples
	Exit Status
	See also
	Author

	condor_stats
	Synopsis
	Description
	Time Range Options
	Query Type Arguments
	Options
	Exit Status

	condor_status
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_store_cred
	Synopsis
	Description
	Options
	Exit Status

	condor_submit
	Synopsis
	Description
	Options
	Submit Description File Commands
	Submit Variables
	Exit Status
	Examples
	General Remarks
	See Also

	condor_submit_dag
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_suspend
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_tail
	Synopsis
	Description
	Options
	Exit Status

	condor_test_token
	Synopsis
	Description
	Options
	Examples
	Exit Status

	condor_token_create
	Synopsis
	Description
	Options
	Examples
	Exit Status
	See also
	Author

	condor_token_fetch
	Synopsis
	Description
	Options
	Examples
	Exit Status
	See also
	Author

	condor_token_list
	Synopsis
	Description
	Options
	Examples
	Exit Status
	See also
	Author

	condor_token_request
	Synopsis
	Description
	Options
	Examples
	Exit Status
	See also
	Author

	condor_token_request_approve
	Synopsis
	Description
	Options
	Examples
	Exit Status
	See also
	Author

	condor_token_request_auto_approve
	Synopsis
	Description
	Options
	Examples
	Exit Status
	See also
	Author

	condor_token_request_list
	Synopsis
	Description
	Options
	Examples
	Exit Status
	See also
	Author

	condor_top
	Synopsis
	Description
	Options

	condor_transfer_data
	Synopsis
	Description
	Options
	Exit Status

	condor_transform_ads
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_update_machine_ad
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_updates_stats
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_upgrade_check
	Synopsis
	Description
	Options
	Examples
	Exit Status

	condor_urlfetch
	Synopsis
	Description
	Options
	Exit Status

	condor_userlog
	Synopsis
	Description
	Options
	General Remarks
	Exit Status

	condor_userprio
	Synopsis
	Description
	Options
	Examples
	Exit Status

	condor_vacate
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_vacate_job
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_version
	Synopsis
	Description
	Options
	Exit Status

	condor_wait
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_watch_q
	Synopsis
	Description
	Examples
	Options
	General Options
	Tracking Options
	Behavior Options
	Display Options

	Exit Status
	Author

	condor_who
	Synopsis
	Description
	Options
	Examples
	Exit Status

	get_htcondor
	Synopsis
	Description
	Options
	Exit Status
	Installed Configuration
	Single-Machine Installation
	Multi-Machine Installation

	gidd_alloc
	Synopsis
	Description
	General Remarks
	Exit Status

	htcondor
	Synopsis
	Description
	Global Options
	Job Verbs
	Jobset Verbs
	Eventlog Verbs
	Examples
	Exit Status

	procd_ctl
	Synopsis
	Description
	Options
	General Remarks
	Exit Status

	ClassAd Attributes
	ClassAd Types
	Accounting ClassAd Attributes
	Job ClassAd Attributes
	Machine ClassAd Attributes
	DaemonMaster ClassAd Attributes
	Scheduler ClassAd Attributes
	Negotiator ClassAd Attributes
	Submitter ClassAd Attributes
	Defrag ClassAd Attributes
	Grid ClassAd Attributes
	Collector ClassAd Attributes
	ClassAd Attributes Added by the condor_collector
	DaemonCore Statistics Attributes

	Codes and Other Needed Values
	condor_shadow Exit Codes
	Job Event Log Codes
	Job Universe Numbers
	DaemonCore Command Numbers
	DaemonCore Daemon Exit Codes

	Glossary
	Index
	Licensing and Copyright
	Python Module Index
	Index

