
HTCondor Manual
Release 10.0.9

HTCondor Team

Nov 20, 2023

CONTENTS

1 Getting HTCondor 3
1.1 Windows (as Administrator) . 3
1.2 Linux (as root) . 5
1.3 Linux (from our repositories) . 7
1.4 Linux or macOS (as user) . 8
1.5 macOS (as root) . 10
1.6 Docker Images . 12
1.7 Administrative Quick Start Guide . 13

2 Overview 19
2.1 High-Throughput Computing (HTC) and its Requirements . 19
2.2 HTCondor’s Power . 19
2.3 Exceptional Features . 20
2.4 Availability . 21
2.5 Contributions and Acknowledgments . 21
2.6 Support, Downloads and Bug Reporting . 22

3 Users’ Manual 25
3.1 HTCondor Quick Start Guide . 25
3.2 Welcome and Introduction to HTCondor . 32
3.3 Running a Job: the Steps To Take . 32
3.4 Submitting a Job . 33
3.5 Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 52
3.6 Managing a Job . 63
3.7 Automatically managing a job . 72
3.8 Services for Running Jobs . 73
3.9 Priorities and Preemption . 76
3.10 DAGMan Workflows . 77
3.11 Job Sets . 138
3.12 Matchmaking with ClassAds . 141
3.13 Choosing an HTCondor Universe . 143
3.14 Java Applications . 145
3.15 Parallel Applications (Including MPI Applications) . 151
3.16 Virtual Machine Applications . 157
3.17 Docker Universe Applications . 161
3.18 Container Universe Jobs . 163
3.19 Self-Checkpointing Applications . 164
3.20 Time Scheduling for Job Execution . 169
3.21 Special Environment Considerations . 174
3.22 Potential Problems . 179

i

4 Administrators’ Manual 181
4.1 Introduction . 181
4.2 Starting Up, Shutting Down, Reconfiguring, and Restarting HTCondor 184
4.3 Introduction to Configuration . 186
4.4 Configuration Templates . 201
4.5 Configuration Macros . 207
4.6 User Priorities and Negotiation . 328
4.7 Policy Configuration for Execute Hosts and for Submit Hosts . 338
4.8 Security . 376
4.9 Networking (includes sections on Port Usage and CCB) . 413
4.10 DaemonCore . 425
4.11 Hooks, Startd Cron and Schedd Cron . 427
4.12 Logging in HTCondor . 440
4.13 Monitoring . 442
4.14 The High Availability of Daemons . 447
4.15 Setting Up for Special Environments . 455
4.16 Java Support Installation . 480
4.17 Setting Up the VM and Docker Universes . 481
4.18 Singularity Support . 485
4.19 Power Management . 488
4.20 Windows Installer . 491
4.21 Directories . 496

5 ClassAds 499
5.1 HTCondor’s ClassAd Mechanism . 499
5.2 ClassAd Transforms . 520
5.3 Print Formats . 521

6 Grid Computing 529
6.1 Introduction . 529
6.2 Connecting HTCondor Pools with Flocking . 530
6.3 The Grid Universe . 531
6.4 The HTCondor Job Router . 543

7 Cloud Computing 553
7.1 Introduction . 553
7.2 HTCondor Annex User’s Guide . 554
7.3 Using condor_annex for the First Time . 561
7.4 HTCondor Annex Customization Guide . 566
7.5 HTCondor Annex Configuration . 568
7.6 HTCondor in the Cloud . 569
7.7 Google Cloud Marketplace Entry . 571
7.8 Google Cloud HPC Toolkit . 571

8 Application Programming Interfaces (APIs) 573
8.1 Python Bindings . 573
8.2 Chirp . 679
8.3 The HTCondor User and Job Log Reader API . 679
8.4 The Command Line Interface . 686

9 Platform-Specific Information 687
9.1 Linux . 687
9.2 Microsoft Windows . 687
9.3 Macintosh OS X . 697

ii

10 Frequently Asked Questions (FAQ) 699

11 Version History and Release Notes 701
11.1 Introduction to HTCondor Versions . 701
11.2 Upgrading from an 9.0 LTS version to an 10.0 LTS version of HTCondor 702
11.3 Version 10.0 LTS Releases . 704
11.4 Version 9 Feature Releases . 712
11.5 Version 9.0 LTS Releases . 728

12 Command Reference Manual (man pages) 743
12.1 classad_eval . 743
12.2 ClassAds . 745
12.3 condor_adstash . 749
12.4 condor_advertise . 752
12.5 condor_annex . 754
12.6 condor_check_password . 756
12.7 condor_check_userlogs . 757
12.8 condor_chirp . 758
12.9 condor_configure . 760
12.10 condor_config_val . 764
12.11 condor_continue . 767
12.12 condor_dagman . 768
12.13 condor_drain . 772
12.14 condor_evicted_files . 774
12.15 condor_fetchlog . 775
12.16 condor_findhost . 776
12.17 condor_gather_info . 778
12.18 condor_gpu_discovery . 780
12.19 condor_history . 783
12.20 condor_hold . 785
12.21 condor_install . 787
12.22 condor_job_router_info . 790
12.23 condor_master . 791
12.24 condor_now . 792
12.25 condor_off . 793
12.26 condor_on . 795
12.27 condor_ping . 797
12.28 condor_pool_job_report . 798
12.29 condor_power . 798
12.30 condor_preen . 799
12.31 condor_prio . 800
12.32 condor_procd . 801
12.33 condor_q . 803
12.34 condor_qedit . 815
12.35 condor_qsub . 817
12.36 condor_reconfig . 820
12.37 condor_release . 822
12.38 condor_remote_cluster . 823
12.39 condor_reschedule . 824
12.40 condor_restart . 825
12.41 condor_rm . 827
12.42 condor_rmdir . 828
12.43 condor_router_history . 829
12.44 condor_router_q . 830

iii

12.45 condor_router_rm . 830
12.46 condor_run . 831
12.47 condor_set_shutdown . 833
12.48 condor_sos . 834
12.49 condor_ssh_start . 835
12.50 condor_ssh_to_job . 836
12.51 condor_ssl_fingerprint . 839
12.52 condor_stats . 840
12.53 condor_status . 842
12.54 condor_store_cred . 848
12.55 condor_submit . 850
12.56 condor_submit_dag . 893
12.57 condor_suspend . 897
12.58 condor_tail . 899
12.59 condor_token_create . 900
12.60 condor_token_fetch . 902
12.61 condor_token_list . 904
12.62 condor_token_request . 905
12.63 condor_token_request_approve . 908
12.64 condor_token_request_auto_approve . 909
12.65 condor_token_request_list . 911
12.66 condor_top . 913
12.67 condor_transfer_data . 915
12.68 condor_transform_ads . 916
12.69 condor_update_machine_ad . 918
12.70 condor_updates_stats . 919
12.71 condor_urlfetch . 921
12.72 condor_userlog . 922
12.73 condor_userprio . 924
12.74 condor_vacate . 928
12.75 condor_vacate_job . 929
12.76 condor_version . 931
12.77 condor_wait . 932
12.78 condor_watch_q . 933
12.79 condor_who . 936
12.80 get_htcondor . 939
12.81 gidd_alloc . 941
12.82 htcondor . 942
12.83 procd_ctl . 943

13 ClassAd Attributes 945
13.1 ClassAd Types . 945
13.2 Accounting ClassAd Attributes . 946
13.3 Job ClassAd Attributes . 947
13.4 Machine ClassAd Attributes . 970
13.5 DaemonMaster ClassAd Attributes . 984
13.6 Scheduler ClassAd Attributes . 984
13.7 Negotiator ClassAd Attributes . 993
13.8 Submitter ClassAd Attributes . 995
13.9 Defrag ClassAd Attributes . 995
13.10 Grid ClassAd Attributes . 997
13.11 Collector ClassAd Attributes . 997
13.12 ClassAd Attributes Added by the condor_collector . 1000
13.13 DaemonCore Statistics Attributes . 1000

iv

14 Codes and Other Needed Values 1003
14.1 condor_shadow Exit Codes . 1003
14.2 Job Event Log Codes . 1004
14.3 Job Universe Numbers . 1009
14.4 DaemonCore Command Numbers . 1009
14.5 DaemonCore Daemon Exit Codes . 1010

15 Index 1011

16 Licensing and Copyright 1013

Python Module Index 1015

Index 1017

v

vi

HTCondor Manual, Release 10.0.9

Center for High Throughput Computing, University of Wisconsin–Madison.

September 28, 2023

CONTENTS 1

HTCondor Manual, Release 10.0.9

2 CONTENTS

CHAPTER

ONE

GETTING HTCONDOR

1.1 Windows (as Administrator)

Installation of HTCondor must be done by a user with administrator privileges. We have provided quickstart instructions
below to walk you through a single-node HTCondor installation using the HTCondor Windows installer GUI.

For more information about the installation options, or how to use the installer in unattended batch mode, see the
complete Windows Installer guide.

It is possible to manually install HTCondor on Windows, without the provided MSI program, but we strongly discourage
this unless you have a specific need for this approach and have extensive HTCondor experience.

1.1.1 Quickstart Installation Instructions

To download the latest HTCondor Windows Installer:

1. Go to the current channel download site.

2. Click on the second-latest version. (The latest version should always be the under-development version and will
only have daily builds.)

3. Click on the release folder.

4. Click on the file ending in .msi (usually the first one).

Start the installer by double clicking on the MSI file once it’s downloaded. Then follow the directions below for each
option.

If HTCondor is already installed. If HTCondor has been previously installed, a dialog box will appear before the
installation of HTCondor proceeds. The question asks if you wish to preserve your current HTCondor configu-
ration files. Answer yes or no, as appropriate.

If you answer yes, your configuration files will not be changed, and you will proceed to the point where the new
binaries will be installed.

If you answer no, then there will be a second question that asks if you want to use answers given during the
previous installation as default answers.

STEP 1: License Agreement. Agree to the HTCondor license agreement.

STEP 2: HTCondor Pool Configuration. Choose the option to create a new pool and enter a name.

STEP 3: This Machine’s Roles. Check the “submit jobs” box. From the list of execution options, choose “always run
jobs”.

STEP 4: The Account Domain. Skip this entry.

STEP 5: E-mail Settings. Specify the desired email address(es), if any.

3

https://research.cs.wisc.edu/htcondor/tarball/current/

HTCondor Manual, Release 10.0.9

STEP 6: Java Settings. If this entry is already set, accept it. Otherwise, skip it.

STEP 7: Host Permission Settings. Enter 127.0.0.1 for all settings.

STEP 8: VM Universe Setting. Disable the vm universe.

STEP 9: Choose Destination Folder

Accept the default settings.

This should complete the installation process. The installer will have automatically started HTCondor in the background
and you do not need to restart Windows for HTCondor to work.

Open a command prompt to follow the next set of instructions.

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The following commands should complete without
errors, producing output that looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0␣
→˓suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

• For a brief introduction to running jobs with HTCondor, see the HTCondor Quick Start Guide.

• If you’re looking to set up a multi-machine pool, go to the Administrative Quick Start Guide.

4 Chapter 1. Getting HTCondor

HTCondor Manual, Release 10.0.9

1.1.2 Setting Up a Whole Pool with Windows

Follow the instructions above through Step 1. Then, customize the installation as follows:

STEP 2: HTCondor Pool Configuration.

Create a new pool only on the machine you’ve chosen as their central manager. See the Administrative
Quick Start Guide. Otherwise, choose the option to join an existing pool and enter the name or IP address
of the central manager.

STEP 3: This Machine’s Roles.

Check the “submit jobs” box to select the submit role, or choose “always run jobs” to select the execute
role.

STEP 4: The Account Domain. Enter the same name on all submit-role machines. This helps ensure that a user can’t
get more resources by logging in to more than one machine.

STEP 5: E-mail Settings. Specify the desired email address(es), if any.

STEP 6: Java Settings. If this entry is already set, accept it. Otherwise, skip it.

Experienced users who know they want to use the java universe should instead enter the path to the Java exe-
cutable on the machine, if it isn’t already set, or they want to use a different one.

To disable use of the java universe, leave the field blank.

STEP 7: Host Permission Settings. Leave all three entries blank and configure security as appropriate for the ma-
chine’s role by editing HTCondor configuration files; see the get_htcondor man page for details.

STEP 8: VM Universe Setting. Disable the vm universe.

Experienced users with VMWare and Perl already installed may enable the vm universe.

STEP 9: Choose Destination Folder

Experienced users may change the default installation path (c:\Condor), but we don’t recommend doing so.
The default path is assumed in a number of script and configuration paths, so you should expect problems if you
do so.

1.2 Linux (as root)

For ease of installation on Linux, we provide a script that will automatically download, install and start HTCondor.

1.2.1 Quickstart Installation Instructions

Warning:

• RedHat systems must be attached to a subscription.

• Debian and Ubuntu containers don’t come with curl installed, so run the following first.

apt-get update && apt-get install -y curl

The command below shows how to download the script and run it immediately; if you would like to inspect it first,
see Inspecting the Script. The default behavior will create a complete HTCondor pool with its multiple roles on one
computer, referred to in this manual as a “minicondor.” Experienced users who are making an HTCondor pool out

1.2. Linux (as root) 5

HTCondor Manual, Release 10.0.9

of multiple machines should add a flag to select the desired role; see the Administrative Quick Start Guide for more
details.

curl -fsSL https://get.htcondor.org | sudo /bin/bash -s -- --no-dry-run

If you see an error like bash: sudo: command not found, try re-running the command above without the sudo.

Inspecting the Script

If you would like to inspect the script before you running it on your system as root, you can:

• read the script;

• compare the script to the versions in our GitHub repository;

• or run the script as user nobody, dropping the --no-dry-run flag. This will cause the script to print out what
it would do if run for real. You can then inspect the output and copy-and-paste it to perform the installation.

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The following commands should complete without
errors, producing output that looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0␣
→˓suspended

If both commands worked, the installation likely succeeded.

6 Chapter 1. Getting HTCondor

https://get.htcondor.org
https://github.com/htcondor/htcondor/blob/master/src/condor_scripts/get_htcondor

HTCondor Manual, Release 10.0.9

Where to Go from Here

• For a brief introduction to running jobs with HTCondor, see the HTCondor Quick Start Guide.

• If you’re looking to set up a multi-machine pool, go to the Administrative Quick Start Guide.

1.2.2 Setting Up a Whole Pool

The details of using this installation procedure to create a multi-machine HTCondor pool are described in the admin
quick-start guide: Administrative Quick Start Guide.

1.3 Linux (from our repositories)

If you’re not already familiar with HTCondor, we recommend you follow our instructions for your first installation.

If you’re looking to automate the installation of HTCondor using your existing toolchain, the latest information is
embedded in the output of the script run as part of the instructions. This script can be run as a normal user (or nobody),
so we recommend this approach.

Otherwise, this page contains information about the RPM and deb repositories we offer. These repositories will almost
always have more recent releases than the distributions.

1.3.1 RPM-based Distributions

We support several RPM-based platforms: Enterprise Linux 7, including Red Hat, CentOS, and Scientific Linux;
Enterprise Linux 8, including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux. Binaries are available for x86-
64 for all these platforms. For Enterprise Linux 8, HTCondor also supports ARM (“aarch64”) and Power (“ppc64le”).

Repository packages are available for each platform:

• Enterprise Linux 7

• Enterprise Linux 8

The HTCondor packages on these platforms depend on the corresponding version of EPEL.

Additionally, the following repositories are required for specific platforms:

• On RedHat 7, rhel-*-optional-rpms, rhel-*-extras-rpms, and rhel-ha-for-rhel-*-server-rpms.

• On RedHat 8, codeready-builder-for-rhel-8-${ARCH}-rpms.

• On CentOS 8, powertools (or PowerTools).

1.3.2 deb-based Distributions

We support three deb-based platforms: Debian 11 (Bullseye); and Ubuntu 20.04 (Focal Fossa) and 22.04 (Jammy
Jellyfish). Binaries are only available for x86-64. These repositories also include the source packages.

1.3. Linux (from our repositories) 7

https://research.cs.wisc.edu/htcondor/repo/10.0/htcondor-release-current.el7.noarch.rpm
https://research.cs.wisc.edu/htcondor/repo/10.0/htcondor-release-current.el8.noarch.rpm
https://fedoraproject.org/wiki/EPEL

HTCondor Manual, Release 10.0.9

Debian 11

Add our Debian signing key with apt-key add before adding the repositories below.

• Debian 11: deb [arch=amd64] http://research.cs.wisc.edu/htcondor/repo/debian/10.0
bullseye main

Ubuntu 20.04, and 22.04

Add our Ubuntu signing key with apt-key add before adding the repositories below.

• Ubuntu 20.04: deb [arch=amd64] http://research.cs.wisc.edu/htcondor/repo/ubuntu/10.0
focal main

• Ubuntu 22.04: deb [arch=amd64] http://research.cs.wisc.edu/htcondor/repo/ubuntu/10.0
jammy main

1.4 Linux or macOS (as user)

Installing HTCondor on Linux or macOS as a normal user is a multi-step process. Note that a user-install of HTCondor
is always self-contained on a single machine; if you want to create a multi-machine HTCondor pool, you will need to
have administrative privileges on the relevant machines and follow the instructions here: Administrative Quick Start
Guide.

1.4.1 Download

The first step is to download HTCondor for your platform. If you know which platform you’re using, that HTCondor
supports it, and which version you want, you can download the corresponding file from our website; otherwise, we
recommend using our download script, as follows.

cd
curl -fsSL https://get.htcondor.org | /bin/bash -s -- --download

1.4.2 Install

Unpack the tarball and rename the resulting directory:

tar -x -f condor.tar.gz
mv condor-*stripped condor

You won’t need condor.tar.gz again, so you can remove it now if you wish.

8 Chapter 1. Getting HTCondor

https://research.cs.wisc.edu/htcondor/repo/keys/HTCondor-10.0-Key
https://research.cs.wisc.edu/htcondor/repo/keys/HTCondor-10.0-Key
https://research.cs.wisc.edu/htcondor/tarball/current/

HTCondor Manual, Release 10.0.9

1.4.3 Configure

cd condor
./bin/make-personal-from-tarball

1.4.4 Using HTCondor

You’ll need to run the following command now, and every time you log in:

. ~/condor/condor.sh

Then to start HTCondor (if the machine has rebooted since you last logged in):

condor_master

It will finish silently after starting up, if everything went well.

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The following commands should complete without
errors, producing output that looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0␣
→˓suspended

If both commands worked, the installation likely succeeded.

1.4. Linux or macOS (as user) 9

HTCondor Manual, Release 10.0.9

Where to Go from Here

• For a brief introduction to running jobs with HTCondor, see the HTCondor Quick Start Guide.

• If you’re looking to set up a multi-machine pool, go to the Administrative Quick Start Guide.

1.5 macOS (as root)

Installing HTCondor on macOS as root user is a multi-step process. For a multi-machine HTCondor pool, infor-
mation about the roles each machine will play can be found here: Administrative Quick Start Guide. Note that the
get_htcondor tool cannot perform the installation steps on macOS at present. You must follow the instructions be-
low.

Note that all of the following commands must be run as root, except for downloading and extracting the tarball.

1.5.1 The condor Service Account

The first step is to create a service account under which the HTCondor daemons will run. The commands that specify a
PrimaryGroupID or UniqueID may fail with an error that includes eDSRecordAlreadyExists. If that occurs, you
will have to retry the command with a different id number (other than 300).

dscl . -create /Groups/condor
dscl . -create /Groups/condor PrimaryGroupID 300
dscl . -create /Groups/condor RealName 'Condor Group'
dscl . -create /Groups/condor passwd '*'
dscl . -create /Users/condor
dscl . -create /Users/condor UniqueID 300
dscl . -create /Users/condor passwd '*'
dscl . -create /Users/condor PrimaryGroupID 300
dscl . -create /Users/condor UserShell /usr/bin/false
dscl . -create /Users/condor RealName 'Condor User'
dscl . -create /Users/condor NFSHomeDirectory /var/empty

1.5.2 Download

The next step is to download HTCondor. If you want to select a specific version of HTCondor, you can download the
corresponding file from our website. Otherwise, we recommend using our download script, as follows.

cd
curl -fsSL https://get.htcondor.org | /bin/bash -s -- --download

10 Chapter 1. Getting HTCondor

https://research.cs.wisc.edu/htcondor/tarball/

HTCondor Manual, Release 10.0.9

1.5.3 Install

Unpack the tarball.

mkdir /usr/local/condor
tar -x -C /usr/local/condor --strip-components 1 -f condor.tar.gz

You won’t need condor.tar.gz again, so you can remove it now if you wish.

Set up the log directory and default configuration files.

cd /usr/local/condor
mkdir -p local/log
mkdir -p local/config.d
cp etc/examples/condor_config etc/condor_config
cp etc/examples/00-htcondor-9.0.config local/config.d

If you are setting up a single-machine pool, then run the following command to finish the configuration.

cp etc/examples/00-minicondor local/config.d

If you are setting up part of a multi-machine pool, then you’ll have to make some other configuration changes, which
we don’t cover here.

Next, fix up the permissions of the the installed files.

chown -R root:wheel /usr/local/condor
chown -R condor:condor /usr/local/condor/local/log

Finally, make the configuration file available at one of the well-known locations for the tools to find.

mkdir -p /etc/condor
ln -s /usr/local/condor/etc/condor_config /etc/condor

1.5.4 Start the Daemons

Now, register HTCondor has a service managed by launchd and start up the daemons.

cp /usr/local/condor/etc/examples/condor.plist /Library/LaunchDaemons
launchctl load /Library/LaunchDaemons/condor.plist
launchctl start condor

1.5.5 Using HTCondor

You’ll want to add the HTCondor bin and sbin directories to your PATH environment variable.

export PATH=$PATH:/usr/local/condor/bin:/usr/local/condor/sbin

If you want to use the Python bindings for HTCondor, you’ll want to add them to your PYTHONPATH.

export PYTHONPATH="/usr/local/condor/lib/python3${PYTHONPATH+":"}${PYTHONPATH-}"

1.5. macOS (as root) 11

HTCondor Manual, Release 10.0.9

Verifying a Single-Machine Installation

You can easily check to see if the installation procedure succeeded. The following commands should complete without
errors, producing output that looks like the corresponding example.

condor_status

Name OpSys Arch State Activity LoadAv Mem Actv

slot1@azaphrael.org LINUX X86_64 Unclaimed Benchmarking 0.000 2011 0+00
slot2@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot3@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00
slot4@azaphrael.org LINUX X86_64 Unclaimed Idle 0.000 2011 0+00

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0

condor_q

-- Schedd: azaphrael.org : <184.60.25.78:34585?... @ 11/11/20 14:44:06
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

Total for query: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
Total for all users: 0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0␣
→˓suspended

If both commands worked, the installation likely succeeded.

Where to Go from Here

• For a brief introduction to running jobs with HTCondor, see the HTCondor Quick Start Guide.

• If you’re looking to set up a multi-machine pool, go to the Administrative Quick Start Guide.

1.6 Docker Images

HTCondor provides images on Docker Hub.

1.6.1 Quickstart Instructions

If you’re just getting started with HTCondor, use htcondor/minicondor, a stand-alone HTCondor configuration.
The following command will work on most systems with Docker installed:

docker run -it htcondor/minicondor:v8.9.9-el7

From here, you can proceed to the HTCondor Quick Start Guide.

12 Chapter 1. Getting HTCondor

HTCondor Manual, Release 10.0.9

1.6.2 Setting Up a Whole Pool with Docker

If you’re looking to set up a whole pool, the following images correspond to the three required roles. See the Adminis-
trative Quick Start Guide for more information about the roles and how to configure these images to work together.

• htcondor/cm, an image configured as a central manager

• htcondor/execute, an image configured as an execute node

• htcondor/submit, an image configured as a submit node

All images are tagged by <version>-<os>, for example, 8.9.9-el7. Not all versions are available for all supported
operating systems.

1.7 Administrative Quick Start Guide

This guide does not contain step-by-step instructions for getting HTCondor. Rather, it is a guide to joining multiple
machines into a single pool of computational resources for use by HTCondor jobs.

This guide begins by briefly describing the three roles required by every HTCondor pool, as well as the resources and
networking required by each of those roles. This information will enable you to choose which machine(s) will perform
which role(s). This guide also includes instructions on how to use the get_htcondor tool to install and configure
Linux (or Mac) machines to perform each of the roles.

If you’re curious, using Windows machines, or you want to automate the configuration of their pool using a tool like
Puppet, the last section of this guide briefly describes what the get_htcondor tool does and provides a link to the rest
of the details.

Single-machine Installations

If you just finished installing a single-machine (“mini”) HTCondor using get_htcondor, you can just run
get_htcondor again (and follow its instructions) to reconfigure the machine to be one of these three roles; this
may destroy any other configuration changes you’ve made.

We don’t recommend trying to add a machine configured as a “mini” HTCondor to the pool, or trying to add execute
machines to an existing “mini” HTCondor pool. We also don’t recommend creating an entire pool out of unprivileged
installations.

1.7.1 The Three Roles

Even a single-machine installation of HTCondor performs all three roles.

The Execute Role

The most common reason for adding a machine to an HTCondor pool is to make another machine execute HTCondor
jobs; the first major role, therefore, is the execute role. This role is responsible for the technical aspects of actually
running, monitoring, and managing the job’s executable; transferring the job’s input and output; and advertising, mon-
itoring, and managing the resources of the execute machine. HTCondor can manage pools containing tens of thousands
of execute machines, so this is by far the most common role.

The execute role itself uses very few resources, so almost any machine can contribute to a pool. The execute role can
run on a machine with only outbound network connectivity, but being able to accept inbound connections from the
machine(s) performing the submit role will simplify setup and reduce overhead. The execute machine does not need

1.7. Administrative Quick Start Guide 13

HTCondor Manual, Release 10.0.9

to allow user access, or even share user IDs with other machines in the pool (although this may be very convenient,
especially on Windows).

The Submit Role

We’ll discuss what “advertising” a machine’s resources means in the next section, but the execute role leaves an obvious
question unanswered: where do the jobs come from? The answer is the submit role. This role is responsible for
accepting, monitoring, managing, and scheduling jobs on its assigned resources; transferring the input and output
of jobs; and requesting and accepting resource assignments. (A “resource” is some reserved fraction of an execute
machine.) HTCondor allows arbitrarily many submit roles in a pool, but for administrative convenience, most pools
only have one, or a small number, of machines acting in the submit role.

A submit-role machine requires a bit under a megabyte of RAM for each running job, and its ability to transfer data
to and from the execute-role machines may become a performance bottleneck. We typically recommend adding an-
other submit machine for every twenty thousand simultaneously running jobs. A submit machine must have outbound
network connectivity, but a submit machine without inbound network connectivity can’t use execute-role machines
without inbound network connectivity. As execute machines are more numerous, submit machines typically allow
inbound connections. Although you may allow users to submit jobs over the network, we recommend allowing users
SSH access to the submit machine.

The Central Manager Role

Only one machine in each HTCondor pool can perform this role (barring certain high-availability configurations, where
only one machine can perform this role at a time). A central manager matches resource requests – generated by the
submit role based on its jobs – with the resources described by the execute machines. We refer to sending these
(automatically-generated) descriptions to the central manager as “advertising” because it’s the primary way execute
machines get jobs to run.

A central manager must accept connections from each execute machine and each submit machine in a pool. However,
users should never need access to the central manager. Every machine in the pool updates the central manager every
few minutes, and it answers both system and user queries about the status of the pool’s resources, so a fast network is
important. For very large pools, memory may become a limiting factor.

1.7.2 Assigning Roles to Machines

The easiest way to assign a role to a machine is when you initially get HTCondor. You’ll need to supply the same
password for each machine in the same pool; sharing that secret is how the machines recognize each other as members
of the same pool, and connections between machines are encrypted with it. (HTCondor uses port 9618 to communicate,
so make sure that the machines in your pool accept TCP connections on that port from each other.) In the command
lines below, replace $htcondor_password with the password you want to use. In addition to the password, you must
specify the name of the central manager, which may be a host name (which must resolve on all machines in the pool)
or an IP address. In the command lines below, replace $central_manager_name with the host name or IP address
you want to use.

When you get HTCondor, start with the central manager, then add the submit machine(s), and then add the execute
machine(s). You may not have sudo installed; you may omit it from the command lines below if you run them as root.

14 Chapter 1. Getting HTCondor

HTCondor Manual, Release 10.0.9

Central Manager

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /
→˓bin/bash -s -- --no-dry-run --central-manager $central_manager_name

Submit

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /
→˓bin/bash -s -- --no-dry-run --submit $central_manager_name

Execute

curl -fsSL https://get.htcondor.org | sudo GET_HTCONDOR_PASSWORD="$htcondor_password" /
→˓bin/bash -s -- --no-dry-run --execute $central_manager_name

At this point, users logged in on the submit machine should be able to see execute machines in the pool (using
condor_status), submit jobs (using condor_submit), and see them run (using condor_q).

Creating a Multi-Machine Pool using Windows or Containers

If you are creating a multi-machine HTCondor pool on Windows computers or using containerization, please see the
“Setting Up a Whole Pool” section of the relevant installation guide:

• Setting Up a Whole Pool with Windows

• Setting Up a Whole Pool with Docker

1.7.3 Where to Go from Here

There are two major directions you can go from here, but before we discuss them, a warning.

Making Configuration Changes

HTCondor configuration files should generally be owned by root (or Administrator, on Windows), but readable by all
users. We recommend that you don’t make changes to the configuration files established by the installation procedure;
this avoids conflicts between your changes and any changes we may have to make to the base configuration in future
updates. Instead, you should add (or edit) files in the configuration directory; its location can be determined on a given
machine by running condor_config_val LOCAL_CONFIG_DIR there. HTCondor will process files in this directory
in lexicographic order, so we recommend naming files ##-name.config so that, for example, a setting in 00-base.
config will be overridden by a setting in 99-specific.config.

1.7. Administrative Quick Start Guide 15

HTCondor Manual, Release 10.0.9

Enabling Features

Some features of HTCondor, for one reason or another, aren’t (or can’t be) enabled by default. Areas of potentially
general interest include:

• Setting Up for Special Environments (particularly Enabling the Fetching and Use of OAuth2 Credentials and
Limiting Resource Usage Using Cgroups),

• Setting Up the VM and Docker Universes

• Singularity Support

Implementing Policies

Although your HTCondor pool should be fully functional at this point, it may not be behaving precisely as you wish,
particularly with respect to resource allocation. You can tune how HTCondor allocates resources to users, or groups of
users, using the user priority and group quota systems, described in User Priorities and Negotiation. You can enforce
machine-specific policies – for instance, preferring GPU jobs on machines with GPUs – using the options described in
Policy Configuration for Execute Hosts and for Submit Hosts.

Further Reading

• It may be helpful to at least skim the Users’ Manual to get an idea of what your users might want or expect,
particularly the sections on DAGMan Workflows, Choosing an HTCondor Universe, and Self-Checkpointing Ap-
plications.

• Understanding HTCondor’s ClassAd Mechanism is essential for many administrative tasks.

• The rest of the Administrators’ Manual, particularly the section on Monitoring.

• Slides from past HTCondor Weeks – our annual conference – include a number of tutorials and talks on admin-
istrative topics, including monitoring and examples of policies and their implementations.

1.7.4 What get_htcondor Does to Configure a Role

The configuration files generated by get_htcondor are very similar, and only two lines long:

• set the HTCondor configuration variable CONDOR_HOST to the name (or IP address) of your central manager;

• add the appropriate metaknob: use role : get_htcondor_central_manager, use role :
get_htcondor_submit, or use role : get_htcondor_execute.

Putting all of the pool-independent configuration into the metaknobs allows us to change the metaknobs to fix problems
or work with later versions of HTCondor as you upgrade.

The get_htcondor documentation describes what the configuration script does and how to determine the exact details.

These instructions show how to create a complete HTCondor installation with all of its components on a single com-
puter, so that you can test HTCondor and explore its features. We recommend that new users start with the first set of
instructions here and then continue with the HTCondor Quick Start Guide; that link will appear again at the end of
these instructions.

If you know how to use Docker, you may find it easier to start with the htcondor/mini image; see the Docker Images
entry. If you’re familiar with cloud computing, you may also get HTCondor in the cloud.

16 Chapter 1. Getting HTCondor

https://htcondor.org/past_condor_weeks.html

HTCondor Manual, Release 10.0.9

Installing HTCondor on a Cluster

Experienced users who want to make an HTCondor pool out of multiple machines should follow the Administrative
Quick Start Guide. If you’re new to HTCondor administration, you may want to read the Administrators’ Manual.

Installing HTCondor on a Single Machine with Administrative Privileges

If you have administrative privileges on your machine, choose the instructions corresponding to your operating system:

• Windows.

• Linux. HTCondor supports Enterprise Linux 7 including Red Hat, CentOS, and Scientific Linux 7; Enterprise
Linux 8 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux; Debian 11; and Ubuntu 20.04 and
22.04.

• macOS. HTCondor supports macOS 10.15 and later.

Hand-Installation of HTCondor on a Single Machine with User Privileges

If you don’t have administrative privileges on your machine, you can still install HTCondor. An unprivileged installation
isn’t able to effectively limit the resource usage of the jobs it runs, but since it only works for the user who installed it,
at least you know who to blame for misbehaving jobs.

• Linux. HTCondor supports Enterprise Linux 7 including Red Hat, CentOS, and Scientific Linux 7; Enterprise
Linux 8 including Red Hat, CentOS Stream, Alma Linux, and Rocky Linux; Debian 11; and Ubuntu 20.04 and
22.04.

• macOS. HTCondor supports macOS 10.15 and later.

Docker Images

HTCondor is also available on Docker Hub.

If you’re new to HTCondor, the htcondor/mini image is equivalent to following any of the instructions above, and
once you’ve started the container, you can proceed directly to the HTCondor Quick Start Guide and learn how to run
jobs.

For other options, see our docker image list.

Kubernetes

You can deploy a complete HTCondor pool with the following command:

kubectl apply -f https://github.com/htcondor/htcondor/blob/latest/build/docker/k8s/pool.
→˓yaml

If you’re new to HTCondor, you can proceed directly to the HTCondor Quick Start Guide after logging in to the submit
pod.

1.7. Administrative Quick Start Guide 17

https://hub.docker.com/u/htcondor

HTCondor Manual, Release 10.0.9

In the Cloud

Although you can use our Docker images (or Kubernetes support) in the cloud, HTCondor also supports cloud-native
distribution.

• For Amazon Web Services, we offer a minicondor image preconfigured for use with condor_annex, which allows
to easily add cloud resources to your pool.

• The Google Cloud Marketplace Entry lets you construct an entire HTCondor pool that scales automatically to run
submitted jobs. If you’re new to HTCondor, you can proceed to the HTCondor Quick Start Guide immediately
after following those instructions.

• We also have documention on creating a HTCondor in the Cloud by hand.

18 Chapter 1. Getting HTCondor

https://aws.amazon.com/marketplace/pp/B073WHVRPR

CHAPTER

TWO

OVERVIEW

2.1 High-Throughput Computing (HTC) and its Requirements

The quality of many projects is dependent upon the quantity of computing cycles available. Many problems require
years of computation to solve. These problems demand a computing environment that delivers large amounts of com-
putational power over a long period of time. Such an environment is called a High-Throughput Computing (HTC)
environment. In contrast, High Performance Computing (HPC) environments deliver a tremendous amount of com-
pute power over a short period of time. HPC environments are often measured in terms of Floating point Operations
Per Second (FLOPS). A growing community is not concerned about operations per second, but operations per month
or per year (FLOPY). They are more interested in how many jobs they can complete over a long period of time instead
of how fast an individual job can finish.

The key to HTC is to efficiently harness the use of all available resources. Years ago, the engineering and scientific
community relied on a large, centralized mainframe or a supercomputer to do computational work. A large number of
individuals and groups needed to pool their financial resources to afford such a machine. Users had to wait for their
turn on the mainframe, and they had a limited amount of time allocated. While this environment was inconvenient for
users, the utilization of the mainframe was high; it was busy nearly all the time.

As computers became smaller, faster, and cheaper, users moved away from centralized mainframes. Today, most orga-
nizations own or lease many different kinds of computing resources in many places. Racks of departmental servers,
desktop machines, leased resources from the Cloud, allocations from national supercomputer centers are all examples
of these resources. This is an environment of distributed ownership, where individuals throughout an organization own
their own resources. The total computational power of the institution as a whole may be enormous, but because of
distributed ownership, groups have not been able to capitalize on the aggregate institutional computing power. And,
while distributed ownership is more convenient for the users, the utilization of the computing power is lower. Many
machines sit idle for very long periods of time while their owners have no work for the machines to do.

2.2 HTCondor’s Power

HTCondor is a software system that creates a High-Throughput Computing (HTC) environment. It effectively uses
the computing power of machines connected over a network, be they a single cluster, a set of clusters on a campus,
cloud resources either stand alone or temporarily joined to a local cluster, or international grids. Power comes from the
ability to effectively harness shared resources with distributed ownership.

A user submits jobs to HTCondor. HTCondor finds available machines and begins running the jobs there. HTCondor
has the capability to detect that a machine running a job is no longer available (perhaps the machine crashed, or maybe
it prefers to run another job). HTCondor will automatically restart the job on another machine without intervention
from the user.

19

HTCondor Manual, Release 10.0.9

HTCondor is useful when a job must be run many (thousands of) times, perhaps with hundreds of different data sets.
With one command, all of the jobs are submitted to HTCondor. Depending upon the number of machines in the
HTCondor pool, hundreds of otherwise idle machines can be running the jobs at any given moment.

HTCondor does not require an account (login) on machines where it runs a job. HTCondor can do this because of its
file transfer and split execution mechanisms.

HTCondor provides powerful resource management by match-making resource owners with resource consumers. This
is the cornerstone of a successful HTC environment. Other compute cluster resource management systems attach
properties to the job queues themselves, resulting in user confusion over which queue to use as well as administrative
hassle in constantly adding and editing queue properties to satisfy user demands. HTCondor implements ClassAds, a
clean design that simplifies the user’s submission of jobs.

ClassAds work in a fashion similar to the newspaper classified advertising want-ads. All machines in the HTCondor
pool advertise their resource properties, both static and dynamic, such as available RAM memory, CPU type, CPU
speed, virtual memory size, physical location, and current load average, in a resource offer ad. A user specifies a
resource request ad when submitting a job. The request defines both the required and a desired set of properties of the
resource to run the job. HTCondor acts as a broker by matching and ranking resource offer ads with resource request
ads, making certain that all requirements in both ads are satisfied. During this match-making process, HTCondor also
considers several layers of priority values: the priority the user assigned to the resource request ad, the priority of the
user which submitted the ad, and the desire of machines in the pool to accept certain types of ads over others.

2.3 Exceptional Features

Reliability An HTCondor job “is like money in the bank”. After successful submission, HTCondor owns
the job, and will run it to completion, even if the submit machine or execute machine crash, and
require HTCondor to restart the job elsewhere.

Scalability An HTCondor pool is horizontally scalable to hundreds of thousands of execute cores running
a similar number of running jobs, and an even larger number of idle jobs. HTCondor is also scalable
down to run an entire pool on a single machine, and many scales between these two extremes.

Security HTCondor, by default, uses strong authentication and encryption on the wire. The HTCondor
worker node scratch directories can be encrypted, so that if a node is stolen or broken into, scratch
files are unreadable.

Parallelization without Reimplementation or Redesign HTCondor is able to run most programs which
researchers can run on their laptop or their desktop, in any programming language, such as C, Fortran,
Python, Julia, Matlab, R or others, without changing the code. HTCondor will do the work of running
your code as parallel jobs, so it is not necessary to implement parallelism in your code.

Portability and Heterogeneity HTCondor runs on most Linux distributions and on Windows. A single
HTCondor pool can support machines of different OSes. Worker nodes need not be identically pro-
visioned – HTCondor detects the memory, CPU cores, GPUs and other machine resources available
on a machine, and only runs jobs that match their needs to the machine’s capabilities.

Pools of Machines can be Joined Together Flocking allows jobs submitted from one pool of HTCondor
machines to execute on another authorized pool.

Jobs Can Be Ordered A set of jobs where the output of one or more jobs becomes the input of one
or more other jobs, can be defined, such that HTCondor will run the jobs in the proper order, and
organize the inputs and outputs properly. This is accomplished with a directed acyclic graph, where
each job is a node in the graph.

HTCondor Can Use Remote Resources, from a Cloud, a Supercomputer Allocation, or a Grid
Glidein allows jobs submitted to HTCondor to be executed on machines in remote pools in various

20 Chapter 2. Overview

HTCondor Manual, Release 10.0.9

locations worldwide. These remote pools can be in one or more clouds, in an allocation on a HPC
site, in a different HTCondor pool or on a compute grid.

Sensitive to the Desires of Machine Owners The owner of a machine has complete priority over the use
of the machine. HTCondor lets the machine’s owner decide if and how HTCondor uses the machine.
When HTCondor relinquishes the machine, it cleans up any files created by the jobs that ran on the
system.

Flexible Policy Mechanisms HTCondor allows users to specify very flexible policies for how they want
jobs to be run. Conversely, it independently allows the owners of machines to specify very flexible
policies about what jobs (if any) should be run on their machines. Together, HTCondor merges and
adjudicates these policy requests into one coherent system.

The ClassAd mechanism in HTCondor provides an expressive framework for matchmaking resource
requests with resource offers. Users can easily request both job requirements and job desires. For
example, a user can require that their job must be started on a machine with a certain amount of
memory, but should there be multiple available machines that meet that criteria, to select the one
with the most memory.

2.4 Availability

HTCondor is available for download from the URL http://htcondor.org/downloads/.

For more platform-specific information about HTCondor’s support for various operating systems, see the Platform-
Specific Information chapter.

2.5 Contributions and Acknowledgments

The quality of the HTCondor project is enhanced by the contributions of external organizations. We gratefully ac-
knowledge the following contributions.

• The GOZAL Project from the Computer Science Department of the Technion Israel Institute of Technology
(http://www.technion.ac.il/), for their enhancements for HTCondor’s High Availability. The condor_had daemon
allows one of multiple machines to function as the central manager for a HTCondor pool. Therefore, if an acting
central manager fails, another can take its place.

• Micron Corporation (http://www.micron.com/) for the MSI-based installer for HTCondor on Windows.

• Paradyn Project (http://www.paradyn.org/) and the Universitat Autònoma de Barcelona (http://www.caos.uab.
es/) for work on the Tool Daemon Protocol (TDP).

The HTCondor project wishes to acknowledge the following:

• This material is based upon work supported by the National Science Foundation under Grant Numbers MCS-
8105904, OCI-0437810, and OCI-0850745. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

2.4. Availability 21

http://htcondor.org/downloads/
http://www.technion.ac.il/
http://www.micron.com/
http://www.paradyn.org/
http://www.caos.uab.es/
http://www.caos.uab.es/

HTCondor Manual, Release 10.0.9

2.6 Support, Downloads and Bug Reporting

The latest software releases, publications/papers regarding HTCondor and other High-Throughput Computing research
can be found at the official web site for HTCondor at http://htcondor.org/.

2.6.1 Downloads

A list of recent HTCondor software releases is available on our downloads page: https://htcondor.org/downloads.

Selecting a release channel will lead you to the Getting HTCondor section of the HTCondor Manual, which describes
how to download and install HTCondor.

2.6.2 Support

Mailing Lists

Our users support each other on a community unmoderated mailing list (htcondor-users@cs.wisc.edu) targeted at solv-
ing problems with HTCondor. HTCondor team members attempt to monitor traffic to htcondor-users, responding as
they can. Follow the instructions at http://htcondor.org/mail-lists. If you have a question or potential bug report for
HTCondor that can be asked on a public mailing list, this is the first place to go.

In addition, there is a very low-volume e-mail list at htcondor-world@cs.wisc.edu. We use this e-mail list to announce
new releases of HTCondor and other major HTCondor-related news items. To subscribe or unsubscribe from the list,
follow the instructions at http://htcondor.org/mail-lists. The HTCondor World e-mail list group is moderated, and only
major announcements of wide interest are distributed.

Email Support

You can reach the HTCondor Team directly. The HTCondor Team is composed of the developers and administrators of
HTCondor at the University of Wisconsin-Madison. HTCondor questions, bug reports, comments, pleas for help, and
requests for commercial contract consultation or support are all welcome; send e-mail to htcondor-admin@cs.wisc.edu.
Please include your name, organization, and email in your message. If you are having trouble with HTCondor, please
help us troubleshoot by including as much pertinent information as you can, including snippets of HTCondor log files,
and the version of HTCondor you are running.

Finally, we have several options for users who require additional support for HTCondor beyond the free support listed
above. All details are available on our website: https://htcondor.org/htcondor-support/

2.6.3 Reporting Bugs

We recommend you use the mailing lists or email support listed above to report bugs. Please provide as much infor-
mation as possible: detailed information about the problem, relevant log files, and steps on how to reproduce it. If it’s
a new issue that our team was not aware of, we’ll create a new ticket in our system.

22 Chapter 2. Overview

http://htcondor.org/
https://htcondor.org/downloads
mailto:htcondor-users@cs.wisc.edu
http://htcondor.org/mail-lists
mailto:htcondor-world@cs.wisc.edu
http://htcondor.org/mail-lists
mailto:htcondor-admin@cs.wisc.edu
https://htcondor.org/htcondor-support/

HTCondor Manual, Release 10.0.9

Ticketing System

Experienced HTCondor users can also request a user account that will allow them to create tickets directly in our
system:

https://htcondor-wiki.cs.wisc.edu/index.cgi/rptview?rn=4

To get an account, send an email to htcondor-admin@cs.wisc.edu explaining why you want it and how you intend to
use it. These are typically reserved for known collaborators with direct contact to the HTCondor team.

2.6. Support, Downloads and Bug Reporting 23

https://htcondor-wiki.cs.wisc.edu/index.cgi/rptview?rn=4
mailto:htcondor-admin@cs.wisc.edu

HTCondor Manual, Release 10.0.9

24 Chapter 2. Overview

CHAPTER

THREE

USERS’ MANUAL

3.1 HTCondor Quick Start Guide

To users, HTCondor is a job scheduler. You give HTCondor a file containing commands that tell it how to run jobs.
HTCondor locates a machine that can run each job within the pool of machines, packages up the job and ships it off to
this execute machine. The jobs run, and output is returned to the machine that submitted the jobs.

This guide provides enough guidance to submit and observe the successful completion of a first job. It then suggests
extensions that you can apply to your particular jobs.

This guide presumes that

• HTCondor is running

• that you have access to a machine within the pool that may submit jobs, termed a submit machine

• that you are logged in to and working on the submit machine. (If you just finished getting HTCondor, the one
machine you just installed is your submit machine.)

• that your program executable, your submit description file, and any needed input files are all on the file system
of the submit machine

• that your job (the program executable) is able to run without any interactive input. Standard input (from the
keyboard), standard output (seen on the display), and standard error (seen on the display) may still be used, but
their contents will be redirected from/to files.

3.1.1 A First HTCondor Job

For HTCondor to run a job, it must be given details such as the names and location of the executable and all needed
input files. These details are specified in a submit description file.

The executable

Before presenting the details of the submit description file, consider this first HTCondor job. It is a sleep job that waits
for 6 seconds and then exits. While most aspects of HTCondor are identical on Linux (or Mac) and Windows machines,
awareness of the platform of the submit machine will lead to a better understanding of jobs and job submission.

This first executable program is a shell script (Linux or Mac) or batch file (Windows). The file that represents this differs
based on operating system; the Linux (or Mac) version is shown first, and the Windows version is shown second. To
try this example, log in to the submit machine, and use an editor to type in or copy and paste the file contents. Name
the resulting file sleep.sh if the submit machine is Linux (or Mac) operating system, and name the resulting file
sleep.bat if the submit machine is running Windows. Note that you will need to know whether the operating system
on your submit machine is a Linux (or Mac) operating system or Windows.

25

http://htcondor.org

HTCondor Manual, Release 10.0.9

Listing 1: Linux (or Mac) executable, a shell script

#!/bin/bash
file name: sleep.sh

TIMETOWAIT="6"
echo "sleeping for $TIMETOWAIT seconds"
/bin/sleep $TIMETOWAIT

Listing 2: Windows executable, a batch file

:: file name: sleep.bat
@echo off

set TIMETOWAIT=6
echo sleeping for %TIMETOWAIT% seconds
choice /D Y /T %TIMETOWAIT% > NUL

For a Linux (or Mac) submit machine only, change the sleep.sh file to be executable by running the following com-
mand:

chmod u+x sleep.sh

The contents of the submit description file

The submit description file describes the job. To submit this sample job, again use an editor to create the file sleep.
sub. The submit description file contents for this job differs on Linux (or Mac) and Windows machines only in the
name of the script or batch file:

Listing 3: Linux (and Mac) submit description file

sleep.sub -- simple sleep job

executable = sleep.sh
log = sleep.log
output = outfile.txt
error = errors.txt
should_transfer_files = Yes
when_to_transfer_output = ON_EXIT
queue

Listing 4: Windows submit description file

sleep.sub -- simple sleep job

executable = sleep.bat
log = sleep.log
output = outfile.txt
error = errors.txt
should_transfer_files = Yes
when_to_transfer_output = ON_EXIT
queue

26 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

The first line of this submit description file is a comment. Comments begin with the # character. Comments do not
span lines.

Each line of the submit description file has the form

command_name = value

The command name is case insensitive and precedes an equals sign. Values to right of the equals sign are likely to be
case sensitive, especially in the case that they specify paths and file names.

Next in this file is a specification of the executable to run. It specifies the program that becomes the HTCondor job.
For this example, it is the file name of the Linux (or Mac) script or Windows batch file. A full path and executable
name, or a path and executable relative to the current working directory may be specified.

The log command causes a job event log file named sleep.log to be created on the submit machine once the job is
submitted. A log is not necessary, but it can be incredibly useful in figuring out what happened or is happening with a
job.

If this script/batch file were to to be invoked from the command line, and outside of HTCondor, its single line of output

sleeping for 6 seconds

would be sent to standard output (the display). When submitted as an HTCondor job, standard output of the execute
machine is on that execute machine, and thus unavailable. HTCondor captures standard output in a file due to the
output command in the submit description file. This example names the redirected standard output file outfile.
txt, and this file is returned to the submit machine when the job completes. The same structure is specified for standard
error, as specified with the error command.

The commands

should_transfer_files = Yes
when_to_transfer_output = ON_EXIT

direct HTCondor to explicitly send the needed files, including the executable, to the machine where the job executes.
These commands will likely not be necessary for jobs in which the submit machine and the execute machine access a
shared file system. However, including these commands will allow this first sample job to work under a large variety
of pool configurations.

The queue command tells HTCondor to run one instance of this job.

Submitting the job

With this submit description file, all that remains is to hand off the job to HTCondor. With the current working directory
being the one that contains the sleep.sub submit description file and the executable (sleep.sh or sleep.bat), this
job submission is accomplished with the command line

condor_submit sleep.sub

If the submission is successful, the terminal will display a response that identifies the job, of the form

Submitting job(s).
1 job(s) submitted to cluster 6.

3.1. HTCondor Quick Start Guide 27

HTCondor Manual, Release 10.0.9

Monitoring the job

Once the job has been submitted, command line tools may help you follow along with the progress of the job. The
condor_q command prints a listing of all the jobs currently in the queue. For example, a short time after Kris submits
the sleep job from a Linux (or Mac) submit machine on a pool that has no other queued jobs, the output may appear as

$ condor_q
-- Submitter: example.wisc.edu : <128.105.14.44:56550> : example.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

6.0 kris 2/13 10:49 0+00:00:03 R 0 97.7 sleep.sh

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

The queue might contain many jobs. To see only Kris’ jobs, add an option to the condor_q command that specifies to
only print Kris’ jobs:

$ condor_q -submitter kris

The first column of output from condor_q identifies the job; the identifier is composed of two integers separated by
a period. The first integer is known as a cluster number, and it will be the same for each of the potentially many jobs
submitted by a single invocation of condor_submit. The second integer in the identifier is known as a process ID,
and it distinguishes between distinct job instances that have the same cluster number. These values start at 0.

Of interest in this output, the job is running, and it has used 3 seconds of time so far.

At job completion, the log file contains

000 (006.000.000) 02/13 10:49:04 Job submitted from host: <128.105.14.44:46062>
...
001 (006.000.000) 02/13 10:49:24 Job executing on host: <128.105.15.5:43051?PrivNet=cs.
→˓wisc.edu>
...
006 (006.000.000) 02/13 10:49:30 Image size of job updated: 100000

0 - MemoryUsage of job (MB)
0 - ResidentSetSize of job (KB)

...
005 (006.000.000) 02/13 10:49:31 Job terminated.

(1) Normal termination (return value 0)
Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

23 - Run Bytes Sent By Job
113 - Run Bytes Received By Job
23 - Total Bytes Sent By Job
113 - Total Bytes Received By Job
Partitionable Resources : Usage Request Allocated

Cpus : 1 1
Disk (KB) : 100000 100000 2033496
Memory (MB) : 0 98 2001

...

Each event in the job event log file is separated by a line containing three periods. For each event, the first 3-digit value
is an event number.

28 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Removing a job

Successfully submitted jobs will occasionally need to be removed from the queue. Invoke the condor_rm command
specifying the job identifier as a command line argument. Kris’ job may be removed from the queue with

condor_rm 6.0

Specification of the cluster number only as with the command

condor_rm 6

will cause all jobs within that cluster to be removed.

3.1.2 The science Job Example

A second example job illustrates aspects of file specification for the job. Assume that the program executable is called
science.exe. This program does not use standard input or output; instead, the command line to invoke this program
specifies two input files and one output file. For this example, the command line to invoke science.exe (not as an
HTCondor job) will be

science.exe infile-A.txt infile-B.txt outfile.txt

While the name of the executable is specified in the submit description file with the executable command, the re-
mainder of the command line will be specified with the arguments command.

Here is the submit description file for this job:

science1.sub -- run one instance of science.exe
executable = science.exe
arguments = "infile-A.txt infile-B.txt outfile.txt"
transfer_input_files = infile-A.txt,infile-B.txt
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
log = science1.log
queue

The input files infile-A.txt and infile-B.txt will need to be available on the execute machine within the pool
where the job runs. HTCondor cannot interpret command line arguments, so it cannot know that these command
line arguments for this job specify input and output files. The submit command transfer_input_files instructs
HTCondor to transfer these input files from the machine where the job is submitted to the machine chosen to execute
the job. The default operation of HTCondor is to transfer all files created by the job on the execute machine back to the
submit machine. Therefore, there is no specification of the outfile.txt output file.

This example submit description file modifies the commands that direct the transfer of files from submit machine to
execute machine and back again.

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

These values are the HTCondor defaults, so are not needed in this example. They are included to direct attention to the
capabilities of HTCondor. The should_transfer_files command specifies whether HTCondor should assume the
existence of a file system shared by the submit machine and the execute machine. Where there is a shared file system, a
correctly configured pool of machines will not need to transfer the files from one machine to the other, as both can access
the shared file system. Where there is not a shared file system, HTCondor must transfer the files from one machine to
the other. The specification IF_NEEDED asks HTCondor to use a shared file system when one is detected, but to transfer

3.1. HTCondor Quick Start Guide 29

HTCondor Manual, Release 10.0.9

the files when no shared file system is detected. When files are to be transferred, HTCondor automatically sends the
executable as well as a file representing standard input; this file would be specified by the input submit command, and
it is not relevant to this example. Other files are specified in a comma separated list with transfer_input_files, as
they are in this example.

When the job completes, all files created by the executable as it ran are transferred back to the submit machine.

3.1.3 Expanding the science Job and the Organization of Files

A further example promotes understanding of how HTCondor makes the submission of lots of jobs easy. Assume that
the science.exe job is to be run 40 times. If the input and output files were exactly the same for each run, then only
the last line of the given submit description file changes: from

queue

to

queue 40

It is likely that this does not produce the desired outcome, as the output file created, outfile.txt, has the same name
for each queued instance of the job, and thus this file of results for each run conflicts. Chances are that the input files
also must be distinct for each of the 40 separate instances of the job. HTCondor offers the use of a macro that can
uniquely name each run’s input and output file names. The $(Process) macro causes substitution by the process ID
from the job identifier. The submit description file for this proposed solution uniquely names the files:

science2.sub -- run 40 instances of science.exe
executable = science.exe
arguments =␣
→˓"infile-$(Process)A.txt infile-$(Process)B.txt outfile$(Process).txt"
transfer_input_files = infile-$(Process)A.txt,infile-$(Process)B.txt
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
log = science2.log
queue 40

The 40 instances of this job will have process ID values that run from 0 to 39. The two input files for process ID 0 are
infile-0A.txt and infile-0B.txt, the ones for process ID 1 will be infile-1A.txt and infile-1B.txt, and
so on, all the way to process ID 39, which will be files infile-39A.txt and infile-39B.txt. Using this macro for
the output file naming of each of the 40 jobs creates outfile0.txt for process ID 0; outfile1.txt for process ID
1; and so on, to outfile39.txt for process ID 39.

This example does not scale well as the number of jobs increases, because the number of files in the same directory
becomes unwieldy. Assume now that there will be 100 instances of the science.exe job, and each instance has
distinct input files, and produces a distinct output file. A recommended organization introduces a unique directory for
each job instance. The following submit description file facilitates this organization by specifying the directory with
the initialdir command. The directories for this example are named run0, run1, etc. all the way to run99 for the
100 instances of the following example submit file:

science3.sub -- run 100 instances of science.exe, with
unique directories named by the $(Process) macro
executable = science.exe
arguments = "infile-A.txt infile-B.txt outfile.txt"
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

(continues on next page)

30 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

(continued from previous page)

initialdir = run$(Process)
transfer_input_files = infile-A.txt,infile-B.txt
log = science3.log
queue 100

The input and output files for each job instance can again be the initial simple names that do not incorporate the
$(Process) macro. These files are distinct for each run due to their placement within a uniquely named directory.
This organization also works well for executables that do not facilitate command line naming of input or output files.

Here is a listing of the files and directories on the submit machine within this suggested directory structure. The
files created due to submitting and running the jobs are shown preceded by an asterisk (*). Only a subset of the 100
directories are shown. Directories are identified using the Linux (and Mac) convention of appending the directory
name with a slash character (/).

science.exe
science3.sub
run0/

infile-A.txt
infile-B.txt
* outfile.txt
* science3.log

run1/
infile-A.txt
infile-B.txt
* outfile.txt
* science3.log

run2/
infile-A.txt
infile-B.txt
* outfile.txt
* science3.log

3.1.4 Where to Go from Here

• Consider watching our video tutorial for new users.

• Additional tutorials about other aspects of using HTCondor are available in our YouTube channel.

• Slides from past HTCondor Weeks – our annual conference – include the tutorials given there.

• The Users’ Manual is a good reference.

• If you like what you’ve seen but want to run more jobs simultaneously, the administrator’s quick start guide will
help you make more of your machines available to run jobs.

3.1. HTCondor Quick Start Guide 31

https://www.youtube.com/watch?v=p2X6s_7e51k&list=PLO7gMRGDPNumCuo3pCdRk23GDLNKFVjHn
https://www.youtube.com/playlist?list=PLO7gMRGDPNumCuo3pCdRk23GDLNKFVjHn
https://www.youtube.com/channel/UCd1UBXmZIgB4p85t2tu-gLw
https://htcondor.org/past_condor_weeks.html

HTCondor Manual, Release 10.0.9

3.2 Welcome and Introduction to HTCondor

HTCondor is developed by the Center for High Throughput Computing at the University of Wisconsin-Madison (UW-
Madison), and was first installed as a production system in the UW-Madison Computer Sciences department in the
1990s. HTCondor pools have since served as a major source of computing cycles to thousands of campuses, labs,
organizations and commercial entities. For many, it has revolutionized the role computing plays in their research.
Increasing computing throughput by several orders of magnitude may not merely deliver the same results faster, but
may enable qualitatively different avenues of research.

HTCondor is a specialized batch system for managing compute-intensive jobs. HTCondor provides a queuing mecha-
nism, scheduling policy, priority scheme, and resource classifications. Users submit their compute jobs to HTCondor,
HTCondor puts the jobs in a queue, runs them, and then informs the user as to the result.

Batch systems normally operate only with dedicated machines. Often termed worker nodes, these dedicated machines
are typically owned by one group and dedicated to the sole purpose of running compute jobs. HTCondor can schedule
jobs on dedicated machines. But unlike traditional batch systems, HTCondor is also designed to run jobs on machines
shared and used by other systems or people. By running on these shared resources, HTCondor can effectively harness
all machines throughout a campus. This is important because often an organization has more latent, idle computers
than any single department or group otherwise has access to.

3.3 Running a Job: the Steps To Take

Here are the basic steps to run a job with HTCondor.

Work Decomposition Typically, users want High Throughput computing systems when they have more
work than can reasonably run on a single machine. Therefore, the computation must run concurrently
on multiple machines. HTCondor itself does not help with breaking up a large amount of work to
run independently on many machines. In many cases, such as Monte Carlo simulations, this may be
trivial to do. In other situations, the code must be refactored or code loops may need to be broken into
separate work steps in order to be suitable for High Throughput computing. Work must be broken
down into a set of jobs whose runtime is neither too short nor too long. HTCondor is most efficient
when running jobs whose runtime is measured in minutes or hours. There is overhead in scheduling
each job, which is why very short jobs (measured in seconds) do not work well. On the other hand,
if a job takes many days to run, there is the threat of losing work in progress should the job or the
server it runs on crashes.

Prepare the job for batch execution. To run under HTCondor a job must be able to run as a background
batch job. HTCondor runs the program unattended and in the background. A program that runs in
the background will not be able to do interactive input and output. Create any needed input files for
the program. Make certain the program will run correctly with these files.

Create a description file. A submit description file controls the all details of a job submission. This text
file tells HTCondor everything it needs to know to run the job on a remote machine, e.g. how much
memory and how many cpu cores are needed, what input files the job needs, and other aspects of
machine the job might need.

Write a submit description file to go with the job, using the examples provided in the Submitting a
Job section for guidance. There are many possible options that can be set in a submit file, but most
submit files only use a few. The complete list of submit file options is in condor_submit.

Submit the Job. Submit the program to HTCondor with the condor_submit command. HTCondor will
assign the job a unique Cluster and Proc identifier as integers separated by a dot. You use this Cluster

32 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

and Proc id to manage the job later.

Manage the Job. After submission, HTCondor manages the job during its lifetime. You can monitor
the job’s progress with the condor_q. On some platforms, you can ssh to a running job with the
condor_ssh_to_job command, and inspect the job as it runs.

HTCondor can write into a log file describing changes to the state of your job – when it starts execut-
ing, when it uses more resources, when it completes, or when it is preempted from a machine. You
can remove a running or idle job from the queue with condor_rm.

Examine the results of a finished job. When your program completes, HTCondor will tell you (by e-
mail, if preferred) the exit status of your program and various statistics about its performances, in-
cluding time used and I/O performed. If you are using a log file for the job, the exit status will be
recorded in there. Output files will be transfered back to the submitting machine, if a shared filesys-
tem is not used. After the job completes, it will not be visible to the condor_q command , but is
queryable with the condor_history command.

3.4 Submitting a Job

The condor_submit command takes a job description file as input and submits the job to HTCondor. In the submit
description file, HTCondor finds everything it needs to know about the job. Items such as the name of the executable to
run, the initial working directory, and command-line arguments to the program all go into the submit description file.
condor_submit creates a job ClassAd based upon the information, and HTCondor works toward running the job.

It is easy to submit multiple runs of a program to HTCondor with a single submit description file. To run the same
program many times with different input data sets, arrange the data files accordingly so that each run reads its own
input, and each run writes its own output. Each individual run may have its own initial working directory, files mapped
for stdin, stdout, stderr, command-line arguments, and shell environment.

The condor_submit manual page contains a complete and full description of how to use condor_submit. It also includes
descriptions of all of the many commands that may be placed into a submit description file. In addition, the index lists
entries for each command under the heading of Submit Commands.

3.4.1 Sample submit description files

In addition to the examples of submit description files given here, there are more in the condor_submit manual page.

Example 1

Example 1 is one of the simplest submit description files possible. It queues the program myexe for execution some-
where in the pool. As this submit description file does not request a specific operating system to run on, HTCondor
will use the default, which is to run the job on a machine which has the same architecture and operating system it was
submitted from.

Before submitting a job to HTCondor, it is a good idea to test it first locally, by running it from a command shell. This
example job might look like this when run from the shell prompt.

$./myexe SomeArgument

The corresponding submit description file might look like the following

3.4. Submitting a Job 33

HTCondor Manual, Release 10.0.9

Example 1
Simple HTCondor submit description file
Everything with a leading # is a comment

executable = myexe
arguments = SomeArgument

output = outputfile
error = errorfile
log = myexe.log

request_cpus = 1
request_memory = 1024
request_disk = 10240

should_transfer_files = yes

queue

The standard output for this job will go to the file outputfile, as specified by the output command. Likewise, the
standard error output will go to errorfile.

HTCondor will append events about the job to a log file with the requested name myexe.log. When the job finishes,
its exit conditions and resource usage will also be noted in the log file. This file’s contents are an excellent way to figure
out what happened to jobs.

HTCondor needs to know how many machine resources to allocate to this job. The request_ lines describe that this
job should be allocated 1 cpu core, 1024 megabytes of memory and 10240 kilobytes of scratch disk space.

Finally, the queue statement tells HTCondor that you are done describing the job, and to send it to the queue for
processing.

Example 2

The submit description file for Example 2 queues 150 runs of program foo. This job requires machines which have at
least 4 GiB of physical memory, one cpu core and 16 Gb of scratch disk. Each of the 150 runs of the program is given
its own HTCondor process number, starting with 0. $(Process) is expanded by HTCondor to the actual number used
by each instance of the job. So, stdout, and stderr will refer to out.0, and err.0 for the first run of the program,
out.1, and err.1 for the second run of the program, and so forth. A log file containing entries about when and where
HTCondor runs, checkpoints, and migrates processes for all the 150 queued programs will be written into the single
file foo.log. If there are 150 or more available slots in your pool, all 150 instances might be run at the same time,
otherwise, HTCondor will run as many as it can concurrently.

Each instance of this program works on one input file. The name of this input file is passed to the program as the only
argument. We prepare 150 copies of this input file in the current directory, and name them input_file.0, input_file.1
. . . up to input_file.149. Using transfer_input_files, we tell HTCondor which input file to send to each instance of the
program.

Example 2: Show off some fancy features,
including the use of pre-defined macros.

executable = foo
arguments = input_file.$(Process)

request_memory = 4096
request_cpus = 1

(continues on next page)

34 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

(continued from previous page)

request_disk = 16383

error = err.$(Process)
output = out.$(Process)
log = foo.log

should_transfer_files = yes
transfer_input_files = input_file.$(Process)

submit 150 instances of this job
queue 150

3.4.2 Submitting many similar jobs with one queue command

A wide variety of job submissions can be specified with extra information to the queue submit command. This flexi-
bility eliminates the need for a job wrapper or Perl script for many submissions.

The form of the queue command defines variables and expands values, identifying a set of jobs. Square brackets
identify an optional item.

queue [<int expr>]

queue [<int expr>] [<varname>] in [slice] <list of items>

queue [<int expr>] [<varname>] matching [files | dirs] [slice] <list of items with file globbing>

queue [<int expr>] [<list of varnames>] from [slice] <file name> | <list of items>

All optional items have defaults:

• If <int expr> is not specified, it defaults to the value 1.

• If <varname> or <list of varnames> is not specified, it defaults to the single variable called ITEM.

• If slice is not specified, it defaults to all elements within the list. This is the Python slice [::], with a step
value of 1.

• If neither files nor dirs is specified in a specification using the from key word, then both files and directories
are considered when globbing.

The list of items uses syntax in one of two forms. One form is a comma and/or space separated list; the items are placed
on the same line as the queue command. The second form separates items by placing each list item on its own line,
and delimits the list with parentheses. The opening parenthesis goes on the same line as the queue command. The
closing parenthesis goes on its own line. The queue command specified with the key word from will always use the
second form of this syntax. Example 3 below uses this second form of syntax. Finally, the key word from accepts a
shell command in place of file name, followed by a pipe | (example 4).

The optional slice specifies a subset of the list of items using the Python syntax for a slice. Negative step values are
not permitted.

Here are a set of examples.

Example 1

transfer_input_files = $(filename)
arguments = -infile $(filename)
queue filename matching files *.dat

3.4. Submitting a Job 35

HTCondor Manual, Release 10.0.9

The use of file globbing expands the list of items to be all files in the current directory that end in .dat. Only files,
and not directories are considered due to the specification of files. One job is queued for each file in the list of items.
For this example, assume that the three files initial.dat, middle.dat, and ending.dat form the list of items after
expansion; macro filename is assigned the value of one of these file names for each job queued. That macro value is
then substituted into the arguments and transfer_input_files commands. The queue command expands to

transfer_input_files = initial.dat
arguments = -infile initial.dat
queue
transfer_input_files = middle.dat
arguments = -infile middle.dat
queue
transfer_input_files = ending.dat
arguments = -infile ending.dat
queue

Example 2

queue 1 input in A, B, C

Variable input is set to each of the 3 items in the list, and one job is queued for each. For this example the queue
command expands to

input = A
queue
input = B
queue
input = C
queue

Example 3

queue input, arguments from (
file1, -a -b 26
file2, -c -d 92

)

Using the from form of the options, each of the two variables specified is given a value from the list of items. For this
example the queue command expands to

input = file1
arguments = -a -b 26
queue
input = file2
arguments = -c -d 92
queue

Example 4

queue from seq 7 9 |

feeds the list of items to queue with the output of seq 7 9:

item = 7
queue

(continues on next page)

36 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

(continued from previous page)

item = 8
queue
item = 9
queue

3.4.3 Variables in the Submit Description File

There are automatic variables for use within the submit description file.

$(Cluster) or $(ClusterId) Each set of queued jobs from a specific user, submitted from a single submit host,
sharing an executable have the same value of $(Cluster) or $(ClusterId). The first cluster of jobs are
assigned to cluster 0, and the value is incremented by one for each new cluster of jobs. $(Cluster) or
$(ClusterId) will have the same value as the job ClassAd attribute ClusterId.

$(Process) or $(ProcId) Within a cluster of jobs, each takes on its own unique $(Process) or $(ProcId) value.
The first job has value 0. $(Process) or $(ProcId) will have the same value as the job ClassAd attribute
ProcId.

$$(a_machine_classad_attribute) When the machine is matched to this job for it to run on, any dollar-dollar
expressions are looked up from the machine ad, and then expanded. This lets you put the value of some machine
ad attribute into your job. For example, if you to pass the actual amount of memory a slot has provisioned as an
argument to the job, you could add arguments = --mem $$(Memory)

arguments = --mem $$(Memory)

or, if you wanted to put the name of the machine the job ran on into the output file name, you could add

output = output_file.$$(Name)

$$([an_evaluated_classad_expression]) This dollar-dollar-bracket syntax is useful when you need to per-
form some math on a value before passing it to your job. For example, if want to pass 90% of the allocated
memory as an argument to your job, the submit file can have

arguments = --mem $$([Memory * 0.9])

and when the job is matched to a machine, condor will evaluate this expression in the context of both the job and
machine ad

$(ARCH) The Architecture that HTCondor is running on, or the ARCH variable in the config file. Example might be
X86_64.

$(OPSYS) $(OPSYSVER) $(OPSYSANDVER) $(OPSYSMAJORVER) These submit file macros are availle at submit time,
and mimic the classad attributes of the same names.

$(SUBMIT_FILE) The name of the submit_file as passed to the condor_submit command.

$(SUBMIT_TIME) The Unix epoch time submit was run. Note, this may be useful for naming output files.

$(Year) $(Month) $(Day) These integer values are derived from the $(SUBMIT_FILE) macro above.

$(Item) The default name of the variable when no <varname> is provided in a queue command.

$(ItemIndex) Represents an index within a list of items. When no slice is specified, the first $(ItemIndex) is 0.
When a slice is specified, $(ItemIndex) is the index of the item within the original list.

$(Step) For the <int expr> specified, $(Step) counts, starting at 0.

3.4. Submitting a Job 37

HTCondor Manual, Release 10.0.9

$(Row) When a list of items is specified by placing each item on its own line in the submit description file, $(Row)
identifies which line the item is on. The first item (first line of the list) is $(Row) 0. The second item (second
line of the list) is $(Row) 1. When a list of items are specified with all items on the same line, $(Row) is the
same as $(ItemIndex).

Here is an example of a queue command for which the values of these automatic variables are identified.

Example 1

This example queues six jobs.

queue 3 in (A, B)

• $(Process) takes on the six values 0, 1, 2, 3, 4, and 5.

• Because there is no specification for the <varname> within this queue command, variable $(Item) is defined.
It has the value A for the first three jobs queued, and it has the value B for the second three jobs queued.

• $(Step) takes on the three values 0, 1, and 2 for the three jobs with $(Item)=A, and it takes on the same three
values 0, 1, and 2 for the three jobs with $(Item)=B.

• $(ItemIndex) is 0 for all three jobs with $(Item)=A, and it is 1 for all three jobs with $(Item)=B.

• $(Row) has the same value as $(ItemIndex) for this example.

3.4.4 Including Submit Commands Defined Elsewhere

Externally defined submit commands can be incorporated into the submit description file using the syntax

include : <what-to-include>

The <what-to-include> specification may specify a single file, where the contents of the file will be incorporated into
the submit description file at the point within the file where the include is. Or, <what-to-include> may cause a program
to be executed, where the output of the program is incorporated into the submit description file. The specification of
<what-to-include> has the bar character (|) following the name of the program to be executed.

The include key word is case insensitive. There are no requirements for white space characters surrounding the colon
character.

Included submit commands may contain further nested include specifications, which are also parsed, evaluated, and
incorporated. Levels of nesting on included files are limited, such that infinite nesting is discovered and thwarted, while
still permitting nesting.

Consider the example

include : ./list-infiles.sh |

In this example, the bar character at the end of the line causes the script list-infiles.sh to be invoked, and the
output of the script is parsed and incorporated into the submit description file. If this bash script is in the PATH when
submit is run, and contains

#!/bin/sh

echo "transfer_input_files = `ls -m infiles/*.dat`"
exit 0

38 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

then the output of this script has specified the set of input files to transfer to the execute host. For example, if directory
infiles contains the three files A.dat, B.dat, and C.dat, then the submit command

transfer_input_files = infiles/A.dat, infiles/B.dat, infiles/C.dat

is incorporated into the submit description file.

3.4.5 Using Conditionals in the Submit Description File

Conditional if/else semantics are available in a limited form. The syntax:

if <simple condition>
<statement>
. . .
<statement>

else
<statement>
. . .
<statement>

endif

An else key word and statements are not required, such that simple if semantics are implemented. The <simple condi-
tion> does not permit compound conditions. It optionally contains the exclamation point character (!) to represent the
not operation, followed by

• the defined keyword followed by the name of a variable. If the variable is defined, the statement(s) are incor-
porated into the expanded input. If the variable is not defined, the statement(s) are not incorporated into the
expanded input. As an example,

if defined MY_UNDEFINED_VARIABLE
X = 12

else
X = -1

endif

results in X = -1, when MY_UNDEFINED_VARIABLE is not yet defined.

• the version keyword, representing the version number of of the daemon or tool currently reading this conditional.
This keyword is followed by an HTCondor version number. That version number can be of the form x.y.z or x.y.
The version of the daemon or tool is compared to the specified version number. The comparison operators are

– == for equality. Current version 8.2.3 is equal to 8.2.

– >= to see if the current version number is greater than or equal to. Current version 8.2.3 is greater than
8.2.2, and current version 8.2.3 is greater than or equal to 8.2.

– <= to see if the current version number is less than or equal to. Current version 8.2.0 is less than 8.2.2, and
current version 8.2.3 is less than or equal to 8.2.

As an example,

if version >= 8.1.6
DO_X = True

else
(continues on next page)

3.4. Submitting a Job 39

HTCondor Manual, Release 10.0.9

(continued from previous page)

DO_Y = True
endif

results in defining DO_X as True if the current version of the daemon or tool reading this if statement is 8.1.6 or
a more recent version.

• True or yes or the value 1. The statement(s) are incorporated.

• False or no or the value 0 The statement(s) are not incorporated.

• $(<variable>) may be used where the immediately evaluated value is a simple boolean value. A value that
evaluates to the empty string is considered False, otherwise a value that does not evaluate to a simple boolean
value is a syntax error.

The syntax

if <simple condition>
<statement>
. . .
<statement>

elif <simple condition>
<statement>
. . .
<statement>

endif

is the same as syntax

if <simple condition>
<statement>
. . .
<statement>

else
if <simple condition>

<statement>
. . .
<statement>

endif
endif

Here is an example use of a conditional in the submit description file. A portion of the sample.sub submit description
file uses the if/else syntax to define command line arguments in one of two ways:

if defined X
arguments = -n $(X)

else
arguments = -n 1 -debug

endif

Submit variable X is defined on the condor_submit command line with

$ condor_submit X=3 sample.sub

This command line incorporates the submit command X = 3 into the submission before parsing the submit description
file. For this submission, the command line arguments of the submitted job become

40 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

arguments = -n 3

If the job were instead submitted with the command line

$ condor_submit sample.sub

then the command line arguments of the submitted job become

arguments = -n 1 -debug

3.4.6 Function Macros in the Submit Description File

A set of predefined functions increase flexibility. Both submit description files and configuration files are read using
the same parser, so these functions may be used in both submit description files and configuration files.

Case is significant in the function’s name, so use the same letter case as given in these definitions.

$CHOICE(index, listname) or $CHOICE(index, item1, item2, ...) An item within the list is returned.
The list is represented by a parameter name, or the list items are the parameters. The index parameter de-
termines which item. The first item in the list is at index 0. If the index is out of bounds for the list contents, an
error occurs.

$ENV(environment-variable-name[:default-value]) Evaluates to the value of environment variable
environment-variable-name. If there is no environment variable with that name, Evaluates to UNDEFINED
unless the optional :default-value is used; in which case it evaluates to default-value. For example,

A = $ENV(HOME)

binds A to the value of the HOME environment variable.

$F[fpduwnxbqa](filename) One or more of the lower case letters may be combined to form the function name and
thus, its functionality. Each letter operates on the filename in its own way.

• f convert relative path to full path by prefixing the current working directory to it. This option works only
in condor_submit files.

• p refers to the entire directory portion of filename, with a trailing slash or backslash character. Whether a
slash or backslash is used depends on the platform of the machine. The slash will be recognized on Linux
platforms; either a slash or backslash will be recognized on Windows platforms, and the parser will use the
same character specified.

• d refers to the last portion of the directory within the path, if specified. It will have a trailing slash or
backslash, as appropriate to the platform of the machine. The slash will be recognized on Linux platforms;
either a slash or backslash will be recognized on Windows platforms, and the parser will use the same
character specified unless u or w is used. if b is used the trailing slash or backslash will be omitted.

• u convert path separators to Unix style slash characters

• w convert path separators to Windows style backslash characters

• n refers to the file name at the end of any path, but without any file name extension. As an example, the
return value from $Fn(/tmp/simulate.exe) will be simulate (without the .exe extension).

• x refers to a file name extension, with the associated period (.). As an example, the return value from
$Fn(/tmp/simulate.exe) will be .exe.

3.4. Submitting a Job 41

HTCondor Manual, Release 10.0.9

• b when combined with the d option, causes the trailing slash or backslash to be omitted. When combined
with the x option, causes the leading period (.) to be omitted.

• q causes the return value to be enclosed within quotes. Double quote marks are used unless a is also
specified.

• a When combined with the q option, causes the return value to be enclosed within single quotes.

$DIRNAME(filename) is the same as $Fp(filename)

$BASENAME(filename) is the same as $Fnx(filename)

$INT(item-to-convert) or $INT(item-to-convert, format-specifier) Expands, evaluates, and returns a
string version of item-to-convert. The format-specifier has the same syntax as a C language or Perl
format specifier. If no format-specifier is specified, “%d” is used as the format specifier.

$RANDOM_CHOICE(choice1, choice2, choice3, ...) A random choice of one of the parameters in the list of
parameters is made. For example, if one of the integers 0-8 (inclusive) should be randomly chosen:

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)

$RANDOM_INTEGER(min, max [, step]) A random integer within the range min and max, inclusive, is selected.
The optional step parameter controls the stride within the range, and it defaults to the value 1. For example, to
randomly chose an even integer in the range 0-8 (inclusive):

$RANDOM_INTEGER(0, 8, 2)

$REAL(item-to-convert) or $REAL(item-to-convert, format-specifier) Expands, evaluates, and returns
a string version of item-to-convert for a floating point type. The format-specifier is a C language or Perl
format specifier. If no format-specifier is specified, “%16G” is used as a format specifier.

$SUBSTR(name, start-index) or $SUBSTR(name, start-index, length) Expands name and returns a sub-
string of it. The first character of the string is at index 0. The first character of the substring is at index start-index.
If the optional length is not specified, then the substring includes characters up to the end of the string. A negative
value of start-index works back from the end of the string. A negative value of length eliminates use of characters
from the end of the string. Here are some examples that all assume

Name = abcdef

• $SUBSTR(Name, 2) is cdef.

• $SUBSTR(Name, 0, -2) is abcd.

• $SUBSTR(Name, 1, 3) is bcd.

• $SUBSTR(Name, -1) is f.

• $SUBSTR(Name, 4, -3) is the empty string, as there are no characters in the substring for this request.

Here are example uses of the function macros in a submit description file. Note that these are not complete submit
description files, but only the portions that promote understanding of use cases of the function macros.

Example 1

Generate a range of numerical values for a set of jobs, where values other than those given by $(Process) are desired.

MyIndex = $(Process) + 1
initial_dir = run-$INT(MyIndex,%04d)

Assuming that there are three jobs queued, such that $(Process) becomes 0, 1, and 2, initial_dir will evaluate to
the directories run-0001, run-0002, and run-0003.

42 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Example 2

This variation on Example 1 generates a file name extension which is a 3-digit integer value.

Values = $(Process) * 10
Extension = $INT(Values,%03d)
input = X.$(Extension)

Assuming that there are four jobs queued, such that $(Process) becomes 0, 1, 2, and 3, Extension will evaluate to
000, 010, 020, and 030, leading to files defined for input of X.000, X.010, X.020, and X.030.

Example 3

This example uses both the file globbing of the queue command and a macro function to specify a job input file that is
within a subdirectory on the submit host, but will be placed into a single, flat directory on the execute host.

arguments = $Fnx(FILE)
transfer_input_files = $(FILE)
queue FILE matching (

samplerun/*.dat
)

Assume that two files that end in .dat, A.dat and B.dat, are within the directory samplerun. Macro FILE expands
to samplerun/A.dat and samplerun/B.dat for the two jobs queued. The input files transferred are samplerun/A.
dat and samplerun/B.dat on the submit host. The $Fnx() function macro expands to the complete file name with
any leading directory specification stripped, such that the command line argument for one of the jobs will be A.dat
and the command line argument for the other job will be B.dat.

3.4.7 About Requirements and Rank

The requirements and rank commands in the submit description file are powerful and flexible. Using them
effectively requires care, and this section presents those details.

Both requirements and rank need to be specified as valid HTCondor ClassAd expressions, however, default values
are set by the condor_submit program if these are not defined in the submit description file. From the condor_submit
manual page and the above examples, you see that writing ClassAd expressions is intuitive, especially if you are familiar
with the programming language C. There are some pretty nifty expressions you can write with ClassAds. A complete
description of ClassAds and their expressions can be found in the HTCondor’s ClassAd Mechanism section.

All of the commands in the submit description file are case insensitive, except for the ClassAd attribute string values.
ClassAd attribute names are case insensitive, but ClassAd string values are case preserving.

Note that the comparison operators (<, >, <=, >=, and ==) compare strings case insensitively. The special comparison
operators =?= and =!= compare strings case sensitively.

A requirements or rank command in the submit description file may utilize attributes that appear in a machine or
a job ClassAd. Within the submit description file (for a job) the prefix MY. (on a ClassAd attribute name) causes a
reference to the job ClassAd attribute, and the prefix TARGET. causes a reference to a potential machine or matched
machine ClassAd attribute.

The condor_status command displays statistics about machines within the pool. The -l option displays the machine
ClassAd attributes for all machines in the HTCondor pool. The job ClassAds, if there are jobs in the queue, can be
seen with the condor_q -l command. This shows all the defined attributes for current jobs in the queue.

A list of defined ClassAd attributes for job ClassAds is given in the Appendix on the Job ClassAd Attributes page. A
list of defined ClassAd attributes for machine ClassAds is given in the Appendix on the Machine ClassAd Attributes
page.

3.4. Submitting a Job 43

HTCondor Manual, Release 10.0.9

Rank Expression Examples

When considering the match between a job and a machine, rank is used to choose a match from among all machines
that satisfy the job’s requirements and are available to the user, after accounting for the user’s priority and the machine’s
rank of the job. The rank expressions, simple or complex, define a numerical value that expresses preferences.

The job’s Rank expression evaluates to one of three values. It can be UNDEFINED, ERROR, or a floating point value.
If Rank evaluates to a floating point value, the best match will be the one with the largest, positive value. If no Rank
is given in the submit description file, then HTCondor substitutes a default value of 0.0 when considering machines
to match. If the job’s Rank of a given machine evaluates to UNDEFINED or ERROR, this same value of 0.0 is used.
Therefore, the machine is still considered for a match, but has no ranking above any other.

A boolean expression evaluates to the numerical value of 1.0 if true, and 0.0 if false.

The following Rank expressions provide examples to follow.

For a job that desires the machine with the most available memory:

Rank = memory

For a job that prefers to run on a friend’s machine on Saturdays and Sundays:

Rank = ((clockday == 0) || (clockday == 6))
&& (machine == "friend.cs.wisc.edu")

For a job that prefers to run on one of three specific machines:

Rank = (machine == "friend1.cs.wisc.edu") ||
(machine == "friend2.cs.wisc.edu") ||
(machine == "friend3.cs.wisc.edu")

For a job that wants the machine with the best floating point performance (on Linpack benchmarks):

Rank = kflops

This particular example highlights a difficulty with Rank expression evaluation as currently defined. While all machines
have floating point processing ability, not all machines will have the kflops attribute defined. For machines where
this attribute is not defined, Rank will evaluate to the value UNDEFINED, and HTCondor will use a default rank of
the machine of 0.0. The Rank attribute will only rank machines where the attribute is defined. Therefore, the machine
with the highest floating point performance may not be the one given the highest rank.

So, it is wise when writing a Rank expression to check if the expression’s evaluation will lead to the expected resulting
ranking of machines. This can be accomplished using the condor_status command with the -constraint argument. This
allows the user to see a list of machines that fit a constraint. To see which machines in the pool have kflops defined,
use

$ condor_status -constraint kflops

Alternatively, to see a list of machines where kflops is not defined, use

$ condor_status -constraint "kflops=?=undefined"

For a job that prefers specific machines in a specific order:

44 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Rank = ((machine == "friend1.cs.wisc.edu")*3) +
((machine == "friend2.cs.wisc.edu")*2) +
(machine == "friend3.cs.wisc.edu")

If the machine being ranked is friend1.cs.wisc.edu, then the expression

(machine == "friend1.cs.wisc.edu")

is true, and gives the value 1.0. The expressions

(machine == "friend2.cs.wisc.edu")

and

(machine == "friend3.cs.wisc.edu")

are false, and give the value 0.0. Therefore, Rank evaluates to the value 3.0. In this way, machine friend1.cs.wisc.
edu is ranked higher than machine friend2.cs.wisc.edu, machine friend2.cs.wisc.edu is ranked higher than
machine friend3.cs.wisc.edu, and all three of these machines are ranked higher than others.

3.4.8 Submitting Jobs Using a Shared File System

If vanilla, java, or parallel universe jobs are submitted without using the File Transfer mechanism, HTCondor must use
a shared file system to access input and output files. In this case, the job must be able to access the data files from any
machine on which it could potentially run.

As an example, suppose a job is submitted from blackbird.cs.wisc.edu, and the job requires a particular data file called
/u/p/s/psilord/data.txt. If the job were to run on cardinal.cs.wisc.edu, the file /u/p/s/psilord/data.txt
must be available through either NFS or AFS for the job to run correctly.

HTCondor allows users to ensure their jobs have access to the right shared files by using the FileSystemDomain and
UidDomain machine ClassAd attributes. These attributes specify which machines have access to the same shared file
systems. All machines that mount the same shared directories in the same locations are considered to belong to the
same file system domain. Similarly, all machines that share the same user information (in particular, the same UID,
which is important for file systems like NFS) are considered part of the same UID domain.

The default configuration for HTCondor places each machine in its own UID domain and file system domain, using the
full host name of the machine as the name of the domains. So, if a pool does have access to a shared file system, the pool
administrator must correctly configure HTCondor such that all the machines mounting the same files have the same
FileSystemDomain configuration. Similarly, all machines that share common user information must be configured to
have the same UidDomain configuration.

When a job relies on a shared file system, HTCondor uses the requirements expression to ensure that the job runs
on a machine in the correct UidDomain and FileSystemDomain. In this case, the default requirements expression
specifies that the job must run on a machine with the same UidDomain and FileSystemDomain as the machine from
which the job is submitted. This default is almost always correct. However, in a pool spanning multiple UidDomains
and/or FileSystemDomains, the user may need to specify a different requirements expression to have the job run
on the correct machines.

For example, imagine a pool made up of both desktop workstations and a dedicated compute cluster. Most of the pool,
including the compute cluster, has access to a shared file system, but some of the desktop machines do not. In this
case, the administrators would probably define the FileSystemDomain to be cs.wisc.edu for all the machines that
mounted the shared files, and to the full host name for each machine that did not. An example is jimi.cs.wisc.edu.

3.4. Submitting a Job 45

HTCondor Manual, Release 10.0.9

In this example, a user wants to submit vanilla universe jobs from her own desktop machine (jimi.cs.wisc.edu) which
does not mount the shared file system (and is therefore in its own file system domain, in its own world). But, she wants
the jobs to be able to run on more than just her own machine (in particular, the compute cluster), so she puts the program
and input files onto the shared file system. When she submits the jobs, she needs to tell HTCondor to send them to
machines that have access to that shared data, so she specifies a different requirements expression than the default:

Requirements = TARGET.UidDomain == "cs.wisc.edu" && \
TARGET.FileSystemDomain == "cs.wisc.edu"

WARNING: If there is no shared file system, or the HTCondor pool administrator does not configure the
FileSystemDomain setting correctly (the default is that each machine in a pool is in its own file system and UID
domain), a user submits a job that cannot use remote system calls (for example, a vanilla universe job), and the user
does not enable HTCondor’s File Transfer mechanism, the job will only run on the machine from which it was submit-
ted.

3.4.9 Jobs That Require Credentials

If the HTCondor pool administrator has configured the submit machine with one or more credential monitors, jobs
submitted on that machine may automatically be provided with credentials and/or it may be possible for users to request
and obtain credentials for their jobs.

Suppose the administrator has configured the submit machine such that users may obtain credentials from a storage
service called “CloudBoxDrive.” A job that needs credentials from CloudBoxDrive should contain the submit command

use_oauth_services = cloudboxdrive

Upon submitting this job for the first time, the user will be directed to a webpage hosted on the submit machine which
will guide the user through the process of obtaining a CloudBoxDrive credential. The credential is then stored securely
on the submit machine. (Note: depending on which credential monitor is used, the original job may have to be
re-submitted at this point.) (Also note that at no point is the user’s password stored on the submit machine.) Once
a credential is stored on the submit machine, as long as it remains valid, it is transferred securely to all subsequently
submitted jobs that contain use_oauth_services = cloudboxdrive.

When a job that contains credentials runs on an execute machine, the job’s executable will have the environment variable
_CONDOR_CREDS set, which points to the location of all of the credentials inside the job’s sandbox. For credentials
obtained via the use_oauth_services submit file command, the “access token” is stored under $_CONDOR_CREDS in a
JSON-encoded file named with the name of the service provider and with the extension .use. For the “CloudBoxDrive”
example, the access token would be located in $_CONDOR_CREDS/cloudboxdrive.use.

The HTCondor file transfer mechanism has built-in plugins for using user-obtained credentials to transfer files from
some specific storage providers, see File Transfer Using a URL.

Some credential providers may require the user to provide a description of the permissions (often called
“scopes”) a user needs for a specific credential. Credential permission scoping is possible using the <service
name>_oauth_permissions submit file command. For example, suppose our CloudBoxDrive service has a /public
directory, and the documentation for the service said that users must specify a read:<directory> scope in order to
be able to read data out of <directory>. The submit file would need to contain

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions = read:/public

Some credential providers may also require the user to provide the name of the resource (or “audience”) that a credential
should allow access to. Resource naming is done using the <service name>_oauth_resource submit file command.

46 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

For example, if our CloudBoxDrive service has servers located at some universities and the documentation says that
we should pick one near us and specify it as the audience, the submit file might look like

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions = read:/public
cloudboxdrive_oauth_resource = https://cloudboxdrive.myuni.edu

It is possible for a single job to request and/or use credentials from multiple services by listing each service in the
use_oauth_services command. Suppose the nearby university has a SciTokens service that provides credentials
to access the localstorage.myuni.edu machine, and the HTCondor pool administrator has configured the submit
machine to allow users to obtain credentials from this service, and that a user has write access to the /foo directory on
the storage machine. A submit file that would result in a job that contains credentials that can read from CloudBoxDrive
and write to the local university storage might look like

use_oauth_services = cloudboxdrive, myuni

cloudboxdrive_oauth_permissions = read:/public
cloudboxdrive_oauth_resource = https://cloudboxdrive.myuni.edu

myuni_oauth_permissions = write:/foo
myuni_oauth_resource = https://localstorage.myuni.edu

A single job can also request multiple credentials from the same service provider by affixing handles to the
<service>_oauth_permissions and (if necessary) <service>_oauth_resource commands. For example, if a
user wants separate read and write credentials for CloudBoxDrive

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions_readpublic = read:/public
cloudboxdrive_oauth_permissions_writeprivate = write:/private

cloudboxdrive_oauth_resource_readpublic = https://cloudboxdrive.myuni.edu
cloudboxdrive_oauth_resource_writeprivate = https://cloudboxdrive.myuni.edu

Submitting the above would result in a job with respective access tokens located in $_CONDOR_CREDS/
cloudboxdrive_readpublic.use and $_CONDOR_CREDS/cloudboxdrive_writeprivate.use.

Note that the permissions and resource settings for each handle (and for no handle) are stored separately from the job so
multiple jobs from the same user running at the same time or for a period of time consecutively may not use a different
set of permissions and resource settings for the same service and handle. If that is attempted, a new job submission
will fail with instructions on how to resolve the conflict, but the safest thing is to choose a unique handle.

If a service provider does not require permissions or resources to be specified, a user can still request multiple credentials
by affixing handles to <service>_oauth_permissions commands with empty values

use_oauth_services = cloudboxdrive
cloudboxdrive_oauth_permissions_personal =
cloudboxdrive_oauth_permissions_public =

When the Vault credential monitor is configured, the service name may optionally be split into two parts with an
underscore between them, where the first part is the issuer and the second part is the role. In this example the issuer is
“dune” and the role is “production”, both as configured by the administrator of the Vault server:

use_oauth_services = dune_production

Vault does not require permissions or resources to be set, but they may be set to reduce the default permissions or
restrict the resources that may use the credential. The full service name including an underscore may be used in an

3.4. Submitting a Job 47

HTCondor Manual, Release 10.0.9

oauth_permissions or oauth_resource. Avoid using handles that might be confused as role names. For example,
the following will result in a conflict between two credentials called dune_production.use:

use_oauth_services = dune, dune_production
dune_oauth_permissions_production =
dune_production_oauth_permissions =

3.4.10 Jobs That Require GPUs

HTCondor has built-in support for detecting machines with GPUs, and matching jobs that need GPUs to machines that
have them. If your job needs a GPU, you’ll first need to tell HTCondor how many GPUs each job needs with the submit
command:

request_GPUs = <n>

where <n> is replaced by the integer quantity of GPUs required for the job. For example, a job that needs 1 GPU uses

request_GPUs = 1

Because there are different capabilities among GPUs, your job might need to further qualify which GPU is required.
The submit command require_gpus does this. For example, to request a CUDA GPU whose CUDA Capability is at
least 8, add the following to your submit file:

request_GPUs = 1
require_gpus = Capability >= 8.0

To see which CUDA capabilities are available in your HTCondor pool, you can run the command

$ condor_status -af Name GPUS_Capability

To see which GPU devices HTCondor has detected on your pool, you can run the command

$ condor_status -af Name GPUS_DeviceName

Access to GPU resources by an HTCondor job needs special configuration of the machines that offer GPUs. Details of
how to set up the configuration are in the Policy Configuration for Execute Hosts and for Submit Hosts section.

3.4.11 Interactive Jobs

An interactive job is a Condor job that is provisioned and scheduled like any other vanilla universe Condor job onto
an execute machine within the pool. The result of a running interactive job is a shell prompt issued on the execute
machine where the job runs. The user that submitted the interactive job may then use the shell as desired, perhaps
to interactively run an instance of what is to become a Condor job. This might aid in checking that the set up and
execution environment are correct, or it might provide information on the RAM or disk space needed. This job (shell)
continues until the user logs out or any other policy implementation causes the job to stop running. A useful feature of
the interactive job is that the users and jobs are accounted for within Condor’s scheduling and priority system.

Neither the submit nor the execute host for interactive jobs may be on Windows platforms.

48 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

The current working directory of the shell will be the initial working directory of the running job. The shell type will
be the default for the user that submits the job. At the shell prompt, X11 forwarding is enabled.

Each interactive job will have a job ClassAd attribute of

InteractiveJob = True

Submission of an interactive job specifies the option -interactive on the condor_submit command line.

A submit description file may be specified for this interactive job. Within this submit description file, a specification
of these 5 commands will be either ignored or altered:

1. executable

2. transfer_executable

3. arguments

4. universe . The interactive job is a vanilla universe job.

5. queue <n>. In this case the value of <n> is ignored; exactly one interactive job is queued.

The submit description file may specify anything else needed for the interactive job, such as files to transfer.

If no submit description file is specified for the job, a default one is utilized as identified by the value of the configuration
variable INTERACTIVE_SUBMIT_FILE .

Here are examples of situations where interactive jobs may be of benefit.

• An application that cannot be batch processed might be run as an interactive job. Where input or output cannot
be captured in a file and the executable may not be modified, the interactive nature of the job may still be run on
a pool machine, and within the purview of Condor.

• A pool machine with specialized hardware that requires interactive handling can be scheduled with an interactive
job that utilizes the hardware.

• The debugging and set up of complex jobs or environments may benefit from an interactive session. This in-
teractive session provides the opportunity to run scripts or applications, and as errors are identified, they can be
corrected on the spot.

• Development may have an interactive nature, and proceed more quickly when done on a pool machine. It may
also be that the development platforms required reside within Condor’s purview as execute hosts.

3.4.12 Submitting Lots of Jobs

When submitting a lot of jobs with a single submit file, you can dramatically speed up submission and reduce the load
on the condor_schedd by submitting the jobs as a late materialization job factory.

A submission of this form sends a single ClassAd, called the Cluster ad, to the condor_schedd, as well as instructions
to create the individual jobs as variations on that Cluster ad. These instructions are sent as a submit digest and optional
itemdata. The submit digest is the submit file stripped down to just the statements that vary between jobs. The itemdata
is the arguments to the Queue statement when the arguments are more than just a count of jobs.

The condor_schedd will use the submit digest and the itemdata to create the individual job ClassAds when they are
needed. Materialization is controlled by two values stored in the Cluster classad, and by optional limits configured in
the condor_schedd.

The max_idle limit specifies the maximum number of non-running jobs that should be materialized in the con-
dor_schedd at any one time. One or more jobs will materialize whenever a job enters the Run state and the number of

3.4. Submitting a Job 49

HTCondor Manual, Release 10.0.9

non-running jobs that are still in the condor_schedd is less than this limit. This limit is stored in the Cluster ad in the
JobMaterializeMaxIdle attribute.

The max_materialize limit specifies an overall limit on the number of jobs that can be materialized in the con-
dor_schedd at any one time. One or more jobs will materialize when a job leaves the condor_schedd and the number
of materialized jobs remaining is less than this limit. This limit is stored in the Cluster ad in the JobMaterializeLimit
attribute.

Late materialization can be used as a way for a user to submit millions of jobs without hitting the or limits in the
condor_schedd, since the condor_schedd will enforce these limits by applying them to the max_materialize and
max_idle values specified in the Cluster ad.

To give an example, the following submit file:

executable = foo
arguments = input_file.$(Process)

request_memory = 4096
request_cpus = 1
request_disk = 16383

error = err.$(Process)
output = out.$(Process)
log = foo.log

should_transfer_files = yes
transfer_input_files = input_file.$(Process)

submit as a factory with an idle jobs limit
max_idle = 100

submit 15,000 instances of this job
queue 15*1000

When submitted as a late materialization factory, the submit digest for this factory will contain only the submit state-
ments that vary between jobs, and the collapsed queue statement like this:

arguments = input_file.$(Process)
error = err.$(Process)
output = out.$(Process)
transfer_input_files = input_file.$(Process)

queue 15000

Materialization log events

When a Late Materialization job factory is submitted to the condor_schedd, a Cluster submitted event will be
written to the UserLog of the Cluster ad. This will be the same log file used by the first job materialized by the factory.
To avoid confusion, it is recommended that you use the same log file for all jobs in the factory.

When the Late Materialization job factory is removed from the condor_schedd, a Cluster removed event will be
written to the UserLog of the Cluster ad. This event will indicate how many jobs were materialized before the factory
was removed.

If Late Materialization of jobs is paused due to an error in materialization or because condor_hold was used to hold
the cluster id, a Job Materialization Paused event will be written to the UserLog of the Cluster ad. This event

50 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

will indicate the reason for the pause.

When condor_release is used to release the the cluster id of a Late Materialization job factory, and materialization
was paused because of a previous use of condor_hold, a Job Materialization Resumed event will be written to
the UserLog of the Cluster ad.

Limitations

Currently, not all features of condor_submit will work with late materialization. The following limitations apply:

• Only a single Queue statement is allowed, lines from the submit file after the first Queue statement will be
ignored.

• the $RANDOM_INTEGER and $RANDOM_CHOICEmacro functions will expand at submit time to produce the Cluster
ad, but these macro functions will not be included in the submit digest and so will have the same value for all
jobs.

• Spooling of input files does not work with late materialization.

Displaying the Factory

condor_q can be use to show late materialization job factories in the condor_schedd by using the -factory option.

> condor_q -factory
-- Schedd: submit.example.org : <192.168.101.101:9618?... @ 12/01/20 13:35:00
ID OWNER SUBMITTED LIMIT PRESNT RUN IDLE HOLD NEXTID MODE DIGEST
77. bob 12/01 13:30 15000 130 30 80 20 1230 /var/lib/
→˓condor/spool/77/condor_submit.77.digest

The factory above shows that 30 jobs are currently running, 80 are idle, 20 are held and that the next job to materialize
will be job 77.1230. The total of Idle + Held jobs is 100, which is equal to the max_idle value specified in the submit
file.

The path to the submit digest file is shown. This file is used to reload the factory when the condor_schedd is restarted.
If the factory is unable to materialize jobs because of an error, the MODE field will show Held or Errs to indicate there
is a problem. Errs indicates a problem reloading the factory, Held indicates a problem materializing jobs.

In case of a factory problem, use condor_q -factory -long to see the the factory information and the
JobMaterializePauseReason attribute.

Removing a Factory

The Late materialization job factory will be remove from the schedd automatically once all of the jobs have materialized
and completed. To remove the factory without first completing all of the jobs use condor_rm with the ClusterId of the
factory as the argument.

3.4. Submitting a Job 51

HTCondor Manual, Release 10.0.9

Editing a Factory

The submit digest for a Late Materialization job factory cannot be changed after submission, but the Cluster ad for the
factory can be edited using condor_qedit. Any condor_qedit command that has the ClusterId as a edit target will edit
all currently materialized jobs, as well as editing the Cluster ad so that all jobs that materialize in the future will also
be edited.

3.5 Submitting Jobs Without a Shared File System: HTCondor’s File
Transfer Mechanism

HTCondor works well without a shared file system between the submit machines and the worker nodes. The HTCondor
file transfer mechanism allows the user to explicitly select which input files are transferred to the worker node before
the job starts. HTCondor will transfer these files, potentially delaying this transfer request, if starting the transfer right
away would overload the submit machine. Queueing requests like this prevents the crashes so common with too-busy
shared file servers. These input files are placed into a scratch directory on the worker node, which is the starting current
directory of the job. When the job completes, by default, HTCondor detects any newly-created files at the top level
of this sandbox directory, and transfers them back to the submitting machine. The input sandbox is what we call the
executable and all the declared input files of a job. The set of all files created by the job is the output sandbox.

3.5.1 Specifying If and When to Transfer Files

To enable the file transfer mechanism, place this command in the job’s submit description file: should_transfer_files

should_transfer_files = YES

Setting the should_transfer_files command explicitly enables or disables the file transfer mechanism. The command
takes on one of three possible values:

1. YES: HTCondor transfers the input sandbox from the submit machine to the execute machine. The output sand-
box is transferred back to the submit machine. The command when_to_transfer_output . controls when the
output sandbox is transferred back, and what directory it is stored in.

2. IF_NEEDED: HTCondor only transfers sandboxes when the job is matched with a machine in a different
FileSystemDomain than the one the submit machine belongs to, as if should_transfer_files = YES. If the job is
matched with a machine in the same FileSystemDomain as the submitting machine, HTCondor will not transfer
files and relies on the shared file system.

3. NO: HTCondor’s file transfer mechanism is disabled. In this case is is the responsibility of the user to ensure
that all data used by the job is accessible on the remote worker node.

The when_to_transfer_output command tells HTCondor when output files are to be transferred back to the submit
machine. The command takes on one of three possible values:

1. ON_EXIT (the default): HTCondor transfers the output sandbox back to the submit machine only when the job
exits on its own. If the job is preempted or removed, no files are transfered back.

2. ON_EXIT_OR_EVICT: HTCondor behaves the same as described for the value ON_EXIT when the job exits on
its own. However, each time the job is evicted from a machine, the output sandbox is transferred back to the
submit machine and placed under the SPOOL directory. eviction time. Before the job starts running again, the
former output sandbox is copied to the job’s new remote scratch directory.

If transfer_output_files is specified, this list governs which files are transferred back at eviction time. If a file
listed in transfer_output_files does not exist at eviction time, the job will go on hold.

52 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

The purpose of saving files at eviction time is to allow the job to resume from where it left off.

3. ON_SUCCESS: HTCondor transfers files like ON_EXIT, but only if the job succeeds, as defined by the
success_exit_code submit command. The successs_exit_code command must be used, even for the de-
fault exit code of 0. (See the condor_submit man page.)

The default values for these two submit commands make sense as used together. If only should_transfer_files is
set, and set to the value NO, then no output files will be transferred, and the value of when_to_transfer_output is
irrelevant. If only when_to_transfer_output is set, and set to the value ON_EXIT_OR_EVICT, then the default value
for an unspecified should_transfer_files will be YES.

Note that the combination of

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT_OR_EVICT

would produce undefined file access semantics. Therefore, this combination is prohibited by condor_submit.

3.5.2 Specifying What Files to Transfer

If the file transfer mechanism is enabled, HTCondor will transfer the following files before the job is run on a remote
machine as the input sandbox:

1. the executable, as defined with the executable command

2. the input, as defined with the input command

3. any jar files, for the java universe, as defined with the jar_files command

If the job requires other input files, the submit description file should have the transfer_input_files command. This
comma-separated list specifies any other files, URLs, or directories that HTCondor is to transfer to the remote scratch
directory, to set up the execution environment for the job before it is run. These files are placed in the same directory
as the job’s executable. For example:

executable = my_program
input = my_input
should_transfer_files = YES
transfer_input_files = file1,file2

This example explicitly enables the file transfer mechanism. By default, HTCondor will transfer the executable
(my_program) and the file specified by the input command (my_input). The files file1 and file2 are also trans-
ferred, by explicit user instruction.

If the file transfer mechanism is enabled, HTCondor will transfer the following files from the execute machine back to
the submit machine after the job exits, as the output sandbox.

1. the output file, as defined with the output command

2. the error file, as defined with the error command

3. any files created by the job in the remote scratch directory.

A path given for output and error commands represents a path on the submit machine. If no path is specified, the
directory specified with initialdir is used, and if that is not specified, the directory from which the job was submitted
is used. At the time the job is submitted, zero-length files are created on the submit machine, at the given path for the
files defined by the output and error commands. This permits job submission failure, if these files cannot be written
by HTCondor.

To restrict the output files or permit entire directory contents to be transferred, specify the exact list with trans-
fer_output_files . When this comma separated list is defined, and any of the files or directories do not exist as the

3.5. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 53

HTCondor Manual, Release 10.0.9

job exits, HTCondor considers this an error, and places the job on hold. Setting transfer_output_files to the empty
string (“”) means no files are to be transferred. When this list is defined, automatic detection of output files created by
the job is disabled. Paths specified in this list refer to locations on the execute machine. The naming and placement of
files and directories relies on the term base name. By example, the path a/b/c has the base name c. It is the file name
or directory name with all directories leading up to that name stripped off. On the submit machine, the transferred files
or directories are named using only the base name. Therefore, each output file or directory must have a different name,
even if they originate from different paths.

If only a subset of the output sandbox should be transferred, the subset is specified by further adding a submit command
of the form:

transfer_output_files = file1, file2

Here are examples of file transfer with HTCondor. Assume that the job produces the following structure within the
remote scratch directory:

o1
o2
d1 (directory)

o3
o4

If the submit description file sets

transfer_output_files = o1,o2,d1

then transferred back to the submit machine will be

o1
o2
d1 (directory)

o3
o4

Note that the directory d1 and all its contents are specified, and therefore transferred. If the directory d1 is not created
by the job before exit, then the job is placed on hold. If the directory d1 is created by the job before exit, but is empty,
this is not an error.

If, instead, the submit description file sets

transfer_output_files = o1,o2,d1/o3

then transferred back to the submit machine will be

o1
o2
o3

Note that only the base name is used in the naming and placement of the file specified with d1/o3.

54 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

3.5.3 File Paths for File Transfer

The file transfer mechanism specifies file names or URLs on the file system of the submit machine and file names on
the execute machine. Care must be taken to know which machine, submit or execute, is referencing the file.

Files in the transfer_input_files command are specified as they are accessed on the submit machine. The job, as it
executes, accesses files as they are found on the execute machine.

There are four ways to specify files and paths for transfer_input_files :

1. Relative to the current working directory as the job is submitted, if the submit command initialdir is not specified.

2. Relative to the initial directory, if the submit command initialdir is specified.

3. Absolute file paths.

4. As an URL, which should be accessible by the execute machine.

Before executing the program, HTCondor copies the input sandbox into a remote scratch directory on the execute
machine, where the program runs. Therefore, the executing program must access input files relative to its working
directory. Because all files and directories listed for transfer are placed into a single, flat directory, inputs must be
uniquely named to avoid collision when transferred.

A job may instead set preserve_relative_paths (to True), in which case the relative paths of transferred files
are preserved. For example, although the input list dirA/file1, dirB/file1 would normally result in a collision,
instead HTCondor will create the directories dirA and dirB in the input sandbox, and each will get its corresponding
version of file1.

Both relative and absolute paths may be used in transfer_output_files . Relative paths are relative to the job’s remote
scratch directory on the execute machine. When the files and directories are copied back to the submit machine, they
are placed in the job’s initial working directory as the base name of the original path. An alternate name or path may
be specified by using transfer_output_remaps .

The preserve_relative_paths command also applies to relative paths specified in transfer_output_files (if not
remapped).

A job may create files outside the remote scratch directory but within the file system of the execute machine, in a
directory such as /tmp, if this directory is guaranteed to exist and be accessible on all possible execute machines.
However, HTCondor will not automatically transfer such files back after execution completes, nor will it clean up these
files.

Here are several examples to illustrate the use of file transfer. The program executable is called my_program, and it uses
three command-line arguments as it executes: two input file names and an output file name. The program executable
and the submit description file for this job are located in directory /scratch/test.

Here is the directory tree as it exists on the submit machine, for all the examples:

/scratch/test (directory)
my_program.condor (the submit description file)
my_program (the executable)
files (directory)

logs2 (directory)
in1 (file)
in2 (file)

logs (directory)

Example 1

This first example explicitly transfers input files. These input files to be transferred are specified relative to the directory
where the job is submitted. An output file specified in the arguments command, out1, is created when the job is
executed. It will be transferred back into the directory /scratch/test.

3.5. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 55

HTCondor Manual, Release 10.0.9

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
transfer_input_files = files/in1,files/in2

arguments = in1 in2 out1

queue

The log file is written on the submit machine, and is not involved with the file transfer mechanism.

Example 2

This second example is identical to Example 1, except that absolute paths to the input files are specified, instead of
relative paths to the input files.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/in1,/scratch/test/files/in2

arguments = in1 in2 out1

queue

Example 3

This third example illustrates the use of the submit command initialdir , and its effect on the paths used for the various
files. The expected location of the executable is not affected by the initialdir command. All other files (specified
by input , output , error , transfer_input_files , as well as files modified or created by the job and automatically
transferred back) are located relative to the specified initialdir . Therefore, the output file, out1, will be placed in the
files directory. Note that the logs2 directory exists to make this example work correctly.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs2/err.$(cluster)
output = logs2/out.$(cluster)
log = logs2/log.$(cluster)

(continues on next page)

56 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

(continued from previous page)

initialdir = files

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = in1,in2

arguments = in1 in2 out1

queue

Example 4 - Illustrates an Error

This example illustrates a job that will fail. The files specified using the transfer_input_files command work correctly
(see Example 1). However, relative paths to files in the arguments command cause the executing program to fail. The
file system on the submission side may utilize relative paths to files, however those files are placed into the single, flat,
remote scratch directory on the execute machine.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1,files/in2

arguments = files/in1 files/in2 files/out1

queue

This example fails with the following error:

err: files/out1: No such file or directory.

Example 5 - Illustrates an Error

As with Example 4, this example illustrates a job that will fail. The executing program’s use of absolute paths cannot
work.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/in1, /scratch/test/files/in2

(continues on next page)

3.5. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 57

HTCondor Manual, Release 10.0.9

(continued from previous page)

arguments = /scratch/test/files/in1 /scratch/test/files/in2 /scratch/test/files/out1

queue

The job fails with the following error:

err: /scratch/test/files/out1: No such file or directory.

Example 6

This example illustrates a case where the executing program creates an output file in a directory other than within the
remote scratch directory that the program executes within. The file creation may or may not cause an error, depending
on the existence and permissions of the directories on the remote file system.

The output file /tmp/out1 is transferred back to the job’s initial working directory as /scratch/test/out1.

file name: my_program.condor
HTCondor submit description file for my_program
executable = my_program
universe = vanilla
error = logs/err.$(cluster)
output = logs/out.$(cluster)
log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

transfer_input_files = files/in1,files/in2
transfer_output_files = /tmp/out1

arguments = in1 in2 /tmp/out1

queue

3.5.4 Dataflow Jobs

A dataflow job is a job that might not need to run because its desired outputs already exist. To skip such a job, add the
following line to your submit file:

skip_if_dataflow = True

A dataflow job meets any of the following criteria:

• Output files exist, are newer than input files

• Execute file is newer than input files

• Standard input file is newer than input files

Skipping dataflow jobs can potentially save large amounts of time in long-running workflows.

58 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

3.5.5 Public Input Files

There are some cases where HTCondor’s file transfer mechanism is inefficient. For jobs that need to run a large number
of times, the input files need to get transferred for every job, even if those files are identical. This wastes resources on
both the submit machine and the network, slowing overall job execution time.

Public input files allow a user to specify files to be transferred over a publicly-available HTTP web service. A system
administrator can then configure caching proxies, load balancers, and other tools to dramatically improve performance.
Public input files are not available by default, and need to be explicitly enabled by a system administrator.

To specify files that use this feature, the submit file should include a public_input_files command. This comma-
separated list specifies files which HTCondor will transfer using the HTTP mechanism. For example:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = file1,file2
public_input_files = public_data1,public_data2

Similar to the regular transfer_input_files , the files specified in public_input_files can be relative to the submit
directory, or absolute paths. You can also specify an initialDir , and condor_submit will look for files relative to that
directory. The files must be world-readable on the file system (files with permissions set to 0644, directories with
permissions set to 0755).

Lastly, all files transferred using this method will be publicly available and world-readable, so this feature should not
be used for any sensitive data.

3.5.6 Behavior for Error Cases

This section describes HTCondor’s behavior for some error cases in dealing with the transfer of files.

Disk Full on Execute Machine When transferring any files from the submit machine to the remote
scratch directory, if the disk is full on the execute machine, then the job is place on hold.

Error Creating Zero-Length Files on Submit Machine As a job is submitted, HTCondor creates zero-
length files as placeholders on the submit machine for the files defined by output and error . If these
files cannot be created, then job submission fails.

This job submission failure avoids having the job run to completion, only to be unable to transfer the
job’s output due to permission errors.

Error When Transferring Files from Execute Machine to Submit Machine When a job exits, or po-
tentially when a job is evicted from an execute machine, one or more files may be transferred from
the execute machine back to the machine on which the job was submitted.

During transfer, if any of the following three similar types of errors occur, the job is put on hold as
the error occurs.

1. If the file cannot be opened on the submit machine, for example because the system is out of
inodes.

2. If the file cannot be written on the submit machine, for example because the permissions do not
permit it.

3. If the write of the file on the submit machine fails, for example because the system is out of disk
space.

3.5. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 59

HTCondor Manual, Release 10.0.9

3.5.7 File Transfer Using a URL

Instead of file transfer that goes only between the submit machine and the execute machine, HTCondor has the ability
to transfer files from a location specified by a URL for a job’s input file, or from the execute machine to a location
specified by a URL for a job’s output file(s). This capability requires administrative set up, as described in the Setting
Up for Special Environments section.

The transfer of an input file is restricted to vanilla and vm universe jobs only. HTCondor’s file transfer mecha-
nism must be enabled. Therefore, the submit description file for the job will define both should_transfer_files
and when_to_transfer_output . In addition, the URL for any files specified with a URL are given in the trans-
fer_input_files command. An example portion of the submit description file for a job that has a single file specified
with a URL:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = http://www.full.url/path/to/filename

The destination file is given by the file name within the URL.

For the transfer of the entire contents of the output sandbox, which are all files that the job creates or modifies, HT-
Condor’s file transfer mechanism must be enabled. In this sample portion of the submit description file, the first two
commands explicitly enable file transfer, and the added output_destination command provides both the protocol to be
used and the destination of the transfer.

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output_destination = urltype://path/to/destination/directory

Note that with this feature, no files are transferred back to the submit machine. This does not interfere with the streaming
of output.

Uploading to URLs using output file remaps

File transfer plugins now support uploads as well as downloads. The transfer_output_remaps attribute can addi-
tionally be used to upload files to specific URLs when a job completes. To do this, set the destination for an output file
to a URL instead of a filename. For example:

transfer_output_remaps = "myresults.dat = http://destination-server.com/myresults.dat"

We use a HTTP PUT request to perform the upload, so the user is responsible for making sure that the destination
server accepts PUT requests (which is usually disabled by default).

Passing a credential for URL file transfers

Some files served over HTTPS will require a credential in order to download. Each credential cred should be placed
in a file in $_CONDOR_CREDS/cred.use. Then in order to use that credential for a download, append its name to the
beginning of the URL protocol along with a + symbol. For example, to download the file https://download.com/bar
using the cred credential, specify the following in the submit file:

transfer_input_files = cred+https://download.com/bar

If your credential file has an underscore in it, the underscore must be replaced in the transfer_input_files URL
with a “.”, e.g. for $_CONDOR_CREDS/cred_local.use:

transfer_input_files = cred.local+https://download.com/bar

60 Chapter 3. Users’ Manual

https://download.com/bar

HTCondor Manual, Release 10.0.9

Otherwise, the credential file must have a name that only contains alphanumeric characters (a-z, A-Z, 0-9) and/or -,
except for the . in the `.use extension.

If you’re using a token from an OAuth service provider, the credential will be named based on the OAuth provider. For
example, if your submit file has use_oauth_services = mytokens, you can request files using that token by doing:

use_oauth_services = mytokens

transfer_input_files = mytokens+https://download.com/bar

If you add an optional handle to the token name, append the handle name to the token name in the URL with a “.”:

use_oauth_services = mytokens
mytokens_oauth_permissions_personal =
mytokens_oauth_permissions_group =

transfer_input_files =␣
→˓mytokens.personal+https://download.com/bar, mytokens.group+https://download.com/foo

Note that in the above token-with-a-handle case, the token files will be stored in the job environment at
$_CONDOR_CREDS/mytokens_personal.use and $_CONDOR_CREDS/mytokens_group.use.

Transferring files using file transfer plugins

HTCondor comes with file transfer plugins that can communicate with Box.com, Google Drive, Stash Cache, OSDF,
and Microsoft OneDrive. Using one of these plugins requires that the HTCondor pool administrator has set up the
mechanism for HTCondor to gather credentials for the desired service, and requires that your submit file contains the
proper commands to obtain credentials from the desired service (see Jobs That Require Credentials).

To use a file transfer plugin, substitute https in a transfer URL with the service name (box for Box.com, stash for
Stash Cache, osdf for OSDF, gdrive for Google Drive, and onedrive for Microsoft OneDrive) and reference a file
path starting at the root directory of the service. For example, to download bar.txt from a Box.com account where
bar.txt is in the foo folder, use:

use_oauth_services = box
transfer_input_files = box://foo/bar.txt

If your job requests multiple credentials from the same service, use <handle>+<service>://path/to/file to refer-
ence each specific credential. For example, for a job that uses Google Drive to download public_files/input.txt
from one account (public) and to upload output.txt to my_private_files/output.txt on a second account
(private):

use_oauth_services = gdrive
gdrive_oauth_permissions_public =
gdrive_oauth_permissions_private =

transfer_input_files = public+gdrive://public_files/input.txt
transfer_output_remaps = "output.txt = private+gdrive://my_private_files/output.txt"

3.5. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 61

HTCondor Manual, Release 10.0.9

Transferring files using the S3 protocol

HTCondor supports downloading files from and uploading files to storage servers using the S3 protocol via s3:/
/ URLs. Downloading or uploading requires a two-part credential: the “access key ID” and the “secret key ID”.
HTCondor does not transfer these credentials off the submit node; instead, it uses them to construct “pre-signed”
https:// URLs that temporarily allow the bearer access. (Thus, an execute node needs to support https:// URLs
for S3 URLs to work.)

To make use of this feature, you will need to specify the following information in the submit file:

• a file containing your access key ID (and nothing else)

• a file containing your secret access key (and nothing else)

• one or more S3 URLs as input values or output destinations.

See the subsections below for specific examples.

You may (like any other URL) specify an S3 URL in transfer_input_files, or as part of a remap in
transfer_output_remaps. However, HTCondor does not currently support transferring entire buckets or direc-
tories. If you specify an s3:// URL as the output_destination, that URL will be used a prefix for each output
file’s location; if you specify a URL ending a /, it will be treated like a directory.

S3 Transfer Recipes

Transferring files to and from Amazon S3

Specify your credential files in the submit file using the attributes aws_access_key_id_file and
aws_secret_access_key_file. Amazon S3 switched from global buckets to region-specific buckets; use
the first URL form for the older buckets and the second for newer buckets.

aws_access_key_id_file = /home/example/secrets/accessKeyID
aws_secret_access_key_file = /home/example/secrets/secretAccessKey

For old, non-region-specific buckets.
transfer_input_files = s3://<bucket-name>/<key-name>,
transfer_output_remaps = "output.dat = s3://<bucket-name>/<output-key-name>"

or, for new, region-specific buckets:
transfer_input_files = s3://<bucket-name>.s3.<region>.amazonaws.com/<key>
transfer_output_remaps =␣
→˓"output.dat = s3://<bucket-name>.s3.<region>.amazonaws.com/<output-key-name>"

Optionally, specify a region for S3 URLs which don't include one:
aws_region = <region>

Transferring files to and from Google Cloud Storage

Google Cloud Storage implements an XML API which is interoperable with S3. This requires an extra step of generating
HMAC credentials to access Cloud Storage. Google Cloud best practices are to create a Service Account with read/write
permission to the bucket. Read HMAC keys for Cloud Storage for more details.

After generating HMAC credentials, they can be used within a job:

gs_access_key_id_file = /home/example/secrets/bucket_access_key_id
gs_secret_access_key_file = /home/example/secrets/bucket_secret_access_key

(continues on next page)

62 Chapter 3. Users’ Manual

https://cloud.google.com/storage/docs/interoperability
https://console.cloud.google.com/storage/settings;tab=interoperability
https://console.cloud.google.com/storage/settings;tab=interoperability
https://cloud.google.com/storage/docs/authentication/hmackeys

HTCondor Manual, Release 10.0.9

(continued from previous page)

transfer_input_files = gs://<bucket-name>/<input-key-name>
transfer_output_remaps = "output.dat = gs://<bucket-name>/<output-key-name>"

If Cloud Storage is configured with Private Service Connect, then use the S3 URL approach with the private Cloud
Storage endpoint. e.g.,

gs_access_key_id_file = /home/example/secrets/bucket_access_key_id
gs_secret_access_key_file = /home/example/secrets/bucket_secret_access_key
transfer_input_files =␣
→˓s3://<cloud-storage-private-endpoint>/<bucket-name>/<input-key-name>
transfer_output_remaps =␣
→˓"output.dat = s3://<cloud-storage-private-endpoint>/<bucket-name>/<output-key-name>"

Transferring files to and from another provider

Many other companies and institutions offer a service compatible with the S3 protocol. You can access these services
using s3:// URLs and the key files described above.

s3_access_key_id_file = /home/example/secrets/accessKeyID
s3_secret_access_key_file = /home/example/secrets/secretAccessKey
transfer_input_files = s3://some.other-s3-provider.org/my-bucket/large-input.file
transfer_output_remaps =␣
→˓"large-output.file = s3://some.other-s3-provider.org/my-bucket/large-output.file"

If you need to specify a region, you may do so using aws_region, despite the name.

3.6 Managing a Job

This section provides a brief summary of what can be done once jobs are submitted. The basic mechanisms for mon-
itoring a job are introduced, but the commands are discussed briefly. You are encouraged to look at the man pages of
the commands referred to (located in Command Reference Manual (man pages)) for more information.

3.6.1 Checking on the progress of jobs

You can check on your jobs with the condor_q command. This command has many options, by default, it displays only
your jobs queued in the local scheduler. An example of the output from condor_q is

$ condor_q

-- Schedd: submit.chtc.wisc.edu : <127.0.0.1:9618?... @ 12/31/69 23:00:00
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS
nemo batch23 4/22 20:44 _ _ _ 1 _ 3671850.0
nemo batch24 4/22 20:56 _ _ _ 1 _ 3673477.0
nemo batch25 4/22 20:57 _ _ _ 1 _ 3673728.0
nemo batch26 4/23 10:44 _ _ _ 1 _ 3750339.0
nemo batch27 7/2 15:11 _ _ _ _ _ 7594591.0
nemo batch28 7/10 03:22 4428 3 _ _ 4434 7801943.0 ...␣
→˓7858552.0
nemo batch29 7/14 14:18 5074 1182 30 19 80064 7859129.0 ...␣
→˓7885217.0
nemo batch30 7/14 14:18 5172 1088 28 30 58310 7859106.0 ...␣
→˓7885192.0 (continues on next page)

3.6. Managing a Job 63

https://cloud.google.com/vpc/docs/private-service-connect

HTCondor Manual, Release 10.0.9

(continued from previous page)

2388 jobs; 0 completed, 1 removed, 58 idle, 2276 running, 53 held, 0 suspended

The goal of the HTCondor system is to effectively manage many jobs. As you may have thousands of jobs in a queue,
by default condor_q summarizes many similiar jobs on one line. Depending on the types of your jobs, this output may
look a little different.

Often, when you are starting out, and have few jobs, you may want to see one line of output per job. The -nobatch
option to condor_q does this, and output might look something like:

$ condor_q -nobatch

-- Schedd submit.chtc.wisc.edu : <127.0.0.1:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
1297254.0 nemo 5/31 18:05 14+17:40:01 R 0 7.3 condor_dagman
1297255.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1297256.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1297259.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1297261.0 nemo 5/31 18:05 14+17:39:55 R 0 7.3 condor_dagman
1302278.0 nemo 6/4 12:22 1+00:05:37 I 0 390.6 mdrun_1.sh
1304740.0 nemo 6/5 00:14 1+00:03:43 I 0 390.6 mdrun_1.sh
1304967.0 nemo 6/5 05:08 0+00:00:00 I 0 0.0 mdrun_1.sh

14 jobs; 4 idle, 8 running, 2 held

This still only shows your jobs. You can display information about all the users with jobs in this scheduler by adding
the -allusers option to condor_q.

The output contains many columns of information about the queued jobs. The ST column (for status) shows the status
of current jobs in the queue:

R The job is currently running.

I The job is idle. It is not running right now, because it is waiting for a machine to become available.

H The job is the hold state. In the hold state, the job will not be scheduled to run until it is released. See the condor_hold
and the condor_release manual pages.

The RUN_TIME time reported for a job is the time that has been committed to the job.

Another useful method of tracking the progress of jobs is through the job event log. The specification of a log in the
submit description file causes the progress of the job to be logged in a file. Follow the events by viewing the job event
log file. Various events such as execution commencement, checkpoint, eviction and termination are logged in the file.
Also logged is the time at which the event occurred.

When a job begins to run, HTCondor starts up a condor_shadow process on the submit machine. The shadow process
is the mechanism by which the remotely executing jobs can access the environment from which it was submitted, such
as input and output files.

It is normal for a machine which has submitted hundreds of jobs to have hundreds of condor_shadow processes running
on the machine. Since the text segments of all these processes is the same, the load on the submit machine is usually
not significant. If there is degraded performance, limit the number of jobs that can run simultaneously by reducing the
MAX_JOBS_RUNNING configuration variable.

You can also find all the machines that are running your job through the condor_status command. For example, to find
all the machines that are running jobs submitted by breach@cs.wisc.edu, type:

64 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

$ condor_status -constraint 'RemoteUser == "breach@cs.wisc.edu"'

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

alfred.cs. INTEL LINUX Claimed Busy 0.980 64 0+07:10:02
biron.cs.w INTEL LINUX Claimed Busy 1.000 128 0+01:10:00
cambridge. INTEL LINUX Claimed Busy 0.988 64 0+00:15:00
falcons.cs INTEL LINUX Claimed Busy 0.996 32 0+02:05:03
happy.cs.w INTEL LINUX Claimed Busy 0.988 128 0+03:05:00
istat03.st INTEL LINUX Claimed Busy 0.883 64 0+06:45:01
istat04.st INTEL LINUX Claimed Busy 0.988 64 0+00:10:00
istat09.st INTEL LINUX Claimed Busy 0.301 64 0+03:45:00
...

To find all the machines that are running any job at all, type:

$ condor_status -run

Name Arch OpSys LoadAv RemoteUser ClientMachine

adriana.cs INTEL LINUX 0.980 hepcon@cs.wisc.edu chevre.cs.wisc.
alfred.cs. INTEL LINUX 0.980 breach@cs.wisc.edu neufchatel.cs.w
amul.cs.wi X86_64 LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
anfrom.cs. X86_64 LINUX 1.023 ashoks@jules.ncsa.ui jules.ncsa.uiuc
anthrax.cs INTEL LINUX 0.285 hepcon@cs.wisc.edu chevre.cs.wisc.
astro.cs.w INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
aura.cs.wi X86_64 WINDOWS 0.996 nice-user.condor@cs. chevre.cs.wisc.
balder.cs. INTEL WINDOWS 1.000 nice-user.condor@cs. chevre.cs.wisc.
bamba.cs.w INTEL LINUX 1.574 dmarino@cs.wisc.edu riola.cs.wisc.e
bardolph.c INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
...

3.6.2 Peeking in on a running job’s output files

When a job is running, you may be curious about any output it has created. The condor_tail command can copy output
files from a running job on a remote machine back to the submit machine. condor_tail uses the same networking stack
as HTCondor proper, so it will work if the execute machine is behind a firewall. Simply run, where xx.yy is the job id
of a running job:

$ condor_tail xx.yy

or

$ condor_tail -f xx.yy

to continuously follow the standard output. To copy a different file, run

$ condor_tail xx.yy name_of_output_file

3.6. Managing a Job 65

HTCondor Manual, Release 10.0.9

3.6.3 Starting an interactive shell next to a running job on a remote machine

condor_ssh_to_job is a very powerful command, but is not available on all platforms, or all installations. Some
administrators disable it, so check with your local site if it does not appear to work. condor_ssh_to_job takes the job
id of a running job as an argument, and establishes a shell running on the node next to the job. The environment of
this shell is a similar to the job as possible. Users of condor_ssh_to_job can look at files, attach to their job with the
debugger and otherwise inspect the job.

3.6.4 Removing a job from the queue

A job can be removed from the queue at any time by using the condor_rm command. If the job that is being removed is
currently running, the job is killed without a checkpoint, and its queue entry is removed. The following example shows
the queue of jobs before and after a job is removed.

$ condor_q -nobatch

-- Schedd: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 raman 4/11 14:37 0+00:00:00 R 0 1.4 sleepy
132.0 raman 4/11 16:57 0+00:00:00 R 0 1.4 hello

2 jobs; 1 idle, 1 running, 0 held

$ condor_rm 132.0
Job 132.0 removed.

$ condor_q -nobatch

-- Schedd: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 raman 4/11 14:37 0+00:00:00 R 0 1.4 sleepy

1 jobs; 1 idle, 0 running, 0 held

3.6.5 Placing a job on hold

A job in the queue may be placed on hold by running the command condor_hold. A job in the hold state remains in
the hold state until later released for execution by the command condor_release.

Use of the condor_hold command causes a hard kill signal to be sent to a currently running job (one in the running
state).

Jobs that are running when placed on hold will start over from the beginning when released.

The condor_hold and the condor_release manual pages contain usage details.

66 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

3.6.6 Changing the priority of jobs

In addition to the priorities assigned to each user, HTCondor also provides each user with the capability of assigning
priorities to each submitted job. These job priorities are local to each queue and can be any integer value, with higher
values meaning better priority.

The default priority of a job is 0, but can be changed using the condor_prio command. For example, to change the
priority of a job to -15,

$ condor_q -nobatch raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I 0 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

$ condor_prio -p -15 126.0

$ condor_q -nobatch raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

It is important to note that these job priorities are completely different from the user priorities assigned by HTCondor.
Job priorities do not impact user priorities. They are only a mechanism for the user to identify the relative importance
of jobs among all the jobs submitted by the user to that specific queue.

3.6.7 Why is the job not running?

Users occasionally find that their jobs do not run. There are many possible reasons why a specific job is not running.
The following prose attempts to identify some of the potential issues behind why a job is not running.

At the most basic level, the user knows the status of a job by using condor_q to see that the job is not running. By
far, the most common reason (to the novice HTCondor job submitter) why the job is not running is that HTCondor has
not yet been through its periodic negotiation cycle, in which queued jobs are assigned to machines within the pool and
begin their execution. This periodic event occurs by default once every 5 minutes, implying that the user ought to wait
a few minutes before searching for reasons why the job is not running.

Further inquiries are dependent on whether the job has never run at all, or has run for at least a little bit.

For jobs that have never run, many problems can be diagnosed by using the -analyze option of the condor_q command.
Here is an example; running condor_q ‘s analyzer provided the following information:

$ condor_q -analyze 27497829

-- Submitter: s1.chtc.wisc.edu : <128.104.100.43:9618?sock=5557_e660_3> : s1.chtc.wisc.
→˓edu
User priority for ei@chtc.wisc.edu is not available, attempting to analyze without it.

(continues on next page)

3.6. Managing a Job 67

HTCondor Manual, Release 10.0.9

(continued from previous page)

27497829.000: Run analysis summary. Of 5257 machines,

5257 are rejected by your job's requirements
0 reject your job because of their own requirements
0 match and are already running your jobs
0 match but are serving other users
0 are available to run your job
No successful match recorded.
Last failed match: Tue Jun 18 14:36:25 2013

Reason for last match failure: no match found

WARNING: Be advised:
No resources matched request's constraints

The Requirements expression for your job is:

(OpSys == "OSX") && (TARGET.Arch == "X86_64") &&
(TARGET.Disk >= RequestDisk) && (TARGET.Memory >= RequestMemory) &&
((TARGET.HasFileTransfer) || (TARGET.FileSystemDomain == MY.FileSystemDomain))

Suggestions:
Condition Machines Matched Suggestion
--------- ---------------- ----------

1 (target.OpSys == "OSX") 0 MODIFY TO "LINUX"
2 (TARGET.Arch == "X86_64") 5190
3 (TARGET.Disk >= 1) 5257
4 (TARGET.Memory >= ifthenelse(MemoryUsage isnt undefined,MemoryUsage,1))

5257
5 ((TARGET.HasFileTransfer) || (TARGET.FileSystemDomain == "submit-1.chtc.wisc.edu
→˓"))

5257

This example also shows that the job does not run because the platform requested, Mac OS X, is not available on any
of the machines in the pool. Recall that unless informed otherwise in the Requirements expression in the submit
description file, the platform requested for an execute machine will be the same as the platform where condor_submit
is run to submit the job. And, while Mac OS X is a Unix-type operating system, it is not the same as Linux, and thus
will not match with machines running Linux.

While the analyzer can diagnose most common problems, there are some situations that it cannot reliably detect due
to the instantaneous and local nature of the information it uses to detect the problem. Thus, it may be that the analyzer
reports that resources are available to service the request, but the job still has not run. In most of these situations, the
delay is transient, and the job will run following the next negotiation cycle.

A second class of problems represents jobs that do or did run, for at least a short while, but are no longer running.
The first issue is identifying whether the job is in this category. The condor_q command is not enough; it only tells
the current state of the job. The needed information will be in the log file or the error file, as defined in the submit
description file for the job. If these files are not defined, then there is little hope of determining if the job ran at all. For
a job that ran, even for the briefest amount of time, the log file will contain an event of type 1, which will contain the
string Job executing on host.

A job may run for a short time, before failing due to a file permission problem. The log file used by the condor_shadow
daemon will contain more information if this is the problem. This log file is associated with the machine on which

68 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

the job was submitted. The location and name of this log file may be discovered on the submitting machine, using the
command

$ condor_config_val SHADOW_LOG

3.6.8 Job in the Hold State

Should HTCondor detect something about a job that would prevent it from ever running successfully, say, because the
executable doesn’t exist, or input files are missing, HTCondor will put the job in Hold state. A job in the Hold state will
remain in the queue, and show up in the output of the condor_q command, but is not eligible to run. The job will stay
in this state until it is released or removed. Users may also hold their jobs manually with the condor_hold command.

A table listing the reasons why a job may be held is at the Job ClassAd Attributes section. A string identifying the
reason that a particular job is in the Hold state may be displayed by invoking condor_q -hold. For the example job ID
16.0, use:

$ condor_q -hold 16.0

This command prints information about the job, including the job ClassAd attribute HoldReason.

3.6.9 In the Job Event Log File

In a job event log file are a listing of events in chronological order that occurred during the life of one or more jobs.
The formatting of the events is always the same, so that they may be machine readable. Four fields are always present,
and they will most often be followed by other fields that give further information that is specific to the type of event.

The first field in an event is the numeric value assigned as the event type in a 3-digit format. The second field identifies
the job which generated the event. Within parentheses are the job ClassAd attributes of ClusterId value, ProcId
value, and the node number for parallel universe jobs or a set of zeros (for jobs run under all other universes), separated
by periods. The third field is the date and time of the event logging. The fourth field is a string that briefly describes
the event. Fields that follow the fourth field give further information for the specific event type.

A complete list of these values is at Job Event Log Codes section.

3.6.10 Job Termination

From time to time, and for a variety of reasons, HTCondor may terminate a job before it completes. For instance, a
job could be removed (via condor_rm), preempted (by a user a with higher priority), or killed (for using more memory
than it requested). In these cases, it might be helpful to know why HTCondor terminated the job. HTCondor calls its
records of these reasons “Tickets of Execution”.

A ticket of execution is usually issued by the condor_startd, and includes:

• when the condor_startd was told, or otherwise decided, to terminate the job (the when attribute);

• who made the decision to terminate, usually a Sinful string (the who attribute);

• and what method was employed to command the termination, as both as string and an integer (the How and
HowCode attributes).

3.6. Managing a Job 69

HTCondor Manual, Release 10.0.9

The relevant log events include a human-readable rendition of the ToE, and the job ad is updated with the ToE after the
usual delay.

As of version 8.9.4, HTCondor only issues ToE in three cases:

• when the job terminates of its own accord (issued by the starter, HowCode 0);

• and when the startd terminates the job because it received a DEACTIVATE_CLAIM commmand (HowCode 1)

• or a DEACTIVATE_CLAIM_FORCIBLY command (HowCode 2).

In both cases, HTCondor records the ToE in the job ad. In the event log(s), event 005 (job completion) includes the
ToE for the first case, and event 009 (job aborted) includes the ToE for the second and third cases.

Future HTCondor releases will issue ToEs in additional cases and include them in additional log events.

3.6.11 Job Completion

When an HTCondor job completes, either through normal means or by abnormal termination by signal, HTCondor
will remove it from the job queue. That is, the job will no longer appear in the output of condor_q, and the job will
be inserted into the job history file. Examine the job history file with the condor_history command. If there is a log
file specified in the submit description file for the job, then the job exit status will be recorded there as well, along with
other information described below.

By default, HTCondor does not send an email message when the job completes. Modify this behavior with the no-
tification command in the submit description file. The message will include the exit status of the job, which is the
argument that the job passed to the exit system call when it completed, or it will be notification that the job was killed
by a signal. Notification will also include the following statistics (as appropriate) about the job:

Submitted at: when the job was submitted with condor_submit

Completed at: when the job completed

Real Time: the elapsed time between when the job was submitted and when it completed, given in a form
of <days> <hours>:<minutes>:<seconds>

Virtual Image Size: memory size of the job, computed when the job checkpoints

Statistics about just the last time the job ran:

Run Time: total time the job was running, given in the form <days> <hours>:<minutes>:<seconds>

Remote User Time: total CPU time the job spent executing in user mode on remote machines; this does
not count time spent on run attempts that were evicted without a checkpoint. Given in the form
<days> <hours>:<minutes>:<seconds>

Remote System Time: total CPU time the job spent executing in system mode (the time spent at system
calls); this does not count time spent on run attempts that were evicted without a checkpoint. Given
in the form <days> <hours>:<minutes>:<seconds>

The Run Time accumulated by all run attempts are summarized with the time given in the form <days> <hours>:
<minutes>:<seconds>.

And, statistics about the bytes sent and received by the last run of the job and summed over all attempts at running the
job are given.

The job terminated event includes the following:

• the type of termination (normal or by signal)

• the return value (or signal number)

70 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

• local and remote usage for the last (most recent) run (in CPU-seconds)

• local and remote usage summed over all runs (in CPU-seconds)

• bytes sent and received by the job’s last (most recent) run,

• bytes sent and received summed over all runs,

• a report on which partitionable resources were used, if any. Resources include CPUs, disk, and memory; all are
lifetime peak values.

Your administrator may have configured HTCondor to report on other resources, particularly GPUs (lifetime average)
and GPU memory usage (lifetime peak). HTCondor currently assigns all the usage of a GPU to the job running in the
slot to which the GPU is assigned; if the admin allows more than one job to run on the same GPU, or non-HTCondor
jobs to use the GPU, GPU usage will be misreported accordingly.

When configured to report GPU usage, HTCondor sets the following two attributes in the job:

GPUsUsage GPU usage over the lifetime of the job, reported as a fraction of the the maximum possible
utilization of one GPU.

GPUsMemoryUsage Peak memory usage over the lifetime of the job, in megabytes.

3.6.12 Summary of all HTCondor users and their jobs

When jobs are submitted, HTCondor will attempt to find resources to run the jobs. A list of all those with jobs submitted
may be obtained through condor_status with the -submitters option. An example of this would yield output similar to:

$ condor_status -submitters

Name Machine Running IdleJobs HeldJobs

ballard@cs.wisc.edu bluebird.c 0 11 0
nice-user.condor@cs. cardinal.c 6 504 0
wright@cs.wisc.edu finch.cs.w 1 1 0
jbasney@cs.wisc.edu perdita.cs 0 0 5

RunningJobs IdleJobs HeldJobs

ballard@cs.wisc.edu 0 11 0
jbasney@cs.wisc.edu 0 0 5
nice-user.condor@cs. 6 504 0
wright@cs.wisc.edu 1 1 0

Total 7 516 5

3.6. Managing a Job 71

HTCondor Manual, Release 10.0.9

3.7 Automatically managing a job

While a user can manually manage an HTCondor job in ways described in the previous section, it is often better to give
HTCondor policies with which it can automatically manage a job without user intervention.

3.7.1 Automatically rerunning a failed job

By default, when a job exits, HTCondor considers it completed, removes it from the job queue and places it in the
history file. If a job exits with a non-zero exit code, this usually means that some error has happened. If this error is
ephemeral, a user might want to re-run the job again, to see if the job succeeds on a second invocation. HTCondor
can does this automatically with the max_retries option in the submit file, to tell HTCondor the maximum number of
times to restart the job from scratch. In the rare case where some value other than zero indicates success, a submit file
can set success_exit_code to the integer value that is considered successful.

Example submit description with max_retries

executable = myexe
arguments = SomeArgument

Retry this job 5 times if non-zero exit code
max_retries = 5

output = outputfile
error = errorfile
log = myexe.log

request_cpus = 1
request_memory = 1024
request_disk = 10240

should_transfer_files = yes

queue

3.7.2 Automatically removing a job in the queue

HTCondor can automatically remove a job, running or otherwise, from the queue if a given constraint is true. In
the submit description file, set periodic_remove to a classad expression. When this expression evaluates to true,
the scheduler will remove the job, just as if condor_rm had run on that job. See Matchmaking with ClassAds for
information about the classad language and ClassAd Attributes for the list of attributes which can be used in these
expressions. For example, to automatically remove a job which has been in the queue for more than 100 hours, the
submit file could have

periodic_remove = (time() - QDate) > (100 * 3600)

or, to remove jobs that have been running for more than two hours:

periodic_remove = (JobStatus == 2) && (time() - EnteredCurrentStatus) > (2 * 3600)

72 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

3.7.3 Automatically placing a job on hold

Often, if a job is doing something unexpected, it is more useful to hold the job, rather than remove it. If the problem
with the job can be fixed, the job can then be released and started again. Much like the periodic_remove command,
there is a periodic_hold command that works in a similar way, but instead of removing the job, puts the job on hold.
Unliked periodice_remove, there are additional commands that help to tell the user why the job was placed on hold.
periodic_hold_reason is a string which is put into the HoldReason attribute to explain why we put the job on hold.
periodic_hold_subcode is an integer that is put into the HoldReasonSubCode that is useful for periodic_release to
examine. Neither periodic_hold_subcode nor periodic_hold_reason are required, but are good practice to include if
periodic_hold is defined.

3.7.4 Automatically releasing a held job

In the same way that a job can be automatically held, jobs in the held state can be released with the periodic_release
command. Often, using a periodic_hold with a paired periodic_release is a good way to restart a stuck job. Jobs can
go into the hold state for many reasons, so best practice, when trying to release a job that was held with periodic_hold
is to include the HoldReasonSubCode in the periodic_release expression.

periodic_hold = (JobStatus == 2) && (time() - EnteredCurrentStatus) > (2 * 3600)
periodic_hold_reason = "Job ran for more than two hours"
periodic_hold_subcode = 42
periodic_release = (HoldReasonSubCode == 42)

3.7.5 Holding a completed job

A job may exit, and HTCondor consider it completed, even though something has gone wrong with the job. A submit
file may contain a on_exit_hold expression to tell HTCondor to put the job on hold, instead of moving it to the history.
A held job informs users that there may have been a problem with the job that should be investigated. For example, if
a job should never exit by a signal, the job can be put on hold if it does with

on_exit_hold = ExitBySignal == true

3.8 Services for Running Jobs

HTCondor provides an environment and certain services for running jobs. Jobs can use these services to provide more
reliable runs, to give logging and monitoring data for users, and to synchronize with other jobs. Note that different
HTCondor job universes may provide different services. The functionality below is available in the vanilla universe,
unless otherwise stated.

3.8. Services for Running Jobs 73

HTCondor Manual, Release 10.0.9

3.8.1 Environment Variables

An HTCondor job running on a worker node does not, by default, inherit the environment variables from the machine
it runs on or the machine it was submitted from. If it did, the environment might change from run to run, or machine
to machine, and create non reproducible, difficult to debug problems. Rather, HTCondor is deliberate about what
environment variables a job sees, and allows the user to set them in the job description file.

The user may define environment variables for the job with the environment command in the submit file. See within
the condor_submit manual page for more details about this command.

Instead of defining environment variables individually, the entire set of environment variables in the condor_submit’s
environment can be copied into the job. The getenv command does this, as described on the condor_submit manual
page.

In general, it is preferable to just declare the minimum set of needed environment variables with the environment
command, as that clearly declares the needed environment variables. If the needed set is not known, the getenv com-
mand is useful. If the environment is set with both the environment command and getenv is also set to true, values
specified with environment override values in the submitter’s environment, regardless of the order of the environment
and getenv commands in the submit file.

Commands within the submit description file may reference the environment variables of the submitter. Submit de-
scription file commands use $ENV(EnvironmentVariableName) to reference the value of an environment variable.

3.8.2 Extra Environment Variables HTCondor sets for Jobs

HTCondor sets several additional environment variables for each executing job that may be useful.

• _CONDOR_SCRATCH_DIR names the directory where the job may place temporary data files. This directory is
unique for every job that is run, and its contents are deleted by HTCondor when the job stops running on a
machine. When file transfer is enabled, the job is started in this directory.

• _CONDOR_SLOT gives the name of the slot (for multicore machines), on which the job is run. On machines with
only a single slot, the value of this variable will be 1, just like the SlotID attribute in the machine’s ClassAd.
See the Policy Configuration for Execute Hosts and for Submit Hosts section for more details about configuring
multicore machines.

• _CONDOR_JOB_AD is the path to a file in the job’s scratch directory which contains the job ad for the currently
running job. The job ad is current as of the start of the job, but is not updated during the running of the job. The
job may read attributes and their values out of this file as it runs, but any changes will not be acted on in any way
by HTCondor. The format is the same as the output of the condor_q -l command. This environment variable
may be particularly useful in a USER_JOB_WRAPPER.

• _CONDOR_MACHINE_AD is the path to a file in the job’s scratch directory which contains the machine ad for the
slot the currently running job is using. The machine ad is current as of the start of the job, but is not updated
during the running of the job. The format is the same as the output of the condor_status -l command. Interesting
attributes jobs may want to look at from this file include Memory and Cpus, the amount of memory and cpus
provisioned for this slot.

• _CONDOR_JOB_IWD is the path to the initial working directory the job was born with.

• _CONDOR_WRAPPER_ERROR_FILE is only set when the administrator has installed a USER_JOB_WRAPPER.
If this file exists, HTCondor assumes that the job wrapper has failed and copies the contents of the file to the
StarterLog for the administrator to debug the problem.

• CUBACORES GOMAXPROCS JULIA_NUM_THREADS MKL_NUM_THREADS NUMEXPR_NUM_THREADS
OMP_NUM_THREADS OMP_THREAD_LIMIT OPENBLAS_NUM_THREADS TF_LOOP_PARALLEL_ITERATIONS
TF_NUM_THREADS are set to the number of cpu cores provisioned to this job. Should be at least RequestCpus,

74 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

but HTCondor may match a job to a bigger slot. Jobs should not spawn more than this number of cpu-bound
threads, or their performance will suffer. Many third party libraries like OpenMP obey these environment
variables.

• BATCH_SYSTEM All job running under a HTCondor starter have the environment variable BATCH_SYSTEM
set to the string HTCondor. Inspecting this variable allows a job to determine if it is running under HTCondor.

• X509_USER_PROXY gives the full path to the X.509 user proxy file if one is associated with the job. Typically, a
user will specify x509userproxy in the submit description file.

3.8.3 Communicating with the Submit machine via Chirp

HTCondor provides a method for running jobs to read or write information to or from the submit machine, called
“chirp”. Chirp allows jobs to

• Write to the job ad in the schedd. This can be used for long-running jobs to write progress information back to
the submit machine, so that a condor_q query will reveal how far along a running job is. Or, if a job is listening
on a network port, chirp can write the port number to the job ad, so that others can connect to this job.

• Read from the job ad in the schedd. While most information a job needs should be in input files, command line
arguments or environment variables, a job can read dynamic information from the schedd’s copy of the classad.

• Write a message to the job log. Another place to put progress information is into the job log file. This allows
anyone with access to that file to see how much progress a running job has made.

• Read a file from the submit machine. This allows a job to read a file from the submit machine at runtime. While
file transfer is generally a better approach, file transfer requires the submitter to know the files to be transferred
at submit time.

• Write a file to the submit machine. Again, while file transfer is usually the better choice, with chirp, a job can
write intermediate results back to the submit machine before the job exits.

HTCondor ships a command-line tool, called condor_chirp that can do these actions, and provides python bindings so
that they can be done natively in Python.

3.8.4 When changes to a job made by chirp take effect

When condor_chirp successfully updates a job ad attribute, that change will be reflected in the copy of the job ad
in the condor_schedd on the submit machine. However, most job ad attributes are read by the condor_starter or
condor_startd at job start up time, and should chirp change these attributes at run time, it will not impact the running
job. In particular, the attributes relating to resource requests, such as RequestCpus, RequestMemory, RequestDisk and
RequestGPUS, will not cause any changes to the provisioned resources for a running job. If the job is evicted, and
restarts, these new requests will then take effect in the new execution of the job. The same is true for the Requirements
expression of a job.

3.8.5 Resource Limitations on a Running Job

Depending on how HTCondor has been configured, the OS platform, and other factors, HTCondor may configure the
system a job runs on to prevent a job from using all the resources on a machine. This protects other jobs that may be
running on the machine, and the machine itself from being harming by a running job.

Jobs may see

• A private (non-shared) /tmp and /var/tmp directory

• A private (non-shared) /dev/shm

3.8. Services for Running Jobs 75

HTCondor Manual, Release 10.0.9

• A limit on the amount of memory they can allocate, above which the job may be placed on hold or evicted by
the system.

• A limit on the amount of CPU cores the may use, above which the job may be blocked, and will run very slowly.

• A limit on the amount of scratch disk space the job may use, above which the job may be placed on hold or
evicted by the system.

3.9 Priorities and Preemption

HTCondor has two independent priority controls: job priorities and user priorities.

The HTCondor system calculate a “fair share” of machine slots to allocate to each user. Whether each user can use all
of these slots depends on a number of factors. For example, if the user’s jobs only match to a small number of machines,
perhaps the user will be running fewer jobs than allocated. This fair share is based on the user priority. Each user can
then specify the order in which each of their jobs should be matched and run on the fair share, this is based on the job
priority.

3.9.1 Job Priority

Job priorities allow a user to sort their own jobs to determine which are tried to be run first. A job priority can be any
integer: larger values denote better priority. So, 0 is a better job priority than -3, and 6 is a better than 5. Note that
job priorities are computed per user, so that whatever job priorities one user sets has no impact at all on any other user,
in terms of how many jobs users can run or in what order. Also, unmatchable high priority jobs do not block lower
priority jobs. That is, a priority 10 job will try to be matched before a priority 9 job, but if the priority 10 job doesn’t
match any slots, HTCondor will keep going, and try the priority 9 job next.

The job priority may be specified in the submit description file by setting

priority = 15

If no priority is set, the default is 0. See the Dagman section for ways that dagman can automatically set the priority of
any or all jobs in a dag.

Each job can be given a distinct priority. For an already queued job, its priority may be changed with the condor_prio
command; see the example in the Managing a Job section, or the condor_prio manual page for details. This sets the
value of job ClassAd attribute JobPrio. condor_prio can be called on a running job, but lowering a job priority will
not trigger eviction of the running job. The condor_vacate_job command can preempt a running job.

A fine-grained categorization of jobs and their ordering is available for experts by using the job ClassAd attributes:
PreJobPrio1, PreJobPrio2, JobPrio, PostJobPrio1, or PostJobPrio2.

3.9.2 User priority

Slots are allocated to users based upon user priority. A lower numerical value for user priority means proportionally
better priority, so a user with priority 5 will be allocated 10 times the resources as someone with user priority 50. User
priorities in HTCondor can be examined with the condor_userprio command (see the condor_userprio manual page).
HTCondor administrators can set and change individual user priorities with the same utility.

HTCondor continuously calculates the share of available machines that each user should be allocated. This share is
inversely related to the ratio between user priorities. For example, a user with a priority of 10 will get twice as many

76 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

machines as a user with a priority of 20. The priority of each individual user changes according to the number of
resources the individual is using. Each user starts out with the best possible priority: 0.5. If the number of machines
a user currently has is greater than the user priority, the user priority will worsen by numerically increasing over time.
If the number of machines is less then the priority, the priority will improve by numerically decreasing over time. The
long-term result is fair-share access across all users. The speed at which HTCondor adjusts the priorities is controlled
with the configuration variable PRIORITY_HALFLIFE , an exponential half-life value. The default is one day. If a user
that has user priority of 100 and is utilizing 100 machines removes all his/her jobs, one day later that user’s priority
will be 50, and two days later the priority will be 25.

HTCondor enforces that each user gets his/her fair share of machines according to user priority by allocating available
machines. Optionally, a pool administrator can configure the system to preempt the running jobs of users who are above
their fair share in favor of users who are below their fair share, but this is not the default. For instance, if a low priority
user is utilizing all available machines and suddenly a higher priority user submits jobs, HTCondor may vacate jobs
belonging to the lower priority user.

User priorities are keyed on <username>@<domain>, for example johndoe@cs.wisc.edu. The domain name to use,
if any, is configured by the HTCondor site administrator. Thus, user priority and therefore resource allocation is not
impacted by which machine the user submits from or even if the user submits jobs from multiple machines.

The user priority system can also support backfill or nice jobs (see the condor_submit manual page). Nice jobs artifi-
cially boost the user priority by ten million just for the nice job. This effectively means that nice jobs will only run on
machines that no other HTCondor job (that is, non-niced job) wants. In a similar fashion, an HTCondor administrator
could set the user priority of any specific HTCondor user very high. If done, for example, with a guest account, the
guest could only use cycles not wanted by other users of the system.

3.9.3 Details About How HTCondor Jobs Vacate Machines

When HTCondor needs a job to vacate a machine for whatever reason, it sends the job an operating system signal
specified in the KillSig attribute of the job’s ClassAd. The value of this attribute can be specified by the user at
submit time by placing the kill_sig option in the HTCondor submit description file.

If a program wanted to do some work when asked to vacate a machine, the program may set up a signal handler to
handle this signal. This clean up signal is specified with kill_sig. Note that the clean up work needs to be quick. If the
job takes too long to exit after getting the kill_sig, HTCondor sends a SIGKILL signal which immediately terminates
the process.

The default value for KillSig is SIGTERM, the usual method to nicely terminate a Unix program.

3.10 DAGMan Workflows

DAGMan is a HTCondor tool that allows multiple jobs to be organized in workflows, represented as a directed acyclic
graph (DAG). A DAGMan workflow automatically submits jobs in a particular order, such that certain jobs need to
complete before others start running. This allows the outputs of some jobs to be used as inputs for others, and makes
it easy to replicate a workflow multiple times in the future.

3.10. DAGMan Workflows 77

HTCondor Manual, Release 10.0.9

3.10.1 Describing Workflows with DAGMan

A DAGMan workflow is described in a DAG input file. The input file specifies the nodes of the DAG as well as the
dependencies that order the DAG.

A node within a DAG represents a unit of work. It contains the following:

• Job: An HTCondor job, defined in a submit file.

• PRE script (optional): A script that runs before the job starts. Typically used to verify that all inputs are valid.

• POST script (optional): A script that runs after the job finishes. Typically used to verify outputs and clean up
temporary files.

The following diagram illustrates the elements of a node:

Fig. 1: One Node within a DAG

An edge in DAGMan describes a dependency between two nodes. DAG edges are directional; each has a parent and
a child, where the parent node must finish running before the child starts. Any node can have an unlimited number of
parents and children.

78 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Example: Diamond DAG

A simple diamond-shaped DAG, as shown in the following image is presented as a starting point for examples. This
DAG contains 4 nodes.

Fig. 2: Diamond DAG

A very simple DAG input file for this diamond-shaped DAG is:

File name: diamond.dag

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D

A set of basic commands appearing in a DAG input file is described below.

JOB

The JOB command specifies an HTCondor job. The syntax used for each JOB command is:

JOB JobName SubmitDescriptionFileName [DIR directory] [NOOP] [DONE]

A JOB entry maps a JobName to an HTCondor submit description file. The JobName uniquely identifies nodes within
the DAG input file and in output messages. Each node name, given by JobName, within the DAG must be unique.

The values defined for JobName and SubmitDescriptionFileName are case sensitive, as file names in a file system are
case sensitive. The JobName can be any string that contains no white space, except for the strings PARENT and CHILD
(in upper, lower, or mixed case). JobName also cannot contain special characters (‘.’, ‘+’) which are reserved for system
use.

The optional DIR keyword specifies a working directory for this node, from which the HTCondor job will be submitted,
and from which a PRE and/or POST script will be run. If a relative directory is specified, it is relative to the current

3.10. DAGMan Workflows 79

HTCondor Manual, Release 10.0.9

working directory as the DAG is submitted. Note that a DAG containing DIR specifications cannot be run in conjunction
with the -usedagdir command-line argument to condor_submit_dag.

The optional NOOP keyword identifies that the HTCondor job within the node is not to be submitted to HTCondor.
This is useful for debugging a complex DAG structure, by marking jobs as NOOP s to verify that the control flow
through the DAG is correct. The NOOP keywords are then removed before submitting the DAG. Any PRE and POST
scripts for jobs specified with NOOP are executed; to avoid running the PRE and POST scripts, comment them out.
Even though the job specified with NOOP is not submitted, its submit description file must still exist.

The optional DONE keyword identifies a node as being already completed. This is mainly used by Rescue DAGs
generated by DAGMan itself, in the event of a failure to complete the workflow. Users should generally not use the
DONE keyword. The NOOP keyword is more flexible in avoiding the execution of a job within a node.

DATA

As of version 8.3.5, condor_dagman no longer supports DATA nodes.

PARENT . . . CHILD . . .

The PARENT . . . CHILD . . . command specifies the dependencies within the DAG. Nodes are parents and/or children
within the DAG. A parent node must be completed successfully before any of its children may be started. A child node
may only be started once all its parents have successfully completed.

The syntax used for each dependency (PARENT/CHILD) command is

PARENT ParentJobName [ParentJobName2 ...] CHILD ChildJobName [ChildJobName2 ...]

The PARENT keyword is followed by one or more ParentJobName*s. The *CHILD keyword is followed by one or
more ChildJobName s. Each child job depends on every parent job within the line. A single line in the input file can
specify the dependencies from one or more parents to one or more children. The diamond-shaped DAG example may
specify the dependencies with

PARENT A CHILD B C
PARENT B C CHILD D

An alternative specification for the diamond-shaped DAG may specify some or all of the dependencies on separate
lines:

PARENT A CHILD B C
PARENT B CHILD D
PARENT C CHILD D

As a further example, the line

PARENT p1 p2 CHILD c1 c2

produces four dependencies:

1. p1 to c1

2. p1 to c2

3. p2 to c1

80 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

4. p2 to c2

SCRIPT

The optional SCRIPT command specifies processing that is done either before a job within a node is submitted, after
a job within a node completes its execution, or when a job goes on hold.

PRE and POST scripts

Processing done before a job is submitted is called a PRE script. Processing done after a job completes its execution
is called a POST script. Note that the executable specified does not necessarily have to be a shell script (Unix) or
batch file (Windows); but it should be relatively light weight because it will be run directly on the submit machine, not
submitted as an HTCondor job.

The syntax used for each PRE or POST command is

SCRIPT [DEFER status time] PRE <JobName | ALL_NODES> ExecutableName [arguments]

SCRIPT [DEFER status time] POST <JobName | ALL_NODES> ExecutableName [arguments]

The SCRIPT command can use the PRE or POST keyword, which specifies the relative timing of when the script is to
be run. The JobName identifies the node to which the script is attached. The ExecutableName specifies the executable
(e.g., shell script or batch file) to be executed, and may not contain spaces. The optional arguments are command line
arguments to the script, and spaces delimit the arguments. Both ExecutableName and optional arguments are case
sensitive.

A PRE script is commonly used to place files in a staging area for the jobs to use. A POST script is commonly used to
clean up or remove files once jobs are finished running. An example uses PRE and POST scripts to stage files that are
stored on tape. The PRE script reads compressed input files from the tape drive, uncompresses them, and places the
resulting files in the current directory. The HTCondor jobs can then use these files, producing output files. The POST
script compresses the output files, writes them out to the tape, and then removes both the staged files and the output
files.

HOLD scripts

Additionally, the SCRIPT command can take a HOLD keyword, which indicates an executable to be run when a job
goes on hold. These are typically used to notify a user when something goes wrong with their jobs.

The syntax used for a HOLD command is

SCRIPT [DEFER status time] HOLD <JobName | ALL_NODES> ExecutableName [arguments]

Unlike PRE and POST scripts, HOLD scripts are not considered part of the DAG workflow and are run on a best-effort
basis. If one does not complete successfully, it has no effect on the overall workflow and no error will be reported.

3.10. DAGMan Workflows 81

HTCondor Manual, Release 10.0.9

DEFER retries

The optional DEFER feature causes a retry of only the script, if the execution of the script exits with the exit code given
by status. The retry occurs after at least time seconds, rather than being considered failed. While waiting for the retry,
the script does not count against a maxpre or maxpost limit. The ordering of the DEFER feature within the SCRIPT
specification is fixed. It must come directly after the SCRIPT keyword; this is done to avoid backward compatibility
issues for any DAG with a JobName of DEFER.

Scripts as part of a DAG workflow

Scripts are executed on the submit machine; the submit machine is not necessarily the same machine upon which the
node’s job is run. Further, a single cluster of HTCondor jobs may be spread across several machines.

If the PRE script fails, then the HTCondor job associated with the node is not submitted, and (as of version 8.5.4) the
POST script is not run either (by default). However, if the job is submitted, and there is a POST script, the POST script
is always run once the job finishes. (The behavior when the PRE script fails may may be changed to run the POST script
by setting configuration variable DAGMAN_ALWAYS_RUN_POST to True or by passing the -AlwaysRunPost argument
to condor_submit_dag.)

Progress towards completion of the DAG is based upon the success of the nodes within the DAG. The success of a node
is based upon the success of the job(s), PRE script, and POST script. A job, PRE script, or POST script with an exit
value not equal to 0 is considered failed. The exit value of whatever component of the node was run last determines
the success or failure of the node. Table 2.1 lists the definition of node success and failure for all variations of script
and job success and failure, when DAGMAN_ALWAYS_RUN_POST is set to False. In this table, a dash (-) represents
the case where a script does not exist for the DAG, S represents success, and F represents failure. Table 2.2 lists the
definition of node success and failure only for the cases where the PRE script fails, when DAGMAN_ALWAYS_RUN_POST
is set to True.

PRE JOB POST Node
- S - S
- F - F
- S S S
- S F F
- F S S
- F F F
S S - S
S F - F
S S S S
S S F F
S F S S
S F F F
F not run - F
F not run not run F

Table 2.1: Node Success or Failure definition with DAGMAN_ALWAYS_RUN_POST = False (the default).

PRE JOB POST Node
F not run - F
F not run S S
F not run F F

Table 2.2: Node Success or Failure definition with DAGMAN_ALWAYS_RUN_POST = True.

82 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Special script argument macros

The five macros $JOB, $RETRY, $MAX_RETRIES, $DAG_STATUS and $FAILED_COUNT can be used within the DAG input
file as arguments passed to a PRE or POST script. The three macros $JOBID, $RETURN, and $PRE_SCRIPT_RETURN
can be used as arguments to POST scripts. The use of these variables is limited to being used as an individual command
line argument to the script, surrounded by spaces, in order to cause the substitution of the variable’s value.

The special macros are as follows:

• $JOB evaluates to the (case sensitive) string defined for JobName.

• $RETRY evaluates to an integer value set to 0 the first time a node is run, and is incremented each time the node
is retried. See Advanced Features of DAGMan for the description of how to cause nodes to be retried.

• $MAX_RETRIES evaluates to an integer value set to the maximum number of retries for the node. See Advanced
Features of DAGMan for the description of how to cause nodes to be retried. If no retries are set for the node,
$MAX_RETRIES will be set to 0.

• $JOBID (for POST scripts only) evaluates to a representation of the HTCondor job ID of the node job. It is the
value of the job ClassAd attribute ClusterId, followed by a period, and then followed by the value of the job
ClassAd attribute ProcId. An example of a job ID might be 1234.0. For nodes with multiple jobs in the same
cluster, the ProcId value is the one of the last job within the cluster.

• $RETURN (for POST scripts only) variable evaluates to the return value of the HTCondor job, if there is a single
job within a cluster. With multiple jobs within the same cluster, there are two cases to consider. In the first case,
all jobs within the cluster are successful; the value of $RETURN will be 0, indicating success. In the second case,
one or more jobs from the cluster fail. When condor_dagman sees the first terminated event for a job that failed,
it assigns that job’s return value as the value of $RETURN, and it attempts to remove all remaining jobs within the
cluster. Therefore, if multiple jobs in the cluster fail with different exit codes, a race condition determines which
exit code gets assigned to $RETURN.

A job that dies due to a signal is reported with a $RETURN value representing the additive inverse of the signal
number. For example, SIGKILL (signal 9) is reported as -9. A job whose batch system submission fails is
reported as -1001. A job that is externally removed from the batch system queue (by something other than
condor_dagman) is reported as -1002.

• $PRE_SCRIPT_RETURN (for POST scripts only) variable evaluates to the return value of the PRE script of a node,
if there is one. If there is no PRE script, this value will be -1. If the node job was skipped because of failure
of the PRE script, the value of $RETURN will be -1004 and the value of $PRE_SCRIPT_RETURN will be the exit
value of the PRE script; the POST script can use this to see if the PRE script exited with an error condition, and
assign success or failure to the node, as appropriate.

• $DAG_STATUS is the status of the DAG. Note that this macro’s value and definition is unrelated to the attribute
named DagStatus as defined for use in a node status file. This macro’s value is the same as the job Clas-
sAd attribute DAG_Status that is defined within the condor_dagman job’s ClassAd. This macro may have the
following values:

– 0: OK

– 1: error; an error condition different than those listed here

– 2: one or more nodes in the DAG have failed

– 3: the DAG has been aborted by an ABORT-DAG-ON specification

– 4: removed; the DAG has been removed by condor_rm

– 5: cycle; a cycle was found in the DAG

– 6: halted; the DAG has been halted (see Suspending a Running DAG)

• $FAILED_COUNT is defined by the number of nodes that have failed in the DAG.

3.10. DAGMan Workflows 83

HTCondor Manual, Release 10.0.9

Examples that use PRE or POST scripts

Examples use the diamond-shaped DAG. A first example uses a PRE script to expand a compressed file needed as input
to each of the HTCondor jobs of nodes B and C. The DAG input file:

File name: diamond.dag

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
SCRIPT PRE B pre.sh $JOB .gz
SCRIPT PRE C pre.sh $JOB .gz
PARENT A CHILD B C
PARENT B C CHILD D

The script pre.sh uses its command line arguments to form the file name of the compressed file. The script contains

#!/bin/sh
gunzip ${1}${2}

Therefore, the PRE script invokes

gunzip B.gz

for node B, which uncompresses file B.gz, placing the result in file B.

A second example uses the $RETURN macro. The DAG input file contains the POST script specification:

SCRIPT POST A stage-out job_status $RETURN

If the HTCondor job of node A exits with the value -1, the POST script is invoked as

stage-out job_status -1

The slightly different example POST script specification in the DAG input file

SCRIPT POST A stage-out job_status=$RETURN

invokes the POST script with

stage-out job_status=$RETURN

This example shows that when there is no space between the = sign and the variable $RETURN, there is no substitution
of the macro’s value.

84 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

PRE_SKIP

The behavior of DAGMan with respect to node success or failure can be changed with the addition of a PRE_SKIP
command. A PRE_SKIP line within the DAG input file uses the syntax:

PRE_SKIP <JobName | ALL_NODES> non-zero-exit-code

The PRE script of a node identified by JobName that exits with the value given by non-zero-exit-code skips the remain-
der of the node entirely. Neither the job associated with the node nor the POST script will be executed, and the node
will be marked as successful.

3.10.2 Node Job Submit File Contents

Each node in a DAG may use a unique submit description file. A key limitation is that each HTCondor submit descrip-
tion file must submit jobs described by a single cluster number; DAGMan cannot deal with a submit description file
producing multiple job clusters.

Consider again the diamond-shaped DAG example, where each node job uses the same submit description file.

File name: diamond.dag

JOB A diamond_job.condor
JOB B diamond_job.condor
JOB C diamond_job.condor
JOB D diamond_job.condor
PARENT A CHILD B C
PARENT B C CHILD D

Here is a sample HTCondor submit description file for this DAG:

File name: diamond_job.condor

executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log
universe = vanilla
queue

Since each node uses the same HTCondor submit description file, this implies that each node within the DAG runs the
same job. The $(Cluster) macro produces unique file names for each job’s output.

The job ClassAd attribute DAGParentNodeNames is also available for use within the submit description file. It defines
a comma separated list of each JobName which is a parent node of this job’s node. This attribute may be used in the
arguments command for all but scheduler universe jobs. For example, if the job has two parents, with JobName s B
and C, the submit description file command

arguments = $$([DAGParentNodeNames])

will pass the string "B,C" as the command line argument when invoking the job.

DAGMan supports jobs with queues of multiple procs, so for example:

3.10. DAGMan Workflows 85

HTCondor Manual, Release 10.0.9

queue 500

will queue 500 procs as expected.

Inline Submit Descriptions

Instead of using a submit description file, you can alternatively include an inline submit description directly inside
the .dag file. An inline submit description should be wrapped in { and } braces, with each argument appearing on a
separate line, just like the contents of a regular submit file. Using the previous diamond-shaped DAG example, the
diamond.dag file would look like this:

File name: diamond.dag

JOB A {
executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log
universe = vanilla

}
JOB B {

executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log
universe = vanilla

}
JOB C {

executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log
universe = vanilla

}
JOB D {

executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log
universe = vanilla

}
PARENT A CHILD B C
PARENT B C CHILD D

This can be helpful when trying to manage lots of submit descriptions, so they can all be described in the same file
instead of needed to regularly shift between many files.

The main drawback of using inline submit descriptions is that they do not support the queue statement or any variations
thereof. Any job described inline in the .dag file will only have a single instance submitted.

86 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

SUBMIT-DESCRIPTION command

In addition to declaring inline submit descriptions as part of a job, they can be declared independently of jobs using the
SUBMIT-DESCRIPTION command. This can be helpful to reduce the size and readability of a .dag file when many
nodes are running the same job.

A SUBMIT-DESCRIPTION can be defined using the following syntax:

SUBMIT-DESCRIPTION DescriptionName {
submit attributes go here

}

An independently declared submit description must have a unique name that is not used by any of the jobs. It can then
be linked to a job as follows:

JOB JobName DescriptionName

For example, the previous diamond.dag example could be written as follows:

File name: diamond.dag

SUBMIT-DESCRIPTION DiamondDesc {
executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log
universe = vanilla

}

JOB A DiamondDesc
JOB B DiamondDesc
JOB C DiamondDesc
JOB D DiamondDesc

PARENT A CHILD B C
PARENT B C CHILD D

3.10.3 DAG Submission

A DAG is submitted using the tool condor_submit_dag. The manual page for condor_submit_dag details the command.
The simplest of DAG submissions has the syntax

$ condor_submit_dag DAGInputFileName

and the current working directory contains the DAG input file.

The diamond-shaped DAG example may be submitted with

$ condor_submit_dag diamond.dag

Do not submit the same DAG, with same DAG input file, from within the same directory, such that more than one of
this same DAG is running at the same time. It will fail in an unpredictable manner, as each instance of this same DAG
will attempt to use the same file to enforce dependencies.

3.10. DAGMan Workflows 87

HTCondor Manual, Release 10.0.9

To increase robustness and guarantee recoverability, the condor_dagman process is run as an HTCondor job. As such,
it needs a submit description file. condor_submit_dag generates this needed submit description file, naming it by
appending .condor.sub to the name of the DAG input file. This submit description file may be edited if the DAG is
submitted with

$ condor_submit_dag -no_submit diamond.dag

causing condor_submit_dag to create the submit description file, but not submit condor_dagman to HTCondor. To
submit the DAG, once the submit description file is edited, use

$ condor_submit diamond.dag.condor.sub

Submit machines with limited resources are supported by command line options that place limits on the submission and
handling of HTCondor jobs and PRE and POST scripts. Presented here are descriptions of the command line options
to condor_submit_dag. These same limits can be set in configuration. Each limit is applied within a single DAG.

DAG Throttling

• Total nodes/clusters: The -maxjobs option specifies the maximum number of clusters that condor_dagman can
submit at one time. Since each node corresponds to a single cluster, this limit restricts the number of nodes that
can be submitted (in the HTCondor queue) at a time. It is commonly used when there is a limited amount of input
file staging capacity. As a specific example, consider a case where each node represents a single HTCondor proc
that requires 4 MB of input files, and the proc will run in a directory with a volume of 100 MB of free space. Using
the argument -maxjobs 25 guarantees that a maximum of 25 clusters, using a maximum of 100 MB of space,
will be submitted to HTCondor at one time. (See the condor_submit_dag manual page) for more information.
Also see the equivalent DAGMAN_MAX_JOBS_SUBMITTED configuration option (Configuration File Entries for
DAGMan).

• Idle procs: The number of idle procs within a given DAG can be limited with the optional command line
argument -maxidle. condor_dagman will not submit any more node jobs until the number of idle procs in the
DAG goes below this specified value, even if there are ready nodes in the DAG. This allows condor_dagman
to submit jobs in a way that adapts to the load on the HTCondor pool at any given time. If the pool is lightly
loaded, condor_dagman will end up submitting more jobs; if the pool is heavily loaded, condor_dagman will
submit fewer jobs. (See the condor_submit_dag manual page for more information.) Also see the equivalent
DAGMAN_MAX_JOBS_IDLE configuration option (Configuration File Entries for DAGMan).

• Subsets of nodes: Node submission can also be throttled in a finer-grained manner by grouping nodes into
categories. See section Advanced Features of DAGMan for more details.

• PRE/POST scripts: Since PRE and POST scripts run on the submit machine, it may be desirable to limit the
number of PRE or POST scripts running at one time. The optional -maxpre command line argument limits the
number of PRE scripts that may be running at one time, and the optional -maxpost command line argument
limits the number of POST scripts that may be running at one time. (See the condor_submit_dag manual page
for more information.) Also see the equivalent DAGMAN_MAX_PRE_SCRIPTS and DAGMAN_MAX_POST_SCRIPTS
(Configuration File Entries for DAGMan) configuration options.

88 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

3.10.4 File Paths in DAGs

condor_dagman assumes that all relative paths in a DAG input file and the associated HTCondor submit description
files are relative to the current working directory when condor_submit_dag is run. This works well for submitting a
single DAG. It presents problems when multiple independent DAGs are submitted with a single invocation of con-
dor_submit_dag. Each of these independent DAGs would logically be in its own directory, such that it could be run
or tested independent of other DAGs. Thus, all references to files will be designed to be relative to the DAG’s own
directory.

Consider an example DAG within a directory named dag1. There would be a DAG input file, named one.dag for this
example. Assume the contents of this DAG input file specify a node job with

JOB A A.submit

Further assume that partial contents of submit description file A.submit specify

executable = programA
input = A.input

Directory contents are

dag1/
A.input
A.submit
one.dag
programA

All file paths are correct relative to the dag1 directory. Submission of this example DAG sets the current working
directory to dag1 and invokes condor_submit_dag:

$ cd dag1
$ condor_submit_dag one.dag

Expand this example such that there are now two independent DAGs, and each is contained within its own directory.
For simplicity, assume that the DAG in dag2 has remarkably similar files and file naming as the DAG in dag1. Assume
that the directory contents are

parent/
dag1

A.input
A.submit
one.dag
programA

dag2
B.input
B.submit
programB
two.dag

The goal is to use a single invocation of condor_submit_dag to run both dag1 and dag2. The invocation

$ cd parent
$ condor_submit_dag dag1/one.dag dag2/two.dag

3.10. DAGMan Workflows 89

HTCondor Manual, Release 10.0.9

does not work. Path names are now relative to parent, which is not the desired behavior.

The solution is the -usedagdir command line argument to condor_submit_dag. This feature runs each DAG as if
condor_submit_dag had been run in the directory in which the relevant DAG file exists. A working invocation is

$ cd parent
$ condor_submit_dag -usedagdir dag1/one.dag dag2/two.dag

Output files will be placed in the correct directory, and the .dagman.out file will also be in the correct directory. A
Rescue DAG file will be written to the current working directory, which is the directory when condor_submit_dag is
invoked. The Rescue DAG should be run from that same current working directory. The Rescue DAG includes all the
path information necessary to run each node job in the proper directory.

Use of -usedagdir does not work in conjunction with a JOB node specification within the DAG input file using the DIR
keyword. Using both will be detected and generate an error.

3.10.5 DAG Monitoring

After submission, the progress of the DAG can be monitored by looking at the job event log file(s) or observing the
e-mail that job submission to HTCondor causes, or by using condor_q -dag.

Detailed information about a DAG’s job progress can be obtained using

$ condor_q -l <dagman-job-id>

There is also a large amount of information logged in an extra file. The name of this extra file is produced by appending
.dagman.out to the name of the DAG input file; for example, if the DAG input file is diamond.dag, this extra file is
named diamond.dag.dagman.out. The .dagman.out file is an important resource for debugging; save this file if a
problem occurs. The dagman.out is appended to, rather than overwritten, with each new DAGMan run.

3.10.6 Editing a Running DAG

Certain properties of a running DAG can be changed after the workflow has been started. The values of these properties
are published in the condor_dagman job ad; changing any of these properties using condor_qedit will also update the
internal DAGMan value.

Currently, you can change the following attributes:

Attribute Name Attribute Description
DAGMan_MaxJobs Maximum number of running jobs
DAGMan_MaxIdle Maximum number of idle jobs
DAGMan_MaxPreScripts Maximum number of running PRE scripts
DAGMan_MaxPostScripts Maximum number of running POST scripts

To edit one of these properties, use the condor_qedit tool with the job ID of the condor_dagman job, for example:

$ condor_qedit <dagman-job-id> DAGMan_MaxJobs 1000

To view all the properties of a condor_dagman job:

90 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

$ condor_q -l <dagman-job-id> | grep DAGMan

3.10.7 Removing a DAG

To remove an entire DAG, consisting of the condor_dagman job, plus any jobs submitted to HTCondor, remove the
condor_dagman job by running condor_rm. For example,

$ condor_q
-- Submitter: turunmaa.cs.wisc.edu : <128.105.175.125:36165> : turunmaa.cs.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
9.0 taylor 10/12 11:47 0+00:01:32 R 0 8.7 condor_dagman -f -

11.0 taylor 10/12 11:48 0+00:00:00 I 0 3.6 B.out
12.0 taylor 10/12 11:48 0+00:00:00 I 0 3.6 C.out

3 jobs; 2 idle, 1 running, 0 held

$ condor_rm 9.0

When a condor_dagman job is removed, all node jobs (including sub-DAGs) of that condor_dagman will be removed
by the condor_schedd. As of version 8.5.8, the default is that condor_dagman itself also removes the node jobs (to fix
a race condition that could result in “orphaned” node jobs). (The condor_schedd has to remove the node jobs to deal
with the case of removing a condor_dagman job that has been held.)

The previous behavior of condor_dagman itself not removing the node jobs can be restored by setting the
DAGMAN_REMOVE_NODE_JOBS configuration macro (see Configuration File Entries for DAGMan) to False. This will
decrease the load on the condor_schedd, at the cost of allowing the possibility of “orphaned” node jobs.

A removed DAG will be considered failed unless the DAG has a FINAL node that succeeds.

In the case where a machine is scheduled to go down, DAGMan will clean up memory and exit. However, it will leave
any submitted jobs in the HTCondor queue.

3.10.8 Suspending a Running DAG

It may be desired to temporarily suspend a running DAG. For example, the load may be high on the submit machine,
and therefore it is desired to prevent DAGMan from submitting any more jobs until the load goes down. There are two
ways to suspend (and resume) a running DAG.

• Use condor_hold/condor_release on the condor_dagman job.

After placing the condor_dagman job on hold, no new node jobs will be submitted, and no PRE or POST scripts
will be run. Any node jobs already in the HTCondor queue will continue undisturbed. Any running PRE or POST
scripts will be killed. If the condor_dagman job is left on hold, it will remain in the HTCondor queue after all
of the currently running node jobs are finished. To resume the DAG, use condor_release on the condor_dagman
job.

Note that while the condor_dagman job is on hold, no updates will be made to the dagman.out file.

• Use a DAG halt file.

The second way of suspending a DAG uses the existence of a specially-named file to change the state of the DAG.
When in this halted state, no PRE scripts will be run, and no node jobs will be submitted. Running node jobs
will continue undisturbed. A halted DAG will still run POST scripts, and it will still update the dagman.out

3.10. DAGMan Workflows 91

HTCondor Manual, Release 10.0.9

file. This differs from behavior of a DAG that is held. Furthermore, a halted DAG will not remain in the queue
indefinitely; when all of the running node jobs have finished, DAGMan will create a Rescue DAG and exit.

To resume a halted DAG, remove the halt file.

The specially-named file must be placed in the same directory as the DAG input file. The naming is the same as
the DAG input file concatenated with the string .halt. For example, if the DAG input file is test1.dag, then
test1.dag.halt will be the required name of the halt file.

As any DAG is first submitted with condor_submit_dag, a check is made for a halt file. If one exists, it is removed.

Note that neither condor_hold nor a DAG halt is propagated to sub-DAGs. In other words, if you condor_hold or
create a halt file for a DAG that has sub-DAGs, any sub-DAGs that are already in the queue will continue to submit
node jobs.

A condor_hold or DAG halt does, however, apply to splices, because they are merged into the parent DAG and controlled
by a single condor_dagman instance.

3.10.9 Advanced Features of DAGMan

Retrying Failed Nodes

DAGMan can retry any failed node in a DAG by specifying the node in the DAG input file with the RETRY command.
The use of retry is optional. The syntax for retry is

RETRY <JobName | ALL_NODES> NumberOfRetries [UNLESS-EXIT value]

where JobName identifies the node. NumberOfRetries is an integer number of times to retry the node after failure. The
implied number of retries for any node is 0, the same as not having a retry line in the file. Retry is implemented on
nodes, not parts of a node.

The diamond-shaped DAG example may be modified to retry node C:

File name: diamond.dag

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
RETRY C 3

If node C is marked as failed for any reason, then it is started over as a first retry. The node will be tried a second and
third time, if it continues to fail. If the node is marked as successful, then further retries do not occur.

Retry of a node may be short circuited using the optional keyword UNLESS-EXIT, followed by an integer exit value. If
the node exits with the specified integer exit value, then no further processing will be done on the node.

The macro $RETRY evaluates to an integer value, set to 0 first time a node is run, and is incremented each time for each
time the node is retried. The macro $MAX_RETRIES is the value set for NumberOfRetries. These macros may be used
as arguments passed to a PRE or POST script.

92 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Stopping the Entire DAG

The ABORT-DAG-ON command provides a way to abort the entire DAG if a given node returns a specific exit code.
The syntax for ABORT-DAG-ON is

ABORT-DAG-ON <JobName | ALL_NODES> AbortExitValue [RETURN DAGReturnValue]

If the return value of the node specified by JobName matches AbortExitValue, the DAG is immediately aborted. A
DAG abort differs from a node failure, in that a DAG abort causes all nodes within the DAG to be stopped immediately.
This includes removing the jobs in nodes that are currently running. A node failure differs, as it would allow the DAG
to continue running, until no more progress can be made due to dependencies.

The behavior differs based on the existence of PRE and/or POST scripts. If a PRE script returns the AbortExitValue
value, the DAG is immediately aborted. If the HTCondor job within a node returns the AbortExitValue value, the DAG
is aborted if the node has no POST script. If the POST script returns the AbortExitValue value, the DAG is aborted.

An abort overrides node retries. If a node returns the abort exit value, the DAG is aborted, even if the node has retry
specified.

When a DAG aborts, by default it exits with the node return value that caused the abort. This can be changed by using
the optional RETURN keyword along with specifying the desired DAGReturnValue. The DAG abort return value can
be used for DAGs within DAGs, allowing an inner DAG to cause an abort of an outer DAG.

A DAG return value other than 0, 1, or 2 will cause the condor_dagman job to stay in the queue after it exits and get
retried, unless the on_exit_remove expression in the .condor.sub file is manually modified.

Adding ABORT-DAG-ON for node C in the diamond-shaped DAG

File name: diamond.dag

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
RETRY C 3
ABORT-DAG-ON C 10 RETURN 1

causes the DAG to be aborted, if node C exits with a return value of 10. Any other currently running nodes, of which
only node B is a possibility for this particular example, are stopped and removed. If this abort occurs, the return value
for the DAG is 1.

Variable Values Associated with Nodes

Macros defined for DAG nodes can be used within the submit description file of the node job. The VARS command
provides a method for defining a macro. Macros are defined on a per-node basis, using the syntax

VARS <JobName | ALL_NODES> [PREPEND | APPEND] macroname="string" [macroname2="string2" ..
→˓.]

3.10. DAGMan Workflows 93

HTCondor Manual, Release 10.0.9

The macro may be used within the submit description file of the relevant node. A macroname may contain alphanumeric
characters (a-z, A-Z, and 0-9) and the underscore character. The space character delimits macros, such that there may
be more than one macro defined on a single line. Multiple lines defining macros for the same node are permitted.

Correct syntax requires that the string must be enclosed in double quotes. To use a double quote mark within a string,
escape the double quote mark with the backslash character (\). To add the backslash character itself, use two backslashes
(\\).

A restriction is that the macroname itself cannot begin with the string queue, in any combination of upper or lower
case letters.

Examples

If the DAG input file contains

File name: diamond.dag

JOB A A.submit
JOB B B.submit
JOB C C.submit
JOB D D.submit
VARS A state="Wisconsin"
PARENT A CHILD B C
PARENT B C CHILD D

then the submit description file A.submit may use the macro state. Consider this submit description file A.submit:

file name: A.submit
executable = A.exe
log = A.log
arguments = "$(state)"
queue

The macro value expands to become a command-line argument in the invocation of the job. The job is invoked with

A.exe Wisconsin

The use of macros may allow a reduction in the number of distinct submit description files. A separate example shows
this intended use of VARS. In the case where the submit description file for each node varies only in file naming, macros
reduce the number of submit description files to one.

This example references a single submit description file for each of the nodes in the DAG input file, and it uses the
VARS entry to name files used by each job.

The relevant portion of the DAG input file appears as

JOB A theonefile.sub
JOB B theonefile.sub
JOB C theonefile.sub

VARS A filename="A"
VARS B filename="B"
VARS C filename="C"

The submit description file appears as

94 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

submit description file called: theonefile.sub
executable = progX
output = $(filename)
error = error.$(filename)
log = $(filename).log
queue

For a DAG such as this one, but with thousands of nodes, the ability to write and maintain a single submit description
file together with a single, yet more complex, DAG input file is worthwhile.

Prepend or Append Variables to Node

After JobName the word PREPEND or APPEND can be added to specify how a variable is passed to a node at job
submission time. APPEND will add the variable after the submit description file is read. Resulting in the passed
variable being added as a macro or overwitting any already existing variable values. PREPEND will add the variable
before the submit description file is read. This allows the variable to be used in submit description file conditionals.

The relevant portion of the DAG input file appears as

JOB A theotherfile.sub

VARS A PREPEND var1="A"
VARS A APPEND var2="B"

The submit description file appears as

submit description file called: theotherfile.sub
executable = progX

if defined var1
This will occur due to PREPEND
Arguments = "$(var1) was prepended"

else
This will occur due to APPEND
Arguments = "No variables prepended"

endif

var2 = "C"

output = results-$(var2).out
error = error.txt
log = job.log
queue

For a DAG such as this one, Argumentswill become “A was prepended” and the output file will be named results-B.
out. If instead var1 used APPEND and var2 used PREPEND then Arguments will become “No variables prepended”
and the output file will be named results-C.out.

If neither PREPEND nor APPEND is used in the VARS line then the variable will either be prepended or appended
based on the configuration variable DAGMAN_DEFAULT_APPEND_VARS.

3.10. DAGMan Workflows 95

HTCondor Manual, Release 10.0.9

Multiple macroname definitions

If a macro name for a specific node in a DAG is defined more than once, as it would be with the partial file contents

JOB job1 job1.submit
VARS job1 a="foo"
VARS job1 a="bar"

a warning is written to the log, of the format

Warning: VAR <macroname> is already defined in job <JobName>
Discovered at file "<DAG input file name>", line <line number>

The behavior of DAGMan is such that all definitions for the macro exist, but only the last one defined is used as the
variable’s value. Using this example, if the job1.submit submit description file contains

arguments = "$(a)"

then the argument will be bar.

Special characters within VARS string definitions

The value defined for a macro may contain spaces and tabs. It is also possible to have double quote marks and back-
slashes within a value. In order to have spaces or tabs within a value specified for a command line argument, use the
New Syntax format for the arguments submit command, as described in condor_submit. Escapes for double quote
marks depend on whether the New Syntax or Old Syntax format is used for the arguments submit command. Note
that in both syntaxes, double quote marks require two levels of escaping: one level is for the parsing of the DAG input
file, and the other level is for passing the resulting value through condor_submit.

As of HTCondor version 8.3.7, single quotes are permitted within the value specification. For the specification of
command line arguments, single quotes can be used in three ways:

• in Old Syntax, within a macro’s value specification

• in New Syntax, within a macro’s value specification

• in New Syntax only, to delimit an argument containing white space

There are examples of all three cases below. In New Syntax, to pass a single quote as part of an argument, escape it
with another single quote for condor_submit parsing as in the example’s NodeA fourth macro.

As an example that shows uses of all special characters, here are only the relevant parts of a DAG input file. Note that
the NodeA value for the macro second contains a tab.

VARS NodeA first="Alberto Contador"
VARS NodeA second="\"\"Andy Schleck\"\""
VARS NodeA third="Lance\\ Armstrong"
VARS NodeA fourth="Vincenzo ''The Shark'' Nibali"
VARS NodeA misc="!@#$%^&*()_-=+=[]{}?/"

VARS NodeB first="Lance_Armstrong"
VARS NodeB second="\\\"Andreas_Kloden\\\""
VARS NodeB third="Ivan_Basso"
VARS NodeB fourth="Bernard_'The_Badger'_Hinault"
VARS NodeB misc="!@#$%^&*()_-=+=[]{}?/"

(continues on next page)

96 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

(continued from previous page)

VARS NodeC args="'Nairo Quintana' 'Chris Froome'"

Consider an example in which the submit description file for NodeA uses the New Syntax for the arguments command:

arguments = "'$(first)' '$(second)' '$(third)' '($fourth)' '$(misc)'"

The single quotes around each variable reference are only necessary if the variable value may contain spaces or tabs.
The resulting values passed to the NodeA executable are:

Alberto Contador
"Andy Schleck"
Lance\ Armstrong
Vincenzo 'The Shark' Nibali
!@#$%^&*()_-=+=[]{}?/

Consider an example in which the submit description file for NodeB uses the Old Syntax for the arguments command:

arguments = $(first) $(second) $(third) $(fourth) $(misc)

The resulting values passed to the NodeB executable are:

Lance_Armstrong
"Andreas_Kloden"
Ivan_Basso
Bernard_'The_Badger'_Hinault
!@#$%^&*()_-=+=[]{}?/

Consider an example in which the submit description file for NodeC uses the New Syntax for the arguments command:

arguments = "$(args)"

The resulting values passed to the NodeC executable are:

Nairo Quintana
Chris Froome

Using special macros within a definition

The $(JOB) and $(RETRY) macros may be used within a definition of the string that defines a variable. This usage
requires parentheses, such that proper macro substitution may take place when the macro’s value is only a portion of
the string.

• $(JOB) expands to the node JobName. If the VARS line appears in a DAG file used as a splice file, then $(JOB)
will be the fully scoped name of the node.

For example, the DAG input file lines

JOB NodeC NodeC.submit
VARS NodeC nodename="$(JOB)"

set nodename to NodeC, and the DAG input file lines

3.10. DAGMan Workflows 97

HTCondor Manual, Release 10.0.9

JOB NodeD NodeD.submit
VARS NodeD outfilename="$(JOB)-output"

set outfilename to NodeD-output.

• $(RETRY) expands to 0 the first time a node is run; the value is incremented each time the node is retried. For
example:

VARS NodeE noderetry="$(RETRY)"

Using VARS to define ClassAd attributes

The macroname may also begin with a + character, in which case it names a ClassAd attribute. For example, the VARS
specification

VARS NodeF +A="\"bob\""

results in the job ClassAd attribute

A = "bob"

Note that ClassAd string values must be quoted, hence there are escaped quotes in the example above. The outer quotes
are consumed in the parsing of the DAG input file, so the escaped inner quotes remain in the definition of the attribute
value.

Continuing this example, it allows the HTCondor submit description file for NodeF to use the following line:

arguments = "$$([A])"

The special macros may also be used. For example

VARS NodeG +B="$(RETRY)"

places the numerical attribute

B = 1

into the ClassAd when the NodeG job is run for a second time, which is the first retry and the value 1.

Setting Priorities for Nodes

The PRIORITY command assigns a priority to a DAG node (and to the HTCondor job(s) associated with the node).
The syntax for PRIORITY is

PRIORITY <JobName | ALL_NODES> PriorityValue

The priority value is an integer (which can be negative). A larger numerical priority is better. The default priority is 0.

The node priority affects the order in which nodes that are ready (all of their parent nodes have finished successfully)
at the same time will be submitted. The node priority also sets the node job’s priority in the queue (that is, its JobPrio
attribute), which affects the order in which jobs will be run once they are submitted (see Job Priority for more infor-
mation). The node priority only affects the order of job submission within a given DAG; but once jobs are submitted,
their JobPrio value affects the order in which they will be run relative to all jobs submitted by the same user.

98 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Sub-DAGs can have priorities, just as “regular” nodes can. (The priority of a sub-DAG will affect the priorities of its
nodes: see “effective node priorities” below.) Splices cannot be assigned a priority, but individual nodes within a splice
can be assigned priorities.

Note that node priority does not override the DAG dependencies. Also note that node priorities are not guarantees of
the relative order in which nodes will be run, even among nodes that become ready at the same time - so node priorities
should not be used as a substitute for parent/child dependencies. In other words, priorities should be used when it is
preferable, but not required, that some jobs run before others. (The order in which jobs are run once they are submitted
can be affected by many things other than the job’s priority; for example, whether there are machines available in the
pool that match the job’s requirements.)

PRE scripts can affect the order in which jobs run, so DAGs containing PRE scripts may not submit the nodes in exact
priority order, even if doing so would satisfy the DAG dependencies.

Node priority is most relevant if node submission is throttled (via the -maxjobs or -maxidle command-line arguments or
the DAGMAN_MAX_JOBS_SUBMITTED or DAGMAN_MAX_JOBS_IDLE configuration variables), or if there are not enough
resources in the pool to immediately run all submitted node jobs. This is often the case for DAGs with large numbers
of “sibling” nodes, or DAGs running on heavily-loaded pools.

Example

Adding PRIORITY for node C in the diamond-shaped DAG:

File name: diamond.dag

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
RETRY C 3
PRIORITY C 1

This will cause node C to be submitted (and, mostly likely, run) before node B. Without this priority setting for node C,
node B would be submitted first because the “JOB” statement for node B comes earlier in the DAG file than the “JOB”
statement for node C.

Effective node priorities

The “effective” priority for a node (the priority controlling the order in which nodes are actually submitted, and
which is assigned to JobPrio) is the sum of the explicit priority (specified in the DAG file) and the priority of
the DAG itself. DAG priorities also default to 0, so they are most relevant for sub-DAGs (although a top-level DAG
can be submitted with a non-zero priority by specifying a -priority value on the condor_submit_dag command line).
This algorithm for calculating effective priorities is a simplification introduced in version 8.5.7 (a node’s effective
priority is no longer dependent on the priorities of its parents).

Here is an example to clarify:

File name: priorities.dag

JOB A A.sub
SUBDAG EXTERNAL B SD.dag
PARENT A CHILD B
PRIORITY A 60
PRIORITY B 100

3.10. DAGMan Workflows 99

HTCondor Manual, Release 10.0.9

File name: SD.dag

JOB SA SA.sub
JOB SB SB.sub
PARENT SA CHILD SB
PRIORITY SA 10
PRIORITY SB 20

In this example (assuming that priorities.dag is submitted with the default priority of 0), the effective priority of node
A will be 60, and the effective priority of sub-DAG B will be 100. Therefore, the effective priority of node SA will be
110 and the effective priority of node SB will be 120.

The effective priorities listed above are assigned by DAGMan. There is no way to change the priority in the submit
description file for a job, as DAGMan will override any priority command placed in a submit description file (unless
the effective node priority is 0; in this case, any priority specified in the submit file will take effect).

Throttling Nodes by Category

In order to limit the number of submitted job clusters within a DAG, the nodes may be placed into categories by
assignment of a name. Then, a maximum number of submitted clusters may be specified for each category.

The CATEGORY command assigns a category name to a DAG node. The syntax for CATEGORY is

CATEGORY <JobName | ALL_NODES> CategoryName

Category names cannot contain white space.

The MAXJOBS command limits the number of submitted job clusters on a per category basis. The syntax for MAXJOBS
is

MAXJOBS CategoryName MaxJobsValue

If the number of submitted job clusters for a given category reaches the limit, no further job clusters in that category
will be submitted until other job clusters within the category terminate. If MAXJOBS is not set for a defined category,
then there is no limit placed on the number of submissions within that category.

Note that a single invocation of condor_submit results in one job cluster. The number of HTCondor jobs within a
cluster may be greater than 1.

The configuration variable DAGMAN_MAX_JOBS_SUBMITTED and the condor_submit_dag -maxjobs command-line op-
tion are still enforced if these CATEGORY and MAXJOBS throttles are used.

Please see the end of Advanced Features of DAGMan on DAG Splicing for a description of the interaction between
categories and splices.

100 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Configuration Specific to a DAG

All configuration variables and their definitions that relate to DAGMan may be found in Configuration File Entries for
DAGMan.

Configuration variables for condor_dagman can be specified in several ways, as given within the ordered list:

1. In an HTCondor configuration file.

2. With an environment variable. Prepend the string _CONDOR_ to the configuration variable’s name.

3. With a line in the DAG input file using the keyword CONFIG, such that there is a configuration file specified that
is specific to an instance of condor_dagman. The configuration file specification may instead be specified on the
condor_submit_dag command line using the -config option.

4. For some configuration variables, condor_submit_dag command line argument specifies a configuration variable.
For example, the configuration variable DAGMAN_MAX_JOBS_SUBMITTED has the corresponding command line
argument -maxjobs.

For this ordered list, configuration values specified or parsed later in the list override ones specified earlier. For example,
a value specified on the condor_submit_dag command line overrides corresponding values in any configuration file.
And, a value specified in a DAGMan-specific configuration file overrides values specified in a general HTCondor
configuration file.

The CONFIG command within the DAG input file specifies a configuration file to be used to set configuration variables
related to condor_dagman when running this DAG. The syntax for CONFIG is

CONFIG ConfigFileName

As an example, if the DAG input file contains:

CONFIG dagman.config

then the configuration values in file dagman.config will be used for this DAG. If the contents of file dagman.config
is

DAGMAN_MAX_JOBS_IDLE = 10

then this configuration is defined for this DAG.

Only a single configuration file can be specified for a given condor_dagman run. For example, if one file is specified
within a DAG input file, and a different file is specified on the condor_submit_dag command line, this is a fatal error
at submit time. The same is true if different configuration files are specified in multiple DAG input files and referenced
in a single condor_submit_dag command.

If multiple DAGs are run in a single condor_dagman run, the configuration options specified in the condor_dagman
configuration file, if any, apply to all DAGs, even if some of the DAGs specify no configuration file.

Configuration variables that are not for condor_dagman and not utilized by DaemonCore, yet are specified in a con-
dor_dagman-specific configuration file are ignored.

3.10. DAGMan Workflows 101

HTCondor Manual, Release 10.0.9

Setting ClassAd attributes in the DAG file

The SET_JOB_ATTR keyword within the DAG input file specifies an attribute/value pair to be set in the DAGMan job’s
ClassAd. The syntax for SET_JOB_ATTR is

SET_JOB_ATTR AttributeName = AttributeValue

As an example, if the DAG input file contains:

SET_JOB_ATTR TestNumber = 17

the ClassAd of the DAGMan job itself will have an attribute TestNumber with the value 17.

The attribute set by the SET_JOB_ATTR command is set only in the ClassAd of the DAGMan job itself - it is not
propagated to node jobs of the DAG.

Values with spaces can be set by surrounding the string containing a space with single or double quotes. (Note that the
quote marks themselves will be part of the value.)

Only a single attribute/value pair can be specified per SET_JOB_ATTR command. If the same attribute is specified
multiple times in the DAG (or in multiple DAGs run by the same DAGMan instance) the last-specified value is the one
that will be utilized. An attribute set in the DAG file can be overridden by specifying

-append '+<attribute> = <value>'

on the condor_submit_dag command line.

Optimization of Submission Time

condor_dagman works by watching log files for events, such as submission, termination, and going on hold. When
a new job is ready to be run, it is submitted to the condor_schedd, which needs to acquire a computing resource.
Acquisition requires the condor_schedd to contact the central manager and get a claim on a machine, and this claim
cycle can take many minutes.

Configuration variable DAGMAN_HOLD_CLAIM_TIME avoids the wait for a negotiation cycle. When set to a non zero
value, the condor_schedd keeps a claim idle, such that the condor_startd delays in shifting from the Claimed to the
Preempting state (see Policy Configuration for Execute Hosts and for Submit Hosts). Thus, if another job appears that
is suitable for the claimed resource, then the condor_schedd will submit the job directly to the condor_startd, avoiding
the wait and overhead of a negotiation cycle. This results in a speed up of job completion, especially for linear DAGs
in pools that have lengthy negotiation cycle times.

By default, DAGMAN_HOLD_CLAIM_TIME is 20, causing a claim to remain idle for 20 seconds, during which time a
new job can be submitted directly to the already-claimed condor_startd. A value of 0 means that claims are not held
idle for a running DAG. If a DAG node has no children, the value of DAGMAN_HOLD_CLAIM_TIME will be ignored; the
KeepClaimIdle attribute will not be defined in the job ClassAd of the node job, unless the job requests it using the
submit command keep_claim_idle .

102 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Single Submission of Multiple, Independent DAGs

A single use of condor_submit_dag may execute multiple, independent DAGs. Each independent DAG has its own,
distinct DAG input file. These DAG input files are command-line arguments to condor_submit_dag.

Internally, all of the independent DAGs are combined into a single, larger DAG, with no dependencies between the
original independent DAGs. As a result, any generated Rescue DAG file represents all of the original independent
DAGs with a single DAG. The file name of this Rescue DAG is based on the DAG input file listed first within the
command-line arguments. For example, assume that three independent DAGs are submitted with

$ condor_submit_dag A.dag B.dag C.dag

The first listed is A.dag. The remainder of the specialized file name adds a suffix onto this first DAG input file name,
A.dag. The suffix is _multi.rescue<XXX>, where <XXX> is substituted by the 3-digit number of the Rescue DAG
created as defined in The Rescue DAG section. The first time a Rescue DAG is created for the example, it will have the
file name A.dag_multi.rescue001.

Other files such as dagman.out and the lock file also have names based on this first DAG input file.

The success or failure of the independent DAGs is well defined. When multiple, independent DAGs are submitted with
a single command, the success of the composite DAG is defined as the logical AND of the success of each independent
DAG. This implies that failure is defined as the logical OR of the failure of any of the independent DAGs.

By default, DAGMan internally renames the nodes to avoid node name collisions. If all node names are unique, the
renaming of nodes may be disabled by setting the configuration variable DAGMAN_MUNGE_NODE_NAMES to False (see
Configuration File Entries for DAGMan).

INCLUDE

The INCLUDE command allows the contents of one DAG file to be parsed as if they were physically included in the
referencing DAG file. The syntax for INCLUDE is

INCLUDE FileName

For example, if we have two DAG files like this:

File name: foo.dag

JOB A A.sub
INCLUDE bar.dag

File name: bar.dag

JOB B B.sub
JOB C C.sub

this is equivalent to the single DAG file:

JOB A A.sub
JOB B B.sub
JOB C C.sub

3.10. DAGMan Workflows 103

HTCondor Manual, Release 10.0.9

Note that the included file must be in proper DAG syntax. Also, there are many cases where a valid included DAG file
will cause a parse error, such as the including and included files defining nodes with the same name.

INCLUDE s can be nested to any depth (be sure not to create a cycle of includes!).

Example: Using INCLUDE to simplify multiple similar workflows

One use of the INCLUDE command is to simplify the DAG files when we have a single workflow that we want to run
on a number of data sets. In that case, we can do something like this:

File name: workflow.dag
Defines the structure of the workflow

JOB Split split.sub
JOB Process00 process.sub
...
JOB Process99 process.sub
JOB Combine combine.sub
PARENT Split CHILD Process00 ... Process99
PARENT Process00 ... Process99 CHILD Combine

File name: split.sub

executable = my_split
input = $(dataset).phase1
output = $(dataset).phase2
...

File name: data57.vars

VARS Split dataset="data57"
VARS Process00 dataset="data57"
...
VARS Process99 dataset="data57"
VARS Combine dataset="data57"

File name: run_dataset57.dag

INCLUDE workflow.dag
INCLUDE data57.vars

Then, to run our workflow on dataset 57, we run the following command:

$ condor_submit_dag run_dataset57.dag

This avoids having to duplicate the JOB and PARENT/CHILD commands for every dataset - we can just re-use the
workflow.dag file, in combination with a dataset-specific vars file.

104 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Composing workflows from multiple DAG files

The organization and dependencies of the jobs within a DAG are the keys to its utility. Some workflows are natu-
rally constructed hierarchically, such that a node within a DAG is also a DAG (instead of a “simple” HTCondor job).
HTCondor DAGMan handles this situation easily, and allows DAGs to be nested to any depth.

There are two ways that DAGs can be nested within other DAGs: sub-DAGs and splices (see Advanced Features of
DAGMan)

With sub-DAGs, each DAG has its own condor_dagman job, which then becomes a node job within the higher-level
DAG. With splices, on the other hand, the nodes of the spliced DAG are directly incorporated into the higher-level
DAG. Therefore, splices do not result in additional condor_dagman instances.

A weakness in scalability exists when submitting external sub-DAGs, because each executing independent DAG re-
quires its own instance of condor_dagman to be running. The outer DAG has an instance of condor_dagman, and each
named SUBDAG has an instance of condor_dagman while it is in the HTCondor queue. The scaling issue presents
itself when a workflow contains hundreds or thousands of sub-DAGs that are queued at the same time. (In this case,
the resources (especially memory) consumed by the multiple condor_dagman instances can be a problem.) Further,
there may be many Rescue DAGs created if a problem occurs. (Note that the scaling issue depends only on how many
sub-DAGs are queued at any given time, not the total number of sub-DAGs in a given workflow; division of a large work-
flow into sequential sub-DAGs can actually enhance scalability.) To alleviate these concerns, the DAGMan language
introduces the concept of graph splicing.

Because splices are simpler in some ways than sub-DAGs, they are generally preferred unless certain features are
needed that are only available with sub-DAGs. This document: https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=
SubDagsVsSplices explains the pros and cons of splices and external sub-DAGs, and should help users decide which
alternative is better for their application.

Note that sub-DAGs and splices can be combined in a single workflow, and can be nested to any depth (but be sure to
avoid recursion, which will cause problems!).

A DAG Within a DAG Is a SUBDAG

As stated above, the SUBDAG EXTERNAL command causes the specified DAG file to be run by a separate instance
of condor_dagman, with the condor_dagman job becoming a node job within the higher-level DAG.

The syntax for the SUBDAG command is

SUBDAG EXTERNAL JobName DagFileName [DIR directory] [NOOP] [DONE]

The optional specifications of DIR, NOOP, and DONE, if used, must appear in this order within the entry. NOOP
and DONE for SUBDAG nodes have the same effect that they do for JOB nodes.

A SUBDAG node is essentially the same as any other node, except that the DAG input file for the inner DAG is
specified, instead of the HTCondor submit file. The keyword EXTERNAL means that the SUBDAG is run within its
own instance of condor_dagman.

Since more than one DAG is being discussed, here is terminology introduced to clarify which DAG is which. Reuse the
example diamond-shaped DAG as given in the following description. Assume that node B of this diamond-shaped DAG
will itself be a DAG. The DAG of node B is called a SUBDAG, inner DAG, or lower-level DAG. The diamond-shaped
DAG is called the outer or top-level DAG.

Work on the inner DAG first. Here is a very simple linear DAG input file used as an example of the inner DAG.

3.10. DAGMan Workflows 105

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=SubDagsVsSplices
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=SubDagsVsSplices

HTCondor Manual, Release 10.0.9

File name: inner.dag

JOB X X.submit
JOB Y Y.submit
JOB Z Z.submit
PARENT X CHILD Y
PARENT Y CHILD Z

The HTCondor submit description file, used by condor_dagman, corresponding to inner.dag will be named inner.
dag.condor.sub. The DAGMan submit description file is always named <DAG file name>.condor.sub. Each
DAG or SUBDAG results in the submission of condor_dagman as an HTCondor job, and condor_submit_dag creates
this submit description file.

The preferred specification of the DAG input file for the outer DAG is

File name: diamond.dag

JOB A A.submit
SUBDAG EXTERNAL B inner.dag
JOB C C.submit
JOB D D.submit
PARENT A CHILD B C
PARENT B C CHILD D

Within the outer DAG’s input file, the SUBDAG command specifies a special case of a JOB node, where the job is
itself a DAG.

One of the benefits of using the SUBDAG feature is that portions of the overall workflow can be constructed and modi-
fied during the execution of the DAG (a SUBDAG file doesn’t have to exist until just before it is submitted). A drawback
can be that each SUBDAG causes its own distinct job submission of condor_dagman, leading to a larger number of
jobs, together with their potential need of carefully constructed policy configuration to throttle node submission or
execution (because each SUBDAG has its own throttles).

Here are details that affect SUBDAGs:

• Nested DAG Submit Description File Generation

There are three ways to generate the <DAG file name>.condor.sub file of a SUBDAG:

– Lazily (the default in HTCondor version 7.5.2 and later versions)

– Eagerly (the default in HTCondor versions 7.4.1 through 7.5.1)

– Manually (the only way prior to version HTCondor version 7.4.1)

When the <DAG file name>.condor.sub file is generated lazily, this file is generated immediately before the
SUBDAG job is submitted. Generation is accomplished by running

$ condor_submit_dag -no_submit

on the DAG input file specified in the SUBDAG entry. This is the default behavior. There are advantages to this
lazy mode of submit description file creation for the SUBDAG:

– The DAG input file for a SUBDAG does not have to exist until the SUBDAG is ready to run, so this file can
be dynamically created by earlier parts of the outer DAG or by the PRE script of the node containing the
SUBDAG.

– It is now possible to have SUBDAGs within splices. That is not possible with eager submit description file
creation, because condor_submit_dag does not understand splices.

106 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

The main disadvantage of lazy submit file generation is that a syntax error in the DAG input file of a SUBDAG
will not be discovered until the outer DAG tries to run the inner DAG.

When <DAG file name>.condor.sub files are generated eagerly, condor_submit_dag runs itself recursively
(with the -no_submit option) on each SUBDAG, so all of the <DAG file name>.condor.sub files are gen-
erated before the top-level DAG is actually submitted. To generate the <DAG file name>.condor.sub files
eagerly, pass the -do_recurse flag to condor_submit_dag; also set the DAGMAN_GENERATE_SUBDAG_SUBMITS
configuration variable to False, so that condor_dagman does not re-run condor_submit_dag at run time thereby
regenerating the submit description files.

To generate the .condor.sub files manually, run

$ condor_submit_dag -no_submit

on each lower-level DAG file, before running condor_submit_dag on the top-level DAG file; also set the
DAGMAN_GENERATE_SUBDAG_SUBMITS configuration variable to False, so that condor_dagman does not re-
run condor_submit_dag at run time. The main reason for generating the <DAG file name>.condor.sub files
manually is to set options for the lower-level DAG that one would not otherwise be able to set An example of
this is the -insert_sub_file option. For instance, using the given example do the following to manually generate
HTCondor submit description files:

$ condor_submit_dag -no_submit -insert_sub_file fragment.sub inner.dag
$ condor_submit_dag diamond.dag

Note that most condor_submit_dag command-line flags have corresponding configuration variables, so we en-
courage the use of per-DAG configuration files, especially in the case of nested DAGs. This is the easiest way to
set different options for different DAGs in an overall workflow.

It is possible to combine more than one method of generating the <DAG file name>.condor.sub
files. For example, one might pass the -do_recurse flag to condor_submit_dag, but leave the
DAGMAN_GENERATE_SUBDAG_SUBMITS configuration variable set to the default of True. Doing this would pro-
vide the benefit of an immediate error message at submit time, if there is a syntax error in one of the inner
DAG input files, but the lower-level <DAG file name>.condor.sub files would still be regenerated before
each nested DAG is submitted.

The values of the following command-line flags are passed from the top-level condor_submit_dag instance to
any lower-level condor_submit_dag instances. This occurs whether the lower-level submit description files are
generated lazily or eagerly:

– -verbose

– -force

– -notification

– -allowlogerror

– -dagman

– -usedagdir

– -outfile_dir

– -oldrescue

– -autorescue

– -dorescuefrom

– -allowversionmismatch

– -no_recurse/do_recurse

3.10. DAGMan Workflows 107

HTCondor Manual, Release 10.0.9

– -update_submit

– -import_env

– -suppress_notification

– -priority

– -dont_use_default_node_log

The values of the following command-line flags are preserved in any already-existing lower-level DAG submit
description files:

– -maxjobs

– -maxidle

– -maxpre

– -maxpost

– -debug

Other command-line arguments are set to their defaults in any lower-level invocations of condor_submit_dag.

The -force option will cause existing DAG submit description files to be overwritten without preserving any
existing values.

• Submission of the outer DAG

The outer DAG is submitted as before, with the command

$ condor_submit_dag diamond.dag

• Interaction with Rescue DAGs

The use of new-style Rescue DAGs is now the default. With new-style rescue DAGs, the appropriate rescue
DAG(s) will be run automatically if there is a failure somewhere in the workflow. For example (given the DAGs
in the example at the beginning of the SUBDAG section), if one of the nodes in inner.dag fails, this will produce
a Rescue DAG for inner.dag (named inner.dag.rescue.001). Then, since inner.dag failed, node B of
diamond.dag will fail, producing a Rescue DAG for diamond.dag (named diamond.dag.rescue.001, etc.).
If the command

$ condor_submit_dag diamond.dag

is re-run, the most recent outer Rescue DAG will be run, and this will re-run the inner DAG, which will in turn
run the most recent inner Rescue DAG.

• File Paths

Remember that, unless the DIR keyword is used in the outer DAG, the inner DAG utilizes the current working
directory when the outer DAG is submitted. Therefore, all paths utilized by the inner DAG file must be specified
accordingly.

108 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

DAG Splicing

As stated above, the SPLICE command causes the nodes of the spliced DAG to be directly incorporated into the higher-
level DAG (the DAG containing the SPLICE command).

The syntax for the SPLICE command is

SPLICE SpliceName DagFileName [DIR directory]

A splice is a named instance of a subgraph which is specified in a separate DAG file. The splice is treated as an
entity for dependency specification in the including DAG. (Conceptually, a splice is treated as a node within the DAG
containing the SPLICE command, although there are some limitations, which are discussed below. This means, for
example, that splices can have parents and children.) A splice can also be incorporated into an including DAG without
any dependencies; it is then considered a disjoint DAG within the including DAG.

The same DAG file can be reused as differently named splices, each one incorporating a copy of the dependency graph
(and nodes therein) into the including DAG.

The nodes within a splice are scoped according to a hierarchy of names associated with the splices, as the splices are
parsed from the top level DAG file. The scoping character to describe the inclusion hierarchy of nodes into the top level
dag is ‘+’. (In other words, if a splice named “SpliceX” contains a node named “NodeY”, the full node name once the
DAGs are parsed is “SpliceX+NodeY”. This character is chosen due to a restriction in the allowable characters which
may be in a file name across the variety of platforms that HTCondor supports. In any DAG input file, all splices must
have unique names, but the same splice name may be reused in different DAG input files.

HTCondor does not detect nor support splices that form a cycle within the DAG. A DAGMan job that causes a cyclic
inclusion of splices will eventually exhaust available memory and crash.

The SPLICE command in a DAG input file creates a named instance of a DAG as specified in another file as an entity
which may have PARENT and CHILD dependencies associated with other splice names or node names in the including
DAG file.

The following series of examples illustrate potential uses of splicing. To simplify the examples, presume that each and
every job uses the same, simple HTCondor submit description file:

BEGIN SUBMIT FILE submit.condor
executable = /bin/echo
arguments = OK
universe = vanilla
output = $(jobname).out
error = $(jobname).err
log = submit.log
notification = NEVER
queue
END SUBMIT FILE submit.condor

This first simple example splices a diamond-shaped DAG in between the two nodes of a top level DAG. Here is the
DAG input file for the diamond-shaped DAG:

BEGIN DAG FILE diamond.dag
JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

(continues on next page)

3.10. DAGMan Workflows 109

HTCondor Manual, Release 10.0.9

(continued from previous page)

JOB C submit.condor
VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

PARENT A CHILD B C
PARENT B C CHILD D
END DAG FILE diamond.dag

The top level DAG incorporates the diamond-shaped splice:

BEGIN DAG FILE toplevel.dag
JOB X submit.condor
VARS X jobname="$(JOB)"

JOB Y submit.condor
VARS Y jobname="$(JOB)"

This is an instance of diamond.dag, given the symbolic name DIAMOND
SPLICE DIAMOND diamond.dag

Set up a relationship between the nodes in this dag and the splice

PARENT X CHILD DIAMOND
PARENT DIAMOND CHILD Y

END DAG FILE toplevel.dag

The following example illustrates the resulting top level DAG and the dependencies produced. Notice the naming of
nodes scoped with the splice name. This hierarchy of splice names assures unique names associated with all nodes.

The next example illustrates the starting point for a more complex example. The DAG input file X.dag describes this
X-shaped DAG. The completed example displays more of the spatial constructs provided by splices. Pay particular
attention to the notion that each named splice creates a new graph, even when the same DAG input file is specified.

BEGIN DAG FILE X.dag

JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

JOB C submit.condor
VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

JOB E submit.condor
VARS E jobname="$(JOB)"

(continues on next page)

110 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Fig. 3: The diamond-shaped DAG spliced between two nodes.

3.10. DAGMan Workflows 111

HTCondor Manual, Release 10.0.9

(continued from previous page)

JOB F submit.condor
VARS F jobname="$(JOB)"

JOB G submit.condor
VARS G jobname="$(JOB)"

Make an X-shaped dependency graph
PARENT A B C CHILD D
PARENT D CHILD E F G

END DAG FILE X.dag

Fig. 4: The X-shaped DAG.

File s1.dag continues the example, presenting the DAG input file that incorporates two separate splices of the X-shaped
DAG. The next description illustrates the resulting DAG.

BEGIN DAG FILE s1.dag

JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

name two individual splices of the X-shaped DAG
SPLICE X1 X.dag
SPLICE X2 X.dag

Define dependencies
A must complete before the initial nodes in X1 can start
PARENT A CHILD X1

(continues on next page)

112 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

(continued from previous page)

All final nodes in X1 must finish before
the initial nodes in X2 can begin
PARENT X1 CHILD X2
All final nodes in X2 must finish before B may begin.
PARENT X2 CHILD B

END DAG FILE s1.dag

The top level DAG in the hierarchy of this complex example is described by the DAG input file toplevel.dag, which
illustrates the final DAG. Notice that the DAG has two disjoint graphs in it as a result of splice S3 not having any
dependencies associated with it in this top level DAG.

BEGIN DAG FILE toplevel.dag

JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

JOB C submit.condor
VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

a diamond-shaped DAG
PARENT A CHILD B C
PARENT B C CHILD D

This splice of the X-shaped DAG can only run after
the diamond dag finishes
SPLICE S2 X.dag
PARENT D CHILD S2

Since there are no dependencies for S3,
the following splice is disjoint
SPLICE S3 s1.dag

END DAG FILE toplevel.dag

Splices and rescue DAGs

Because the nodes of a splice are directly incorporated into the DAG containing the SPLICE command, splices do not
generate their own rescue DAGs, unlike SUBDAG EXTERNALs.

The DIR option with splices

The DIR option specifies a working directory for a splice, from which the splice will be parsed and the jobs within the
splice submitted. The directory associated with the splice’s DIR specification will be propagated as a prefix to all nodes
in the splice and any included splices. If a node already has a DIR specification, then the splice’s DIR specification will
be a prefix to the node’s, separated by a directory separator character. Jobs in included splices with an absolute path

3.10. DAGMan Workflows 113

HTCondor Manual, Release 10.0.9

Fig. 5: The DAG described by s1.dag.
114 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Fig. 6: The complex splice example DAG.

3.10. DAGMan Workflows 115

HTCondor Manual, Release 10.0.9

for their DIR specification will have their DIR specification untouched. Note that a DAG containing DIR specifications
cannot be run in conjunction with the -usedagdir command-line argument to condor_submit_dag.

A “full” rescue DAG generated by a DAG run with the -usedagdir argument will contain DIR specifications, so such a
rescue DAG must be run without the -usedagdir argument. (Note that “full” rescue DAGs are no longer the default.)

Limitation: splice DAGs must exist at submit time

Unlike the DAG files referenced in a SUBDAG EXTERNAL command, DAG files referenced in a SPLICE command
must exist when the DAG containing the SPLICE command is submitted. (Note that, if a SPLICE is contained within
a sub-DAG, the splice DAG must exist at the time that the sub-DAG is submitted, not when the top-most DAG is
submitted, so the splice DAG can be created by a part of the workflow that runs before the relevant sub-DAG.)

Limitation: Splices and PRE or POST Scripts

A PRE or POST script may not be specified for a splice (however, nodes within a spliced DAG can have PRE and
POST scripts). (The reason for this is that, when the DAG is parsed, the splices are also parsed and the splice nodes
are directly incorporated into the DAG containing the SPLICE command. Therefore, once parsing is complete, there
are no actual nodes corresponding to the splice itself to which to “attach” the PRE or POST scripts.)

To achieve the desired effect of having a PRE script associated with a splice, introduce a new NOOP node into the DAG
with the splice as a dependency. Attach the PRE script to the NOOP node.

BEGIN DAG FILE example1.dag

Names a node with no associated node job, a NOOP node
Note that the file noop.submit does not need to exist
JOB OnlyPreNode noop.submit NOOP

Attach a PRE script to the NOOP node
SCRIPT PRE OnlyPreNode prescript.sh

Define the splice
SPLICE TheSplice thenode.dag

Define the dependency
PARENT OnlyPreNode CHILD TheSplice

END DAG FILE example1.dag

The same technique is used to achieve the effect of having a POST script associated with a splice. Introduce a new
NOOP node into the DAG as a child of the splice, and attach the POST script to the NOOP node.

BEGIN DAG FILE example2.dag

Names a node with no associated node job, a NOOP node
Note that the file noop.submit does not need to exist.
JOB OnlyPostNode noop.submit NOOP

Attach a POST script to the NOOP node
SCRIPT POST OnlyPostNode postscript.sh

Define the splice
SPLICE TheSplice thenode.dag

Define the dependency
PARENT TheSplice CHILD OnlyPostNode

(continues on next page)

116 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

(continued from previous page)

END DAG FILE example2.dag

Limitation: Splices and the RETRY of a Node, use of VARS, or use of PRIORITY

A RETRY, VARS or PRIORITY command cannot be specified for a SPLICE; however, individual nodes within a
spliced DAG can have a RETRY, VARS or PRIORITY specified.

Here is an example showing a DAG that will not be parsed successfully:

top level DAG input file
JOB A a.sub
SPLICE B b.dag
PARENT A CHILD B

cannot work, as B is not a node in the DAG once
splice B is incorporated
RETRY B 3
VARS B dataset="10"
PRIORITY B 20

The following example will work:

top level DAG input file
JOB A a.sub
SPLICE B b.dag
PARENT A CHILD B

file: b.dag
JOB X x.sub
RETRY X 3
VARS X dataset="10"
PRIORITY X 20

When RETRY is desired on an entire subgraph of a workflow, sub-DAGs (see above) must be used instead of splices.

Here is the same example, now defining job B as a SUBDAG, and effecting RETRY on that SUBDAG.

top level DAG input file
JOB A a.sub
SUBDAG EXTERNAL B b.dag
PARENT A CHILD B

RETRY B 3

Limitation: The Interaction of Categories and MAXJOBS with Splices

Categories normally refer only to nodes within a given splice. All of the assignments of nodes to a category, and
the setting of the category throttle, should be done within a single DAG file. However, it is now possible to have
categories include nodes from within more than one splice. To do this, the category name is prefixed with the ‘+’
(plus) character. This tells DAGMan that the category is a cross-splice category. Towards deeper understanding, what
this really does is prevent renaming of the category when the splice is incorporated into the upper-level DAG. The
MAXJOBS specification for the category can appear in either the upper-level DAG file or one of the splice DAG files.
It probably makes the most sense to put it in the upper-level DAG file.

Here is an example which applies a single limitation on submitted jobs, identifying the category with +init.

3.10. DAGMan Workflows 117

HTCondor Manual, Release 10.0.9

relevant portion of file name: upper.dag

SPLICE A splice1.dag
SPLICE B splice2.dag

MAXJOBS +init 2

relevant portion of file name: splice1.dag

JOB C C.sub
CATEGORY C +init
JOB D D.sub
CATEGORY D +init

relevant portion of file name: splice2.dag

JOB X X.sub
CATEGORY X +init
JOB Y Y.sub
CATEGORY Y +init

For both global and non-global category throttles, settings at a higher level in the DAG override settings at a lower
level. In this example:

relevant portion of file name: upper.dag

SPLICE A lower.dag

MAXJOBS A+catX 10
MAXJOBS +catY 2

relevant portion of file name: lower.dag

MAXJOBS catX 5
MAXJOBS +catY 1

the resulting throttle settings are 2 for the +catY category and 10 for the A+catX category in splice. Note that non-
global category names are prefixed with their splice name(s), so to refer to a non-global category at a higher level, the
splice name must be included.

DAG Splice Connections

In the “default” usage of splices described above, when one splice is the parent of another splice, all “terminal” nodes
(nodes with no children) of the parent splice become parents of all “initial” nodes (nodes with no parents) of the child
splice. The CONNECT, PIN_IN, and PIN_OUT commands (added in version 8.5.7) allow more flexible dependencies
between splices. (The terms PIN_IN and PIN_OUT were chosen because of the hardware analogy.)

The syntax for CONNECT is

118 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

CONNECT OutputSpliceName InputSpliceName

The syntax for PIN_IN is

PIN_IN NodeName PinNumber

The syntax for PIN_OUT is

PIN_OUT NodeName PinNumber

All output splice nodes connected to a given pin_out will become parents of all input splice nodes connected to the
corresponding pin_in. (The pin_ins and pin_outs exist only to create the correct parent/child dependencies between
nodes. Once the DAG is parsed, there are no actual DAG objects corresponding to the pin_ins and pin_outs.)

Any given splice can contain both PIN_IN and PIN_OUT definitions, and can be both an input and output splice
in different CONNECT commands. Furthermore, a splice can appear in any number of CONNECT commands (for
example, a given splice could be the output splice in two CONNECT commands that have different input splices). It is
not an error for a splice to have PIN_IN or PIN_OUT definitions that are not associated with a CONNECT command
- such PIN_IN and PIN_OUT commands are simply ignored.

Note that the pin_ins and pin_outs must be defined within the relevant splices (this can be done with INCLUDE com-
mands), not in the DAG that connects the splices.

There are a number of restrictions on splice connections:

• Connections can be made only between two splices; “regular” nodes or sub-DAGs cannot be used in a CONNECT
command.

• Pin_ins and pin_outs must be numbered consecutively starting at 1.

• The pin_outs of the output splice in a connect command must match the pin_ins of the input splice in the com-
mand.

• All “initial” nodes (nodes with no parents) of an input splice used in a CONNECT command must be connected
to a pin_in.

Violating any of these restrictions will result in an error during the parsing of the DAG files.

Note: it is probably desirable for any “terminal” node (a node with no children) in the output splice to be connected to
a pin_out - but this is not required.

Here is a simple example:

File: top.dag
SPLICE A spliceA.dag
SPLICE B spliceB.dag
SPLICE C spliceC.dag

CONNECT A B
CONNECT B C

File: spliceA.dag
JOB A1 A1.sub
JOB A2 A2.sub

PIN_OUT A1 1
PIN_OUT A2 2

3.10. DAGMan Workflows 119

HTCondor Manual, Release 10.0.9

File: spliceB.dag
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB B4 B4.sub

PIN_IN B1 1
PIN_IN B2 1
PIN_IN B3 2
PIN_IN B4 2

PIN_OUT B1 1
PIN_OUT B2 2
PIN_OUT B3 3
PIN_OUT B4 4

File: spliceC.dag
JOB C1 C1.sub

PIN_IN C1 1
PIN_IN C1 2
PIN_IN C1 3
PIN_IN C1 4

In this example, node A1 will be the parent of B1 and B2; node A2 will be the parent of B3 and B4; and nodes B1, B2,
B3 and B4 will all be parents of C1.

A diagram of the above example:

PROVISIONER node

A PROVISIONER node is a single and special node that is always run at the beginning of a DAG. It can be used to
provision resources (ie. Amazon EC2 instances, in-memory database servers) that can then be used by the remainder
of the nodes in the workflow.

The syntax used for the PROVISIONER command is

PROVISIONER JobName SubmitDescriptionFileName

When a PROVISIONER is defined in a DAG, it gets run at the beginning of the DAG, and no other nodes are run
until the PROVISIONER has advertised that it is ready. It does this by setting the ProvisionerState attribute in its
job classad to the enumerated value ProvisionerState::PROVISIONING_COMPLETE (currently: 2). Once DAGMan
sees that it is ready, it will start running other nodes in the DAG as usual. At this point the PROVISIONER job continues
to run, typically sleeping and waiting while other nodes in the DAG use its resources.

A PROVISIONER runs for a set amount of time defined in its job. It does not get terminated automatically at the end
of a DAG workflow. The expectation is that it needs to explicitly deprovision any resources, such as expensive cloud
computing instances that should not be allowed to run indefinitely.

120 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Fig. 7: Diagram of the splice connect example

3.10. DAGMan Workflows 121

HTCondor Manual, Release 10.0.9

SERVICE node

A SERVICE node is a special type of node that is always run at the beginning of a DAG. These are typically used to
run tasks that need to run alongside a DAGMan workflow (ie. progress monitoring) without any direct dependencies
to the other nodes in the workflow.

The syntax used for the SERVICE command is

SERVICE ServiceName SubmitDescriptionFileName

When a SERVICE is defined in a DAG, it gets started at the beginning of the workflow. There is no guarantee that it
will start running before any of the other nodes, although running it directly from the access point using universe =
local or universe = scheduler will almost always make this go first.

A SERVICE node runs on a best-effort basis. If this node fails to submit correctly, this will not register as an error
and the DAG workflow will continue normally.

If a DAGMan workflow finishes while there are SERVICE nodes still running, it will shut these down and then exit the
workflow successfully.

FINAL node

A FINAL node is a single and special node that is always run at the end of the DAG, even if previous nodes in the DAG
have failed. A FINAL node can be used for tasks such as cleaning up intermediate files and checking the output of
previous nodes. The FINAL command in the DAG input file specifies a node job to be run at the end of the DAG.

The syntax used for the FINAL command is

FINAL JobName SubmitDescriptionFileName [DIR directory] [NOOP]

The FINAL node within the DAG is identified by JobName, and the HTCondor job is described by the contents of the
HTCondor submit description file given by SubmitDescriptionFileName.

The keywords DIR and NOOP are as detailed in Describing Workflows with DAGMan. If both DIR and NOOP are
used, they must appear in the order shown within the syntax specification.

There may only be one FINAL node in a DAG. A parse error will be logged by the condor_dagman job in the dagman.
out file, if more than one FINAL node is specified.

The FINAL node is virtually always run. It is run if the condor_dagman job is removed with condor_rm. The only case
in which a FINAL node is not run is if the configuration variable DAGMAN_STARTUP_CYCLE_DETECT is set to True,
and a cycle is detected at start up time. If DAGMAN_STARTUP_CYCLE_DETECT is set to False and a cycle is detected
during the course of the run, the FINAL node will be run.

The success or failure of the FINAL node determines the success or failure of the entire DAG, overriding the status
of all previous nodes. This includes any status specified by any ABORT-DAG-ON specification that has taken effect.
If some nodes of a DAG fail, but the FINAL node succeeds, the DAG will be considered successful. Therefore, it is
important to be careful about setting the exit status of the FINAL node.

The $DAG_STATUS and $FAILED_COUNT macros can be used both as PRE and POST script arguments, and in node job
submit description files. As an example of this, here are the partial contents of the DAG input file,

FINAL final_node final_node.sub
SCRIPT PRE final_node final_pre.pl $DAG_STATUS $FAILED_COUNT

122 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

and here are the partial contents of the submit description file, final_node.sub

arguments = "$(DAG_STATUS) $(FAILED_COUNT)"

If there is a FINAL node specified for a DAG, it will be run at the end of the workflow. If this FINAL node must not
do anything in certain cases, use the $DAG_STATUS and $FAILED_COUNT macros to take appropriate actions. Here is
an example of that behavior. It uses a PRE script that aborts if the DAG has been removed with condor_rm, which, in
turn, causes the FINAL node to be considered failed without actually submitting the HTCondor job specified for the
node. Partial contents of the DAG input file:

FINAL final_node final_node.sub
SCRIPT PRE final_node final_pre.pl $DAG_STATUS

and partial contents of the Perl PRE script, final_pre.pl:

#!/usr/bin/env perl

if ($ARGV[0] eq 4) {
exit(1);

}

There are restrictions on the use of a FINAL node. The DONE option is not allowed for a FINAL node. And, a FINAL
node may not be referenced in any of the following specifications:

• PARENT, CHILD

• RETRY

• ABORT-DAG-ON

• PRIORITY

• CATEGORY

As of HTCondor version 8.3.7, DAGMan allows at most two submit attempts of a FINAL node, if the DAG has been
removed from the queue with condor_rm.

The ALL_NODES option

In the following commands, a specific node name can be replaced by the option ALL_NODES:

• SCRIPT

• PRE_SKIP

• RETRY

• ABORT-DAG-ON

• VARS

• PRIORITY

• CATEGORY

This will cause the given command to apply to all nodes (except any FINAL node) in that DAG.

The ALL_NODES never applies to a FINAL node. (If the ALL_NODES option is used in a DAG that has a FINAL
node, the dagman.out file will contain messages noting that the FINAL node is skipped when parsing the relevant
commands.)

3.10. DAGMan Workflows 123

HTCondor Manual, Release 10.0.9

The ALL_NODES option is case-insensitive.

It is important to note that the ALL_NODES option does not apply across splices and sub-DAGs. In other words, an
ALL_NODES option within a splice or sub-DAG will apply only to nodes within that splice or sub-DAG; also, an
ALL_NODES option in a parent DAG willPRIORITY DAG (again, except any FINAL node).

As of version 8.5.8, the ALL_NODES option cannot be used when multiple DAG files are specified on the con-
dor_submit_dag command line. Hopefully this limitation will be fixed in a future release.

When multiple commands (whether using the ALL_NODES option or not) set a given property of a DAG node, the last
relevant command overrides earlier commands, as shown in the following examples:

For example, in this DAG:

JOB A node.sub
VARS A name="A"
VARS ALL_NODES name="X"

the value of name for node A will be “X”.

In this DAG:

JOB A node.sub
VARS A name="A"
VARS ALL_NODES name="X"
VARS A name="foo"

the value of name for node A will be “foo”.

Here is an example DAG using the ALL_NODES option:

File: all_ex.dag
JOB A node.sub
JOB B node.sub
JOB C node.sub

SCRIPT PRE ALL_NODES my_script $JOB

VARS ALL_NODES name="$(JOB)"

This overrides the above VARS command for node B.
VARS B name="nodeB"

RETRY all_nodes 3

3.10.10 The Rescue DAG

Any time a DAG exits unsuccessfully, DAGMan generates a Rescue DAG. The Rescue DAG records the state of the
DAG, with information such as which nodes completed successfully, and the Rescue DAG will be used when the DAG
is again submitted. With the Rescue DAG, nodes that have already successfully completed are not re-run.

There are a variety of circumstances under which a Rescue DAG is generated. If a node in the DAG fails, the DAG
does not exit immediately; the remainder of the DAG is continued until no more forward progress can be made based
on the DAG’s dependencies. At this point, DAGMan produces the Rescue DAG and exits. A Rescue DAG is produced
on Unix platforms if the condor_dagman job itself is removed with condor_rm. On Windows, a Rescue DAG is not

124 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

generated in this situation, but re-submitting the original DAG will invoke a lower-level recovery functionality, and it
will produce similar behavior to using a Rescue DAG. A Rescue DAG is produced when a node sets and triggers an
ABORT-DAG-ON event with a non-zero return value. A zero return value constitutes successful DAG completion, and
therefore a Rescue DAG is not generated.

By default, if a Rescue DAG exists, it will be used when the DAG is submitted specifying the original DAG input
file. If more than one Rescue DAG exists, the newest one will be used. By using the Rescue DAG, DAGMan will
avoid re-running nodes that completed successfully in the previous run. Note that passing the -force option to con-
dor_submit_dag or condor_dagman will cause condor_dagman to not use any existing rescue DAG. This means
that previously-completed node jobs will be re-run.

The granularity defining success or failure in the Rescue DAG is the node. For a node that fails, all parts of the node
will be re-run, even if some parts were successful the first time. For example, if a node’s PRE script succeeds, but then
the node’s HTCondor job cluster fails, the entire node, including the PRE script, will be re-run. A job cluster may result
in the submission of multiple HTCondor jobs. If one of the jobs within the cluster fails, the node fails. Therefore, the
Rescue DAG will re-run the entire node, implying the submission of the entire cluster of jobs, not just the one(s) that
failed.

Statistics about the failed DAG execution are presented as comments at the beginning of the Rescue DAG input file.

Rescue DAG Naming

The file name of the Rescue DAG is obtained by appending the string .rescue<XXX> to the original DAG in-
put file name. Values for <XXX> start at 001 and continue to 002, 003, and beyond. The configuration variable
DAGMAN_MAX_RESCUE_NUM sets a maximum value for <XXX>; see Configuration File Entries for DAGMan for the
complete definition of this configuration variable. If you hit the DAGMAN_MAX_RESCUE_NUM limit, the last Rescue DAG
file is overwritten if the DAG fails again.

If a Rescue DAG exists when the original DAG is re-submitted, the Rescue DAG with the largest magnitude value for
<XXX> will be used, and its usage is implied.

Example

Here is an example showing file naming and DAG submission for the case of a failed DAG. The initial DAG is submitted
with

$ condor_submit_dag my.dag

A failure of this DAG results in the Rescue DAG named my.dag.rescue001. The DAG is resubmitted using the same
command:

$ condor_submit_dag my.dag

This resubmission of the DAG uses the Rescue DAG file my.dag.rescue001, because it exists. Failure of this Rescue
DAG results in another Rescue DAG called my.dag.rescue002. If the DAG is again submitted, using the same
command as with the first two submissions, but not repeated here, then this third submission uses the Rescue DAG file
my.dag.rescue002, because it exists, and because the value 002 is larger in magnitude than 001.

3.10. DAGMan Workflows 125

HTCondor Manual, Release 10.0.9

Backtracking to an Older Rescue DAG

To explicitly specify a particular Rescue DAG, use the optional command-line argument -dorescuefrom with con-
dor_submit_dag. Note that this will have the side effect of renaming existing Rescue DAG files with larger magnitude
values of <XXX>. Each renamed file has its existing name appended with the string .old. For example, assume that
my.dag has failed 4 times, resulting in the Rescue DAGs named my.dag.rescue001, my.dag.rescue002, my.dag.
rescue003, and my.dag.rescue004. A decision is made to re-run using my.dag.rescue002. The submit command
is

$ condor_submit_dag -dorescuefrom 2 my.dag

The DAG specified by the DAG input file my.dag.rescue002 is submitted. And, the existing Rescue DAG my.
dag.rescue003 is renamed to be my.dag.rescue003.old, while the existing Rescue DAG my.dag.rescue004 is
renamed to be my.dag.rescue004.old.

Special Cases

Note that if multiple DAG input files are specified on the condor_submit_dag command line, a single Rescue DAG
encompassing all of the input DAGs is generated. A DAG file containing splices also produces a single Rescue DAG
file. On the other hand, a DAG containing sub-DAGs will produce a separate Rescue DAG for each sub-DAG that is
queued (and for the top-level DAG).

If the Rescue DAG file is generated before all retries of a node are completed, then the Rescue DAG file will also contain
RETRY entries. The number of retries will be set to the appropriate remaining number of retries. The configuration
variable DAGMAN_RESET_RETRIES_UPON_RESCUE (Configuration File Entries for DAGMan), controls whether or not
node retries are reset in a Rescue DAG.

Partial versus Full Rescue DAGs

As of HTCondor version 7.7.2, the Rescue DAG file is a partial DAG file, not a complete DAG input file as in the past.

A partial Rescue DAG file contains only information about which nodes are done, and the number of retries remaining
for nodes with retries. It does not contain information such as the actual DAG structure and the specification of the
submit description file for each node job. Partial Rescue DAGs are automatically parsed in combination with the
original DAG input file, which contains information about the DAG structure. This updated implementation means that
a change in the original DAG input file, such as specifying a different submit description file for a node job, will take
effect when running the partial Rescue DAG. In other words, you can fix mistakes in the original DAG file while still
gaining the benefit of using the Rescue DAG.

To use a partial Rescue DAG, you must re-run condor_submit_dag on the original DAG file, not the Rescue DAG file.

Note that the existence of a DONE specification in a partial Rescue DAG for a node that no longer exists in the original
DAG input file is a warning, as opposed to an error, unless the DAGMAN_USE_STRICT configuration variable is set to a
value of 1 or higher (which is now the default). Comment out the line with DONE in the partial Rescue DAG file to
avoid a warning or error.

The previous (prior to version 7.7.2) behavior of producing full DAG input file as the Rescue DAG is obtained by setting
the configuration variable DAGMAN_WRITE_PARTIAL_RESCUE to the non-default value of False. Note that the option
to generate full Rescue DAGs is likely to disappear some time during the 8.3 series.

To run a full Rescue DAG, either one left over from an older version of DAGMan, or one produced by setting
DAGMAN_WRITE_PARTIAL_RESCUE to False, directly specify the full Rescue DAG file on the command line instead
of the original DAG file. For example:

$ condor_submit_dag my.dag.rescue002

126 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Attempting to re-submit the original DAG file, if the Rescue DAG file is a complete DAG, will result in a parse failure.

Rescue DAG Generated When There Are Parse Errors

Starting in HTCondor version 7.5.5, passing the -DumpRescue option to either condor_dagman or condor_submit_dag
causes condor_dagman to output a Rescue DAG file, even if the parsing of a DAG input file fails. In this parse failure
case, condor_dagman produces a specially named Rescue DAG containing whatever it had successfully parsed up until
the point of the parse error. This Rescue DAG may be useful in debugging parse errors in complex DAGs, especially
ones using splices. This incomplete Rescue DAG is not meant to be used when resubmitting a failed DAG. Note that
this incomplete Rescue DAG generated by the -DumpRescue option is a full DAG input file, as produced by versions
of HTCondor prior to HTCondor version 7.7.2. It is not a partial Rescue DAG file, regardless of the value of the
configuration variable DAGMAN_WRITE_PARTIAL_RESCUE .

To avoid confusion between this incomplete Rescue DAG generated in the case of a parse failure and a usable Rescue
DAG, a different name is given to the incomplete Rescue DAG. The name appends the string .parse_failed to the
original DAG input file name. Therefore, if the submission of a DAG with

$ condor_submit_dag my.dag

has a parse failure, the resulting incomplete Rescue DAG will be named my.dag.parse_failed.

To further prevent one of these incomplete Rescue DAG files from being used, a line within the file contains the single
command REJECT. This causes condor_dagman to reject the DAG, if used as a DAG input file. This is done because
the incomplete Rescue DAG may be a syntactically correct DAG input file. It will be incomplete relative to the original
DAG, such that if the incomplete Rescue DAG could be run, it could erroneously be perceived as having successfully
executed the desired workflow, when, in fact, it did not.

3.10.11 DAG Recovery

DAG recovery restores the state of a DAG upon resubmission. Recovery is accomplished by reading the .nodes.log
file that is used to enforce the dependencies of the DAG. The DAG can then continue towards completion.

Recovery is different than a Rescue DAG. Recovery is appropriate when no Rescue DAG has been created. There will
be no Rescue DAG if the machine running the condor_dagman job crashes, or if the condor_schedd daemon crashes,
or if the condor_dagman job crashes, or if the condor_dagman job is placed on hold.

Much of the time, when a not-completed DAG is re-submitted, it will automatically be placed into recovery mode due
to the existence and contents of a lock file created as the DAG is first run. In recovery mode, the .nodes.log is used
to identify nodes that have completed and should not be re-submitted.

DAGMan can be told to work in recovery mode by including the -DoRecovery option on the command line, as in the
example

$ condor_submit_dag diamond.dag -DoRecovery

where diamond.dag is the name of the DAG input file.

When debugging a DAG in which something has gone wrong, a first determination is whether a resubmission will use
a Rescue DAG or benefit from recovery. The existence of a Rescue DAG means that recovery would be inappropriate.
A Rescue DAG is has a file name ending in .rescue<XXX>, where <XXX> is replaced by a 3-digit number.

Determine if a DAG ever completed (independent of whether it was successful or not) by looking at the last lines of
the .dagman.out file. If there is a line similar to

(condor_DAGMAN) pid 445 EXITING WITH STATUS 0

3.10. DAGMan Workflows 127

HTCondor Manual, Release 10.0.9

then the DAG completed. This line explains that the condor_dagman job finished normally. If there is no line similar
to this at the end of the .dagman.out file, and output from condor_q shows that the condor_dagman job for the DAG
being debugged is not in the queue, then recovery is indicated.

3.10.12 Visualizing DAGs with dot

It can be helpful to see a picture of a DAG. DAGMan can assist you in visualizing a DAG by creating the input files
used by the AT&T Research Labs graphviz package. dot is a program within this package, available from http://www.
graphviz.org/, and it is used to draw pictures of DAGs.

DAGMan produces one or more dot files as the result of an extra line in a DAG input file. The line appears as

DOT dag.dot

This creates a file called dag.dot. which contains a specification of the DAG before any jobs within the DAG are
submitted to HTCondor. The dag.dot file is used to create a visualization of the DAG by using this file as input to
dot. This example creates a Postscript file, with a visualization of the DAG:

$ dot -Tps dag.dot -o dag.ps

Within the DAG input file, the DOT command can take several optional parameters:

• UPDATE This will update the dot file every time a significant update happens.

• DONT-UPDATE Creates a single dot file, when the DAGMan begins executing. This is the default if the pa-
rameter UPDATE is not used.

• OVERWRITE Overwrites the dot file each time it is created. This is the default, unless DONT-OVERWRITE
is specified.

• DONT-OVERWRITE Used to create multiple dot files, instead of overwriting the single one specified. To
create file names, DAGMan uses the name of the file concatenated with a period and an integer. For example,
the DAG input file line

DOT dag.dot DONT-OVERWRITE

causes files dag.dot.0, dag.dot.1, dag.dot.2, etc. to be created. This option is most useful when combined
with the UPDATE option to visualize the history of the DAG after it has finished executing.

• INCLUDE path-to-filename Includes the contents of a file given by path-to-filename in the file produced by
the DOT command. The include file contents are always placed after the line of the form label=. This may be
useful if further editing of the created files would be necessary, perhaps because you are automatically visualizing
the DAG as it progresses.

If conflicting parameters are used in a DOT command, the last one listed is used.

128 Chapter 3. Users’ Manual

http://www.graphviz.org/
http://www.graphviz.org/

HTCondor Manual, Release 10.0.9

3.10.13 Capturing the Status of Nodes in a File

DAGMan can capture the status of the overall DAG and all DAG nodes in a node status file, such that the user or a
script can monitor this status. This file is periodically rewritten while the DAG runs. To enable this feature, the DAG
input file must contain a line with the NODE_STATUS_FILE command.

The syntax for a NODE_STATUS_FILE command is

NODE_STATUS_FILE statusFileName [minimumUpdateTime] [ALWAYS-UPDATE]

The status file is written on the machine on which the DAG is submitted; its location is given by statusFileName, and
it may be a full path and file name.

The optional minimumUpdateTime specifies the minimum number of seconds that must elapse between updates to
the node status file. This setting exists to avoid having DAGMan spend too much time writing the node status file
for very large DAGs. If no value is specified, this value defaults to 60 seconds (as of version 8.5.8; previously, it
defaulted to 0). The node status file can be updated at most once per DAGMAN_USER_LOG_SCAN_INTERVAL , as defined
in Configuration File Entries for DAGMan, no matter how small the minimumUpdateTime value. Also, the node status
file will be updated when the DAG finishes, whether successfully or not, even if minimumUpdateTime seconds have
not elapsed since the last update.

Normally, the node status file is only updated if the status of some nodes has changed since the last time the file was
written. However, the optional ALWAYS-UPDATE keyword specifies that the node status file should be updated every
time the minimum update time (and DAGMAN_USER_LOG_SCAN_INTERVAL), has passed, even if no nodes have changed
status since the last time the file was updated. (The file will change slightly, because timestamps will be updated.) For
performance reasons, large DAGs with approximately 10,000 or more nodes are poor candidates for using the ALWAYS-
UPDATE option.

As an example, if the DAG input file contains the line

NODE_STATUS_FILE my.dag.status 30

the file my.dag.status will be rewritten at intervals of 30 seconds or more.

This node status file is overwritten each time it is updated. Therefore, it only holds information about the current status
of each node; it does not provide a history of the node status.

Changed in version 8.1.6: HTCondor version 8.1.6 changes the format of the node status file.

The node status file is a collection of ClassAds in New ClassAd format. There is one ClassAd for the overall status
of the DAG, one ClassAd for the status of each node, and one ClassAd with the time at which the node status file was
completed as well as the time of the next update.

Here is an example portion of a node status file:

[
Type = "DagStatus";
DagFiles = {
"job_dagman_node_status.dag"

};
Timestamp = 1399674138;
DagStatus = 3;
NodesTotal = 12;
NodesDone = 11;
NodesPre = 0;
NodesQueued = 1;

(continues on next page)

3.10. DAGMan Workflows 129

HTCondor Manual, Release 10.0.9

(continued from previous page)

NodesPost = 0;
NodesReady = 0;
NodesUnready = 0;
NodesFailed = 0;
JobProcsHeld = 0;
JobProcsIdle = 1;

]
[
Type = "NodeStatus";
Node = "A";
NodeStatus = 5;
StatusDetails = "";
RetryCount = 0;
JobProcsQueued = 0;
JobProcsHeld = 0;

]
...
[
Type = "NodeStatus";
Node = "C";
NodeStatus = 3;
StatusDetails = "idle";
RetryCount = 0;
JobProcsQueued = 1;
JobProcsHeld = 0;

]
[
Type = "StatusEnd";
EndTime = 1399674138;
NextUpdate = 1399674141;

]

Possible DagStatus and NodeStatus attribute values are:

• 0 (STATUS_NOT_READY): At least one parent has not yet finished or the node is a FINAL node.

• 1 (STATUS_READY): All parents have finished, but the node is not yet running.

• 2 (STATUS_PRERUN): The node’s PRE script is running.

• 3 (STATUS_SUBMITTED): The node’s HTCondor job(s) are in the queue.

• 4 (STATUS_POSTRUN): The node’s POST script is running.

• 5 (STATUS_DONE): The node has completed successfully.

• 6 (STATUS_ERROR): The node has failed.

A NODE_STATUS_FILE command inside any splice is ignored. If multiple DAG files are specified on the con-
dor_submit_dag command line, and more than one specifies a node status file, the first specification takes precedence.

130 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

3.10.14 A Machine-Readable Event History, the jobstate.log File

DAGMan can produce a machine-readable history of events. The jobstate.log file is designed for use by the Pegasus
Workflow Management System, which operates as a layer on top of DAGMan. Pegasus uses the jobstate.log file
to monitor the state of a workflow. The jobstate.log file can used by any automated tool for the monitoring of
workflows.

DAGMan produces this file when the command JOBSTATE_LOG is in the DAG input file. The syntax for JOB-
STATE_LOG is

JOBSTATE_LOG JobstateLogFileName

No more than one jobstate.log file can be created by a single instance of condor_dagman. If more than one
jobstate.log file is specified, the first file name specified will take effect, and a warning will be printed in the
dagman.out file when subsequent JOBSTATE_LOG specifications are parsed. Multiple specifications may exist in
the same DAG file, within splices, or within multiple, independent DAGs run with a single condor_dagman instance.

The jobstate.log file can be considered a filtered version of the dagman.out file, in a machine-readable format. It
contains the actual node job events that from condor_dagman, plus some additional meta-events.

The jobstate.log file is different from the node status file, in that the jobstate.log file is appended to, rather than
being overwritten as the DAG runs. Therefore, it contains a history of the DAG, rather than a snapshot of the current
state of the DAG.

There are 5 line types in the jobstate.log file. Each line begins with a Unix timestamp in the form of seconds since
the Epoch. Fields within each line are separated by a single space character.

• DAGMan start: This line identifies the condor_dagman job. The formatting of the line is

timestamp INTERNAL *** DAGMAN_STARTED dagmanCondorID ***

The dagmanCondorID field is the condor_dagman job’s ClusterId attribute, a period, and the ProcId attribute.

• DAGMan exit: This line identifies the completion of the condor_dagman job. The formatting of the line is

timestamp INTERNAL *** DAGMAN_FINISHED exitCode ***

The exitCode field is value the condor_dagman job returns upon exit.

• Recovery started: If the condor_dagman job goes into recovery mode, this meta-event is printed. During
recovery mode, events will only be printed in the file if they were not already printed before recovery mode
started. The formatting of the line is

timestamp INTERNAL *** RECOVERY_STARTED ***

• Recovery finished or Recovery failure: At the end of recovery mode, either a RECOVERY_FINISHED or
RECOVERY_FAILURE meta-event will be printed, as appropriate. The formatting of the line is

timestamp INTERNAL *** RECOVERY_FINISHED ***

or

timestamp INTERNAL *** RECOVERY_FAILURE ***

• Normal: This line is used for all other event and meta-event types. The formatting of the line is

timestamp JobName eventName condorID jobTag - sequenceNumber

3.10. DAGMan Workflows 131

HTCondor Manual, Release 10.0.9

The JobName is the name given to the node job as defined in the DAG input file with the command JOB. It
identifies the node within the DAG.

The eventName is one of the many defined event or meta-events given in the lists below.

The condorID field is the job’s ClusterId attribute, a period, and the ProcId attribute. There is no con-
dorID assigned yet for some meta-events, such as PRE_SCRIPT_STARTED. For these, the dash character (‘-’)
is printed.

The jobTag field is defined for the Pegasus workflow manager. Its usage is generalized to be useful to other work-
flow managers. Pegasus-managed jobs add a line of the following form to their HTCondor submit description
file:

+pegasus_site = "local"

This defines the string local as the jobTag field.

Generalized usage adds a set of 2 commands to the HTCondor submit description file to define a string as the
jobTag field:

+job_tag_name = "+job_tag_value"
+job_tag_value = "viz"

This defines the string viz as the jobTag field. Without any of these added lines within the HTCondor submit
description file, the dash character (‘-’) is printed for the jobTag field.

The sequenceNumber is a monotonically-increasing number that starts at one. It is associated with each attempt
at running a node. If a node is retried, it gets a new sequence number; a submit failure does not result in a new
sequence number. When a Rescue DAG is run, the sequence numbers pick up from where they left off within
the previous attempt at running the DAG. Note that this only applies if the Rescue DAG is run automatically or
with the -dorescuefrom command-line option.

Here is an example of a very simple Pegasus jobstate.log file, assuming the example jobTag field of local:

1292620511 INTERNAL *** DAGMAN_STARTED 4972.0 ***
1292620523 NodeA PRE_SCRIPT_STARTED - local - 1
1292620523 NodeA PRE_SCRIPT_SUCCESS - local - 1
1292620525 NodeA SUBMIT 4973.0 local - 1
1292620525 NodeA EXECUTE 4973.0 local - 1
1292620526 NodeA JOB_TERMINATED 4973.0 local - 1
1292620526 NodeA JOB_SUCCESS 0 local - 1
1292620526 NodeA POST_SCRIPT_STARTED 4973.0 local - 1
1292620531 NodeA POST_SCRIPT_TERMINATED 4973.0 local - 1
1292620531 NodeA POST_SCRIPT_SUCCESS 4973.0 local - 1
1292620535 INTERNAL *** DAGMAN_FINISHED 0 ***

3.10.15 Status Information for the DAG in a ClassAd

The condor_dagman job places information about the status of the DAG into its own job ClassAd. The attributes are
fully described in Job ClassAd Attributes. The attributes are

• DAG_NodesTotal

• DAG_NodesDone

• DAG_NodesPrerun

132 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

• DAG_NodesQueued

• DAG_NodesPostrun

• DAG_NodesReady

• DAG_NodesFailed

• DAG_NodesUnready

• DAG_Status

• DAG_InRecovery

• DAG_JobsSubmitted

• DAG_JobsIdle

• DAG_JobsHeld

• DAG_JobsRunning

• DAG_JobsCompleted

Note that most of this information is also available in the dagman.out file as described in DAG Monitoring.

3.10.16 Managing Large Numbers of Jobs with DAGMan

Using DAGMan is recommended when submitting large numbers of jobs. The recommendation holds whether the jobs
are represented by a DAG due to dependencies, or all the jobs are independent of each other, such as they might be in
a parameter sweep. DAGMan offers:

• Throttling Throttling limits the number of submitted jobs at any point in time.

• Retry of jobs that fail This is a useful tool when an intermittent error may cause a job to fail or may cause a
job to fail to run to completion when attempted at one point in time, but not at another point in time. The
conditions under which retry occurs are user-defined. In addition, the administrative support that facilitates
the rerunning of only those jobs that fail is automatically generated.

• Scripts associated with node jobs PRE and POST scripts run on the submit host before and/or after the execu-
tion of specified node jobs.

Each of these capabilities is described in detail within this manual section about DAGMan. To make effective use of
DAGMan, there is no way around reading the appropriate subsections.

To run DAGMan with large numbers of independent jobs, there are generally two ways of organizing and specifying
the files that control the jobs. Both ways presume that programs or scripts will generate needed files, because the file
contents are either large and repetitive, or because there are a large number of similar files to be generated representing
the large numbers of jobs. The two file types needed are the DAG input file and the submit description file(s) for the
HTCondor jobs represented. Each of the two ways is presented separately:

A unique submit description file for each of the many jobs. A single DAG input file lists each of the jobs and specifies
a distinct submit description file for each job. The DAG input file is simple to generate, as it chooses an identifier for
each job and names the submit description file. For example, the simplest DAG input file for a set of 1000 independent
jobs, as might be part of a parameter sweep, appears as

file sweep.dag
JOB job0 job0.submit
JOB job1 job1.submit
JOB job2 job2.submit

(continues on next page)

3.10. DAGMan Workflows 133

HTCondor Manual, Release 10.0.9

(continued from previous page)

...
JOB job999 job999.submit

There are 1000 submit description files, with a unique one for each of the job<N> jobs. Assuming that all files associated
with this set of jobs are in the same directory, and that files continue the same naming and numbering scheme, the submit
description file for job6.submit might appear as

file job6.submit
universe = vanilla
executable = /path/to/executable
log = job6.log
input = job6.in
output = job6.out
arguments = "-file job6.out"
queue

Submission of the entire set of jobs uses the command line:

$ condor_submit_dag sweep.dag

A benefit to having unique submit description files for each of the jobs is that they are available if one of the jobs needs
to be submitted individually. A drawback to having unique submit description files for each of the jobs is that there are
lots of submit description files.

Single submit description file. A single HTCondor submit description file might be used for all the many jobs of the
parameter sweep. To distinguish the jobs and their associated distinct input and output files, the DAG input file assigns
a unique identifier with the VARS command.

file sweep.dag
JOB job0 common.submit
VARS job0 runnumber="0"
JOB job1 common.submit
VARS job1 runnumber="1"
JOB job2 common.submit
VARS job2 runnumber="2"
...
JOB job999 common.submit
VARS job999 runnumber="999"

The single submit description file for all these jobs utilizes the runnumber variable value in its identification of the
job’s files. This submit description file might appear as

file common.submit
universe = vanilla
executable = /path/to/executable
log = wholeDAG.log
input = job$(runnumber).in
output = job$(runnumber).out
arguments = "-$(runnumber)"
queue

The job with runnumber="8" expects to find its input file job8.in in the single, common directory, and it sends its
output to job8.out. The single log for all job events of the entire DAG is wholeDAG.log. Using one file for the entire

134 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

DAG meets the limitation that no macro substitution may be specified for the job log file, and it is likely more efficient
as well. This node’s executable is invoked with

/path/to/executable -8

These examples work well with respect to file naming and file location when there are less than several thousand jobs
submitted as part of a DAG. The large numbers of files per directory becomes an issue when there are greater than
several thousand jobs submitted as part of a DAG. In this case, consider a more hierarchical structure for the files
instead of a single directory. Introduce a separate directory for each run. For example, if there were 10,000 jobs, there
would be 10,000 directories, one for each of these jobs. The directories are presumed to be generated and populated
by programs or scripts that, like the previous examples, utilize a run number. Each of these directories named utilizing
the run number will be used for the input, output, and log files for one of the many jobs.

As an example, for this set of 10,000 jobs and directories, assume that there is a run number of 600. The directory will
be named dir600, and it will hold the 3 files called in, out, and log, representing the input, output, and HTCondor
job log files associated with run number 600.

The DAG input file sets a variable representing the run number, as in the previous example:

file biggersweep.dag
JOB job0 bigger.submit
VARS job0 runnumber="0"
JOB job1 bigger.submit
VARS job1 runnumber="1"
JOB job2 bigger.submit
VARS job2 runnumber="2"
.
.
.
JOB job9999 bigger.submit
VARS job9999 runnumber="9999"

A single HTCondor submit description file may be written. It resides in the same directory as the DAG input file.

file bigger.submit
universe = vanilla
executable = /path/to/executable
log = log
input = in
output = out
arguments = "-$(runnumber)"
initialdir = dir$(runnumber)
queue

One item to care about with this set up is the underlying file system for the pool. The transfer of files (or not) when using
initialdir differs based upon the job universe and whether or not there is a shared file system. See the condor_submit
manual page for the details on the submit command.

Submission of this set of jobs is no different than the previous examples. With the current working directory the same
as the one containing the submit description file, the DAG input file, and the subdirectories:

$ condor_submit_dag biggersweep.dag

3.10. DAGMan Workflows 135

HTCondor Manual, Release 10.0.9

3.10.17 Workflow Metrics

For every DAG, a metrics file is created. This metrics file is named <dag_file_name>.metrics, where
<dag_file_name> is the name of the DAG input file. In a workflow with nested DAGs, each nested DAG will create
its own metrics file.

Here is an example metrics output file:

{
"client":"condor_dagman",
"version":"8.1.0",
"planner":"/lfs1/devel/Pegasus/pegasus/bin/pegasus-plan",
"planner_version":"4.3.0cvs",
"type":"metrics",
"wf_uuid":"htcondor-test-job_dagman_metrics-A-subdag",
"root_wf_uuid":"htcondor-test-job_dagman_metrics-A",
"start_time":1375313459.603,
"end_time":1375313491.498,
"duration":31.895,
"exitcode":1,
"dagman_id":"26",
"parent_dagman_id":"11",
"rescue_dag_number":0,
"jobs":4,
"jobs_failed":1,
"jobs_succeeded":3,
"dag_jobs":0,
"dag_jobs_failed":0,
"dag_jobs_succeeded":0,
"total_jobs":4,
"total_jobs_run":4,
"total_job_time":0.000,
"dag_status":2

}

Here is an explanation of each of the items in the file:

• client: the name of the client workflow software; in the example, it is "condor_dagman"

• version: the version of the client workflow software

• planner: the workflow planner, as read from the braindump.txt file

• planner_version: the planner software version, as read from the braindump.txt file

• type: the type of data, "metrics"

• wf_uuid: the workflow ID, generated by pegasus-plan, as read from the braindump.txt file

• root_wf_uuid: the root workflow ID, which is relevant for nested workflows. It is generated by pegasus-plan,
as read from the braindump.txt file.

• start_time: the start time of the client, in epoch seconds, with millisecond precision

• end_time: the end time of the client, in epoch seconds, with millisecond precision

• duration: the duration of the client, in seconds, with millisecond precision

• exitcode: the condor_dagman exit code

136 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

• dagman_id: the value of the ClusterId attribute of the condor_dagman instance

• parent_dagman_id: the value of the ClusterId attribute of the parent condor_dagman instance of this DAG;
empty if this DAG is not a SUBDAG

• rescue_dag_number: the number of the Rescue DAG being run, or 0 if not running a Rescue DAG

• jobs: the number of nodes in the DAG input file, not including SUBDAG nodes

• jobs_failed: the number of failed nodes in the workflow, not including SUBDAG nodes

• jobs_succeeded: the number of successful nodes in the workflow, not including SUBDAG nodes; this includes
jobs that succeeded after retries

• dag_jobs: the number of SUBDAG nodes in the DAG input file

• dag_jobs_failed: the number of SUBDAG nodes that failed

• dag_jobs_succeeded: the number of SUBDAG nodes that succeeded

• total_jobs: the total number of jobs in the DAG input file

• total_jobs_run: the total number of nodes executed in a DAG. It should be equal to jobs_succeeded +
jobs_failed + dag_jobs_succeeded + dag_jobs_failed

• total_job_time: the sum of the time between the first execute event and the terminated event for all jobs that
are not SUBDAGs

• dag_status: the final status of the DAG, with values

– 0: OK

– 1: error; an error condition different than those listed here

– 2: one or more nodes in the DAG have failed

– 3: the DAG has been aborted by an ABORT-DAG-ON specification

– 4: removed; the DAG has been removed by condor_rm

– 5: a cycle was found in the DAG

– 6: the DAG has been halted; see the Suspending a Running DAG section for an explanation of halting a
DAG

Note that any dag_status other than 0 corresponds to a non-zero exit code.

The braindump.txt file is generated by pegasus-plan; the name of the braindump.txt file is specified with the
PEGASUS_BRAINDUMP_FILE environment variable. If not specified, the file name defaults to braindump.txt, and it
is placed in the current directory.

Note that the total_job_time value is always zero, because the calculation of that value has not yet been implemented.

3.10.18 DAGMan and Accounting Groups

As of version 8.5.6, condor_dagman propagates accounting_group and accounting_group_user values specified for
condor_dagman itself to all jobs within the DAG (including sub-DAGs).

The accounting_group and accounting_group_user values can be specified using the -append flag to con-
dor_submit_dag, for example:

$ condor_submit_dag -append accounting_group=group_physics -append \
accounting_group_user=albert relativity.dag

3.10. DAGMan Workflows 137

HTCondor Manual, Release 10.0.9

See Group Accounting for a discussion of group accounting and Accounting Groups with Hierarchical Group Quotas
for a discussion of accounting groups with hierarchical group quotas.

3.11 Job Sets

Multiple jobs that share a common set of input files and/or arguments and/or index values, etc., can be organized and
submitted as a job set. For example, if you have 10 sets of measurements that you are using as input to two different
models, you might consider submitting a job set containing two different modeling jobs that use the same set of input
measurement data.

3.11.1 Submitting a job set

Submitting a job set involves creating a job set description file and then using the htcondor command-line tool to submit
the jobs described in the job set description file to the job queue. For example, if your jobs are described in a file named
my-jobs.set:

$ htcondor jobset submit my-jobs.set

A job set description file must contain:

1. A name,

2. An iterator, and

3. At least one job.

The name of a job set is used to identify the set. Job set names are used to check the status of sets or to remove sets.

The iterator of a job set is used to describe the shared values and the values’ associated variable names that are used
by the jobs in the job set. Multiple iterator types are planned to be supported by HTCondor. As of HTCondor 9.4.0,
only the table iterator type is available.

The table iterator type works similar to the queue <list of varnames> from <file name or list of
items> syntax used by condor_submit description files. A table contains comma-separated columns (one per named
variable) and line-separated rows. The table data can either be stored in a separate file and referenced by file name, or
it can be stored inside the job set description file itself inside curly brackets ({ ... }, see example below).

The job set description file syntax for a table iterator is:

iterator = table <list of variable names> <table file name>

or

iterator = table <list of variable names> {
<list of items>

}

Suppose you have four input files, and each input file is associated with two parameters, foo and bar, needed by your
jobs. An example table in this case could be:

input_A.txt,0,0
input_B.txt,0,1
input_C.txt,1,0
input_D.txt,1,1

138 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

If this table is stored in input_description.txt, your iterator would be:

iterator = table inputfile,foo,bar input_description.txt

Or you could put this table directly inside in the job set description file:

iterator = table inputfile,foo,bar {
input_A.txt,0,0
input_B.txt,0,1
input_C.txt,1,0
input_D.txt,1,1

}

Each job in a job set is a HTCondor job and is described using the condor_submit submit description syntax. A
job description can reference one or more of the variables described by the job set iterator. Furthermore, each job
description in a job set can have its variables mapped (e.g. foo=bar will replace $(foo) with $(bar)). A job
description can either be stored in a separate file and referenced by file name, or it can be stored inside the job set
description file itself inside curly brackets ({ ... }, see example below).

The job set description file syntax for a job is:

job [<list of mapped variable names>] <submit file name>

or

job [<list of mapped variable names>] {
<submit file description>

}

Suppose you have two jobs that you want to have use the inputfile, foo, and bar values defined in the table iterator
example above. And suppose that one of these jobs already has an existing submit description in a file named my-job.
sub, and this submit file doesn’t use the foo and bar variable names but instead uses x and y. Your job descriptions
could look like:

job x=foo,y=bar my-job.sub

job {
executable = a.out
arguments = $(inputfile) $(foo) $(bar)
transfer_input_files = $(inputfile)

}

Note how in the second job above that there is no queue statement. Job description queue statements are disregarded
when using job sets. Instead, the number of jobs queued are based on the iterator of the job set. For the table iterator,
the number of jobs queued will be the number of rows in the table.

Putting together the examples above, an entire example job set might look like:

name = MyJobSet

iterator = table inputfile,foo,bar {
input_A.txt,0,0
input_B.txt,0,1
input_C.txt,1,0
input_D.txt,1,1

(continues on next page)

3.11. Job Sets 139

HTCondor Manual, Release 10.0.9

(continued from previous page)

}

job x=foo,y=bar my-job.sub

job {
executable = a.out
arguments = $(inputfile) $(foo) $(bar)
transfer_input_files = $(inputfile)

}

Based on this job set description, with two job descriptions (which become two job clusters), you would expect the
following output when submitting this job set:

$ htcondor jobset submit my-jobs.set
Submitted job set MyJobSet containing 2 job clusters.

3.11.2 Listing job sets

You can get a list of your active job sets (i.e. job sets with jobs that are idle, executing, or held) with the command
htcondor jobset list:

$ htcondor jobset list
JOB_SET_NAME
MyJobSet

The argument --allusers will list active job sets for all users on the current access point:

$ htcondor jobset list --allusers
OWNER JOB_SET_NAME
alice MyJobSet
bob AnotherJobSet

3.11.3 Checking on the progress of job sets

You can check on your job set with the htcondor jobset status <job set name> command.

$ htcondor jobset status MyJobSet

MyJobSet currently has 3 jobs idle, 5 jobs running, and 0 jobs completed.
MyJobSet contains:

Job cluster 1234 with 4 total jobs
Job cluster 1235 with 4 total jobs

140 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

3.11.4 Removing a job set

If you realize that there is a problem with a job set or you just do not need the job set to finish computing for whatever
reason, you can remove an entire job set with the htcondor jobset remove <job set name> command:

$ htcondor jobset remove MyJobSet
Removed 8 jobs matching job set MyJobSet for user alice.

3.12 Matchmaking with ClassAds

Before you learn about how to submit a job, it is important to understand how HTCondor allocates resources. Under-
standing the unique framework by which HTCondor matches submitted jobs with machines is the key to getting the
most from HTCondor’s scheduling algorithm.

HTCondor simplifies job submission by acting as a matchmaker of ClassAds. HTCondor’s ClassAds are analogous to
the classified advertising section of the newspaper. Sellers advertise specifics about what they have to sell, hoping to
attract a buyer. Buyers may advertise specifics about what they wish to purchase. Both buyers and sellers list constraints
that need to be satisfied. For instance, a buyer has a maximum spending limit, and a seller requires a minimum purchase
price. Furthermore, both want to rank requests to their own advantage. Certainly a seller would rank one offer of $50
dollars higher than a different offer of $25. In HTCondor, users submitting jobs can be thought of as buyers of compute
resources and machine owners are sellers.

All machines in a HTCondor pool advertise their attributes, such as available memory, CPU type and speed, virtual
memory size, current load average, along with other static and dynamic properties. This machine ClassAd also ad-
vertises under what conditions it is willing to run a HTCondor job and what type of job it would prefer. These policy
attributes can reflect the individual terms and preferences by which all the different owners have graciously allowed
their machine to be part of the HTCondor pool. You may advertise that your machine is only willing to run jobs at
night and when there is no keyboard activity on your machine. In addition, you may advertise a preference (rank) for
running jobs submitted by you or one of your co-workers.

Likewise, when submitting a job, you specify a ClassAd with your requirements and preferences. The ClassAd includes
the type of machine you wish to use. For instance, perhaps you are looking for the fastest floating point performance
available. You want HTCondor to rank available machines based upon floating point performance. Or, perhaps you
care only that the machine has a minimum of 128 MiB of RAM. Or, perhaps you will take any machine you can get!
These job attributes and requirements are bundled up into a job ClassAd.

HTCondor plays the role of a matchmaker by continuously reading all the job ClassAds and all the machine ClassAds,
matching and ranking job ads with machine ads. HTCondor makes certain that all requirements in both ClassAds are
satisfied.

3.12.1 Inspecting Machine ClassAds with condor_status

Once HTCondor is installed, you will get a feel for what a machine ClassAd does by trying the condor_status command.
Try the condor_status command to get a summary of information from ClassAds about the resources available in your
pool. Type condor_status and hit enter to see a summary similar to the following:

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

amul.cs.wisc.edu LINUX INTEL Claimed Busy 0.990 1896 0+00:07:04
slot1@amundsen.cs. LINUX INTEL Owner Idle 0.000 1456 0+00:21:58
slot2@amundsen.cs. LINUX INTEL Owner Idle 0.110 1456 0+00:21:59

(continues on next page)

3.12. Matchmaking with ClassAds 141

HTCondor Manual, Release 10.0.9

(continued from previous page)

angus.cs.wisc.edu LINUX INTEL Claimed Busy 0.940 873 0+00:02:54
anhai.cs.wisc.edu LINUX INTEL Claimed Busy 1.400 1896 0+00:03:03
apollo.cs.wisc.edu LINUX INTEL Unclaimed Idle 1.000 3032 0+00:00:04
arragon.cs.wisc.ed LINUX INTEL Claimed Busy 0.980 873 0+00:04:29
bamba.cs.wisc.edu LINUX INTEL Owner Idle 0.040 3032 15+20:10:19
...

The condor_status command has options that summarize machine ads in a variety of ways. For example,

condor_status -available shows only machines which are willing to run jobs now.

condor_status -run shows only machines which are currently running jobs.

condor_status -long lists the machine ClassAds for all machines in the pool.

Refer to the condor_status command reference page for a complete description of the condor_status command.

The following shows a portion of a machine ClassAd for a single machine: turunmaa.cs.wisc.edu. Some of the listed
attributes are used by HTCondor for scheduling. Other attributes are for information purposes. An important point is
that any of the attributes in a machine ClassAd can be utilized at job submission time as part of a request or preference
on what machine to use. Additional attributes can be easily added. For example, your site administrator can add a
physical location attribute to your machine ClassAds.

Machine = "turunmaa.cs.wisc.edu"
FileSystemDomain = "cs.wisc.edu"
Name = "turunmaa.cs.wisc.edu"
CondorPlatform = "$CondorPlatform: x86_rhap_5 $"
Cpus = 1
IsValidCheckpointPlatform = (((TARGET.JobUniverse == 1) == false) ||
((MY.CheckpointPlatform =!= undefined) &&
((TARGET.LastCheckpointPlatform =?= MY.CheckpointPlatform) ||
(TARGET.NumCkpts == 0))))
CondorVersion = "$CondorVersion: 7.6.3 Aug 18 2011 BuildID: 361356 $"
Requirements = (START) && (IsValidCheckpointPlatform)
EnteredCurrentActivity = 1316094896
MyAddress = "<128.105.175.125:58026>"
EnteredCurrentState = 1316094896
Memory = 1897
CkptServer = "pitcher.cs.wisc.edu"
OpSys = "LINUX"
State = "Owner"
START = true
Arch = "INTEL"
Mips = 2634
Activity = "Idle"
StartdIpAddr = "<128.105.175.125:58026>"
TargetType = "Job"
LoadAvg = 0.210000
CheckpointPlatform = "LINUX INTEL 2.6.x normal 0x40000000"
Disk = 92309744
VirtualMemory = 2069476
TotalSlots = 1
UidDomain = "cs.wisc.edu"
MyType = "Machine"

142 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

3.13 Choosing an HTCondor Universe

A universe in HTCondor defines an execution environment for a job. HTCondor supports several different universes:

• vanilla

• grid

• java

• scheduler

• local

• parallel

• vm

• container

• docker

The universe under which a job runs is specified in the submit description file. If a universe is not specified, the default
is vanilla.

The vanilla universe is a good default, for it has the fewest restrictions on the job. The grid universe allows users to
submit jobs using HTCondor’s interface. These jobs are submitted for execution on grid resources. The java universe
allows users to run jobs written for the Java Virtual Machine (JVM). The scheduler universe allows users to submit
lightweight jobs to be spawned by the program known as a daemon on the submit host itself. The parallel universe is
for programs that require multiple machines for one job. See the Parallel Applications (Including MPI Applications)
section for more about the Parallel universe. The vm universe allows users to run jobs where the job is no longer a
simple executable, but a disk image, facilitating the execution of a virtual machine. Container universe allows the user
to specify a container image for one of many possible container runtimes, just as singularity or docker, and condor will
run the job in the appropriate container runtimes. The docker universe runs a Docker container as an HTCondor job.

3.13.1 Vanilla Universe

The vanilla universe in HTCondor is intended for most programs. Shell scripts are another case where the vanilla
universe is useful.

Access to the job’s input and output files is a concern for vanilla universe jobs. One option is for HTCondor to rely on
a shared file system, such as NFS or AFS. Alternatively, HTCondor has a mechanism for transferring files on behalf of
the user. In this case, HTCondor will transfer any files needed by a job to the execution site, run the job, and transfer
the output back to the submitting machine.

3.13.2 Grid Universe

The Grid universe in HTCondor is intended to provide the standard HTCondor interface to users who wish to start
jobs intended for remote management systems. The Grid Universe section has details on using the Grid universe. The
manual page for condor_submit has detailed descriptions of the grid-related attributes.

3.13. Choosing an HTCondor Universe 143

HTCondor Manual, Release 10.0.9

3.13.3 Java Universe

A program submitted to the Java universe may run on any sort of machine with a JVM regardless of its location, owner,
or JVM version. HTCondor will take care of all the details such as finding the JVM binary and setting the classpath.

3.13.4 Scheduler Universe

The scheduler universe allows users to submit lightweight jobs to be run immediately, alongside the condor_schedd
daemon on the submit host itself. Scheduler universe jobs are not matched with a remote machine, and will never be
preempted. The job’s requirements expression is evaluated against the condor_schedd ‘s ClassAd.

Originally intended for meta-schedulers such as condor_dagman, the scheduler universe can also be used to manage
jobs of any sort that must run on the submit host.

However, unlike the local universe, the scheduler universe does not use a condor_starter daemon to manage the job,
and thus offers limited features and policy support. The local universe is a better choice for most jobs which must run
on the submit host, as it offers a richer set of job management features, and is more consistent with other universes such
as the vanilla universe. The scheduler universe may be retired in the future, in favor of the newer local universe.

3.13.5 Local Universe

The local universe allows an HTCondor job to be submitted and executed with different assumptions for the execution
conditions of the job. The job does not wait to be matched with a machine. It instead executes right away, on the
machine where the job is submitted. The job will never be preempted. The job’s requirements expression is evaluated
against the condor_schedd ‘s ClassAd.

3.13.6 Parallel Universe

The parallel universe allows parallel programs, such as MPI jobs, to be run within the opportunistic HTCondor envi-
ronment. Please see the Parallel Applications (Including MPI Applications) section for more details.

3.13.7 VM Universe

HTCondor facilitates the execution of KVM and Xen virtual machines with the vm universe.

Please see the Virtual Machine Applications section for details.

144 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

3.13.8 Docker Universe

The docker universe runs a docker container on an execute host as a job. Please see the Docker Universe Applications
section for details.

3.13.9 Container Universe

The container universe runs a container on an execute host as a job. Please see the Container Universe Jobs section for
details.

3.14 Java Applications

HTCondor allows users to access a wide variety of machines distributed around the world. The Java Virtual Machine
(JVM) provides a uniform platform on any machine, regardless of the machine’s architecture or operating system. The
HTCondor Java universe brings together these two features to create a distributed, homogeneous computing environ-
ment.

Compiled Java programs can be submitted to HTCondor, and HTCondor can execute the programs on any machine in
the pool that will run the Java Virtual Machine.

The condor_status command can be used to see a list of machines in the pool for which HTCondor can use the Java
Virtual Machine.

$ condor_status -java

Name JavaVendor Ver State Activity LoadAv Mem ActvtyTime

adelie01.cs.wisc.e Sun Micros 1.6.0_ Claimed Busy 0.090 873 0+00:02:46
adelie02.cs.wisc.e Sun Micros 1.6.0_ Owner Idle 0.210 873 0+03:19:32
slot10@bio.cs.wisc Sun Micros 1.6.0_ Unclaimed Idle 0.000 118 7+03:13:28
slot2@bio.cs.wisc. Sun Micros 1.6.0_ Unclaimed Idle 0.000 118 7+03:13:28
...

If there is no output from the condor_status command, then HTCondor does not know the location details of the Java
Virtual Machine on machines in the pool, or no machines have Java correctly installed. In this case, contact your system
administrator or see the Java Support Installation section for more information on getting HTCondor to work together
with Java.

3.14. Java Applications 145

HTCondor Manual, Release 10.0.9

3.14.1 A Simple Example Java Application

Here is a complete, if simple, example. Start with a simple Java program, Hello.java:

public class Hello {
public static void main(String [] args) {

System.out.println("Hello, world!\n");
}

}

Build this program using your Java compiler. On most platforms, this is accomplished with the command

$ javac Hello.java

Submission to HTCondor requires a submit description file. If submitting where files are accessible using a shared file
system, this simple submit description file works:

####################
#
Example 1
Execute a single Java class
#
####################

universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error
queue

The Java universe must be explicitly selected.

The main class of the program is given in the executable statement. This is a file name which contains the entry point
of the program. The name of the main class (not a file name) must be specified as the first argument to the program.

If submitting the job where a shared file system is not accessible, the submit description file becomes:

####################
#
Example 2
Execute a single Java class,
not on a shared file system
#
####################

universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
queue

146 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

For more information about using HTCondor’s file transfer mechanisms, see the Submitting a Job section.

To submit the job, where the submit description file is named Hello.cmd, execute

$ condor_submit Hello.cmd

To monitor the job, the commands condor_q and condor_rm are used as with all jobs.

3.14.2 Less Simple Java Specifications

Specifying more than 1 class file. For programs that consist of more than one .class file, identify the
files in the submit description file:

executable = Stooges.class
transfer_input_files = Larry.class,Curly.class,Moe.class

The executable command does not change. It still identifies the class file that contains the program’s
entry point.

JAR files. If the program consists of a large number of class files, it may be easier to collect them all
together into a single Java Archive (JAR) file. A JAR can be created with:

$ jar cvf Library.jar Larry.class Curly.class Moe.class Stooges.class

HTCondor must then be told where to find the JAR as well as to use the JAR. The JAR file that
contains the entry point is specified with the executable command. All JAR files are specified with
the jar_files command. For this example that collected all the class files into a single JAR file, the
submit description file contains:

executable = Library.jar
jar_files = Library.jar

Note that the JVM must know whether it is receiving JAR files or class files. Therefore, HTCondor
must also be informed, in order to pass the information on to the JVM. That is why there is a difference
in submit description file commands for the two ways of specifying files (transfer_input_files and
jar_files).

If there are multiple JAR files, the executable command specifies the JAR file that contains the
program’s entry point. This file is also listed with the jar_files command:

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar

Using a third-party JAR file. As HTCondor requires that all JAR files (third-party or not) be available,
specification of a third-party JAR file is no different than other JAR files. If the sortmerge example
above also relies on version 2.1 from http://jakarta.apache.org/commons/lang/, and this JAR file has
been placed in the same directory with the other JAR files, then the submit description file contains

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar,commons-lang-2.1.jar

An executable JAR file. When the JAR file is an executable, specify the program’s entry point in the
arguments command:

3.14. Java Applications 147

http://jakarta.apache.org/commons/lang/

HTCondor Manual, Release 10.0.9

executable = anexecutable.jar
jar_files = anexecutable.jar
arguments = some.main.ClassFile

Discovering the main class within a JAR file. As of Java version 1.4, Java virtual machines have a -jar
option, which takes a single JAR file as an argument. With this option, the Java virtual machine
discovers the main class to run from the contents of the Manifest file, which is bundled within the
JAR file. HTCondor’s java universe does not support this discovery, so before submitting the job,
the name of the main class must be identified.

For a Java application which is run on the command line with

$ java -jar OneJarFile.jar

the equivalent version after discovery might look like

$ java -classpath OneJarFile.jar TheMainClass

The specified value for TheMainClass can be discovered by unjarring the JAR file, and looking for
the MainClass definition in the Manifest file. Use that definition in the HTCondor submit description
file. Partial contents of that file Java universe submit file will appear as

universe = java
executable = OneJarFile.jar
jar_files = OneJarFile.jar
Arguments = TheMainClass More-Arguments
queue

Packages. An example of a Java class that is declared in a non-default package is

package hpc;

public class CondorDriver
{
// class definition here

}

The JVM needs to know the location of this package. It is passed as a command-line argument,
implying the use of the naming convention and directory structure.

Therefore, the submit description file for this example will contain

arguments = hpc.CondorDriver

JVM-version specific features. If the program uses Java features found only in certain JVMs, then the
Java application submitted to HTCondor must only run on those machines within the pool that run
the needed JVM. Inform HTCondor by adding a requirements statement to the submit description
file. For example, to require version 3.2, add to the submit description file:

requirements = (JavaVersion=="3.2")

JVM options. Options to the JVM itself are specified in the submit description file:

java_vm_args = -DMyProperty=Value -verbose:gc -Xmx1024m

148 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

These options are those which go after the java command, but before the user’s main class. Do not use
this to set the classpath, as HTCondor handles that itself. Setting these options is useful for setting
system properties, system assertions and debugging certain kinds of problems.

3.14.3 Chirp I/O

If a job has more sophisticated I/O requirements that cannot be met by HTCondor’s file transfer mechanism, then the
Chirp facility may provide a solution. Chirp has two advantages over simple, whole-file transfers. First, it permits the
input files to be decided upon at run-time rather than submit time, and second, it permits partial-file I/O with results than
can be seen as the program executes. However, small changes to the program are required in order to take advantage
of Chirp. Depending on the style of the program, use either Chirp I/O streams or UNIX-like I/O functions.

Chirp I/O streams are the easiest way to get started. Modify the program to use the objects ChirpInputStream
and ChirpOutputStream instead of FileInputStream and FileOutputStream. These classes are completely
documented in the HTCondor Software Developer’s Kit (SDK). Here is a simple code example:

import java.io.*;
import edu.wisc.cs.condor.chirp.*;

public class TestChirp {

public static void main(String args[]) {

try {
BufferedReader in = new BufferedReader(
new InputStreamReader(
new ChirpInputStream("input")));

PrintWriter out = new PrintWriter(
new OutputStreamWriter(
new ChirpOutputStream("output")));

while(true) {
String line = in.readLine();
if(line==null) break;
out.println(line);

}
out.close();

} catch(IOException e) {
System.out.println(e);

}
}

}

To perform UNIX-like I/O with Chirp, create a ChirpClient object. This object supports familiar operations such as
open, read, write, and close. Exhaustive detail of the methods may be found in the HTCondor SDK, but here is a
brief example:

import java.io.*;
import edu.wisc.cs.condor.chirp.*;

(continues on next page)

3.14. Java Applications 149

HTCondor Manual, Release 10.0.9

(continued from previous page)

public class TestChirp {

public static void main(String args[]) {

try {
ChirpClient client = new ChirpClient();
String message = "Hello, world!\n";
byte [] buffer = message.getBytes();

// Note that we should check that actual==length.
// However, skip it for clarity.

int fd = client.open("output","wct",0777);
int actual = client.write(fd,buffer,0,buffer.length);
client.close(fd);

client.rename("output","output.new");
client.unlink("output.new");

} catch(IOException e) {
System.out.println(e);

}
}

}

Regardless of which I/O style, the Chirp library must be specified and included with the job. The Chirp JAR (Chirp.
jar) is found in the lib directory of the HTCondor installation. Copy it into your working directory in order to compile
the program after modification to use Chirp I/O.

$ condor_config_val LIB
/usr/local/condor/lib
$ cp /usr/local/condor/lib/Chirp.jar .

Rebuild the program with the Chirp JAR file in the class path.

$ javac -classpath Chirp.jar:. TestChirp.java

The Chirp JAR file must be specified in the submit description file. Here is an example submit description file that
works for both of the given test programs:

universe = java
executable = TestChirp.class
arguments = TestChirp
jar_files = Chirp.jar
+WantIOProxy = True
queue

150 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

3.15 Parallel Applications (Including MPI Applications)

HTCondor’s parallel universe supports jobs that span multiple machines, where the multiple processes within a job must
be running concurrently on these multiple machines, perhaps communicating with each other. The parallel universe
provides machine scheduling, but does not enforce a particular programming paradigm for the underlying applica-
tions. Thus, parallel universe jobs may run under various MPI implementations as well as under other programming
environments.

The parallel universe supersedes the mpi universe. The mpi universe eventually will be removed from HTCondor.

3.15.1 How Parallel Jobs Run

Parallel universe jobs are submitted from the machine running the dedicated scheduler. The dedicated scheduler
matches and claims a fixed number of machines (slots) for the parallel universe job, and when a sufficient number
of machines are claimed, the parallel job is started on each claimed slot.

Each invocation of condor_submit assigns a single ClusterId for what is considered the single parallel job submitted.
The machine_count submit command identifies how many machines (slots) are to be allocated. Each instance of the
queue submit command acquires and claims the number of slots specified by machine_count. Each of these slots
shares a common job ClassAd and will have the same ProcId job ClassAd attribute value.

Once the correct number of machines are claimed, the executable is started at more or less the same time on all
machines. If desired, a monotonically increasing integer value that starts at 0 may be provided to each of these machines.
The macro $(Node) is similar to the MPI rank construct. This macro may be used within the submit description file
in either the arguments or environment command. Thus, as the executable runs, it may discover its own $(Node)
value.

Node 0 has special meaning and consequences for the parallel job. The completion of a parallel job is implied and
taken to be when the Node 0 executable exits. All other nodes that are part of the parallel job and that have not yet
exited on their own are killed. This default behavior may be altered by placing the line

+ParallelShutdownPolicy = "WAIT_FOR_ALL"

in the submit description file. It causes HTCondor to wait until every node in the parallel job has completed to consider
the job finished.

3.15.2 Parallel Jobs and the Dedicated Scheduler

To run parallel universe jobs, HTCondor must be configured such that machines running parallel jobs are dedicated.
Note that dedicated has a very specific meaning in HTCondor: while dedicated machines can run serial jobs, they prefer
to run parallel jobs, and dedicated machines never preempt a parallel job once it starts running.

A machine becomes a dedicated machine when an administrator configures it to accept parallel jobs from one specific
dedicated scheduler. Note the difference between parallel and serial jobs. While any scheduler in a pool can send
serial jobs to any machine, only the designated dedicated scheduler may send parallel universe jobs to a dedicated
machine. Dedicated machines must be specially configured. See the Setting Up for Special Environments section for a
description of the necessary configuration, as well as examples. Usually, a single dedicated scheduler is configured for
a pool which can run parallel universe jobs, and this condor_schedd daemon becomes the single machine from which
parallel universe jobs are submitted.

The following command line will list the execute machines in the local pool which have been configured to use a
dedicated scheduler, also printing the name of that dedicated scheduler. In order to run parallel jobs, this name will be
defined to be the string "DedicatedScheduler@", prepended to the name of the scheduler host.

3.15. Parallel Applications (Including MPI Applications) 151

HTCondor Manual, Release 10.0.9

$ condor_status -const '!isUndefined(DedicatedScheduler)' \
-format "%s\t" Machine -format "%s\n" DedicatedScheduler

execute1.example.com DedicatedScheduler@submit.example.com
execute2.example.com DedicatedScheduler@submit.example.com

If this command emits no lines of output, then then pool is not correctly configured to run parallel jobs. Make sure that
the name of the scheduler is correct. The string after the @ sign should match the name of the condor_schedd daemon,
as returned by the command

$ condor_status -schedd

3.15.3 Submission Examples

Simplest Example

Here is a submit description file for a parallel universe job example that is as simple as possible:

###
submit description file for a parallel universe job
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
log = log
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
queue

This job specifies the universe as parallel, letting HTCondor know that dedicated resources are required. The ma-
chine_count command identifies that eight machines are required for this job.

Because no requirements are specified, the dedicated scheduler claims eight machines with the same architecture and
operating system as the submit machine. When all the machines are ready, it invokes the /bin/sleep command, with a
command line argument of 30 on each of the eight machines more or less simultaneously. Job events are written to the
log specified in the log command.

The file transfer mechanism is enabled for this parallel job, such that if any of the eight claimed execute machines
does not share a file system with the submit machine, HTCondor will correctly transfer the executable. This /bin/sleep
example implies that the submit machine is running a Unix operating system, and the default assumption for submission
from a Unix machine would be that there is a shared file system.

152 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Example with Operating System Requirements

Assume that the pool contains Linux machines installed with either a RedHat or an Ubuntu operating system. If the
job should run only on RedHat platforms, the requirements expression may specify this:

###
submit description file for a parallel program
targeting RedHat machines
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
log = log
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
requirements = (OpSysName == "RedHat")
queue

The machine selection may be further narrowed, instead using the OpSysAndVer attribute.

###
submit description file for a parallel program
targeting RedHat 6 machines
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
log = log
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
requirements = (OpSysAndVer == "RedHat6")
queue

Using the $(Node) Macro

######################################
submit description file for a parallel program
showing the $(Node) macro
######################################
universe = parallel
executable = /bin/cat
log = logfile
input = infile.$(Node)
output = outfile.$(Node)
error = errfile.$(Node)
machine_count = 4
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
queue

The $(Node)macro is expanded to values of 0-3 as the job instances are about to be started. This assigns unique names
to the input and output files to be transferred or accessed from the shared file system. The $(Node) value is fixed for
the entire length of the job.

3.15. Parallel Applications (Including MPI Applications) 153

HTCondor Manual, Release 10.0.9

Differing Requirements for the Machines

Sometimes one machine’s part in a parallel job will have specialized needs. These can be handled with a Requirements
submit command that also specifies the number of needed machines.

######################################
Example submit description file
with 4 total machines and differing requirements
######################################
universe = parallel
executable = special.exe
machine_count = 1
requirements = (machine == "machine1@example.com")
queue

machine_count = 3
requirements = (machine =!= "machine1@example.com")
queue

The dedicated scheduler acquires and claims four machines. All four share the same value of ClusterId, as this value is
associated with this single parallel job. The existence of a second queue command causes a total of two ProcId values
to be assigned for this parallel job. The ProcId values are assigned based on ordering within the submit description
file. Value 0 will be assigned for the single executable that must be executed on machine1@example.com, and the value
1 will be assigned for the other three that must be executed elsewhere.

Requesting multiple cores per slot

If the parallel program has a structure that benefits from running on multiple cores within the same slot, multi-core
slots may be specified.

######################################
submit description file for a parallel program
that needs 8-core slots
######################################
universe = parallel
executable = foo.sh
log = logfile
input = infile.$(Node)
output = outfile.$(Node)
error = errfile.$(Node)
machine_count = 2
request_cpus = 8
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
queue

This parallel job causes the scheduler to match and claim two machines, where each of the machines (slots) has eight
cores. The parallel job is assigned a single ClusterId and a single ProcId, meaning that there is a single job ClassAd
for this job.

The executable, foo.sh, is started at the same time on a single core within each of the two machines (slots). It is
presumed that the executable will take care of invoking processes that are to run on the other seven CPUs (cores)
associated with the slot.

Potentially fewer machines are impacted with this specification, as compared with the request that contains

154 Chapter 3. Users’ Manual

mailto:machine1@example.com

HTCondor Manual, Release 10.0.9

machine_count = 16
request_cpus = 1

The interaction of the eight cores within the single slot may be advantageous with respect to communication delay or
memory access. But, 8-core slots must be available within the pool.

MPI Applications

MPI applications use a single executable, invoked on one or more machines (slots), executing in parallel. The various
implementations of MPI such as Open MPI and MPICH require further framework. HTCondor supports this necessary
framework through a user-modified script. This implementation-dependent script becomes the HTCondor executable.
The script sets up the framework, and then it invokes the MPI application’s executable.

The scripts are located in the $(RELEASE_DIR)/etc/examples directory. The script for the Open MPI implementation is
openmpiscript. The scripts for MPICH implementations are mp1script and mp2script. An MPICH3 script is not
available at this time. These scripts rely on running ssh for communication between the nodes of the MPI application.
The ssh daemon on Unix platforms restricts connections to the approved shells listed in the /etc/shells file.

Here is a sample submit description file for an MPICH MPI application:

######################################
Example submit description file
for MPICH 1 MPI
works with MPICH 1.2.4, 1.2.5 and 1.2.6
######################################
universe = parallel
executable = mp1script
arguments = my_mpich_linked_executable arg1 arg2
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_mpich_linked_executable
queue

The executable is the mp1script script that will have been modified for this MPI application. This script is invoked
on each slot or core. The script, in turn, is expected to invoke the MPI application’s executable. To know the MPI
application’s executable, it is the first in the list of arguments . And, since HTCondor must transfer this executable to
the machine where it will run, it is listed with the transfer_input_files command, and the file transfer mechanism is
enabled with the should_transfer_files command.

Here is the equivalent sample submit description file, but for an Open MPI application:

######################################
Example submit description file
for Open MPI
######################################
universe = parallel
executable = openmpiscript
arguments = my_openmpi_linked_executable arg1 arg2
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit

(continues on next page)

3.15. Parallel Applications (Including MPI Applications) 155

HTCondor Manual, Release 10.0.9

(continued from previous page)

transfer_input_files = my_openmpi_linked_executable
queue

Most MPI implementations require two system-wide prerequisites. The first prerequisite is the ability to run a com-
mand on a remote machine without being prompted for a password. ssh is commonly used. The second prerequisite
is an ASCII file containing the list of machines that may utilize ssh. These common prerequisites are implemented in
a further script called sshd.sh. sshd.sh generates ssh keys to enable password-less remote execution and starts an
sshd daemon. Use of the sshd.sh script requires the definition of two HTCondor configuration variables. Configura-
tion variable CONDOR_SSHD is an absolute path to an implementation of sshd. sshd.sh has been tested with openssh
version 3.9, but should work with more recent versions. Configuration variable CONDOR_SSH_KEYGEN points to the
corresponding ssh-keygen executable.

mp1script and mp2script require the PATH to the MPICH installation to be set. The variable MPDIR may be modified
in the scripts to indicate its proper value. This directory contains the MPICH mpirun executable.

openmpiscript also requires the PATH to the Open MPI installation. Either the variable MPDIR can be set manually in
the script, or the administrator can define MPDIR using the configuration variable OPENMPI_INSTALL_PATH . When
using Open MPI on a multi-machine HTCondor cluster, the administrator may also want to consider tweaking the
OPENMPI_EXCLUDE_NETWORK_INTERFACES configuration variable as well as set MOUNT_UNDER_SCRATCH = /tmp.

3.15.4 MPI Applications Within HTCondor’s Vanilla Universe

The vanilla universe may be preferred over the parallel universe for parallel applications which can run entirely on one
machine. The request_cpus command causes a claimed slot to have the required number of CPUs (cores).

There are two ways to ensure that the MPI job can run on any machine that it lands on:

1. Statically build an MPI library and statically compile the MPI code.

2. Bundle all the MPI libraries into a docker container and run MPI in the container

Here is a submit description file example assuming that MPI is installed on all machines on which the MPI job may
run, or that the code was built using static libraries and a static version of mpirun is available.

##
submit description file for
static build of MPI under the vanilla universe
##
universe = vanilla
executable = /path/to/mpirun
request_cpus = 2
arguments = -np 2 my_mpi_linked_executable arg1 arg2 arg3
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_mpi_linked_executable
queue

Any additional input files that will be needed for the executable that are not already in the tarball should be included
in the list in transfer_input_files command. The corresponding script should then also be updated to move those files
into the directory where the executable will be run.

156 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

3.16 Virtual Machine Applications

The vm universe facilitates an HTCondor job that matches and then lands a disk image on an execute machine within
an HTCondor pool. This disk image is intended to be a virtual machine. In this manner, the virtual machine is the job
to be executed.

This section describes this type of HTCondor job. See Configuration File Entries Relating to Virtual Machines for
details of configuration variables.

3.16.1 The Submit Description File

Different than all other universe jobs, the vm universe job specifies a disk image, not an executable. Therefore, the
submit commands input , output , and error do not apply. If specified, condor_submit rejects the job with an error.
The executable command changes definition within a vm universe job. It no longer specifies an executable file, but
instead provides a string that identifies the job for tools such as condor_q. Other commands specific to the type of
virtual machine software identify the disk image.

Xen and KVM virtual machine software are supported. As these differ from each other, the submit description file
specifies one of

vm_type = xen

or

vm_type = kvm

The job is required to specify its memory needs for the disk image with vm_memory , which is given in Mbytes.
HTCondor uses this number to assure a match with a machine that can provide the needed memory space.

Virtual machine networking is enabled with the command

vm_networking = true

And, when networking is enabled, a definition of vm_networking_type as bridge matches the job only with a machine
that is configured to use bridge networking. A definition of vm_networking_type as nat matches the job only with a
machine that is configured to use NAT networking. When no definition of vm_networking_type is given, HTCondor
may match the job with a machine that enables networking, and further, the choice of bridge or NAT networking is
determined by the machine’s configuration.

Modified disk images are transferred back to the machine from which the job was submitted as the vm universe job
completes. Job completion for a vm universe job occurs when the virtual machine is shut down, and HTCondor notices
(as the result of a periodic check on the state of the virtual machine). Should the job not want any files transferred back
(modified or not), for example because the job explicitly transferred its own files, the submit command to prevent the
transfer is

vm_no_output_vm = true

The required disk image must be identified for a virtual machine. This vm_disk command specifies a list of comma-
separated files. Each disk file is specified by colon-separated fields. The first field is the path and file name of the disk
file. The second field specifies the device. The third field specifies permissions, and the optional fourth specifies the
format. Here is an example that identifies a single file:

vm_disk = swap.img:sda2:w:raw

3.16. Virtual Machine Applications 157

HTCondor Manual, Release 10.0.9

If HTCondor will be transferring the disk file, then the file name given in vm_disk should not contain any path infor-
mation. Otherwise, the full path to the file should be given.

Setting values in the submit description file for some commands have consequences for the virtual machine description
file. These commands are

• vm_memory

• vm_macaddr

• vm_networking

• vm_networking_type

• vm_disk

HTCondor uses these values when it produces the description file.

If any files need to be transferred from the submit machine to the machine where the vm universe job will execute,
HTCondor must be explicitly told to do so with the standard file transfer attributes:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /myxen/diskfile.img,/myxen/swap.img

Any and all needed files that will not accessible directly from the machines where the job may execute must be listed.

Further commands specify information that is specific to the virtual machine type targeted.

Xen-Specific Submit Commands

A Xen vm universe job requires specification of the guest kernel. The xen_kernel command accomplishes this, utilizing
one of the following definitions.

1. xen_kernel = included implies that the kernel is to be found in disk image given by the definition of the
single file specified in vm_disk .

2. xen_kernel = path-to-kernel gives the file name of the required kernel. If this kernel must be transferred
to machine on which the vm universe job will execute, it must also be included in the transfer_input_files
command.

This form of the xen_kernel command also requires further definition of the xen_root command. xen_root
defines the device containing files needed by root.

3.16.2 Checkpoints

Creating a checkpoint is straightforward for a virtual machine, as a checkpoint is a set of files that represent a snapshot
of both disk image and memory. The checkpoint is created and all files are transferred back to the $(SPOOL) directory
on the machine from which the job was submitted. The submit command to create checkpoints is

vm_checkpoint = true

Without this command, no checkpoints are created (by default). With the command, a checkpoint is created any time
the vm universe jobs is evicted from the machine upon which it is executing. This occurs as a result of the machine
configuration indicating that it will no longer execute this job.

158 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Periodic creation of checkpoints is not supported at this time.

Enabling both networking and checkpointing for a vm universe job can cause networking problems when the job
restarts, particularly if the job migrates to a different machine. condor_submit will normally reject such jobs. To
enable both, then add the command

when_to_transfer_output = ON_EXIT_OR_EVICT

Take care with respect to the use of network connections within the virtual machine and their interaction with check-
points. Open network connections at the time of the checkpoint will likely be lost when the checkpoint is subsequently
used to resume execution of the virtual machine. This occurs whether or not the execution resumes on the same machine
or a different one within the HTCondor pool.

3.16.3 Disk Images

Xen and KVM

While the following web page contains instructions specific to Fedora on how to create a virtual guest image, it should
provide a good starting point for other platforms as well.

http://fedoraproject.org/wiki/Virtualization_Quick_Start

3.16.4 Job Completion in the vm Universe

Job completion for a vm universe job occurs when the virtual machine is shut down, and HTCondor notices (as the
result of a periodic check on the state of the virtual machine). This is different from jobs executed under the environment
of other universes.

Shut down of a virtual machine occurs from within the virtual machine environment. A script, executed with the proper
authorization level, is the likely source of the shut down commands.

Under a Windows 2000, Windows XP, or Vista virtual machine, an administrator issues the command

> shutdown -s -t 01

Under a Linux virtual machine, the root user executes

$ /sbin/poweroff

The command /sbin/halt will not completely shut down some Linux distributions, and instead causes the job to
hang.

Since the successful completion of the vm universe job requires the successful shut down of the virtual machine, it is
good advice to try the shut down procedure outside of HTCondor, before a vm universe job is submitted.

3.16. Virtual Machine Applications 159

http://fedoraproject.org/wiki/Virtualization_Quick_Start

HTCondor Manual, Release 10.0.9

3.16.5 Failures to Launch

It is not uncommon for a vm universe job to fail to launch because of a problem with the execute machine. In these
cases, HTCondor will reschedule the job and note, in its user event log (if requested), the reason for the failure and that
the job will be rescheduled. The reason is unlikely to be directly useful to you as an HTCondor user, but may help your
HTCondor administrator understand the problem.

If the VM fails to launch for other reasons, the job will be placed on hold and the reason placed in the job ClassAd’s
HoldReason attribute. The following table may help in understanding such reasons.

VMGAHP_ERR_JOBCLASSAD_NO_VM_MEMORY_PARAM The attribute JobVMMemory was not set in the
job ad sent to the VM GAHP. HTCondor will usually prevent you from submitting a VM universe job without
JobVMMemory set. Examine your job and verify that JobVMMemory is set. If it is, please contact your admin-
istrator.

VMGAHP_ERR_JOBCLASSAD_KVM_NO_DISK_PARAM The attribute VMPARAM_vm_Disk was not set in
the job ad sent to the VM GAHP. HTCondor will usually set this attribute when you submit a valid KVM job (it
is derived from vm_disk). Examine your job and verify that VMPARAM_vm_Disk is set. If it is, please contact
your administrator.

VMGAHP_ERR_JOBCLASSAD_KVM_INVALID_DISK_PARAM The attribute vm_disk was invalid. Please
consult the manual, or the condor_submit man page, for information about the syntax of vm_disk. A syntacti-
cally correct value may be invalid if the on-disk permissions of a file specified in it do not match the requested
permissions. Presently, files not transferred to the root of the working directory must be specified with full paths.

VMGAHP_ERR_JOBCLASSAD_KVM_MISMATCHED_CHECKPOINT KVM jobs can not presently check-
point if any of their disk files are not on a shared filesystem. Files on a shared filesystem must be specified in
vm_disk with full paths.

VMGAHP_ERR_JOBCLASSAD_XEN_NO_KERNEL_PARAM The attribute VMPARAM_Xen_Kernel was
not set in the job ad sent to the VM GAHP. HTCondor will usually set this attribute when you submit a valid
Xen job (it is derived from xen_kernel). Examine your job and verify that VMPARAM_Xen_Kernel is set. If it
is, please contact your administrator.

VMGAHP_ERR_JOBCLASSAD_MISMATCHED_HARDWARE_VT Don’t use ‘vmx’ as the name of your ker-
nel image. Pick something else and change xen_kernel to match.

VMGAHP_ERR_JOBCLASSAD_XEN_KERNEL_NOT_FOUND HTCondor could not read from the file spec-
ified by xen_kernel. Check the path and the file’s permissions. If it’s on a shared filesystem, you may need to
alter your job’s requirements expression to ensure the filesystem’s availability.

VMGAHP_ERR_JOBCLASSAD_XEN_INITRD_NOT_FOUND HTCondor could not read from the file specified
by xen_initrd. Check the path and the file’s permissions. If it’s on a shared filesystem, you may need to alter your
job’s requirements expression to ensure the filesystem’s availability.

VMGAHP_ERR_JOBCLASSAD_XEN_NO_ROOT_DEVICE_PARAM The attribute VMPARAM_Xen_Root
was not set in the job ad sent to the VM GAHP. HTCondor will usually set this attribute when you submit a
valid Xen job (it is derived from xen_root). Examine your job and verify that VMPARAM_Xen_Root is set. If
it is, please contact your administrator.

VMGAHP_ERR_JOBCLASSAD_XEN_NO_DISK_PARAM The attribute VMPARAM_vm_Disk was not set in
the job ad sent to the VM GAHP. HTCondor will usually set this attribute when you submit a valid Xen job (it is
derived from vm_disk). Examine your job and verify that VMPARAM_vm_Disk is set. If it is, please contact
your administrator.

VMGAHP_ERR_JOBCLASSAD_XEN_INVALID_DISK_PARAM The attribute vm_disk was invalid. Please
consult the manual, or the condor_submit man page, for information about the syntax of vm_disk. A syntac-

160 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

tically correct value may be invalid if the on-disk permissions of a file specified in it do not match the requested
permissions. Presently, files not transferred to the root of the working directory must be specified with full paths.

VMGAHP_ERR_JOBCLASSAD_XEN_MISMATCHED_CHECKPOINT Xen jobs can not presently check-
point if any of their disk files are not on a shared filesystem. Files on a shared filesystem must be specified
in vm_disk with full paths.

3.17 Docker Universe Applications

A docker universe job instantiates a Docker container from a Docker image, and HTCondor manages the running of that
container as an HTCondor job, on an execute machine. This running container can then be managed as any HTCondor
job. For example, it can be scheduled, removed, put on hold, or be part of a workflow managed by DAGMan.

The docker universe job will only be matched with an execute host that advertises its capability to run docker universe
jobs. When an execute machine with docker support starts, the machine checks to see if the docker command is available
and has the correct settings for HTCondor. Docker support is advertised if available and if it has the correct settings.

The image from which the container is instantiated is defined by specifying a Docker image with the submit command
docker_image . This image must be pre-staged on a docker hub that the execute machine can access.

After submission, the job is treated much the same way as a vanilla universe job. Details of file transfer are the same as
applied to the vanilla universe. One of the benefits of Docker containers is the file system isolation they provide. Each
container has a distinct file system, from the root on down, and this file system is completely independent of the file
system on the host machine. The container does not share a file system with either the execute host or the submit host,
with the exception of the scratch directory, which is volume mounted to the host, and is the initial working directory
of the job. Optionally, the administrator may configure other directories from the host machine to be volume mounted,
and thus visible inside the container. See the docker section of the administrator’s manual for details.

In Docker universe (as well as vanilla), HTCondor never allows a containerized process to run as root inside the con-
tainer, it always runs as a non-root user. It will run as the same non-root user that a vanilla job will. If a Docker Universe
job fails in an obscure way, but runs fine in a docker container on a desktop, try running the job as a non-root user on
the desktop to try to duplicate the problem.

HTCondor creates a per-job scratch directory on the execute machine, transfers any input files to that directory, bind-
mounts that directory to a directory of the same name inside the container, and sets the IWD of the contained job to that
directory. The assumption is that the job will look in the cwd for input files, and drop output files in the same directory.
In docker terms, we docker run with the -v /some_scratch_directory -w /some_scratch_directory -user non-root-user
command line options (along with many others).

The executable file can come from one of two places: either from within the container’s image, or it can be a script
transfered from the submit machine to the scratch directory of the execute machine. To specify the former, use an
absolute path (starting with a /) for the executable. For the latter, use a relative path.

Therefore, the submit description file should contain the submit command

should_transfer_files = YES

With this command, all input and output files will be transferred as required to and from the scratch directory mounted
as a Docker volume.

If no executable is specified in the submit description file, it is presumed that the Docker container has a default
command to run.

When the job completes, is held, evicted, or is otherwise removed from the machine, the container will be removed.

3.17. Docker Universe Applications 161

HTCondor Manual, Release 10.0.9

Here is a complete submit description file for a sample docker universe job:

universe = docker
docker_image = debian
executable = /bin/cat
arguments = /etc/hosts
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output = out.$(Process)
error = err.$(Process)
log = log.$(Process)
request_memory = 100M
queue 1

A debian container is the HTCondor job, and it runs the /bin/cat program on the /etc/hosts file before exiting.

3.17.1 Docker and Networking

By default, docker universe jobs will be run with a private, NATed network interface.

In the job submit file, if the user specifies

docker_network_type = none

then no networking will be available to the job.

In the job submit file, if the user specifies

docker_network_type = host

then, instead of a NATed interface, the job will use the host’s network interface, just like a vanilla universe job. If an
administrator has defined additional, custom docker networks, they will be advertised in the slot attribute DockerNet-
works, and any value in that list can be a valid argument for this keyword.

If the host network type is unavailable, you can ask Docker to forward one or more ports on the host into the container.
In the following example, we assume that the ‘centos7_with_htcondor’ image has HTCondor set up and ready to go,
but doesn’t turn it on by default.

universe = docker
docker_image = centos7_with_htcondor
executable = /usr/sbin/condor_master
arguments = -f
container_service_names = condor
condor_container_port = 9618
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output = out.$(Process)
error = err.$(Process)
log = log.$(Process)
request_memory = 100M
queue 1

162 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

The container_service_names submit command accepts a comma- or space- separated list of service names; each
service name must have a corresponding <service-name>_container_port submit command specifying an integer
between 0 and 65535. Docker will automatically select a port on the host to forward to that port in the container;
HTCondor will report that port in the job ad attribute <service-name>_HostPort after it becomes available, which
will be (several seconds) after the job starts. HTCondor will update the job ad in the sandbox (.job.ad) at that time.

3.18 Container Universe Jobs

After the creation of Docker, many competing container runtime solutions have been created, some of which are mostly
compatible with Docker, and others which provide their own feature sets. Many HTCondor users and administrators
want to run jobs inside containers, but don’t care which runtime is used, as long as it works.

HTCondor’s container universe provides an abstraction where the user does not specify exactly which container runtime
to use, but just aspects of their contained job, and HTCondor will select an appropriate runtime. To do this, two job
submit file commands are needed: First, set the universe to container, and then specify the container image with the
container_image command.

Note that the container may specify the executable to run, either in the runfile option of a singularity image, or in the
entrypoint option of a Dockerfile. If this is set, the executable command in the HTCondor submit file is optional, and
the default command in the container will be run.

This container image may describe an image in a docker-style repo if it is prefixed with docker://, or a Singularity
.sif image on disk, or a Singularity sandbox image (an exploded directory). condor_submit will parse this image and
advertise what type of container image it is, and match with startds that can support that image.

A container image that would otherwise be transferred can be forced to never be transferred by setting

should_transfer_container = no

Here is a complete submit description file for a sample container universe job:

universe = container
container_image = ./image.sif
executable = /bin/cat
arguments = /etc/hosts
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output = out.$(Process)
error = err.$(Process)
log = log.$(Process)
request_memory = 100M
queue 1

3.18. Container Universe Jobs 163

HTCondor Manual, Release 10.0.9

3.19 Self-Checkpointing Applications

This section is about writing jobs for an executable which periodically saves checkpoint information, and how to make
HTCondor store that information safely, in case it’s needed to continue the job on another machine or at a later time.

This section is not about how to checkpoint a given executable; that’s up to you or your software provider.

3.19.1 How To Run Self-Checkpointing Jobs

The best way to run self-checkpointing code is to set checkpoint_exit_code in your submit file. (Any exit code will
work, but if you can choose, consider error code 85. On Linux systems, this is ERESTART, which seems appropriate.) If
the executable exits with checkpoint_exit_code, HTCondor will transfer the checkpoint to the submit node, and
then immediately restart the executable in the same sandbox on the same machine, with same the arguments. This
immediate transfer makes the checkpoint available for continuing the job even if the job is interrupted in a way that
doesn’t allow for files to be transferred (e.g., power failure), or if the file transfer doesn’t complete in the time allowed.

For a job to use checkpoint_exit_code successfully, its executable must meet a number of requirements.

3.19.2 Requirements

Your self-checkpointing code may not meet all of the following requirements. In many cases, however, you will be
able to add a wrapper script, or modify an existing one, to meet these requirements. (Thus, your executable may be
a script, rather than the code that’s writing the checkpoint.) If you can not, consult Working Around the Assumptions
and/or the Other Options.

1. Your executable exits after taking a checkpoint with an exit code it does not otherwise use.

• If your executable does not exit when it takes a checkpoint, HTCondor will not transfer its checkpoint. If
your executable exits normally when it takes a checkpoint, HTCondor will not be able to tell the difference
between taking a checkpoint and actually finishing; that is, if the checkpoint code and the terminal exit code
are the same, your job will never finish.

2. When restarted, your executable determines on its own if a checkpoint is available, and if so, uses it.

• If your job does not look for a checkpoint each time it starts up, it will start from scratch each time; HT-
Condor does not run a different command line when restarting a job which has taken a checkpoint.

3. Starting your executable up from a checkpoint is relatively quick.

• If starting your executable up from a checkpoint is relatively slow, your job may not run efficiently enough
to be useful, depending on the frequency of checkpoints and interruptions.

3.19.3 Using checkpoint_exit_code

The following Python script (example.py) is a toy example of code that checkpoints itself. It counts from 0 to 10
(exclusive), sleeping for 10 seconds at each step. It writes a checkpoint file (containing the next number) after each
nap, and exits with code 85 at count 3, 6, and 9. It exits with code 0 when complete.

#!/usr/bin/env python

import sys
import time

(continues on next page)

164 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

(continued from previous page)

value = 0
try:

with open('example.checkpoint', 'r') as f:
value = int(f.read())

except IOError:
pass

print("Starting from {0}".format(value))
for i in range(value,10):

print("Computing timestamp {0}".format(value))
time.sleep(10)
value += 1
with open('example.checkpoint', 'w') as f:

f.write("{0}".format(value))
if value%3 == 0:

sys.exit(85)

print("Computation complete")
sys.exit(0)

The following submit file (example.submit) commands HTCondor to transfer the file example.checkpoint to the
submit node whenever the script exits with code 85. If interrupted, the job will resume from the most recent of those
checkpoints. Before version 8.9.8, you must include your checkpoint file(s) in transfer_output_files; otherwise
HTCondor will not transfer it (them). Starting with version 8.9.8, you may instead use transfer_checkpoint_files,
as documented on the condor_submit man page.

checkpoint_exit_code = 85
transfer_output_files = example.checkpoint
should_transfer_files = yes

executable = example.py
arguments =

output = example.out
error = example.err
log = example.log

queue 1

This example does not remove the “checkpoint file” generated for timestep 9 when the executable completes. This
could be done in example.py immediately before it exits, but that would cause the final file transfer to fail, if you
specified the file in transfer_output_files. The script could instead remove the file and then re-create it empty, it
desired.

3.19. Self-Checkpointing Applications 165

HTCondor Manual, Release 10.0.9

3.19.4 How Frequently to Checkpoint

Obviously, the longer the code spends writing checkpoints, and the longer your job spends transferring them, the longer
it will take for you to get the job’s results. Conversely, the more frequently the job transfers new checkpoints, the less
time the job loses if it’s interrupted. For most users and for most jobs, taking a checkpoint about once an hour works
well, and it’s not a bad duration to start experimenting with. A number of factors will skew this interval up or down:

• If your job(s) usually run on resources with strict time limits, you may want to adjust how often your job check-
points to minimize wasted time. For instance, if your job writes a checkpoint after each hour, and each checkpoint
takes five minutes to write out and then transfer, your fifth checkpoint will finish twenty-five minutes into the
fifth hour, and you won’t gain any benefit from the next thirty-five minutes of computation. If you instead write
a checkpoint every eighty-four minutes, your job will only waste four minutes.

• If a particular code writes larger checkpoints, or writes smaller checkpoints unusually slowly, you may want to
take a checkpoint less frequently than you would for other jobs of a similar length, to keep the total overhead
(delay) the same. The opposite is also true: if the job can take checkpoints particularly quickly, or the checkpoints
are particularly small, the job could checkpoint more often for the same amount of overhead.

• Some code naturally checkpoints at longer or shorter intervals. If a code writes a checkpoint every five minutes,
it may make sense for the executable to wait for the code to write ten or more checkpoints before exiting (which
asks HTCondor to transfer the checkpoint file(s)). If a job is a sequence of steps, the natural (or only possible)
checkpoint interval may be between steps.

• How long it takes to restart from a checkpoint. It should never take longer to restart from a checkpoint than to
recompute from the beginning, but the restart process is part of the overhead of taking a checkpoint. The longer
a code takes to restart, the less often the executable should exit.

Measuring how long it takes to make checkpoints is left as an exercise for the reader. Since version 8.9.1, however,
HTCondor will report in the job’s log (if a log is enabled for that job) how long file transfers, including checkpoint
transfers, took.

3.19.5 Debugging Self-Checkpointing Jobs

Because a job may be interrupted at any time, it’s valid to interrupt the job at any time and see if a valid check-
point is transferred. To do so, use condor_vacate_job to evict the job. When that’s done (watch the user log), use
condor_hold to put it on hold, so that it can’t restart while you’re looking at the checkpoint (and potentially, overwrite
it). Finally, to obtain the checkpoint file(s) themselves, use the somewhat mis-named condor_evicted_files to ask
where they are.

For example, if your job is ID 635.0, and is logging to the file job.log, you can copy the files in the checkpoint to a
subdirectory of the current as follows:

$ condor_vacate_job 635.0

Wait for the job to finish being evicted; hit CTRL-C when you see ‘Job was evicted.’ and immediately hold the job.

$ tail --follow job.log
$ condor_hold 635.0

Copy the checkpoint files from the spool. Note that _condor_stderr and _condor_stdout are the files correspond-
ing to the job’s output and error submit commands; they aren’t named correctly until the the job finishes.

$ condor_evicted_files get 635.0
Copied to '635.0'.
$ cd 635.0

166 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Now examine the checkpoint files to see if they look right. When you’re done, release the job to see if it actually works
right.

$ condor_release 635.0
$ condor_ssh_to_job 635.0

You may also want to remove your copy of checkpoint files:

$ cd ..; rm -fr 635.0

3.19.6 Working Around the Assumptions

The basic technique here is to write a wrapper script (or modify an existing one), so that the executable has the
necessary behavior, even if the code does not.

1. Your executable exits after taking a checkpoint with an exit code it does not otherwise use.

• If your code exits when it takes a checkpoint, but not with a unique code, your wrapper script will have to
determine, when the executable exits, if it did so because it took a checkpoint. If so, the wrapper script
will have to exit with a unique code. If the code could usefully exit with any code, and the wrapper script
therefore can not exit with a unique code, you can instead instruct HTCondor to consider being killed by a
particular signal as a sign of successful checkpoint; set +SuccessCheckpointExitBySignal to TRUE and
+SuccessCheckpointExitSignal to the particular signal. (If you do not set checkpoint_exit_code,
you must set +WantFTOnCheckpoint.)

• If your code does not exit when it takes a checkpoint, the wrapper script will have to determine when a
checkpoint has been made, kill the program, and then exit with a unique code.

2. When restarted, your executable determines on its own if a checkpoint is available, and if so, uses it.

• If your code requires different arguments to start from a checkpoint, the wrapper script must check for the
presence of a checkpoint and start the executable with correspondingly modified arguments.

3. Starting your executable up from a checkpoint is relatively quick.

• The longer the start-up delay, the slower the job’s overall progress. If your job’s progress is too slow as a
result of start-up delay, and your code can take checkpoints without exiting, read the ‘Delayed Transfers’
and ‘Manual Transfers’ sections below.

3.19.7 Other Options

The preceding sections of this HOWTO explain how a job meeting the requirements can take checkpoints at arbitrary
intervals and transfer them back to the submit node. Although this is the method of operation most likely to result in
an interrupted job continuing from a valid checkpoint, other, less reliable options exist.

Delayed Transfers

This method is risky, because it does not allow your job to recover from any failure mode other than an eviction (and
sometimes not even then). It may also require changes to your executable. The advantage of this method is that it
doesn’t require your code to restart, or even a recent version of HTCondor.

The basic idea is to take checkpoints as the job runs, but not transfer them back to the submit node until the job is
evicted. This implies that your executable doesn’t exit until the job is complete (which is the normal case). If your
code has long start-up delays, you’ll naturally not want it to exit after it writes a checkpoint; otherwise, the wrapper
script could restart the code as necessary.

3.19. Self-Checkpointing Applications 167

HTCondor Manual, Release 10.0.9

To use this method, set when_to_transfer_output to ON_EXIT_OR_EVICT instead of setting
checkpoint_exit_code. This will cause HTCondor to transfer your checkpoint file(s) (which you listed in
transfer_output_files, as noted above) when the job is evicted. Of course, since this is the only time your
checkpoint file(s) will be transferred, if the transfer fails, your job has to start over from the beginning. One reason
file transfer on eviction fails is if it takes too long, so this method may not work if your transfer_output_files
contain too much data.

Furthermore, eviction can happen at any time, including while the code is updating its checkpoint file(s). If the code
does not update its checkpoint file(s) atomically, HTCondor will transfer the partially-updated checkpoint file(s), po-
tentially overwriting the previous, complete one(s); this will probably prevent the code from picking up where it left
off.

In some cases, you can work around this problem by using a wrapper script. The idea is that renaming a file is an atomic
operation, so if your code writes checkpoints to one file, call it checkpoint, your wrapper script – when it detects that
the checkpoint is complete – would rename that file checkpoint.atomic. That way, checkpoint.atomic always
has a complete checkpoint in it. With a such a script, instead of putting checkpoint in transfer_output_files,
you would put checkpoint.atomic, and HTCondor would never see a partially-complete checkpoint file. (The script
would also, of course, have to copy checkpoint.atomic to checkpoint before running the code.)

Manual Transfers

If you’re comfortable with programming, instead of running a job with checkpoint_exit_code, you could use
condor_chirp, or other tools, to manage your checkpoint file(s). Your executable would be responsible for down-
loading the checkpoint file(s) on start-up, and periodically uploading the checkpoint file(s) during execution. We don’t
recommend you do this for the same reasons we recommend against managing your own input and output file transfers.

Early Checkpoint Exits

If your executable’s natural checkpoint interval is half or more of your pool’s max job runtime, it may make sense
to checkpoint and then immediately ask to be rescheduled, rather than lower your user priority doing work you know
will be thrown away. In this case, you can use the OnExitRemove job attribute to determine if your job should be
rescheduled after exiting. Don’t set ON_EXIT_OR_EVICT, and don’t set +WantFTOnCheckpoint; just have the job exit
with a unique code after its checkpoint.

3.19.8 Signals

Signals offer additional options for running self-checkpointing jobs. If you’re not familiar with signals, this section
may not make sense to you.

Periodic Signals

HTCondor supports transferring checkpoint file(s) for an executable which takes a checkpoint when sent a par-
ticular signal, if the executable then exits in a unique way. Set +WantCheckpointSignal to TRUE to period-
ically receive checkpoint signals, and +CheckpointSig to specify which one. (The interval is specified by the
administrator of the execute machine.) The unique way may be a specific exit code, for which you would set
checkpoint_exit_code, or a signal, for which you would set +SuccessCheckpointExitBySignal to TRUE and
+SuccessCheckpointExitSignal to the particular signal. (If you do not set checkpoint_exit_code, you must
set +WantFTOnCheckpoint.)

168 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Delayed Transfer with Signals

This method is very similar to but riskier than delayed transfers, because in addition to delaying the transfer of the
checkpoint files(s), it also delays their creation. Thus, this option should almost never be used; if taking and transferring
your checkpoint file(s) is fast enough to reliably complete during an eviction, you’re not losing much by doing so
periodically, and it’s unlikely that a code which takes small checkpoints quickly takes a long time to start up. However,
this method will work even with very old version of HTCondor.

To use this method, set when_to_transfer_output to ON_EXIT_OR_EVICT and KillSig to the particular signal
that causes your job to checkpoint.

3.20 Time Scheduling for Job Execution

Jobs may be scheduled to begin execution at a specified time in the future with HTCondor’s job deferral functionality.
All specifications are in a job’s submit description file. Job deferral functionality is expanded to provide for the periodic
execution of a job, known as the CronTab scheduling.

3.20.1 Job Deferral

Job deferral allows the specification of the exact date and time at which a job is to begin executing. HTCondor attempts
to match the job to an execution machine just like any other job, however, the job will wait until the exact time to begin
execution. A user can define the job to allow some flexibility in the execution of jobs that miss their execution time.

Deferred Execution Time

A job’s deferral time is the exact time that HTCondor should attempt to execute the job. The deferral time attribute is
defined as an expression that evaluates to a Unix Epoch timestamp (the number of seconds elapsed since 00:00:00 on
January 1, 1970, Coordinated Universal Time). This is the time that HTCondor will begin to execute the job.

After a job is matched and all of its files have been transferred to an execution machine, HTCondor checks to see if the
job’s ClassAd contains a deferral time. If it does, HTCondor calculates the number of seconds between the execution
machine’s current system time and the job’s deferral time. If the deferral time is in the future, the job waits to begin
execution. While a job waits, its job ClassAd attribute JobStatus indicates the job is in the Running state. As the
deferral time arrives, the job begins to execute. If a job misses its execution time, that is, if the deferral time is in the
past, the job is evicted from the execution machine and put on hold in the queue.

The specification of a deferral time does not interfere with HTCondor’s behavior. For example, if a job is waiting to
begin execution when a condor_hold command is issued, the job is removed from the execution machine and is put
on hold. If a job is waiting to begin execution when a condor_suspend command is issued, the job continues to wait.
When the deferral time arrives, HTCondor begins execution for the job, but immediately suspends it.

The deferral time is specified in the job’s submit description file with the command deferral_time .

3.20. Time Scheduling for Job Execution 169

HTCondor Manual, Release 10.0.9

Deferral Window

If a job arrives at its execution machine after the deferral time has passed, the job is evicted from the machine and put
on hold in the job queue. This may occur, for example, because the transfer of needed files took too long due to a slow
network connection. A deferral window permits the execution of a job that misses its deferral time by specifying a
window of time within which the job may begin.

The deferral window is the number of seconds after the deferral time, within which the job may begin. When a job
arrives too late, HTCondor calculates the difference in seconds between the execution machine’s current time and the
job’s deferral time. If this difference is less than or equal to the deferral window, the job immediately begins execution.
If this difference is greater than the deferral window, the job is evicted from the execution machine and is put on hold
in the job queue.

The deferral window is specified in the job’s submit description file with the command deferral_window .

Preparation Time

When a job defines a deferral time far in the future and then is matched to an execution machine, potential computation
cycles are lost because the deferred job has claimed the machine, but is not actually executing. Other jobs could
execute during the interval when the job waits for its deferral time. To make use of the wasted time, a job defines
a deferral_prep_time with an integer expression that evaluates to a number of seconds. At this number of seconds
before the deferral time, the job may be matched with a machine.

Deferral Usage Examples

Here are examples of how the job deferral time, deferral window, and the preparation time may be used.

The job’s submit description file specifies that the job is to begin execution on January 1st, 2006 at 12:00 pm:

deferral_time = 1136138400

The Unix date program may be used to calculate a Unix epoch time. The syntax of the command to do this depends on
the options provided within that flavor of Unix. In some, it appears as

$ date --date "MM/DD/YYYY HH:MM:SS" +%s

and in others, it appears as

$ date -d "YYYY-MM-DD HH:MM:SS" +%s

MM is a 2-digit month number, DD is a 2-digit day of the month number, and YYYY is a 4-digit year. HH is the 2-digit
hour of the day, MM is the 2-digit minute of the hour, and SS are the 2-digit seconds within the minute. The characters
+%s tell the date program to give the output as a Unix epoch time.

The job always waits 60 seconds after submission before beginning execution:

deferral_time = (QDate + 60)

In this example, assume that the deferral time is 45 seconds in the past as the job is available. The job begins execution,
because 75 seconds remain in the deferral window:

170 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

deferral_window = 120

In this example, a job is scheduled to execute far in the future, on January 1st, 2010 at 12:00 pm. The defer-
ral_prep_time attribute delays the job from being matched until 60 seconds before the job is to begin execution.

deferral_time = 1262368800
deferral_prep_time = 60

Deferral Limitations

There are some limitations to HTCondor’s job deferral feature.

• Job deferral is not available for scheduler universe jobs. A scheduler universe job defining the deferral_time
produces a fatal error when submitted.

• The time that the job begins to execute is based on the execution machine’s system clock, and not the submission
machine’s system clock. Be mindful of the ramifications when the two clocks show dramatically different times.

• A job’s JobStatus attribute is always in the Running state when job deferral is used. There is currently no way
to distinguish between a job that is executing and a job that is waiting for its deferral time.

3.20.2 CronTab Scheduling

HTCondor’s CronTab scheduling functionality allows jobs to be scheduled to execute periodically. A job’s execution
schedule is defined by commands within the submit description file. The notation is much like that used by the Unix
cron daemon. As such, HTCondor developers are fond of referring to CronTab scheduling as Crondor. The scheduling
of jobs using HTCondor’s CronTab feature calculates and utilizes the DeferralTime ClassAd attribute.

Also, unlike the Unix cron daemon, HTCondor never runs more than one instance of a job at the same time.

The capability for repetitive or periodic execution of the job is enabled by specifying an on_exit_remove command for
the job, such that the job does not leave the queue until desired.

Semantics for CronTab Specification

A job’s execution schedule is defined by a set of specifications within the submit description file. HTCondor uses these
to calculate a DeferralTime for the job.

Table 2.3 lists the submit commands and acceptable values for these commands. At least one of these must be defined
in order for HTCondor to calculate a DeferralTime for the job. Once one CronTab value is defined, the default for
all the others uses all the values in the allowed values ranges.

cron_minute 0 - 59
cron_hour 0 - 23
cron_day_of_month 1 - 31
cron_month 1 - 12
cron_day_of_week 0 - 7 (Sunday is 0 or 7)

Table 2.3: The list of submit commands and their value ranges.

The day of a job’s execution can be specified by both the cron_day_of_month and the cron_day_of_week attributes.
The day will be the logical or of both.

3.20. Time Scheduling for Job Execution 171

HTCondor Manual, Release 10.0.9

The semantics allow more than one value to be specified by using the * operator, ranges, lists, and steps (strides) within
ranges.

The asterisk operator The * (asterisk) operator specifies that all of the allowed values are used for
scheduling. For example,

cron_month = *

becomes any and all of the list of possible months: (1,2,3,4,5,6,7,8,9,10,11,12). Thus, a job runs any
month in the year.

Ranges A range creates a set of integers from all the allowed values between two integers separated by a
hyphen. The specified range is inclusive, and the integer to the left of the hyphen must be less than
the right hand integer. For example,

cron_hour = 0-4

represents the set of hours from 12:00 am (midnight) to 4:00 am, or (0,1,2,3,4).

Lists A list is the union of the values or ranges separated by commas. Multiple entries of the same value
are ignored. For example,

cron_minute = 15,20,25,30
cron_hour = 0-3,9-12,15

where this cron_minute example represents (15,20,25,30) and cron_hour represents
(0,1,2,3,9,10,11,12,15).

Steps Steps select specific numbers from a range, based on an interval. A step is specified by appending
a range or the asterisk operator with a slash character (/), followed by an integer value. For example,

cron_minute = 10-30/5
cron_hour = */3

where this cron_minute example specifies every five minutes within the specified range to
represent (10,15,20,25,30), and cron_hour specifies every three hours of the day to represent
(0,3,6,9,12,15,18,21).

Preparation Time and Execution Window

The cron_prep_time command is analogous to the deferral time’s deferral_prep_time command. It specifies the
number of seconds before the deferral time that the job is to be matched and sent to the execution machine. This
permits HTCondor to make necessary preparations before the deferral time occurs.

Consider the submit description file example that includes

cron_minute = 0
cron_hour = *
cron_prep_time = 300

The job is scheduled to begin execution at the top of every hour. Note that the setting of cron_hour in this example is
not required, as the default value will be *, specifying any and every hour of the day. The job will be matched and sent
to an execution machine no more than five minutes before the next deferral time. For example, if a job is submitted
at 9:30am, then the next deferral time will be calculated to be 10:00am. HTCondor may attempt to match the job to a
machine and send the job once it is 9:55am.

172 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

As the CronTab scheduling calculates and uses deferral time, jobs may also make use of the deferral window. The submit
command cron_window is analogous to the submit command deferral_window . Consider the submit description file
example that includes

cron_minute = 0
cron_hour = *
cron_window = 360

As the previous example, the job is scheduled to begin execution at the top of every hour. Yet with no preparation time,
the job is likely to miss its deferral time. The 6-minute window allows the job to begin execution, as long as it arrives
and can begin within 6 minutes of the deferral time, as seen by the time kept on the execution machine.

Scheduling

When a job using the CronTab functionality is submitted to HTCondor, use of at least one of the submit description file
commands beginning with cron_ causes HTCondor to calculate and set a deferral time for when the job should run.
A deferral time is determined based on the current time rounded later in time to the next minute. The deferral time is
the job’s DeferralTime attribute. A new deferral time is calculated when the job first enters the job queue, when the
job is re-queued, or when the job is released from the hold state. New deferral times for all jobs in the job queue using
the CronTab functionality are recalculated when a condor_reconfig or a condor_restart command that affects the job
queue is issued.

A job’s deferral time is not always the same time that a job will receive a match and be sent to the execution machine.
This is because HTCondor operates on the job queue at times that are independent of job events, such as when job
execution completes. Therefore, HTCondor may operate on the job queue just after a job’s deferral time states that it
is to begin execution. HTCondor attempts to start a job when the following pseudo-code boolean expression evaluates
to True:

(time() + SCHEDD_INTERVAL) >= (DeferralTime - CronPrepTime)

If the time() plus the number of seconds until the next time HTCondor checks the job queue is greater than or equal
to the time that the job should be submitted to the execution machine, then the job is to be matched and sent now.

Jobs using the CronTab functionality are not automatically re-queued by HTCondor after their execution is complete.
The submit description file for a job must specify an appropriate on_exit_remove command to ensure that a job remains
in the queue. This job maintains its original ClusterId and ProcId.

Submit Commands Usage Examples

Here are some examples of the submit commands necessary to schedule jobs to run at multifarious times. Please note
that it is not necessary to explicitly define each attribute; the default value is *.

Run 23 minutes after every two hours, every day of the week:

on_exit_remove = false
cron_minute = 23
cron_hour = 0-23/2
cron_day_of_month = *
cron_month = *
cron_day_of_week = *

Run at 10:30pm on each of May 10th to May 20th, as well as every remaining Monday within the month of May:

3.20. Time Scheduling for Job Execution 173

HTCondor Manual, Release 10.0.9

on_exit_remove = false
cron_minute = 30
cron_hour = 20
cron_day_of_month = 10-20
cron_month = 5
cron_day_of_week = 2

Run every 10 minutes and every 6 minutes before noon on January 18th with a 2-minute preparation time:

on_exit_remove = false
cron_minute = */10,*/6
cron_hour = 0-11
cron_day_of_month = 18
cron_month = 1
cron_day_of_week = *
cron_prep_time = 120

Submit Commands Limitations

The use of the CronTab functionality has all of the same limitations of deferral times, because the mechanism is based
upon deferral times.

• It is impossible to schedule vanilla universe jobs at intervals that are smaller than the interval at which HTCon-
dor evaluates jobs. This interval is determined by the configuration variable SCHEDD_INTERVAL . As a vanilla
universe job completes execution and is placed back into the job queue, it may not be placed in the idle state in
time. This problem does not afflict local universe jobs.

• HTCondor cannot guarantee that a job will be matched in order to make its scheduled deferral time. A job must
be matched with an execution machine just as any other HTCondor job; if HTCondor is unable to find a match,
then the job will miss its chance for executing and must wait for the next execution time specified by the CronTab
schedule.

3.21 Special Environment Considerations

3.21.1 AFS

The HTCondor daemons do not run authenticated to AFS; they do not possess AFS tokens. Therefore, no child process
of HTCondor will be AFS authenticated. The implication of this is that you must set file permissions so that your job
can access any necessary files residing on an AFS volume without relying on having your AFS permissions.

If a job you submit to HTCondor needs to access files residing in AFS, you have the following choices:

1. If the files must be kept on AFS, then set a host ACL (using the AFS fs setacl command) on the subdirectory
to serve as the current working directory for the job. Set the ACL such that any host in the pool can access the
files without being authenticated. If you do not know how to use an AFS host ACL, ask the person at your site
responsible for the AFS configuration.

The Center for High Throughput Computing hopes to improve upon how HTCondor deals with AFS authentication in
a subsequent release.

Please see the Using HTCondor with AFS section for further discussion of this problem.

174 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

3.21.2 NFS

If the current working directory when a job is submitted is accessed via an NFS automounter, HTCondor may have
problems if the automounter later decides to unmount the volume before the job has completed. This is because
condor_submit likely has stored the dynamic mount point as the job’s initial current working directory, and this mount
point could become automatically unmounted by the automounter.

There is a simple work around. When submitting the job, use the submit command initialdir to point to the stable access
point. For example, suppose the NFS automounter is configured to mount a volume at mount point /a/myserver.
company.com/vol1/johndoe whenever the directory /home/johndoe is accessed. Adding the following line to the
submit description file solves the problem.

initialdir = /home/johndoe

HTCondor attempts to flush the NFS cache on a submit machine in order to refresh a job’s initial working directory. This
allows files written by the job into an NFS mounted initial working directory to be immediately visible on the submit
machine. Since the flush operation can require multiple round trips to the NFS server, it is expensive. Therefore, a job
may disable the flushing by setting

+IwdFlushNFSCache = False

in the job’s submit description file. See the Job ClassAd Attributes page for a definition of the job ClassAd attribute.

3.21.3 HTCondor Daemons That Do Not Run as root

HTCondor is normally installed such that the HTCondor daemons have root permission. This allows HTCondor to run
the condor_shadow daemon and the job with the submitting user’s UID and file access rights. When HTCondor is
started as root, HTCondor jobs can access whatever files the user that submits the jobs can.

However, it is possible that the HTCondor installation does not have root access, or has decided not to run the daemons
as root. That is unfortunate, since HTCondor is designed to be run as root. To see if HTCondor is running as root on a
specific machine, use the command

$ condor_status -master -l <machine-name>

where <machine-name> is the name of the specified machine. This command displays the full condor_master ClassAd;
if the attribute RealUid equals zero, then the HTCondor daemons are indeed running with root access. If the RealUid
attribute is not zero, then the HTCondor daemons do not have root access.

NOTE: The Unix program ps is not an effective method of determining if HTCondor is running with root access. When
using ps, it may often appear that the daemons are running as the condor user instead of root. However, note that the ps
command shows the current effective owner of the process, not the real owner. (See the getuid (2) and geteuid (2) Unix
man pages for details.) In Unix, a process running under the real UID of root may switch its effective UID. (See the
seteuid (2) man page.) For security reasons, the daemons only set the effective UID to root when absolutely necessary,
as it will be to perform a privileged operation.

If daemons are not running with root access, make any and all files and/or directories that the job will touch readable
and/or writable by the UID (user id) specified by the RealUid attribute. Often this may mean using the Unix command
chmod 777 on the directory from which the HTCondor job is submitted.

3.21. Special Environment Considerations 175

HTCondor Manual, Release 10.0.9

3.21.4 Job Leases

A job lease specifies how long a given job will attempt to run on a remote resource, even if that resource loses contact
with the submitting machine. Similarly, it is the length of time the submitting machine will spend trying to reconnect
to the (now disconnected) execution host, before the submitting machine gives up and tries to claim another resource
to run the job. The goal aims at run only once semantics, so that the condor_schedd daemon does not allow the same
job to run on multiple sites simultaneously.

If the submitting machine is alive, it periodically renews the job lease, and all is well. If the submitting machine is
dead, or the network goes down, the job lease will no longer be renewed. Eventually the lease expires. While the lease
has not expired, the execute host continues to try to run the job, in the hope that the submit machine will come back
to life and reconnect. If the job completes and the lease has not expired, yet the submitting machine is still dead, the
condor_starter daemon will wait for a condor_shadow daemon to reconnect, before sending final information on the
job, and its output files. Should the lease expire, the condor_startd daemon kills off the condor_starter daemon and
user job.

A default value equal to 40 minutes exists for a job’s ClassAd attribute JobLeaseDuration, or this attribute may be
set in the submit description file, using job_lease_duration , to keep a job running in the case that the submit side no
longer renews the lease. There is a trade off in setting the value of job_lease_duration . Too small a value, and the job
might get killed before the submitting machine has a chance to recover. Forward progress on the job will be lost. Too
large a value, and an execute resource will be tied up waiting for the job lease to expire. The value should be chosen
based on how long the user is willing to tie up the execute machines, how quickly submit machines come back up, and
how much work would be lost if the lease expires, the job is killed, and the job must start over from its beginning.

As a special case, a submit description file setting of

job_lease_duration = 0

as well as utilizing submission other than condor_submit that do not set JobLeaseDuration (such as using the web
services interface) results in the corresponding job ClassAd attribute to be explicitly undefined. This has the further
effect of changing the duration of a claim lease, the amount of time that the execution machine waits before dropping
a claim due to missing keep alive messages.

3.21.5 Heterogeneous Submit: Execution on Differing Architectures

If executables are available for the different platforms of machines in the HTCondor pool, HTCondor can be allowed
the choice of a larger number of machines when allocating a machine for a job. Modifications to the submit description
file allow this choice of platforms.

A simplified example is a cross submission. An executable is available for one platform, but the submission is done
from a different platform. Given the correct executable, the requirements command in the submit description file
specifies the target architecture. For example, an executable compiled for a 32-bit Intel processor running Windows
Vista, submitted from an Intel architecture running Linux would add the requirement

requirements = Arch == "INTEL" && OpSys == "WINDOWS"

Without this requirement, condor_submit will assume that the program is to be executed on a machine with the same
platform as the machine where the job is submitted.

176 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

Vanilla Universe Example for Execution on Differing Architectures

A more complex example of a heterogeneous submission occurs when a job may be executed on many different ar-
chitectures to gain full use of a diverse architecture and operating system pool. If the executables are available for the
different architectures, then a modification to the submit description file will allow HTCondor to choose an executable
after an available machine is chosen.

A special-purpose Machine Ad substitution macro can be used in string attributes in the submit description file. The
macro has the form

$$(MachineAdAttribute)

The $$() informs HTCondor to substitute the requested MachineAdAttribute from the machine where the job will
be executed.

An example of the heterogeneous job submission has executables available for two platforms: RHEL 3 on both 32-bit
and 64-bit Intel processors. This example uses povray to render images using a popular free rendering engine.

The substitution macro chooses a specific executable after a platform for running the job is chosen. These executables
must therefore be named based on the machine attributes that describe a platform. The executables named

povray.LINUX.INTEL
povray.LINUX.X86_64

will work correctly for the macro

povray.$$(OpSys).$$(Arch)

The executables or links to executables with this name are placed into the initial working directory so that they may be
found by HTCondor. A submit description file that queues three jobs for this example:

Example of heterogeneous submission

universe = vanilla
executable = povray.$$(OpSys).$$(Arch)
log = povray.log
output = povray.out.$(Process)
error = povray.err.$(Process)

requirements = (Arch == "INTEL" && OpSys == "LINUX") || \
(Arch == "X86_64" && OpSys =="LINUX")

arguments = +W1024 +H768 +Iimage1.pov
queue

arguments = +W1024 +H768 +Iimage2.pov
queue

arguments = +W1024 +H768 +Iimage3.pov
queue

These jobs are submitted to the vanilla universe to assure that once a job is started on a specific platform, it will finish
running on that platform. Switching platforms in the middle of job execution cannot work correctly.

There are two common errors made with the substitution macro. The first is the use of a non-existent
MachineAdAttribute. If the specified MachineAdAttribute does not exist in the machine’s ClassAd, then HT-
Condor will place the job in the held state until the problem is resolved.

3.21. Special Environment Considerations 177

HTCondor Manual, Release 10.0.9

The second common error occurs due to an incomplete job set up. For example, the submit description file given above
specifies three available executables. If one is missing, HTCondor reports back that an executable is missing when it
happens to match the job with a resource that requires the missing binary.

Vanilla Universe Example for Execution on Differing Operating Systems

The addition of several related OpSys attributes assists in selection of specific operating systems and versions in het-
erogeneous pools.

Example targeting only RedHat platforms

universe = vanilla
Executable = /bin/date
Log = distro.log
Output = distro.out
Error = distro.err

Requirements = (OpSysName == "RedHat")

Queue

Example targeting RedHat 6 platforms in a heterogeneous Linux pool

universe = vanilla
executable = /bin/date
log = distro.log
output = distro.out
error = distro.err

requirements = (OpSysName == "RedHat" && OpSysMajorVer == 6)

queue

Here is a more compact way to specify a RedHat 6 platform.

Example targeting RedHat 6 platforms in a heterogeneous Linux pool

universe = vanilla
executable = /bin/date
log = distro.log
output = distro.out
error = distro.err

requirements = (OpSysAndVer == "RedHat6")

queue

178 Chapter 3. Users’ Manual

HTCondor Manual, Release 10.0.9

3.22 Potential Problems

3.22.1 Renaming of argv[0]

When HTCondor starts up your job, it renames argv[0] (which usually contains the name of the program) to con-
dor_exec. This is convenient when examining a machine’s processes with the Unix command ps; the process is easily
identified as an HTCondor job.

Unfortunately, some programs read argv[0] expecting their own program name and get confused if they find something
unexpected like condor_exec.

3.22. Potential Problems 179

HTCondor Manual, Release 10.0.9

180 Chapter 3. Users’ Manual

CHAPTER

FOUR

ADMINISTRATORS’ MANUAL

4.1 Introduction

This is the HTCondor Administrator’s Manual. Its purpose is to aid in the installation and administration of an HT-
Condor pool. For help on using HTCondor, see the HTCondor User’s Manual.

An HTCondor pool is comprised of a single machine which serves as the central manager, and an arbitrary number of
other machines that have joined the pool. Conceptually, the pool is a collection of resources (machines) and resource
requests (jobs). The role of HTCondor is to match waiting requests with available resources. Every part of HTCondor
sends periodic updates to the central manager, the centralized repository of information about the state of the pool.
Periodically, the central manager assesses the current state of the pool and tries to match pending requests with the
appropriate resources.

Each resource has an owner, the one who sets the policy for the use of the machine. This person has absolute power over
the use of the machine, and HTCondor goes out of its way to minimize the impact on this owner caused by HTCondor.
It is up to the resource owner to define a policy for when HTCondor requests will serviced and when they will be
denied.

Each resource request has an owner as well: the user who submitted the job. These people want HTCondor to provide
as many CPU cycles as possible for their work. Often the interests of the resource owners are in conflict with the
interests of the resource requesters. The job of the HTCondor administrator is to configure the HTCondor pool to find
the happy medium that keeps both resource owners and users of resources satisfied. The purpose of this manual is to
relate the mechanisms that HTCondor provides to enable the administrator to find this happy medium.

4.1.1 The Different Roles a Machine Can Play

Every machine in an HTCondor pool can serve a variety of roles. Most machines serve more than one role simulta-
neously. Certain roles can only be performed by a single machine in the pool. The following list describes what these
roles are and what resources are required on the machine that is providing that service:

Central Manager There can be only one central manager for the pool. This machine is the collector of information,
and the negotiator between resources and resource requests. These two halves of the central manager’s respon-
sibility are performed by separate daemons, so it would be possible to have different machines providing those
two services. However, normally they both live on the same machine. This machine plays a very important part
in the HTCondor pool and should be reliable. If this machine crashes, no further matchmaking can be performed
within the HTCondor system, although all current matches remain in effect until they are broken by either party
involved in the match. Therefore, choose for central manager a machine that is likely to be up and running all
the time, or at least one that will be rebooted quickly if something goes wrong. The central manager will ideally
have a good network connection to all the machines in the pool, since these pool machines all send updates over
the network to the central manager.

Execute Any machine in the pool, including the central manager, can be configured as to whether or not it should
execute HTCondor jobs. Obviously, some of the machines will have to serve this function, or the pool will not be

181

HTCondor Manual, Release 10.0.9

useful. Being an execute machine does not require lots of resources. About the only resource that might matter
is disk space. In general the more resources a machine has in terms of swap space, memory, number of CPUs,
the larger variety of resource requests it can serve.

Submit Any machine in the pool, including the central manager, can be configured as to whether or not it should allow
HTCondor jobs to be submitted. The resource requirements for a submit machine are actually much greater than
the resource requirements for an execute machine. First, every submitted job that is currently running on a remote
machine runs a process on the submit machine. As a result, lots of running jobs will need a fair amount of swap
space and/or real memory.

4.1.2 The HTCondor Daemons

The following list describes all the daemons and programs that could be started under HTCondor and what they do:

condor_master This daemon is responsible for keeping all the rest of the HTCondor daemons running on each machine
in the pool. It spawns the other daemons, and it periodically checks to see if there are new binaries installed for
any of them. If there are, the condor_master daemon will restart the affected daemons. In addition, if any daemon
crashes, the condor_master will send e-mail to the HTCondor administrator of the pool and restart the daemon.
The condor_master also supports various administrative commands that enable the administrator to start, stop
or reconfigure daemons remotely. The condor_master will run on every machine in the pool, regardless of the
functions that each machine is performing.

condor_startd This daemon represents a given resource to the HTCondor pool, as a machine capable of running
jobs. It advertises certain attributes about machine that are used to match it with pending resource requests.
The condor_startd will run on any machine in the pool that is to be able to execute jobs. It is responsible for
enforcing the policy that the resource owner configures, which determines under what conditions jobs will be
started, suspended, resumed, vacated, or killed. When the condor_startd is ready to execute an HTCondor job,
it spawns the condor_starter.

condor_starter This daemon is the entity that actually spawns the HTCondor job on a given machine. It sets up the
execution environment and monitors the job once it is running. When a job completes, the condor_starter notices
this, sends back any status information to the submitting machine, and exits.

condor_schedd This daemon represents resource requests to the HTCondor pool. Any machine that is to be a submit
machine needs to have a condor_schedd running. When users submit jobs, the jobs go to the condor_schedd,
where they are stored in the job queue. The condor_schedd manages the job queue. Various tools to view and ma-
nipulate the job queue, such as condor_submit, condor_q, and condor_rm, all must connect to the condor_schedd
to do their work. If the condor_schedd is not running on a given machine, none of these commands will work.

The condor_schedd advertises the number of waiting jobs in its job queue and is responsible for claiming avail-
able resources to serve those requests. Once a job has been matched with a given resource, the condor_schedd
spawns a condor_shadow daemon to serve that particular request.

condor_shadow This daemon runs on the machine where a given request was submitted and acts as the resource
manager for the request.

condor_collector This daemon is responsible for collecting all the information about the status of an HTCondor pool.
All other daemons periodically send ClassAd updates to the condor_collector. These ClassAds contain all the
information about the state of the daemons, the resources they represent or resource requests in the pool. The
condor_status command can be used to query the condor_collector for specific information about various parts
of HTCondor. In addition, the HTCondor daemons themselves query the condor_collector for important infor-
mation, such as what address to use for sending commands to a remote machine.

condor_negotiator This daemon is responsible for all the match making within the HTCondor system. Periodically,
the condor_negotiator begins a negotiation cycle, where it queries the condor_collector for the current state of
all the resources in the pool. It contacts each condor_schedd that has waiting resource requests in priority order,

182 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

and tries to match available resources with those requests. The condor_negotiator is responsible for enforcing
user priorities in the system, where the more resources a given user has claimed, the less priority they have to
acquire more resources. If a user with a better priority has jobs that are waiting to run, and resources are claimed
by a user with a worse priority, the condor_negotiator can preempt that resource and match it with the user with
better priority.

Note: A higher numerical value of the user priority in HTCondor translate into worse priority for that user. The
best priority is 0.5, the lowest numerical value, and this priority gets worse as this number grows.

condor_kbdd This daemon is used on both Linux and Windows platforms. On those platforms, the condor_startd fre-
quently cannot determine console (keyboard or mouse) activity directly from the system, and requires a separate
process to do so. On Linux, the condor_kbdd connects to the X Server and periodically checks to see if there
has been any activity. On Windows, the condor_kbdd runs as the logged-in user and registers with the system
to receive keyboard and mouse events. When it detects console activity, the condor_kbdd sends a command to
the condor_startd. That way, the condor_startd knows the machine owner is using the machine again and can
perform whatever actions are necessary, given the policy it has been configured to enforce.

condor_gridmanager This daemon handles management and execution of all grid universe jobs. The condor_schedd
invokes the condor_gridmanager when there are grid universe jobs in the queue, and the condor_gridmanager
exits when there are no more grid universe jobs in the queue.

condor_credd This daemon runs on Windows platforms to manage password storage in a secure manner.

condor_had This daemon implements the high availability of a pool’s central manager through monitoring the com-
munication of necessary daemons. If the current, functioning, central manager machine stops working, then this
daemon ensures that another machine takes its place, and becomes the central manager of the pool.

condor_replication This daemon assists the condor_had daemon by keeping an updated copy of the pool’s state. This
state provides a better transition from one machine to the next, in the event that the central manager machine
stops working.

condor_transferer This short lived daemon is invoked by the condor_replication daemon to accomplish the task of
transferring a state file before exiting.

condor_procd This daemon controls and monitors process families within HTCondor. Its use is optional in general,
but it must be used if group-ID based tracking (see the Setting Up for Special Environments section) is enabled.

condor_job_router This daemon transforms vanilla universe jobs into grid universe jobs, such that the transformed
jobs are capable of running elsewhere, as appropriate.

condor_lease_manager This daemon manages leases in a persistent manner. Leases are represented by ClassAds.

condor_rooster This daemon wakes hibernating machines based upon configuration details.

condor_defrag This daemon manages the draining of machines with fragmented partitionable slots, so that they be-
come available for jobs requiring a whole machine or larger fraction of a machine.

condor_shared_port This daemon listens for incoming TCP packets on behalf of HTCondor daemons, thereby reduc-
ing the number of required ports that must be opened when HTCondor is accessible through a firewall.

When compiled from source code, the following daemons may be compiled in to provide optional functionality.

condor_hdfs This daemon manages the configuration of a Hadoop file system as well as the invocation of a properly
configured Hadoop file system.

4.1. Introduction 183

HTCondor Manual, Release 10.0.9

4.2 Starting Up, Shutting Down, Reconfiguring, and Restarting HT-
Condor

If you installed HTCondor with administrative privileges, HTCondor will start up when the machine boots and shut
down when the machine does, using the usual mechanism for the machine’s operating system. You can generally use
those mechanisms in the usual way if you need to manually control whether or not HTCondor is running. There are
two situations in which you might want to run condor_master, condor_on, or condor_off from the command line.

1. If you installed HTCondor without administrative privileges, you’ll have to run condor_master from the com-
mand line to turn on HTCondor:

$ condor_master

Then run the following command to turn HTCondor completely off:

$ condor_off -master

2. If the usual OS-specific method of controlling HTCondor is inconvenient to use remotely, you may be able to
use the condor_on and condor_off tools instead.

4.2.1 Using HTCondor’s Remote Management Features

All of the commands described in this section are subject to the security policy chosen for the HTCondor pool. As such,
the commands must be either run from a machine that has the proper authorization, or run by a user that is authorized
to issue the commands. The Security section details the implementation of security in HTCondor.

Shutting Down HTCondor There are a variety of ways to shut down all or parts of an HTCondor pool.
All utilize the condor_off tool.

To stop a single execute machine from running jobs, the condor_off command specifies the machine
by host name.

$ condor_off -startd <hostname>

Jobs will be killed. If it is instead desired that the machine stops running jobs only after the currently
executing job completes, the command is

$ condor_off -startd -peaceful <hostname>

Note that this waits indefinitely for the running job to finish, before the condor_startd daemon exits.

Th shut down all execution machines within the pool,

$ condor_off -all -startd

To wait indefinitely for each machine in the pool to finish its current HTCondor job, shutting down
all of the execute machines as they no longer have a running job,

$ condor_off -all -startd -peaceful

To shut down HTCondor on a machine from which jobs are submitted,

$ condor_off -schedd <hostname>

184 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

If it is instead desired that the submit machine shuts down only after all jobs that are currently in the
queue are finished, first disable new submissions to the queue by setting the configuration variable

MAX_JOBS_SUBMITTED = 0

See instructions below in Reconfiguring an HTCondor Pool for how to reconfigure a pool. After the
reconfiguration, the command to wait for all jobs to complete and shut down the submission of jobs
is

$ condor_off -schedd -peaceful <hostname>

Substitute the option -all for the host name, if all submit machines in the pool are to be shut down.

Restarting HTCondor, If HTCondor Daemons Are Not Running If HTCondor is not running, per-
haps because one of the condor_off commands was used, then starting HTCondor daemons back
up depends on which part of HTCondor is currently not running.

If no HTCondor daemons are running, then starting HTCondor is a matter of executing the con-
dor_master daemon. The condor_master daemon will then invoke all other specified daemons on
that machine. The condor_master daemon executes on every machine that is to run HTCondor.

If a specific daemon needs to be started up, and the condor_master daemon is already running, then
issue the command on the specific machine with

$ condor_on -subsystem <subsystemname>

where <subsystemname> is replaced by the daemon’s subsystem name. Or, this command might be
issued from another machine in the pool (which has administrative authority) with

$ condor_on <hostname> -subsystem <subsystemname>

where <subsystemname> is replaced by the daemon’s subsystem name, and <hostname> is replaced
by the host name of the machine where this condor_on command is to be directed.

Restarting HTCondor, If HTCondor Daemons Are Running If HTCondor daemons are currently run-
ning, but need to be killed and newly invoked, the condor_restart tool does this. This would be the
case for a new value of a configuration variable for which using condor_reconfig is inadequate.

To restart all daemons on all machines in the pool,

$ condor_restart -all

To restart all daemons on a single machine in the pool,

$ condor_restart <hostname>

where <hostname> is replaced by the host name of the machine to be restarted.

Reconfiguring an HTCondor Pool

To change a global configuration variable and have all the machines start to use the new setting,
change the value within the file, and send a condor_reconfig command to each host. Do this with a
single command,

$ condor_reconfig -all

If the global configuration file is not shared among all the machines, as it will be if using a shared
file system, the change must be made to each copy of the global configuration file before issuing the
condor_reconfig command.

4.2. Starting Up, Shutting Down, Reconfiguring, and Restarting HTCondor 185

HTCondor Manual, Release 10.0.9

Issuing a condor_reconfig command is inadequate for some configuration variables. For those, a
restart of HTCondor is required. Those configuration variables that require a restart are listed in the
Macros That Will Require a Restart When Changed section. You can also refer to the condor_restart
manual page.

4.3 Introduction to Configuration

This section of the manual contains general information about HTCondor configuration, relating to all parts of the
HTCondor system. If you’re setting up an HTCondor pool, you should read this section before you read the other
configuration-related sections:

• The Configuration Templates section contains information about configuration templates, which are now the
preferred way to set many configuration macros.

• The Configuration Macros section contains information about the hundreds of individual configuration macros.
In general, it is best to try to achieve your desired configuration using configuration templates before resorting
to setting individual configuration macros, but it is sometimes necessary to set individual configuration macros.

• The settings that control the policy under which HTCondor will start, suspend, resume, vacate or kill jobs are
described in the Policy Configuration for Execute Hosts and for Submit Hosts section on Policy Configuration
for the condor_startd.

4.3.1 HTCondor Configuration Files

The HTCondor configuration files are used to customize how HTCondor operates at a given site. The basic configura-
tion as shipped with HTCondor can be used as a starting point, but most likely you will want to modify that configuration
to some extent.

Each HTCondor program will, as part of its initialization process, configure itself by calling a library routine which
parses the various configuration files that might be used, including pool-wide, platform-specific, and machine-specific
configuration files. Environment variables may also contribute to the configuration.

The result of configuration is a list of key/value pairs. Each key is a configuration variable name, and each value is
a string literal that may utilize macro substitution (as defined below). Some configuration variables are evaluated by
HTCondor as ClassAd expressions; some are not. Consult the documentation for each specific case. Unless otherwise
noted, configuration values that are expected to be numeric or boolean constants can be any valid ClassAd expression
of operators on constants. Example:

MINUTE = 60
HOUR = (60 * $(MINUTE))
SHUTDOWN_GRACEFUL_TIMEOUT = ($(HOUR)*24)

186 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

4.3.2 Ordered Evaluation to Set the Configuration

Multiple files, as well as a program’s environment variables, determine the configuration. The order in which attributes
are defined is important, as later definitions override earlier definitions. The order in which the (multiple) configuration
files are parsed is designed to ensure the security of the system. Attributes which must be set a specific way must appear
in the last file to be parsed. This prevents both the naive and the malicious HTCondor user from subverting the system
through its configuration. The order in which items are parsed is:

1. a single initial configuration file, which has historically been known as the global configuration file (see below);

2. other configuration files that are referenced and parsed due to specification within the single initial configuration
file (these files have historically been known as local configuration files);

3. if HTCondor daemons are not running as root on Unix platforms, the file $(HOME)/.condor/user_config if
it exists, or the file defined by configuration variable USER_CONFIG_FILE ;

if HTCondor daemons are not running as Local System on Windows platforms, the file %USERPRO-
FILE\.condor\user_config if it exists, or the file defined by configuration variable USER_CONFIG_FILE ;

4. specific environment variables whose names are prefixed with _CONDOR_ (note that these environment variables
directly define macro name/value pairs, not the names of configuration files).

Some HTCondor tools utilize environment variables to set their configuration; these tools search for specifically-named
environment variables. The variable names are prefixed by the string _CONDOR_ or _condor_. The tools strip off the
prefix, and utilize what remains as configuration. As the use of environment variables is the last within the ordered
evaluation, the environment variable definition is used. The security of the system is not compromised, as only specific
variables are considered for definition in this manner, not any environment variables with the _CONDOR_ prefix.

The location of the single initial configuration file differs on Windows from Unix platforms. For Unix platforms, the
location of the single initial configuration file starts at the top of the following list. The first file that exists is used, and
then remaining possible file locations from this list become irrelevant.

1. the file specified by the CONDOR_CONFIG environment variable. If there is a problem reading that file, HTCondor
will print an error message and exit right away.

2. /etc/condor/condor_config

3. /usr/local/etc/condor_config

4. ~condor/condor_config

For Windows platforms, the location of the single initial configuration file is determined by the contents of the envi-
ronment variable CONDOR_CONFIG. If this environment variable is not defined, then the location is the registry value
of HKEY_LOCAL_MACHINE/Software/Condor/CONDOR_CONFIG.

The single, initial configuration file may contain the specification of one or more other configuration files, referred to
here as local configuration files. Since more than one file may contain a definition of the same variable, and since the
last definition of a variable sets the value, the parse order of these local configuration files is fully specified here. In
order:

1. The value of configuration variable LOCAL_CONFIG_DIR lists one or more directories which contain configura-
tion files. The list is parsed from left to right. The leftmost (first) in the list is parsed first. Within each directory,
a lexicographical ordering by file name determines the ordering of file consideration.

2. The value of configuration variable LOCAL_CONFIG_FILE lists one or more configuration files. These listed files
are parsed from left to right. The leftmost (first) in the list is parsed first.

3. If one of these steps changes the value (right hand side) of LOCAL_CONFIG_DIR, then LOCAL_CONFIG_DIR is
processed for a second time, using the changed list of directories.

4.3. Introduction to Configuration 187

HTCondor Manual, Release 10.0.9

The parsing and use of configuration files may be bypassed by setting environment variable CONDOR_CONFIG with the
string ONLY_ENV. With this setting, there is no attempt to locate or read configuration files. This may be useful for
testing where the environment contains all needed information.

4.3.3 Configuration File Macros

Macro definitions are of the form:

<macro_name> = <macro_definition>

The macro name given on the left hand side of the definition is a case insensitive identifier. There may be white space
between the macro name, the equals sign (=), and the macro definition. The macro definition is a string literal that may
utilize macro substitution.

Macro invocations are of the form:

$(macro_name[:<default if macro_name not defined>])

The colon and default are optional in a macro invocation. Macro definitions may contain references to other macros,
even ones that are not yet defined, as long as they are eventually defined in the configuration files. All macro expansion
is done after all configuration files have been parsed, with the exception of macros that reference themselves.

A = xxx
C = $(A)

is a legal set of macro definitions, and the resulting value of C is xxx. Note that C is actually bound to $(A), not its
value.

As a further example,

A = xxx
C = $(A)
A = yyy

is also a legal set of macro definitions, and the resulting value of C is yyy.

A macro may be incrementally defined by invoking itself in its definition. For example,

A = xxx
B = $(A)
A = $(A)yyy
A = $(A)zzz

is a legal set of macro definitions, and the resulting value of A is xxxyyyzzz. Note that invocations of a macro in its
own definition are immediately expanded. $(A) is immediately expanded in line 3 of the example. If it were not, then
the definition would be impossible to evaluate.

Recursively defined macros such as

A = $(B)
B = $(A)

are not allowed. They create definitions that HTCondor refuses to parse.

A macro invocation where the macro name is not defined results in a substitution of the empty string. Consider the
example

188 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

MAX_ALLOC_CPUS = $(NUMCPUS)-1

If NUMCPUS is not defined, then this macro substitution becomes

MAX_ALLOC_CPUS = -1

The default value may help to avoid this situation. The default value may be a literal

MAX_ALLOC_CPUS = $(NUMCPUS:4)-1

such that if NUMCPUS is not defined, the result of macro substitution becomes

MAX_ALLOC_CPUS = 4-1

The default may be another macro invocation:

MAX_ALLOC_CPUS = $(NUMCPUS:$(DETECTED_CPUS_LIMIT))-1

These default specifications are restricted such that a macro invocation with a default can not be nested inside of another
default. An alternative way of stating this restriction is that there can only be one colon character per line. The effect
of nested defaults can be achieved by placing the macro definitions on separate lines of the configuration.

All entries in a configuration file must have an operator, which will be an equals sign (=). Identifiers are alphanumerics
combined with the underscore character, optionally with a subsystem name and a period as a prefix. As a special case,
a line without an operator that begins with a left square bracket will be ignored. The following two-line example treats
the first line as a comment, and correctly handles the second line.

[HTCondor Settings]
my_classad = [foo=bar]

To simplify pool administration, any configuration variable name may be prefixed by a subsystem (see the
$(SUBSYSTEM) macro in Pre-Defined Macros for the list of subsystems) and the period (.) character. For configu-
ration variables defined this way, the value is applied to the specific subsystem. For example, the ports that HTCondor
may use can be restricted to a range using the HIGHPORT and LOWPORT configuration variables.

MASTER.LOWPORT = 20000
MASTER.HIGHPORT = 20100

Note that all configuration variables may utilize this syntax, but nonsense configuration variables may result. For
example, it makes no sense to define

NEGOTIATOR.MASTER_UPDATE_INTERVAL = 60

since the condor_negotiator daemon does not use the MASTER_UPDATE_INTERVAL variable.

It makes little sense to do so, but HTCondor will configure correctly with a definition such as

MASTER.MASTER_UPDATE_INTERVAL = 60

The condor_master uses this configuration variable, and the prefix of MASTER. causes this configuration to be specific
to the condor_master daemon.

As of HTCondor version 8.1.1, evaluation works in the expected manner when combining the definition of a macro
with use of a prefix that gives the subsystem name and a period. Consider the example

FILESPEC = A
MASTER.FILESPEC = B

4.3. Introduction to Configuration 189

HTCondor Manual, Release 10.0.9

combined with a later definition that incorporates FILESPEC in a macro:

USEFILE = mydir/$(FILESPEC)

When the condor_master evaluates variable USEFILE, it evaluates to mydir/B. Previous to HTCondor version 8.1.1,
it evaluated to mydir/A. When any other subsystem evaluates variable USEFILE, it evaluates to mydir/A.

This syntax has been further expanded to allow for the specification of a local name on the command line using the
command line option

-local-name <local-name>

This allows multiple instances of a daemon to be run by the same condor_master daemon, each instance with its own
local configuration variable.

The ordering used to look up a variable, called <parameter name>:

1. <subsystem name>.<local name>.<parameter name>

2. <local name>.<parameter name>

3. <subsystem name>.<parameter name>

4. <parameter name>

If this local name is not specified on the command line, numbers 1 and 2 are skipped. As soon as the first match is
found, the search is completed, and the corresponding value is used.

This example configures a condor_master to run 2 condor_schedd daemons. The condor_master daemon needs the
configuration:

XYZZY = $(SCHEDD)
XYZZY_ARGS = -local-name xyzzy
DAEMON_LIST = $(DAEMON_LIST) XYZZY
DC_DAEMON_LIST = + XYZZY
XYZZY_LOG = $(LOG)/SchedLog.xyzzy

Using this example configuration, the condor_master starts up a second condor_schedd daemon, where this second
condor_schedd daemon is passed -local-name xyzzy on the command line.

Continuing the example, configure the condor_schedd daemon named xyzzy. This condor_schedd daemon will share
all configuration variable definitions with the other condor_schedd daemon, except for those specified separately.

SCHEDD.XYZZY.SCHEDD_NAME = XYZZY
SCHEDD.XYZZY.SCHEDD_LOG = $(XYZZY_LOG)
SCHEDD.XYZZY.SPOOL = $(SPOOL).XYZZY

Note that the example SCHEDD_NAME and SPOOL are specific to the condor_schedd daemon, as opposed to a different
daemon such as the condor_startd. Other HTCondor daemons using this feature will have different requirements
for which parameters need to be specified individually. This example works for the condor_schedd, and more local
configuration can, and likely would be specified.

Also note that each daemon’s log file must be specified individually, and in two places: one specification is for use by the
condor_master, and the other is for use by the daemon itself. In the example, the XYZZY condor_schedd configuration
variable SCHEDD.XYZZY.SCHEDD_LOG definition references the condor_master daemon’s XYZZY_LOG.

190 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

4.3.4 Comments and Line Continuations

An HTCondor configuration file may contain comments and line continuations. A comment is any line beginning
with a pound character (#). A continuation is any entry that continues across multiples lines. Line continuation is
accomplished by placing the backslash character (\) at the end of any line to be continued onto another. Valid examples
of line continuation are

START = (KeyboardIdle > 15 * $(MINUTE)) && \
((LoadAvg - CondorLoadAvg) <= 0.3)

and

ADMIN_MACHINES = condor.cs.wisc.edu, raven.cs.wisc.edu, \
stork.cs.wisc.edu, ostrich.cs.wisc.edu, \
bigbird.cs.wisc.edu
ALLOW_ADMINISTRATOR = $(ADMIN_MACHINES)

Where a line continuation character directly precedes a comment, the entire comment line is ignored, and the following
line is used in the continuation. Line continuation characters within comments are ignored.

Both this example

A = $(B) \
$(C)
$(D)

and this example

A = $(B) \
$(C) \
$(D)

result in the same value for A:

A = $(B) $(D)

4.3.5 Multi-Line Values

As of version 8.5.6, the value for a macro can comprise multiple lines of text. The syntax for this is as follows:

<macro_name> @=<tag>
<macro_definition lines>
@<tag>

For example:

modify routed job attributes:
remove it if it goes on hold or stays idle for over 6 hours
JOB_ROUTER_DEFAULTS @=jrd
[
requirements = target.WantJobRouter is true;
MaxIdleJobs = 10;
MaxJobs = 200;

(continues on next page)

4.3. Introduction to Configuration 191

HTCondor Manual, Release 10.0.9

(continued from previous page)

set_PeriodicRemove = JobStatus == 5 || (JobStatus == 1 && (time() - QDate) > 3600*6);
delete_WantJobRouter = true;
set_requirements = true;

]
@jrd

Note that in this example, the square brackets are part of the JOB_ROUTER_DEFAULTS value.

4.3.6 Executing a Program to Produce Configuration Macros

Instead of reading from a file, HTCondor can run a program to obtain configuration macros. The vertical bar character
(|) as the last character defining a file name provides the syntax necessary to tell HTCondor to run a program. This
syntax may only be used in the definition of the CONDOR_CONFIG environment variable, or the LOCAL_CONFIG_FILE
configuration variable.

The command line for the program is formed by the characters preceding the vertical bar character. The standard output
of the program is parsed as a configuration file would be.

An example:

LOCAL_CONFIG_FILE = /bin/make_the_config|

Program /bin/make_the_config is executed, and its output is the set of configuration macros.

Note that either a program is executed to generate the configuration macros or the configuration is read from one or
more files. The syntax uses space characters to separate command line elements, if an executed program produces
the configuration macros. Space characters would otherwise separate the list of files. This syntax does not permit
distinguishing one from the other, so only one may be specified.

(Note that the include command syntax (see below) is now the preferred way to execute a program to generate con-
figuration macros.)

4.3.7 Including Configuration from Elsewhere

Externally defined configuration can be incorporated using the following syntax:

include [ifexist] : <file>
include : <cmdline>|
include [ifexist] command [into <cache-file>] : <cmdline>

(Note that the ifexist and into options were added in version 8.5.7. Also note that the command option must be
specified in order to use the into option - just using the bar after <cmdline> will not work.)

In the file form of the include command, the <file> specification must describe a single file, the contents of which
will be parsed and incorporated into the configuration. Unless the ifexist option is specified, the non-existence of
the file is a fatal error.

In the command line form of the include command (specified with either the command option or by appending
a bar (|) character after the <cmdline> specification), the <cmdline> specification must describe a command line
(program and arguments); the command line will be executed, and the output will be parsed and incorporated into the
configuration.

192 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

If the into option is not used, the command line will be executed every time the configuration file is referenced. This
may well be undesirable, and can be avoided by using the into option. The into keyword must be followed by the
full pathname of a file into which to write the output of the command line. If that file exists, it will be read and the
command line will not be executed. If that file does not exist, the output of the command line will be written into it
and then the cache file will be read and incorporated into the configuration. If the command line produces no output,
a zero length file will be created. If the command line returns a non-zero exit code, configuration will abort and the
cache file will not be created unless the ifexist keyword is also specified.

The include key word is case insensitive. There are no requirements for white space characters surrounding the colon
character.

Consider the example

FILE = config.$(FULL_HOSTNAME)
include : $(LOCAL_DIR)/$(FILE)

Values are acquired for configuration variables FILE, and LOCAL_DIR by immediate evaluation, causing variable
FULL_HOSTNAME to also be immediately evaluated. The resulting value forms a full path and file name. This file
is read and parsed. The resulting configuration is incorporated into the current configuration. This resulting configu-
ration may contain further nested include specifications, which are also parsed, evaluated, and incorporated. Levels
of nested include are limited, such that infinite nesting is discovered and thwarted, while still permitting nesting.

Consider the further example

SCRIPT_FILE = script.$(IP_ADDRESS)
include : $(RELEASE_DIR)/$(SCRIPT_FILE) |

In this example, the bar character at the end of the line causes a script to be invoked, and the output of the script is
incorporated into the current configuration. The same immediate parsing and evaluation occurs in this case as when a
file’s contents are included.

For pools that are transitioning to using this new syntax in configuration, while still having some tools and daemons
with HTCondor versions earlier than 8.1.6, special syntax in the configuration will cause those daemons to fail upon
startup, rather than continuing, but incorrectly parsing the new syntax. Newer daemons will ignore the extra syntax.
Placing the @ character before the include key word causes the older daemons to fail when they attempt to parse this
syntax.

Here is the same example, but with the syntax that causes older daemons to fail when reading it.

FILE = config.$(FULL_HOSTNAME)
@include : $(LOCAL_DIR)/$(FILE)

A daemon older than version 8.1.6 will fail to start. Running an older condor_config_val identifies the @include line
as being bad. A daemon of HTCondor version 8.1.6 or more recent sees:

FILE = config.$(FULL_HOSTNAME)
include : $(LOCAL_DIR)/$(FILE)

and starts up successfully.

Here is an example using the new ifexist and into options:

stuff.pl writes "STUFF=1" to stdout
include ifexist command into $(LOCAL_DIR)/stuff.config : perl $(LOCAL_DIR)/stuff.pl

4.3. Introduction to Configuration 193

HTCondor Manual, Release 10.0.9

4.3.8 Reporting Errors and Warnings

As of version 8.5.7, warning and error messages can be included in HTCondor configuration files.

The syntax for warning and error messages is as follows:

warning : <warning message>
error : <error message>

The warning and error messages will be printed when the configuration file is used (when almost any HTCondor
command is run, for example). Error messages (unlike warnings) will prevent the successful use of the configuration
file. This will, for example, prevent a daemon from starting, and prevent condor_config_val from returning a value.

Here’s an example of using an error message in a configuration file (combined with some of the new include features
documented above):

stuff.pl writes "STUFF=1" to stdout
include command into $(LOCAL_DIR)/stuff.config : perl $(LOCAL_DIR)/stuff.pl
if ! defined stuff
error : stuff is needed!

endif

4.3.9 Conditionals in Configuration

Conditional if/else semantics are available in a limited form. The syntax:

if <simple condition>
<statement>
. . .
<statement>

else
<statement>
. . .
<statement>

endif

An else key word and statements are not required, such that simple if semantics are implemented. The <simple condi-
tion> does not permit compound conditions. It optionally contains the exclamation point character (!) to represent the
not operation, followed by

• the defined keyword followed by the name of a variable. If the variable is defined, the statement(s) are incor-
porated into the expanded input. If the variable is not defined, the statement(s) are not incorporated into the
expanded input. As an example,

if defined MY_UNDEFINED_VARIABLE
X = 12

else
X = -1

endif

results in X = -1, when MY_UNDEFINED_VARIABLE is not yet defined.

194 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

• the version keyword, representing the version number of of the daemon or tool currently reading this conditional.
This keyword is followed by an HTCondor version number. That version number can be of the form x.y.z or x.y.
The version of the daemon or tool is compared to the specified version number. The comparison operators are

– == for equality. Current version 8.2.3 is equal to 8.2.

– >= to see if the current version number is greater than or equal to. Current version 8.2.3 is greater than
8.2.2, and current version 8.2.3 is greater than or equal to 8.2.

– <= to see if the current version number is less than or equal to. Current version 8.2.0 is less than 8.2.2, and
current version 8.2.3 is less than or equal to 8.2.

As an example,

if version >= 8.1.6
DO_X = True

else
DO_Y = True

endif

results in defining DO_X as True if the current version of the daemon or tool reading this if statement is 8.1.6 or
a more recent version.

• True or yes or the value 1. The statement(s) are incorporated.

• False or no or the value 0 The statement(s) are not incorporated.

• $(<variable>) may be used where the immediately evaluated value is a simple boolean value. A value that
evaluates to the empty string is considered False, otherwise a value that does not evaluate to a simple boolean
value is a syntax error.

The syntax

if <simple condition>
<statement>
. . .
<statement>

elif <simple condition>
<statement>
. . .
<statement>

endif

is the same as syntax

if <simple condition>
<statement>
. . .
<statement>

else
if <simple condition>

<statement>
. . .
<statement>

endif
endif

4.3. Introduction to Configuration 195

HTCondor Manual, Release 10.0.9

4.3.10 Function Macros in Configuration

A set of predefined functions increase flexibility. Both submit description files and configuration files are read using
the same parser, so these functions may be used in both submit description files and configuration files.

Case is significant in the function’s name, so use the same letter case as given in these definitions.

$CHOICE(index, listname) or $CHOICE(index, item1, item2, ...) An item within the list is returned.
The list is represented by a parameter name, or the list items are the parameters. The index parameter de-
termines which item. The first item in the list is at index 0. If the index is out of bounds for the list contents, an
error occurs.

$ENV(environment-variable-name[:default-value]) Evaluates to the value of environment variable
environment-variable-name. If there is no environment variable with that name, Evaluates to UNDEFINED
unless the optional :default-value is used; in which case it evaluates to default-value. For example,

A = $ENV(HOME)

binds A to the value of the HOME environment variable.

$F[fpduwnxbqa](filename) One or more of the lower case letters may be combined to form the function name and
thus, its functionality. Each letter operates on the filename in its own way.

• f convert relative path to full path by prefixing the current working directory to it. This option works only
in condor_submit files.

• p refers to the entire directory portion of filename, with a trailing slash or backslash character. Whether a
slash or backslash is used depends on the platform of the machine. The slash will be recognized on Linux
platforms; either a slash or backslash will be recognized on Windows platforms, and the parser will use the
same character specified.

• d refers to the last portion of the directory within the path, if specified. It will have a trailing slash or
backslash, as appropriate to the platform of the machine. The slash will be recognized on Linux platforms;
either a slash or backslash will be recognized on Windows platforms, and the parser will use the same
character specified unless u or w is used. if b is used the trailing slash or backslash will be omitted.

• u convert path separators to Unix style slash characters

• w convert path separators to Windows style backslash characters

• n refers to the file name at the end of any path, but without any file name extension. As an example, the
return value from $Fn(/tmp/simulate.exe) will be simulate (without the .exe extension).

• x refers to a file name extension, with the associated period (.). As an example, the return value from
$Fn(/tmp/simulate.exe) will be .exe.

• b when combined with the d option, causes the trailing slash or backslash to be omitted. When combined
with the x option, causes the leading period (.) to be omitted.

• q causes the return value to be enclosed within quotes. Double quote marks are used unless a is also
specified.

• a When combined with the q option, causes the return value to be enclosed within single quotes.

$DIRNAME(filename) is the same as $Fp(filename)

$BASENAME(filename) is the same as $Fnx(filename)

$INT(item-to-convert) or $INT(item-to-convert, format-specifier) Expands, evaluates, and returns a
string version of item-to-convert. The format-specifier has the same syntax as a C language or Perl

196 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

format specifier. If no format-specifier is specified, “%d” is used as the format specifier. The format is
everything after the comma, including spaces. It can include other text.

X = 2
Y = 6
XYArea = $(X) * $(Y)

• $INT(XYArea) is 12

• $INT(XYArea,%04d) is 0012

• $INT(XYArea,Area=%d) is Area=12

$RANDOM_CHOICE(choice1, choice2, choice3, ...) A random choice of one of the parameters in the list of
parameters is made. For example, if one of the integers 0-8 (inclusive) should be randomly chosen:

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)

$RANDOM_INTEGER(min, max [, step]) A random integer within the range min and max, inclusive, is selected.
The optional step parameter controls the stride within the range, and it defaults to the value 1. For example, to
randomly chose an even integer in the range 0-8 (inclusive):

$RANDOM_INTEGER(0, 8, 2)

$REAL(item-to-convert) or $REAL(item-to-convert, format-specifier) Expands, evaluates, and returns
a string version of item-to-convert for a floating point type. The format-specifier is a C language or Perl
format specifier. If no format-specifier is specified, “%16G” is used as a format specifier.

$SUBSTR(name, start-index) or $SUBSTR(name, start-index, length) Expands name and returns a sub-
string of it. The first character of the string is at index 0. The first character of the substring is at index start-index.
If the optional length is not specified, then the substring includes characters up to the end of the string. A negative
value of start-index works back from the end of the string. A negative value of length eliminates use of characters
from the end of the string. Here are some examples that all assume

Name = abcdef

• $SUBSTR(Name, 2) is cdef.

• $SUBSTR(Name, 0, -2) is abcd.

• $SUBSTR(Name, 1, 3) is bcd.

• $SUBSTR(Name, -1) is f.

• $SUBSTR(Name, 4, -3) is the empty string, as there are no characters in the substring for this request.

$STRING(item-to-convert) or $STRING(item-to-convert, format-specifier) Expands, evaluates, and
returns a string version of item-to-convert for a string type. The format-specifier is a C language or
Perl format specifier. If no format-specifier is specified, “%s” is used as a format specifier. The format is
everything after the comma, including spaces. It can include other text besides %s.

FULL_HOSTNAME = host.DOMAIN
LCFullHostname = toLower("$(FULL_HOSTNAME)")

• $STRING(LCFullHostname) is host.domain

• $STRING(LCFullHostname,Name: %s) is Name: host.domain

$EVAL(item-to-convert) Expands, evaluates, and returns an classad unparsed version of item-to-convert for
any classad type, the resulting value is formatted using the equivalent of the “%v” format specifier - If it is a

4.3. Introduction to Configuration 197

HTCondor Manual, Release 10.0.9

string it is printed without quotes, otherwise it is unparsed as a classad value. Due to the way the parser works,
you must use a variable to hold the expression to be evaluated if the expression has a close brace ‘)’ character.

slist = "a,B,c"
lcslist = tolower($(slist))
list = split($(slist))
clist = size($(list)) * 10
semilist = join(";",split($(lcslist)))

• $EVAL(slist) is a,B,c

• $EVAL(lcslist) is a,b,c

• $EVAL(list) is {"a", "B", "c"}

• $EVAL(clist) is 30

• $EVAL(semilist) is a;b;c

Environment references are not currently used in standard HTCondor configurations. However, they can sometimes be
useful in custom configurations.

4.3.11 Macros That Will Require a Restart When Changed

The HTCondor daemons will generally not undo any work they have already done when the configuration changes so
any change that would require undoing of work will require a restart before it takes effect. There a very few exceptions
to this rule. The condor_master will pick up changes to DAEMON_LIST on a reconfig. Although it may take hours for
a condor_startd to drain and exit when it is removed from the daemon list.

Examples of changes requiring a restart would any change to how HTCondor uses the network. A configuration
change to NETWORK_INTERFACE, NETWORK_HOSTNAME, ENABLE_IPV4 and ENABLE_IPV6 require a restart. A change
in the way daemons locate each other, such as PROCD_ADDRESS, BIND_ALL_INTERFACES, USE_SHARED_PORT or
SHARED_PORT_PORT require a restart of the condor_master and all of the daemons under it.

The condor_startd requires a restart to make any change to the slot resource configuration, This would include MEMORY,
NUM_CPUS and NUM_SLOTS_TYPE_<n>. It would also include resource detection like GPUs and Docker support. A gen-
eral rule of thumb is that changes to the condor_startd require a restart, but there are a few exceptions. STARTD_ATTRS
as well as START, PREEMPT, and other policy expressions take effect on reconfig.

For more information about specific configuration variables and whether a restart is required, refer to the documentation
of the individual variables.

4.3.12 Pre-Defined Macros

HTCondor provides pre-defined macros that help configure HTCondor. Pre-defined macros are listed as
$(macro_name).

This first set are entries whose values are determined at run time and cannot be overwritten. These are inserted auto-
matically by the library routine which parses the configuration files. This implies that a change to the underlying value
of any of these variables will require a full restart of HTCondor in order to use the changed value.

$(FULL_HOSTNAME) The fully qualified host name of the local machine, which is host name plus domain name.

$(HOSTNAME) The host name of the local machine, without a domain name.

198 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

$(IP_ADDRESS) The ASCII string version of the local machine’s “most public” IP address. This address may be
IPv4 or IPv6, but the macro will always be set.

HTCondor selects the “most public” address heuristically. Your configuration should not depend on HTCondor
picking any particular IP address for this macro; this macro’s value may not even be one of the IP addresses
HTCondor is configured to advertise.

$(IPV4_ADDRESS) The ASCII string version of the local machine’s “most public” IPv4 address; unset if the local
machine has no IPv4 address.

See IP_ADDRESS about “most public”.

$(IPV6_ADDRESS) The ASCII string version of the local machine’s “most public” IPv6 address; unset if the local
machine has no IPv6 address.

See IP_ADDRESS about “most public”.

$(IP_ADDRESS_IS_V6) A boolean which is true if and only if IP_ADDRESS is an IPv6 address. Useful for conditonal
configuration.

$(TILDE) The full path to the home directory of the Unix user condor, if such a user exists on the local machine.

$(SUBSYSTEM) The subsystem name of the daemon or tool that is evaluating the macro. This is a unique string which
identifies a given daemon within the HTCondor system. The possible subsystem names are:

• C_GAHP

• C_GAHP_WORKER_THREAD

• CKPT_SERVER

• COLLECTOR

• DBMSD

• DEFRAG

• EC2_GAHP

• GANGLIAD

• GCE_GAHP

• GRIDMANAGER

• HAD

• JOB_ROUTER

• KBDD

• LEASEMANAGER

• MASTER

• NEGOTIATOR

• REPLICATION

• ROOSTER

• SCHEDD

• SHADOW

• SHARED_PORT

• STARTD

4.3. Introduction to Configuration 199

HTCondor Manual, Release 10.0.9

• STARTER

• SUBMIT

• TOOL

• TRANSFERER

$(DETECTED_CPUS) The integer number of hyper-threaded CPUs, as given by $(DETECTED_CORES), when
COUNT_HYPERTHREAD_CPUS is True. The integer number of physical (non hyper-threaded) CPUs, as given
by $(DETECTED_PHYSICAL_CPUS), when COUNT_HYPERTHREAD_CPUS is False.

$(DETECTED_PHYSICAL_CPUS) The integer number of physical (non hyper-threaded) CPUs. This will be equal the
number of unique CPU IDs.

$(DETECTED_CPUS_LIMIT) An integer value which is set to the minimum of $(DETECTED_CPUS) and values from
the environment variables OMP_THREAD_LIMIT and SLURM_CPUS_ON_NODE. It intended for use as the value of
NUM_CPUS to insure that the number of CPUS that a condor_startd will provision does not exceed the limits
indicated by the environment. Defaults to $(DETECTED_CPUS) when there is no environment variable that sets
a lower value.

This second set of macros are entries whose default values are determined automatically at run time but which can be
overwritten.

$(ARCH) Defines the string used to identify the architecture of the local machine to HTCondor. The condor_startd
will advertise itself with this attribute so that users can submit binaries compiled for a given platform and force
them to run on the correct machines. condor_submit will append a requirement to the job ClassAd that it must
run on the same ARCH and OPSYS of the machine where it was submitted, unless the user specifies ARCH and/or
OPSYS explicitly in their submit file. See the condor_submit manual page (doc:/man-pages/condor_submit) for
details.

$(OPSYS) Defines the string used to identify the operating system of the local machine to HTCondor. If it is not
defined in the configuration file, HTCondor will automatically insert the operating system of this machine as
determined by uname.

$(OPSYS_VER) Defines the integer used to identify the operating system version number.

$(OPSYS_AND_VER) Defines the string used prior to HTCondor version 7.7.2 as $(OPSYS).

$(UNAME_ARCH) The architecture as reported by uname (2)’s machine field. Always the same as ARCH on Windows.

$(UNAME_OPSYS) The operating system as reported by uname (2)’s sysname field. Always the same as OPSYS on
Windows.

$(DETECTED_MEMORY) The amount of detected physical memory (RAM) in MiB.

$(DETECTED_CORES) The number of CPU cores that the operating system schedules. On machines that support
hyper-threading, this will be the number of hyper-threads.

$(PID) The process ID for the daemon or tool.

$(PPID) The process ID of the parent process for the daemon or tool.

$(USERNAME) The user name of the UID of the daemon or tool. For daemons started as root, but running under
another UID (typically the user condor), this will be the other UID.

$(FILESYSTEM_DOMAIN) Defaults to the fully qualified host name of the machine it is evaluated on. See the Con-
figuration Macros section, Shared File System Configuration File Entries for the full description of its use and
under what conditions it could be desirable to change it.

$(UID_DOMAIN) Defaults to the fully qualified host name of the machine it is evaluated on. See the Configuration
Macros section for the full description of this configuration variable.

200 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

$(CONFIG_ROOT) Set to the directory where the the main config file will be read prior to reading any config files.
The value will usually be /etc/condor for an RPM install, C:\Condor for a Windows MSI install and the
directory part of the CONDOR_CONFIG environment variable for a tarball install. This variable will not be set
when CONDOR_CONFIG is set to ONLY_ENV so that no configuration files are read.

Since $(ARCH) and $(OPSYS) will automatically be set to the correct values, we recommend that you do not overwrite
them.

4.4 Configuration Templates

Achieving certain behaviors in an HTCondor pool often requires setting the values of a number of configuration macros
in concert with each other. We have added configuration templates as a way to do this more easily, at a higher level,
without having to explicitly set each individual configuration macro.

Configuration templates are pre-defined; users cannot define their own templates.

Note that the value of an individual configuration macro that is set by a configuration template can be overridden by
setting that configuration macro later in the configuration.

Detailed information about configuration templates (such as the macros they set) can be obtained using the con-
dor_config_val use option (see the condor_config_val manual page). (This document does not contain such infor-
mation because the condor_config_val command is a better way to obtain it.)

4.4.1 Configuration Templates: Using Predefined Sets of Configuration

Predefined sets of configuration can be identified and incorporated into the configuration using the syntax

use <category name> : <template name>

The use key word is case insensitive. There are no requirements for white space characters surrounding the colon
character. More than one <template name> identifier may be placed within a single use line. Separate the names by
a space character. There is no mechanism by which the administrator may define their own custom <category name>
or <template name>.

Each predefined <category name> has a fixed, case insensitive name for the sets of configuration that are predefined.
Placement of a use line in the configuration brings in the predefined configuration it identifies.

As of version 8.5.6, some of the configuration templates take arguments (as described below).

4.4.2 Available Configuration Templates

There are four <category name> values. Within a category, a predefined, case insensitive name identifies the set of
configuration it incorporates.

ROLE category Describes configuration for the various roles that a machine might play within an HTCondor pool.
The configuration will identify which daemons are running on a machine.

• Personal

Settings needed for when a single machine is the entire pool.

4.4. Configuration Templates 201

HTCondor Manual, Release 10.0.9

• Submit

Settings needed to allow this machine to submit jobs to the pool. May be combined with Execute and
CentralManager roles.

• Execute

Settings needed to allow this machine to execute jobs. May be combined with Submit and
CentralManager roles.

• CentralManager

Settings needed to allow this machine to act as the central manager for the pool. May be combined with
Submit and Execute roles.

FEATURE category Describes configuration for implemented features.

• Remote_Runtime_Config

Enables the use of condor_config_val -rset to the machine with this configuration. Note that there are
security implications for use of this configuration, as it potentially permits the arbitrary modification of
configuration. Variable SETTABLE_ATTRS_CONFIG must also be defined.

• Remote_Config

Enables the use of condor_config_val -set to the machine with this configuration. Note that there are
security implications for use of this configuration, as it potentially permits the arbitrary modification of
configuration. Variable SETTABLE_ATTRS_CONFIG must also be defined.

• GPUs([discovery_args])

Sets configuration based on detection with the condor_gpu_discovery tool, and defines a custom re-
source using the name GPUs. Supports both OpenCL and CUDA, if detected. Automatically includes
the GPUsMonitor feature. Optional discovery_args are passed to condor_gpu_discovery

• GPUsMonitor

Also adds configuration to report the usage of NVidia GPUs.

• Monitor(resource_name, mode, period, executable, metric[, metric]+)

Configures a custom machine resource monitor with the given name, mode, period, executable, and metrics.
See Startd Cron and Schedd Cron Daemon ClassAd Hooks for the definitions of these terms.

• PartitionableSlot(slot_type_num [, allocation])

Sets up a partitionable slot of the specified slot type number and allocation (defaults for slot_type_num and
allocation are 1 and 100% respectively). See the condor_startd Policy Configuration for information on
partitionalble slot policies.

• AssignAccountingGroup(map_filename [, check_request]) Sets up a condor_schedd job
transform that assigns an accounting group to each job as it is submitted. The accounting group is deter-
mined by mapping the Owner attribute of the job using the given map file, which should specify the allowed
accounting groups each Owner is permitted to use. If the submitted job has an accounting group, that is
treated as a requested accounting group and validated against the map. If the optional check_request
argument is true or not present submission will fail if the requested accounting group is present and not
valid. If the argument is false, the requested accounting group will be ignored if it is not valid.

• ScheddUserMapFile(map_name, map_filename) Defines a condor_schedd usermap named
map_name using the given map file.

• SetJobAttrFromUserMap(dst_attr, src_attr, map_name [, map_filename]) Sets up a
condor_schedd job transform that sets the dst_attr attribute of each job as it is submitted. The value of
dst_attr is determined by mapping the src_attr of the job using the usermap named map_name. If the

202 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

optional map_filename argument is specifed, then this metaknob also defines a condor_schedd usermap
named map_Name using the given map file.

• StartdCronOneShot(job_name, exe [, hook_args])

Create a one-shot condor_startd job hook. (See Startd Cron and Schedd Cron Daemon ClassAd Hooks for
more information about job hooks.)

• StartdCronPeriodic(job_name, period, exe [, hook_args])

Create a periodic-shot condor_startd job hook. (See Startd Cron and Schedd Cron Daemon ClassAd Hooks
for more information about job hooks.)

• StartdCronContinuous(job_name, exe [, hook_args])

Create a (nearly) continuous condor_startd job hook. (See Startd Cron and Schedd Cron Daemon ClassAd
Hooks for more information about job hooks.)

• ScheddCronOneShot(job_name, exe [, hook_args])

Create a one-shot condor_schedd job hook. (See Startd Cron and Schedd Cron Daemon ClassAd Hooks
for more information about job hooks.)

• ScheddCronPeriodic(job_name, period, exe [, hook_args])

Create a periodic-shot condor_schedd job hook. (See Startd Cron and Schedd Cron Daemon ClassAd
Hooks for more information about job hooks.)

• ScheddCronContinuous(job_name, exe [, hook_args])

Create a (nearly) continuous condor_schedd job hook. (See Startd Cron and Schedd Cron Daemon ClassAd
Hooks for more information about job hooks.)

• OneShotCronHook(STARTD_CRON | SCHEDD_CRON, job_name, hook_exe [,hook_args])

Create a one-shot job hook. (See Startd Cron and Schedd Cron Daemon ClassAd Hooks for more informa-
tion about job hooks.)

• PeriodicCronHook(STARTD_CRON | SCHEDD_CRON , job_name, period, hook_exe [,
hook_args])

Create a periodic job hook. (See Startd Cron and Schedd Cron Daemon ClassAd Hooks for more informa-
tion about job hooks.)

• ContinuousCronHook(STARTD_CRON | SCHEDD_CRON , job_name, hook_exe [,hook_args]
)

Create a (nearly) continuous job hook. (See Startd Cron and Schedd Cron Daemon ClassAd Hooks for
more information about job hooks.)

• OAuth

Sets configuration that enables the condor_credd and condor_credmon_oauth daemons, which allow for
the automatic renewal of user-supplied OAuth2 credentials. See section Enabling the Fetching and Use of
OAuth2 Credentials for more information.

• Adstash

Sets configuration that enables condor_adstash to run as a daemon. condor_adstash polls job history
ClassAds and pushes them to an Elasticsearch index, see section Elasticsearch for more information.

• UWCS_Desktop_Policy_Values

Configuration values used in the UWCS_DESKTOP policy. (Note that these values were pre-
viously in the parameter table; configuration that uses these values will have to use the

4.4. Configuration Templates 203

HTCondor Manual, Release 10.0.9

UWCS_Desktop_Policy_Values template. For example, POLICY : UWCS_Desktop uses the FEATURE
: UWCS_Desktop_Policy_Values template.)

• CommonCloudAttributesAWS

• CommonCloudAttributesGoogle

Sets configuration that will put some common cloud-related attributes in the slot ads. Use the version
which specifies the cloud you’re using. See Common Cloud Attributes for details.

• JobsHaveInstanceIDs

Sets configuration that will cause job ads to track the instance IDs of slots that they ran on (if available).

POLICY category Describes configuration for the circumstances under which machines choose to run jobs.

• Always_Run_Jobs

Always start jobs and run them to completion, without consideration of condor_negotiator generated pre-
emption or suspension. This is the default policy, and it is intended to be used with dedicated resources. If
this policy is used together with the Limit_Job_Runtimes policy, order the specification by placing this
Always_Run_Jobs policy first.

• UWCS_Desktop

This was the default policy before HTCondor version 8.1.6. It is intended to be used with desktop machines
not exclusively running HTCondor jobs. It injects UWCS into the name of some configuration variables.

• Desktop

An updated and reimplementation of the UWCS_Desktop policy, but without the UWCS naming of some
configuration variables.

• Limit_Job_Runtimes(limit_in_seconds)

Limits running jobs to a maximum of the specified time using preemption. (The default limit is 24 hours.)
This policy does not work while the machine is draining; use the following policy instead.

If this policy is used together with the Always_Run_Jobs policy, order the specification by placing this
Limit_Job_Runtimes policy second.

• Preempt_if_Runtime_Exceeds(limit_in_seconds)

Limits running jobs to a maximum of the specified time using preemption. (The default limit is 24 hours).

• Hold_if_Runtime_Exceeds(limit_in_seconds)

Limits running jobs to a maximum of the specified time by placing them on hold immediately (ignoring
any job retirement time). (The default limit is 24 hours).

• Preempt_If_Cpus_Exceeded

If the startd observes the number of CPU cores used by the job exceed the number of cores in the slot by
more than 0.8 on average over the past minute, preempt the job immediately ignoring any job retirement
time.

• Hold_If_Cpus_Exceeded

If the startd observes the number of CPU cores used by the job exceed the number of cores in the slot
by more than 0.8 on average over the past minute, immediately place the job on hold ignoring any job
retirement time. The job will go on hold with a reasonable hold reason in job attribute HoldReason and a
value of 101 in job attribute HoldReasonCode. The hold reason and code can be customized by specifying
HOLD_REASON_CPU_EXCEEDED and HOLD_SUBCODE_CPU_EXCEEDED respectively.

204 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

• Preempt_If_Disk_Exceeded

If the startd observes the amount of disk space used by the job exceed the disk in the slot, preempt the job
immediately ignoring any job retirement time.

• Hold_If_Disk_Exceeded

If the startd observes the amount of disk space used by the job exceed the disk in the slot, immediately place
the job on hold ignoring any job retirement time. The job will go on hold with a reasonable hold reason in
job attribute HoldReason and a value of 104 in job attribute HoldReasonCode. The hold reason and code
can be customized by specifying HOLD_REASON_DISK_EXCEEDED and HOLD_SUBCODE_DISK_EXCEEDED
respectively.

• Preempt_If_Memory_Exceeded

If the startd observes the memory usage of the job exceed the memory provisioned in the slot, preempt the
job immediately ignoring any job retirement time.

• Hold_If_Memory_Exceeded

If the startd observes the memory usage of the job exceed the memory provisioned in the slot, imme-
diately place the job on hold ignoring any job retirement time. The job will go on hold with a rea-
sonable hold reason in job attribute HoldReason and a value of 102 in job attribute HoldReasonCode.
The hold reason and code can be customized by specifying HOLD_REASON_MEMORY_EXCEEDED and
HOLD_SUBCODE_MEMORY_EXCEEDED respectively.

• Preempt_If(policy_variable)

Preempt jobs according to the specified policy. policy_variable must be the name of a configuration
macro containing an expression that evaluates to True if the job should be preempted.

See an example here: Configuration Template Examples.

• Want_Hold_If(policy_variable, subcode, reason_text)

Add the given policy to the WANT_HOLD expression; if the WANT_HOLD expression is defined,
policy_variable is prepended to the existing expression; otherwise WANT_HOLD is simply set to the
value of the textttpolicy_variable macro.

See an example here: Configuration Template Examples.

• Startd_Publish_CpusUsage

Publish the number of CPU cores being used by the job into to slot ad as attribute CpusUsage. This value
will be the average number of cores used by the job over the past minute, sampling every 5 seconds.

SECURITY category Describes configuration for an implemented security model.

• Host_Based

The default security model (based on IPs and DNS names). Do not combine with User_Based security.

• User_Based

Grants permissions to an administrator and uses With_Authentication. Do not combine with
Host_Based security.

• With_Authentication

Requires both authentication and integrity checks.

• Strong

Requires authentication, encryption, and integrity checks.

4.4. Configuration Templates 205

HTCondor Manual, Release 10.0.9

4.4.3 Configuration Template Transition Syntax

For pools that are transitioning to using this new syntax in configuration, while still having some tools and daemons
with HTCondor versions earlier than 8.1.6, special syntax in the configuration will cause those daemons to fail upon
start up, rather than use the new, but misinterpreted, syntax. Newer daemons will ignore the extra syntax. Placing the
@ character before the use key word causes the older daemons to fail when they attempt to parse this syntax.

As an example, consider the condor_startd as it starts up. A condor_startd previous to HTCondor version 8.1.6 fails
to start when it sees:

@use feature : GPUs

Running an older condor_config_val also identifies the @use line as being bad. A condor_startd of HTCondor version
8.1.6 or more recent sees

use feature : GPUs

4.4.4 Configuration Template Examples

• Preempt a job if its memory usage exceeds the requested memory:

MEMORY_EXCEEDED = (isDefined(MemoryUsage) && MemoryUsage > RequestMemory)
use POLICY : PREEMPT_IF(MEMORY_EXCEEDED)

• Put a job on hold if its memory usage exceeds the requested memory:

MEMORY_EXCEEDED = (isDefined(MemoryUsage) && MemoryUsage > RequestMemory)
use POLICY : WANT_HOLD_IF(MEMORY_EXCEEDED, 102, memory usage exceeded request_
→˓memory)

• Update dynamic GPU information every 15 minutes:

use FEATURE : StartdCronPeriodic(DYNGPU, 15*60, $(LOCAL_DIR)\dynamic_gpu_info.pl,
→˓$(LIBEXEC)\condor_gpu_discovery -dynamic)

where dynamic_gpu_info.pl is a simple perl script that strips off the DetectedGPUs line from con-
dor_gpu_discovery:

#!/usr/bin/env perl
my @attrs = `@ARGV`;
for (@attrs) {

next if ($_ =~ /^Detected/i);
print $_;

}

206 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

4.5 Configuration Macros

The section contains a list of the individual configuration macros for HTCondor. Before attempting to set up HTCon-
dor configuration, you should probably read the Introduction to Configuration section and possibly the Configuration
Templates section.

The settings that control the policy under which HTCondor will start, suspend, resume, vacate or kill jobs are described
in condor_startd Policy Configuration, not in this section.

4.5.1 HTCondor-wide Configuration File Entries

This section describes settings which affect all parts of the HTCondor system. Other system-wide settings can be found
in Network-Related Configuration File Entries and Shared File System Configuration File Macros.

CONDOR_HOST This macro is used to define the $(COLLECTOR_HOST)macro. Normally the condor_collector and
condor_negotiator would run on the same machine. If for some reason they were not run on the same machine,
$(CONDOR_HOST) would not be needed. Some of the host-based security macros use $(CONDOR_HOST) by
default. See the Host-Based Security in HTCondor section on Setting up IP/host-based security in HTCondor
for details.

COLLECTOR_HOST The host name of the machine where the condor_collector is running for your pool. Normally,
it is defined relative to the $(CONDOR_HOST) macro. There is no default value for this macro; COLLECTOR_HOST
must be defined for the pool to work properly.

In addition to defining the host name, this setting can optionally be used to specify the network port of the
condor_collector. The port is separated from the host name by a colon (‘:’). For example,

COLLECTOR_HOST = $(CONDOR_HOST):1234

If no port is specified, the default port of 9618 is used. Using the default port is recommended for most sites. It is
only changed if there is a conflict with another service listening on the same network port. For more information
about specifying a non-standard port for the condor_collector daemon, see Port Usage in HTCondor.

Multiple condor_collector daemons may be running simultaneously, if COLLECTOR_HOST is defined with a
comma separated list of hosts. Multiple condor_collector daemons may run for the implementation of high
availability; see The High Availability of Daemons for details. With more than one running, updates are sent to
all. With more than one running, queries are sent to one of the condor_collector daemons, chosen at random.

COLLECTOR_PORT The default port used when contacting the condor_collector and the default port the con-
dor_collector listens on if no port is specified. This variable is referenced if no port is given and there is no other
means to find the condor_collector port. The default value is 9618.

NEGOTIATOR_HOST This configuration variable is no longer used. It previously defined the host name of the
machine where the condor_negotiator is running. At present, the port where the condor_negotiator is listening
is dynamically allocated.

CONDOR_VIEW_HOST A list of HTCondorView servers, separated by commas and/or spaces. Each HTCon-
dorView server is denoted by the host name of the machine it is running on, optionally appended by a colon and
the port number. This service is optional, and requires additional configuration to enable it. There is no default
value for CONDOR_VIEW_HOST. If CONDOR_VIEW_HOST is not defined, no HTCondorView server is used. See
Configuring The HTCondorView Server for more details.

SCHEDD_HOST The host name of the machine where the condor_schedd is running for your pool. This is the host
that queues submitted jobs. If the host specifies SCHEDD_NAME or MASTER_NAME , that name must be included

4.5. Configuration Macros 207

HTCondor Manual, Release 10.0.9

in the form name@hostname. In most condor installations, there is a condor_schedd running on each host from
which jobs are submitted. The default value of SCHEDD_HOST is the current host with the optional name included.
For most pools, this macro is not defined, nor does it need to be defined..

RELEASE_DIR The full path to the HTCondor release directory, which holds the bin, etc, lib, and sbin directo-
ries. Other macros are defined relative to this one. There is no default value for RELEASE_DIR .

BIN This directory points to the HTCondor directory where user-level programs are installed. The default value is
$(RELEASE_DIR)/bin.

LIB This directory points to the HTCondor directory containing its libraries. On Windows, libraries are located in
BIN.

LIBEXEC This directory points to the HTCondor directory where support commands that HTCondor needs will be
placed. Do not add this directory to a user or system-wide path.

INCLUDE This directory points to the HTCondor directory where header files reside. The default value is
$(RELEASE_DIR)/include. It can make inclusion of necessary header files for compilation of programs (such as
those programs that use libcondorapi.a) easier through the use of condor_config_val.

SBIN This directory points to the HTCondor directory where HTCondor’s system binaries (such as the binaries for
the HTCondor daemons) and administrative tools are installed. Whatever directory $(SBIN) points to ought
to be in the PATH of users acting as HTCondor administrators. The default value is $(BIN) in Windows and
$(RELEASE_DIR)/sbin on all other platforms.

LOCAL_DIR The location of the local HTCondor directory on each machine in your pool. The default value is
$(RELEASE_DIR) on Windows and $(RELEASE_DIR)/hosts/$(HOSTNAME) on all other platforms.

Another possibility is to use the condor user’s home directory, which may be specified with $(TILDE). For
example:

LOCAL_DIR = $(tilde)

LOG Used to specify the directory where each HTCondor daemon writes its log files. The names of the log files
themselves are defined with other macros, which use the $(LOG) macro by default. The log directory also acts as
the current working directory of the HTCondor daemons as the run, so if one of them should produce a core file
for any reason, it would be placed in the directory defined by this macro. The default value is $(LOCAL_DIR)/log.

Do not stage other files in this directory; any files not created by HTCondor in this directory are subject to
removal.

RUN A path and directory name to be used by the HTCondor init script to specify the directory where the con-
dor_master should write its process ID (PID) file. The default if not defined is $(LOG).

SPOOL The spool directory is where certain files used by the condor_schedd are stored, such as the job queue file
and the initial executables of any jobs that have been submitted. In addition, all the checkpoint files from jobs
that have been submitted will be stored in that machine’s spool directory. Therefore, you will want to ensure that
the spool directory is located on a partition with enough disk space. If a given machine is only set up to execute
HTCondor jobs and not submit them, it would not need a spool directory (or this macro defined). The default
value is $(LOCAL_DIR)/spool. The condor_schedd will not function if SPOOL is not defined.

Do not stage other files in this directory; any files not created by HTCondor in this directory are subject to
removal.

EXECUTE This directory acts as a place to create the scratch directory of any HTCondor job that is executing on the
local machine. The scratch directory is the destination of any input files that were specified for transfer. It also
serves as the job’s working directory if the job is using file transfer mode and no other working directory was
specified. If a given machine is set up to only submit jobs and not execute them, it would not need an execute
directory, and this macro need not be defined. The default value is $(LOCAL_DIR)/execute. The condor_startd
will not function if EXECUTE is undefined. To customize the execute directory independently for each batch slot,
use SLOT<N>_EXECUTE.

208 Chapter 4. Administrators’ Manual

mailto:name@hostname

HTCondor Manual, Release 10.0.9

Do not stage other files in this directory; any files not created by HTCondor in this directory are subject to
removal.

Ideally, this directory should not be placed under /tmp or /var/tmp, if it is, HTCondor loses the ability to make
private instances of /tmp and /var/tmp for jobs.

TMP_DIR A directory path to a directory where temporary files are placed by various portions of the HTCondor
system. The daemons and tools that use this directory are the condor_gridmanager, condor_config_val when
using the -rset option, systems that use lock files when configuration variable CREATE_LOCKS_ON_LOCAL_DISK
is True, the Web Service API, and the condor_credd daemon. There is no default value.

If both TMP_DIR and TEMP_DIR are defined, the value set for TMP_DIR is used and TEMP_DIR is ignored.

TEMP_DIR A directory path to a directory where temporary files are placed by various portions of the HTCondor
system. The daemons and tools that use this directory are the condor_gridmanager, condor_config_val when
using the -rset option, systems that use lock files when configuration variable CREATE_LOCKS_ON_LOCAL_DISK
is True, the Web Service API, and the condor_credd daemon. There is no default value.

If both TMP_DIR and TEMP_DIR are defined, the value set for TMP_DIR is used and TEMP_DIR is ignored.

SLOT<N>_EXECUTE Specifies an execute directory for use by a specific batch slot. <N> represents the number of
the batch slot, such as 1, 2, 3, etc. This execute directory serves the same purpose as EXECUTE , but it allows
the configuration of the directory independently for each batch slot. Having slots each using a different partition
would be useful, for example, in preventing one job from filling up the same disk that other jobs are trying to
write to. If this parameter is undefined for a given batch slot, it will use EXECUTE as the default. Note that each
slot will advertise TotalDisk and Disk for the partition containing its execute directory.

LOCAL_CONFIG_FILE Identifies the location of the local, machine-specific configuration file for each machine in
the pool. The two most common choices would be putting this file in the $(LOCAL_DIR), or putting all local
configuration files for the pool in a shared directory, each one named by host name. For example,

LOCAL_CONFIG_FILE = $(LOCAL_DIR)/condor_config.local

or,

LOCAL_CONFIG_FILE = $(release_dir)/etc/$(hostname).local

or, not using the release directory

LOCAL_CONFIG_FILE = /full/path/to/configs/$(hostname).local

The value of LOCAL_CONFIG_FILE is treated as a list of files, not a single file. The items in the list are delimited
by either commas or space characters. This allows the specification of multiple files as the local configuration
file, each one processed in the order given (with parameters set in later files overriding values from previous
files). This allows the use of one global configuration file for multiple platforms in the pool, defines a platform-
specific configuration file for each platform, and uses a local configuration file for each machine. If the list of
files is changed in one of the later read files, the new list replaces the old list, but any files that have already been
processed remain processed, and are removed from the new list if they are present to prevent cycles. See Executing
a Program to Produce Configuration Macros for directions on using a program to generate the configuration
macros that would otherwise reside in one or more files as described here. If LOCAL_CONFIG_FILE is not
defined, no local configuration files are processed. For more information on this, see Configuring HTCondor for
Multiple Platforms.

If all files in a directory are local configuration files to be processed, then consider using .

REQUIRE_LOCAL_CONFIG_FILE A boolean value that defaults to True. When True, HTCondor exits with an
error, if any file listed in LOCAL_CONFIG_FILE cannot be read. A value of False allows local configuration
files to be missing. This is most useful for sites that have both large numbers of machines in the pool and a local

4.5. Configuration Macros 209

HTCondor Manual, Release 10.0.9

configuration file that uses the $(HOSTNAME) macro in its definition. Instead of having an empty file for every
host in the pool, files can simply be omitted.

LOCAL_CONFIG_DIR A directory may be used as a container for local configuration files. The files found in the
directory are sorted into lexicographical order by file name, and then each file is treated as though it was listed
in LOCAL_CONFIG_FILE. LOCAL_CONFIG_DIR is processed before any files listed in LOCAL_CONFIG_FILE, and
is checked again after processing the LOCAL_CONFIG_FILE list. It is a list of directories, and each directory is
processed in the order it appears in the list. The process is not recursive, so any directories found inside the
directory being processed are ignored. See also LOCAL_CONFIG_DIR_EXCLUDE_REGEXP.

USER_CONFIG_FILE The file name of a configuration file to be parsed after other local configuration files and
before environment variables set configuration. Relevant only if HTCondor daemons are not run as root on Unix
platforms or Local System on Windows platforms. The default is $(HOME)/.condor/user_config on Unix
platforms. The default is %USERPROFILE\.condor\user_config on Windows platforms. If a fully qualified path
is given, that is used. If a fully qualified path is not given, then the Unix path $(HOME)/.condor/ prefixes the
file name given on Unix platforms, or the Windows path %USERPROFILE\.condor\ prefixes the file name given
on Windows platforms.

The ability of a user to use this user-specified configuration file can be disabled by setting this variable to the
empty string:

USER_CONFIG_FILE =

LOCAL_CONFIG_DIR_EXCLUDE_REGEXP A regular expression that specifies file names to be ignored when
looking for configuration files within the directories specified via LOCAL_CONFIG_DIR. The default expression
ignores files with names beginning with a ‘.’ or a ‘#’, as well as files with names ending in ‘~’. This avoids
accidents that can be caused by treating temporary files created by text editors as configuration files.

CONDOR_IDS The User ID (UID) and Group ID (GID) pair that the HTCondor daemons should run as, if the
daemons are spawned as root. This value can also be specified in the CONDOR_IDS environment variable.
If the HTCondor daemons are not started as root, then neither this CONDOR_IDS configuration macro nor the
CONDOR_IDS environment variable are used. The value is given by two integers, separated by a period. For
example, CONDOR_IDS = 1234.1234. If this pair is not specified in either the configuration file or in the
environment, and the HTCondor daemons are spawned as root, then HTCondor will search for a condor user on
the system, and run as that user’s UID and GID. See User Accounts in HTCondor on Unix Platforms on UIDs in
HTCondor for more details.

CONDOR_ADMIN The email address that HTCondor will send mail to if something goes wrong in the pool. For
example, if a daemon crashes, the condor_master can send an obituary to this address with the last few lines of
that daemon’s log file and a brief message that describes what signal or exit status that daemon exited with. The
default value is root@$(FULL_HOSTNAME).

<SUBSYS>_ADMIN_EMAIL The email address that HTCondor will send mail to if something goes wrong with the
named <SUBSYS>. Identical to CONDOR_ADMIN, but done on a per subsystem basis. There is no default value.

CONDOR_SUPPORT_EMAIL The email address to be included at the bottom of all email HTCondor sends out
under the label “Email address of the local HTCondor administrator:”. This is the address where HTCondor
users at your site should send their questions about HTCondor and get technical support. If this setting is not
defined, HTCondor will use the address specified in CONDOR_ADMIN (described above).

EMAIL_SIGNATURE Every e-mail sent by HTCondor includes a short signature line appended to the body. By
default, this signature includes the URL to the global HTCondor project website. When set, this variable defines
an alternative signature line to be used instead of the default. Note that the value can only be one line in length.
This variable could be used to direct users to look at local web site with information specific to the installation
of HTCondor.

MAIL The full path to a mail sending program that uses -s to specify a subject for the message. On all platforms,
the default shipped with HTCondor should work. Only if you installed things in a non-standard location on
your system would you need to change this setting. The default value is $(BIN)/condor_mail.exe on Windows

210 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

and /usr/bin/mail on all other platforms. The condor_schedd will not function unless MAIL is defined. For
security reasons, non-Windows platforms should not use this setting and should use SENDMAIL instead.

SENDMAIL The full path to the sendmail executable. If defined, which it is by default on non-Windows platforms,
sendmail is used instead of the mail program defined by MAIL.

MAIL_FROM The e-mail address that notification e-mails appear to come from. Contents is that of the From header.
There is no default value; if undefined, the From header may be nonsensical.

SMTP_SERVER For Windows platforms only, the host name of the server through which to route notification e-mail.
There is no default value; if undefined and the debug level is at FULLDEBUG, an error message will be generated.

RESERVED_SWAP The amount of swap space in MiB to reserve for this machine. HTCondor will not start up more
condor_shadow processes if the amount of free swap space on this machine falls below this level. The default
value is 0, which disables this check. It is anticipated that this configuration variable will no longer be used in
the near future. If RESERVED_SWAP is not set to 0, the value of SHADOW_SIZE_ESTIMATE is used.

DISK Tells HTCondor how much disk space (in kB) to advertise as being available for use by jobs. If DISK is not
specified, HTCondor will advertise the amount of free space on your execute partition, minus RESERVED_DISK.

RESERVED_DISK Determines how much disk space (in MB) you want to reserve for your own machine. When
HTCondor is reporting the amount of free disk space in a given partition on your machine, it will always subtract
this amount. An example is the condor_startd, which advertises the amount of free space in the $(EXECUTE)
directory. The default value of RESERVED_DISK is zero.

LOCK HTCondor needs to create lock files to synchronize access to various log files. Because of problems with
network file systems and file locking over the years, we highly recommend that you put these lock files on a local
partition on each machine. If you do not have your $(LOCAL_DIR) on a local partition, be sure to change this
entry.

Whatever user or group HTCondor is running as needs to have write access to this directory. If you are not
running as root, this is whatever user you started up the condor_master as. If you are running as root, and there
is a condor account, it is most likely condor. Otherwise, it is whatever you set in the CONDOR_IDS environment
variable, or whatever you define in the CONDOR_IDS setting in the HTCondor config files. See User Accounts in
HTCondor on Unix Platforms on UIDs in HTCondor for details.

If no value for LOCK is provided, the value of LOG is used.

HISTORY Defines the location of the HTCondor history file, which stores information about all HTCondor jobs
that have completed on a given machine. This macro is used by both the condor_schedd which appends the
information and condor_history, the user-level program used to view the history file. This configuration macro
is given the default value of $(SPOOL)/history in the default configuration. If not defined, no history file is
kept.

ENABLE_HISTORY_ROTATION If this is defined to be true, then the history file will be rotated. If it is false, then
it will not be rotated, and it will grow indefinitely, to the limits allowed by the operating system. If this is not
defined, it is assumed to be true. The rotated files will be stored in the same directory as the history file.

MAX_HISTORY_LOG Defines the maximum size for the history file, in bytes. It defaults to 20MB. This parameter
is only used if history file rotation is enabled.

MAX_HISTORY_ROTATIONS When history file rotation is turned on, this controls how many backup files there
are. It default to 2, which means that there may be up to three history files (two backups, plus the history file
that is being currently written to). When the history file is rotated, and this rotation would cause the number of
backups to be too large, the oldest file is removed.

HISTORY_CONTAINS_JOB_ENVIRONMENT This parameter defaults to true. When set to false, the job’s en-
vironment attribute (which can be very large) is not written to the history file. This may allow many more jobs
to be kept in the history before rotation.

4.5. Configuration Macros 211

HTCondor Manual, Release 10.0.9

HISTORY_HELPER_MAX_CONCURRENCY Specifies the maximum number of concurrent remote con-
dor_history queries allowed at a time; defaults to 50. When this maximum is exceeded, further queries will
be queued in a non-blocking manner. Setting this option to 0 disables remote history access. A remote history
access is defined as an invocation of condor_history that specifies a -name option to query a condor_schedd
running on a remote machine.

HISTORY_HELPER_MAX_HISTORY Specifies the maximum number of ClassAds to parse on behalf of remote
history clients. The default is 10,000. This allows the system administrator to indirectly manage the maximum
amount of CPU time spent on each client. Setting this option to 0 disables remote history access.

MAX_JOB_QUEUE_LOG_ROTATIONS The condor_schedd daemon periodically rotates the job queue database
file, in order to save disk space. This option controls how many rotated files are saved. It defaults to 1, which
means there may be up to two history files (the previous one, which was rotated out of use, and the current one
that is being written to). When the job queue file is rotated, and this rotation would cause the number of backups
to be larger the the maximum specified, the oldest file is removed.

CLASSAD_LOG_STRICT_PARSING A boolean value that defaults to True. When True, ClassAd log files will
be read using a strict syntax checking for ClassAd expressions. ClassAd log files include the job queue log and
the accountant log. When False, ClassAd log files are read without strict expression syntax checking, which
allows some legacy ClassAd log data to be read in a backward compatible manner. This configuration variable
may no longer be supported in future releases, eventually requiring all ClassAd log files to pass strict ClassAd
syntax checking.

DEFAULT_DOMAIN_NAME The value to be appended to a machine’s host name, representing a domain name,
which HTCondor then uses to form a fully qualified host name. This is required if there is no fully qualified host
name in file /etc/hosts or in NIS. Set the value in the global configuration file, as HTCondor may depend
on knowing this value in order to locate the local configuration file(s). The default value as given in the sample
configuration file of the HTCondor download is bogus, and must be changed. If this variable is removed from
the global configuration file, or if the definition is empty, then HTCondor attempts to discover the value.

NO_DNS A boolean value that defaults to False. When True, HTCondor constructs host names using the host’s IP
address together with the value defined for DEFAULT_DOMAIN_NAME.

CM_IP_ADDR If neither COLLECTOR_HOST nor COLLECTOR_IP_ADDR macros are defined, then this macro will be
used to determine the IP address of the central manager (collector daemon). This macro is defined by an IP
address.

EMAIL_DOMAIN By default, if a user does not specify notify_user in the submit description file, any email
HTCondor sends about that job will go to “username@UID_DOMAIN”. If your machines all share a common
UID domain (so that you would set UID_DOMAIN to be the same across all machines in your pool), but email
to user@UID_DOMAIN is not the right place for HTCondor to send email for your site, you can define the
default domain to use for email. A common example would be to set EMAIL_DOMAIN to the fully qualified host
name of each machine in your pool, so users submitting jobs from a specific machine would get email sent
to user@machine.your.domain, instead of user@your.domain. You would do this by setting EMAIL_DOMAIN to
$(FULL_HOSTNAME). In general, you should leave this setting commented out unless two things are true: 1)
UID_DOMAIN is set to your domain, not $(FULL_HOSTNAME), and 2) email to user@UID_DOMAIN will not
work.

CREATE_CORE_FILES Defines whether or not HTCondor daemons are to create a core file in the LOG directory
if something really bad happens. It is used to set the resource limit for the size of a core file. If not defined, it
leaves in place whatever limit was in effect when the HTCondor daemons (normally the condor_master) were
started. This allows HTCondor to inherit the default system core file generation behavior at start up. For Unix
operating systems, this behavior can be inherited from the parent shell, or specified in a shell script that starts
HTCondor. If this parameter is set and True, the limit is increased to the maximum. If it is set to False, the
limit is set at 0 (which means that no core files are created). Core files greatly help the HTCondor developers
debug any problems you might be having. By using the parameter, you do not have to worry about tracking
down where in your boot scripts you need to set the core limit before starting HTCondor. You set the parameter

212 Chapter 4. Administrators’ Manual

mailto:username@UID_DOMAIN
mailto:user@UID_DOMAIN
mailto:user@machine.your.domain
mailto:user@your.domain
mailto:user@UID_DOMAIN

HTCondor Manual, Release 10.0.9

to whatever behavior you want HTCondor to enforce. This parameter defaults to undefined to allow the initial
operating system default value to take precedence, and is commented out in the default configuration file.

ABORT_ON_EXCEPTION When HTCondor programs detect a fatal internal exception, they normally log an error
message and exit. If you have turned on CREATE_CORE_FILES , in some cases you may also want to turn on
ABORT_ON_EXCEPTION so that core files are generated when an exception occurs. Set the following to True if
that is what you want.

Q_QUERY_TIMEOUT Defines the timeout (in seconds) that condor_q uses when trying to connect to the con-
dor_schedd. Defaults to 20 seconds.

DEAD_COLLECTOR_MAX_AVOIDANCE_TIME Defines the interval of time (in seconds) between checks for
a failed primary condor_collector daemon. If connections to the dead primary condor_collector take very lit-
tle time to fail, new attempts to query the primary condor_collector may be more frequent than the specified
maximum avoidance time. The default value equals one hour. This variable has relevance to flocked jobs, as it
defines the maximum time they may be reporting to the primary condor_collector without the condor_negotiator
noticing.

PASSWD_CACHE_REFRESH HTCondor can cause NIS servers to become overwhelmed by queries for uid and
group information in large pools. In order to avoid this problem, HTCondor caches UID and group information
internally. This integer value allows pool administrators to specify (in seconds) how long HTCondor should
wait until refreshes a cache entry. The default is set to 72000 seconds, or 20 hours, plus a random number of
seconds between 0 and 60 to avoid having lots of processes refreshing at the same time. This means that if a
pool administrator updates the user or group database (for example, /etc/passwd or /etc/group), it can take
up to 6 minutes before HTCondor will have the updated information. This caching feature can be disabled by
setting the refresh interval to 0. In addition, the cache can also be flushed explicitly by running the command
condor_reconfig. This configuration variable has no effect on Windows.

SYSAPI_GET_LOADAVG If set to False, then HTCondor will not attempt to compute the load average on the system,
and instead will always report the system load average to be 0.0. Defaults to True.

NETWORK_MAX_PENDING_CONNECTS This specifies a limit to the maximum number of simultaneous net-
work connection attempts. This is primarily relevant to condor_schedd, which may try to connect to large num-
bers of startds when claiming them. The negotiator may also connect to large numbers of startds when initiating
security sessions used for sending MATCH messages. On Unix, the default for this parameter is eighty percent
of the process file descriptor limit. On windows, the default is 1600.

WANT_UDP_COMMAND_SOCKET This setting, added in version 6.9.5, controls if HTCondor daemons should
create a UDP command socket in addition to the TCP command socket (which is required). The default is True,
and modifying it requires restarting all HTCondor daemons, not just a condor_reconfig or SIGHUP.

Normally, updates sent to the condor_collector use UDP, in addition to certain keep alive messages and other
non-essential communication. However, in certain situations, it might be desirable to disable the UDP command
port.

Unfortunately, due to a limitation in how these command sockets are created, it is not possible to define this
setting on a per-daemon basis, for example, by trying to set STARTD.WANT_UDP_COMMAND_SOCKET. At least for
now, this setting must be defined machine wide to function correctly.

If this setting is set to true on a machine running a condor_collector, the pool should be configured to use TCP
updates to that collector (see Using TCP to Send Updates to the condor_collector for more information).

ALLOW_SCRIPTS_TO_RUN_AS_EXECUTABLES A boolean value that, when True, permits scripts on Win-
dows platforms to be used in place of the executable in a job submit description file, in place of a condor_dagman
pre or post script, or in producing the configuration, for example. Allows a script to be used in any circumstance
previously limited to a Windows executable or a batch file. The default value is True. See Using Windows Scripts
as Job Executables for further description.

OPEN_VERB_FOR_<EXT>_FILES A string that defines a Windows verb for use in a root hive registry look up.
<EXT> defines the file name extension, which represents a scripting language, also needed for the look up. See

4.5. Configuration Macros 213

HTCondor Manual, Release 10.0.9

Using Windows Scripts as Job Executables for a more complete description.

ENABLE_CLASSAD_CACHING A boolean value that controls the caching of ClassAds. Caching saves memory
when an HTCondor process contains many ClassAds with the same expressions. The default value is True for all
daemons other than the condor_shadow, condor_starter, and condor_master. A value of True enables caching.

STRICT_CLASSAD_EVALUATION A boolean value that controls how ClassAd expressions are evaluated. If set
to True, then New ClassAd evaluation semantics are used. This means that attribute references without a MY.
or TARGET. prefix are only looked up in the local ClassAd. If set to the default value of False, Old ClassAd
evaluation semantics are used. See ClassAds: Old and New for details.

CLASSAD_USER_LIBS A comma separated list of paths to shared libraries that contain additional ClassAd func-
tions to be used during ClassAd evaluation.

CLASSAD_USER_PYTHON_MODULES A comma separated list of python modules to load, which are to be used
during ClassAd evaluation. If module foo is in this list, then function bar can be invoked in ClassAds via the ex-
pression python_invoke("foo", "bar", ...). Any further arguments are converted from ClassAd expres-
sions to python; the function return value is converted back to ClassAds. The python modules are loaded at con-
figuration time, so any module-level statements are executed. Module writers can invoke classad.register
at the module-level in order to use python functions directly.

Functions executed by ClassAds should be non-blocking and have no side-effects; otherwise, unpredictable HT-
Condor behavior may occur.

CLASSAD_USER_PYTHON_LIB Specifies the path to the python libraries, which is needed when
CLASSAD_USER_PYTHON_MODULES is set. Defaults to $(LIBEXEC)/libclassad_python_user.so,
and would rarely be changed from the default value.

CONDOR_FSYNC A boolean value that controls whether HTCondor calls fsync() when writing the user job and
transaction logs. Setting this value to False will disable calls to fsync(), which can help performance for con-
dor_schedd log writes at the cost of some durability of the log contents, should there be a power or hardware
failure. The default value is True.

STATISTICS_TO_PUBLISH A comma and/or space separated list that identifies which statistics collections are to
place attributes in ClassAds. Additional information specifies a level of verbosity and other identification of
which attributes to include and which to omit from ClassAds. The special value NONE disables all publishing,
so no statistics will be published; no option is included. For other list items that define this variable, the syntax
defines the two aspects by separating them with a colon. The first aspect defines a collection, which may specify
which daemon is to publish the statistics, and the second aspect qualifies and refines the details of which attributes
to publish for the collection, including a verbosity level. If the first aspect is ALL, the option is applied to all
collections. If the first aspect is DEFAULT, the option is applied to all collections, with the intent that further
list items will specify publishing that is to be different than the default. This first aspect may be SCHEDD or
SCHEDULER to publish Statistics attributes in the ClassAd of the condor_schedd. It may be TRANSFER to publish
file transfer statistics. It may be STARTER to publish Statistics attributes in the ClassAd of the condor_starter.
Or, it may be DC or DAEMONCORE to publish DaemonCore statistics. One or more options are specified after the
colon.

214 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Op-
tion

Description

0 turns off the publishing of any statistics attributes
1 the default level, where some statistics attributes are and others are omitted
2 the verbose level, where all statistics attributes are published
3 the super verbose level, which is currently unused, but intended to be all statistics attributes published

at the verbose level plus extra information
R include attributes from the most recent time interval; the default
!R omit attributes from the most recent time interval
D include attributes for debugging
!D omit attributes for debugging; the default
Z include attributes even if the attribute’s value is 0
!Z omit attributes when the attribute’s value is 0
L include attributes that represent the lifetime value; the default
!L omit attributes that represent the lifetime value

If this variable is not defined, then the default for each collection is used. If this variable is defined, and the
definition does not specify each possible collection, then no statistics are published for those collections not
defined. If an option specifies conflicting possibilities, such as R!R, then the last one takes precedence and is
applied.

As an example, to cause a verbose setting of the publication of Statistics attributes only for the condor_schedd,
and do not publish any other Statistics attributes:

STATISTICS_TO_PUBLISH = SCHEDD:2

As a second example, to cause all collections other than those for DAEMONCORE to publish at a verbosity setting
of 1, and omit lifetime values, where the DAEMONCORE includes all statistics at the verbose level:

STATISTICS_TO_PUBLISH = DEFAULT:1!L, DC:2RDZL

STATISTICS_TO_PUBLISH_LIST A comma and/or space separated list of statistics attribute names that
should be published in updates to the condor_collector daemon, even though the verbosity specified in
STATISTICS_TO_PUBLISH would not normally send them. This setting has the effect of redefining the verbosity
level of the statistics attributes that it mentions, so that they will always match the current statistics publication
level as specified in STATISTICS_TO_PUBLISH.

STATISTICS_WINDOW_SECONDS An integer value that controls the time window size, in seconds, for collecting
windowed daemon statistics. These statistics are, by convention, those attributes with names that are of the form
Recent<attrname>. Any data contributing to a windowed statistic that is older than this number of seconds
is dropped from the statistic. For example, if STATISTICS_WINDOW_SECONDS = 300, then any jobs submitted
more than 300 seconds ago are not counted in the windowed statistic RecentJobsSubmitted. Defaults to 1200
seconds, which is 20 minutes.

The window is broken into smaller time pieces called quantum. The window advances one quantum at a time.

STATISTICS_WINDOW_SECONDS_<collection> The same as STATISTICS_WINDOW_SECONDS, but used to
override the global setting for a particular statistic collection. Collection names currently implemented are DC or
DAEMONCORE and SCHEDD or SCHEDULER.

STATISTICS_WINDOW_QUANTUM For experts only, an integer value that controls the time quantization that
form a time window, in seconds, for the data structures that maintain windowed statistics. Defaults to 240 seconds,
which is 6 minutes. This default is purposely set to be slightly smaller than the update rate to the condor_collector.
Setting a smaller value than the default increases the memory requirement for the statistics. Graphing of statistics
at the level of the quantum expects to see counts that appear like a saw tooth.

4.5. Configuration Macros 215

HTCondor Manual, Release 10.0.9

STATISTICS_WINDOW_QUANTUM_<collection> The same as STATISTICS_WINDOW_QUANTUM, but used to
override the global setting for a particular statistic collection. Collection names currently implemented are DC or
DAEMONCORE and SCHEDD or SCHEDULER.

TCP_KEEPALIVE_INTERVAL The number of seconds specifying a keep alive interval to use for any HTCondor
TCP connection. The default keep alive interval is 360 (6 minutes); this value is chosen to minimize the likelihood
that keep alive packets are sent, while still detecting dead TCP connections before job leases expire. A smaller
value will consume more operating system and network resources, while a larger value may cause jobs to fail
unnecessarily due to network disconnects. Most users will not need to tune this configuration variable. A value
of 0 will use the operating system default, and a value of -1 will disable HTCondor’s use of a TCP keep alive.

ENABLE_IPV4 A boolean with the additional special value of auto. If true, HTCondor will use IPv4 if available,
and fail otherwise. If false, HTCondor will not use IPv4. If auto, which is the default, HTCondor will use IPv4
if it can find an interface with an IPv4 address, and that address is (a) public or private, or (b) no interface’s IPv6
address is public or private. If HTCondor finds more than one address of each protocol, only the most public
address is considered for that protocol.

ENABLE_IPV6 A boolean with the additional special value of auto. If true, HTCondor will use IPv6 if available,
and fail otherwise. If false, HTCondor will not use IPv6. If auto, which is the default, HTCondor will use IPv6
if it can find an interface with an IPv6 address, and that address is (a) public or private, or (b) no interface’s IPv4
address is public or private. If HTCondor finds more than one address of each protocol, only the most public
address is considered for that protocol.

PREFER_IPV4 A boolean which will cause HTCondor to prefer IPv4 when it is able to choose. HTCondor will
otherwise prefer IPv6. The default is True.

ADVERTISE_IPV4_FIRST A string (treated as a boolean). If ADVERTISE_IPV4_FIRST evaluates to True, HT-
Condor will advertise its IPv4 addresses before its IPv6 addresses; otherwise the IPv6 addresses will come first.
Defaults to $(PREFER_IPV4).

IGNORE_TARGET_PROTOCOL_PREFERENCE A string (treated as a boolean). If
IGNORE_TARGET_PROTOCOL_PREFERENCE evaluates to True, the target’s listed protocol preferences will
be ignored; otherwise they will not. Defaults to $(PREFER_IPV4).

IGNORE_DNS_PROTOCOL_PREFERENCE A string (treated as a boolean).
IGNORE_DNS_PROTOCOL_PREFERENCE evaluates to True, the protocol order returned by the DNS will
be ignored; otherwise it will not. Defaults to $(PREFER_IPV4).

PREFER_OUTBOUND_IPV4 A string (treated as a boolean). PREFER_OUTBOUND_IPV4 evaluates to True, HT-
Condor will prefer IPv4; otherwise it will not. Defaults to $(PREFER_IPV4).

<SUBSYS>_CLASSAD_USER_MAP_NAMES A string defining a list of names for username-to-accounting group
mappings for the specified daemon. Names must be separated by spaces or commas.

CLASSAD_USER_MAPFILE_<name> A string giving the name of a file to parse to initialize the map for the given
username. Note that this macro is only used if <SUBSYS>_CLASSAD_USER_MAP_NAMES is defined for the relevant
daemon.

The format for the map file is the same as the format for CLASSAD_USER_MAPDATA_<name>, below.

CLASSAD_USER_MAPDATA_<name> A string containing data to be used to initialize the map for the given user-
name. Note that this macro is only used if <SUBSYS>_CLASSAD_USER_MAP_NAMES is defined for the relevant
daemon, and CLASSAD_USER_MAPFILE_<name> is not defined for the given name.

The format for the map data is the same as the format for the security unified map file (see The Unified Map File
for Authentication for details).

The first field must be * (or a subset name - see below), the second field is a regex that we will match against
the input, and the third field will be the output if the regex matches, the 3 and 4 argument form of the ClassAd
userMap() function (see ClassAd Syntax) expect that the third field will be a comma separated list of values. For
example:

216 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

file: groups.mapdata
* John chemistry,physics,glassblowing
* Juan physics,chemistry
* Bob security
* Alice security,math

Here is simple example showing how to configure CLASSAD_USER_MAPDATA_<name> for testing and experimen-
tation.

configuration statements to create a simple userMap that
can be used by the Schedd as well as by tools like condor_q
#
SCHEDD_CLASSAD_USER_MAP_NAMES = Trust $(SCHEDD_CLASSAD_USER_MAP_NAMES)
TOOL_CLASSAD_USER_MAP_NAMES = Trust $(TOOL_CLASSAD_USER_MAP_NAMES)
CLASSAD_USER_MAPDATA_Trust @=end
* Bob User
* Alice Admin
* /.*/ Nobody

@end
#
test with
condor_q -af:j 'Owner' 'userMap("Trust",Owner)'

Optional submaps: If the first field of the mapfile contains something other than *, then a submap is defined.
To select a submap for lookup, the first argument for userMap() should be “mapname.submap”. For example:

mapdata 'groups' with submaps
* Bob security
* Alice security,math
alt Alice math,hacking

IGNORE_LEAF_OOM A boolean value that, when True, tells HTCondor not to kill and hold a job that is within
its memory allocation, even if other processes within the same cgroup have exceeded theirs. The default value is
True. (Note that this represents a change in behavior compared to versions of HTCondor older than 8.6.0; this
configuration macro first appeared in version 8.4.11. To restore the previous behavior, set this value to False.)

SIGN_S3_URLS A boolean value that, when True, tells HTCondor to convert s3://URLs into pre-signed https:/
/ URLs. This allows execute nodes to download from or upload to secure S3 buckets without access to the user’s
API tokens, which remain on the submit node at all times. This value defaults to TRUE but can be disabled if
the administrator has already provided an s3:// plug-in. This value must be set on both the submit node and on
the execute node.

4.5.2 Daemon Logging Configuration File Entries

These entries control how and where the HTCondor daemons write to log files. Many of the entries in this section
represents multiple macros. There is one for each subsystem (listed in Pre-Defined Macros). The macro name for each
substitutes <SUBSYS> with the name of the subsystem corresponding to the daemon.

<SUBSYS>_LOG Defines the path and file name of the log file for a given subsystem. For example, $(STARTD_LOG)
gives the location of the log file for the condor_startd daemon. The default value for most daemons is the
daemon’s name in camel case, concatenated with Log. For example, the default log defined for the condor_master
daemon is $(LOG)/MasterLog. The default value for other subsystems is $(LOG)/<SUBSYS>LOG. The special

4.5. Configuration Macros 217

HTCondor Manual, Release 10.0.9

value SYSLOG causes the daemon to log via the syslog facility on Linux. If the log file cannot be written to, then
the daemon will attempt to log this into a new file of the name $(LOG)/dprintf_failure.<SUBSYS> before
the daemon exits.

LOG_TO_SYSLOG A boolean value that is False by default. When True, all daemon logs are routed to the syslog
facility on Linux.

MAX_<SUBSYS>_LOG Controls the maximum size in bytes or amount of time that a log will be allowed to grow.
For any log not specified, the default is $(MAX_DEFAULT_LOG) , which currently defaults to 10 MiB in size.
Values are specified with the same syntax as MAX_DEFAULT_LOG .

Note that a log file for the condor_procd does not use this configuration variable definition. Its implementation
is separate. See .

MAX_DEFAULT_LOG Controls the maximum size in bytes or amount of time that any log not explicitly specified
using MAX_<SUBSYS>_LOGwill be allowed to grow. When it is time to rotate a log file, it will be saved to a file with
an ISO timestamp suffix. The oldest rotated file receives the ending .old. The .old files are overwritten each
time the maximum number of rotated files (determined by the value of MAX_NUM_<SUBSYS>_LOG) is exceeded.
The default value is 10 MiB in size. A value of 0 specifies that the file may grow without bounds. A single integer
value is specified; without a suffix, it defaults to specifying a size in bytes. A suffix is case insensitive, except
for Mb and Min; these both start with the same letter, and the implementation attaches meaning to the letter case
when only the first letter is present. Therefore, use the following suffixes to qualify the integer: Bytes for bytes
Kb for KiB, 210 numbers of bytes Mb for MiB, 220 numbers of bytes Gb for GiB, 230 numbers of bytes Tb for TiB,
240 numbers of bytes Sec for seconds Min for minutes Hr for hours Day for days Wk for weeks

MAX_NUM_<SUBSYS>_LOG An integer that controls the maximum number of rotations a log file is allowed to
perform before the oldest one will be rotated away. Thus, at most MAX_NUM_<SUBSYS>_LOG + 1 log files of the
same program coexist at a given time. The default value is 1.

TRUNC_<SUBSYS>_LOG_ON_OPEN If this macro is defined and set to True, the affected log will be truncated
and started from an empty file with each invocation of the program. Otherwise, new invocations of the program
will append to the previous log file. By default this setting is False for all daemons.

<SUBSYS>_LOG_KEEP_OPEN A boolean value that controls whether or not the log file is kept open between
writes. When True, the daemon will not open and close the log file between writes. Instead the daemon will
hold the log file open until the log needs to be rotated. When False, the daemon reverts to the previous behavior
of opening and closing the log file between writes. When the $(<SUBSYS>_LOCK) macro is defined, setting
$(<SUBSYS>_LOG_KEEP_OPEN) has no effect, as the daemon will unconditionally revert back to the open/close
between writes behavior. On Windows platforms, the value defaults to True for all daemons. On Linux platforms,
the value defaults to True for all daemons, except the condor_shadow, due to a global file descriptor limit.

<SUBSYS>_LOCK This macro specifies the lock file used to synchronize append operations to the log file for this
subsystem. It must be a separate file from the $(<SUBSYS>_LOG) file, since the $(<SUBSYS>_LOG) file may be
rotated and you want to be able to synchronize access across log file rotations. A lock file is only required for
log files which are accessed by more than one process. Currently, this includes only the SHADOW subsystem. This
macro is defined relative to the $(LOCK) macro.

JOB_QUEUE_LOG A full path and file name, specifying the job queue log. The default value, when not defined
is $(SPOOL)/job_queue.log. This specification can be useful, if there is a solid state drive which is big enough
to hold the frequently written to job_queue.log, but not big enough to hold the whole contents of the spool
directory.

FILE_LOCK_VIA_MUTEX This macro setting only works on Win32 - it is ignored on Unix. If set to be True,
then log locking is implemented via a kernel mutex instead of via file locking. On Win32, mutex access is FIFO,
while obtaining a file lock is non-deterministic. Thus setting to True fixes problems on Win32 where processes
(usually shadows) could starve waiting for a lock on a log file. Defaults to True on Win32, and is always False
on Unix.

LOCK_DEBUG_LOG_TO_APPEND A boolean value that defaults to False. This variable controls whether a

218 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

daemon’s debug lock is used when appending to the log. When False, the debug lock is only used when
rotating the log file. This is more efficient, especially when many processes share the same log file. When True,
the debug lock is used when writing to the log, as well as when rotating the log file. This setting is ignored under
Windows, and the behavior of Windows platforms is as though this variable were True. Under Unix, the default
value of False is appropriate when logging to file systems that support the POSIX semantics of O_APPEND.
On non-POSIX-compliant file systems, it is possible for the characters in log messages from multiple processes
sharing the same log to be interleaved, unless locking is used. Since HTCondor does not support sharing of
debug logs between processes running on different machines, many non-POSIX-compliant file systems will still
avoid interleaved messages without requiring HTCondor to use a lock. Tests of AFS and NFS have not revealed
any problems when appending to the log without locking.

ENABLE_USERLOG_LOCKING A boolean value that defaults to False on Unix platforms and True on Windows
platforms. When True, a user’s job event log will be locked before being written to. If False, HTCondor will
not lock the file before writing.

ENABLE_USERLOG_FSYNC A boolean value that is True by default. When True, writes to the user’s job event
log are sync-ed to disk before releasing the lock.

USERLOG_FILE_CACHE_MAX The integer number of job event log files that the condor_schedd will keep open
for writing during an interval of time (specified by USERLOG_FILE_CACHE_CLEAR_INTERVAL). The default
value is 0, causing no files to remain open; when 0, each job event log is opened, the event is written, and
then the file is closed. Individual file descriptors are removed from this count when the condor_schedd detects
that no jobs are currently using them. Opening a file is a relatively time consuming operation on a networked
file system (NFS), and therefore, allowing a set of files to remain open can improve performance. The value of
this variable needs to be set low enough such that the condor_schedd daemon process does not run out of file
descriptors by leaving these job event log files open. The Linux operating system defaults to permitting 1024
assigned file descriptors per process; the condor_schedd will have one file descriptor per running job for the
condor_shadow.

USERLOG_FILE_CACHE_CLEAR_INTERVAL The integer number of seconds that forms the time interval
within which job event logs will be permitted to remain open when USERLOG_FILE_CACHE_MAX is greater than
zero. The default is 60 seconds. When the interval has passed, all job event logs that the condor_schedd has
permitted to stay open will be closed, and the interval within which job event logs may remain open between
writes of events begins anew. This time interval may be set to a longer duration if the administrator determines
that the condor_schedd will not exceed the maximum number of file descriptors; a longer interval may yield
higher performance due to fewer files being opened and closed.

CREATE_LOCKS_ON_LOCAL_DISK A boolean value utilized only for Unix operating systems, that defaults to
True. This variable is only relevant if ENABLE_USERLOG_LOCKING is True. When True, lock files are written
to a directory named condorLocks, thereby using a local drive to avoid known problems with locking on NFS.
The location of the condorLocks directory is determined by

1. The value of TEMP_DIR, if defined.

2. The value of TMP_DIR, if defined and TEMP_DIR is not defined.

3. The default value of /tmp, if neither TEMP_DIR nor TMP_DIR is defined.

TOUCH_LOG_INTERVAL The time interval in seconds between when daemons touch their log files. The change
in last modification time for the log file is useful when a daemon restarts after failure or shut down. The last
modification date is printed, and it provides an upper bound on the length of time that the daemon was not
running. Defaults to 60 seconds.

LOGS_USE_TIMESTAMP This macro controls how the current time is formatted at the start of each line in the
daemon log files. When True, the Unix time is printed (number of seconds since 00:00:00 UTC, January 1,
1970). When False (the default value), the time is printed like so: <Month>/<Day> <Hour>:<Minute>:
<Second> in the local timezone.

DEBUG_TIME_FORMAT This string defines how to format the current time printed at the start of each line in the

4.5. Configuration Macros 219

HTCondor Manual, Release 10.0.9

daemon log files. The value is a format string is passed to the C strftime() function, so see that manual page for
platform-specific details. If not defined, the default value is

"%m/%d/%y %H:%M:%S"

<SUBSYS>_DEBUG All of the HTCondor daemons can produce different levels of output depending on how much
information is desired. The various levels of verbosity for a given daemon are determined by this macro. Settings
are a comma, vertical bar, or space-separated list of categories and options. Each category can be followed by a
colon and a single digit indicating the verbosity for that category :1 is assumed if there is no verbosity modifier.
Permitted verbosity values are :1 for normal, :2 for extra messages, and :0 to disable logging of that category of
messages. The primary daemon log will always include category and verbosity D_ALWAYS:1, unless D_ALWAYS:
0 is added to this list. Category and option names are:

D_ANY This flag turns on all cagetories of messages Be warned: this will generate about a HUGE amount of
output. To obtain a higher level of output than the default, consider using D_FULLDEBUG before using this
option.

D_ALL

This is equivalent to D_ANY D_PID D_FDS D_CAT Be warned: this will generate about a HUGE
amount of output. To obtain a higher level of output than the default, consider using D_FULLDEBUG
before using this option.

D_FAILURE This category is used for messages that indicate the daemon is unable to continue running.
These message are “always” printed unless D_FAILURE:0 is added to the list

D_STATUS This category is used for messages that indicate what task the daemon is currently doing or
progress. Messages of this category will be always printed unless D_STATUS:0 is added to the list

D_ALWAYS This category is used for messages that are “always” printed unless D_ALWAYS:0 is configured. These
can be progress or status message, as well as failures that do not prevent the daemon from continuing to
operate such as a failure to start a job. At verbosity 2 this category is equivalent to D_FULLDEBUG below.

D_FULLDEBUG This level provides verbose output of a general nature into the log files. Frequent log messages
for very specific debugging purposes would be excluded. In those cases, the messages would be viewed
by having that other flag and D_FULLDEBUG both listed in the configuration file. This is equivalent to
D_ALWAYS:2

D_DAEMONCORE Provides log file entries specific to DaemonCore, such as timers the daemons have set and the
commands that are registered. If D_DAEMONCORE:2 is set, expect very verbose output.

D_PRIV This flag provides log messages about the privilege state switching that the daemons do. See User
Accounts in HTCondor on Unix Platforms on UIDs in HTCondor for details.

D_COMMAND With this flag set, any daemon that uses DaemonCore will print out a log message whenever a
command comes in. The name and integer of the command, whether the command was sent via UDP or
TCP, and where the command was sent from are all logged. Because the messages about the command
used by condor_kbdd to communicate with the condor_startd whenever there is activity on the X server,
and the command used for keep-alives are both only printed with D_FULLDEBUG enabled, it is best if this
setting is used for all daemons.

D_LOAD The condor_startd keeps track of the load average on the machine where it is running. Both the general
system load average, and the load average being generated by HTCondor’s activity there are determined.
With this flag set, the condor_startd will log a message with the current state of both of these load averages
whenever it computes them. This flag only affects the condor_startd.

D_KEYBOARD With this flag set, the condor_startd will print out a log message with the current values for remote
and local keyboard idle time. This flag affects only the condor_startd.

D_JOB When this flag is set, the condor_startd will send to its log file the contents of any job ClassAd that the
condor_schedd sends to claim the condor_startd for its use. This flag affects only the condor_startd.

220 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

D_MACHINE When this flag is set, the condor_startd will send to its log file the contents of its resource Clas-
sAd when the condor_schedd tries to claim the condor_startd for its use. This flag affects only the con-
dor_startd.

D_SYSCALLS This flag is used to make the condor_shadow log remote syscall requests and return values. This
can help track down problems a user is having with a particular job by providing the system calls the job
is performing. If any are failing, the reason for the failure is given. The condor_schedd also uses this flag
for the server portion of the queue management code. With D_SYSCALLS defined in SCHEDD_DEBUG there
will be verbose logging of all queue management operations the condor_schedd performs.

D_MATCH When this flag is set, the condor_negotiator logs a message for every match.

D_NETWORK When this flag is set, all HTCondor daemons will log a message on every TCP accept, connect, and
close, and on every UDP send and receive. This flag is not yet fully supported in the condor_shadow.

D_HOSTNAME When this flag is set, the HTCondor daemons and/or tools will print verbose messages explaining
how they resolve host names, domain names, and IP addresses. This is useful for sites that are having trouble
getting HTCondor to work because of problems with DNS, NIS or other host name resolving systems in
use.

D_SECURITY This flag will enable debug messages pertaining to the setup of secure network communication,
including messages for the negotiation of a socket authentication mechanism, the management of a session
key cache. and messages about the authentication process itself. See HTCondor’s Security Model for more
information about secure communication configuration. D_SECURITY:2 logging is highly verbose and
should be used only when actively debugging security configuration problems.

D_PROCFAMILY HTCondor often times needs to manage an entire family of processes, (that is, a process and all
descendants of that process). This debug flag will turn on debugging output for the management of families
of processes.

D_ACCOUNTANT When this flag is set, the condor_negotiator will output debug messages relating to the compu-
tation of user priorities (see User Priorities and Negotiation).

D_PROTOCOL Enable debug messages relating to the protocol for HTCondor’s matchmaking and resource claim-
ing framework.

D_STATS Enable debug messages relating to the TCP statistics for file transfers. Note that the shadow and starter,
by default, log these statistics to special log files (see and . Note that, as of version 8.5.6, C_GAHP_DEBUG
defaults to D_STATS.

D_PID This flag is different from the other flags, because it is used to change the formatting of all log messages
that are printed, as opposed to specifying what kinds of messages should be printed. If D_PID is set,
HTCondor will always print out the process identifier (PID) of the process writing each line to the log
file. This is especially helpful for HTCondor daemons that can fork multiple helper-processes (such as the
condor_schedd or condor_collector) so the log file will clearly show which thread of execution is generating
each log message.

D_FDS This flag is different from the other flags, because it is used to change the formatting of all log messages
that are printed, as opposed to specifying what kinds of messages should be printed. If D_FDS is set,
HTCondor will always print out the file descriptor that the open of the log file was allocated by the operating
system. This can be helpful in debugging HTCondor’s use of system file descriptors as it will generally
track the number of file descriptors that HTCondor has open.

D_CAT or D_CATEGORY This flag is different from the other flags, because it is used to change the formatting of
all log messages that are printed, as opposed to specifying what kinds of messages should be printed. If
D_CAT or D_CATEGORY is set, Condor will include the debugging level flags that were in effect for each line
of output. This may be used to filter log output by the level or tag it, for example, identifying all logging
output at level D_SECURITY, or D_ACCOUNTANT.

4.5. Configuration Macros 221

HTCondor Manual, Release 10.0.9

D_TIMESTAMP This flag is different from the other flags, because it is used to change the formatting of all log mes-
sages that are printed, as opposed to specifying what kinds of messages should be printed. If D_TIMESTAMP
is set, the time at the beginning of each line in the log file with be a number of seconds since the start of
the Unix era. This form of timestamp can be more convenient for tools to process.

D_SUB_SECOND This flag is different from the other flags, because it is used to change the formatting of all
log messages that are printed, as opposed to specifying what kinds of messages should be printed. If
D_SUB_SECOND is set, the time at the beginning of each line in the log file will contain a fractional part to
the seconds field that is accurate to the millisecond.

ALL_DEBUG Used to make all subsystems share a debug flag. Set the parameter ALL_DEBUG instead of changing
all of the individual parameters. For example, to turn on all debugging in all subsystems, set ALL_DEBUG =
D_ALL.

TOOL_DEBUG Uses the same values (debugging levels) as <SUBSYS>_DEBUG to describe the amount of debugging
information sent to stderr for HTCondor tools.

Log files may optionally be specified per debug level as follows:

<SUBSYS>_<LEVEL>_LOG The name of a log file for messages at a specific debug level for a specific subsys-
tem. <LEVEL> is defined by any debug level, but without the D_ prefix. See for the list of debug levels.
If the debug level is included in $(<SUBSYS>_DEBUG), then all messages of this debug level will be writ-
ten both to the log file defined by <SUBSYS>_LOG and the the log file defined by <SUBSYS>_<LEVEL>_LOG.
As examples, SHADOW_SYSCALLS_LOG specifies a log file for all remote system call debug messages, and
NEGOTIATOR_MATCH_LOG specifies a log file that only captures condor_negotiator debug events occurring with
matches.

MAX_<SUBSYS>_<LEVEL>_LOG See .

TRUNC_<SUBSYS>_<LEVEL>_LOG_ON_OPEN Similar to TRUNC_<SUBSYS>_LOG_ON_OPEN .

The following macros control where and what is written to the event log, a file that receives job events, but across all
users and user’s jobs.

EVENT_LOG The full path and file name of the event log. There is no default value for this variable, so no event log
will be written, if not defined.

EVENT_LOG_MAX_SIZE Controls the maximum length in bytes to which the event log will be allowed to grow.
The log file will grow to the specified length, then be saved to a file with the suffix .old. The .old files are overwrit-
ten each time the log is saved. A value of 0 specifies that the file may grow without bounds (and disables rotation).
The default is 1 MiB. For backwards compatibility, MAX_EVENT_LOG will be used if EVENT_LOG_MAX_SIZE is
not defined. If EVENT_LOG is not defined, this parameter has no effect.

MAX_EVENT_LOG See .

EVENT_LOG_MAX_ROTATIONS Controls the maximum number of rotations of the event log that will be stored.
If this value is 1 (the default), the event log will be rotated to a “.old” file as described above. However, if this
is greater than 1, then multiple rotation files will be stores, up to EVENT_LOG_MAX_ROTATIONS of them. These
files will be named, instead of the “.old” suffix, “.1”, “.2”, with the “.1” being the most recent rotation. This is
an integer parameter with a default value of 1. If EVENT_LOG is not defined, or if EVENT_LOG_MAX_SIZE has a
value of 0 (which disables event log rotation), this parameter has no effect.

EVENT_LOG_ROTATION_LOCK Specifies the lock file that will be used to ensure that, when rotating files, the
rotation is done by a single process. This is a string parameter; its default value is $(LOCK)/EventLogLock.
If an empty value is set, then the file that is used is the file path of the event log itself, with the string .lock
appended. If EVENT_LOG is not defined, or if EVENT_LOG_MAX_SIZE has a value of 0 (which disables event log
rotation), this configuration variable has no effect.

EVENT_LOG_FSYNC A boolean value that controls whether HTCondor will perform an fsync() after writing each
event to the event log. When True, an fsync() operation is performed after each event. This fsync() operation

222 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

forces the operating system to synchronize the updates to the event log to the disk, but can negatively affect the
performance of the system. Defaults to False.

EVENT_LOG_LOCKING A boolean value that defaults to False on Unix platforms and True on Windows plat-
forms. When True, the event log (as specified by EVENT_LOG) will be locked before being written to. When
False, HTCondor does not lock the file before writing.

EVENT_LOG_COUNT_EVENTS A boolean value that is False by default. When True, upon rotation of the
user’s job event log, a count of the number of job events is taken by scanning the log, such that the newly created,
post-rotation user job event log will have this count in its header. This configuration variable is relevant when
rotation of the user’s job event log is enabled.

EVENT_LOG_FORMAT_OPTIONS A list of case-insensitive keywords that control formatting of the log events
and of timestamps for the log specified by EVENT_LOG. Use zero or one of the following formatting options:

XML Log events in XML format. This has the same effect EVENT_LOG_USE_XML below

JSON Log events in JSON format. This conflicts with EVENT_LOG_USE_XML below

And zero or more of the following option flags:

UTC Log event timestamps as Universal Coordinated Time. The time value will be printed with a timezone value
of Z to indicate that times are UTC.

ISO_DATE Log event timestamps in ISO 8601 format. This format includes a 4 digit year and is printed in a way
that makes sorting by date easier.

SUB_SECOND Include fractional seconds in event timestamps.

LEGACY Set all time formatting flags to be compatible with older versions of HTCondor.

All of the above options are case-insensitive, and can be preceded by a ! to invert their meaning, so configuring
!UTC, !ISO_DATE, !SUB_SECOND gives the same result as configuring LEGACY.

EVENT_LOG_USE_XML A boolean value that defaults to False. When True, events are logged in XML format.
If EVENT_LOG is not defined, this parameter has no effect.

EVENT_LOG_JOB_AD_INFORMATION_ATTRS A comma separated list of job ClassAd attributes, whose eval-
uated values form a new event, the JobAdInformationEvent, given Event Number 028. This new event is
placed in the event log in addition to each logged event. If EVENT_LOG is not defined, this configuration variable
has no effect. This configuration variable is the same as the job ClassAd attribute JobAdInformationAttrs
(see Job ClassAd Attributes), but it applies to the system Event Log rather than the user job log.

DEFAULT_USERLOG_FORMAT_OPTIONS A list of case-insensitive keywords that control formatting of the
events and of timestamps for the log specified by a job’s UserLog or DAGManNodesLog attributes. see
EVENT_LOG_FORMAT_OPTIONS above for the permitted options.

4.5.3 DaemonCore Configuration File Entries

Please read DaemonCore for details on DaemonCore. There are certain configuration file settings that DaemonCore
uses which affect all HTCondor daemons.

ALLOW. . . All macros that begin with either ALLOW or DENY are settings for HTCondor’s security. See Authorization
on Setting up security in HTCondor for details on these macros and how to configure them.

ENABLE_RUNTIME_CONFIG The condor_config_val tool has an option -rset for dynamically setting run time
configuration values, and which only affect the in-memory configuration variables. Because of the potential
security implications of this feature, by default, HTCondor daemons will not honor these requests. To use
this functionality, HTCondor administrators must specifically enable it by setting ENABLE_RUNTIME_CONFIG

4.5. Configuration Macros 223

HTCondor Manual, Release 10.0.9

to True, and specify what configuration variables can be changed using the SETTABLE_ATTRS... family of
configuration options. Defaults to False.

ENABLE_PERSISTENT_CONFIG The condor_config_val tool has a -set option for dynamically setting persis-
tent configuration values. These values override options in the normal HTCondor configuration files. Be-
cause of the potential security implications of this feature, by default, HTCondor daemons will not honor
these requests. To use this functionality, HTCondor administrators must specifically enable it by setting
ENABLE_PERSISTENT_CONFIG to True, creating a directory where the HTCondor daemons will hold these
dynamically-generated persistent configuration files (declared using PERSISTENT_CONFIG_DIR, described be-
low) and specify what configuration variables can be changed using the SETTABLE_ATTRS... family of config-
uration options. Defaults to False.

PERSISTENT_CONFIG_DIR Directory where daemons should store dynamically-generated persistent configura-
tion files (used to support condor_config_val -set) This directory should only be writable by root, or the user
the HTCondor daemons are running as (if non-root). There is no default, administrators that wish to use this
functionality must create this directory and define this setting. This directory must not be shared by multiple
HTCondor installations, though it can be shared by all HTCondor daemons on the same host. Keep in mind
that this directory should not be placed on an NFS mount where “root-squashing” is in effect, or else HTCondor
daemons running as root will not be able to write to them. A directory (only writable by root) on the local file
system is usually the best location for this directory.

SETTABLE_ATTRS_<PERMISSION-LEVEL> All macros that begin with SETTABLE_ATTRS or <SUBSYS>.
SETTABLE_ATTRS are settings used to restrict the configuration values that can be changed using the con-
dor_config_val command. See Authorization on Setting up Security in HTCondor for details on these macros
and how to configure them. In particular, Authorization contains details specific to these macros.

SHUTDOWN_GRACEFUL_TIMEOUT Determines how long HTCondor will allow daemons try their graceful
shutdown methods before they do a hard shutdown. It is defined in terms of seconds. The default is 1800 (30
minutes).

<SUBSYS>_ADDRESS_FILE A complete path to a file that is to contain an IP address and port number for a
daemon. Every HTCondor daemon that uses DaemonCore has a command port where commands are sent.
The IP/port of the daemon is put in that daemon’s ClassAd, so that other machines in the pool can query the
condor_collector (which listens on a well-known port) to find the address of a given daemon on a given machine.
When tools and daemons are all executing on the same single machine, communications do not require a query of
the condor_collector daemon. Instead, they look in a file on the local disk to find the IP/port. This macro causes
daemons to write the IP/port of their command socket to a specified file. In this way, local tools will continue
to operate, even if the machine running the condor_collector crashes. Using this file will also generate slightly
less network traffic in the pool, since tools including condor_q and condor_rm do not need to send any messages
over the network to locate the condor_schedd daemon. This macro is not necessary for the condor_collector
daemon, since its command socket is at a well-known port.

The macro is named by substituting <SUBSYS> with the appropriate subsystem string as defined in Pre-Defined
Macros.

<SUBSYS>_SUPER_ADDRESS_FILE A complete path to a file that is to contain an IP address and port number for
a command port that is serviced with priority for a daemon. Every HTCondor daemon that uses DaemonCore may
have a higher priority command port where commands are sent. Any command that goes through condor_sos,
and any command issued by the super user (root or local system) for a daemon on the local machine will have
the command sent to this port. Default values are provided for the condor_schedd daemon at $(SPOOL)/.
schedd_address.super and the condor_collector daemon at $(LOG)/.collector_address.super. When
not defined for other DaemonCore daemons, there will be no higher priority command port.

<SUBSYS>_DAEMON_AD_FILE A complete path to a file that is to contain the ClassAd for a daemon. When the
daemon sends a ClassAd describing itself to the condor_collector, it will also place a copy of the ClassAd in this
file. Currently, this setting only works for the condor_schedd.

<SUBSYS>_ATTRS Allows any DaemonCore daemon to advertise arbitrary expressions from the configuration file in

224 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

its ClassAd. Give the comma-separated list of entries from the configuration file you want in the given daemon’s
ClassAd. Frequently used to add attributes to machines so that the machines can discriminate between other
machines in a job’s rank and requirements.

The macro is named by substituting <SUBSYS> with the appropriate subsystem string as defined in Pre-Defined
Macros.

Note: The condor_kbdd does not send ClassAds now, so this entry does not affect it. The condor_startd,
condor_schedd, condor_master, and condor_collector do send ClassAds, so those would be valid subsystems to
set this entry for.

SUBMIT_ATTRS not part of the <SUBSYS>_ATTRS, it is documented in .

Because of the different syntax of the configuration file and ClassAds, a little extra work is required to get a
given entry into a ClassAd. In particular, ClassAds require quote marks (”) around strings. Numeric values
and boolean expressions can go in directly. For example, if the condor_startd is to advertise a string macro, a
numeric macro, and a boolean expression, do something similar to:

STRING = This is a string
NUMBER = 666
BOOL1 = True
BOOL2 = time() >= $(NUMBER) || $(BOOL1)
MY_STRING = "$(STRING)"
STARTD_ATTRS = MY_STRING, NUMBER, BOOL1, BOOL2

DAEMON_SHUTDOWN Starting with HTCondor version 6.9.3, whenever a daemon is about to publish a ClassAd
update to the condor_collector, it will evaluate this expression. If it evaluates to True, the daemon will grace-
fully shut itself down, exit with the exit code 99, and will not be restarted by the condor_master (as if it sent
itself a condor_off command). The expression is evaluated in the context of the ClassAd that is being sent to the
condor_collector, so it can reference any attributes that can be seen with condor_status -long [-daemon_type]
(for example, condor_status -long [-master] for the condor_master). Since each daemon’s ClassAd will con-
tain different attributes, administrators should define these shutdown expressions specific to each daemon, for
example:

STARTD.DAEMON_SHUTDOWN = when to shutdown the startd
MASTER.DAEMON_SHUTDOWN = when to shutdown the master

Normally, these expressions would not be necessary, so if not defined, they default to FALSE.

Note: This functionality does not work in conjunction with HTCondor’s high-availability support (see The
High Availability of Daemons for more information). If you enable high-availability for a particular daemon, you
should not define this expression.

DAEMON_SHUTDOWN_FAST Identical to DAEMON_SHUTDOWN (defined above), except the daemon will use the
fast shutdown mode (as if it sent itself a condor_off command using the -fast option).

USE_CLONE_TO_CREATE_PROCESSES A boolean value that controls how an HTCondor daemon creates a
new process on Linux platforms. If set to the default value of True, the clone system call is used. Otherwise,
the fork system call is used. clone provides scalability improvements for daemons using a large amount of
memory, for example, a condor_schedd with a lot of jobs in the queue. Currently, the use of clone is available
on Linux systems. If HTCondor detects that it is running under the valgrind analysis tools, this setting is ignored
and treated as False, to work around incompatibilities.

MAX_TIME_SKIP When an HTCondor daemon notices the system clock skip forwards or backwards more than the

4.5. Configuration Macros 225

HTCondor Manual, Release 10.0.9

number of seconds specified by this parameter, it may take special action. For instance, the condor_master will
restart HTCondor in the event of a clock skip. Defaults to a value of 1200, which in effect means that HTCondor
will restart if the system clock jumps by more than 20 minutes.

NOT_RESPONDING_TIMEOUT When an HTCondor daemon’s parent process is another HTCondor daemon, the
child daemon will periodically send a short message to its parent stating that it is alive and well. If the parent
does not hear from the child for a while, the parent assumes that the child is hung, kills the child, and restarts
the child. This parameter controls how long the parent waits before killing the child. It is defined in terms of
seconds and defaults to 3600 (1 hour). The child sends its alive and well messages at an interval of one third of
this value.

<SUBSYS>_NOT_RESPONDING_TIMEOUT Identical to NOT_RESPONDING_TIMEOUT, but controls the timeout
for a specific type of daemon. For example, SCHEDD_NOT_RESPONDING_TIMEOUT controls how long the con-
dor_schedd ‘s parent daemon will wait without receiving an alive and well message from the condor_schedd
before killing it.

NOT_RESPONDING_WANT_CORE A boolean value with a default value of False. This parameter is for de-
bugging purposes on Unix systems, and it controls the behavior of the parent process when the parent process
determines that a child process is not responding. If NOT_RESPONDING_WANT_CORE is True, the parent will send
a SIGABRT instead of SIGKILL to the child process. If the child process is configured with the configuration
variable CREATE_CORE_FILES enabled, the child process will then generate a core dump. See and for more
details.

LOCK_FILE_UPDATE_INTERVAL An integer value representing seconds, controlling how often valid lock files
should have their on disk timestamps updated. Updating the timestamps prevents administrative programs, such
as tmpwatch, from deleting long lived lock files. If set to a value less than 60, the update time will be 60 seconds.
The default value is 28800, which is 8 hours. This variable only takes effect at the start or restart of a daemon.

SOCKET_LISTEN_BACKLOG An integer value that defaults to 500, which defines the backlog value for the listen()
network call when a daemon creates a socket for incoming connections. It limits the number of new incoming
network connections the operating system will accept for a daemon that the daemon has not yet serviced.

MAX_ACCEPTS_PER_CYCLE An integer value that defaults to 8. It is a rarely changed performance tuning pa-
rameter to limit the number of accepts of new, incoming, socket connect requests per DaemonCore event cycle.
A value of zero or less means no limit. It has the most noticeable effect on the condor_schedd, and would be
given a higher integer value for tuning purposes when there is a high number of jobs starting and exiting per
second.

MAX_TIMER_EVENTS_PER_CYCLE An integer value that defaults to 3. It is a rarely changed performance
tuning parameter to set the max number of internal timer events will be dispatched per DaemonCore event cycle.
A value of zero means no limit, so that all timers that are due at the start of the event cycle should be dispatched.

MAX_UDP_MSGS_PER_CYCLE An integer value that defaults to 1. It is a rarely changed performance tuning
parameter to set the number of incoming UDP messages a daemon will read per DaemonCore event cycle. A
value of zero means no limit. It has the most noticeable effect on the condor_schedd and condor_collector
daemons, which can receive a large number of UDP messages when under heavy load.

MAX_REAPS_PER_CYCLE An integer value that defaults to 0. It is a rarely changed performance tuning parameter
that places a limit on the number of child process exits to process per DaemonCore event cycle. A value of zero
or less means no limit.

CORE_FILE_NAME Defines the name of the core file created on Windows platforms. Defaults to core.
$(SUBSYSTEM).WIN32.

PIPE_BUFFER_MAX The maximum number of bytes read from a stdout or stdout pipe. The default value is
10240. A rare example in which the value would need to increase from its default value is when a hook must
output an entire ClassAd, and the ClassAd may be larger than the default.

226 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

4.5.4 Network-Related Configuration File Entries

More information about networking in HTCondor can be found in Networking (includes sections on Port Usage and
CCB).

BIND_ALL_INTERFACES For systems with multiple network interfaces, if this configuration setting is False,
HTCondor will only bind network sockets to the IP address specified with NETWORK_INTERFACE (described
below). If set to True, the default value, HTCondor will listen on all interfaces. However, currently HTCondor
is still only able to advertise a single IP address, even if it is listening on multiple interfaces. By default, it will
advertise the IP address of the network interface used to contact the collector, since this is the most likely to be
accessible to other processes which query information from the same collector. More information about using
this setting can be found in Configuring HTCondor for Machines With Multiple Network Interfaces.

CCB_ADDRESS This is the address of a condor_collector that will serve as this daemon’s HTCondor Connection
Broker (CCB). Multiple addresses may be listed (separated by commas and/or spaces) for redundancy. The
CCB server must authorize this daemon at DAEMON level for this configuration to succeed. It is highly recom-
mended to also configure PRIVATE_NETWORK_NAME if you configure CCB_ADDRESS so communications origi-
nating within the same private network do not need to go through CCB. For more information about CCB, see
HTCondor Connection Brokering (CCB).

CCB_HEARTBEAT_INTERVAL This is the maximum number of seconds of silence on a daemon’s connection
to the CCB server after which it will ping the server to verify that the connection still works. The default is
5 minutes. This feature serves to both speed up detection of dead connections and to generate a guaranteed
minimum frequency of activity to attempt to prevent the connection from being dropped. The special value
0 disables the heartbeat. The heartbeat is automatically disabled if the CCB server is older than HTCondor
version 7.5.0. Having the heartbeat interval greater than the job ClassAd attribute JobLeaseDuration may
cause unnecessary job disconnects in pools with network issues.

CCB_POLLING_INTERVAL In seconds, the smallest amount of time that could go by before CCB would begin
another round of polling to check on already connected clients. While the value of this variable does not change,
the actual interval used may be exceeded if the measured amount of time previously taken to poll to check on
already connected clients exceeded the amount of time desired, as expressed with CCB_POLLING_TIMESLICE.
The default value is 20 seconds.

CCB_POLLING_MAX_INTERVAL In seconds, the interval of time after which polling to check on already con-
nected clients must occur, independent of any other factors. The default value is 600 seconds.

CCB_POLLING_TIMESLICE A floating point fraction representing the fractional amount of the total run time
of CCB to set as a target for the maximum amount of CCB running time used on polling to check on already
connected clients. The default value is 0.05.

CCB_READ_BUFFER The size of the kernel TCP read buffer in bytes for all sockets used by CCB. The default value
is 2 KiB.

CCB_REQUIRED_TO_START If true, and is false, and is set, but HTCondor fails to register with any broker,
HTCondor will exit rather then continue to retry indefinitely.

CCB_TIMEOUT The length, in seconds, that we wait for any CCB operation to complete. The default value is 300.

CCB_WRITE_BUFFER The size of the kernel TCP write buffer in bytes for all sockets used by CCB. The default
value is 2 KiB.

CCB_SWEEP_INTERVAL The interval, in seconds, between times when the CCB server writes its information
about open TCP connections to a file. Crash recovery is accomplished using the information. The default value
is 1200 seconds (20 minutes).

CCB_RECONNECT_FILE The full path and file name of the file that the CCB server writes its information about
open TCP connections to a file. Crash recovery is accomplished using the information. The default value is

4.5. Configuration Macros 227

HTCondor Manual, Release 10.0.9

$(SPOOL)/<ip address>-<shared port ID or port number>.ccb_reconnect.

COLLECTOR_USES_SHARED_PORT A boolean value that specifies whether the condor_collector uses the con-
dor_shared_port daemon. When true, the condor_shared_port will transparently proxy queries to the con-
dor_collector so users do not need to be aware of the presence of the condor_shared_port when querying the
collector and configuring other daemons. The default is True

SHARED_PORT_DEFAULT_ID When COLLECTOR_USES_SHARED_PORT is set to True, this is the shared port ID
used by the condor_collector. This defaults to collector and will not need to be changed by most sites.

AUTO_INCLUDE_SHARED_PORT_IN_DAEMON_LIST A boolean value that specifies whether SHARED_PORT
should be automatically inserted into condor_master ‘s DAEMON_LIST when USE_SHARED_PORT is True. The
default for this setting is True.

<SUBSYS>_MAX_FILE_DESCRIPTORS This setting is identical to MAX_FILE_DESCRIPTORS, but it only applies
to a specific subsystem. If the subsystem-specific setting is unspecified, MAX_FILE_DESCRIPTORS is used. For
the condor_collector daemon, the value defaults to 10240, and for the condor_schedd daemon, the value defaults
to 4096. If the condor_shared_port daemon is in use, its value for this parameter should match the largest value
set for the other daemons.

MAX_FILE_DESCRIPTORS Under Unix, this specifies the maximum number of file descriptors to allow the HT-
Condor daemon to use. File descriptors are a system resource used for open files and for network connections.
HTCondor daemons that make many simultaneous network connections may require an increased number of
file descriptors. For example, see HTCondor Connection Brokering (CCB) for information on file descriptor re-
quirements of CCB. Changes to this configuration variable require a restart of HTCondor in order to take effect.
Also note that only if HTCondor is running as root will it be able to increase the limit above the hard limit (on
maximum open files) that it inherits.

NETWORK_HOSTNAME The name HTCondor should use as the host name of the local machine, overriding the
value returned by gethostname(). Among other things, the host name is used to identify daemons in an HTCondor
pool, via the Machine and Name attributes of daemon ClassAds. This variable can be used when a machine has
multiple network interfaces with different host names, to use a host name that is not the primary one. It should
be set to a fully-qualified host name that will resolve to an IP address of the local machine.

NETWORK_INTERFACE An IP address of the form 123.123.123.123 or the name of a network device, as in the
example eth0. The wild card character (*) may be used within either. For example, 123.123.* would match
a network interface with an IP address of 123.123.123.123 or 123.123.100.100. The default value is *,
which matches all network interfaces.

The effect of this variable depends on the value of BIND_ALL_INTERFACES. There are two cases:

If BIND_ALL_INTERFACES is True (the default), NETWORK_INTERFACE controls what IP address will be adver-
tised as the public address of the daemon. If multiple network interfaces match the value, the IP address that
is chosen to be advertised will be the one associated with the first device (in system-defined order) that is in
a public address space, or a private address space, or a loopback address, in that order of preference. If it is
desired to advertise an IP address that is not associated with any local network interface, for example, when TCP
forwarding is being used, then TCP_FORWARDING_HOST should be used instead of NETWORK_INTERFACE.

If BIND_ALL_INTERFACES is False, then NETWORK_INTERFACE specifies which IP address HTCondor should
use for all incoming and outgoing communication. If more than one IP address matches the value, then the IP
address that is chosen will be the one associated with the first device (in system-defined order) that is in a public
address space, or a private address space, or a loopback address, in that order of preference.

More information about configuring HTCondor on machines with multiple network interfaces can be found in
Configuring HTCondor for Machines With Multiple Network Interfaces.

PRIVATE_NETWORK_NAME If two HTCondor daemons are trying to communicate with each other, and they
both belong to the same private network, this setting will allow them to communicate directly using the private
network interface, instead of having to use CCB or to go through a public IP address. Each private network
should be assigned a unique network name. This string can have any form, but it must be unique for a particular

228 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

private network. If another HTCondor daemon or tool is configured with the same PRIVATE_NETWORK_NAME,
it will attempt to contact this daemon using its private network address. Even for sites using CCB, this is an
important optimization, since it means that two daemons on the same network can communicate directly, without
having to go through the broker. If CCB is enabled, and the PRIVATE_NETWORK_NAME is defined, the daemon’s
private address will be defined automatically. Otherwise, you can specify a particular private IP address to use
by defining the PRIVATE_NETWORK_INTERFACE setting (described below). The default is $(FULL_HOSTNAME).
After changing this setting and running condor_reconfig, it may take up to one condor_collector update interval
before the change becomes visible.

PRIVATE_NETWORK_INTERFACE For systems with multiple network interfaces, if this configuration setting
and PRIVATE_NETWORK_NAME are both defined, HTCondor daemons will advertise some additional attributes in
their ClassAds to help other HTCondor daemons and tools in the same private network to communicate directly.

PRIVATE_NETWORK_INTERFACE defines what IP address of the form 123.123.123.123 or name of a network
device (as in the example eth0) a given multi-homed machine should use for the private network. The asterisk
(*) may be used as a wild card character within either the IP address or the device name. If another HTCondor
daemon or tool is configured with the same PRIVATE_NETWORK_NAME, it will attempt to contact this daemon
using the IP address specified here. The syntax for specifying an IP address is identical to NETWORK_INTERFACE.
Sites using CCB only need to define the PRIVATE_NETWORK_NAME, and the PRIVATE_NETWORK_INTERFACEwill
be defined automatically. Unless CCB is enabled, there is no default value for this variable. After changing this
variable and running condor_reconfig, it may take up to one condor_collector update interval before the change
becomes visible.

TCP_FORWARDING_HOST This specifies the host or IP address that should be used as the public address of this
daemon. If a host name is specified, be aware that it will be resolved to an IP address by this daemon, not by the
clients wishing to connect to it. It is the IP address that is advertised, not the host name. This setting is useful if
HTCondor on this host may be reached through a NAT or firewall by connecting to an IP address that forwards
connections to this host. It is assumed that the port number on the TCP_FORWARDING_HOST that forwards to
this host is the same port number assigned to HTCondor on this host. This option could also be used when ssh
port forwarding is being used. In this case, the incoming addresses of connections to this daemon will appear
as though they are coming from the forwarding host rather than from the real remote host, so any authorization
settings that rely on host addresses should be considered accordingly.

HIGHPORT Specifies an upper limit of given port numbers for HTCondor to use, such that HTCondor is restricted
to a range of port numbers. If this macro is not explicitly specified, then HTCondor will not restrict the port
numbers that it uses. HTCondor will use system-assigned port numbers. For this macro to work, both HIGHPORT
and LOWPORT (given below) must be defined.

LOWPORT Specifies a lower limit of given port numbers for HTCondor to use, such that HTCondor is restricted to a
range of port numbers. If this macro is not explicitly specified, then HTCondor will not restrict the port numbers
that it uses. HTCondor will use system-assigned port numbers. For this macro to work, both HIGHPORT (given
above) and LOWPORT must be defined.

IN_LOWPORT An integer value that specifies a lower limit of given port numbers for HTCondor to use on incoming
connections (ports for listening), such that HTCondor is restricted to a range of port numbers. This range implies
the use of both IN_LOWPORT and IN_HIGHPORT. A range of port numbers less than 1024 may be used for daemons
running as root. Do not specify IN_LOWPORT in combination with IN_HIGHPORT such that the range crosses the
port 1024 boundary. Applies only to Unix machine configuration. Use of IN_LOWPORT and IN_HIGHPORT
overrides any definition of LOWPORT and HIGHPORT.

IN_HIGHPORT An integer value that specifies an upper limit of given port numbers for HTCondor to use on incom-
ing connections (ports for listening), such that HTCondor is restricted to a range of port numbers. This range
implies the use of both IN_LOWPORT and IN_HIGHPORT. A range of port numbers less than 1024 may be used
for daemons running as root. Do not specify IN_LOWPORT in combination with IN_HIGHPORT such that the
range crosses the port 1024 boundary. Applies only to Unix machine configuration. Use of IN_LOWPORT and
IN_HIGHPORT overrides any definition of LOWPORT and HIGHPORT.

OUT_LOWPORT An integer value that specifies a lower limit of given port numbers for HTCondor to use on out-

4.5. Configuration Macros 229

HTCondor Manual, Release 10.0.9

going connections, such that HTCondor is restricted to a range of port numbers. This range implies the use
of both OUT_LOWPORT and OUT_HIGHPORT. A range of port numbers less than 1024 is inappropriate, as not all
daemons and tools will be run as root. Applies only to Unix machine configuration. Use of OUT_LOWPORT and
OUT_HIGHPORT overrides any definition of LOWPORT and HIGHPORT.

OUT_HIGHPORT An integer value that specifies an upper limit of given port numbers for HTCondor to use on
outgoing connections, such that HTCondor is restricted to a range of port numbers. This range implies the use
of both OUT_LOWPORT and OUT_HIGHPORT. A range of port numbers less than 1024 is inappropriate, as not all
daemons and tools will be run as root. Applies only to Unix machine configuration. Use of OUT_LOWPORT and
OUT_HIGHPORT overrides any definition of LOWPORT and HIGHPORT.

UPDATE_COLLECTOR_WITH_TCP This boolean value controls whether TCP or UDP is used by daemons
to send ClassAd updates to the condor_collector. Please read Using TCP to Send Updates to the con-
dor_collector for more details and a discussion of when this functionality is needed. When using TCP in large
pools, it is also necessary to ensure that the condor_collector has a large enough file descriptor limit using
COLLECTOR_MAX_FILE_DESCRIPTORS . The default value is True.

UPDATE_VIEW_COLLECTOR_WITH_TCP This boolean value controls whether TCP or UDP is used
by the condor_collector to forward ClassAd updates to the condor_collector daemons specified by
CONDOR_VIEW_HOST . Please read Using TCP to Send Updates to the condor_collector for more details and
a discussion of when this functionality is needed. The default value is False.

TCP_UPDATE_COLLECTORS The list of condor_collector daemons which will be updated with TCP instead of
UDP when UPDATE_COLLECTOR_WITH_TCP or UPDATE_VIEW_COLLECTOR_WITH_TCP is False. Please read
Using TCP to Send Updates to the condor_collector for more details and a discussion of when a site needs this
functionality.

<SUBSYS>_TIMEOUT_MULTIPLIER An integer value that defaults to 1. This value multiplies configured time-
out values for all targeted subsystem communications, thereby increasing the time until a timeout occurs. This
configuration variable is intended for use by developers for debugging purposes, where communication timeouts
interfere.

NONBLOCKING_COLLECTOR_UPDATE A boolean value that defaults to True. When True, the establishment
of TCP connections to the condor_collector daemon for a security-enabled pool are done in a nonblocking
manner.

NEGOTIATOR_USE_NONBLOCKING_STARTD_CONTACT A boolean value that defaults to True. When
True, the establishment of TCP connections from the condor_negotiator daemon to the condor_startd daemon
for a security-enabled pool are done in a nonblocking manner.

UDP_NETWORK_FRAGMENT_SIZE An integer value that defaults to 1000 and represents the
maximum size in bytes of an outgoing UDP packet. If the outgoing message is larger than
$(UDP_NETWORK_FRAGMENT_SIZE), then the message will be split (fragmented) into multiple packets
no larger than $(UDP_NETWORK_FRAGMENT_SIZE). If the destination of the message is the loopback network
interface, see UDP_LOOPBACK_FRAGMENT_SIZE below. For instance, the maximum payload size of a UDP
packet over Ethernet is typically 1472 bytes, and thus if a UDP payload exceeds 1472 bytes the IP network stack
on either hosts or forwarding devices (such as network routers) will have to perform message fragmentation on
transmission and reassembly on receipt. Experimentation has shown that such devices are more likely to simply
drop a UDP message under high-traffic scenarios if the message requires reassembly. HTCondor avoids this
situation via the capability to perform UDP fragmentation and reassembly on its own.

UDP_LOOPBACK_FRAGMENT_SIZE An integer value that defaults to 60000 and represents the maximum size in
bytes of an outgoing UDP packet that is being sent to the loopback network interface (e.g. 127.0.0.1). If the out-
going message is larger than $(UDP_LOOPBACK_FRAGMENT_SIZE), then the message will be split (fragmented)
into multiple packets no larger than $(UDP_LOOPBACK_FRAGMENT_SIZE). If the destination of the message is
not the loopback interface, see UDP_NETWORK_FRAGMENT_SIZE above.

ALWAYS_REUSEADDR A boolean value that, when True, tells HTCondor to set SO_REUSEADDR socket option, so
that the schedd can run large numbers of very short jobs without exhausting the number of local ports needed

230 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

for shadows. The default value is True. (Note that this represents a change in behavior compared to versions of
HTCondor older than 8.6.0, which did not include this configuration macro. To restore the previous behavior,
set this value to False.)

4.5.5 Shared File System Configuration File Macros

These macros control how HTCondor interacts with various shared and network file systems. If you are using AFS as
your shared file system, be sure to read Using HTCondor with AFS. For information on submitting jobs under shared
file systems, see Submitting Jobs Using a Shared File System.

UID_DOMAIN The UID_DOMAINmacro is used to decide under which user to run jobs. If the $(UID_DOMAIN) on the
submitting machine is different than the $(UID_DOMAIN) on the machine that runs a job, then HTCondor runs
the job as the user nobody. For example, if the submit machine has a $(UID_DOMAIN) of flippy.cs.wisc.edu, and
the machine where the job will execute has a $(UID_DOMAIN) of cs.wisc.edu, the job will run as user nobody,
because the two $(UID_DOMAIN)s are not the same. If the $(UID_DOMAIN) is the same on both the submit and
execute machines, then HTCondor will run the job as the user that submitted the job.

A further check attempts to assure that the submitting machine can not lie about its UID_DOMAIN. HTCondor
compares the submit machine’s claimed value for UID_DOMAIN to its fully qualified name. If the two do not
end the same, then the submit machine is presumed to be lying about its UID_DOMAIN. In this case, HTCondor
will run the job as user nobody. For example, a job submission to the HTCondor pool at the UW Madison from
flippy.example.com, claiming a UID_DOMAIN of of cs.wisc.edu, will run the job as the user nobody.

Because of this verification, $(UID_DOMAIN)must be a real domain name. At the Computer Sciences department
at the UW Madison, we set the $(UID_DOMAIN) to be cs.wisc.edu to indicate that whenever someone submits
from a department machine, we will run the job as the user who submits it.

Also see SOFT_UID_DOMAIN below for information about one more check that HTCondor performs before run-
ning a job as a given user.

A few details:

An administrator could set UID_DOMAIN to *. This will match all domains, but it is a gaping security hole. It is
not recommended.

An administrator can also leave UID_DOMAIN undefined. This will force HTCondor to always run jobs as user
nobody. If vanilla jobs are run as user nobody, then files that need to be accessed by the job will need to be
marked as world readable/writable so the user nobody can access them.

When HTCondor sends e-mail about a job, HTCondor sends the e-mail to user@$(UID_DOMAIN). If
UID_DOMAIN is undefined, the e-mail is sent to user@submitmachinename.

TRUST_UID_DOMAIN As an added security precaution when HTCondor is about to spawn a job, it ensures that
the UID_DOMAIN of a given submit machine is a substring of that machine’s fully-qualified host name. However,
at some sites, there may be multiple UID spaces that do not clearly correspond to Internet domain names. In
these cases, administrators may wish to use names to describe the UID domains which are not substrings of
the host names of the machines. For this to work, HTCondor must not do this regular security check. If the
TRUST_UID_DOMAIN setting is defined to True, HTCondor will not perform this test, and will trust whatever
UID_DOMAIN is presented by the submit machine when trying to spawn a job, instead of making sure the submit
machine’s host name matches the UID_DOMAIN. When not defined, the default is False, since it is more secure
to perform this test.

TRUST_LOCAL_UID_DOMAIN This parameter works like TRUST_UID_DOMAIN, but is only applied when the
condor_starter and condor_shadow are on the same machine. If this parameter is set to True, then the con-
dor_shadow ‘s UID_DOMAIN doesn’t have to be a substring its hostname. If this parameter is set to False, then
UID_DOMAIN controls whether this substring requirement is enforced by the condor_starter. The default is True.

4.5. Configuration Macros 231

HTCondor Manual, Release 10.0.9

SOFT_UID_DOMAIN A boolean variable that defaults to False when not defined. When HTCondor is about to run
a job as a particular user (instead of as user nobody), it verifies that the UID given for the user is in the password
file and actually matches the given user name. However, under installations that do not have every user in every
machine’s password file, this check will fail and the execution attempt will be aborted. To cause HTCondor not
to do this check, set this configuration variable to True. HTCondor will then run the job under the user’s UID.

SLOT<N>_USER The name of a user for HTCondor to use instead of user nobody, as part of a solution that plugs a
security hole whereby a lurker process can prey on a subsequent job run as user name nobody. <N> is an integer
associated with slots. On non Windows platforms you can use NOBODY_SLOT_USER instead of this configura-
tion variable. On Windows, SLOT<N>_USER will only work if the credential of the specified user is stored on
the execute machine using condor_store_cred. See User Accounts in HTCondor on Unix Platforms for more
information.

NOBODY_SLOT_USER The name of a user for HTCondor to use instead of user nobody when The SLOT<N>_USER
for this slot is not configured. Configure this to the value $(STARTER_SLOT_NAME) to use the name of the slot
as the user name. This configuration macro is ignored on Windows, where the Starter will automatically create
a unique temporary user for each slot as needed. See User Accounts in HTCondor on Unix Platforms for more
information.

STARTER_ALLOW_RUNAS_OWNER A boolean expression evaluated with the job ad as the target, that deter-
mines whether the job may run under the job owner’s account (True) or whether it will run as SLOT<N>_USER or
nobody (False). On Unix, this defaults to True. On Windows, it defaults to False. The job ClassAd may also
contain the attribute RunAsOwner which is logically ANDed with the condor_starter daemon’s boolean value.
Under Unix, if the job does not specify it, this attribute defaults to True. Under Windows, the attribute defaults
to False. In Unix, if the UidDomain of the machine and job do not match, then there is no possibility to run the
job as the owner anyway, so, in that case, this setting has no effect. See User Accounts in HTCondor on Unix
Platforms for more information.

DEDICATED_EXECUTE_ACCOUNT_REGEXP This is a regular expression (i.e. a string matching pattern) that
matches the account name(s) that are dedicated to running condor jobs on the execute machine and which will
never be used for more than one job at a time. The default matches no account name. If you have configured
SLOT<N>_USER to be a different account for each HTCondor slot, and no non-condor processes will ever be run
by these accounts, then this pattern should match the names of all SLOT<N>_USER accounts. Jobs run under
a dedicated execute account are reliably tracked by HTCondor, whereas other jobs, may spawn processes that
HTCondor fails to detect. Therefore, a dedicated execution account provides more reliable tracking of CPU
usage by the job and it also guarantees that when the job exits, no “lurker” processes are left behind. When the
job exits, condor will attempt to kill all processes owned by the dedicated execution account. Example:

SLOT1_USER = cndrusr1
SLOT2_USER = cndrusr2
STARTER_ALLOW_RUNAS_OWNER = False
DEDICATED_EXECUTE_ACCOUNT_REGEXP = cndrusr[0-9]+

You can tell if the starter is in fact treating the account as a dedicated account, because it will print a line such as
the following in its log file:

Tracking process family by login "cndrusr1"

EXECUTE_LOGIN_IS_DEDICATED This configuration setting is deprecated because it cannot handle the case
where some jobs run as dedicated accounts and some do not. Use DEDICATED_EXECUTE_ACCOUNT_REGEXP
instead.

A boolean value that defaults to False. When True, HTCondor knows that all jobs are being run by dedicated
execution accounts (whether they are running as the job owner or as nobody or as SLOT<N>_USER). Therefore,
when the job exits, all processes running under the same account will be killed.

FILESYSTEM_DOMAIN An arbitrary string that is used to decide if the two machines, a submit machine and an

232 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

execute machine, share a file system. Although this configuration variable name contains the word “DOMAIN”,
its value is not required to be a domain name. It often is a domain name.

Note that this implementation is not ideal: machines may share some file systems but not others. HTCondor
currently has no way to express this automatically. A job can express the need to use a particular file system
where machines advertise an additional ClassAd attribute and the job requires machines with the attribute, as
described on the question within the https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes
page for how to run jobs on a subset of machines that have required software installed.

Note that if you do not set $(FILESYSTEM_DOMAIN), the value defaults to the fully qualified host name of the
local machine. Since each machine will have a different $(FILESYSTEM_DOMAIN), they will not be considered
to have shared file systems.

USE_NFS This configuration variable changes the semantics of Chirp file I/O when running in the vanilla, java or
parallel universe. If this variable is set in those universes, Chirp will not send I/O requests over the network as
requested, but perform them directly to the locally mounted file system.

IGNORE_NFS_LOCK_ERRORS When set to True, all errors related to file locking errors from NFS are ignored.
Defaults to False, not ignoring errors.

4.5.6 condor_master Configuration File Macros

These macros control the condor_master.

DAEMON_LIST This macro determines what daemons the condor_master will start and keep its watchful eyes on.
The list is a comma or space separated list of subsystem names (listed in Pre-Defined Macros). For example,

DAEMON_LIST = MASTER, STARTD, SCHEDD

Note: The condor_shared_port daemon will be included in this list automatically when USE_SHARED_PORT
is configured to True. While adding SHARED_PORT to the DAEMON_LIST without setting USE_SHARED_PORT to
True will start the condor_shared_port daemon, but it will not be used. So there is generally no point in adding
SHARED_PORT to the daemon list.

Note: On your central manager, your $(DAEMON_LIST) will be different from your regular pool, since it will
include entries for the condor_collector and condor_negotiator.

DC_DAEMON_LIST A list delimited by commas and/or spaces that lists the daemons in DAEMON_LISTwhich use the
HTCondor DaemonCore library. The condor_master must differentiate between daemons that use DaemonCore
and those that do not, so it uses the appropriate inter-process communication mechanisms. This list currently
includes all HTCondor daemons.

As of HTCondor version 7.2.1, a daemon may be appended to the default DC_DAEMON_LIST value by placing
the plus character (+) before the first entry in the DC_DAEMON_LIST definition. For example:

DC_DAEMON_LIST = +NEW_DAEMON

<SUBSYS> Once you have defined which subsystems you want the condor_master to start, you must provide it with
the full path to each of these binaries. For example:

4.5. Configuration Macros 233

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes

HTCondor Manual, Release 10.0.9

MASTER = $(SBIN)/condor_master
STARTD = $(SBIN)/condor_startd
SCHEDD = $(SBIN)/condor_schedd

These are most often defined relative to the $(SBIN) macro.

The macro is named by substituting <SUBSYS> with the appropriate subsystem string as defined in Pre-Defined
Macros.

<DaemonName>_ENVIRONMENT <DaemonName> is the name of a daemon listed in DAEMON_LIST. Defines
changes to the environment that the daemon is invoked with. It should use the same syntax for specifying the
environment as the environment specification in a submit description file. For example, to redefine the TMP and
CONDOR_CONFIG environment variables seen by the condor_schedd, place the following in the configuration:

SCHEDD_ENVIRONMENT = "TMP=/new/value CONDOR_CONFIG=/special/config"

When the condor_schedd daemon is started by the condor_master, it would see the specified values of TMP and
CONDOR_CONFIG.

<SUBSYS>_ARGS This macro allows the specification of additional command line arguments for any process
spawned by the condor_master. List the desired arguments using the same syntax as the arguments specifi-
cation in a condor_submit submit file (see condor_submit), with one exception: do not escape double-quotes
when using the old-style syntax (this is for backward compatibility). Set the arguments for a specific daemon
with this macro, and the macro will affect only that daemon. Define one of these for each daemon the con-
dor_master is controlling. For example, set $(STARTD_ARGS) to specify any extra command line arguments to
the condor_startd.

The macro is named by substituting <SUBSYS> with the appropriate subsystem string as defined in Pre-Defined
Macros.

<SUBSYS>_USERID The account name that should be used to run the SUBSYS process spawned by the con-
dor_master. When not defined, the process is spawned as the same user that is running condor_master. When
defined, the real user id of the spawned process will be set to the specified account, so if this account is not root,
the process will not have root privileges. The condor_master must be running as root in order to start processes
as other users. Example configuration:

COLLECTOR_USERID = condor
NEGOTIATOR_USERID = condor

The above example runs the condor_collector and condor_negotiator as the condor user with no root privileges.
If we specified some account other than the condor user, as set by the (CONDOR_IDS) configuration variable, then
we would need to configure the log files for these daemons to be in a directory that they can write to. When using
a security method in which the daemon credential is owned by root, it is also necessary to make a copy of the
credential, make it be owned by the account the daemons are using, and configure the daemons to use that copy.

PREEN In addition to the daemons defined in $(DAEMON_LIST), the condor_master also starts up a special process,
condor_preen to clean out junk files that have been left laying around by HTCondor. This macro determines
where the condor_master finds the condor_preen binary. If this macro is set to nothing, condor_preen will not
run.

PREEN_ARGS Controls how condor_preen behaves by allowing the specification of command-line arguments. This
macro works as $(<SUBSYS>_ARGS) does. The difference is that you must specify this macro for condor_preen
if you want it to do anything. condor_preen takes action only because of command line arguments. -m means
you want e-mail about files condor_preen finds that it thinks it should remove. -r means you want condor_preen
to actually remove these files.

PREEN_INTERVAL This macro determines how often condor_preen should be started. It is defined in terms of
seconds and defaults to 86400 (once a day).

234 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

PUBLISH_OBITUARIES When a daemon crashes, the condor_master can send e-mail to the address specified by
$(CONDOR_ADMIN) with an obituary letting the administrator know that the daemon died, the cause of death
(which signal or exit status it exited with), and (optionally) the last few entries from that daemon’s log file. If
you want obituaries, set this macro to True.

OBITUARY_LOG_LENGTH This macro controls how many lines of the log file are part of obituaries. This macro
has a default value of 20 lines.

START_MASTER If this setting is defined and set to False the condor_master will immediately exit upon startup.
This appears strange, but perhaps you do not want HTCondor to run on certain machines in your pool, yet the
boot scripts for your entire pool are handled by a centralized set of files - setting START_MASTER to False for
those machines would allow this. Note that START_MASTER is an entry you would most likely find in a local
configuration file, not a global configuration file. If not defined, START_MASTER defaults to True.

START_DAEMONS This macro is similar to the $(START_MASTER) macro described above. However, the con-
dor_master does not exit; it does not start any of the daemons listed in the $(DAEMON_LIST). The daemons may
be started at a later time with a condor_on command.

MASTER_UPDATE_INTERVAL This macro determines how often the condor_master sends a ClassAd update to
the condor_collector. It is defined in seconds and defaults to 300 (every 5 minutes).

MASTER_CHECK_NEW_EXEC_INTERVAL This macro controls how often the condor_master checks the
timestamps of the running daemons. If any daemons have been modified, the master restarts them. It is de-
fined in seconds and defaults to 300 (every 5 minutes).

MASTER_NEW_BINARY_RESTART Defines a mode of operation for the restart of the condor_master, when it
notices that the condor_master binary has changed. Valid values are GRACEFUL, PEACEFUL, and NEVER, with
a default value of GRACEFUL. On a GRACEFUL restart of the master, child processes are told to exit, but if they
do not before a timer expires, then they are killed. On a PEACEFUL restart, child processes are told to exit, after
which the condor_master waits until they do so.

MASTER_NEW_BINARY_DELAY Once the condor_master has discovered a new binary, this macro controls how
long it waits before attempting to execute the new binary. This delay exists because the condor_master might no-
tice a new binary while it is in the process of being copied, in which case trying to execute it yields unpredictable
results. The entry is defined in seconds and defaults to 120 (2 minutes).

SHUTDOWN_FAST_TIMEOUT This macro determines the maximum amount of time daemons are given to per-
form their fast shutdown procedure before the condor_master kills them outright. It is defined in seconds and
defaults to 300 (5 minutes).

DEFAULT_MASTER_SHUTDOWN_SCRIPT A full path and file name of a program that the condor_master is
to execute via the Unix execl() call, or the similar Win32 _execl() call, instead of the normal call to exit(). This
allows the admin to specify a program to execute as root when the condor_master exits. Note that a success-
ful call to the condor_set_shutdown program will override this setting; see the documentation for config knob
MASTER_SHUTDOWN_<Name> below.

MASTER_SHUTDOWN_<Name> A full path and file name of a program that the condor_master is to execute via
the Unix execl() call, or the similar Win32 _execl() call, instead of the normal call to exit(). Multiple programs
to execute may be defined with multiple entries, each with a unique Name. These macros have no effect on a con-
dor_master unless condor_set_shutdown is run. The Name specified as an argument to the condor_set_shutdown
program must match the Name portion of one of these MASTER_SHUTDOWN_<Name> macros; if not, the con-
dor_master will log an error and ignore the command. If a match is found, the condor_master will attempt to
verify the program, and it will store the path and program name. When the condor_master shuts down (that is,
just before it exits), the program is then executed as described above. The manual page for condor_set_shutdown
contains details on the use of this program.

NOTE: This program will be run with root privileges under Unix or administrator privileges under Windows.
The administrator must ensure that this cannot be used in such a way as to violate system integrity.

4.5. Configuration Macros 235

HTCondor Manual, Release 10.0.9

MASTER_BACKOFF_CONSTANT and MASTER_<name>_BACKOFF_CONSTANT When a daemon
crashes, condor_master uses an exponential back off delay before restarting it; see the discussion at the end of
this section for a detailed discussion on how these parameters work together. These settings define the constant
value of the expression used to determine how long to wait before starting the daemon again (and, effectively
becomes the initial backoff time). It is an integer in units of seconds, and defaults to 9 seconds.

$(MASTER_<name>_BACKOFF_CONSTANT) is the daemon-specific form of MASTER_BACKOFF_CONSTANT; if this
daemon-specific macro is not defined for a specific daemon, the non-daemon-specific value will used.

MASTER_BACKOFF_FACTOR and MASTER_<name>_BACKOFF_FACTOR When a daemon crashes, con-
dor_master uses an exponential back off delay before restarting it; see the discussion at the end of this section
for a detailed discussion on how these parameters work together. This setting is the base of the exponent used to
determine how long to wait before starting the daemon again. It defaults to 2 seconds.

$(MASTER_<name>_BACKOFF_FACTOR) is the daemon-specific form of MASTER_BACKOFF_FACTOR; if this
daemon-specific macro is not defined for a specific daemon, the non-daemon-specific value will used.

MASTER_BACKOFF_CEILING and MASTER_<name>_BACKOFF_CEILING When a daemon crashes, con-
dor_master uses an exponential back off delay before restarting it; see the discussion at the end of this sec-
tion for a detailed discussion on how these parameters work together. This entry determines the maximum
amount of time you want the master to wait between attempts to start a given daemon. (With 2.0 as the
$(MASTER_BACKOFF_FACTOR), 1 hour is obtained in 12 restarts). It is defined in terms of seconds and defaults
to 3600 (1 hour).

$(MASTER_<name>_BACKOFF_CEILING) is the daemon-specific form of MASTER_BACKOFF_CEILING; if this
daemon-specific macro is not defined for a specific daemon, the non-daemon-specific value will used.

MASTER_RECOVER_FACTOR and MASTER_<name>_RECOVER_FACTOR A macro to set how long a
daemon needs to run without crashing before it is considered recovered. Once a daemon has recovered, the
number of restarts is reset, so the exponential back off returns to its initial state. The macro is defined in terms
of seconds and defaults to 300 (5 minutes).

$(MASTER_<name>_RECOVER_FACTOR) is the daemon-specific form of MASTER_RECOVER_FACTOR; if this
daemon-specific macro is not defined for a specific daemon, the non-daemon-specific value will used.

When a daemon crashes, condor_master will restart the daemon after a delay (a back off). The length of this delay
is based on how many times it has been restarted, and gets larger after each crashes. The equation for calculating this
backoff time is given by:

𝑡 = 𝑐+ 𝑘𝑛

where t is the calculated time, c is the constant defined by $(MASTER_BACKOFF_CONSTANT), k is the “factor” defined
by $(MASTER_BACKOFF_FACTOR), and n is the number of restarts already attempted (0 for the first restart, 1 for the
next, etc.).

With default values, after the first crash, the delay would be t = 9 + 2.00, giving 10 seconds (remember, n = 0). If the
daemon keeps crashing, the delay increases.

For example, take the $(MASTER_BACKOFF_FACTOR) (which defaults to 2.0) to the power the number of times the
daemon has restarted, and add $(MASTER_BACKOFF_CONSTANT) (which defaults to 9). Thus:

1st crash: n = 0, so: t = 9 + 20 = 9 + 1 = 10 seconds

2nd crash: n = 1, so: t = 9 + 21 = 9 + 2 = 11 seconds

3rd crash: n = 2, so: t = 9 + 22 = 9 + 4 = 13 seconds

. . .

6th crash: n = 5, so: t = 9 + 25 = 9 + 32 = 41 seconds

. . .

236 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

9th crash: n = 8, so: t = 9 + 28 = 9 + 256 = 265 seconds

And, after the 13 crashes, it would be:

13th crash: n = 12, so: t = 9 + 212 = 9 + 4096 = 4105 seconds

This is bigger than the $(MASTER_BACKOFF_CEILING), which defaults to 3600, so the daemon would really be
restarted after only 3600 seconds, not 4105. The condor_master tries again every hour (since the numbers would
get larger and would always be capped by the ceiling). Eventually, imagine that daemon finally started and did not
crash. This might happen if, for example, an administrator reinstalled an accidentally deleted binary after receiving
e-mail about the daemon crashing. If it stayed alive for $(MASTER_RECOVER_FACTOR) seconds (defaults to 5 minutes),
the count of how many restarts this daemon has performed is reset to 0.

The moral of the example is that the defaults work quite well, and you probably will not want to change them for any
reason.

MASTER_NAME Defines a unique name given for a condor_master daemon on a machine. For a condor_master
running as root, it defaults to the fully qualified host name. When not running as root, it defaults to the user
that instantiates the condor_master, concatenated with an at symbol (@), concatenated with the fully qualified
host name. If more than one condor_master is running on the same host, then the MASTER_NAME for each con-
dor_master must be defined to uniquely identify the separate daemons.

A defined MASTER_NAME is presumed to be of the form identifying-string@full.host.name. If the string does not
include an @ sign, HTCondor appends one, followed by the fully qualified host name of the local machine. The
identifying-string portion may contain any alphanumeric ASCII characters or punctuation marks, except the @
sign. We recommend that the string does not contain the : (colon) character, since that might cause problems with
certain tools. Previous to HTCondor 7.1.1, when the string included an @ sign, HTCondor replaced whatever
followed the @ sign with the fully qualified host name of the local machine. HTCondor does not modify any
portion of the string, if it contains an @ sign. This is useful for remote job submissions under the high availability
of the job queue.

If the MASTER_NAME setting is used, and the condor_master is configured to spawn a condor_schedd, the name
defined with MASTER_NAME takes precedence over the setting. Since HTCondor makes the assumption that there
is only one instance of the condor_startd running on a machine, the MASTER_NAME is not automatically propa-
gated to the condor_startd. However, in situations where multiple condor_startd daemons are running on the
same host, the STARTD_NAME should be set to uniquely identify the condor_startd daemons.

If an HTCondor daemon (master, schedd or startd) has been given a unique name, all HTCondor tools that need
to contact that daemon can be told what name to use via the -name command-line option.

MASTER_ATTRS This macro is described in .

MASTER_DEBUG This macro is described in .

MASTER_ADDRESS_FILE This macro is described in .

ALLOW_ADMIN_COMMANDS If set to NO for a given host, this macro disables administrative commands, such
as condor_restart, condor_on, and condor_off, to that host.

MASTER_INSTANCE_LOCK Defines the name of a file for the condor_master daemon to lock in order to prevent
multiple condor_master s from starting. This is useful when using shared file systems like NFS which do not
technically support locking in the case where the lock files reside on a local disk. If this macro is not defined, the
default file name will be $(LOCK)/InstanceLock. $(LOCK) can instead be defined to specify the location of
all lock files, not just the condor_master ‘s InstanceLock. If $(LOCK) is undefined, then the master log itself
is locked.

ADD_WINDOWS_FIREWALL_EXCEPTION When set to False, the condor_master will not automatically add
HTCondor to the Windows Firewall list of trusted applications. Such trusted applications can accept incoming
connections without interference from the firewall. This only affects machines running Windows XP SP2 or
higher. The default is True.

4.5. Configuration Macros 237

mailto:identifying-string@full.host.name

HTCondor Manual, Release 10.0.9

WINDOWS_FIREWALL_FAILURE_RETRY An integer value (default value is 2) that represents the number of
times the condor_master will retry to add firewall exceptions. When a Windows machine boots up, HTCondor
starts up by default as well. Under certain conditions, the condor_master may have difficulty adding exceptions to
the Windows Firewall because of a delay in other services starting up. Examples of services that may possibly be
slow are the SharedAccess service, the Netman service, or the Workstation service. This configuration variable
allows administrators to set the number of times (once every 5 seconds) that the condor_master will retry to add
firewall exceptions. A value of 0 means that HTCondor will retry indefinitely.

USE_PROCESS_GROUPS A boolean value that defaults to True. When False, HTCondor daemons on Unix ma-
chines will not create new sessions or process groups. HTCondor uses processes groups to help it track the
descendants of processes it creates. This can cause problems when HTCondor is run under another job execu-
tion system.

DISCARD_SESSION_KEYRING_ON_STARTUP A boolean value that defaults to True. When True, the con-
dor_master daemon will replace the kernel session keyring it was invoked with with a new keyring named
htcondor. Various Linux system services, such as OpenAFS and eCryptFS, use the kernel session keyring
to hold passwords and authentication tokens. By replacing the keyring on start up, the condor_master ensures
these keys cannot be unintentionally obtained by user jobs.

ENABLE_KERNEL_TUNING Relevant only to Linux platforms, a boolean value that defaults to True. When
True, the condor_master daemon invokes the kernel tuning script specified by configuration variable
LINUX_KERNEL_TUNING_SCRIPT once as root when the condor_master daemon starts up.

KERNEL_TUNING_LOG A string value that defaults to $(LOG)/KernelTuningLog. If the kernel tuning script
runs, its output will be logged to this file.

LINUX_KERNEL_TUNING_SCRIPT A string value that defaults to $(LIBEXEC)/linux_kernel_tuning. This
is the script that the condor_master runs to tune the kernel when ENABLE_KERNEL_TUNING is True.

4.5.7 condor_startd Configuration File Macros

Note: If you are running HTCondor on a multi-CPU machine, be sure to also read condor_startd Policy Configuration
which describes how to set up and configure HTCondor on multi-core machines.

These settings control general operation of the condor_startd. Examples using these configuration macros, as well as
further explanation is found in the Policy Configuration for Execute Hosts and for Submit Hosts section.

START A boolean expression that, when True, indicates that the machine is willing to start running an HTCondor
job. START is considered when the condor_negotiator daemon is considering evicting the job to replace it with
one that will generate a better rank for the condor_startd daemon, or a user with a higher priority.

DEFAULT_DRAINING_START_EXPR An alternate START expression to use while draining when the drain com-
mand is sent without a -start argument. When this configuration parameter is not set and the drain command
does not specify a -start argument, START will have the value undefined and Requirements will be false
while draining. This will prevent new jobs from matching. To allow evictable jobs to match while draining, set
this to an expression that matches only those jobs.

SUSPEND A boolean expression that, when True, causes HTCondor to suspend running an HTCondor job. The
machine may still be claimed, but the job makes no further progress, and HTCondor does not generate a load on
the machine.

PREEMPT A boolean expression that, when True, causes HTCondor to stop a currently running job once
MAXJOBRETIREMENTTIME has expired. This expression is not evaluated if WANT_SUSPEND is True. The de-
fault value is False, such that preemption is disabled.

238 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

WANT_HOLD A boolean expression that defaults to False. When True and the value of PREEMPT becomes True
and WANT_SUSPEND is False and MAXJOBRETIREMENTTIME has expired, the job is put on hold for the reason
(optionally) specified by the variables WANT_HOLD_REASON and WANT_HOLD_SUBCODE. As usual, the job owner
may specify periodic_release and/or periodic_remove expressions to react to specific hold states automatically.
The attribute HoldReasonCode in the job ClassAd is set to the value 21 when WANT_HOLD is responsible for
putting the job on hold.

Here is an example policy that puts jobs on hold that use too much virtual memory:

VIRTUAL_MEMORY_AVAILABLE_MB = (VirtualMemory*0.9)
MEMORY_EXCEEDED = ImageSize/1024 > $(VIRTUAL_MEMORY_AVAILABLE_MB)
PREEMPT = ($(PREEMPT)) || ($(MEMORY_EXCEEDED))
WANT_SUSPEND = ($(WANT_SUSPEND)) && ($(MEMORY_EXCEEDED)) =!= TRUE
WANT_HOLD = ($(MEMORY_EXCEEDED))
WANT_HOLD_REASON = \

ifThenElse($(MEMORY_EXCEEDED), \
"Your job used too much virtual memory.", \
undefined)

WANT_HOLD_REASON An expression that defines a string utilized to set the job ClassAd attribute HoldReason
when a job is put on hold due to WANT_HOLD. If not defined or if the expression evaluates to Undefined, a default
hold reason is provided.

WANT_HOLD_SUBCODE An expression that defines an integer value utilized to set the job ClassAd attribute
HoldReasonSubCode when a job is put on hold due to WANT_HOLD. If not defined or if the expression eval-
uates to Undefined, the value is set to 0. Note that HoldReasonCode is always set to 21.

CONTINUE A boolean expression that, when True, causes HTCondor to continue the execution of a suspended job.

KILL A boolean expression that, when True, causes HTCondor to immediately stop the execution of a vacating job,
without delay. The job is hard-killed, so any attempt by the job to checkpoint or clean up will be aborted. This
expression should normally be False. When desired, it may be used to abort the graceful shutdown of a job
earlier than the limit imposed by MachineMaxVacateTime .

PERIODIC_CHECKPOINT A boolean expression that, when True, causes HTCondor to initiate a checkpoint of
the currently running job. This setting applies to vm universe jobs that have set vm_checkpoint to True in the
submit description file.

RANK A floating point value that HTCondor uses to compare potential jobs. A larger value for a specific job ranks
that job above others with lower values for RANK.

ADVERTISE_PSLOT_ROLLUP_INFORMATION A boolean value that defaults to True, causing the con-
dor_startd to advertise ClassAd attributes that may be used in partitionable slot preemption. The attributes
are

• ChildAccountingGroup

• ChildActivity

• ChildCPUs

• ChildCurrentRank

• ChildEnteredCurrentState

• ChildMemory

• ChildName

• ChildRemoteOwner

• ChildRemoteUser

4.5. Configuration Macros 239

HTCondor Manual, Release 10.0.9

• ChildRetirementTimeRemaining

• ChildState

• PslotRollupInformation

STARTD_PARTITIONABLE_SLOT_ATTRS A list of additional from the above default attributes from dynamic
slots that will be rolled up into a list attribute in their parent partitionable slot, prefixed with the name Child.

WANT_SUSPEND A boolean expression that, when True, tells HTCondor to evaluate the SUSPEND expression to
decide whether to suspend a running job. When True, the PREEMPT expression is not evaluated. When not
explicitly set, the condor_startd exits with an error. When explicitly set, but the evaluated value is anything
other than True, the value is utilized as if it were False.

WANT_VACATE A boolean expression that, when True, defines that a preempted HTCondor job is to be vacated,
instead of killed. This means the job will be soft-killed and given time to checkpoint or clean up. The amount
of time given depends on MachineMaxVacateTime and KILL . The default value is True.

IS_OWNER A boolean expression that determines when a machine ad should enter the Owner state. While in the
Owner state, the machine ad will not be matched to any jobs. The default value is False (never enter Owner
state). Job ClassAd attributes should not be used in defining IS_OWNER, as they would be Undefined.

STARTD_HISTORY A file name where the condor_startd daemon will maintain a job history file in an analogous
way to that of the history file defined by the configuration variable HISTORY. It will be rotated in the same way,
and the same parameters that apply to the HISTORY file rotation apply to the condor_startd daemon history as
well. This can be read with the condor_history command by passing the name of the file to the -file option of
condor_history.

$ condor_history -file `condor_config_val LOG`/startd_history

STARTER This macro holds the full path to the condor_starter binary that the condor_startd should spawn. It is
normally defined relative to $(SBIN).

KILLING_TIMEOUT The amount of time in seconds that the condor_startd should wait after sending a fast shut-
down request to condor_starter before forcibly killing the job and condor_starter. The default value is 30 sec-
onds.

POLLING_INTERVAL When a condor_startd enters the claimed state, this macro determines how often the state
of the machine is polled to check the need to suspend, resume, vacate or kill the job. It is defined in terms of
seconds and defaults to 5.

UPDATE_INTERVAL Determines how often the condor_startd should send a ClassAd update to the con-
dor_collector. The condor_startd also sends update on any state or activity change, or if the value of its START
expression changes. See condor_startd Policy Configuration on condor_startd states, condor_startd Activities,
and condor_startd START expression for details on states, activities, and the START expression. This macro is
defined in terms of seconds and defaults to 300 (5 minutes).

UPDATE_OFFSET An integer value representing the number of seconds of delay that the condor_startd should
wait before sending its initial update, and the first update after a condor_reconfig command is sent to the con-
dor_collector. The time of all other updates sent after this initial update is determined by $(UPDATE_INTERVAL).
Thus, the first update will be sent after $(UPDATE_OFFSET) seconds, and the second update will be sent
after $(UPDATE_OFFSET) + $(UPDATE_INTERVAL). This is useful when used in conjunction with the
$RANDOM_INTEGER() macro for large pools, to spread out the updates sent by a large number of condor_startd
daemons. Defaults to zero. The example configuration

startd.UPDATE_INTERVAL = 300
startd.UPDATE_OFFSET = $RANDOM_INTEGER(0,300)

causes the initial update to occur at a random number of seconds falling between 0 and 300, with all further
updates occurring at fixed 300 second intervals following the initial update.

240 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

MachineMaxVacateTime An integer expression representing the number of seconds the machine is willing to wait for
a job that has been soft-killed to gracefully shut down. The default value is 600 seconds (10 minutes). This expres-
sion is evaluated when the job starts running. The job may adjust the wait time by setting JobMaxVacateTime.
If the job’s setting is less than the machine’s, the job’s specification is used. If the job’s setting is larger than the
machine’s, the result depends on whether the job has any excess retirement time. If the job has more retirement
time left than the machine’s maximum vacate time setting, then retirement time will be converted into vacating
time, up to the amount of JobMaxVacateTime. The KILL expression may be used to abort the graceful shut-
down of the job at any time. At the time when the job is preempted, the WANT_VACATE expression may be used
to skip the graceful shutdown of the job.

MAXJOBRETIREMENTTIME When the condor_startd wants to evict a job, a job which has run for less than the
number of seconds specified by this expression will not be hard-killed. The condor_startd will wait for the job
to finish or to exceed this amount of time, whichever comes sooner. Time spent in suspension does not count
against the job. The default value of 0 (when the configuration variable is not present) means that the job gets
no retirement time. If the job vacating policy grants the job X seconds of vacating time, a preempted job will
be soft-killed X seconds before the end of its retirement time, so that hard-killing of the job will not happen
until the end of the retirement time if the job does not finish shutting down before then. Note that in peaceful
shutdown mode of the condor_startd, retirement time is treated as though infinite. In graceful shutdown mode,
the job will not be preempted until the configured retirement time expires or SHUTDOWN_GRACEFUL_TIMEOUT
expires. In fast shutdown mode, retirement time is ignored. See MAXJOBRETIREMENTTIME in condor_startd
Policy Configuration for further explanation.

By default the condor_negotiator will not match jobs to a slot with retirement time remaining. This behavior is
controlled by NEGOTIATOR_CONSIDER_EARLY_PREEMPTION .

There is no default value for this configuration variable.

CLAIM_WORKLIFE This expression specifies the number of seconds after which a claim will stop accepting ad-
ditional jobs. The default is 1200, which is 20 minutes. Once the condor_negotiator gives a condor_schedd a
claim to a slot, the condor_schedd will keep running jobs on that slot as long as it has more jobs with matching
requirements, and CLAIM_WORKLIFE has not expired, and it is not preempted. Once CLAIM_WORKLIFE expires,
any existing job may continue to run as usual, but once it finishes or is preempted, the claim is closed. When
CLAIM_WORKLIFE is -1, this is treated as an infinite claim worklife, so claims may be held indefinitely (as long
as they are not preempted and the user does not run out of jobs, of course). A value of 0 has the effect of not
allowing more than one job to run per claim, since it immediately expires after the first job starts running.

MAX_CLAIM_ALIVES_MISSED The condor_schedd sends periodic updates to each condor_startd as a keep alive
(see the description of . If the condor_startd does not receive any keep alive messages, it assumes that something
has gone wrong with the condor_schedd and that the resource is not being effectively used. Once this happens,
the condor_startd considers the claim to have timed out, it releases the claim, and starts advertising itself as
available for other jobs. Because these keep alive messages are sent via UDP, they are sometimes dropped by the
network. Therefore, the condor_startd has some tolerance for missed keep alive messages, so that in case a few
keep alives are lost, the condor_startd will not immediately release the claim. This setting controls how many
keep alive messages can be missed before the condor_startd considers the claim no longer valid. The default is
6.

STARTD_HAS_BAD_UTMP When the condor_startd is computing the idle time of all the users of the machine
(both local and remote), it checks the utmp file to find all the currently active ttys, and only checks access
time of the devices associated with active logins. Unfortunately, on some systems, utmp is unreliable, and the
condor_startd might miss keyboard activity by doing this. So, if your utmp is unreliable, set this macro to True
and the condor_startd will check the access time on all tty and pty devices.

CONSOLE_DEVICES This macro allows the condor_startd to monitor console (keyboard and mouse) activity by
checking the access times on special files in /dev. Activity on these files shows up as ConsoleIdle time in the
condor_startd ‘s ClassAd. Give a comma-separated list of the names of devices considered the console, without
the /dev/ portion of the path name. The defaults vary from platform to platform, and are usually correct.

One possible exception to this is on Linux, where we use “mouse” as one of the entries. Most Linux installations

4.5. Configuration Macros 241

HTCondor Manual, Release 10.0.9

put in a soft link from /dev/mouse that points to the appropriate device (for example, /dev/psaux for a PS/2
bus mouse, or /dev/tty00 for a serial mouse connected to com1). However, if your installation does not have
this soft link, you will either need to put it in (you will be glad you did), or change this macro to point to the right
device.

Unfortunately, modern versions of Linux do not update the access time of device files for USB devices. Thus,
these files cannot be be used to determine when the console is in use. Instead, use the condor_kbdd daemon,
which gets this information by connecting to the X server.

KBDD_BUMP_CHECK_SIZE The number of pixels that the mouse can move in the X and/or Y direction, while
still being considered a bump, and not keyboard activity. If the movement is greater than this bump size then the
move is not a transient one, and it will register as activity. The default is 16, and units are pixels. Setting the
value to 0 effectively disables bump testing.

KBDD_BUMP_CHECK_AFTER_IDLE_TIME The number of seconds of keyboard idle time that will pass before
bump testing begins. The default is 15 minutes.

STARTD_JOB_ATTRS When the machine is claimed by a remote user, the condor_startd can also advertise arbitrary
attributes from the job ClassAd in the machine ClassAd. List the attribute names to be advertised.

Note: Since these are already ClassAd expressions, do not do anything unusual with strings. By default, the
job ClassAd attributes JobUniverse, NiceUser, ExecutableSize and ImageSize are advertised into the machine
ClassAd.

STARTD_ATTRS This macro is described in .

STARTD_DEBUG This macro (and other settings related to debug logging in the condor_startd) is described in .

STARTD_ADDRESS_FILE This macro is described in

STARTD_SHOULD_WRITE_CLAIM_ID_FILE The condor_startd can be configured to write out the ClaimId
for the next available claim on all slots to separate files. This boolean attribute controls whether the condor_startd
should write these files. The default value is True.

STARTD_CLAIM_ID_FILE This macro controls what file names are used if the above
STARTD_SHOULD_WRITE_CLAIM_ID_FILE is true. By default, HTCondor will write the ClaimId into a
file in the $(LOG) directory called .startd_claim_id.slotX, where X is the value of SlotID, the integer
that identifies a given slot on the system, or 1 on a single-slot machine. If you define your own value for this
setting, you should provide a full path, and HTCondor will automatically append the .slotX portion of the file
name.

STARTD_PRINT_ADS_ON_SHUTDOWN The condor_startd can be configured to write out the slot ads into the
daemon’s log file as it is shutting down. This is a boolean and the default value is False.

STARTD_PRINT_ADS_FILTER When STARTD_PRINT_ADS_ON_SHUTDOWN above is set to True, this macro can
list which specific types of ads will get written to the log. The possible values are static`, partitionable,
and dynamic. The list is comma separated and the default is to print all three types of ads.

NUM_CPUS An integer value, which can be used to lie to the condor_startd daemon about how many CPUs a machine
has. When set, it overrides the value determined with HTCondor’s automatic computation of the number of CPUs
in the machine. Lying in this way can allow multiple HTCondor jobs to run on a single-CPU machine, by having
that machine treated like a multi-core machine with multiple CPUs, which could have different HTCondor jobs
running on each one. Or, a multi-core machine may advertise more slots than it has CPUs. However, lying in
this manner will hurt the performance of the jobs, since now multiple jobs will run on the same CPU, and the
jobs will compete with each other. The option is only meant for people who specifically want this behavior and
know what they are doing. It is disabled by default.

The default value is $(DETECTED_CPUS_LIMIT) .

242 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

The condor_startd only takes note of the value of this configuration variable on start up, therefore it cannot be
changed with a simple reconfigure. To change this, restart the condor_startd daemon for the change to take effect.
The command will be

$ condor_restart -startd

MAX_NUM_CPUS An integer value used as a ceiling for the number of CPUs detected by HTCondor on a machine.
This value is ignored if NUM_CPUS is set. If set to zero, there is no ceiling. If not defined, the default value is
zero, and thus there is no ceiling.

Note that this setting cannot be changed with a simple reconfigure, either by sending a SIGHUP or by using the
condor_reconfig command. To change this, restart the condor_startd daemon for the change to take effect. The
command will be

$ condor_restart -startd

COUNT_HYPERTHREAD_CPUS This configuration variable controls how HTCondor sees hyper-threaded pro-
cessors. When set to the default value of True, it includes virtual CPUs in the default value of DETECTED_CPUS.
On dedicated cluster nodes, counting virtual CPUs can sometimes improve total throughput at the expense of
individual job speed. However, counting them on desktop workstations can interfere with interactive job perfor-
mance.

MEMORY Normally, HTCondor will automatically detect the amount of physical memory available on your machine.
Define MEMORY to tell HTCondor how much physical memory (in MB) your machine has, overriding the value
HTCondor computes automatically. The actual amount of memory detected by HTCondor is always available in
the pre-defined configuration macro DETECTED_MEMORY .

RESERVED_MEMORY How much memory would you like reserved from HTCondor? By default, HTCondor con-
siders all the physical memory of your machine as available to be used by HTCondor jobs. If RESERVED_MEMORY
is defined, HTCondor subtracts it from the amount of memory it advertises as available.

STARTD_NAME Used to give an alternative value to the Name attribute in the condor_startd ‘s ClassAd. This eso-
teric configuration macro might be used in the situation where there are two condor_startd daemons running on
one machine, and each reports to the same condor_collector. Different names will distinguish the two daemons.
See the description of for defaults and composition of valid HTCondor daemon names.

RUNBENCHMARKS A boolean expression that specifies whether to run benchmarks. When the machine is in the
Unclaimed state and this expression evaluates to True, benchmarks will be run. If RUNBENCHMARKS is specified
and set to anything other than False, additional benchmarks will be run once, when the condor_startd starts.
To disable start up benchmarks, set RunBenchmarks to False.

DedicatedScheduler A string that identifies the dedicated scheduler this machine is managed by. HTCondor’s Dedi-
cated Scheduling details the use of a dedicated scheduler.

STARTD_NOCLAIM_SHUTDOWN The number of seconds to run without receiving a claim before shutting HT-
Condor down on this machine. Defaults to unset, which means to never shut down. This is primarily intended
to facilitate glidein; use in other situations is not recommended.

STARTD_PUBLISH_WINREG A string containing a semicolon-separated list of Windows registry key names. For
each registry key, the contents of the registry key are published in the machine ClassAd. All attribute names
are prefixed with WINREG_. The remainder of the attribute name is formed in one of two ways. The first way
explicitly specifies the name within the list with the syntax

STARTD_PUBLISH_WINREG = AttrName1 = KeyName1; AttrName2 = KeyName2

The second way of forming the attribute name derives the attribute names from the key names in the list. The
derivation uses the last three path elements in the key name and changes each illegal character to an underscore
character. Illegal characters are essentially any non-alphanumeric character. In addition, the percent character
(%) is replaced by the string Percent, and the string /sec is replaced by the string _Per_Sec.

4.5. Configuration Macros 243

HTCondor Manual, Release 10.0.9

HTCondor expects that the hive identifier, which is the first element in the full path given by a key name, will be
the valid abbreviation. Here is a list of abbreviations:

• HKLM is the abbreviation for HKEY_LOCAL_MACHINE

• HKCR is the abbreviation for HKEY_CLASSES_ROOT

• HKCU is the abbreviation for HKEY_CURRENT_USER

• HKPD is the abbreviation for HKEY_PERFORMANCE_DATA

• HKCC is the abbreviation for HKEY_CURRENT_CONFIG

• HKU is the abbreviation for HKEY_USERS

The HKPD key names are unusual, as they are not shown in regedit. Their values are periodically updated at the
interval defined by UPDATE_INTERVAL. The others are not updated until condor_reconfig is issued.

Here is a complete example of the configuration variable definition,

STARTD_PUBLISH_WINREG = HKLM\Software\Perl\BinDir; \
BATFile_RunAs_Command = HKCR\batFile\shell\RunAs\command; \
HKPD\Memory\Available MBytes; \
BytesAvail = HKPD\Memory\Available Bytes; \
HKPD\Terminal Services\Total Sessions; \
HKPD\Processor\% Idle Time; \
HKPD\System\Processes

which generates the following portion of a machine ClassAd:

WINREG_Software_Perl_BinDir = "C:\Perl\bin\perl.exe"
WINREG_BATFile_RunAs_Command = "%SystemRoot%\System32\cmd.exe /C \"%1\" %*"
WINREG_Memory_Available_MBytes = 5331
WINREG_BytesAvail = 5590536192.000000
WINREG_Terminal_Services_Total_Sessions = 2
WINREG_Processor_Percent_Idle_Time = 72.350384
WINREG_System_Processes = 166

MOUNT_UNDER_SCRATCH A ClassAd expression, which when evaluated in the context of the job ClassAd,
evaluates to a string that contains a comma separated list of directories. For each directory in the list, HTCondor
creates a directory in the job’s temporary scratch directory with that name, and makes it available at the given
name using bind mounts. This is available on Linux systems which provide bind mounts and per-process tree
mount tables, such as Red Hat Enterprise Linux 5. A bind mount is like a symbolic link, but is not globally
visible to all processes. It is only visible to the job and the job’s child processes. As an example:

MOUNT_UNDER_SCRATCH = ifThenElse(TARGET.UtsnameSysname ? "Linux", "/tmp,/var/tmp", "
→˓")

If the job is running on a Linux system, it will see the usual /tmp and /var/tmp directories, but when accessing
files via these paths, the system will redirect the access. The resultant files will actually end up in directories
named tmp or var/tmp under the the job’s temporary scratch directory. This is useful, because the job’s scratch
directory will be cleaned up after the job completes, two concurrent jobs will not interfere with each other, and
because jobs will not be able to fill up the real /tmp directory. Another use case might be for home directories,
which some jobs might want to write to, but that should be cleaned up after each job run. The default value is
"/tmp,/var/tmp".

If the job’s execute directory is encrypted, /tmp and /var/tmp are automatically added to
MOUNT_UNDER_SCRATCH when the job is run (they will not show up if MOUNT_UNDER_SCRATCH is exam-
ined with condor_config_val).

244 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Note: The MOUNT_UNDER_SCRATCH mounts do not take place until the PreCmd of the job, if any, com-
pletes. (See Job ClassAd Attributes for information on PreCmd.)

Also note that, if MOUNT_UNDER_SCRATCH is defined, it must either be a ClassAd string (with double-quotes) or
an expression that evaluates to a string.

For Docker Universe jobs, any directories that are mounted under scratch are also volume mounted on the same
paths inside the container. That is, any reads or writes to files in those directories goes to the host filesystem
under the scratch directory. This is useful if a container has limited space to grow a filesystem.

MOUNT_PRIVATE_DEV_SHM This boolean value, which defaults to True tells the condor_starter to make
/dev/shm on Linux private to each job. When private, the starter removes any files from the private /dev/shm at
job exit time.

Warning: The per job filesystem feature is a work in progress and not currently supported.

The following macros control if the condor_startd daemon should create a custom filesystem for the job’s scratch
directory. This allows HTCondor to prevent the job from using more scratch space than provisioned.

STARTD_ENFORCE_DISK_LIMITS This boolean value, which is only evaluated on Linux systems, tells the con-
dor_startd whether to make an ephemeral filesystem for the scratch execute directory for jobs. The default is
False. This should only be set to true on HTCondor installations that have root privilege. When true, you must
set and , or alternatively set .

THINPOOL_NAME This string-valued parameter has no default, and should be set to the Linux LVM logical volume
to be used for ephemeral execute directories. "htcondor_lv" might be a good choice. This setting only matters
when is True, and HTCondor has root privilege.

THINPOOL_VOLUME_GROUP_NAME This string-valued parameter has no default, and should be set to the
name of the Linux LVM volume group to be used for logical volumes for ephemeral execute directories.
"htcondor_vg" might be a good choice. This seeting only matters when is True, and HTCondor has root
privilege.

THINPOOL_BACKING_FILE This string-valued parameter has no default. If a rootly HTCondor does not have a
Linux LVM configured, a single large file can be used as the backing store for ephemeral file systems for execute
directories. This parameter should be set to the path of a large, pre-created file to hold the blocks these filesystems
are created from.

THINPOOL_HIDE_MOUNT A boolean value that defaults to false. When thinpool ephemeral filesystems are
enabled (as described above), if this knob is set to true, the mount will only be visible to the job and the starter.
Any process in any other process tree will not be able to see the mount. Setting this to true breaks Docker
universe.

The following macros control if the condor_startd daemon should perform backfill computations whenever resources
would otherwise be idle. See Configuring HTCondor for Running Backfill Jobs for details.

ENABLE_BACKFILL A boolean value that, when True, indicates that the machine is willing to perform backfill
computations when it would otherwise be idle. This is not a policy expression that is evaluated, it is a simple
True or False. This setting controls if any of the other backfill-related expressions should be evaluated. The
default is False.

BACKFILL_SYSTEM A string that defines what backfill system to use for spawning and managing backfill computa-
tions. Currently, the only supported value for this is "BOINC", which stands for the Berkeley Open Infrastructure
for Network Computing. See http://boinc.berkeley.edu for more information about BOINC. There is no default
value, administrators must define this.

4.5. Configuration Macros 245

http://boinc.berkeley.edu

HTCondor Manual, Release 10.0.9

START_BACKFILL A boolean expression that is evaluated whenever an HTCondor resource is in the Unclaimed/Idle
state and the ENABLE_BACKFILL expression is True. If START_BACKFILL evaluates to True, the machine will
enter the Backfill state and attempt to spawn a backfill computation. This expression is analogous to the START
expression that controls when an HTCondor resource is available to run normal HTCondor jobs. The default
value is False (which means do not spawn a backfill job even if the machine is idle and ENABLE_BACKFILL ex-
pression is True). For more information about policy expressions and the Backfill state, see Policy Configuration
for Execute Hosts and for Submit Hosts, especially the condor_startd Policy Configuration section.

EVICT_BACKFILL A boolean expression that is evaluated whenever an HTCondor resource is in the Backfill state
which, when True, indicates the machine should immediately kill the currently running backfill computation
and return to the Owner state. This expression is a way for administrators to define a policy where interactive
users on a machine will cause backfill jobs to be removed. The default value is False. For more information
about policy expressions and the Backfill state, see Policy Configuration for Execute Hosts and for Submit Hosts,
especially the condor_startd Policy Configuration section.

The following macros only apply to the condor_startd daemon when it is running on a multi-core machine. See the
condor_startd Policy Configuration section for details.

STARTD_RESOURCE_PREFIX A string which specifies what prefix to give the unique HTCondor resources that
are advertised on multi-core machines. Previously, HTCondor used the term virtual machine to describe these
resources, so the default value for this setting was vm. However, to avoid confusion with other kinds of virtual
machines, such as the ones created using tools like VMware or Xen, the old virtual machine terminology has
been changed, and has become the term slot. Therefore, the default value of this prefix is now slot. If sites
want to continue using vm, or prefer something other slot, this setting enables sites to define what string the
condor_startd will use to name the individual resources on a multi-core machine.

SLOTS_CONNECTED_TO_CONSOLE An integer which indicates how many of the machine slots the con-
dor_startd is representing should be “connected” to the console. This allows the condor_startd to notice console
activity. Defaults to the number of slots in the machine, which is $(NUM_CPUS).

SLOTS_CONNECTED_TO_KEYBOARD An integer which indicates how many of the machine slots the con-
dor_startd is representing should be “connected” to the keyboard (for remote tty activity, as well as console
activity). This defaults to all slots (N in a machine with N CPUs).

DISCONNECTED_KEYBOARD_IDLE_BOOST If there are slots not connected to either the keyboard or the con-
sole, the corresponding idle time reported will be the time since the condor_startd was spawned, plus the value
of this macro. It defaults to 1200 seconds (20 minutes). We do this because if the slot is configured not to care
about keyboard activity, we want it to be available to HTCondor jobs as soon as the condor_startd starts up,
instead of having to wait for 15 minutes or more (which is the default time a machine must be idle before HT-
Condor will start a job). If you do not want this boost, set the value to 0. If you change your START expression
to require more than 15 minutes before a job starts, but you still want jobs to start right away on some of your
multi-core nodes, increase this macro’s value.

STARTD_SLOT_ATTRS The list of ClassAd attribute names that should be shared across all slots on the same
machine. This setting was formerly know as STARTD_VM_ATTRS For each attribute in the list, the attribute’s
value is taken from each slot’s machine ClassAd and placed into the machine ClassAd of all the other slots
within the machine. For example, if the configuration file for a 2-slot machine contains

STARTD_SLOT_ATTRS = State, Activity, EnteredCurrentActivity

then the machine ClassAd for both slots will contain attributes that will be of the form:

slot1_State = "Claimed"
slot1_Activity = "Busy"
slot1_EnteredCurrentActivity = 1075249233
slot2_State = "Unclaimed"

(continues on next page)

246 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

(continued from previous page)

slot2_Activity = "Idle"
slot2_EnteredCurrentActivity = 1075240035

The following settings control the number of slots reported for a given multi-core host, and what attributes each one has.
They are only needed if you do not want to have a multi-core machine report to HTCondor with a separate slot for each
CPU, with all shared system resources evenly divided among them. Please read condor_startd Policy Configuration
for details on how to properly configure these settings to suit your needs.

Note: You cannot change the number or definition of the different slot types with a reconfig. If you change any-
thing related to slot provisioning, you must restart the condor_startd for the change to take effect (for example, using
condor_restart -startd).

Note: Prior to version 6.9.3, any settings that included the term slot used to use virtual machine or vm. If searching
for information about one of these older settings, search for the corresponding attribute names using slot, instead.

MAX_SLOT_TYPES The maximum number of different slot types. Note: this is the maximum number of different
types, not of actual slots. Defaults to 10. (You should only need to change this setting if you define more than
10 separate slot types, which would be pretty rare.)

SLOT_TYPE_<N> This setting defines a given slot type, by specifying what part of each shared system re-
source (like RAM, swap space, etc) this kind of slot gets. This setting has no effect unless you also de-
fine NUM_SLOTS_TYPE_<N>. N can be any integer from 1 to the value of $(MAX_SLOT_TYPES), such as
SLOT_TYPE_1. The format of this entry can be somewhat complex, so please refer to condor_startd Policy
Configuration for details on the different possibilities.

SLOT_TYPE_<N>_PARTITIONABLE A boolean variable that defaults to False. When True, this slot permits
dynamic provisioning, as specified in condor_startd Policy Configuration.

CLAIM_PARTITIONABLE_LEFTOVERS A boolean variable that defaults to True. When True within the con-
figuration for both the condor_schedd and the condor_startd, and the condor_schedd claims a partitionable slot,
the condor_startd returns the slot’s ClassAd and a claim id for leftover resources. In doing so, the condor_schedd
can claim multiple dynamic slots without waiting for a negotiation cycle.

MACHINE_RESOURCE_NAMES A comma and/or space separated list of resource names that represent custom
resources specific to a machine. These resources are further intended to be statically divided or partitioned, and
these resource names identify the configuration variables that define the partitioning. If used, custom resources
without names in the list are ignored.

MACHINE_RESOURCE_<name> An integer that specifies the quantity of or list of identifiers for the customized
local machine resource available for an SMP machine. The portion of this configuration variable’s name identi-
fied with <name> will be used to label quantities of the resource allocated to a slot. If a quantity is specified, the
resource is presumed to be fungible and slots will be allocated a quantity of the resource but specific instances
will not be identified. If a list of identifiers is specified the quantity is the number of identifiers and slots will be
allocated both a quantity of the resource and assigned specific resource identifiers.

OFFLINE_MACHINE_RESOURCE_<name> A comma and/or space separated list of resource identifiers for
any customized local machine resources that are currently offline, and therefore should not be allocated
to a slot. The identifiers specified here must match those specified by value of configuration variables
MACHINE_RESOURCE_<name> or MACHINE_RESOURCE_INVENTORY_<name> , or the identifiers will be ig-
nored. The <name> identifies the type of resource, as specified by the value of configuration variable
MACHINE_RESOURCE_NAMES. This configuration variable is used to have resources that are detected and re-
ported to exist by HTCondor, but not assigned to slots. A restart of the condor_startd is required for changes to
resources assigned to slots to take effect. If this variable is changed and condor_reconfig command is sent to the

4.5. Configuration Macros 247

HTCondor Manual, Release 10.0.9

Startd, the list of Offline resources will be updated, and the count of resources of that type will be updated, but
newly offline resources will still be assigned to slots. If an offline resource is assigned to a Partitionable slot, it
will never be assigned to a new dynamic slot but it will not be removed from the Assigned<name> attribute of
an existing dynamic slot.

MACHINE_RESOURCE_INVENTORY_<name> Specifies a command line that is executed upon start up of the
condor_startd daemon. The script is expected to output an attribute definition of the form

Detected<xxx>=y

or of the form

Detected<xxx>="y, z, a, ..."

where <xxx> is the name of a resource that exists on the machine, and y is the quantity of the resource or "y,
z, a, ..." is a comma and/or space separated list of identifiers of the resource that exist on the machine. This
attribute is added to the machine ClassAd, such that these resources may be statically divided or partitioned. A
script may be a convenient way to specify a calculated or detected quantity of the resource, instead of specifying
a fixed quantity or list of the resource in the the configuration when set by MACHINE_RESOURCE_<name> .

The script may also output an attribute of the form

Offline<xxx>="y, z"

where <xxx> is the name of the resource, and "y, z" is a comma and/or space separated list of resource
identifiers that are also in the Detected<xxx> list. This attribute is added to the machine ClassAd, and re-
sources y and z will not be assigned to any slot and will not be included in the count of resources of this
type. This will override the configuration variable OFFLINE_MACHINE_RESOURCE_<xxx> on startup. But
OFFLINE_MACHINE_RESOURCE_<xxx> can still be used to take additional resources offline without restarting.

ENVIRONMENT_FOR_Assigned<name> A space separated list of environment variables to set for the job.
Each environment variable will be set to the list of assigned resources defined by the slot ClassAd attribute
Assigned<name>. Each environment variable name may be followed by an equals sign and a Perl style regular
expression that defines how to modify each resource ID before using it as the value of the environment vari-
able. As a special case for CUDA GPUs, if the environment variable name is CUDA_VISIBLE_DEVICES, then
the correct Perl style regular expression is applied automatically.

For example, with the configuration

ENVIRONMENT_FOR_AssignedGPUs = VISIBLE_GPUS=/^/gpuid:/

and with the machine ClassAd attribute AssignedGPUs = "CUDA1, CUDA2", the job’s environment will con-
tain

VISIBLE_GPUS = gpuid:CUDA1, gpuid:CUDA2

ENVIRONMENT_VALUE_FOR_UnAssigned<name> Defines the value to set for environment variables specified
in by configuration variable ENVIRONMENT_FOR_Assigned<name> when there is no machine ClassAd attribute
Assigned<name> for the slot. This configuration variable exists to deal with the situation where jobs will use
a resource that they have not been assigned because there is no explicit assignment. The CUDA runtime library
(for GPUs) has this problem.

For example, where configuration is

ENVIRONMENT_FOR_AssignedGPUs = VISIBLE_GPUS
ENVIRONMENT_VALUE_FOR_UnAssignedGPUs = none

and there is no machine ClassAd attribute AssignedGPUs, the job’s environment will contain

248 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

VISIBLE_GPUS = none

MUST_MODIFY_REQUEST_EXPRS A boolean value that defaults to False. When False, configuration vari-
ables whose names begin with MODIFY_REQUEST_EXPR are only applied if the job claim still matches the parti-
tionable slot after modification. If True, the modifications always take place, and if the modifications cause the
claim to no longer match, then the condor_startd will simply refuse the claim.

MODIFY_REQUEST_EXPR_REQUESTMEMORY An integer expression used by the condor_startd daemon to
modify the evaluated value of the RequestMemory job ClassAd attribute, before it used to provision a dynamic
slot. The default value is given by

quantize(RequestMemory,{128})

MODIFY_REQUEST_EXPR_REQUESTDISK An integer expression used by the condor_startd daemon to mod-
ify the evaluated value of the RequestDisk job ClassAd attribute, before it used to provision a dynamic slot.
The default value is given by

quantize(RequestDisk,{1024})

MODIFY_REQUEST_EXPR_REQUESTCPUS An integer expression used by the condor_startd daemon to mod-
ify the evaluated value of the RequestCpus job ClassAd attribute, before it used to provision a dynamic slot.
The default value is given by

quantize(RequestCpus,{1})

NUM_SLOTS_TYPE_<N> This macro controls how many of a given slot type are actually reported to HTCondor.
There is no default.

NUM_SLOTS An integer value representing the number of slots reported when the multi-core machine is being
evenly divided, and the slot type settings described above are not being used. The default is one slot for each
CPU. This setting can be used to reserve some CPUs on a multi-core machine, which would not be reported to
the HTCondor pool. This value cannot be used to make HTCondor advertise more slots than there are CPUs on
the machine. To do that, use NUM_CPUS .

The following variables set consumption policies for partitionable slots. The condor_startd Policy Configuration sec-
tion details consumption policies.

CONSUMPTION_POLICY A boolean value that defaults to False. When True, consumption policies
are enabled for partitionable slots within the condor_startd daemon. Any definition of the form
SLOT_TYPE_<N>_CONSUMPTION_POLICY overrides this global definition for the given slot type.

CONSUMPTION_<Resource> An expression that specifies a consumption policy for a particular resource within a
partitionable slot. To support a consumption policy, each resource advertised by the slot must have such a policy
configured. Custom resources may be specified, substituting the resource name for <Resource>. Any definition
of the form SLOT_TYPE_<N>_CONSUMPTION_<Resource> overrides this global definition for the given slot type.
CPUs, memory, and disk resources are always advertised by condor_startd, and have the default values:

CONSUMPTION_CPUS = quantize(target.RequestCpus,{1})
CONSUMPTION_MEMORY = quantize(target.RequestMemory,{128})
CONSUMPTION_DISK = quantize(target.RequestDisk,{1024})

Custom resources have no default consumption policy.

SLOT_WEIGHT An expression that specifies a slot’s weight, used as a multiplier the condor_negotiator daemon
during matchmaking to assess user usage of a slot, which affects user priority. Defaults to Cpus.

In the case of slots with consumption policies, the cost of each match is is assessed as the difference in the
slot weight expression before and after the resources consumed by the match are deducted from the slot. Only

4.5. Configuration Macros 249

HTCondor Manual, Release 10.0.9

Memory, Cpus and Disk are valid attributes for this parameter.

NUM_CLAIMS Specifies the number of claims a partitionable slot will advertise for use by the condor_negotiator
daemon. In the case of slots with a defined consumption policy, the condor_negotiator may match more than
one job to the slot in a single negotiation cycle. For partitionable slots with a consumption policy, NUM_CLAIMS
defaults to the number of CPUs owned by the slot. Otherwise, it defaults to 1.

The following configuration variables support java universe jobs.

JAVA The full path to the Java interpreter (the Java Virtual Machine).

JAVA_CLASSPATH_ARGUMENT The command line argument to the Java interpreter (the Java Virtual Machine)
that specifies the Java Classpath. Classpath is a Java-specific term that denotes the list of locations (.jar files
and/or directories) where the Java interpreter can look for the Java class files that a Java program requires.

JAVA_CLASSPATH_SEPARATOR The single character used to delimit constructed entries in the Classpath for the
given operating system and Java Virtual Machine. If not defined, the operating system is queried for its default
Classpath separator.

JAVA_CLASSPATH_DEFAULT A list of path names to .jar files to be added to the Java Classpath by default. The
comma and/or space character delimits list entries.

JAVA_EXTRA_ARGUMENTS A list of additional arguments to be passed to the Java executable.

The following configuration variables control .NET version advertisement.

STARTD_PUBLISH_DOTNET A boolean value that controls the advertising of the .NET framework on Windows
platforms. When True, the condor_startd will advertise all installed versions of the .NET framework within the
DotNetVersions attribute in the condor_startd machine ClassAd. The default value is True. Set the value to
false to turn off .NET version advertising.

DOT_NET_VERSIONS A string expression that administrators can use to override the way that .NET versions are
advertised. If the administrator wishes to advertise .NET installations, but wishes to do so in a format differ-
ent than what the condor_startd publishes in its ClassAds, setting a string in this expression will result in the
condor_startd publishing the string when STARTD_PUBLISH_DOTNET is True. No value is set by default.

These macros control the power management capabilities of the condor_startd to optionally put the machine in to a
low power state and wake it up later. See Power Management for more details.

HIBERNATE_CHECK_INTERVAL An integer number of seconds that determines how often the condor_startd
checks to see if the machine is ready to enter a low power state. The default value is 0, which disables the check.
If not 0, the HIBERNATE expression is evaluated within the context of each slot at the given interval. If used, a
value 300 (5 minutes) is recommended.

As a special case, the interval is ignored when the machine has just returned from a low power state, excluding
"SHUTDOWN". In order to avoid machines from volleying between a running state and a low power state, an hour
of uptime is enforced after a machine has been woken. After the hour has passed, regular checks resume.

HIBERNATE A string expression that represents lower power state. When this state name evaluates to a valid state
other than "NONE", causes HTCondor to put the machine into the specified low power state. The following names
are supported (and are not case sensitive):

• "NONE", "0": No-op; do not enter a low power state

• "S1", "1", "STANDBY", "SLEEP": On Windows, this is Sleep (standby)

• "S2", "2": On Windows, this is Sleep (standby)

• "S3", "3", "RAM", "MEM", "SUSPEND": On Windows, this is Sleep (standby)

• "S4", "4", "DISK", "HIBERNATE": Hibernate

• "S5", "5", "SHUTDOWN", "OFF": Shutdown (soft-off)

250 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

The HIBERNATE expression is written in terms of the S-states as defined in the Advanced Configuration and
Power Interface (ACPI) specification. The S-states take the form S<n>, where <n> is an integer in the range 0
to 5, inclusive. The number that results from evaluating the expression determines which S-state to enter. The
notation was adopted because it appears to be the standard naming scheme for power states on several popular
operating systems, including various flavors of Windows and Linux distributions. The other strings, such as
"RAM" and "DISK", are provided for ease of configuration.

Since this expression is evaluated in the context of each slot on the machine, any one slot has veto power over the
other slots. If the evaluation of HIBERNATE in one slot evaluates to "NONE" or "0", then the machine will not
be placed into a low power state. On the other hand, if all slots evaluate to a non-zero value, but differ in value,
then the largest value is used as the representative power state.

Strings that do not match any in the table above are treated as "NONE".

UNHIBERNATE A boolean expression that specifies when an offline machine should be woken up. The default value
is MachineLastMatchTime =!= UNDEFINED. This expression does not do anything, unless there is an instance
of condor_rooster running, or another program that evaluates the Unhibernate expression of offline machine
ClassAds. In addition, the collecting of offline machine ClassAds must be enabled for this expression to work.
The variable explains this. The special attribute MachineLastMatchTime is updated in the ClassAds of offline
machines when a job would have been matched to the machine if it had been online. For multi-slot machines, the
offline ClassAd for slot1 will also contain the attributes slot<X>_MachineLastMatchTime, where X is replaced
by the slot id of the other slots that would have been matched while offline. This allows the slot1 UNHIBERNATE
expression to refer to all of the slots on the machine, in case that is necessary. By default, condor_rooster will
wake up a machine if any slot on the machine has its UNHIBERNATE expression evaluate to True.

HIBERNATION_PLUGIN A string which specifies the path and executable name of the hibernation plug-in that the
condor_startd should use in the detection of low power states and switching to the low power states. The default
value is $(LIBEXEC)/power_state. A default executable in that location which meets these specifications is
shipped with HTCondor.

The condor_startd initially invokes this plug-in with both the value defined for HIBERNATION_PLUGIN_ARGS
and the argument ad, and expects the plug-in to output a ClassAd to its standard output stream. The condor_startd
will use this ClassAd to determine what low power setting to use on further invocations of the plug-in. To that
end, the ClassAd must contain the attribute HibernationSupportedStates, a comma separated list of low
power modes that are available. The recognized mode strings are the same as those in the table for the con-
figuration variable HIBERNATE. The optional attribute HibernationMethod specifies a string which describes
the mechanism used by the plug-in. The default Linux plug-in shipped with HTCondor will produce one of
the strings NONE, /sys, /proc, or pm-utils. The optional attribute HibernationRawMask is an integer which
represents the bit mask of the modes detected.

Subsequent condor_startd invocations of the plug-in have command line arguments defined by
HIBERNATION_PLUGIN_ARGS plus the argument set <power-mode>, where <power-mode> is one of the
supported states as given in the attribute HibernationSupportedStates.

HIBERNATION_PLUGIN_ARGS Command line arguments appended to the command that invokes the plug-in.
The additional argument ad is appended when the condor_startd initially invokes the plug-in.

HIBERNATION_OVERRIDE_WOL A boolean value that defaults to False. When True, it causes the con-
dor_startd daemon’s detection of the whether or not the network interface handles WOL packets to be ignored.
When False, hibernation is disabled if the network interface does not use WOL packets to wake from hiberna-
tion. Therefore, when True hibernation can be enabled despite the fact that WOL packets are not used to wake
machines.

LINUX_HIBERNATION_METHOD A string that can be used to override the default search used by HTCondor
on Linux platforms to detect the hibernation method to use. This is used by the default hibernation plug-in
executable that is shipped with HTCondor. The default behavior orders its search with:

1. Detect and use the pm-utils command line tools. The corresponding string is defined with “pm-utils”.

4.5. Configuration Macros 251

HTCondor Manual, Release 10.0.9

2. Detect and use the directory in the virtual file system /sys/power. The corresponding string is defined
with “/sys”.

3. Detect and use the directory in the virtual file system /proc/ACPI. The corresponding string is defined
with “/proc”.

To override this ordered search behavior, and force the use of one particular method, set
LINUX_HIBERNATION_METHOD to one of the defined strings.

OFFLINE_LOG This configuration variable is no longer used. It has been replaced by
COLLECTOR_PERSISTENT_AD_LOG.

OFFLINE_EXPIRE_ADS_AFTER An integer number of seconds specifying the lifetime of the persistent machine
ClassAd representing a hibernating machine. Defaults to the largest 32-bit integer.

DOCKER Defines the path and executable name of the Docker CLI. The default value is /usr/bin/docker. Remember
that the condor user must also be in the docker group for Docker Universe to work. See the Docker universe
manual section for more details (Setting Up the VM and Docker Universes). An example of the configuration for
running the Docker CLI:

DOCKER = /usr/bin/docker

DOCKER_VOLUMES A list of directories on the host execute machine to be volume mounted within the container.
See the Docker Universe section for full details (Setting Up the VM and Docker Universes).

DOCKER_IMAGE_CACHE_SIZE The number of most recently used Docker images that will be kept on the local
machine. The default value is 8.

DOCKER_DROP_ALL_CAPABILITIES A class ad expression, which defaults to true. Evaluated in the context
of the job ad and the machine ad, when true, runs the Docker container with the command line option -drop-all-
capabilities. Admins should be very careful with this setting, and only allow trusted users to run with full Linux
capabilities within the container.

DOCKER_PERFORM_TEST When the condor_startd starts up, it runs a simple Docker container to verify that
Docker completely works. If DOCKER_PERFORM_TEST is false, this test is skipped.

DOCKER_RUN_UNDER_INIT A boolean value which defaults to true, which tells the worker node to run Docker
universe jobs with the –init option.

DOCKER_EXTRA_ARGUMENTS Any additional command line options the administrator wants to be added to
the Docker container create command line can be set with this parameter. Note that the admin should be careful
setting this, it is intended for newer Docker options that HTCondor doesn’t support directly. Arbitrary Docker
options may break Docker universe, for example don’t pass the –rm flag in DOCKER_EXTRA_ARGUMENTS,
because then HTCondor cannot get the final exit status from a Docker job.

DOCKER_NETWORKS An optional, comma-separated list of admin-defined networks that a job may request with
the docker_network_type submit file command. Advertised into the slot attribute DockerNetworks.

DOCKER_SHM_SIZE An optional knob that can be configured to adapt the --shm-size Docker container create
argument. Allowed values are integers in bytes. If not set, --shm-size will not be specified by HTCondor and
Docker’s default is used. This is used to configure the size of the container’s /dev/shm size adapting to the job’s
requested memory.

OPENMPI_INSTALL_PATH The location of the Open MPI installation on the local machine. Referenced by
examples/openmpiscript, which is used for running Open MPI jobs in the parallel universe. The Open MPI
bin and lib directories should exist under this path. The default value is /usr/lib64/openmpi.

OPENMPI_EXCLUDE_NETWORK_INTERFACES A comma-delimited list of network interfaces that Open MPI
should not use for MPI communications. Referenced by examples/openmpiscript, which is used for running
Open MPI jobs in the parallel universe.

252 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

The list should contain any interfaces that your job could potentially see from any execute machine. The list may
contain undefined interfaces without generating errors. Open MPI should exclusively use low latency/high speed
networks it finds (e.g. InfiniBand) regardless of this setting. The default value is docker0,virbr0.

These macros control the startds (and starters) capability to create a private filesystem for the scratch directory for each
job.

THINPOOL_VOLUME_GROUP_NAME A string that names the Linux LVM volume group the administrator has
configured as the storage for per-job scratch directories.

THINPOOL_NAME A string that names the Linux LVM logical volume for storage for per-job scratch directories.

STARTD_ENFORCE_DISK_USAGE A boolean that defaults to false that controls whether the starter puts a job on
hold that fills the per-job filesystem.

4.5.8 condor_schedd Configuration File Entries

These macros control the condor_schedd.

SHADOW This macro determines the full path of the condor_shadow binary that the condor_schedd spawns. It is
normally defined in terms of $(SBIN).

START_LOCAL_UNIVERSE A boolean value that defaults to TotalLocalJobsRunning < 200. The con-
dor_schedd uses this macro to determine whether to start a local universe job. At intervals determined by
SCHEDD_INTERVAL, the condor_schedd daemon evaluates this macro for each idle local universe job that it
has. For each job, if the START_LOCAL_UNIVERSE macro is True, then the job’s Requirements expression is
evaluated. If both conditions are met, then the job is allowed to begin execution.

The following example only allows 10 local universe jobs to execute concurrently. The attribute
TotalLocalJobsRunning is supplied by condor_schedd ‘s ClassAd:

START_LOCAL_UNIVERSE = TotalLocalJobsRunning < 10

STARTER_LOCAL The complete path and executable name of the condor_starter to run for local universe jobs.
This variable’s value is defined in the initial configuration provided with HTCondor as

STARTER_LOCAL = $(SBIN)/condor_starter

This variable would only be modified or hand added into the configuration for a pool to be upgraded from one
running a version of HTCondor that existed before the local universe to one that includes the local universe, but
without utilizing the newer, provided configuration files.

LOCAL_UNIV_EXECUTE A string value specifying the execute location for local universe jobs. Each running
local universe job will receive a uniquely named subdirectory within this directory. If not specified, it defaults
to $(SPOOL)/local_univ_execute.

START_SCHEDULER_UNIVERSE A boolean value that defaults to TotalSchedulerJobsRunning < 500. The
condor_schedd uses this macro to determine whether to start a scheduler universe job. At intervals determined
by SCHEDD_INTERVAL, the condor_schedd daemon evaluates this macro for each idle scheduler universe job
that it has. For each job, if the START_SCHEDULER_UNIVERSE macro is True, then the job’s Requirements
expression is evaluated. If both conditions are met, then the job is allowed to begin execution.

The following example only allows 10 scheduler universe jobs to execute concurrently. The attribute
TotalSchedulerJobsRunning is supplied by condor_schedd ‘s ClassAd:

START_SCHEDULER_UNIVERSE = TotalSchedulerJobsRunning < 10

4.5. Configuration Macros 253

HTCondor Manual, Release 10.0.9

SCHEDD_USES_STARTD_FOR_LOCAL_UNIVERSE A boolean value that defaults to false. When true, the
condor_schedd will spawn a special startd process to run local universe jobs. This allows local universe jobs to
run with both a condor_shadow and a condor_starter, which means that file transfer will work with local universe
jobs.

MAX_JOBS_RUNNING An integer representing a limit on the number of condor_shadow processes spawned by
a given condor_schedd daemon, for all job universes except grid, scheduler, and local universe. Limiting
the number of running scheduler and local universe jobs can be done using START_LOCAL_UNIVERSE and
START_SCHEDULER_UNIVERSE. The actual number of allowed condor_shadow daemons may be reduced, if
the amount of memory defined by RESERVED_SWAP limits the number of condor_shadow daemons. A value for
MAX_JOBS_RUNNING that is less than or equal to 0 prevents any new job from starting. Changing this setting
to be below the current number of jobs that are running will cause running jobs to be aborted until the number
running is within the limit.

Like all integer configuration variables, MAX_JOBS_RUNNING may be a ClassAd expression that evaluates to an
integer, and which refers to constants either directly or via macro substitution. The default value is an expression
that depends on the total amount of memory and the operating system. The default expression requires 1MByte of
RAM per running job on the submit machine. In some environments and configurations, this is overly generous
and can be cut by as much as 50%. On Windows platforms, the number of running jobs is capped at 2000. A 64-
bit version of Windows is recommended in order to raise the value above the default. Under Unix, the maximum
default is now 10,000. To scale higher, we recommend that the system ephemeral port range is extended such
that there are at least 2.1 ports per running job.

Here are example configurations:

Example 1:
MAX_JOBS_RUNNING = 10000

Example 2:
This is more complicated, but it produces the same limit as the default.
First define some expressions to use in our calculation.
Assume we can use up to 80% of memory and estimate shadow private data
size of 800k.
MAX_SHADOWS_MEM = ceiling($(DETECTED_MEMORY)*0.8*1024/800)
Assume we can use ~21,000 ephemeral ports (avg ~2.1 per shadow).
Under Linux, the range is set in /proc/sys/net/ipv4/ip_local_port_range.
MAX_SHADOWS_PORTS = 10000
Under windows, things are much less scalable, currently.
Note that this can probably be safely increased a bit under 64-bit windows.
MAX_SHADOWS_OPSYS = ifThenElse(regexp("WIN.*","$(OPSYS)"),2000,100000)
Now build up the expression for MAX_JOBS_RUNNING. This is complicated
due to lack of a min() function.
MAX_JOBS_RUNNING = $(MAX_SHADOWS_MEM)
MAX_JOBS_RUNNING = \
ifThenElse($(MAX_SHADOWS_PORTS) < $(MAX_JOBS_RUNNING), \

$(MAX_SHADOWS_PORTS), \
$(MAX_JOBS_RUNNING))

MAX_JOBS_RUNNING = \
ifThenElse($(MAX_SHADOWS_OPSYS) < $(MAX_JOBS_RUNNING), \

$(MAX_SHADOWS_OPSYS), \
$(MAX_JOBS_RUNNING))

MAX_JOBS_SUBMITTED This integer value limits the number of jobs permitted in a condor_schedd daemon’s
queue. Submission of a new cluster of jobs fails, if the total number of jobs would exceed this limit. The default
value for this variable is the largest positive integer value.

254 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

MAX_JOBS_PER_OWNER This integer value limits the number of jobs any given owner (user) is permitted to have
within a condor_schedd daemon’s queue. A job submission fails if it would cause this limit on the number of
jobs to be exceeded. The default value is 100000.

This configuration variable may be most useful in conjunction with MAX_JOBS_SUBMITTED, to ensure that no
one user can dominate the queue.

MAX_RUNNING_SCHEDULER_JOBS_PER_OWNER This integer value limits the number of scheduler uni-
verse jobs that any given owner (user) can have running at one time. This limit will affect the number of running
Dagman jobs, but not the number of nodes within a DAG. The default value is 200

MAX_JOBS_PER_SUBMISSION This integer value limits the number of jobs any single submission is permitted
to add to a condor_schedd daemon’s queue. The whole submission fails if the number of jobs would exceed this
limit. The default value is 20000.

This configuration variable may be useful for catching user error, and for protecting a busy condor_schedd dae-
mon from the excessively lengthy interruption required to accept a very large number of jobs at one time.

MAX_SHADOW_EXCEPTIONS This macro controls the maximum number of times that condor_shadow pro-
cesses can have a fatal error (exception) before the condor_schedd will relinquish the match associated with
the dying shadow. Defaults to 5.

MAX_PENDING_STARTD_CONTACTS An integer value that limits the number of simultaneous connection at-
tempts by the condor_schedd when it is requesting claims from one or more condor_startd daemons. The inten-
tion is to protect the condor_schedd from being overloaded by authentication operations. The default value is 0.
The special value 0 indicates no limit.

CURB_MATCHMAKING A ClassAd expression evaluated by the condor_schedd in the context of the con-
dor_schedd daemon’s own ClassAd. While this expression evaluates to True, the condor_schedd will refrain
from requesting more resources from a condor_negotiator. Defaults to RecentDaemonCoreDutyCycle > 0.
98.

MAX_CONCURRENT_DOWNLOADS This specifies the maximum number of simultaneous transfers of output
files from execute machines to the submit machine. The limit applies to all jobs submitted from the same con-
dor_schedd. The default is 100. A setting of 0 means unlimited transfers. This limit currently does not apply
to grid universe jobs, and it also does not apply to streaming output files. When the limit is reached, additional
transfers will queue up and wait before proceeding.

MAX_CONCURRENT_UPLOADS This specifies the maximum number of simultaneous transfers of input files
from the submit machine to execute machines. The limit applies to all jobs submitted from the same con-
dor_schedd. The default is 100. A setting of 0 means unlimited transfers. This limit currently does not apply to
grid universe jobs. When the limit is reached, additional transfers will queue up and wait before proceeding.

FILE_TRANSFER_DISK_LOAD_THROTTLE This configures throttling of file transfers based on the disk
load generated by file transfers. The maximum number of concurrent file transfers is specified by
MAX_CONCURRENT_UPLOADS and MAX_CONCURRENT_DOWNLOADS . Throttling will dynamically reduce the level
of concurrency further to attempt to prevent disk load from exceeding the specified level. Disk load is computed
as the average number of file transfer processes conducting read/write operations at the same time. The throttle
may be specified as a single floating point number or as a range. Syntax for the range is the smaller number
followed by 1 or more spaces or tabs, the string "to", 1 or more spaces or tabs, and then the larger number.
Example:

FILE_TRANSFER_DISK_LOAD_THROTTLE = 5 to 6.5

If only a single number is provided, this serves as the upper limit, and the lower limit is set to 90% of the upper
limit. When the disk load is above the upper limit, no new transfers will be started. When between the lower and
upper limits, new transfers will only be started to replace ones that finish. The default value is 2.0.

FILE_TRANSFER_DISK_LOAD_THROTTLE_WAIT_BETWEEN_INCREMENTS This rarely con-
figured variable sets the waiting period between increments to the concurrency level set by

4.5. Configuration Macros 255

HTCondor Manual, Release 10.0.9

FILE_TRANSFER_DISK_LOAD_THROTTLE. The default is 1 minute. A value that is too short risks start-
ing too many transfers before their effect on the disk load becomes apparent.

FILE_TRANSFER_DISK_LOAD_THROTTLE_SHORT_HORIZON This rarely configured variable specifies
the string name of the short monitoring time span to use for throttling. The named time span must exist in
TRANSFER_IO_REPORT_TIMESPANS . The default is 1m, which is 1 minute.

FILE_TRANSFER_DISK_LOAD_THROTTLE_LONG_HORIZON This rarely configured variable specifies the
string name of the long monitoring time span to use for throttling. The named time span must exist in
TRANSFER_IO_REPORT_TIMESPANS . The default is 5m, which is 5 minutes.

TRANSFER_QUEUE_USER_EXPR This rarely configured expression specifies the user name to be used for
scheduling purposes in the file transfer queue. The scheduler attempts to give equal weight to each user when
there are multiple jobs waiting to transfer files within the limits set by MAX_CONCURRENT_UPLOADS and/or
MAX_CONCURRENT_DOWNLOADS . When choosing a new job to allow to transfer, the first job belonging to the
transfer queue user who has least number of active transfers will be selected. In case of a tie, the user who has least
recently been given an opportunity to start a transfer will be selected. By default, a transfer queue user is identi-
fied as the job owner. A different user name may be specified by configuring TRANSFER_QUEUE_USER_EXPR to a
string expression that is evaluated in the context of the job ad. For example, if this expression were set to a name
that is the same for all jobs, file transfers would be scheduled in first-in-first-out order rather than equal share
order. Note that the string produced by this expression is used as a prefix in the ClassAd attributes for per-user
file transfer I/O statistics that are published in the condor_schedd ClassAd.

MAX_TRANSFER_INPUT_MB This integer expression specifies the maximum allowed total size in MiB of the
input files that are transferred for a job. This expression does not apply to grid universe, or files transferred
via file transfer plug-ins. The expression may refer to attributes of the job. The special value -1 indicates no
limit. The default value is -1. The job may override the system setting by specifying its own limit using the
MaxTransferInputMB attribute. If the observed size of all input files at submit time is larger than the limit, the
job will be immediately placed on hold with a HoldReasonCode value of 32. If the job passes this initial test,
but the size of the input files increases or the limit decreases so that the limit is violated, the job will be placed
on hold at the time when the file transfer is attempted.

MAX_TRANSFER_OUTPUT_MB This integer expression specifies the maximum allowed total size in MiB of the
output files that are transferred for a job. This expression does not apply to grid universe, or files transferred
via file transfer plug-ins. The expression may refer to attributes of the job. The special value -1 indicates no
limit. The default value is -1. The job may override the system setting by specifying its own limit using the
MaxTransferOutputMB attribute. If the total size of the job’s output files to be transferred is larger than the
limit, the job will be placed on hold with a HoldReasonCode value of 33. The output will be transferred up to
the point when the limit is hit, so some files may be fully transferred, some partially, and some not at all.

MAX_TRANSFER_QUEUE_AGE The number of seconds after which an aged and queued transfer may be de-
queued from the transfer queue, as it is presumably hung. Defaults to 7200 seconds, which is 120 minutes.

TRANSFER_IO_REPORT_INTERVAL The sampling interval in seconds for collecting I/O statistics for file trans-
fer. The default is 10 seconds. To provide sufficient resolution, the sampling interval should be small compared
to the smallest time span that is configured in TRANSFER_IO_REPORT_TIMESPANS. The shorter the sampling in-
terval, the more overhead of data collection, which may slow down the condor_schedd. See Scheduler ClassAd
Attributes for a description of the published attributes.

TRANSFER_IO_REPORT_TIMESPANS A string that specifies a list of time spans over which I/O statistics are
reported, using exponential moving averages (like the 1m, 5m, and 15m load averages in Unix). Each entry
in the list consists of a label followed by a colon followed by the number of seconds over which the named
time span should extend. The default is 1m:60 5m:300 1h:3600 1d:86400. To provide sufficient resolution,
the smallest reported time span should be large compared to the sampling interval, which is configured by
TRANSFER_IO_REPORT_INTERVAL. See Scheduler ClassAd Attributes for a description of the published at-
tributes.

SCHEDD_QUERY_WORKERS This specifies the maximum number of concurrent sub-processes that the con-

256 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

dor_schedd will spawn to handle queries. The setting is ignored in Windows. In Unix, the default is 8. If
the limit is reached, the next query will be handled in the condor_schedd ‘s main process.

CONDOR_Q_USE_V3_PROTOCOL A boolean value that, when True, causes the condor_schedd to use an algorithm that
responds to condor_q requests by not forking itself to handle each request. It instead handles the requests in a
non-blocking way. The default value is True.

CONDOR_Q_DASH_BATCH_IS_DEFAULT A boolean value that, when True, causes condor_q to print the -
batch output unless the -nobatch option is used or the other arguments to condor_q are incompatible with batch
mode. For instance -long is incompatible with -batch. The default value is True.

CONDOR_Q_ONLY_MY_JOBS A boolean value that, when True, causes condor_q to request that only the current
user’s jobs be queried unless the current user is a queue superuser. It also causes the condor_schedd to honor
that request. The default value is True. A value of False in either condor_q or the condor_schedd will result
in the old behavior of querying all jobs.

CONDOR_Q_SHOW_OLD_SUMMARY A boolean value that, when True, causes condor_q to show the old single
line summary totals. When False condor_q will show the new multi-line summary totals.

SCHEDD_INTERVAL This macro determines the maximum interval for both how often the condor_schedd sends a
ClassAd update to the condor_collector and how often the condor_schedd daemon evaluates jobs. It is defined
in terms of seconds and defaults to 300 (every 5 minutes).

ABSENT_SUBMITTER_LIFETIME This macro determines the maximum time that the condor_schedd will re-
member a submitter after the last job for that submitter leaves the queue. It is defined in terms of seconds and
defaults to 1 week.

ABSENT_SUBMITTER_UPDATE_RATE This macro can be used to set the maximum rate at which the con-
dor_schedd sends updates to the condor_collector for submitters that have no jobs in the queue. It is defined in
terms of seconds and defaults to 300 (every 5 minutes).

WINDOWED_STAT_WIDTH The number of seconds that forms a time window within which performance statistics
of the condor_schedd daemon are calculated. Defaults to 300 seconds.

SCHEDD_INTERVAL_TIMESLICE The bookkeeping done by the condor_schedd takes more time when there are
large numbers of jobs in the job queue. However, when it is not too expensive to do this bookkeeping, it is best
to keep the collector up to date with the latest state of the job queue. Therefore, this macro is used to adjust
the bookkeeping interval so that it is done more frequently when the cost of doing so is relatively small, and
less frequently when the cost is high. The default is 0.05, which means the schedd will adapt its bookkeeping
interval to consume no more than 5% of the total time available to the schedd. The lower bound is configured by
SCHEDD_MIN_INTERVAL (default 5 seconds), and the upper bound is configured by SCHEDD_INTERVAL (default
300 seconds).

JOB_START_COUNT This macro works together with the JOB_START_DELAY macro to throttle job starts. The
default and minimum values for this integer configuration variable are both 1.

JOB_START_DELAY This integer-valued macro works together with the JOB_START_COUNT macro to throt-
tle job starts. The condor_schedd daemon starts $(JOB_START_COUNT) jobs at a time, then delays for
$(JOB_START_DELAY) seconds before starting the next set of jobs. This delay prevents a sudden, large load
on resources required by the jobs during their start up phase. The resulting job start rate averages as fast as
($(JOB_START_COUNT)/$(JOB_START_DELAY)) jobs/second. This setting is defined in terms of seconds and
defaults to 0, which means jobs will be started as fast as possible. If you wish to throttle the rate of specific types
of jobs, you can use the job attribute NextJobStartDelay.

MAX_NEXT_JOB_START_DELAY An integer number of seconds representing the maximum allowed value of the
job ClassAd attribute NextJobStartDelay. It defaults to 600, which is 10 minutes.

JOB_STOP_COUNT An integer value representing the number of jobs operated on at one time by the condor_schedd
daemon, when throttling the rate at which jobs are stopped via condor_rm, condor_hold, or condor_vacate_job.
The default and minimum values are both 1. This variable is ignored for grid and scheduler universe jobs.

4.5. Configuration Macros 257

HTCondor Manual, Release 10.0.9

JOB_STOP_DELAY An integer value representing the number of seconds delay utilized by the condor_schedd dae-
mon, when throttling the rate at which jobs are stopped via condor_rm, condor_hold, or condor_vacate_job.
The condor_schedd daemon stops $(JOB_STOP_COUNT) jobs at a time, then delays for $(JOB_STOP_DELAY)
seconds before stopping the next set of jobs. This delay prevents a sudden, large load on resources required
by the jobs when they are terminating. The resulting job stop rate averages as fast as JOB_STOP_COUNT/
JOB_STOP_DELAY jobs per second. This configuration variable is also used during the graceful shutdown of
the condor_schedd daemon. During graceful shutdown, this macro determines the wait time in between request-
ing each condor_shadow daemon to gracefully shut down. The default value is 0, which means jobs will be
stopped as fast as possible. This variable is ignored for grid and scheduler universe jobs.

JOB_IS_FINISHED_COUNT An integer value representing the number of jobs that the condor_schedd will let
permanently leave the job queue each time that it examines the jobs that are ready to do so. The default value is
1.

JOB_IS_FINISHED_INTERVAL The condor_schedd maintains a list of jobs that are ready to permanently leave
the job queue, for example, when they have completed or been removed. This integer-valued macro specifies a
delay in seconds between instances of taking jobs permanently out of the queue. The default value is 0, which
tells the condor_schedd to not impose any delay.

ALIVE_INTERVAL An initial value for an integer number of seconds defining how often the condor_schedd sends a
UDP keep alive message to any condor_startd it has claimed. When the condor_schedd claims a condor_startd,
the condor_schedd tells the condor_startd how often it is going to send these messages. The utilized inter-
val for sending keep alive messages is the smallest of the two values ALIVE_INTERVAL and the expression
JobLeaseDuration/3, formed with the job ClassAd attribute JobLeaseDuration. The value of the inter-
val is further constrained by the floor value of 10 seconds. If the condor_startd does not receive any of these
keep alive messages during a certain period of time (defined via) the condor_startd releases the claim, and the
condor_schedd no longer pays for the resource (in terms of user priority in the system). The macro is defined in
terms of seconds and defaults to 300, which is 5 minutes.

STARTD_SENDS_ALIVES Note: This setting is deprecated, and may go away in a future version of HTCondor. This
setting is mainly useful when running mixing very old condor_schedd daemons with newer pools. A boolean
value that defaults to True, causing keep alive messages to be sent from the condor_startd to the condor_schedd
by TCP during a claim. When False, the condor_schedd daemon sends keep alive signals to the condor_startd,
reversing the direction. If both condor_startd and condor_schedd daemons are HTCondor version 7.5.4 or more
recent, this variable is only used by the condor_schedd daemon. For earlier HTCondor versions, the variable
must be set to the same value, and it must be set for both daemons.

REQUEST_CLAIM_TIMEOUT This macro sets the time (in seconds) that the condor_schedd will wait for a
claim to be granted by the condor_startd. The default is 30 minutes. This is only likely to matter if
NEGOTIATOR_CONSIDER_EARLY_PREEMPTION is True, and the condor_startd has an existing claim, and it takes
a long time for the existing claim to be preempted due to MaxJobRetirementTime. Once a request times out,
the condor_schedd will simply begin the process of finding a machine for the job all over again.

Normally, it is not a good idea to set this to be very small, where a small value is a few minutes. Doing so can
lead to failure to preempt, because the preempting job will spend a significant fraction of its time waiting to be
re-matched. During that time, it would miss out on any opportunity to run if the job it is trying to preempt gets
out of the way.

SHADOW_SIZE_ESTIMATE The estimated private virtual memory size of each condor_shadow process in KiB.
This value is only used if RESERVED_SWAP is non-zero. The default value is 800.

SHADOW_RENICE_INCREMENT When the condor_schedd spawns a new condor_shadow, it can do so with a
nice-level. A nice-level is a Unix mechanism that allows users to assign their own processes a lower priority so
that the processes run with less priority than other tasks on the machine. The value can be any integer between
0 and 19, with a value of 19 being the lowest priority. It defaults to 0.

SCHED_UNIV_RENICE_INCREMENT Analogous to JOB_RENICE_INCREMENT and
SHADOW_RENICE_INCREMENT, scheduler universe jobs can be given a nice-level. The value can be any

258 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

integer between 0 and 19, with a value of 19 being the lowest priority. It defaults to 0.

QUEUE_CLEAN_INTERVAL The condor_schedd maintains the job queue on a given machine. It does so in a
persistent way such that if the condor_schedd crashes, it can recover a valid state of the job queue. The mechanism
it uses is a transaction-based log file (the job_queue.log file, not the SchedLog file). This file contains an initial
state of the job queue, and a series of transactions that were performed on the queue (such as new jobs submitted,
jobs completing, and checkpointing). Periodically, the condor_schedd will go through this log, truncate all the
transactions and create a new file with containing only the new initial state of the log. This is a somewhat
expensive operation, but it speeds up when the condor_schedd restarts since there are fewer transactions it has
to play to figure out what state the job queue is really in. This macro determines how often the condor_schedd
should rework this queue to cleaning it up. It is defined in terms of seconds and defaults to 86400 (once a day).

WALL_CLOCK_CKPT_INTERVAL The job queue contains a counter for each job’s “wall clock” run time, i.e.,
how long each job has executed so far. This counter is displayed by condor_q. The counter is updated when the
job is evicted or when the job completes. When the condor_schedd crashes, the run time for jobs that are currently
running will not be added to the counter (and so, the run time counter may become smaller than the CPU time
counter). The condor_schedd saves run time “checkpoints” periodically for running jobs so if the condor_schedd
crashes, only run time since the last checkpoint is lost. This macro controls how often the condor_schedd saves
run time checkpoints. It is defined in terms of seconds and defaults to 3600 (one hour). A value of 0 will disable
wall clock checkpoints.

QUEUE_ALL_USERS_TRUSTED Defaults to False. If set to True, then unauthenticated users are allowed to write
to the queue, and also we always trust whatever the Owner value is set to be by the client in the job ad. This was
added so users can continue to use the SOAP web-services interface over HTTP (w/o authenticating) to submit
jobs in a secure, controlled environment - for instance, in a portal setting.

QUEUE_SUPER_USERS A comma and/or space separated list of user names on a given machine that are given
super-user access to the job queue, meaning that they can modify or delete the job ClassAds of other users.
These should be of form USER@DOMAIN; if the domain is not present in the username, HTCondor will assume
the default UID_DOMAIN. When not on this list, users can only modify or delete their own ClassAds from the
job queue. Whatever user name corresponds with the UID that HTCondor is running as - usually user condor -
will automatically be included in this list, because that is needed for HTCondor’s proper functioning. See User
Accounts in HTCondor on Unix Platforms on UIDs in HTCondor for more details on this. By default, the Unix
user root and the Windows user administrator are given the ability to remove other user’s jobs, in addition to user
condor. In addition to a single user, Unix user groups may be specified by using a special syntax defined for this
configuration variable; the syntax is the percent character (%) followed by the user group name. All members of
the user group are given super-user access.

QUEUE_SUPER_USER_MAY_IMPERSONATE A regular expression that matches the operating system user
names (that is, job owners in the form USER) that the queue super user may impersonate when managing jobs. This
allows the admin to limit the operating system users a super user can launch jobs as. When not set, the default be-
havior is to allow impersonation of any user who has had a job in the queue during the life of the condor_schedd.
For proper functioning of the condor_shadow, the condor_gridmanager, and the condor_job_router, this ex-
pression, if set, must match the owner names of all jobs that these daemons will manage. Note that a regular
expression that matches only part of the user name is still considered a match. If acceptance of partial matches
is not desired, the regular expression should begin with ^ and end with $.

SYSTEM_JOB_MACHINE_ATTRS This macro specifies a space and/or comma separated list of machine attributes
that should be recorded in the job ClassAd. The default attributes are Cpus and SlotWeight. When there are
multiple run attempts, history of machine attributes from previous run attempts may be kept. The number of run
attempts to store is specified by the configuration variable SYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH . A
machine attribute named Xwill be inserted into the job ClassAd as an attribute named MachineAttrX0. The pre-
vious value of this attribute will be named MachineAttrX1, the previous to that will be named MachineAttrX2,
and so on, up to the specified history length. A history of length 1 means that only MachineAttrX0 will be
recorded. Additional attributes to record may be specified on a per-job basis by using the job_machine_attrs
submit file command. The value recorded in the job ClassAd is the evaluation of the machine attribute in the
context of the job ClassAd when the condor_schedd daemon initiates the start up of the job. If the evaluation

4.5. Configuration Macros 259

HTCondor Manual, Release 10.0.9

results in an Undefined or Error result, the value recorded in the job ClassAd will be Undefined or Error
respectively.

SYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH The integer number of run attempts to store in the
job ClassAd when recording the values of machine attributes listed in SYSTEM_JOB_MACHINE_ATTRS . The
default is 1. The history length may also be extended on a per-job basis by using the submit file command
job_machine_attrs_history_length . The larger of the system and per-job history lengths will be used. A
history length of 0 disables recording of machine attributes.

SCHEDD_LOCK This macro specifies what lock file should be used for access to the SchedLog file. It must be a
separate file from the SchedLog, since the SchedLogmay be rotated and synchronization across log file rotations
is desired. This macro is defined relative to the $(LOCK) macro.

SCHEDD_NAME Used to give an alternative value to the Name attribute in the condor_schedd ‘s ClassAd.

See the description of for defaults and composition of valid HTCondor daemon names.

SCHEDD_ATTRS This macro is described in .

SCHEDD_DEBUG This macro (and other settings related to debug logging in the condor_schedd) is described in .

SCHEDD_ADDRESS_FILE This macro is described in .

SCHEDD_EXECUTE A directory to use as a temporary sandbox for local universe jobs. Defaults to
$(SPOOL)/execute.

FLOCK_NEGOTIATOR_HOSTS Defines a comma and/or space separated list of condor_negotiator host names
for pools in which the condor_schedd should attempt to run jobs. If not set, the condor_schedd will query the con-
dor_collector daemons for the addresses of the condor_negotiator daemons. If set, then the condor_negotiator
daemons must be specified in order, corresponding to the list set by FLOCK_COLLECTOR_HOSTS. In the typ-
ical case, where each pool has the condor_collector and condor_negotiator running on the same machine,
$(FLOCK_NEGOTIATOR_HOSTS) should have the same definition as $(FLOCK_COLLECTOR_HOSTS). This con-
figuration value is also typically used as a macro for adding the condor_negotiator to the relevant authorization
lists.

FLOCK_COLLECTOR_HOSTS This macro defines a list of collector host names (not including the local
$(COLLECTOR_HOST) machine) for pools in which the condor_schedd should attempt to run jobs. Hosts in
the list should be in order of preference. The condor_schedd will only send a request to a central manager in the
list if the local pool and pools earlier in the list are not satisfying all the job requests. must also be configured
to allow negotiators from all of the pools to contact the condor_schedd at the NEGOTIATOR authorization level.
Similarly, the central managers of the remote pools must be configured to allow this condor_schedd to join the
pool (this requires ADVERTISE_SCHEDD authorization level, which defaults to WRITE).

FLOCK_INCREMENT This integer value controls how quickly flocking to various pools will occur. It defaults
to 1, meaning that pools will be considered for flocking slowly. The first condor_collector daemon listed in
FLOCK_COLLECTOR_HOSTS will be considered for flocking, and then the second, and so on. A larger value
increases the number of condor_collector daemons to be considered for flocking. For example, a value of 2 will
partition the FLOCK_COLLECTOR_HOSTS into sets of 2 condor_collector daemons, and each set will be considered
for flocking.

MIN_FLOCK_LEVEL This integer value specifies a number of remote pools that the condor_schedd should always
flock to. It defaults to 0, meaning that none of the pools listed in FLOCK_COLLECTOR_HOSTS will be considered
for flocking when there are no idle jobs in need of match-making. Setting a larger value N means the con-
dor_schedd will always flock to (i.e. look for matches in) the first N pools listed in FLOCK_COLLECTOR_HOSTS.

NEGOTIATE_ALL_JOBS_IN_CLUSTER If this macro is set to False (the default), when the condor_schedd fails
to start an idle job, it will not try to start any other idle jobs in the same cluster during that negotiation cycle. This
makes negotiation much more efficient for large job clusters. However, in some cases other jobs in the cluster can
be started even though an earlier job can’t. For example, the jobs’ requirements may differ, because of different
disk space, memory, or operating system requirements. Or, machines may be willing to run only some jobs in

260 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

the cluster, because their requirements reference the jobs’ virtual memory size or other attribute. Setting this
macro to True will force the condor_schedd to try to start all idle jobs in each negotiation cycle. This will make
negotiation cycles last longer, but it will ensure that all jobs that can be started will be started.

PERIODIC_EXPR_INTERVAL This macro determines the minimum period, in seconds, between evaluation of
periodic job control expressions, such as periodic_hold, periodic_release, and periodic_remove, given by the
user in an HTCondor submit file. By default, this value is 60 seconds. A value of 0 prevents the condor_schedd
from performing the periodic evaluations.

MAX_PERIODIC_EXPR_INTERVAL This macro determines the maximum period, in seconds, between evalua-
tion of periodic job control expressions, such as periodic_hold, periodic_release, and periodic_remove, given
by the user in an HTCondor submit file. By default, this value is 1200 seconds. If HTCondor is behind on
processing events, the actual period between evaluations may be higher than specified.

PERIODIC_EXPR_TIMESLICE This macro is used to adapt the frequency with which the condor_schedd eval-
uates periodic job control expressions. When the job queue is very large, the cost of evaluating all of the
ClassAds is high, so in order for the condor_schedd to continue to perform well, it makes sense to evalu-
ate these expressions less frequently. The default time slice is 0.01, so the condor_schedd will set the inter-
val between evaluations so that it spends only 1% of its time in this activity. The lower bound for the inter-
val is configured by PERIODIC_EXPR_INTERVAL (default 60 seconds) and the upper bound is configured with
MAX_PERIODIC_EXPR_INTERVAL (default 1200 seconds).

SYSTEM_PERIODIC_HOLD_NAMES A comma and/or space separated list of unique names, where each is used
in the formation of a configuration variable name that will contain an expression that will be periodically eval-
uated for each job that is not in the HELD, COMPLETED, or REMOVED state. Each name in the list will be used in
the name of configuration variable SYSTEM_PERIODIC_HOLD_<Name>. The named expressions are evaluated in
the order in which names appear in this list. Names are not case-sensitive. After all of the named expressions
are evaluated, the nameless SYSTEM_PERIODIC_HOLD expression will be evaluated. If any of these expression
evaluates to True the job will be held. See also SYSTEM_PERIODIC_HOLD There is no default value.

SYSTEM_PERIODIC_HOLD and SYSTEM_PERIODIC_HOLD_<Name> This expression behaves identically
to the job expression periodic_hold, but it is evaluated for every job in the queue. It defaults to False. When
True, it causes the job to stop running and go on hold. Here is an example that puts jobs on hold if they have
been restarted too many times, have an unreasonably large virtual memory ImageSize, or have unreasonably
large disk usage for an invented environment.

if version > 9.5
use hold names if the version supports it
SYSTEM_PERIODIC_HOLD_NAMES = Mem Disk
SYSTEM_PERIODIC_HOLD_Mem = ImageSize > 3000000
SYSTEM_PERIODIC_HOLD_Disk = JobStatus == 2 && DiskUsage > 10000000
SYSTEM_PERIODIC_HOLD = JobStatus == 1 && JobRunCount > 10

else
SYSTEM_PERIODIC_HOLD = \

(JobStatus == 1 || JobStatus == 2) && \
(JobRunCount > 10 || ImageSize > 3000000 || DiskUsage > 10000000)

endif

SYSTEM_PERIODIC_HOLD_REASON and SYSTEM_PERIODIC_HOLD_<Name>_REASON This
string expression is evaluated when the job is placed on hold due to SYSTEM_PERIODIC_HOLD or
SYSTEM_PERIODIC_HOLD_<Name> evaluating to True. If it evaluates to a non-empty string, this value is
used to set the job attribute HoldReason. Otherwise, a default description is used.

SYSTEM_PERIODIC_HOLD_SUBCODE and SYSTEM_PERIODIC_HOLD_<Name>_SUBCODE This in-
teger expression is evaluated when the job is placed on hold due to SYSTEM_PERIODIC_HOLD or
SYSTEM_PERIODIC_HOLD_<Name> evaluating to True. If it evaluates to a valid integer, this value is used to
set the job attribute HoldReasonSubCode. Otherwise, a default of 0 is used. The attribute HoldReasonCode is

4.5. Configuration Macros 261

HTCondor Manual, Release 10.0.9

set to 26, which indicates that the job went on hold due to a system job policy expression.

SYSTEM_PERIODIC_RELEASE_NAMES A comma and/or space separated list of unique names, where each is
used in the formation of a configuration variable name that will contain an expression that will be periodically
evaluated for each job that is in the HELD state (jobs with a HoldReasonCode value of 1 are ignored). Each name
in the list will be used in the name of configuration variable SYSTEM_PERIODIC_RELEASE_<Name>. The named
expressions are evaluated in the order in which names appear in this list. Names are not case-sensitive. After all of
the named expressions are evaluated, the nameless SYSTEM_PERIODIC_RELEASE expression will be evaluated.
If any of these expressions evaluates to True the job will be released. See also SYSTEM_PERIODIC_RELEASE
There is no default value.

SYSTEM_PERIODIC_RELEASE and SYSTEM_PERIODIC_RELEASE_<Name> This expression behaves
identically to a job’s definition of a periodic_release expression in a submit description file, but it is evalu-
ated for every job in the queue. It defaults to False. When True, it causes a Held job to return to the Idle state.
Here is an example that releases jobs from hold if they have tried to run less than 20 times, have most recently
been on hold for over 20 minutes, and have gone on hold due to Connection timed outwhen trying to execute
the job, because the file system containing the job’s executable is temporarily unavailable.

SYSTEM_PERIODIC_RELEASE = \
(JobRunCount < 20 && (time() - EnteredCurrentStatus) > 1200) && \
(HoldReasonCode == 6 && HoldReasonSubCode == 110)

SYSTEM_PERIODIC_REMOVE_NAMES A comma and/or space separated list of unique names, where each is
used in the formation of a configuration variable name that will contain an expression that will be periodically
evaluated for each job in the queue. Each name in the list will be used in the name of configuration variable
SYSTEM_PERIODIC_REMOVE_<Name>. The named expressions are evaluated in the order in which names ap-
pear in this list. Names are not case-sensitive. After all of the named expressions are evaluated, the nameless
SYSTEM_PERIODIC_REMOVE expression will be evaluated. If any of these expressions evaluates to True the job
will be removed from the queue. See also SYSTEM_PERIODIC_REMOVE There is no default value.

SYSTEM_PERIODIC_REMOVE and SYSTEM_PERIODIC_REMOVE_<Name> This expression behaves
identically to the job expression periodic_remove, but it is evaluated for every job in the queue. As it is in
the configuration file, it is easy for an administrator to set a remove policy that applies to all jobs. It defaults
to False. When True, it causes the job to be removed from the queue. Here is an example that removes jobs
which have been on hold for 30 days:

SYSTEM_PERIODIC_REMOVE = \
(JobStatus == 5 && time() - EnteredCurrentStatus > 3600*24*30)

SCHEDD_ASSUME_NEGOTIATOR_GONE This macro determines the period, in seconds, that the con-
dor_schedd will wait for the condor_negotiator to initiate a negotiation cycle before the schedd will simply
try to claim any local condor_startd. This allows for a machine that is acting as both a submit and execute node
to run jobs locally if it cannot communicate with the central manager. The default value, if not specified, is
2,000,000 seconds (effectively never). If this feature is desired, we recommend setting it to some small multiple
of the negotiation cycle, say, 1200 seconds, or 20 minutes.

GRACEFULLY_REMOVE_JOBS A boolean value defaulting to True. If True, jobs will be given a chance to shut
down cleanly when removed. In the vanilla universe, this means that the job will be sent the signal set in its
SoftKillSig attribute, or SIGTERM if undefined; if the job hasn’t exited after its max vacate time, it will be
hard-killed (sent SIGKILL). Signals are different on Windows, and other details differ between universes.

The submit command want_graceful_removal overrides this configuration variable.

See for details on how HTCondor computes the job’s max vacate time.

SCHEDD_ROUND_ATTR_<xxxx> This is used to round off attributes in the job ClassAd so that similar jobs may
be grouped together for negotiation purposes. There are two cases. One is that a percentage such as 25% is
specified. In this case, the value of the attribute named <xxxx>\ in the job ClassAd will be rounded up to the

262 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

next multiple of the specified percentage of the values order of magnitude. For example, a setting of 25% will
cause a value near 100 to be rounded up to the next multiple of 25 and a value near 1000 will be rounded up to
the next multiple of 250. The other case is that an integer, such as 4, is specified instead of a percentage. In this
case, the job attribute is rounded up to the specified number of decimal places. Replace <xxxx> with the name
of the attribute to round, and set this macro equal to the number of decimal places to round up. For example, to
round the value of job ClassAd attribute foo up to the nearest 100, set

SCHEDD_ROUND_ATTR_foo = 2

When the schedd rounds up an attribute value, it will save the raw (un-rounded) actual value in an attribute
with the same name appended with “_RAW”. So in the above example, the raw value will be stored in attribute
foo_RAW in the job ClassAd. The following are set by default:

SCHEDD_ROUND_ATTR_ResidentSetSize = 25%
SCHEDD_ROUND_ATTR_ProportionalSetSizeKb = 25%
SCHEDD_ROUND_ATTR_ImageSize = 25%
SCHEDD_ROUND_ATTR_ExecutableSize = 25%
SCHEDD_ROUND_ATTR_DiskUsage = 25%
SCHEDD_ROUND_ATTR_NumCkpts = 4

Thus, an ImageSize near 100MB will be rounded up to the next multiple of 25MB. If your batch slots have less
memory or disk than the rounded values, it may be necessary to reduce the amount of rounding, because the job
requirements will not be met.

SCHEDD_BACKUP_SPOOL A boolean value that, when True, causes the condor_schedd to make a backup of the
job queue as it starts. When True, the condor_schedd creates a host-specific backup of the current spool file to
the spool directory. This backup file will be overwritten each time the condor_schedd starts. Defaults to False.

SCHEDD_PREEMPTION_REQUIREMENTS This boolean expression is utilized only for machines allocated by
a dedicated scheduler. When True, a machine becomes a candidate for job preemption. This configuration
variable has no default; when not defined, preemption will never be considered.

SCHEDD_PREEMPTION_RANK This floating point value is utilized only for machines allocated by a dedicated
scheduler. It is evaluated in context of a job ClassAd, and it represents a machine’s preference for running a job.
This configuration variable has no default; when not defined, preemption will never be considered.

ParallelSchedulingGroup For parallel jobs which must be assigned within a group of machines (and not cross group
boundaries), this configuration variable is a string which identifies a group of which this machine is a member.
Each machine within a group sets this configuration variable with a string that identifies the group.

PER_JOB_HISTORY_DIR If set to a directory writable by the HTCondor user, when a job leaves the condor_schedd
‘s queue, a copy of the job’s ClassAd will be written in that directory. The files are named history, with the
job’s cluster and process number appended. For example, job 35.2 will result in a file named history.35.2.
HTCondor does not rotate or delete the files, so without an external entity to clean the directory, it can grow very
large. This option defaults to being unset. When not set, no files are written.

DEDICATED_SCHEDULER_USE_FIFO When this parameter is set to true (the default), parallel universe jobs
will be scheduled in a first-in, first-out manner. When set to false, parallel jobs are scheduled using a best-fit
algorithm. Using the best-fit algorithm is not recommended, as it can cause starvation.

DEDICATED_SCHEDULER_WAIT_FOR_SPOOLER A boolean value that when True, causes the dedicated
scheduler to schedule parallel universe jobs in a very strict first-in, first-out manner. When the default value
of False, parallel jobs that are being remotely submitted to a scheduler and are on hold, waiting for spooled
input files to arrive at the scheduler, will not block jobs that arrived later, but whose input files have finished
spooling. When True, jobs with larger cluster IDs, but that are in the Idle state will not be scheduled to run until
all earlier jobs have finished spooling in their input files and have been scheduled.

4.5. Configuration Macros 263

HTCondor Manual, Release 10.0.9

SCHEDD_SEND_VACATE_VIA_TCP A boolean value that defaults to True. When True, the condor_schedd
daemon sends vacate signals via TCP, instead of the default UDP.

SCHEDD_CLUSTER_INITIAL_VALUE An integer that specifies the initial cluster number value to use
within a job id when a job is first submitted. If the job cluster number reaches the value set by
SCHEDD_CLUSTER_MAXIMUM_VALUE and wraps, it will be re-set to the value given by this variable. The de-
fault value is 1.

SCHEDD_CLUSTER_INCREMENT_VALUE A positive integer that defaults to 1, representing a stride used for
the assignment of cluster numbers within a job id. When a job is submitted, the job will be assigned a job id.
The cluster number of the job id will be equal to the previous cluster number used plus the value of this variable.

SCHEDD_CLUSTER_MAXIMUM_VALUE An integer that specifies an upper bound on assigned job cluster id
values. For value M, the maximum job cluster id assigned to any job will be M - 1. When the maximum id is
reached, cluster ids will continue assignment using SCHEDD_CLUSTER_INITIAL_VALUE. The default value of
this variable is zero, which represents the behavior of having no maximum cluster id value.

Note that HTCondor does not check for nor take responsibility for duplicate cluster ids for queued jobs. If
SCHEDD_CLUSTER_MAXIMUM_VALUE is set to a non-zero value, the system administrator is responsible for ensur-
ing that older jobs do not stay in the queue long enough for cluster ids of new jobs to wrap around and reuse the
same id. With a low enough value, it is possible for jobs to be erroneously assigned duplicate cluster ids, which
will result in a corrupt job queue.

SCHEDD_JOB_QUEUE_LOG_FLUSH_DELAY An integer which specifies an upper bound in seconds on how
long it takes for changes to the job ClassAd to be visible to the HTCondor Job Router. The default is 5 seconds.

ROTATE_HISTORY_DAILY A boolean value that defaults to False. When True, the history file will be rotated
daily, in addition to the rotations that occur due to the definition of MAX_HISTORY_LOG that rotate due to size.

ROTATE_HISTORY_MONTHLY A boolean value that defaults to False. When True, the history file will be
rotated monthly, in addition to the rotations that occur due to the definition of MAX_HISTORY_LOG that rotate due
to size.

SCHEDD_COLLECT_STATS_FOR_<Name> A boolean expression that when True creates a set of con-
dor_schedd ClassAd attributes of statistics collected for a particular set. These attributes are named using the
prefix of <Name>. The set includes each entity for which this expression is True. As an example, assume that
condor_schedd statistics attributes are to be created for only user Einstein’s jobs. Defining

SCHEDD_COLLECT_STATS_FOR_Einstein = (Owner=="einstein")

causes the creation of the set of statistics attributes with names such as EinsteinJobsCompleted and
EinsteinJobsCoredumped.

SCHEDD_COLLECT_STATS_BY_<Name> Defines a string expression. The evaluated string is used in the naming
of a set of condor_schedd statistics ClassAd attributes. The naming begins with <Name>, an underscore character,
and the evaluated string. Each character not permitted in an attribute name will be converted to the underscore
character. For example,

SCHEDD_COLLECT_STATS_BY_Host = splitSlotName(RemoteHost)[1]

a set of statistics attributes will be created and kept. If the string expression were to evaluate to "storm.04.cs.
wisc.edu", the names of two of these attributes will be Host_storm_04_cs_wisc_edu_JobsCompleted and
Host_storm_04_cs_wisc_edu_JobsCoredumped.

SCHEDD_EXPIRE_STATS_BY_<Name> The number of seconds after which the condor_schedd daemon will stop
collecting and discard the statistics for a subset identified by <Name>, if no event has occurred to cause any counter
or statistic for the subset to be updated. If this variable is not defined for a particular <Name>, then the default
value will be 60*60*24*7, which is one week’s time.

264 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

SIGNIFICANT_ATTRIBUTES A comma and/or space separated list of job ClassAd attributes that are to be added
to the list of attributes for determining the sets of jobs considered as a unit (an auto cluster) in negotiation, when
auto clustering is enabled. When defined, this list replaces the list that the condor_negotiator would define based
upon machine ClassAds.

ADD_SIGNIFICANT_ATTRIBUTES A comma and/or space separated list of job ClassAd attributes that will al-
ways be added to the list of attributes that the condor_negotiator defines based upon machine ClassAds, for
determining the sets of jobs considered as a unit (an auto cluster) in negotiation, when auto clustering is enabled.

REMOVE_SIGNIFICANT_ATTRIBUTES A comma and/or space separated list of job ClassAd attributes that are
removed from the list of attributes that the condor_negotiator defines based upon machine ClassAds, for deter-
mining the sets of jobs considered as a unit (an auto cluster) in negotiation, when auto clustering is enabled.

SCHEDD_SEND_RESCHEDULE A boolean value which defaults to true. Set to false for schedds like those in the
HTCondor-CE that have no negotiator associated with them, in order to reduce spurious error messages in the
SchedLog file.

SCHEDD_AUDIT_LOG The path and file name of the condor_schedd log that records user-initiated commands that
modify the job queue. If not defined, there will be no condor_schedd audit log.

MAX_SCHEDD_AUDIT_LOG Controls the maximum amount of time that a log will be allowed to grow. When
it is time to rotate a log file, it will be saved to a file with an ISO timestamp suffix. The oldest rotated file
receives the file name suffix .old. The .old files are overwritten each time the maximum number of rotated
files (determined by the value of MAX_NUM_SCHEDD_AUDIT_LOG) is exceeded. A value of 0 specifies that the file
may grow without bounds. The following suffixes may be used to qualify the integer:

Sec for seconds Min for minutes Hr for hours Day for days Wk for weeks

MAX_NUM_SCHEDD_AUDIT_LOG The integer that controls the maximum number of rotations that the con-
dor_schedd audit log is allowed to perform, before the oldest one will be rotated away. The default value is
1.

SCHEDD_USE_SLOT_WEIGHT A boolean that defaults to False. When True, the condor_schedd does use
configuration variable SLOT_WEIGHT to weight running and idle job counts in the submitter ClassAd.

EXTENDED_SUBMIT_COMMANDS A long form ClassAd that defines extended submit commands and their as-
sociated job ad attributes for a specific Schedd. condor_submit will query the destination schedd for this ClassAd
and use it to modify the internal table of submit commands before interpreting the submit file.

Each entry in this ClassAd will define a new submit command, the value will indicate the required data type to
the submit file parser with the data type given by example from the value according to this list of types

• string-list - a quoted string containing a comma. e.g. "a,b". string-list values are converted to canonical
form.

• filename - a quoted string beginning with the word file. e.g. "filename". filename values are converted
to fully qualified file paths using the same rules as other submit filenames.

• string - a quoted string that does not match the above special rules. e.g. "string". string values can be
provided quoted or unquoted in the submit file. Unquoted values will have leading and trailing whitespace
removed.

• unsigned-integer - any non-negative integer e.g. 0. unsigned-integer values are evaluated as expressions
and submit will fail if the result does not convert to an unsigned integer. A simple integer value will be
stored in the job.

• integer - any negative integer e.g. -1. integer values are evaluated as expressions and submit will fail if the
result does not convert to an integer. A simple integer value will be stored in the job.

• boolean - any boolean value e.g. true. boolean values are evaluated as expressions and submit will fail if
the result does not convert to true or false.

4.5. Configuration Macros 265

HTCondor Manual, Release 10.0.9

• expression - any expression or floating point number that is not one of the above. e.g. a+b. expression
values will be parsed as a classad expression and stored in the job.

• error - the literal error will tell submit to generate an error when the command is used. this provides a
way for admins to disable existing submit commands.

• undefined - the literal undefined will be treated by condor_submit as if that attribute is not in this ad. This
is intended to aid composability of this ad across multiple configuration files.

The following example will add four new submit commands and disable the use of the the
accounting_group_user submit command.

EXTENDED_SUBMIT_COMMANDS @=end
LongJob = true
Project = "string"
FavoriteFruit = "a,b"
SomeFile = "filename"
acounting_group_user = error

@end

EXTENDED_SUBMIT_HELPFILE A URL or file path to text describing how the condor_schedd extends the sub-
mit schema. Use this to document for users the extended submit commands defined by the configuration variable
EXTENDED_SUBMIT_COMMANDS. condor_submit will display this URL or the text of this file when the user uses
the -capabilities option.

SUBMIT_TEMPLATE_NAMES A comma and/or space separated list of unique names, where each is used in the
formation of a configuration variable name that will contain a set of submit commands. Each name in the
list will be used in the name of the configuration variable SUBMIT_TEMPLATE_<Name>. Names are not case-
sensitive. There is no default value. Submit templates are used by condor_submit when parsing submit files, so
administrators or users can add submit templates to the configuration of condor_submit to customize the schema
or to simplify the creation of submit files.

SUBMIT_TEMPLATE_<Name> A single submit template containing one or more submit commands. The template
can be invoked with or without arguments. The template can refer arguments by number using the $(<N>)where
<N> is a value from 0 thru 9. $(0) expands to all of the arguments, $(1) to the first argument, $(2) to the second
argument, and so on. The argument number can be followed by ? to test if the argument was specfied, or by + to
expand to that argument and all subsequent arguments. Thus $(0) and $(1+) will expand to the same thing.

For example:

SUBMIT_TEMPLATE_NAMES = $(SUBMIT_TEMPLATE_NAMES) Slurm
SUBMIT_TEMPLATE_Slurm @=tpl

if ! $(1?)
error : Template:Slurm requires at least 1 argument - Slurm(project, [queue [,

→˓ resource_args...])
endif
universe = Grid
grid_resource = batch slurm $(3)
batch_project = $(1)
batch_queue = $(2:Default)

@tpl

This could be used in a submit file in this way:

use template : Slurm(Blue Book)

JOB_TRANSFORM_NAMES A comma and/or space separated list of unique names, where each is used in the for-
mation of a configuration variable name that will contain a set of rules governing the transformation of jobs during

266 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

submission. Each name in the list will be used in the name of configuration variable JOB_TRANSFORM_<Name>.
Transforms are applied in the order in which names appear in this list. Names are not case-sensitive. There is no
default value.

JOB_TRANSFORM_<Name> A single job transform specified as a set of transform rules. The syntax for
these rules is specified in ClassAd Transforms The transform rules are applied to jobs that match the
transform’s REQUIREMENTS expression as they are submitted. <Name> corresponds to a name listed in
JOB_TRANSFORM_NAMES. Names are not case-sensitive. There is no default value. For jobs submitted as late
materialization factories, the factory Cluster ad is transformed at submit time. When job ads are later material-
ized, attribute values set by the transform will override values set by the job factory for those attributes.

SUBMIT_REQUIREMENT_NAMES A comma and/or space separated list of unique names, where each is used
in the formation of a configuration variable name that will represent an expression evaluated to decide whether
or not to reject a job submission. Each name in the list will be used in the name of configuration variable
SUBMIT_REQUIREMENT_<Name>. There is no default value.

SUBMIT_REQUIREMENT_<Name> A boolean expression evaluated in the context of the condor_schedd daemon
ClassAd, which is the SCHEDD. or MY. name space and the job ClassAd, which is the JOB. or TARGET. name
space. When False, it causes the condor_schedd to reject the submission of the job or cluster of jobs. <Name>
corresponds to a name listed in SUBMIT_REQUIREMENT_NAMES. There is no default value.

SUBMIT_REQUIREMENT_<Name>_REASON An expression that evaluates to a string, to be printed for the job
submitter when SUBMIT_REQUIREMENT_<Name> evaluates to False and the condor_schedd rejects the job.
There is no default value.

SCHEDD_RESTART_REPORT The complete path to a file that will be written with report information. The report
is written when the condor_schedd starts. It contains statistics about its attempts to reconnect to the condor_startd
daemons for all jobs that were previously running. The file is updated periodically as reconnect attempts succeed
or fail. Once all attempts have completed, a copy of the report is emailed to address specified by CONDOR_ADMIN.
The default value is $(LOG)/ScheddRestartReport. If a blank value is set, then no report is written or emailed.

JOB_SPOOL_PERMISSIONS Control the permissions on the job’s spool directory. Defaults to user which sets
permissions to 0700. Possible values are user, group, and world. If set to group, then the directory is group-
accessible, with permissions set to 0750. If set to world, then the directory is created with permissions set to
0755.

CHOWN_JOB_SPOOL_FILES Prior to HTCondor 8.5.0 on unix, the condor_schedd would chown job files in the
SPOOL directory between the condor account and the account of the job submitter. Now, these job files are
always owned by the job submitter by default. To restore the older behavior, set this parameter to True. The
default value is False.

IMMUTABLE_JOB_ATTRS A comma and/or space separated list of attributes provided by the administrator that
cannot be changed, once they have committed values. No attributes are in this list by default.

SYSTEM_IMMUTABLE_JOB_ATTRS A predefined comma and/or space separated list of attributes that cannot
be changed, once they have committed values. The hard-coded value is: Owner ClusterId ProcId MyType
TargetType.

PROTECTED_JOB_ATTRS A comma and/or space separated list of attributes provided by the administrator that
can only be altered by the queue super-user, once they have committed values. No attributes are in this list by
default.

SYSTEM_PROTECTED_JOB_ATTRS A predefined comma and/or space separated list of attributes that can only
be altered by the queue super-user, once they have committed values. The hard-code value is empty.

ALTERNATE_JOB_SPOOL A ClassAd expression evaluated in the context of the job ad. If the result is a string, the
value is used an an alternate spool directory under which the job’s files will be stored. This alternate directory
must already exist and have the same file ownership and permissions as the main SPOOL directory. Care must be
taken that the value won’t change during the lifetime of each job.

4.5. Configuration Macros 267

HTCondor Manual, Release 10.0.9

<OAuth2Service>_CLIENT_ID The client ID string for an OAuth2 service named <OAuth2Service>. The client
ID is passed on to the condor_credmon_oauth when a job requests OAuth2 credentials for a configured OAuth2
service.

<OAuth2Service>_CLIENT_SECRET_FILE The path to the file containing the client secret string for an OAuth2
service named <OAuth2Service>. The client secret is passed on to the condor_credmon_oauth when a job
requests OAuth2 credentials for a configured OAuth2 service.

<OAuth2Service>_RETURN_URL_SUFFIX The path (https://<hostname>/<path>) that an OAuth2 service
named <OAuth2Service> should be directed when returning after a user permits the submit host access to their
account. Most often, this should be set to name of the OAuth2 service (e.g. box, gdrive, onedrive, etc.). The
derived return URL is passed on to the condor_credmon_oauth when a job requests OAuth2 credentials for a
configured OAuth2 service.

<OAuth2Service>_AUTHORIZATION_URL The URL that the companion OAuth2 credmon WSGI application
should redirect a user to in order to request access for a user’s credentials for the OAuth2 service named
<OAuth2Service>. This URL should be found in the service’s API documentation. The authorization URL
is passed on to the condor_credmon_oauth when a job requests OAuth2 credentials for a configured OAuth2
service.

<OAuth2Service>_TOKEN_URL The URL that the condor_credmon_oauth should use in order to refresh a user’s
tokens for the OAuth2 service named <OAuth2Service>. This URL should be found in the service’s API docu-
mentation. The token URL is passed on to the condor_credmon_oauth when a job requests OAuth2 credentials
for a configured OAuth2 service.

4.5.9 condor_shadow Configuration File Entries

These settings affect the condor_shadow.

SHADOW_LOCK This macro specifies the lock file to be used for access to the ShadowLog file. It must be a separate
file from the ShadowLog, since the ShadowLog may be rotated and you want to synchronize access across log
file rotations. This macro is defined relative to the $(LOCK) macro.

SHADOW_DEBUG This macro (and other settings related to debug logging in the shadow) is described in .

SHADOW_QUEUE_UPDATE_INTERVAL The amount of time (in seconds) between ClassAd updates that the
condor_shadow daemon sends to the condor_schedd daemon. Defaults to 900 (15 minutes).

SHADOW_LAZY_QUEUE_UPDATE This boolean macro specifies if the condor_shadow should immediately up-
date the job queue for certain attributes (at this time, it only effects the NumJobStarts and NumJobReconnects
counters) or if it should wait and only update the job queue on the next periodic update. There is a trade-off
between performance and the semantics of these attributes, which is why the behavior is controlled by a config-
uration macro. If the condor_shadow do not use a lazy update, and immediately ensures the changes to the job
attributes are written to the job queue on disk, the semantics for the attributes are very solid (there’s only a tiny
chance that the counters will be out of sync with reality), but this introduces a potentially large performance and
scalability problem for a busy condor_schedd. If the condor_shadow uses a lazy update, there is no additional
cost to the condor_schedd, but it means that condor_q will not immediately see the changes to the job attributes,
and if the condor_shadow happens to crash or be killed during that time, the attributes are never incremented.
Given that the most obvious usage of these counter attributes is for the periodic user policy expressions (which are
evaluated directly by the condor_shadow using its own copy of the job’s ClassAd, which is immediately updated
in either case), and since the additional cost for aggressive updates to a busy condor_schedd could potentially
cause major problems, the default is True to do lazy, periodic updates.

SHADOW_WORKLIFE The integer number of seconds after which the condor_shadow will exit when the current
job finishes, instead of fetching a new job to manage. Having the condor_shadow continue managing jobs helps

268 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

reduce overhead and can allow the condor_schedd to achieve higher job completion rates. The default is 3600,
one hour. The value 0 causes condor_shadow to exit after running a single job.

COMPRESS_PERIODIC_CKPT A boolean value that when True, directs the condor_shadow to instruct applica-
tions to compress periodic checkpoints when possible. The default is False.

COMPRESS_VACATE_CKPT A boolean value that when True, directs the condor_shadow to instruct applications
to compress vacate checkpoints when possible. The default is False.

PERIODIC_MEMORY_SYNC This boolean value specifies whether the condor_shadow should instruct applica-
tions to commit dirty memory pages to swap space during a periodic checkpoint. The default is False. This
potentially reduces the number of dirty memory pages at vacate time, thereby reducing swapping activity on the
remote machine.

SLOW_CKPT_SPEED This macro specifies the speed at which vacate checkpoints should be written, in kilobytes
per second. If zero (the default), vacate checkpoints are written as fast as possible. Writing vacate checkpoints
slowly can avoid overwhelming the remote machine with swapping activity.

SHADOW_JOB_CLEANUP_RETRY_DELAY This integer specifies the number of seconds to wait between tries
to commit the final update to the job ClassAd in the condor_schedd ‘s job queue. The default is 30.

SHADOW_MAX_JOB_CLEANUP_RETRIES This integer specifies the number of times to try committing the
final update to the job ClassAd in the condor_schedd ‘s job queue. The default is 5.

SHADOW_CHECKPROXY_INTERVAL The number of seconds between tests to see if the job proxy has been
updated or should be refreshed. The default is 600 seconds (10 minutes). This variable’s value should be
small in comparison to the refresh interval required to keep delegated credentials from expiring (configured via
DELEGATE_JOB_GSI_CREDENTIALS_REFRESH and DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME). If this
variable’s value is too small, proxy updates could happen very frequently, potentially creating a lot of load on
the submit machine.

SHADOW_RUN_UNKNOWN_USER_JOBS A boolean that defaults to False. When True, it allows the con-
dor_shadow daemon to run jobs as user nobody when remotely submitted and from users not in the local pass-
word file.

SHADOW_STATS_LOG The full path and file name of a file that stores TCP statistics for shadow file transfers. (Note
that the shadow logs TCP statistics to this file by default. Adding D_STATS to the SHADOW_DEBUG value will cause
TCP statistics to be logged to the normal shadow log file ($(SHADOW_LOG)).) If not defined, SHADOW_STATS_LOG
defaults to $(LOG)/XferStatsLog. Setting SHADOW_STATS_LOG to /dev/null disables logging of shadow
TCP file transfer statistics.

MAX_SHADOW_STATS_LOG Controls the maximum size in bytes or amount of time that the shadow TCP statis-
tics log will be allowed to grow. If not defined, MAX_SHADOW_STATS_LOG defaults to $(MAX_DEFAULT_LOG),
which currently defaults to 10 MiB in size. Values are specified with the same syntax as MAX_DEFAULT_LOG.

ALLOW_TRANSFER_REMAP_TO_MKDIR A boolean value that when True allows the condor_shadow to cre-
ate directories in a transfer output remap path when the directory does not exist already. The condor_shadow
can not create directories if the remap is an absolute path or if the remap tries to write to a directory specified
within LIMIT_DIRECTORY_ACCESS.

4.5. Configuration Macros 269

HTCondor Manual, Release 10.0.9

4.5.10 condor_starter Configuration File Entries

These settings affect the condor_starter.

DISABLE_SETUID HTCondor can prevent jobs from running setuid executables on Linux by setting the no-new-
privileges flag. This can be enabled (i.e. to disallow setuid binaries) by setting DISABLE_SETUID to true.

EXEC_TRANSFER_ATTEMPTS Sometimes due to a router misconfiguration, kernel bug, or other network prob-
lem, the transfer of the initial checkpoint from the submit machine to the execute machine will fail midway
through. This parameter allows a retry of the transfer a certain number of times that must be equal to or greater
than 1. If this parameter is not specified, or specified incorrectly, then it will default to three. If the transfer of the
initial executable fails every attempt, then the job goes back into the idle state until the next renegotiation cycle.

Note: This parameter does not exist in the NT starter.

JOB_RENICE_INCREMENT When the condor_starter spawns an HTCondor job, it can do so with a nice-level. A
nice-level is a Unix mechanism that allows users to assign their own processes a lower priority, such that these
processes do not interfere with interactive use of the machine. For machines with lots of real memory and swap
space, such that the only scarce resource is CPU time, use this macro in conjunction with a policy that allows
HTCondor to always start jobs on the machines. HTCondor jobs would always run, but interactive response
on the machines would never suffer. A user most likely will not notice HTCondor is running jobs. See Policy
Configuration for Execute Hosts and for Submit Hosts for more details on setting up a policy for starting and
stopping jobs on a given machine.

The ClassAd expression is evaluated in the context of the job ad to an integer value, which is set by the con-
dor_starter daemon for each job just before the job runs. The range of allowable values are integers in the range
of 0 to 19 (inclusive), with a value of 19 being the lowest priority. If the integer value is outside this range, then
on a Unix machine, a value greater than 19 is auto-decreased to 19; a value less than 0 is treated as 0. For values
outside this range, a Windows machine ignores the value and uses the default instead. The default value is 0, on
Unix, and the idle priority class on a Windows machine.

STARTER_LOCAL_LOGGING This macro determines whether the starter should do local logging to its own log
file, or send debug information back to the condor_shadow where it will end up in the ShadowLog. It defaults
to True.

STARTER_LOG_NAME_APPEND A fixed value that sets the file name extension of the local log file used by the
condor_starter daemon. Permitted values are true, false, slot, cluster and jobid. A value of false will
suppress the use of a file extension. A value of true gives the default behavior of using the slot name, unless there
is only a single slot. A value of slot uses the slot name. A value of cluster uses the job’s ClusterIdClassAd
attribute. A value of jobid uses the job’s ProcId ClassAd attribute. If cluster or jobid are specified, the
resulting log files will persist until deleted by the user, so these two options should only be used to assist in
debugging, not as permanent options.

STARTER_DEBUG This setting (and other settings related to debug logging in the starter) is described above in .

STARTER_NUM_THREADS_ENV_VARS A string containing a list of job environment variables to
set equal to the number of cores allocated into the slot. Many commonly used computing li-
braries and programs will look at the value of environment variables, such as OMP_NUM_THREADS,
to control how many CPU cores to use. Defaults to CUBACORES, GOMAXPROCS, JU-
LIA_NUM_THREADS, MKL_NUM_THREADS, NUMEXPR_NUM_THREADS, OMP_NUM_THREADS,
OMP_THREAD_LIMIT, OPENBLAS_NUM_THREADS, TF_LOOP_PARALLEL_ITERATIONS,
TF_NUM_THREADS.

STARTER_UPDATE_INTERVAL An integer value representing the number of seconds between ClassAd updates
that the condor_starter daemon sends to the condor_shadow and condor_startd daemons. Defaults to 300 (5

270 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

minutes).

STARTER_UPDATE_INTERVAL_TIMESLICE A floating point value, specifying the highest fraction of time that
the condor_starter daemon should spend collecting monitoring information about the job, such as disk usage.
The default value is 0.1. If monitoring, such as checking disk usage takes a long time, the condor_starter will
monitor less frequently than specified by STARTER_UPDATE_INTERVAL.

STARTER_UPDATE_INTERVAL_MAX An integer value representing an upper bound on the number of seconds
between updates controlled by STARTER_UPDATE_INTERVAL and STARTER_UPDATE_INTERVAL_TIMESLICE. It
is recommended to leave this parameter at its default value, which is calculated as STARTER_UPDATE_INTERVAL
* (1 / STARTER_UPDATE_INTERVAL_TIMESLICE)

USER_JOB_WRAPPER The full path and file name of an executable or script. If specified, HTCondor never directly
executes a job, but instead invokes this executable, allowing an administrator to specify the executable (wrapper
script) that will handle the execution of all user jobs. The command-line arguments passed to this program will
include the full path to the actual user job which should be executed, followed by all the command-line parameters
to pass to the user job. This wrapper script must ultimately replace its image with the user job; thus, it must exec()
the user job, not fork() it.

For Bourne type shells (sh, bash, ksh), the last line should be:

exec "$@"

For the C type shells (csh, tcsh), the last line should be:

exec $*:q

On Windows, the end should look like:

REM set some environment variables
set LICENSE_SERVER=192.168.1.202:5012
set MY_PARAMS=2

REM Run the actual job now
%*

This syntax is precise, to correctly handle program arguments which contain white space characters.

For Windows machines, the wrapper will either be a batch script with a file extension of .bat or .cmd, or an
executable with a file extension of .exe or .com.

If the wrapper script encounters an error as it runs, and it is unable to run the user job, it is important that the
wrapper script indicate this to the HTCondor system so that HTCondor does not assign the exit code of the
wrapper script to the job. To do this, the wrapper script should write a useful error message to the file named
in the environment variable _CONDOR_WRAPPER_ERROR_FILE, and then the wrapper script should exit with a
non-zero value. If this file is created by the wrapper script, HTCondor assumes that the wrapper script has failed,
and HTCondor will place the job back in the queue marking it as Idle, such that the job will again be run. The
condor_starter will also copy the contents of this error file to the condor_starter log, so the administrator can
debug the problem.

When a wrapper script is in use, the executable of a job submission may be specified by a relative path, as long
as the submit description file also contains:

+PreserveRelativeExecutable = True

For example,

4.5. Configuration Macros 271

HTCondor Manual, Release 10.0.9

Let this executable be resolved by user's path in the wrapper
cmd = sleep
+PreserveRelativeExecutable = True

Without this extra attribute:

A typical fully-qualified executable path
cmd = /bin/sleep

CGROUP_MEMORY_LIMIT_POLICY A string with possible values of hard, soft, custom and none. The
default value is none. If set to hard, when the job tries to use more memory than the slot size, it will be put
on hold with an appropriate message. Also, the cgroup soft limit will set to 90% of the hard limit to encourage
the kernel to lower cacheable memory the job is using. If set to soft, cgroup soft limit will be set to the slot
size, and the hard limit will be set to the total memory allocated to the startd, (by default the total memory on
the system minus RESERVED_MEMORY), or the value of MEMORY, if set. If set to none, no limit will be
enforced, but the memory usage of the job will be accurately measured by a cgroup. When set to custom, the
two additional knobs CGROUP_HARD_MEMORY_LIMIT and CGROUP_SOFT_MEMORY_LIMIT must be
set, which are classad expressions evaluated in the context of the machine and the job which determine the hard
and soft limits.

DISABLE_SWAP_FOR_JOB A boolean that defaults to false. When true, and cgroups are in effect, the con-
dor_starter will set the memws to the same value as the hard memory limit. This will prevent the job from
using any swap space. If it needs more memory than the hard limit, it will be put on hold. When false, the job is
allowed to use any swap space configured by the operating system.

USE_VISIBLE_DESKTOP This boolean variable is only meaningful on Windows machines. If True, HTCondor
will allow the job to create windows on the desktop of the execute machine and interact with the job. This is
particularly useful for debugging why an application will not run under HTCondor. If False, HTCondor uses
the default behavior of creating a new, non-visible desktop to run the job on. See the Microsoft Windows section
for details on how HTCondor interacts with the desktop.

STARTER_JOB_ENVIRONMENT This macro sets the default environment inherited by jobs. The syntax is the
same as the syntax for environment settings in the job submit file (see condor_submit). If the same environment
variable is assigned by this macro and by the user in the submit file, the user’s setting takes precedence.

JOB_INHERITS_STARTER_ENVIRONMENT A boolean value that defaults to False. When True, it
causes jobs to inherit all environment variables from the condor_starter. When the user job and/or
STARTER_JOB_ENVIRONMENT define an environment variable that is in the condor_starter ‘s environment, the
setting from the condor_starter ‘s environment is overridden.

NAMED_CHROOT A comma and/or space separated list of full paths to one or more directories, under which the
condor_starter may run a chroot-ed job. This allows HTCondor to invoke chroot() before launching a job, if the
job requests such by defining the job ClassAd attribute RequestedChroot with a directory that matches one in
this list. There is no default value for this variable.

STARTER_UPLOAD_TIMEOUT An integer value that specifies the network communication timeout to use when
transferring files back to the submit machine. The default value is set by the condor_shadow daemon to 300.
Increase this value if the disk on the submit machine cannot keep up with large bursts of activity, such as many
jobs all completing at the same time.

ASSIGN_CPU_AFFINITY A boolean expression that defaults to False. When it evaluates to True, each job under
this condor_startd is confined to using only as many cores as the configured number of slots. When using
partitionable slots, each job will be bound to as many cores as requested by specifying request_cpus. When
True, this configuration variable overrides any specification of ENFORCE_CPU_AFFINITY. The expression is
evaluated in the context of the Job ClassAd.

ENFORCE_CPU_AFFINITY This configuration variable is replaced by ASSIGN_CPU_AFFINITY. Do not enable
this configuration variable unless using glidein or another unusual setup.

272 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

A boolean value that defaults to False. When False, the CPU affinity of processes in a job is not enforced.
When True, the processes in an HTCondor job maintain their affinity to a CPU. This means that this job will
only run on that particular CPU, even if other CPU cores are idle.

If True and SLOT<N>_CPU_AFFINITY is not set, the CPU that the job is locked to is the same as SlotID -
1. Note that slots are numbered beginning with the value 1, while CPU cores are numbered beginning with the
value 0.

When True, more fine grained affinities may be specified with SLOT<N>_CPU_AFFINITY.

SLOT<N>_CPU_AFFINITY This configuration variable is replaced by ASSIGN_CPU_AFFINITY. Do not enable this
configuration variable unless using glidein or another unusual setup.

A comma separated list of cores to which an HTCondor job running on a specific slot given by the value of <N>
show affinity. Note that slots are numbered beginning with the value 1, while CPU cores are numbered beginning
with the value 0. This affinity list only takes effect when ENFORCE_CPU_AFFINITY = True.

ENABLE_URL_TRANSFERS A boolean value that when True causes the condor_starter for a job to invoke all
plug-ins defined by FILETRANSFER_PLUGINS to determine their capabilities for handling protocols to be used
in file transfer specified with a URL. When False, a URL transfer specified in a job’s submit description file
will cause an error issued by condor_submit. The default value is True.

FILETRANSFER_PLUGINS A comma separated list of full and absolute path and executable names for plug-ins
that will accomplish the task of doing file transfer when a job requests the transfer of an input file by specifying
a URL. See Enabling the Transfer of Files Specified by a URL for a description of the functionality required of
a plug-in.

RUN_FILETRANSFER_PLUGINS_WITH_ROOT A boolean value that affects only Unix platforms and defaults
to False, causing file transfer plug-ins invoked for a job to run with both the real and the effective UID set to
user that the job runs as. The user that the job runs as may be the job owner, nobody, or the slot user. The group
is set to primary group of the user that the job runs as, and all supplemental groups are dropped. The default
gives the behavior exhibited prior to the existence of this configuration variable. When set to True, file transfer
plug-ins are invoked with a real UID of 0 (root), provided the HTCondor daemons also run as root. The effective
UID is set to the user that the job runs as.

This configuration variable can permit plug-ins to do privileged operations, such as access a credential protected
by file system permissions. The default value is recommended unless privileged operations are required.

ENABLE_CHIRP A boolean value that defaults to True. An administrator would set the value to False to disable
Chirp remote file access from execute machines.

ENABLE_CHIRP_UPDATES A boolean value that defaults to True. If ENABLE_CHIRP is True, and
ENABLE_CHIRP_UPDATES is False, then the user job can only read job attributes from the submit side; it cannot
change them or write to the job event log. If ENABLE_CHIRP is False, the setting of this variable does not matter,
as no Chirp updates are allowed in that case.

ENABLE_CHIRP_IO A boolean value that defaults to True. If False, the file I/O condor_chirp commands are
prohibited.

ENABLE_CHIRP_DELAYED A boolean value that defaults to True. If False, the condor_chirp commands
get_job_attr_delayed and set_job_attr_delayed are prohibited.

CHIRP_DELAYED_UPDATE_PREFIX This is a string-valued and case-insensitive parameter with the default
value of "Chirp*". The string is a list separated by spaces and/or commas. Each attribute passed to the ei-
ther of the condor_chirp commands set_job_attr_delayed or get_job_attr_delayed must match against at least
one element in the list. An attribute which does not match any list element fails. A list element may contain a
wildcard character ("Chirp*"), which marks where any number of characters matches. Thus, the default is to
allow reads from and writes to only attributes which start with "Chirp".

Because this parameter must be set to the same value on both the submit and execute nodes, it is advised that this
parameter not be changed from its built-in default.

4.5. Configuration Macros 273

HTCondor Manual, Release 10.0.9

CHIRP_DELAYED_UPDATE_MAX_ATTRS This integer-valued parameter, which defaults to 100, represents the
maximum number of pending delayed chirp updates buffered by the condor_starter. If the number of unique
attributes updated by the condor_chirp command set_job_attr_delayed exceeds this parameter, it is possible for
these updates to be ignored.

USE_PSS A boolean value, that when True causes the condor_starter to measure the PSS (Proportional Set Size) of
each HTCondor job. The default value is False. When running many short lived jobs, performance problems
in the condor_procd have been observed, and a setting of False may relieve these problems.

MEMORY_USAGE_METRIC A ClassAd expression that produces an initial value for the job ClassAd attribute
MemoryUsage in jobs that are not vm universe.

MEMORY_USAGE_METRIC_VM A ClassAd expression that produces an initial value for the job ClassAd at-
tribute MemoryUsage in vm universe jobs.

STARTER_RLIMIT_AS An integer ClassAd expression, expressed in MiB, evaluated by the condor_starter to set
the RLIMIT_AS parameter of the setrlimit() system call. This limits the virtual memory size of each process in
the user job. The expression is evaluated in the context of both the machine and job ClassAds, where the machine
ClassAd is the MY. ClassAd, and the job ClassAd is the TARGET. ClassAd. There is no default value for this
variable. Since values larger than 2047 have no real meaning on 32-bit platforms, values larger than 2047 result
in no limit set on 32-bit platforms.

USE_PID_NAMESPACES A boolean value that, when True, enables the use of per job PID namespaces for HT-
Condor jobs run on Linux kernels. Defaults to False.

PER_JOB_NAMESPACES A boolean value that defaults to False. Relevant only for Linux platforms using file
system namespaces. The default value of False ensures that there will be no private mount points, because auto
mounts done by autofs would use the wrong name for private file system mounts. A True value is useful when
private file system mounts are permitted and autofs (for NFS) is not used.

DYNAMIC_RUN_ACCOUNT_LOCAL_GROUP For Windows platforms, a value that sets the local group to a
group other than the default Users for the condor-slot<X> run account. Do not place the local group name
within quotation marks.

JOB_EXECDIR_PERMISSIONS Control the permissions on the job’s scratch directory. Defaults to user which
sets permissions to 0700. Possible values are user, group, and world. If set to group, then the directory is
group-accessible, with permissions set to 0750. If set to world, then the directory is created with permissions
set to 0755.

STARTER_STATS_LOG The full path and file name of a file that stores TCP statistics for starter file transfers.
(Note that the starter logs TCP statistics to this file by default. Adding D_STATS to the STARTER_DEBUG
value will cause TCP statistics to be logged to the normal starter log file ($(STARTER_LOG)).) If not defined,
STARTER_STATS_LOG defaults to $(LOG)/XferStatsLog. Setting STARTER_STATS_LOG to /dev/null dis-
ables logging of starter TCP file transfer statistics.

MAX_STARTER_STATS_LOG Controls the maximum size in bytes or amount of time that the starter TCP statistics
log will be allowed to grow. If not defined, MAX_STARTER_STATS_LOG defaults to $(MAX_DEFAULT_LOG), which
currently defaults to 10 MiB in size. Values are specified with the same syntax as MAX_DEFAULT_LOG.

SINGULARITY The path to the Singularity binary. The default value is /usr/bin/singularity.

SINGULARITY_JOB A boolean value specifying whether this startd should run jobs under Singularity. The default
value is False.

SINGULARITY_IMAGE_EXPR The path to the Singularity container image file. The default value is
"SingularityImage".

SINGULARITY_TARGET_DIR A directory within the Singularity image to which $_CONDOR_SCRATCH_DIR on
the host should be mapped. The default value is "".

274 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

SINGULARITY_BIND_EXPR A string value containing a list of bind mount specifications to be passed to Singu-
larity. The default value is "SingularityBind".

SINGULARITY_IGNORE_MISSING_BIND_TARGET A boolean value defaulting to false. If true, and the sin-
gularity image is a directory, and the target of a bind mount doesn’t exist in the target, then skip this bind mount.

SINGULARITY_EXTRA_ARGUMENTS A string value or classad expression containing a list of extra arguments
to be appended to the Singularity command line. This can be an expression evaluted in the context of the job ad
and the machine ad.

4.5.11 condor_submit Configuration File Entries

DEFAULT_UNIVERSE The universe under which a job is executed may be specified in the submit description file.
If it is not specified in the submit description file, then this variable specifies the universe (when defined). If the
universe is not specified in the submit description file, and if this variable is not defined, then the default universe
for a job will be the vanilla universe.

JOB_DEFAULT_NOTIFICATION The default that sets email notification for jobs. This variable defaults to NEVER,
such that HTCondor will not send email about events for jobs. Possible values are NEVER, ERROR, ALWAYS, or
COMPLETE. If ALWAYS, the owner will be notified whenever the job produces a checkpoint, as well as when the
job completes. If COMPLETE, the owner will be notified when the job terminates. If ERROR, the owner will only
be notified if the job terminates abnormally, or if the job is placed on hold because of a failure, and not by user
request. If NEVER, the owner will not receive email.

JOB_DEFAULT_LEASE_DURATION The default value for the job_lease_duration submit command when the
submit file does not specify a value. The default value is 2400, which is 40 minutes.

JOB_DEFAULT_REQUESTMEMORY The amount of memory in MiB to acquire for a job, if the job does not
specify how much it needs using the request_memory submit command. If this variable is not defined, then the
default is defined by the expression

ifThenElse(MemoryUsage =!= UNDEFINED,MemoryUsage,(ImageSize+1023)/1024)

JOB_DEFAULT_REQUESTDISK The amount of disk in KiB to acquire for a job, if the job does not specify how
much it needs using the request_disk submit command. If the job defines the value, then that value takes
precedence. If not set, then then the default is defined as DiskUsage.

JOB_DEFAULT_REQUESTCPUS The number of CPUs to acquire for a job, if the job does not specify how many
it needs using the request_cpus submit command. If the job defines the value, then that value takes precedence.
If not set, then then the default is 1.

DEFAULT_JOB_MAX_RETRIES The default value for the maximum number of job retries, if the condor_submit
retry feature is used. (Note that this value is only relevant if either retry_until or success_exit_code is defined
in the submit file, and max_retries is not.) (See the condor_submit man page.) The default value if not defined
is 2.

If you want condor_submit to automatically append an expression to the Requirements expression or Rank expression
of jobs at your site use the following macros:

APPEND_REQ_VANILLA Expression to be appended to vanilla job requirements.

APPEND_REQUIREMENTS Expression to be appended to any type of universe jobs. However, if
APPEND_REQ_VANILLA is defined, then ignore the APPEND_REQUIREMENTS for that universe.

APPEND_RANK Expression to be appended to job rank. APPEND_RANK_VANILLA will override this setting if de-
fined.

APPEND_RANK_VANILLA Expression to append to vanilla job rank.

4.5. Configuration Macros 275

HTCondor Manual, Release 10.0.9

Note: The APPEND_RANK_VANILLA macro was called APPEND_PREF_VANILLA in previous versions of HTCondor.

In addition, you may provide default Rank expressions if your users do not specify their own with:

DEFAULT_RANK Default rank expression for any job that does not specify its own rank expression in the submit
description file. There is no default value, such that when undefined, the value used will be 0.0.

DEFAULT_RANK_VANILLA Default rank for vanilla universe jobs. There is no default value, such that when
undefined, the value used will be 0.0. When both DEFAULT_RANK and DEFAULT_RANK_VANILLA are defined,
the value for DEFAULT_RANK_VANILLA is used for vanilla universe jobs.

DEFAULT_IO_BUFFER_SIZE HTCondor keeps a buffer of recently-used data for each file an application opens.
This macro specifies the default maximum number of bytes to be buffered for each open file at the executing
machine. The condor_status buffer_size command will override this default. If this macro is undefined, a
default size of 512 KB will be used.

DEFAULT_IO_BUFFER_BLOCK_SIZE When buffering is enabled, HTCondor will attempt to consolidate small
read and write operations into large blocks. This macro specifies the default block size HTCondor will use. The
condor_status buffer_block_size command will override this default. If this macro is undefined, a default
size of 32 KB will be used.

SUBMIT_GENERATE_CUSTOM_RESOURCE_REQUIREMENTS If True, condor_submit will treat any at-
tribute in the job ClassAd that begins with Request as a request for a custom resource and will ad a clause to
the Requirements expression insuring that on slots that have that resource will match the job. The default value
is True.

SUBMIT_SKIP_FILECHECKS If True, condor_submit behaves as if the -disable command-line option is used.
This tells condor_submit to disable file permission checks when submitting a job for read permissions on all
input files, such as those defined by commands input and transfer_input_files , as well as write permission to
output files, such as a log file defined by log and output files defined with output or transfer_output_files . This
can significantly decrease the amount of time required to submit a large group of jobs. The default value is True.

WARN_ON_UNUSED_SUBMIT_FILE_MACROS A boolean variable that defaults to True. When True, con-
dor_submit performs checks on the job’s submit description file contents for commands that define a macro, but
do not use the macro within the file. A warning is issued, but job submission continues. A definition of a new
macro occurs when the lhs of a command is not a known submit command. This check may help spot spelling
errors of known submit commands.

SUBMIT_DEFAULT_SHOULD_TRANSFER_FILES Provides a default value for the submit command
should_transfer_files if the submit file does not supply a value and when the value is not forced by
some other command in the submit file, such as the universe. Valid values are YES, TRUE, ALWAYS, NO,
FALSE, NEVER and IF_NEEDED. If the value is not one of these, then IF_NEEDED will be used.

SUBMIT_SEND_RESCHEDULE A boolean expression that when False, prevents condor_submit from automat-
ically sending a condor_reschedule command as it completes. The condor_reschedule command causes the
condor_schedd daemon to start searching for machines with which to match the submitted jobs. When True, this
step always occurs. In the case that the machine where the job(s) are submitted is managing a huge number of
jobs (thousands or tens of thousands), this step would hurt performance in such a way that it became an obstacle
to scalability. The default value is True.

SUBMIT_ATTRS A comma-separated and/or space-separated list of ClassAd attribute names for which the attribute
and value will be inserted into all the job ClassAds that condor_submit creates. In this way, it is like the “+” syntax
in a submit description file. Attributes defined in the submit description file with “+” will override attributes
defined in the configuration file with SUBMIT_ATTRS. Note that adding an attribute to a job’s ClassAd will not
function as a method for specifying default values of submit description file commands forgotten in a job’s submit
description file. The command in the submit description file results in actions by condor_submit, while the use
of SUBMIT_ATTRS adds a job ClassAd attribute at a later point in time.

276 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

SUBMIT_ALLOW_GETENV A boolean attribute which defaults to true. If set to false, the submit command getenv
becomes and error.

LOG_ON_NFS_IS_ERROR A boolean value that controls whether condor_submit prohibits job submit description
files with job event log files on NFS. If LOG_ON_NFS_IS_ERROR is set to True, such submit files will be rejected.
If LOG_ON_NFS_IS_ERROR is set to False, the job will be submitted. If not defined, LOG_ON_NFS_IS_ERROR
defaults to False.

SUBMIT_MAX_PROCS_IN_CLUSTER An integer value that limits the maximum number of jobs that would be
assigned within a single cluster. Job submissions that would exceed the defined value fail, issuing an error
message, and with no jobs submitted. The default value is 0, which does not limit the number of jobs assigned a
single cluster number.

ENABLE_DEPRECATION_WARNINGS A boolean value that defaults to False. When True, condor_submit
issues warnings when a job requests features that are no longer supported.

INTERACTIVE_SUBMIT_FILE The path and file name of a submit description file that condor_submit will use in
the specification of an interactive job. The default is $(RELEASE_DIR)/libexec/interactive.sub when not defined.

CRED_MIN_TIME_LEFT When a job uses an X509 user proxy, condor_submit will refuse to submit a job whose
x509 expiration time is less than this many seconds in the future. The default is to only refuse jobs whose
expiration time has already passed.

CONTAINER_SHARED_FS This is a list of strings that name directories which are shared on the execute machines
and may contain container images under them. The default value is /cvmfs. When a container universe job lists a
condor_image that is under one of these directories, HTCondor knows not to try to transfer the file to the worker
node.

4.5.12 condor_preen Configuration File Entries

These macros affect condor_preen.

PREEN_ADMIN This macro sets the e-mail address where condor_preen will send e-mail (if it is configured to send
email at all; see the entry for PREEN). Defaults to $(CONDOR_ADMIN).

VALID_SPOOL_FILES A comma or space separated list of files that condor_preen considers valid files to find in the
$(SPOOL) directory, such that condor_preen will not remove these files. There is no default value. condor_preen
will add to the list files and directories that are normally present in the $(SPOOL) directory. A single asterisk (*)
wild card character is permitted in each file item within the list.

SYSTEM_VALID_SPOOL_FILES A comma or space separated list of files that condor_preen considers valid files
to find in the $(SPOOL) directory. The default value is all files known by HTCondor to be valid. This variable
exists such that it can be queried; it should not be changed. condor_preen use it to initialize the the list files
and directories that are normally present in the $(SPOOL) directory. A single asterisk (*) wild card character is
permitted in each file item within the list.

INVALID_LOG_FILES This macro contains a (comma or space separated) list of files that condor_preen considers
invalid files to find in the $(LOG) directory. There is no default value.

4.5. Configuration Macros 277

HTCondor Manual, Release 10.0.9

4.5.13 condor_collector Configuration File Entries

These macros affect the condor_collector.

CLASSAD_LIFETIME The default maximum age in seconds for ClassAds collected by the condor_collector. Clas-
sAds older than the maximum age are discarded by the condor_collector as stale.

If present, the ClassAd attribute ClassAdLifetime specifies the ClassAd’s lifetime in seconds.
If ClassAdLifetime is not present in the ClassAd, the condor_collector will use the value of
$(CLASSAD_LIFETIME). This variable is defined in terms of seconds, and it defaults to 900 seconds (15
minutes).

To ensure that the condor_collector does not miss any ClassAds, the frequency at which all other subsystems
that report using an update interval must be tuned. The configuration variables that set these subsystems are

• UPDATE_INTERVAL (for the condor_startd daemon)

• NEGOTIATOR_UPDATE_INTERVAL

• SCHEDD_INTERVAL

• MASTER_UPDATE_INTERVAL

• CKPT_SERVER_INTERVAL

• DEFRAG_UPDATE_INTERVAL

• HAD_UPDATE_INTERVAL

COLLECTOR_REQUIREMENTS A boolean expression that filters out unwanted ClassAd updates. The expression
is evaluated for ClassAd updates that have passed through enabled security authorization checks. The default
behavior when this expression is not defined is to allow all ClassAd updates to take place. If False, a ClassAd
update will be rejected.

Stronger security mechanisms are the better way to authorize or deny updates to the condor_collector. This
configuration variable exists to help those that use host-based security, and do not trust all processes that run on
the hosts in the pool. This configuration variable may be used to throw out ClassAds that should not be allowed.
For example, for condor_startd daemons that run on a fixed port, configure this expression to ensure that only
machine ClassAds advertising the expected fixed port are accepted. As a convenience, before evaluating the
expression, some basic sanity checks are performed on the ClassAd to ensure that all of the ClassAd attributes
used by HTCondor to contain IP:port information are consistent. To validate this information, the attribute to
check is TARGET.MyAddress.

Please note that _all_ ClassAd updates are filtered. Unless your requirements are the same for all daemons,
including the collector itself, you’ll want to use the MyType attribute to limit your filter(s).

CLIENT_TIMEOUT Network timeout that the condor_collector uses when talking to any daemons or tools that are
sending it a ClassAd update. It is defined in seconds and defaults to 30.

QUERY_TIMEOUT Network timeout when talking to anyone doing a query. It is defined in seconds and defaults to
60.

COLLECTOR_NAME This macro is used to specify a short description of your pool. It should be about 20 characters
long. For example, the name of the UW-Madison Computer Science HTCondor Pool is "UW-Madison CS".
While this macro might seem similar to MASTER_NAME or SCHEDD_NAME, it is unrelated. Those settings are used
to uniquely identify (and locate) a specific set of HTCondor daemons, if there are more than one running on the
same machine. The COLLECTOR_NAME setting is just used as a human-readable string to describe the pool.

COLLECTOR_UPDATE_INTERVAL This variable is defined in seconds and defaults to 900 (every 15 minutes).
It controls the frequency of the periodic updates sent to a central condor_collector.

278 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

COLLECTOR_SOCKET_BUFSIZE This specifies the buffer size, in bytes, reserved for condor_collector network
UDP sockets. The default is 10240000, or a ten megabyte buffer. This is a healthy size, even for a large pool. The
larger this value, the less likely the condor_collector will have stale information about the pool due to dropping
update packets. If your pool is small or your central manager has very little RAM, considering setting this
parameter to a lower value (perhaps 256000 or 128000).

Note: For some Linux distributions, it may be necessary to raise the OS’s system-wide limit for network buffer
sizes. The parameter that controls this limit is /proc/sys/net/core/rmem_max. You can see the values that the
condor_collector actually uses by enabling D_FULLDEBUG for the collector and looking at the log line that
looks like this:

Reset OS socket buffer size to 2048k (UDP), 255k (TCP).

For changes to this parameter to take effect, condor_collector must be restarted.

COLLECTOR_TCP_SOCKET_BUFSIZE This specifies the TCP buffer size, in bytes, reserved for con-
dor_collector network sockets. The default is 131072, or a 128 kilobyte buffer. This is a healthy size, even
for a large pool. The larger this value, the less likely the condor_collector will have stale information about
the pool due to dropping update packets. If your pool is small or your central manager has very little RAM,
considering setting this parameter to a lower value (perhaps 65536 or 32768).

Note: See the note for COLLECTOR_SOCKET_BUFSIZE .

KEEP_POOL_HISTORY This boolean macro is used to decide if the collector will write out statistical information
about the pool to history files. The default is False. The location, size, and frequency of history logging is
controlled by the other macros.

POOL_HISTORY_DIR This macro sets the name of the directory where the history files reside (if history logging
is enabled). The default is the SPOOL directory.

POOL_HISTORY_MAX_STORAGE This macro sets the maximum combined size of the history files. When the
size of the history files is close to this limit, the oldest information will be discarded. Thus, the larger this
parameter’s value is, the larger the time range for which history will be available. The default value is 10000000
(10 MB).

POOL_HISTORY_SAMPLING_INTERVAL This macro sets the interval, in seconds, between samples for history
logging purposes. When a sample is taken, the collector goes through the information it holds, and summarizes
it. The information is written to the history file once for each 4 samples. The default (and recommended) value
is 60 seconds. Setting this macro’s value too low will increase the load on the collector, while setting it to high
will produce less precise statistical information.

COLLECTOR_DAEMON_STATS A boolean value that controls whether or not the condor_collector daemon keeps
update statistics on incoming updates. The default value is True. If enabled, the condor_collector will insert
several attributes into the ClassAds that it stores and sends. ClassAds without the UpdateSequenceNumber and
DaemonStartTime attributes will not be counted, and will not have attributes inserted (all modern HTCondor
daemons which publish ClassAds publish these attributes).

The attributes inserted are UpdatesTotal, UpdatesSequenced, and UpdatesLost. UpdatesTotal is the total
number of updates (of this ClassAd type) the condor_collector has received from this host. UpdatesSequenced
is the number of updates that the condor_collector could have as lost. In particular, for the first update from a
daemon, it is impossible to tell if any previous ones have been lost or not. UpdatesLost is the number of updates
that the condor_collector has detected as being lost. See ClassAd Attributes Added by the condor_collector for
more information on the added attributes.

COLLECTOR_STATS_SWEEP This value specifies the number of seconds between sweeps of the con-
dor_collector ‘s per-daemon update statistics. Records for daemons which have not reported in this amount

4.5. Configuration Macros 279

HTCondor Manual, Release 10.0.9

of time are purged in order to save memory. The default is two days. It is unlikely that you would ever need to
adjust this.

COLLECTOR_DAEMON_HISTORY_SIZE This variable controls the size of the published update history that the
condor_collector inserts into the ClassAds it stores and sends. The default value is 128, which means that history
is stored and published for the latest 128 updates. This variable’s value is ignored, if COLLECTOR_DAEMON_STATS
is not enabled.

If the value is a non-zero one, the condor_collector will insert attribute UpdatesHistory into the ClassAd
(similar to UpdatesTotal). AttrUpdatesHistory is a hexadecimal string which represents a bitmap of the last
COLLECTOR_DAEMON_HISTORY_SIZE updates. The most significant bit (MSB) of the bitmap represents the most
recent update, and the least significant bit (LSB) represents the least recent. A value of zero means that the update
was not lost, and a value of 1 indicates that the update was detected as lost.

For example, if the last update was not lost, the previous was lost, and the previous two not, the bitmap would be
0100, and the matching hex digit would be "4". Note that the MSB can never be marked as lost because its loss
can only be detected by a non-lost update (a gap is found in the sequence numbers). Thus, UpdatesHistory =
"0x40" would be the history for the last 8 updates. If the next updates are all successful, the values published,
after each update, would be: 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x00.

See ClassAd Attributes Added by the condor_collector for more information on the added attribute.

COLLECTOR_CLASS_HISTORY_SIZE This variable controls the size of the published update history that the
condor_collector inserts into the condor_collector ClassAds it produces. The default value is zero.

If this variable has a non-zero value, the condor_collector will insert UpdatesClassHistory into the con-
dor_collector ClassAd (similar to UpdatesHistory). These are added per class of ClassAd, however. The
classes refer to the type of ClassAds. Additionally, there is a Total class created, which represents the history of
all ClassAds that this condor_collector receives.

Note that the condor_collector always publishes Lost, Total and Sequenced counts for all ClassAd classes. This
is similar to the statistics gathered if COLLECTOR_DAEMON_STATS is enabled.

COLLECTOR_QUERY_WORKERS This macro sets the maximum number of child worker processes that the
condor_collector can have, and defaults to a value of 4 on Linux and MacOS platforms. When receiving a large
query request, the condor_collector may fork() a new process to handle the query, freeing the main process to
handle other requests. Each forked child process will consume memory, potentially up to 50% or more of the
memory consumed by the parent collector process. To limit the amount of memory consumed on the central
manager to handle incoming queries, the default value for this macro is 4. When the number of outstanding
worker processes reaches the maximum specified by this macro, any additional incoming query requests will be
queued and serviced after an existing child worker completes. Note that on Windows platforms, this macro has
a value of zero and cannot be changed.

COLLECTOR_QUERY_WORKERS_RESERVE_FOR_HIGH_PRIO This macro defines the number of
COLLECTOR_QUERY_WORKERS slots will be held in reserve to only service high priority query requests.
Currently, high priority queries are defined as those coming from the condor_negotiator during the course
of matchmaking, or via a “condor_sos condor_status” command. The idea here is the critical operation of
matchmaking machines to jobs will take precedence over user condor_status invocations. Defaults to a value of
1. The maximum allowable value for this macro is equal to COLLECTOR_QUERY_WORKERS minus 1.

COLLECTOR_QUERY_WORKERS_PENDING This macro sets the maximum of collector pending query re-
quests that can be queued waiting for child workers to exit. Queries that would exceed this maximum are imme-
diately aborted. When a forked child worker exits, a pending query will be pulled from the queue for service.
Note the collector will confirm that the client has not closed the TCP socket (because it was tired of waiting)
before going through all the work of actually forking a child and starting to service the query. Defaults to a value
of 50.

COLLECTOR_QUERY_MAX_WORKTIME This macro defines the maximum amount of time in seconds that a
query has to complete before it is aborted. Queries that wait in the pending queue longer than this period of time

280 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

will be aborted before forking. Queries that have already forked will also abort after the worktime has expired -
this protects against clients on a very slow network connection. If set to 0, then there is no timeout. The default
is 0.

HANDLE_QUERY_IN_PROC_POLICY This variable sets the policy for which queries the condor_collector
should handle in process rather than by forking a worker. It should be set to one of the following values

• always Handle all queries in process

• never Handle all queries using fork workers

• small_table Handle only queries of small tables in process

• small_query Handle only small queries in process

• small_table_and_query Handle only small queries on small tables in process

• small_table_or_query Handle small queries or small tables in process

A small table is any table of ClassAds in the collector other than Master,Startd,Generic and Any ads. A small
query is a locate query, or any query with both a projection and a result limit that is smaller than 10. The default
value is small_table_or_query.

COLLECTOR_DEBUG This macro (and other macros related to debug logging in the condor_collector is described
in .

CONDOR_VIEW_CLASSAD_TYPES Provides the ClassAd types that will be forwarded to the
CONDOR_VIEW_HOST. The ClassAd types can be found with condor_status -any. The default forwarding
behavior of the condor_collector is equivalent to

CONDOR_VIEW_CLASSAD_TYPES=Machine,Submitter

There is no default value for this variable.

COLLECTOR_FORWARD_FILTERING When this boolean variable is set to True, Machine and Submitter ad
updates are not forwarded to the CONDOR_VIEW_HOST if certain attributes are unchanged from the previous update
of the ad. The default is False, meaning all updates are forwarded.

COLLECTOR_FORWARD_WATCH_LIST When COLLECTOR_FORWARD_FILTERING is set to True, this vari-
able provides the list of attributes that controls whether a Machine or Submitter ad update is forwarded to the
CONDOR_VIEW_HOST. If all attributes in this list are unchanged from the previous update, then the new update is
not forwarded. The default value is State,Cpus,Memory,IdleJobs.

COLLECTOR_FORWARD_INTERVAL When COLLECTOR_FORWARD_FILTERING is set to True, this variable
limits how long forwarding of updates for a given ad can be filtered before an update must be forwarded. The
default is one third of CLASSAD_LIFETIME.

COLLECTOR_FORWARD_CLAIMED_PRIVATE_ADS When this boolean variable is set to False, the con-
dor_collector will not forward the private portion of Machine ads to the CONDOR_VIEW_HOST if the ad’s State
is Claimed. The default value is $(NEGOTIATOR_CONSIDER_PREEMPTION).

COLLECTOR_FORWARD_PROJECTION An expression that evaluates to a string in the context of an up-
date. The string is treated as a list of attributes to forward. If the string has no attributes, it is ig-
nored. The intended use is to restrict the list of attributes forwarded for claimed Machine ads. When
$(NEGOTIATOR_CONSIDER_PREEMPTION) is false, the negotiator needs only a few attributes from Machine
ads that are in the Claimed state. A Suggested use might be

if ! $(NEGOTIATOR_CONSIDER_PREEMPTION)
COLLECTOR_FORWARD_PROJECTION = IfThenElse(State is "Claimed", "$(FORWARD_CLAIMED_

→˓ATTRS)", "")
forward only the few attributes needed by the Negotiator and a few more needed␣

→˓by condor_status (continues on next page)

4.5. Configuration Macros 281

HTCondor Manual, Release 10.0.9

(continued from previous page)

FORWARD_CLAIMED_ATTRS = Name MyType MyAddress StartdIpAddr Machine Requirements \
State Activity AccountingGroup Owner RemoteUser SlotWeight ConcurrencyLimits \
Arch OpSys Memory Cpus CondorLoadAvg EnteredCurrentActivity

endif

There is no default value for this variable.

The following macros control where, when, and for how long HTCondor persistently stores absent ClassAds. See
section Absent ClassAds for more details.

ABSENT_REQUIREMENTS A boolean expression evaluated by the condor_collector when a machine ClassAd
would otherwise expire. If True, the ClassAd instead becomes absent. If not defined, the implementation will
behave as if False, and no absent ClassAds will be stored.

ABSENT_EXPIRE_ADS_AFTER The integer number of seconds after which the condor_collector forgets about
an absent ClassAd. If 0, the ClassAds persist forever. Defaults to 30 days.

COLLECTOR_PERSISTENT_AD_LOG The full path and file name of a file that stores machine ClassAds for every
hibernating or absent machine. This forms a persistent storage of these ClassAds, in case the condor_collector
daemon crashes.

To avoid condor_preen removing this log, place it in a directory other than the directory defined by $(SPOOL).
Alternatively, if this log file is to go in the directory defined by $(SPOOL), add the file to the list given by
VALID_SPOOL_FILES.

This configuration variable replaces OFFLINE_LOG, which is no longer used.

EXPIRE_INVALIDATED_ADS A boolean value that defaults to False. When True, causes all invalidated Clas-
sAds to be treated as if they expired. This permits invalidated ClassAds to be marked absent, as defined in Absent
ClassAds.

4.5.14 condor_negotiator Configuration File Entries

These macros affect the condor_negotiator.

NEGOTIATOR_NAME Used to give an alternative value to the Name attribute in the condor_negotiator ‘s ClassAd
and the NegotiatorName attribute of its accounting ClassAds. This configuration macro is useful in the sit-
uation where there are two condor_negotiator daemons running on one machine, and both report to the same
condor_collector. Different names will distinguish the two daemons.

See the description of for defaults and composition of valid HTCondor daemon names.

NEGOTIATOR_INTERVAL Sets the maximum time the condor_negotiator will wait before starting a new negoti-
ation cycle, counting from the start of the previous cycle. It is defined in seconds and defaults to 60 (1 minute).

NEGOTIATOR_MIN_INTERVAL Sets the minimum time the condor_negotiator will wait before starting a new
negotiation cycle, counting from the start of the previous cycle. It is defined in seconds and defaults to 5.

NEGOTIATOR_UPDATE_INTERVAL This macro determines how often the condor_negotiator daemon sends a
ClassAd update to the condor_collector. It is defined in seconds and defaults to 300 (every 5 minutes).

NEGOTIATOR_CYCLE_DELAY An integer value that represents the minimum number of seconds that must pass
before a new negotiation cycle may start. The default value is 20. NEGOTIATOR_CYCLE_DELAY is intended only
for use by HTCondor experts.

NEGOTIATOR_TIMEOUT Sets the timeout that the negotiator uses on its network connections to the con-
dor_schedd and condor_startd s. It is defined in seconds and defaults to 30.

282 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

NEGOTIATION_CYCLE_STATS_LENGTH Specifies how many recent negotiation cycles should be included
in the history that is published in the condor_negotiator ‘s ad. The default is 3 and the maximum allowed
value is 100. Setting this value to 0 disables publication of negotiation cycle statistics. The statistics about
recent cycles are stored in several attributes per cycle. Each of these attribute names will have a number ap-
pended to it to indicate how long ago the cycle happened, for example: LastNegotiationCycleDuration0,
LastNegotiationCycleDuration1, LastNegotiationCycleDuration2, The attribute numbered 0 ap-
plies to the most recent negotiation cycle. The attribute numbered 1 applies to the next most recent negotiation
cycle, and so on. See Negotiator ClassAd Attributes for a list of attributes that are published.

NEGOTIATOR_NUM_THREADS An integer that specifies the number of threads the negotiator should use when
trying to match a job to slots. The default is 1. For sites with large number of slots, where the negotiator is
running on a large machine, setting this to a larger value may result in faster negotiation times. Setting this to
more than the number of cores will result in slow downs. An administrator setting this should also consider
what other processes on the machine may need cores, such as the collector, and all of its forked children, the
condor_master, and any helper programs or scripts running there.

PRIORITY_HALFLIFE This macro defines the half-life of the user priorities. See User priority on User Priorities
for details. It is defined in seconds and defaults to 86400 (1 day).

DEFAULT_PRIO_FACTOR Sets the priority factor for local users as they first submit jobs, as described in User
Priorities and Negotiation. Defaults to 1000.

NICE_USER_PRIO_FACTOR Sets the priority factor for nice users, as described in User Priorities and Negotiation.
Defaults to 10000000000.

NICE_USER_ACCOUNTING_GROUP_NAME Sets the name used for the nice-user accounting group by con-
dor_submit. Defaults to nice-user.

REMOTE_PRIO_FACTOR Defines the priority factor for remote users, which are those users who who do not
belong to the local domain. See User Priorities and Negotiation for details. Defaults to 10000000.

ACCOUNTANT_DATABASE_FILE Defines the full path of the accountant database log file. The default value is
$(SPOOL)/Accountantnew.log

ACCOUNTANT_LOCAL_DOMAIN Describes the local UID domain. This variable is used to decide if a user is
local or remote. A user is considered to be in the local domain if their UID domain matches the value of this
variable. Usually, this variable is set to the local UID domain. If not defined, all users are considered local.

MAX_ACCOUNTANT_DATABASE_SIZE This macro defines the maximum size (in bytes) that the accountant
database log file can reach before it is truncated (which re-writes the file in a more compact format). If, after
truncating, the file is larger than one half the maximum size specified with this macro, the maximum size will be
automatically expanded. The default is 1 megabyte (1000000).

NEGOTIATOR_DISCOUNT_SUSPENDED_RESOURCES This macro tells the negotiator to not count resources
that are suspended when calculating the number of resources a user is using. Defaults to false, that is, a user is
still charged for a resource even when that resource has suspended the job.

NEGOTIATOR_SOCKET_CACHE_SIZE This macro defines the maximum number of sockets that the con-
dor_negotiator keeps in its open socket cache. Caching open sockets makes the negotiation protocol more ef-
ficient by eliminating the need for socket connection establishment for each negotiation cycle. The default is
currently 500. To be effective, this parameter should be set to a value greater than the number of condor_schedd
s submitting jobs to the negotiator at any time. If you lower this number, you must run condor_restart and not
just condor_reconfig for the change to take effect.

NEGOTIATOR_INFORM_STARTD Boolean setting that controls if the condor_negotiator should inform the con-
dor_startd when it has been matched with a job. The default is False. When this is set to the default value of
False, the condor_startd will never enter the Matched state, and will go directly from Unclaimed to Claimed.
Because this notification is done via UDP, if a pool is configured so that the execute hosts do not create UDP com-
mand sockets (see the setting for details), the condor_negotiator should be configured not to attempt to contact
these condor_startd daemons by using the default value.

4.5. Configuration Macros 283

HTCondor Manual, Release 10.0.9

NEGOTIATOR_PRE_JOB_RANK Resources that match a request are first sorted by this expression. If there are
any ties in the rank of the top choice, the top resources are sorted by the user-supplied rank in the job ClassAd,
then by NEGOTIATOR_POST_JOB_RANK, then by PREEMPTION_RANK (if the match would cause preemption and
there are still any ties in the top choice). MY refers to attributes of the machine ClassAd and TARGET refers to
the job ClassAd. The purpose of the pre job rank is to allow the pool administrator to override any other rankings,
in order to optimize overall throughput. For example, it is commonly used to minimize preemption, even if the
job rank prefers a machine that is busy. If explicitly set to be undefined, this expression has no effect on the
ranking of matches. The default value prefers to match multi-core jobs to dynamic slots in a best fit manner:

NEGOTIATOR_PRE_JOB_RANK = (10000000 * My.Rank) + \
(1000000 * (RemoteOwner =?= UNDEFINED)) - (100000 * Cpus) - Memory

NEGOTIATOR_POST_JOB_RANK Resources that match a request are first sorted by
NEGOTIATOR_PRE_JOB_RANK. If there are any ties in the rank of the top choice, the top resources are sorted by
the user-supplied rank in the job ClassAd, then by NEGOTIATOR_POST_JOB_RANK, then by PREEMPTION_RANK
(if the match would cause preemption and there are still any ties in the top choice). MY. refers to attributes of
the machine ClassAd and TARGET. refers to the job ClassAd. The purpose of the post job rank is to allow the
pool administrator to choose between machines that the job ranks equally. The default value is

NEGOTIATOR_POST_JOB_RANK = \
(RemoteOwner =?= UNDEFINED) * \
(ifThenElse(isUndefined(KFlops), 1000, Kflops) - \
SlotID - 1.0e10*(Offline=?=True))

PREEMPTION_REQUIREMENTS When considering user priorities, the negotiator will not preempt a job run-
ning on a given machine unless this expression evaluates to True, and the owner of the idle job has a bet-
ter priority than the owner of the running job. The PREEMPTION_REQUIREMENTS expression is evaluated
within the context of the candidate machine ClassAd and the candidate idle job ClassAd; thus the MY scope
prefix refers to the machine ClassAd, and the TARGET scope prefix refers to the ClassAd of the idle (can-
didate) job. There is no direct access to the currently running job, but attributes of the currently running
job that need to be accessed in PREEMPTION_REQUIREMENTS can be placed in the machine ClassAd using
STARTD_JOB_ATTRS . If not explicitly set in the HTCondor configuration file, the default value for this expression
is False. PREEMPTION_REQUIREMENTS should include the term (SubmitterGroup =?= RemoteGroup), if a
preemption policy that respects group quotas is desired. Note that this variable does not influence other potential
causes of preemption, such as the RANK of the condor_startd, or PREEMPT expressions. See condor_startd Policy
Configuration for a general discussion of limiting preemption.

PREEMPTION_REQUIREMENTS_STABLE A boolean value that defaults to True, implying that all attributes
utilized to define the PREEMPTION_REQUIREMENTS variable will not change within a negotiation period time
interval. If utilized attributes will change during the negotiation period time interval, then set this variable to
False.

PREEMPTION_RANK Resources that match a request are first sorted by NEGOTIATOR_PRE_JOB_RANK. If there are
any ties in the rank of the top choice, the top resources are sorted by the user-supplied rank in the job ClassAd,
then by NEGOTIATOR_POST_JOB_RANK, then by PREEMPTION_RANK (if the match would cause preemption and
there are still any ties in the top choice). MY refers to attributes of the machine ClassAd and TARGET refers
to the job ClassAd. This expression is used to rank machines that the job and the other negotiation expressions
rank the same. For example, if the job has no preference, it is usually preferable to preempt a job with a small
ImageSize instead of a job with a large ImageSize. The default value first considers the user’s priority and
chooses the user with the worst priority. Then, among the running jobs of that user, it chooses the job with the
least accumulated run time:

PREEMPTION_RANK = (RemoteUserPrio * 1000000) - \
ifThenElse(isUndefined(TotalJobRunTime), 0, TotalJobRunTime)

PREEMPTION_RANK_STABLE A boolean value that defaults to True, implying that all attributes utilized to

284 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

define the PREEMPTION_RANK variable will not change within a negotiation period time interval. If utilized
attributes will change during the negotiation period time interval, then set this variable to False.

NEGOTIATOR_SLOT_CONSTRAINT An expression which constrains which machine ClassAds are fetched from
the condor_collector by the condor_negotiator during a negotiation cycle.

NEGOTIATOR_SUBMITTER_CONSTRAINT An expression which constrains which submitter ClassAds are
fetched from the condor_collector by the condor_negotiator during a negotiation cycle. The condor_negotiator
will ignore the jobs of submitters whose submitter ads don’t match this constraint.

NEGOTIATOR_JOB_CONSTRAINT An expression which constrains which job ClassAds are considered for
matchmaking by the condor_negotiator. This parameter is read by the condor_negotiator and sent to the con-
dor_schedd for evaluation. condor_schedd s older than version 8.7.7 will ignore this expression and so will
continue to send all jobs to the condor_negotiator.

NEGOTIATOR_TRIM_SHUTDOWN_THRESHOLD This setting is not likely to be customized, except per-
haps within a glidein setting. An integer expression that evaluates to a value within the context of the con-
dor_negotiator ClassAd, with a default value of 0. When this expression evaluates to an integer X greater than 0,
the condor_negotiator will not make matches to machines that contain the ClassAd attribute DaemonShutdown
which evaluates to True, when that shut down time is X seconds into the future. The idea here is a mechanism
to prevent matching with machines that are quite close to shutting down, since the match would likely be a waste
of time.

NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT or GROUP_DYNAMIC_MACH_CONSTRAINT This
optional expression specifies which machine ClassAds should be counted when computing the size of the pool.
It applies both for group quota allocation and when there are no groups. The default is to count all machine
ClassAds. When extra slots exist for special purposes, as, for example, suspension slots or file transfer slots,
this expression can be used to inform the condor_negotiator that only normal slots should be counted when
computing how big each group’s share of the pool should be.

The name NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT replaces GROUP_DYNAMIC_MACH_CONSTRAINT as of
HTCondor version 7.7.3. Using the older name causes a warning to be logged, although the behavior is un-
changed.

NEGOTIATOR_DEBUG This macro (and other settings related to debug logging in the negotiator) is described in .

NEGOTIATOR_MAX_TIME_PER_SUBMITTER The maximum number of seconds the condor_negotiator will
spend with each individual submitter during one negotiation cycle. Once this time limit has been reached, the
condor_negotiator will skip over requests from this submitter until the next negotiation cycle. It defaults to 60
seconds.

NEGOTIATOR_MAX_TIME_PER_SCHEDD The maximum number of seconds the condor_negotiator will
spend with each individual condor_schedd during one negotiation cycle. Once this time limit has been reached,
the condor_negotiator will skip over requests from this condor_schedd until the next negotiation cycle. It de-
faults to 120 seconds.

NEGOTIATOR_MAX_TIME_PER_CYCLE The maximum number of seconds the condor_negotiator will spend
in total across all submitters during one negotiation cycle. Once this time limit has been reached, the con-
dor_negotiator will skip over requests from all submitters until the next negotiation cycle. It defaults to 1200
seconds.

NEGOTIATOR_MAX_TIME_PER_PIESPIN The maximum number of seconds the condor_negotiator will spend
with a submitter in one pie spin. A negotiation cycle is composed of at least one pie spin, possibly more, depend-
ing on whether there are still machines left over after computing fair shares and negotiating with each submitter.
By limiting the maximum length of a pie spin or the maximum time per submitter per negotiation cycle, the
condor_negotiator is protected against spending a long time talking to one submitter, for example someone with
a very slow condor_schedd daemon. But, this can result in unfair allocation of machines or some machines not
being allocated at all. See User Priorities and Negotiation for a description of a pie slice. It defaults to 120
seconds.

4.5. Configuration Macros 285

HTCondor Manual, Release 10.0.9

NEGOTIATOR_DEPTH_FIRST A boolean value which defaults to false. When partitionable slots are enabled,
and this parameter is true, the negotiator tries to pack as many jobs as possible on each machine before moving
on to the next machine.

USE_RESOURCE_REQUEST_COUNTS A boolean value that defaults to True. When True, the latency of nego-
tiation will be reduced when there are many jobs next to each other in the queue with the same auto cluster, and
many matches are being made. When True, the condor_schedd tells the condor_negotiator to send X matches
at a time, where X equals number of consecutive jobs in the queue within the same auto cluster.

NEGOTIATOR_RESOURCE_REQUEST_LIST_SIZE An integer tuning parameter used by the con-
dor_negotiator to control the number of resource requests fetched from a condor_schedd per network
round-trip. With higher values, the latency of negotiation can be significantly be reduced when negotiating with
a condor_schedd running HTCondor version 8.3.0 or more recent, especially over a wide-area network. Setting
this value too high, however, could cause the condor_schedd to unnecessarily block on network I/O. The default
value is 200. If USE_RESOURCE_REQUEST_COUNTS is set to False, then this variable will be unconditionally
set to a value of 1.

NEGOTIATOR_MATCH_EXPRS A comma-separated list of macro names that are inserted as ClassAd attributes
into matched job ClassAds. The attribute name in the ClassAd will be given the prefix NegotiatorMatchExpr,
if the macro name does not already begin with that. Example:

NegotiatorName = "My Negotiator"
NEGOTIATOR_MATCH_EXPRS = NegotiatorName

As a result of the above configuration, jobs that are matched by this condor_negotiator will contain the following
attribute when they are sent to the condor_startd:

NegotiatorMatchExprNegotiatorName = "My Negotiator"

The expressions inserted by the condor_negotiator may be useful in condor_startd policy expressions, when the
condor_startd belongs to multiple HTCondor pools.

NEGOTIATOR_MATCHLIST_CACHING A boolean value that defaults to True. When True, it enables an opti-
mization in the condor_negotiator that works with auto clustering. In determining the sorted list of machines that
a job might use, the job goes to the first machine off the top of the list. If NEGOTIATOR_MATCHLIST_CACHING
is True, and if the next job is part of the same auto cluster, meaning that it is a very similar job, the con-
dor_negotiator will reuse the previous list of machines, instead of recreating the list from scratch.

NEGOTIATOR_CONSIDER_PREEMPTION For expert users only. A boolean value that defaults to True. When
False, it can cause the condor_negotiator to run faster and also have better spinning pie accuracy. Only set this
to False if PREEMPTION_REQUIREMENTS is False, and if all condor_startd rank expressions are False.

NEGOTIATOR_CONSIDER_EARLY_PREEMPTION A boolean value that when False (the default), prevents
the condor_negotiator from matching jobs to claimed slots that cannot immediately be preempted due to
MAXJOBRETIREMENTTIME .

ALLOW_PSLOT_PREEMPTION A boolean value that defaults to False. When set to True for the con-
dor_negotiator, it enables a new matchmaking mode in which one or more dynamic slots can be preempted
in order to make enough resources available in their parent partitionable slot for a job to successfully match to
the partitionable slot.

STARTD_AD_REEVAL_EXPR A boolean value evaluated in the context of each machine ClassAd within a nego-
tiation cycle that determines whether the ClassAd from the condor_collector is to replace the stashed ClassAd
utilized during the previous negotiation cycle. When True, the ClassAd from the condor_collector does replace
the stashed one. When not defined, the default value is to replace the stashed ClassAd if the stashed ClassAd’s
sequence number is older than its potential replacement.

NEGOTIATOR_UPDATE_AFTER_CYCLE A boolean value that defaults to False. When True, it will force the
condor_negotiator daemon to publish an update to the condor_collector at the end of every negotiation cycle.

286 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

This is useful if monitoring statistics for the previous negotiation cycle.

NEGOTIATOR_READ_CONFIG_BEFORE_CYCLE A boolean value that defaults to False. When True, the
condor_negotiator will re-read the configuration prior to beginning each negotiation cycle. Note that this op-
eration will update configured behaviors such as concurrency limits, but not data structures constructed during
a full reconfiguration, such as the group quota hierarchy. A full reconfiguration, for example as accomplished
with condor_reconfig, remains the best way to guarantee that all condor_negotiator configuration is completely
updated.

<NAME>_LIMIT An integer value that defines the amount of resources available for jobs which declare that they use
some consumable resource as described in Concurrency Limits. <Name> is a string invented to uniquely describe
the resource.

CONCURRENCY_LIMIT_DEFAULT An integer value that describes the number of resources available for any
resources that are not explicitly named defined with the configuration variable <NAME>_LIMIT. If not defined,
no limits are set for resources not explicitly identified using <NAME>_LIMIT.

CONCURRENCY_LIMIT_DEFAULT_<NAME> If set, this defines a default concurrency limit for all resources
that start with <NAME>.

The following configuration macros affect negotiation for group users.

GROUP_NAMES A comma-separated list of the recognized group names, case insensitive. If undefined (the default),
group support is disabled. Group names must not conflict with any user names. That is, if there is a physics
group, there may not be a physics user. Any group that is defined here must also have a quota, or the group will
be ignored. Example:

GROUP_NAMES = group_physics, group_chemistry

GROUP_QUOTA_<groupname> A floating point value to represent a static quota specifying an integral number of
machines for the hierarchical group identified by <groupname>. It is meaningless to specify a non integer value,
since only integral numbers of machines can be allocated. Example:

GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_chemistry = 10

When both static and dynamic quotas are defined for a specific group, the static quota is used and the dynamic
quota is ignored.

GROUP_QUOTA_DYNAMIC_<groupname> A floating point value in the range 0.0 to 1.0, inclusive, represent-
ing a fraction of a pool’s machines (slots) set as a dynamic quota for the hierarchical group identified by
<groupname>. For example, the following specifies that a quota of 25% of the total machines are reserved
for members of the group_biology group.

GROUP_QUOTA_DYNAMIC_group_biology = 0.25

The group name must be specified in the GROUP_NAMES list.

This section has not yet been completed

GROUP_PRIO_FACTOR_<groupname> A floating point value greater than or equal to 1.0 to specify the de-
fault user priority factor for <groupname>. The group name must also be specified in the GROUP_NAMES list.
GROUP_PRIO_FACTOR_<groupname> is evaluated when the negotiator first negotiates for the user as a member
of the group. All members of the group inherit the default priority factor when no other value is present. For
example, the following setting specifies that all members of the group named group_physics inherit a default user
priority factor of 2.0:

GROUP_PRIO_FACTOR_group_physics = 2.0

4.5. Configuration Macros 287

HTCondor Manual, Release 10.0.9

GROUP_AUTOREGROUP A boolean value (defaults to False) that when True, causes users who submitted to a
specific group to also negotiate a second time with the <none> group, to be considered with the independent
job submitters. This allows group submitted jobs to be matched with idle machines even if the group is over its
quota. The user name that is used for accounting and prioritization purposes is still the group user as specified
by AccountingGroup in the job ClassAd.

GROUP_AUTOREGROUP_<groupname> This is the same as GROUP_AUTOREGROUP, but it is settable on a
per-group basis. If no value is specified for a given group, the default behavior is determined by
GROUP_AUTOREGROUP, which in turn defaults to False.

GROUP_ACCEPT_SURPLUS A boolean value that, when True, specifies that groups should be allowed to use
more than their configured quota when there is not enough demand from other groups to use all of the available
machines. The default value is False.

GROUP_ACCEPT_SURPLUS_<groupname> A boolean value applied as a group-specific version of
GROUP_ACCEPT_SURPLUS. When not specified, the value of GROUP_ACCEPT_SURPLUS applies to the
named group.

GROUP_QUOTA_ROUND_ROBIN_RATE The maximum sum of weighted slots that should be handed out to
an individual submitter in each iteration within a negotiation cycle. If slot weights are not being used by the
condor_negotiator, as specified by NEGOTIATOR_USE_SLOT_WEIGHTS = False, then this value is just the (un-
weighted) number of slots. The default value is a very big number, effectively infinite. Setting the value to a
number smaller than the size of the pool can help avoid starvation. An example of the starvation problem is when
there are a subset of machines in a pool with large memory, and there are multiple job submitters who desire all
of these machines. Normally, HTCondor will decide how much of the full pool each person should get, and then
attempt to hand out that number of resources to each person. Since the big memory machines are only a subset
of pool, it may happen that they are all given to the first person contacted, and the remainder requiring large
memory machines get nothing. Setting GROUP_QUOTA_ROUND_ROBIN_RATE to a value that is small compared
to the size of subsets of machines will reduce starvation at the cost of possibly slowing down the rate at which
resources are allocated.

GROUP_QUOTA_MAX_ALLOCATION_ROUNDS An integer that specifies the maximum number of times
within one negotiation cycle the condor_negotiator will calculate how many slots each group deserves and at-
tempt to allocate them. The default value is 3. The reason it may take more than one round is that some groups
may not have jobs that match some of the available machines, so some of the slots that were withheld for those
groups may not get allocated in any given round.

NEGOTIATOR_USE_SLOT_WEIGHTS A boolean value with a default of True. When True, the con-
dor_negotiator pays attention to the machine ClassAd attribute SlotWeight. When False, each slot effectively
has a weight of 1.

NEGOTIATOR_USE_WEIGHTED_DEMAND A boolean value that defaults to True. When False, the behavior
is the same as for HTCondor versions prior to 7.9.6. If True, when the condor_schedd advertises IdleJobs
in the submitter ClassAd, which represents the number of idle jobs in the queue for that submitter, it will also
advertise the total number of requested cores across all idle jobs from that submitter, WeightedIdleJobs. If
partitionable slots are being used, and if hierarchical group quotas are used, and if any hierarchical group quo-
tas set GROUP_ACCEPT_SURPLUS to True, and if configuration variable SlotWeight is set to the number of
cores, then setting this configuration variable to True allows the amount of surplus allocated to each group to be
calculated correctly.

GROUP_SORT_EXPR A floating point ClassAd expression that controls the order in which the condor_negotiator
considers groups when allocating resources. The smallest magnitude positive value goes first. The default value
is set such that group <none> always goes last when considering group quotas, and groups are considered in
starvation order (the group using the smallest fraction of its resource quota is considered first).

NEGOTIATOR_ALLOW_QUOTA_OVERSUBSCRIPTION A boolean value that defaults to True. When True,
the behavior of resource allocation when considering groups is more like it was in the 7.4 stable series of HT-
Condor. In implementation, when True, the static quotas of subgroups will not be scaled when the sum of

288 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

these static quotas of subgroups sums to more than the group’s static quota. This behavior is desirable when
using static quotas, unless the sum of subgroup quotas is considerably less than the group’s quota, as scaling is
currently based on the number of machines available, not assigned quotas (for static quotas).

4.5.15 condor_procd Configuration File Macros

USE_PROCD This boolean variable determines whether the condor_procd will be used for managing process fam-
ilies. If the condor_procd is not used, each daemon will run the process family tracking logic on its own. Use
of the condor_procd results in improved scalability because only one instance of this logic is required. The
condor_procd is required when using group ID-based process tracking (see Group ID-Based Process Tracking.
In this case, the USE_PROCD setting will be ignored and a condor_procd will always be used. By default, the
condor_master will start a condor_procd that all other daemons that need process family tracking will use. A
daemon that uses the condor_procd will start a condor_procd for use by itself and all of its child daemons.

PROCD_MAX_SNAPSHOT_INTERVAL This setting determines the maximum time that the condor_procd will
wait between probes of the system for information about the process families it is tracking.

PROCD_LOG Specifies a log file for the condor_procd to use. Note that by design, the condor_procd does not
include most of the other logic that is shared amongst the various HTCondor daemons. This means that the
condor_procd does not include the normal HTCondor logging subsystem, and thus multiple debug levels are not
supported. PROCD_LOG defaults to $(LOG)/ProcLog. Note that enabling D_PROCFAMILY in the debug level for
any other daemon will cause it to log all interactions with the condor_procd.

MAX_PROCD_LOG Controls the maximum length in bytes to which the condor_procd log will be allowed to grow.
The log file will grow to the specified length, then be saved to a file with the suffix .old. The .old file is
overwritten each time the log is saved, thus the maximum space devoted to logging will be twice the maximum
length of this log file. A value of 0 specifies that the file may grow without bounds. The default is 10 MiB.

PROCD_ADDRESS This specifies the address that the condor_procd will use to receive requests from other HT-
Condor daemons. On Unix, this should point to a file system location that can be used for a named pipe. On
Windows, named pipes are also used but they do not exist in the file system. The default setting therefore depends
on the platform and distribution: $(LOCK)/procd_pipe or $(RUN)/procd_pipe on Unix and \\.\pipe\procd_pipe
on Windows.

USE_GID_PROCESS_TRACKING A boolean value that defaults to False. When True, a job’s initial process is
assigned a dedicated GID which is further used by the condor_procd to reliably track all processes associated
with a job. When True, values for MIN_TRACKING_GID and MAX_TRACKING_GIDmust also be set, or HTCondor
will abort, logging an error message. See Group ID-Based Process Tracking for a detailed description.

MIN_TRACKING_GID An integer value, that together with MAX_TRACKING_GID specify a range of GIDs to be
assigned on a per slot basis for use by the condor_procd in tracking processes associated with a job. See Group
ID-Based Process Tracking for a detailed description.

MAX_TRACKING_GID An integer value, that together with MIN_TRACKING_GID specify a range of GIDs to be
assigned on a per slot basis for use by the condor_procd in tracking processes associated with a job. See Group
ID-Based Process Tracking for a detailed description.

BASE_CGROUP The path to the directory used as the virtual file system for the implementation of Linux kernel
cgroups. This variable defaults to the string htcondor, and is only used on Linux systems. To disable cgroup
tracking, define this to an empty string. See Cgroup-Based Process Tracking for a description of cgroup-based
process tracking. An administrator can configure distinct cgroup roots for different slot types within the same
startd by prefixing the BASE_CGROUP macro with the slot type. e.g. setting SLOT_TYPE_1.BASE_CGROUP
= hiprio_cgroup and SLOT_TYPE_2.BASE_CGROUP = low_prio

4.5. Configuration Macros 289

HTCondor Manual, Release 10.0.9

4.5.16 condor_credd Configuration File Macros

These macros affect the condor_credd and its credmon plugin.

CREDD_HOST The host name of the machine running the condor_credd daemon.

CREDD_POLLING_TIMEOUT An integer value representing the number of seconds that the condor_credd, con-
dor_starter, and condor_schedd daemons will wait for valid credentials to be produced by a credential monitor
(CREDMON) service. The default value is 20.

CREDD_CACHE_LOCALLY A boolean value that defaults to False. When True, the first successful password
fetch operation to the condor_credd daemon causes the password to be stashed in a local, secure password store.
Subsequent uses of that password do not require communication with the condor_credd daemon.

CRED_SUPER_USERS A comma and/or space separated list of user names on a given machine that are permitted
to store credentials for any user when using the condor_store_cred command. When not on this list, users can
only store their own credentials. Entries in this list can contain a single ‘*’ wildcard character, which matches
any sequence of characters.

SKIP_WINDOWS_LOGON_NETWORK A boolean value that defaults to False. When True, Windows authen-
tication skips trying authentication with the LOGON_NETWORK method first, and attempts authentication with
LOGON_INTERACTIVE method. This can be useful if many authentication failures are noticed, potentially lead-
ing to users getting locked out.

CREDMON_KRB The path to the credmon daemon process when using the Kerberos credentials type. The default
is /usr/sbin/condor_credmon_krb

CREDMON_OAUTH The path to the credmon daemon process when using the OAuth2 credentials type. The default
is /usr/sbin/condor_credmon_oauth.

CREDMON_OAUTH_TOKEN_MINIMUM The minimum time in seconds that OAuth2 tokens should have re-
maining on them when they are generated. The default is 40 minutes. This is currently implemented only in the
vault credmon, not the default oauth credmon.

CREDMON_OAUTH_TOKEN_REFRESH The time in seconds between renewing OAuth2 tokens. The default is
half of CREDMON_OAUTH_TOKEN_MINIMUM. This is currently implemented only in the vault credmon, not the
default oauth credmon.

4.5.17 condor_gridmanager Configuration File Entries

These macros affect the condor_gridmanager.

GRIDMANAGER_LOG Defines the path and file name for the log of the condor_gridmanager. The owner of the
file is the condor user.

GRIDMANAGER_CHECKPROXY_INTERVAL The number of seconds between checks for an updated X509
proxy credential. The default is 10 minutes (600 seconds).

GRIDMANAGER_PROXY_REFRESH_TIME For remote schedulers that allow for X.509 proxy refresh, the con-
dor_gridmanager will not forward a refreshed proxy until the lifetime left for the proxy on the remote machine
falls below this value. The value is in seconds and the default is 21600 (6 hours).

GRIDMANAGER_MINIMUM_PROXY_TIME The minimum number of seconds before expiration of the X509
proxy credential for the gridmanager to continue operation. If seconds until expiration is less than this number,
the gridmanager will shutdown and wait for a refreshed proxy credential. The default is 3 minutes (180 seconds).

290 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

HOLD_JOB_IF_CREDENTIAL_EXPIRES True or False. Defaults to True. If True, and for grid universe jobs
only, HTCondor-G will place a job on hold GRIDMANAGER_MINIMUM_PROXY_TIME seconds before the proxy
expires. If False, the job will stay in the last known state, and HTCondor-G will periodically check to see if the
job’s proxy has been refreshed, at which point management of the job will resume.

GRIDMANAGER_SELECTION_EXPR By default, the gridmanager operates on a per-Owner basis. That is, the
condor_schedd starts a distinct condor_gridmanager for each grid universe job with a distinct Owner. For addi-
tional isolation and/or scalability, you may set this macro to a ClassAd expression. It will be evaluated against
each grid universe job, and jobs with the same evaluated result will go to the same gridmanager. For instance, if
you want to isolate job going to different remote sites from each other, the following expression works:

GRIDMANAGER_SELECTION_EXPR = GridResource

GRIDMANAGER_LOG_APPEND_SELECTION_EXPR A boolean value that defaults to False. When True,
the evaluated value of GRIDMANAGER_SELECTION_EXPR (if set) is appended to the value of GRIDMANAGER_LOG
for each condor_gridmanager instance. The value is sanitized to remove characters that have special meaning to
the shell. This allows each condor_gridmanager instance that runs concurrently to write to a separate daemon
log.

GRIDMANAGER_CONTACT_SCHEDD_DELAY The minimum number of seconds between connections to the
condor_schedd. The default is 5 seconds.

GRIDMANAGER_JOB_PROBE_INTERVAL The number of seconds between active probes for the status of a
submitted job. The default is 1 minute (60 seconds). Intervals specific to grid types can be set by appending the
name of the grid type to the configuration variable name, as the example

GRIDMANAGER_JOB_PROBE_INTERVAL_ARC = 300

GRIDMANAGER_JOB_PROBE_RATE The maximum number of job status probes per second that will be is-
sued to a given remote resource. The time between status probes for individual jobs may be lengthened beyond
GRIDMANAGER_JOB_PROBE_INTERVAL to enforce this rate. The default is 5 probes per second. Rates specific to
grid types can be set by appending the name of the grid type to the configuration variable name, as the example

GRIDMANAGER_JOB_PROBE_RATE_ARC = 15

GRIDMANAGER_RESOURCE_PROBE_INTERVAL When a resource appears to be down, how often (in sec-
onds) the condor_gridmanager should ping it to test if it is up again. The default is 5 minutes (300 seconds).

GRIDMANAGER_EMPTY_RESOURCE_DELAY The number of seconds that the condor_gridmanager retains
information about a grid resource, once the condor_gridmanager has no active jobs on that resource. An active
job is a grid universe job that is in the queue, for which JobStatus is anything other than Held. Defaults to 300
seconds.

GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE An integer value that limits the number of
jobs that a condor_gridmanager daemon will submit to a resource. A comma-separated list of pairs that fol-
lows this integer limit will specify limits for specific remote resources. Each pair is a host name and the job limit
for that host. Consider the example:

GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE = 200, foo.edu, 50, bar.com, 100

In this example, all resources have a job limit of 200, except foo.edu, which has a limit of 50, and bar.com, which
has a limit of 100.

Limits specific to grid types can be set by appending the name of the grid type to the configuration variable name,
as the example

GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE_PBS = 300

4.5. Configuration Macros 291

HTCondor Manual, Release 10.0.9

In this example, the job limit for all PBS resources is 300. Defaults to 1000.

GAHP_DEBUG_HIDE_SENSITIVE_DATA A boolean value that determines when sensitive data such as security
keys and passwords are hidden, when communication to or from a GAHP server is written to a daemon log. The
default is True, hiding sensitive data.

GRIDMANAGER_GAHP_CALL_TIMEOUT The number of seconds after which a pending GAHP command
should time out. The default is 5 minutes (300 seconds).

GRIDMANAGER_GAHP_RESPONSE_TIMEOUT The condor_gridmanager will assume a GAHP is hung if this
many seconds pass without a response. The default is 20.

GRIDMANAGER_MAX_PENDING_REQUESTS The maximum number of GAHP commands that can be pend-
ing at any time. The default is 50.

GRIDMANAGER_CONNECT_FAILURE_RETRY_COUNT The number of times to retry a command that failed
due to a timeout or a failed connection. The default is 3.

EC2_RESOURCE_TIMEOUT The number of seconds after which if an EC2 grid universe job fails to ping the EC2
service, the job will be put on hold. Defaults to -1, which implements an infinite length, such that a failure to
ping the service will never put the job on hold.

EC2_GAHP_RATE_LIMIT The minimum interval, in whole milliseconds, between requests to the same EC2 ser-
vice with the same credentials. Defaults to 100.

BATCH_GAHP_CHECK_STATUS_ATTEMPTS The number of times a failed status command issued to the
blahpd should be retried. These retries allow the condor_gridmanager to tolerate short-lived failures of the
underlying batch system. The default value is 5.

C_GAHP_LOG The complete path and file name of the HTCondor GAHP server’s log. The default value is /tmp/
CGAHPLog.$(USERNAME).

MAX_C_GAHP_LOG The maximum size of the C_GAHP_LOG.

C_GAHP_WORKER_THREAD_LOG The complete path and file name of the HTCondor GAHP worker process’
log. The default value is /temp/CGAHPWorkerLog.$(USERNAME).

C_GAHP_CONTACT_SCHEDD_DELAY The number of seconds that the condor_C-gahp daemon waits between
consecutive connections to the remote condor_schedd in order to send batched sets of commands to be executed
on that remote condor_schedd daemon. The default value is 5.

C_GAHP_MAX_FILE_REQUESTS Limits the number of file transfer commands of each type (input, output, proxy
refresh) that are performed before other (potentially higher-priority) commands are read and performed. The
default value is 10.

BLAHPD_LOCATION The complete path to the directory containing the blahp software, which is required for grid-
type batch jobs. The default value is $(RELEASE_DIR).

GAHP_SSL_CADIR The path to a directory that may contain the certificates (each in its own file) for multiple trusted
CAs to be used by GAHP servers when authenticating with remote services.

GAHP_SSL_CAFILE The path and file name of a file containing one or more trusted CA’s certificates to be used by
GAHP servers when authenticating with remote services.

CONDOR_GAHP The complete path and file name of the HTCondor GAHP executable. The default value is
$(SBIN)/condor_c-gahp.

EC2_GAHP The complete path and file name of the EC2 GAHP executable. The default value is $(SBIN)/ec2_gahp.

BATCH_GAHP The complete path and file name of the batch GAHP executable, to be used for Slurm, PBS, LSF,
SGE, and similar batch systems. The default location is $(BIN)/blahpd.

ARC_GAHP The complete path and file name of the ARC GAHP executable. The default value is $(SBIN)/arc_gahp.

292 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

GCE_GAHP The complete path and file name of the GCE GAHP executable. The default value is $(SBIN)/gce_gahp.

AZURE_GAHP The complete path and file name of the Azure GAHP executable. The default value is
$(SBIN)/AzureGAHPServer.py on Windows and $(SBIN)/AzureGAHPServer on other platforms.

BOINC_GAHP The complete path and file name of the BOINC GAHP executable. The default value is
$(SBIN)/boinc_gahp.

4.5.18 condor_job_router Configuration File Entries

These macros affect the condor_job_router daemon.

JOB_ROUTER_ROUTE_NAMES An ordered list of the names of enabled routes. In version 8.9.7 or later, routes
whose names are listed here should each have a JOB_ROUTER_ROUTE_<NAME> configuration variable that spec-
ifies the route.

Routes will be matched to jobs in the order their names are declared in this list. Routes not declared in this list
will be disabled.

If routes are specified in the deprecated JOB_ROUTER_ENTRIES, JOB_ROUTER_ENTRIES_FILE and
JOB_ROUTER_ENTRIES_CMD configuration variables, then JOB_ROUTER_ROUTE_NAMES is optional. if it is
empty, the order in which routes are considered will be the order in which their names hash.

JOB_ROUTER_ROUTE_<NAME> Specification of a single route in transform syntax. <NAME> should be one
of the route names specified in JOB_ROUTER_ROUTE_NAMES. The transform syntax is specified in the ClassAd
Transforms section of this manual.

JOB_ROUTER_PRE_ROUTE_TRANSFORM_NAMES An ordered list of the names of transforms that should
be applied when a job is being routed before the route transform is applied. Each transform name listed here
should have a corresponding JOB_ROUTER_TRANSFORM_<NAME> configuration variable.

JOB_ROUTER_POST_ROUTE_TRANSFORM_NAMES An ordered list of the names of transforms that should
be applied when a job is being routed after the route transform is applied. Each transform name listed here should
have a corresponding JOB_ROUTER_TRANSFORM_<NAME> configuration variable.

JOB_ROUTER_TRANSFORM_<NAME> Specification of a single pre-route or post-route transform. <NAME>
should be one of the route names specified in JOB_ROUTER_PRE_ROUTE_TRANSFORM_NAMES or in
JOB_ROUTER_POST_ROUTE_TRANSFORM_NAMES. The transform syntax is specified in the ClassAd Transforms
section of this manual.

JOB_ROUTER_DEFAULTS Deprecated, use JOB_ROUTER_PRE_ROUTE_TRANSFORM_NAMES instead. Defined by
a single ClassAd in New ClassAd syntax, used to provide default values for routes in the condor_job_router
daemon’s routing table that are specified by the also deprecated JOB_ROUTER_ENTRIES*. The enclosing square
brackets are optional.

JOB_ROUTER_ENTRIES Deprecated, use JOB_ROUTER_ROUTE_<NAME> instead. Specification of the job routing
table. It is a list of ClassAds, in New ClassAd syntax, where each individual ClassAd is surrounded by square
brackets, and the ClassAds are separated from each other by spaces. Each ClassAd describes one entry in the
routing table, and each describes a site that jobs may be routed to.

A condor_reconfig command causes the condor_job_router daemon to rebuild the routing table. Routes are
distinguished by a routing table entry’s ClassAd attribute Name. Therefore, a Name change in an existing route
has the potential to cause the inaccurate reporting of routes.

Instead of setting job routes using this configuration variable, they may be read from an external source
using the JOB_ROUTER_ENTRIES_FILE or be dynamically generated by an external program via the
JOB_ROUTER_ENTRIES_CMD configuration variable.

4.5. Configuration Macros 293

HTCondor Manual, Release 10.0.9

Routes specified by any of these 3 configuration variables are merged with the JOB_ROUTER_DEFAULTS before
being used.

JOB_ROUTER_ENTRIES_FILE Deprecated, use JOB_ROUTER_ROUTE_<NAME> instead. A path and file name of
a file that contains the ClassAds, in New ClassAd syntax, describing the routing table. The specified file is peri-
odically reread to check for new information. This occurs every $(JOB_ROUTER_ENTRIES_REFRESH) seconds.

JOB_ROUTER_ENTRIES_CMD Deprecated, use JOB_ROUTER_ENTRIES_<NAME) instead. Specifies the com-
mand line of an external program to run. The output of the program defines or updates the routing table, and
the output must be given in New ClassAd syntax. The specified command is periodically rerun to regenerate or
update the routing table. This occurs every $(JOB_ROUTER_ENTRIES_REFRESH) seconds. Specify the full path
and file name of the executable within this command line, as no assumptions may be made about the current
working directory upon command invocation. To enter spaces in any command-line arguments or in the com-
mand name itself, surround the right hand side of this definition with double quotes, and use single quotes around
individual arguments that contain spaces. This is the same as when dealing with spaces within job arguments in
an HTCondor submit description file.

JOB_ROUTER_ENTRIES_REFRESH The number of seconds between updates to the routing table described by
JOB_ROUTER_ENTRIES_FILE or JOB_ROUTER_ENTRIES_CMD. The default value is 0, meaning no periodic up-
dates occur. With the default value of 0, the routing table can be modified when a condor_reconfig command is
invoked or when the condor_job_router daemon restarts.

JOB_ROUTER_LOCK This specifies the name of a lock file that is used to ensure that multiple instances of con-
dor_job_router never run with the same JOB_ROUTER_NAME. Multiple instances running with the same name
could lead to mismanagement of routed jobs. The default value is $(LOCK)/$(JOB_ROUTER_NAME)Lock.

JOB_ROUTER_SOURCE_JOB_CONSTRAINT Specifies a global Requirements expression that must be true
for all newly routed jobs, in addition to any Requirements specified within a routing table entry. In addition
to the configurable constraints, the condor_job_router also has some hard-coded constraints. It avoids recur-
sively routing jobs by requiring that the job’s attribute RoutedBy does not match JOB_ROUTER_NAME . When
not running as root, it also avoids routing jobs belonging to other users.

JOB_ROUTER_MAX_JOBS An integer value representing the maximum number of jobs that may be routed,
summed over all routes. The default value is -1, which means an unlimited number of jobs may be routed.

JOB_ROUTER_DEFAULT_MAX_JOBS_PER_ROUTE An integer value representing the maximum number of
jobs that may be routed to a single route when the route does not specify a MaxJobs value. The default value is
100.

JOB_ROUTER_DEFAULT_MAX_IDLE_JOBS_PER_ROUTE An integer value representing the maximum
number of jobs in a single route that may be in the idle state. When the number of jobs routed to that site
exceeds this number, no more jobs will be routed to it. A route may specify MaxIdleJobs to override this
number. The default value is 50.

MAX_JOB_MIRROR_UPDATE_LAG An integer value that administrators will rarely consider changing, repre-
senting the maximum number of seconds the condor_job_router daemon waits, before it decides that routed
copies have gone awry, due to the failure of events to appear in the condor_schedd ‘s job queue log file. The
default value is 600. As the condor_job_router daemon uses the condor_schedd ‘s job queue log file entries
for synchronization of routed copies, when an expected log file event fails to appear after this wait period, the
condor_job_router daemon acts presuming the expected event will never occur.

JOB_ROUTER_POLLING_PERIOD An integer value representing the number of seconds between cycles in the
condor_job_router daemon’s task loop. The default is 10 seconds. A small value makes the condor_job_router
daemon quick to see new candidate jobs for routing. A large value makes the condor_job_router daemon generate
less overhead at the cost of being slower to see new candidates for routing. For very large job queues where a few
minutes of routing latency is no problem, increasing this value to a few hundred seconds would be reasonable.

JOB_ROUTER_NAME A unique identifier utilized to name multiple instances of the condor_job_router daemon
on the same machine. Each instance must have a different name, or all but the first to start up will refuse to run.

294 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

The default is "jobrouter".

Changing this value when routed jobs already exist is not currently gracefully handled. However, it can be done
if one also uses condor_qedit to change the value of ManagedManager and RoutedBy from the old name to the
new name. The following commands may be helpful:

$ condor_qedit -constraint \
'RoutedToJobId =!= undefined && ManagedManager == "insert_old_name"' \
ManagedManager '"insert_new_name"'

$ condor_qedit -constraint \
'RoutedBy == "insert_old_name"' RoutedBy '"insert_new_name"'

JOB_ROUTER_RELEASE_ON_HOLD A boolean value that defaults to True. It controls how the con-
dor_job_router handles the routed copy when it goes on hold. When True, the condor_job_router leaves the
original job ClassAd in the same state as when claimed. When False, the condor_job_router does not attempt
to reset the original job ClassAd to a pre-claimed state upon yielding control of the job.

JOB_ROUTER_SCHEDD1_SPOOL The path to the spool directory for the condor_schedd serving as the source of
jobs for routing. If not specified, this defaults to $(SPOOL). If specified, this parameter must point to the spool
directory of the condor_schedd identified by JOB_ROUTER_SCHEDD1_NAME.

JOB_ROUTER_SCHEDD2_SPOOL The path to the spool directory for the condor_schedd to which the routed
copy of the jobs are submitted. If not specified, this defaults to $(SPOOL). If specified, this parameter must
point to the spool directory of the condor_schedd identified by JOB_ROUTER_SCHEDD2_NAME. Note that when
condor_job_router is running as root and is submitting routed jobs to a different condor_schedd than the source
condor_schedd, it is required that condor_job_router have permission to impersonate the job owners of the routed
jobs. It is therefore usually necessary to configure QUEUE_SUPER_USER_MAY_IMPERSONATE in the configuration
of the target condor_schedd.

JOB_ROUTER_SCHEDD1_NAME The advertised daemon name of the condor_schedd serving as the source of
jobs for routing. If not specified, this defaults to the local condor_schedd. If specified, this parameter must
name the same condor_schedd whose spool is configured in JOB_ROUTER_SCHEDD1_SPOOL. If the named con-
dor_schedd is not advertised in the local pool, JOB_ROUTER_SCHEDD1_POOL will also need to be set.

JOB_ROUTER_SCHEDD2_NAME The advertised daemon name of the condor_schedd to which the routed copy
of the jobs are submitted. If not specified, this defaults to the local condor_schedd. If specified, this parameter
must name the same condor_schedd whose spool is configured in JOB_ROUTER_SCHEDD2_SPOOL. If the named
condor_schedd is not advertised in the local pool, JOB_ROUTER_SCHEDD2_POOL will also need to be set. Note
that when condor_job_router is running as root and is submitting routed jobs to a different condor_schedd than
the source condor_schedd, it is required that condor_job_router have permission to impersonate the job owners
of the routed jobs. It is therefore usually necessary to configure QUEUE_SUPER_USER_MAY_IMPERSONATE in the
configuration of the target condor_schedd.

JOB_ROUTER_SCHEDD1_POOL The Condor pool (condor_collector address) of the condor_schedd serving as
the source of jobs for routing. If not specified, defaults to the local pool.

JOB_ROUTER_SCHEDD2_POOL The Condor pool (condor_collector address) of the condor_schedd to which
the routed copy of the jobs are submitted. If not specified, defaults to the local pool.

JOB_ROUTER_ROUND_ROBIN_SELECTION A boolean value that controls which route is chosen for a candi-
date job that matches multiple routes. When set to False, the default, the first matching route is always selected.
When set to True, the Job Router attempts to distribute jobs across all matching routes, round robin style.

JOB_ROUTER_CREATE_IDTOKEN_NAMES An list of the names of IDTOKENs that the Jo-
bRouter should create and refresh. IDTOKENS whose names are listed here should each have a
JOB_ROUTER_CREATE_IDTOKEN_<NAME> configuration variable that specifies the the filename, ownership and
properties of the IDTOKEN.

4.5. Configuration Macros 295

HTCondor Manual, Release 10.0.9

JOB_ROUTER_IDTOKEN_REFRESH An integer value of secounds that controls the rate at which the JobRouter
will refresh the IDTOKENS listed by the JOB_ROUTER_CREATE_IDTOKEN_NAMES configuration variable.

JOB_ROUTER_CREATE_IDTOKEN_<NAME> Specification of a single IDTOKEN that will be created
an refreshed by the JobRouter. <NAME> should be one of the IDTOKEN names specified in
JOB_ROUTER_CREATE_IDTOKEN_NAMES. The filename, ownership and properties of the IDTOKEN are defined
by the following attributes. Each attribute value must be a classad expression that evaluates to a string, except
lifetime which must evaluate to an integer.

kid The ID of the token signing key to use, equivalent to the -key argument of condor_token_create and the
kid attribute of condor_token_list. Defaults to “POOL”

sub The subject or user identity, equivalent to the -identity argument of condor_token_create and the sub
attribute of condor_token_list. Defaults the token name.

scope List of allowed authorizations, equivalent to the -authz argument of condor_token_create and the scope
attribute of condor_token_list.

lifetime Time in seconds that the IDTOKEN is valid after creation, equivalent to the -lifetime argument of
condor_token_create. The exp attribute of condor_token_list is the creation time of the token plus this
value.

file The filename of the IDTOKEN file, equivalent to the -token argument of condor_token_create. Defaults
to the token name.

dir The directory that the IDTOKEN file will be created and refreshed into. Defaults to
$(SEC_TOKEN_DIRECTORY).

owner If specified, the IDTOKEN file will be owned by this user. If not specified, the IDTOKEN file will be
owned by the owner of condor_job_router process. This attribute is optional if the condor_job_router is
running as an ordinary user but required if it is running as a Windows service or as the root or condor
user. The owner specified here should be the same as the Owner attribute of the jobs that this IDTOKEN
is intended to be sent to.

JOB_ROUTER_SEND_ROUTE_IDTOKENS List of the names of the IDTOKENS to add to the input file trans-
fer list of each routed job. This list should be one or more of the IDTOKEN names specified by the
JOB_ROUTER_CREATE_IDTOKEN_NAMES. If the route has a SendIDTokens definition, this configuration vari-
able is not used for that route.

4.5.19 condor_lease_manager Configuration File Entries

These macros affect the condor_lease_manager.

The condor_lease_manager expects to use the syntax

<subsystem name>.<parameter name>

in configuration. This allows multiple instances of the condor_lease_manager to be easily configured using the syntax

<subsystem name>.<local name>.<parameter name>

LeaseManager.GETADS_INTERVAL An integer value, given in seconds, that controls the frequency with which
the condor_lease_manager pulls relevant resource ClassAds from the condor_collector. The default value is 60
seconds, with a minimum value of 2 seconds.

LeaseManager.UPDATE_INTERVAL An integer value, given in seconds, that controls the frequency with which
the condor_lease_manager sends its ClassAds to the condor_collector. The default value is 60 seconds, with a
minimum value of 5 seconds.

296 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

LeaseManager.PRUNE_INTERVAL An integer value, given in seconds, that controls the frequency with which the
condor_lease_manager prunes its leases. This involves checking all leases to see if they have expired. The
default value is 60 seconds, with no minimum value.

LeaseManager.DEBUG_ADS A boolean value that defaults to False. When True, it enables extra debugging infor-
mation about the resource ClassAds that it retrieves from the condor_collector and about the search ClassAds
that it sends to the condor_collector.

LeaseManager.MAX_LEASE_DURATION An integer value representing seconds which determines the maxi-
mum duration of a lease. This can be used to provide a hard limit on lease durations. Normally, the con-
dor_lease_manager honors the MaxLeaseDuration attribute from the resource ClassAd. If this configuration
variable is defined, it limits the effective maximum duration for all resources to this value. The default value is
1800 seconds.

Note that leases can be renewed, and thus can be extended beyond this limit. To provide a limit on the total
duration of a lease, use LeaseManager.MAX_TOTAL_LEASE_DURATION.

LeaseManager.MAX_TOTAL_LEASE_DURATION An integer value representing seconds used to limit the total
duration of leases, over all its renewals. The default value is 3600 seconds.

LeaseManager.DEFAULT_MAX_LEASE_DURATION The condor_lease_manager uses the
MaxLeaseDuration attribute from the resource ClassAd to limit the lease duration. If this attribute is
not present in a resource ClassAd, then this configuration variable is used instead. This integer value is given in
units of seconds, with a default value of 60 seconds.

LeaseManager.CLASSAD_LOG This variable defines a full path and file name to the location where the con-
dor_lease_manager keeps persistent state information. This variable has no default value.

LeaseManager.QUERY_ADTYPE This parameter controls the type of the query in the ClassAd sent to the con-
dor_collector, which will control the types of ClassAds returned by the condor_collector. This parameter must
be a valid ClassAd type name, with a default value of "Any".

LeaseManager.QUERY_CONSTRAINTS A ClassAd expression that controls the constraint in the query sent to the
condor_collector. It is used to further constrain the types of ClassAds from the condor_collector. There is no
default value, resulting in no constraints being placed on query.

4.5.20 Configuration File Entries for DAGMan

These macros affect the operation of DAGMan and DAGMan jobs within HTCondor.

Note: Many, if not all, of these configuration variables will be most appropriately set on a per DAG basis, rather than
in the global HTCondor configuration files. Per DAG configuration is explained in Advanced Features of DAGMan.
Also note that configuration settings of a running condor_dagman job are not changed by doing a condor_reconfig.

General

DAGMAN_CONFIG_FILE The path and name of the configuration file to be used by condor_dagman. This con-
figuration variable is set automatically by condor_submit_dag, and it should not be explicitly set by the user.
Defaults to the empty string.

DAGMAN_USE_STRICT An integer defining the level of strictness condor_dagman will apply when turning warn-
ings into fatal errors, as follows:

• 0: no warnings become errors

4.5. Configuration Macros 297

HTCondor Manual, Release 10.0.9

• 1: severe warnings become errors

• 2: medium-severity warnings become errors

• 3: almost all warnings become errors

Using a strictness value greater than 0 may help find problems with a DAG that may otherwise escape notice.
The default value if not defined is 1.

DAGMAN_STARTUP_CYCLE_DETECT A boolean value that defaults to False. When True, causes con-
dor_dagman to check for cycles in the DAG before submitting DAG node jobs, in addition to its run time cycle
detection. Note that setting this value to True will impose significant startup delays for large DAGs.

DAGMAN_ABORT_DUPLICATES A boolean value that controls whether to attempt to abort duplicate instances
of condor_dagman running the same DAG on the same machine. When condor_dagman starts up, if no DAG
lock file exists, condor_dagman creates the lock file and writes its PID into it. If the lock file does exist, and
DAGMAN_ABORT_DUPLICATES is set to True, condor_dagman checks whether a process with the given PID
exists, and if so, it assumes that there is already another instance of condor_dagman running the same DAG.
Note that this test is not foolproof: it is possible that, if condor_dagman crashes, the same PID gets reused
by another process before condor_dagman gets rerun on that DAG. This should be quite rare, however. If not
defined, DAGMAN_ABORT_DUPLICATES defaults to True. Note: users should rarely change this setting.

DAGMAN_USE_OLD_DAG_READER As of HTCondor version 8.3.3, this variable is no longer supported. Its
value will always be False. A setting of True will result in a warning, and the setting will have no effect on
how a DAG input file is read. The variable was previously used to change the reading of DAG input files to that
of HTCondor versions prior to 8.0.6. Note: users should never change this setting.

DAGMAN_USE_SHARED_PORT A boolean value that controls whether condor_dagman will attempt to connect
to the shared port daemon. If not defined, DAGMAN_USE_SHARED_PORT defaults to False. There is no reason to
ever change this value; it was introduced to prevent spurious shared port-related error messages from appearing
in dagman.out files. (Introduced in version 8.6.1.)

DAGMAN_USE_DIRECT_SUBMIT A boolean value that controls whether condor_dagman submits jobs using
condor_submit or by opening a direct connection to the condor_schedd. DAGMAN_USE_DIRECT_SUBMIT defaults
to True. When set to True condor_dagman will submit jobs to the local Schedd by connecting to it directly. This
is faster than using condor_submit, especially for very large DAGs; But this method will ignore some submit file
features such as max_materialize and more than one QUEUE statement.

DAGMAN_USE_JOIN_NODES A boolean value that defaults to True. When True, causes condor_dagman to
break up many-PARENT-many-CHILD relationships with an intermediate join node. When these sets are large,
this significantly optimizes the graph structure by reducing the number of dependencies, resulting in a significant
improvement to the condor_dagman memory footprint, parse time, and submit speed.

DAGMAN_PUT_FAILED_JOBS_ON_HOLD A boolean value that when set to True causes DAGMan to automat-
ically retry a node with its job submitted on hold, if any of the nodes job procs fail. This only applies for job
failures and not PRE, POST, or HOLD script failures within a DAG node. The job is only put on hold if the node
has no more declared RETRY attempts. The default value is False.

DAGMAN_DEFAULT_APPEND_VARS A boolean value that defaults to False. When True, variables parsed in
the DAG file VARS line will be appended to the given Job submit description file unless VARS specifies PREPEND
or APPEND. When False, the parsed variables will be prepended unless specified.

298 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Throttling

DAGMAN_MAX_JOBS_IDLE An integer value that controls the maximum number of idle procs allowed within the
DAG before condor_dagman temporarily stops submitting jobs. condor_dagman will resume submitting jobs
once the number of idle procs falls below the specified limit. DAGMAN_MAX_JOBS_IDLE currently counts each
individual proc within a cluster as a job, which is inconsistent with DAGMAN_MAX_JOBS_SUBMITTED. Note that
submit description files that queue multiple procs can cause the DAGMAN_MAX_JOBS_IDLE limit to be exceeded.
If a submit description file contains queue 5000 and DAGMAN_MAX_JOBS_IDLE is set to 250, this will result in
5000 procs being submitted to the condor_schedd, not 250; in this case, no further jobs will then be submitted by
condor_dagman until the number of idle procs falls below 250. The default value is 1000. To disable this limit,
set the value to 0. This configuration option can be overridden by the condor_submit_dag -maxidle command-
line argument (see condor_submit_dag).

DAGMAN_MAX_JOBS_SUBMITTED An integer value that controls the maximum number of node jobs (clusters)
within the DAG that will be submitted to HTCondor at one time. A single invocation of condor_submit by
condor_dagman counts as one job, even if the submit file produces a multi-proc cluster. The default value is 0
(unlimited). This configuration option can be overridden by the condor_submit_dag -maxjobs command-line
argument (see condor_submit_dag).

DAGMAN_MAX_PRE_SCRIPTS An integer defining the maximum number of PRE scripts that any given con-
dor_dagman will run at the same time. The value 0 allows any number of PRE scripts to run. The default value if
not defined is 20. Note that the DAGMAN_MAX_PRE_SCRIPTS value can be overridden by the condor_submit_dag
-maxpre command line option.

DAGMAN_MAX_POST_SCRIPTS An integer defining the maximum number of POST scripts that any given con-
dor_dagman will run at the same time. The value 0 allows any number of POST scripts to run. The default value if
not defined is 20. Note that the DAGMAN_MAX_POST_SCRIPTS value can be overridden by the condor_submit_dag
-maxpost command line option.

DAGMAN_REMOVE_JOBS_AFTER_LIMIT_CHANGE A boolean that determines if after changing some of
these throttle limits, condor_dagman should forceably remove jobs to meet the new limit. Defaults to False.

Priority, node semantics

DAGMAN_DEFAULT_PRIORITY An integer value defining the minimum priority of node jobs running under this
condor_dagman job. Defaults to 0.

DAGMAN_SUBMIT_DEPTH_FIRST A boolean value that controls whether to submit ready DAG node jobs in
(more-or-less) depth first order, as opposed to breadth-first order. Setting DAGMAN_SUBMIT_DEPTH_FIRST to
True does not override dependencies defined in the DAG. Rather, it causes newly ready nodes to be added to
the head, rather than the tail, of the ready node list. If there are no PRE scripts in the DAG, this will cause the
ready nodes to be submitted depth-first. If there are PRE scripts, the order will not be strictly depth-first, but it
will tend to favor depth rather than breadth in executing the DAG. If DAGMAN_SUBMIT_DEPTH_FIRST is set to
True, consider also setting DAGMAN_RETRY_SUBMIT_FIRST and DAGMAN_RETRY_NODE_FIRST to True. If not
defined, DAGMAN_SUBMIT_DEPTH_FIRST defaults to False.

DAGMAN_ALWAYS_RUN_POST A boolean value defining whether condor_dagman will ignore the return value
of a PRE script when deciding whether to run a POST script. The default is False, which means that the failure
of a PRE script causes the POST script to not be executed. Changing this to True will restore the previous
behavior of condor_dagman, which is that a POST script is always executed, even if the PRE script fails. (The
default for this value had originally been False, was changed to True in version 7.7.2, and then was changed
back to False in version 8.5.4.)

4.5. Configuration Macros 299

HTCondor Manual, Release 10.0.9

Node job submission/removal

DAGMAN_USER_LOG_SCAN_INTERVAL An integer value representing the number of seconds that con-
dor_dagman waits between checking the workflow log file for status updates. Setting this value lower than the
default increases the CPU time condor_dagman spends checking files, perhaps fruitlessly, but increases respon-
siveness to nodes completing or failing. The legal range of values is 1 to INT_MAX. If not defined, it defaults
to 5 seconds. (As of version 8.4.2, the default may be automatically decreased if DAGMAN_MAX_JOBS_IDLE is
set to a small value. If so, this will be noted in the dagman.out file.)

DAGMAN_MAX_SUBMITS_PER_INTERVAL An integer that controls how many individual jobs con-
dor_dagman will submit in a row before servicing other requests (such as a condor_rm). The legal range of
values is 1 to 1000. If defined with a value less than 1, the value 1 will be used. If defined with a value greater
than 1000, the value 1000 will be used. If not defined, it defaults to 100. (As of version 8.4.2, the default may
be automatically decreased if DAGMAN_MAX_JOBS_IDLE is set to a small value. If so, this will be noted in the
dagman.out file.)

Note: The maximum rate at which DAGMan can submit jobs is DAG-
MAN_MAX_SUBMITS_PER_INTERVAL / DAGMAN_USER_LOG_SCAN_INTERVAL.

DAGMAN_MAX_SUBMIT_ATTEMPTS An integer that controls how many times in a row condor_dagman will
attempt to execute condor_submit for a given job before giving up. Note that consecutive attempts use an expo-
nential backoff, starting with 1 second. The legal range of values is 1 to 16. If defined with a value less than 1,
the value 1 will be used. If defined with a value greater than 16, the value 16 will be used. Note that a value of
16 would result in condor_dagman trying for approximately 36 hours before giving up. If not defined, it defaults
to 6 (approximately two minutes before giving up).

DAGMAN_MAX_JOB_HOLDS An integer value defining the maximum number of times a node job is allowed to
go on hold. As a job goes on hold this number of times, it is removed from the queue. For example, if the
value is 2, as the job goes on hold for the second time, it will be removed. At this time, this feature is not fully
compatible with node jobs that have more than one ProcID. The number of holds of each process in the cluster
count towards the total, rather than counting individually. So, this setting should take that possibility into account,
possibly using a larger value. A value of 0 allows a job to go on hold any number of times. The default value if
not defined is 100.

DAGMAN_HOLD_CLAIM_TIME An integer defining the number of seconds that condor_dagman will cause a
hold on a claim after a job is finished, using the job ClassAd attribute KeepClaimIdle. The default value is 20.
A value of 0 causes condor_dagman not to set the job ClassAd attribute.

DAGMAN_SUBMIT_DELAY An integer that controls the number of seconds that condor_dagman will sleep before
submitting consecutive jobs. It can be increased to help reduce the load on the condor_schedd daemon. The legal
range of values is any non negative integer. If defined with a value less than 0, the value 0 will be used.

DAGMAN_PROHIBIT_MULTI_JOBS A boolean value that controls whether condor_dagman prohibits node job
submit description files that queue multiple job procs other than parallel universe. If a DAG references such a
submit file, the DAG will abort during the initialization process. If not defined, DAGMAN_PROHIBIT_MULTI_JOBS
defaults to False.

DAGMAN_GENERATE_SUBDAG_SUBMITS A boolean value specifying whether condor_dagman itself should
create the .condor.sub files for nested DAGs. If set to False, nested DAGs will fail unless the .condor.sub
files are generated manually by running condor_submit_dag -no_submit on each nested DAG, or the -do_recurse
flag is passed to condor_submit_dag for the top-level DAG. DAG nodes specified with the SUBDAG EXTERNAL
keyword or with submit description file names ending in .condor.sub are considered nested DAGs. The default
value if not defined is True.

DAGMAN_REMOVE_NODE_JOBS A boolean value that controls whether condor_dagman removes its node
jobs itself when it is removed (in addition to the condor_schedd removing them). Note that setting
DAGMAN_REMOVE_NODE_JOBS to True is the safer option (setting it to False means that there is some chance

300 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

of ending up with “orphan” node jobs). Setting DAGMAN_REMOVE_NODE_JOBS to False is a performance opti-
mization (decreasing the load on the condor_schedd when a condor_dagman job is removed). Note that even if
DAGMAN_REMOVE_NODE_JOBS is set to False, condor_dagman will remove its node jobs in some cases, such as
a DAG abort triggered by an ABORT-DAG-ON command. Defaults to True.

DAGMAN_MUNGE_NODE_NAMES A boolean value that controls whether condor_dagman automatically re-
names nodes when running multiple DAGs. The renaming is done to avoid possible name conflicts. If this
value is set to True, all node names have the DAG number followed by the period character (.) prepended to
them. For example, the first DAG specified on the condor_submit_dag command line is considered DAG num-
ber 0, the second is DAG number 1, etc. So if DAG number 2 has a node named B, that node will internally
be renamed to 2.B. If not defined, DAGMAN_MUNGE_NODE_NAMES defaults to True. Note: users should rarely
change this setting.

DAGMAN_SUPPRESS_JOB_LOGS A boolean value specifying whether events should be written to a log file spec-
ified in a node job’s submit description file. The default value is False, such that events are written to a log file
specified by a node job.

DAGMAN_SUPPRESS_NOTIFICATION A boolean value defining whether jobs submitted by condor_dagman
will use email notification when certain events occur. If True, all jobs submitted by condor_dagman will have
the equivalent of the submit command notification = never set. This does not affect the notification for
events relating to the condor_dagman job itself. Defaults to True.

DAGMAN_CONDOR_SUBMIT_EXE The executable that condor_dagman will use to submit HTCondor jobs. If
not defined, condor_dagman looks for condor_submit in the path. Note: users should rarely change this
setting.

DAGMAN_CONDOR_RM_EXE The executable that condor_dagman will use to remove HTCondor jobs. If not
defined, condor_dagman looks for condor_rm in the path. Note: users should rarely change this setting.

DAGMAN_ABORT_ON_SCARY_SUBMIT A boolean value that controls whether to abort a DAG upon detection
of a scary submit event. An example of a scary submit event is one in which the HTCondor ID does not match
the expected value. Note that in all HTCondor versions prior to 6.9.3, condor_dagman did not abort a DAG upon
detection of a scary submit event. This behavior is what now happens if DAGMAN_ABORT_ON_SCARY_SUBMIT is
set to False. If not defined, DAGMAN_ABORT_ON_SCARY_SUBMIT defaults to True. Note: users should rarely
change this setting.

Rescue/retry

DAGMAN_AUTO_RESCUE A boolean value that controls whether condor_dagman automatically runs Rescue
DAGs. If DAGMAN_AUTO_RESCUE is True and the DAG input file my.dag is submitted, and if a Rescue DAG
such as the examples my.dag.rescue001 or my.dag.rescue002 exists, then the largest magnitude Rescue
DAG will be run. If not defined, DAGMAN_AUTO_RESCUE defaults to True.

DAGMAN_MAX_RESCUE_NUM An integer value that controls the maximum Rescue DAG number that will be
written, in the case that DAGMAN_OLD_RESCUE is False, or run if DAGMAN_AUTO_RESCUE is True. The max-
imum legal value is 999; the minimum value is 0, which prevents a Rescue DAG from being written at all, or
automatically run. If not defined, DAGMAN_MAX_RESCUE_NUM defaults to 100.

DAGMAN_RESET_RETRIES_UPON_RESCUE A boolean value that controls whether node retries are reset in
a Rescue DAG. If this value is False, the number of node retries written in a Rescue DAG is decreased, if
any retries were used in the original run of the DAG; otherwise, the original number of retries is allowed when
running the Rescue DAG. If not defined, DAGMAN_RESET_RETRIES_UPON_RESCUE defaults to True.

DAGMAN_WRITE_PARTIAL_RESCUE A boolean value that controls whether condor_dagman writes a partial
or a full DAG file as a Rescue DAG. As of HTCondor version 7.2.2, writing a partial DAG is preferred. If not
defined, DAGMAN_WRITE_PARTIAL_RESCUE defaults to True. Note: users should rarely change this setting.

4.5. Configuration Macros 301

HTCondor Manual, Release 10.0.9

DAGMAN_RETRY_SUBMIT_FIRST A boolean value that controls whether a failed submit is retried first (before
any other submits) or last (after all other ready jobs are submitted). If this value is set to True, when a job submit
fails, the job is placed at the head of the queue of ready jobs, so that it will be submitted again before any other
jobs are submitted. This had been the behavior of condor_dagman. If this value is set to False, when a job
submit fails, the job is placed at the tail of the queue of ready jobs. If not defined, it defaults to True.

DAGMAN_RETRY_NODE_FIRST A boolean value that controls whether a failed node with retries is retried first
(before any other ready nodes) or last (after all other ready nodes). If this value is set to True, when a node with
retries fails after the submit succeeded, the node is placed at the head of the queue of ready nodes, so that it will
be tried again before any other jobs are submitted. If this value is set to False, when a node with retries fails,
the node is placed at the tail of the queue of ready nodes. This had been the behavior of condor_dagman. If not
defined, it defaults to False.

DAGMAN_OLD_RESCUE This configuration variable is no longer used. Note: users should never change this
setting.

Log files

DAGMAN_DEFAULT_NODE_LOG The default name of a file to be used as a job event log by all node jobs of a
DAG.

This configuration variable uses a special syntax in which @ instead of $ indicates an evaluation of special
variables. Normal HTCondor configuration macros may be used with the normal $ syntax.

Special variables to be used only in defining this configuration variable:

• @(DAG_DIR): The directory in which the primary DAG input file resides. If more than one DAG input file
is specified to condor_submit_dag, the primary DAG input file is the leftmost one on the command line.

• @(DAG_FILE): The name of the primary DAG input file. It does not include the path.

• @(CLUSTER): The ClusterId attribute of the condor_dagman job.

• @(OWNER): The user name of the user who submitted the DAG.

• @(NODE_NAME): For SUBDAGs, this is the node name of the SUBDAG in the upper level DAG; for a
top-level DAG, it is the string "undef".

If not defined, @(DAG_DIR)/@(DAG_FILE).nodes.log is the default value.

Notes:

• Using $(LOG) in defining a value for DAGMAN_DEFAULT_NODE_LOG will not have the expected effect, be-
cause $(LOG) is defined as "." for condor_dagman. To place the default log file into the log directory,
write the expression relative to a known directory, such as $(LOCAL_DIR)/log (see examples below).

• A default log file placed in the spool directory will need extra configuration to prevent condor_preen from
removing it; modify VALID_SPOOL_FILES. Removal of the default log file during a run will cause severe
problems.

• The value defined for DAGMAN_DEFAULT_NODE_LOG must ensure that the file is unique for
each DAG. Therefore, the value should always include @(DAG_FILE). For example,

DAGMAN_DEFAULT_NODE_LOG = $(LOCAL_DIR)/log/@(DAG_FILE).nodes.log

is okay, but

DAGMAN_DEFAULT_NODE_LOG = $(LOCAL_DIR)/log/dag.nodes.log

302 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

will cause failure when more than one DAG is run at the same time on a given submit machine.

DAGMAN_LOG_ON_NFS_IS_ERROR A boolean value that controls whether condor_dagman prohibits a DAG
workflow log from being on an NFS file system. This value is ignored if CREATE_LOCKS_ON_LOCAL_DISK
and ENABLE_USERLOG_LOCKING are both True. If a DAG uses such a workflow log file file and
DAGMAN_LOG_ON_NFS_IS_ERROR is True (and not ignored), the DAG will abort during the initialization process.
If not defined, DAGMAN_LOG_ON_NFS_IS_ERROR defaults to False.

DAGMAN_ALLOW_ANY_NODE_NAME_CHARACTERS Allows any characters to be used in DAGMan node
names, even characters that are considered illegal because they are used internally as separators. Turning this
feature on could lead to instability when using splices or munged node names. The default value is False.

DAGMAN_ALLOW_EVENTS An integer that controls which bad events are considered fatal er-
rors by condor_dagman. This macro replaces and expands upon the functionality of the
DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION macro. If DAGMAN_ALLOW_EVENTS is set, it overrides
the setting of DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION. Note: users should rarely change this setting.

The DAGMAN_ALLOW_EVENTS value is a logical bitwise OR of the following values:

0 = allow no bad events 1 = allow all bad events, except the event "job re-run after
terminated event" 2 = allow terminated/aborted event combination 4 = allow a "job re-run
after terminated event" bug 8 = allow garbage or orphan events 16 = allow an execute or ter-
minate event before job’s submit event 32 = allow two terminated events per job, as sometimes seen
with grid jobs 64 = allow duplicated events in general

The default value is 114, which allows terminated/aborted event combination, allows an execute and/or termi-
nated event before job’s submit event, allows double terminated events, and allows general duplicate events.

As examples, a value of 6 instructs condor_dagman to allow both the terminated/aborted event combination and
the "job re-run after terminated event" bug. A value of 0 means that any bad event will be considered
a fatal error.

A value of 5 will never abort the DAG because of a bad event. But this value should almost never be used,
because the "job re-run after terminated event" bug breaks the semantics of the DAG.

DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION This configuration variable is no longer used. The im-
proved functionality of the DAGMAN_ALLOW_EVENTS macro eliminates the need for this variable. Note: users
should never change this setting.

For completeness, here is the definition for historical purposes: A boolean value that controls whether con-
dor_dagman aborts or continues with a DAG in the rare case that HTCondor erroneously executes the job within
a DAG node more than once. A bug in HTCondor very occasionally causes a job to run twice. Running a job twice
is contrary to the semantics of a DAG. The configuration macro DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION
determines whether condor_dagman considers this a fatal error or not. The default value is False; con-
dor_dagman considers running the job more than once a fatal error, logs this fact, and aborts the DAG. When
set to True, condor_dagman still logs this fact, but continues with the DAG.

This configuration macro is to remain at its default value except in the case where a site encounters the HTCondor
bug in which DAG job nodes are executed twice, and where it is certain that having a DAG job node run twice
will not corrupt the DAG. The logged messages within *.dagman.out files in the case of that a node job runs
twice contain the string “EVENT ERROR.”

DAGMAN_ALWAYS_USE_NODE_LOG As of HTCondor version 8.3.1, the value must always be the default value
of True. Attempting to set it to False results in an error. This causes incompatibility with using a condor_submit
executable that is older than HTCondor version 7.9.0. Note: users should never change this setting.

For completeness, here is the definition for historical purposes: A boolean value that when True causes con-
dor_dagman to read events from its default node log file, as defined by DAGMAN_DEFAULT_NODE_LOG , instead
of from the log file(s) defined in the node job submit description files. When True, condor_dagman will read

4.5. Configuration Macros 303

HTCondor Manual, Release 10.0.9

events only from the default log file, and POST script terminated events will be written only to the default log
file, and not to the log file(s) defined in the node job submit description files. The default value is True.

Debug output

DAGMAN_DEBUG This variable is described in .

DAGMAN_VERBOSITY An integer value defining the verbosity of output to the dagman.out file, as follows (each
level includes all output from lower debug levels):

• level = 0; never produce output, except for usage info

• level = 1; very quiet, output severe errors

• level = 2; output errors and warnings

• level = 3; normal output

• level = 4; internal debugging output

• level = 5; internal debugging output; outer loop debugging

• level = 6; internal debugging output; inner loop debugging

• level = 7; internal debugging output; rarely used

The default value if not defined is 3.

DAGMAN_DEBUG_CACHE_ENABLE A boolean value that determines if log line caching for the dagman.out file
should be enabled in the condor_dagman process to increase performance (potentially by orders of magnitude)
when writing the dagman.out file to an NFS server. Currently, this cache is only utilized in Recovery Mode. If
not defined, it defaults to False.

DAGMAN_DEBUG_CACHE_SIZE An integer value representing the number of bytes of log lines to be stored in
the log line cache. When the cache surpasses this number, the entries are written out in one call to the logging
subsystem. A value of zero is not recommended since each log line would surpass the cache size and be emitted
in addition to bracketing log lines explaining that the flushing was happening. The legal range of values is 0 to
INT_MAX. If defined with a value less than 0, the value 0 will be used. If not defined, it defaults to 5 Megabytes.

DAGMAN_PENDING_REPORT_INTERVAL An integer value representing the number of seconds that controls
how often condor_dagman will print a report of pending nodes to the dagman.out file. The report will only
be printed if condor_dagman has been waiting at least DAGMAN_PENDING_REPORT_INTERVAL seconds without
seeing any node job events, in order to avoid cluttering the dagman.out file. This feature is mainly intended
to help diagnose condor_dagman processes that are stuck waiting indefinitely for a job to finish. If not defined,
DAGMAN_PENDING_REPORT_INTERVAL defaults to 600 seconds (10 minutes).

MAX_DAGMAN_LOG This variable is described in . If not defined, MAX_DAGMAN_LOG defaults to 0 (unlimited
size).

304 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

HTCondor attributes

DAGMAN_COPY_TO_SPOOL A boolean value that when True copies the condor_dagman binary to the spool
directory when a DAG is submitted. Setting this variable to True allows long-running DAGs to survive a DAG-
Man version upgrade. For running large numbers of small DAGs, leave this variable unset or set it to False.
The default value if not defined is False. Note: users should rarely change this setting.

DAGMAN_INSERT_SUB_FILE A file name of a file containing submit description file commands to be inserted
into the .condor.sub file created by condor_submit_dag. The specified file is inserted into the .condor.sub
file before the queue command and before any commands specified with the -append condor_submit_dag com-
mand line option. Note that the DAGMAN_INSERT_SUB_FILE value can be overridden by the condor_submit_dag
-insert_sub_file command line option.

DAGMAN_ON_EXIT_REMOVE Defines the OnExitRemove ClassAd expression placed into the condor_dagman
submit description file by condor_submit_dag. The default expression is designed to ensure that condor_dagman
is automatically re-queued by the condor_schedd daemon if it exits abnormally or is killed (for example, during
a reboot). If this results in condor_dagman staying in the queue when it should exit, consider changing to a less
restrictive expression, as in the example

(ExitBySignal == false || ExitSignal =!= 9)

If not defined, DAGMAN_ON_EXIT_REMOVE defaults to the expression

(ExitSignal =?= 11 || (ExitCode =!= UNDEFINED && ExitCode >=0 && ExitCode <= 2))

4.5.21 Configuration File Entries Relating to Security

These macros affect the secure operation of HTCondor. Many of these macros are described in the Security section.

SEC_*_AUTHENTICATION Whether authentication is required for a specified permission level. Acceptable val-
ues are REQUIRED, PREFERRED, OPTIONAL, and NEVER. For example, setting SEC_READ_AUTHENTICATION =
REQUIRED indicates that any command requiring READ authorization will fail unless authentication is performed.
The special value, SEC_DEFAULT_AUTHENTICATION, controls the default setting if no others are specified.

SEC_*_ENCRYPTION Whether encryption is required for a specified permission level. Encryption prevents another
entity on the same network from understanding the contents of the transfer between client and server. Acceptable
values are REQUIRED, PREFERRED, OPTIONAL, and NEVER. For example, setting SEC_WRITE_ENCRYPTION =
REQUIRED indicates that any command requiring WRITE authorization will fail unless the channel is encrypted.
The special value, SEC_DEFAULT_ENCRYPTION, controls the default setting if no others are specified.

SEC_*_INTEGRITY Whether integrity-checking is required for a specified permission level. Integrity checking
allows the client and server to detect changes (malicious or otherwise) to the contents of the transfer. Accept-
able values are REQUIRED, PREFERRED, OPTIONAL, and NEVER. For example, setting SEC_WRITE_INTEGRITY
= REQUIRED indicates that any command requiring WRITE authorization will fail unless the channel is integrity-
checked. The special value, SEC_DEFAULT_INTEGRITY, controls the default setting if no others are specified.

As a special exception, file transfers are not integrity checked unless they are also encrypted.

SEC_*_NEGOTIATION Whether the client and server should negotiate security parameters (such as encryption,
integrity, and authentication) for a given authorization level. For example, setting SEC_DEFAULT_NEGOTIATION
= REQUIRED will require a security negotiation for all permission levels by default. There is very little penalty
for security negotiation and it is strongly suggested to leave this as the default (REQUIRED) at all times.

4.5. Configuration Macros 305

HTCondor Manual, Release 10.0.9

SEC_*_AUTHENTICATION_METHODS An ordered list of allowed authentication methods for a given autho-
rization level. This set of configuration variables controls both the ordering and the allowed methods. Cur-
rently allowed values are SSL, KERBEROS, PASSWORD, FS (non-Windows), FS_REMOTE (non-Windows), NTSSPI,
MUNGE, CLAIMTOBE, IDTOKENS, SCITOKENS, and ANONYMOUS. See the Security section for a discussion of the
relative merits of each method; some, such as CLAIMTOBE provide effectively no security at all. The default
authentication methods are NTSSPI,FS,IDTOKENS,KERBEROS,SSL.

These methods are tried in order until one succeeds or they all fail; for this reason, we do not recommend changing
the default method list.

The special value, SEC_DEFAULT_AUTHENTICATION_METHODS, controls the default setting if no others are spec-
ified.

SEC_*_CRYPTO_METHODS An ordered list of allowed cryptographic algorithms to use for encrypting a net-
work session at a specified authorization level. The server will select the first entry in its list that both
server and client allow. Possible values are AES, 3DES, and BLOWFISH. The special parameter name
SEC_DEFAULT_CRYPTO_METHODS controls the default setting if no others are specified. There is little benefit
in varying the setting per authorization level; it is recommended to leave these settings untouched.

HOST_ALIAS Specifies the fully qualified host name that clients authenticating this daemon with SSL should expect
the daemon’s certificate to match. The alias is advertised to the condor_collector as part of the address of the
daemon. When this is not set, clients validate the daemon’s certificate host name by matching it against DNS A
records for the host they are connected to. See SSL_SKIP_HOST_CHECK for ways to disable this validation step.

USE_COLLECTOR_HOST_CNAME A boolean value that determines what hostname a client should expect when
validating the collector’s certificate during SSL authentication. When set to True, the hostname given to the
client is used. When set to False, if the given hostname is a DNS CNAME, the client resolves it to a DNS A
record and uses that hostname. The default value is True.

DELEGATE_JOB_GSI_CREDENTIALS A boolean value that defaults to True for HTCondor version 6.7.19 and
more recent versions. When True, a job’s X.509 credentials are delegated, instead of being copied. This results
in a more secure communication when not encrypted.

DELEGATE_FULL_JOB_GSI_CREDENTIALS A boolean value that controls whether HTCondor will delegate
a full or limited X.509 proxy. The default value of False indicates the limited X.509 proxy.

DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME An integer value that specifies the maximum number of
seconds for which delegated proxies should be valid. The default value is one day. A value of 0 indicates that the
delegated proxy should be valid for as long as allowed by the credential used to create the proxy. The job may
override this configuration setting by using the delegate_job_GSI_credentials_lifetime submit file command.
This configuration variable currently only applies to proxies delegated for non-grid jobs and HTCondor-C jobs.
This variable has no effect if DELEGATE_JOB_GSI_CREDENTIALS is False.

DELEGATE_JOB_GSI_CREDENTIALS_REFRESH A floating point number between 0 and 1 that indicates the
fraction of a proxy’s lifetime at which point delegated credentials with a limited lifetime should be renewed.
The renewal is attempted periodically at or near the specified fraction of the lifetime of the delegated creden-
tial. The default value is 0.25. This setting has no effect if DELEGATE_JOB_GSI_CREDENTIALS is False or if
DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME is 0. For non-grid jobs, the precise timing of the proxy refresh
depends on SHADOW_CHECKPROXY_INTERVAL . To ensure that the delegated proxy remains valid, the interval for
checking the proxy should be, at most, half of the interval for refreshing it.

USE_VOMS_ATTRIBUTES A boolean value that controls whether HTCondor will attempt to extract and verify
VOMS attributes from X.509 credentials. The default is False.

SEC_<access-level>_SESSION_DURATION The amount of time in seconds before a communication session ex-
pires. A session is a record of necessary information to do communication between a client and daemon, and
is protected by a shared secret key. The session expires to reduce the window of opportunity where the key
may be compromised by attack. A short session duration increases the frequency with which daemons have to
reauthenticate with each other, which may impact performance.

306 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

If the client and server are configured with different durations, the shorter of the two will be used. The default
for daemons is 86400 seconds (1 day) and the default for command-line tools is 60 seconds. The shorter default
for command-line tools is intended to prevent daemons from accumulating a large number of communication
sessions from the short-lived tools that contact them over time. A large number of security sessions consumes a
large amount of memory. It is therefore important when changing this configuration setting to preserve the small
session duration for command-line tools.

One example of how to safely change the session duration is to explicitly set a short duration for tools and
condor_submit and a longer duration for everything else:

SEC_DEFAULT_SESSION_DURATION = 50000
TOOL.SEC_DEFAULT_SESSION_DURATION = 60
SUBMIT.SEC_DEFAULT_SESSION_DURATION = 60

Another example of how to safely change the session duration is to explicitly set the session duration for a specific
daemon:

COLLECTOR.SEC_DEFAULT_SESSION_DURATION = 50000

SEC_<access-level>_SESSION_LEASE The maximum number of seconds an unused security session will be kept
in a daemon’s session cache before being removed to save memory. The default is 3600. If the server and client
have different configurations, the smaller one will be used.

SEC_INVALIDATE_SESSIONS_VIA_TCP Use TCP (if True) or UDP (if False) for responding to attempts to use
an invalid security session. This happens, for example, if a daemon restarts and receives incoming commands
from other daemons that are still using a previously established security session. The default is True.

FS_REMOTE_DIR The location of a file visible to both server and client in Remote File System authentication. The
default when not defined is the directory /shared/scratch/tmp.

ENCRYPT_EXECUTE_DIRECTORY A boolean value that, when True, causes the execute directory for jobs on
Linux or Windows platforms to be encrypted. Defaults to False. Note that even if False, the user can require
encryption of the execute directory on a per-job basis by setting encrypt_execute_directory to True in the job
submit description file. Enabling this functionality requires that the HTCondor service is run as user root on
Linux platforms, or as a system service on Windows platforms. On Linux platforms, the encryption method is
ecryptfs, and therefore requires an installation of the ecryptfs-utils package. On Windows platforms, the
encryption method is the EFS (Encrypted File System) feature of NTFS.

ENCRYPT_EXECUTE_DIRECTORY_FILENAMES A boolean value relevant on Linux platforms only. Defaults
to False. On Windows platforms, file names are not encrypted, so this variable has no effect. When using an
encrypted execute directory, the contents of the files will always be encrypted. On Linux platforms, file names
may or may not be encrypted. There is some overhead and there are restrictions on encrypting file names (see
the ecryptfs documentation). As a result, the default does not encrypt file names on Linux platforms, and the
administrator may choose to enable encryption behavior by setting this configuration variable to True.

ECRYPTFS_ADD_PASSPHRASE The path to the ecryptfs-add-passphrase command-line utility. If the path is not
fully-qualified, then safe system path subdirectories such as /bin and /usr/bin will be searched. The default
value is ecryptfs-add-passphrase, causing the search to be within the safe system path subdirectories. This
configuration variable is used on Linux platforms when a job sets encrypt_execute_directory to True in the
submit description file.

SEC_TCP_SESSION_TIMEOUT The length of time in seconds until the timeout on individual network operations
when establishing a UDP security session via TCP. The default value is 20 seconds. Scalability issues with a
large pool would be the only basis for a change from the default value.

SEC_TCP_SESSION_DEADLINE An integer representing the total length of time in seconds until giving up when
establishing a security session. Whereas SEC_TCP_SESSION_TIMEOUT specifies the timeout for individual block-

4.5. Configuration Macros 307

HTCondor Manual, Release 10.0.9

ing operations (connect, read, write), this setting specifies the total time across all operations, including non-
blocking operations that have little cost other than holding open the socket. The default value is 120 seconds.
The intention of this setting is to avoid waiting for hours for a response in the rare event that the other side freezes
up and the socket remains in a connected state. This problem has been observed in some types of operating system
crashes.

SEC_DEFAULT_AUTHENTICATION_TIMEOUT The length of time in seconds that HTCondor should attempt
authenticating network connections before giving up. The default imposes no time limit, so the attempt never
gives up. Like other security settings, the portion of the configuration variable name, DEFAULT, may be re-
placed by a different access level to specify the timeout to use for different types of commands, for example
SEC_CLIENT_AUTHENTICATION_TIMEOUT.

SEC_PASSWORD_FILE For Unix machines, the path and file name of the file containing the pool password for
password authentication.

SEC_PASSWORD_DIRECTORY The path to the directory containing signing key files for token authentication.
Defaults to /etc/condor/passwords.d on Unix and to $(RELEASE_DIR)\tokens.sk on Windows.

TRUST_DOMAIN An arbitrary string used by the IDTOKENS authentication method; it defaults to . When HT-
Condor creates an IDTOKEN, it sets the issuer (iss) field to this value. When an HTCondor client attempts to
authenticate using the IDTOKENS method, it only presents an IDTOKEN to the server if the server’s reported
issuer matches the token’s.

Note that the issuer (iss) field is for the _server_. Each IDTOKEN also contains a subject (sub) field, which
identifies the user. IDTOKENS generated by condor_token_fetch will always be of the form user@UID_DOMAIN.

If you have configured the same signing key on two different machines, and want tokens issued by one machine
to be accepted by the other (e.g. an access point and a central manager), those two machines must have the same
value for this setting.

SEC_TOKEN_FETCH_ALLOWED_SIGNING_KEYS A comma or space -separated list of signing key names
that can be used to create a token if requested by condor_token_fetch. Defaults to POOL.

SEC_TOKEN_ISSUER_KEY The default signing key name to use to create a token if requested by con-
dor_token_fetch. Defaults to POOL.

SEC_TOKEN_POOL_SIGNING_KEY_FILE The path and filename for the file containing the default signing key
for token authentication. Defaults to /etc/condor/passwords.d/POOL on Unix and to $(RELEASE_DIR)\
tokens.sk\POOL on Windows.

SEC_TOKEN_SYSTEM_DIRECTORY For Unix machines, the path to the directory containing tokens for daemon-
to-daemon authentication with the token method. Defaults to /etc/condor/tokens.d.

SEC_TOKEN_DIRECTORY For Unix machines, the path to the directory containing tokens for user authentication
with the token method. Defaults to ~/.condor/tokens.d.

SEC_TOKEN_REVOCATION_EXPR A ClassAd expression evaluated against tokens during authentication; if
SEC_TOKEN_REVOCATION_EXPR is set and evaluates to true, then the token is revoked and the authentication
attempt is denied.

SEC_TOKEN_REQUEST_LIMITS If set, this is a comma-separated list of authorization levels that limit the au-
thorizations a token request can receive. For example, if SEC_TOKEN_REQUEST_LIMITS is set to READ, WRITE,
then a token cannot be issued with the authorization DAEMON even if this would otherwise be permissible.

AUTH_SSL_SERVER_CAFILE The path and file name of a file containing one or more trusted CA’s certificates for
the server side of a communication authenticating with SSL. On Linux, this defaults to /etc/pki/tls/certs/
ca-bundle.crt.

AUTH_SSL_CLIENT_CAFILE The path and file name of a file containing one or more trusted CA’s certificates for
the client side of a communication authenticating with SSL. On Linux, this defaults to /etc/pki/tls/certs/
ca-bundle.crt.

308 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

AUTH_SSL_SERVER_CADIR The path to a directory that may contain the certificates (each in its own file) for
multiple trusted CAs for the server side of a communication authenticating with SSL. When defined, the authen-
ticating entity’s certificate is utilized to identify the trusted CA’s certificate within the directory.

AUTH_SSL_CLIENT_CADIR The path to a directory that may contain the certificates (each in its own file) for
multiple trusted CAs for the client side of a communication authenticating with SSL. When defined, the authen-
ticating entity’s certificate is utilized to identify the trusted CA’s certificate within the directory.

AUTH_SSL_SERVER_CERTFILE The path and file name of the file containing the public certificate for the
server side of a communication authenticating with SSL. On Linux, this defaults to /etc/pki/tls/certs/
localhost.crt.

AUTH_SSL_CLIENT_CERTFILE The path and file name of the file containing the public certificate for the client
side of a communication authenticating with SSL. If no client certificate is provided, then the client may authen-
ticate as the user anonymous@ssl.

AUTH_SSL_SERVER_KEYFILE The path and file name of the file containing the private key for the server side of
a communication authenticating with SSL. On Linux, this defaults to /etc/pki/tls/private/localhost.
key.

AUTH_SSL_CLIENT_KEYFILE The path and file name of the file containing the private key for the client side of
a communication authenticating with SSL.

AUTH_SSL_REQUIRE_CLIENT_CERTIFICATE A boolean value that controls whether the client side of a com-
munication authenticating with SSL must have a credential. If set to True and the client doesn’t have a credential,
then the SSL authentication will fail and other authentication methods will be tried. The default is False.

AUTH_SSL_ALLOW_CLIENT_PROXY A boolean value that controls whether a daemon will accept an X.509
proxy certificate from a client during SSL authentication. The default is False.

AUTH_SSL_USE_CLIENT_PROXY_ENV_VAR A boolean value that controls whether a client checks environ-
ment varaible X509_USER_PROXY for the location the X.509 credential to use for SSL authentication with a
daemon. If this parameter is True and X509_USER_PROXY is set, then that file is used instead of the files
specified by AUTH_SSL_CLIENT_CERTFILE and AUTH_SSL_CLIENT_KEYFILE. The default is False.

SSL_SKIP_HOST_CHECK A boolean variable that controls whether a host check is performed by the client during
an SSL authentication of a Condor daemon. This check requires the daemon’s host name to match either the
“distinguished name” or a subject alternate name embedded in the server’s host certificate When the default
value of False is set, the check is not skipped. When True, this check is skipped, and hosts will not be rejected
due to a mismatch of certificate and host name.

COLLECTOR_BOOTSTRAP_SSL_CERTIFICATE A boolean variable that controls whether the con-
dor_collector should generate its own CA and host certificate at startup. When True, if the SSL certificate file
given by AUTH_SSL_SERVER_CERTFILE doesn’t exist, the condor_collector will generate its own CA, then use
that CA to generate an SSL host certificate. The certificate and key files are written to the locations given by
AUTH_SSL_SERVER_CERTFILE and AUTH_SSL_SERVER_KEYFILE, respectively. The locations of the CA files
are controlled by TRUST_DOMAIN_CAFILE and TRUST_DOMAIN_CAKEY. The default value is False.

TRUST_DOMAIN_CAFILE A path specifying the location of the CA the condor_collector will automatically gen-
erate if needed when COLLECTOR_BOOTSTRAP_SSL_CERTIFICATE is True. This CA will be used to generate a
host certificate and key if one isn’t provided in AUTH_SSL_SERVER_KEYFILE . On Linux, this defaults to /etc/
condor/trust_domain_ca.pem.

TRUST_DOMAIN_CAKEY A path specifying the location of the private key for the CA generated at
TRUST_DOMAIN_CAFILE. On Linux, this defaults /etc/condor/trust_domain_ca_privkey.pem.

BOOTSTRAP_SSL_SERVER_TRUST A boolean variable controlling whether tools and daemons automatically
trust the SSL host certificate presented on first authentication. When the default of false is set, daemons
only trust host certificates from known CAs and tools prompt the user for confirmation if the certificate is not

4.5. Configuration Macros 309

HTCondor Manual, Release 10.0.9

trusted. After the first authentication, the method and certificate are persisted to a known_hosts file; subsequent
authentications will succeed only if the certificate is unchanged from the one in the known_hosts file.

SEC_SYSTEM_KNOWN_HOSTS The location of the known_hosts file for daemon authentication. This defaults
to /etc/condor/known_hosts on Linux. Tools will always save their known_hosts file inside $HOME/.
condor.

CERTIFICATE_MAPFILE A path and file name of the unified map file.

CERTIFICATE_MAPFILE_ASSUME_HASH_KEYS For HTCondor version 8.5.8 and later. When this is true,
the second field of the CERTIFICATE_MAPFILE is not interpreted as a regular expression unless it begins and
ends with the slash / character.

SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION This is a special authentication mechanism de-
signed to minimize overhead in the condor_schedd when communicating with the execute machine. When this is
enabled, the condor_negotiator sends the condor_schedd a secret key generated by the condor_startd. This key
is used to establish a strong security session between the execute and submit daemons without going through the
usual security negotiation protocol. This is especially important when operating at large scale over high latency
networks (for example, on a pool with one condor_schedd daemon and thousands of condor_startd daemons on
a network with a 0.1 second round trip time).

The default value is True. To have any effect, it must be True in the configuration of both the execute side
(condor_startd) as well as the submit side (condor_schedd). When True, all other security negotiation between
the submit and execute daemons is bypassed. All inter-daemon communication between the submit and execute
side will use the condor_startd daemon’s settings for SEC_DAEMON_ENCRYPTION and SEC_DAEMON_INTEGRITY;
the configuration of these values in the condor_schedd, condor_shadow, and condor_starter are ignored.

Important: for this mechanism to be secure, integrity and encryption, should be enabled in the startd configura-
tion. Also, some form of strong mutual authentication (e.g. SSL) should be enabled between all daemons and the
central manager. Otherwise, the shared secret which is exchanged in matchmaking cannot be safely encrypted
when transmitted over the network.

The condor_schedd and condor_shadow will be authenticated as submit-side@matchsession when they
talk to the condor_startd and condor_starter. The condor_startd and condor_starter will be authenticated as
execute-side@matchsession when they talk to the condor_schedd and condor_shadow. These identities is
automatically added to the DAEMON, READ, and CLIENT authorization levels in these daemons when needed.

This same mechanism is also used to allow the condor_negotiator to authenticate with the condor_schedd. The
submitter ads contain a unique security key; any entity that can obtain the key from the collector (by default,
anyone with NEGOTIATOR permission) is authorized to perform negotiation with the condor_schedd. This im-
plies, when SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION is enabled, the HTCondor administrator does
not need to explicitly setup authentication from the negotiator to the submit host.

SEC_USE_FAMILY_SESSION The “family” session is a special security session that’s shared between an HTCon-
dor daemon and all of its descendant daemons. It allows a family of daemons to communicate securely without an
expensive authentication negotiation on each network connection. It bypasses the security authorization settings.
The default value is True.

SEC_ENABLE_REMOTE_ADMINISTRATION A boolean parameter that controls whether daemons should in-
clude a secret administration key when they advertise themselves to the condor_collector. Anyone with this
key is authorized to send ADMINISTRATOR-level commands to the daemon. The condor_collector will only
provide this key to clients who are authorized at the ADMINISTRATOR level to the condor_collector. The
default value is True.

When this parameter is enabled for all daemons, control of who is allowed to administer the pool can be consol-
idated in the condor_collector and its security configuration.

KERBEROS_SERVER_KEYTAB The path and file name of the keytab file that holds the necessary Kerberos prin-
cipals. If not defined, this variable’s value is set by the installed Kerberos; it is /etc/v5srvtab on most systems.

310 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

KERBEROS_SERVER_PRINCIPAL An exact Kerberos principal to use. The default value is
$(KERBEROS_SERVER_SERVICE)/<hostname>@<realm>, where KERBEROS_SERVER_SERVICE defaults
to host. When both KERBEROS_SERVER_PRINCIPAL and KERBEROS_SERVER_SERVICE are defined, this value
takes precedence.

KERBEROS_SERVER_USER The user name that the Kerberos server principal will map to after authentication.
The default value is condor.

KERBEROS_SERVER_SERVICE A string representing the Kerberos service name. This string is suffixed with
a slash character (/) and the host name in order to form the Kerberos server principal. This value defaults to
host. When both KERBEROS_SERVER_PRINCIPAL and KERBEROS_SERVER_SERVICE are defined, the value of
KERBEROS_SERVER_PRINCIPAL takes precedence.

KERBEROS_CLIENT_KEYTAB The path and file name of the keytab file for the client in Kerberos authentication.
This variable has no default value.

SCITOKENS_FILE The path and file name of a file containing a SciToken for use by the client during the SCITO-
KENS authentication methods. This variable has no default value. If left unset, HTCondor will use the bearer
token discovery protocol defined by the WLCG (https://zenodo.org/record/3937438) to find one.

SEC_CREDENTIAL_SWEEP_DELAY The number of seconds to wait before cleaning up unused credentials. De-
faults to 3,600 seconds (1 hour).

SEC_CREDENTIAL_DIRECTORY_KRB The directory that users’ Kerberos credentials should be stored in. This
variable has no default value.

SEC_CREDENTIAL_DIRECTORY_OAUTH The directory that users’ OAuth2 credentials should be stored in.
This directory must be owned by root:condor with the setgid flag enabled.

SEC_CREDENTIAL_PRODUCER A script for condor_submit to execute to produce credentials while using the
Kerberos type of credentials. No parameters are passed, and credentials most be sent to stdout.

SEC_CREDENTIAL_STORER A script for condor_submit to execute to produce credentials while using the
OAuth2 type of credentials. The oauth services specified in the use_auth_services line in the submit file
are passed as parameters to the script, and the script should use condor_store_cred to store credentials for
each service. Additional modifiers to each service may be passed: &handle=, &scopes=, or &audience=. The
handle should be appended after an underscore to the service name used with condor_store_cred, the comma-
separated list of scopes should be passed to the command with the -S option, and the audience should be passed
to it with the -A option.

LEGACY_ALLOW_SEMANTICS A boolean parameter that defaults to False. In HTCondor 8.8 and prior, if
ALLOW_DAEMON or DENY_DAEMON wasn’t set in the configuration files, then the value of ALLOW_WRITE
or DENY_DAEMON (respectively) was used for these parameters. Setting LEGACY_ALLOW_SEMANTICS to
True enables this old behavior. This is a potential security concern, so this setting should only be used to ease
the upgrade of an existing pool from 8.8 or prior to 9.0 or later.

4.5.22 Configuration File Entries Relating to Virtual Machines

These macros affect how HTCondor runs vm universe jobs on a matched machine within the pool. They specify items
related to the condor_vm-gahp.

VM_GAHP_SERVER The complete path and file name of the condor_vm-gahp. The default value is
$(SBIN)/condor_vm-gahp.

VM_GAHP_LOG The complete path and file name of the condor_vm-gahp log. If not specified on a Unix platform,
the condor_starter log will be used for condor_vm-gahp log items. There is no default value for this required
configuration variable on Windows platforms.

4.5. Configuration Macros 311

https://zenodo.org/record/3937438

HTCondor Manual, Release 10.0.9

MAX_VM_GAHP_LOG Controls the maximum length (in bytes) to which the condor_vm-gahp log will be allowed
to grow.

VM_TYPE Specifies the type of supported virtual machine software. It will be the value kvm or xen. There is no
default value for this required configuration variable.

VM_MEMORY An integer specifying the maximum amount of memory in MiB to be shared among the VM universe
jobs run on this machine.

VM_MAX_NUMBER An integer limit on the number of executing virtual machines. When not defined, the default
value is the same NUM_CPUS. When it evaluates to Undefined, as is the case when not defined with a numeric
value, no meaningful limit is imposed.

VM_STATUS_INTERVAL An integer number of seconds that defaults to 60, representing the interval between job
status checks by the condor_starter to see if the job has finished. A minimum value of 30 seconds is enforced.

VM_GAHP_REQ_TIMEOUT An integer number of seconds that defaults to 300 (five minutes), representing the
amount of time HTCondor will wait for a command issued from the condor_starter to the condor_vm-gahp to
be completed. When a command times out, an error is reported to the condor_startd.

VM_RECHECK_INTERVAL An integer number of seconds that defaults to 600 (ten minutes), representing the
amount of time the condor_startd waits after a virtual machine error as reported by the condor_starter, and
before checking a final time on the status of the virtual machine. If the check fails, HTCondor disables starting
any new vm universe jobs by removing the VM_Type attribute from the machine ClassAd.

VM_SOFT_SUSPEND A boolean value that defaults to False, causing HTCondor to free the memory of a vm
universe job when the job is suspended. When True, the memory is not freed.

VM_UNIV_NOBODY_USER Identifies a login name of a user with a home directory that may be used for job owner
of a vm universe job. The nobody user normally utilized when the job arrives from a different UID domain will
not be allowed to invoke a VMware virtual machine.

ALWAYS_VM_UNIV_USE_NOBODY A boolean value that defaults to False. When True, all vm universe jobs
(independent of their UID domain) will run as the user defined in VM_UNIV_NOBODY_USER.

VM_NETWORKING A boolean variable describing if networking is supported. When not defined, the default value
is False.

VM_NETWORKING_TYPE A string describing the type of networking, required and relevant only when
VM_NETWORKING is True. Defined strings are

bridge
nat
nat, bridge

VM_NETWORKING_DEFAULT_TYPE Where multiple networking types are given in VM_NETWORKING_TYPE,
this optional configuration variable identifies which to use. Therefore, for

VM_NETWORKING_TYPE = nat, bridge

this variable may be defined as either nat or bridge. Where multiple networking types are given in
VM_NETWORKING_TYPE, and this variable is not defined, a default of nat is used.

VM_NETWORKING_BRIDGE_INTERFACE For Xen and KVM only, a required string if bridge networking is to
be enabled. It specifies the networking interface that vm universe jobs will use.

LIBVIRT_XML_SCRIPT For Xen and KVM only, a path and executable specifying a program. When the
condor_vm-gahp is ready to start a Xen or KVM vm universe job, it will invoke this program to generate the
XML description of the virtual machine, which it then provides to the virtualization software. The job ClassAd
will be provided to this program via standard input. This program should print the XML to standard output. If

312 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

this configuration variable is not set, the condor_vm-gahp will generate the XML itself. The provided script in
$(LIBEXEC)/libvirt_simple_script.awk will generate the same XML that the condor_vm-gahp would.

LIBVIRT_XML_SCRIPT_ARGS For Xen and KVM only, the command-line arguments to be given to the program
specified by LIBVIRT_XML_SCRIPT.

The following configuration variables are specific to the Xen virtual machine software.

XEN_BOOTLOADER A required full path and executable for the Xen bootloader, if the kernel image includes a disk
image.

4.5.23 Configuration File Entries Relating to High Availability

These macros affect the high availability operation of HTCondor.

MASTER_HA_LIST Similar to DAEMON_LIST, this macro defines a list of daemons that the condor_master starts
and keeps its watchful eyes on. However, the MASTER_HA_LIST daemons are run in a High Availability mode.
The list is a comma or space separated list of subsystem names (as listed in Pre-Defined Macros). For example,

MASTER_HA_LIST = SCHEDD

The High Availability feature allows for several condor_master daemons (most likely on separate machines) to
work together to insure that a particular service stays available. These condor_master daemons ensure that one
and only one of them will have the listed daemons running.

To use this feature, the lock URL must be set with HA_LOCK_URL.

Currently, only file URLs are supported (those with file:...). The default value for MASTER_HA_LIST is the
empty string, which disables the feature.

HA_LOCK_URL This macro specifies the URL that the condor_master processes use to synchronize for the High
Availability service. Currently, only file URLs are supported; for example, file:/share/spool. Note that
this URL must be identical for all condor_master processes sharing this resource. For condor_schedd sharing,
we recommend setting up SPOOL on an NFS share and having all High Availability condor_schedd processes
sharing it, and setting the HA_LOCK_URL to point at this directory as well. For example:

MASTER_HA_LIST = SCHEDD
SPOOL = /share/spool
HA_LOCK_URL = file:/share/spool
VALID_SPOOL_FILES = SCHEDD.lock

A separate lock is created for each High Availability daemon.

There is no default value for HA_LOCK_URL.

Lock files are in the form <SUBSYS>.lock. condor_preen is not currently aware of the lock files and will delete
them if they are placed in the SPOOL directory, so be sure to add <SUBSYS>.lock to VALID_SPOOL_FILES for
each High Availability daemon.

HA_<SUBSYS>_LOCK_URL This macro controls the High Availability lock URL for a specific subsystem as spec-
ified in the configuration variable name, and it overrides the system-wide lock URL specified by HA_LOCK_URL.
If not defined for each subsystem, HA_<SUBSYS>_LOCK_URL is ignored, and the value of HA_LOCK_URL is used.

HA_LOCK_HOLD_TIME This macro specifies the number of seconds that the condor_master will hold the lock
for each High Availability daemon. Upon gaining the shared lock, the condor_master will hold the lock for
this number of seconds. Additionally, the condor_master will periodically renew each lock as long as the con-
dor_master and the daemon are running. When the daemon dies, or the condor_master exists, the condor_master
will immediately release the lock(s) it holds.

4.5. Configuration Macros 313

HTCondor Manual, Release 10.0.9

HA_LOCK_HOLD_TIME defaults to 3600 seconds (one hour).

HA_<SUBSYS>_LOCK_HOLD_TIME This macro controls the High Availability lock hold time for a specific sub-
system as specified in the configuration variable name, and it overrides the system wide poll period specified by
HA_LOCK_HOLD_TIME. If not defined for each subsystem, HA_<SUBSYS>_LOCK_HOLD_TIME is ignored, and the
value of HA_LOCK_HOLD_TIME is used.

HA_POLL_PERIOD This macro specifies how often the condor_master polls the High Availability locks to see if
any locks are either stale (meaning not updated for HA_LOCK_HOLD_TIME seconds), or have been released by the
owning condor_master. Additionally, the condor_master renews any locks that it holds during these polls.

HA_POLL_PERIOD defaults to 300 seconds (five minutes).

HA_<SUBSYS>_POLL_PERIOD This macro controls the High Availability poll period for a specific subsystem
as specified in the configuration variable name, and it overrides the system wide poll period specified by
HA_POLL_PERIOD. If not defined for each subsystem, HA_<SUBSYS>_POLL_PERIOD is ignored, and the value
of HA_POLL_PERIOD is used.

MASTER_<SUBSYS>_CONTROLLER Used only in HA configurations involving the condor_had.

The condor_master has the concept of a controlling and controlled daemon, typically with the condor_had
daemon serving as the controlling process. In this case, all condor_on and condor_off commands directed at
controlled daemons are given to the controlling daemon, which then handles the command, and, when required,
sends appropriate commands to the condor_master to do the actual work. This allows the controlling daemon to
know the state of the controlled daemon.

As of 6.7.14, this configuration variable must be specified for all configurations using condor_had. To configure
the condor_negotiator controlled by condor_had:

MASTER_NEGOTIATOR_CONTROLLER = HAD

The macro is named by substituting <SUBSYS> with the appropriate subsystem string as defined in Pre-Defined
Macros.

HAD_LIST A comma-separated list of all condor_had daemons in the form IP:port or hostname:port. Each
central manager machine that runs the condor_had daemon should appear in this list. If HAD_USE_PRIMARY is
set to True, then the first machine in this list is the primary central manager, and all others in the list are backups.

All central manager machines must be configured with an identical HAD_LIST. The machine addresses are iden-
tical to the addresses defined in COLLECTOR_HOST.

HAD_USE_PRIMARY Boolean value to determine if the first machine in the HAD_LIST configuration variable is a
primary central manager. Defaults to False.

HAD_CONTROLLEE This variable is used to specify the name of the daemon which the condor_had daemon con-
trols. This name should match the daemon name in the condor_master daemon’s DAEMON_LIST definition. The
default value is NEGOTIATOR.

HAD_CONNECTION_TIMEOUT The time (in seconds) that the condor_had daemon waits before giving up on
the establishment of a TCP connection. The failure of the communication connection is the detection mecha-
nism for the failure of a central manager machine. For a LAN, a recommended value is 2 seconds. The use of
authentication (by HTCondor) increases the connection time. The default value is 5 seconds. If this value is set
too low, condor_had daemons will incorrectly assume the failure of other machines.

HAD_ARGS Command line arguments passed by the condor_master daemon as it invokes the condor_had daemon.
To make high availability work, the condor_had daemon requires the port number it is to use. This argument is
of the form

-p $(HAD_PORT_NUMBER)

314 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

where HAD_PORT_NUMBER is a helper configuration variable defined with the desired port number. Note that this
port number must be the same value here as used in HAD_LIST. There is no default value.

HAD The path to the condor_had executable. Normally it is defined relative to $(SBIN). This configuration variable
has no default value.

MAX_HAD_LOG Controls the maximum length in bytes to which the condor_had daemon log will be allowed to
grow. It will grow to the specified length, then be saved to a file with the suffix .old. The .old file is overwritten
each time the log is saved, thus the maximum space devoted to logging is twice the maximum length of this log
file. A value of 0 specifies that this file may grow without bounds. The default is 1 MiB.

HAD_DEBUG Logging level for the condor_had daemon. See <SUBSYS>_DEBUG for values.

HAD_LOG Full path and file name of the log file. The default value is $(LOG)/HADLog.

HAD_FIPS_MODE Controls what type of checksum will be sent along with files that are replicated. Set it to 0 for
MD5 checksums and to 1 for SHA-2 checksums. Prior to versions 8.8.13 and 8.9.12 only MD5 checksums are
supported. In the 10.0 and later release of HTCondor, MD5 support will be removed and only SHA-2 will be
supported. This configuration variable is intended to provide a transition between the 8.8 and 9.0 releases. Once
all machines in your pool involved in HAD replication have been upgraded to 9.0 or later, you should set the
value of this configuration variable to 1. Default value is 0 in HTCondor versions before 9.12 and 1 in version
9.12 and later.

REPLICATION_LIST A comma-separated list of all condor_replication daemons in the form IP:port or
hostname:port. Each central manager machine that runs the condor_had daemon should appear in this list.
All potential central manager machines must be configured with an identical REPLICATION_LIST.

STATE_FILE A full path and file name of the file protected by the replication mechanism. When not defined, the
default path and file used is

$(SPOOL)/Accountantnew.log

REPLICATION_INTERVAL Sets how often the condor_replication daemon initiates its tasks of replicating the
$(STATE_FILE). It is defined in seconds and defaults to 300 (5 minutes).

MAX_TRANSFER_LIFETIME A timeout period within which the process that transfers the state file must complete
its transfer. The recommended value is 2 * average size of state file / network rate. It is defined
in seconds and defaults to 300 (5 minutes).

HAD_UPDATE_INTERVAL Like UPDATE_INTERVAL, determines how often the condor_had is to send a ClassAd
update to the condor_collector. Updates are also sent at each and every change in state. It is defined in seconds
and defaults to 300 (5 minutes).

HAD_USE_REPLICATION A boolean value that defaults to False. When True, the use of condor_replication
daemons is enabled.

REPLICATION_ARGS Command line arguments passed by the condor_master daemon as it invokes the con-
dor_replication daemon. To make high availability work, the condor_replication daemon requires the port num-
ber it is to use. This argument is of the form

-p $(REPLICATION_PORT_NUMBER)

where REPLICATION_PORT_NUMBER is a helper configuration variable defined with the desired port number.
Note that this port number must be the same value as used in REPLICATION_LIST. There is no default value.

REPLICATION The full path and file name of the condor_replication executable. It is normally defined relative to
$(SBIN). There is no default value.

MAX_REPLICATION_LOG Controls the maximum length in bytes to which the condor_replication daemon log
will be allowed to grow. It will grow to the specified length, then be saved to a file with the suffix .old. The .old

4.5. Configuration Macros 315

HTCondor Manual, Release 10.0.9

file is overwritten each time the log is saved, thus the maximum space devoted to logging is twice the maximum
length of this log file. A value of 0 specifies that this file may grow without bounds. The default is 1 MiB.

REPLICATION_DEBUG Logging level for the condor_replication daemon. See <SUBSYS>_DEBUG for values.

REPLICATION_LOG Full path and file name to the log file. The default value is $(LOG)/ReplicationLog.

TRANSFERER The full path and file name of the condor_transferer executable. The default value is
$(LIBEXEC)/condor_transferer.

TRANSFERER_LOG Full path and file name to the log file. The default value is $(LOG)/TransfererLog.

TRANSFERER_DEBUG Logging level for the condor_transferer daemon. See <SUBSYS>_DEBUG for values.

MAX_TRANSFERER_LOG Controls the maximum length in bytes to which the condor_transferer daemon log will
be allowed to grow. A value of 0 specifies that this file may grow without bounds. The default is 1 MiB.

4.5.24 Configuration File Entries Relating to condor_ssh_to_job

These macros affect how HTCondor deals with condor_ssh_to_job, a tool that allows users to interactively debug jobs.
With these configuration variables, the administrator can control who can use the tool, and how the ssh programs are
invoked. The manual page for condor_ssh_to_job is at condor_ssh_to_job.

ENABLE_SSH_TO_JOB A boolean expression read by the condor_starter, that when True allows the owner of the
job or a queue super user on the condor_schedd where the job was submitted to connect to the job via ssh. The
expression may refer to attributes of both the job and the machine ClassAds. The job ClassAd attributes may
be referenced by using the prefix TARGET., and the machine ClassAd attributes may be referenced by using the
prefix MY.. When False, it prevents condor_ssh_to_job from starting an ssh session. The default value is True.

SCHEDD_ENABLE_SSH_TO_JOB A boolean expression read by the condor_schedd, that when True allows the
owner of the job or a queue super user to connect to the job via ssh if the execute machine also allows con-
dor_ssh_to_job access (see ENABLE_SSH_TO_JOB). The expression may refer to attributes of only the job Clas-
sAd. When False, it prevents condor_ssh_to_job from starting an ssh session for all jobs managed by the
condor_schedd. The default value is True.

SSH_TO_JOB_<SSH-CLIENT>_CMD A string read by the condor_ssh_to_job tool. It specifies the command and
arguments to use when invoking the program specified by <SSH-CLIENT>. Values substituted for the placeholder
<SSH-CLIENT> may be SSH, SFTP, SCP, or any other ssh client capable of using a command as a proxy for the
connection to sshd. The entire command plus arguments string is enclosed in double quote marks. Individual
arguments may be quoted with single quotes, using the same syntax as for arguments in a condor_submit file.
The following substitutions are made within the arguments:

%h: is substituted by the remote host %i: is substituted by the ssh key %k: is substituted by the known
hosts file %u: is substituted by the remote user %x: is substituted by a proxy command suitable for
use with the OpenSSH ProxyCommand option %%: is substituted by the percent mark character

The default string is:
"ssh -oUser=%u -oIdentityFile=%i -oStrictHostKeyChecking=yes -oUserKnownHostsFile=%k
-oGlobalKnownHostsFile=%k -oProxyCommand=%x %h"

When the <SSH-CLIENT> is scp, %h is omitted.

SSH_TO_JOB_SSHD The path and executable name of the ssh daemon. The value is read by the condor_starter.
The default value is /usr/sbin/sshd.

316 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

SSH_TO_JOB_SSHD_ARGS A string, read by the condor_starter that specifies the command-line arguments to be
passed to the sshd to handle an incoming ssh connection on its stdin or stdout streams in inetd mode. Enclose
the entire arguments string in double quote marks. Individual arguments may be quoted with single quotes, using
the same syntax as for arguments in an HTCondor submit description file. Within the arguments, the characters
%f are replaced by the path to the sshd configuration file the characters %% are replaced by a single percent
character. The default value is the string “-i -e -f %f”.

SSH_TO_JOB_SSHD_CONFIG_TEMPLATE A string, read by the condor_starter that specifies the path and
file name of an sshd configuration template file. The template is turned into an sshd configuration file by
replacing macros within the template that specify such things as the paths to key files. The macro replace-
ment is done by the script $(LIBEXEC)/condor_ssh_to_job_sshd_setup. The default value is $(LIB)/
condor_ssh_to_job_sshd_config_template.

SSH_TO_JOB_SSH_KEYGEN A string, read by the condor_starter that specifies the path to ssh_keygen, the pro-
gram used to create ssh keys.

SSH_TO_JOB_SSH_KEYGEN_ARGS A string, read by the condor_starter that specifies the command-line argu-
ments to be passed to the ssh_keygen to generate an ssh key. Enclose the entire arguments string in double quotes.
Individual arguments may be quoted with single quotes, using the same syntax as for arguments in an HTCondor
submit description file. Within the arguments, the characters %f are replaced by the path to the key file to be gen-
erated, and the characters %% are replaced by a single percent character. The default value is the string “-N ‘’ -C ‘’
-q -f %f -t rsa”. If the user specifies additional arguments with the command condor_ssh_to_job -keygen-options,
then those arguments are placed after the arguments specified by the value of SSH_TO_JOB_SSH_KEYGEN_ARGS.

4.5.25 condor_rooster Configuration File Macros

condor_rooster is an optional daemon that may be added to the condor_master daemon’s DAEMON_LIST. It is responsi-
ble for waking up hibernating machines when their UNHIBERNATE expression becomes True. In the typical case, a pool
runs a single instance of condor_rooster on the central manager. However, if the network topology requires that Wake
On LAN packets be sent to specific machines from different locations, condor_rooster can be run on any machine(s)
that can read from the pool’s condor_collector daemon.

For condor_rooster to wake up hibernating machines, the collecting of offline machine ClassAds must be enabled. See
variable for details on how to do this.

ROOSTER_INTERVAL The integer number of seconds between checks for offline machines that should be woken.
The default value is 300.

ROOSTER_MAX_UNHIBERNATE An integer specifying the maximum number of machines to wake up per cycle.
The default value of 0 means no limit.

ROOSTER_UNHIBERNATE A boolean expression that specifies which machines should be woken up. The default
expression is Offline && Unhibernate. If network topology or other considerations demand that some ma-
chines in a pool be woken up by one instance of condor_rooster, while others be woken up by a different instance,
ROOSTER_UNHIBERNATE may be set locally such that it is different for the two instances of condor_rooster. In
this way, the different instances will only try to wake up their respective subset of the pool.

ROOSTER_UNHIBERNATE_RANK A ClassAd expression specifying which machines should be woken up first
in a given cycle. Higher ranked machines are woken first. If the number of machines to be woken up is limited by
ROOSTER_MAX_UNHIBERNATE , the rank may be used for determining which machines are woken before reaching
the limit.

ROOSTER_WAKEUP_CMD A string representing the command line invoked by condor_rooster that is to wake up
a machine. The command and any arguments should be enclosed in double quote marks, the same as arguments
syntax in an HTCondor submit description file. The default value is “$(BIN)/condor_power -d -i”. The command
is expected to read from its standard input a ClassAd representing the offline machine.

4.5. Configuration Macros 317

HTCondor Manual, Release 10.0.9

4.5.26 condor_shared_port Configuration File Macros

These configuration variables affect the condor_shared_port daemon. For general discussion of the con-
dor_shared_port daemon, see Reducing Port Usage with the condor_shared_port Daemon.

USE_SHARED_PORT A boolean value that specifies whether HTCondor daemons should rely on the con-
dor_shared_port daemon for receiving incoming connections. Under Unix, write access to the location defined
by DAEMON_SOCKET_DIR is required for this to take effect. The default is True.

SHARED_PORT_PORT The default TCP port used by the condor_shared_port daemon. If
COLLECTOR_USES_SHARED_PORT is the default value of True, and the condor_master launches a con-
dor_collector daemon, then the condor_shared_port daemon will ignore this value and use the TCP port
assigned to the condor_collector via the COLLECTOR_HOST configuration variable.

The default value is $(COLLECTOR_PORT), which defaults to 9618. Note that this causes all HTCondor hosts
to use TCP port 9618 by default, differing from previous behavior. The previous behavior has only the con-
dor_collector host using a fixed port. To restore this previous behavior, set SHARED_PORT_PORT to 0, which will
cause the condor_shared_port daemon to use a randomly selected port in the range LOWPORT - HIGHPORT, as
defined in Port Usage in HTCondor.

SHARED_PORT_DAEMON_AD_FILE This specifies the full path and name of a file used to publish the address
of condor_shared_port. This file is read by the other daemons that have USE_SHARED_PORT=True and which
are therefore sharing the same port. The default typically does not need to be changed.

SHARED_PORT_MAX_WORKERS An integer that specifies the maximum number of sub-processes created by
condor_shared_port while servicing requests to connect to the daemons that are sharing the port. The default is
50.

DAEMON_SOCKET_DIR This specifies the directory where Unix versions of HTCondor daemons will create
named sockets so that incoming connections can be forwarded to them by condor_shared_port. If this direc-
tory does not exist, it will be created. The maximum length of named socket paths plus names is restricted by
the operating system, so using a path that is longer than 90 characters may cause failures.

Write access to this directory grants permission to receive connections through the shared port. By default, the
directory is created to be owned by HTCondor and is made to be only writable by HTCondor. One possible
reason to broaden access to this directory is if execute nodes are accessed via CCB and the submit node is behind
a firewall with only one open port, which is the port assigned to condor_shared_port. In this case, commands
that interact with the execute node, such as condor_ssh_to_job, will not be able to operate unless run by a user
with write access to DAEMON_SOCKET_DIR. In this case, one could grant tmp-like permissions to this directory
so that all users can receive CCB connections back through the firewall. But, consider the wisdom of having a
firewall in the first place, if it will be circumvented in this way.

On Linux platforms, daemons use abstract named sockets instead of normal named sockets. Abstract sockets
are not not tied to a file in the file system. The condor_master picks a random prefix for abstract socket names
and shares it privately with the other daemons. When searching for the recipient of an incoming connection,
condor_shared_port will check for both an abstract socket and a named socket in the directory indicated by this
variable. The named socket allows command-line tools such as condor_ssh_to_job to use condor_shared_port
as described.

On Linux platforms, setting SHARED_PORT_AUDIT_LOG causes HTCondor to log the following information about
each connection made through the DAEMON_SOCKET_DIR: the source address, the socket file name, and the target
process’s PID, UID, GID, executable path, and command line. An administrator may use this logged information
to deter abuse.

The default value is auto, causing the use of the directory $(LOCK)/daemon_sock. On Unix platforms other
than Linux, if that path is longer than the 90 characters maximum, then the condor_master will instead create a
directory under /tmp with a name that looks like /tmp/condor_shared_port_<XXXXXX>, where <XXXXXX>

318 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

is replaced with random characters. The condor_master then tells the other daemons the exact name of the
directory it created, and they use it.

If a different value is set for DAEMON_SOCKET_DIR, then that directory is used, without regard for the length of
the path name. Ensure that the length is not longer than 90 characters.

SHARED_PORT_ARGS Like all daemons started by the condor_master daemon, the command line arguments to
the invocation of the condor_shared_port daemon can be customized. The arguments can be used to specify a
non-default port number for the condor_shared_port daemon as in this example, which specifies port 4080:

SHARED_PORT_ARGS = -p 4080

It is recommended to use configuration variable SHARED_PORT_PORT to set a non-default port number, instead
of using this configuration variable.

SHARED_PORT_AUDIT_LOG On Linux platforms, the path and file name of the condor_shared_port log that
records connections made via the DAEMON_SOCKET_DIR. If not defined, there will be no condor_shared_port
audit log.

MAX_SHARED_PORT_AUDIT_LOG On Linux platforms, controls the maximum amount of time that the con-
dor_shared_port audit log will be allowed to grow. When it is time to rotate a log file, the log file will be
saved to a file named with an ISO timestamp suffix. The oldest rotated file receives the file name suffix .old.
The .old files are overwritten each time the maximum number of rotated files (determined by the value of
MAX_NUM_SHARED_PORT_AUDIT_LOG) is exceeded. A value of 0 specifies that the file may grow without bounds.
The following suffixes may be used to qualify the integer:

Sec for seconds Min for minutes Hr for hours Day for days Wk for weeks

MAX_NUM_SHARED_PORT_AUDIT_LOG On Linux platforms, the integer that controls the maximum number
of rotations that the condor_shared_port audit log is allowed to perform, before the oldest one will be rotated
away. The default value is 1.

4.5.27 Configuration File Entries Relating to Job Hooks

These macros control the various hooks that interact with HTCondor. Currently, there are two independent sets of
hooks. One is a set of fetch work hooks, some of which are invoked by the condor_startd to optionally fetch work, and
some are invoked by the condor_starter. See Job Hooks That Fetch Work for more details. The other set replace func-
tionality of the condor_job_router daemon. Documentation for the condor_job_router daemon is in The HTCondor
Job Router.

SLOT<N>_JOB_HOOK_KEYWORD For the fetch work hooks, the keyword used to define which set of hooks
a particular compute slot should invoke. The value of <N> is replaced by the slot identification number. For
example, on slot 1, the variable name will be called [SLOT1_JOB_HOOK_KEYWORD. There is no default keyword.
Sites that wish to use these job hooks must explicitly define the keyword and the corresponding hook paths.

STARTD_JOB_HOOK_KEYWORD For the fetch work hooks, the keyword used to define which set of hooks a
particular condor_startd should invoke. This setting is only used if a slot-specific keyword is not defined for
a given compute slot. There is no default keyword. Sites that wish to use job hooks must explicitly define the
keyword and the corresponding hook paths.

<Keyword>_HOOK_FETCH_WORK For the fetch work hooks, the full path to the program to invoke whenever
the condor_startd wants to fetch work. <Keyword> is the hook keyword defined to distinguish between sets of
hooks. There is no default.

<Keyword>_HOOK_REPLY_FETCH For the fetch work hooks, the full path to the program to invoke when the
hook defined by <Keyword>_HOOK_FETCH_WORK returns data and the the condor_startd decides if it is going to
accept the fetched job or not. <Keyword> is the hook keyword defined to distinguish between sets of hooks.

4.5. Configuration Macros 319

HTCondor Manual, Release 10.0.9

<Keyword>_HOOK_REPLY_CLAIM For the fetch work hooks, the full path to the program to invoke whenever
the condor_startd finishes fetching a job and decides what to do with it. <Keyword> is the hook keyword defined
to distinguish between sets of hooks. There is no default.

<Keyword>_HOOK_PREPARE_JOB For the fetch work hooks, the full path to the program invoked by the con-
dor_starter before it runs the job. <Keyword> is the hook keyword defined to distinguish between sets of hooks.

<Keyword>_HOOK_UPDATE_JOB_INFO This configuration variable is used by both fetch work hooks and by
condor_job_router hooks.

For the fetch work hooks, the full path to the program invoked by the condor_starter periodically as the job runs,
allowing the condor_starter to present an updated and augmented job ClassAd to the program. See Job Hooks
That Fetch Work for the list of additional attributes included. When the job is first invoked, the condor_starter will
invoke the program after $(STARTER_INITIAL_UPDATE_INTERVAL) seconds. Thereafter, the condor_starter
will invoke the program every $(STARTER_UPDATE_INTERVAL) seconds. <Keyword> is the hook keyword
defined to distinguish between sets of hooks.

As a Job Router hook, the full path to the program invoked when the Job Router polls the status of
routed jobs at intervals set by JOB_ROUTER_POLLING_PERIOD. <Keyword> is the hook keyword defined by
JOB_ROUTER_HOOK_KEYWORD to identify the hooks.

<Keyword>_HOOK_EVICT_CLAIM For the fetch work hooks, the full path to the program to invoke whenever the
condor_startd needs to evict a fetched claim. <Keyword> is the hook keyword defined to distinguish between
sets of hooks. There is no default.

<Keyword>_HOOK_JOB_EXIT For the fetch work hooks, the full path to the program invoked by the con-
dor_starter whenever a job exits, either on its own or when being evicted from an execution slot. <Keyword> is
the hook keyword defined to distinguish between sets of hooks.

<Keyword>_HOOK_JOB_EXIT_TIMEOUT For the fetch work hooks, the number of seconds the condor_starter
will wait for the hook defined by <Keyword>_HOOK_JOB_EXIT hook to exit, before continuing with job clean
up. Defaults to 30 seconds. <Keyword> is the hook keyword defined to distinguish between sets of hooks.

FetchWorkDelay An expression that defines the number of seconds that the condor_startd should wait after an invo-
cation of <Keyword>_HOOK_FETCH_WORK completes before the hook should be invoked again. The expression
is evaluated in the context of the slot ClassAd, and the ClassAd of the currently running job (if any). The expres-
sion must evaluate to an integer. If not defined, the condor_startd will wait 300 seconds (five minutes) between
attempts to fetch work. For more information about this expression, see Job Hooks That Fetch Work.

JOB_ROUTER_HOOK_KEYWORD For the Job Router hooks, the keyword used to define the set of hooks the
condor_job_router is to invoke to replace functionality of routing translation. There is no default keyword. Use
of these hooks requires the explicit definition of the keyword and the corresponding hook paths.

<Keyword>_HOOK_TRANSLATE_JOB A Job Router hook, the full path to the program invoked when the Job
Router has determined that a job meets the definition for a route. This hook is responsible for doing the trans-
formation of the job. <Keyword> is the hook keyword defined by JOB_ROUTER_HOOK_KEYWORD to identify the
hooks.

<Keyword>_HOOK_JOB_FINALIZE A Job Router hook, the full path to the program invoked when the
Job Router has determined that the job completed. <Keyword> is the hook keyword defined by
JOB_ROUTER_HOOK_KEYWORD to identify the hooks.

<Keyword>_HOOK_JOB_CLEANUP A Job Router hook, the full path to the program invoked when the Job Router
finishes managing the job. <Keyword> is the hook keyword defined by JOB_ROUTER_HOOK_KEYWORD to identify
the hooks.

320 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

4.5.28 Configuration File Entries Relating to Daemon ClassAd Hooks: Startd Cron
and Schedd Cron

The following macros describe the daemon ClassAd hooks which run startd cron and schedd cron. These run executa-
bles or scripts directly from the condor_startd and condor_schedd daemons. The output is merged into the ClassAd
generated by the respective daemon. The mechanism is described in Startd Cron and Schedd Cron Daemon ClassAd
Hooks.

These macros all include CRON because the default mode for a daemon ClassAd hook is to run periodically. A specific
daemon ClassAd hook is called a JOB.

To define a job:

• Add a JobName to . (If you want to define a benchmark, or a daemon ClassAd hook in the schedd, use BENCHMARK
or SCHEDD in the macro name instead.) A JobName identifies a specific job and must be unique. In the rest of
this section, where <JobName> appears in a macro name, it means to replace <JobName> with one of the names
.

• You must set , and you’ll probably want to set as well. These macros tell HTCondor how to actually run the job.

• You must also decide when your job will run. By default, a job runs every seconds after the daemon starts up.
You may set to change to this to continuously (WaitForExit); on start-up (OneShot) and optionally, when the
daemon is reconfigured; or as a benchmark (OnDemand). If you do not select OneShot, you must set .

All the other job-specific macros are optional, of which and are probably the most common.

STARTD_CRON_AUTOPUBLISH Optional setting that determines if the condor_startd should automatically pub-
lish a new update to the condor_collector after any of the jobs produce output. Beware that enabling this setting
can greatly increase the network traffic in an HTCondor pool, especially when many modules are executed, or if
the period in which they run is short. There are three possible (case insensitive) values for this variable:

Never This default value causes the condor_startd to not automatically publish updates based on any
jobs. Instead, updates rely on the usual behavior for sending updates, which is periodic, based
on the UPDATE_INTERVAL configuration variable, or whenever a given slot changes state.

Always Causes the condor_startd to always send a new update to the condor_collector whenever
any job exits.

If_Changed Causes the condor_startd to only send a new update to the condor_collector if the
output produced by a given job is different than the previous output of the same job. The only
exception is the LastUpdate attribute, which is automatically set for all jobs to be the timestamp
when the job last ran. It is ignored when STARTD_CRON_AUTOPUBLISH is set to If_Changed.

STARTD_CRON_CONFIG_VAL and SCHEDD_CRON_CONFIG_VAL and BENCHMARKS_CONFIG_VAL
This configuration variable can be used to specify the path and executable name of the condor_config_val
program which the jobs (hooks) should use to get configuration information from the daemon. If defined, an
environment variable by the same name with the same value will be passed to all jobs.

STARTD_CRON_JOBLIST and SCHEDD_CRON_JOBLIST and BENCHMARKS_JOBLIST These config-
uration variables are defined by a comma and/or white space separated list of job names to run. Each is the
logical name of a job. This name must be unique; no two jobs may have the same name. The condor_startd
reads this configuration variable on startup and on reconfig. The condor_schedd reads this variable and other
SCHEDD_CRON_* variables only on startup.

STARTD_CRON_MAX_JOB_LOAD and SCHEDD_CRON_MAX_JOB_LOAD and BENCHMARKS_MAX_JOB_LOAD
A floating point value representing a threshold for CPU load, such that if starting another job would cause the
sum of assumed loads for all running jobs to exceed this value, no further jobs will be started. The default
value for STARTD_CRON or a SCHEDD_CRON hook managers is 0.1. This implies that a maximum of 10 jobs

4.5. Configuration Macros 321

HTCondor Manual, Release 10.0.9

(using their default, assumed load) could be concurrently running. The default value for the BENCHMARKS hook
manager is 1.0. This implies that only 1 BENCHMARKS job (at the default, assumed load) may be running.

STARTD_CRON_LOG_NON_ZERO_EXIT and SCHEDD_CRON_LOG_NON_ZERO_EXIT If true, each
time a cron job returns a non-zero exit code, the corresponding daemon will log the cron job’s exit code and
output. There is no default value, so no logging will occur by default.

STARTD_CRON_<JobName>_ARGS and SCHEDD_CRON_<JobName>_ARGS and BENCHMARKS_<JobName>_ARGS
The command line arguments to pass to the job as it is invoked. The first argument will be <JobName>.

<JobName> is the logical name assigned for a job as defined by configuration variable STARTD_CRON_JOBLIST,
SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_CONDITION A ClassAd expression evaluated each time the job might otherwise
be started. If this macro is set, but the expression does not evaluate to True, the job will not be started. The
expression is evaluated in a context similar to a slot ad, but without any slot-specific attributes.

<JobName> is the logical name assigned for a job as defined by configuration variable STARTD_CRON_JOBLIST.

STARTD_CRON_<JobName>_CWD and SCHEDD_CRON_<JobName>_CWD and BENCHMARKS_<JobName>_CWD
The working directory in which to start the job.

<JobName> is the logical name assigned for a job as defined by configuration variable STARTD_CRON_JOBLIST,
SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_ENV and SCHEDD_CRON_<JobName>_ENV and BENCHMARKS_<JobName>_ENV
The environment string to pass to the job. The syntax is the same as that of <DaemonName>_ENVIRONMENT as
defined at condor_master Configuration File Macros.

<JobName> is the logical name assigned for a job as defined by configuration variable STARTD_CRON_JOBLIST,
SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_EXECUTABLE and SCHEDD_CRON_<JobName>_EXECUTABLE and BENCHMARKS_<JobName>_EXECUTABLE
The full path and executable to run for this job. Note that multiple jobs may specify the same executable,
although the jobs need to have different logical names.

<JobName> is the logical name assigned for a job as defined by configuration variable STARTD_CRON_JOBLIST,
SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_JOB_LOAD and SCHEDD_CRON_<JobName>_JOB_LOAD and BENCHMARKS_<JobName>_JOB_LOAD
A floating point value that represents the assumed and therefore expected CPU load that a job induces on
the system. This job load is then used to limit the total number of jobs that run concurrently, by not starting
new jobs if the assumed total load from all jobs is over a set threshold. The default value for each individual
STARTD_CRON or a SCHEDD_CRON job is 0.01. The default value for each individual BENCHMARKS job is 1.0.

<JobName> is the logical name assigned for a job as defined by configuration variable STARTD_CRON_JOBLIST,
SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_KILL and SCHEDD_CRON_<JobName>_KILL and BENCHMARKS_<JobName>_KILL
A boolean value applicable only for jobs with a MODE of anything other than WaitForExit. The default value
is False.

This variable controls the behavior of the daemon hook manager when it detects that an instance of the job’s
executable is still running as it is time to invoke the job again. If True, the daemon hook manager will kill the
currently running job and then invoke an new instance of the job. If False, the existing job invocation is allowed
to continue running.

<JobName> is the logical name assigned for a job as defined by configuration variable STARTD_CRON_JOBLIST,
SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_METRICS A space or comma -separated list. Each element in the list is a metric
type, either SUM or PEAK; a colon; and a metric name.

322 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

An attribute preceded by SUM is a metric which accumulates over time. The canonical example is seconds of
CPU usage.

An attribute preceded by PEAK is a metric which instead records the largest value reported over the period of use.
The canonical example is megabytes of memory usage.

A job with STARTD_CRON_<JobName>_METRICS set is a custom machine resource monitor (CMRM), and its
output is handled differently than a normal job’s. A CMRM should output one ad per custom machine resource
instance and use SlotMergeConstraints (see Startd Cron and Schedd Cron Daemon ClassAd Hooks) to spec-
ify the instance to which it applies.

The ad corresponding to each custom machine resource instance should have an attribute for each metric named
in the configuration. For SUM metrics, the attribute should be Uptime<MetricName>Seconds; for PEAK
metrics, the attribute should be Uptime<MetricName>PeakUsage.

Each value should be the value of the metric since the last time the job reported. The reported value may therefore
go up or down; HTCondor will record either the the sum or the peak value, as appropriate, for the duration of
the job running in a slot assigned resources of the corresponding type.

For example, if your custom resources are SQUIDs, and you detected four of them, your monitor might output
the following:

SlotMergeConstraint = StringListMember("SQUID0", AssignedSQUIDs)
UptimeSQUIDsSeconds = 5.0
UptimeSQUIDsMemoryPeakUsage = 50
- SQUIDsReport0
SlotMergeConstraint = StringListMember("SQUID1", AssignedSQUIDs)
UptimeSQUIDsSeconds = 1.0
UptimeSQUIDsMemoryPeakUsage = 10
- SQUIDsReport1
SlotMergeConstraint = StringListMember("SQUID2", AssignedSQUIDs)
UptimeSQUIDsSeconds = 9.0
UptimeSQUIDsMemoryPeakUsage = 90
- SQUIDsReport2
SlotMergeConstraint = StringListMember("SQUID3", AssignedSQUIDs)
UptimeSQUIDsSeconds = 4.0
UptimeSQUIDsMemoryPeakUsage = 40
- SQUIDsReport3

The names (‘SQUIDsReport0’) may be anything, but must be consistent from report to report and the ClassAd
for each report must have a distinct name.

You might specify the monitor in the example above as follows:

MACHINE_RESOURCE_INVENTORY_SQUIDs = /usr/local/bin/cmr-squid-discovery

STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) SQUIDs_MONITOR
STARTD_CRON_SQUIDs_MONITOR_MODE = Periodic
STARTD_CRON_SQUIDs_MONITOR_PERIOD = 10
STARTD_CRON_SQUIDs_MONITOR_EXECUTABLE = /usr/local/bin/cmr-squid-monitor
STARTD_CRON_SQUIDs_MONITOR_METRICS = SUM:SQUIDs, PEAK:SQUIDsMemory

STARTD_CRON_<JobName>_MODE and SCHEDD_CRON_<JobName>_MODE and BENCHMARKS_<JobName>_MODE
A string that specifies a mode within which the job operates. Legal values are

• Periodic, which is the default.

• WaitForExit

4.5. Configuration Macros 323

HTCondor Manual, Release 10.0.9

• OneShot

• OnDemand

<JobName> is the logical name assigned for a job as defined by configuration variable STARTD_CRON_JOBLIST,
SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

The default Periodic mode is used for most jobs. In this mode, the job is expected to be started by the con-
dor_startd daemon, gather and publish its data, and then exit.

In WaitForExit mode the condor_startd daemon interprets the period as defined by
STARTD_CRON_<JobName>_PERIOD differently. In this case, it refers to the amount of time to wait after
the job exits before restarting it. With a value of 1, the job is kept running nearly continuously. In general,
WaitForExit mode is for jobs that produce a periodic stream of updated data, but it can be used for other
purposes, as well. The output data from the job is accumulated into a temporary ClassAd until the job exits or
until it writes a line starting with dash (-) character. At that point, the temporary ClassAd replaces the active
ClassAd for the job. The active ClassAd for the job is merged into the appropriate slot ClassAds whenever the
slot ClassAds are published.

The OneShot mode is used for jobs that are run once at the start of the daemon. If the reconfig_rerun option
is specified, the job will be run again after any reconfiguration.

The OnDemand mode is used only by the BENCHMARKS mechanism. All benchmark jobs must be be OnDemand
jobs. Any other jobs specified as OnDemand will never run. Additional future features may allow for other
OnDemand job uses.

STARTD_CRON_<JobName>_PERIOD and SCHEDD_CRON_<JobName>_PERIOD and BENCHMARKS_<JobName>_PERIOD
The period specifies time intervals at which the job should be run. For periodic jobs, this is the time interval
that passes between starting the execution of the job. The value may be specified in seconds, minutes, or hours.
Specify this time by appending the character s, m, or h to the value. As an example, 5m starts the execution of the
job every five minutes. If no character is appended to the value, seconds are used as a default. In WaitForExit
mode, the value has a different meaning: the period specifies the length of time after the job ceases execution
and before it is restarted. The minimum valid value of the period is 1 second.

<JobName> is the logical name assigned for a job as defined by configuration variable STARTD_CRON_JOBLIST,
SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_PREFIX and SCHEDD_CRON_<JobName>_PREFIX and BENCHMARKS_<JobName>_PREFIX
Specifies a string which is prepended by HTCondor to all attribute names that the job generates. The use of
prefixes avoids the conflicts that would be caused by attributes of the same name generated and utilized by
different jobs. For example, if a module prefix is xyz_, and an individual attribute is named abc, then the
resulting attribute name will be xyz_abc. Due to restrictions on ClassAd names, a prefix is only permitted to
contain alpha-numeric characters and the underscore character.

<JobName> is the logical name assigned for a job as defined by configuration variable STARTD_CRON_JOBLIST,
SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_RECONFIG and SCHEDD_CRON_<JobName>_RECONFIG A boolean
value that when True, causes the daemon to send an HUP signal to the job when the daemon is reconfigured.
The job is expected to reread its configuration at that time.

<JobName> is the logical name assigned for a job as defined by configuration variable STARTD_CRON_JOBLIST
or SCHEDD_CRON_JOBLIST.

STARTD_CRON_<JobName>_RECONFIG_RERUN and SCHEDD_CRON_<JobName>_RECONFIG_RERUN
A boolean value that when True, causes the daemon ClassAd hook mechanism to re-run the specified job when
the daemon is reconfigured via condor_reconfig. The default value is False.

<JobName> is the logical name assigned for a job as defined by configuration variable STARTD_CRON_JOBLIST
or SCHEDD_CRON_JOBLIST.

324 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

STARTD_CRON_<JobName>_SLOTS and BENCHMARKS_<JobName>_SLOTS Only the slots specified in
this comma-separated list may incorporate the output of the job specified by <JobName>. If the list is not spec-
ified, any slot may. Whether or not a specific slot actually incorporates the output depends on the output; see
Startd Cron and Schedd Cron Daemon ClassAd Hooks.

<JobName> is the logical name assigned for a job as defined by configuration variable STARTD_CRON_JOBLIST
or BENCHMARKS_JOBLIST.

4.5.29 Configuration File Entries Only for Windows Platforms

These macros are utilized only on Windows platforms.

WINDOWS_RMDIR The complete path and executable name of the HTCondor version of the built-in rmdir pro-
gram. The HTCondor version will not fail when the directory contains files that have ACLs that deny the SYS-
TEM process delete access. If not defined, the built-in Windows rmdir program is invoked, and a value defined
for WINDOWS_RMDIR_OPTIONS is ignored.

WINDOWS_RMDIR_OPTIONS Command line options to be specified when configuration variable
WINDOWS_RMDIR is defined. Defaults to /S /C when configuration variable WINDOWS_RMDIR is defined
and its definition contains the string "condor_rmdir.exe".

4.5.30 condor_defrag Configuration File Macros

These configuration variables affect the condor_defrag daemon. A general discussion of condor_defrag may be found
in condor_startd Policy Configuration.

DEFRAG_NAME Used to give an alternative value to the Name attribute in the condor_defrag daemon’s ClassAd.
This esoteric configuration macro might be used in the situation where there are two condor_defrag daemons
running on one machine, and each reports to the same condor_collector. Different names will distinguish the
two daemons. See the description of MASTER_NAME in condor_master Configuration File Macros for defaults
and composition of valid HTCondor daemon names.

DEFRAG_DRAINING_MACHINES_PER_HOUR A floating point number that specifies how many machines
should be drained per hour. The default is 0, so no draining will happen unless this setting is changed. Each
condor_startd is considered to be one machine. The actual number of machines drained per hour may be less
than this if draining is halted by one of the other defragmentation policy controls. The granularity in timing
of draining initiation is controlled by DEFRAG_INTERVAL . The lowest rate of draining that is supported is one
machine per day or one machine per DEFRAG_INTERVAL , whichever is lower. A fractional number of machines
contributing to the value of DEFRAG_DRAINING_MACHINES_PER_HOUR is rounded to the nearest whole number
of machines on a per day basis.

DEFRAG_DRAINING_START_EXPR A ClassAd expression that replaces the machine’s START expression while
it’s draining. Slots which accepted a job after the machine began draining set the machine ad attribute
AcceptedWhileDraining to true. When the last job which was not accepted while draining exits, all other
jobs are immediately evicted with a MaxJobRetirementTime of 0; job vacate times are still respected. While
the jobs which were accepted while draining are vacating, the START expression is false. Using $(START) in
this expression is usually a mistake: it will be replaced by the defrag daemon’s START expression, not the value of
the target machine’s START expression (and especially not the value of its START expression at the time draining
begins).

DEFRAG_REQUIREMENTS An expression that narrows the selection of which machines to drain. By default
condor_defrag will drain all machines that are drainable. A machine, meaning a condor_startd, is matched

4.5. Configuration Macros 325

HTCondor Manual, Release 10.0.9

if any of its partitionable slots match this expression. Machines are automatically excluded if they cannot be
drained, are already draining, or if they match DEFRAG_WHOLE_MACHINE_EXPR .

The condor_defrag daemon will always add the following requirements to DEFRAG_REQUIREMENTS

PartitionableSlot && Offline =!= true && Draining =!= true

DEFRAG_CANCEL_REQUIREMENTS An expression that is periodically evaluated against machines that
are draining. When this expression evaluates to True, draining will be cancelled. This defaults to
$(DEFRAG_WHOLE_MACHINE_EXPR) . This could be used to drain partial rather than whole machines. Beginning
with version 8.9.11, only machines that have no DrainReason or a value of "Defrag" for DrainReason will
be checked to see if draining should be cancelled.

DEFRAG_RANK An expression that specifies which machines are more desirable to drain. The expression
should evaluate to a number for each candidate machine to be drained. If the number of machines to
be drained is less than the number of candidates, the machines with higher rank will be chosen. The
rank of a machine, meaning a condor_startd, is the rank of its highest ranked slot. The default rank is
-ExpectedMachineGracefulDrainingBadput.

DEFRAG_WHOLE_MACHINE_EXPR An expression that specifies which machines are already operating as
whole machines. The default is

Cpus == TotalSlotCpus

A machine is matched if any Partitionable slot on the machine matches this expression and the ma-
chine is not draining or was drained by condor_defrag. Each condor_startd is considered to be one ma-
chine. Whole machines are excluded when selecting machines to drain. They are also counted against
DEFRAG_MAX_WHOLE_MACHINES.

DEFRAG_MAX_WHOLE_MACHINES An integer that specifies the maximum number of whole machines. When
the number of whole machines is greater than or equal to this, no new machines will be selected for draining.
Each condor_startd is counted as one machine. The special value -1 indicates that there is no limit. The default
is -1.

DEFRAG_MAX_CONCURRENT_DRAINING An integer that specifies the maximum number of draining ma-
chines. When the number of machines that are draining is greater than or equal to this, no new machines will
be selected for draining. Each draining condor_startd is counted as one machine. The special value -1 indicates
that there is no limit. The default is -1.

DEFRAG_INTERVAL An integer that specifies the number of seconds between evaluations of the defragmentation
policy. In each cycle, the state of the pool is observed and machines are drained, if specified by the policy. The
default is 600 seconds. Very small intervals could create excessive load on the condor_collector.

DEFRAG_UPDATE_INTERVAL An integer that specifies the number of seconds between times that the con-
dor_defrag daemon sends updates to the collector. (See Defrag ClassAd Attributes for information about the
attributes in these updates.) The default is 300 seconds.

DEFRAG_SCHEDULE A setting that specifies the draining schedule to use when draining machines. Possible values
are graceful, quick, and fast. The default is graceful.

graceful Initiate a graceful eviction of the job. This means all promises that have been made to
the job are honored, including MaxJobRetirementTime. The eviction of jobs is coordinated to
reduce idle time. This means that if one slot has a job with a long retirement time and the other
slots have jobs with shorter retirement times, the effective retirement time for all of the jobs is
the longer one.

quick MaxJobRetirementTime is not honored. Eviction of jobs is immediately initiated. Jobs are
given time to shut down and produce a checkpoint according to the usual policy, as given by
MachineMaxVacateTime.

326 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

fast Jobs are immediately hard-killed, with no chance to gracefully shut down or produce a check-
point.

DEFRAG_STATE_FILE The path to a file used to record information used by condor_defrag when it is restarted.
This should only need to be modified if there will be multiple instances of the condor_defrag daemon running
on the same machine. The default is $(LOCK)/defrag_state.

DEFRAG_LOG The path to the condor_defrag daemon’s log file. The default log location is $(LOG)/DefragLog.

4.5.31 condor_gangliad Configuration File Macros

condor_gangliad is an optional daemon responsible for publishing information about HTCondor daemons to the
Ganglia™ monitoring system. The Ganglia monitoring system must be installed and configured separately. In the
typical case, a single instance of the condor_gangliad daemon is run per pool. A default set of metrics are sent. Ad-
ditional metrics may be defined, in order to publish any information available in ClassAds that the condor_collector
daemon has.

GANGLIAD_INTERVAL The integer number of seconds between consecutive sending of metrics to Ganglia. Dae-
mons update the condor_collector every 300 seconds, and the Ganglia heartbeat interval is 20 seconds. There-
fore, multiples of 20 between 20 and 300 makes sense for this value. Negative values inhibit sending data to
Ganglia. The default value is 60.

GANGLIAD_VERBOSITY An integer that specifies the maximum verbosity level of metrics to be published to
Ganglia. Basic metrics have a verbosity level of 0, which is the default. Additional metrics can be enabled by
increasing the verbosity to 1. In the default configuration, there are no metrics with verbosity levels higher than
1. Some metrics depend on attributes that are not published to the condor_collector when using the default value
of STATISTICS_TO_PUBLISH . For example, per-user file transfer statistics will only be published to Ganglia if
GANGLIA_VERBOSITY is set to 1 or higher in the condor_gangliad configuration and STATISTICS_TO_PUBLISH
in the condor_schedd configuration contains TRANSFER:2, or if the STATISTICS_TO_PUBLISH_LIST contains
the desired attributes explicitly.

GANGLIAD_REQUIREMENTS An optional boolean ClassAd expression that may restrict the set of daemon Clas-
sAds to be monitored. This could be used to monitor a subset of a pool’s daemons or machines. The default is
an empty expression, which has the effect of placing no restriction on the monitored ClassAds. Keep in mind
that this expression is applied to all types of monitored ClassAds, not just machine ClassAds.

GANGLIAD_PER_EXECUTE_NODE_METRICS A boolean value that, when False, causes metrics from ex-
ecute node daemons to not be published. Aggregate values from these machines will still be published. The
default value is True. This option is useful for pools such that use glidein, in which it is not desired to record
metrics for individual execute nodes.

GANGLIA_CONFIG The path and file name of the Ganglia configuration file. The default is /etc/ganglia/
gmond.conf.

GANGLIA_GMETRIC The full path of the gmetric executable to use. If none is specified, libgangliawill be used
instead when possible, because the library interface is more efficient than invoking gmetric. Some versions of
libganglia are not compatible. When a failure to use libganglia is detected, gmetric will be used, if gmetric
can be found in HTCondor’s PATH environment variable.

GANGLIA_GSTAT_COMMAND The full gstat command used to determine which hosts are monitored by Ganglia.
For a condor_gangliad running on a host whose local gmond does not know the list of monitored hosts, change
localhost to be the appropriate host name or IP address within this default string:

gstat --all --mpifile --gmond_ip=localhost --gmond_port=8649

4.5. Configuration Macros 327

HTCondor Manual, Release 10.0.9

GANGLIA_SEND_DATA_FOR_ALL_HOSTS A boolean value that when True causes data to be sent to Ganglia
for hosts that it is not currently monitoring. The default is False.

GANGLIA_LIB The full path and file name of the libganglia shared library to use. If none is specified, and if
configuration variable GANGLIA_GMETRIC is also not specified, then a search for libganglia will be performed
in the directories listed in configuration variable GANGLIA_LIB_PATH or GANGLIA_LIB64_PATH . The special
value NOOP indicates that condor_gangliad should not publish statistics to Ganglia, but should otherwise go
through all the motions it normally does.

GANGLIA_LIB_PATH A comma-separated list of directories within which to search for the libganglia exe-
cutable, if GANGLIA_LIB is not configured. This is used in 32-bit versions of HTCondor.

GANGLIA_LIB64_PATH A comma-separated list of directories within which to search for the libganglia exe-
cutable, if GANGLIA_LIB is not configured. This is used in 64-bit versions of HTCondor.

GANGLIAD_DEFAULT_CLUSTER An expression specifying the default name of the Ganglia cluster for all met-
rics. The expression may refer to attributes of the machine.

GANGLIAD_DEFAULT_MACHINE An expression specifying the default machine name of Ganglia metrics. The
expression may refer to attributes of the machine.

GANGLIAD_DEFAULT_IP An expression specifying the default IP address of Ganglia metrics. The expression
may refer to attributes of the machine.

GANGLIAD_LOG The path and file name of the condor_gangliad daemon’s log file. The default log is $(LOG)/
GangliadLog.

GANGLIAD_METRICS_CONFIG_DIR Path to the directory containing files which define Ganglia metrics in
terms of HTCondor ClassAd attributes to be published. All files in this directory are read, to define the metrics.
The default directory /etc/condor/ganglia.d/ is used when not specified.

4.5.32 condor_annex Configuration File Macros

See HTCondor Annex Configuration for condor_annex configuration file macros.

4.6 User Priorities and Negotiation

HTCondor uses priorities to determine machine allocation for jobs. This section details the priorities and the allocation
of machines (negotiation).

For accounting purposes, each user is identified by username@uid_domain. Each user is assigned a priority value even
if submitting jobs from different machines in the same domain, or even if submitting from multiple machines in the
different domains.

The numerical priority value assigned to a user is inversely related to the goodness of the priority. A user with a
numerical priority of 5 gets more resources than a user with a numerical priority of 50. There are two priority values
assigned to HTCondor users:

• Real User Priority (RUP), which measures resource usage of the user.

• Effective User Priority (EUP), which determines the number of resources the user can get.

This section describes these two priorities and how they affect resource allocations in HTCondor. Documentation on
configuring and controlling priorities may be found in the condor_negotiator Configuration File Entries section.

328 Chapter 4. Administrators’ Manual

mailto:username@uid_domain

HTCondor Manual, Release 10.0.9

4.6.1 Real User Priority (RUP)

A user’s RUP reports a smoothed average of the number of cores a user has used over some recent period of time.
Every user begins with a RUP of one half (0.5), which is the lowest possible value. At steady state, the RUP of a user
equilibrates to the number of cores currently used. So, if a specific user continuously uses exactly ten cores for a long
period of time, the RUP of that user asymptotically approaches ten.

However, if the user decreases the number of cores used, the RUP asymptotically lowers to the new value. The rate
at which the priority value decays can be set by the macro PRIORITY_HALFLIFE , a time period defined in seconds.
Intuitively, if the PRIORITY_HALFLIFE in a pool is set to the default of 86400 seconds (one day), and a user with a
RUP of 10 has no running jobs, that user’s RUP would be 5 one day later, 2.5 two days later, and so on.

For example, if a new user has no historical usage, their RUP will start at 0.5 If that user then has 100 cores running,
their RUP will grow as the graph below show:

Or, if a new user with no historical usage has 100 cores running for 24 hours, then removes all the jobs, so has no cores
running, their RUP will grow and shrink as shown below:

4.6.2 Effective User Priority (EUP)

The effective user priority (EUP) of a user is used to determine how many cores a user should receive. The EUP is
simply the RUP multiplied by a priority factor the administrator can set per-user. The default initial priority factor for
all new users as they first submit jobs is set by the configuration variable DEFAULT_PRIO_FACTOR , and defaults to
1000.0. An administrator can change this priority factor using the condor_userprio command. For example, setting
the priority factor of some user to 2,000 will grant that user twice as many cores as a user with the default priority
factor of 1,000, assuming they both have the same historical usage.

The number of resources that a user may receive is inversely related to the ratio between the EUPs of submitting users.
User A with EUP=5 will receive twice as many resources as user B with EUP=10 and four times as many resources

4.6. User Priorities and Negotiation 329

HTCondor Manual, Release 10.0.9

as user C with EUP=20. However, if A does not use the full number of resources that A may be given, the available
resources are repartitioned and distributed among remaining users according to the inverse ratio rule.

Assume two users with no history, named A and B, using a pool with 100 cores. To simplify the math, also assume
both users have an equal priority factor of 1.0. User A submits a very large number of short-running jobs at time t = 0
zero. User B waits until 48 hours later, and also submits an infinite number of short jobs. At the beginning, the EUP
doesn’t matter, as there is only one user with jobs, and so user A gets the whole pool. At the 48 hour mark, both users
compete for the pool. Assuming the default PRIORITY_HALFLIFE of 24 hours, user A’s RUP should be about 75.0
at the 48 hour mark, and User B will still be the minimum of .5. At that instance, User B deserves 150 times User A.
However, this ratio will decay quickly. User A’s share of the pool will drop from all 100 cores to less than one core
immediately, but will quickly rebound to a handful of cores, and will asymptotically approach half of the pool as User
B gets the inverse. A graph of these two users might look like this:

HTCondor supplies mechanisms to directly support two policies in which EUP may be useful:

Nice users A job may be submitted with the submit command nice_user set to True. This nice user job will have
its RUP boosted by the NICE_USER_PRIO_FACTOR priority factor specified in the configuration, leading to a
very large EUP. This corresponds to a low priority for resources, therefore using resources not used by other
HTCondor users.

Remote Users HTCondor’s flocking feature (see the Connecting HTCondor Pools with Flocking section) allows jobs
to run in a pool other than the local one. In addition, the submit-only feature allows a user to submit jobs to
another pool. In such situations, submitters from other domains can submit to the local pool. It may be desirable
to have HTCondor treat local users preferentially over these remote users. If configured, HTCondor will boost the
RUPs of remote users by REMOTE_PRIO_FACTOR specified in the configuration, thereby lowering their priority
for resources.

The priority boost factors for individual users can be set with the setfactor option of condor_userprio. Details may be
found in the condor_userprio manual page.

4.6.3 Priorities in Negotiation and Preemption

Priorities are used to ensure that users get their fair share of resources. The priority values are used at allocation time,
meaning during negotiation and matchmaking. Therefore, there are ClassAd attributes that take on defined values only
during negotiation, making them ephemeral. In addition to allocation, HTCondor may preempt a machine claim and
reallocate it when conditions change.

Too many preemptions lead to thrashing, a condition in which negotiation for a machine identifies a new job with
a better priority most every cycle. Each job is, in turn, preempted, and no job finishes. To avoid this situation, the
PREEMPTION_REQUIREMENTS configuration variable is defined for and used only by the condor_negotiator daemon to
specify the conditions that must be met for a preemption to occur. When preemption is enabled, it is usually defined
to deny preemption if a current running job has been running for a relatively short period of time. This effectively
limits the number of preemptions per resource per time interval. Note that PREEMPTION_REQUIREMENTS only applies

330 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

to preemptions due to user priority. It does not have any effect if the machine’s RANK expression prefers a different job,
or if the machine’s policy causes the job to vacate due to other activity on the machine. See the condor_startd Policy
Configuration section for the current default policy on preemption.

The following ephemeral attributes may be used within policy definitions. Care should be taken when using these
attributes, due to their ephemeral nature; they are not always defined, so the usage of an expression to check if defined
such as

(RemoteUserPrio =?= UNDEFINED)

is likely necessary.

Within these attributes, those with names that contain the string Submitter refer to characteristics about the can-
didate job’s user; those with names that contain the string Remote refer to characteristics about the user currently
using the resource. Further, those with names that end with the string ResourcesInUse have values that may
change within the time period associated with a single negotiation cycle. Therefore, the configuration variables
PREEMPTION_REQUIREMENTS_STABLE and and PREEMPTION_RANK_STABLE exist to inform the condor_negotiator
daemon that values may change. See the condor_negotiator Configuration File Entries section for definitions of these
configuration variables.

SubmitterUserPrio A floating point value representing the user priority of the candidate job.

SubmitterUserResourcesInUse The integer number of slots currently utilized by the user submitting the candidate
job.

RemoteUserPrio A floating point value representing the user priority of the job currently running on the machine.
This version of the attribute, with no slot represented in the attribute name, refers to the current slot being
evaluated.

Slot<N>_RemoteUserPrio A floating point value representing the user priority of the job currently running on the
particular slot represented by <N> on the machine.

RemoteUserResourcesInUse The integer number of slots currently utilized by the user of the job currently running
on the machine.

SubmitterGroupResourcesInUse If the owner of the candidate job is a member of a valid accounting group, with
a defined group quota, then this attribute is the integer number of slots currently utilized by the group.

SubmitterGroup The accounting group name of the requesting submitter.

SubmitterGroupQuota If the owner of the candidate job is a member of a valid accounting group, with a defined
group quota, then this attribute is the integer number of slots defined as the group’s quota.

RemoteGroupResourcesInUse If the owner of the currently running job is a member of a valid accounting group,
with a defined group quota, then this attribute is the integer number of slots currently utilized by the group.

RemoteGroup The accounting group name of the owner of the currently running job.

RemoteGroupQuota If the owner of the currently running job is a member of a valid accounting group, with a defined
group quota, then this attribute is the integer number of slots defined as the group’s quota.

SubmitterNegotiatingGroup The accounting group name that the candidate job is negotiating under.

RemoteNegotiatingGroup The accounting group name that the currently running job negotiated under.

SubmitterAutoregroup Boolean attribute is True if candidate job is negotiated via autoregoup.

RemoteAutoregroup Boolean attribute is True if currently running job negotiated via autoregoup.

4.6. User Priorities and Negotiation 331

HTCondor Manual, Release 10.0.9

4.6.4 Priority Calculation

This section may be skipped if the reader so feels, but for the curious, here is HTCondor’s priority calculation algorithm.

The RUP of a user 𝑢 at time 𝑡, 𝜋𝑟(𝑢, 𝑡), is calculated every time interval 𝛿𝑡 using the formula

𝜋𝑟(𝑢, 𝑡) = 𝛽𝜋𝑟(𝑢, 𝑡− 𝛿𝑡) + (1− 𝛽)𝜌(𝑢, 𝑡)

where 𝜌(𝑢, 𝑡) is the number of resources used by user 𝑢 at time 𝑡, and 𝛽 = 0.5𝛿𝑡/ℎ. ℎ is the half life period set by
PRIORITY_HALFLIFE .

The EUP of user 𝑢 at time 𝑡, 𝜋𝑒(𝑢, 𝑡) is calculated by

𝜋𝑒(𝑢, 𝑡) = 𝜋𝑟(𝑢, 𝑡)× 𝑓(𝑢, 𝑡)

where 𝑓(𝑢, 𝑡) is the priority boost factor for user 𝑢 at time 𝑡.

As mentioned previously, the RUP calculation is designed so that at steady state, each user’s RUP stabilizes at the
number of resources used by that user. The definition of 𝛽 ensures that the calculation of 𝜋𝑟(𝑢, 𝑡) can be calculated
over non-uniform time intervals 𝛿𝑡without affecting the calculation. The time interval 𝛿𝑡 varies due to events internal to
the system, but HTCondor guarantees that unless the central manager machine is down, no matches will be unaccounted
for due to this variance.

4.6.5 Negotiation

Negotiation is the method HTCondor undergoes periodically to match queued jobs with resources capable of running
jobs. The condor_negotiator daemon is responsible for negotiation.

During a negotiation cycle, the condor_negotiator daemon accomplishes the following ordered list of items.

1. Build a list of all possible resources, regardless of the state of those resources.

2. Obtain a list of all job submitters (for the entire pool).

3. Sort the list of all job submitters based on EUP (see The Layperson’s Description of the Pie Spin and Pie Slice
for an explanation of EUP). The submitter with the best priority is first within the sorted list.

4. Iterate until there are either no more resources to match, or no more jobs to match.

For each submitter (in EUP order):

For each submitter, get each job. Since jobs may be submitted from more than one machine
(hence to more than one condor_schedd daemon), here is a further definition of the ordering
of these jobs. With jobs from a single condor_schedd daemon, jobs are typically returned in
job priority order. When more than one condor_schedd daemon is involved, they are con-
tacted in an undefined order. All jobs from a single condor_schedd daemon are considered
before moving on to the next. For each job:

• For each machine in the pool that can execute jobs:

1. If machine.requirements evaluates to False or job.requirements evaluates to
False, skip this machine

2. If the machine is in the Claimed state, but not running a job, skip this machine.

3. If this machine is not running a job, add it to the potential match list by reason of No
Preemption.

4. If the machine is running a job

332 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

– If the machine.RANK on this job is better than the running job, add this machine
to the potential match list by reason of Rank.

– If the EUP of this job is better than the EUP of the currently running job, and
PREEMPTION_REQUIREMENTS is True, and the machine.RANK on this job is not
worse than the currently running job, add this machine to the potential match list
by reason of Priority. See example below.

• Of machines in the potential match list, sort by NEGOTIATOR_PRE_JOB_RANK, job.
RANK, NEGOTIATOR_POST_JOB_RANK, Reason for claim (No Preemption, then Rank,
then Priority), PREEMPTION_RANK

• The job is assigned to the top machine on the potential match list. The machine is
removed from the list of resources to match (on this negotiation cycle).

As described above, the condor_negotiator tries to match each job to all slots in the pool. Assume that five slots match
one request for three jobs, and that their NEGOTIATOR_PRE_JOB_RANK, Job.Rank, and NEGOTIATOR_POST_JOB_RANK
expressions evaluate (in the context of both the slot ad and the job ad) to the following values.

Slot Name NEGOTIATOR_PRE_JOB_RANK Job.Rank NEGOTIATOR_POST_JOB_RANK
slot1 100 1 10
slot2 100 2 20
slot3 100 2 30
slot4 0 1 40
slot5 200 1 50

Table 3.1: Example of slots before sorting

These slots would be sorted first on NEGOTIATOR_PRE_JOB_RANK`, then sorting all ties based on Job.Rank and
any remaining ties sorted by NEGOTIATOR_POST_JOB_RANK. After that, the first three slots would be handed to the
condor_schedd. This means that NEGOTIATOR_PRE_JOB_RANK is very strong, and overrides any ranking expression
by the submitter of the job. After sorting, the slots would look like this, and the schedd would be given slot5, slot3 and
slot2:

Slot Name NEGOTIATOR_PRE_JOB_RANK Job.Rank NEGOTIATOR_POST_JOB_RANK
slot5 200 1 50
slot3 100 2 30
slot2 100 2 20
slot1 100 1 10
slot4 0 1 40

Table 3.2: Example of slots after sorting

The condor_negotiator asks the condor_schedd for the “next job” from a given submitter/user. Typically, the con-
dor_schedd returns jobs in the order of job priority. If priorities are the same, job submission time is used; older jobs
go first. If a cluster has multiple procs in it and one of the jobs cannot be matched, the condor_schedd will not return any
more jobs in that cluster on that negotiation pass. This is an optimization based on the theory that the cluster jobs are
similar. The configuration variable NEGOTIATE_ALL_JOBS_IN_CLUSTER disables the cluster-skipping optimization.
Use of the configuration variable SIGNIFICANT_ATTRIBUTES will change the definition of what the condor_schedd
considers a cluster from the default definition of all jobs that share the same ClusterId.

4.6. User Priorities and Negotiation 333

HTCondor Manual, Release 10.0.9

4.6.6 The Layperson’s Description of the Pie Spin and Pie Slice

HTCondor schedules in a variety of ways. First, it takes all users who have submitted jobs and calculates their priority.
Then, it totals the SlotWeight (by default, cores) of all currently available slots, and using the ratios of the user priorities,
it calculates the number of cores each user could get. This is their pie slice. (See: SLOT_WEIGHT in condor_startd
Configuration File Macros)

The HTCondor matchmaker goes in user priority order, contacts each schedd where that user’s job lives, and asks for job
information. The condor_schedd daemon (on behalf of a user) tells the matchmaker about a job, and the matchmaker
looks at available slots to create a list that match the requirements expression. It then sorts the matching slots by the
rank expressions within ClassAds. If a slot prefers a job via the slot RANK expression, the job is assigned to that slot,
potentially preempting an already running job. Otherwise, give the slot to the job that the job ranks highest. If the
highest ranked slot is already running a job, the negotiator may preempt the running job for the new job.

This matchmaking cycle continues until the user has received all of the machines in their pie slice. If there is a per-
user ceiling defined with the condor_userprio -setceil command, and this ceiling is smaller than the pie slice, the user
gets only up to their ceiling number of cores. The matchmaker then contacts the next highest priority user and offers
that user their pie slice worth of machines. After contacting all users, the cycle is repeated with any still available
resources and recomputed pie slices. The matchmaker continues spinning the pie until it runs out of machines or all
the condor_schedd daemons say they have no more jobs.

4.6.7 Group Accounting

By default, HTCondor does all accounting on a per-user basis. This means that HTCondor keeps track of the historical
usage per-user, calculates a priority and fair-share per user, and allows the administrator to change this fair-share per
user. In HTCondor terminology, the accounting principal is called the submitter.

The name of this submitter is, by default, the name the schedd authenticated when the job was first submitted to the
schedd. Usually, this is the operating system username. However, the submitter can override the username selected by
setting the submit file option

accounting_group_user = ishmael

This means this job should be treated, for accounting purposes only, as “ishamel”, but “ishmael” will not be the operat-
ing system id the shadow or job uses. Note that HTCondor trusts the user to set this to a valid value. The administrator
can use schedd requirements or transforms to validate such settings, if desired. accounting_group_user is frequently
used in web portals, where one trusted operating system process submits jobs on behalf of different users.

Note that if many people submit jobs with identical accounting_group_user values, HTCondor treats them as one set of
jobs for accounting purposes. So, if Alice submits 100 jobs as accounting_group_user ishmael, and so does Bob a mo-
ment later, HTCondor will not try to fair-share between them, as it would do if they had not set accounting_group_user.
If all these jobs have identical requirements, they will be run First-In, First-Out, so whoever submitted first makes the
subsequent jobs wait until the last one of the first submit is finished.

334 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

4.6.8 Accounting Groups with Hierarchical Group Quotas

With additional configuration, it is possible to create accounting groups, where the submitters within the group maintain
their distinct identity, and fair-share still happens within members of that group.

An upper limit on the number of slots allocated to a group of users can be specified with group quotas.

Consider an example pool with thirty slots: twenty slots are owned by the physics group and ten are owned by the
chemistry group. The desired policy is that no more than twenty concurrent jobs are ever running from the physicists,
and only ten from the chemists. These machines are otherwise identical, so it does not matter which machines run
which group’s jobs. It only matters that the proportions of allocated slots are correct.

Group quotas may implement this policy. Define the groups and set their quotas in the configuration of the central
manager:

GROUP_NAMES = group_physics, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_chemistry = 10

The implementation of quotas is hierarchical, such that quotas may be described for the tree of groups, subgroups, sub
subgroups, etc. Group names identify the groups, such that the configuration can define the quotas in terms of limiting
the number of cores allocated for a group or subgroup. Group names do not need to begin with "group_", but that is
the convention, which helps to avoid naming conflicts between groups and subgroups. The hierarchy is identified by
using the period (‘.’) character to separate a group name from a subgroup name from a sub subgroup name, etc. Group
names are case-insensitive for negotiation.

At the root of the tree that defines the hierarchical groups is the “<none>” group. The implied quota of the “<none>”
group will be all available slots. This string will appear in the output of condor_status.

If the sum of the child quotas exceeds the parent, then the child quotas are scaled down in proportion to their
relative sizes. For the given example, there were 30 original slots at the root of the tree. If a power fail-
ure removed half of the original 30, leaving fifteen slots, physics would be scaled back to a quota of ten,
and chemistry to five. This scaling can be disabled by setting the condor_negotiator configuration variable
NEGOTIATOR_ALLOW_QUOTA_OVERSUBSCRIPTION to True. If the sum of the child quotas is less than that of the
parent, the child quotas remain intact; they are not scaled up. That is, if somehow the number of slots doubled from
thirty to sixty, physics would still be limited to 20 slots, and chemistry would be limited to 10. This example in which
the quota is defined by absolute values is called a static quota.

Each job must state which group it belongs to. By default, this is opt-in, and the system trusts each user to put the
correct group in the submit description file. See “Setting Accounting Groups Automatically below” to configure the
system to set them without user input and to prevent users from opting into the wrong groups. Jobs that do not identify
themselves as a group member are negotiated for as part of the “<none>” group. Note that this requirement is per
job, not per user. A given user may be a member of many groups. Jobs identify which group they are in by setting
the accounting_group and accounting_group_user commands within the submit description file, as specified in the
Group Accounting section. For example:

accounting_group = group_physics
accounting_group_user = einstein

The size of the quotas may instead be expressed as a proportion. This is then referred to as a dynamic group quota,
because the size of the quota is dynamically recalculated every negotiation cycle, based on the total available size of
the pool. Instead of using static quotas, this example can be recast using dynamic quotas, with one-third of the pool
allocated to chemistry and two-thirds to physics. The quotas maintain this ratio even as the size of the pool changes,
perhaps because of machine failures, because of the arrival of new machines within the pool, or because of other
reasons. The job submit description files remain the same. Configuration on the central manager becomes:

4.6. User Priorities and Negotiation 335

HTCondor Manual, Release 10.0.9

GROUP_NAMES = group_physics, group_chemistry
GROUP_QUOTA_DYNAMIC_group_chemistry = 0.33
GROUP_QUOTA_DYNAMIC_group_physics = 0.66

The values of the quotas must be less than 1.0, indicating fractions of the pool’s machines. As with static quota
specification, if the sum of the children exceeds one, they are scaled down proportionally so that their sum does equal
1.0. If their sum is less than one, they are not changed.

Extending this example to incorporate subgroups, assume that the physics group consists of high-energy (hep) and low-
energy (lep) subgroups. The high-energy sub-group owns fifteen of the twenty physics slots, and the low-energy group
owns the remainder. Groups are distinguished from subgroups by an intervening period character (.) in the group’s
name. Static quotas for these subgroups extend the example configuration:

GROUP_NAMES = group_physics, group_physics.hep, group_physics.lep, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_physics.hep = 15
GROUP_QUOTA_group_physics.lep = 5
GROUP_QUOTA_group_chemistry = 10

This hierarchy may be more useful when dynamic quotas are used. Here is the example, using dynamic quotas:

GROUP_NAMES = group_physics, group_physics.hep, group_physics.lep, group_chemistry
GROUP_QUOTA_DYNAMIC_group_chemistry = 0.33334
GROUP_QUOTA_DYNAMIC_group_physics = 0.66667
GROUP_QUOTA_DYNAMIC_group_physics.hep = 0.75
GROUP_QUOTA_DYNAMIC_group_physics.lep = 0.25

The fraction of a subgroup’s quota is expressed with respect to its parent group’s quota. That is, the high-energy physics
subgroup is allocated 75% of the 66% that physics gets of the entire pool, however many that might be. If there are 30
machines in the pool, that would be the same 15 machines as specified in the static quota example.

High-energy physics users indicate which group their jobs should go in with the submit description file identification:

accounting_group = group_physics.hep
accounting_group_user = higgs

In all these examples so far, the hierarchy is merely a notational convenience. Each of the examples could be imple-
mented with a flat structure, although it might be more confusing for the administrator. Surplus is the concept that
creates a true hierarchy.

If a given group or sub-group accepts surplus, then that given group is allowed to exceed its configured quota, by using
the leftover, unused quota of other groups. Surplus is disabled for all groups by default. Accepting surplus may be
enabled for all groups by setting GROUP_ACCEPT_SURPLUS to True. Surplus may be enabled for individual groups by
setting GROUP_ACCEPT_SURPLUS_<groupname> to True. Consider the following example:

GROUP_NAMES = group_physics, group_physics.hep, group_physics.lep, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_physics.hep = 15
GROUP_QUOTA_group_physics.lep = 5
GROUP_QUOTA_group_chemistry = 10
GROUP_ACCEPT_SURPLUS = false
GROUP_ACCEPT_SURPLUS_group_physics = false
GROUP_ACCEPT_SURPLUS_group_physics.lep = true
GROUP_ACCEPT_SURPLUS_group_physics.hep = true

336 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

This configuration is the same as above for the chemistry users. However, GROUP_ACCEPT_SURPLUS is set to False
globally, False for the physics parent group, and True for the subgroups group_physics.lep and group_physics.lep.
This means that group_physics.lep and group_physics.hep are allowed to exceed their quota of 15 and 5, but their sum
cannot exceed 20, for that is their parent’s quota. If the group_physics had GROUP_ACCEPT_SURPLUS set to True, then
either group_physics.lep and group_physics.hep would not be limited by quota.

Surplus slots are distributed bottom-up from within the quota tree. That is, any leaf nodes of this tree with excess quota
will share it with any peers which accept surplus. Any subsequent excess will then be passed up to the parent node and
over to all of its children, recursively. Any node that does not accept surplus implements a hard cap on the number of
slots that the sum of it’s children use.

After the condor_negotiator calculates the quota assigned to each group, possibly adding in surplus, it then negotiates
with the condor_schedd daemons in the system to try to match jobs to each group. It does this one group at a time.
By default, it goes in “starvation group order.” That is, the group whose current usage is the smallest fraction of its
quota goes first, then the next, and so on. The “<none>” group implicitly at the root of the tree goes last. This ordering
can be replaced by defining configuration variable GROUP_SORT_EXPR . The condor_negotiator evaluates this ClassAd
expression for each group ClassAd, sorts the groups by the floating point result, and then negotiates with the smallest
positive value going first. Available attributes for sorting with GROUP_SORT_EXPR include:

Attribute Name Description
AccountingGroup A string containing the group name
GroupQuota The computed limit for this group
GroupResourcesInUse The total slot weight used by this group
GroupResourcesAllocated Quota allocated this cycle

Table 3.3: Attributes visible to GROUP_SORT_EXPR

One possible group quota policy is strict priority. For example, a site prefers physics users to match as many slots
as they can, and only when all the physics jobs are running, and idle slots remain, are chemistry jobs allowed
to run. The default “starvation group order” can be used to implement this. By setting configuration variable
NEGOTIATOR_ALLOW_QUOTA_OVERSUBSCRIPTION to True, and setting the physics quota to a number so large that
it cannot ever be met, such as one million, the physics group will always be the “most starving” group, will always ne-
gotiate first, and will always be unable to meet the quota. Only when all the physics jobs are running will the chemistry
jobs then run. If the chemistry quota is set to a value smaller than physics, but still larger than the pool, this policy can
support a third, even lower priority group, and so on.

The condor_userprio command can show the current quotas in effect, and the current usage by group. For example:

$ condor_userprio -quotas
Last Priority Update: 11/12 15:18
Group Effective Config Use Subtree Requested
Name Quota Quota Surplus Quota Resources
------------------------ --------- --------- ------- --------- ----------
group_physics.hep 15.00 15.00 no 15.00 60
group_physics.lep 5.00 5.00 no 5.00 60
------------------------ --------- --------- ------- --------- ----------
Number of users: 2 ByQuota

This shows that there are two groups, each with 60 jobs in the queue. group_physics.hep has a quota of 15 machines,
and group_physics.lep has 5 machines. Other options to condor_userprio, such as -most will also show the number of
resources in use.

4.6. User Priorities and Negotiation 337

HTCondor Manual, Release 10.0.9

4.6.9 Setting Accounting Group automatically per user

By default, any user can put the jobs into any accounting group by setting parameters in the submit file. This can be
useful if a person is a member of multiple groups. However, many sites want to force all jobs submitted by a given user
into one accounting group, and forbid the user to submit to any other group. An HTCondor metaknob makes this easy.
By adding to the submit machine’s configuration, the setting

USE Feature: AssignAccountingGroup(file_name_of_map)

The admin can create a file that maps the users into their required accounting groups, and makes the attributes im-
mutable, so they can’t be changed. The format of this map file is like other classad map files: Lines of three columns.
The first should be an asterisk *. The second column is the name of the user, and the final is the accounting group that
user should always submit to. For example,

* Alice group_physics
* Bob group_atlas
* Carol group_physics
* /^student_.*/ group_students

The second field can be a regular expression, if enclosed in //. Note that this is on the submit side, and the administrator
will still need to create these group names and give them a quota on the central manager machine. This file is re-read
on a condor_reconfig. The third field can also be a comma-separated list. If so, it represents the set of valid accounting
groups a user can opt into. If the user does not set an accounting group in the submit file the first entry in the list will
be used.

4.7 Policy Configuration for Execute Hosts and for Submit Hosts

Note: Configuration templates make it easier to implement certain policies; see information on policy templates here:
Available Configuration Templates.

4.7.1 condor_startd Policy Configuration

This section describes the configuration of machines, such that they, through the condor_startd daemon, implement
a desired policy for when remote jobs should start, be suspended, (possibly) resumed, vacate (with a checkpoint) or
be killed. This policy is the heart of HTCondor’s balancing act between the needs and wishes of resource owners
(machine owners) and resource users (people submitting their jobs to HTCondor). Please read this section carefully
before changing any of the settings described here, as a wrong setting can have a severe impact on either the owners of
machines in the pool or the users of the pool.

338 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

condor_startd Terminology

Understanding the configuration requires an understanding of ClassAd expressions, which are detailed in the HTCon-
dor’s ClassAd Mechanism section.

Each machine runs one condor_startd daemon. Each machine may contain one or more cores (or CPUs). The HTCon-
dor construct of a slot describes the unit which is matched to a job. Each slot may contain one or more integer number
of cores. Each slot is represented by its own machine ClassAd, distinguished by the machine ClassAd attribute Name,
which is of the form slot<N>@hostname. The value for <N> will also be defined with machine ClassAd attribute
SlotID.

Each slot has its own machine ClassAd, and within that ClassAd, its own state and activity. Other policy expressions are
propagated or inherited from the machine configuration by the condor_startd daemon, such that all slots have the same
policy from the machine configuration. This requires configuration expressions to incorporate the SlotID attribute
when policy is intended to be individualized based on a slot. So, in this discussion of policy expressions, where a
machine is referenced, the policy can equally be applied to a slot.

The condor_startd daemon represents the machine on which it is running to the HTCondor pool. The daemon publishes
characteristics about the machine in the machine’s ClassAd to aid matchmaking with resource requests. The values of
these attributes may be listed by using the command:

$ condor_status -l hostname

The START Expression

The most important expression to the condor_startd is the START expression. This expression describes the conditions
that must be met for a machine or slot to run a job. This expression can reference attributes in the machine’s ClassAd
(such as KeyboardIdle and LoadAvg) and attributes in a job ClassAd (such as Owner, Imagesize, and Cmd, the name
of the executable the job will run). The value of the START expression plays a crucial role in determining the state and
activity of a machine.

The Requirements expression is used for matching machines with jobs.

In situations where a machine wants to make itself unavailable for further matches, the Requirements expression
is set to False. When the START expression locally evaluates to True, the machine advertises the Requirements
expression as True and does not publish the START expression.

Normally, the expressions in the machine ClassAd are evaluated against certain request ClassAds in the con-
dor_negotiator to see if there is a match, or against whatever request ClassAd currently has claimed the machine.
However, by locally evaluating an expression, the machine only evaluates the expression against its own ClassAd. If an
expression cannot be locally evaluated (because it references other expressions that are only found in a request Clas-
sAd, such as Owner or Imagesize), the expression is (usually) undefined. See theh HTCondor’s ClassAd Mechanism
section for specifics on how undefined terms are handled in ClassAd expression evaluation.

A note of caution is in order when modifying the START expression to reference job ClassAd attributes. When using
the POLICY : Desktop configuration template, the IS_OWNER expression is a function of the START expression:

START =?= FALSE

See a detailed discussion of the IS_OWNER expression in condor_startd Policy Configuration. However, the machine
locally evaluates the IS_OWNER expression to determine if it is capable of running jobs for HTCondor. Any job ClassAd
attributes appearing in the START expression, and hence in the IS_OWNER expression, are undefined in this context, and
may lead to unexpected behavior. Whenever the START expression is modified to reference job ClassAd attributes, the
IS_OWNER expression should also be modified to reference only machine ClassAd attributes.

Note: If you have machines with lots of real memory and swap space such that the only scarce resource is CPU time,

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 339

HTCondor Manual, Release 10.0.9

consider defining JOB_RENICE_INCREMENT so that HTCondor starts jobs on the machine with low priority. Then,
further configure to set up the machines with:

START = True
SUSPEND = False
PREEMPT = False
KILL = False

In this way, HTCondor jobs always run and can never be kicked off from activity on the machine. However, because
they would run with the low priority, interactive response on the machines will not suffer. A machine user probably
would not notice that HTCondor was running the jobs, assuming you had enough free memory for the HTCondor jobs
such that there was little swapping.

The RANK Expression

A machine may be configured to prefer certain jobs over others using the RANK expression. It is an expression, like
any other in a machine ClassAd. It can reference any attribute found in either the machine ClassAd or a job ClassAd.
The most common use of this expression is likely to configure a machine to prefer to run jobs from the owner of that
machine, or by extension, a group of machines to prefer jobs from the owners of those machines.

For example, imagine there is a small research group with 4 machines called tenorsax, piano, bass, and drums. These
machines are owned by the 4 users coltrane, tyner, garrison, and jones, respectively.

Assume that there is a large HTCondor pool in the department, and this small research group has spent a lot of money
on really fast machines for the group. As part of the larger pool, but to implement a policy that gives priority on the
fast machines to anyone in the small research group, set the RANK expression on the machines to reference the Owner
attribute and prefer requests where that attribute matches one of the people in the group as in

RANK = Owner == "coltrane" || Owner == "tyner" \
|| Owner == "garrison" || Owner == "jones"

The RANK expression is evaluated as a floating point number. However, like in C, boolean expressions evaluate to either
1 or 0 depending on if they are True or False. So, if this expression evaluated to 1, because the remote job was owned
by one of the preferred users, it would be a larger value than any other user for whom the expression would evaluate to
0.

A more complex RANK expression has the same basic set up, where anyone from the group has priority on their fast
machines. Its difference is that the machine owner has better priority on their own machine. To set this up for Garrison’s
machine (bass), place the following entry in the local configuration file of machine bass:

RANK = (Owner == "coltrane") + (Owner == "tyner") \
+ ((Owner == "garrison") * 10) + (Owner == "jones")

Note that the parentheses in this expression are important, because the + operator has higher default precedence than
==.

The use of + instead of || allows us to distinguish which terms matched and which ones did not. If anyone not in the
research group quartet was running a job on the machine called bass, the RANK would evaluate numerically to 0, since
none of the boolean terms evaluates to 1, and 0+0+0+0 still equals 0.

Suppose Elvin Jones submits a job. His job would match the bassmachine, assuming START evaluated to True for him
at that time. The RANK would numerically evaluate to 1. Therefore, the Elvin Jones job could preempt the HTCondor
job currently running. Further assume that later Jimmy Garrison submits a job. The RANK evaluates to 10 on machine
bass, since the boolean that matches gets multiplied by 10. Due to this, Jimmy Garrison’s job could preempt Elvin
Jones’ job on the bass machine where Jimmy Garrison’s jobs are preferred.

340 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

The RANK expression is not required to reference the Owner of the jobs. Perhaps there is one machine with an enormous
amount of memory, and others with not much at all. Perhaps configure this large-memory machine to prefer to run jobs
with larger memory requirements:

RANK = ImageSize

That’s all there is to it. The bigger the job, the more this machine wants to run it. It is an altruistic preference, always
servicing the largest of jobs, no matter who submitted them. A little less altruistic is the RANK on Coltrane’s machine
that prefers John Coltrane’s jobs over those with the largest Imagesize:

RANK = (Owner == "coltrane" * 1000000000000) + Imagesize

This RANK does not work if a job is submitted with an image size of more 1012 Kbytes. However, with that size, this
RANK expression preferring that job would not be HTCondor’s only problem!

Machine States

A machine is assigned a state by HTCondor. The state depends on whether or not the machine is available to run
HTCondor jobs, and if so, what point in the negotiations has been reached. The possible states are

Owner The machine is being used by the machine owner, and/or is not available to run HTCondor jobs.
When the machine first starts up, it begins in this state.

Unclaimed The machine is available to run HTCondor jobs, but it is not currently doing so.

Matched The machine is available to run jobs, and it has been matched by the negotiator with a specific
schedd. That schedd just has not yet claimed this machine. In this state, the machine is unavailable
for further matches.

Claimed The machine has been claimed by a schedd.

Preempting The machine was claimed by a schedd, but is now preempting that claim for one of the
following reasons.

1. the owner of the machine came back

2. another user with higher priority has jobs waiting to run

3. another request that this resource would rather serve was found

Backfill The machine is running a backfill computation while waiting for either the machine owner to
come back or to be matched with an HTCondor job. This state is only entered if the machine is
specifically configured to enable backfill jobs.

Drained The machine is not running jobs, because it is being drained. One reason a machine may be
drained is to consolidate resources that have been divided in a partitionable slot. Consolidating the
resources gives large jobs a chance to run.

Each transition is labeled with a letter. The cause of each transition is described below.

• Transitions out of the Owner state

A The machine switches from Owner to Unclaimed whenever the START expression no longer locally
evaluates to FALSE. This indicates that the machine is potentially available to run an HTCondor
job.

N The machine switches from the Owner to the Drained state whenever draining of the machine is
initiated, for example by condor_drain or by the condor_defrag daemon.

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 341

HTCondor Manual, Release 10.0.9

Fig. 1: Machine states and the possible transitions between the states.

• Transitions out of the Unclaimed state

B The machine switches from Unclaimed back to Owner whenever the START expression locally
evaluates to FALSE. This indicates that the machine is unavailable to run an HTCondor job and
is in use by the resource owner.

C The transition from Unclaimed to Matched happens whenever the condor_negotiator matches this
resource with an HTCondor job.

D The transition from Unclaimed directly to Claimed also happens if the condor_negotiator matches
this resource with an HTCondor job. In this case the condor_schedd receives the match and
initiates the claiming protocol with the machine before the condor_startd receives the match
notification from the condor_negotiator.

E The transition from Unclaimed to Backfill happens if the machine is configured to run backfill
computations (see the Setting Up for Special Environments section) and the START_BACKFILL
expression evaluates to TRUE.

P The transition from Unclaimed to Drained happens if draining of the machine is initiated, for ex-
ample by condor_drain or by the condor_defrag daemon.

• Transitions out of the Matched state

F The machine moves from Matched to Owner if either the START expression locally evaluates to
FALSE, or if the MATCH_TIMEOUT timer expires. This timeout is used to ensure that if a ma-
chine is matched with a given condor_schedd, but that condor_schedd does not contact the con-
dor_startd to claim it, that the machine will give up on the match and become available to be
matched again. In this case, since the START expression does not locally evaluate to FALSE, as
soon as transition F is complete, the machine will immediately enter the Unclaimed state again
(via transition A). The machine might also go from Matched to Owner if the condor_schedd at-
tempts to perform the claiming protocol but encounters some sort of error. Finally, the machine
will move into the Owner state if the condor_startd receives a condor_vacate command while it

342 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

is in the Matched state.

G The transition from Matched to Claimed occurs when the condor_schedd successfully completes
the claiming protocol with the condor_startd.

• Transitions out of the Claimed state

H From the Claimed state, the only possible destination is the Preempting state. This transition can
be caused by many reasons:

– The condor_schedd that has claimed the machine has no more work to perform and releases
the claim

– The PREEMPT expression evaluates to True (which usually means the resource owner has
started using the machine again and is now using the keyboard, mouse, CPU, etc.)

– The condor_startd receives a condor_vacate command

– The condor_startd is told to shutdown (either via a signal or a condor_off command)

– The resource is matched to a job with a better priority (either a better user priority, or one
where the machine rank is higher)

• Transitions out of the Preempting state

I The resource will move from Preempting back to Claimed if the resource was matched to a job with
a better priority.

J The resource will move from Preempting to Owner if the PREEMPT expression had evaluated to
TRUE, if condor_vacate was used, or if the START expression locally evaluates to FALSE when
the condor_startd has finished evicting whatever job it was running when it entered the Preempt-
ing state.

• Transitions out of the Backfill state

K The resource will move from Backfill to Owner for the following reasons:

– The EVICT_BACKFILL expression evaluates to TRUE

– The condor_startd receives a condor_vacate command

– The condor_startd is being shutdown

L The transition from Backfill to Matched occurs whenever a resource running a backfill computation
is matched with a condor_schedd that wants to run an HTCondor job.

M The transition from Backfill directly to Claimed is similar to the transition from Unclaimed directly
to Claimed. It only occurs if the condor_schedd completes the claiming protocol before the
condor_startd receives the match notification from the condor_negotiator.

• Transitions out of the Drained state

O The transition from Drained to Owner state happens when draining is finalized or is canceled.
When a draining request is made, the request either asks for the machine to stay in a Drained
state until canceled, or it asks for draining to be automatically finalized once all slots have finished
draining.

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 343

HTCondor Manual, Release 10.0.9

The Claimed State and Leases

When a condor_schedd claims a condor_startd, there is a claim lease. So long as the keep alive updates from the
condor_schedd to the condor_startd continue to arrive, the lease is reset. If the lease duration passes with no updates,
the condor_startd drops the claim and evicts any jobs the condor_schedd sent over.

The alive interval is the amount of time between, or the frequency at which the condor_schedd sends keep alive updates
to all condor_schedd daemons. An alive update resets the claim lease at the condor_startd. Updates are UDP packets.

Initially, as when the condor_schedd starts up, the alive interval starts at the value set by the configuration variable
ALIVE_INTERVAL . It may be modified when a job is started. The job’s ClassAd attribute JobLeaseDuration is
checked. If the value of JobLeaseDuration/3 is less than the current alive interval, then the alive interval is set to
either this lower value or the imposed lowest limit on the alive interval of 10 seconds. Thus, the alive interval starts at
ALIVE_INTERVAL and goes down, never up.

If a claim lease expires, the condor_startd will drop the claim. The length of the claim lease is the job’s ClassAd
attribute JobLeaseDuration. JobLeaseDuration defaults to 40 minutes time, except when explicitly set within the
job’s submit description file. If JobLeaseDuration is explicitly set to 0, or it is not set as may be the case for a Web
Services job that does not define the attribute, then JobLeaseDuration is given the Undefined value. Further, when
undefined, the claim lease duration is calculated with MAX_CLAIM_ALIVES_MISSED * alive interval. The alive
interval is the current value, as sent by the condor_schedd. If the condor_schedd reduces the current alive interval, it
does not update the condor_startd.

Machine Activities

Within some machine states, activities of the machine are defined. The state has meaning regardless of activity. Dif-
ferences between activities are significant. Therefore, a “state/activity” pair describes a machine. The following list
describes all the possible state/activity pairs.

• Owner

Idle This is the only activity for Owner state. As far as HTCondor is concerned the machine is Idle,
since it is not doing anything for HTCondor.

• Unclaimed

Idle This is the normal activity of Unclaimed machines. The machine is still Idle in that the machine
owner is willing to let HTCondor jobs run, but HTCondor is not using the machine for anything.

Benchmarking The machine is running benchmarks to determine the speed on this machine. This
activity only occurs in the Unclaimed state. How often the activity occurs is determined by the
RUNBENCHMARKS expression.

• Matched

Idle When Matched, the machine is still Idle to HTCondor.

• Claimed

Idle In this activity, the machine has been claimed, but the schedd that claimed it has yet to activate
the claim by requesting a condor_starter to be spawned to service a job. The machine returns to
this state (usually briefly) when jobs (and therefore condor_starter) finish.

344 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Busy Once a condor_starter has been started and the claim is active, the machine moves to the Busy
activity to signify that it is doing something as far as HTCondor is concerned.

Suspended If the job is suspended by HTCondor, the machine goes into the Suspended activity. The
match between the schedd and machine has not been broken (the claim is still valid), but the job
is not making any progress and HTCondor is no longer generating a load on the machine.

Retiring When an active claim is about to be preempted for any reason, it enters retirement, while
it waits for the current job to finish. The MaxJobRetirementTime expression determines how
long to wait (counting since the time the job started). Once the job finishes or the retirement time
expires, the Preempting state is entered.

• Preempting The Preempting state is used for evicting an HTCondor job from a given machine. When the machine
enters the Preempting state, it checks the WANT_VACATE expression to determine its activity.

Vacating In the Vacating activity, the job that was running is in the process of checkpointing. As
soon as the checkpoint process completes, the machine moves into either the Owner state or the
Claimed state, depending on the reason for its preemption.

Killing Killing means that the machine has requested the running job to exit the machine immediately,
without checkpointing.

• Backfill

Idle The machine is configured to run backfill jobs and is ready to do so, but it has not yet had a
chance to spawn a backfill manager (for example, the BOINC client).

Busy The machine is performing a backfill computation.

Killing The machine was running a backfill computation, but it is now killing the job to either return
resources to the machine owner, or to make room for a regular HTCondor job.

• Drained

Idle All slots have been drained.

Retiring This slot has been drained. It is waiting for other slots to finish draining.

The following diagram gives the overall view of all machine states and activities and shows the possible transitions from
one to another within the HTCondor system. Each transition is labeled with a number on the diagram, and transition
numbers referred to in this manual will be bold.

Various expressions are used to determine when and if many of these state and activity transitions occur. Other transi-
tions are initiated by parts of the HTCondor protocol (such as when the condor_negotiator matches a machine with a
schedd). The following section describes the conditions that lead to the various state and activity transitions.

State and Activity Transitions

This section traces through all possible state and activity transitions within a machine and describes the conditions
under which each one occurs. Whenever a transition occurs, HTCondor records when the machine entered its new
activity and/or new state. These times are often used to write expressions that determine when further transitions
occurred. For example, enter the Killing activity if a machine has been in the Vacating activity longer than a specified
amount of time.

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 345

HTCondor Manual, Release 10.0.9

Fig. 2: Machine States and Activities

346 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Owner State

When the startd is first spawned, the machine it represents enters the Owner state. The machine remains in the Owner
state while the expression IS_OWNER evaluates to TRUE. If the IS_OWNER expression evaluates to FALSE, then the
machine transitions to the Unclaimed state. The default value of IS_OWNER is FALSE, which is intended for dedicated
resources. But when the POLICY : Desktop configuration template is used, the IS_OWNER expression is optimized
for a shared resource

START =?= FALSE

So, the machine will remain in the Owner state as long as the START expression locally evaluates to FALSE. The con-
dor_startd Policy Configuration section provides more detail on the START expression. If the START locally evaluates
to TRUE or cannot be locally evaluated (it evaluates to UNDEFINED), transition 1 occurs and the machine enters the
Unclaimed state. The IS_OWNER expression is locally evaluated by the machine, and should not reference job ClassAd
attributes, which would be UNDEFINED.

The Owner state represents a resource that is in use by its interactive owner (for example, if the keyboard is being used).
The Unclaimed state represents a resource that is neither in use by its interactive user, nor the HTCondor system. From
HTCondor’s point of view, there is little difference between the Owner and Unclaimed states. In both cases, the resource
is not currently in use by the HTCondor system. However, if a job matches the resource’s START expression, the resource
is available to run a job, regardless of if it is in the Owner or Unclaimed state. The only differences between the two
states are how the resource shows up in condor_status and other reporting tools, and the fact that HTCondor will not
run benchmarking on a resource in the Owner state. As long as the IS_OWNER expression is TRUE, the machine is in
the Owner State. When the IS_OWNER expression is FALSE, the machine goes into the Unclaimed State.

Here is an example that assumes that the POLICY : Desktop configuration template is in use. If the START expression
is

START = KeyboardIdle > 15 * $(MINUTE) && Owner == "coltrane"

and if KeyboardIdle is 34 seconds, then the machine would remain in the Owner state. Owner is undefined, and
anything && FALSE is FALSE.

If, however, the START expression is

START = KeyboardIdle > 15 * $(MINUTE) || Owner == "coltrane"

and KeyboardIdle is 34 seconds, then the machine leaves the Owner state and becomes Unclaimed. This is because
FALSE || UNDEFINED is UNDEFINED. So, while this machine is not available to just anybody, if user coltrane has
jobs submitted, the machine is willing to run them. Any other user’s jobs have to wait until KeyboardIdle exceeds 15
minutes. However, since coltrane might claim this resource, but has not yet, the machine goes to the Unclaimed state.

While in the Owner state, the startd polls the status of the machine every UPDATE_INTERVAL to see if anything has
changed that would lead it to a different state. This minimizes the impact on the Owner while the Owner is using the
machine. Frequently waking up, computing load averages, checking the access times on files, computing free swap
space take time, and there is nothing time critical that the startd needs to be sure to notice as soon as it happens. If
the START expression evaluates to TRUE and five minutes pass before the startd notices, that’s a drop in the bucket of
high-throughput computing.

The machine can only transition to the Unclaimed state from the Owner state. It does so when the IS_OWNER expression
no longer evaluates to TRUE. With the POLICY : Desktop configuration template, that happens when START no
longer locally evaluates to FALSE.

Whenever the machine is not actively running a job, it will transition back to the Owner state if IS_OWNER evaluates to
TRUE. Once a job is started, the value of IS_OWNER does not matter; the job either runs to completion or is preempted.

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 347

HTCondor Manual, Release 10.0.9

Therefore, you must configure the preemption policy if you want to transition back to the Owner state from Claimed
Busy.

If draining of the machine is initiated while in the Owner state, the slot transitions to Drained/Retiring (transition 36).

Unclaimed State

If the IS_OWNER expression becomes TRUE, then the machine returns to the Owner state. If the IS_OWNER expression
becomes FALSE, then the machine remains in the Unclaimed state. The default value of IS_OWNER is FALSE (never
enter Owner state). If the POLICY : Desktop configuration template is used, then the IS_OWNER expression is changed
to

START =?= FALSE

so that while in the Unclaimed state, if the START expression locally evaluates to FALSE, the machine returns to the
Owner state by transition 2.

When in the Unclaimed state, the RUNBENCHMARKS expression is relevant. If RUNBENCHMARKS evaluates to TRUE while
the machine is in the Unclaimed state, then the machine will transition from the Idle activity to the Benchmarking
activity (transition 3) and perform benchmarks to determine MIPS and KFLOPS. When the benchmarks complete, the
machine returns to the Idle activity (transition 4).

The startd automatically inserts an attribute, LastBenchmark, whenever it runs benchmarks, so commonly
RunBenchmarks is defined in terms of this attribute, for example:

RunBenchmarks = (time() - LastBenchmark) >= (4 * $(HOUR))

This macro calculates the time since the last benchmark, so when this time exceeds 4 hours, we run the benchmarks
again. The startd keeps a weighted average of these benchmarking results to try to get the most accurate numbers
possible. This is why it is desirable for the startd to run them more than once in its lifetime.

Note: LastBenchmark is initialized to 0 before benchmarks have ever been run. To have the condor_startd run
benchmarks as soon as the machine is Unclaimed (if it has not done so already), include a term using LastBenchmark
as in the example above.

Note: If RUNBENCHMARKS is defined and set to something other than FALSE, the startd will automatically run one
set of benchmarks when it first starts up. To disable benchmarks, both at startup and at any time thereafter, set
RUNBENCHMARKS to FALSE or comment it out of the configuration file.

From the Unclaimed state, the machine can go to four other possible states: Owner (transition 2), Backfill/Idle, Matched,
or Claimed/Idle.

Once the condor_negotiator matches an Unclaimed machine with a requester at a given schedd, the negotiator sends a
command to both parties, notifying them of the match. If the schedd receives that notification and initiates the claiming
procedure with the machine before the negotiator’s message gets to the machine, the Match state is skipped, and the
machine goes directly to the Claimed/Idle state (transition 5). However, normally the machine will enter the Matched
state (transition 6), even if it is only for a brief period of time.

If the machine has been configured to perform backfill jobs (see the Setting Up for Special Environments section), while
it is in Unclaimed/Idle it will evaluate the START_BACKFILL expression. Once START_BACKFILL evaluates to TRUE,
the machine will enter the Backfill/Idle state (transition 7) to begin the process of running backfill jobs.

348 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

If draining of the machine is initiated while in the Unclaimed state, the slot transitions to Drained/Retiring (transition
37).

Matched State

The Matched state is not very interesting to HTCondor. Noteworthy in this state is that the machine lies about its START
expression while in this state and says that Requirements are False to prevent being matched again before it has been
claimed. Also interesting is that the startd starts a timer to make sure it does not stay in the Matched state too long.
The timer is set with the MATCH_TIMEOUT configuration file macro. It is specified in seconds and defaults to 120 (2
minutes). If the schedd that was matched with this machine does not claim it within this period of time, the machine
gives up, and goes back into the Owner state via transition 8. It will probably leave the Owner state right away for the
Unclaimed state again and wait for another match.

At any time while the machine is in the Matched state, if the START expression locally evaluates to FALSE, the machine
enters the Owner state directly (transition 8).

If the schedd that was matched with the machine claims it before the MATCH_TIMEOUT expires, the machine goes into
the Claimed/Idle state (transition 9).

Claimed State

The Claimed state is certainly the most complex state. It has the most possible activities and the most expressions
that determine its next activities. In addition, the condor_checkpoint and condor_vacate commands affect the machine
when it is in the Claimed state.

In general, there are two sets of expressions that might take effect, depending on the universe of the job running on the
claim: vanilla, and all others. The normal expressions look like the following:

WANT_SUSPEND = True
WANT_VACATE = $(ActivationTimer) > 10 * $(MINUTE)
SUSPEND = $(KeyboardBusy) || $(CPUBusy)
...

The vanilla expressions have the string”_VANILLA” appended to their names. For example:

WANT_SUSPEND_VANILLA = True
WANT_VACATE_VANILLA = True
SUSPEND_VANILLA = $(KeyboardBusy) || $(CPUBusy)
...

Without specific vanilla versions, the normal versions will be used for all jobs, including vanilla jobs. In this manual,
the normal expressions are referenced.

While Claimed, the POLLING_INTERVAL takes effect, and the startd polls the machine much more frequently to evaluate
its state.

If the machine owner starts typing on the console again, it is best to notice this as soon as possible to be able to start
doing whatever the machine owner wants at that point. For multi-core machines, if any slot is in the Claimed state, the
startd polls the machine frequently. If already polling one slot, it does not cost much to evaluate the state of all the slots
at the same time.

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 349

HTCondor Manual, Release 10.0.9

There are a variety of events that may cause the startd to try to get rid of or temporarily suspend a running job. Activity
on the machine’s console, load from other jobs, or shutdown of the startd via an administrative command are all possible
sources of interference. Another one is the appearance of a higher priority claim to the machine by a different HTCondor
user.

Depending on the configuration, the startd may respond quite differently to activity on the machine, such as keyboard
activity or demand for the cpu from processes that are not managed by HTCondor. The startd can be configured to
completely ignore such activity or to suspend the job or even to kill it. A standard configuration for a desktop machine
might be to go through successive levels of getting the job out of the way. The first and least costly to the job is
suspending it. If suspending the job for a short while does not satisfy the machine owner (the owner is still using
the machine after a specific period of time), the startd moves on to vacating the job. Vanilla jobs are sent a soft kill
signal so that they can gracefully shut down if necessary; the default is SIGTERM. If vacating does not satisfy the
machine owner (usually because it is taking too long and the owner wants their machine back now), the final, most
drastic stage is reached: killing. Killing is a quick death to the job, using a hard-kill signal that cannot be intercepted
by the application. For vanilla jobs that do no special signal handling, vacating and killing are equivalent.

The WANT_SUSPEND expression determines if the machine will evaluate the SUSPEND expression to consider entering the
Suspended activity. The WANT_VACATE expression determines what happens when the machine enters the Preempting
state. It will go to the Vacating activity or directly to Killing. If one or both of these expressions evaluates to FALSE,
the machine will skip that stage of getting rid of the job and proceed directly to the more drastic stages.

When the machine first enters the Claimed state, it goes to the Idle activity. From there, it has two options. It can
enter the Preempting state via transition 10 (if a condor_vacate arrives, or if the START expression locally evaluates to
FALSE), or it can enter the Busy activity (transition 11) if the schedd that has claimed the machine decides to activate
the claim and start a job.

From Claimed/Busy, the machine can transition to three other state/activity pairs. The startd evaluates the
WANT_SUSPEND expression to decide which other expressions to evaluate. If WANT_SUSPEND is TRUE, then the startd
evaluates the SUSPEND expression. If WANT_SUSPEND is any value other than TRUE, then the startd will evaluate the
PREEMPT expression and skip the Suspended activity entirely. By transition, the possible state/activity destinations
from Claimed/Busy:

Claimed/Idle If the starter that is serving a given job exits (for example because the jobs completes), the machine will
go to Claimed/Idle (transition 12). Claimed/Retiring If WANT_SUSPEND is FALSE and the PREEMPT expression
is True, the machine enters the Retiring activity (transition 13). From there, it waits for a configurable amount
of time for the job to finish before moving on to preemption.

Another reason the machine would go from Claimed/Busy to Claimed/Retiring is if the condor_negotiator
matched the machine with a “better” match. This better match could either be from the machine’s perspec-
tive using the startd RANK expression, or it could be from the negotiator’s perspective due to a job with a higher
user priority.

Another case resulting in a transition to Claimed/Retiring is when the startd is being shut down. The only
exception is a “fast” shutdown, which bypasses retirement completely.

Claimed/Suspended If both the WANT_SUSPEND and SUSPEND expressions evaluate to TRUE, the machine suspends
the job (transition 14).

If a condor_checkpoint command arrives, or the PERIODIC_CHECKPOINT expression evaluates to TRUE, there is no
state change. The startd has no way of knowing when this process completes, so periodic checkpointing can not be
another state. Periodic checkpointing remains in the Claimed/Busy state and appears as a running job.

From the Claimed/Suspended state, the following transitions may occur:

Claimed/Busy If the CONTINUE expression evaluates to TRUE, the machine resumes the job and enters the
Claimed/Busy state (transition 15) or the Claimed/Retiring state (transition 16), depending on whether the claim
has been preempted.

Claimed/Retiring If the PREEMPT expression is TRUE, the machine will enter the Claimed/Retiring activity (transition
16).

350 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Preempting If the claim is in suspended retirement and the retirement time expires, the job enters the Preempting state
(transition 17). This is only possible if MaxJobRetirementTime decreases during the suspension.

For the Claimed/Retiring state, the following transitions may occur:

Preempting If the job finishes or the job’s run time exceeds the value defined for the job ClassAd attribute
MaxJobRetirementTime, the Preempting state is entered (transition 18). The run time is computed from the
time when the job was started by the startd minus any suspension time. When retiring due to condor_startd
daemon shutdown or restart, it is possible for the administrator to issue a peaceful shutdown command, which
causes MaxJobRetirementTime to effectively be infinite, avoiding any killing of jobs. It is also possible for the
administrator to issue a fast shutdown command, which causes MaxJobRetirementTime to be effectively 0.

Claimed/Busy If the startd was retiring because of a preempting claim only and the preempting claim goes away,
the normal Claimed/Busy state is resumed (transition 19). If instead the retirement is due to owner activity
(PREEMPT) or the startd is being shut down, no unretirement is possible.

Claimed/Suspended In exactly the same way that suspension may happen from the Claimed/Busy state, it may also
happen during the Claimed/Retiring state (transition 20). In this case, when the job continues from suspension,
it moves back into Claimed/Retiring (transition 16) instead of Claimed/Busy (transition 15).

Preempting State

The Preempting state is less complex than the Claimed state. There are two activities. Depending on the value of
WANT_VACATE, a machine will be in the Vacating activity (if True) or the Killing activity (if False).

While in the Preempting state (regardless of activity) the machine advertises its Requirements expression as False to
signify that it is not available for further matches, either because it is about to transition to the Owner state, or because it
has already been matched with one preempting match, and further preempting matches are disallowed until the machine
has been claimed by the new match.

The main function of the Preempting state is to get rid of the condor_starter associated with the resource. If the
condor_starter associated with a given claim exits while the machine is still in the Vacating activity, then the job
successfully completed a graceful shutdown. For other jobs, this means the application was given an opportunity to do
a graceful shutdown, by intercepting the soft kill signal.

If the machine is in the Vacating activity, it keeps evaluating the KILL expression. As soon as this expression evaluates to
TRUE, the machine enters the Killing activity (transition 21). If the Vacating activity lasts for as long as the maximum
vacating time, then the machine also enters the Killing activity. The maximum vacating time is determined by the
configuration variable MachineMaxVacateTime . This may be adjusted by the setting of the job ClassAd attribute
JobMaxVacateTime.

When the starter exits, or if there was no starter running when the machine enters the Preempting state (transition 10),
the other purpose of the Preempting state is completed: notifying the schedd that had claimed this machine that the
claim is broken.

At this point, the machine enters either the Owner state by transition 22 (if the job was preempted because the machine
owner came back) or the Claimed/Idle state by transition 23 (if the job was preempted because a better match was
found).

If the machine enters the Killing activity, (because either WANT_VACATE was False or the KILL expression evaluated
to True), it attempts to force the condor_starter to immediately kill the underlying HTCondor job. Once the ma-
chine has begun to hard kill the HTCondor job, the condor_startd starts a timer, the length of which is defined by the
KILLING_TIMEOUT macro (condor_startd Configuration File Macros). This macro is defined in seconds and defaults
to 30. If this timer expires and the machine is still in the Killing activity, something has gone seriously wrong with the
condor_starter and the startd tries to vacate the job immediately by sending SIGKILL to all of the condor_starter ‘s
children, and then to the condor_starter itself.

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 351

HTCondor Manual, Release 10.0.9

Once the condor_starter has killed off all the processes associated with the job and exited, and once the schedd that
had claimed the machine is notified that the claim is broken, the machine will leave the Preempting/Killing state. If
the job was preempted because a better match was found, the machine will enter Claimed/Idle (transition 24). If the
preemption was caused by the machine owner (the PREEMPT expression evaluated to TRUE, condor_vacate was used,
etc), the machine will enter the Owner state (transition 25).

Backfill State

The Backfill state is used whenever the machine is performing low priority background tasks to keep itself busy. For
more information about backfill support in HTCondor, see the Configuring HTCondor for Running Backfill Jobs section.
This state is only used if the machine has been configured to enable backfill computation, if a specific backfill manager
has been installed and configured, and if the machine is otherwise idle (not being used interactively or for regular
HTCondor computations). If the machine meets all these requirements, and the START_BACKFILL expression evaluates
to TRUE, the machine will move from the Unclaimed/Idle state to Backfill/Idle (transition 7).

Once a machine is in Backfill/Idle, it will immediately attempt to spawn whatever backfill manager it has been con-
figured to use (currently, only the BOINC client is supported as a backfill manager in HTCondor). Once the BOINC
client is running, the machine will enter Backfill/Busy (transition 26) to indicate that it is now performing a backfill
computation.

Note: On multi-core machines, the condor_startd will only spawn a single instance of the BOINC client, even if
multiple slots are available to run backfill jobs. Therefore, only the first machine to enter Backfill/Idle will cause a
copy of the BOINC client to start running. If a given slot on a multi-core enters the Backfill state and a BOINC client
is already running under this condor_startd, the slot will immediately enter Backfill/Busy without waiting to spawn
another copy of the BOINC client.

If the BOINC client ever exits on its own (which normally wouldn’t happen), the machine will go back to Backfill/Idle
(transition 27) where it will immediately attempt to respawn the BOINC client (and return to Backfill/Busy via transition
26).

As the BOINC client is running a backfill computation, a number of events can occur that will drive the machine out
of the Backfill state. The machine can get matched or claimed for an HTCondor job, interactive users can start using
the machine again, the machine might be evicted with condor_vacate, or the condor_startd might be shutdown. All
of these events cause the condor_startd to kill the BOINC client and all its descendants, and enter the Backfill/Killing
state (transition 28).

Once the BOINC client and all its children have exited the system, the machine will enter the Backfill/Idle state to
indicate that the BOINC client is now gone (transition 29). As soon as it enters Backfill/Idle after the BOINC client
exits, the machine will go into another state, depending on what caused the BOINC client to be killed in the first place.

If the EVICT_BACKFILL expression evaluates to TRUE while a machine is in Backfill/Busy, after the BOINC client is
gone, the machine will go back into the Owner/Idle state (transition 30). The machine will also return to the Owner/Idle
state after the BOINC client exits if condor_vacate was used, or if the condor_startd is being shutdown.

When a machine running backfill jobs is matched with a requester that wants to run an HTCondor job, the machine
will either enter the Matched state, or go directly into Claimed/Idle. As with the case of a machine in Unclaimed/Idle
(described above), the condor_negotiator informs both the condor_startd and the condor_schedd of the match, and
the exact state transitions at the machine depend on what order the various entities initiate communication with each
other. If the condor_schedd is notified of the match and sends a request to claim the condor_startd before the con-
dor_negotiator has a chance to notify the condor_startd, once the BOINC client exits, the machine will immediately
enter Claimed/Idle (transition 31). Normally, the notification from the condor_negotiator will reach the condor_startd
before the condor_schedd attempts to claim it. In this case, once the BOINC client exits, the machine will enter
Matched/Idle (transition 32).

352 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Drained State

The Drained state is used when the machine is being drained, for example by condor_drain or by the condor_defrag
daemon, and the slot has finished running jobs and is no longer willing to run new jobs.

Slots initially enter the Drained/Retiring state. Once all slots have been drained, the slots transition to the Idle activity
(transition 33).

If draining is finalized or canceled, the slot transitions to Owner/Idle (transitions 34 and 35).

State/Activity Transition Expression Summary

This section is a summary of the information from the previous sections. It serves as a quick reference.

START When TRUE, the machine is willing to spawn a remote HTCondor job.

RUNBENCHMARKS While in the Unclaimed state, the machine will run benchmarks whenever TRUE.

MATCH_TIMEOUT If the machine has been in the Matched state longer than this value, it will transition to the Owner
state.

WANT_SUSPEND If True, the machine evaluates the SUSPEND expression to see if it should transition to the Suspended
activity. If any value other than True, the machine will look at the PREEMPT expression.

SUSPEND If WANT_SUSPEND is True, and the machine is in the Claimed/Busy state, it enters the Suspended activity
if SUSPEND is True.

CONTINUE If the machine is in the Claimed/Suspended state, it enter the Busy activity if CONTINUE is True.

PREEMPT If the machine is either in the Claimed/Suspended activity, or is in the Claimed/Busy activity and
WANT_SUSPEND is FALSE, the machine enters the Claimed/Retiring state whenever PREEMPT is TRUE.

CLAIM_WORKLIFE This expression specifies the number of seconds after which a claim will stop accepting additional
jobs. This configuration macro is fully documented here: condor_startd Configuration File Macros.

MachineMaxVacateTime When the machine enters the Preempting/Vacating state, this expression specifies the max-
imum time in seconds that the condor_startd will wait for the job to finish. The job may adjust the wait time
by setting JobMaxVacateTime. If the job’s setting is less than the machine’s, the job’s is used. If the job’s
setting is larger than the machine’s, the result depends on whether the job has any excess retirement time. If the
job has more retirement time left than the machine’s maximum vacate time setting, then retirement time will be
converted into vacating time, up to the amount of JobMaxVacateTime. Once the vacating time expires, the job
is hard-killed. The KILL expression may be used to abort the graceful shutdown of the job at any time.

MAXJOBRETIREMENTTIME If the machine is in the Claimed/Retiring state, jobs which have run for less than the number
of seconds specified by this expression will not be hard-killed. The condor_startd will wait for the job to finish
or to exceed this amount of time, whichever comes sooner. Time spent in suspension does not count against the
job. If the job vacating policy grants the job X seconds of vacating time, a preempted job will be soft-killed X
seconds before the end of its retirement time, so that hard-killing of the job will not happen until the end of the
retirement time if the job does not finish shutting down before then. The job may provide its own expression
for MaxJobRetirementTime, but this can only be used to take less than the time granted by the condor_startd,
never more. For convenience, nice_user jobs are submitted with a default retirement time of 0, so they will never
wait in retirement unless the user overrides the default.

The machine enters the Preempting state with the goal of finishing shutting down the job by the end of the retire-
ment time. If the job vacating policy grants the job X seconds of vacating time, the transition to the Preempting

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 353

HTCondor Manual, Release 10.0.9

state will happen X seconds before the end of the retirement time, so that the hard-killing of the job will not
happen until the end of the retirement time, if the job does not finish shutting down before then.

This expression is evaluated in the context of the job ClassAd, so it may refer to attributes of the current job as
well as machine attributes.

By default the condor_negotiator will not match jobs to a slot with retirement time remaining. This behavior is
controlled by NEGOTIATOR_CONSIDER_EARLY_PREEMPTION .

WANT_VACATE This is checked only when the PREEMPT expression is True and the machine enters the Preempting
state. If WANT_VACATE is True, the machine enters the Vacating activity. If it is False, the machine will
proceed directly to the Killing activity.

KILL If the machine is in the Preempting/Vacating state, it enters Preempting/Killing whenever KILL is True.

KILLING_TIMEOUT If the machine is in the Preempting/Killing state for longer than KILLING_TIMEOUT seconds, the
condor_startd sends a SIGKILL to the condor_starter and all its children to try to kill the job as quickly as
possible.

PERIODIC_CHECKPOINT If the machine is in the Claimed/Busy state and PERIODIC_CHECKPOINT is TRUE, the user’s
job begins a periodic checkpoint.

RANK If this expression evaluates to a higher number for a pending resource request than it does for the current request,
the machine may preempt the current request (enters the Preempting/Vacating state). When the preemption is
complete, the machine enters the Claimed/Idle state with the new resource request claiming it.

START_BACKFILL When TRUE, if the machine is otherwise idle, it will enter the Backfill state and spawn a backfill
computation (using BOINC).

EVICT_BACKFILL When TRUE, if the machine is currently running a backfill computation, it will kill the BOINC
client and return to the Owner/Idle state.

Examples of Policy Configuration

This section describes various policy configurations, including the default policy.

Default Policy

These settings are the default as shipped with HTCondor. They have been used for many years with no problems. The
vanilla expressions are identical to the regular ones. (They are not listed here. If not defined, the standard expressions
are used for vanilla jobs as well).

The following are macros to help write the expressions clearly.

StateTimer Amount of time in seconds in the current state.

ActivityTimer Amount of time in seconds in the current activity.

ActivationTimer Amount of time in seconds that the job has been running on this machine.

LastCkpt Amount of time since the last periodic checkpoint.

NonCondorLoadAvg The difference between the system load and the HTCondor load (the load generated by everything
but HTCondor).

BackgroundLoad Amount of background load permitted on the machine and still start an HTCondor job.

HighLoad If the $(NonCondorLoadAvg) goes over this, the CPU is considered too busy, and eviction of the HTCon-
dor job should start.

StartIdleTime Amount of time the keyboard must to be idle before HTCondor will start a job.

354 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

ContinueIdleTime Amount of time the keyboard must to be idle before resumption of a suspended job.

MaxSuspendTime Amount of time a job may be suspended before more drastic measures are taken.

KeyboardBusy A boolean expression that evaluates to TRUE when the keyboard is being used.

CPUIdle A boolean expression that evaluates to TRUE when the CPU is idle.

CPUBusy A boolean expression that evaluates to TRUE when the CPU is busy.

MachineBusy The CPU or the Keyboard is busy.

CPUIsBusy A boolean value set to the same value as CPUBusy.

CPUBusyTime The value 0 if CPUBusy is False; the time in seconds since CPUBusy became True.

These variable definitions exist in the example configuration file in order to help write legible expressions. They are
not required, and perhaps will go unused by many configurations.

These macros are here to help write legible expressions:
MINUTE = 60
HOUR = (60 * $(MINUTE))
StateTimer = (time() - EnteredCurrentState)
ActivityTimer = (time() - EnteredCurrentActivity)
ActivationTimer = (time() - JobStart)
LastCkpt = (time() - LastPeriodicCheckpoint)

NonCondorLoadAvg = (LoadAvg - CondorLoadAvg)
BackgroundLoad = 0.3
HighLoad = 0.5
StartIdleTime = 15 * $(MINUTE)
ContinueIdleTime = 5 * $(MINUTE)
MaxSuspendTime = 10 * $(MINUTE)

KeyboardBusy = KeyboardIdle < $(MINUTE)
ConsoleBusy = (ConsoleIdle < $(MINUTE))
CPUIdle = $(NonCondorLoadAvg) <= $(BackgroundLoad)
CPUBusy = $(NonCondorLoadAvg) >= $(HighLoad)
KeyboardNotBusy = ($(KeyboardBusy) == False)
MachineBusy = ($(CPUBusy) || $(KeyboardBusy)

Preemption is disabled as a default. Always desire to start jobs.

WANT_SUSPEND = False
WANT_VACATE = False
START = True
SUSPEND = False
CONTINUE = True
PREEMPT = False
Kill jobs that take too long leaving gracefully.
MachineMaxVacateTime = 10 * $(MINUTE)
KILL = False

Periodic checkpointing specifies that for jobs smaller than 60 Mbytes, take a periodic checkpoint every 6 hours. For
larger jobs, only take a checkpoint every 12 hours.

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 355

HTCondor Manual, Release 10.0.9

PERIODIC_CHECKPOINT = ((ImageSize < 60000) && \
($(LastCkpt) > (6 * $(HOUR)))) || \

($(LastCkpt) > (12 * $(HOUR)))

At UW-Madison, we have a fast network. We simplify our expression considerably to

PERIODIC_CHECKPOINT = $(LastCkpt) > (3 * $(HOUR))

Test-job Policy Example

This example shows how the default macros can be used to set up a machine for running test jobs from a specific user.
Suppose we want the machine to behave normally, except if user coltrane submits a job. In that case, we want that job
to start regardless of what is happening on the machine. We do not want the job suspended, vacated or killed. This
is reasonable if we know coltrane is submitting very short running programs for testing purposes. The jobs should
be executed right away. This works with any machine (or the whole pool, for that matter) by adding the following 5
expressions to the existing configuration:

START = ($(START)) || Owner == "coltrane"
SUSPEND = ($(SUSPEND)) && Owner != "coltrane"
CONTINUE = $(CONTINUE)
PREEMPT = ($(PREEMPT)) && Owner != "coltrane"
KILL = $(KILL)

Notice that there is nothing special in either the CONTINUE or KILL expressions. If Coltrane’s jobs never suspend, they
never look at CONTINUE. Similarly, if they never preempt, they never look at KILL.

Time of Day Policy

HTCondor can be configured to only run jobs at certain times of the day. In general, we discourage configuring a system
like this, since there will often be lots of good cycles on machines, even when their owners say “I’m always using my
machine during the day.” However, if you submit mostly vanilla jobs or other jobs that cannot produce checkpoints, it
might be a good idea to only allow the jobs to run when you know the machines will be idle and when they will not be
interrupted.

To configure this kind of policy, use the ClockMin and ClockDay attributes. These are special attributes which are
automatically inserted by the condor_startd into its ClassAd, so you can always reference them in your policy expres-
sions. ClockMin defines the number of minutes that have passed since midnight. For example, 8:00am is 8 hours after
midnight, or 8 * 60 minutes, or 480. 5:00pm is 17 hours after midnight, or 17 * 60, or 1020. ClockDay defines the
day of the week, Sunday = 0, Monday = 1, and so on.

To make the policy expressions easy to read, we recommend using macros to define the time periods when you want
jobs to run or not run. For example, assume regular work hours at your site are from 8:00am until 5:00pm, Monday
through Friday:

WorkHours = ((ClockMin >= 480 && ClockMin < 1020) && \
(ClockDay > 0 && ClockDay < 6))

AfterHours = ((ClockMin < 480 || ClockMin >= 1020) || \
(ClockDay == 0 || ClockDay == 6))

Of course, you can fine-tune these settings by changing the definition of AfterHours and WorkHours for your site.

To force HTCondor jobs to stay off of your machines during work hours:

356 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Only start jobs after hours.
START = $(AfterHours)

Consider the machine busy during work hours, or if the keyboard or
CPU are busy.
MachineBusy = ($(WorkHours) || $(CPUBusy) || $(KeyboardBusy))

This MachineBusy macro is convenient if other than the default SUSPEND and PREEMPT expressions are used.

Desktop/Non-Desktop Policy

Suppose you have two classes of machines in your pool: desktop machines and dedicated cluster machines. In this
case, you might not want keyboard activity to have any effect on the dedicated machines. For example, when you log
into these machines to debug some problem, you probably do not want a running job to suddenly be killed. Desktop
machines, on the other hand, should do whatever is necessary to remain responsive to the user.

There are many ways to achieve the desired behavior. One way is to make a standard desktop policy and a standard
non-desktop policy and to copy the desired one into the local configuration file for each machine. Another way is to
define one standard policy (in the global configuration file) with a simple toggle that can be set in the local configuration
file. The following example illustrates the latter approach.

For ease of use, an entire policy is included in this example. Some of the expressions are just the usual default settings.

If "IsDesktop" is configured, make it an attribute of the machine ClassAd.
STARTD_ATTRS = IsDesktop

Only consider starting jobs if:
1) the load average is low enough OR the machine is currently
running an HTCondor job
2) AND the user is not active (if a desktop)
START = (($(CPUIdle) || (State != "Unclaimed" && State != "Owner")) \

&& (IsDesktop =!= True || (KeyboardIdle > $(StartIdleTime))))

Suspend (instead of vacating/killing) for the following cases:
WANT_SUSPEND = ($(SmallJob) || $(JustCpu) \

|| $(IsVanilla))

When preempting, vacate (instead of killing) in the following cases:
WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) \

|| $(IsVanilla))

Suspend jobs if:
1) The CPU has been busy for more than 2 minutes, AND
2) the job has been running for more than 90 seconds
3) OR suspend if this is a desktop and the user is active
SUSPEND = (((CpuBusyTime > 2 * $(MINUTE)) && ($(ActivationTimer) > 90)) \

|| (IsDesktop =?= True && $(KeyboardBusy)))

Continue jobs if:
1) the CPU is idle, AND
2) we've been suspended more than 5 minutes AND
3) the keyboard has been idle for long enough (if this is a desktop)
CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 300) \

&& (IsDesktop =!= True || (KeyboardIdle > $(ContinueIdleTime))))

(continues on next page)

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 357

HTCondor Manual, Release 10.0.9

(continued from previous page)

Preempt jobs if:
1) The job is suspended and has been suspended longer than we want
2) OR, we don't want to suspend this job, but the conditions to
suspend jobs have been met (someone is using the machine)
PREEMPT = (((Activity == "Suspended") && \

($(ActivityTimer) > $(MaxSuspendTime))) \
|| (SUSPEND && (WANT_SUSPEND == False)))

Replace 0 in the following expression with whatever amount of
retirement time you want dedicated machines to provide. The other part
of the expression forces the whole expression to 0 on desktop
machines.
MAXJOBRETIREMENTTIME = (IsDesktop =!= True) * 0

Kill jobs if they have taken too long to vacate gracefully
MachineMaxVacateTime = 10 * $(MINUTE)
KILL = False

With this policy in the global configuration, the local configuration files for desktops can be easily configured with the
following line:

IsDesktop = True

In all other cases, the default policy described above will ignore keyboard activity.

Disabling and Enabling Preemption

Preemption causes a running job to be suspended or killed, such that another job can run. As of HTCondor version
8.1.5, preemption is disabled by the default configuration. Previous versions of HTCondor had configuration that
enabled preemption. Upon upgrade, the previous behavior will continue, if the previous configuration files are used.
New configuration file examples disable preemption, but contain directions for enabling preemption.

Job Suspension

As new jobs are submitted that receive a higher priority than currently executing jobs, the executing jobs may be
preempted. If the preempted jobs are not capable of writing checkpoints, they lose whatever forward progress they
have made, and are sent back to the job queue to await starting over again as another machine becomes available. An
alternative to this is to use suspension to freeze the job while some other task runs, and then unfreeze it so that it can
continue on from where it left off. This does not require any special handling in the job, unlike most strategies that take
checkpoints. However, it does require a special configuration of HTCondor. This example implements a policy that
allows the job to decide whether it should be evicted or suspended. The jobs announce their choice through the use of
the invented job ClassAd attribute IsSuspendableJob, that is also utilized in the configuration.

The implementation of this policy utilizes two categories of slots, identified as suspendable or nonsuspendable. A job
identifies which category of slot it wishes to run on. This affects two aspects of the policy:

• Of two jobs that might run on a slot, which job is chosen. The four cases that may occur depend on whether the
currently running job identifies itself as suspendable or nonsuspendable, and whether the potentially running job
identifies itself as suspendable or nonsuspendable.

1. If the currently running job is one that identifies itself as suspendable, and the potentially running job identi-
fies itself as nonsuspendable, the currently running job is suspended, in favor of running the nonsuspendable
one. This occurs independent of the user priority of the two jobs.

2. If both the currently running job and the potentially running job identify themselves as suspendable, then
the relative priorities of the users and the preemption policy determines whether the new job will replace
the existing job.

358 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

3. If both the currently running job and the potentially running job identify themselves as nonsuspendable,
then the relative priorities of the users and the preemption policy determines whether the new job will
replace the existing job.

4. If the currently running job is one that identifies itself as nonsuspendable, and the potentially running job
identifies itself as suspendable, the currently running job continues running.

• What happens to a currently running job that is preempted. A job that identifies itself as suspendable will be
suspended, which means it is frozen in place, and will later be unfrozen when the preempting job is finished. A
job that identifies itself as nonsuspendable is evicted, which means it writes a checkpoint, when possible, and
then is killed. The job will return to the idle state in the job queue, and it can try to run again in the future.

Lie to HTCondor, to achieve 2 slots for each real slot
NUM_CPUS = $(DETECTED_CORES)*2
There is no good way to tell HTCondor that the two slots should be treated
as though they share the same real memory, so lie about how much
memory we have.
MEMORY = $(DETECTED_MEMORY)*2

Slots 1 through DETECTED_CORES are nonsuspendable and the rest are
suspendable
IsSuspendableSlot = SlotID > $(DETECTED_CORES)

If I am a suspendable slot, my corresponding nonsuspendable slot is
my SlotID plus $(DETECTED_CORES)
NonSuspendableSlotState = eval(strcat("slot",SlotID-$(DETECTED_CORES),"_State")

The above expression looks at slotX_State, so we need to add
State to the list of slot attributes to advertise.
STARTD_SLOT_ATTRS = $(STARTD_SLOT_ATTRS) State

For convenience, advertise these expressions in the machine ad.
STARTD_ATTRS = $(STARTD_ATTRS) IsSuspendableSlot NonSuspendableSlotState

MyNonSuspendableSlotIsIdle = \
(NonSuspendableSlotState =!= "Claimed" && NonSuspendableSlotState =!= "Preempting")

NonSuspendable slots are always willing to start jobs.
Suspendable slots are only willing to start if the NonSuspendable slot is idle.
START = \
IsSuspendableSlot!=True && IsSuspendableJob=!=True || \
IsSuspendableSlot && IsSuspendableJob==True && $(MyNonSuspendableSlotIsIdle)

Suspend the suspendable slot if the other slot is busy.
SUSPEND = \
IsSuspendableSlot && $(MyNonSuspendableSlotIsIdle)!=True

WANT_SUSPEND = $(SUSPEND)

CONTINUE = ($(SUSPEND)) != True

Note that in this example, the job ClassAd attribute IsSuspendableJob has no special meaning to HTCondor. It is an
invented name chosen for this example. To take advantage of the policy, a job that wishes to be suspended must submit
the job so that this attribute is defined. The following line should be placed in the job’s submit description file:

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 359

HTCondor Manual, Release 10.0.9

+IsSuspendableJob = True

Configuration for Interactive Jobs

Policy may be set based on whether a job is an interactive one or not. Each interactive job has the job ClassAd attribute

InteractiveJob = True

and this may be used to identify interactive jobs, distinguishing them from all other jobs.

As an example, presume that slot 1 prefers interactive jobs. Set the machine’s RANK to show the preference:

RANK = ((MY.SlotID == 1) && (TARGET.InteractiveJob =?= True))

Or, if slot 1 should be reserved for interactive jobs:

START = ((MY.SlotID == 1) && (TARGET.InteractiveJob =?= True))

Multi-Core Machine Terminology

Machines with more than one CPU or core may be configured to run more than one job at a time. As always, owners
of the resources have great flexibility in defining the policy under which multiple jobs may run, suspend, vacate, etc.

Multi-core machines are represented to the HTCondor system as shared resources broken up into individual slots. Each
slot can be matched and claimed by users for jobs. Each slot is represented by an individual machine ClassAd. In this
way, each multi-core machine will appear to the HTCondor system as a collection of separate slots. As an example,
a multi-core machine named vulture.cs.wisc.edu would appear to HTCondor as the multiple machines, named
slot1@vulture.cs.wisc.edu, slot2@vulture.cs.wisc.edu, slot3@vulture.cs.wisc.edu, and so on.

The way that the condor_startd breaks up the shared system resources into the different slots is configurable. All shared
system resources, such as RAM, disk space, and swap space, can be divided evenly among all the slots, with each slot
assigned one core. Alternatively, slot types are defined by configuration, so that resources can be unevenly divided.
Regardless of the scheme used, it is important to remember that the goal is to create a representative slot ClassAd, to
be used for matchmaking with jobs.

HTCondor does not directly enforce slot shared resource allocations, and jobs are free to oversubscribe to shared
resources. Consider an example where two slots are each defined with 50% of available RAM. The resultant ClassAd
for each slot will advertise one half the available RAM. Users may submit jobs with RAM requirements that match
these slots. However, jobs run on either slot are free to consume more than 50% of available RAM. HTCondor will
not directly enforce a RAM utilization limit on either slot. If a shared resource enforcement capability is needed, it is
possible to write a policy that will evict a job that oversubscribes to shared resources, as described in condor_startd
Policy Configuration.

360 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Dividing System Resources in Multi-core Machines

Within a machine the shared system resources of cores, RAM, swap space and disk space will be divided for use by
the slots. There are two main ways to go about dividing the resources of a multi-core machine:

Evenly divide all resources. By default, the condor_startd will automatically divide the machine into slots, placing
one core in each slot, and evenly dividing all shared resources among the slots. The only specification may be
how many slots are reported at a time. By default, all slots are reported to HTCondor.

How many slots are reported at a time is accomplished by setting the configuration variable NUM_SLOTS to the
integer number of slots desired. If variable NUM_SLOTS is not defined, it defaults to the number of cores within
the machine. Variable NUM_SLOTS may not be used to make HTCondor advertise more slots than there are cores
on the machine. The number of cores is defined by NUM_CPUS .

Define slot types. Instead of an even division of resources per slot, the machine may have definitions of slot types,
where each type is provided with a fraction of shared system resources. Given the slot type definition, control
how many of each type are reported at any given time with further configuration.

Configuration variables define the slot types, as well as variables that list how much of each system resource goes
to each slot type.

Configuration variable SLOT_TYPE_<N> , where <N> is an integer (for example, SLOT_TYPE_1) defines the slot
type. Note that there may be multiple slots of each type. The number of slots created of a given type is configured
with NUM_SLOTS_TYPE_<N>.

The type can be defined by:

• A simple fraction, such as 1/4

• A simple percentage, such as 25%

• A comma-separated list of attributes, with a percentage, fraction, numerical value, or auto for each one.

• A comma-separated list that includes a blanket value that serves as a default for any resources not explicitly
specified in the list.

A simple fraction or percentage describes the allocation of the total system resources, including the number of
CPUS or cores. A comma separated list allows a fine tuning of the amounts for specific resources.

The number of CPUs and the total amount of RAM in the machine do not change over time. For these attributes,
specify either absolute values or percentages of the total available amount (or auto). For example, in a machine
with 128 Mbytes of RAM, all the following definitions result in the same allocation amount.

SLOT_TYPE_1 = mem=64

SLOT_TYPE_1 = mem=1/2

SLOT_TYPE_1 = mem=50%

SLOT_TYPE_1 = mem=auto

Amounts of disk space and swap space are dynamic, as they change over time. For these, specify a percentage
or fraction of the total value that is allocated to each slot, instead of specifying absolute values. As the total
values of these resources change on the machine, each slot will take its fraction of the total and report that as its
available amount.

The disk space allocated to each slot is taken from the disk partition containing the slot’s EXECUTE or
SLOT<N>_EXECUTE directory. If every slot is in a different partition, then each one may be defined with up
to 100% for its disk share. If some slots are in the same partition, then their total is not allowed to exceed 100%.

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 361

HTCondor Manual, Release 10.0.9

The four predefined attribute names are case insensitive when defining slot types. The first letter of the attribute
name distinguishes between these attributes. The four attributes, with several examples of acceptable names for
each:

• Cpus, C, c, cpu

• ram, RAM, MEMORY, memory, Mem, R, r, M, m

• disk, Disk, D, d

• swap, SWAP, S, s, VirtualMemory, V, v

As an example, consider a machine with 4 cores and 256 Mbytes of RAM. Here are valid example slot type
definitions. Types 1-3 are all equivalent to each other, as are types 4-6. Note that in a real configuration, all
of these slot types would not be used together, because they add up to more than 100% of the various system
resources. This configuration example also omits definitions of NUM_SLOTS_TYPE_<N>, to define the number of
each slot type.

SLOT_TYPE_1 = cpus=2, ram=128, swap=25%, disk=1/2

SLOT_TYPE_2 = cpus=1/2, memory=128, virt=25%, disk=50%

SLOT_TYPE_3 = c=1/2, m=50%, v=1/4, disk=1/2

SLOT_TYPE_4 = c=25%, m=64, v=1/4, d=25%

SLOT_TYPE_5 = 25%

SLOT_TYPE_6 = 1/4

The default value for each resource share is auto. The share may also be explicitly set to auto. All slots with
the value auto for a given type of resource will evenly divide whatever remains, after subtracting out explicitly
allocated resources given in other slot definitions. For example, if one slot is defined to use 10% of the memory
and the rest define it as auto (or leave it undefined), then the rest of the slots will evenly divide 90% of the
memory between themselves.

In both of the following examples, the disk share is set to auto, number of cores is 1, and everything else is 50%:

SLOT_TYPE_1 = cpus=1, ram=1/2, swap=50%

SLOT_TYPE_1 = cpus=1, disk=auto, 50%

Note that it is possible to set the configuration variables such that they specify an impossible configuration. If this
occurs, the condor_startd daemon fails after writing a message to its log attempting to indicate the configuration
requirements that it could not implement.

In addition to the standard resources of CPUs, memory, disk, and swap, the administrator may also define custom
resources on a localized per-machine basis. In addition to GPUs (see Configuring GPUs.) the administrator can
define other types of custom resources.

The resource names and quantities of available resources are defined using configuration variables of the form
MACHINE_RESOURCE_<name> , as shown in this example:

MACHINE_RESOURCE_Cogs = 16
MACHINE_RESOURCE_actuator = 8

If the configuration uses the optional configuration variable MACHINE_RESOURCE_NAMES to enable and disable
local machine resources, also add the resource names to this variable. For example:

362 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

if defined MACHINE_RESOURCE_NAMES
MACHINE_RESOURCE_NAMES = $(MACHINE_RESOURCE_NAMES) Cogs actuator

endif

Local machine resource names defined in this way may now be used in conjunction with SLOT_TYPE_<N> , using
all the same syntax described earlier in this section. The following example demonstrates the definition of static
and partitionable slot types with local machine resources:

declare one partitionable slot with half of the Cogs, 6 actuators, and
50% of all other resources:
SLOT_TYPE_1 = cogs=50%,actuator=6,50%
SLOT_TYPE_1_PARTITIONABLE = TRUE
NUM_SLOTS_TYPE_1 = 1

declare two static slots, each with 25% of the Cogs, 1 actuator, and
25% of all other resources:
SLOT_TYPE_2 = cogs=25%,actuator=1,25%
SLOT_TYPE_2_PARTITIONABLE = FALSE
NUM_SLOTS_TYPE_2 = 2

A job may request these local machine resources using the syntax request_<name> , as described in con-
dor_startd Policy Configuration. This example shows a portion of a submit description file that requests cogs
and an actuator:

universe = vanilla

request two cogs and one actuator:
request_cogs = 2
request_actuator = 1

queue

The slot ClassAd will represent each local machine resource with the following attributes:

Total<name>: the total quantity of the resource identified by <name> Detected<name>: the quantity
detected of the resource identified by <name>; this attribute is currently equivalent to Total<name>
TotalSlot<name>: the quantity of the resource identified by <name> allocated to this slot <name>:
the amount of the resource identified by <name> available to be used on this slot

From the example given, the Cogs resource would be represented by the ClassAd attributes TotalCogs,
DetectedCogs, TotalSlotCogs, and Cogs. In the job ClassAd, the amount of the requested machine re-
source appears in a job ClassAd attribute named Request<name>. For this example, the two attributes will be
RequestCogs and RequestActuator.

The number of each type and the definitions for the types themselves cannot be changed with reconfiguration.
To change any slot type definitions, use condor_restart

$ condor_restart -startd

for that change to take effect.

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 363

HTCondor Manual, Release 10.0.9

Configuration Specific to Multi-core Machines

Each slot within a multi-core machine is treated as an independent machine, each with its own view of its state as
represented by the machine ClassAd attribute State. The policy expressions for the multi-core machine as a whole
are propagated from the condor_startd to the slot’s machine ClassAd. This policy may consider a slot state(s) in its
expressions. This makes some policies easy to set, but it makes other policies difficult or impossible to set.

An easy policy to set configures how many of the slots notice console or tty activity on the multi-core machine as a
whole. Slots that are not configured to notice any activity will report ConsoleIdle and KeyboardIdle times from
when the condor_startd daemon was started, plus a configurable number of seconds. A multi-core machine with the
default policy settings can add the keyboard and console to be noticed by only one slot. Assuming a reasonable load
average, only the one slot will suspend or vacate its job when the owner starts typing at their machine again. The
rest of the slots could be matched with jobs and continue running them, even while the user was interactively using
the machine. If the default policy is used, all slots notice tty and console activity and currently running jobs would
suspend.

This example policy is controlled with the following configuration variables.

• SLOTS_CONNECTED_TO_CONSOLE , with definition at the condor_startd Configuration File Macros section

• SLOTS_CONNECTED_TO_KEYBOARD , with definition at the condor_startd Configuration File Macros section

• DISCONNECTED_KEYBOARD_IDLE_BOOST , with definition at the condor_startd Configuration File Macros sec-
tion

Each slot has its own machine ClassAd. Yet, the policy expressions for the multi-core machine are propagated and
inherited from configuration of the condor_startd. Therefore, the policy expressions for each slot are the same. This
makes the implementation of certain types of policies impossible, because while evaluating the state of one slot within
the multi-core machine, the state of other slots are not available. Decisions for one slot cannot be based on what other
slots are doing.

Specifically, the evaluation of a slot policy expression works in the following way.

1. The configuration file specifies policy expressions that are shared by all of the slots on the machine.

2. Each slot reads the configuration file and sets up its own machine ClassAd.

3. Each slot is now separate from the others. It has a different ClassAd attribute State, a different machine ClassAd,
and if there is a job running, a separate job ClassAd. Each slot periodically evaluates the policy expressions,
changing its own state as necessary. This occurs independently of the other slots on the machine. So, if the
condor_startd daemon is evaluating a policy expression on a specific slot, and the policy expression refers to
ProcID, Owner, or any attribute from a job ClassAd, it always refers to the ClassAd of the job running on the
specific slot.

To set a different policy for the slots within a machine, incorporate the slot-specific machine ClassAd attribute SlotID.
A SUSPEND policy that is different for each of the two slots will be of the form

SUSPEND = ((SlotID == 1) && (PolicyForSlot1)) || \
((SlotID == 2) && (PolicyForSlot2))

where (PolicyForSlot1) and (PolicyForSlot2) are the desired expressions for each slot.

364 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Load Average for Multi-core Machines

Most operating systems define the load average for a multi-core machine as the total load on all cores. For example,
a 4-core machine with 3 CPU-bound processes running at the same time will have a load of 3.0. In HTCondor, we
maintain this view of the total load average and publish it in all resource ClassAds as TotalLoadAvg.

HTCondor also provides a per-core load average for multi-core machines. This nicely represents the model that each
node on a multi-core machine is a slot, separate from the other nodes. All of the default, single-core policy expressions
can be used directly on multi-core machines, without modification, since the LoadAvg and CondorLoadAvg attributes
are the per-slot versions, not the total, multi-core wide versions.

The per-core load average on multi-core machines is an HTCondor invention. No system call exists to ask the operating
system for this value. HTCondor already computes the load average generated by HTCondor on each slot. It does this
by close monitoring of all processes spawned by any of the HTCondor daemons, even ones that are orphaned and then
inherited by init. This HTCondor load average per slot is reported as the attribute CondorLoadAvg in all resource
ClassAds, and the total HTCondor load average for the entire machine is reported as TotalCondorLoadAvg. The
total, system-wide load average for the entire machine is reported as TotalLoadAvg. Basically, HTCondor walks
through all the slots and assigns out portions of the total load average to each one. First, HTCondor assigns the known
HTCondor load average to each node that is generating load. If there is any load average left in the total system load,
it is considered an owner load. Any slots HTCondor believes are in the Owner state, such as ones that have keyboard
activity, are the first to get assigned this owner load. HTCondor hands out owner load in increments of at most 1.0,
so generally speaking, no slot has a load average above 1.0. If HTCondor runs out of total load average before it runs
out of slots, all the remaining machines believe that they have no load average at all. If, instead, HTCondor runs out
of slots and it still has owner load remaining, HTCondor starts assigning that load to HTCondor nodes as well, giving
individual nodes with a load average higher than 1.0.

Debug Logging in the Multi-Core condor_startd Daemon

This section describes how the condor_startd daemon handles its debugging messages for multi-core machines. In
general, a given log message will either be something that is machine-wide, such as reporting the total system load
average, or it will be specific to a given slot. Any log entries specific to a slot have an extra word printed out in the
entry with the slot number. So, for example, here’s the output about system resources that are being gathered (with
D_FULLDEBUG and D_LOAD turned on) on a 2-core machine with no HTCondor activity, and the keyboard connected to
both slots:

11/25 18:15 Swap space: 131064
11/25 18:15 number of Kbytes available for (/home/condor/execute): 1345063
11/25 18:15 Looking up RESERVED_DISK parameter
11/25 18:15 Reserving 5120 Kbytes for file system
11/25 18:15 Disk space: 1339943
11/25 18:15 Load avg: 0.340000 0.800000 1.170000
11/25 18:15 Idle Time: user= 0 , console= 4 seconds
11/25 18:15 SystemLoad: 0.340 TotalCondorLoad: 0.000 TotalOwnerLoad: 0.340
11/25 18:15 slot1: Idle time: Keyboard: 0 Console: 4
11/25 18:15 slot1: SystemLoad: 0.340 CondorLoad: 0.000 OwnerLoad: 0.340
11/25 18:15 slot2: Idle time: Keyboard: 0 Console: 4
11/25 18:15 slot2: SystemLoad: 0.000 CondorLoad: 0.000 OwnerLoad: 0.000
11/25 18:15 slot1: State: Owner Activity: Idle
11/25 18:15 slot2: State: Owner Activity: Idle

If, on the other hand, this machine only had one slot connected to the keyboard and console, and the other slot was
running a job, it might look something like this:

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 365

HTCondor Manual, Release 10.0.9

11/25 18:19 Load avg: 1.250000 0.910000 1.090000
11/25 18:19 Idle Time: user= 0 , console= 0 seconds
11/25 18:19 SystemLoad: 1.250 TotalCondorLoad: 0.996 TotalOwnerLoad: 0.254
11/25 18:19 slot1: Idle time: Keyboard: 0 Console: 0
11/25 18:19 slot1: SystemLoad: 0.254 CondorLoad: 0.000 OwnerLoad: 0.254
11/25 18:19 slot2: Idle time: Keyboard: 1496 Console: 1496
11/25 18:19 slot2: SystemLoad: 0.996 CondorLoad: 0.996 OwnerLoad: 0.000
11/25 18:19 slot1: State: Owner Activity: Idle
11/25 18:19 slot2: State: Claimed Activity: Busy

Shared system resources are printed without the header, such as total swap space, and slot-specific messages, such as
the load average or state of each slot, get the slot number appended.

Configuring GPUs

HTCondor supports incorporating GPU resources and making them available for jobs. First, GPUs must be detected
as available resources. Then, machine ClassAd attributes advertise this availability. Both detection and advertisement
are accomplished by having this configuration for each execute machine that has GPUs:

use feature : GPUs

Use of this configuration template invokes the condor_gpu_discovery tool to create a custom resource, with a custom
resource name of GPUs, and it generates the ClassAd attributes needed to advertise the GPUs. condor_gpu_discovery
is invoked in a mode that discovers and advertises both CUDA and OpenCL GPUs.

This configuration template refers to macro GPU_DISCOVERY_EXTRA, which can be used to define additional command
line arguments for the condor_gpu_discovery tool. For example, setting

use feature : GPUs
GPU_DISCOVERY_EXTRA = -extra

causes the condor_gpu_discovery tool to output more attributes that describe the detected GPUs on the machine.

Prior to HTCondor version 9.11 condor_gpu_discovery would publish GPU properties using attributes with a name
prefix that indicated which GPU the property referred to. Beginning with version 9.11, discovery would default to
using nested ClassAds for GPU properties. The administrator can be explict about which form to use for properties by
adding either the -nested or -not-nested option to GPU_DISCOVERY_EXTRA.

The format – nested or not – of GPU properties in the slot ad is the same as published by condor_gpu_discovery. The
use of nested GPU property ads is necessary to do GPU matchmaking and to properly support heterogenous GPUs. For
pools that have execute nodes running older versions of HTCondor, you may want to config -not-nested on newer
machines for consistency with older machines. However jobs that use the require_gpus keyword will never match
machines that are configured to use -not-nested gpu discovery.

For resources like GPUs that have individual properties, when configuring slots the slot configuration can specify a
constraint on those properties for the purpose of choosing which GPUs are assigned to which slots. This serves the
same purpose as the require_gpus submit keyword, but in this case it controls the slot configuration on startup.

The resource constraint can be specified by following the resource quantity with a colon and then a constraint expression.
The constraint expression can refer to resource property attributes like the GPU properties from condor_gpu_discovery
-nested output. If the constraint expression is a string literal, it will be matched automatically against the resource id,
otherwise it will be evaluated against each of the resource property ads.

When using resource constraints, it is recommended that you put each resource quantity on a separate line as in the
following example, otherwise the constraint expression may be truncated.

366 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Assuming a machine that has two types of GPUs, 2 of which have Capability 8.0
and the remaining GPUs are less powerful

declare a partitionable slot that has the 2 powerful GPUs
and 90% of the other resources:
SLOT_TYPE_1 @=slot

GPUs = 2 : Capability >= 8.0
90%

@slot
SLOT_TYPE_1_PARTITIONABLE = TRUE
NUM_SLOTS_TYPE_1 = 1

declare a small static slot and assign it a specific GPU by id
SLOT_TYPE_2 @=slot

GPUs = 1 : "GPU-6a96bd13"
CPUs = 1

Memory = 10
@slot
SLOT_TYPE_2_PARTITIONABLE = FALSE
NUM_SLOTS_TYPE_2 = 1

declare two static slots that split up the remaining resources which may or␣
→˓may not include GPUs
SLOT_TYPE_3 = auto
SLOT_TYPE_3_PARTITIONABLE = FALSE
NUM_SLOTS_TYPE_3 = 2

Configuring STARTD_ATTRS on a per-slot basis

The STARTD_ATTRS settings can be configured on a per-slot basis. The condor_startd daemon builds the list of items
to advertise by combining the lists in this order:

1. STARTD_ATTRS

2. SLOT<N>_STARTD_ATTRS

For example, consider the following configuration:

STARTD_ATTRS = favorite_color, favorite_season
SLOT1_STARTD_ATTRS = favorite_movie
SLOT2_STARTD_ATTRS = favorite_song

This will result in the condor_startd ClassAd for slot1 defining values for favorite_color, favorite_season, and
favorite_movie. Slot2 will have values for favorite_color, favorite_season, and favorite_song.

Attributes themselves in the STARTD_ATTRS list can also be defined on a per-slot basis. Here is another example:

favorite_color = "blue"
favorite_season = "spring"
STARTD_ATTRS = favorite_color, favorite_season
SLOT2_favorite_color = "green"
SLOT3_favorite_season = "summer"

For this example, the condor_startd ClassAds are

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 367

HTCondor Manual, Release 10.0.9

slot1:

favorite_color = "blue"
favorite_season = "spring"

slot2:

favorite_color = "green"
favorite_season = "spring"

slot3:

favorite_color = "blue"
favorite_season = "summer"

Dynamic Provisioning: Partitionable and Dynamic Slots

Dynamic provisioning, also referred to as partitionable or dynamic slots, allows HTCondor to use the resources of a
slot in a dynamic way; these slots may be partitioned. This means that more than one job can occupy a single slot at
any one time. Slots have a fixed set of resources which include the cores, memory and disk space. By partitioning the
slot, the use of these resources becomes more flexible.

Here is an example that demonstrates how resources are divided as more than one job is or can be matched to a single
slot. In this example, Slot1 is identified as a partitionable slot and has the following resources:

cpu = 10
memory = 10240
disk = BIG

Assume that JobA is allocated to this slot. JobA includes the following requirements:

cpu = 3
memory = 1024
disk = 10240

The portion of the slot that is carved out is now known as a dynamic slot. This dynamic slot has its own machine
ClassAd, and its Name attribute distinguishes itself as a dynamic slot with incorporating the substring Slot1_1.

After allocation, the partitionable Slot1 advertises that it has the following resources still available:

cpu = 7
memory = 9216
disk = BIG-10240

As each new job is allocated to Slot1, it breaks into Slot1_1, Slot1_2, Slot1_3 etc., until the entire set of Slot1’s
available resources have been consumed by jobs.

To enable dynamic provisioning, define a slot type. and declare at least one slot of that type. Then, identify that slot type
as partitionable by setting configuration variable SLOT_TYPE_<N>_PARTITIONABLE to True. The value of <N> within
the configuration variable name is the same value as in slot type definition configuration variable SLOT_TYPE_<N>.
For the most common cases the machine should be configured for one slot, managing all the resources on the machine.
To do so, set the following configuration variables:

368 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

NUM_SLOTS = 1
NUM_SLOTS_TYPE_1 = 1
SLOT_TYPE_1 = 100%
SLOT_TYPE_1_PARTITIONABLE = TRUE

In a pool using dynamic provisioning, jobs can have extra, and desired, resources specified in the submit description
file:

request_cpus
request_memory
request_disk (in kilobytes)

This example shows a portion of the job submit description file for use when submitting a job to a pool with dynamic
provisioning.

universe = vanilla

request_cpus = 3
request_memory = 1024
request_disk = 10240

queue

Each partitionable slot will have the ClassAd attributes

PartitionableSlot = True
SlotType = "Partitionable"

Each dynamic slot will have the ClassAd attributes

DynamicSlot = True
SlotType = "Dynamic"

These attributes may be used in a START expression for the purposes of creating detailed policies.

A partitionable slot will always appear as though it is not running a job. If matched jobs consume all its resources, the
partitionable slot will eventually show as having no available resources; this will prevent further matching of new jobs.
The dynamic slots will show as running jobs. The dynamic slots can be preempted in the same way as all other slots.

Dynamic provisioning provides powerful configuration possibilities, and so should be used with care. Specifically,
while preemption occurs for each individual dynamic slot, it cannot occur directly for the partitionable slot, or for
groups of dynamic slots. For example, for a large number of jobs requiring 1GB of memory, a pool might be split up
into 1GB dynamic slots. In this instance a job requiring 2GB of memory will be starved and unable to run. A partial
solution to this problem is provided by defragmentation accomplished by the condor_defrag daemon, as discussed in
condor_startd Policy Configuration.

Another partial solution is a new matchmaking algorithm in the negotiator, referred to as partitionable slot preemption,
or pslot preemption. Without pslot preemption, when the negotiator searches for a match for a job, it looks at each slot
ClassAd individually. With pslot preemption, the negotiator looks at a partitionable slot and all of its dynamic slots
as a group. If the partitionable slot does not have sufficient resources (memory, cpu, and disk) to be matched with
the candidate job, then the negotiator looks at all of the related dynamic slots that the candidate job might preempt
(following the normal preemption rules described elsewhere). The resources of each dynamic slot are added to those
of the partitionable slot, one dynamic slot at a time. Once this partial sum of resources is sufficient to enable a match,
the negotiator sends the match information to the condor_schedd. When the condor_schedd claims the partitionable
slot, the dynamic slots are preempted, such that their resources are returned to the partitionable slot for use by the new
job.

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 369

HTCondor Manual, Release 10.0.9

To enable pslot preemption, the following configuration variable must be set for the condor_negotiator:

ALLOW_PSLOT_PREEMPTION = True

When the negotiator examines the resources of dynamic slots, it sorts the slots by their CurrentRank attribute, such
that slots with lower values are considered first. The negotiator only examines the cpu, memory and disk resources of
the dynamic slots; custom resources are ignored.

Dynamic slots that have retirement time remaining are not considered eligible for preemption, regardless of how con-
figuration variable NEGOTIATOR_CONSIDER_EARLY_PREEMPTION is set.

When pslot preemption is enabled, the negotiator will not preempt dynamic slots directly. It will preempt them only
as part of a match to a partitionable slot.

When multiple partitionable slots match a candidate job and the various job rank expressions are evaluated to sort the
matching slots, the ClassAd of the partitionable slot is used for evaluation. This may cause unexpected results for some
expressions, as attributes such as RemoteOwner will not be present in a partitionable slot that matches with preemption
of some of its dynamic slots.

Defaults for Partitionable Slot Sizes

If a job does not specify the required number of CPUs, amount of memory, or disk space, there are ways for the
administrator to set default values for all of these parameters.

First, if any of these attributes are not set in the submit description file, there are three variables in the configuration
file that condor_submit will use to fill in default values. These are

• JOB_DEFAULT_REQUESTCPUS

• JOB_DEFAULT_REQUESTMEMORY

• JOB_DEFAULT_REQUESTDISK

The value of these variables can be ClassAd expressions. The default values for these variables, should they not be set
are

JOB_DEFAULT_REQUESTCPUS = 1
JOB_DEFAULT_REQUESTMEMORY = \

ifThenElse(MemoryUsage =!= UNDEFINED, MemoryUsage, 1)
JOB_DEFAULT_REQUESTDISK = DiskUsage

Note that these default values are chosen such that jobs matched to partitionable slots function similar to static slots.
These variables do not apply to batch grid universe jobs.

Once the job has been matched, and has made it to the execute machine, the condor_startd has the ability to modify
these resource requests before using them to size the actual dynamic slots carved out of the partitionable slot. Clearly,
for the job to work, the condor_startd daemon must create slots with at least as many resources as the job needs.
However, it may be valuable to create dynamic slots somewhat bigger than the job’s request, as subsequent jobs may
be more likely to reuse the newly created slot when the initial job is done using it.

The condor_startd configuration variables which control this and their defaults are

MODIFY_REQUEST_EXPR_REQUESTCPUS = quantize(RequestCpus, {1})
MODIFY_REQUEST_EXPR_REQUESTMEMORY = quantize(RequestMemory, {128})
MODIFY_REQUEST_EXPR_REQUESTDISK = quantize(RequestDisk, {1024})

370 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Enforcing scratch disk usage with on-the-fly, HTCondor managed, per-job scratch filesystems.

Warning: The per job filesystem feature is a work in progress and not currently supported.

On Linux systems, when HTCondor is started as root, it optionally has the ability to create a custom filesystem for the
job’s scratch directory. This allows HTCondor to prevent the job from using more scratch space than provisioned. This
also requires that the disk is managed with the LVM disk management system. Three HTCondor configuration knobs
need to be set for this to work, in addition to the above requirements:

THINPOOL_VOLUME_GROUP_NAME = vgname
THINPOOL_NAME = htcondor
STARTD_ENFORCE_DISK_USAGE = true

THINPOOL_VOLUME_GROUP_NAME is the name of an existing LVM volume group, with enough disk space
to provision all the scratch directories for all running jobs on a worker node. THINPOOL_NAME is the name
of the logical volume that the scratch directory filesystems will be created on in the volume group. Finally,
STARTD_ENFORCE_DISK_USAGE is a boolean. When true, if a job fills up the filesystem created for it, the starter
will put the job on hold with the out of resources hold code (34). This is the recommended value. If false, should
the job fill the filesystem, writes will fail with ENOSPC, and it is up to the job to handle these errors and exit with an
appropriate code in every part of the job that writes to the filesystem, including third party libraries.

Note that the ephemeral filesystem created for the job is private to the job, so the contents of that filesytem are not
visible outside the process hierarchy. The administrator can use the nsenter command to enter this namespace, if they
need to inspect the job’s sandbox. As this filesytem will never live through a system reboot, it is mounted with mount
options that optimize for performance, not reliability, and may improve performance for I/O heavy jobs.

condor_negotiator-Side Resource Consumption Policies

For partitionable slots, the specification of a consumption policy permits matchmaking at the negotiator. A dynamic
slot carved from the partitionable slot acquires the required quantities of resources, leaving the partitionable slot with
the remainder. This differs from scheduler matchmaking in that multiple jobs can match with the partitionable slot
during a single negotiation cycle.

All specification of the resources available is done by configuration of the partitionable slot. The machine is identified
as having a resource consumption policy enabled with

CONSUMPTION_POLICY = True

A defined slot type that is partitionable may override the machine value with

SLOT_TYPE_<N>_CONSUMPTION_POLICY = True

A job seeking a match may always request a specific number of cores, amount of memory, and amount of disk space.
Availability of these three resources on a machine and within the partitionable slot is always defined and have these
default values:

CONSUMPTION_CPUS = quantize(target.RequestCpus,{1})
CONSUMPTION_MEMORY = quantize(target.RequestMemory,{128})
CONSUMPTION_DISK = quantize(target.RequestDisk,{1024})

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 371

HTCondor Manual, Release 10.0.9

Here is an example-driven definition of a consumption policy. Assume a single partitionable slot type on a multi-core
machine with 8 cores, and that the resource this policy cares about allocating are the cores. Configuration for the
machine includes the definition of the slot type and that it is partitionable.

SLOT_TYPE_1 = cpus=8
SLOT_TYPE_1_PARTITIONABLE = True
NUM_SLOTS_TYPE_1 = 1

Enable use of the condor_negotiator-side resource consumption policy, allocating the job-requested number of cores
to the dynamic slot, and use SLOT_WEIGHT to assess the user usage that will affect user priority by the number of cores
allocated. Note that the only attributes valid within the SLOT_WEIGHT expression are Cpus, Memory, and disk. This
must the set to the same value on all machines in the pool.

SLOT_TYPE_1_CONSUMPTION_POLICY = True
SLOT_TYPE_1_CONSUMPTION_CPUS = TARGET.RequestCpus
SLOT_WEIGHT = Cpus

If custom resources are available within the partitionable slot, they may be used in a consumption policy, by specifying
the resource. Using a machine with 4 GPUs as an example custom resource, define the resource and include it in the
definition of the partitionable slot:

MACHINE_RESOURCE_NAMES = gpus
MACHINE_RESOURCE_gpus = 4
SLOT_TYPE_2 = cpus=8, gpus=4
SLOT_TYPE_2_PARTITIONABLE = True
NUM_SLOTS_TYPE_2 = 1

Add the consumption policy to incorporate availability of the GPUs:

SLOT_TYPE_2_CONSUMPTION_POLICY = True
SLOT_TYPE_2_CONSUMPTION_gpus = TARGET.RequestGpu
SLOT_WEIGHT = Cpus

Defragmenting Dynamic Slots

When partitionable slots are used, some attention must be given to the problem of the starvation of large jobs due to
the fragmentation of resources. The problem is that over time the machine resources may become partitioned into slots
suitable only for running small jobs. If a sufficient number of these slots do not happen to become idle at the same time
on a machine, then a large job will not be able to claim that machine, even if the large job has a better priority than the
small jobs.

One way of addressing the partitionable slot fragmentation problem is to periodically drain all jobs from fragmented
machines so that they become defragmented. The condor_defrag daemon implements a configurable policy for doing
that. Its implementation is targeted at machines configured to run whole-machine jobs and at machines that only have
partitionable slots. The draining of a machine configured to have both partitionable slots and static slots would have a
negative impact on single slot jobs running in static slots.

To use this daemon, DEFRAG must be added to DAEMON_LIST, and the defragmentation policy must be configured.
Typically, only one instance of the condor_defrag daemon would be run per pool. It is a lightweight daemon that
should not require a lot of system resources.

Here is an example configuration that puts the condor_defrag daemon to work:

372 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

DAEMON_LIST = $(DAEMON_LIST) DEFRAG
DEFRAG_INTERVAL = 3600
DEFRAG_DRAINING_MACHINES_PER_HOUR = 1.0
DEFRAG_MAX_WHOLE_MACHINES = 20
DEFRAG_MAX_CONCURRENT_DRAINING = 10

This example policy tells condor_defrag to initiate draining jobs from 1 machine per hour, but to avoid initiating new
draining if there are 20 completely defragmented machines or 10 machines in a draining state. A full description of
each configuration variable used by the condor_defrag daemon may be found in the condor_defrag Configuration File
Macros section.

By default, when a machine is drained, existing jobs are gracefully evicted. This means that each job will be allowed
to use the remaining time promised to it by MaxJobRetirementTime. If the job has not finished when the retirement
time runs out, the job will be killed with a soft kill signal, so that it has an opportunity to save a checkpoint (if the job
supports this).

By default, no new jobs will be allowed to start while the machine is draining. To reduce unused time on the machine
caused by some jobs having longer retirement time than others, the eviction of jobs with shorter retirement time is
delayed until the job with the longest retirement time needs to be evicted.

There is a trade off between reduced starvation and throughput. Frequent draining of machines reduces the chance of
starvation of large jobs. However, frequent draining reduces total throughput. Some of the machine’s resources may
go unused during draining, if some jobs finish before others. If jobs that cannot produce checkpoints are killed because
they run past the end of their retirement time during draining, this also adds to the cost of draining.

To reduce these costs, you may set the configuration macro DEFRAG_DRAINING_START_EXPR . If draining gracefully,
the defrag daemon will set the START expression for the machine to this value expression. Do not set this to your usual
START expression; jobs accepted while draining will not be given their MaxRetirementTime. Instead, when the last
retiring job finishes (either terminates or runs out of retirement time), all other jobs on machine will be evicted with
a retirement time of 0. (Those jobs will be given their MaxVacateTime, as usual.) The machine’s START expression
will become FALSE and stay that way until - as usual - the machine exits the draining state.

We recommend that you allow only interruptible jobs to start on draining machines. Different pools may have different
ways of denoting interruptible, but a MaxJobRetirementTime of 0 is probably a good sign. You may also want to
restrict the interruptible jobs’ MaxVacateTime to ensure that the machine will complete draining quickly.

To help gauge the costs of draining, the condor_startd advertises the accumulated time that was unused due to drain-
ing and the time spent by jobs that were killed due to draining. These are advertised respectively in the attributes
TotalMachineDrainingUnclaimedTime and TotalMachineDrainingBadput. The condor_defrag daemon aver-
ages these values across the pool and advertises the result in its daemon ClassAd in the attributes AvgDrainingBadput
and AvgDrainingUnclaimed. Details of all attributes published by the condor_defrag daemon are described in the
Defrag ClassAd Attributes section.

The following command may be used to view the condor_defrag daemon ClassAd:

$ condor_status -l -any -constraint 'MyType == "Defrag"'

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 373

HTCondor Manual, Release 10.0.9

4.7.2 condor_schedd Policy Configuration

There are two types of schedd policy: job transforms (which change the ClassAd of a job at submission) and submit
requirements (which prevent some jobs from entering the queue). These policies are explained below.

Job Transforms

The condor_schedd can transform jobs as they are submitted. Transformations can be used to guarantee the presence
of required job attributes, to set defaults for job attributes the user does not supply, or to modify job attributes so that
they conform to schedd policy; an example of this might be to automatically set accounting attributes based on the
owner of the job while letting the job owner indicate a preference.

There can be multiple job transforms. Each transform can have a Requirements expression to indicate which jobs it
should transform and which it should ignore. Transforms without a Requirements expression apply to all jobs. Job
transforms are applied in order. The set of transforms and their order are configured using the Configuration variable
JOB_TRANSFORM_NAMES .

For each entry in this list there must be a corresponding JOB_TRANSFORM_<name> configuration variable that specifies
the transform rules. Transforms can use the same syntax as condor_job_router transforms; although unlike the con-
dor_job_router there is no default transform, and all matching transforms are applied - not just the first one. (See the
The HTCondor Job Router section for information on the condor_job_router.)

Beginning with HTCondor 9.4.0, when a submission is a late materialization job factory, transforms that would match
the first factory job will be applied to the Cluster ad at submit time. When job ads are later materialized, attribute values
set by the transform will override values set by the job factory for those attributes. Prior to this version transforms were
applied to late materialization jobs only after submit time.

The following example shows a set of two transforms: one that automatically assigns an accounting group to jobs based
on the submitting user, and one that shows one possible way to transform Vanilla jobs to Docker jobs.

JOB_TRANSFORM_NAMES = AssignGroup, SL6ToDocker

JOB_TRANSFORM_AssignGroup @=end
map Owner to group using the existing accounting group attribute as requested group
EVALSET AcctGroup = userMap("Groups",Owner,AcctGroup)
EVALSET AccountingGroup = join(".",AcctGroup,Owner)

@end

JOB_TRANSFORM_SL6ToDocker @=end
match only vanilla jobs that have WantSL6 and do not already have a DockerImage
REQUIREMENTS JobUniverse==5 && WantSL6 && DockerImage =?= undefined
SET WantDocker = true
SET DockerImage = "SL6"
SET Requirements = TARGET.HasDocker && $(MY.Requirements)

@end

The AssignGroup transform above assumes that a mapfile that can map an owner to one or more accounting groups
has been configured via SCHEDD_CLASSAD_USER_MAP_NAMES, and given the name “Groups”.

The SL6ToDocker transform above is most likely incomplete, as it assumes a custom attribute (WantSL6) that your
pool may or may not use.

374 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Submit Requirements

The condor_schedd may reject job submissions, such that rejected jobs never enter the queue. Rejection may be best
for the case in which there are jobs that will never be able to run; for instance, a job specifying an obsolete universe, like
standard. Another appropriate example might be to reject all jobs that do not request a minimum amount of memory.
Or, it may be appropriate to prevent certain users from using a specific submit host.

Rejection criteria are configured. Configuration variable SUBMIT_REQUIREMENT_NAMES lists criteria, where each cri-
terion is given a name. The chosen name is a major component of the default error message output if a user attempts to
submit a job which fails to meet the requirements. Therefore, choose a descriptive name. For the three example submit
requirements described:

SUBMIT_REQUIREMENT_NAMES = NotStandardUniverse, MinimalRequestMemory, NotChris

The criterion for each submit requirement is then specified in configuration variable SUBMIT_REQUIREMENT_<Name>
, where <Name> matches the chosen name listed in SUBMIT_REQUIREMENT_NAMES. The value is a boolean ClassAd
expression. The three example criterion result in these configuration variable definitions:

SUBMIT_REQUIREMENT_NotStandardUniverse = JobUniverse != 1
SUBMIT_REQUIREMENT_MinimalRequestMemory = RequestMemory > 512
SUBMIT_REQUIREMENT_NotChris = Owner != "chris"

Submit requirements are evaluated in the listed order; the first requirement that evaluates to False causes rejection
of the job, terminates further evaluation of other submit requirements, and is the only requirement reported. Each
submit requirement is evaluated in the context of the condor_schedd ClassAd, which is the MY. name space and the
job ClassAd, which is the TARGET. name space. Note that JobUniverse and RequestMemory are both job ClassAd
attributes.

Further configuration may associate a rejection reason with a submit requirement with the
SUBMIT_REQUIREMENT_<Name>_REASON .

SUBMIT_REQUIREMENT_NotStandardUniverse_REASON = "This pool does not accept standard␣
→˓universe jobs."
SUBMIT_REQUIREMENT_MinimalRequestMemory_REASON = strcat("The job only requested ", \
RequestMemory, " Megabytes. If that small amount is really enough, please contact ...

→˓")
SUBMIT_REQUIREMENT_NotChris_REASON = "Chris, you may only submit jobs to the␣
→˓instructional pool."

The value must be a ClassAd expression which evaluates to a string. Thus, double quotes were
required to make strings for both SUBMIT_REQUIREMENT_NotStandardUniverse_REASON and
SUBMIT_REQUIREMENT_NotChris_REASON. The ClassAd function strcat() produces a string in the definition
of SUBMIT_REQUIREMENT_MinimalRequestMemory_REASON.

Rejection reasons are sent back to the submitting program and will typically be immediately presented to the user. If an
optional SUBMIT_REQUIREMENT_<Name>_REASON is not defined, a default reason will include the <Name> chosen for
the submit requirement. Completing the presentation of the example submit requirements, upon an attempt to submit
a standard universe job, condor_submit would print

Submitting job(s).
ERROR: Failed to commit job submission into the queue.
ERROR: This pool does not accept standard universe jobs.

Where there are multiple jobs in a cluster, if any job within the cluster is rejected due to a submit requirement, the
entire cluster of jobs will be rejected.

4.7. Policy Configuration for Execute Hosts and for Submit Hosts 375

HTCondor Manual, Release 10.0.9

Submit Warnings

Starting in HTCondor 8.7.4, you may instead configure submit warnings. A submit warning is a submit requirement
for which SUBMIT_REQUIREMENT_<Name>_IS_WARNING is true. A submit warning does not cause the submission to
fail; instead, it returns a warning to the user’s console (when triggered via condor_submit) or writes a message to the
user log (always). Submit warnings are intended to allow HTCondor administrators to provide their users with advance
warning of new submit requirements. For example, if you want to increase the minimum request memory, you could
use the following configuration.

SUBMIT_REQUIREMENT_NAMES = OneGig $(SUBMIT_REQUIREMENT_NAMES)
SUBMIT_REQUIREMENT_OneGig = RequestMemory > 1024
SUBMIT_REQUIREMENT_OneGig_REASON = "As of <date>, the minimum requested memory will be␣
→˓1024."
SUBMIT_REQUIREMENT_OneGig_IS_WARNING = TRUE

When a user runs condor_submit to submit a job with RequestMemory between 512 and 1024, they will see (something
like) the following, assuming that the job meets all the other requirements.

Submitting job(s).
WARNING: Committed job submission into the queue with the following warning:
WARNING: As of <date>, the minimum requested memory will be 1024.

1 job(s) submitted to cluster 452.

The job will contain (something like) the following:

000 (452.000.000) 10/06 13:40:45 Job submitted from host: <128.105.136.53:37317?
→˓addrs=128.105.136.53-37317+[fc00--1]-37317&noUDP&sock=19966_e869_5>

WARNING: Committed job submission into the queue with the following warning: As of
→˓<date>, the minimum requested memory will be 1024.
...

Marking a submit requirement as a warning does not change when or how it is evaluated, only the result of doing so.
In particular, failing a submit warning does not terminate further evaluation of the submit requirements list. Currently,
only one (the most recent) problem is reported for each submit attempt. This means users will see (as they previously
did) only the first failed requirement; if all requirements passed, they will see the last failed warning, if any.

4.8 Security

4.8.1 Security Overview

Beginning in HTCondor version 9, a main goal is to make all condor installations easier to secure. In previous versions, a
default installation typically required additional steps after setup to enable end-to-end security for all users and daemons
in the system. Configuring various different types of authentication and security policy could also involve setting quite
a number of different configuration parameters and a fairly deep foray into the manual to understand how they all work
together.

376 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

This overview will explain the high-level concepts involved in securing an HTCondor pool. If possible, we recommend
performing a clean installation “from scratch” and then migrating over pieces of your old configuration as needed. Here
are some quick links for getting started if you want to jump right in:

Quick Links: If you are upgrading an existing pool from 8.9.X to 9.0.X, please visit https://htcondor-wiki.cs.wisc.
edu/index.cgi/wiki?p=UpgradingFromEightNineToNineZero

If you are installing a new HTCondor pool from scratch, please read about Getting HTCondor

General Security Flow

Establishing a secure connection in HTCondor goes through four major steps, which are very briefly enumerated here
for reference.

1. Negotiation: In order for a client and server to communicate, they need to agree on which security mechanisms
will be used for the connection. This includes whether or not the connection will be authenticated, which types
of authentication methods can be used, whether the connection will be encrypted, and which different types of
encryption algorithms can be used. The client sends its capabilities, preferences, and requirements; the server
compares those against its own, decides what to do, and tells the client; if a connection is possible, they both
then work to enact it. We call the decisions the server makes during negotiation the “security policy” for that
connection; see Security Negotiation for details on policy configuration.

2. Authentication/Mapping: If the server decides to authenticate (and we strongly recommend that it almost always
either do so or reject the connection), the methods allowed are tried in the order decided by the server until one of
them succeeds. After a successful authentication, the server decides the canonical name of the user based on the
credentials used by the client. For SSL, this involves mapping the DN to a user@domain.name format. For most
other methods the result is already in user@domain.name format. For details on different types of supported
authentication methods, please see Authentication.

3. Encryption and Integrity: If the server decided that encryption would be used, both sides now enable encryption
and integrity checks using the method preferred by the server. AES is now the preferred method and enabled by
default. The overhead of doing the encryption and integrity checks is minimal so we have decided to simplify
configuration by requiring changes to disable it rather than enable it. For details on different types of supported
authentication methods, see Encryption.

4. Authorization: The canonical user is now checked to see if they are allowed to send the command to the server that
they wish to send. Commands are “registered” at different authorization levels, and there is an ALLOW/DENY
list for each level. If the canonical user is authorized, HTCondor performs the requested action. If authorization
fails, the permission is DENIED and the network connection is closed. For list of authorization levels and more
information on configuring ALLOW and DENY lists, please see Authorization.

Highlights of New Features In Version 9.0.0

Introducing: IDTOKENS

In 9.0.0, we have introduced a new authentication mechanism called IDTOKENS. These tokens are easy for the admin-
istrator to issue, and in many cases users can also acquire their own tokens on a machine used to submit jobs (running
the condor_schedd). An IDTOKEN is a relatively lightweight credential that can be used to prove an identity. The
contents of the token are actually a JWT (https://jwt.io/) that is signed by a “Token Signing Key” that establishes the
trustworthiness of the token. Typically, this signing key is something accessible only to HTCondor (and owned by the
“root” user of the system) and not users, and by default lives in /etc/condor/passwords.d/POOL. To make configuration
easier, this signing key is generated automatically by HTCondor if it does not exist on the machine that runs the Central
Manager, or the condor_collector daemon in particular. So after installing the central manager and starting it up for
the first time, you should as the administrator be all set to start issuing tokens. That said, you will need to copy the

4.8. Security 377

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=UpgradingFromEightNineToNineZero
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=UpgradingFromEightNineToNineZero
mailto:user@domain.name
mailto:user@domain.name
https://jwt.io/

HTCondor Manual, Release 10.0.9

signing key to all other machines in your pool that you want to be able to receive and validate the IDTOKEN credentials
that you issue.

Documentation for the command line tools used for creating and managing IDTOKENS is available in the Token Authen-
tication section.

Introducing: AES

In version 9.0.0 we have also added support for AES, a widely-used encryption method that has hardware support in
most modern CPUS. Because the overhead of encryption is so much lower, we have turned it on by default. We use
AES in such a way (called AESGCM mode) that it provides integrity checks (checksums) on transmitted data, and this
method is now on by default and is the preferred method to be used if both sides support it.

Types of Network Connections

We generally consider user-to-daemon and daemon-to-daemon connections distinctly. User-to-daemon connections
almost always issue READ or WRITE level commands, and the vast majority of those connections are to the schedd or the
collector; many of those connections will be between processes on the same machine. Conversely, daemon-to-daemon
connections are typically between two different machines, and use commands registered at all levels.

User-to-Daemon Connections (User Authentication)

In order for users to submit jobs to the HTCondor system, they will need to authenticate to the condor_schedd daemon.
They also need to authenticate to the SchedD to modify, remove, hold, or release jobs. When users are interacting with
the condor_schedd, they issue commands that need to be authorized at either the “READ” or “WRITE” level. (Unless
the user is an administrator, in which case they might also issue “ADMINISTRATOR”-level commands).

Authenticating using FS

On a Linux system this is typically done by logging into the machine that is running the condor_schedd daemon and
authentication using a method called FS (on Linux see Windows note below this paragraph). FS stands for “File System”
and the method works by having the user create a file in /tmp that the condor_schedd can then examine to determine
who the owner is. Because this operates in /tmp, this only works for connections to daemons on the same machine. FS
is enabled by default so the administrator does not need to do anything to allow users to interact with the job queue this
way. (There are other methods, mentioned below, that can work over a network connection.)

[Windows note: HTCondor on Windows does not use FS, but rather a method specific to Windows called NTSSPI. See
the section on Authentication for more more info.]

If it is necessary to do a “remote submit” – that is, run condor_submit on a different machine than is running the
condor_schedd – then the administrator will need to configure another method. FS_REMOTE works similarly to FS
but uses a shared directory other than /tmp. Mechanisms such as KERBEROS, SSL, and MUNGE can also be configured.
However, with the addition of IDTOKENS in 9.0.0, it is easy to configure and deploy this mechanism and we would
suggest you do so unless you have a specific need to use one of the alternatives.

378 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Authenticating using IDTOKENS

If a user is able to log in to the machine running the condor_schedd, and the SchedD has been set up with the Token
Signing Key (see above for how that is created and deployed) then the user can simply run condor_token_fetch and
retreive their own token. This token can then be (securely) moved to another machine and used to interact with the job
queue, including submission, edits, hold, release, and removing the job.

If the user cannot log in to the machine running the condor_schedd, they should ask their administrator to create
tokens for them using the condor_token_create command line tool. Once again, more info can be found in the Token
Authentication section.

Daemon-to-Daemon Connections (Daemon Authentication)

HTCondor daemons need to trust each other to pass information security from one to the other. This information may
contain important attributes about a job to run, such as which executable to run, the arguments, and which user to run
the job as. Obviously, being able to tamper those could allow an impersonator to perform all sorts of nefarious tasks.

For daemons that run on the same machine, for example a condor_master, condor_schedd, and the condor_shadow
daemons launched by the condor_schedd, this authentication is performed using a secret that is shared with each condor
daemon when it is launched. These are called “family sessions”, since the processes sharing the secret are all part of
the same unix process family. This allows the HTCondor daemons to contact one another locally without having to
use another type of authentication. So essentially, when we are discussing daemon-to-daemon communication, we are
talking about HTCondor daemons on two different physical machines. In those cases, they need to establish trust using
some mechanism that works over a network. The FS mechanism used for user job submission typically doesn’t work
here because it relies on sharing a directory between the two daemons, typically /tmp. However, IDTOKENS are able
to work here as long as the server has a copy of the Signing Key that was used to issue the token that the client is
using. The daemon will authenticate as condor@$(TRUST_DOMAIN) where the trust domain is the string set by the
token issuer, and is usually equal to the $(UID_DOMAIN) setting on the central manager. (Note that setting has other
consequences.)

Once HTCondor has determined the authenticate principal, it checks the authorization lists as mentioned above in
General Security Flow. For daemon-to-daemon authorization, there are a few lists that may be consulted.

If the condor daemon receiving the connection is the condor_collector, it first checks to see if there are specific autho-
rization lists for daemons advertising to the collector (i.e. joining the pool). If the incoming command is advertising a
submit node (i.e. a condor_schedd daemon), it will check ALLOW_ADVERTISE_SCHEDD. If the incoming command is
for an execute node (a condor_startd daemon), it will check ALLOW_ADVERTISE_STARTD. And if the incoming com-
mand is for a condor_master (which runs on all HTCondor nodes) it will check ALLOW_ADVERTISE_MASTER. If the
list it checks is undefined, it will then check ALLOW_DAEMON instead.

If the condor daemon receiving the connection is not a condor_collector, the ALLOW_DAEMON is the only list that is
looked at.

It is notable that many daemon-to-daemon connections have been optimized to not need to authenticate using one of
the standard methods. Similar to the “family” sessions that work internally on one machine, there are sessions called
“match” sessions that can be used internally within one POOL of machines. Here, trust is established by the negotiator
when matching a job to a resource – the Negotiator takes a secret generated by the condor_startd and securely passes
it to the condor_schedd when a match is made. The submit and execute machines can now use this secret to establish
a secure channel. Because of this, you do not necessarily need to have authentication from one to the other configured;
it is enough to have secure channels from the SchedD to the Collector and from the StartD to the collector. Likewise, a
Negotiator can establish trust with a SchedD in the same way: the SchedD trusts the Collector to tell only trustworthy
Negotiators its secret. However, some features such as condor_ssh_to_job and condor_tail will not work unless the
submit machine can authenticate directly to the execute machine, which is why we mentioned needing to distribute the
signing key earlier – if the server does not have the signing key, it cannot directly validate the incoming IDTOKEN used
for authentication.

4.8. Security 379

HTCondor Manual, Release 10.0.9

4.8.2 Security Terms

Security in HTCondor is a broad issue, with many aspects to consider. Because HTCondor’s main purpose is to allow
users to run arbitrary code on large numbers of computers, it is important to try to limit who can access an HTCondor
pool and what privileges they have when using the pool. This section covers these topics.

There is a distinction between the kinds of resource attacks HTCondor can defeat, and the kinds of attacks HTCondor
cannot defeat. HTCondor cannot prevent security breaches of users that can elevate their privilege to the root or
administrator account. HTCondor does not run user jobs in sandboxes (possibly excepting Docker or Singularity jobs)
so HTCondor cannot defeat all malicious actions by user jobs. An example of a malicious job is one that launches a
distributed denial of service attack. HTCondor assumes that users are trustworthy. HTCondor can prevent unauthorized
access to the HTCondor pool, to help ensure that only trusted users have access to the pool. In addition, HTCondor
provides encryption and integrity checking, to ensure that network transmissions are not examined or tampered with
while in transit.

Broadly speaking, the aspects of security in HTCondor may be categorized and described:

Users Authorization or capability in an operating system is based on a process owner. Both those that submit jobs
and HTCondor daemons become process owners. The HTCondor system prefers that HTCondor daemons are
run as the user root, while other common operations are owned by a user of HTCondor. Operations that do not
belong to either root or an HTCondor user are often owned by the condor user. See User Accounts in HTCondor
on Unix Platforms for more detail.

Authentication Proper identification of a user is accomplished by the process of authentication. It attempts to dis-
tinguish between real users and impostors. By default, HTCondor’s authentication uses the user id (UID) to
determine identity, but HTCondor can choose among a variety of authentication mechanisms, including the
stronger authentication methods Kerberos and SSL.

Authorization Authorization specifies who is allowed to do what. Some users are allowed to submit jobs, while other
users are allowed administrative privileges over HTCondor itself. HTCondor provides authorization on either a
per-user or on a per-machine basis.

Privacy HTCondor may encrypt data sent across the network, which prevents others from viewing the data. With
persistence and sufficient computing power, decryption is possible. HTCondor can encrypt the data sent for
internal communication, as well as user data, such as files and executables. Encryption operates on network
transmissions: unencrypted data is stored on disk by default. However, see the ENCRYPT_EXECUTE_DIRECTORY
setting for how to encrypt job data on the disk of an execute node.

Integrity The man-in-the-middle attack tampers with data without the awareness of either side of the communication.
HTCondor’s integrity check sends additional cryptographic data to verify that network data transmissions have
not been tampered with. Note that the integrity information is only for network transmissions: data stored on disk
does not have this integrity information. Also note that integrity checks are not performed upon job data files
that are transferred by HTCondor via the File Transfer Mechanism described in the Submitting a Job section.

4.8.3 Quick Configuration of Security

Note: This method of configuring security is experimental. Many tools and daemons that send administrative com-
mands between machines (e.g. condor_off, condor_drain, or condor_defrag) won’t work without further setup. We
plan to remove this limitation in future releases.

While pool administrators with complex configurations or application developers may need to understand the full
security model described in this chapter, HTCondor strives to make it easy to enable reasonable security settings for
new pools.

When installing a new pool, assuming you are on a trusted network and there are no unprivileged users logged in to the
submit hosts:

380 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

1. Start HTCondor on your central manager host (containing the condor_collector daemon) first. For a fresh install,
this will automatically generate a random key in the file specified by SEC_TOKEN_POOL_SIGNING_KEY_FILE
(defaulting to /etc/condor/passwords.d/POOL on Linux and $(RELEASE_DIR)\tokens.sk\POOL on Win-
dows).

2. Install an auto-approval rule on the central manager using condor_token_request_auto_approve. This au-
tomatically approves any daemons starting on a specified network for a fixed period of time. For example, to
auto-authorize any daemon on the network 192.168.0.0/24 for the next hour (3600 seconds), run the following
command from the central manager:

$ condor_token_request_auto_approve -netblock 192.168.0.0/24 -lifetime 3600

3. Within the auto-approval rule’s lifetime, start the submit and execute hosts inside the appropriate network. The
token requests for the corresponding daemons (the condor_master, condor_startd, and condor_schedd) will be
automatically approved and installed into /etc/condor/tokens.d/; this will authorize the daemon to advertise
to the collector. By default, auto-generated tokens do not have an expiration.

This quick-configuration requires no configuration changes beyond the default settings. More complex cases, such as
those where the network is not trusted, are covered in the Token Authentication section.

4.8.4 HTCondor’s Security Model

At the heart of HTCondor’s security model is the notion that communications are subject to various security checks.
A request from one HTCondor daemon to another may require authentication to prevent subversion of the system. A
request from a user of HTCondor may need to be denied due to the confidential nature of the request. The security
model handles these example situations and many more.

Requests to HTCondor are categorized into groups of access levels, based on the type of operation requested. The user
of a specific request must be authorized at the required access level. For example, executing the condor_status command
requires the READ access level. Actions that accomplish management tasks, such as shutting down or restarting of a
daemon require an ADMINISTRATOR access level. See the Authorization section for a full list of HTCondor’s access
levels and their meanings.

There are two sides to any communication or command invocation in HTCondor. One side is identified as the client,
and the other side is identified as the daemon. The client is the party that initiates the command, and the daemon is
the party that processes the command and responds. In some cases it is easy to distinguish the client from the daemon,
while in other cases it is not as easy. HTCondor tools such as condor_submit and condor_config_val are clients. They
send commands to daemons and act as clients in all their communications. For example, the condor_submit command
communicates with the condor_schedd. Behind the scenes, HTCondor daemons also communicate with each other; in
this case the daemon initiating the command plays the role of the client. For instance, the condor_negotiator daemon
acts as a client when contacting the condor_schedd daemon to initiate matchmaking. Once a match has been found,
the condor_schedd daemon acts as a client and contacts the condor_startd daemon.

HTCondor’s security model is implemented using configuration. Commands in HTCondor are executed over TCP/IP
network connections. While network communication enables HTCondor to manage resources that are distributed
across an organization (or beyond), it also brings in security challenges. HTCondor must have ways of ensuring that
communications are being sent by trustworthy users and not tampered with in transit. These issues can be addressed
with HTCondor’s authentication, encryption, and integrity features.

4.8. Security 381

HTCondor Manual, Release 10.0.9

Access Level Descriptions

Authorization is granted based on specified access levels. This list describes each access level, and provides examples
of their usage. The levels implement a partial hierarchy; a higher level often implies a READ or both a WRITE and a
READ level of access as described.

READ This access level can obtain or read information about HTCondor. Examples that require only READ access are
viewing the status of the pool with condor_status, checking a job queue with condor_q, or viewing user priorities
with condor_userprio. READ access does not allow any changes, and it does not allow job submission.

WRITE This access level is required to send (write) information to HTCondor. Examples that require WRITE access
are job submission with condor_submit and advertising a machine so it appears in the pool (this is usually done
automatically by the condor_startd daemon). The WRITE level of access implies READ access.

ADMINISTRATOR This access level has additional HTCondor administrator rights to the pool. It includes the ability to
change user priorities with the command condor_userprio, as well as the ability to turn HTCondor on and off
(as with the commands condor_on and condor_off). The condor_fetchlog tool also requires an ADMINISTRATOR
access level. The ADMINISTRATOR level of access implies both READ and WRITE access.

CONFIG This access level is required to modify a daemon’s configuration using the condor_config_val command. By
default, this level of access can change any configuration parameters of an HTCondor pool, except those specified
in the condor_config.root configuration file. The CONFIG level of access implies READ access.

DAEMON This access level is used for commands that are internal to the operation of HTCondor. An example of this
internal operation is when the condor_startd daemon sends its ClassAd updates to the condor_collector daemon
(which may be more specifically controlled by the ADVERTISE_STARTD access level). Authorization at this access
level should only be given to the user account under which the HTCondor daemons run. The DAEMON level of
access implies both READ and WRITE access.

NEGOTIATOR This access level is used specifically to verify that commands are sent by the condor_negotiator dae-
mon. The condor_negotiator daemon runs on the central manager of the pool. Commands requiring this access
level are the ones that tell the condor_schedd daemon to begin negotiating, and those that tell an available con-
dor_startd daemon that it has been matched to a condor_schedd with jobs to run. The NEGOTIATOR level of
access implies READ access.

ADVERTISE_MASTER This access level is used specifically for commands used to advertise a condor_master daemon
to the collector. Any setting for this access level that is not defined will default to the corresponding setting in
the DAEMON access level. The ADVERTISE_MASTER level of access implies READ access.

ADVERTISE_STARTD This access level is used specifically for commands used to advertise a condor_startd daemon
to the collector. Any setting for this access level that is not defined will default to the corresponding setting in
the DAEMON access level. The ADVERTISE_STARTD level of access implies READ access.

ADVERTISE_SCHEDD This access level is used specifically for commands used to advertise a condor_schedd daemon
to the collector. Any setting for this access level that is not defined will default to the corresponding setting in
the DAEMON access level. The ADVERTISE_SCHEDD level of access implies READ access.

CLIENT This access level is different from all the others. Whereas all of the other access levels refer to the security
policy for accepting connections from others, the CLIENT access level applies when an HTCondor daemon or
tool is connecting to some other HTCondor daemon. In other words, it specifies the policy of the client that is
initiating the operation, rather than the server that is being contacted.

The following is a list of registered commands that daemons will accept. The list is ordered by daemon. For each
daemon, the commands are grouped by the access level required for a daemon to accept the command from a given
machine.

ALL DAEMONS:

WRITE The command sent as a result of condor_reconfig to reconfigure a daemon.

382 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

STARTD:

WRITE All commands that relate to a condor_schedd daemon claiming a machine, starting jobs there, or stopping those
jobs.

The command that condor_checkpoint sends to periodically checkpoint all running jobs.

READ The command that condor_preen sends to request the current state of the condor_startd daemon.

NEGOTIATOR The command that the condor_negotiator daemon sends to match a machine’s condor_startd daemon
with a given condor_schedd daemon.

NEGOTIATOR:

WRITE The command that initiates a new negotiation cycle. It is sent by the condor_schedd when new jobs are sub-
mitted or a condor_reschedule command is issued.

READ The command that can retrieve the current state of user priorities in the pool, sent by the condor_userprio
command.

ADMINISTRATOR The command that can set the current values of user priorities, sent as a result of the condor_userprio
command.

COLLECTOR:

ADVERTISE_MASTER Commands that update the condor_collector daemon with new condor_master ClassAds.

ADVERTISE_SCHEDD Commands that update the condor_collector daemon with new condor_schedd ClassAds.

ADVERTISE_STARTD Commands that update the condor_collector daemon with new condor_startd ClassAds.

DAEMON All other commands that update the condor_collector daemon with new ClassAds. Note that the specific
access levels such as ADVERTISE_STARTD default to the DAEMON settings, which in turn defaults to WRITE.

READ All commands that query the condor_collector daemon for ClassAds.

SCHEDD:

NEGOTIATOR The command that the condor_negotiator sends to begin negotiating with this condor_schedd to match
its jobs with available condor_startds.

WRITE The command which condor_reschedule sends to the condor_schedd to get it to update the condor_collector
with a current ClassAd and begin a negotiation cycle.

The commands which write information into the job queue (such as condor_submit and condor_hold). Note
that for most commands which attempt to write to the job queue, HTCondor will perform an additional user-
level authentication step. This additional user-level authentication prevents, for example, an ordinary user from
removing a different user’s jobs.

READ The command from any tool to view the status of the job queue.

The commands that a condor_startd sends to the condor_schedd when the condor_schedd daemon’s claim is be-
ing preempted and also when the lease on the claim is renewed. These operations only require READ access, rather
than DAEMON in order to limit the level of trust that the condor_schedd must have for the condor_startd. Success
of these commands is only possible if the condor_startd knows the secret claim id, so effectively, authorization
for these commands is more specific than HTCondor’s general security model implies. The condor_schedd au-
tomatically grants the condor_startd READ access for the duration of the claim. Therefore, if one desires to only
authorize specific execute machines to run jobs, one must either limit which machines are allowed to advertise
themselves to the pool (most common) or configure the condor_schedd ‘s ALLOW_CLIENT setting to only allow
connections from the condor_schedd to the trusted execute machines.

MASTER: All commands are registered with ADMINISTRATOR access:

restart Master restarts itself (and all its children)

4.8. Security 383

HTCondor Manual, Release 10.0.9

off Master shuts down all its children

off -master Master shuts down all its children and exits

on Master spawns all the daemons it is configured to spawn

4.8.5 Security Negotiation

Because of the wide range of environments and security demands necessary, HTCondor must be flexible. Configuration
provides this flexibility. The process by which HTCondor determines the security settings that will be used when a
connection is established is called security negotiation. Security negotiation’s primary purpose is to determine which
of the features of authentication, encryption, and integrity checking will be enabled for a connection. In addition,
since HTCondor supports multiple technologies for authentication and encryption, security negotiation also determines
which technology is chosen for the connection.

Security negotiation is a completely separate process from matchmaking, and should not be confused with any specific
function of the condor_negotiator daemon. Security negotiation occurs when one HTCondor daemon or tool initiates
communication with another HTCondor daemon, to determine the security settings by which the communication will
be ruled. The condor_negotiator daemon does negotiation, whereby queued jobs and available machines within a pool
go through the process of matchmaking (deciding out which machines will run which jobs).

Configuration

The configuration macro names that determine what features will be used during client-daemon communication follow
the pattern:

SEC_<context>_<feature>

The <feature> portion of the macro name determines which security feature’s policy is being set. <feature> may be
any one of

AUTHENTICATION
ENCRYPTION
INTEGRITY
NEGOTIATION

The <context> component of the security policy macros can be used to craft a fine-grained security policy based on
the type of communication taking place. <context> may be any one of

CLIENT
READ
WRITE
ADMINISTRATOR
CONFIG
DAEMON
NEGOTIATOR
ADVERTISE_MASTER
ADVERTISE_STARTD
ADVERTISE_SCHEDD
DEFAULT

Any of these constructed configuration macros may be set to any of the following values:

384 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

REQUIRED
PREFERRED
OPTIONAL
NEVER

Security negotiation resolves various client-daemon combinations of desired security features in order to set a policy.

As an example, consider Frida the scientist. Frida wants to avoid authentication when possible. She sets

SEC_DEFAULT_AUTHENTICATION = OPTIONAL

The machine running the condor_schedd to which Frida will remotely submit jobs, however, is operated by a security-
conscious system administrator who dutifully sets:

SEC_DEFAULT_AUTHENTICATION = REQUIRED

When Frida submits her jobs, HTCondor’s security negotiation determines that authentication will be used, and allows
the command to continue. This example illustrates the point that the most restrictive security policy sets the levels of
security enforced. There is actually more to the understanding of this scenario. Some HTCondor commands, such
as the use of condor_submit to submit jobs always require authentication of the submitter, no matter what the policy
says. This is because the identity of the submitter needs to be known in order to carry out the operation. Others
commands, such as condor_q, do not always require authentication, so in the above example, the server’s policy would
force Frida’s condor_q queries to be authenticated, whereas a different policy could allow condor_q to happen without
any authentication.

Whether or not security negotiation occurs depends on the setting at both the client and daemon side of the configuration
variable(s) defined by SEC_*_NEGOTIATION. SEC_DEFAULT_NEGOTIATION is a variable representing the entire set of
configuration variables for NEGOTIATION. For the client side setting, the only definitions that make sense are REQUIRED
and NEVER. For the daemon side setting, the PREFERRED value makes no sense. Table 3.2 shows how security negotia-
tion resolves various client-daemon combinations of security negotiation policy settings. Within the table, Yes means
the security negotiation will take place. No means it will not. Fail means that the policy settings are incompatible and
the communication cannot continue.

Daemon Setting
NEVER OPTIONAL REQUIRED

Client Setting NEVER No No Fail
REQUIRED Fail Yes Yes

Table 3.2: Resolution of security negotiation.

Enabling authentication, encryption, and integrity checks is dependent on security negotiation taking place. The en-
abled security negotiation further sets the policy for these other features. Table 3.3 shows how security features are
resolved for client-daemon combinations of security feature policy settings. Like Table 3.2, Yes means the feature will
be utilized. No means it will not. Fail implies incompatibility and the feature cannot be resolved.

Daemon Setting
NEVER OPTIONAL PREFERRED REQUIRED

Client Setting NEVER No No No Fail
OPTIONAL No No Yes Yes
PREFERRED No Yes Yes Yes
REQUIRED Fail Yes Yes Yes

Table 3.3: Resolution of security features.

4.8. Security 385

HTCondor Manual, Release 10.0.9

The enabling of encryption and/or integrity checks is dependent on authentication taking place. The authentication
provides a key exchange. The key is needed for both encryption and integrity checks.

Setting SEC_CLIENT_<feature> determines the policy for all outgoing commands. The policy for incoming com-
mands (the daemon side of the communication) takes a more fine-grained approach that implements a set of access
levels for the received command. For example, it is desirable to have all incoming administrative requests require au-
thentication. Inquiries on pool status may not be so restrictive. To implement this, the administrator configures the
policy:

SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_READ_AUTHENTICATION = OPTIONAL

The DEFAULT value for <context> provides a way to set a policy for all access levels (READ, WRITE, etc.) that do
not have a specific configuration variable defined. In addition, some access levels will default to the settings specified
for other access levels. For example, ADVERTISE_STARTD defaults to DAEMON, and DAEMON defaults to WRITE, which
then defaults to the general DEFAULT setting.

Configuration for Security Methods

Authentication and encryption can each be accomplished by a variety of methods or technologies. Which method is
utilized is determined during security negotiation.

The configuration macros that determine the methods to use for authentication and/or encryption are

SEC_<context>_AUTHENTICATION_METHODS
SEC_<context>_CRYPTO_METHODS

These macros are defined by a comma or space delimited list of possible methods to use. The Authentication section
lists all implemented authentication methods. The Encryption section lists all implemented encryption methods.

4.8.6 Authentication

The client side of any communication uses one of two macros to specify whether authentication is to occur:

SEC_DEFAULT_AUTHENTICATION
SEC_CLIENT_AUTHENTICATION

For the daemon side, there are a larger number of macros to specify whether authentication is to take place, based upon
the necessary access level:

SEC_DEFAULT_AUTHENTICATION
SEC_READ_AUTHENTICATION
SEC_WRITE_AUTHENTICATION
SEC_ADMINISTRATOR_AUTHENTICATION
SEC_CONFIG_AUTHENTICATION
SEC_DAEMON_AUTHENTICATION
SEC_NEGOTIATOR_AUTHENTICATION
SEC_ADVERTISE_MASTER_AUTHENTICATION
SEC_ADVERTISE_STARTD_AUTHENTICATION
SEC_ADVERTISE_SCHEDD_AUTHENTICATION

As an example, the macro defined in the configuration file for a daemon as

386 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

SEC_WRITE_AUTHENTICATION = REQUIRED

signifies that the daemon must authenticate the client for any communication that requires the WRITE access level. If
the daemon’s configuration contains

SEC_DEFAULT_AUTHENTICATION = REQUIRED

and does not contain any other security configuration for AUTHENTICATION, then this default defines the daemon’s
needs for authentication over all access levels. Where a specific macro is defined, the more specific value takes prece-
dence over the default definition.

If authentication is to be done, then the communicating parties must negotiate a mutually acceptable method of authen-
tication to be used. A list of acceptable methods may be provided by the client, using the macros

SEC_DEFAULT_AUTHENTICATION_METHODS
SEC_CLIENT_AUTHENTICATION_METHODS

A list of acceptable methods may be provided by the daemon, using the macros

SEC_DEFAULT_AUTHENTICATION_METHODS
SEC_READ_AUTHENTICATION_METHODS
SEC_WRITE_AUTHENTICATION_METHODS
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS
SEC_CONFIG_AUTHENTICATION_METHODS
SEC_DAEMON_AUTHENTICATION_METHODS
SEC_NEGOTIATOR_AUTHENTICATION_METHODS
SEC_ADVERTISE_MASTER_AUTHENTICATION_METHODS
SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS
SEC_ADVERTISE_SCHEDD_AUTHENTICATION_METHODS

The methods are given as a comma-separated list of acceptable values. These variables list the authentication methods
that are available to be used. The ordering of the list defines preference; the first item in the list indicates the highest
preference. As not all of the authentication methods work on Windows platforms, which ones do not work on Windows
are indicated in the following list of defined values:

SSL
KERBEROS
PASSWORD
FS (not available on Windows platforms)
FS_REMOTE (not available on Windows platforms)
IDTOKENS
SCITOKENS
NTSSPI
MUNGE
CLAIMTOBE
ANONYMOUS

For example, a client may be configured with:

SEC_CLIENT_AUTHENTICATION_METHODS = FS, SSL

and a daemon the client is trying to contact with:

SEC_DEFAULT_AUTHENTICATION_METHODS = SSL

4.8. Security 387

HTCondor Manual, Release 10.0.9

Security negotiation will determine that SSL authentication is the only compatible choice. If there are multiple com-
patible authentication methods, security negotiation will make a list of acceptable methods and they will be tried in
order until one succeeds.

As another example, the macro

SEC_DEFAULT_AUTHENTICATION_METHODS = KERBEROS, NTSSPI

indicates that either Kerberos or Windows authentication may be used, but Kerberos is preferred over Windows. Note
that if the client and daemon agree that multiple authentication methods may be used, then they are tried in turn. For
instance, if they both agree that Kerberos or NTSSPI may be used, then Kerberos will be tried first, and if there is a
failure for any reason, then NTSSPI will be tried.

An additional specialized method of authentication exists for communication between the condor_schedd and con-
dor_startd, as well as communication between the condor_schedd and the condor_negotiator. It is especially
useful when operating at large scale over high latency networks or in situations where it is inconvenient to set
up one of the other methods of authentication between the submit and execute daemons. See the description of
SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION in Configuration File Entries Relating to Security for details.

If the configuration for a machine does not define any variable for SEC_<access-level>_AUTHENTICATION, then
HTCondor uses a default value of OPTIONAL. Authentication will be required for any operation which modifies the
job queue, such as condor_qedit and condor_rm. If the configuration for a machine does not define any variable
for SEC_<access-level>_AUTHENTICATION_METHODS, the default value for a Unix machine is FS, IDTOKENS,
KERBEROS. This default value for a Windows machine is NTSSPI, IDTOKENS, KERBEROS.

SSL Authentication

SSL authentication utilizes X.509 certificates to establish trust between a client and a server.

SSL authentication may be mutual or server-only. That is, the server always needs a certificate that can be verified
by the client, but a certificate for the client may be optional. Whether a client certificate is required is controlled by
configuration variable AUTH_SSL_REQUIRE_CLIENT_CERTIFICATE , a boolean value that defaults to False. If the
value is False, then the client may present a certificate to be verified by the server. if the client doesn’t have a certificate,
then its identity is set to unauthenticated by the server. If the value is True and the client doesn’t have a certificate,
then the SSL authentication fails (other authentication methods may then be tried).

The names and locations of keys and certificates for clients, servers, and the files used to specify trusted certificate
authorities (CAs) are defined by settings in the configuration files. The contents of the files are identical in format and
interpretation to those used by other systems which use SSL, such as Apache httpd.

The configuration variables AUTH_SSL_CLIENT_CERTFILE and AUTH_SSL_SERVER_CERTFILE specify the file lo-
cation for the certificate file for the initiator and recipient of connections, respectively. Similarly, the configuration
variables AUTH_SSL_CLIENT_KEYFILE and AUTH_SSL_SERVER_KEYFILE specify the locations for keys. If no client
certificate is used, the client with authenticate as user anonymous@ssl.

The configuration variables AUTH_SSL_SERVER_CAFILE and AUTH_SSL_CLIENT_CAFILE each specify a path and
file name, providing the location of a file containing one or more certificates issued by trusted certificate authorities.
Similarly, AUTH_SSL_SERVER_CADIR and AUTH_SSL_CLIENT_CADIR each specify a directory with one or more files,
each which may contain a single CA certificate. The directories must be prepared using the OpenSSL c_rehash utility.

388 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Bootstrapping SSL Authentication

HTCondor daemons exposed to the Internet may utilize server certificates provided by well-known authorities; however,
SSL can be difficult to bootstrap for non-public hosts.

Accordingly, on first startup, if COLLECTOR_BOOTSTRAP_SSL_CERTIFICATE is True, the condor_collector generates
a new CA and key in the locations pointed to by TRUST_DOMAIN_CAFILE and TRUST_DOMAIN_CAKEY , respectively.
If AUTH_SSL_SERVER_CERTFILE or AUTH_SSL_SERVER_KEYFILE does not exist, the collector will generate a host
certificate and key using the generated CA and write them to the respective locations.

The first time an unknown CA is encountered by tool such as condor_status, the tool will prompt the user on whether
it should trust the CA; the prompt looks like the following:

$ condor_status
The remote host collector.wisc.edu presented an untrusted CA certificate with the␣
→˓following fingerprint:
SHA-256: 781b:1d:1:ca:b:f7:ab:b6:e4:a3:31:80:ae:28:9d:b0:a9:ee:1b:c1:63:8b:62:29:83:1f:
→˓e7:88:29:75:6:
Subject: /O=condor/CN=hcc-briantest7.unl.edu
Would you like to trust this server for current and future communications?
Please type 'yes' or 'no':

The result will be persisted in a file at .condor/known_hosts inside the user’s home directory.

Similarly, a daemon authenticating as a client against a remote server will record the result of the authenti-
cation in a system-wide trust whose location is kept in the configuration variable SEC_SYSTEM_KNOWN_HOSTS
. Since a daemon cannot prompt the administrator for a decision, it will always deny unknown CAs _unless_
BOOTSTRAP_SSL_SERVER_TRUST is set to true.

The first time any daemon is authenticated, even if it’s not through SSL, it will be noted in the known_hosts file.

The format of the known_hosts file is line-oriented and has three fields,

HOSTNAME METHOD CERTIFICATE_DATA

Any blank line or line prefixed with # will be ignored. Any line prefixed with ! will result in the CA certificate to _not_
be trusted. To easily switch an untrusted CA to be trusted, simply delete the ! prefix.

For example, collector.wisc.edu would be trusted with this file entry using SSL:

collector.wisc.edu SSL␣
→˓MIIBvjCCAWSgAwIBAgIJAJRheVnN5ZDyMAoGCCqGSM49BAMCMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTAeFw0yMTA1MTcxOTQ3MjRaFw0zMTA1MTUxOTQ3MjNaMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABPN7qu+qdsfP6WR++UucrZYvMhssre8jvgWsnPBdzCYU/
→˓EqHYp+wri/aAKyDrLM5R1lWX44jSykgIpTOCLJUS/
→˓ajYzBhMB0GA1UdDgQWBBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAfBgNVHSMEGDAWgBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAPBgNVHRMBAf8EBTADAQH/
→˓MA4GA1UdDwEB/wQEAwICBDAKBggqhkjOPQQDAgNIADBFAiARfW+suELxSzSdi9u20hFs/
→˓aSXpd+gwJ6Ne8jjG+y/2AIhAO6f3ff9nnYRmesFbvt1lv+LosOMbeiUdVoaKFOGIyuJ

The following line would cause collector.wisc.edu to _not_ be trusted:

!collector.wisc.edu SSL␣
→˓MIIBvjCCAWSgAwIBAgIJAJRheVnN5ZDyMAoGCCqGSM49BAMCMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTAeFw0yMTA1MTcxOTQ3MjRaFw0zMTA1MTUxOTQ3MjNaMDIxDzANBgNVBAoMBmNvbmRvcjEfMB0GA1UEAwwWaGNjLWJyaWFudGVzdDcudW5sLmVkdTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABPN7qu+qdsfP6WR++UucrZYvMhssre8jvgWsnPBdzCYU/
→˓EqHYp+wri/aAKyDrLM5R1lWX44jSykgIpTOCLJUS/
→˓ajYzBhMB0GA1UdDgQWBBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAfBgNVHSMEGDAWgBRBPe8Ga9Q7X3F198fWBSg6VT1DZDAPBgNVHRMBAf8EBTADAQH/
→˓MA4GA1UdDwEB/wQEAwICBDAKBggqhkjOPQQDAgNIADBFAiARfW+suELxSzSdi9u20hFs/
→˓aSXpd+gwJ6Ne8jjG+y/2AIhAO6f3ff9nnYRmesFbvt1lv+LosOMbeiUdVoaKFOGIyuJ

4.8. Security 389

HTCondor Manual, Release 10.0.9

Kerberos Authentication

If Kerberos is used for authentication, then a mapping from a Kerberos domain (called a realm) to an HTCondor UID
domain is necessary. There are two ways to accomplish this mapping. For a first way to specify the mapping, see The
Unified Map File for Authentication to use HTCondor’s unified map file. A second way to specify the mapping is to
set the configuration variable KERBEROS_MAP_FILE to the path of an administrator-maintained Kerberos-specific map
file. The configuration syntax is

KERBEROS_MAP_FILE = /path/to/etc/condor.kmap

Lines within this map file have the syntax

KERB.REALM = UID.domain.name

Here are two lines from a map file to use as an example:

CS.WISC.EDU = cs.wisc.edu
ENGR.WISC.EDU = ee.wisc.edu

If a KERBEROS_MAP_FILE configuration variable is defined and set, then all permitted realms must be explicitly mapped.
If no map file is specified, then HTCondor assumes that the Kerberos realm is the same as the HTCondor UID domain.

The configuration variable KERBEROS_SERVER_PRINCIPAL defines the name of a Kerberos principal, to override the
default host/<hostname>@<realm>. A principal specifies a unique name to which a set of credentials may be as-
signed.

The configuration variable KERBEROS_SERVER_SERVICE defines a Kerberos service to override the default host.
HTCondor prefixes this to /<hostname>@<realm> to obtain the default Kerberos principal. Configuration variable
KERBEROS_SERVER_PRINCIPAL overrides KERBEROS_SERVER_SERVICE.

As an example, the configuration

KERBEROS_SERVER_SERVICE = condor-daemon

results in HTCondor’s use of

condor-daemon/the.host.name@YOUR.KERB.REALM

as the server principal.

Here is an example of configuration settings that use Kerberos for authentication and require authentication of all
communications of the write or administrator access level.

SEC_WRITE_AUTHENTICATION = REQUIRED
SEC_WRITE_AUTHENTICATION_METHODS = KERBEROS
SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS = KERBEROS

Kerberos authentication on Unix platforms requires access to various files that usually are only accessible by the root
user. At this time, the only supported way to use KERBEROS authentication on Unix platforms is to start daemons
HTCondor as user root.

390 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Password Authentication

The password method provides mutual authentication through the use of a shared secret. This is often a good choice
when strong security is desired, but an existing Kerberos or X.509 infrastructure is not in place. Password authentication
is available on both Unix and Windows. It currently can only be used for daemon-to-daemon authentication. The shared
secret in this context is referred to as the pool password.

Before a daemon can use password authentication, the pool password must be stored on the daemon’s local machine.
On Unix, the password will be placed in a file defined by the configuration variable SEC_PASSWORD_FILE . This file
will be accessible only by the UID that HTCondor is started as. On Windows, the same secure password store that is
used for user passwords will be used for the pool password (see the Secure Password Storage section).

Under Unix, the password file can be generated by using the following command to write directly to the password file:

$ condor_store_cred -f /path/to/password/file

Under Windows (or under Unix), storing the pool password is done with the -c option when using to condor_store_cred
add. Running

$ condor_store_cred -c add

prompts for the pool password and store it on the local machine, making it available for daemons to use in authentication.
The condor_master must be running for this command to work.

In addition, storing the pool password to a given machine requires CONFIG-level access. For example, if the pool
password should only be set locally, and only by root, the following would be placed in the global configuration file.

ALLOW_CONFIG = root@mydomain/$(IP_ADDRESS)

It is also possible to set the pool password remotely, but this is recommended only if it can be done over an encrypted
channel. This is possible on Windows, for example, in an environment where common accounts exist across all the
machines in the pool. In this case, ALLOW_CONFIG can be set to allow the HTCondor administrator (who in this
example has an account condor common to all machines in the pool) to set the password from the central manager as
follows.

ALLOW_CONFIG = condor@mydomain/$(CONDOR_HOST)

The HTCondor administrator then executes

$ condor_store_cred -c -n host.mydomain add

from the central manager to store the password to a given machine. Since the condor account exists on both the
central manager and host.mydomain, the NTSSPI authentication method can be used to authenticate and encrypt the
connection. condor_store_cred will warn and prompt for cancellation, if the channel is not encrypted for whatever
reason (typically because common accounts do not exist or HTCondor’s security is misconfigured).

When a daemon is authenticated using a pool password, its security principle is condor_pool@$(UID_DOMAIN),
where $(UID_DOMAIN) is taken from the daemon’s configuration. The ALLOW_DAEMON and AL-
LOW_NEGOTIATOR configuration variables for authorization should restrict access using this name. For example,

ALLOW_DAEMON = condor_pool@mydomain/*, condor@mydomain/$(IP_ADDRESS)
ALLOW_NEGOTIATOR = condor_pool@mydomain/$(CONDOR_HOST)

This configuration allows remote DAEMON-level and NEGOTIATOR-level access, if the pool password is known.
Local daemons authenticated as condor@mydomain are also allowed access. This is done so local authentication can
be done using another method such as FS.

4.8. Security 391

mailto:condor@mydomain

HTCondor Manual, Release 10.0.9

If there is no pool password available on Linux, the condor_collector will automatically generate one. This is meant
to ease the configuration of freshly-installed clusters; for POOL authentication, the HTCondor administrator only needs
to copy this file to each host in the cluster.

Example Security Configuration Using Pool Password

The following example configuration uses pool password authentication and network message integrity checking for
all communication between HTCondor daemons.

SEC_PASSWORD_FILE = $(LOCK)/pool_password
SEC_DAEMON_AUTHENTICATION = REQUIRED
SEC_DAEMON_INTEGRITY = REQUIRED
SEC_DAEMON_AUTHENTICATION_METHODS = PASSWORD
SEC_NEGOTIATOR_AUTHENTICATION = REQUIRED
SEC_NEGOTIATOR_INTEGRITY = REQUIRED
SEC_NEGOTIATOR_AUTHENTICATION_METHODS = PASSWORD
SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS
ALLOW_DAEMON = condor_pool@$(UID_DOMAIN)/*.cs.wisc.edu, \

condor@$(UID_DOMAIN)/$(IP_ADDRESS)
ALLOW_NEGOTIATOR = condor_pool@$(UID_DOMAIN)/negotiator.machine.name

Example Using Pool Password for condor_startd Advertisement

One problem with the pool password method of authentication is that it involves a single, shared secret. This does
not scale well with the addition of remote users who flock to the local pool. However, the pool password may still be
used for authenticating portions of the local pool, while others (such as the remote condor_schedd daemons involved
in flocking) are authenticated by other means.

In this example, only the condor_startd daemons in the local pool are required to have the pool password when they
advertise themselves to the condor_collector daemon.

SEC_PASSWORD_FILE = $(LOCK)/pool_password
SEC_ADVERTISE_STARTD_AUTHENTICATION = REQUIRED
SEC_ADVERTISE_STARTD_INTEGRITY = REQUIRED
SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS = PASSWORD
SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS
ALLOW_ADVERTISE_STARTD = condor_pool@$(UID_DOMAIN)/*.cs.wisc.edu

Token Authentication

Password authentication requires both parties (client and server) in an authenticated session to have access to the same
password file. Further, both client and server authenticate the remote side as the user condor_pool which, by default,
has a high level of privilege to the entire pool. Hence, it is only reasonable for daemon-to-daemon authentication.
Further, as only one password is allowed, it is impossible to use PASSWORD authentication to flock to a remote pool.

Token-based authentication is a newer extension to PASSWORD authentication that allows the pool administrator to gen-
erate new, low-privilege tokens using one of several pool signing keys. It also allows a daemon or tool to authenticate
to a remote pool without having that pool’s password. As tokens are derived from a specific signing key, if an admin-
istrator removes a signing key from the directory specified in SEC_PASSWORD_DIRECTORY, then all derived tokens are
immediately invalid. Most simple installs will utilize a single signing key, named POOL.

392 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

While most token signing keys are placed in the directory specified by SEC_PASSWORD_DIRECTORY, with the filename
within the directory determining the key’s name, the POOL token signing key can be located elsewhere by setting
SEC_TOKEN_POOL_SIGNING_KEY_FILE to the full pathname of the desired file. On Linux the same file can be both
the pool signing key and the pool password if SEC_PASSWORD_FILE and SEC_TOKEN_POOL_SIGNING_KEY_FILE refer
to the same file. However this is not preferred because in order to properly interoperate with older versions of HTCondor
the pool password will be read as a text file and truncated at the first NUL character. This differs from the pool signing
key which is read as binary in HTCondor 9.0. Some 8.9 releases used the pool password as the pool signing key for
tokens, those versions will not interoperate with 9.0 if the pool signing key file contains NUL characters.

The condor_collector process will automatically generate the pool signing key named POOL on startup if that file does
not exist.

To generate a token, the administrator may utilize the condor_token_create command-line utility:

$ condor_token_create -identity frida@pool.example.com

The resulting token may be given to Frida and appended to a file in the directory specified by SEC_TOKEN_DIRECTORY
(defaults to ~/.condor/tokens.d). Subsequent authentications to the pool will utilize this token and cause
Frida to be authenticated as the identity frida@pool.example.com. For daemons, tokens are stored in
SEC_TOKEN_SYSTEM_DIRECTORY; on Unix platforms, this defaults to /etc/condor/tokens.d which should be a
directory with permissions that only allow read and write access by user root.

Note that each pool signing key is named (the pool signing key defaults to the special name POOL) by its corresponding
filename in SEC_PASSWORD_DIRECTORY; HTCondor will assume that, for all daemons in the same trust domain (de-
faulting to the HTCondor pool) will have the same signing key for the same name. That is, the signing key contained
in key1 in host pool.example.com is identical to the signing key contained in key1 in host submit.example.com.

Unlike pool passwords, tokens can have a limited lifetime and can limit the authorizations allowed to the client. For
example,

$ condor_token_create -identity condor@pool.example.com \
-lifetime 3600 \
-authz ADVERTISE_STARTD

will create a new token that maps to user condor@pool.example.com. However, this token is only valid for the
ADVERTISE_STARTD authorization, regardless of what the server has configured for the condor user (the intersection
of the identity’s configured authorization and the token’s authorizations, if specified, are used). Further, the token will
only be valid for 3600 seconds (one hour).

In many cases, it is difficult or awkward for the administrator to securely provide the new token to the user; an email or
text message from administrator to user is typically insufficiently secure to send the token (especially as old emails are
often archived for many years). In such a case, the user may instead anonymously request a token from the administrator.
The user will receive a request ID, which the administrator will need in order to approve the request. The ID (typically,
a 7 digit number) is easier to communicate over the phone (compared to the token, which is hundreds of characters
long). Importantly, neither user nor administrator is responsible for securely moving the token - e.g., there is no chance
it will be leaked into an email archive.

If a condor_master, condor_startd, or condor_schedd daemon cannot authenticate with the collector, it will automati-
cally perform a token request from the collector.

To use the token request workflow, the user needs a confidential channel to the server or an appropriate auto-approval
rule needs to be in place. The simplest way to establish a confidential channel is using SSL Authentication without a
client certificate; configure the collector using a host certificate.

Using the SSL authentication, the client can request a new authentication token:

$ condor_token_request
Token request enqueued. Ask an administrator to please approve request 9235785.

4.8. Security 393

HTCondor Manual, Release 10.0.9

This will enqueue a request for a token corresponding to the superuser condor; the HTCondor pool administrator will
subsequently need to approve request 9235785 using the condor_token_request_approve tool.

If the host trusts requests coming from a specific network (i.e., the same administrator manages the network and no
unprivileged users are currently on the network), then the auto-approval mechanism may be used. When in place, auto-
approval allows any token authentication request on an approved network to be automatically approved by HTCondor
on behalf of the pool administrator - even when requests do not come over confidential connnections.

When a daemon issues a token for a client (e.g. for condor_token_fetch or condor_token_request), the signing
key it uses must appear in the list SEC_TOKEN_FETCH_ALLOWED_SIGNING_KEYS. If the client doesn’t request a specific
signing key to use, then the key given by SEC_TOKEN_ISSUER_KEY is used. The default for both of these configuration
parameters is POOL.

If there are multiple tokens in files in the SEC_TOKEN_SYSTEM_DIRECTORY, then the daemon will search for tokens
in that directory based on lexicographical order; the exception is that the file $(SUBSYS)_auto_generated_token
will be searched first for daemons of type $(SUBSYS). For example, if SEC_TOKEN_SYSTEM_DIRECTORY
is set to /etc/condor/tokens.d, then the condor_schedd will search at /etc/condor/tokens.d/
SCHEDD_auto_generated_token by default.

Users may create their own tokens with condor_token_fetch. This command-line utility will contact the default
condor_schedd and request a new token given the user’s authenticated identity. Unlike condor_token_create,
the condor_token_fetch has no control over the mapped identity (but does not need to read the files in
SEC_PASSWORD_DIRECTORY).

If no security authentication methods specified by the administrator - and the daemon or user has access to at least one
token - then IDTOKENS authentication is automatically added to the list of valid authentication methods. Otherwise, to
setup IDTOKENS authentication, enable it in the list of authentication methods:

SEC_DEFAULT_AUTHENTICATION_METHODS=$(SEC_DEFAULT_AUTHENTICATION_METHODS), IDTOKENS
SEC_CLIENT_AUTHENTICATION_METHODS=$(SEC_CLIENT_AUTHENTICATION_METHODS), IDTOKENS

Revoking Token: If a token is lost, stolen, or accidentally exposed, then the system administrator may use the to-
ken revocation mechanism in order to prevent unauthorized use. Revocation can be accomplished by setting the
SEC_TOKEN_REVOCATION_EXPR configuration parameter; when set, the value of this parameter will be evaluated as a
ClassAd expression against the token’s contents.

For example, consider the following token:

eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.
→˓eyJpYXQiOjE1ODg0NzQ3MTksImlzcyI6ImhjYy1icmlhbnRlc3Q3LnVubC5lZHUiLCJqdGkiOiJjNzYwYzJhZjE5M2ExZmQ0ZTQwYmM5YzUzYzk2ZWU3YyIsInN1YiI6ImJib2NrZWxtQGhjYy1icmlhbnRlc3Q3LnVubC5lZHUifQ.
→˓fiqfgwjyTkxMSdxwm84xxMTVcGfearddEDj_rhiIbi4ummU

When printed using condor_token_list, the human-readable form is as follows (line breaks added for readability):

$ condor_token_list
Header: {"alg":"HS256","kid":"POOL"}
Payload: {

"iat": 1588474719,
"iss": "pool.example.com",
"jti": "c760c2af193a1fd4e40bc9c53c96ee7c",
"sub": "alice@pool.example.com"

}

If we would like to revoke this token, we could utilize any of the following values for SEC_TOKEN_REVOCATION_EXPR,
depending on the desired breadth of the revocation:

394 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Revokes all tokens from the user Alice:
SEC_TOKEN_REVOCATION_EXPR = sub =?= "alice@pool.example.com"

Revokes all tokens from Alice issued before or after this one:
SEC_TOKEN_REVOCATION_EXPR = sub =?= "alice@pool.example.com" && \

iat <= 1588474719

Revokes *only* this token:
SEC_TOKEN_REVOCATION_EXPR = jti =?= "c760c2af193a1fd4e40bc9c53c96ee7c"

The revocation only works on the daemon where SEC_TOKEN_REVOCATION_EXPR is set; to revoke a token across the
entire pool, set SEC_TOKEN_REVOCATION_EXPR on every host.

In order to invalidate all tokens issued by a given master password in SEC_PASSWORD_DIRECTORY, simply remove the
file from the directory.

File System Authentication

This form of authentication utilizes the ownership of a file in the identity verification of a client. A daemon authenti-
cating a client requires the client to write a file in a specific location (/tmp). The daemon then checks the ownership of
the file. The file’s ownership verifies the identity of the client. In this way, the file system becomes the trusted authority.
This authentication method is only appropriate for clients and daemons that are on the same computer.

File System Remote Authentication

Like file system authentication, this form of authentication utilizes the ownership of a file in the identity verification of
a client. In this case, a daemon authenticating a client requires the client to write a file in a specific location, but the
location is not restricted to /tmp. The location of the file is specified by the configuration variable FS_REMOTE_DIR .

Windows Authentication

This authentication is done only among Windows machines using a proprietary method. The Windows security in-
terface SSPI is used to enforce NTLM (NT LAN Manager). The authentication is based on challenge and response,
using the user’s password as a key. This is similar to Kerberos. The main difference is that Kerberos provides an access
token that typically grants access to an entire network, whereas NTLM authentication only verifies an identity to one
machine at a time. NTSSPI is best-used in a way similar to file system authentication in Unix, and probably should not
be used for authentication between two computers.

4.8. Security 395

HTCondor Manual, Release 10.0.9

Ask MUNGE for Authentication

Ask the MUNGE service to validate both sides of the authentication. See: https://dun.github.io/munge/ for instructions
on installing.

Claim To Be Authentication

Claim To Be authentication accepts any identity claimed by the client. As such, it does not authenticate. It is included
in HTCondor and in the list of authentication methods for testing purposes only.

Anonymous Authentication

Anonymous authentication causes authentication to be skipped entirely. As such, it does not authenticate. It is included
in HTCondor and in the list of authentication methods for testing purposes only.

4.8.7 The Unified Map File for Authentication

HTCondor’s unified map file allows the mappings from authenticated names to an HTCondor canonical user name to
be specified as a single list within a single file. The location of the unified map file is defined by the configuration
variable CERTIFICATE_MAPFILE ; it specifies the path and file name of the unified map file. Each mapping is on its
own line of the unified map file. Each line contains either an @include directive, or 3 fields, separated by white space
(space or tab characters):

1. The name of the authentication method to which the mapping applies.

2. A name or a regular expression representing the authenticated name to be mapped.

3. The canonical HTCondor user name.

Allowable authentication method names are the same as used to define any of the configuration variables
SEC_*_AUTHENTICATION_METHODS, as repeated here:

SSL
KERBEROS
PASSWORD
FS
FS_REMOTE
IDTOKENS
SCITOKENS
NTSSPI
MUNGE
CLAIMTOBE
ANONYMOUS

The fields that represent an authenticated name and the canonical HTCondor user name may utilize regular expressions
as defined by PCRE (Perl-Compatible Regular Expressions). Due to this, more than one line (mapping) within the
unified map file may match. Look ups are therefore defined to use the first mapping that matches.

For HTCondor version 8.5.8 and later, the authenticated name field will be interpreted as a regular expression or as a
simple string based on the value of the CERTIFICATE_MAPFILE_ASSUME_HASH_KEYS configuration variable. If this
configuration varible is true, then the authenticated name field is a regular expression only when it begins and ends
with the / character. If this configuration variable is false, or on HTCondor versions older than 8.5.8, the authenticated
name field is always a regular expression.

396 Chapter 4. Administrators’ Manual

https://dun.github.io/munge/

HTCondor Manual, Release 10.0.9

A regular expression may need to contain spaces, and in this case the entire expression can be surrounded by double
quote marks. If a double quote character also needs to appear in such an expression, it is preceded by a backslash.

If the first field is the special value @include, it should be followed by a file or directory path in the second field. If a
file is specified, it will be read and parsed as map file. If a directory is specified, then each file in the directory is read
as a map file unless the name of the file matches the pattern specified in the LOCAL_CONFIG_DIR_EXCLUDE_REGEXP
configuration variable. Files in the directory are read in lexical order. When a map file is read as a result of an
@include statement, any @include statements that it contains will be ignored. If the file or directory path specified
with an @include statement is a relative path, it will be treated as relative to the file currently being read.

The default behavior of HTCondor when no map file is specified is to do the following mappings, with some additional
logic noted below:

FS (.*) \1
FS_REMOTE (.*) \1
SSL (.*) ssl@unmapped
KERBEROS ([^/]*)/?[^@]*@(.*) \1@\2
NTSSPI (.*) \1
MUNGE (.*) \1
CLAIMTOBE (.*) \1
PASSWORD (.*) \1

For Kerberos, if KERBEROS_MAP_FILE is specified, the domain portion of the name is obtained by mapping the Ker-
beros realm to the value specified in the map file, rather than just using the realm verbatim as the domain portion of
the condor user name. See the Authentication section for details.

If authentication did not happen or failed and was not required, then the user is given the name unauthenti-
cated@unmapped.

With the integration of VOMS for authentication, the interpretation of the regular expression representing the authen-
ticated name may change. First, the full serialized DN and FQAN are used in attempting a match. See the description
of job attribute X509UserProxyFQAN in Job ClassAd Attributes for details on how the DN and FQAN are serialized.
If no match is found using the full DN and FQAN, then the DN is then used on its own without the FQAN. Using this,
roles or user names from the VOMS attributes may be extracted to be used as the target for mapping. And, in this case
the FQAN are verified, permitting reliance on their authenticity.

4.8.8 Encryption

Encryption provides privacy support between two communicating parties. Through configuration macros, both the
client and the daemon can specify whether encryption is required for further communication.

The client uses one of two macros to enable or disable encryption:

SEC_DEFAULT_ENCRYPTION
SEC_CLIENT_ENCRYPTION

For the daemon, there are seven macros to enable or disable encryption:

SEC_DEFAULT_ENCRYPTION
SEC_READ_ENCRYPTION
SEC_WRITE_ENCRYPTION
SEC_ADMINISTRATOR_ENCRYPTION
SEC_CONFIG_ENCRYPTION
SEC_DAEMON_ENCRYPTION

(continues on next page)

4.8. Security 397

mailto:unauthenticated@unmapped
mailto:unauthenticated@unmapped

HTCondor Manual, Release 10.0.9

(continued from previous page)

SEC_NEGOTIATOR_ENCRYPTION
SEC_ADVERTISE_MASTER_ENCRYPTION
SEC_ADVERTISE_STARTD_ENCRYPTION
SEC_ADVERTISE_SCHEDD_ENCRYPTION

As an example, the macro defined in the configuration file for a daemon as

SEC_CONFIG_ENCRYPTION = REQUIRED

signifies that any communication that changes a daemon’s configuration must be encrypted. If a daemon’s configuration
contains

SEC_DEFAULT_ENCRYPTION = REQUIRED

and does not contain any other security configuration for ENCRYPTION, then this default defines the daemon’s needs
for encryption over all access levels. Where a specific macro is present, its value takes precedence over any default
given.

If encryption is to be done, then the communicating parties must find (negotiate) a mutually acceptable method of
encryption to be used. A list of acceptable methods may be provided by the client, using the macros

SEC_DEFAULT_CRYPTO_METHODS
SEC_CLIENT_CRYPTO_METHODS

A list of acceptable methods may be provided by the daemon, using the macros

SEC_DEFAULT_CRYPTO_METHODS
SEC_READ_CRYPTO_METHODS
SEC_WRITE_CRYPTO_METHODS
SEC_ADMINISTRATOR_CRYPTO_METHODS
SEC_CONFIG_CRYPTO_METHODS
SEC_DAEMON_CRYPTO_METHODS
SEC_NEGOTIATOR_CRYPTO_METHODS
SEC_ADVERTISE_MASTER_CRYPTO_METHODS
SEC_ADVERTISE_STARTD_CRYPTO_METHODS
SEC_ADVERTISE_SCHEDD_CRYPTO_METHODS

The methods are given as a comma-separated list of acceptable values. These variables list the encryption methods
that are available to be used. The ordering of the list gives preference; the first item in the list indicates the highest
preference. Possible values are

AES
BLOWFISH
3DES

As of version 9.0.2 HTCondor can be configured to be FIPS compliant. This disallows BLOWFISH as an encryption
method. Please see the FIPS section below.

398 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

4.8.9 Integrity

An integrity check assures that the messages between communicating parties have not been tampered with. Any change,
such as addition, modification, or deletion can be detected. Through configuration macros, both the client and the
daemon can specify whether an integrity check is required of further communication.

The client uses one of two macros to enable or disable an integrity check:

SEC_DEFAULT_INTEGRITY
SEC_CLIENT_INTEGRITY

For the daemon, there are seven macros to enable or disable an integrity check:

SEC_DEFAULT_INTEGRITY
SEC_READ_INTEGRITY
SEC_WRITE_INTEGRITY
SEC_ADMINISTRATOR_INTEGRITY
SEC_CONFIG_INTEGRITY
SEC_DAEMON_INTEGRITY
SEC_NEGOTIATOR_INTEGRITY
SEC_ADVERTISE_MASTER_INTEGRITY
SEC_ADVERTISE_STARTD_INTEGRITY
SEC_ADVERTISE_SCHEDD_INTEGRITY

As an example, the macro defined in the configuration file for a daemon as

SEC_CONFIG_INTEGRITY = REQUIRED

signifies that any communication that changes a daemon’s configuration must have its integrity assured. If a daemon’s
configuration contains

SEC_DEFAULT_INTEGRITY = REQUIRED

and does not contain any other security configuration for INTEGRITY, then this default defines the daemon’s needs for
integrity checks over all access levels. Where a specific macro is present, its value takes precedence over any default
given.

If AES encryption is used for a connection, then a secure checksum is included within the AES data regardless of any
INTEGRITY settings.

If another type of encryption was used (i.e. BLOWFISH or 3DES), then a signed MD5 check sum is the only available
method for integrity checking. Its use is implied whenever integrity checks occur.

As of version 9.0.2 HTCondor can be configured to be FIPS compliant. This disallows MD5 as an integrity method.
We suggest you use AES encryption as the AES-GCM mode we have implemented also provides integrity checks.
Please see the FIPS section below.

4.8. Security 399

HTCondor Manual, Release 10.0.9

4.8.10 Authorization

Authorization protects resource usage by granting or denying access requests made to the resources. It defines who is
allowed to do what.

Authorization is defined in terms of users. An initial implementation provided authorization based on hosts (machines),
while the current implementation relies on user-based authorization. The Host-Based Security in HTCondor section
describes the previous implementation. This IP/Host-Based security still exists, and it can be used, but significantly
stronger and more flexible security can be achieved with the newer authorization based on fully qualified user names.
This section discusses user-based authorization.

The authorization portion of the security of an HTCondor pool is based on a set of configuration macros. The macros
list which user will be authorized to issue what request given a specific access level. When a daemon is to be authorized,
its user name is the login under which the daemon is executed.

These configuration macros define a set of users that will be allowed to (or denied from) carrying out various HTCondor
commands. Each access level may have its own list of authorized users. A complete list of the authorization macros:

ALLOW_READ
ALLOW_WRITE
ALLOW_ADMINISTRATOR
ALLOW_CONFIG
ALLOW_NEGOTIATOR
ALLOW_DAEMON
DENY_READ
DENY_WRITE
DENY_ADMINISTRATOR
DENY_CONFIG
DENY_NEGOTIATOR
DENY_DAEMON

In addition, the following are used to control authorization of specific types of HTCondor daemons when advertising
themselves to the pool. If unspecified, these default to the broader ALLOW_DAEMON and DENY_DAEMON settings.

ALLOW_ADVERTISE_MASTER
ALLOW_ADVERTISE_STARTD
ALLOW_ADVERTISE_SCHEDD
DENY_ADVERTISE_MASTER
DENY_ADVERTISE_STARTD
DENY_ADVERTISE_SCHEDD

Each client side of a connection may also specify its own list of trusted servers. This is done using the following
settings. Note that the FS and CLAIMTOBE authentication methods are not symmetric. The client is authenticated by
the server, but the server is not authenticated by the client. When the server is not authenticated to the client, only the
network address of the host may be authorized and not the specific identity of the server.

ALLOW_CLIENT
DENY_CLIENT

The names ALLOW_CLIENT and DENY_CLIENT should be thought of as “when I am acting as a client, these are the
servers I allow or deny.” It should not be confused with the incorrect thought “when I am the server, these are the
clients I allow or deny.”

400 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

All authorization settings are defined by a comma-separated list of fully qualified users. Each fully qualified user is
described using the following format:

username@domain/hostname

The information to the left of the slash character describes a user within a domain. The information to the right of the
slash character describes one or more machines from which the user would be issuing a command. This host name
may take the form of either a fully qualified host name of the form

bird.cs.wisc.edu

or an IP address of the form

128.105.128.0

An example is

zmiller@cs.wisc.edu/bird.cs.wisc.edu

Within the format, wild card characters (the asterisk, *) are allowed. The use of wild cards is limited to one wild card
on either side of the slash character. A wild card character used in the host name is further limited to come at the
beginning of a fully qualified host name or at the end of an IP address. For example,

*@cs.wisc.edu/bird.cs.wisc.edu

refers to any user that comes from cs.wisc.edu, where the command is originating from the machine bird.cs.wisc.edu.
Another valid example,

zmiller@cs.wisc.edu/*.cs.wisc.edu

refers to commands coming from any machine within the cs.wisc.edu domain, and issued by zmiller. A third valid
example,

@cs.wisc.edu/

refers to commands coming from any user within the cs.wisc.edu domain where the command is issued from any
machine. A fourth valid example,

@cs.wisc.edu/128.105.

refers to commands coming from any user within the cs.wisc.edu domain where the command is issued from machines
within the network that match the first two octets of the IP address.

If the set of machines is specified by an IP address, then further specification using a net mask identifies a physical set
(subnet) of machines. This physical set of machines is specified using the form

network/netmask

The network is an IP address. The net mask takes one of two forms. It may be a decimal number which refers to the
number of leading bits of the IP address that are used in describing a subnet. Or, the net mask may take the form of

a.b.c.d

where a, b, c, and d are decimal numbers that each specify an 8-bit mask. An example net mask is

4.8. Security 401

HTCondor Manual, Release 10.0.9

255.255.192.0

which specifies the bit mask

11111111.11111111.11000000.00000000

A single complete example of a configuration variable that uses a net mask is

ALLOW_WRITE = joesmith@cs.wisc.edu/128.105.128.0/17

User joesmith within the cs.wisc.edu domain is given write authorization when originating from machines that match
their leftmost 17 bits of the IP address.

For Unix platforms where netgroups are implemented, a netgroup may specify a set of fully qualified users by using an
extension to the syntax for all configuration variables of the form ALLOW_* and DENY_*. The syntax is the plus sign
character (+) followed by the netgroup name. Permissions are applied to all members of the netgroup.

This flexible set of configuration macros could be used to define conflicting authorization. Therefore, the following
protocol defines the precedence of the configuration macros.

1. DENY_* macros take precedence over ALLOW_* macros where there is a conflict. This implies that if a specific
user is both denied and granted authorization, the conflict is resolved by denying access.

2. If macros are omitted, the default behavior is to deny authorization for all users.

In addition, there are some hard-coded authorization rules that cannot be modified by configuration.

1. Connections with a name matching *@unmapped are not allowed to do any job management commands (e.g.
submitting, removing, or modifying jobs). This prevents these operations from being done by unauthenticated
users and users who are authenticated but lacking a name in the map file.

2. To simplify flocking, the condor_schedd automatically grants the condor_startd READ access for the duration
of a claim so that claim-related communications are possible. The condor_shadow grants the condor_starter
DAEMON access so that file transfers can be done. The identity that is granted access in both these cases is the
authenticated name (if available) and IP address of the condor_startd when the condor_schedd initially connects
to it to request the claim. It is important that only trusted condor_startd s are allowed to publish themselves
to the collector or that the condor_schedd ‘s ALLOW_CLIENT setting prevent it from allowing connections to
condor_startd s that it does not trust to run jobs.

3. When SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION is true, execute-side@matchsession is automatically
granted READ access to the condor_schedd and DAEMON access to the condor_shadow.

4. When SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION :index:SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION
is true, then negotiator-side@matchsession is automatically granted NEGOTIATOR access to the con-
dor_schedd.

Example of Authorization Security Configuration

An example of the configuration variables for the user-side authorization is derived from the necessary access levels as
described in HTCondor’s Security Model.

ALLOW_READ = *@cs.wisc.edu/*
ALLOW_WRITE = *@cs.wisc.edu/*.cs.wisc.edu
ALLOW_ADMINISTRATOR = condor-admin@cs.wisc.edu/*.cs.wisc.edu
ALLOW_CONFIG = condor-admin@cs.wisc.edu/*.cs.wisc.edu
ALLOW_NEGOTIATOR = condor@cs.wisc.edu/condor.cs.wisc.edu, \

(continues on next page)

402 Chapter 4. Administrators’ Manual

mailto:*@unmapped
mailto:execute-side@matchsession

HTCondor Manual, Release 10.0.9

(continued from previous page)

condor@cs.wisc.edu/condor2.cs.wisc.edu
ALLOW_DAEMON = condor@cs.wisc.edu/*.cs.wisc.edu

This example configuration authorizes any authenticated user in the cs.wisc.edu domain to carry out a request that
requires the READ access level from any machine. Any user in the cs.wisc.edu domain may carry out a request that
requires the WRITE access level from any machine in the cs.wisc.edu domain. Only the user called condor-admin may
carry out a request that requires the ADMINISTRATOR access level from any machine in the cs.wisc.edu domain. The
administrator, logged into any machine within the cs.wisc.edu domain is authorized at the CONFIG access level. Only
the negotiator daemon, running as condor on the two central managers are authorized with the NEGOTIATOR access
level. And, the last line of the example presumes that there is a user called condor, and that the daemons have all been
started up as this user. It authorizes only programs (which will be the daemons) running as condor to carry out requests
that require the DAEMON access level, where the commands originate from any machine in the cs.wisc.edu domain.

Debugging Security Configuration

If the authorization policy denies a network request, an explanation of why the request was denied is printed in the log
file of the daemon that denied the request. The line in the log file contains the words PERMISSION DENIED.

To get HTCondor to generate a similar explanation of why requests are accepted, add D_SECURITY to the daemon’s
debug options (and restart or reconfig the daemon). The line in the log file for these cases will contain the words
PERMISSION GRANTED. If you do not want to see a full explanation but just want to see when requests are made,
add D_COMMAND to the daemon’s debug options.

If the authorization policy makes use of host or domain names, then be aware that HTCondor depends on DNS to map
IP addresses to names. The security and accuracy of your DNS service is therefore a requirement. Typos in DNS
mappings are an occasional source of unexpected behavior. If the authorization policy is not behaving as expected,
carefully compare the names in the policy with the host names HTCondor mentions in the explanations of why requests
are granted or denied.

4.8.11 FIPS

As of version 9.0.2, HTCondor is now FIPS compliant when configured to be so. In practice this means that MD5 digests
and Blowfish encryption are no longer used anywhere. To make this easy to configure, we have added a configuration
macro, and all you need to add to your config is the following:

use security:FIPS

This will configure HTCondor to use AES encryption with AES-GCM message digests for all TCP network connec-
tions. If you are using UDP for any reason, HTCondor will then fall back to using 3DES for UDP packet encryption
because HTCondor does not currently support AES for UDP. The main reasons anyone would be using UDP would be
if you had configured a large pool to be supported by Collector trees using UDP, or if you are using Windows (because
HTCondor sends signals to daemons on Windows using UDP).

[optional inclusion depending on HAD test success/failure] Currently, the use of the High-Availability Daemon (HAD)
is not supported when running on a machine that is FIPS compliant.

4.8. Security 403

HTCondor Manual, Release 10.0.9

4.8.12 Security Sessions

To set up and configure secure communications in HTCondor, authentication, encryption, and integrity checks can
be used. However, these come at a cost: performing strong authentication can take a significant amount of time, and
generating the cryptographic keys for encryption and integrity checks can take a significant amount of processing power.

The HTCondor system makes many network connections between different daemons. If each one of these was to be
authenticated, and new keys were generated for each connection, HTCondor would not be able to scale well. Therefore,
HTCondor uses the concept of sessions to cache relevant security information for future use and greatly speed up the
establishment of secure communications between the various HTCondor daemons.

A new session is established the first time a connection is made from one daemon to another. Each session has a fixed
lifetime after which it will expire and a new session will need to be created again. But while a valid session exists, it
can be re-used as many times as needed, thereby preventing the need to continuously re-establish secure connections.
Each entity of a connection will have access to a session key that proves the identity of the other entity on the opposing
side of the connection. This session key is exchanged securely using a strong authentication method, such as Kerberos.
Other authentication methods, such as NTSSPI, FS_REMOTE, CLAIMTOBE, and ANONYMOUS, do not support secure key
exchange. An entity listening on the wire may be able to impersonate the client or server in a session that does not use
a strong authentication method.

Establishing a secure session requires that either the encryption or the integrity options be enabled. If the encryption
capability is enabled, then the session will be restarted using the session key as the encryption key. If integrity capability
is enabled, then the check sum includes the session key even though it is not transmitted. Without either of these two
methods enabled, it is possible for an attacker to use an open session to make a connection to a daemon and use that
connection for nefarious purposes. It is strongly recommended that if you have authentication turned on, you should
also turn on integrity and/or encryption.

The configuration parameter SEC_DEFAULT_NEGOTIATION will allow a user to set the default level of secure sessions
in HTCondor. Like other security settings, the possible values for this parameter can be REQUIRED, PREFERRED,
OPTIONAL, or NEVER. If you disable sessions and you have authentication turned on, then most authentication (other
than commands like condor_submit) will fail because HTCondor requires sessions when you have security turned on.
On the other hand, if you are not using strong security in HTCondor, but you are relying on the default host-based
security, turning off sessions may be useful in certain situations. These might include debugging problems with the
security session management or slightly decreasing the memory consumption of the daemons, which keep track of the
sessions in use.

Session lifetimes for specific daemons are already properly configured in the default installation of HTCondor. HTCon-
dor tools such as condor_q and condor_status create a session that expires after one minute. Theoretically they should
not create a session at all, because the session cannot be reused between program invocations, but this is difficult to
do in the general case. This allows a very small window of time for any possible attack, and it helps keep the memory
footprint of running daemons down, because they are not keeping track of all of the sessions. The session durations
may be manually tuned by using macros in the configuration file, but this is not recommended.

4.8.13 Host-Based Security in HTCondor

This section describes the mechanisms for setting up HTCondor’s host-based security. This is now an outdated form
of implementing security levels for machine access. It remains available and documented for purposes of backward
compatibility. If used at the same time as the user-based authorization, the two specifications are merged together.

The host-based security paradigm allows control over which machines can join an HTCondor pool, which machines
can find out information about your pool, and which machines within a pool can perform administrative commands.
By default, HTCondor is configured to allow anyone to view or join a pool. It is recommended that this parameter is
changed to only allow access from machines that you trust.

404 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

This section discusses how the host-based security works inside HTCondor. It lists the different levels of access and
what parts of HTCondor use which levels. There is a description of how to configure a pool to grant or deny certain
levels of access to various machines. Configuration examples and the settings of configuration variables using the
condor_config_val command complete this section.

Inside the HTCondor daemons or tools that use DaemonCore (see the DaemonCore section), most tasks are accom-
plished by sending commands to another HTCondor daemon. These commands are represented by an integer value
to specify which command is being requested, followed by any optional information that the protocol requires at that
point (such as a ClassAd, capability string, etc). When the daemons start up, they will register which commands they
are willing to accept, what to do with arriving commands, and the access level required for each command. When a
command request is received by a daemon, HTCondor identifies the access level required and checks the IP address
of the sender to verify that it satisfies the allow/deny settings from the configuration file. If permission is granted, the
command request is honored; otherwise, the request will be aborted.

Settings for the access levels in the global configuration file will affect all the machines in the pool. Settings in a local
configuration file will only affect the specific machine. The settings for a given machine determine what other hosts
can send commands to that machine. If a machine foo is to be given administrator access on machine bar, place foo in
bar’s configuration file access list (not the other way around).

The following are the various access levels that commands within HTCondor can be registered with:

READ Machines with READ access can read information from the HTCondor daemons. For example, they can view the
status of the pool, see the job queue(s), and view user permissions. READ access does not allow a machine to
alter any information, and does not allow job submission. A machine listed with READ permission will be unable
join an HTCondor pool; the machine can only view information about the pool.

WRITE Machines with WRITE access can write information to the HTCondor daemons. Most important for granting a
machine with this access is that the machine will be able to join a pool since they are allowed to send ClassAd
updates to the central manager. The machine can talk to the other machines in a pool in order to submit or run
jobs. In addition, any machine with WRITE access can request the condor_startd daemon to perform periodic
checkpoints on an executing job. After the checkpoint is completed, the job will continue to execute and the
machine will still be claimed by the original condor_schedd daemon. This allows users on the machines where
they submitted their jobs to use the condor_checkpoint command to get their jobs to periodically checkpoint,
even if the users do not have an account on the machine where the jobs execute.

Note: For a machine to join an HTCondor pool, the machine must have both WRITE permission AND READ
permission. WRITE permission is not enough.

ADMINISTRATOR Machines with ADMINISTRATOR access are granted additional HTCondor administrator rights to the
pool. This includes the ability to change user priorities with the command condor_userprio, and the ability to
turn HTCondor on and off using condor_on and condor_off. It is recommended that few machines be granted
administrator access in a pool; typically these are the machines that are used by HTCondor and system adminis-
trators as their primary workstations, or the machines running as the pool’s central manager.

Note: Giving ADMINISTRATOR privileges to a machine grants administrator access for the pool to ANY USER
on that machine. This includes any users who can run HTCondor jobs on that machine. It is recommended that
ADMINISTRATOR access is granted with due diligence.

NEGOTIATOR This access level is used specifically to verify that commands are sent by the condor_negotiator dae-
mon. The condor_negotiator daemon runs on the central manager of the pool. Commands requiring this access
level are the ones that tell the condor_schedd daemon to begin negotiating, and those that tell an available con-
dor_startd daemon that it has been matched to a condor_schedd with jobs to run.

CONFIG This access level is required to modify a daemon’s configuration using the condor_config_val command. By
default, machines with this level of access are able to change any configuration parameter, except those specified

4.8. Security 405

HTCondor Manual, Release 10.0.9

in the condor_config.root configuration file. Therefore, one should exercise extreme caution before granting
this level of host-wide access. Because of the implications caused by CONFIG privileges, it is disabled by default
for all hosts.

DAEMON This access level is used for commands that are internal to the operation of HTCondor. An example of this
internal operation is when the condor_startd daemon sends its ClassAd updates to the condor_collector daemon
(which may be more specifically controlled by the ADVERTISE_STARTD access level). Authorization at this access
level should only be given to hosts that actually run HTCondor in your pool. The DAEMON level of access implies
both READ and WRITE access. Any setting for this access level that is not defined will default to the corresponding
setting in the WRITE access level.

ADVERTISE_MASTER This access level is used specifically for commands used to advertise a condor_master daemon
to the collector. Any setting for this access level that is not defined will default to the corresponding setting in
the DAEMON access level.

ADVERTISE_STARTD This access level is used specifically for commands used to advertise a condor_startd daemon
to the collector. Any setting for this access level that is not defined will default to the corresponding setting in
the DAEMON access level.

ADVERTISE_SCHEDD This access level is used specifically for commands used to advertise a condor_schedd daemon
to the collector. Any setting for this access level that is not defined will default to the corresponding setting in
the DAEMON access level.

CLIENT This access level is different from all the others. Whereas all of the other access levels refer to the security
policy for accepting connections from others, the CLIENT access level applies when an HTCondor daemon or
tool is connecting to some other HTCondor daemon. In other words, it specifies the policy of the client that is
initiating the operation, rather than the server that is being contacted.

ADMINISTRATOR and NEGOTIATOR access default to the central manager machine. CONFIG access is not granted to any
machine as its default. These defaults are sufficient for most pools, and should not be changed without a compelling
reason.

4.8.14 Examples of Security Configuration

Here is a sample security configuration:

ALLOW_ADMINISTRATOR = $(CONDOR_HOST)
ALLOW_READ = *
ALLOW_WRITE = *
ALLOW_NEGOTIATOR = $(COLLECTOR_HOST)
ALLOW_NEGOTIATOR_SCHEDD = $(COLLECTOR_HOST), $(FLOCK_NEGOTIATOR_HOSTS)
ALLOW_WRITE_COLLECTOR = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_WRITE_STARTD = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_READ_COLLECTOR = $(ALLOW_READ), $(FLOCK_FROM)
ALLOW_READ_STARTD = $(ALLOW_READ), $(FLOCK_FROM)
ALLOW_CLIENT = *

This example configuration presumes that the condor_collector and condor_negotiator daemons are running on the
same machine.

For each access level, an ALLOW or a DENY may be added.

• If there is an ALLOW, it means “only allow these machines”. No ALLOW means allow anyone.

• If there is a DENY, it means “deny these machines”. No DENY means deny nobody.

406 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

• If there is both an ALLOW and a DENY, it means allow the machines listed in ALLOW except for the machines
listed in DENY.

• Exclusively for the CONFIG access, no ALLOW means allow no one. Note that this is different than the other
ALLOW configurations. It is different to enable more stringent security where older configurations are used,
since older configuration files would not have a CONFIG configuration entry.

Multiple machine entries in the configuration files may be separated by either a space or a comma. The machines may
be listed by

• Individual host names, for example: condor.cs.wisc.edu

• Individual IP address, for example: 128.105.67.29

• IP subnets (use a trailing *), for example: 144.105.*, 128.105.67.*

• Host names with a wild card * character (only one * is allowed per name), for example: *.cs.wisc.edu,
sol*.cs.wisc.edu

To resolve an entry that falls into both allow and deny: individual machines have a higher order of precedence than wild
card entries, and host names with a wild card have a higher order of precedence than IP subnets. Otherwise, DENY
has a higher order of precedence than ALLOW. This is how most people would intuitively expect it to work.

In addition, the above access levels may be specified on a per-daemon basis, instead of machine-wide for all daemons.
Do this with the subsystem string (described in Pre-Defined Macros on Subsystem Names), which is one of: STARTD,
SCHEDD, MASTER, NEGOTIATOR, or COLLECTOR. For example, to grant different read access for the condor_schedd:

ALLOW_READ_SCHEDD = <list of machines>

Here are more examples of configuration settings. Notice that ADMINISTRATOR access is only granted through an
ALLOW setting to explicitly grant access to a small number of machines. We recommend this.

• Let any machine join the pool. Only the central manager has administrative access.

ALLOW_ADMINISTRATOR = $(CONDOR_HOST)

• Only allow machines at NCSA to join or view the pool. The central manager is the only machine with
ADMINISTRATOR access.

ALLOW_READ = *.ncsa.uiuc.edu
ALLOW_WRITE = *.ncsa.uiuc.edu
ALLOW_ADMINISTRATOR = $(CONDOR_HOST)

• Only allow machines at NCSA and the U of I Math department join the pool, except do not allow lab machines
to do so. Also, do not allow the 177.55 subnet (perhaps this is the dial-in subnet). Allow anyone to view pool
statistics. The machine named bigcheese administers the pool (not the central manager).

ALLOW_WRITE = *.ncsa.uiuc.edu, *.math.uiuc.edu
DENY_WRITE = lab-*.edu, *.lab.uiuc.edu, 177.55.*
ALLOW_ADMINISTRATOR = bigcheese.ncsa.uiuc.edu

• Only allow machines at NCSA and UW-Madison’s CS department to view the pool. Only NCSA machines and
the machine raven.cs.wisc.edu can join the pool. Note: the machine raven.cs.wisc.edu has the read access it needs
through the wild card setting in ALLOW_READ. This example also shows how to use the continuation character, \,
to continue a long list of machines onto multiple lines, making it more readable. This works for all configuration
file entries, not just host access entries.

4.8. Security 407

HTCondor Manual, Release 10.0.9

ALLOW_READ = *.ncsa.uiuc.edu, *.cs.wisc.edu
ALLOW_WRITE = *.ncsa.uiuc.edu, raven.cs.wisc.edu
ALLOW_ADMINISTRATOR = $(CONDOR_HOST), bigcheese.ncsa.uiuc.edu, \

biggercheese.uiuc.edu

• Allow anyone except the military to view the status of the pool, but only let machines at NCSA view the job
queues. Only NCSA machines can join the pool. The central manager, bigcheese, and biggercheese can perform
most administrative functions. However, only biggercheese can update user priorities.

DENY_READ = *.mil
ALLOW_READ_SCHEDD = *.ncsa.uiuc.edu
ALLOW_WRITE = *.ncsa.uiuc.edu
ALLOW_ADMINISTRATOR = $(CONDOR_HOST), bigcheese.ncsa.uiuc.edu, \

biggercheese.uiuc.edu
ALLOW_ADMINISTRATOR_NEGOTIATOR = biggercheese.uiuc.edu

4.8.15 Changing the Security Configuration

A new security feature introduced in HTCondor version 6.3.2 enables more fine-grained control over the configuration
settings that can be modified remotely with the condor_config_val command. The manual page for condor_config_val
details how to use condor_config_val to modify configuration settings remotely. Since certain configuration attributes
can have a large impact on the functioning of the HTCondor system and the security of the machines in an HTCondor
pool, it is important to restrict the ability to change attributes remotely.

For each security access level described, the HTCondor administrator can define which configuration settings a host at
that access level is allowed to change. Optionally, the administrator can define separate lists of settable attributes for
each HTCondor daemon, or the administrator can define one list that is used by all daemons.

For each command that requests a change in configuration setting, HTCondor searches all the different possible security
access levels to see which, if any, the request satisfies. (Some hosts can qualify for multiple access levels. For example,
any host with ADMINISTRATOR permission probably has WRITE permission also). Within the qualified access level,
HTCondor searches for the list of attributes that may be modified. If the request is covered by the list, the request will
be granted. If not covered, the request will be refused.

The default configuration shipped with HTCondor is exceedingly restrictive. HTCondor users or administrators cannot
set configuration values from remote hosts with condor_config_val. Enabling this feature requires a change to the
settings in the configuration file. Use this security feature carefully. Grant access only for attributes which you need to
be able to modify in this manner, and grant access only at the most restrictive security level possible.

The most secure use of this feature allows HTCondor users to set attributes in the configuration file which are not used by
HTCondor directly. These are custom attributes published by various HTCondor daemons with the <SUBSYS>_ATTRS
setting described in DaemonCore Configuration File Entries. It is secure to grant access only to modify attributes
that are used by HTCondor to publish information. Granting access to modify settings used to control the behavior
of HTCondor is not secure. The goal is to ensure no one can use the power to change configuration attributes to
compromise the security of your HTCondor pool.

The control lists are defined by configuration settings that contain SETTABLE_ATTRS in their name. The name of the
control lists have the following form:

<SUBSYS>.SETTABLE_ATTRS_<PERMISSION-LEVEL>

The two parts of this name that can vary are the <PERMISSION-LEVEL> and the <SUBSYS>. The <PERMISSION-
LEVEL> can be any of the security access levels described earlier in this section. Examples include WRITE and CONFIG.

408 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

The <SUBSYS> is an optional portion of the name. It can be used to define separate rules for which configuration
attributes can be set for each kind of HTCondor daemon (for example, STARTD, SCHEDD, and MASTER). There are many
configuration settings that can be defined differently for each daemon that use this <SUBSYS> naming convention.
See Pre-Defined Macros for a list. If there is no daemon-specific value for a given daemon, HTCondor will look for
SETTABLE_ATTRS_<PERMISSION-LEVEL> .

Each control list is defined by a comma-separated list of attribute names which should be allowed to be modified. The
lists can contain wild cards characters (*).

Some examples of valid definitions of control lists with explanations:

• SETTABLE_ATTRS_CONFIG = *

Grant unlimited access to modify configuration attributes to any request that came from a machine in the CONFIG
access level. This was the default behavior before HTCondor version 6.3.2.

• SETTABLE_ATTRS_ADMINISTRATOR = *_DEBUG, MAX_*_LOG

Grant access to change any configuration setting that ended with _DEBUG (for example, STARTD_DEBUG) and
any attribute that matched MAX_*_LOG (for example, MAX_SCHEDD_LOG) to any host with ADMINISTRATOR
access.

4.8.16 Using HTCondor w/ Firewalls, Private Networks, and NATs

This topic is now addressed in more detail in the Networking (includes sections on Port Usage and CCB) section, which
explains network communication in HTCondor.

4.8.17 User Accounts in HTCondor on Unix Platforms

On a Unix system, UIDs (User IDentification numbers) form part of an operating system’s tools for maintaining access
control. Each executing program has a UID, a unique identifier of a user executing the program. This is also called the
real UID. A common situation has one user executing the program owned by another user. Many system commands
work this way, with a user (corresponding to a person) executing a program belonging to (owned by) root. Since the
program may require privileges that root has which the user does not have, a special bit in the program’s protection
specification (a setuid bit) allows the program to run with the UID of the program’s owner, instead of the user that
executes the program. This UID of the program’s owner is called an effective UID.

HTCondor works most smoothly when its daemons run as root. The daemons then have the ability to switch their
effective UIDs at will. When the daemons run as root, they normally leave their effective UID and GID (Group IDen-
tification) to be those of user and group condor. This allows access to the log files without changing the ownership of
the log files. It also allows access to these files when the user condor’s home directory resides on an NFS server. root
can not normally access NFS files.

If there is no condor user and group on the system, an administrator can specify which UID and GID the HTCondor
daemons should use when they do not need root privileges in two ways: either with the CONDOR_IDS environment
variable or the CONDOR_IDS configuration variable. In either case, the value should be the UID integer, followed by a
period, followed by the GID integer. For example, if an HTCondor administrator does not want to create a condor user,
and instead wants their HTCondor daemons to run as the daemon user (a common non-root user for system daemons
to execute as), the daemon user’s UID was 2, and group daemon had a GID of 2, the corresponding setting in the
HTCondor configuration file would be CONDOR_IDS = 2.2.

On a machine where a job is submitted, the condor_schedd daemon changes its effective UID to root such that it
has the capability to start up a condor_shadow daemon for the job. Before a condor_shadow daemon is created, the
condor_schedd daemon switches back to root, so that it can start up the condor_shadow daemon with the (real) UID

4.8. Security 409

HTCondor Manual, Release 10.0.9

of the user who submitted the job. Since the condor_shadow runs as the owner of the job, all remote system calls are
performed under the owner’s UID and GID. This ensures that as the job executes, it can access only files that its owner
could access if the job were running locally, without HTCondor.

On the machine where the job executes, the job runs either as the submitting user or as user nobody, to help ensure that
the job cannot access local resources or do harm. If the UID_DOMAIN matches, and the user exists as the same UID
in password files on both the submitting machine and on the execute machine, the job will run as the submitting user.
If the user does not exist in the execute machine’s password file and SOFT_UID_DOMAIN is True, then the job will run
under the submitting user’s UID anyway (as defined in the submitting machine’s password file). If SOFT_UID_DOMAIN
is False, and UID_DOMAIN matches, and the user is not in the execute machine’s password file, then the job execution
attempt will be aborted.

Jobs that run as nobody are low priviledge, but can still interfere with each other. To avoid this, you can config-
ure NOBODY_SLOT_USER to the value $(STARTER_SLOT_NAME) or configure SLOT<N>_USER for each slot to define
a different username to use for each slot instead of the user nobody. If NOBODY_SLOT_USER is configured to be
$(STARTER_SLOT_NAME) usernames such as slot1, slot2 and slot1_2 will be used instead of nobody and each
slot will use a different name than every other slot.

Running HTCondor as Non-Root

While we strongly recommend starting up the HTCondor daemons as root, we understand that it is not always possible
to do so. The main problems of not running HTCondor daemons as root appear when one HTCondor installation is
shared by many users on a single machine, or if machines are set up to only execute HTCondor jobs. With a submit-only
installation for a single user, there is no need for or benefit from running as root.

The effects of HTCondor of running both with and without root access are classified for each daemon:

condor_startd An HTCondor machine set up to execute jobs where the condor_startd is not started as root relies on the
good will of the HTCondor users to agree to the policy configured for the condor_startd to enforce for starting,
suspending, vacating, and killing HTCondor jobs. When the condor_startd is started as root, however, these
policies may be enforced regardless of malicious users. By running as root, the HTCondor daemons run with a
different UID than the HTCondor job. The user’s job is started as either the UID of the user who submitted it,
or as user nobody, depending on the UID_DOMAIN settings. Therefore, the HTCondor job cannot do anything to
the HTCondor daemons. Without starting the daemons as root, all processes started by HTCondor, including the
user’s job, run with the same UID. Only root can switch UIDs. Therefore, a user’s job could kill the condor_startd
and condor_starter. By doing so, the user’s job avoids getting suspended or vacated. This is nice for the job,
as it obtains unlimited access to the machine, but it is awful for the machine owner or administrator. If there is
trust of the users submitting jobs to HTCondor, this might not be a concern. However, to ensure that the policy
chosen is enforced by HTCondor, the condor_startd should be started as root.

In addition, some system information cannot be obtained without root access on some platforms. As a result,
when running without root access, the condor_startd must call other programs such as uptime, to get this infor-
mation. This is much less efficient than getting the information directly from the kernel, as is done when running
as root. On Linux, this information is available without root access, so it is not a concern on those platforms.

If all of HTCondor cannot be run as root, at least consider installing the condor_startd as setuid root. That would
solve both problems. Barring that, install it as a setgid sys or kmem program, depending on whatever group has
read access to /dev/kmem on the system. That would solve the system information problem.

condor_schedd The biggest problem with running the condor_schedd without root access is that the condor_shadow
processes which it spawns are stuck with the same UID that the condor_schedd has. This requires users to go
out of their way to grant write access to user or group that the condor_schedd is run as for any files or directories
their jobs write or create. Similarly, read access must be granted to their input files.

Consider installing condor_submit as a setgid condor program so that at least the stdout, stderr and job event
log files get created with the right permissions. If condor_submit is a setgid program, it will automatically set its
umask to 002 and create group-writable files. This way, the simple case of a job that only writes to stdout and

410 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

stderr will work. If users have programs that open their own files, they will need to know and set the proper
permissions on the directories they submit from.

condor_master The condor_master spawns both the condor_startd and the condor_schedd. To have both running as
root, have the condor_master run as root. This happens automatically if the condor_master is started from boot
scripts.

condor_negotiator and condor_collector There is no need to have either of these daemons running as root.

condor_kbdd On platforms that need the condor_kbdd, the condor_kbdd must run as root. If it is started as any other
user, it will not work. Consider installing this program as a setuid root binary if the condor_master will not
be run as root. Without the condor_kbdd, the condor_startd has no way to monitor USB mouse or keyboard
activity, although it will notice keyboard activity on ttys such as xterms and remote logins.

If HTCondor is not run as root, then choose almost any user name. A common choice is to set up and use the condor
user; this simplifies the setup, because HTCondor will look for its configuration files in the condor user’s directory. If
condor is not selected, then the configuration must be placed properly such that HTCondor can find its configuration
files.

If users will be submitting jobs as a user different than the user HTCondor is running as (perhaps you are running as the
condor user and users are submitting as themselves), then users have to be careful to only have file permissions properly
set up to be accessible by the user HTCondor is using. In practice, this means creating world-writable directories for
output from HTCondor jobs. This creates a potential security risk, in that any user on the machine where the job is
submitted can alter the data, remove it, or do other undesirable things. It is only acceptable in an environment where
users can trust other users.

Normally, users without root access who wish to use HTCondor on their machines create a condor home directory
somewhere within their own accounts and start up the daemons (to run with the UID of the user). As in the case where
the daemons run as user condor, there is no ability to switch UIDs or GIDs. The daemons run as the UID and GID
of the user who started them. On a machine where jobs are submitted, the condor_shadow daemons all run as this
same user. But, if other users are using HTCondor on the machine in this environment, the condor_shadow daemons
for these other users’ jobs execute with the UID of the user who started the daemons. This is a security risk, since the
HTCondor job of the other user has access to all the files and directories of the user who started the daemons. Some
installations have this level of trust, but others do not. Where this level of trust does not exist, it is best to set up a
condor account and group, or to have each user start up their own Personal HTCondor submit installation.

When a machine is an execution site for an HTCondor job, the HTCondor job executes with the UID of the user who
started the condor_startd daemon. This is also potentially a security risk, which is why we do not recommend starting
up the execution site daemons as a regular user. Use either root or a user such as condor that exists only to run HTCondor
jobs.

Who Jobs Run As

Under Unix, HTCondor runs jobs as one of

• the user called nobody

Running jobs as the nobody user is the least preferable. HTCondor uses user nobody if the value of the
UID_DOMAIN configuration variable of the submitting and executing machines are different, or if configuration
variable STARTER_ALLOW_RUNAS_OWNER is False, or if the job ClassAd contains RunAsOwner=False.

When HTCondor cleans up after executing a vanilla universe job, it does the best that it can by deleting all of the
processes started by the job. During the life of the job, it also does its best to track the CPU usage of all processes
created by the job. There are a variety of mechanisms used by HTCondor to detect all such processes, but, in
general, the only foolproof mechanism is for the job to run under a dedicated execution account (as it does under
Windows by default). With all other mechanisms, it is possible to fool HTCondor, and leave processes behind
after HTCondor has cleaned up. In the case of a shared account, such as the Unix user nobody, it is possible

4.8. Security 411

HTCondor Manual, Release 10.0.9

for the job to leave a lurker process lying in wait for the next job run as nobody. The lurker process may prey
maliciously on the next nobody user job, wreaking havoc.

HTCondor could prevent this problem by simply killing all processes run by the nobody user, but this would
annoy many system administrators. The nobody user is often used for non-HTCondor system processes. It may
also be used by other HTCondor jobs running on the same machine, if it is a multi-processor machine.

• dedicated accounts called slot users set up for the purpose of running HTCondor jobs

Better than the nobody user will be to create user accounts for HTCondor to use. These can be low-privilege
accounts, just as the nobody user is. Create one of these accounts for each job execution slot per computer, so that
distinct user names can be used for concurrently running jobs. This prevents malicious or naive behavior from
one slot to affect another slot. For a sample machine with two compute slots, create two users that are intended
only to be used by HTCondor. As an example, call them cndrusr1 and cndrusr2. Configuration identifies these
users with the SLOT<N>_USER configuration variable, where <N> is replaced with the slot number. Here is
configuration for this example:

SLOT1_USER = cndrusr1
SLOT2_USER = cndrusr2

Also tell HTCondor that these accounts are intended only to be used by HTCondor, so HTCondor
can kill all the processes belonging to these users upon job completion. The configuration variable
DEDICATED_EXECUTE_ACCOUNT_REGEXP is introduced and set to a regular expression that matches the account
names just created:

DEDICATED_EXECUTE_ACCOUNT_REGEXP = cndrusr[0-9]+

Finally, tell HTCondor not to run jobs as the job owner:

STARTER_ALLOW_RUNAS_OWNER = False

• the user that submitted the jobs

Four conditions must be set correctly to run jobs as the user that submitted the job.

1. In the configuration, the value of variable STARTER_ALLOW_RUNAS_OWNER must be True on the machine
that will run the job. Its default value is True on Unix platforms and False on Windows platforms.

2. If the job’s ClassAd has the attribute RunAsOwner, it must be set to True; if unset, the job must be run on
a Unix system. This attribute can be set up for all users by adding an attribute to configuration variable
SUBMIT_ATTRS . If this were the only attribute to be added to all job ClassAds, it would be set up with

SUBMIT_ATTRS = RunAsOwner
RunAsOwner = True

3. The value of configuration variable UID_DOMAIN must be the same for both the condor_startd and con-
dor_schedd daemons.

4. The UID_DOMAIN must be trusted. For example, if the condor_starter daemon does a reverse DNS
lookup on the condor_schedd daemon, and finds that the result is not the same as defined for configuration
variable UID_DOMAIN, then it is not trusted. To correct this, set in the configuration for the condor_starter

TRUST_UID_DOMAIN = True

Notes:

1. Under Windows, HTCondor by default runs jobs under a dynamically created local account that exists
for the duration of the job, but it can optionally run the job as the user account that owns the job if
STARTER_ALLOW_RUNAS_OWNER is True and the job contains RunAsOwner=True.

412 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

SLOT<N>_USER will only work if the credential of the specified user is stored on the execute machine using
condor_store_cred. for details of this command. However, the default behavior in Windows is to run jobs
under a dynamically created dedicated execution account, so just using the default behavior is sufficient to avoid
problems with lurker processes. See Executing Jobs as the Submitting User, and the condor_store_cred manual
page for details.

2. The condor_starter logs a line similar to

Tracking process family by login "cndrusr1"

when it treats the account as a dedicated account.

Working Directories for Jobs

Every executing process has a notion of its current working directory. This is the directory that acts as the base for all
file system access. There are two current working directories for any HTCondor job: one where the job is submitted
and a second where the job executes. When a user submits a job, the submit-side current working directory is the same
as for the user when the condor_submit command is issued. The initialdir submit command may change this, thereby
allowing different jobs to have different working directories. This is useful when submitting large numbers of jobs.
This submit-side current working directory remains unchanged for the entire life of a job. The submit-side current
working directory is also the working directory of the condor_shadow daemon.

There is also an execute-side current working directory.

4.9 Networking (includes sections on Port Usage and CCB)

This section on network communication in HTCondor discusses which network ports are used, how HTCondor behaves
on machines with multiple network interfaces and IP addresses, and how to facilitate functionality in a pool that spans
firewalls and private networks.

The security section of the manual contains some information that is relevant to the discussion of network communi-
cation which will not be duplicated here, so please see the Security section as well.

Firewalls, private networks, and network address translation (NAT) pose special problems for HTCondor. There are
currently two main mechanisms for dealing with firewalls within HTCondor:

1. Restrict HTCondor to use a specific range of port numbers, and allow connections through the firewall that use
any port within the range.

2. Use HTCondor Connection Brokering (CCB).

Each method has its own advantages and disadvantages, as described below.

4.9. Networking (includes sections on Port Usage and CCB) 413

HTCondor Manual, Release 10.0.9

4.9.1 Port Usage in HTCondor

IPv4 Port Specification

The general form for IPv4 port specification is

<IP:port?param1name=value1¶m2name=value2¶m3name=value3&...>

These parameters and values are URL-encoded. This means any special character is encoded with %, followed by two
hexadecimal digits specifying the ASCII value. Special characters are any non-alphanumeric character.

HTCondor currently recognizes the following parameters with an IPv4 port specification:

CCBID Provides contact information for forming a CCB connection to a daemon, or a space separated list, if the daemon
is registered with more than one CCB server. Each contact information is specified in the form of IP:port#ID.
Note that spaces between list items will be URL encoded by %20.

PrivNet Provides the name of the daemon’s private network. This value is specified in the configuration with
PRIVATE_NETWORK_NAME.

sock Provides the name of condor_shared_port daemon named socket.

PrivAddr Provides the daemon’s private address in form of IP:port.

Default Port Usage

Every HTCondor daemon listens on a network port for incoming commands. (Using condor_shared_port, this port
may be shared between multiple daemons.) Most daemons listen on a dynamically assigned port. In order to send a
message, HTCondor daemons and tools locate the correct port to use by querying the condor_collector, extracting the
port number from the ClassAd. One of the attributes included in every daemon’s ClassAd is the full IP address and
port number upon which the daemon is listening.

To access the condor_collector itself, all HTCondor daemons and tools must know the port number where the con-
dor_collector is listening. The condor_collector is the only daemon with a well-known, fixed port. By default, HT-
Condor uses port 9618 for the condor_collector daemon. However, this port number can be changed (see below).

As an optimization for daemons and tools communicating with another daemon that is running on the same host,
each HTCondor daemon can be configured to write its IP address and port number into a well-known file. The file
names are controlled using the <SUBSYS>_ADDRESS_FILE configuration variables, as described in the DaemonCore
Configuration File Entries section.

NOTE: In the 6.6 stable series, and HTCondor versions earlier than 6.7.5, the condor_negotiator also listened on a fixed,
well-known port (the default was 9614). However, beginning with version 6.7.5, the condor_negotiator behaves like
all other HTCondor daemons, and publishes its own ClassAd to the condor_collector which includes the dynamically
assigned port the condor_negotiator is listening on. All HTCondor tools and daemons that need to communicate with
the condor_negotiator will either use the NEGOTIATOR_ADDRESS_FILE or will query the condor_collector for the
condor_negotiator ‘s ClassAd.

414 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Using a Non Standard, Fixed Port for the condor_collector

By default, HTCondor uses port 9618 for the condor_collector daemon. To use a different port number for this daemon,
the configuration variables that tell HTCondor these communication details are modified. Instead of

CONDOR_HOST = machX.cs.wisc.edu
COLLECTOR_HOST = $(CONDOR_HOST)

the configuration might be

CONDOR_HOST = machX.cs.wisc.edu
COLLECTOR_HOST = $(CONDOR_HOST):9650

If a non standard port is defined, the same value of COLLECTOR_HOST (including the port) must be used for all machines
in the HTCondor pool. Therefore, this setting should be modified in the global configuration file (condor_config
file), or the value must be duplicated across all configuration files in the pool if a single configuration file is not being
shared.

When querying the condor_collector for a remote pool that is running on a non standard port, any HTCondor tool that
accepts the -pool argument can optionally be given a port number. For example:

$ condor_status -pool foo.bar.org:1234

Using a Dynamically Assigned Port for the condor_collector

On single machine pools, it is permitted to configure the condor_collector daemon to use a dynamically assigned
port, as given out by the operating system. This prevents port conflicts with other services on the same machine.
However, a dynamically assigned port is only to be used on single machine HTCondor pools, and only if the
COLLECTOR_ADDRESS_FILE configuration variable has also been defined. This mechanism allows all of the HTCondor
daemons and tools running on the same machine to find the port upon which the condor_collector daemon is listening,
even when this port is not defined in the configuration file and is not known in advance.

To enable the condor_collector daemon to use a dynamically assigned port, the port number is set to 0 in the
COLLECTOR_HOST variable. The COLLECTOR_ADDRESS_FILE configuration variable must also be defined, as it pro-
vides a known file where the IP address and port information will be stored. All HTCondor clients know to look at the
information stored in this file. For example:

COLLECTOR_HOST = $(CONDOR_HOST):0
COLLECTOR_ADDRESS_FILE = $(LOG)/.collector_address

Configuration definition of COLLECTOR_ADDRESS_FILE is in the DaemonCore Configuration File Entries section and
COLLECTOR_HOST is in the HTCondor-wide Configuration File Entries section.

4.9. Networking (includes sections on Port Usage and CCB) 415

HTCondor Manual, Release 10.0.9

Restricting Port Usage to Operate with Firewalls

If an HTCondor pool is completely behind a firewall, then no special consideration or port usage is needed. However,
if there is a firewall between the machines within an HTCondor pool, then configuration variables may be set to force
the usage of specific ports, and to utilize a specific range of ports.

By default, HTCondor uses port 9618 for the condor_collector daemon, and dynamic (apparently random) ports for
everything else. See Port Usage in HTCondor, if a dynamically assigned port is desired for the condor_collector
daemon.

All of the HTCondor daemons on a machine may be configured to share a single port. See the condor_shared_port
Configuration File Macros section for more information.

The configuration variables HIGHPORT and LOWPORT facilitate setting a restricted range of ports that HTCondor will
use. This may be useful when some machines are behind a firewall. The configuration macros HIGHPORT and LOWPORT
will restrict dynamic ports to the range specified. The configuration variables are fully defined in the Network-Related
Configuration File Entries section. All of these ports must be greater than 0 and less than 65,536. Note that both
HIGHPORT and LOWPORT must be at least 1024 for HTCondor version 6.6.8. In general, use ports greater than 1024, in
order to avoid port conflicts with standard services on the machine. Another reason for using ports greater than 1024
is that daemons and tools are often not run as root, and only root may listen to a port lower than 1024. Also, the range
must include enough ports that are not in use, or HTCondor cannot work.

The range of ports assigned may be restricted based on incoming (listening) and outgoing (connect) ports with the
configuration variables IN_HIGHPORT , IN_LOWPORT , OUT_HIGHPORT , and OUT_LOWPORT. See the Network-Related
Configuration File Entries section for complete definitions of these configuration variables. A range of ports lower
than 1024 for daemons running as root is appropriate for incoming ports, but not for outgoing ports. The use of ports
below 1024 (versus above 1024) has security implications; therefore, it is inappropriate to assign a range that crosses
the 1024 boundary.

NOTE: Setting HIGHPORT and LOWPORT will not automatically force the condor_collector to bind to a port within the
range. The only way to control what port the condor_collector uses is by setting the COLLECTOR_HOST (as described
above).

The total number of ports needed depends on the size of the pool, the usage of the machines within the pool (which
machines run which daemons), and the number of jobs that may execute at one time. Here we discuss how many ports
are used by each participant in the system. This assumes that condor_shared_port is not being used. If it is being used,
then all daemons can share a single incoming port.

The central manager of the pool needs 5 + number of condor_schedd daemons ports for outgoing connections
and 2 ports for incoming connections for daemon communication.

Each execute machine (those machines running a condor_startd daemon) requires `` 5 + (5 * number of slots advertised
by that machine)`` ports. By default, the number of slots advertised will equal the number of physical CPUs in that
machine.

Submit machines (those machines running a condor_schedd daemon) require `` 5 + (5 * MAX_JOBS_RUNNING``)
ports. The configuration variable MAX_JOBS_RUNNING limits (on a per-machine basis, if desired) the maximum number
of jobs. Without this configuration macro, the maximum number of jobs that could be simultaneously executing at one
time is a function of the number of reachable execute machines.

Also be aware that HIGHPORT and LOWPORT only impact dynamic port selection used by the HTCondor system, and
they do not impact port selection used by jobs submitted to HTCondor. Thus, jobs submitted to HTCondor that may
create network connections may not work in a port restricted environment. For this reason, specifying HIGHPORT and
LOWPORT is not going to produce the expected results if a user submits MPI applications to be executed under the
parallel universe.

Where desired, a local configuration for machines not behind a firewall can override the usage of HIGHPORT and
LOWPORT, such that the ports used for these machines are not restricted. This can be accomplished by adding the

416 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

following to the local configuration file of those machines not behind a firewall:

HIGHPORT = UNDEFINED
LOWPORT = UNDEFINED

If the maximum number of ports allocated using HIGHPORT and LOWPORT is too few, socket binding errors of the form

failed to bind any port within <$LOWPORT> - <$HIGHPORT>

are likely to appear repeatedly in log files.

Multiple Collectors

This section has not yet been written

Port Conflicts

This section has not yet been written

4.9.2 Reducing Port Usage with the condor_shared_port Daemon

The condor_shared_port is an optional daemon responsible for creating a TCP listener port shared by all of the HT-
Condor daemons.

The main purpose of the condor_shared_port daemon is to reduce the number of ports that must be opened. This
is desirable when HTCondor daemons need to be accessible through a firewall. This has a greater security benefit
than simply reducing the number of open ports. Without the condor_shared_port daemon, HTCondor can use a range
of ports, but since some HTCondor daemons are created dynamically, this full range of ports will not be in use by
HTCondor at all times. This implies that other non-HTCondor processes not intended to be exposed to the outside
network could unintentionally bind to ports in the range intended for HTCondor, unless additional steps are taken to
control access to those ports. While the condor_shared_port daemon is running, it is exclusively bound to its port,
which means that other non-HTCondor processes cannot accidentally bind to that port.

A second benefit of the condor_shared_port daemon is that it helps address the scalability issues of a submit machine.
Without the condor_shared_port daemon, more than 2 ephemeral ports per running job are often required, depending
on the rate of job completion. There are only 64K ports in total, and most standard Unix installations only allocate a
subset of these as ephemeral ports. Therefore, with long running jobs, and with between 11K and 14K simultaneously
running jobs, port exhaustion has been observed in typical Linux installations. After increasing the ephemeral port
range to its maximum, port exhaustion occurred between 20K and 25K running jobs. Using the condor_shared_port
daemon dramatically reduces the required number of ephemeral ports on the submit node where the submit node
connects directly to the execute node. If the submit node connects via CCB to the execute node, no ports are required
per running job; only the one port allocated to the condor_shared_port daemon is used.

When CCB is enabled, the condor_shared_port daemon registers with the CCB server on behalf of all daemons sharing
the port. This means that it is not possible to individually enable or disable CCB connectivity to daemons that are
using the shared port; they all effectively share the same setting, and the condor_shared_port daemon handles all CCB
connection requests on their behalf.

HTCondor’s authentication and authorization steps are unchanged by the use of a shared port. Each HTCondor daemon
continues to operate according to its configured policy. Requests for connections to the shared port are not authenticated

4.9. Networking (includes sections on Port Usage and CCB) 417

HTCondor Manual, Release 10.0.9

or restricted by the condor_shared_port daemon. They are simply passed to the requested daemon, which is then
responsible for enforcing the security policy.

When the condor_master is configured to use the shared port by setting the configuration variable

USE_SHARED_PORT = True

the condor_shared_port daemon is treated specially. SHARED_PORT is automatically added to DAEMON_LIST . A
command such as condor_off, which shuts down all daemons except for the condor_master, will also leave the con-
dor_shared_port running. This prevents the condor_master from getting into a state where it can no longer receive
commands.

Also when USE_SHARED_PORT = True, the condor_collector needs to be configured to use a shared port, so that
connections to the shared port that are destined for the condor_collector can be forwarded. As an example, the shared
port socket name of the condor_collector with shared port number 11000 is

COLLECTOR_HOST = cm.host.name:11000?sock=collector

This example assumes that the socket name used by the condor_collector is collector, and it runs on cm.host.name.
This configuration causes the condor_collector to automatically choose this socket name. If multiple condor_collector
daemons are started on the same machine, the socket name can be explicitly set in the daemon’s invocation arguments,
as in the example:

COLLECTOR_ARGS = -sock collector

When the condor_collector address is a shared port, TCP updates will be automatically used instead of UDP, because
the condor_shared_port daemon does not work with UDP messages. Under Unix, this means that the condor_collector
daemon should be configured to have enough file descriptors. See Using TCP to Send Updates to the condor_collector
for more information on using TCP within HTCondor.

SOAP commands cannot be sent through the condor_shared_port daemon. However, a daemon may be configured to
open a fixed, non-shared port, in addition to using a shared port. This is done both by setting USE_SHARED_PORT =
True and by specifying a fixed port for the daemon using <SUBSYS>_ARGS = -p <portnum>.

4.9.3 Configuring HTCondor for Machines With Multiple Network Interfaces

HTCondor can run on machines with multiple network interfaces. Starting with HTCondor version 6.7.13 (and there-
fore all HTCondor 6.8 and more recent versions), new functionality is available that allows even better support for
multi-homed machines, using the configuration variable BIND_ALL_INTERFACES . A multi-homed machine is one that
has more than one NIC (Network Interface Card). Further improvements to this new functionality will remove the need
for any special configuration in the common case. For now, care must still be given to machines with multiple NICs,
even when using this new configuration variable.

Using BIND_ALL_INTERFACES

Machines can be configured such that whenever HTCondor daemons or tools call bind(), the daemons or tools use
all network interfaces on the machine. This means that outbound connections will always use the appropriate network
interface to connect to a remote host, instead of being forced to use an interface that might not have a route to the given
destination. Furthermore, sockets upon which a daemon listens for incoming connections will be bound to all network
interfaces on the machine. This means that so long as remote clients know the right port, they can use any IP address
on the machine and still contact a given HTCondor daemon.

This functionality is on by default. To disable this functionality, the boolean configuration variable
BIND_ALL_INTERFACES is defined and set to False:

418 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

BIND_ALL_INTERFACES = FALSE

This functionality has limitations. Here are descriptions of the limitations.

Using all network interfaces does not work with Kerberos. Every Kerberos ticket contains a specific IP address
within it. Authentication over a socket (using Kerberos) requires the socket to also specify that same specific
IP address. Use of BIND_ALL_INTERFACES causes outbound connections from a multi-homed machine to orig-
inate over any of the interfaces. Therefore, the IP address of the outbound connection and the IP address in the
Kerberos ticket will not necessarily match, causing the authentication to fail. Sites using Kerberos authentication
on multi-homed machines are strongly encouraged not to enable BIND_ALL_INTERFACES, at least until HTCon-
dor’s Kerberos functionality supports using multiple Kerberos tickets together with finding the right one to match
the IP address a given socket is bound to.

There is a potential security risk. Consider the following example of a security risk. A multi-homed machine is at a
network boundary. One interface is on the public Internet, while the other connects to a private network. Both
the multi-homed machine and the private network machines comprise an HTCondor pool. If the multi-homed
machine enables BIND_ALL_INTERFACES, then it is at risk from hackers trying to compromise the security of
the pool. Should this multi-homed machine be compromised, the entire pool is vulnerable. Most sites in this
situation would run an sshd on the multi-homed machine so that remote users who wanted to access the pool could
log in securely and use the HTCondor tools directly. In this case, remote clients do not need to use HTCondor
tools running on machines in the public network to access the HTCondor daemons on the multi-homed machine.
Therefore, there is no reason to have HTCondor daemons listening on ports on the public Internet, causing a
potential security threat.

Up to two IP addresses will be advertised. At present, even though a given HTCondor daemon will be listening to
ports on multiple interfaces, each with their own IP address, there is currently no mechanism for that daemon
to advertise all of the possible IP addresses where it can be contacted. Therefore, HTCondor clients (other
HTCondor daemons or tools) will not necessarily able to locate and communicate with a given daemon running
on a multi-homed machine where BIND_ALL_INTERFACES has been enabled.

Currently, HTCondor daemons can only advertise two IP addresses in the ClassAd they send to their con-
dor_collector. One is the public IP address and the other is the private IP address. HTCondor tools and other
daemons that wish to connect to the daemon will use the private IP address if they are configured with the same
private network name, and they will use the public IP address otherwise. So, even if the daemon is listening
on 3 or more different interfaces, each with a separate IP, the daemon must choose which two IP addresses to
advertise so that other daemons and tools can connect to it.

By default, HTCondor advertises the most public IP address available on the machine. The NETWORK_INTERFACE
configuration variable can be used to specify the public IP address HTCondor should advertise, and
PRIVATE_NETWORK_INTERFACE , along with PRIVATE_NETWORK_NAME can be used to specify the private IP
address to advertise.

Sites that make heavy use of private networks and multi-homed machines should consider if using the HTCondor
Connection Broker, CCB, is right for them. More information about CCB and HTCondor can be found in the HTCondor
Connection Brokering (CCB) section.

4.9. Networking (includes sections on Port Usage and CCB) 419

HTCondor Manual, Release 10.0.9

Central Manager with Two or More NICs

Often users of HTCondor wish to set up compute farms where there is one machine with two network interface cards
(one for the public Internet, and one for the private net). It is convenient to set up the head node as a central manager
in most cases and so here are the instructions required to do so.

Setting up the central manager on a machine with more than one NIC can be a little confusing because there are a few
external variables that could make the process difficult. One of the biggest mistakes in getting this to work is that either
one of the separate interfaces is not active, or the host/domain names associated with the interfaces are incorrectly
configured.

Given that the interfaces are up and functioning, and they have good host/domain names associated with them here is
how to configure HTCondor:

In this example, farm-server.farm.orgmaps to the private interface. In the central manager’s global (to the cluster)
configuration file:

CONDOR_HOST = farm-server.farm.org

In the central manager’s local configuration file:

NETWORK_INTERFACE = <IP address of farm-server.farm.org>
NEGOTIATOR = $(SBIN)/condor_negotiator
COLLECTOR = $(SBIN)/condor_collector
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, SCHEDD, STARTD

Now, if the cluster is set up so that it is possible for a machine name to never have a domain name (for example, there
is machine name but no fully qualified domain name in /etc/hosts), configure DEFAULT_DOMAIN_NAME to be the
domain that is to be added on to the end of the host name.

A Client Machine with Multiple Interfaces

If client machine has two or more NICs, then there might be a specific network interface on which the client machine
desires to communicate with the rest of the HTCondor pool. In this case, the local configuration file for the client
should have

NETWORK_INTERFACE = <IP address of desired interface>

4.9.4 HTCondor Connection Brokering (CCB)

HTCondor Connection Brokering, or CCB, is a way of allowing HTCondor components to communicate with each
other when one side is in a private network or behind a firewall. Specifically, CCB allows communication across a
private network boundary in the following scenario: an HTCondor tool or daemon (process A) needs to connect to an
HTCondor daemon (process B), but the network does not allow a TCP connection to be created from A to B; it only
allows connections from B to A. In this case, B may be configured to register itself with a CCB server that both A and
B can connect to. Then when A needs to connect to B, it can send a request to the CCB server, which will instruct B
to connect to A so that the two can communicate.

As an example, consider an HTCondor execute node that is within a private network. This execute node’s condor_startd
is process B. This execute node cannot normally run jobs submitted from a machine that is outside of that private net-
work, because bi-directional connectivity between the submit node and the execute node is normally required. However,
if both execute and submit machine can connect to the CCB server, if both are authorized by the CCB server, and if

420 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

it is possible for the execute node within the private network to connect to the submit node, then it is possible for the
submit node to run jobs on the execute node.

To effect this CCB solution, the execute node’s condor_startd within the private network registers itself with the CCB
server by setting the configuration variable CCB_ADDRESS . The submit node’s condor_schedd communicates with the
CCB server, requesting that the execute node’s condor_startd open the TCP connection. The CCB server forwards
this request to the execute node’s condor_startd, which opens the TCP connection. Once the connection is open,
bi-directional communication is enabled.

If the location of the execute and submit nodes is reversed with respect to the private network, the same idea applies:
the submit node within the private network registers itself with a CCB server, such that when a job is running and the
execute node needs to connect back to the submit node (for example, to transfer output files), the execute node can
connect by going through CCB to request a connection.

If both A and B are in separate private networks, then CCB alone cannot provide connectivity. However, if an incom-
ing port or port range can be opened in one of the private networks, then the situation becomes equivalent to one of
the scenarios described above and CCB can provide bi-directional communication given only one-directional connec-
tivity. See Port Usage in HTCondor for information on opening port ranges. Also note that CCB works nicely with
condor_shared_port.

Any condor_collector may be used as a CCB server. There is no requirement that the condor_collector acting as the
CCB server be the same condor_collector that a daemon advertises itself to (as with COLLECTOR_HOST). However, this
is often a convenient choice.

Example Configuration

This example assumes that there is a pool of machines in a private network that need to be made accessible from
the outside, and that the condor_collector (and therefore CCB server) used by these machines is accessible from the
outside. Accessibility might be achieved by a special firewall rule for the condor_collector port, or by being on a
dual-homed machine in both networks.

The configuration of variable CCB_ADDRESS on machines in the private network causes registration with the CCB server
as in the example:

CCB_ADDRESS = $(COLLECTOR_HOST)
PRIVATE_NETWORK_NAME = cs.wisc.edu

The definition of PRIVATE_NETWORK_NAME ensures that all communication between nodes within the private
network continues to happen as normal, and without going through the CCB server. The name chosen for
PRIVATE_NETWORK_NAME should be different from the private network name chosen for any HTCondor installations
that will be communicating with this pool.

Under Unix, and with large HTCondor pools, it is also necessary to give the condor_collector acting as the
CCB server a large enough limit of file descriptors. This may be accomplished with the configuration variable
MAX_FILE_DESCRIPTORS or an equivalent. Each HTCondor process configured to use CCB with CCB_ADDRESS re-
quires one persistent TCP connection to the CCB server. A typical execute node requires one connection for the
condor_master, one for the condor_startd, and one for each running job, as represented by a condor_starter. A typical
submit machine requires one connection for the condor_master, one for the condor_schedd, and one for each run-
ning job, as represented by a condor_shadow. If there will be no administrative commands required to be sent to the
condor_master from outside of the private network, then CCB may be disabled in the condor_master by assigning
MASTER.CCB_ADDRESS to nothing:

MASTER.CCB_ADDRESS =

Completing the count of TCP connections in this example: suppose the pool consists of 500 8-slot execute nodes
and CCB is not disabled in the configuration of the condor_master processes. In this case, the count of needed file

4.9. Networking (includes sections on Port Usage and CCB) 421

HTCondor Manual, Release 10.0.9

descriptors plus some extra for other transient connections to the collector is 500*(1+1+8)=5000. Be generous, and
give it twice as many descriptors as needed by CCB alone:

COLLECTOR.MAX_FILE_DESCRIPTORS = 10000

Security and CCB

The CCB server authorizes all daemons that register themselves with it (using CCB_ADDRESS) at the DAEMON au-
thorization level (these are playing the role of process A in the above description). It authorizes all connection requests
(from process B) at the READ authorization level. As usual, whether process B authorizes process A to do whatever
it is trying to do is up to the security policy for process B; from the HTCondor security model’s point of view, it is as
if process A connected to process B, even though at the network layer, the reverse is true.

Troubleshooting CCB

Errors registering with CCB or requesting connections via CCB are logged at level D_ALWAYS in the debugging log.
These errors may be identified by searching for “CCB” in the log message. Command-line tools require the argument -
debug for this information to be visible. To see details of the CCB protocol add D_FULLDEBUG to the debugging options
for the particular HTCondor subsystem of interest. Or, add D_FULLDEBUG to ALL_DEBUG to get extra debugging from
all HTCondor components.

A daemon that has successfully registered itself with CCB will advertise this fact in its address in its ClassAd. The
ClassAd attribute MyAddress will contain information about its "CCBID".

Scalability and CCB

Any number of CCB servers may be used to serve a pool of HTCondor daemons. For example, half of the pool could
use one CCB server and half could use another. Or for redundancy, all daemons could use both CCB servers and then
CCB connection requests will load-balance across them. Typically, the limit of how many daemons may be registered
with a single CCB server depends on the authentication method used by the condor_collector for DAEMON-level and
READ-level access, and on the amount of memory available to the CCB server. We are not able to provide specific
recommendations at this time, but to give a very rough idea, a server class machine should be able to handle CCB
service plus normal condor_collector service for a pool containing a few thousand slots without much trouble.

4.9.5 Using TCP to Send Updates to the condor_collector

TCP sockets are reliable, connection-based sockets that guarantee the delivery of any data sent. However, TCP sockets
are fairly expensive to establish, and there is more network overhead involved in sending and receiving messages.

UDP sockets are datagrams, and are not reliable. There is very little overhead in establishing or using a UDP socket,
but there is also no guarantee that the data will be delivered. The lack of guaranteed delivery of UDP will negatively
affect some pools, particularly ones comprised of machines across a wide area network (WAN) or highly-congested
network links, where UDP packets are frequently dropped.

By default, HTCondor daemons will use TCP to send updates to the condor_collector, with the exception of the con-
dor_collector forwarding updates to any condor_collector daemons specified in CONDOR_VIEW_HOST, where UDP is
used. These configuration variables control the protocol used:

UPDATE_COLLECTOR_WITH_TCP When set to False, the HTCondor daemons will use UDP to update the con-
dor_collector, instead of the default TCP. Defaults to True.

422 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

UPDATE_VIEW_COLLECTOR_WITH_TCP When set to True, the HTCondor collector will use TCP to forward updates
to condor_collector daemons specified by CONDOR_VIEW_HOST, instead of the default UDP. Defaults to False.

TCP_UPDATE_COLLECTORS A list of condor_collector daemons which will be updated with TCP instead of UDP,
when UPDATE_COLLECTOR_WITH_TCP or UPDATE_VIEW_COLLECTOR_WITH_TCP is set to False.

When there are sufficient file descriptors, the condor_collector leaves established TCP sockets open, facilitating better
performance. Subsequent updates can reuse an already open socket.

Each HTCondor daemon that sends updates to the condor_collector will have 1 socket open to it. So, in a pool with
N machines, each of them running a condor_master, condor_schedd, and condor_startd, the condor_collector would
need at least 3*N file descriptors. If the condor_collector is also acting as a CCB server, it will require an additional
file descriptor for each registered daemon. In the default configuration, the number of file descriptors available to the
condor_collector is 10240. For very large pools, the number of descriptor can be modified with the configuration:

COLLECTOR_MAX_FILE_DESCRIPTORS = 40960

If there are insufficient file descriptors for all of the daemons sending updates to the condor_collector, a warning will
be printed in the condor_collector log file. The string "file descriptor safety level exceeded" identifies
this warning.

4.9.6 Running HTCondor on an IPv6 Network Stack

HTCondor supports using IPv4, IPv6, or both.

To require IPv4, you may set ENABLE_IPV4 to true; if the machine does not have an interface with an IPv4 address,
HTCondor will not start. Likewise, to require IPv6, you may set ENABLE_IPV6 to true.

If you set ENABLE_IPV4 to false, HTCondor will not use IPv4, even if it is available; likewise for ENABLE_IPV6 and
IPv6.

The default setting for ENABLE_IPV4 and ENABLE_IPV6 is auto. If HTCondor does not find an interface with an
address of the corresponding protocol, that protocol will not be used. Additionally, if only one of the protocols has
a private or public address, the other protocol will be disabled. For instance, a machine with a private IPv4 address
and a loopback IPv6 address will only use IPv4; there’s no point trying to contact some other machine via IPv6 over a
loopback interface.

If both IPv4 and IPv6 networking are enabled, HTCondor runs in mixed mode. In mixed mode, HTCondor daemons
have at least one IPv4 address and at least one IPv6 address. Other daemons and the command-line tools choose
between these addresses based on which protocols are enabled for them; if both are, they will prefer the first address
listed by that daemon.

A daemon may be listening on one, some, or all of its machine’s addresses. (See NETWORK_INTERFACE) Daemons may
presently list at most two addresses, one IPv6 and one IPv4. Each address is the “most public” address of its protocol;
by default, the IPv6 address is listed first. HTCondor selects the “most public” address heuristically.

Nonetheless, there are two cases in which HTCondor may not use an IPv6 address when one is available:

• When given a literal IP address, HTCondor will use that IP address.

• When looking up a host name using DNS, HTCondor will use the first address whose protocol is enabled for the
tool or daemon doing the look up.

You may force HTCondor to prefer IPv4 in all three of these situations by setting the macro PREFER_IPV4 to true; this
is the default. With PREFER_IPV4 set, HTCondor daemons will list their “most public” IPv4 address first; prefer the
IPv4 address when choosing from another’s daemon list; and prefer the IPv4 address when looking up a host name in
DNS.

4.9. Networking (includes sections on Port Usage and CCB) 423

HTCondor Manual, Release 10.0.9

In practice, both an HTCondor pool’s central manager and any submit machines within a mixed mode pool must have
both IPv4 and IPv6 addresses for both IPv4-only and IPv6-only condor_startd daemons to function properly.

IPv6 and Host-Based Security

You may freely intermix IPv6 and IPv4 address literals. You may also specify IPv6 netmasks as a legal IPv6 address
followed by a slash followed by the number of bits in the mask; or as the prefix of a legal IPv6 address followed by
two colons followed by an asterisk. The latter is entirely equivalent to the former, except that it only allows you to
(implicitly) specify mask bits in groups of sixteen. For example, fe8f:1234::/60 and fe8f:1234::* specify the
same network mask.

The HTCondor security subsystem resolves names in the ALLOW and DENY lists and uses all of the resulting IP
addresses. Thus, to allow or deny IPv6 addresses, the names must have IPv6 DNS entries (AAAA records), or NO_DNS
must be enabled.

IPv6 Address Literals

When you specify an IPv6 address and a port number simultaneously, you must separate the IPv6 address from the port
number by placing square brackets around the address. For instance:

COLLECTOR_HOST = [2607:f388:1086:0:21e:68ff:fe0f:6462]:5332

If you do not (or may not) specify a port, do not use the square brackets. For instance:

NETWORK_INTERFACE = 1234:5678::90ab

IPv6 without DNS

When using the configuration variable NO_DNS , IPv6 addresses are turned into host names by taking the IPv6 address,
changing colons to dashes, and appending $(DEFAULT_DOMAIN_NAME). So,

2607:f388:1086:0:21b:24ff:fedf:b520

becomes

2607-f388-1086-0-21b-24ff-fedf-b520.example.com

assuming

DEFAULT_DOMAIN_NAME=example.com

424 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

4.10 DaemonCore

This section is a brief description of DaemonCore. DaemonCore is a library that is shared among most of the HTCondor
daemons which provides common functionality. Currently, the following daemons use DaemonCore:

• condor_master

• condor_startd

• condor_schedd

• condor_collector

• condor_negotiator

• condor_kbdd

• condor_gridmanager

• condor_credd

• condor_had

• condor_replication

• condor_transferer

• condor_job_router

• condor_lease_manager

• condor_rooster

• condor_shared_port

• condor_defrag

• condor_c-gahp

• condor_c-gahp_worker_thread

• condor_dagman

• condor_ft-gahp

• condor_rooster

• condor_shadow

• condor_shared_port

• condor_transferd

• condor_vm-gahp

Most of DaemonCore’s details are not interesting for administrators. However, DaemonCore does provide a uniform
interface for the daemons to various Unix signals, and provides a common set of command-line options that can be
used to start up each daemon.

4.10. DaemonCore 425

HTCondor Manual, Release 10.0.9

4.10.1 DaemonCore and Unix signals

One of the most visible features that DaemonCore provides for administrators is that all daemons which use it behave
the same way on certain Unix signals. The signals and the behavior DaemonCore provides are listed below:

SIGHUP Causes the daemon to reconfigure itself.

SIGTERM Causes the daemon to gracefully shutdown.

SIGQUIT Causes the daemon to quickly shutdown.

Exactly what gracefully and quickly means varies from daemon to daemon. For daemons with little or no state (the
condor_kbdd, condor_collector and condor_negotiator) there is no difference, and both SIGTERM and SIGQUIT sig-
nals result in the daemon shutting itself down quickly. For the condor_master, a graceful shutdown causes the con-
dor_master to ask all of its children to perform their own graceful shutdown methods. The quick shutdown causes
the condor_master to ask all of its children to perform their own quick shutdown methods. In both cases, the con-
dor_master exits after all its children have exited. In the condor_startd, if the machine is not claimed and running a
job, both the SIGTERM and SIGQUIT signals result in an immediate exit. However, if the condor_startd is running a
job, a graceful shutdown results in that job writing a checkpoint, while a fast shutdown does not. In the condor_schedd,
if there are no jobs currently running, there will be no condor_shadow processes, and both signals result in an imme-
diate exit. However, with jobs running, a graceful shutdown causes the condor_schedd to ask each condor_shadow to
gracefully vacate the job it is serving, while a quick shutdown results in a hard kill of every condor_shadow, with no
chance to write a checkpoint.

For all daemons, a reconfigure results in the daemon re-reading its configuration file(s), causing any settings that
have changed to take effect. See the Introduction to Configuration section for full details on what settings are in the
configuration files and what they do.

4.10.2 DaemonCore and Command-line Arguments

The second visible feature that DaemonCore provides to administrators is a common set of command-line arguments
that all daemons understand. These arguments and what they do are described below:

-a string Append a period character (‘.’) concatenated with string to the file name of the log for this daemon, as
specified in the configuration file.

-b Causes the daemon to start up in the background. When a DaemonCore process starts up with this option, it
disassociates itself from the terminal and forks itself, so that it runs in the background. This is the default
behavior for the condor_master. Prior to 8.9.7 it was the default for all HTCondor daemons.

-c filename Causes the daemon to use the specified filename as a full path and file name as its global configuration
file. This overrides the CONDOR_CONFIG environment variable and the regular locations that HTCondor checks
for its configuration file.

-d Use dynamic directories. The $(LOG), $(SPOOL), and $(EXECUTE) directories are all created by the daemon at run
time, and they are named by appending the parent’s IP address and PID to the value in the configuration file. These
values are then inherited by all children of the daemon invoked with this -d argument. For the condor_master,
all HTCondor processes will use the new directories. If a condor_schedd is invoked with the -d argument, then
only the condor_schedd daemon and any condor_shadow daemons it spawns will use the dynamic directories
(named with the condor_schedd daemon’s PID).

Note that by using a dynamically-created spool directory named by the IP address and PID, upon restarting
daemons, jobs submitted to the original condor_schedd daemon that were stored in the old spool directory will
not be noticed by the new condor_schedd daemon, unless you manually specify the old, dynamically-generated
SPOOL directory path in the configuration of the new condor_schedd daemon.

426 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

-f Causes the daemon to start up in the foreground. Instead of forking, the daemon runs in the foreground. Since 8.9.7,
this has been the default for all daemons other than the condor_master.

NOTE: Before 8.9.7, When the condor_master started up daemons, it would do so with the -f option, as it has
already forked a process for the new daemon. There will be a -f in the argument list for all HTCondor daemons
that the condor_master spawns.

-k filename For non-Windows operating systems, causes the daemon to read out a PID from the specified filename,
and send a SIGTERM to that process. The daemon started with this optional argument waits until the daemon it
is attempting to kill has exited.

-l directory Overrides the value of LOG as specified in the configuration files. Primarily, this option is used with the
condor_kbdd when it needs to run as the individual user logged into the machine, instead of running as root.
Regular users would not normally have permission to write files into HTCondor’s log directory. Using this
option, they can override the value of LOG and have the condor_kbdd write its log file into a directory that the
user has permission to write to.

-local-name name Specify a local name for this instance of the daemon. This local name will be used to look up
configuration parameters. The Configuration File Macros section contains details on how this local name will
be used in the configuration.

-p port Causes the daemon to bind to the specified port as its command socket. The condor_master daemon uses this
option to ensure that the condor_collector and condor_negotiator start up using well-known ports that the rest
of HTCondor depends upon them using.

-pidfile filename Causes the daemon to write out its PID (process id number) to the specified filename. This file can
be used to help shutdown the daemon without first searching through the output of the Unix ps command.

Since daemons run with their current working directory set to the value of LOG, if a full path (one that begins
with a slash character, /) is not specified, the file will be placed in the LOG directory.

-q Quiet output; write less verbose error messages to stderr when something goes wrong, and before regular logging
can be initialized.

-r minutes Causes the daemon to set a timer, upon expiration of which, it sends itself a SIGTERM for graceful shut-
down.

-t Causes the daemon to print out its error message to stderr instead of its specified log file. This option forces the
-f option.

-v Causes the daemon to print out version information and exit.

4.11 Hooks, Startd Cron and Schedd Cron

A hook is an external program or script invoked by an HTCondor daemon to change its behavior or implement some
policy. There are five kinds of hooks in HTCondor: Fetch work job hooks, Prepare Job hooks, Job Router hooks, Startd
Cron hooks and Schedd Cron.

4.11. Hooks, Startd Cron and Schedd Cron 427

HTCondor Manual, Release 10.0.9

4.11.1 Job Hooks That Fetch Work

In the past, HTCondor has always sent work to the execute machines by pushing jobs to the condor_startd daemon
from the condor_schedd daemon. Beginning with the HTCondor version 7.1.0, the condor_startd daemon now has the
ability to pull work by fetching jobs via a system of plug-ins or hooks. Any site can configure a set of hooks to fetch
work, completely outside of the usual HTCondor matchmaking system.

A projected use of the hook mechanism implements what might be termed a glide-in factory, especially where the
factory is behind a firewall. Without using the hook mechanism to fetch work, a glide-in condor_startd daemon be-
hind a firewall depends on CCB to help it listen and eventually receive work pushed from elsewhere. With the hook
mechanism, a glide-in condor_startd daemon behind a firewall uses the hook to pull work. The hook needs only an
outbound network connection to complete its task, thereby being able to operate from behind the firewall, without the
intervention of CCB.

Periodically, each execution slot managed by a condor_startd will invoke a hook to see if there is any work that can be
fetched. Whenever this hook returns a valid job, the condor_startd will evaluate the current state of the slot and decide
if it should start executing the fetched work. If the slot is unclaimed and the Start expression evaluates to True, a new
claim will be created for the fetched job. If the slot is claimed, the condor_startd will evaluate the Rank expression
relative to the fetched job, compare it to the value of Rank for the currently running job, and decide if the existing job
should be preempted due to the fetched job having a higher rank. If the slot is unavailable for whatever reason, the
condor_startd will refuse the fetched job and ignore it. Either way, once the condor_startd decides what it should do
with the fetched job, it will invoke another hook to reply to the attempt to fetch work, so that the external system knows
what happened to that work unit.

If the job is accepted, a claim is created for it and the slot moves into the Claimed state. As soon as this happens, the
condor_startd will spawn a condor_starter to manage the execution of the job. At this point, from the perspective of
the condor_startd, this claim is just like any other. The usual policy expressions are evaluated, and if the job needs to
be suspended or evicted, it will be. If a higher-ranked job being managed by a condor_schedd is matched with the slot,
that job will preempt the fetched work.

The condor_starter itself can optionally invoke additional hooks to help manage the execution of the specific job. There
are hooks to prepare the execution environment for the job, periodically update information about the job as it runs,
notify when the job exits, and to take special actions when the job is being evicted.

Assuming there are no interruptions, the job completes, and the condor_starter exits, the condor_startd will invoke
the hook to fetch work again. If another job is available, the existing claim will be reused and a new condor_starter is
spawned. If the hook returns that there is no more work to perform, the claim will be evicted, and the slot will return
to the Owner state.

Work Fetching Hooks Invoked by HTCondor

There are a handful of hooks invoked by HTCondor related to fetching work, some of which are called by the con-
dor_startd and others by the condor_starter. Each hook is described, including when it is invoked, what task it is
supposed to accomplish, what data is passed to the hook, what output is expected, and, when relevant, the exit status
expected.

• The hook defined by the configuration variable <Keyword>_HOOK_FETCH_WORK is invoked whenever the
condor_startd wants to see if there is any work to fetch. There is a related configuration variable called
FetchWorkDelay which determines how long the condor_startd will wait between attempts to fetch work,
which is described in detail in Job Hooks That Fetch Work. <Keyword>_HOOK_FETCH_WORK is the most im-
portant hook in the whole system, and is the only hook that must be defined for any of the other condor_startd
hooks to operate.

Command-line arguments passed to the hook None.

428 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Standard input given to the hook ClassAd of the slot that is looking for work.

Expected standard output from the hook ClassAd of a job that can be run. If there is no work, the
hook should return no output.

User id that the hook runs as The <Keyword>_HOOK_FETCH_WORK hook runs with the same priv-
ileges as the condor_startd. When Condor was started as root, this is usually the condor user, or
the user specified in the CONDOR_IDS configuration variable.

Exit status of the hook Ignored.

The job ClassAd returned by the hook needs to contain enough information for the condor_starter to eventually
spawn the work. The required and optional attributes in this ClassAd are listed here:

Attributes for a FetchWork application are either required or optional. The following attributes are
required:

Cmd This attribute defines the full path to the executable program to be run as a FetchWork applica-
tion. Since HTCondor does not currently provide any mechanism to transfer files on behalf of
FetchWork applications, this path should be a valid path on the machine where the application
will be run. It is a string attribute, and must therefore be enclosed in quotation marks (“). There
is no default.

Owner If the condor_startd daemon is executing as root on the resource where a FetchWork appli-
cation will run, the user must also define Owner to specify what user name the application will
run as. On Windows, the condor_startd daemon always runs as an Administrator service, which
is equivalent to running as root on Unix platforms. Owner must contain a valid user name on the
given FetchWork resource. It is a string attribute, and must therefore be enclosed in quotation
marks (“).

RequestCpus Required when running on a condor_startd that uses partitionable slots. It specifies
the number of CPU cores from the partitionable slot allocated for this job.

RequestDisk Required when running on a condor_startd that uses partitionable slots. It specifies
the disk space, in Megabytes, from the partitionable slot allocated for this job.

RequestMemory Required when running on a condor_startd that uses partitionable slots. It specifies
the memory, in Megabytes, from the partitionable slot allocated for this job.

The following list of attributes are optional:

JobUniverse This attribute defines what HTCondor job universe to use for the given FetchWork
application. The only tested universes are vanilla and java. This attribute must be an integer,
with vanilla using the value 5, and java using the value 10.

IWD IWD is an acronym for Initial Working Directory. It defines the full path to the directory where
a given FetchWork application are to be run. Unless the application changes its current working
directory, any relative path names used by the application will be relative to the IWD. If any
other attributes that define file names (for example, In, Out, and so on) do not contain a full
path, the IWD will automatically be pre-pended to those file names. It is a string attribute, and
must therefore be enclosed in quotation marks (“). If the IWD is not specified, the temporary
execution sandbox created by the condor_starter will be used as the initial working directory.

In This string defines the path to the file on the FetchWork resource that should be used as stan-
dard input (stdin) for the FetchWork application. This file (and all parent directories) must be
readable by whatever user the FetchWork application will run as. If not specified, the default is
/dev/null. It is a string attribute, and must therefore be enclosed in quotation marks (“).

4.11. Hooks, Startd Cron and Schedd Cron 429

HTCondor Manual, Release 10.0.9

Out This string defines the path to the file on the FetchWork resource that should be used as stan-
dard output (stdout) for the FetchWork application. This file must be writable (and all parent
directories readable) by whatever user the FetchWork application will run as. If not specified, the
default is /dev/null. It is a string attribute, and must therefore be enclosed in quotation marks
(“).

Err This string defines the path to the file on the FetchWork resource that should be used as standard
error (stderr) for the FetchWork application. This file must be writable (and all parent direc-
tories readable) by whatever user the FetchWork application will run as. If not specified, the
default is /dev/null. It is a string attribute, and must therefore be enclosed in quotation marks
(“).

Env This string defines environment variables to set for a given FetchWork application. Each envi-
ronment variable has the form NAME=value. Multiple variables are delimited with a semicolon.
An example: Env = “PATH=/usr/local/bin:/usr/bin;TERM=vt100” It is a string attribute, and
must therefore be enclosed in quotation marks (“).

Args This string attribute defines the list of arguments to be supplied to the program on the command-
line. The arguments are delimited (separated) by space characters. There is no default. If the
JobUniverse corresponds to the Java universe, the first argument must be the name of the class
containing main. It is a string attribute, and must therefore be enclosed in quotation marks (“).

JarFiles This string attribute is only used if JobUniverse is 10 (the Java universe). If a given
FetchWork application is a Java program, specify the JAR files that the program requires with
this attribute. There is no default. It is a string attribute, and must therefore be enclosed in
quotation marks (“). Multiple file names may be delimited with either commas or white space
characters, and therefore, file names can not contain spaces.

KillSig This attribute specifies what signal should be sent whenever the HTCondor system needs to
gracefully shutdown the FetchWork application. It can either be specified as a string containing
the signal name (for example KillSig = “SIGQUIT”), or as an integer (KillSig = 3) The default
is to use SIGTERM.

StarterUserLog This string specifies a file name for a log file that the condor_starter daemon can
write with entries for relevant events in the life of a given FetchWork application. It is similar
to the job event log file specified for regular HTCondor jobs with the Log command in a submit
description file. However, certain attributes that are placed in a job event log do not make sense
in the FetchWork environment, and are therefore omitted. The default is not to write this log file.
It is a string attribute, and must therefore be enclosed in quotation marks (“).

StarterUserLogUseXML If the StarterUserLog attribute is defined, the default format is a
human-readable format. However, HTCondor can write out this log in an XML representation,
instead. To enable the XML format for this job event log, the StarterUserLogUseXML boolean
is set to TRUE. The default if not specified is FALSE.

If any attribute that specifies a path (Cmd, In, Out,Err, StarterUserLog) is not a full path name,
HTCondor automatically prepends the value of IWD.

• The hook defined by the configuration variable <Keyword>_HOOK_REPLY_FETCH is invoked whenever
<Keyword>_HOOK_FETCH_WORK returns data and the condor_startd decides if it is going to accept the fetched
job or not.

The condor_startd will not wait for this hook to return before taking other actions, and it ignores all output. The
hook is simply advisory, and it has no impact on the behavior of the condor_startd.

Command-line arguments passed to the hook Either the string accept or reject.

430 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Standard input given to the hook A copy of the job ClassAd and the slot ClassAd (separated by the
string —– and a new line).

Expected standard output from the hook None.

User id that the hook runs as The <Keyword>_HOOK_REPLY_FETCH hook runs with the same priv-
ileges as the condor_startd. When Condor was started as root, this is usually the condor user, or
the user specified in the CONDOR_IDS configuration variable.

Exit status of the hook Ignored.

• The hook defined by the configuration variable <Keyword>_HOOK_EVICT_CLAIM is invoked whenever the con-
dor_startd needs to evict a claim representing fetched work.

The condor_startd will not wait for this hook to return before taking other actions, and ignores all output. The
hook is simply advisory, and has no impact on the behavior of the condor_startd.

Command-line arguments passed to the hook None.

Standard input given to the hook A copy of the job ClassAd and the slot ClassAd (separated by the
string —– and a new line).

Expected standard output from the hook None.

User id that the hook runs as The <Keyword>_HOOK_EVICT_CLAIM hook runs with the same priv-
ileges as the condor_startd. When Condor was started as root, this is usually the condor user, or
the user specified in the CONDOR_IDS configuration variable.

Exit status of the hook Ignored.

• The hook defined by the configuration variable <Keyword>_HOOK_PREPARE_JOB is invoked by the con-
dor_starter before a job is going to be run. This hook provides a chance to execute commands to set up the
job environment, for example, to transfer input files.

The condor_starter waits until this hook returns before attempting to execute the job. If the hook returns a
non-zero exit status, the condor_starter will assume an error was reached while attempting to set up the job
environment and abort the job.

Command-line arguments passed to the hook None.

Standard input given to the hook A copy of the job ClassAd.

Expected standard output from the hook A set of attributes to insert or update into the job ad. For
example, changing the Cmd attribute to a quoted string changes the executable to be run.

User id that the hook runs as The <Keyword>_HOOK_PREPARE_JOB hook runs with the same priv-
ileges as the job itself. If slot users are defined, the hook runs as the slot user, just as the job does.

Exit status of the hook 0 for success preparing the job, any non-zero value on failure.

• The hook defined by the configuration variable <Keyword>_HOOK_UPDATE_JOB_INFO is invoked periodically
during the life of the job to update information about the status of the job. When the job is first spawned,
the condor_starter will invoke this hook after STARTER_INITIAL_UPDATE_INTERVAL seconds (defaults to 8).
Thereafter, the condor_starter will invoke the hook every STARTER_UPDATE_INTERVAL seconds (defaults to
300, which is 5 minutes).

The condor_starter will not wait for this hook to return before taking other actions, and ignores all output. The
hook is simply advisory, and has no impact on the behavior of the condor_starter.

4.11. Hooks, Startd Cron and Schedd Cron 431

HTCondor Manual, Release 10.0.9

Command-line arguments passed to the hook None.

Standard input given to the hook A copy of the job ClassAd that has been augmented with addi-
tional attributes describing the current status and execution behavior of the job.

The additional attributes included inside the job ClassAd are:

JobState The current state of the job. Can be either "Running" or "Suspended".

JobPid The process identifier for the initial job directly spawned by the condor_starter.

NumPids The number of processes that the job has currently spawned.

JobStartDate The epoch time when the job was first spawned by the condor_starter.

RemoteSysCpu The total number of seconds of system CPU time (the time spent at system calls)
the job has used.

RemoteUserCpu The total number of seconds of user CPU time the job has used.

ImageSize The memory image size of the job in Kbytes.

Expected standard output from the hook None.

User id that the hook runs as The <Keyword>_HOOK_UPDATE_JOB_INFO hook runs with the same
privileges as the job itself.

Exit status of the hook Ignored.

• The hook defined by the configuration variable <Keyword>_HOOK_JOB_EXIT is invoked by the condor_starter
whenever a job exits, either on its own or when being evicted from an execution slot.

The condor_starter will wait for this hook to return before taking any other actions. In the case of jobs that are
being managed by a condor_shadow, this hook is invoked before the condor_starter does its own optional file
transfer back to the submission machine, writes to the local job event log file, or notifies the condor_shadow that
the job has exited.

Command-line arguments passed to the hook A string describing how the job exited:

– exit The job exited or died with a signal on its own.

– remove The job was removed with condor_rm or as the result of user job policy expressions
(for example, PeriodicRemove).

– hold The job was held with condor_hold or the user job policy expressions (for example,
PeriodicHold).

– evict The job was evicted from the execution slot for any other reason (PREEMPT evaluated
to TRUE in the condor_startd, condor_vacate, condor_off, etc).

Standard input given to the hook A copy of the job ClassAd that has been augmented with addi-
tional attributes describing the execution behavior of the job and its final results.

The job ClassAd passed to this hook contains all of the extra attributes described above for
<Keyword>_HOOK_UPDATE_JOB_INFO , and the following additional attributes that are only
present once a job exits:

ExitReason A human-readable string describing why the job exited.

ExitBySignal A boolean indicating if the job exited due to being killed by a signal, or if it
exited with an exit status.

ExitSignal If ExitBySignal is true, the signal number that killed the job.

ExitCode If ExitBySignal is false, the integer exit code of the job.

432 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

JobDuration The number of seconds that the job ran during this invocation.

Expected standard output from the hook None.

User id that the hook runs as The <Keyword>_HOOK_JOB_EXIT hook runs with the same privi-
leges as the job itself.

Exit status of the hook Ignored.

Keywords to Define Job Fetch Hooks in the HTCondor Configuration files

Hooks are defined in the HTCondor configuration files by prefixing the name of the hook with a keyword. This way, a
given machine can have multiple sets of hooks, each set identified by a specific keyword.

Each slot on the machine can define a separate keyword for the set of hooks that should be used with
SLOT<N>_JOB_HOOK_KEYWORD . For example, on slot 1, the variable name will be called SLOT1_JOB_HOOK_KEYWORD.
If the slot-specific keyword is not defined, the condor_startd will use a global keyword as defined by
STARTD_JOB_HOOK_KEYWORD .

Once a job is fetched via <Keyword>_HOOK_FETCH_WORK , the condor_startd will insert the keyword used to fetch that
job into the job ClassAd as HookKeyword. This way, the same keyword will be used to select the hooks invoked by
the condor_starter during the actual execution of the job. However, the STARTER_JOB_HOOK_KEYWORD can be defined
to force the condor_starter to always use a given keyword for its own hooks, instead of looking the job ClassAd for a
HookKeyword attribute.

For example, the following configuration defines two sets of hooks, and on a machine with 4 slots, 3 of the slots use the
global keyword for running work from a database-driven system, and one of the slots uses a custom keyword to handle
work fetched from a web service.

Most slots fetch and run work from the database system.
STARTD_JOB_HOOK_KEYWORD = DATABASE

Slot4 fetches and runs work from a web service.
SLOT4_JOB_HOOK_KEYWORD = WEB

The database system needs to both provide work and know the reply
for each attempted claim.
DATABASE_HOOK_DIR = /usr/local/condor/fetch/database
DATABASE_HOOK_FETCH_WORK = $(DATABASE_HOOK_DIR)/fetch_work.php
DATABASE_HOOK_REPLY_FETCH = $(DATABASE_HOOK_DIR)/reply_fetch.php

The web system only needs to fetch work.
WEB_HOOK_DIR = /usr/local/condor/fetch/web
WEB_HOOK_FETCH_WORK = $(WEB_HOOK_DIR)/fetch_work.php

The keywords "DATABASE" and "WEB" are completely arbitrary, so each site is encouraged to use different (more
specific) names as appropriate for their own needs.

4.11. Hooks, Startd Cron and Schedd Cron 433

HTCondor Manual, Release 10.0.9

Defining the FetchWorkDelay Expression

There are two events that trigger the condor_startd to attempt to fetch new work:

• the condor_startd evaluates its own state

• the condor_starter exits after completing some fetched work

Even if a given compute slot is already busy running other work, it is possible that if it fetched new work, the con-
dor_startd would prefer this newly fetched work (via the Rank expression) over the work it is currently running. How-
ever, the condor_startd frequently evaluates its own state, especially when a slot is claimed. Therefore, administrators
can define a configuration variable which controls how long the condor_startd will wait between attempts to fetch new
work. This variable is called FetchWorkDelay .

The FetchWorkDelay expression must evaluate to an integer, which defines the number of seconds since the last
fetch attempt completed before the condor_startd will attempt to fetch more work. However, as a ClassAd expression
(evaluated in the context of the ClassAd of the slot considering if it should fetch more work, and the ClassAd of the
currently running job, if any), the length of the delay can be based on the current state the slot and even the currently
running job.

For example, a common configuration would be to always wait 5 minutes (300 seconds) between attempts to fetch
work, unless the slot is Claimed/Idle, in which case the condor_startd should fetch immediately:

FetchWorkDelay = ifThenElse(State == "Claimed" && Activity == "Idle", 0, 300)

If the condor_startd wants to fetch work, but the time since the last attempted fetch is shorter than the current value of
the delay expression, the condor_startd will set a timer to fetch as soon as the delay expires.

If this expression is not defined, the condor_startd will default to a five minute (300 second) delay between all attempts
to fetch work.

Example Hook: Specifying the Executable at Execution Time

The availability of multiple versions of an application leads to the need to specify one of the versions. As an example,
consider that the java universe utilizes a single, fixed JVM. There may be multiple JVMs available, and the HTCondor
job may need to make the choice of JVM version. The use of a job hook solves this problem. The job does not use
the java universe, and instead uses the vanilla universe in combination with a prepare job hook to overwrite the Cmd
attribute of the job ClassAd. This attribute is the name of the executable the condor_starter daemon will invoke, thereby
selecting the specific JVM installation.

In the configuration of the execute machine:

JAVA5_HOOK_PREPARE_JOB = $(LIBEXEC)/java5_prepare_hook

With this configuration, a job that sets the HookKeyword attribute with

+HookKeyword = "JAVA5"

in the submit description file causes the condor_starter will run the hook specified by JAVA5_HOOK_PREPARE_JOB
before running this job. Note that the double quote marks are required to correctly define the attribute. Any output
from this hook is an update to the job ClassAd. Therefore, the hook that changes the executable may be

434 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

#!/bin/sh

Read and discard the job ClassAd
cat > /dev/null
echo 'Cmd = "/usr/java/java5/bin/java"'

If some machines in your pool have this hook and others do not, this fact should be advertised. Add to the configuration
of every execute machine that has the hook:

HasJava5PrepareHook = True
STARTD_ATTRS = HasJava5PrepareHook $(STARTD_ATTRS)

The submit description file for this example job may be

universe = vanilla
executable = /usr/bin/java
arguments = Hello
match with a machine that has the hook
requirements = HasJava5PrepareHook

should_transfer_files = always
when_to_transfer_output = on_exit
transfer_input_files = Hello.class

output = hello.out
error = hello.err
log = hello.log

+HookKeyword="JAVA5"

queue

Note that the requirements command ensures that this job matches with a machine that has
JAVA5_HOOK_PREPARE_JOB defined.

4.11.2 Hooks for the Job Router

Job Router Hooks allow for an alternate transformation and/or monitoring than the condor_job_router daemon imple-
ments. Routing is still managed by the condor_job_router daemon, but if the Job Router Hooks are specified, then
these hooks will be used to transform and monitor the job instead.

Job Router Hooks are similar in concept to Fetch Work Hooks, but they are limited in their scope. A hook is an external
program or script invoked by the condor_job_router daemon at various points during the life cycle of a routed job.

The following sections describe how and when these hooks are used, what hooks are invoked at various stages of the
job’s life, and how to configure HTCondor to use these Hooks.

4.11. Hooks, Startd Cron and Schedd Cron 435

HTCondor Manual, Release 10.0.9

Hooks Invoked for Job Routing

The Job Router Hooks allow for replacement of the transformation engine used by HTCondor for routing a job. Since
the external transformation engine is not controlled by HTCondor, additional hooks provide a means to update the job’s
status in HTCondor, and to clean up upon exit or failure cases. This allows one job to be transformed to just about any
other type of job that HTCondor supports, as well as to use execution nodes not normally available to HTCondor.

It is important to note that if the Job Router Hooks are utilized, then HTCondor will not ignore or work around a failure
in any hook execution. If a hook is configured, then HTCondor assumes its invocation is required and will not continue
by falling back to a part of its internal engine. For example, if there is a problem transforming the job using the hooks,
HTCondor will not fall back on its transformation accomplished without the hook to process the job.

There are 2 ways in which the Job Router Hooks may be enabled. A job’s submit description file may cause the hooks
to be invoked with

+HookKeyword = "HOOKNAME"

Adding this attribute to the job’s ClassAd causes the condor_job_router daemon on the submit machine to invoke
hooks prefixed with the defined keyword. HOOKNAME is a string chosen as an example; any string may be used.

The job’s ClassAd attribute definition of HookKeyword takes precedence, but if not present, hooks may be enabled by
defining on the submit machine the configuration variable

JOB_ROUTER_HOOK_KEYWORD = HOOKNAME

Like the example attribute above, HOOKNAME represents a chosen name for the hook, replaced as desired or appropriate.

There are 4 hooks that the Job Router can be configured to use. Each hook will be described below along with data
passed to the hook and expected output. All hooks must exit successfully.

• The hook defined by the configuration variable <Keyword>_HOOK_TRANSLATE_JOB is invoked when the Job
Router has determined that a job meets the definition for a route. This hook is responsible for doing the transfor-
mation of the job and configuring any resources that are external to HTCondor if applicable.

Command-line arguments passed to the hook None.

Standard input given to the hook The first line will be the information on route that the job matched
including the route name. This information will be formated as a classad. If the route has a
TargetUniverse or GridResource they will be included in the classad. The route information
classad will be followed by a separator line of dashes like ------ followed by a newline. The
remainder of the input will be the job ClassAd.

Expected standard output from the hook The transformed job.

Exit status of the hook 0 for success, any non-zero value on failure.

• The hook defined by the configuration variable <Keyword>_HOOK_UPDATE_JOB_INFO is invoked to provide
status on the specified routed job when the Job Router polls the status of routed jobs at intervals set by
JOB_ROUTER_POLLING_PERIOD .

Command-line arguments passed to the hook None.

Standard input given to the hook The routed job ClassAd that is to be updated.

Expected standard output from the hook The job attributes to be updated in the routed job, or
nothing, if there was no update. To prevent clashing with HTCondor’s management of job at-
tributes, only attributes that are not managed by HTCondor should be output from this hook.

436 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Exit status of the hook 0 for success, any non-zero value on failure.

• The hook defined by the configuration variable <Keyword>_HOOK_JOB_FINALIZE is invoked when the Job
Router has found that the job has completed. Any output from the hook is treated as an update to the source job.

Command-line arguments passed to the hook None.

Standard input given to the hook The source job ClassAd, followed by the routed copy Classad
that completed, separated by the string “——” and a new line.

Expected standard output from the hook An updated source job ClassAd, or nothing if there was
no update.

Exit status of the hook 0 for success, any non-zero value on failure.

• The hook defined by the configuration variable <Keyword>_HOOK_JOB_CLEANUP is invoked when the Job Router
finishes managing the job. This hook will be invoked regardless of whether the job completes successfully or
not, and must exit successfully.

Command-line arguments passed to the hook None.

Standard input given to the hook The job ClassAd that the Job Router is done managing.

Expected standard output from the hook None.

Exit status of the hook 0 for success, any non-zero value on failure.

4.11.3 Startd Cron and Schedd Cron Daemon ClassAd Hooks

Overview

The Startd Cron and Schedd Cron Daemon ClassAd Hooks mechanism are used to run executables (called jobs) directly
from the condor_startd and condor_schedd daemons. The output from these jobs is incorporated into the machine
ClassAd generated by the respective daemon. This mechanism and associated jobs have been identified by various
names, including the Startd Cron, dynamic attributes, and a distribution of executables collectively known as Hawkeye.

Pool management tasks can be enhanced by using a daemon’s ability to periodically run executables. The executables
are expected to generate ClassAd attributes as their output; these ClassAds are then incorporated into the machine
ClassAd. Policy expressions can then reference dynamic attributes (created by the ClassAd hook jobs) in the machine
ClassAd.

Job output

The output of the job is incorporated into one or more ClassAds when the job exits. When the job outputs the special
line:

- update:true

the output of the job is merged into all proper ClassAds, and an update goes to the condor_collector daemon.

As of version 8.3.0, it is possible for a Startd Cron job (but not a Schedd Cron job) to define multiple ClassAds, using
the mechanism defined below:

4.11. Hooks, Startd Cron and Schedd Cron 437

HTCondor Manual, Release 10.0.9

• An output line starting with '-' has always indicated end-of-ClassAd. The '-' can now be followed by a
uniqueness tag to indicate the name of the ad that should be replaced by the new ad. This name is joined to
the name of the Startd Cron job to produced a full name for the ad. This allows a single Startd Cron job to
return multiple ads by giving each a unique name, and to replace multiple ads by using the same unique name
as a previous invocation. The optional uniqueness tag can also be followed by the optional keyword update:
<bool>, which can be used to override the Startd Cron configuration and suppress or force immediate updates.

In other words, the syntax is:

– [name] [update: bool]

• Each ad can contain one of four possible attributes to control what slot ads the ad is merged into when the
condor_startd sends updates to the collector. These attributes are, in order of highest to lower priority (in other
words, if SlotMergeConstraint matches, the other attributes are not considered, and so on):

– SlotMergeConstraint expression: the current ad is merged into all slot ads for which this expression is
true. The expression is evaluated with the slot ad as the TARGET ad.

– SlotName|Name string: the current ad is merged into all slots whose Name attributes match the value of
SlotName up to the length of SlotName.

– SlotTypeId integer: the current ad is merged into all ads that have the same value for their SlotTypeId
attribute.

– SlotId integer: the current ad is merged into all ads that have the same value for their SlotId attribute.

For example, if the Startd Cron job returns:

Value=1
SlotId=1
-s1
Value=2
SlotId=2
-s2
Value=10
- update:true

it will set Value=10 for all slots except slot1 and slot2. On those slots it will set Value=1 and Value=2 respectively.
It will also send updates to the collector immediately.

Configuration

Configuration variables related to Daemon ClassAd Hooks are defined in Configuration File Entries Relating to Dae-
mon ClassAd Hooks: Startd Cron and Schedd Cron

Here is a complete configuration example. It defines all three of the available types of jobs: ones that use the con-
dor_startd, benchmark jobs, and ones that use the condor_schedd.

#
Startd Cron Stuff
#
auxiliary variable to use in identifying locations of files
MODULES = $(ROOT)/modules

STARTD_CRON_CONFIG_VAL = $(RELEASE_DIR)/bin/condor_config_val
STARTD_CRON_MAX_JOB_LOAD = 0.2
STARTD_CRON_JOBLIST =

(continues on next page)

438 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

(continued from previous page)

Test job
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) test
STARTD_CRON_TEST_MODE = OneShot
STARTD_CRON_TEST_RECONFIG_RERUN = True
STARTD_CRON_TEST_PREFIX = test_
STARTD_CRON_TEST_EXECUTABLE = $(MODULES)/test
STARTD_CRON_TEST_KILL = True
STARTD_CRON_TEST_ARGS = abc 123
STARTD_CRON_TEST_SLOTS = 1
STARTD_CRON_TEST_JOB_LOAD = 0.01

job 'date'
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) date
STARTD_CRON_DATE_MODE = Periodic
STARTD_CRON_DATE_EXECUTABLE = $(MODULES)/date
STARTD_CRON_DATE_PERIOD = 15s
STARTD_CRON_DATE_JOB_LOAD = 0.01

Job 'foo'
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) foo
STARTD_CRON_FOO_EXECUTABLE = $(MODULES)/foo
STARTD_CRON_FOO_PREFIX = Foo
STARTD_CRON_FOO_MODE = Periodic
STARTD_CRON_FOO_PERIOD = 10m
STARTD_CRON_FOO_JOB_LOAD = 0.2

#
Benchmark Stuff
#
BENCHMARKS_JOBLIST = mips kflops

MIPS benchmark
BENCHMARKS_MIPS_EXECUTABLE = $(LIBEXEC)/condor_mips
BENCHMARKS_MIPS_JOB_LOAD = 1.0

KFLOPS benchmark
BENCHMARKS_KFLOPS_EXECUTABLE = $(LIBEXEC)/condor_kflops
BENCHMARKS_KFLOPS_JOB_LOAD = 1.0

#
Schedd Cron Stuff. Unlike the Startd,
a restart of the Schedd is required for changes to take effect
#
SCHEDD_CRON_CONFIG_VAL = $(RELEASE_DIR)/bin/condor_config_val
SCHEDD_CRON_JOBLIST =

Test job
SCHEDD_CRON_JOBLIST = $(SCHEDD_CRON_JOBLIST) test
SCHEDD_CRON_TEST_MODE = OneShot
SCHEDD_CRON_TEST_RECONFIG_RERUN = True
SCHEDD_CRON_TEST_PREFIX = test_

(continues on next page)

4.11. Hooks, Startd Cron and Schedd Cron 439

HTCondor Manual, Release 10.0.9

(continued from previous page)

SCHEDD_CRON_TEST_EXECUTABLE = $(MODULES)/test
SCHEDD_CRON_TEST_PERIOD = 5m
SCHEDD_CRON_TEST_KILL = True
SCHEDD_CRON_TEST_ARGS = abc 123

4.12 Logging in HTCondor

HTCondor records many types of information in a variety of logs. Administration may require locating and using the
contents of a log to debug issues. Listed here are details of the logs, to aid in identification.

4.12.1 Job and Daemon Logs

job event log The job event log is an optional, chronological list of events that occur as a job runs. The job event log
is written on the submit machine. The submit description file for the job requests a job event log with the submit
command log . The log is created and remains on the submit machine. Contents of the log are detailed in the In
the Job Event Log File section. Examples of events are that the job is running, that the job is placed on hold, or
that the job completed.

daemon logs Each daemon configured to have a log writes events relevant to that daemon. Each event written consists
of a timestamp and message. The name of the log file is set by the value of configuration variable <SUBSYS>_LOG
, where <SUBSYS> is replaced by the name of the daemon. The log is not permitted to grow without bound; log
rotation takes place after a configurable maximum size or length of time is encountered. This maximum is
specified by configuration variable MAX_<SUBSYS>_LOG .

Which events are logged for a particular daemon are determined by the value of configuration variable
<SUBSYS>_DEBUG . The possible values for <SUBSYS>_DEBUG categorize events, such that it is possible to control
the level and quantity of events written to the daemon’s log.

Configuration variables that affect daemon logs are

MAX_NUM_<SUBSYS>_LOG TRUNC_<SUBSYS>_LOG_ON_OPEN <SUBSYS>_LOG_KEEP_OPEN
<SUBSYS>_LOCK FILE_LOCK_VIA_MUTEX TOUCH_LOG_INTERVAL LOGS_USE_TIMESTAMP
LOG_TO_SYSLOG

Daemon logs are often investigated to accomplish administrative debugging. condor_config_val can be used to
determine the location and file name of the daemon log. For example, to display the location of the log for the
condor_collector daemon, use

$ condor_config_val COLLECTOR_LOG

job queue log The job queue log is a transactional representation of the current job queue. If the condor_schedd
crashes, the job queue can be rebuilt using this log. The file name is set by configuration variable JOB_QUEUE_LOG
, and defaults to $(SPOOL)/job_queue.log.

Within the log, each transaction is identified with an integer value and followed where appropriate with other
values relevant to the transaction. To reduce the size of the log and remove any transactions that are no longer
relevant, a copy of the log is kept by renaming the log at each time interval defined by configuration variable
QUEUE_CLEAN_INTERVAL, and then a new log is written with only current and relevant transactions.

Configuration variables that affect the job queue log are

440 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

SCHEDD_BACKUP_SPOOL QUEUE_CLEAN_INTERVAL MAX_JOB_QUEUE_LOG_ROTATIONS

condor_schedd audit log The optional condor_schedd audit log records user-initiated events that modify the job
queue, such as invocations of condor_submit, condor_rm, condor_hold and condor_release. Each event has
a time stamp and a message that describes details of the event.

This log exists to help administrators track the activities of pool users.

The file name is set by configuration variable SCHEDD_AUDIT_LOG .

Configuration variables that affect the audit log are

MAX_SCHEDD_AUDIT_LOG MAX_NUM_SCHEDD_AUDIT_LOG

condor_shared_port audit log The optional condor_shared_port audit log records connections made through the
DAEMON_SOCKET_DIR . Each record includes the source address, the socket file name, and the target process’s
PID, UID, GID, executable path, and command line.

This log exists to help administrators track the activities of pool users.

The file name is set by configuration variable SHARED_PORT_AUDIT_LOG .

Configuration variables that affect the audit log are

MAX_SHARED_PORT_AUDIT_LOG MAX_NUM_SHARED_PORT_AUDIT_LOG

event log The event log is an optional, chronological list of events that occur for all jobs and all users. The events
logged are the same as those that would go into a job event log. The file name is set by configuration variable
EVENT_LOG . The log is created only if this configuration variable is set.

Configuration variables that affect the event log, setting details such as the maximum size to which this log may
grow and details of file rotation and locking are

EVENT_LOG_MAX_SIZE EVENT_LOG_MAX_ROTATIONS EVENT_LOG_LOCKING EVENT_LOG_FSYNC
EVENT_LOG_ROTATION_LOCK EVENT_LOG_JOB_AD_INFORMATION_ATTRS EVENT_LOG_USE_XML

accountant log The accountant log is a transactional representation of the condor_negotiator daemon’s database
of accounting information, which are user priorities. The file name of the accountant log is $(SPOOL)/
Accountantnew.log. Within the log, users are identified by username@uid_domain.

To reduce the size and remove information that is no longer relevant, a copy of the log is made when its size hits
the number of bytes defined by configuration variable MAX_ACCOUNTANT_DATABASE_SIZE, and then a new log
is written in a more compact form.

Administrators can change user priorities kept in this log by using the command line tool condor_userprio.

negotiator match log The negotiator match log is a second daemon log from the condor_negotiator daemon. Events
written to this log are those with debug level of D_MATCH. The file name is set by configuration variable
NEGOTIATOR_MATCH_LOG , and defaults to $(LOG)/MatchLog.

history log This optional log contains information about all jobs that have been completed. It is written by the con-
dor_schedd daemon. The file name is $(SPOOL)/history.

Administrators can change view this historical information by using the command line tool condor_history.

Configuration variables that affect the history log, setting details such as the maximum size to which this log
may grow are

ENABLE_HISTORY_ROTATION MAX_HISTORY_LOG MAX_HISTORY_ROTATIONS
ROTATE_HISTORY_DAILY ROTATE_HISTORY_MONTHLY

4.12. Logging in HTCondor 441

mailto:username@uid_domain

HTCondor Manual, Release 10.0.9

4.12.2 DAGMan Logs

default node log A job event log of all node jobs within a single DAG. It is used to enforce the dependencies of the
DAG.

The file name is set by configuration variable DAGMAN_DEFAULT_NODE_LOG , and the full path name of this file
must be unique while any and all submitted DAGs and other jobs from the submit host run. The syntax used
in the definition of this configuration variable is different to enable the setting of a unique file name. See the
Configuration File Entries for DAGMan section for the complete definition.

Configuration variables that affect this log are

DAGMAN_ALWAYS_USE_NODE_LOG

the .dagman.out file A log created or appended to for each DAG submitted with timestamped events and extra infor-
mation about the configuration applied to the DAG. The name of this log is formed by appending .dagman.out
to the name of the DAG input file. The file remains after the DAG completes.

This log may be helpful in debugging what has happened in the execution of a DAG, as well as help to determine
the final state of the DAG.

Configuration variables that affect this log are

DAGMAN_VERBOSITY DAGMAN_PENDING_REPORT_INTERVAL

the jobstate.log file This optional, machine-readable log enables automated monitoring of DAG. The page A
Machine-Readable Event History, the jobstate.log File details this log.

4.13 Monitoring

Information that the condor_collector collects can be used to monitor a pool. The condor_status command can be used
to display snapshot of the current state of the pool. Monitoring systems can be set up to track the state over time, and
they might go further, to alert the system administrator about exceptional conditions.

4.13.1 Ganglia

Support for the Ganglia monitoring system (http://ganglia.info/) is integral to HTCondor. Nagios (http://www.nagios.
org/) is often used to provide alerts based on data from the Ganglia monitoring system. The condor_gangliad daemon
provides an efficient way to take information from an HTCondor pool and supply it to the Ganglia monitoring system.

The condor_gangliad gathers up data as specified by its configuration, and it streamlines getting that data to the Ganglia
monitoring system. Updates sent to Ganglia are done using the Ganglia shared libraries for efficiency.

If Ganglia is already deployed in the pool, the monitoring of HTCondor is enabled by running the condor_gangliad
daemon on a single machine within the pool. If the machine chosen is the one running Ganglia’s gmetad, then the
HTCondor configuration consists of adding GANGLIAD to the definition of configuration variable DAEMON_LIST on
that machine. It may be advantageous to run the condor_gangliad daemon on the same machine as is running the
condor_collector daemon, because on a large pool with many ClassAds, there is likely to be less network traffic. If the
condor_gangliad daemon is to run on a different machine than the one running Ganglia’s gmetad, modify configuration
variable GANGLIA_GSTAT_COMMAND to get the list of monitored hosts from the master gmond program.

If the pool does not use Ganglia, the pool can still be monitored by a separate server running Ganglia.

442 Chapter 4. Administrators’ Manual

http://ganglia.info/
http://www.nagios.org/
http://www.nagios.org/

HTCondor Manual, Release 10.0.9

By default, the condor_gangliad will only propagate metrics to hosts that are already monitored by Ganglia. Set
configuration variable GANGLIA_SEND_DATA_FOR_ALL_HOSTS to True to set up a Ganglia host to monitor a pool not
monitored by Ganglia or have a heterogeneous pool where some hosts are not monitored. In this case, default graphs
that Ganglia provides will not be present. However, the HTCondor metrics will appear.

On large pools, setting configuration variable GANGLIAD_PER_EXECUTE_NODE_METRICS to False will reduce the
amount of data sent to Ganglia. The execute node data is the least important to monitor. One can also limit the amount
of data by setting configuration variable GANGLIAD_REQUIREMENTS . Be aware that aggregate sums over the entire
pool will not be accurate if this variable limits the ClassAds queried.

Metrics to be sent to Ganglia are specified in all files within the directory specified by configuration variable
GANGLIAD_METRICS_CONFIG_DIR . Each file in the directory is read, and the format within each file is that of New
ClassAds. Here is an example of a single metric definition given as a New ClassAd:

[
Name = "JobsSubmitted";
Desc = "Number of jobs submitted";
Units = "jobs";
TargetType = "Scheduler";

]

A nice set of default metrics is in file: $(GANGLIAD_METRICS_CONFIG_DIR)/00_default_metrics.

Recognized metric attribute names and their use:

Name The name of this metric, which corresponds to the ClassAd attribute name. Metrics published for
the same machine must have unique names.

Value A ClassAd expression that produces the value when evaluated. The default value is the value in the
daemon ClassAd of the attribute with the same name as this metric.

Desc A brief description of the metric. This string is displayed when the user holds the mouse over the
Ganglia graph for the metric.

Verbosity The integer verbosity level of this metric. Metrics with a higher verbosity level than that spec-
ified by configuration variable GANGLIA_VERBOSITY will not be published.

TargetType A string containing a comma-separated list of daemon ClassAd types that this metric mon-
itors. The specified values should match the value of MyType of the daemon ClassAd. In addition,
there are special values that may be included. “Machine_slot1” may be specified to monitor the ma-
chine ClassAd for slot 1 only. This is useful when monitoring machine-wide attributes. The special
value “ANY” matches any type of ClassAd.

Requirements A boolean expression that may restrict how this metric is incorporated. It defaults to True,
which places no restrictions on the collection of this ClassAd metric.

Title The graph title used for this metric. The default is the metric name.

Group A string specifying the name of this metric’s group. Metrics are arranged by group within a
Ganglia web page. The default is determined by the daemon type. Metrics in different groups must
have unique names.

Cluster A string specifying the cluster name for this metric. The default cluster name is taken from the
configuration variable GANGLIAD_DEFAULT_CLUSTER .

Units A string describing the units of this metric.

Scale A scaling factor that is multiplied by the value of the Value attribute. The scale factor is used when
the value is not in the basic unit or a human-interpretable unit. For example, duty cycle is commonly
expressed as a percent, but the HTCondor value ranges from 0 to 1. So, duty cycle is scaled by 100.
Some metrics are reported in KiB. Scaling by 1024 allows Ganglia to pick the appropriate units,

4.13. Monitoring 443

HTCondor Manual, Release 10.0.9

such as number of bytes rather than number of KiB. When scaling by large values, converting to the
“float” type is recommended.

Derivative A boolean value that specifies if Ganglia should graph the derivative of this metric. Ganglia
versions prior to 3.4 do not support this.

Type A string specifying the type of the metric. Possible values are “double”, “float”, “int32”, “uint32”,
“int16”, “uint16”, “int8”, “uint8”, and “string”. The default is “string” for string values, the default
is “int32” for integer values, the default is “float” for real values, and the default is “int8” for boolean
values. Integer values can be coerced to “float” or “double”. This is especially important for values
stored internally as 64-bit values.

Regex This string value specifies a regular expression that matches attributes to be monitored by this
metric. This is useful for dynamic attributes that cannot be enumerated in advance, because their
names depend on dynamic information such as the users who are currently running jobs. When this
is specified, one metric per matching attribute is created. The default metric name is the name of the
matched attribute, and the default value is the value of that attribute. As usual, the Value expression
may be used when the raw attribute value needs to be manipulated before publication. However,
since the name of the attribute is not known in advance, a special ClassAd attribute in the daemon
ClassAd is provided to allow the Value expression to refer to it. This special attribute is named
Regex. Another special feature is the ability to refer to text matched by regular expression groups
defined by parentheses within the regular expression. These may be substituted into the values of
other string attributes such as Name and Desc. This is done by putting macros in the string values.
“\\1” is replaced by the first group, “\\2” by the second group, and so on.

Aggregate This string value specifies an aggregation function to apply, instead of publishing individual
metrics for each daemon ClassAd. Possible values are “sum”, “avg”, “max”, and “min”.

AggregateGroup When an aggregate function has been specified, this string value specifies which ag-
gregation group the current daemon ClassAd belongs to. The default is the metric Name. This
feature works like GROUP BY in SQL. The aggregation function produces one result per value of
AggregateGroup. A single aggregate group would therefore be appropriate for a pool-wide metric.
As an example, to publish the sum of an attribute across different types of slot ClassAds, make the
metric name an expression that is unique to each type. The default AggregateGroup would be set
accordingly. Note that the assumption is still that the result is a pool-wide metric, so by default it
is associated with the condor_collector daemon’s host. To group by machine and publish the result
into the Ganglia page associated with each machine, make the AggregateGroup contain the machine
name and override the default Machine attribute to be the daemon’s machine name, rather than the
condor_collector daemon’s machine name.

Machine The name of the host associated with this metric. If configuration variable
GANGLIAD_DEFAULT_MACHINE is not specified, the default is taken from the Machine at-
tribute of the daemon ClassAd. If the daemon name is of the form name@hostname, this may
indicate that there are multiple instances of HTCondor running on the same machine. To avoid the
metrics from these instances overwriting each other, the default machine name is set to the daemon
name in this case. For aggregate metrics, the default value of Machine will be the name of the
condor_collector host.

IP A string containing the IP address of the host associated with this metric. If GANGLIAD_DEFAULT_IP
is not specified, the default is extracted from the MyAddress attribute of the daemon ClassAd. This
value must be unique for each machine published to Ganglia. It need not be a valid IP address. If
the value of Machine contains an “@” sign, the default IP value will be set to the same value as
Machine in order to make the IP value unique to each instance of HTCondor running on the same
host.

444 Chapter 4. Administrators’ Manual

mailto:name@hostname

HTCondor Manual, Release 10.0.9

4.13.2 Absent ClassAds

By default, HTCondor assumes that resources are transient: the condor_collector will discard ClassAds older than
CLASSAD_LIFETIME seconds. Its default configuration value is 15 minutes, and as such, the default value for
UPDATE_INTERVAL will pass three times before HTCondor forgets about a resource. In some pools, especially those
with dedicated resources, this approach may make it unnecessarily difficult to determine what the composition of the
pool ought to be, in the sense of knowing which machines would be in the pool, if HTCondor were properly functioning
on all of them.

This assumption of transient machines can be modified by the use of absent ClassAds. When a machine ClassAd
would otherwise expire, the condor_collector evaluates the configuration variable ABSENT_REQUIREMENTS against
the machine ClassAd. If True, the machine ClassAd will be saved in a persistent manner and be marked as absent; this
causes the machine to appear in the output of condor_status -absent. When the machine returns to the pool, its
first update to the condor_collector will invalidate the absent machine ClassAd.

Absent ClassAds, like offline ClassAds, are stored to disk to ensure that they are remembered, even across con-
dor_collector crashes. The configuration variable COLLECTOR_PERSISTENT_AD_LOG defines the file in which the
ClassAds are stored, and replaces the no longer used variable OFFLINE_LOG. Absent ClassAds are retained on
disk as maintained by the condor_collector for a length of time in seconds defined by the configuration variable
ABSENT_EXPIRE_ADS_AFTER . A value of 0 for this variable means that the ClassAds are never discarded, and the
default value is thirty days.

Absent ClassAds are only returned by the condor_collector and displayed when the -absent option to condor_status
is specified, or when the absent machine ClassAd attribute is mentioned on the condor_status command line. This
renders absent ClassAds invisible to the rest of the HTCondor infrastructure.

A daemon may inform the condor_collector that the daemon’s ClassAd should not expire, but should be removed
right away; the daemon asks for its ClassAd to be invalidated. It may be useful to place an invalidated ClassAd
in the absent state, instead of having it removed as an invalidated ClassAd. An example of a ClassAd that could
benefit from being absent is a system with an uninterruptible power supply that shuts down cleanly but unexpect-
edly as a result of a power outage. To cause all invalidated ClassAds to become absent instead of invalidated, set
EXPIRE_INVALIDATED_ADS to True. Invalidated ClassAds will instead be treated as if they expired, including when
evaluating ABSENT_REQUIREMENTS.

4.13.3 GPUs

HTCondor supports monitoring GPU utilization for NVidia GPUs. This feature is enabled by default if you set use
feature : GPUs in your configuration file.

Doing so will cause the startd to run the condor_gpu_utilization tool. This tool polls the (NVidia) GPU device(s)
in the system and records their utilization and memory usage values. At regular intervals, the tool reports these values
to the condor_startd, assigning them to each device’s usage to the slot(s) to which those devices have been assigned.

Please note that condor_gpu_utilization can not presently assign GPU utilization directly to HTCondor jobs. As
a result, jobs sharing a GPU device, or a GPU device being used by from outside HTCondor, will result in GPU usage
and utilization being misreported accordingly.

However, this approach does simplify monitoring for the owner/administrator of the GPUs, because usage is reported
by the condor_startd in addition to the jobs themselves.

DeviceGPUsAverageUsage The number of seconds executed by GPUs assigned to this slot, divided by
the number of seconds since the startd started up.

4.13. Monitoring 445

HTCondor Manual, Release 10.0.9

DeviceGPUsMemoryPeakUsage The largest amount of GPU memory used GPUs assigned to this slot,
since the startd started up.

4.13.4 Elasticsearch

HTCondor supports pushing condor_schedd and condor_startd job history ClassAds to Elasticsearch (and other tar-
gets) via the condor_adstash tool/daemon. condor_adstash collects job history ClassAds as specified by its configura-
tion, either querying specified daemons’ histories or reading job history ClassAds from a specified file, converts each
ClassAd to a JSON document, and pushes each doc to the configured Elasticsearch index. The index is automatically
created if it does not exist, and fields are added and configured based on well known job ClassAd attributes. (Custom
attributes are also pushed, though always as keyword fields.)

condor_adstash is a Python 3.6+ script that uses the HTCondor Python Bindings and the Python Elasticsearch Client,
both of which must be available to the system Python 3 installation if using the daemonized version of condor_adstash.
condor_adstash can also be run as a standalone tool (e.g. in a Python 3 virtual environment containing the necessary
libraries).

Running condor_adstash as a daemon (i.e. under the watch of the condor_master) can be enabled by adding use
feature : adstash to your HTCondor configuration. By default, this configuration will poll all condor_schedds that
report to the $(CONDOR_HOST) condor_collector every 20 minutes and push the contents of the job history ClassAds to
an Elasticsearch instance running on localhost to an index named htcondor-000001. Your situation and monitoring
needs are likely different! See the condor_config.local.adstash example configuration file in the examples/
directory for detailed information on how to modify your configuration.

If you prefer to run condor_adstash in standalone mode, or are curious about other ClassAd sources or targets, see the
condor_adstash man page for more details.

Configuring a Pool to Report to the HTCondorView Server

For the HTCondorView server to function, configure the existing collector to forward ClassAd updates to it. This con-
figuration is only necessary if the HTCondorView collector is a different collector from the existing condor_collector
for the pool. All the HTCondor daemons in the pool send their ClassAd updates to the regular condor_collector, which
in turn will forward them on to the HTCondorView server.

Define the following configuration variable:

CONDOR_VIEW_HOST = full.hostname[:portnumber]

where full.hostname is the full host name of the machine running the HTCondorView collector. The full host name is
optionally followed by a colon and port number. This is only necessary if the HTCondorView collector is configured
to use a port number other than the default.

Place this setting in the configuration file used by the existing condor_collector. It is acceptable to place it in the global
configuration file. The HTCondorView collector will ignore this setting (as it should) as it notices that it is being asked
to forward ClassAds to itself.

Once the HTCondorView server is running with this change, send a condor_reconfig command to the main con-
dor_collector for the change to take effect, so it will begin forwarding updates. A query to the HTCondorView collector
will verify that it is working. A query example:

$ condor_status -pool condor.view.host[:portnumber]

446 Chapter 4. Administrators’ Manual

https://elasticsearch-py.readthedocs.io/

HTCondor Manual, Release 10.0.9

A condor_collector may also be configured to report to multiple HTCondorView servers. The configuration variable
CONDOR_VIEW_HOST can be given as a list of HTCondorView servers separated by commas and/or spaces.

The following demonstrates an example configuration for two HTCondorView servers, where both HTCondorView
servers (and the condor_collector) are running on the same machine, localhost.localdomain:

VIEWSERV01 = $(COLLECTOR)
VIEWSERV01_ARGS = -f -p 12345 -local-name VIEWSERV01
VIEWSERV01_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog01"
VIEWSERV01.POOL_HISTORY_DIR = $(LOCAL_DIR)/poolhist01
VIEWSERV01.KEEP_POOL_HISTORY = TRUE
VIEWSERV01.CONDOR_VIEW_HOST =

VIEWSERV02 = $(COLLECTOR)
VIEWSERV02_ARGS = -f -p 24680 -local-name VIEWSERV02
VIEWSERV02_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog02"
VIEWSERV02.POOL_HISTORY_DIR = $(LOCAL_DIR)/poolhist02
VIEWSERV02.KEEP_POOL_HISTORY = TRUE
VIEWSERV02.CONDOR_VIEW_HOST =

CONDOR_VIEW_HOST = localhost.localdomain:12345 localhost.localdomain:24680
DAEMON_LIST = $(DAEMON_LIST) VIEWSERV01 VIEWSERV02

Note that the value of CONDOR_VIEW_HOST for VIEWSERV01 and VIEWSERV02 is unset, to prevent them from
inheriting the global value of CONDOR_VIEW_HOST and attempting to report to themselves or each other. If the HT-
CondorView servers are running on different machines where there is no global value for CONDOR_VIEW_HOST, this
precaution is not required.

4.14 The High Availability of Daemons

In the case that a key machine no longer functions, HTCondor can be configured such that another machine takes on the
key functions. This is called High Availability. While high availability is generally applicable, there are currently two
specialized cases for its use: when the central manager (running the condor_negotiator and condor_collector daemons)
becomes unavailable, and when the machine running the condor_schedd daemon (maintaining the job queue) becomes
unavailable.

4.14.1 High Availability of the Job Queue

For a pool where all jobs are submitted through a single machine in the pool, and there are lots of jobs, this machine
becoming nonfunctional means that jobs stop running. The condor_schedd daemon maintains the job queue. No
job queue due to having a nonfunctional machine implies that no jobs can be run. This situation is worsened by
using one machine as the single submission point. For each HTCondor job (taken from the queue) that is executed,
a condor_shadow process runs on the machine where submitted to handle input/output functionality. If this machine
becomes nonfunctional, none of the jobs can continue. The entire pool stops running jobs.

The goal of High Availability in this special case is to transfer the condor_schedd daemon to run on another designated
machine. Jobs caused to stop without finishing can be restarted from the beginning, or can continue execution using
the most recent checkpoint. New jobs can enter the job queue. Without High Availability, the job queue would remain
intact, but further progress on jobs would wait until the machine running the condor_schedd daemon became available
(after fixing whatever caused it to become unavailable).

4.14. The High Availability of Daemons 447

HTCondor Manual, Release 10.0.9

HTCondor uses its flexible configuration mechanisms to allow the transfer of the condor_schedd daemon from one
machine to another. The configuration specifies which machines are chosen to run the condor_schedd daemon. To
prevent multiple condor_schedd daemons from running at the same time, a lock (semaphore-like) is held over the job
queue. This synchronizes the situation in which control is transferred to a secondary machine, and the primary machine
returns to functionality. Configuration variables also determine time intervals at which the lock expires, and periods of
time that pass between polling to check for expired locks.

To specify a single machine that would take over, if the machine running the condor_schedd daemon stops working, the
following additions are made to the local configuration of any and all machines that are able to run the condor_schedd
daemon (becoming the single pool submission point):

MASTER_HA_LIST = SCHEDD
SPOOL = /share/spool
HA_LOCK_URL = file:/share/spool
VALID_SPOOL_FILES = $(VALID_SPOOL_FILES) SCHEDD.lock

Configuration macro MASTER_HA_LIST identifies the condor_schedd daemon as the daemon that is to be watched to
make sure that it is running. Each machine with this configuration must have access to the lock (the job queue) which
synchronizes which single machine does run the condor_schedd daemon. This lock and the job queue must both be
located in a shared file space, and is currently specified only with a file URL. The configuration specifies the shared
space (SPOOL), and the URL of the lock. condor_preen is not currently aware of the lock file and will delete it if it is
placed in the SPOOL directory, so be sure to add file SCHEDD.lock to VALID_SPOOL_FILES .

As HTCondor starts on machines that are configured to run the single condor_schedd daemon, the condor_master
daemon of the first machine that looks at (polls) the lock and notices that no lock is held. This implies that no con-
dor_schedd daemon is running. This condor_master daemon acquires the lock and runs the condor_schedd daemon.
Other machines with this same capability to run the condor_schedd daemon look at (poll) the lock, but do not run the
daemon, as the lock is held. The machine running the condor_schedd daemon renews the lock periodically.

If the machine running the condor_schedd daemon fails to renew the lock (because the machine is not functioning),
the lock times out (becomes stale). The lock is released by the condor_master daemon if condor_off or condor_off
-schedd is executed, or when the condor_master daemon knows that the condor_schedd daemon is no longer running.
As other machines capable of running the condor_schedd daemon look at the lock (poll), one machine will be the
first to notice that the lock has timed out or been released. This machine (correctly) interprets this situation as the
condor_schedd daemon is no longer running. This machine’s condor_master daemon then acquires the lock and runs
the condor_schedd daemon.

See the condor_master Configuration File Macros section for details relating to the configuration variables used to set
timing and polling intervals.

Working with Remote Job Submission

Remote job submission requires identification of the job queue, submitting with a command similar to:

$ condor_submit -remote condor@example.com myjob.submit

This implies the identification of a single condor_schedd daemon, running on a single machine. With the high avail-
ability of the job queue, there are multiple condor_schedd daemons, of which only one at a time is acting as the single
submission point. To make remote submission of jobs work properly, set the configuration variable SCHEDD_NAME
in the local configuration to have the same value for each potentially running condor_schedd daemon. In addition,
the value chosen for the variable SCHEDD_NAME will need to include the at symbol (@), such that HTCondor will not
modify the value set for this variable. See the description of MASTER_NAME in the condor_master Configuration File
Macros section for defaults and composition of valid values for SCHEDD_NAME. As an example, include in each local
configuration a value similar to:

448 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

SCHEDD_NAME = had-schedd@

Then, with this sample configuration, the submit command appears as:

$ condor_submit -remote had-schedd@ myjob.submit

4.14.2 High Availability of the Central Manager

Interaction with Flocking

The HTCondor high availability mechanisms discussed in this section currently do not work well in configurations
involving flocking. The individual problems listed listed below interact to make the situation worse. Because of these
problems, we advise against the use of flocking to pools with high availability mechanisms enabled.

• The condor_schedd has a hard configured list of condor_collector and condor_negotiator daemons, and does
not query redundant collectors to get the current condor_negotiator, as it does when communicating with its
local pool. As a result, if the default condor_negotiator fails, the condor_schedd does not learn of the failure,
and thus, talk to the new condor_negotiator.

• When the condor_negotiator is unable to communicate with a condor_collector, it utilizes the next con-
dor_collector within the list. Unfortunately, it does not start over at the top of the list. When combined with
the previous problem, a backup condor_negotiator will never get jobs from a flocked condor_schedd.

Introduction

The condor_negotiator and condor_collector daemons are the heart of the HTCondor matchmaking system. The
availability of these daemons is critical to an HTCondor pool’s functionality. Both daemons usually run on the same
machine, most often known as the central manager. The failure of a central manager machine prevents HTCondor from
matching new jobs and allocating new resources. High availability of the condor_negotiator and condor_collector
daemons eliminates this problem.

Configuration allows one of multiple machines within the pool to function as the central manager. While there are
may be many active condor_collector daemons, only a single, active condor_negotiator daemon will be running.
The machine with the condor_negotiator daemon running is the active central manager. The other potential central
managers each have a condor_collector daemon running; these are the idle central managers.

All submit and execute machines are configured to report to all potential central manager machines.

Each potential central manager machine runs the high availability daemon, condor_had. These daemons communicate
with each other, constantly monitoring the pool to ensure that one active central manager is available. If the active
central manager machine crashes or is shut down, these daemons detect the failure, and they agree on which of the idle
central managers is to become the active one. A protocol determines this.

In the case of a network partition, idle condor_had daemons within each partition detect (by the lack of communication)
a partitioning, and then use the protocol to chose an active central manager. As long as the partition remains, and there
exists an idle central manager within the partition, there will be one active central manager within each partition. When
the network is repaired, the protocol returns to having one central manager.

Through configuration, a specific central manager machine may act as the primary central manager. While this machine
is up and running, it functions as the central manager. After a failure of this primary central manager, another idle
central manager becomes the active one. When the primary recovers, it again becomes the central manager. This is a
recommended configuration, if one of the central managers is a reliable machine, which is expected to have very short

4.14. The High Availability of Daemons 449

HTCondor Manual, Release 10.0.9

periods of instability. An alternative configuration allows the promoted active central manager (in the case that the
central manager fails) to stay active after the failed central manager machine returns.

This high availability mechanism operates by monitoring communication between machines. Note that there is a sig-
nificant difference in communications between machines when

1. a machine is down

2. a specific daemon (the condor_had daemon in this case) is not running, yet the machine is functioning

The high availability mechanism distinguishes between these two, and it operates based only on first (when a central
manager machine is down). A lack of executing daemons does not cause the protocol to choose or use a new active
central manager.

The central manager machine contains state information, and this includes information about user priorities. The in-
formation is kept in a single file, and is used by the central manager machine. Should the primary central manager fail,
a pool with high availability enabled would lose this information (and continue operation, but with re-initialized prior-
ities). Therefore, the condor_replication daemon exists to replicate this file on all potential central manager machines.
This daemon promulgates the file in a way that is safe from error, and more secure than dependence on a shared file
system copy.

The condor_replication daemon runs on each potential central manager machine as well as on the active central man-
ager machine. There is a unidirectional communication between the condor_had daemon and the condor_replication
daemon on each machine. To properly do its job, the condor_replication daemon must transfer state files. When it
needs to transfer a file, the condor_replication daemons at both the sending and receiving ends of the transfer invoke
the condor_transferer daemon. These short lived daemons do the task of file transfer and then exit. Do not place
TRANSFERER into DAEMON_LIST, as it is not a daemon that the condor_master should invoke or watch over.

Configuration

The high availability of central manager machines is enabled through configuration. It is disabled by default. All
machines in a pool must be configured appropriately in order to make the high availability mechanism work. See the
Configuration File Entries Relating to High Availability section, for definitions of these configuration variables.

The condor_had and condor_replication daemons use the condor_shared_port daemon by default. If you want to use
more than one condor_had or condor_replication daemon with the condor_shared_port daemon under the same master,
you must configure those additional daemons to use nondefault socket names. (Set the -sock option in <NAME>_ARGS.)
Because the condor_had daemon must know the condor_replication daemon’s address a priori, you will also need to
set <NAME>.REPLICATION_SOCKET_NAME appropriately.

The stabilization period is the time it takes for the condor_had daemons to detect a change in the pool state such as
an active central manager failure or network partition, and recover from this change. It may be computed using the
following formula:

stabilization period = 12 * (number of central managers) *
$(HAD_CONNECTION_TIMEOUT)

To disable the high availability of central managers mechanism, it is sufficient to remove HAD, REPLICATION, and
NEGOTIATOR from the DAEMON_LIST configuration variable on all machines, leaving only one condor_negotiator in
the pool.

To shut down a currently operating high availability mechanism, follow the given steps. All commands must be invoked
from a host which has administrative permissions on all central managers. The first three commands kill all condor_had,
condor_replication, and all running condor_negotiator daemons. The last command is invoked on the host where the
single condor_negotiator daemon is to run.

1. condor_off -all -neg

2. condor_off -all -subsystem -replication

450 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

3. condor_off -all -subsystem -had

4. condor_on -neg

When configuring condor_had to control the condor_negotiator, if the default backoff constant value is too small, it
can result in a churning of the condor_negotiator, especially in cases in which the primary negotiator is unable to
run due to misconfiguration. In these cases, the condor_master will kill the condor_had after the condor_negotiator
exists, wait a short period, then restart condor_had. The condor_had will then win the election, so the secondary
condor_negotiator will be killed, and the primary will be restarted, only to exit again. If this happens too quickly,
neither condor_negotiator will run long enough to complete a negotiation cycle, resulting in no jobs getting started.
Increasing this value via MASTER_HAD_BACKOFF_CONSTANT to be larger than a typical negotiation cycle can help solve
this problem.

To run a high availability pool without the replication feature, do the following operations:

1. Set the HAD_USE_REPLICATION configuration variable to False, and thus disable the replication on configura-
tion level.

2. Remove REPLICATION from both DAEMON_LIST and DC_DAEMON_LIST in the configuration file.

Sample Configuration

This section provides sample configurations for high availability.

We begin with a sample configuration using shared port, and then include a sample configuration for not using shared
port. Both samples relate to the high availability of central managers.

Each sample is split into two parts: the configuration for the central manager machines, and the configuration for the
machines that will not be central managers.

The following shared-port configuration is for the central manager machines.

THE FOLLOWING MUST BE IDENTICAL ON ALL CENTRAL MANAGERS

CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
CONDOR_HOST = $(CENTRAL_MANAGER1), $(CENTRAL_MANAGER2)

Since we're using shared port, we set the port number to the shared
port daemon's port number. NOTE: this assumes that each machine in
the list is using the same port number for shared port. While this
will be true by default, if you've changed it in configuration any-
where, you need to reflect that change here.

HAD_USE_SHARED_PORT = TRUE
HAD_LIST = \
$(CENTRAL_MANAGER1):$(SHARED_PORT_PORT), \
$(CENTRAL_MANAGER2):$(SHARED_PORT_PORT)

REPLICATION_USE_SHARED_PORT = TRUE
REPLICATION_LIST = \
$(CENTRAL_MANAGER1):$(SHARED_PORT_PORT), \
$(CENTRAL_MANAGER2):$(SHARED_PORT_PORT)

The recommended setting.
(continues on next page)

4.14. The High Availability of Daemons 451

HTCondor Manual, Release 10.0.9

(continued from previous page)

HAD_USE_PRIMARY = TRUE

If you change which daemon(s) you're making highly-available, you must
change both of these values.
HAD_CONTROLLEE = NEGOTIATOR
MASTER_NEGOTIATOR_CONTROLLER = HAD

THE FOLLOWING MAY DIFFER BETWEEN CENTRAL MANAGERS

The daemon list may contain additional entries.
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION

Using replication is optional.
HAD_USE_REPLICATION = TRUE

This is the default location for the state file.
STATE_FILE = $(SPOOL)/Accountantnew.log

See note above the length of the negotiation cycle.
MASTER_HAD_BACKOFF_CONSTANT = 360

The following shared-port configuration is for the machines which that will not be central managers.

CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
CONDOR_HOST = $(CENTRAL_MANAGER1), $(CENTRAL_MANAGER2)

The following configuration sets fixed port numbers for the central manager machines.

##
A sample configuration file for central managers, to enable the
the high availability mechanism.
##

###
THE FOLLOWING MUST BE IDENTICAL ON ALL POTENTIAL CENTRAL MANAGERS.
###
For simplicity in writing other expressions, define a variable
for each potential central manager in the pool.
These are samples.
CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
A list of all potential central managers in the pool.
CONDOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

Define the port number on which the condor_had daemon will
listen. The port must match the port number used
for when defining HAD_LIST. This port number is
arbitrary; make sure that there is no port number collision
with other applications.
HAD_PORT = 51450
HAD_ARGS = -f -p $(HAD_PORT)

(continues on next page)

452 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

(continued from previous page)

The following macro defines the port number condor_replication will listen
on on this machine. This port should match the port number specified
for that replication daemon in the REPLICATION_LIST
Port number is arbitrary (make sure no collision with other applications)
This is a sample port number
REPLICATION_PORT = 41450
REPLICATION_ARGS = -p $(REPLICATION_PORT)

The following list must contain the same addresses in the same order
as CONDOR_HOST. In addition, for each hostname, it should specify
the port number of condor_had daemon running on that host.
The first machine in the list will be the PRIMARY central manager
machine, in case HAD_USE_PRIMARY is set to true.
HAD_LIST = \
$(CENTRAL_MANAGER1):$(HAD_PORT), \
$(CENTRAL_MANAGER2):$(HAD_PORT)

The following list must contain the same addresses
as HAD_LIST. In addition, for each hostname, it should specify
the port number of condor_replication daemon running on that host.
This parameter is mandatory and has no default value
REPLICATION_LIST = \
$(CENTRAL_MANAGER1):$(REPLICATION_PORT), \
$(CENTRAL_MANAGER2):$(REPLICATION_PORT)

The following is the name of the daemon that the HAD controls.
This must match the name of a daemon in the master's DAEMON_LIST.
The default is NEGOTIATOR, but can be any daemon that the master
controls.
HAD_CONTROLLEE = NEGOTIATOR

HAD connection time.
Recommended value is 2 if the central managers are on the same subnet.
Recommended value is 5 if Condor security is enabled.
Recommended value is 10 if the network is very slow, or
to reduce the sensitivity of HA daemons to network failures.
HAD_CONNECTION_TIMEOUT = 2

##If true, the first central manager in HAD_LIST is a primary.
HAD_USE_PRIMARY = true

###
THE PARAMETERS BELOW ARE ALLOWED TO BE DIFFERENT ON EACH
CENTRAL MANAGER
THESE ARE MASTER SPECIFIC PARAMETERS
###

the master should start at least these four daemons
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION

(continues on next page)

4.14. The High Availability of Daemons 453

HTCondor Manual, Release 10.0.9

(continued from previous page)

Enables/disables the replication feature of HAD daemon
Default: false
HAD_USE_REPLICATION = true

Name of the file from the SPOOL directory that will be replicated
Default: $(SPOOL)/Accountantnew.log
STATE_FILE = $(SPOOL)/Accountantnew.log

Period of time between two successive awakenings of the replication daemon
Default: 300
REPLICATION_INTERVAL = 300

Period of time, in which transferer daemons have to accomplish the
downloading/uploading process
Default: 300
MAX_TRANSFER_LIFETIME = 300

Period of time between two successive sends of classads to the collector by HAD
Default: 300
HAD_UPDATE_INTERVAL = 300

The HAD controls the negotiator, and should have a larger
backoff constant
MASTER_NEGOTIATOR_CONTROLLER = HAD
MASTER_HAD_BACKOFF_CONSTANT = 360

The configuration for machines that will not be central managers is identical for the fixed- and shared- port cases.

##
Sample configuration relating to high availability for machines
that DO NOT run the condor_had daemon.
##

For simplicity define a variable for each potential central manager
in the pool.
CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
List of all potential central managers in the pool
CONDOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

454 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

4.15 Setting Up for Special Environments

The following sections describe how to set up HTCondor for use in special environments or configurations.

4.15.1 Using HTCondor with AFS

Configuration variables that allow machines to interact with and use a shared file system are given at the Shared File
System Configuration File Macros section.

Limitations with AFS occur because HTCondor does not currently have a way to authenticate itself to AFS. This is true
of the HTCondor daemons that would like to authenticate as the AFS user condor, and of the condor_shadow which
would like to authenticate as the user who submitted the job it is serving. Since neither of these things can happen yet,
there are special things to do when interacting with AFS. Some of this must be done by the administrator(s) installing
HTCondor. Other things must be done by HTCondor users who submit jobs.

AFS and HTCondor for Administrators

The largest result from the lack of authentication with AFS is that the directory defined by the configuration variable
LOCAL_DIR and its subdirectories log and spool on each machine must be either writable to unauthenticated users, or
must not be on AFS. Making these directories writable a very bad security hole, so it is not a viable solution. Placing
LOCAL_DIR onto NFS is acceptable. To avoid AFS, place the directory defined for LOCAL_DIR on a local partition
on each machine in the pool. This implies running condor_configure to install the release directory and configure the
pool, setting the LOCAL_DIR variable to a local partition. When that is complete, log into each machine in the pool,
and run condor_init to set up the local HTCondor directory.

The directory defined by RELEASE_DIR, which holds all the HTCondor binaries, libraries, and scripts, can be on AFS.
None of the HTCondor daemons need to write to these files. They only need to read them. So, the directory defined by
RELEASE_DIR only needs to be world readable in order to let HTCondor function. This makes it easier to upgrade the
binaries to a newer version at a later date, and means that users can find the HTCondor tools in a consistent location
on all the machines in the pool. Also, the HTCondor configuration files may be placed in a centralized location. This
is what we do for the UW-Madison’s CS department HTCondor pool, and it works quite well.

Finally, consider setting up some targeted AFS groups to help users deal with HTCondor and AFS better. This is
discussed in the following manual subsection. In short, create an AFS group that contains all users, authenticated or
not, but which is restricted to a given host or subnet. These should be made as host-based ACLs with AFS, but here
at UW-Madison, we have had some trouble getting that working. Instead, we have a special group for all machines in
our department. The users here are required to make their output directories on AFS writable to any process running
on any of our machines, instead of any process on any machine with AFS on the Internet.

AFS and HTCondor for Users

The condor_shadow daemon runs on the machine where jobs are submitted. It performs all file system access on
behalf of the jobs. Because the condor_shadow daemon is not authenticated to AFS as the user who submitted the job,
the condor_shadow daemon will not normally be able to write any output. Therefore the directories in which the job
will be creating output files will need to be world writable; they need to be writable by non-authenticated AFS users.
In addition, the program’s stdout, stderr, log file, and any file the program explicitly opens will need to be in a
directory that is world-writable.

An administrator may be able to set up special AFS groups that can make unauthenticated access to the program’s files
less scary. For example, there is supposed to be a way for AFS to grant access to any unauthenticated process on a given
host. If set up, write access need only be granted to unauthenticated processes on the submit machine, as opposed to

4.15. Setting Up for Special Environments 455

HTCondor Manual, Release 10.0.9

any unauthenticated process on the Internet. Similarly, unauthenticated read access could be granted only to processes
running on the submit machine.

A solution to this problem is to not use AFS for output files. If disk space on the submit machine is available in a partition
not on AFS, submit the jobs from there. While the condor_shadow daemon is not authenticated to AFS, it does run with
the effective UID of the user who submitted the jobs. So, on a local (or NFS) file system, the condor_shadow daemon
will be able to access the files, and no special permissions need be granted to anyone other than the job submitter. If
the HTCondor daemons are not invoked as root however, the condor_shadow daemon will not be able to run with the
submitter’s effective UID, leading to a similar problem as with files on AFS.

4.15.2 Enabling the Transfer of Files Specified by a URL

Because staging data on the submit machine is not always efficient, HTCondor permits input files to be transferred from
a location specified by a URL; likewise, output files may be transferred to a location specified by a URL. All transfers
(both input and output) are accomplished by invoking a file transfer plugin: an executable or shell script that handles
the task of file transfer.

For transferring input files, URL specification is limited to jobs running under the vanilla universe and to a vm universe
VM image file. The execute machine retrieves the files. This differs from the normal file transfer mechanism, in which
transfers are from the machine where the job is submitted to the machine where the job is executed. Each file to be
transferred by specifying a URL, causing a plug-in to be invoked, is specified separately in the job submit description
file with the command transfer_input_files ; see the Submitting Jobs Without a Shared File System: HTCondor’s
File Transfer Mechanism section for details.

For transferring output files, either the entire output sandbox, which are all files produced or modified by the job as
it executes, or a subset of these files, as specified by the submit description file command transfer_output_files
are transferred to the directory specified by the URL. The URL itself is specified in the separate submit description file
command output_destination ; see the Submitting Jobs Without a Shared File System: HTCondor’s File Transfer
Mechanism section for details. The plug-in is invoked once for each output file to be transferred.

Configuration identifies the availability of the one or more plug-in(s). The plug-ins must be installed and available on
every execute machine that may run a job which might specify a URL, either for input or for output.

URL transfers are enabled by default in the configuration of execute machines. Disabling URL transfers is accomplished
by setting

ENABLE_URL_TRANSFERS = FALSE

A comma separated list giving the absolute path and name of all available plug-ins is specified as in the example:

FILETRANSFER_PLUGINS = /opt/condor/plugins/wget-plugin, \
/opt/condor/plugins/hdfs-plugin, \
/opt/condor/plugins/custom-plugin

The condor_starter invokes all listed plug-ins to determine their capabilities. Each may handle one or more protocols
(scheme names). The plug-in’s response to invocation identifies which protocols it can handle. When a URL transfer
is specified by a job, the condor_starter invokes the proper one to do the transfer. If more than one plugin is capable
of handling a particular protocol, then the last one within the list given by FILETRANSFER_PLUGINS is used.

HTCondor assumes that all plug-ins will respond in specific ways. To determine the capabilities of the plug-ins as to
which protocols they handle, the condor_starter daemon invokes each plug-in giving it the command line argument
-classad. In response to invocation with this command line argument, the plug-in must respond with an output of
four ClassAd attributes. The first three are fixed:

456 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

MultipleFileSupport = true
PluginVersion = "0.1"
PluginType = "FileTransfer"

The fourth ClassAd attribute is SupportedMethods. This attribute is a string containing a comma separated list of the
protocols that the plug-in handles. So, for example

SupportedMethods = "http,ftp,file"

would identify that the three protocols described by http, ftp, and file are supported. These strings will match
the protocol specification as given within a URL in a transfer_input_files command or within a URL in an
output_destination command in a submit description file for a job.

When a job specifies a URL transfer, the plug-in is invoked, without the command line argument -classad. It will
instead be given two other command line arguments. For the transfer of input file(s), the first will be the URL of the
file to retrieve and the second will be the absolute path identifying where to place the transferred file. For the transfer
of output file(s), the first will be the absolute path on the local machine of the file to transfer, and the second will be the
URL of the directory and file name at the destination.

The plug-in is expected to do the transfer, exiting with status 0 if the transfer was successful, and a non-zero status if the
transfer was not successful. When not successful, the job is placed on hold, and the job ClassAd attribute HoldReason
will be set as appropriate for the job. The job ClassAd attribute HoldReasonSubCode will be set to the exit status of
the plug-in.

As an example of the transfer of a subset of output files, assume that the submit description file contains

output_destination = url://server/some/directory/
transfer_output_files = foo, bar, qux

HTCondor invokes the plug-in that handles the url protocol with input classads describing all the files to be transferred
and their destinations. The directory delimiter (/ on Unix, and \ on Windows) is appended to the destination URL, such
that the input will look like the following:

[LocalFileName = "/path/to/local/copy/of/foo"; Url = "url://server/some/directory//foo"␣
→˓]
[LocalFileName = "/path/to/local/copy/of/bar"; Url = "url://server/some/directory//bar"␣
→˓]
[LocalFileName = "/path/to/local/copy/of/qux"; Url = "url://server/some/directory//qux"␣
→˓]

HTCondor also expects the plugin to exit with one of the following standardized exit codes:

• 0: Transfer successful

• 1: Transfer failed

• 2: Transfer needs a refreshed authentication token, should be retried (slated for development, not implemented
yet)

4.15. Setting Up for Special Environments 457

HTCondor Manual, Release 10.0.9

Custom File Transfer Plugins

This functionality is not limited to a predefined set of protocols or plugins. New ones can be invented. As an invented
example, the zkm transfer type writes random bytes to a file. The plug-in that handles zkm transfers would respond to
invocation with the -classad command line argument with:

MultipleFileSupport = true
PluginVersion = "0.1"
PluginType = "FileTransfer"
SupportedMethods = "zkm"

And, then when a job requested that this plug-in be invoked, for the invented example:

transfer_input_files = zkm://128/r-data

the plug-in will be invoked with a first command line argument of zkm://128/r-data and a second command line
argument giving the full path along with the file name r-data as the location for the plug-in to write 128 bytes of
random data.

By default, HTCondor includes plugins for standard file protocols http://..., https://... and ftp://.... Ad-
ditionally, URL plugins exist for transferring files to/from Box.com accounts (box://...), Google Drive accounts
(gdrive://...), OSDF accounts (osdf://...), Stash accounts (stash://...), and Microsoft OneDrive accounts
(onedrive://...). These plugins require users to have obtained OAuth2 credentials for the relevant service(s) before
they can be used. See Enabling the Fetching and Use of OAuth2 Credentials for how to enable users to fetch OAuth2
credentials.

An example template for a file transfer plugin is available in our source repository under
/src/condor_examples/filetransfer_example_plugin.py. This provides most of the functionality required in the
plugin, except for the transfer logic itself, which is clearly indicated in the comments.

Sending File Transfer Plugins With Your Job

You can also use custom protocols on machines that do not have the necessary plugin installed. This is achieved by
sending the file transfer plugin along with your job, using the transfer_plugins submit attribute described on the
condor_submit man page.

Assume you want to transfer some URLs that use the custommethod:// protocol, and you also have a plugin script
called custommethod_plugin.py that knows how to handle these URLs. Since this plugin is not available on any of
the execution points in your pool, you can send it along with your job by including the following in the submit file:

transfer_plugins = custommethod=custommethod_plugin.py
transfer_output_files = custommethod://path/to/file1, custommethod://path/to/file2

When the job arrives at an exeuction point, it will know to use the plugin script provided to transfer these URLs. If
your custommethod:// protocol is already supported at your execution point, the plugin provided in your submit file
will take predence.

458 Chapter 4. Administrators’ Manual

https://github.com/htcondor/htcondor/blob/master/src/condor_examples/filetransfer_example_plugin.py

HTCondor Manual, Release 10.0.9

4.15.3 Enabling the Transfer of Public Input Files over HTTP

Another option for transferring files over HTTP is for users to specify a list of public input files. These are specified in
the submit file as follows:

public_input_files = file1,file2,file3

HTCondor will automatically convert these files into URLs and transfer them over HTTP using plug-ins. The advantage
to this approach is that system administrators can leverage Squid caches or load-balancing infrastructure, resulting in
improved performance. This also allows us to gather statistics about file transfers that were not previously available.

When a user submits a job with public input files, HTCondor generates a hash link for each file in the root directory for
the web server. Each of these links points back to the original file on local disk. Next, HTCondor replaces the names
of the files in the submit job with web links to their hashes. These get sent to the execute node, which downloads the
files using our curl_plugin tool, and are then remapped back to their original names.

In the event of any errors or configuration problems, HTCondor will fall back to a regular (non-HTTP) file transfer.

To enable HTTP public file transfers, a system administrator must perform several steps as described below.

Install a web service for public input files

An HTTP service must be installed and configured on the submit node. Any regular web server software such as Apache
(https://httpd.apache.org/) or nginx (https://nginx.org) will do. The submit node must be running a Linux system.

Configuration knobs for public input files

Several knobs must be set and configured correctly for this functionality to work:

• ENABLE_HTTP_PUBLIC_FILES : Must be set to true (default: false)

• HTTP_PUBLIC_FILES_ADDRESS : The full web address (hostname + port) where your web server is serving files
(default: 127.0.0.1:8080)

• HTTP_PUBLIC_FILES_ROOT_DIR : Absolute path to the local directory where the web service is serving files
from.

• HTTP_PUBLIC_FILES_USER : User security level used to write links to the directory specified by
HTTP_PUBLIC_FILES_ROOT_DIR. There are three valid options for this knob:

1. <user>: Links will be written as user who submitted the job.

2. <condor>: Links will be written as user running condor daemons. By default this is the user condor unless
you have changed this by setting the configuration parameter CONDOR_IDS.

3. <%username%>: Links will be written as the user %username% (ie. httpd, nobody) If using this option,
make sure the directory is writable by this particular user.

The default setting is <condor>.

4.15. Setting Up for Special Environments 459

https://httpd.apache.org/
https://nginx.org

HTCondor Manual, Release 10.0.9

Additional HTTP infrastructure for public input files

The main advantage of using HTTP for file transfers is that system administrators can use additional infrastructure
(such as Squid caching) to improve file transfer performance. This is outside the scope of the HTCondor configuration
but is still worth mentioning here. When curl_plugin is invoked, it checks the environment variable http_proxy for a
proxy server address; by setting this appropriately on execute nodes, a system can dramatically improve transfer speeds
for commonly used files.

4.15.4 Enabling the Fetching and Use of OAuth2 Credentials

HTCondor supports two distinct methods for using OAuth2 credentials. One uses its own native OAuth client or issuer,
and one uses a separate Hashicorp Vault server as the OAuth client and secure refresh token storage. Each method uses
a separate credmon implementation and rpm and have their own advantages and disadvantages.

If the native OAuth client is used with a remote token issuer, then each time a new refresh token is needed the user has
to reauthorize it through a web browser. An hour after all jobs of a user are stopped (by default), the refresh tokens are
deleted. If the client is used with the native token issuer is used, then no web browser authorizations are needed but the
public keys of every token issuer have to be managed by all the resource providers. In both cases, the tokens are only
available inside HTCondor jobs.

If on the other hand a Vault server is used as the OAuth client, it stores the refresh token long term (typically about a
month since last use) for multiple use cases. It can be used both by multiple HTCondor submit machines and by other
client commands that need access tokens. Submit machines keep a medium term vault token (typically about a week)
so at most users have to authorize in their web browser once a week. If kerberos is also available, new vault tokens can
be obtained automatically without any user intervention. The HTCondor vault credmon also stores a longer lived vault
token for use as long as jobs might run.

Using the native OAuth client and/or issuer

HTCondor can be configured to allow users to request and securely store credentials from most OAuth2 service
providers. Users’ jobs can then request these credentials to be securely transferred to job sandboxes, where they can be
used by file transfer plugins or be accessed by the users’ executable(s).

There are three steps to fully setting up HTCondor to enable users to be able to request credentials from OAuth2
services:

1. Enabling the condor_credd and condor_credmon_oauth daemons,

2. Optionally enabling the companion OAuth2 credmon WSGI application, and

3. Setting up API clients and related configuration.

First, to enable the condor_credd and condor_credmon_oauth daemons, the easiest way is to install the
condor-credmon-oauth rpm. This installs the condor_credmon_oauth daemon and enables both it and condor_credd
with reasonable defaults via the use feature: oauth configuration template.

Second, a token issuer, an HTTPS-enabled web server running on the submit machine needs to be configured to
execute its wsgi script as the user condor. An example configuration is available at the path found with rpm -ql
condor-credmon-oauth|grep "condor_credmon_oauth\.conf" which you can copy to an apache webserver’s
configuration directory.

Third, for each OAuth2 service that one wishes to configure, an OAuth2 client application should be registered for each
submit machine on each service’s API console. For example, for Box.com, a client can be registered by logging in
to https://app.box.com/developers/console, creating a new “Custom App”, and selecting “Standard OAuth 2.0 (User
Authentication).”

460 Chapter 4. Administrators’ Manual

https://app.box.com/developers/console

HTCondor Manual, Release 10.0.9

For each client, store the client ID in the HTCondor configuration under <OAuth2ServiceName>_CLIENT_ID. Store
the client secret in a file only readable by root, then point to it using <OAuth2ServiceName>_CLIENT_SECRET_FILE.
For our Box.com example, this might look like:

BOX_CLIENT_ID = ex4mpl3cl13nt1d
BOX_CLIENT_SECRET_FILE = /etc/condor/.secrets/box_client_secret

ls -l /etc/condor/.secrets/box_client_secret
-r-------- 1 root root 33 Jan 1 10:10 /etc/condor/.secrets/box_client_secret
cat /etc/condor/.secrets/box_client_secret
EXAmpL3ClI3NtS3cREt

Each service will need to redirect users back to a known URL on the submit machine after each user has approved
access to their credentials. For example, Box.com asks for the “OAuth 2.0 Redirect URI.” This should be set to match
<OAuth2ServiceName>_RETURN_URL_SUFFIX such that the user is returned to https://<submit_hostname>/
<return_url_suffix>. The return URL suffix should be composed using the directory where the WSGI application
is running, the subdirectory return/, and then the name of the OAuth2 service. For our Box.com example, if running
the WSGI application at the root of the webserver (/), this should be BOX_RETURN_URL_SUFFIX = /return/box.

The condor_credmon_oauth and its companion WSGI application need to know where to send users to fetch their
initial credentials and where to send API requests to refresh these credentials. Some well known service providers
(condor_config_val -dump TOKEN_URL) already have their authorization and token URLs predefined in the default
HTCondor config. Other service providers will require searching through API documentation to find these URLs, which
then must be added to the HTCondor configuration. For example, if you search the Box.com API documentation, you
should find the following authorization and token URLs, and these URLs could be added them to the HTCondor config
as below:

BOX_AUTHORIZATION_URL = https://account.box.com/api/oauth2/authorize
BOX_TOKEN_URL = https://api.box.com/oauth2/token

After configuring OAuth2 clients, make sure users know which names (<OAuth2ServiceName>s) have been config-
ured so that they know what they should put under use_oauth_services in their job submit files.

Using Vault as the OAuth client

To instead configure HTCondor to use Vault as the OAuth client, install the condor-credmon-vault rpm. Also in-
stall the htgettoken (https://github.com/fermitools/htgettoken) rpm on the submit machine. Additionally, on the submit
machine set the SEC_CREDENTIAL_GETTOKEN_OPTS configuration option to -a <vault.name> where <vault.name>
is the fully qualified domain name of the Vault machine. condor_submit users will then be able to select the oauth
services that are defined on the Vault server. See the htvault-config (https://github.com/fermitools/htvault-config) doc-
umentation to see how to set up and configure the Vault server.

4.15.5 Configuring HTCondor for Multiple Platforms

A single, initial configuration file may be used for all platforms in an HTCondor pool, with platform-specific settings
placed in separate files. This greatly simplifies administration of a heterogeneous pool by allowing specification of
platform-independent, global settings in one place, instead of separately for each platform. This is made possible by
treating the LOCAL_CONFIG_FILE configuration variable as a list of files, instead of a single file. Of course, this only
helps when using a shared file system for the machines in the pool, so that multiple machines can actually share a single
set of configuration files.

With multiple platforms, put all platform-independent settings (the vast majority) into the single initial configuration
file, which will be shared by all platforms. Then, set the LOCAL_CONFIG_FILE configuration variable from that global

4.15. Setting Up for Special Environments 461

https://github.com/fermitools/htgettoken
https://github.com/fermitools/htvault-config

HTCondor Manual, Release 10.0.9

configuration file to specify both a platform-specific configuration file and optionally, a local, machine-specific config-
uration file.

The name of platform-specific configuration files may be specified by using $(ARCH) and $(OPSYS), as defined auto-
matically by HTCondor. For example, for 32-bit Intel Windows 7 machines and 64-bit Intel Linux machines, the files
ought to be named:

$ condor_config.INTEL.WINDOWS
condor_config.X86_64.LINUX

Then, assuming these files are in the directory defined by the ETC configuration variable, and machine-specific config-
uration files are in the same directory, named by each machine’s host name, LOCAL_CONFIG_FILE becomes:

LOCAL_CONFIG_FILE = $(ETC)/condor_config.$(ARCH).$(OPSYS), \
$(ETC)/$(HOSTNAME).local

Alternatively, when using AFS, an @sys link may be used to specify the platform-specific configuration file, which lets
AFS resolve this link based on platform name. For example, consider a soft link named condor_config.platform
that points to condor_config.@sys. In this case, the files might be named:

$ condor_config.i386_linux2
condor_config.platform -> condor_config.@sys

and the LOCAL_CONFIG_FILE configuration variable would be set to

LOCAL_CONFIG_FILE = $(ETC)/condor_config.platform, \
$(ETC)/$(HOSTNAME).local

Platform-Specific Configuration File Settings

The configuration variables that are truly platform-specific are:

RELEASE_DIR Full path to to the installed HTCondor binaries. While the configuration files may be shared among dif-
ferent platforms, the binaries certainly cannot. Therefore, maintain separate release directories for each platform
in the pool.

MAIL The full path to the mail program.

CONSOLE_DEVICES Which devices in /dev should be treated as console devices.

DAEMON_LIST Which daemons the condor_master should start up. The reason this setting is platform-specific is to
distinguish the condor_kbdd. It is needed on many Linux and Windows machines, and it is not needed on other
platforms.

Reasonable defaults for all of these configuration variables will be found in the default configuration files inside a
given platform’s binary distribution (except the RELEASE_DIR, since the location of the HTCondor binaries and li-
braries is installation specific). With multiple platforms, use one of the condor_config files from either running
condor_configure or from the $(RELEASE_DIR)/etc/examples/condor_config.generic file, take these settings out, save
them into a platform-specific file, and install the resulting platform-independent file as the global configuration file.
Then, find the same settings from the configuration files for any other platforms to be set up, and put them in their
own platform-specific files. Finally, set the LOCAL_CONFIG_FILE configuration variable to point to the appropriate
platform-specific file, as described above.

Not even all of these configuration variables are necessarily going to be different. For example, if an installed mail
program understands the -s option in /usr/local/bin/mail on all platforms, the MAIL macro may be set to that in
the global configuration file, and not define it anywhere else. For a pool with only Linux or Windows machines, the
DAEMON_LIST will be the same for each, so there is no reason not to put that in the global configuration file.

462 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Other Uses for Platform-Specific Configuration Files

It is certainly possible that an installation may want other configuration variables to be platform-specific as well. Perhaps
a different policy is desired for one of the platforms. Perhaps different people should get the e-mail about problems
with the different platforms. There is nothing hard-coded about any of this. What is shared and what should not shared
is entirely configurable.

Since the LOCAL_CONFIG_FILE macro can be an arbitrary list of files, an installation can even break up the global,
platform-independent settings into separate files. In fact, the global configuration file might only contain a definition
for LOCAL_CONFIG_FILE, and all other configuration variables would be placed in separate files.

Different people may be given different permissions to change different HTCondor settings. For example, if a user is
to be able to change certain settings, but nothing else, those settings may be placed in a file which was early in the
LOCAL_CONFIG_FILE list, to give that user write permission on that file. Then, include all the other files after that one.
In this way, if the user was attempting to change settings that the user should not be permitted to change, the settings
would be overridden.

This mechanism is quite flexible and powerful. For very specific configuration needs, they can probably be met by
using file permissions, the LOCAL_CONFIG_FILE configuration variable, and imagination.

4.15.6 The condor_kbdd

The HTCondor keyboard daemon, condor_kbdd, monitors X events on machines where the operating system does
not provide a way of monitoring the idle time of the keyboard or mouse. On Linux platforms, it is needed to detect
USB keyboard activity. Otherwise, it is not needed. On Windows platforms, the condor_kbdd is the primary way of
monitoring the idle time of both the keyboard and mouse.

The condor_kbdd on Windows Platforms

Windows platforms need to use the condor_kbdd to monitor the idle time of both the keyboard and mouse. By adding
KBDD to configuration variable DAEMON_LIST, the condor_master daemon invokes the condor_kbdd, which then does
the right thing to monitor activity given the version of Windows running.

With Windows Vista and more recent version of Windows, user sessions are moved out of session 0. Therefore, the
condor_startd service is no longer able to listen to keyboard and mouse events. The condor_kbdd will run in an
invisible window and should not be noticeable by the user, except for a listing in the task manager. When the user logs
out, the program is terminated by Windows. This implementation also appears in versions of Windows that predate
Vista, because it adds the capability of monitoring keyboard activity from multiple users.

To achieve the auto-start with user login, the HTCondor installer adds a condor_kbdd entry to the registry key at
HKLM\Software\Microsoft\Windows\CurrentVersion\Run. On 64-bit versions of Vista and more recent Windows ver-
sions, the entry is actually placed in HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Run.

In instances where the condor_kbdd is unable to connect to the condor_startd, it is likely because an exception was not
properly added to the Windows firewall.

4.15. Setting Up for Special Environments 463

HTCondor Manual, Release 10.0.9

The condor_kbdd on Linux Platforms

On Linux platforms, great measures have been taken to make the condor_kbdd as robust as possible, but the X window
system was not designed to facilitate such a need, and thus is not as efficient on machines where many users frequently
log in and out on the console.

In order to work with X authority, which is the system by which X authorizes processes to connect to X servers,
the condor_kbdd needs to run with super user privileges. Currently, the condor_kbdd assumes that X uses the HOME
environment variable in order to locate a file named .Xauthority. This file contains keys necessary to connect to an
X server. The keyboard daemon attempts to set HOME to various users’ home directories in order to gain a connection
to the X server and monitor events. This may fail to work if the keyboard daemon is not allowed to attach to the X
server, and the state of a machine may be incorrectly set to idle when a user is, in fact, using the machine.

In some environments, the condor_kbdd will not be able to connect to the X server because the user currently logged
into the system keeps their authentication token for using the X server in a place that no local user on the current
machine can get to. This may be the case for files on AFS, because the user’s .Xauthority file is in an AFS home
directory.

There may also be cases where the condor_kbdd may not be run with super user privileges because of political reasons,
but it is still desired to be able to monitor X activity. In these cases, change the XDM configuration in order to start up
the condor_kbdd with the permissions of the logged in user. If running X11R6.3, the files to edit will probably be in
/usr/X11R6/lib/X11/xdm. The .xsession file should start up the condor_kbdd at the end, and the .Xreset file
should shut down the condor_kbdd. The -l option can be used to write the daemon’s log file to a place where the user
running the daemon has permission to write a file. The file’s recommended location will be similar to $HOME/.kbdd.
log, since this is a place where every user can write, and the file will not get in the way. The -pidfile and -k options
allow for easy shut down of the condor_kbdd by storing the process ID in a file. It will be necessary to add lines to the
XDM configuration similar to

$ condor_kbdd -l $HOME/.kbdd.log -pidfile $HOME/.kbdd.pid

This will start the condor_kbdd as the user who is currently logged in and write the log to a file in the directory $HOME/
.kbdd.log/. This will also save the process ID of the daemon to ~/.kbdd.pid, so that when the user logs out, XDM
can do:

$ condor_kbdd -k $HOME/.kbdd.pid

This will shut down the process recorded in file ~/.kbdd.pid and exit.

To see how well the keyboard daemon is working, review the log for the daemon and look for successful connections
to the X server. If there are none, the condor_kbdd is unable to connect to the machine’s X server.

4.15.7 Configuring The HTCondorView Server

The HTCondorView server is an alternate use of the condor_collector that logs information on disk, providing a per-
sistent, historical database of pool state. This includes machine state, as well as the state of jobs submitted by users.

An existing condor_collector may act as the HTCondorView collector through configuration. This is the simplest situ-
ation, because the only change needed is to turn on the logging of historical information. The alternative of configuring
a new condor_collector to act as the HTCondorView collector is slightly more complicated, while it offers the advan-
tage that the same HTCondorView collector may be used for several pools as desired, to aggregate information into
one place.

The following sections describe how to configure a machine to run a HTCondorView server and to configure a pool to
send updates to it.

464 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Configuring a Machine to be a HTCondorView Server

To configure the HTCondorView collector, a few configuration variables are added or modified for the condor_collector
chosen to act as the HTCondorView collector. These configuration variables are described in condor_collector Con-
figuration File Entries. Here are brief explanations of the entries that must be customized:

POOL_HISTORY_DIR The directory where historical data will be stored. This directory must be writable by whatever
user the HTCondorView collector is running as (usually the user condor). There is a configurable limit to the max-
imum space required for all the files created by the HTCondorView server called (POOL_HISTORY_MAX_STORAGE
).

NOTE: This directory should be separate and different from the spool or log directories already set up for
HTCondor. There are a few problems putting these files into either of those directories.

KEEP_POOL_HISTORY A boolean value that determines if the HTCondorView collector should store the historical
information. It is False by default, and must be specified as True in the local configuration file to enable data
collection.

Once these settings are in place in the configuration file for the HTCondorView server host, create the directory specified
in POOL_HISTORY_DIR and make it writable by the user the HTCondorView collector is running as. This is the same
user that owns the CollectorLog file in the log directory. The user is usually condor.

If using the existing condor_collector as the HTCondorView collector, no further configuration is needed. To run a
different condor_collector to act as the HTCondorView collector, configure HTCondor to automatically start it.

If using a separate host for the HTCondorView collector, to start it, add the value COLLECTOR to DAEMON_LIST, and
restart HTCondor on that host. To run the HTCondorView collector on the same host as another condor_collector,
ensure that the two condor_collector daemons use different network ports. Here is an example configuration in which
the main condor_collector and the HTCondorView collector are started up by the same condor_master daemon on the
same machine. In this example, the HTCondorView collector uses port 12345.

VIEW_SERVER = $(COLLECTOR)
VIEW_SERVER_ARGS = -f -p 12345
VIEW_SERVER_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog"
DAEMON_LIST = MASTER, NEGOTIATOR, COLLECTOR, VIEW_SERVER

For this change to take effect, restart the condor_master on this host. This may be accomplished with the condor_restart
command, if the command is run with administrator access to the pool.

4.15.8 HTCondor’s Dedicated Scheduling

The dedicated scheduler is a part of the condor_schedd that handles the scheduling of parallel jobs that require more than
one machine concurrently running per job. MPI applications are a common use for the dedicated scheduler, but parallel
applications which do not require MPI can also be run with the dedicated scheduler. All jobs which use the parallel
universe are routed to the dedicated scheduler within the condor_schedd they were submitted to. A default HTCondor
installation does not configure a dedicated scheduler; the administrator must designate one or more condor_schedd
daemons to perform as dedicated scheduler.

4.15. Setting Up for Special Environments 465

HTCondor Manual, Release 10.0.9

Selecting and Setting Up a Dedicated Scheduler

We recommend that you select a single machine within an HTCondor pool to act as the dedicated scheduler. This
becomes the machine from upon which all users submit their parallel universe jobs. The perfect choice for the dedicated
scheduler is the single, front-end machine for a dedicated cluster of compute nodes. For the pool without an obvious
choice for a submit machine, choose a machine that all users can log into, as well as one that is likely to be up and
running all the time. All of HTCondor’s other resource requirements for a submit machine apply to this machine, such
as having enough disk space in the spool directory to hold jobs. See Directories for more information.

Configuration Examples for Dedicated Resources

Each execute machine may have its own policy for the execution of jobs, as set by configuration. Each machine with
aspects of its configuration that are dedicated identifies the dedicated scheduler. And, the ClassAd representing a job
to be executed on one or more of these dedicated machines includes an identifying attribute. An example configuration
file with the following various policy settings is /etc/examples/condor_config.local.dedicated.resource.

Each execute machine defines the configuration variable DedicatedScheduler , which identifies the dedicated sched-
uler it is managed by. The local configuration file contains a modified form of

DedicatedScheduler = "DedicatedScheduler@full.host.name"
STARTD_ATTRS = $(STARTD_ATTRS), DedicatedScheduler

Substitute the host name of the dedicated scheduler machine for the string “full.host.name”.

If running personal HTCondor, the name of the scheduler includes the user name it was started as, so the configuration
appears as:

DedicatedScheduler = "DedicatedScheduler@username@full.host.name"
STARTD_ATTRS = $(STARTD_ATTRS), DedicatedScheduler

All dedicated execute machines must have policy expressions which allow for jobs to always run, but not be preempted.
The resource must also be configured to prefer jobs from the dedicated scheduler over all other jobs. Therefore, con-
figuration gives the dedicated scheduler of choice the highest rank. It is worth noting that HTCondor puts no other
requirements on a resource for it to be considered dedicated.

Job ClassAds from the dedicated scheduler contain the attribute Scheduler. The attribute is defined by a string of the
form

Scheduler = "DedicatedScheduler@full.host.name"

The host name of the dedicated scheduler substitutes for the string full.host.name.

Different resources in the pool may have different dedicated policies by varying the local configuration.

Policy Scenario: Machine Runs Only Jobs That Require Dedicated Resources One possible scenario for the use
of a dedicated resource is to only run jobs that require the dedicated resource. To enact this policy, configure the
following expressions:

START = Scheduler =?= $(DedicatedScheduler)
SUSPEND = False
CONTINUE = True
PREEMPT = False
KILL = False
WANT_SUSPEND = False
WANT_VACATE = False
RANK = Scheduler =?= $(DedicatedScheduler)

466 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

The START expression specifies that a job with the Scheduler attribute must match the string corresponding
DedicatedScheduler attribute in the machine ClassAd. The RANK expression specifies that this same job
(with the Scheduler attribute) has the highest rank. This prevents other jobs from preempting it based on user
priorities. The rest of the expressions disable any other of the condor_startd daemon’s pool-wide policies, such
as those for evicting jobs when keyboard and CPU activity is discovered on the machine.

Policy Scenario: Run Both Jobs That Do and Do Not Require Dedicated Resources While the first example
works nicely for jobs requiring dedicated resources, it can lead to poor utilization of the dedicated machines. A
more sophisticated strategy allows the machines to run other jobs, when no jobs that require dedicated resources
exist. The machine is configured to prefer jobs that require dedicated resources, but not prevent others from
running.

To implement this, configure the machine as a dedicated resource as above, modifying only the START expression:

START = True

Policy Scenario: Adding Desktop Resources To The Mix A third policy example allows all jobs. These desktop
machines use a preexisting START expression that takes the machine owner’s usage into account for some jobs.
The machine does not preempt jobs that must run on dedicated resources, while it may preempt other jobs as
defined by policy. So, the default pool policy is used for starting and stopping jobs, while jobs that require a
dedicated resource always start and are not preempted.

The START, SUSPEND, PREEMPT, and RANK policies are set in the global configuration. Locally, the configuration
is modified to this hybrid policy by adding a second case.

SUSPEND = Scheduler =!= $(DedicatedScheduler) && ($(SUSPEND))
PREEMPT = Scheduler =!= $(DedicatedScheduler) && ($(PREEMPT))
RANK_FACTOR = 1000000
RANK = (Scheduler =?= $(DedicatedScheduler) * $(RANK_FACTOR)) \

+ $(RANK)
START = (Scheduler =?= $(DedicatedScheduler)) || ($(START))

Define RANK_FACTOR to be a larger value than the maximum value possible for the existing rank expression.
RANK is a floating point value, so there is no harm in assigning a very large value.

Preemption with Dedicated Jobs

The dedicated scheduler can be configured to preempt running parallel universe jobs in favor of higher priority parallel
universe jobs. Note that this is different from preemption in other universes, and parallel universe jobs cannot be
preempted either by a machine’s user pressing a key or by other means.

By default, the dedicated scheduler will never preempt running parallel universe jobs. Two configura-
tion variables control preemption of these dedicated resources: SCHEDD_PREEMPTION_REQUIREMENTS and
SCHEDD_PREEMPTION_RANK . These variables have no default value, so if either are not defined, preemption will never
occur. SCHEDD_PREEMPTION_REQUIREMENTS must evaluate to True for a machine to be a candidate for this kind of
preemption. If more machines are candidates for preemption than needed to satisfy a higher priority job, the machines
are sorted by SCHEDD_PREEMPTION_RANK, and only the highest ranked machines are taken.

Note that preempting one node of a running parallel universe job requires killing the entire job on all of its nodes. So,
when preemption occurs, it may end up freeing more machines than are needed for the new job. Also, as HTCondor does
not produce checkpoints for parallel universe jobs, preempted jobs will be re-run, starting again from the beginning.
Thus, the administrator should be careful when enabling preemption of these dedicated resources. Enable dedicated
preemption with the configuration:

4.15. Setting Up for Special Environments 467

HTCondor Manual, Release 10.0.9

STARTD_JOB_ATTRS = JobPrio
SCHEDD_PREEMPTION_REQUIREMENTS = (My.JobPrio < Target.JobPrio)
SCHEDD_PREEMPTION_RANK = 0.0

In this example, preemption is enabled by user-defined job priority. If a set of machines is running a job at user priority
5, and the user submits a new job at user priority 10, the running job will be preempted for the new job. The old job is
put back in the queue, and will begin again from the beginning when assigned to a newly acquired set of machines.

Grouping Dedicated Nodes into Parallel Scheduling Groups

In some parallel environments, machines are divided into groups, and jobs should not cross groups of machines. That
is, all the nodes of a parallel job should be allocated to machines within the same group. The most common example
is a pool of machine using InfiniBand switches. For example, each switch might connect 16 machines, and a pool
might have 160 machines on 10 switches. If the InfiniBand switches are not routed to each other, each job must run on
machines connected to the same switch. The dedicated scheduler’s Parallel Scheduling Groups feature supports this
operation.

Each condor_startd must define which group it belongs to by setting the ParallelSchedulingGroup variable in the
configuration file, and advertising it into the machine ClassAd. The value of this variable is a string, which should be
the same for all condor_startd daemons within a given group. The property must be advertised in the condor_startd
ClassAd by appending ParallelSchedulingGroup to the STARTD_ATTRS configuration variable.

The submit description file for a parallel universe job which must not cross group boundaries contains

+WantParallelSchedulingGroups = True

The dedicated scheduler enforces the allocation to within a group.

4.15.9 Configuring HTCondor for Running Backfill Jobs

HTCondor can be configured to run backfill jobs whenever the condor_startd has no other work to perform. These
jobs are considered the lowest possible priority, but when machines would otherwise be idle, the resources can be put
to good use.

Currently, HTCondor only supports using the Berkeley Open Infrastructure for Network Computing (BOINC) to pro-
vide the backfill jobs. More information about BOINC is available at http://boinc.berkeley.edu.

The rest of this section provides an overview of how backfill jobs work in HTCondor, details for configuring the policy
for when backfill jobs are started or killed, and details on how to configure HTCondor to spawn the BOINC client to
perform the work.

468 Chapter 4. Administrators’ Manual

http://boinc.berkeley.edu

HTCondor Manual, Release 10.0.9

Overview of Backfill jobs in HTCondor

Whenever a resource controlled by HTCondor is in the Unclaimed/Idle state, it is totally idle; neither the interactive
user nor an HTCondor job is performing any work. Machines in this state can be configured to enter the Backfill state,
which allows the resource to attempt a background computation to keep itself busy until other work arrives (either a
user returning to use the machine interactively, or a normal HTCondor job). Once a resource enters the Backfill state,
the condor_startd will attempt to spawn another program, called a backfill client, to launch and manage the backfill
computation. When other work arrives, the condor_startd will kill the backfill client and clean up any processes it
has spawned, freeing the machine resources for the new, higher priority task. More details about the different states an
HTCondor resource can enter and all of the possible transitions between them are described in Policy Configuration
for Execute Hosts and for Submit Hosts, especially the condor_startd Policy Configuration and condor_schedd Policy
Configuration sections.

At this point, the only backfill system supported by HTCondor is BOINC. The condor_startd has the ability to start
and stop the BOINC client program at the appropriate times, but otherwise provides no additional services to configure
the BOINC computations themselves. Future versions of HTCondor might provide additional functionality to make it
easier to manage BOINC computations from within HTCondor. For now, the BOINC client must be manually installed
and configured outside of HTCondor on each backfill-enabled machine.

Defining the Backfill Policy

There are a small set of policy expressions that determine if a condor_startd will attempt to spawn a backfill client at
all, and if so, to control the transitions in to and out of the Backfill state. This section briefly lists these expressions.
More detail can be found in condor_startd Configuration File Macros.

ENABLE_BACKFILL A boolean value to determine if any backfill functionality should be used. The default value is
False.

BACKFILL_SYSTEM A string that defines what backfill system to use for spawning and managing backfill computa-
tions. Currently, the only supported string is "BOINC".

START_BACKFILL A boolean expression to control if an HTCondor resource should start a backfill client. This expres-
sion is only evaluated when the machine is in the Unclaimed/Idle state and the ENABLE_BACKFILL expression is
True.

EVICT_BACKFILL A boolean expression that is evaluated whenever an HTCondor resource is in the Backfill state. A
value of True indicates the machine should immediately kill the currently running backfill client and any other
spawned processes, and return to the Owner state.

The following example shows a possible configuration to enable backfill:

Turn on backfill functionality, and use BOINC
ENABLE_BACKFILL = TRUE
BACKFILL_SYSTEM = BOINC

Spawn a backfill job if we've been Unclaimed for more than 5
minutes
START_BACKFILL = $(StateTimer) > (5 * $(MINUTE))

Evict a backfill job if the machine is busy (based on keyboard
activity or cpu load)
EVICT_BACKFILL = $(MachineBusy)

4.15. Setting Up for Special Environments 469

HTCondor Manual, Release 10.0.9

Overview of the BOINC system

The BOINC system is a distributed computing environment for solving large scale scientific problems. A detailed
explanation of this system is beyond the scope of this manual. Thorough documentation about BOINC is available at
their website: http://boinc.berkeley.edu. However, a brief overview is provided here for sites interested in using BOINC
with HTCondor to manage backfill jobs.

BOINC grew out of the relatively famous SETI@home computation, where volunteers installed special client software,
in the form of a screen saver, that contacted a centralized server to download work units. Each work unit contained a
set of radio telescope data and the computation tried to find patterns in the data, a sign of intelligent life elsewhere in
the universe, hence the name: “Search for Extra Terrestrial Intelligence at home”. BOINC is developed by the Space
Sciences Lab at the University of California, Berkeley, by the same people who created SETI@home. However, instead
of being tied to the specific radio telescope application, BOINC is a generic infrastructure by which many different kinds
of scientific computations can be solved. The current generation of SETI@home now runs on top of BOINC, along
with various physics, biology, climatology, and other applications.

The basic computational model for BOINC and the original SETI@home is the same: volunteers install BOINC client
software, called the boinc_client, which runs whenever the machine would otherwise be idle. However, the BOINC
installation on any given machine must be configured so that it knows what computations to work for instead of always
working on a hard coded computation. The BOINC terminology for a computation is a project. A given BOINC client
can be configured to donate all of its cycles to a single project, or to split the cycles between projects so that, on average,
the desired percentage of the computational power is allocated to each project. Once the boinc_client starts running,
it attempts to contact a centralized server for each project it has been configured to work for. The BOINC software
downloads the appropriate platform-specific application binary and some work units from the central server for each
project. Whenever the client software completes a given work unit, it once again attempts to connect to that project’s
central server to upload the results and download more work.

BOINC participants must register at the centralized server for each project they wish to donate cycles to. The process
produces a unique identifier so that the work performed by a given client can be credited to a specific user. BOINC
keeps track of the work units completed by each user, so that users providing the most cycles get the highest rankings,
and therefore, bragging rights.

Because BOINC already handles the problems of distributing the application binaries for each scientific computation,
the work units, and compiling the results, it is a perfect system for managing backfill computations in HTCondor.
Many of the applications that run on top of BOINC produce their own application-specific checkpoints, so even if the
boinc_client is killed, for example, when an HTCondor job arrives at a machine, or if the interactive user returns, an
entire work unit will not necessarily be lost.

Installing the BOINC client software

In HTCondor Version 10.0.9, the boinc_client must be manually downloaded, installed and configured outside of
HTCondor. Download the boinc_client executables at http://boinc.berkeley.edu/download.php.

Once the BOINC client software has been downloaded, the boinc_client binary should be placed in a location
where the HTCondor daemons can use it. The path will be specified with the HTCondor configuration variable
BOINC_Executable .

Additionally, a local directory on each machine should be created where the BOINC system can write files it needs. This
directory must not be shared by multiple instances of the BOINC software. This is the same restriction as placed on the
spool or execute directories used by HTCondor. The location of this directory is defined by BOINC_InitialDir .
The directory must be writable by whatever user the boinc_client will run as. This user is either the same as the user
the HTCondor daemons are running as, if HTCondor is not running as root, or a user defined via the BOINC_Owner
configuration variable.

470 Chapter 4. Administrators’ Manual

http://boinc.berkeley.edu
mailto:SETI@home
mailto:SETI@home
mailto:SETI@home
mailto:SETI@home
http://boinc.berkeley.edu/download.php

HTCondor Manual, Release 10.0.9

Finally, HTCondor administrators wishing to use BOINC for backfill jobs must create accounts at the various BOINC
projects they want to donate cycles to. The details of this process vary from project to project. Beware that this step
must be done manually, as the boinc_client can not automatically register a user at a given project, unlike the more
fancy GUI version of the BOINC client software which many users run as a screen saver. For example, to configure
machines to perform work for the Einstein@home project (a physics experiment run by the University of Wisconsin
at Milwaukee), HTCondor administrators should go to http://einstein.phys.uwm.edu/create_account_form.php, fill in
the web form, and generate a new Einstein@home identity. This identity takes the form of a project URL (such as
http://einstein.phys.uwm.edu) followed by an account key, which is a long string of letters and numbers that is used as
a unique identifier. This URL and account key will be needed when configuring HTCondor to use BOINC for backfill
computations.

Configuring the BOINC client under HTCondor

After the boinc_client has been installed on a given machine, the BOINC projects to join have been selected, and a
unique project account key has been created for each project, the HTCondor configuration needs to be modified.

Whenever the condor_startd decides to spawn the boinc_client to perform backfill computations, it will spawn a con-
dor_starter to directly launch and monitor the boinc_client program. This condor_starter is just like the one used to
invoke any other HTCondor jobs. In fact, the argv[0] of the boinc_client will be renamed to condor_exec, as described
in the Renaming of argv[0] section.

This condor_starter reads values out of the HTCondor configuration files to define the job it should run, as opposed
to getting these values from a job ClassAd in the case of a normal HTCondor job. All of the configuration variables
names for variables to control things such as the path to the boinc_client binary to use, the command-line arguments,
and the initial working directory, are prefixed with the string "BOINC_". Each of these variables is described as either
a required or an optional configuration variable.

Required configuration variables:

BOINC_Executable The full path and executable name of the boinc_client binary to use.

BOINC_InitialDir The full path to the local directory where BOINC should run.

BOINC_Universe The HTCondor universe used for running the boinc_client program. This must be set to vanilla
for BOINC to work under HTCondor.

BOINC_Owner What user the boinc_client program should be run as. This variable is only used if the HTCondor
daemons are running as root. In this case, the condor_starter must be told what user identity to switch to before
invoking the boinc_client. This can be any valid user on the local system, but it must have write permission in
whatever directory is specified by BOINC_InitialDir.

Optional configuration variables:

BOINC_Arguments Command-line arguments that should be passed to the boinc_client program. For example, one
way to specify the BOINC project to join is to use the -attach_project argument to specify a project URL and
account key. For example:

BOINC_Arguments = --attach_project http://einstein.phys.uwm.edu [account_key]

BOINC_Environment Environment variables that should be set for the boinc_client.

BOINC_Output Full path to the file where stdout from the boinc_client should be written. If this variable is not
defined, stdout will be discarded.

BOINC_Error Full path to the file where stderr from the boinc_client should be written. If this macro is not defined,
stderr will be discarded.

The following example shows one possible usage of these settings:

4.15. Setting Up for Special Environments 471

mailto:Einstein@home
http://einstein.phys.uwm.edu/create_account_form.php
mailto:Einstein@home
http://einstein.phys.uwm.edu

HTCondor Manual, Release 10.0.9

Define a shared macro that can be used to define other settings.
This directory must be manually created before attempting to run
any backfill jobs.
BOINC_HOME = $(LOCAL_DIR)/boinc

Path to the boinc_client to use, and required universe setting
BOINC_Executable = /usr/local/bin/boinc_client
BOINC_Universe = vanilla

What initial working directory should BOINC use?
BOINC_InitialDir = $(BOINC_HOME)

Where to place stdout and stderr
BOINC_Output = $(BOINC_HOME)/boinc.out
BOINC_Error = $(BOINC_HOME)/boinc.err

If the HTCondor daemons reading this configuration are running as root, an additional variable must be defined:

Specify the user that the boinc_client should run as:
BOINC_Owner = nobody

In this case, HTCondor would spawn the boinc_client as nobody, so the directory specified in $(BOINC_HOME) would
have to be writable by the nobody user.

A better choice would probably be to create a separate user account just for running BOINC jobs, so that the local
BOINC installation is not writable by other processes running as nobody. Alternatively, the BOINC_Owner could be
set to daemon.

Attaching to a specific BOINC project

There are a few ways to attach an HTCondor/BOINC installation to a given BOINC project:

• Use the -attach_project argument to the boinc_client program, defined via the BOINC_Arguments variable.
The boinc_client will only accept a single -attach_project argument, so this method can only be used to attach
to one project.

• The boinc_cmd command-line tool can perform various BOINC administrative tasks, including attaching to a
BOINC project. Using boinc_cmd, the appropriate argument to use is called -project_attach. Unfortunately,
the boinc_client must be running for boinc_cmd to work, so this method can only be used once the HTCondor
resource has entered the Backfill state and has spawned the boinc_client.

• Manually create account files in the local BOINC directory. Upon start up, the boinc_client will scan its local
directory (the directory specified with BOINC_InitialDir) for files of the form account_[URL].xml, for
example, account_einstein.phys.uwm.edu.xml. Any files with a name that matches this convention will
be read and processed. The contents of the file define the project URL and the authentication key. The format is:

<account>
<master_url>[URL]</master_url>
<authenticator>[key]</authenticator>

</account>

For example:

<account>
<master_url>http://einstein.phys.uwm.edu</master_url>
<authenticator>aaaa1111bbbb2222cccc3333</authenticator>

</account>

472 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

Of course, the <authenticator> tag would use the real authentication key returned when the account was created
at a given project.

These account files can be copied to the local BOINC directory on all machines in an HTCondor pool, so ad-
ministrators can either distribute them manually, or use symbolic links to point to a shared file system.

In the two cases of using command-line arguments for boinc_client or running the boinc_cmd tool, BOINC will
write out the resulting account file to the local BOINC directory on the machine, and then future invocations of the
boinc_client will already be attached to the appropriate project(s).

BOINC on Windows

The Windows version of BOINC has multiple installation methods. The preferred method of installation for use with
HTCondor is the Shared Installation method. Using this method gives all users access to the executables. During the
installation process

1. Deselect the option which makes BOINC the default screen saver

2. Deselect the option which runs BOINC on start up.

3. Do not launch BOINC at the conclusion of the installation.

There are three major differences from the Unix version to keep in mind when dealing with the Windows installation:

1. The Windows executables have different names from the Unix versions. The Windows client is called boinc.exe.
Therefore, the configuration variable BOINC_Executable is written:

BOINC_Executable = C:\PROGRA~1\BOINC\boinc.exe

The Unix administrative tool boinc_cmd is called boinccmd.exe on Windows.

2. When using BOINC on Windows, the configuration variable BOINC_InitialDir will not be respected fully.
To work around this difficulty, pass the BOINC home directory directly to the BOINC application via the
BOINC_Arguments configuration variable. For Windows, rewrite the argument line as:

BOINC_Arguments = --dir $(BOINC_HOME) \
--attach_project http://einstein.phys.uwm.edu [account_key]

As a consequence of setting the BOINC home directory, some projects may fail with the authentication error:

Scheduler request failed: Peer
certificate cannot be authenticated
with known CA certificates.

To resolve this issue, copy the ca-bundle.crt file from the BOINC installation directory to $(BOINC_HOME).
This file appears to be project and machine independent, and it can therefore be distributed as part of an automated
HTCondor installation.

3. The BOINC_Owner configuration variable behaves differently on Windows than it does on Unix. Its value may
take one of two forms:

• domain\user

• user This form assumes that the user exists in the local domain (that is, on the computer itself).

Setting this option causes the addition of the job attribute

RunAsUser = True

4.15. Setting Up for Special Environments 473

HTCondor Manual, Release 10.0.9

to the backfill client. This further implies that the configuration variable STARTER_ALLOW_RUNAS_OWNER be
set to True to insure that the local condor_starter be able to run jobs in this manner. For more information
on the RunAsUser attribute, see Executing Jobs as the Submitting User. For more information on the the
STARTER_ALLOW_RUNAS_OWNER configuration variable, see Shared File System Configuration File Macros.

4.15.10 Per Job PID Namespaces

Per job PID namespaces provide enhanced isolation of one process tree from another through kernel level process ID
namespaces. HTCondor may enable the use of per job PID namespaces for Linux RHEL 6, Debian 6, and more recent
kernels.

Read about per job PID namespaces http://lwn.net/Articles/531419/.

The needed isolation of jobs from the same user that execute on the same machine as each other is already provided
by the implementation of slot users as described in User Accounts in HTCondor on Unix Platforms. This is the rec-
ommended way to implement the prevention of interference between more than one job submitted by a single user.
However, the use of a shared file system by slot users presents issues in the ownership of files written by the jobs.

The per job PID namespace provides a way to handle the ownership of files produced by jobs within a shared file
system. It also isolates the processes of a job within its PID namespace. As a side effect and benefit, the clean up of
processes for a job within a PID namespace is enhanced. When the process with PID = 1 is killed, the operating system
takes care of killing all child processes.

To enable the use of per job PID namespaces, set the configuration to include

USE_PID_NAMESPACES = True

This configuration variable defaults to False, thus the use of per job PID namespaces is disabled by default.

4.15.11 Group ID-Based Process Tracking

One function that HTCondor often must perform is keeping track of all processes created by a job. This is done so
that HTCondor can provide resource usage statistics about jobs, and also so that HTCondor can properly clean up any
processes that jobs leave behind when they exit.

In general, tracking process families is difficult to do reliably. By default HTCondor uses a combination of process
parent-child relationships, process groups, and information that HTCondor places in a job’s environment to track pro-
cess families on a best-effort basis. This usually works well, but it can falter for certain applications or for jobs that try
to evade detection.

Jobs that run with a user account dedicated for HTCondor’s use can be reliably tracked, since all HTCondor needs to
do is look for all processes running using the given account. Administrators must specify in HTCondor’s configura-
tion what accounts can be considered dedicated via the DEDICATED_EXECUTE_ACCOUNT_REGEXP setting. See User
Accounts in HTCondor on Unix Platforms for further details.

Ideally, jobs can be reliably tracked regardless of the user account they execute under. This can be accomplished with
group ID-based tracking. This method of tracking requires that a range of dedicated group IDs (GID) be set aside for
HTCondor’s use. The number of GIDs that must be set aside for an execute machine is equal to its number of execution
slots. GID-based tracking is only available on Linux, and it requires that HTCondor daemons run as root.

GID-based tracking works by placing a dedicated GID in the supplementary group list of a job’s initial process. Since
modifying the supplementary group ID list requires root privilege, the job will not be able to create processes that go
unnoticed by HTCondor.

474 Chapter 4. Administrators’ Manual

http://lwn.net/Articles/531419/

HTCondor Manual, Release 10.0.9

Once a suitable GID range has been set aside for process tracking, GID-based tracking can be enabled via the
USE_GID_PROCESS_TRACKING parameter. The minimum and maximum GIDs included in the range are specified
with the MIN_TRACKING_GID and MAX_TRACKING_GID settings. For example, the following would enable GID-based
tracking for an execute machine with 8 slots.

USE_GID_PROCESS_TRACKING = True
MIN_TRACKING_GID = 750
MAX_TRACKING_GID = 757

If the defined range is too small, such that there is not a GID available when starting a job, then the condor_starter will
fail as it tries to start the job. An error message will be logged stating that there are no more tracking GIDs.

GID-based process tracking requires use of the condor_procd. If USE_GID_PROCESS_TRACKING is true,
the condor_procd will be used regardless of the USE_PROCD setting. Changes to MIN_TRACKING_GID and
MAX_TRACKING_GID require a full restart of HTCondor.

4.15.12 Cgroup-Based Process Tracking

A new feature in Linux version 2.6.24 allows HTCondor to more accurately and safely manage jobs composed of sets
of processes. This Linux feature is called Control Groups, or cgroups for short, and it is available starting with RHEL
6, Debian 6, and related distributions. Documentation about Linux kernel support for cgroups can be found in the
Documentation directory in the kernel source code distribution. Another good reference is http://docs.redhat.com/
docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html Even if cgroup support is
built into the kernel, many distributions do not install the cgroup tools by default.

The interface between the kernel cgroup functionality is via a (virtual) file system. When the condor_master starts on a
Linux system with cgroup support in the kernel, it checks to see if cgroups are mounted, and if not, it will try to mount
the cgroup virtual filesystem onto the directory /cgroup.

If your Linux distribution uses systemd, it will mount the cgroup file system, and the only remaining item is to set
configuration variable BASE_CGROUP , as described below.

On Debian based systems, the memory cgroup controller is often not on by default, and needs to be enabled with a
boot time option.

This setting needs to be inherited down to the per-job cgroup with the following commands in rc.local:

/usr/sbin/cgconfigparser -l /etc/cgconfig.conf
/bin/echo 1 > /sys/fs/cgroup/htcondor/cgroup.clone_children

When cgroups are correctly configured and running, the virtual file system mounted on /cgroup should have several
subdirectories under it, and there should an htcondor subdirectory under the directory /cgroup/cpu.

The condor_starter daemon uses cgroups by default on Linux systems to accurately track all the processes started by
a job, even when quickly-exiting parent processes spawn many child processes. As with the GID-based tracking, this
is only implemented when a condor_procd daemon is running.

Kernel cgroups are named in a virtual file system hierarchy. HTCondor will put each running job on the execute node
in a distinct cgroup. The name of this cgroup is the name of the execute directory for that condor_starter, with slashes
replaced by underscores, followed by the name and number of the slot. So, for the memory controller, a job running on
slot1 would have its cgroup located at /cgroup/memory/htcondor/condor_var_lib_condor_execute_slot1/
. The tasks file in this directory will contain a list of all the processes in this cgroup, and many other files in this
directory have useful information about resource usage of this cgroup. See the kernel documentation for full details.

Once cgroup-based tracking is configured, usage should be invisible to the user and administrator. The condor_procd
log, as defined by configuration variable PROCD_LOG, will mention that it is using this method, but no user visible

4.15. Setting Up for Special Environments 475

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html

HTCondor Manual, Release 10.0.9

changes should occur, other than the impossibility of a quickly-forking process escaping from the control of the con-
dor_starter, and the more accurate reporting of memory usage.

4.15.13 Limiting Resource Usage with a User Job Wrapper

An administrator can strictly limit the usage of system resources by jobs for any job that may be wrapped using the
script defined by the configuration variable USER_JOB_WRAPPER . These are jobs within universes that are controlled
by the condor_starter daemon, and they include the vanilla, java, local, and parallel universes.

The job’s ClassAd is written by the condor_starter daemon. It will need to contain attributes that the script defined
by USER_JOB_WRAPPER can use to implement platform specific resource limiting actions. Examples of resources that
may be referred to for limiting purposes are RAM, swap space, file descriptors, stack size, and core file size.

An initial sample of a USER_JOB_WRAPPER script is provided in the installation at $(LIBEXEC)/
condor_limits_wrapper.sh. Here is the contents of that file:

#!/bin/bash
Copyright 2008 Red Hat, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

if [[$_CONDOR_MACHINE_AD != ""]]; then
mem_limit=$((`egrep '^Memory' $_CONDOR_MACHINE_AD | cut -d ' ' -f 3` * 1024))
disk_limit=`egrep '^Disk' $_CONDOR_MACHINE_AD | cut -d ' ' -f 3`

ulimit -d $mem_limit
if [[$? != 0]] || [[$mem_limit = ""]]; then

echo "Failed to set Memory Resource Limit" > $_CONDOR_WRAPPER_ERROR_FILE
exit 1

fi
ulimit -f $disk_limit
if [[$? != 0]] || [[$disk_limit = ""]]; then

echo "Failed to set Disk Resource Limit" > $_CONDOR_WRAPPER_ERROR_FILE
exit 1

fi
fi

exec "$@"
error=$?
echo "Failed to exec($error): $@" > $_CONDOR_WRAPPER_ERROR_FILE
exit 1

476 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

If used in an unmodified form, this script sets the job’s limits on a per slot basis for memory and disk usage, with the
limits defined by the values in the machine ClassAd. This example file will need to be modified and merged for use
with a preexisting USER_JOB_WRAPPER script.

If additional functionality is added to the script, an administrator is likely to use the USER_JOB_WRAPPER script in
conjunction with SUBMIT_ATTRS to force the job ClassAd to contain attributes that the USER_JOB_WRAPPER script
expects to have defined.

The following variables are set in the environment of the the USER_JOB_WRAPPER script by the condor_starter daemon,
when the USER_JOB_WRAPPER is defined.

_CONDOR_MACHINE_AD The full path and file name of the file containing the machine ClassAd.

_CONDOR_JOB_AD The full path and file name of the file containing the job ClassAd.

_CONDOR_WRAPPER_ERROR_FILE The full path and file name of the file that the USER_JOB_WRAPPER script should
create, if there is an error. The text in this file will be included in any HTCondor failure messages.

4.15.14 Limiting Resource Usage Using Cgroups

While the method described to limit a job’s resource usage is portable, and it should run on any Linux or BSD or
Unix system, it suffers from one large flaw. The flaw is that resource limits imposed are per process, not per job. An
HTCondor job is often composed of many Unix processes. If the method of limiting resource usage with a user job
wrapper is used to impose a 2 Gigabyte memory limit, that limit applies to each process in the job individually. If a job
created 100 processes, each using just under 2 Gigabytes, the job would continue without the resource limits kicking
in. Clearly, this is not what the machine owner intends. Moreover, the memory limit only applies to the virtual memory
size, not the physical memory size, or the resident set size. This can be a problem for jobs that use the mmap system
call to map in a large chunk of virtual memory, but only need a small amount of memory at one time. Typically, the
resource the administrator would like to control is physical memory, because when that is in short supply, the machine
starts paging, and can become unresponsive very quickly.

The condor_starter can, using the Linux cgroup capability, apply resource limits collectively to sets of jobs, and apply
limits to the physical memory used by a set of processes. The main downside of this technique is that it is only available
on relatively new Unix distributions such as RHEL 6 and Debian 6. This technique also may require editing of system
configuration files.

To enable cgroup-based limits, first ensure that cgroup-based tracking is enabled, as it is by default on supported
systems, as described in section 3.14.13. Once set, the condor_starter will create a cgroup for each job, and set
attributes in that cgroup to control memory and cpu usage. These attributes are the cpu.shares attribute in the cpu
controller, and two attributes in the memory controller, both memory.limit_in_bytes, and memory.soft_limit_in_bytes.
The configuration variable CGROUP_MEMORY_LIMIT_POLICY controls this. If CGROUP_MEMORY_LIMIT_POLICY is set
to the string hard, the hard limit will be set to the slot size, and the soft limit to 90% of the slot size.. If set to soft, the
soft limit will be set to the slot size and the hard limit will be set to the memory size of the whole startd. By default, this
whole size is the detected memory the size, minus RESERVED_MEMORY. Or, if MEMORY is defined, that value is
used..

No limits will be set if the value is none. The default is none. If the hard limit is in force, then the total amount of
physical memory used by the sum of all processes in this job will not be allowed to exceed the limit. If the process goes
above the hard limit, the job will be put on hold.

The memory size used in both cases is the machine ClassAd attribute Memory. Note that Memory is a static amount
when using static slots, but it is dynamic when partitionable slots are used. That is, the limit is whatever the “Mem”
column of condor_status reports for that slot.

If CGROUP_MEMORY_LIMIT_POLICY is set, HTCondor will also also use cgroups to limit the amount of swap space
used by each job. By default, the maximum amount of swap space used by each slot is the total amount of Virtual
Memory in the slot, minus the amount of physical memory. Note that HTCondor measures virtual memory in kbytes,

4.15. Setting Up for Special Environments 477

HTCondor Manual, Release 10.0.9

and physical memory in megabytes. To prevent jobs with high memory usage from thrashing and excessive paging,
and force HTCondor to put them on hold instead, you can tell condor that a job should never use swap, by setting
DISABLE_SWAP_FOR_JOB to true (the default is false).

In addition to memory, the condor_starter can also control the total amount of CPU used by all processes within a job.
To do this, it writes a value to the cpu.shares attribute of the cgroup cpu controller. The value it writes is copied from the
Cpus attribute of the machine slot ClassAd multiplied by 100. Again, like the Memory attribute, this value is fixed for
static slots, but dynamic under partitionable slots. This tells the operating system to assign cpu usage proportionally
to the number of cpus in the slot. Unlike memory, there is no concept of soft or hard, so this limit only applies
when there is contention for the cpu. That is, on an eight core machine, with only a single, one-core slot running, and
otherwise idle, the job running in the one slot could consume all eight cpus concurrently with this limit in play, if it is
the only thing running. If, however, all eight slots where running jobs, with each configured for one cpu, the cpu usage
would be assigned equally to each job, regardless of the number of processes or threads in each job.

4.15.15 Concurrency Limits

Concurrency limits allow an administrator to limit the number of concurrently running jobs that declare that they use
some pool-wide resource. This limit is applied globally to all jobs submitted from all schedulers across one HTCondor
pool; the limits are not applied to scheduler, local, or grid universe jobs. This is useful in the case of a shared resource,
such as an NFS or database server that some jobs use, where the administrator needs to limit the number of jobs
accessing the server.

The administrator must predefine the names and capacities of the resources to be limited in the negotiator’s configuration
file. The job submitter must declare in the submit description file which resources the job consumes.

The administrator chooses a name for the limit. Concurrency limit names are case-insensitive. The names are formed
from the alphabet letters ‘A’ to ‘Z’ and ‘a’ to ‘z’, the numerical digits 0 to 9, the underscore character ‘_’ , and at most
one period character. The names cannot start with a numerical digit.

For example, assume that there are 3 licenses for the X software, so HTCondor should constrain the number of running
jobs which need the X software to 3. The administrator picks XSW as the name of the resource and sets the configuration

XSW_LIMIT = 3

where XSW is the invented name of this resource, and this name is appended with the string _LIMIT. With this limit, a
maximum of 3 jobs declaring that they need this resource may be executed concurrently.

In addition to named limits, such as in the example named limit XSW, configuration may specify a concur-
rency limit for all resources that are not covered by specifically-named limits. The configuration variable
CONCURRENCY_LIMIT_DEFAULT sets this value. For example,

CONCURRENCY_LIMIT_DEFAULT = 1

will enforce a limit of at most 1 running job that declares a usage of an unnamed resource. If
CONCURRENCY_LIMIT_DEFAULT is omitted from the configuration, then no limits are placed on the number of concur-
rently executing jobs for which there is no specifically-named concurrency limit.

The job must declare its need for a resource by placing a command in its submit description file or adding an attribute
to the job ClassAd. In the submit description file, an example job that requires the X software adds:

concurrency_limits = XSW

This results in the job ClassAd attribute

478 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

ConcurrencyLimits = "XSW"

Jobs may declare that they need more than one type of resource. In this case, specify a comma-separated list of
resources:

concurrency_limits = XSW, DATABASE, FILESERVER

The units of these limits are arbitrary. This job consumes one unit of each resource. Jobs can declare that they use more
than one unit with syntax that follows the resource name by a colon character and the integer number of resources. For
example, if the above job uses three units of the file server resource, it is declared with

concurrency_limits = XSW, DATABASE, FILESERVER:3

If there are sets of resources which have the same capacity for each member of the set, the configuration may become
tedious, as it defines each member of the set individually. A shortcut defines a name for a set. For example, define the
sets called LARGE and SMALL:

CONCURRENCY_LIMIT_DEFAULT = 5
CONCURRENCY_LIMIT_DEFAULT_LARGE = 100
CONCURRENCY_LIMIT_DEFAULT_SMALL = 25

To use the set name in a concurrency limit, the syntax follows the set name with a period and then the set member’s
name. Continuing this example, there may be a concurrency limit named LARGE.SWLICENSE, which gets the capacity
of the default defined for the LARGE set, which is 100. A concurrency limit named LARGE.DBSESSION will also have a
limit of 100. A concurrency limit named OTHER.LICENSE will receive the default limit of 5, as there is no set named
OTHER.

A concurrency limit may be evaluated against the attributes of a matched machine. This allows a job to vary what
concurrency limits it requires based on the machine to which it is matched. To implement this, the job uses submit
command concurrency_limits_expr instead of concurrency_limits . Consider an example in which execute machines
are located on one of two local networks. The administrator sets a concurrency limit to limit the number of network
intensive jobs on each network to 10. Configuration of each execute machine advertises which local network it is on.
A machine on "NETWORK_A" configures

NETWORK = "NETWORK_A"
STARTD_ATTRS = $(STARTD_ATTRS) NETWORK

and a machine on "NETWORK_B" configures

NETWORK = "NETWORK_B"
STARTD_ATTRS = $(STARTD_ATTRS) NETWORK

The configuration for the negotiator sets the concurrency limits:

NETWORK_A_LIMIT = 10
NETWORK_B_LIMIT = 10

Each network intensive job identifies itself by specifying the limit within the submit description file:

concurrency_limits_expr = TARGET.NETWORK

The concurrency limit is applied based on the network of the matched machine.

An extension of this example applies two concurrency limits. One limit is the same as in the example, such that it
is based on an attribute of the matched machine. The other limit is of a specialized application called "SWX" in this
example. The negotiator configuration is extended to also include

4.15. Setting Up for Special Environments 479

HTCondor Manual, Release 10.0.9

SWX_LIMIT = 15

The network intensive job that also uses two units of the SWX application identifies the needed resources in the single
submit command:

concurrency_limits_expr = strcat("SWX:2 ", TARGET.NETWORK)

Submit command concurrency_limits_expr may not be used together with submit command concurrency_limits.

Note that it is possible, under unusual circumstances, for more jobs to be started than should be allowed by the con-
currency limits feature. In the presence of preemption and dropped updates from the condor_startd daemon to the
condor_collector daemon, it is possible for the limit to be exceeded. If the limits are exceeded, HTCondor will not kill
any job to reduce the number of running jobs to meet the limit.

4.16 Java Support Installation

Compiled Java programs may be executed (under HTCondor) on any execution site with a Java Virtual Machine (JVM).
To do this, HTCondor must be informed of some details of the JVM installation.

Begin by installing a Java distribution according to the vendor’s instructions. Your machine may have been delivered
with a JVM already installed - installed code is frequently found in /usr/bin/java.

HTCondor’s configuration includes the location of the installed JVM. Edit the configuration file. Modify the JAVA
entry to point to the JVM binary, typically /usr/bin/java. Restart the condor_startd daemon on that host. For
example,

$ condor_restart -startd bluejay

The condor_startd daemon takes a few moments to exercise the Java capabilities of the condor_starter, query its
properties, and then advertise the machine to the pool as Java-capable. If the set up succeeded, then condor_status will
tell you the host is now Java-capable by printing the Java vendor and the version number:

$ condor_status -java bluejay

After a suitable amount of time, if this command does not give any output, then the condor_starter is having difficulty
executing the JVM. The exact cause of the problem depends on the details of the JVM, the local installation, and a
variety of other factors. We can offer only limited advice on these matters, but here is an approach to solving the
problem.

To reproduce the test that the condor_starter is attempting, try running the Java condor_starter directly. To find where
the condor_starter is installed, run this command:

$ condor_config_val STARTER

This command prints out the path to the condor_starter, perhaps something like this:

$ /usr/condor/sbin/condor_starter

Use this path to execute the condor_starter directly with the -classad argument. This tells the starter to run its tests
and display its properties.

$ /usr/condor/sbin/condor_starter -classad

This command will display a short list of cryptic properties, such as:

480 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

IsDaemonCore = True
HasFileTransfer = True
HasMPI = True
CondorVersion = "$CondorVersion: 7.1.0 Mar 26 2008 BuildID: 80210 $"

If the Java configuration is correct, there will also be a short list of Java properties, such as:

JavaVendor = "Sun Microsystems Inc."
JavaVersion = "1.2.2"
HasJava = True

If the Java installation is incorrect, then any error messages from the shell or Java will be printed on the error stream
instead.

Many implementations of the JVM set a value of the Java maximum heap size that is too small for particular applica-
tions. HTCondor uses this value. The administrator can change this value through configuration by setting a different
value for JAVA_EXTRA_ARGUMENTS .

JAVA_EXTRA_ARGUMENTS = -Xmx1024m

Note that if a specific job sets the value in the submit description file, using the submit command java_vm_args , the
job’s value takes precedence over a configured value.

4.17 Setting Up the VM and Docker Universes

4.17.1 The VM Universe

vm universe jobs may be executed on any execution site with Xen (via libvirt) or KVM. To do this, HTCondor must be
informed of some details of the virtual machine installation, and the execution machines must be configured correctly.

What follows is not a comprehensive list of the options that help set up to use the vm universe; rather, it is intended
to serve as a starting point for those users interested in getting vm universe jobs up and running quickly. Details of
configuration variables are in the Configuration File Entries Relating to Virtual Machines section.

Begin by installing the virtualization package on all execute machines, according to the vendor’s instructions. We have
successfully used Xen and KVM.

For Xen, there are three things that must exist on an execute machine to fully support vm universe jobs.

1. A Xen-enabled kernel must be running. This running Xen kernel acts as Dom0, in Xen terminology, under which
all VMs are started, called DomUs Xen terminology.

2. The libvirtd daemon must be available, and Xend services must be running.

3. The pygrub program must be available, for execution of VMs whose disks contain the kernel they will run.

For KVM, there are two things that must exist on an execute machine to fully support vm universe jobs.

1. The machine must have the KVM kernel module installed and running.

2. The libvirtd daemon must be installed and running.

Configuration is required to enable the execution of vm universe jobs. The type of virtual machine that is installed on
the execute machine must be specified with the VM_TYPE variable. For now, only one type can be utilized per machine.
For instance, the following tells HTCondor to use KVM:

4.17. Setting Up the VM and Docker Universes 481

HTCondor Manual, Release 10.0.9

VM_TYPE = kvm

The location of the condor_vm-gahp and its log file must also be specified on the execute machine. On a Windows
installation, these options would look like this:

VM_GAHP_SERVER = $(SBIN)/condor_vm-gahp.exe
VM_GAHP_LOG = $(LOG)/VMGahpLog

Xen-Specific and KVM-Specific Configuration

Once the configuration options have been set, restart the condor_startd daemon on that host. For example:

$ condor_restart -startd leovinus

The condor_startd daemon takes a few moments to exercise the VM capabilities of the condor_vm-gahp, query its
properties, and then advertise the machine to the pool as VM-capable. If the set up succeeded, then condor_status will
reveal that the host is now VM-capable by printing the VM type and the version number:

$ condor_status -vm leovinus

After a suitable amount of time, if this command does not give any output, then the condor_vm-gahp is having difficulty
executing the VM software. The exact cause of the problem depends on the details of the VM, the local installation,
and a variety of other factors. We can offer only limited advice on these matters:

For Xen and KVM, the vm universe is only available when root starts HTCondor. This is a restriction currently imposed
because root privileges are required to create a virtual machine on top of a Xen-enabled kernel. Specifically, root is
needed to properly use the libvirt utility that controls creation and management of Xen and KVM guest virtual machines.
This restriction may be lifted in future versions, depending on features provided by the underlying tool libvirt.

When a vm Universe Job Fails to Start

If a vm universe job should fail to launch, HTCondor will attempt to distinguish between a problem with the user’s
job description, and a problem with the virtual machine infrastructure of the matched machine. If the problem is with
the job, the job will go on hold with a reason explaining the problem. If the problem is with the virtual machine
infrastructure, HTCondor will reschedule the job, and it will modify the machine ClassAd to prevent any other vm
universe job from matching. vm universe configuration is not slot-specific, so this change is applied to all slots.

When the problem is with the virtual machine infrastructure, these machine ClassAd attributes are changed:

• HasVM will be set to False

• VMOfflineReason will be set to a somewhat explanatory string

• VMOfflineTime will be set to the time of the failure

• OfflineUniverses will be adjusted to include "VM" and 13

Since condor_submit adds HasVM == True to a vm universe job’s requirements, no further vm universe jobs will
match.

Once any problems with the infrastructure are fixed, to change the machine ClassAd attributes such that the machine
will once again match to vm universe jobs, an administrator has three options. All have the same effect of setting the
machine ClassAd attributes to the correct values such that the machine will not reject matches for vm universe jobs.

1. Restart the condor_startd daemon.

482 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

2. Submit a vm universe job that explicitly matches the machine. When the job runs, the code detects the running
job and causes the attributes related to the vm universe to be set indicating that vm universe jobs can match with
this machine.

3. Run the command line tool condor_update_machine_ad to set machine ClassAd attribute HasVM to True, and
this will cause the other attributes related to the vm universe to be set indicating that vm universe jobs can match
with this machine. See the condor_update_machine_ad manual page for examples and details.

4.17.2 The Docker Universe

The execution of a docker universe job causes the instantiation of a Docker container on an execute host.

The docker universe job is mapped to a vanilla universe job, and the submit description file must specify the submit
command docker_image to identify the Docker image. The job’s requirement ClassAd attribute is automatically
appended, such that the job will only match with an execute machine that has Docker installed.

The Docker service must be pre-installed on each execute machine that can execute a docker universe job. Upon start
up of the condor_startd daemon, the capability of the execute machine to run docker universe jobs is probed, and the
machine ClassAd attribute HasDocker is advertised for a machine that is capable of running Docker universe jobs.

When a docker universe job is matched with a Docker-capable execute machine, HTCondor invokes the Docker CLI
to instantiate the image-specific container. The job’s scratch directory tree is mounted as a Docker volume. When the
job completes, is put on hold, or is evicted, the container is removed.

An administrator of a machine can optionally make additional directories on the host machine readable and writable
by a running container. To do this, the admin must first give an HTCondor name to each directory with the
DOCKER_VOLUMES parameter. Then, each volume must be configured with the path on the host OS with the
DOCKER_VOLUME_DIR_XXX parameter. Finally, the parameter DOCKER_MOUNT_VOLUMES tells HTCon-
dor which of these directories to always mount onto containers running on this machine.

For example,

DOCKER_VOLUMES = SOME_DIR, ANOTHER_DIR
DOCKER_VOLUME_DIR_SOME_DIR = /path1
DOCKER_VOLUME_DIR_ANOTHER_DIR = /path/to/no2
DOCKER_MOUNT_VOLUMES = SOME_DIR, ANOTHER_DIR

The condor_startd will advertise which docker volumes it has available for mounting with the machine attributes
HasDockerVolumeSOME_NAME = true so that jobs can match to machines with volumes they need.

Optionally, if the directory name is two directories, separated by a colon, the first directory is the name on the host
machine, and the second is the value inside the container. If a “:ro” is specified after the second directory name, the
volume will be mounted read-only inside the container.

These directories will be bind-mounted unconditionally inside the container. If an administrator wants to
bind mount a directory only for some jobs, perhaps only those submitted by some trusted user, the setting
DOCKER_VOLUME_DIR_xxx_MOUNT_IF may be used. This is a class ad expression, evaluated in the context of the
job ad and the machine ad. Only when it evaluted to TRUE, is the volume mounted. Extending the above example,

DOCKER_VOLUMES = SOME_DIR, ANOTHER_DIR
DOCKER_VOLUME_DIR_SOME_DIR = /path1
DOCKER_VOLUME_DIR_SOME_DIR_MOUNT_IF = WantSomeDirMounted && Owner == "smith"
DOCKER_VOLUME_DIR_ANOTHER_DIR = /path/to/no2
DOCKER_MOUNT_VOLUMES = SOME_DIR, ANOTHER_DIR

4.17. Setting Up the VM and Docker Universes 483

HTCondor Manual, Release 10.0.9

In this case, the directory /path1 will get mounted inside the container only for jobs owned by user “smith”, and who
set +WantSomeDirMounted = true in their submit file.

In addition to installing the Docker service, the single configuration variable DOCKERmust be set. It defines the location
of the Docker CLI and can also specify that the condor_starter daemon has been given a password-less sudo permission
to start the container as root. Details of the DOCKER configuration variable are in the condor_startd Configuration File
Macros section.

Docker must be installed as root by following these steps on an Enterprise Linux machine.

1. Acquire and install the docker-engine community edition by following the installations instructions from
docker.com

2. Set up the groups:

$ usermod -aG docker condor

3. Invoke the docker software:

$ systemctl start docker
$ systemctl enable docker

4. Reconfigure the execute machine, such that it can set the machine ClassAd attribute HasDocker:

$ condor_reconfig

5. Check that the execute machine properly advertises that it is docker-capable with:

$ condor_status -l | grep -i docker

The output of this command line for a correctly-installed and docker-capable execute host will be similar to

HasDocker = true
DockerVersion = "Docker Version 1.6.0, build xxxxx/1.6.0"

By default, HTCondor will keep the 8 most recently used Docker images on the local machine. This number may
be controlled with the configuration variable DOCKER_IMAGE_CACHE_SIZE , to increase or decrease the number of
images, and the corresponding disk space, used by Docker.

By default, Docker containers will be run with all rootly capabilties dropped, and with setuid and setgid binaries
disabled, for security reasons. If you need to run containers with root privilige, you may set the configuration parameter
DOCKER_DROP_ALL_CAPABILITIES to an expression that evalutes to false. This expression is evaluted in the context
of the machine ad (my) and the job ad (target).

Docker support an enormous number of command line options when creating containers. While HTCondor tries
to map as many useful options from submit files and machine descriptions to command line options, an admin-
istrator may want additional options passed to the docker container create command. To do so, the parameter
DOCKER_EXTRA_ARGUMENTS can be set, and condor will append these to the docker container create command.

Docker universe jobs may fail to start on certain Linux machines when SELinux is enabled. The symptom is a permis-
sion denied error when reading or executing from the condor scratch directory. To fix this problem, an administrator
will need to run the following command as root on the execute directories for all the startd machines:

$ chcon -Rt svirt_sandbox_file_t /var/lib/condor/execute

All docker universe jobs can request either host-based networking or no networking at all. The latter might be for
security reasons. If the worker node administrator has defined additional custom docker networks, perhaps a VPN or
other custom type, those networks can be defined for HTCondor jobs to opt into with the docker_network_type submit
command. Simple set

484 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

DOCKER_NETWORKS = some_virtual_network, another_network

And these two networks will be advertised by the startd, and jobs that request these network type will only match to
machines that support it. Note that HTCondor cannot test the validity of these networks, and merely trusts that the
administrator has correctly configured them.

To deal with a potentially user influencing option, there is an optional knob that can be configured to adapt the
--shm-size Docker container create argument taking the machine’s and job’s classAds into account. Exemplary,
setting the /dev/shm size to half the requested memory is achieved by:

DOCKER_SHM_SIZE = Memory * 1024 * 1024 / 2

or, using a user provided value DevShmSize if available and within the requested memory limit:

DOCKER_SHM_SIZE = ifThenElse(DevShmSize isnt Undefined && isInteger(DevShmSize) &&␣
→˓int(DevShmSize) <= (Memory * 1024 * 1024), int(DevShmSize), 2 * 1024 * 1024 * 1024)

Note: Memory is in MB, thus it needs to be scaled to bytes.

4.18 Singularity Support

Singularity (https://sylabs.io/singularity/) is a container runtime system popular in scientific and HPC communities.
HTCondor can run jobs inside Singularity containers either in a transparent way, where the job does not know that it is
being contained, or, the HTCondor administrator can configure the HTCondor startd so that a job can opt into running
inside a container. This allows the operating system that the job sees to be different than the one on the host system,
and provides more isolation between processes running in one job and another.

The decision to run a job inside Singularity ultimately resides on the worker node, although it can delegate that to the
job.

By default, jobs will not be run in Singularity.

For Singularity to work, the administrator must install Singularity on the worker node. The HTCondor startd will detect
this installation at startup. When it detects a useable installation, it will advertise two attributes in the slot ad:

HasSingularity = true
SingularityVersion = "singularity version 3.7.0-1.el7"

HTCondor will run a job under Singularity when the startd configuration knob SINGULARITY_JOB evaluates to true.
This is evaluated in the context of the slot ad and the job ad. If it evaluates to false or undefined, the job will run as
normal, without singularity.

When SINGULARITY_JOB evaluates to true, a second HTCondor knob is required to name the singularity image that
must be run, SINGULARITY_IMAGE_EXPR. This also is evluated in the context of the machine and the job ad, and must
evaluate to a string. This image name is passed to the singularity exec command, and can be any valid value for a
singularity image name. So, it may be a path to file on a local file system that contains an singularity image, in any
format that singularity supports. It may be a string that begins with docker://, and refer to an image located on docker
hub, or other repository. It can begin with http://, and refer to an image to be fetched from an HTTP server. In this
case, singularity will fetch the image into the job’s scratch directory, convert it to a .sif file and run it from there. Note
this may require the job to request more disk space that it otherwise would need. It can be a relative path, in which case
it refers to a file in the scratch directory, so that the image can be transfered by HTCondor’s file transfer mechanism.

Here’s the simplest possible configuration file. It will force all jobs on this machine to run under Singularity, and to
use an image that it located in the filesystem in the path /cvfms/cernvm-prod.cern.ch/cvm3:

4.18. Singularity Support 485

https://sylabs.io/singularity/

HTCondor Manual, Release 10.0.9

Forces _all_ jobs to run inside singularity.
SINGULARITY_JOB = true

Forces all jobs to use the CernVM-based image.
SINGULARITY_IMAGE_EXPR = "/cvmfs/cernvm-prod.cern.ch/cvm3"

Another common configuration is to allow the job to select whether to run under Singularity, and if so, which image to
use. This looks like:

SINGULARITY_JOB = !isUndefined(TARGET.SingularityImage)
SINGULARITY_IMAGE_EXPR = TARGET.SingularityImage

Then, users would add the following to their submit file (note the quoting):

+SingularityImage = "/cvmfs/cernvm-prod.cern.ch/cvm3"

or maybe

+SingularityImage = "docker://ubuntu:20"

By default, singularity will bind mount the scratch directory that contains transfered input files, working files, and
other per-job information into the container, and make this the initial working directory of the job. Thus, file transfer
for singularity jobs works just like with vanilla universe jobs. Any new files the job writes to this directory will be
copied back to the submit node, just like any other sandbox, subject to transfer_output_files, as in vanilla universe.

Assuming singularity is configured on the startd as described above, A complete submit file that uses singularity might
look like

executable = /usr/bin/sleep
arguments = 30
+SingularityImage = "docker://ubuntu"

Requirements = HasSingularity

Request_Disk = 1024
Request_Memory = 1024
Request_cpus = 1

should_transfer_files = yes
tranfer_input_files = some_input
when_to_transfer_output = on_exit

log = log
output = out.$(PROCESS)
error = err.$(PROCESS)

queue 1

HTCondor can also transfer the whole singularity image, just like any other input file, and use that as the container
image. Given a singularity image file in the file named “image” in the submit directory, the submit file would look like:

executable = /usr/bin/sleep
arguments = 30
+SingularityImage = "image"

(continues on next page)

486 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

(continued from previous page)

Requirements = HasSingularity

Request_Disk = 1024
Request_Memory = 1024
Request_cpus = 1

should_transfer_files = yes
tranfer_input_files = image
when_to_transfer_output = on_exit

log = log
output = out.$(PROCESS)
error = err.$(PROCESS)

queue 1

The administrator can optionally specify additional directories to be bind mounted into the container. For ex-
ample, if there is some common shared input data located on a machine, or on a shared filesystem, this direc-
tory can be bind-mounted and be visible inside the container. This is controlled by the configuration parameter
SINGULARITY_BIND_EXPR. This is an expression, which is evaluated in the context of the machine and job ads, and
which should evaluated to a string which contains a space separated list of directories to mount.

So, to always bind mount a directory named /nfs into the image, and administrator could set

SINGULARITY_BIND_EXPR = "/nfs"

Or, if a trusted user is allowed to bind mount anything on the host, an expression could be

SINGULARITY_BIND_EXPR = (Owner == "TrustedUser") ? SomeExpressionFromJob : ""

If the source directory for the bind mount is missing on the host machine, HTCondor will skip that mount and run the
job without it. If the image is an exploded file directory, and the target directory is missing inside the image, and the
configuration parameter SINGULRITY_IGNORE_MISSING_BIND_TARGET is set to true (the default is false), then this
mount attempt will also be skipped. Otherwise, the job will return an error when run.

In general, HTCondor will try to set as many Singularity command line options as possible from settings in the machine
ad and job ad, as make sense. For example, if the slot the job runs in is provisioned with GPUs, perhaps in response to
a request_GPUs line in the submit file, the Singularity flag -nv will be passed to Singularity, which should make the
appropriate nvidia devices visible inside the container. If the submit file requests environment variables to be set for
the job, HTCondor passes those through Singularity into the job.

Before the condor_starter runs a job with singularity, it first runs singularity test on that image. If no test is defined
inside the image, it runs /bin/sh /bin/true. If the test returns non-zero, for example if the image is missing, or
malformed, the job is put on hold. This is controlled by the condor knob SINGULARITY_RUN_TEST_BEFORE_JOB,
which defaults to true.

If an administrator wants to pass additional arguments to the singularity exec command that HTCondor does not cur-
rently support, the parameter SINGULARITY_EXTRA_ARGUMENTS allows arbitraty additional parameters to be passed
to the singularity exec command. Note that this can be a classad expression, evaluated in the context of the job ad and
the machine, so the admin could set different options for different kinds of jobs. For example, to pass the -w argument,
to make the image writeable, an administrator could set

SINGULARITY_EXTRA_ARGUMENTS = "-w"

4.18. Singularity Support 487

HTCondor Manual, Release 10.0.9

There are some rarely-used settings that some administrators may need to set. By default, HTCondor looks for the
Singularity runtime in /usr/bin/singularity, but this can be overridden with the SINGULARITY parameter:

SINGULARITY = /opt/singularity/bin/singularity

By default, the initial working directory of the job will be the scratch directory, just like a vanilla universe job. This
directory probably doesn’t exist in the image’s filesystem. Usually, Singularity will be able to create this directory in
the image, but unprivileged versions of singularity with certain image types may not be able to do so. If this is the case,
the current directory on the inside of the container can be set via a knob. This will still map to the scratch directory
outside the container.

Maps $_CONDOR_SCRATCH_DIR on the host to /srv inside the image.
SINGULARITY_TARGET_DIR = /srv

If SINGULARITY_TARGET_DIR is not specified by the admin, it may be specified in the job submit file via the submit
command container_target_dir. If both are set, the config knob version takes precedence.

When the HTCondor starter runs a job under Singularity, it always prints to the log the exact command line used. This
can be helpful for debugging or for the curious. An example command line printed to the StarterLog might look like
the following:

About to exec /usr/bin/singularity exec -S /tmp -S /var/tmp --pwd /execute/dir_462373 -B␣
→˓/execute/dir_462373 --no-home -C /images/debian /execute/dir_462373/condor_exec.exe 3

In this example, no GPUs have been requested, so there is no -nv option. MOUNT_UNDER_SCRATCH is set to the default
of /tmp,/var/tmp, so condor translates those into -S (scratch directory) requests in the command line. The --pwd
is set to the scratch directory, -B bind mounts the scratch directory with the same name on the inside of the container,
and the -C option is set to contain all namespaces. Then the image is named, and the executable, which in this case
has been transfered by HTCondor into the scratch directory, and the job’s argument (3). Not visible in the log are any
environment variables that HTCondor is setting for the job.

4.19 Power Management

HTCondor supports placing machines in low power states. A machine in the low power state is identified as being
offline. Power setting decisions are based upon HTCondor configuration.

Power conservation is relevant when machines are not in heavy use, or when there are known periods of low activity
within the pool.

4.19.1 Entering a Low Power State

By default, HTCondor does not do power management. When desired, the ability to place a machine into a low power
state is accomplished through configuration. This occurs when all slots on a machine agree that a low power state is
desired.

A slot’s readiness to hibernate is determined by the evaluating the HIBERNATE configuration variable (see the con-
dor_startd Configuration File Macros section) within the context of the slot. Readiness is evaluated at fixed intervals,
as determined by the HIBERNATE_CHECK_INTERVAL configuration variable. A non-zero value of this variable enables
the power management facility. It is an integer value representing seconds, and it need not be a small value. There is a
trade off between the extra time not at a low power state and the unnecessary computation of readiness.

488 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

To put the machine in a low power state rapidly after it has become idle, consider checking each slot’s state frequently,
as in the example configuration:

HIBERNATE_CHECK_INTERVAL = 20

This checks each slot’s readiness every 20 seconds. A more common value for frequency of checks is 300 (5 minutes).
A value of 300 loses some degree of granularity, but it is more reasonable as machines are likely to be put in to a low
power state after a few hours, rather than minutes.

A slot’s readiness or willingness to enter a low power state is determined by the HIBERNATE expression. Because this
expression is evaluated in the context of each slot, and not on the machine as a whole, any one slot can veto a change
of power state. The HIBERNATE expression may reference a wide array of variables. Possibilities include the change in
power state if none of the slots are claimed, or if the slots are not in the Owner state.

Here is a concrete example. Assume that the START expression is not set to always be True. This permits an easy
determination whether or not the machine is in an Unclaimed state through the use of an auxiliary macro called
ShouldHibernate.

TimeToWait = (2 * $(HOUR))
ShouldHibernate = ((KeyboardIdle > $(StartIdleTime)) \

&& $(CPUIdle) \
&& ($(StateTimer) > $(TimeToWait)))

This macro evaluates to True if the following are all True:

• The keyboard has been idle long enough.

• The CPU is idle.

• The slot has been Unclaimed for more than 2 hours.

The sample HIBERNATE expression that enters the power state called “RAM”, if ShouldHibernate evaluates to True,
and remains in its current state otherwise is

HibernateState = "RAM"
HIBERNATE = ifThenElse($(ShouldHibernate), $(HibernateState), "NONE")

If any slot returns “NONE”, that slot vetoes the decision to enter a low power state. Only when values returned by all
slots are all non-zero is there a decision to enter a low power state. If all agree to enter the low power state, but differ
in which state to enter, then the largest magnitude value is chosen.

4.19.2 Returning From a Low Power State

The HTCondor command line tool condor_power may wake a machine from a low power state by sending a UDP Wake
On LAN (WOL) packet. See the condor_power manual page.

To automatically call condor_power under specific conditions, condor_rooster may be used. The configuration options
for condor_rooster are described in the condor_rooster Configuration File Macros section.

4.19. Power Management 489

HTCondor Manual, Release 10.0.9

4.19.3 Keeping a ClassAd for a Hibernating Machine

A pool’s condor_collector daemon can be configured to keep a persistent ClassAd entry for each machine, once it has
entered hibernation. This is required by condor_rooster so that it can evaluate the UNHIBERNATE expression of the
offline machines.

To do this, define a log file using the OFFLINE_LOG configuration variable. See the condor_startd Configura-
tion File Macros section for the definition. An optional expiration time for each ClassAd can be specified with
OFFLINE_EXPIRE_ADS_AFTER . The timing begins from the time the hibernating machine’s ClassAd enters the con-
dor_collector daemon. See the condor_startd Configuration File Macros section for the definition.

4.19.4 Linux Platform Details

Depending on the Linux distribution and version, there are three methods for controlling a machine’s power state. The
methods:

1. pm-utils is a set of command line tools which can be used to detect and switch power states. In HTCondor, this
is defined by the string “pm-utils”.

2. The directory in the virtual file system /sys/power contains virtual files that can be used to detect and set the
power states. In HTCondor, this is defined by the string “/sys”.

3. The directory in the virtual file system /proc/acpi contains virtual files that can be used to detect and set the
power states. In HTCondor, this is defined by the string “/proc”.

By default, the HTCondor attempts to detect the method to use in the order shown. The first method detected as usable
on the system is chosen.

This ordered detection may be bypassed, to use a specified method instead by setting the configuration variable
LINUX_HIBERNATION_METHODwith one of the defined strings. This variable is defined in the condor_startd Configura-
tion File Macros section. If no usable methods are detected or the method specified by LINUX_HIBERNATION_METHOD
is either not detected or invalid, hibernation is disabled.

The details of this selection process, and the final method selected can be logged via enabling D_FULLDEBUG in the
relevant subsystem’s log configuration.

4.19.5 Windows Platform Details

If after a suitable amount of time, a Windows machine has not entered the expected power state, then HTCondor is
having difficulty exercising the operating system’s low power capabilities. While the cause will be specific to the
machine’s hardware, it may also be due to improperly configured software. For hardware difficulties, the likely culprit
is the configuration within the machine’s BIOS, for which HTCondor can offer little guidance. For operating system
difficulties, the powercfg tool can be used to discover the available power states on the machine. The following command
demonstrates how to list all of the supported power states of the machine:

> powercfg -A
The following sleep states are available on this system:
Standby (S3) Hibernate Hybrid Sleep
The following sleep states are not available on this system:
Standby (S1)

The system firmware does not support this standby state.
(continues on next page)

490 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

(continued from previous page)

Standby (S2)
The system firmware does not support this standby state.

Note that the HIBERNATE expression is written in terms of the Sn state, where n is the value evaluated from the expres-
sion.

This tool can also be used to enable and disable other sleep states. This example turns hibernation on.

> powercfg -h on

If this tool is insufficient for configuring the machine in the manner required, the Power Options control panel appli-
cation offers the full extent of the machine’s power management abilities. Windows 2000 and XP lack the powercfg
program, so all configuration must be done via the Power Options control panel application.

4.20 Windows Installer

This section includes detailed information about the options offered by the Windows Installer, including how to run it
unattended for automated installations. If you’re not an experienced user, you may wish to follow the quick start guide’s
instructions instead.

4.20.1 Detailed Installation Instructions Using the MSI Program

This section describes the different HTCondor Installer options in greater detail.

STEP 1: License Agreement. The first step in installing HTCondor is a welcome screen and license agreement. You
are reminded that it is best to run the installation when no other Windows programs are running. If you need to
close other Windows programs, it is safe to cancel the installation and close them. You are asked to agree to the
license. Answer yes or no. If you should disagree with the License, the installation will not continue.

Also fill in name and company information, or use the defaults as given.

STEP 2: HTCondor Pool Configuration. The HTCondor configuration needs to be set based upon if this is a new
pool or to join an existing one. Choose the appropriate radio button.

For a new pool, enter a chosen name for the pool. To join an existing pool, enter the host name of the central
manager of the pool.

STEP 3: This Machine’s Roles. Each machine within an HTCondor pool can either submit jobs or execute submitted
jobs, or both submit and execute jobs. A check box determines if this machine will be a submit point for the pool.

A set of radio buttons determines the ability and configuration of the ability to execute jobs. There are four
choices:

• Do not run jobs on this machine. This machine will not execute HTCondor jobs.

• Always run jobs and never suspend them.

• Run jobs when the keyboard has been idle for 15 minutes.

• Run jobs when the keyboard has been idle for 15 minutes, and the CPU is idle.

If you are setting up HTCondor as a single installation for testing, make sure you check the box to make the
machine a submit point, and also choose the second option from the list above.

For a machine that is to execute jobs and the choice is one of the last two in the list, HTCondor needs to further
know what to do with the currently running jobs. There are two choices:

4.20. Windows Installer 491

HTCondor Manual, Release 10.0.9

• Keep the job in memory and continue when the machine meets the condition chosen for when to run jobs.

• Restart the job on a different machine.

This choice involves a trade off. Restarting the job on a different machine is less intrusive on the workstation
owner than leaving the job in memory for a later time. A suspended job left in memory will require swap space,
which could be a scarce resource. Leaving a job in memory, however, has the benefit that accumulated run time
is not lost for a partially completed job.

STEP 4: The Account Domain. Enter the machine’s accounting (or UID) domain. On this version of HTCondor for
Windows, this setting is only used for user priorities (see the User Priorities and Negotiation section) and to
form a default e-mail address for the user.

STEP 5: E-mail Settings. Various parts of HTCondor will send e-mail to an HTCondor administrator if something
goes wrong and requires human attention. Specify the e-mail address and the SMTP relay host of this adminis-
trator. Please pay close attention to this e-mail, since it will indicate problems in the HTCondor pool.

STEP 6: Java Settings. In order to run jobs in the java universe, HTCondor must have the path to the jvm executable
on the machine. The installer will search for and list the jvm path, if it finds one. If not, enter the path. To disable
use of the java universe, leave the field blank.

STEP 7: Host Permission Settings. Machines within the HTCondor pool will need various types of access permis-
sion. The three categories of permission are read, write, and administrator. Enter the machines or domain to be
given access permissions, or use the defaults provided. Wild cards and macros are permitted.

Read Read access allows a machine to obtain information about HTCondor such as the status of
machines in the pool and the job queues. All machines in the pool should be given read access. In
addition, giving read access to *.cs.wisc.edu will allow the HTCondor team to obtain information
about the HTCondor pool, in the event that debugging is needed.

Write All machines in the pool should be given write access. It allows the machines you specify to
send information to your local HTCondor daemons, for example, to start an HTCondor job. Note
that for a machine to join the HTCondor pool, it must have both read and write access to all of
the machines in the pool.

Administrator A machine with administrator access will be allowed more extended permission to
do things such as change other user’s priorities, modify the job queue, turn HTCondor services
on and off, and restart HTCondor. The central manager should be given administrator access and
is the default listed. This setting is granted to the entire machine, so care should be taken not to
make this too open.

For more details on these access permissions, and others that can be manually changed in your configuration file,
please see the section titled Setting Up Security in HTCondor in the Authorization section.

STEP 8: VM Universe Setting. A radio button determines whether this machine will be configured to run vm uni-
verse jobs utilizing VMware. In addition to having the VMware Server installed, HTCondor also needs Perl
installed. The resources available for vm universe jobs can be tuned with these settings, or the defaults listed can
be used.

Version Use the default value, as only one version is currently supported.

Maximum Memory The maximum memory that each virtual machine is permitted to use on the target machine.

Maximum Number of VMs The number of virtual machines that can be run in parallel on the target machine.

Networking Support The VMware instances can be configured to use network support. There are four options
in the pull-down menu.

• None: No networking support.

• NAT: Network address translation.

• Bridged: Bridged mode.

492 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

• NAT and Bridged: Allow both methods.

Path to Perl Executable The path to the Perl executable.

STEP 9: Choose Setup Type

The next step is where the destination of the HTCondor files will be decided. We recommend that HTCondor
be installed in the location shown as the default in the install choice: C:\Condor. This is due to several hard
coded paths in scripts and configuration files. Clicking on the Custom choice permits changing the installation
directory.

Installation on the local disk is chosen for several reasons. The HTCondor services run as local system, and within
Microsoft Windows, local system has no network privileges. Therefore, for HTCondor to operate, HTCondor
should be installed on a local hard drive, as opposed to a network drive (file server).

The second reason for installation on the local disk is that the Windows usage of drive letters has implications
for where HTCondor is placed. The drive letter used must be not change, even when different users are logged
in. Local drive letters do not change under normal operation of Windows.

While it is strongly discouraged, it may be possible to place HTCondor on a hard drive that is not local, if a
dependency is added to the service control manager such that HTCondor starts after the required file services are
available.

4.20.2 Unattended Installation Procedure Using the MSI Installer

This section details how to run the HTCondor for Windows installer in an unattended batch mode. This mode is one
that occurs completely from the command prompt, without the GUI interface.

The HTCondor for Windows installer uses the Microsoft Installer (MSI) technology, and it can be configured for unat-
tended installs analogous to any other ordinary MSI installer.

The following is a sample batch file that is used to set all the properties necessary for an unattended install.

@echo on
set ARGS=
set ARGS=NEWPOOL="N"
set ARGS=%ARGS% POOLNAME=""
set ARGS=%ARGS% RUNJOBS="C"
set ARGS=%ARGS% VACATEJOBS="Y"
set ARGS=%ARGS% SUBMITJOBS="Y"
set ARGS=%ARGS% CONDOREMAIL="you@yours.com"
set ARGS=%ARGS% SMTPSERVER="smtp.localhost"
set ARGS=%ARGS% ALLOWREAD="*"
set ARGS=%ARGS% ALLOWWRITE="*"
set ARGS=%ARGS% ALLOWADMINISTRATOR="$(IP_ADDRESS)"
set ARGS=%ARGS% INSTALLDIR="C:\Condor"
set ARGS=%ARGS% POOLHOSTNAME="$(IP_ADDRESS)"
set ARGS=%ARGS% ACCOUNTINGDOMAIN="none"
set ARGS=%ARGS% JVMLOCATION="C:\Windows\system32\java.exe"
set ARGS=%ARGS% USEVMUNIVERSE="N"
set ARGS=%ARGS% VMMEMORY="128"
set ARGS=%ARGS% VMMAXNUMBER="$(NUM_CPUS)"
set ARGS=%ARGS% VMNETWORKING="N"
REM set ARGS=%ARGS% LOCALCONFIG="http://my.example.com/condor_config.$(FULL_HOSTNAME)"

(continues on next page)

4.20. Windows Installer 493

HTCondor Manual, Release 10.0.9

(continued from previous page)

msiexec /qb /l* condor-install-log.txt /i condor-8.0.0-133173-Windows-x86.msi %ARGS%

Each property corresponds to answers that would have been supplied while running the interactive installer. The
following is a brief explanation of each property as it applies to unattended installations; see the above explanations for
more detail.

NEWPOOL = < Y | N > determines whether the installer will create a new pool with the target machine
as the central manager.

POOLNAME sets the name of the pool, if a new pool is to be created. Possible values are either the
name or the empty string “”.

RUNJOBS = < N | A | I | C > determines when HTCondor will run jobs. This can be set to:

• Never run jobs (N)

• Always run jobs (A)

• Only run jobs when the keyboard and mouse are Idle (I)

• Only run jobs when the keyboard and mouse are idle and the CPU usage is low (C)

VACATEJOBS = < Y | N > determines what HTCondor should do when it has to stop the execution of a
user job. When set to Y, HTCondor will vacate the job and start it somewhere else if possible. When
set to N, HTCondor will merely suspend the job in memory and wait for the machine to become
available again.

SUBMITJOBS = < Y | N > will cause the installer to configure the machine as a submit node when set
to Y.

CONDOREMAIL sets the e-mail address of the HTCondor administrator. Possible values are an e-mail
address or the empty string “”.

ALLOWREAD is a list of names that are allowed to issue READ commands to HTCondor daemons.
This value should be set in accordance with the ALLOW_READ setting in the configuration file, as
described in the Authorization section.

ALLOWWRITE is a list of names that are allowed to issue WRITE commands to HTCondor daemons.
This value should be set in accordance with the ALLOW_WRITE setting in the configuration file, as
described in the Authorization section.

ALLOWADMINISTRATOR is a list of names that are allowed to issue ADMINISTRATOR commands
to HTCondor daemons. This value should be set in accordance with the ALLOW_ADMINISTRATOR
setting in the configuration file, as described in the Authorization section.

INSTALLDIR defines the path to the directory where HTCondor will be installed.

POOLHOSTNAME defines the host name of the pool’s central manager.

ACCOUNTINGDOMAIN defines the accounting (or UID) domain the target machine will be in.

JVMLOCATION defines the path to Java virtual machine on the target machine.

SMTPSERVER defines the host name of the SMTP server that the target machine is to use to send e-mail.

VMMEMORY an integer value that defines the maximum memory each VM run on the target machine.

VMMAXNUMBER an integer value that defines the number of VMs that can be run in parallel on the
target machine.

VMNETWORKING = < N | A | B | C > determines if VM Universe can use networking. This can be
set to:

494 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

• None (N)

• NAT (A)

• Bridged (B)

• NAT and Bridged (C)

USEVMUNIVERSE = < Y | N > will cause the installer to enable VM Universe jobs on the target ma-
chine.

LOCALCONFIG defines the location of the local configuration file. The value can be the path to a file
on the local machine, or it can be a URL beginning with http. If the value is a URL, then the
condor_urlfetch tool is invoked to fetch configuration whenever the configuration is read.

PERLLOCATION defines the path to Perl on the target machine. This is required in order to use the vm
universe.

After defining each of these properties for the MSI installer, the installer can be started with the msiexec command.
The following command starts the installer in unattended mode, and it dumps a journal of the installer’s progress to a
log file:

> msiexec /qb /lxv* condor-install-log.txt /i condor-8.0.0-173133-Windows-x86.msi␣
→˓[property=value] ...

More information on the features of msiexec can be found at Microsoft’s website at http://www.microsoft.com/
resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx.

Manual Installation of HTCondor on Windows

If you are to install HTCondor on many different machines, you may wish to use some other mechanism to install
HTCondor on additional machines rather than running the Setup program described above on each machine.

WARNING: This is for advanced users only! All others should use the Setup program described above.

Here is a brief overview of how to install HTCondor manually without using the provided GUI-based setup program:

The Service The service that HTCondor will install is called “Condor”. The Startup Type is Automatic.
The service should log on as System Account, but do not enable “Allow Service to Interact with
Desktop”. The program that is run is condor_master.exe.

The HTCondor service can be installed and removed using the sc.exe tool, which is included in
Windows XP and Windows 2003 Server. The tool is also available as part of the Windows 2000
Resource Kit.

Installation can be done as follows:

> sc create Condor binpath= c:\condor\bin\condor_master.exe

To remove the service, use:

> sc delete Condor

The Registry HTCondor uses a few registry entries in its operation. The key that HTCondor uses is
HKEY_LOCAL_MACHINE/Software/Condor. The values that HTCondor puts in this registry key
serve two purposes.

4.20. Windows Installer 495

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx

HTCondor Manual, Release 10.0.9

1. The values of CONDOR_CONFIG and RELEASE_DIR are used for HTCondor to start its ser-
vice.

CONDOR_CONFIG should point to the condor_config file. In this version of HTCondor, it
must reside on the local disk.

RELEASE_DIR should point to the directory where HTCondor is installed. This is typically
C:\Condor, and again, this must reside on the local disk.

2. The other purpose is storing the entries from the last installation so that they can be used for the
next one.

The File System The files that are needed for HTCondor to operate are identical to the Unix version of
HTCondor, except that executable files end in .exe. For example the on Unix one of the files is
condor_master and on HTCondor the corresponding file is condor_master.exe.

These files currently must reside on the local disk for a variety of reasons. Advanced Windows users
might be able to put the files on remote resources. The main concern is twofold. First, the files must
be there when the service is started. Second, the files must always be in the same spot (including
drive letter), no matter who is logged into the machine.

Note also that when installing manually, you will need to create the directories that HTCondor will
expect to be present given your configuration. This normally is simply a matter of creating the log,
spool, and execute directories. Do not stage other files in any of these directories; any files not
created by HTCondor in these directories are subject to removal.

For any installation, HTCondor services are installed and run as the Local System account. Running the HTCondor
services as any other account (such as a domain user) is not supported and could be problematic.

4.21 Directories

HTCondor uses a few different directories, some of which are role-specific. Do not use these directories for any other
purpose, and do not share these directories between machines. The directories are listed in here by the name of the
configuration option used to tell HTCondor where they are; you will not normally need to change these.

4.21.1 Directories used by More than One Role

LOG Each HTCondor daemon writes its own log file, and each log file is placed in the directory. You can
configure the name of each daemon’s log by setting , although you should never need to do so. You
can also control the sizes of the log files or how often they rotate; see Daemon Logging Configuration
File Entries for details. If you want to write your logs to a shared filesytem, we recommend including
$(HOSTNAME) in the value of LOG rather than changing the names of each individual log to not collide.
If you set LOG to a shared filesystem, you should set LOCK to a local filesystem; see below.

LOCK HTCondor uses a small number of lock files to synchronize access to certain files that are shared
between multiple daemons. Because of problems encountered with file locking and network file
systems (particularly NFS), these lock files should be placed on a local filesystem on each machine.
By default, they are placed in the LOG directory.

496 Chapter 4. Administrators’ Manual

HTCondor Manual, Release 10.0.9

4.21.2 Directories use by the Submit Role

SPOOL The directory holds two types of files: system data and (user) job data. The former includes the
job queue and history files. The latter includes:

• the files transferred, if any, when a job which set when_to_transfer_files to
EXIT_OR_EVICT is evicted.

• the input and output files of remotely-submitted jobs.

• the checkpoint files stored by self-checkpointing jobs.

Disk usage therefore varies widely based on the job mix, but since the schedd will abort if it can’t
append to the job queue log, you want to make sure this directory is on a partition which won’t run
out of space.

To help ensure this, you may set to separate the job queue log (system data) from the (user) job
data. This can also be used to increase performance (or reliability) by moving the job queue log to
specialized hardware (an SSD or a a high-redudancy RAID, for example).

4.21.3 Directories use by the Execute Role

EXECUTE The directory is the parent directory of the current working directory for any HTCondor job
that runs on a given execute-role machine. HTCondor copies the executable and input files for a job
to its subdirectory; the job’s standard output and standard error streams are also logged here. Jobs
will also almost always generate their output here as well, so the EXECUTE directory should provide a
plenty of space. EXECUTE should not be placed under /tmp or /var/tmp if possible, as HTCondor loses
the ability to make /tmp and /var/tmp private to the job. While not a requirement, ideally EXECUTE
should be on a distinct filesytem, so that it is impossible for a rogue job to fill up non-HTCondor
related partitions.

Usually, the per-job scratch execute directory is created by the startd as a directory under EXECUTE.
However, on Linux machines where HTCondor has root privilege, it can be configured to make an
ephemeral, per-job scratch filesystem backed either by LVM, if it is configured, or a large existing
file on the filesystem.

There are several advantages to this approach. The first is that disk space is more accurately measured
and enforced. HTCondor can get the disk usage by a single system call, instead of traversing what
might be a very deep directory hierachy. There may also be performance benefits, as this filesystem
never needs to survive a reboot, and is thus mounted with mount options that provide the least amount
of disk consistence in the face of a reboot. Also, when the job exits, all the files in the fileystem can
be removed by simply unmounting and destroying the filesystem, which is much faster than having
condor remove each scratch file in turn.

To enable this, first set to true. Then, if LVM is installed and configured, set to the name of a logical
volume. "condor_lv" might be a good choice. Finally, set to the name of the volume group the
LVM administrator has created for this purpose. "condor_vg" might be a good name. If there is
no LVM on the system, a single large existing file can be used as the backing store, in which case
the knob should be set to the name of the existing large file on disk that HTCondor will use to make
filesystems from.

Warning: The per job filesystem feature is a work in progress and not currently supported.

4.21. Directories 497

HTCondor Manual, Release 10.0.9

498 Chapter 4. Administrators’ Manual

CHAPTER

FIVE

CLASSADS

This chapter presents HTCondor’s ClassAd mechanism in three parts.

The first part may be of interest to advanced job submitters as well as HTCondor administrators: it describes how to
write ClassAds and ClassAd expressions, including details of the ClassAd language syntax, evaluation semantics, and
its built-in functions.

The second part is likely only of interest to HTCondor administrators: it describes the generic mechanism provided by
HTCondor to transform ClassAds, as used in the schedd and the job routers, and as available via a command-line tool.

The third part describes how to format ClassAds for printing from command-line tools like condor_q, condor_history,
and condor_status. Advanced users may specify their own custom formats, or adminstrators may set custom defaults.

5.1 HTCondor’s ClassAd Mechanism

ClassAds are a flexible mechanism for representing the characteristics and constraints of machines and jobs in the
HTCondor system. ClassAds are used extensively in the HTCondor system to represent jobs, resources, submitters
and other HTCondor daemons. An understanding of this mechanism is required to harness the full flexibility of the
HTCondor system.

A ClassAd is a set of uniquely named expressions. Each named expression is called an attribute. The following shows
ten attributes, a portion of an example ClassAd.

MyType = "Machine"
TargetType = "Job"
Machine = "froth.cs.wisc.edu"
Arch = "INTEL"
OpSys = "LINUX"
Disk = 35882
Memory = 128
KeyboardIdle = 173
LoadAvg = 0.1000
Requirements = TARGET.Owner=="smith" || LoadAvg<=0.3 && KeyboardIdle>15*60

ClassAd expressions look very much like expressions in C, and are composed of literals and attribute references com-
posed with operators and functions. The difference between ClassAd expressions and C expressions arise from the fact
that ClassAd expressions operate in a much more dynamic environment. For example, an expression from a machine’s
ClassAd may refer to an attribute in a job’s ClassAd, such as TARGET.Owner in the above example. The value and
type of the attribute is not known until the expression is evaluated in an environment which pairs a specific job ClassAd
with the machine ClassAd.

499

HTCondor Manual, Release 10.0.9

ClassAd expressions handle these uncertainties by defining all operators to be total operators, which means that they
have well defined behavior regardless of supplied operands. This functionality is provided through two distinguished
values, UNDEFINED and ERROR, and defining all operators so that they can operate on all possible values in the ClassAd
system. For example, the multiplication operator which usually only operates on numbers, has a well defined behavior
if supplied with values which are not meaningful to multiply. Thus, the expression 10 * “A string” evaluates to the
value ERROR. Most operators are strict with respect to ERROR, which means that they evaluate to ERROR if any of their
operands are ERROR. Similarly, most operators are strict with respect to UNDEFINED.

5.1.1 ClassAds: Old and New

ClassAds have existed for quite some time in two forms: Old and New. Old ClassAds were the original form and were
used in HTCondor until HTCondor version 7.5.0. They were heavily tied to the HTCondor development libraries. New
ClassAds added new features and were designed as a stand-alone library that could be used apart from HTCondor.

In HTCondor version 7.5.1, HTCondor switched to using the New ClassAd library for all use of ClassAds within
HTCondor. The library is placed into a compatibility mode so that HTCondor 7.5.1 is still able to exchange ClassAds
with older versions of HTCondor.

All user interaction with tools (such as condor_q) as well as output of tools is still compatible with Old ClassAds.
Before HTCondor version 7.5.1, New ClassAds were used only in the Job Router. There are some syntax and behavior
differences between Old and New ClassAds, all of which should remain invisible to users of HTCondor.

A complete description of New ClassAds can be found at http://htcondor.org/classad/classad.html, and in the ClassAd
Language Reference Manual found on that web page.

Some of the features of New ClassAds that are not in Old ClassAds are lists, nested ClassAds, time values, and matching
groups of ClassAds. HTCondor has avoided using these features, as using them makes it difficult to interact with older
versions of HTCondor. But, users can start using them if they do not need to interact with versions of HTCondor older
than 7.5.1.

The syntax varies slightly between Old and New ClassAds. Here is an example ClassAd presented in both forms. The
Old form:

Foo = 3
Bar = "ab\"cd\ef"
Moo = Foo =!= Undefined

The New form:

[
Foo = 3;
Bar = "ab\"cd\\ef";
Moo = Foo isnt Undefined;
]

HTCondor will convert to and from Old ClassAd syntax as needed.

500 Chapter 5. ClassAds

http://htcondor.org/classad/classad.html

HTCondor Manual, Release 10.0.9

New ClassAd Attribute References

Expressions often refer to ClassAd attributes. These attribute references work differently in Old ClassAds as compared
with New ClassAds. In New ClassAds, an unscoped reference is looked for only in the local ClassAd. An unscoped
reference is an attribute that does not have a MY. or TARGET. prefix. The local ClassAd may be described by an example.
Matchmaking uses two ClassAds: the job ClassAd and the machine ClassAd. The job ClassAd is evaluated to see if it
is a match for the machine ClassAd. The job ClassAd is the local ClassAd. Therefore, in the Requirements attribute
of the job ClassAd, any attribute without the prefix TARGET. is looked up only in the job ClassAd. With New ClassAd
evaluation, the use of the prefix MY. is eliminated, as an unscoped reference can only refer to the local ClassAd.

The MY. and TARGET. scoping prefixes only apply when evaluating an expression within the context of two ClassAds.
Two examples that exemplify this are matchmaking and machine policy evaluation. When evaluating an expression
within the context of a single ClassAd, MY. and TARGET. are not defined. Using them within the context of a single
ClassAd will result in a value of Undefined. Two examples that exemplify evaluating an expression within the context
of a single ClassAd are during user job policy evaluation, and with the -constraint option to command-line tools.

New ClassAds have no CurrentTime attribute. If needed, use the time() function instead. In order to mimic Old
ClassAd semantics in current versions of HTCondor, all ClassAds have an implicit CurrentTime attribute, with a
value of time().

In current versions of HTCondor, New ClassAds will mimic the evaluation behavior of Old ClassAds. No configuration
variables or submit description file contents should need to be changed. To eliminate this behavior and use only the
semantics of New ClassAds, set the configuration variable STRICT_CLASSAD_EVALUATION to True. This permits
testing expressions to see if any adjustment is required, before a future version of HTCondor potentially makes New
ClassAds evaluation behavior the default or the only option.

5.1.2 ClassAd Syntax

ClassAd expressions are formed by composing literals, attribute references and other sub-expressions with operators
and functions.

Composing Literals

Literals in the ClassAd language may be of integer, real, string, undefined or error types. The syntax of these literals is
as follows:

Integer A sequence of continuous digits (i.e., [0-9]). Additionally, the keywords TRUE and FALSE (case
insensitive) are syntactic representations of the integers 1 and 0 respectively.

Real Two sequences of continuous digits separated by a period (i.e., [0-9]+.[0-9]+).

String A double quote character, followed by a list of characters terminated by a double quote character.
A backslash character inside the string causes the following character to be considered as part of the
string, irrespective of what that character is.

Undefined The keyword UNDEFINED (case insensitive) represents the UNDEFINED value.

Error The keyword ERROR (case insensitive) represents the ERROR value.

5.1. HTCondor’s ClassAd Mechanism 501

HTCondor Manual, Release 10.0.9

Attributes

Every expression in a ClassAd is named by an attribute name. Together, the (name,expression) pair is called an attribute.
An attribute may be referred to in other expressions through its attribute name.

Attribute names are sequences of alphabetic characters, digits and underscores, and may not begin with a digit. All
characters in the name are significant, but case is not significant. Thus, Memory, memory and MeMoRy all refer to the
same attribute.

An attribute reference consists of the name of the attribute being referenced, and an optional scope resolution prefix.
The prefixes that may be used are MY. and TARGET.. The case used for these prefixes is not significant. The semantics
of supplying a prefix are discussed in ClassAd Evaluation Semantics.

Expression Operators

The operators that may be used in ClassAd expressions are similar to those available in C. The available operators and
their relative precedence is shown in the following example:

- (unary negation) (high precedence)
* /
+ - (addition, subtraction)
< <= >= >
== != =?= is =!= isnt
&&
|| (low precedence)

The operator with the highest precedence is the unary minus operator. The only operators which are unfamiliar are the
=?=, is, =!= and isnt operators, which are discussed in ClassAd Evaluation Semantics.

Predefined Functions

Any ClassAd expression may utilize predefined functions. Function names are case insensitive. Parameters to functions
and a return value from a function may be typed (as given) or not. Nested or recursive function calls are allowed.

Here are descriptions of each of these predefined functions. The possible types are the same as itemized in ClassAd
Syntax. Where the type may be any of these literal types, it is called out as AnyType. Where the type is Integer, but
only returns the value 1 or 0 (implying True or False), it is called out as Boolean. The format of each function is
given as

ReturnType FunctionName(ParameterType parameter1, ParameterType parameter2, ...)

Optional parameters are given within square brackets.

AnyType eval(AnyType Expr) Evaluates Expr as a string and then returns the result of evaluating the contents of
the string as a ClassAd expression. This is useful when referring to an attribute such as slotX_State where X,
the desired slot number is an expression, such as SlotID+10. In such a case, if attribute SlotID is 5, the value
of the attribute slot15_State can be referenced using the expression eval(strcat("slot", SlotID+10,
"_State")). Function strcat() calls function string() on the second parameter, which evaluates the expres-
sion, and then converts the integer result 15 to the string "15". The concatenated string returned by strcat() is
"slot15_State", and this string is then evaluated.

502 Chapter 5. ClassAds

HTCondor Manual, Release 10.0.9

Note that referring to attributes of a job from within the string passed to eval() in the Requirements or Rank
expressions could cause inaccuracies in HTCondor’s automatic auto-clustering of jobs into equivalent groups for
matchmaking purposes. This is because HTCondor needs to determine which ClassAd attributes are significant
for matchmaking purposes, and indirect references from within the string passed to eval() will not be counted.

String unparse(Attribute attr) This function looks up the value of the provided attribute and returns the un-
parsed version as a string. The attribute’s value is not evaluated. If the attribute’s value is x + 3, then the
function would return the string "x + 3". If the provided attribute cannot be found, an empty string is returned.

This function returns ERROR if other than exactly 1 argument is given or the argument is not an attribute reference.

String unresolved(Attribute attr) This function returns the external attribute references and unresolved at-
tribute references of the expression that is the value of the provided attribute. If the provided attribute cannot be
found, then undefined is returned.

For example, in a typical job ClassAd if the Requirements expression has the value OpSys == "LINUX"
&& TARGET.Arch == "ARM" && Cpus >= RequestCpus, then unresolved(Requirements) will return
"Arch,Cpus,OpSys" because those will not be attributes of the job ClassAd.

Boolean unresolved(Attribute attr, String pattern) This function returns True when at least one of the
external or unresolved attribute references of the expression that is the value of the provided attribute matches
the given Perl regular expression pattern. If none of the references match the pattern, then False is returned. If
the provided attribute cannot be found, then undefined is returned.

For example, in a typical job ClassAd if the Requirements expression has the value OpSys ==
"LINUX" && Arch == "ARM", then unresolved(Requirements, "^OpSys") will return True, and
unresolved(Requirements, "OpSys.+") will return False.

The intended use of this function is to make it easier to apply a submit transform to a job only when the job does
not already reference a certain attribute. For instance

JOB_TRANSFORM_DefPlatform @=end
Apply this transform only when the job requirements does not reference OpSysAndver␣

→˓or OpSysName
REQUIREMENTS ! unresolved(Requirements, "OpSys.+")
Add a clause to the job requirements to match only CentOs7 machines
SET Requirements $(MY.Requirements) && OpSysAndVer == "CentOS7"

@end

AnyType ifThenElse(AnyType IfExpr,AnyType ThenExpr, AnyType ElseExpr) A conditional expression
is described by IfExpr. The following defines return values, when IfExpr evaluates to

• True. Evaluate and return the value as given by ThenExpr.

• False. Evaluate and return the value as given by ElseExpr.

• UNDEFINED. Return the value UNDEFINED.

• ERROR. Return the value ERROR.

• 0.0. Evaluate, and return the value as given by ElseExpr.

• non-0.0 Real values. Evaluate, and return the value as given by ThenExpr.

Where IfExpr evaluates to give a value of type String, the function returns the value ERROR. The implemen-
tation uses lazy evaluation, so expressions are only evaluated as defined.

This function returns ERROR if other than exactly 3 arguments are given.

Boolean isUndefined(AnyType Expr) Returns True, if Expr evaluates to UNDEFINED. Returns False in all other
cases.

5.1. HTCondor’s ClassAd Mechanism 503

HTCondor Manual, Release 10.0.9

This function returns ERROR if other than exactly 1 argument is given.

Boolean isError(AnyType Expr) Returns True, if Expr evaluates to ERROR. Returns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isString(AnyType Expr) Returns True, if the evaluation of Expr gives a value of type String. Returns
False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isInteger(AnyType Expr) Returns True, if the evaluation of Expr gives a value of type Integer. Re-
turns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isReal(AnyType Expr) Returns True, if the evaluation of Expr gives a value of type Real. Returns
False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isList(AnyType Expr) Returns True, if the evaluation of Expr gives a value of type List. Returns
False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isClassAd(AnyType Expr) Returns True, if the evaluation of Expr gives a value of type ClassAd. Re-
turns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isBoolean(AnyType Expr) Returns True, if the evaluation of Expr gives the integer value 0 or 1. Re-
turns False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isAbstime(AnyType Expr) Returns True, if the evaluation of Expr returns an abstime type. Returns
False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean isReltime(AnyType Expr) Returns True, if the evaluation of Expr returns an relative time type. Returns
False in all other cases.

This function returns ERROR if other than exactly 1 argument is given.

Boolean member(AnyType m, ListType l) Returns error if m does not evalute to a scalar, or l does not evaluate
to a list. Otherwise the elements of l are evaluted in order, and if an element is equal to m in the sense of == the
result of the function is True. Otherwise the function returns false.

Boolean anyCompare(string op, list l, AnyType t) Returns error if op does not evalute to one of <, <=,
==, >, >=, !-, is or isnt. Returns error if l isn’t a list, or t isn’t a scalar Otherwise the elements of l are evaluted
and compared to t using the corresponding operator defined by op. If any of the members of l evaluate to true,
the result is True. Otherwise the function returns False.

Boolean allCompare(string op, list l, AnyType t) Returns error if op does not evalute to one of <, <=,
==, >, >=, !-, is or isnt. Returns error if l isn’t a list, or t isn’t a scalar Otherwise the elements of l are evaluted
and compared to t using the corresponding operator defined by op. If all of the members of l evaluate to true, the
result is True. Otherwise the function returns False.

504 Chapter 5. ClassAds

HTCondor Manual, Release 10.0.9

Boolean IdenticalMember(AnyType m, ListType l) Returns error if m does not evalute to a scalar, or l does
not evaluate to a list. Otherwise the elements of l are evaluted in order, and if an element is equal to m in the
sense of =?= the result of the function is True. Otherwise the function returns false.

Integer int(AnyType Expr) Returns the integer value as defined by Expr. Where the type of the evaluated Expr
is Real, the value is truncated (round towards zero) to an integer. Where the type of the evaluated Expr is
String, the string is converted to an integer using a C-like atoi() function. When this result is not an integer,
ERROR is returned. Where the evaluated Expr is ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Real real(AnyType Expr) Returns the real value as defined by Expr. Where the type of the evaluated Expr is
Integer, the return value is the converted integer. Where the type of the evaluated Expr is String, the string is
converted to a real value using a C-like atof() function. When this result is not a real, ERROR is returned. Where
the evaluated Expr is ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

String string(AnyType Expr) Returns the string that results from the evaluation of Expr. Converts a non-string
value to a string. Where the evaluated Expr is ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Bool bool(AnyType Expr) Returns the boolean that results from the evaluation of Expr. Converts a non-boolean
value to a bool. A string expression that evaluates to the string “true” yields true, and “false” returns

This function returns ERROR if other than exactly 1 argument is given.

AbsTime absTime(AnyType t [, int z]) Creates an AbsTime value corresponding to time t an time-zone offset
z. If t is a String, then z must be omitted, and t is parsed as a specification as follows.

The operand t is parsed as a specification of an instant in time (date and time). This function accepts the canonical
native representation of AbsTime values, but minor variations in format are allowed. The default format is yyyy-
mm-ddThh:mm:sszzzzz where zzzzz is a time zone in the format +hh:mm or -hh:mm

If t and z are both omitted, the result is an AbsTime value representing the time and place where the function
call is evaluated. Otherwise, t is converted to a Real by the function “real”, and treated as a number of seconds
from the epoch, Midnight January 1, 1970 UTC. If z is specified, it is treated as a number of seconds east of
Greenwich. Otherwise, the offset is calculated from t according to the local rules for the place where the function
is evaluated.

RelTime relTime(AnyType t)

If the operand t is a String, it is parsed as a specification of a time interval. This function accepts the
canonical native representation of RelTime values, but minor variations in format are allowed.

Otherwise, t is converted to a Real by the function real, and treated as a number of seconds. The default
string format is [-]days+hh:mm:ss.fff, where leading components and the fraction .fff are omitted if
they are zero. In the default syntax, days is a sequence of digits starting with a non-zero digit, hh,
mm, and ss are strings of exactly two digits (padded on the left with zeros if necessary) with values
less than 24, 60, and 60, respectively and fff is a string of exactly three digits.

Integer floor(AnyType Expr) Returns the integer that results from the evaluation of Expr, where the type of the
evaluated Expr is Integer. Where the type of the evaluated Expr is not Integer, function real(Expr) is

5.1. HTCondor’s ClassAd Mechanism 505

HTCondor Manual, Release 10.0.9

called. Its return value is then used to return the largest magnitude integer that is not larger than the returned
value. Where real(Expr) returns ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Integer ceiling(AnyType Expr) Returns the integer that results from the evaluation of Expr, where the type of
the evaluated Expr is Integer. Where the type of the evaluated Expr is not Integer, function real(Expr)
is called. Its return value is then used to return the smallest magnitude integer that is not less than the returned
value. Where real(Expr) returns ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Integer pow(Integer base, Integer exponent) OR Real pow(Integer base, Integer exponent) OR Real pow(Real base, Real exponent)
Calculates base raised to the power of exponent. If exponent is an integer value greater than or equal to 0,
and base is an integer, then an integer value is returned. If exponent is an integer value less than 0, or if either
base or exponent is a real, then a real value is returned. An invocation with exponent=0 or exponent=0.0,
for any value of base, including 0 or 0.0, returns the value 1 or 1.0, type appropriate.

Integer quantize(AnyType a, Integer b) OR Real quantize(AnyType a, Real b) OR AnyType quantize(AnyType a, AnyType list b)
quantize() computes the quotient of a/b, in order to further compute `` ceiling(quotient) * b``. This computes
and returns an integral multiple of b that is at least as large as a. So, when b >= a, the return value will be b.
The return type is the same as that of b, where b is an Integer or Real.

When b is a list, quantize() returns the first value in the list that is greater than or equal to a. When no value
in the list is greater than or equal to a, this computes and returns an integral multiple of the last member in the
list that is at least as large as a.

This function returns ERROR if a or b, or a member of the list that must be considered is not an Integer or Real.

Here are examples:

8 = quantize(3, 8)
4 = quantize(3, 2)
0 = quantize(0, 4)
6.8 = quantize(1.5, 6.8)
7.2 = quantize(6.8, 1.2)
10.2 = quantize(10, 5.1)

4 = quantize(0, {4})
2 = quantize(2, {1, 2, "A"})
3.0 = quantize(3, {1, 2, 0.5})
3.0 = quantize(2.7, {1, 2, 0.5})
ERROR = quantize(3, {1, 2, "A"})

Integer round(AnyType Expr) Returns the integer that results from the evaluation of Expr, where the type of the
evaluated Expr is Integer. Where the type of the evaluated Expr is not Integer, function real(Expr) is
called. Its return value is then used to return the integer that results from a round-to-nearest rounding method.
The nearest integer value to the return value is returned, except in the case of the value at the exact midpoint
between two integer values. In this case, the even valued integer is returned. Where real(Expr) returns ERROR
or UNDEFINED, or the integer value does not fit into 32 bits, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Integer random([AnyType Expr]) Where the optional argument Expr evaluates to type Integer or type Real
(and called x), the return value is the integer or real r randomly chosen from the interval 0 <= r < x. With no
argument, the return value is chosen with random(1.0). Returns ERROR in all other cases.

This function returns ERROR if greater than 1 argument is given.

506 Chapter 5. ClassAds

HTCondor Manual, Release 10.0.9

Number sum([List l]) The elements of l are evaluated, producing a list l of values. Undefined values are re-
moved. If the resulting l is composed only of numbers, the result is the sum of the values, as a Real if any value
is Real, and as an Integer otherwise. If the list is empty, the result is 0. If the list has only Undefined values, the
result is UNDEFINED. In other cases, the result is ERROR.

This function returns ERROR if greater than 1 argument is given.

Number avg([List l]) The elements of l are evaluated, producing a list l of values. Undefined values are re-
moved. If the resulting l is composed only of numbers, the result is the average of the values, as a Real. If the list
is empty, the result is 0. If the list has only Undefined values, the result is UNDEFINED. In other cases, the result
is ERROR.

Number min([List l]) The elements of l are evaluated, producing a list l of values. Undefined values are re-
moved. If the resulting l is composed only of numbers, the result is the minimum of the values, as a Real if any
value is Real, and as an Integer otherwise. If the list is empty, the result is UNDEFINED. In other cases, the
result is ERROR.

Number max([List l]) The elements of l are evaluated, producing a list l of values. Undefined values are re-
moved. If the resulting l is composed only of numbers, the result is the maximum of the values, as a Real if any
value is Real, and as an Integer otherwise. If the list is empty, the result is UNDEFINED. In other cases, the
result is ERROR.

String strcat(AnyType Expr1 [, AnyType Expr2 ...]) Returns the string which is the concatenation of
all arguments, where all arguments are converted to type String by function string(Expr). Returns ERROR if
any argument evaluates to UNDEFINED or ERROR.

String join(String sep, AnyType Expr1 [, AnyType Expr2 ...]) OR String join(String sep, List list OR String join(List list
Returns the string which is the concatenation of all arguments after the first one. The first argument is the
separator, and it is inserted between each of the other arguments during concatenation. All arguments which
are not undefined are converted to type String by function string(Expr) before concatenation. Undefined
arguments are skipped. When there are exactly two arguments, If the second argument is a List, all members of
the list are converted to strings and then joined using the separator. When there is only one argument, and the
argument is a List, all members of the list are converted to strings and then concatenated.

Returns ERROR if any argument evaluates to UNDEFINED or ERROR.

For example:

"a, b, c" = join(", ", "a", "b", "c")
"abc" = join(split("a b c"))
"a;b;c" = join(";", split("a b c"))

String substr(String s, Integer offset [, Integer length]) Returns the substring of s, from the
position indicated by offset, with (optional) length characters. The first character within s is at offset 0. If
the optional length argument is not present, the substring extends to the end of the string. If offset is negative,
the value (length - offset) is used for the offset. If length is negative, an initial substring is computed,
from the offset to the end of the string. Then, the absolute value of length characters are deleted from the right
end of the initial substring. Further, where characters of this resulting substring lie outside the original string, the

5.1. HTCondor’s ClassAd Mechanism 507

HTCondor Manual, Release 10.0.9

part that lies within the original string is returned. If the substring lies completely outside of the original string,
the null string is returned.

This function returns ERROR if greater than 3 or less than 2 arguments are given.

Integer strcmp(AnyType Expr1, AnyType Expr2) Both arguments are converted to type String by function
string(Expr). The return value is an integer that will be

• less than 0, if Expr1 is lexicographically less than Expr2

• equal to 0, if Expr1 is lexicographically equal to Expr2

• greater than 0, if Expr1 is lexicographically greater than Expr2

Case is significant in the comparison. Where either argument evaluates to ERROR or UNDEFINED, ERROR is
returned.

This function returns ERROR if other than 2 arguments are given.

Integer stricmp(AnyType Expr1, AnyType Expr2) This function is the same as strcmp, except that letter case
is not significant.

Integer versioncmp(String left, String right) This function version-compares two strings. It returns an
integer

• less than zero if left is an earlier version than right

• zero if the strings are identical

• more than zero if left is a later version than right.

A version comparison is a lexicographic comparison unless the first difference between the two strings occurs
in a string of digits, in which case, sort by the value of that number (assuming that more leading zeroes mean
smaller numbers). Thus 7.x is earlier than 7.y, 7.9 is earlier than 7.10, and the following sequence is in order:
000, 00, 01, 010, 09, 0, 1, 9, 10.

Boolean versionGT(String left, String right) Boolean versionLT(String left, String right)
Boolean versionGE(String left, String right) Boolean versionLE(String left, String right)
Boolean versionEQ(String left, String right)

As versioncmp() (above), but for a specific comparison and returning a boolean. The two letter codes
stand for “Greater Than”, “Less Than”, “Greater than or Equal”, “Less than or Equal”, and “EQual”,
respectively.

Boolean version_in_range(String version, String min, String max)

Equivalent to versionLE(min, version) && versionLE(version, max).

String toUpper(AnyType Expr) The single argument is converted to type String by function string(Expr).
The return value is this string, with all lower case letters converted to upper case. If the argument evaluates to
ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

508 Chapter 5. ClassAds

HTCondor Manual, Release 10.0.9

String toLower(AnyType Expr) The single argument is converted to type String by function string(Expr).
The return value is this string, with all upper case letters converted to lower case. If the argument evaluates to
ERROR or UNDEFINED, ERROR is returned.

This function returns ERROR if other than exactly 1 argument is given.

Integer size(AnyType Expr) If Expr evaluates to a string, return the number of characters in the string. If Expr
evaluate to a list, return the number of elements in the list. If Expr evaluate to a classad, return the number of
entries in the ad. Otherwise, ERROR is returned.

List split(String s [, String tokens]) Returns a list of the substrings of s that have been split up by
using any of the characters within string tokens. If tokens is not specified, then all white space characters are
used to delimit the string.

List splitUserName(String Name) Returns a list of two strings. Where Name includes an @ character, the first
string in the list will be the substring that comes before the @ character, and the second string in the list will be the
substring that comes after. Thus, if Name is "user@domain", then the returned list will be {“user”, “domain”}.
If there is no @ character in Name, then the first string in the list will be Name, and the second string in the list
will be the empty string. Thus, if Name is "username", then the returned list will be {“username”, “”}.

List splitSlotName(String Name) Returns a list of two strings. Where Name includes an @ character, the first
string in the list will be the substring that comes before the @ character, and the second string in the list will
be the substring that comes after. Thus, if Name is "slot1@machine", then the returned list will be {“slot1”,
“machine”}. If there is no @ character in Name, then the first string in the list will be the empty string, and
the second string in the list will be Name, Thus, if Name is "machinename", then the returned list will be {“”,
“machinename”}.

Integer time() Returns the current coordinated universal time. This is the time, in seconds, since midnight of
January 1, 1970.

String formatTime([Integer time] [, String format]) Returns a formatted string that is a represen-
tation of time. The argument time is interpreted as coordinated universal time in seconds, since midnight of
January 1, 1970. If not specified, time will default to the current time.

The argument format is interpreted similarly to the format argument of the ANSI C strftime function. It consists
of arbitrary text plus placeholders for elements of the time. These placeholders are percent signs (%) followed by
a single letter. To have a percent sign in the output, use a double percent sign (%%). If format is not specified,
it defaults to %c.

Because the implementation uses strftime() to implement this, and some versions implement extra, non-ANSI
C options, the exact options available to an implementation may vary. An implementation is only required to
implement the ANSI C options, which are:

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c local date and time representation

%d day of the month (01-31)

%H hour in the 24-hour clock (0-23)

5.1. HTCondor’s ClassAd Mechanism 509

HTCondor Manual, Release 10.0.9

%I hour in the 12-hour clock (01-12)

%j day of the year (001-366)

%m month (01-12)

%M minute (00-59)

%p local equivalent of AM or PM

%S second (00-59)

%U week number of the year (Sunday as first day of week) (00-53)

%w weekday (0-6, Sunday is 0)

%W week number of the year (Monday as first day of week) (00-53)

%x local date representation

%X local time representation

%y year without century (00-99)

%Y year with century

%Z time zone name, if any

String interval(Integer seconds) Uses seconds to return a string of the form days+hh:mm:ss. This repre-
sents an interval of time. Leading values that are zero are omitted from the string. For example, seconds of 67
becomes “1:07”. A second example, seconds of 1472523 = 17*24*60*60 + 1*60*60 + 2*60 + 3, results in the
string “17+1:02:03”.

String evalInEachContext(Expression expr, List contexts) This function evaluates its first argument as
an expression in the context of each Classad in the second argument and returns a list that is the result of each
evaluation. The first argument should be an expression. If the second argument does not evaluate to a list of
ClassAds, ERROR is returned.

For example:

{true, false} = evalInEachContext(Prio > 2, { [Prio=3;], [Prio=1;] })
{3, 1} = evalInEachContext(Prio, { [Prio=3;], [Prio=1;] })
ERROR = evalInEachContext(Prio > 2, { [Prio=3;], UNDEFINED })
ERROR = evalInEachContext(Prio > 2, UNDEFINED)

String countMatches(Expression expr, List contexts) This function evaluates its first argument as an ex-
pression in the context of each Classad in the second argument and returns a count of the results that evaluated
to True. The first argument should be an expression. The second argument should be a list of ClassAds or a list
of attribute references to classAds, or should evaluate to a list of ClassAds. This function will always return a
integer value when the first argument is defined and the second argument is not ERROR.

For example:

1 = countMatches(Prio > 2, { [Prio=3;], [Prio=1;] })
1 = countMatches(Prio > 2, { [Prio=3;], UNDEFINED })
0 = countMatches(Prio > 2, UNDEFINED)

510 Chapter 5. ClassAds

HTCondor Manual, Release 10.0.9

AnyType debug(AnyType expression) This function evaluates its argument, and it returns the result. Thus, it is
a no-operation. However, a side-effect of the function is that information about the evaluation is logged to the
evaluating program’s log file, at the D_FULLDEBUG debug level. This is useful for determining why a given Clas-
sAd expression is evaluating the way it does. For example, if a condor_startd START expression is unexpectedly
evaluating to UNDEFINED, then wrapping the expression in this debug() function will log information about each
component of the expression to the log file, making it easier to understand the expression.

String envV1ToV2(String old_env) This function converts a set of environment variables from the old HTCon-
dor syntax to the new syntax. The single argument should evaluate to a string that represents a set of environment
variables using the old HTCondor syntax (usually stored in the job ClassAd attribute Env). The result is the
same set of environment variables using the new HTCondor syntax (usually stored in the job ClassAd attribute
Environment). If the argument evaluates to UNDEFINED, then the result is also UNDEFINED.

String mergeEnvironment(String env1 [, String env2, ...]) This function merges multiple sets of
environment variables into a single set. If multiple arguments include the same variable, the one that appears
last in the argument list is used. Each argument should evaluate to a string which represents a set of environment
variables using the new HTCondor syntax or UNDEFINED, which is treated like an empty string. The result is a
string that represents the merged set of environment variables using the new HTCondor syntax (suitable for use
as the value of the job ClassAd attribute Environment).

For the following functions, a delimiter is represented by a string. Each character within the delimiter string delimits
individual strings within a list of strings that is given by a single string. The default delimiter contains the comma and
space characters. A string within the list is ended (delimited) by one or more characters within the delimiter string.

Integer stringListSize(String list [, String delimiter]) Returns the number of elements in the
string list, as delimited by the optional delimiter string. Returns ERROR if either argument is not a string.

This function returns ERROR if other than 1 or 2 arguments are given.

Integer stringListSum(String list [, String delimiter]) OR Real stringListSum(String list [, String delimiter])
Sums and returns the sum of all items in the string list, as delimited by the optional delimiter string. If all
items in the list are integers, the return value is also an integer. If any item in the list is a real value (noninteger),
the return value is a real. If any item does not represent an integer or real value, the return value is ERROR.

Real stringListAvg(String list [, String delimiter]) Sums and returns the real-valued average of
all items in the string list, as delimited by the optional delimiter string. If any item does not represent an
integer or real value, the return value is ERROR. A list with 0 items (the empty list) returns the value 0.0.

Integer stringListMin(String list [, String delimiter]) OR Real stringListMin(String list [, String delimiter])
Finds and returns the minimum value from all items in the string list, as delimited by the optional delimiter
string. If all items in the list are integers, the return value is also an integer. If any item in the list is a real value
(noninteger), the return value is a real. If any item does not represent an integer or real value, the return value is
ERROR. A list with 0 items (the empty list) returns the value UNDEFINED.

Integer stringListMax(String list [, String delimiter]) OR Real stringListMax(String list [, String delimiter])
Finds and returns the maximum value from all items in the string list, as delimited by the optional delimiter
string. If all items in the list are integers, the return value is also an integer. If any item in the list is a real value
(noninteger), the return value is a real. If any item does not represent an integer or real value, the return value is
ERROR. A list with 0 items (the empty list) returns the value UNDEFINED.

5.1. HTCondor’s ClassAd Mechanism 511

HTCondor Manual, Release 10.0.9

Boolean stringListMember(String x, String list [, String delimiter]) Returns TRUE if item x is
in the string list, as delimited by the optional delimiter string. Returns FALSE if item x is not in the string
list. Comparison is done with strcmp(). The return value is ERROR, if any of the arguments are not strings.

Boolean stringListIMember(String x, String list [, String delimiter]) Same as
stringListMember(), but comparison is done with stricmp(), so letter case is not relevant.

Integer stringListsIntersect(String list1, String list2 [, String delimiter]) Returns
TRUE if the lists contain any matching elements, and returns FALSE if the lists do not contain any matching
elements. Returns ERROR if either argument is not a string or if an incorrect number of arguments are given.

The following three functions utilize regular expressions as defined and supported by the PCRE library. See http:
//www.pcre.org for complete documentation of regular expressions.

The options argument to these functions is a string of special characters that modify the use of the regular expressions.
Inclusion of characters other than these as options are ignored.

I or i Ignore letter case.

M or m Modifies the interpretation of the caret (^) and dollar sign ($) characters. The caret character matches the start
of a string, as well as after each newline character. The dollar sign character matches before a newline character.

S or s The period matches any character, including the newline character.

F or f When doing substitution, return the full target string with substitutions applied. Normally, only the substitute
text is returned.

G or g When doing substitution, apply the substitution for every matching portion of the target string (that doesn’t
overlap a previous match).

Boolean regexp(String pattern, String target [, String options]) Uses the regular expression
given by string pattern to scan through the string target. Returns TRUE when target matches the regu-
lar expression given by pattern. Returns FALSE otherwise. If any argument is not a string, or if pattern does
not describe a valid regular expression, returns ERROR.

Boolean regexpMember(String pattern, List targetStrings [, String options]) Uses the de-
scription of a regular expression given by string pattern to scan through a List of string n targetStrings.
Returns TRUE when target matches a regular expression given by pattern. If no strings match, and at least
one item in targetString evaluated to undefined, returns undefined. If any item in targetString before a match
evaluated to neither a string nor undefined, returns ERROR.

String regexps (String pattern, String target, String substitute [, String options])
Uses the regular expression given by string pattern to scan through the string target. When target
matches the regular expression given by pattern, the string substitute is returned, with backslash expansion
performed. If any argument is not a string, returns ERROR.

String replace (String pattern, String target, String substitute [, String options])
Uses the regular expression given by string pattern to scan through the string target. Returns a modified
version of target, where the first substring that matches pattern is replaced by the string substitute, with
backslash expansion performed. Equivalent to regexps() with the f option. If any argument is not a string,
returns ERROR.

String replaceall (String pattern, String target, String substitute [, String options])
Uses the regular expression given by string pattern to scan through the string target. Returns a modified
version of target, where every substring that matches pattern is replaced by the string substitute, with

512 Chapter 5. ClassAds

http://www.pcre.org
http://www.pcre.org

HTCondor Manual, Release 10.0.9

backslash expansion performed. Equivalent to regexps() with the fg options. If any argument is not a string,
returns ERROR.

Boolean stringList_regexpMember (String pattern, String list [, String delimiter] [,
String options]) Uses the description of a regular expression given by string pattern to scan through the
list of strings in list. Returns TRUE when one of the strings in list is a regular expression as described by
pattern. The optional delimiter describes how the list is delimited, and string options modifies how the
match is performed. Returns FALSE if pattern does not match any entries in list. The return value is ERROR,
if any of the arguments are not strings, or if pattern is not a valid regular expression.

String userHome(String userName [, String default]) Returns the home directory of the given user as
configured on the current system (determined using the getpwdnam() call). (Returns default if the default
argument is passed and the home directory of the user is not defined.)

List userMap(String mapSetName, String userName) Map an input string using the given mapping set. Re-
turns a string containing the list of groups to which the user belongs separated by commas or undefined if the
user was not found in the map file.

String userMap(String mapSetName, String userName, String preferredGroup) Map an input string
using the given mapping set. Returns a string, which is the preferred group if the user is in that group; otherwise
it is the first group to which the user belongs, or undefined if the user belongs to no groups.

String userMap(String mapSetName, String userName, String preferredGroup, String defaultGroup)
Map an input string using the given mapping set. Returns a string, which is the preferred group if the user is
in that group; the first group to which the user belongs, if any; and the default group if the user belongs to no
groups.

The maps for the userMap() function are defined by the following configuration
macros: <SUBSYS>_CLASSAD_USER_MAP_NAMES, CLASSAD_USER_MAPFILE_<name> and
CLASSAD_USER_MAPDATA_<name> (see the HTCondor-wide Configuration File Entries section).

5.1.3 ClassAd Evaluation Semantics

The ClassAd mechanism’s primary purpose is for matching entities that supply constraints on candidate matches. The
mechanism is therefore defined to carry out expression evaluations in the context of two ClassAds that are testing each
other for a potential match. For example, the condor_negotiator evaluates the Requirements expressions of machine
and job ClassAds to test if they can be matched. The semantics of evaluating such constraints is defined below.

Evaluating Literals

Literals are self-evaluating, Thus, integer, string, real, undefined and error values evaluate to themselves.

5.1. HTCondor’s ClassAd Mechanism 513

HTCondor Manual, Release 10.0.9

Attribute References

Since the expression evaluation is being carried out in the context of two ClassAds, there is a potential for name space
ambiguities. The following rules define the semantics of attribute references made by ClassAd A that is being evaluated
in a context with another ClassAd B:

1. If the reference is prefixed by a scope resolution prefix,

• If the prefix is MY., the attribute is looked up in ClassAd A. If the named attribute does not exist in A, the
value of the reference is UNDEFINED. Otherwise, the value of the reference is the value of the expression
bound to the attribute name.

• Similarly, if the prefix is TARGET., the attribute is looked up in ClassAd B. If the named attribute does not
exist in B, the value of the reference is UNDEFINED. Otherwise, the value of the reference is the value of the
expression bound to the attribute name.

2. If the reference is not prefixed by a scope resolution prefix,

• If the attribute is defined in A, the value of the reference is the value of the expression bound to the attribute
name in A.

• Otherwise, if the attribute is defined in B, the value of the reference is the value of the expression bound to
the attribute name in B.

• Otherwise, if the attribute is defined in the ClassAd environment, the value from the environment is re-
turned. This is a special environment, to be distinguished from the Unix environment. Currently, the only
attribute of the environment is CurrentTime, which evaluates to the integer value returned by the system
call time(2).

• Otherwise, the value of the reference is UNDEFINED.

3. Finally, if the reference refers to an expression that is itself in the process of being evaluated, there is a circular
dependency in the evaluation. The value of the reference is ERROR.

ClassAd Operators

All operators in the ClassAd language are total, and thus have well defined behavior regardless of the supplied operands.
Furthermore, most operators are strict with respect to ERROR and UNDEFINED, and thus evaluate to ERROR or UNDEFINED
if either of their operands have these exceptional values.

• Arithmetic operators:

1. The operators *, /, + and - operate arithmetically only on integers and reals.

2. Arithmetic is carried out in the same type as both operands, and type promotions from integers to reals are
performed if one operand is an integer and the other real.

3. The operators are strict with respect to both UNDEFINED and ERROR.

4. If either operand is not a numerical type, the value of the operation is ERROR.

• Comparison operators:

1. The comparison operators ==, !=, <=, <, >= and > operate on integers, reals and strings.

2. String comparisons are case insensitive for most operators. The only exceptions are the operators =?= and
=!=, which do case sensitive comparisons assuming both sides are strings.

514 Chapter 5. ClassAds

HTCondor Manual, Release 10.0.9

3. Comparisons are carried out in the same type as both operands, and type promotions from integers to reals
are performed if one operand is a real, and the other an integer. Strings may not be converted to any other
type, so comparing a string and an integer or a string and a real results in ERROR.

4. The operators ==, !=, <=, <, >=, and > are strict with respect to both UNDEFINED and ERROR.

5. In addition, the operators =?=, is, =!=, and isnt behave similar to == and !=, but are not strict. Semanti-
cally, the =?= and is test if their operands are “identical,” i.e., have the same type and the same value. For
example, 10 == UNDEFINED and UNDEFINED == UNDEFINED both evaluate to UNDEFINED, but 10 =?=
UNDEFINED and UNDEFINED is UNDEFINED evaluate to FALSE and TRUE respectively. The =!= and isnt
operators test for the “is not identical to” condition.

=?= and is have the same behavior as each other. And isnt and =!= behave the same as each other. The
ClassAd unparser will always use =?= in preference to is and =!= in preference to isnt when printing out
ClassAds.

• Logical operators:

1. The logical operators && and || operate on integers and reals. The zero value of these types are considered
FALSE and non-zero values TRUE.

2. The operators are not strict, and exploit the “don’t care” properties of the operators to squash UNDEFINED
and ERROR values when possible. For example, UNDEFINED && FALSE evaluates to FALSE, but
UNDEFINED || FALSE evaluates to UNDEFINED.

3. Any string operand is equivalent to an ERROR operand for a logical operator. In other words, TRUE &&
"foobar" evaluates to ERROR.

• The Ternary operator:

1. The Ternary operator (expr1 ? expr2 : expr3) operate with expressions. If all three expressions are
given, the operation is strict.

2. However, if the middle expression is missing, eg. expr1 ?: expr3, then, when expr1 is defined, that
defined value is returned. Otherwise, when expr1 evaluated to UNDEFINED, the value of expr3 is evaluated
and returned. This can be a convenient shortcut for writing what would otherwise be a much longer classad
expression.

Expression Examples

The =?= operator is similar to the == operator. It checks if the left hand side operand is identical in both type and value
to the the right hand side operand, returning TRUE when they are identical.

Caution: For strings, the comparison is case-insensitive with the == operator and case-sensitive with the =?
= operator. A key point in understanding is that the =?= operator only produces evaluation results of TRUE and
FALSE, where the == operator may produce evaluation results TRUE, FALSE, UNDEFINED, or ERROR.

Table 4.1 presents examples that define the outcome of the == operator. Table 4.2 presents examples that define the
outcome of the =?= operator.

5.1. HTCondor’s ClassAd Mechanism 515

HTCondor Manual, Release 10.0.9

expression evaluated result
(10 == 10) TRUE
(10 == 5) FALSE
(10 == "ABC") ERROR
"ABC" == "abc" TRUE
(10 == UNDEFINED) UNDEFINED
(UNDEFINED == UNDEFINED) UNDEFINED

Table 4.1: Evaluation examples for the == operator

expression evaluated result
(10 =?= 10) TRUE
(10 =?= 5) FALSE
(10 =?= "ABC") FALSE
"ABC" =?= "abc" FALSE
(10 =?= UNDEFINED) FALSE
(UNDEFINED =?= UNDEFINED) TRUE

Table 4.2: Evaluation examples for the =?= operator

The =!= operator is similar to the != operator. It checks if the left hand side operand is not identical in both type and
value to the the right hand side operand, returning FALSE when they are identical.

Caution: For strings, the comparison is case-insensitive with the != operator and case-sensitive with the =!=
operator. A key point in understanding is that the =!= operator only produces evaluation results of TRUE and
FALSE, where the != operator may produce evaluation results TRUE, FALSE, UNDEFINED, or ERROR.

Table 4.3 presents examples that define the outcome of the != operator. Table 4.4 presents examples that define the
outcome of the =!= operator.

expression evaluated result
(10 != 10) FALSE
(10 != 5) TRUE
(10 != "ABC") ERROR
"ABC" != "abc" FALSE
(10 != UNDEFINED) UNDEFINED
(UNDEFINED != UNDEFINED) UNDEFINED

Table 4.3: Evaluation examples for the != operator

expression evaluated result
(10 =!= 10) FALSE
(10 =!= 5) TRUE
(10 =!= "ABC") TRUE
"ABC" =!= "abc" TRUE
(10 =!= UNDEFINED) TRUE
(UNDEFINED =!= UNDEFINED) FALSE

Table 4.4: Evaluation examples for the =!= operator

516 Chapter 5. ClassAds

HTCondor Manual, Release 10.0.9

5.1.4 Old ClassAds in the HTCondor System

The simplicity and flexibility of ClassAds is heavily exploited in the HTCondor system. ClassAds are not only used to
represent machines and jobs in the HTCondor pool, but also other entities that exist in the pool such as submitters of
jobs and master daemons. Since arbitrary expressions may be supplied and evaluated over these ClassAds, users have
a uniform and powerful mechanism to specify constraints over these ClassAds. These constraints can take the form of
Requirements expressions in resource and job ClassAds, or queries over other ClassAds.

Constraints and Preferences

The requirements and rank expressions within the submit description file are the mechanism by which users specify
the constraints and preferences of jobs. For machines, the configuration determines both constraints and preferences
of the machines.

For both machine and job, the rank expression specifies the desirability of the match (where higher numbers mean
better matches). For example, a job ClassAd may contain the following expressions:

Requirements = (Arch == "INTEL") && (OpSys == "LINUX")
Rank = TARGET.Memory + TARGET.Mips

In this case, the job requires a 32-bit Intel processor running a Linux operating system. Among all such computers, the
customer prefers those with large physical memories and high MIPS ratings. Since the Rank is a user-specified metric,
any expression may be used to specify the perceived desirability of the match. The condor_negotiator daemon runs
algorithms to deliver the best resource (as defined by the rank expression), while satisfying other required criteria.

Similarly, the machine may place constraints and preferences on the jobs that it will run by setting the machine’s
configuration. For example,

Friend = Owner == "tannenba" || Owner == "wright"
ResearchGroup = Owner == "jbasney" || Owner == "raman"
Trusted = Owner != "rival" && Owner != "riffraff"
START = Trusted && (ResearchGroup || LoadAvg < 0.3 && KeyboardIdle > 15*60)
RANK = Friend + ResearchGroup*10

The above policy states that the computer will never run jobs owned by users rival and riffraff, while the computer will
always run a job submitted by members of the research group. Furthermore, jobs submitted by friends are preferred to
other foreign jobs, and jobs submitted by the research group are preferred to jobs submitted by friends.

Note: Because of the dynamic nature of ClassAd expressions, there is no a priori notion of an integer-valued expression,
a real-valued expression, etc. However, it is intuitive to think of the Requirements and Rank expressions as integer-
valued and real-valued expressions, respectively. If the actual type of the expression is not of the expected type, the
value is assumed to be zero.

Querying with ClassAd Expressions

The flexibility of this system may also be used when querying ClassAds through the condor_status and condor_q tools
which allow users to supply ClassAd constraint expressions from the command line.

Needed syntax is different on Unix and Windows platforms, due to the interpretation of characters in forming command-
line arguments. The expression must be a single command-line argument, and the resulting examples differ for the
platforms. For Unix shells, single quote marks are used to delimit a single argument. For a Windows command window,
double quote marks are used to delimit a single argument. Within the argument, Unix escapes the double quote mark

5.1. HTCondor’s ClassAd Mechanism 517

HTCondor Manual, Release 10.0.9

by prepending a backslash to the double quote mark. Windows escapes the double quote mark by prepending another
double quote mark. There may not be spaces in between.

Here are several examples. To find all computers which have had their keyboards idle for more than 60 minutes and
have more than 4000 MB of memory, the desired ClassAd expression is

KeyboardIdle > 60*60 && Memory > 4000

On a Unix platform, the command appears as

$ condor_status -const 'KeyboardIdle > 60*60 && Memory > 4000'

Name OpSys Arch State Activity LoadAv Mem ActvtyTime
100
slot1@altair.cs.wi LINUX X86_64 Owner Idle 0.000 8018 13+00:31:46
slot2@altair.cs.wi LINUX X86_64 Owner Idle 0.000 8018 13+00:31:47
...
...
slot1@athena.stat. LINUX X86_64 Unclaimed Idle 0.000 7946 0+00:25:04
slot2@athena.stat. LINUX X86_64 Unclaimed Idle 0.000 7946 0+00:25:05
...
...

The Windows equivalent command is

> condor_status -const "KeyboardIdle > 60*60 && Memory > 4000"

Here is an example for a Unix platform that utilizes a regular expression ClassAd function to list specific information.
A file contains ClassAd information. condor_advertise is used to inject this information, and condor_status constrains
the search with an expression that contains a ClassAd function.

$ cat ad
MyType = "Generic"
FauxType = "DBMS"
Name = "random-test"
Machine = "f05.cs.wisc.edu"
MyAddress = "<128.105.149.105:34000>"
DaemonStartTime = 1153192799
UpdateSequenceNumber = 1

$ condor_advertise UPDATE_AD_GENERIC ad

$ condor_status -any -constraint 'FauxType=="DBMS" && regexp("random.*", Name, "i")'

MyType TargetType Name

Generic None random-test

The ClassAd expression describing a machine that advertises a Windows operating system:

OpSys == "WINDOWS"

Here are three equivalent ways on a Unix platform to list all machines advertising a Windows operating system. Spaces
appear in these examples to show where they are permitted.

518 Chapter 5. ClassAds

HTCondor Manual, Release 10.0.9

$ condor_status -constraint ' OpSys == "WINDOWS" '

$ condor_status -constraint OpSys==\"WINDOWS\"

$ condor_status -constraint "OpSys==\"WINDOWS\""

The equivalent command on a Windows platform to list all machines advertising a Windows operating system must
delimit the single argument with double quote marks, and then escape the needed double quote marks that identify the
string within the expression. Spaces appear in this example where they are permitted.

> condor_status -constraint " OpSys == ""WINDOWS"" "

5.1.5 Extending ClassAds with User-written Functions

The ClassAd language provides a rich set of functions. It is possible to add new functions to the ClassAd language
without recompiling the HTCondor system or the ClassAd library. This requires implementing the new function in the
C++ programming language, compiling the code into a shared library, and telling HTCondor where in the file system
the shared library lives.

While the details of the ClassAd implementation are beyond the scope of this document, the ClassAd source distribu-
tion ships with an example source file that extends ClassAds by adding two new functions, named todays_date() and
double(). This can be used as a model for users to implement their own functions. To deploy this example extension,
follow the following steps on Linux:

• Download the ClassAd source distribution from http://www.cs.wisc.edu/condor/classad.

• Unpack the tarball.

• Inspect the source file shared.cpp. This one file contains the whole extension.

• Build shared.cpp into a shared library. On Linux, the command line to do so is

$ g++ -DWANT_CLASSAD_NAMESPACE -I. -shared -o shared.so \
-Wl,-soname,shared.so -o shared.so -fPIC shared.cpp

• Copy the file shared.so to a location that all of the HTCondor tools and daemons can read.

$ cp shared.so `condor_config_val LIBEXEC`

• Tell HTCondor to load the shared library into all tools and daemons, by setting the CLASSAD_USER_LIBS con-
figuration variable to the full name of the shared library. In this case,

CLASSAD_USER_LIBS = $(LIBEXEC)/shared.so

• Restart HTCondor.

• Test the new functions by running

$ condor_status -format "%s\n" todays_date()

5.1. HTCondor’s ClassAd Mechanism 519

http://www.cs.wisc.edu/condor/classad

HTCondor Manual, Release 10.0.9

5.2 ClassAd Transforms

HTCondor has a general purpose language for transforming ClassAds, this language is used by the condor_schedd for
submit transforms, and as of version 8.9.7 by the job router for routes and pre and post route transforms.

There is also a stand alone tool condor_transform_ads than can read ClassAds from a file or pipe, transform them,
and write the resulting ClassAds to a file or pipe.

The transform language is build on the same basic macro expansion engine use by HTCondor configuration and by
condor_submit and shares many of the same features such as $() macro expansion and if statements.

This transform language is a superset of an earlier transform language based on New ClassAds. The condor_schedd
and condor_job_router will still allow the earlier transform language, and they will automatically convert configuration
from earlier New ClassAds style transforms to the to the native transform language when they read the configuration.

5.2.1 General Concepts

Transforms consists of a sequence of lines containing key=value pairs or transform commands such as SET. Transform
commands execute in order from top to bottom and may make use of macro values set by earlier statements using
$(var) macro substitution. Unlike configuration files, Transform commands will use the value of $(var) defined at
the time, rather than the last value defined in the configuration file.

If/else statements and macro functions such as $INT(var) can be used in transforms, but include may not be used.

A macro expansion of the form $(MY.<attr>) will expand as the value of the attribute <attr> of the ClassAd that is
being transformed. Expansion will expand simple string values without quotes but will not evaluate expressions. Use
$STRING(MY.<attr>) or $INT(MY.<attr>) if you need to evaluate the ClassAd attribute before expanding it.

The existence of an attribute in the ClassAd being transformed can be tested by using if defined MY.<attr>

In the definitions below.

<attr> must be a valid ClassAd attribute name

<newattr> must be a valid ClassAd attribute name

<expr>must be a valid ClassAd expression after $()macro expansion. Don’t forget to quote string values!

<var> must be a valid macro name

<regex> is a regular expression

<attrpat> is a regular expression substitution pattern, which may include capture groups \0, \1, etc.

5.2.2 Transform Commands

<var> = <value> Sets the temporary macro variable <var> to <value>. This is the same sort of macro assignment
used in configuration and submit files, the value is everything after the = until then end of the line with leading and
trailing whitespace removed. Variables set in this way do not directly affect the resulting transformed ClassAd,
but they can be used later in the transform by $(var) macro expansion. In the condor_job_router some macro
variable names will affect the way the router behaves. For a list of macro variable names have have special
meaning to the condor_job_router see the Routing Table Entry Commands and Macro values section.

REQUIREMENTS <expr> Apply the transform only if the expression given by <expr> evaluates to true when evaluated
against the untransformed ClassAd.

SET <attr> <expr> Sets the ClassAd value of <attr> to <expr> in the ClassAd being transformed.

520 Chapter 5. ClassAds

HTCondor Manual, Release 10.0.9

DEFAULT <attr> <expr> Sets the ClassAd value of <attr> to <expr> in the ClassAd being transformed if that
ClassAd does not currently have <attr> or if it is currently set to undefined. This is equivalent to

if ! defined MY.<Attr>
SET <Attr> <value>

endif

EVALSET <attr> <expr> Evaluate <expr> and set the ClassAd value of <attr> to the result of the evaluation. Use
this when the ClassAd value of <attr> must be a simple value rather than expression, or when you need to
capture the result of evaluating at transform time. Note that it is usually better to use SET with macro expansions
when you want to modify a ClassAd attribute as part of a transform.

EVALMACRO <var> <expr> Evaluate <expr> and set the temporary macro variable <var> to the result of evaluation.
$(var) can the be used in later transform statements such as SET or if.

COPY <attr> <newattr> Copies the ClassAd value of <attr> to a new ClassAd attribute <newattr>. This will
result in two attributes that have the same value at this step of the transform.

COPY /<regex>/ <attrpat> Copies all ClassAd attributes that have names matching the regular expression
<regex> to new attribute names. The new attribute names are defined by <attrpat> which may have reg-
ular expression capture groups to substitute portions of the original attribute name. \0 Is the entire attribute
name, and \1 is the first capture, etc. For example

copy all attributes whose names begin with Resource to new attribute with names␣
→˓that begin with OriginalResource
COPY /Resource(.+)/ OriginalResource\1

RENAME <attr> <newattr> Renames the attribute <attr> to a new attribute name <newattr>. This is the equiv-
alent of a COPY statement followed by a DELETE statement.

RENAME /<regex>/ <attrpat> Renames all ClassAd attributes that match the regular expression <regex> to new
attribute names given by the substitution pattern <attrpat>.

DELETE <attr> Deletes the ClassAd attribute <attr> from the transformed ClassAd.

DELETE /<regex>/ Deletes all ClassAd attributes whose names match the regular expression <regex> from the
transformed ClassAd.

5.3 Print Formats

Many HTCondor tools that work with ClassAds use a formatting engine called the ClassAd pretty printer. Tools that
have a -format or -autoformat argument use those arguments to configure the ClassAd pretty printer, and then use the
pretty printer to produce output from ClassAds.

The condor_q, condor_history and condor_status tools, as well as others that have a -print-format or -pr argument
can configure the ClassAd pretty using a file. The syntax of this file is described below.

Not all tools support all of the print format options.

5.3. Print Formats 521

HTCondor Manual, Release 10.0.9

5.3.1 Syntax

A print format file consists of a heading line and zero or more formatting lines followed by optional constraint, sort and
summary lines. These sections of the format file begin with the keywords SELECT, WHERE, GROUP, or SUMMARY which
must be in that order if they appear. These keywords must be all uppercase and must be the first word on the line.

A line beginning with # is treated as a comment

A custom print format file must begin with the SELECT keyword. The SELECT keyword can be followed by options
to qualify the type of query, the global formatting options and whether or not there will be column headings. The
prototype for the SELECT line is:

SELECT [FROM AUTOCLUSTER | UNIQUE] [BARE | NOTITLE | NOHEADER | NOSUMMARY] [LABEL [SEP-
ARATOR <string>]] [<separators>]

The first two optional keywords indicate the query type. These options work only in condor_q.

FROM AUTOCLUSTER Used with condor_q to query the schedd’s default autocluster set.

UNIQUE Used with condor_q to ask the condor_schedd to count unique values. This option tells the schedd to building
a new FROM AUTOCLUSTER set using the given attributes

The next set of optional keywords enable or disable various things that are normally printed before or after the classad
output.

NOTITLE Disables the title on tools that have a title, like the Schedd name from condor_q.

NOHEADER Disables column headers.

NOSUMMARY Disables the summary output such as the totals by job stats at the bottom of normal condor_q output.

BARE Shorthand for NOTITLE NOHEADER NOSUMMARY

In the descriptions below <string> is text. If the text starts with a single quote, then it continues to the next single
quote. If it starts with a doublequote, it continues to the next doublequote. If it starts with neither, then it continues
until the next space or tab. a n, r or t inside the string will be converted into a newline, carriage return or tab character
respectively.

LABEL [SEPARATOR <string>] Use item labels rather than column headers. The separator between the label and
the value will be = unless the SEPARATOR is used to define a different one.

RECORDPREFIX <string> The value of <string> will be printed before each ClassAd. The default is to print noth-
ing.

RECORDSUFFIX <string> The value of <string> will be printed after each ClassAd. The default is to print the
newline character.

FIELDPREFIX <string> The value of <string> will be printed before each attribute or expression. The default is
to print nothing.

FIELDSUFFIX <string> The value of <string> will be printed after each attribute or expression. The default is to
print a single space.

After the SELECT line, there should be zero or more formatting lines one line for each field in the output. Each formatting
line is a ClassAd attribute or expression followed by zero or more keywords that control formatting, the first valid
keyword ends the expression. Keywords are all uppercase and space delimited. The prototype for each formatting line
is:

<expr> [AS <label>] [PRINTF <format-string> | PRINTAS <function-name> [ALWAYS] | WIDTH [AUTO | [-
]<INT>]] [FIT | TRUNCATE] [LEFT | RIGHT] [NOPREFIX] [NOSUFFIX]

AS <string> defines the label or column heading. if the formatting line has no AS keyword, then <expr> will be
used as the label or column heading

522 Chapter 5. ClassAds

HTCondor Manual, Release 10.0.9

PRINTF <string> <string> should be a c++ printf format string, the same as used by the -format command line
arguments for tools

PRINTAS <function> Format using the built-in function. The Valid function names for PRINTAS are defined by the
code and differ between the various tools, refer to the table at the end of this page.

WIDTH [-]<int> Align the data to the given width, negative values left align.

WIDTH AUTO Use a width sized to fit the largest item.

FIT Adjust column width to fit the data, normally used with WIDTH AUTO

TRUNCATE If the data is larger than the given width, truncate it

LEFT Left align the data to the given width

RIGHT Rigth align the data to the given width

NOPREFIX Do not include the FIELDPREFIX string for this field

NOSUFFIX Do not include the FIELDSUFFIX string for this field

OR <char>[<char>] if the field data is undefined, print <char>, if <char> is doubled, fill the column with <char>.
Allowed values for <char> are space or one of the following ?*.-_#0

After the field formatting lines, there may be sections in the file that define a query constraint, sorting and grouping
and the summary line. These sections can be multiple lines, but must begin with a keyword.

WHERE <constraint-expr> Display only ClassAds where the expression <constraint-expr> evaluates to true.

GROUP BY <sort-expr> [ASCENDING | DECENDING] Sort the ClassAds by evaluating <sort-expr>. If multiple
sort keys are desired, the GROUP BY line can be followed by lines containing additional expressions, for example

GROUP BY
Owner
ClusterId DECENDING

SUMMARY [STANDARD | NONE] Enable or disable the summary totals. The summary can also be disabled using
NOSUMMARY or BARE keywords on the SELECT line.

5.3.2 Examples

This print format file produces the default -nobatch output of condor_q

queue.cpf
produce the standard output of condor_q
SELECT

ClusterId AS " ID" NOSUFFIX WIDTH AUTO
ProcId AS " " NOPREFIX PRINTF ".%-3d"
Owner AS "OWNER" WIDTH -14 PRINTAS OWNER
QDate AS " SUBMITTED" WIDTH 11 PRINTAS QDATE
RemoteUserCpu AS " RUN_TIME" WIDTH 12 PRINTAS CPU_TIME
JobStatus AS ST PRINTAS JOB_STATUS
JobPrio AS PRI
ImageSize AS SIZE WIDTH 6 PRINTAS MEMORY_USAGE
Cmd AS CMD PRINTAS JOB_DESCRIPTION

SUMMARY STANDARD

This print format file produces only totals

5.3. Print Formats 523

HTCondor Manual, Release 10.0.9

q_totals.cpf
show only totals with condor_q
SELECT NOHEADER NOTITLE
SUMMARY STANDARD

This print format file shows typical fields of the Schedd autoclusters.

negotiator_autocluster.cpf
SELECT FROM AUTOCLUSTER

Owner AS OWNER WIDTH -14 PRINTAS OWNER
JobCount AS COUNT PRINTF %5d
AutoClusterId AS " ID" WIDTH 3
JobUniverse AS UNI PRINTF %3d
RequestMemory AS REQ_MEMORY WIDTH 10 PRINTAS READABLE_MB
RequestDisk AS REQUEST_DISK WIDTH 12 PRINTAS READABLE_KB
JobIDs AS JOBIDS

GROUP BY Owner

This print format file shows the use of SELECT UNIQUE

count_jobs_by_owner.cpf
aggregate by the given attributes, return unique values plus count and jobids.
This query builds an autocluster set in the schedd on the fly using all of the␣
→˓displayed attributes
And all of the GROUP BY attributes (except JobCount and JobIds)
SELECT UNIQUE NOSUMMARY

Owner AS OWNER WIDTH -20
JobUniverse AS "UNIVERSE " PRINTAS JOB_UNIVERSE
JobStatus AS STATUS PRINTAS JOB_STATUS_RAW
RequestCpus AS CPUS
RequestMemory AS MEMORY
JobCount AS COUNT PRINTF %5d
JobIDs

GROUP BY
Owner

5.3.3 PRINTAS functions for condor_q

Some of the tools that interpret a print format file have specialized formatting functions for certain ClassAd attributes.
These are selected by using the PRINTAS keyword followed by the function name. Available function names depend on
the tool. Some functions implicitly use the value of certain attributes, often multiple attributes. The list for condor_q
is.

BATCH_NAME Used for the BATCH_NAME column of the default output of condor_q. This function constructs a batch
name string using value of the JobBatchName attribute if it exists, otherwise it constructs a batch name from
JobUniverse, ClusterId, DAGManJobId, and DAGNodeName.

BUFFER_IO_MISC Used for the MISC column of the -io output of condor_q. This function constructs an IO string
that varies by JobUniverse. The output for Standard universe jobs refers to FileSeekCount, BufferSize
and BufferBlockSize. For all other jobs it refers to TransferrringInput, TransferringOutput and
TransferQueued.

CPU_TIME Used for the RUN_TIME or CPU_TIME column of the default condor_q output. The result of the function de-
pends on wether the -currentrun argument is used with condor_q. If RemoteUserCpu is undefined, this func-

524 Chapter 5. ClassAds

HTCondor Manual, Release 10.0.9

tion returns undefined. It returns the value of RemoteUserCpu if it is non-zero. Otherwise it reports the amount
of time that the condor_shadow has been alive. If the -currentrun argument is used with condor_q, this will
be the shadow lifetime for the current run only. If it is not, then the result is the sum of RemoteWallClockTime
and the current shadow lifetime. The result is then formatted using the %T format.

CPU_UTIL Used for the CPU_UTIL column of the default condor_q output. This function returns RemoteUserCpu di-
vided by CommittedTime if CommittedTime is non-zero. It returns undefined if CommittedTime is undefined,
zero or negative. The result is then formatted using the %.1f format.

DAG_OWNER Used for the OWNER column of default condor_q output. This function returns the value of the Owner
attribute when the -dag option is not passed to condor_q. When the -dag option is passed, it returns the value
of DAGNodeName for jobs that have a DAGManJobId defined, and Owner for all other jobs.

GRID_JOB_ID Used for the GRID_JOB_ID column of the -grid output of condor_q. This function extracts and returns
the job id from the GridJobId attribute.

GRID_RESOURCE Used for the GRID->MANAGER HOST column of the -grid output of condor_q. This funciton extracts
and returns the manager and host from the GridResource attribute. For ec2 jobs the host will be the value of
EC2RemoteVirtualMachineName attribute.

GRID_STATUS Used for the STATUS column of the -grid output of condor_q. This function renders the status of grid
jobs from the GridJobStatus attribute. If the attribute has a string value it is reported unmodified. Otherwise,
if GridJobStatus is an integer, it is presumed to be a condor job status and converted to a string.

JOB_DESCRIPTION Used for the CMD column of the default output of condor_q. This function renders a job description
from the MATCH_EXP_JobDescription, JobDescription or Cmd and Args or Arguments job attributes.

JOB_FACTORY_MODE Used for the MODE column of the -factory output of condor_q. This function renders an integer
value into a string value using the conversion for JobMaterializePaused modes.

JOB_ID Used for the ID column of the default output of condor_q. This function renders a string job id from the
ClusterId and ProcId attributes of the job.

JOB_STATUS Used for the ST column of the default output of condor_q. This function renders a one or two char-
acter job status from the JobStatus, TransferringInput, TransferringOutput, TransferQueued and
LastSuspensionTime attributes of the job.

JOB_STATUS_RAW This function converts an integer to a string using the conversion for JobStatus values.

JOB_UNIVERSE Used for the UNIVERSE column of the -idle and -autocluster output of condor_q. This funciton
converts an integer to a string using the conversion for JobUniverse values. Values that are outside the range
of valid universes are rendered as Unknown.

MEMORY_USAGE Used for the SIZE column of the default output of condor_q. This function renders a memory usage
value in megabytes the MemoryUsage or ImageSize attributes of the job.

OWNER Used for the OWNER column of the default output of condor_q. This function renders an Owner string from the
Owner attribute of the job. Prior to 8.9.9, this function would modify the result based on the NiceUser attribute
of the job, but it no longer does so.

QDATE Used for the SUBMITTED column of the default output of condor_q. This function converts a Unix timestamp
to a string date and time with 2 digit month, day, hour and minute values.

READABLE_BYTES Used for the INPUT and OUTPUT columns of the -io output of condor_q This function renders a
numeric byte value into a string with an appropriate B, KB, MB, GB, or TB suffix.

READABLE_KB This function renders a numeric Kibibyte value into a string with an appropriate B, KB, MB, GB, or
TB suffix. Use this for Job attributes that are valued in Kb, such as DiskUsage.

READABLE_MB This function renders a numeric Mibibyte value into a string with an appropriate B, KB, MB, GB, or
TB suffix. Use this for Job attributes that are valued in Mb, such as MemoryUsage.

5.3. Print Formats 525

HTCondor Manual, Release 10.0.9

REMOTE_HOST Used for the HOST(S) column of the -run output of condor_q. This function extracts the host
name from a job attribute appropriate to the JobUniverse value of the job. For Local and Scheduler uni-
verse jobs, the Schedd that was queried is used using a variable internal to condor_q. For grid uiniverse
jobs, the EC2RemoteVirtualMachineName or GridResources attributes are used. for all other universes the
RemoteHost job attribute is used.

STDU_GOODPUT Used for the GOODPUT column of the -goodput output of condor_q. This function renders a float-
ing point goodput time in seconds from the JobStatus, CommittedTime, ShadowBDay, LastCkptTime, and
RemoteWallClockTime attributes.

STDU_MPBS Used for the Mb/s column of the -goodput output of condor_q. This function renders a Megabytes per
second goodput value from the BytesSent, BytesRecvd job attributes and total job execution time as calculated
by the STDU_GOODPUT output.

5.3.4 PRINTAS functions for condor_status

ACTIVITY_CODE Render a two character machine state and activity code from the State and Activity attributes of
the machine ad. The letter codes for State are:

~ None
O Owner
U Unclaimed
M Matched
C Claimed
P Preempting
S Shutdown
X Delete
F Backfill
D Drained
<undefined>
? <error>

The letter codes for Activity are:

0 None
i Idle
b Busy
r Retiring
v Vacating
s Suspended
b Benchmarking
k Killing
<undefined>
? <error>

For example if State is Claimed and Activity is Idle, then this function returns Ci.

ACTIVITY_TIME Used for the ActvtyTime column of the default output of condor_status. The funciton renders the
given Unix timestamp as an elapsed time since the MyCurrentTime or LastHeardFrom attribute.

CONDOR_PLATFORM Used for the optional Platform column of the -master output of condor_status. This function
extracts the Arch and Opsys information from the given string.

526 Chapter 5. ClassAds

HTCondor Manual, Release 10.0.9

CONDOR_VERSION Used for the Version column of the -master output of condor_status. This function extract the
version number and build id from the given string.

DATE This function converts a Unix timestamp to a string date and time with 2 digit month, day, hour and minute
values.

DUE_DATE This function converts an elapsed time to a Unix timestamp by adding the LastHeardFrom attribute to it,
and then converts it to a string date and time with 2 digit month, day, hour and minute values.

ELAPSED_TIME Used in multiple places, for insance the Uptime column of the -master output of condor_status.
This function converts a Unix timestamp to an elapsed time by subtracting it from the LastHeardFrom attribute,
then formats it as a human readable elapsed time.

LOAD_AVG Used for the LoadAv column of the default output of condor_status Render the given floating point value
using %.3f format.

PLATFORM Used for the Platform column of the -compact output of condor_status. Render a compact platform
name from the value of the OpSys, OpSysAndVer, OpSysShortName and Arch attributes.

READABLE_KB This function renders a numeric Kibibyte value into a string with an appropriate B, KB, MB, GB, or
TB suffix. Use this for Job attributes that are valued in Kb, such as DiskUsage.

READABLE_MB This function renders a numeric Mibibyte value into a string with an appropriate B, KB, MB, GB, or
TB suffix. Use this for Job attributes that are valued in Mb, such as MemoryUsage.

STRINGS_FROM_LIST Used for the Offline Universes column of the -offline output of condor_status. This
function converts a ClassAd list into a string containing a comma separated list of items.

TIME Used for the KbdIdle column of the default output of condor_status. This function converts a numeric time in
seconds into a string time including number of days, hours, minutes and seconds.

UNIQUE Used for the Users column of the compact -claimed output of condor_status This function converts a classad
list into a string containing a comma separate list of unique items.

5.3. Print Formats 527

HTCondor Manual, Release 10.0.9

528 Chapter 5. ClassAds

CHAPTER

SIX

GRID COMPUTING

6.1 Introduction

A goal of grid computing is to allow an authorized batch scheduler to send jobs to run on some remote pool, even when
that remote pool is running a non-HTCondor system.

There are several mechanisms in HTCondor to do this.

Flocking allows HTCondor jobs submitted from one pool to execute on another, separate HTCondor pool. Flocking is
enabled by configuration on both of the pools. An advantage to flocking is that jobs migrate from one pool to another
based on the availability of machines to execute jobs. When the local HTCondor pool is not able to run the job (due
to a lack of currently available machines), the job flocks to another pool. A second advantage to using flocking is that
the submitting user does not need to be concerned with any aspects of the job. The user’s submit description file (and
the job’s universe) are independent of the flocking mechanism. Flocking only works when the remote pool is also an
HTCondor pool.

Glidein is the technique where condor_startds are submitted as jobs to some remote batch systems, and configured
with report to, and expand the local HTCondor batch system. We call these jobs that run startds “pilot jobs”, to
distinguish them from the “payload jobs” which run the real user’s domain work. HTCondor itself does not provide an
implementation of glidein, there is a very complete implementation the HEP community has built, named GlideinWMS,
and several HTCondor users have written their own glidein systems.

Other forms of grid computing are enabled by using the grid universe and further specified with the grid_type. For
any HTCondor job, the job is submitted on a machine in the local HTCondor pool. The location where it is executed is
identified as the remote machine or remote resource. These various grid computing mechanisms offered by HTCondor
are distinguished by the software running on the remote resource. Often implementations of Glidein use grid universe
to send the pilot jobs to a remote system.

When HTCondor is running on the remote resource, and the desired grid computing mechanism is to move the job
from the local pool’s job queue to the remote pool’s job queue, it is called HTCondor-C. The job is submitted using
the grid universe, and the grid_type is condor. HTCondor-C jobs have the advantage that once the job has moved
to the remote pool’s job queue, a network partition does not affect the execution of the job. A further advantage of
HTCondor-C jobs is that the universe of the job at the remote resource is not restricted.

One disadvantage of grid universe is the destination must be declared in the submit file when condor_submit is run,
locking the job to that remote site. The condor job router is a condor daemon which can periodically scan the scheduler’s
job queue, and change a vanilla universe job intended to run on the local cluster into a grid job, destined for a remote
cluster. It can also be configured so that if this grid job is idle for too long, it can undo the transformation, so that the
job isn’t stuck forever in a remote queue.

Further specification of a grid universe job is done within the grid_resource command in a submit description file.

529

HTCondor Manual, Release 10.0.9

6.2 Connecting HTCondor Pools with Flocking

Flocking is HTCondor’s way of allowing jobs that cannot immediately run within the pool of machines where the job
was submitted to instead run on a different HTCondor pool. If a machine within HTCondor pool A can send jobs to
be run on HTCondor pool B, then we say that jobs from machine A flock to pool B. Flocking can occur in a one way
manner, such as jobs from machine A flocking to pool B, or it can be set up to flock in both directions. Configuration
variables allow the condor_schedd daemon (which runs on each machine that may submit jobs) to implement flocking.

NOTE: Flocking to pools which use HTCondor’s high availability mechanisms is not advised. See High Availability
of the Central Manager for a discussion of the issues.

6.2.1 Flocking Configuration

The simplest flocking configuration sets a few configuration variables. If jobs from machine A are to flock to pool B,
then in machine A’s configuration, set the following configuration variables:

FLOCK_TO is a comma separated list of the central manager machines of the pools that jobs from machine A may flock
to.

FLOCK_COLLECTOR_HOSTS is the list of condor_collector daemons within the pools that jobs from machine A may
flock to. In most cases, it is the same as FLOCK_TO, and it would be defined with

FLOCK_COLLECTOR_HOSTS = $(FLOCK_TO)

FLOCK_NEGOTIATOR_HOSTS is the list of condor_negotiator daemons within the pools that jobs from machine A may
flock to. In most cases, it is the same as FLOCK_TO, and it would be defined with

FLOCK_NEGOTIATOR_HOSTS = $(FLOCK_TO)

ALLOW_NEGOTIATOR_SCHEDD provides an access level and authorization list for the condor_schedd daemon to allow
negotiation (for security reasons) with the machines within the pools that jobs from machine A may flock to. This
configuration variable will not likely need to change from its default value as given in the sample configuration:

Now, with flocking we need to let the SCHEDD trust the other
negotiators we are flocking with as well. You should normally
not have to change this either.
ALLOW_NEGOTIATOR_SCHEDD = $(CONDOR_HOST), $(FLOCK_NEGOTIATOR_HOSTS), $(IP_ADDRESS)

This example configuration presumes that the condor_collector and condor_negotiator daemons are running on
the same machine. See the Authorization section for a discussion of security macros and their use.

The configuration macros that must be set in pool B are ones that authorize jobs from machine A to flock to pool B.

The configuration variables are more easily set by introducing a list of machines where the jobs may flock from.
FLOCK_FROM is a comma separated list of machines, and it is used in the default configuration setting of the secu-
rity macros that do authorization:

ALLOW_WRITE_COLLECTOR = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_WRITE_STARTD = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_READ_COLLECTOR = $(ALLOW_READ), $(FLOCK_FROM)
ALLOW_READ_STARTD = $(ALLOW_READ), $(FLOCK_FROM)

530 Chapter 6. Grid Computing

HTCondor Manual, Release 10.0.9

Wild cards may be used when setting the FLOCK_FROM configuration variable. For example, *.cs.wisc.edu specifies all
hosts from the cs.wisc.edu domain.

Further, if using Kerberos or SSL authentication, then the setting becomes:

ALLOW_NEGOTIATOR = condor@$(UID_DOMAIN)/$(COLLECTOR_HOST)

To enable flocking in both directions, consider each direction separately, following the guidelines given.

6.2.2 Job Considerations

A particular job will only flock to another pool when it cannot currently run in the current pool.

The submission of jobs must consider the location of input, output and error files. The common case will be that
machines within separate pools do not have a shared file system. Therefore, when submitting jobs, the user will need
to enable file transfer mechanisms. These mechanisms are discussed in the Submitting Jobs Without a Shared File
System: HTCondor’s File Transfer Mechanism section.

6.3 The Grid Universe

6.3.1 HTCondor-C, The condor Grid Type

HTCondor-C allows jobs in one machine’s job queue to be moved to another machine’s job queue. These machines may
be far removed from each other, providing powerful grid computation mechanisms, while requiring only HTCondor
software and its configuration.

HTCondor-C is highly resistant to network disconnections and machine failures on both the submission and remote
sides. An expected usage sets up Personal HTCondor on a laptop, submits some jobs that are sent to an HTCondor
pool, waits until the jobs are staged on the pool, then turns off the laptop. When the laptop reconnects at a later time,
any results can be pulled back.

HTCondor-C scales gracefully when compared with HTCondor’s flocking mechanism. The machine upon which jobs
are submitted maintains a single process and network connection to a remote machine, without regard to the number
of jobs queued or running.

HTCondor-C Configuration

There are two aspects to configuration to enable the submission and execution of HTCondor-C jobs. These two aspects
correspond to the endpoints of the communication: there is the machine from which jobs are submitted, and there is
the remote machine upon which the jobs are placed in the queue (executed).

Configuration of a machine from which jobs are submitted requires a few extra configuration variables:

CONDOR_GAHP = $(SBIN)/condor_c-gahp
C_GAHP_LOG = /tmp/CGAHPLog.$(USERNAME)
C_GAHP_WORKER_THREAD_LOG = /tmp/CGAHPWorkerLog.$(USERNAME)
C_GAHP_WORKER_THREAD_LOCK = /tmp/CGAHPWorkerLock.$(USERNAME)

6.3. The Grid Universe 531

HTCondor Manual, Release 10.0.9

The acronym GAHP stands for Grid ASCII Helper Protocol. A GAHP server provides grid-related services for a variety
of underlying middle-ware systems. The configuration variable CONDOR_GAHP gives a full path to the GAHP server
utilized by HTCondor-C. The configuration variable C_GAHP_LOG defines the location of the log that the HTCondor
GAHP server writes. The log for the HTCondor GAHP is written as the user on whose behalf it is running; thus the
C_GAHP_LOG configuration variable must point to a location the end user can write to.

A submit machine must also have a condor_collector daemon to which the condor_schedd daemon can submit a query.
The query is for the location (IP address and port) of the intended remote machine’s condor_schedd daemon. This
facilitates communication between the two machines. This condor_collector does not need to be the same collector
that the local condor_schedd daemon reports to.

The machine upon which jobs are executed must also be configured correctly. This machine must be running a con-
dor_schedd daemon. Unless specified explicitly in a submit file, CONDOR_HOST must point to a condor_collector dae-
mon that it can write to, and the machine upon which jobs are submitted can read from. This facilitates communication
between the two machines.

An important aspect of configuration is the security configuration relating to authentication. HTCondor-C on the remote
machine relies on an authentication protocol to know the identity of the user under which to run a job. The following is
a working example of the security configuration for authentication. This authentication method, CLAIMTOBE, trusts
the identity claimed by a host or IP address.

SEC_DEFAULT_NEGOTIATION = OPTIONAL
SEC_DEFAULT_AUTHENTICATION_METHODS = CLAIMTOBE

Other working authentication methods are SSL, KERBEROS, and FS.

HTCondor-C Job Submission

Job submission of HTCondor-C jobs is the same as for any HTCondor job. The universe is grid. The submit com-
mand grid_resource specifies the remote condor_schedd daemon to which the job should be submitted, and its value
consists of three fields. The first field is the grid type, which is condor. The second field is the name of the remote
condor_schedd daemon. Its value is the same as the condor_schedd ClassAd attribute Name on the remote machine.
The third field is the name of the remote pool’s condor_collector.

The following represents a minimal submit description file for a job.

minimal submit description file for an HTCondor-C job
universe = grid
executable = myjob
output = myoutput
error = myerror
log = mylog

grid_resource = condor joe@remotemachine.example.com remotecentralmanager.example.com
+remote_jobuniverse = 5
+remote_requirements = True
+remote_ShouldTransferFiles = "YES"
+remote_WhenToTransferOutput = "ON_EXIT"
queue

The remote machine needs to understand the attributes of the job. These are specified in the submit description file
using the ‘+’ syntax, followed by the string remote_. At a minimum, this will be the job’s universe and the job’s
requirements. It is likely that other attributes specific to the job’s universe (on the remote pool) will also be necessary.

532 Chapter 6. Grid Computing

HTCondor Manual, Release 10.0.9

Note that attributes set with ‘+’ are inserted directly into the job’s ClassAd. Specify attributes as they must appear in
the job’s ClassAd, not the submit description file. For example, the universe is specified using an integer assigned for
a job ClassAd JobUniverse. Similarly, place quotation marks around string expressions. As an example, a submit
description file would ordinarily contain

when_to_transfer_output = ON_EXIT

This must appear in the HTCondor-C job submit description file as

+remote_WhenToTransferOutput = "ON_EXIT"

For convenience, the specific entries of universe and remote_grid_resource may be specified as remote_ commands
without the leading ‘+’. Instead of

+remote_universe = 5

the submit description file command may appear as

remote_universe = vanilla

Similarly, the command

+remote_gridresource = "condor schedd.example.com cm.example.com"

may be given as

remote_grid_resource = condor schedd.example.com cm.example.com

For the given example, the job is to be run as a vanilla universe job at the remote pool. The (remote pool’s) con-
dor_schedd daemon is likely to place its job queue data on a local disk and execute the job on another machine within
the pool of machines. This implies that the file systems for the resulting submit machine (the machine specified by
remote_schedd) and the execute machine (the machine that runs the job) will not be shared. Thus, the two inserted
ClassAd attributes

+remote_ShouldTransferFiles = "YES"
+remote_WhenToTransferOutput = "ON_EXIT"

are used to invoke HTCondor’s file transfer mechanism.

For communication between condor_schedd daemons on the submit and remote machines, the location of the remote
condor_schedd daemon is needed. This information resides in the condor_collector of the remote machine’s pool. The
third field of the grid_resource command in the submit description file says which condor_collector should be queried
for the remote condor_schedd daemon’s location. An example of this submit command is

grid_resource = condor schedd.example.com machine1.example.com

If the remote condor_collector is not listening on the standard port (9618), then the port it is listening on needs to be
specified:

grid_resource = condor schedd.example.com machine1.example.com:12345

File transfer of a job’s executable, stdin, stdout, and stderr are automatic. When other files need to be transferred
using HTCondor’s file transfer mechanism (see the Submitting Jobs Without a Shared File System: HTCondor’s File
Transfer Mechanism section), the mechanism is applied based on the resulting job universe on the remote machine.

6.3. The Grid Universe 533

HTCondor Manual, Release 10.0.9

HTCondor-C Jobs Between Differing Platforms

HTCondor-C jobs given to a remote machine running Windows must specify the Windows domain of the remote
machine. This is accomplished by defining a ClassAd attribute for the job. Where the Windows domain is different at
the submit machine from the remote machine, the submit description file defines the Windows domain of the remote
machine with

+remote_NTDomain = "DomainAtRemoteMachine"

A Windows machine not part of a domain defines the Windows domain as the machine name.

6.3.2 The arc Grid Type

NorduGrid is a project to develop free grid middleware named the Advanced Resource Connector (ARC). See the
NorduGrid web page (http://www.nordugrid.org) for more information about NorduGrid software.

NorduGrid ARC supports multiple job submission interfaces. The arc grid type uses their new REST interface.

HTCondor jobs may be submitted to ARC CE resources using the grid universe. The grid_resource command specifies
the name of the ARC CE service as follows:

grid_resource = arc https://arc.example.com:443/arex/rest/1.0

Only the hostname portion of the URL is required. Appropriate defaults will be used for the other components.

ARC accepts X.509 credentials and SciTokens for authentication. You must specify one of these two credential types
for your arc grid jobs. The submit description file command x509userproxy may be used to give the full path name
of an X.509 proxy file. The submit description file command scitokens_file may be used to give the full path name
of a SciTokens file. If both an X.509 proxy and a SciTokens file are provided, then only the SciTokens file is used for
authentication. Whenever an X.509 proxy is provided, it is delegated to the ARC CE for use by the job.

ARC CE allows sites to define Runtime Environment (RTE) labels that alter the environment in which a job runs. Jobs
can request one or move of these labels. For example, the ENV/PROXY label makes the user’s X.509 proxy available to
the job when it executes. Some of these labels have optional parameters for customization. The submit description file
command arc_rte can be used to request one of more of these labels. It is a comma-delimited list. If a label supports
optional parameters, they can be provided after the label separated by spaces. Here is an example showing use of two
standard RTE labels, one with an optional parameter:

arc_rte = ENV/RTE,ENV/PROXY USE_DELEGATION_DB

ARC CE uses ADL (Activity Description Language) syntax to describe jobs. The specification of the language can be
found here. HTCondor constructs an ADL description of the job based on attributes in the job ClassAd, but some ADL
elements don’t have an equivalent job ClassAd attribute. The submit description file command arc_resources can be
used to specify these elements if they fall under the <Resources> element of the ADL. The value should be a chunk
of XML text that could be inserted inside the <Resources> element. For example:

arc_resources = <NetworkInfo>gigabitethernet</NetworkInfo>

Similarly, submit description file command arc_application can be used to specify these elements if they fall under
the <Application> element of the ADL.

534 Chapter 6. Grid Computing

http://www.nordugrid.org
https://www.nordugrid.org/documents/EMI-ES-Specification_v1.16.pdf

HTCondor Manual, Release 10.0.9

6.3.3 The batch Grid Type (for SLURM, PBS, LSF, and SGE)

The batch grid type is used to submit to a local SLURM, PBS, LSF, or SGE system using the grid universe and the
grid_resource command by placing a variant of the following into the submit description file.

grid_resource = batch slurm

The second argument on the right hand side will be one of slurm, pbs, lsf, or sge.

Submission to a batch system on a remote machine using SSH is also possible. This is described below.

The batch GAHP server is a piece of software called the blahp. The configuration parameters BATCH_GAHP and
BLAHPD_LOCATION specify the locations of the main blahp binary and its dependent files, respectively. The blahp
has its own configuration file, located at /etc/blah.config ($(RELEASE_DIR)/etc/blah.config for a tarball release).

The batch GAHP supports translating certain job ClassAd attributes into the corresponding batch system submission
parameters. However, note that not all parameters are supported.

The following table summarizes how job ClassAd attributes will be translated into the corresponding Slurm job pa-
rameters.

Job ClassAd Slurm
RequestMemory --mem
BatchRuntime --time
BatchProject --account
Queue --partition
Queue --clusters
Unsupported --cpus-per-task

Note that for Slurm, Queue is used for both --partition and --clusters. If you use the partition@cluster
syntax, the partition will be set to whatever is before the @, and the cluster to whatever is after the @. If you only wish
to set the cluster, leave out the partition (e.g. use @cluster).

You can specify batch system parameters that HTCondor doesn’t have translations for using the
batch_extra_submit_args command in the submit description file.

batch_extra_submit_args = --cpus-per-task=4 --qos=fast

The condor_qsub command line tool will take PBS/SGE style batch files or command line arguments and submit the
job to HTCondor instead. See the condor_qsub manual page for details.

Remote batch Job Submission via SSH

HTCondor can submit jobs to a batch system on a remote machine via SSH. This requires an initial setup step that
installs some binaries under your home directory on the remote machine and creates an SSH key that allows SSH
authentication without the user typing a password. The setup command is condor_remote_cluster, which you should
run at the command line.

condor_remote_cluster --add alice@login.example.edu slurm

Once this setup command finishes successfully, you can submit jobs for the remote batch system by including the
username and hostname in the grid_resource command in your submit description file.

6.3. The Grid Universe 535

HTCondor Manual, Release 10.0.9

grid_resource = batch slurm alice@login.example.edu

Remote batch Job Submission via Reverse SSH

Submission to a batch system on a remote machine requires that HTCondor be able to establish an SSH connection using
just an ssh key for authentication. If the remote machine doesn’t allow ssh keys or requires Multi-Factor Authentication
(MFA), then the SSH connection can be established in the reverse connection using the Reverse GAHP. This requires
some extra setup and maintenance, and is not recommended if the normal SSH connection method can be made to
work.

For the Reverse GAHP to work, your local machine must be reachable on the network from the remote machine on the
SSH and HTCondor ports (22 and 9618, respectively). Also, your local machine must allow SSH logins using just an
ssh key for authentication.

First, run the condor_remote_cluster as you would for a regular remote SSH setup.

condor_remote_cluster --add alice@login.example.edu slurm

Second, create an ssh key that’s authorized to login to your account on your local machine and save the private key
on the remote machine. The private key should not be protected with a passphrase. In the following examples, we’ll
assume the ssh private key is named ~/.ssh/id_rsa_rvgahp.

Third, select a pathname on your local machine for a unix socket file that will be used by the Reverse GAHP components
to communicate with each other. The Reverse GAHP programs will create the file as your user identity, so we suggest
using a location under your home directory or /tmp. In the following examples, we’ll use /tmp/alice.rvgahp.
socket.

Fourth, on the remote machine, create a ~/bosco/glite/bin/rvgahp_ssh shell script like this:

#!/bin/bash
exec ssh -o "ServerAliveInterval 60" -o "BatchMode yes" -i ~/.ssh/id_rsa_rvgahp␣
→˓alice@submithost "/usr/sbin/rvgahp_proxy /tmp/alice.rvgahp.sock"

Run this script manually to ensure it works. It should print a couple messages from the rvgahp_proxy started on your
local machine. You can kill the program once it’s working correctly.

2022-03-23 13:06:08.304520 rvgahp_proxy[8169]: rvgahp_proxy starting...
2022-03-23 13:06:08.304766 rvgahp_proxy[8169]: UNIX socket: /tmp/alice.rvgahp.sock

Finally, run the rvgahp_server program on the remote machine. You must ensure it remains running during the entire
time you are submitting and running jobs on the batch system.

~/bosco/glite/bin/rvgahp_server -b ~/bosco/glite

Now, you can submit jobs for the remote batch system. Adding the –rvgahp-socket option to your grid_resource
submit command tells HTCondor to use the Reverse GAHP for the SSH connection.

grid_resource =␣
→˓batch slurm alice@login.example.edu --rvgahp-socket /tmp/alice.rvgahp.sock

536 Chapter 6. Grid Computing

HTCondor Manual, Release 10.0.9

6.3.4 The EC2 Grid Type

HTCondor jobs may be submitted to clouds supporting Amazon’s Elastic Compute Cloud (EC2) interface. The EC2
interface permits on-line commercial services that provide the rental of computers by the hour to run computational
applications. They run virtual machine images that have been uploaded to Amazon’s online storage service (S3 or
EBS). More information about Amazon’s EC2 service is available at http://aws.amazon.com/ec2.

The ec2 grid type uses the EC2 Query API, also called the EC2 REST API.

EC2 Job Submission

HTCondor jobs are submitted to an EC2 service with the grid universe, setting the grid_resource command to ec2,
followed by the service’s URL. For example, partial contents of the submit description file may be

grid_resource = ec2 https://ec2.us-east-1.amazonaws.com/

(Replace ‘us-east-1’ with the AWS region you’d like to use.)

Since the job is a virtual machine image, most of the submit description file commands specifying input or output
files are not applicable. The executable command is still required, but its value is ignored. It can be used to identify
different jobs in the output of condor_q.

The VM image for the job must already reside in one of Amazon’s storage service (S3 or EBS) and be registered with
EC2. In the submit description file, provide the identifier for the image using ec2_ami_id .

This grid type requires access to user authentication information, in the form of path names to files containing the
appropriate keys, with one exception, described below.

The ec2 grid type has two different authentication methods. The first authentication method uses the EC2 API’s built-in
authentication. Specify the service with expected http:// or https:// URL, and set the EC2 access key and secret
access key as follows:

ec2_access_key_id = /path/to/access.key
ec2_secret_access_key = /path/to/secret.key

The euca3:// and euca3s:// protocols must use this authentication method. These protocols exist to work correctly
when the resources do not support the InstanceInitiatedShutdownBehavior parameter.

The second authentication method for the EC2 grid type is X.509. Specify the service with an x509:// URL, even if
the URL was given in another form. Use ec2_access_key_id to specify the path to the X.509 public key (certificate),
which is not the same as the built-in authentication’s access key. ec2_secret_access_key specifies the path to the
X.509 private key, which is not the same as the built-in authentication’s secret key. The following example illustrates
the specification for X.509 authentication:

grid_resource = ec2 x509://service.example
ec2_access_key_id = /path/to/x.509/public.key
ec2_secret_access_key = /path/to/x.509/private.key

If using an X.509 proxy, specify the proxy in both places.

The exception to both of these cases applies when submitting EC2 jobs to an HTCondor running in an EC2 in-
stance. If that instance has been configured with sufficient privileges, you may specify FROM INSTANCE for either
ec2_access_key_id or ec2_secret_access_key, and HTCondor will use the instance’s credentials. (AWS grants an
EC2 instance access to temporary credentials, renewed over the instance’s lifetime, based on the instance’s assigned
IAM (instance) profile and the corresponding IAM role. You may specify the this information when launching an
instance or later, during its lifetime.)

6.3. The Grid Universe 537

http://aws.amazon.com/ec2

HTCondor Manual, Release 10.0.9

HTCondor can use the EC2 API to create an SSH key pair that allows secure log in to the virtual machine once it is
running. If the command ec2_keypair_file is set in the submit description file, HTCondor will write an SSH private
key into the indicated file. The key can be used to log into the virtual machine. Note that modification will also be
needed of the firewall rules for the job to incoming SSH connections.

An EC2 service uses a firewall to restrict network access to the virtual machine instances it runs. Typically, no in-
coming connections are allowed. One can define sets of firewall rules and give them names. The EC2 API calls
these security groups. If utilized, tell HTCondor what set of security groups should be applied to each VM using the
ec2_security_groups submit description file command. If not provided, HTCondor uses the security group default.
This command specifies security group names; to specify IDs, use ec2_security_ids . This may be necessary when
specifying a Virtual Private Cloud (VPC) instance.

To run an instance in a VPC, set ec2_vpc_subnet to the the desired VPC’s specification string. The instance’s IP
address may also be specified by setting ec2_vpc_id .

The EC2 API allows the choice of different hardware configurations for instances to run on. Select which configuration
to use for the ec2 grid type with the ec2_instance_type submit description file command. HTCondor provides no
default.

Certain instance types provide additional block devices whose names must be mapped to kernel device names in order
to be used. The ec2_block_device_mapping submit description file command allows specification of these maps. A
map is a device name followed by a colon, followed by kernel name; maps are separated by a commas, and/or spaces.
For example, to specify that the first ephemeral device should be /dev/sdb and the second /dev/sdc:

ec2_block_device_mapping = ephemeral0:/dev/sdb, ephemeral1:/dev/sdc

Each virtual machine instance can be given up to 16 KiB of unique data, accessible by the instance by connecting
to a well-known address. This makes it easy for many instances to share the same VM image, but perform different
work. This data can be specified to HTCondor in one of two ways. First, the data can be provided directly in the
submit description file using the ec2_user_data command. Second, the data can be stored in a file, and the file name
is specified with the ec2_user_data_file submit description file command. This second option allows the use of binary
data. If both options are used, the two blocks of data are concatenated, with the data from ec2_user_data occurring
first. HTCondor performs the base64 encoding that EC2 expects on the data.

Amazon also offers an Identity and Access Management (IAM) service. To specify an IAM (instance) profile for an
EC2 job, use submit commands ec2_iam_profile_name or ec2_iam_profile_arn .

Termination of EC2 Jobs

A protocol defines the shutdown procedure for jobs running as EC2 instances. The service is told to shut down the
instance, and the service acknowledges. The service then advances the instance to a state in which the termination is
imminent, but the job is given time to shut down gracefully.

Once this state is reached, some services other than Amazon cannot be relied upon to actually terminate the job.
Thus, HTCondor must check that the instance has terminated before removing the job from the queue. This avoids the
possibility of HTCondor losing track of a job while it is still accumulating charges on the service.

HTCondor checks after a fixed time interval that the job actually has terminated. If the job has not terminated after a
total of four checks, the job is placed on hold.

538 Chapter 6. Grid Computing

HTCondor Manual, Release 10.0.9

Using Spot Instances

EC2 jobs may also be submitted to clouds that support spot instances. A spot instance differs from a conventional,
or dedicated, instance in two primary ways. First, the instance price varies according to demand. Second, the cloud
provider may terminate the instance prematurely. To start a spot instance, the submitter specifies a bid, which represents
the most the submitter is willing to pay per hour to run the VM. Within HTCondor, the submit command ec2_spot_price
specifies this floating point value. For example, to bid 1.1 cents per hour on Amazon:

ec2_spot_price = 0.011

Note that the EC2 API does not specify how the cloud provider should interpret the bid. Empirically, Amazon uses
fractional US dollars.

Other submission details for a spot instance are identical to those for a dedicated instance.

A spot instance will not necessarily begin immediately. Instead, it will begin as soon as the price drops below the bid.
Thus, spot instance jobs may remain in the idle state for much longer than dedicated instance jobs, as they wait for the
price to drop. Furthermore, if the price rises above the bid, the cloud service will terminate the instance.

More information about Amazon’s spot instances is available at http://aws.amazon.com/ec2/spot-instances/.

EC2 Advanced Usage

Additional control of EC2 instances is available in the form of permitting the direct specification of instance creation
parameters. To set an instance creation parameter, first list its name in the submit command ec2_parameter_names , a
space or comma separated list. The parameter may need to be properly capitalized. Also tell HTCondor the parameter’s
value, by specifying it as a submit command whose name begins with ec2_parameter_; dots within the parameter name
must be written as underscores in the submit command name.

For example, the submit description file commands to set parameter IamInstanceProfile.Name to value
ExampleProfile are

ec2_parameter_names = IamInstanceProfile.Name
ec2_parameter_IamInstanceProfile_Name = ExampleProfile

EC2 Configuration Variables

The configuration variables EC2_GAHP and EC2_GAHP_LOG must be set, and by default are equal to $(SBIN)/ec2_gahp
and /tmp/EC2GahpLog.$(USERNAME), respectively.

The configuration variable EC2_GAHP_DEBUG is optional and defaults to D_PID; we recommend you keep D_PID if
you change the default, to disambiguate between the logs of different resources specified by the same user.

Communicating with an EC2 Service

The ec2 grid type does not presently permit the explicit use of an HTTP proxy.

By default, HTCondor assumes that EC2 services are reliably available. If an attempt to contact a service during
the normal course of operation fails, HTCondor makes a special attempt to contact the service. If this attempt fails,
the service is marked as down, and normal operation for that service is suspended until a subsequent special attempt
succeeds. The jobs using that service do not go on hold. To place jobs on hold when their service becomes unavailable,
set configuration variable EC2_RESOURCE_TIMEOUT to the number of seconds to delay before placing the job on hold.
The default value of -1 for this variable implements an infinite delay, such that the job is never placed on hold. When
setting this value, consider the value of configuration variable GRIDMANAGER_RESOURCE_PROBE_INTERVAL , which
sets the number of seconds that HTCondor will wait after each special contact attempt before trying again.

6.3. The Grid Universe 539

http://aws.amazon.com/ec2/spot-instances/

HTCondor Manual, Release 10.0.9

By default, the EC2 GAHP enforces a 100 millisecond interval between requests to the same service. This helps ensure
reliable service. You may configure this interval with the configuration variable EC2_GAHP_RATE_LIMIT, which must
be an integer number of milliseconds. Adjusting the interval may result in higher or lower throughput, depending on
the service. Too short of an interval may trigger rate-limiting by the service; while HTCondor will react appropriately
(by retrying with an exponential back-off), it may be more efficient to configure a longer interval.

Secure Communication with an EC2 Service

The specification of a service with an https://, an x509://, or an euca3s:// URL validates that service’s cer-
tificate, checking that a trusted certificate authority (CA) signed it. Commercial EC2 service providers generally use
certificates signed by widely-recognized CAs. These CAs will usually work without any additional configuration. For
other providers, a specification of trusted CAs may be needed. Without, errors such as the following will be in the EC2
GAHP log:

06/13/13 15:16:16 curl_easy_perform() failed (60):
'Peer certificate cannot be authenticated with given CA certificates'.

Specify trusted CAs by including their certificates in a group of trusted CAs either in an on disk directory or in a single
file. Either of these alternatives may contain multiple certificates. Which is used will vary from system to system,
depending on the system’s SSL implementation. HTCondor uses libcurl; information about the libcurl specification of
trusted CAs is available at

http://curl.haxx.se/libcurl/c/curl_easy_setopt.html

The behavior when specifying both a directory and a file is undefined, although the EC2 GAHP allows it.

The EC2 GAHP will set the CA file to whichever variable it finds first, checking these in the following order:

1. The environment variable X509_CERT_FILE, set when the condor_master starts up.

2. The HTCondor configuration variable GAHP_SSL_CAFILE .

The EC2 GAHP supplies no default value, if it does not find a CA file.

The EC2 GAHP will set the CA directory given whichever of these variables it finds first, checking in the following
order:

1. The environment variable X509_CERT_DIR, set when the condor_master starts up.

2. The HTCondor configuration variable GAHP_SSL_CADIR .

The EC2 GAHP supplies no default value, if it does not find a CA directory.

EC2 GAHP Statistics

The EC2 GAHP tracks, and reports in the corresponding grid resource ad, statistics related to resource’s rate limit.

NumRequests: The total number of requests made by HTCondor to this resource.

NumDistinctRequests: The number of distinct requests made by HTCondor to this resource. The difference between
this and NumRequests is the total number of retries. Retries are not unusual.

NumRequestsExceedingLimit: The number of requests which exceeded the service’s rate limit. Each such request
will cause a retry, unless the maximum number of retries is exceeded, or if the retries have already taken so long
that the signature on the original request has expired.

NumExpiredSignatures: The number of requests which the EC2 GAHP did not even attempt to send to the service
because signature expired. Signatures should not, generally, expire; a request’s retries will usually - eventually -
succeed.

540 Chapter 6. Grid Computing

http://curl.haxx.se/libcurl/c/curl_easy_setopt.html

HTCondor Manual, Release 10.0.9

6.3.5 The GCE Grid Type

HTCondor jobs may be submitted to the Google Compute Engine (GCE) cloud service. GCE is an on-line commercial
service that provides the rental of computers by the hour to run computational applications. Its runs virtual machine
images that have been uploaded to Google’s servers. More information about Google Compute Engine is available at
http://cloud.google.com/Compute.

GCE Job Submission

HTCondor jobs are submitted to the GCE service with the grid universe, setting the grid_resource command to gce,
followed by the service’s URL, your GCE project, and the desired GCE zone to be used. The submit description file
command will be similar to:

grid_resource = gce https://www.googleapis.com/compute/v1 my_proj us-central1-a

Since the HTCondor job is a virtual machine image, most of the submit description file commands specifying input or
output files are not applicable. The executable command is still required, but its value is ignored. It identifies different
jobs in the output of condor_q.

The VM image for the job must already reside in Google’s Cloud Storage service and be registered with GCE. In the
submit description file, provide the identifier for the image using the gce_image command.

This grid type requires granting HTCondor permission to use your Google account. The easiest way to do this is to use
the gcloud command-line tool distributed by Google. Find gcloud and documentation for it at https://cloud.google.
com/compute/docs/gcloud-compute/. After installation of gcloud, run gcloud auth login and follow its directions.
Once done with that step, the tool will write authorization credentials to the file .config/gcloud/credentials
under your HOME directory.

Given an authorization file, specify its location in the submit description file using the gce_auth_file command, as in
the example:

gce_auth_file = /path/to/auth-file

GCE allows the choice of different hardware configurations for instances to run on. Select which configuration to use
for the gce grid type with the gce_machine_type submit description file command. HTCondor provides no default.

Each virtual machine instance can be given a unique set of metadata, which consists of name/value pairs, similar to the
environment variables of regular jobs. The instance can query its metadata via a well-known address. This makes it easy
for many instances to share the same VM image, but perform different work. This data can be specified to HTCondor
in one of two ways. First, the data can be provided directly in the submit description file using the gce_metadata
command. The value should be a comma-separated list of name=value settings, as the example:

gce_metadata = setting1=foo,setting2=bar

Second, the data can be stored in a file, and the file name is specified with the gce_metadata_file submit description file
command. This second option allows a wider range of characters to be used in the metadata values. Each name=value
pair should be on its own line. No white space is removed from the lines, except for the newline that separates entries.

Both options can be used at the same time, but do not use the same metadata name in both places.

HTCondor sets the following elements when describing the instance to the GCE server: machineType, name, schedul-
ing, disks, metadata, and networkInterfaces. You can provide additional elements to be included in the instance
description as a block of JSON. Write the additional elements to a file, and specify the filename in your submit file with
the gce_json_file command. The contents of the file are inserted into HTCondor’s JSON description of the instance,
between a comma and the closing brace.

6.3. The Grid Universe 541

http://cloud.google.com/Compute
https://cloud.google.com/compute/docs/gcloud-compute/
https://cloud.google.com/compute/docs/gcloud-compute/

HTCondor Manual, Release 10.0.9

Here’s a sample JSON file that sets two additional elements:

"canIpForward": True,
"description": "My first instance"

GCE Configuration Variables

The following configuration parameters are specific to the gce grid type. The values listed here are the defaults. Dif-
ferent values may be specified in the HTCondor configuration files. To work around an issue where long-running
gce_gahp processes have trouble authenticating, the gce_gahp self-restarts periodically, with the default value of 24
hours. You can set the number of seconds between restarts using GCE_GAHP_LIFETIME, where zero means to never
restart. Restarting the gce_gahp does not affect the jobs themselves.

GCE_GAHP = $(SBIN)/gce_gahp
GCE_GAHP_LOG = /tmp/GceGahpLog.$(USERNAME)
GCE_GAHP_LIFETIME = 86400

6.3.6 The Azure Grid Type

HTCondor jobs may be submitted to the Microsoft Azure cloud service. Azure is an on-line commercial service that
provides the rental of computers by the hour to run computational applications. It runs virtual machine images that
have been uploaded to Azure’s servers. More information about Azure is available at https://azure.microsoft.com.

Azure Job Submission

HTCondor jobs are submitted to the Azure service with the grid universe, setting the grid_resource command to
azure, followed by your Azure subscription id. The submit description file command will be similar to:

grid_resource = azure 4843bfe3-1ebe-423e-a6ea-c777e57700a9

Since the HTCondor job is a virtual machine image, most of the submit description file commands specifying input or
output files are not applicable. The executable command is still required, but its value is ignored. It identifies different
jobs in the output of condor_q.

The VM image for the job must already be registered a virtual machine image in Azure. In the submit description file,
provide the identifier for the image using the azure_image command.

This grid type requires granting HTCondor permission to use your Azure account. The easiest way to do this is to use
the az command-line tool distributed by Microsoft. Find az and documentation for it at https://docs.microsoft.com/
en-us/cli/azure/?view=azure-cli-latest. After installation of az, run az login and follow its directions. Once done with
that step, the tool will write authorization credentials in a file under your HOME directory. HTCondor will use these
credentials to communicate with Azure.

You can also set up a service account in Azure for HTCondor to use. This lets you limit the level of access HTCondor
has to your Azure account. Instructions for creating a service account can be found here: https://htcondor.org/gahp/
AzureGAHPSetup.docx.

Once you have created a file containing the service account credentials, you can specify its location in the submit
description file using the azure_auth_file command, as in the example:

azure_auth_file = /path/to/auth-file

542 Chapter 6. Grid Computing

https://azure.microsoft.com
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://htcondor.org/gahp/AzureGAHPSetup.docx
https://htcondor.org/gahp/AzureGAHPSetup.docx

HTCondor Manual, Release 10.0.9

Azure allows the choice of different hardware configurations for instances to run on. Select which configuration to use
for the azure grid type with the azure_size submit description file command. HTCondor provides no default.

Azure has many locations where instances can be run (i.e. multiple data centers distributed throughout the world). You
can select which location to use with the azure_location submit description file command.

Azure creates an administrator account within each instance, which you can log into remote via SSH. You can select
the name of the account with the azure_admin_username command. You can supply the name of a file containing an
SSH public key that will allow access to the administrator account with the azure_admin_key command.

6.4 The HTCondor Job Router

The HTCondor Job Router is an add-on to the condor_schedd that transforms jobs from one type into another according
to a configurable policy. This process of transforming the jobs is called job routing.

One example of how the Job Router can be used is for the task of sending excess jobs to one or more remote grid sites.
The Job Router can transform the jobs such as vanilla universe jobs into grid universe jobs that use any of the grid types
supported by HTCondor. The rate at which jobs are routed can be matched roughly to the rate at which the site is able
to start running them. This makes it possible to balance a large work flow across multiple grid sites, a local HTCondor
pool, and any flocked HTCondor pools, without having to guess in advance how quickly jobs will run and complete in
each of the different sites.

Job Routing is most appropriate for high throughput work flows, where there are many more jobs than computers, and
the goal is to keep as many of the computers busy as possible. Job Routing is less suitable when there are a small
number of jobs, and the scheduler needs to choose the best place for each job, in order to finish them as quickly as
possible. The Job Router does not know which site will run the jobs faster, but it can decide whether to send more
jobs to a site, based on whether jobs already submitted to that site are sitting idle or not, as well as whether the site has
experienced recent job failures.

6.4.1 Routing Mechanism

The condor_job_router daemon and configuration determine a policy for which jobs may be transformed and sent to
grid sites. By default, a job is transformed into a grid universe job by making a copy of the original job ClassAd, and
modifying some attributes in this copy of the job. The copy is called the routed copy, and it shows up in the job queue
under a new job id.

Until the routed copy finishes or is removed, the original copy of the job passively mirrors the state of the routed job.
During this time, the original job is not available for matchmaking, because it is tied to the routed copy. The original job
also does not evaluate periodic expressions, such as PeriodicHold. Periodic expressions are evaluated for the routed
copy. When the routed copy completes, the original job ClassAd is updated such that it reflects the final status of the
job. If the routed copy is removed, the original job returns to the normal idle state, and is available for matchmaking
or rerouting. If, instead, the original job is removed or goes on hold, the routed copy is removed.

Although the default mode routes vanilla universe jobs to grid universe jobs, the routing rules may be configured to do
some other transformation of the job. It is also possible to edit the job in place rather than creating a new transformed
version of the job.

The condor_job_router daemon utilizes a routing table, in which a ClassAd transform describes each site to where jobs
may be sent.

There is also a list of pre-route and post-route transforms that are applied whenever a job is routed.

The routing table is given as a set of configuration macros. Each configuration macro is given in the job transform
language. This is the same transform language used by the condor_schedd for job transforms. This language is similar

6.4. The HTCondor Job Router 543

HTCondor Manual, Release 10.0.9

to the condor_submit language, but has commands to describe the transform steps and optional macro values such as
MaxJobs that can control the way the route is used.

When a route matches a job, and the condor_job_router is about to apply the routing transform, it will first apply all
of the pre-route transforms that match that job, then it will apply the routing transform, then it will apply all of the
post-route transforms that match the job.

In older versions the routing table was given as a list of ClassAds, and for backwards compatibility this form of con-
figuration is still supported - It will be converted automatically into a set of job transforms.

6.4.2 Job Submission with Job Routing Capability

If Job Routing is set up, then the following items ought to be considered for jobs to have the necessary prerequisites to
be considered for routing.

• Jobs appropriate for routing to the grid must not rely on access to a shared file system, or other services that are
only available on the local pool. The job will use HTCondor’s file transfer mechanism, rather than relying on a
shared file system to access input files and write output files. In the submit description file, to enable file transfer,
there will be a set of commands similar to

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = input1, input2
transfer_output_files = output1, output2

Vanilla universe jobs and most types of grid universe jobs differ in the set of files transferred back when the job
completes. Vanilla universe jobs transfer back all files created or modified, while all grid universe jobs, except
for HTCondor-C, only transfer back the output file, as well as those explicitly listed with transfer_output_files
. Therefore, when routing jobs to grid universes other than HTCondor-C, it is important to explicitly specify all
output files that must be transferred upon job completion.

• One configuration for routed jobs requires the jobs to identify themselves as candidates for Job Routing. This may
be accomplished by inventing a ClassAd attribute that the configuration utilizes in setting the policy for job iden-
tification, and the job defines this attribute to identify itself. If the invented attribute is called WantJobRouter,
then the job identifies itself as a job that may be routed by placing in the submit description file:

+WantJobRouter = True

This implementation can be taken further, allowing the job to first be rejected within the local pool, before being
a candidate for Job Routing:

+WantJobRouter = LastRejMatchTime =!= UNDEFINED

• As appropriate to the potential grid site, create a grid proxy, and specify it in the submit description file:

x509userproxy = /tmp/x509up_u275

This is not necessary if the condor_job_router daemon is configured to add a grid proxy on behalf of jobs.

Job submission does not change for jobs that may be routed.

$ condor_submit job1.sub

where job1.sub might contain:

544 Chapter 6. Grid Computing

HTCondor Manual, Release 10.0.9

universe = vanilla
executable = my_executable
output = job1.stdout
error = job1.stderr
log = job1.ulog
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
+WantJobRouter = LastRejMatchTime =!= UNDEFINED
x509userproxy = /tmp/x509up_u275
queue

The status of the job may be observed as with any other HTCondor job, for example by looking in the job’s log file.
Before the job completes, condor_q shows the job’s status. Should the job become routed, a second job will enter the
job queue. This is the routed copy of the original job. The command condor_router_q shows a more specialized view
of routed jobs, as this example shows:

$ condor_router_q -S
JOBS ST Route GridResource
40 I Site1 site1.edu/jobmanager-condor
10 I Site2 site2.edu/jobmanager-pbs
2 R Site3 condor submit.site3.edu condor.site3.edu

condor_router_history summarizes the history of routed jobs, as this example shows:

$ condor_router_history
Routed job history from 2007-06-27 23:38 to 2007-06-28 23:38

Site Hours Jobs Runs
Completed Aborted

Site1 10 2 0
Site2 8 2 1
Site3 40 6 0

TOTAL 58 10 1

6.4.3 An Example Configuration

The following sample configuration sets up potential job routing to three routes (grid sites). Definitions of the config-
uration variables specific to the Job Router are in the condor_job_router Configuration File Entries section. One route
a local SLURM cluster. A second route is cluster accessed via ARC CE. The third site is an HTCondor site accessed
by HTCondor-C. The condor_job_router daemon does not know which site will be best for a given job. The policy
implemented in this sample configuration stops sending more jobs to a site, if ten jobs that have already been sent to
that site are idle.

These configuration settings belong in the local configuration file of the machine where jobs are submitted. Check that
the machine can successfully submit grid jobs before setting up and using the Job Router. Typically, the single required
element that needs to be added for SSL authentication is an X.509 trusted certification authority directory, in a place
recognized by HTCondor (for example, /etc/grid-security/certificates).

Note that, as of version 8.5.6, the configuration language supports multi-line values, as shown in the example below
(see the Multi-Line Values section for more details).

6.4. The HTCondor Job Router 545

HTCondor Manual, Release 10.0.9

The list of enabled routes is specified by JOB_ROUTER_ROUTE_NAMES, routes will be considered in the order given by
this configuration variable.

define a global constraint, only jobs that match this will be considered for routing
JOB_ROUTER_SOURCE_JOB_CONSTRAINT = WantJobRouter

define a default maximum number of jobs that will be matched to each route
and a limit on the number of idle jobs a route may have before we stop using it.
JOB_ROUTER_DEFAULT_MAX_JOBS_PER_ROUTE = 200
JOB_ROUTER_DEFAULT_MAX_IDLE_JOBS_PER_ROUTE = 10

This could be made an attribute of the job, rather than being hard-coded
ROUTED_JOB_MAX_TIME = 1440

Now we define each of the routes to send jobs to
JOB_ROUTER_ROUTE_NAMES = Site1 Site2 CondorSite

JOB_ROUTER_ROUTE_Site1 @=rt
GridResource = "batch slurm"

@rt

JOB_ROUTER_ROUTE_Site2 @=rt
GridResource = "arc site2.edu"
SET ArcRte = "ENV/PROXY"

@rt

JOB_ROUTER_ROUTE_CondorSite @=rt
MaxIdleJobs = 20
GridResource = "condor submit.site3.edu cm.site3.edu"
SET remote_jobuniverse = 5

@rt

define a pre-route transform that does the transforms all routes should do
JOB_ROUTER_PRE_ROUTE_TRANSFORM_NAMES = Defaults

JOB_ROUTER_TRANSFORM_Defaults @=jrd
remove routed job if it goes on hold or stays idle for over 6 hours
SET PeriodicRemove = JobStatus == 5 || \

(JobStatus == 1 && (time() - QDate) > 3600*6))
delete the global SOURCE_JOB_CONSTRAINT attribute so that routed jobs will not be␣

→˓routed again
DELETE WantJobRouter
SET Requirements = true

@jrd

Reminder: you must restart HTCondor for changes to DAEMON_LIST to take effect.
DAEMON_LIST = $(DAEMON_LIST) JOB_ROUTER

For testing, set this to a small value to speed things up.
Once you are running at large scale, set it to a higher value
to prevent the JobRouter from using too much cpu.
JOB_ROUTER_POLLING_PERIOD = 10

(continues on next page)

546 Chapter 6. Grid Computing

HTCondor Manual, Release 10.0.9

(continued from previous page)

#It is good to save lots of schedd queue history
#for use with the router_history command.
MAX_HISTORY_ROTATIONS = 20

6.4.4 Routing Table Entry Commands and Macro values

A route consists of a sequence of Macro values and commands which are applied in order to produce the routed job
ClassAd. Certain macro names have special meaning when used in a router transform. These special macro names
are listed below along a brief listing of the the transform commands. For a more detailed description of the transform
commands refer to the Transform Commands section.

The conversion of a job to a routed copy will usually require the job ClassAd to be modified. The Routing Table
specifies attributes of the different possible routes and it may specify specific modifications that should be made to the
job when it is sent along a specific route. In addition to this mechanism for transforming the job, external programs
may be invoked to transform the job. For more information, see the Hooks for the Job Router section.

The following attributes and instructions for modifying job attributes may appear in a Routing Table entry.

GridResource Specifies the value for the GridResource attribute that will be inserted into the routed copy of the
job’s ClassAd.

Requirements A Requirements expression that identifies jobs that may be matched to the route. If there is a
JOB_ROUTER_SOURCE_JOB_CONSTRAINT then only jobs that match that constraint and this Requirements ex-
pression can match this route.

MaxJobs An integer maximum number of jobs permitted on the route at one time. The default is 100.

MaxIdleJobs An integer maximum number of routed jobs in the idle state. At or above this value, no more jobs will
be sent to this site. This is intended to prevent too many jobs from being sent to sites which are too busy to run
them. If the value set for this attribute is too small, the rate of job submission to the site will slow, because the
condor_job_router daemon will submit jobs up to this limit, wait to see some of the jobs enter the running state,
and then submit more. The disadvantage of setting this attribute’s value too high is that a lot of jobs may be sent
to a site, only to site idle for hours or days. The default value is 50.

FailureRateThreshold A maximum tolerated rate of job failures. Failure is determined by the expression sets
for the attribute JobFailureTest expression. The default threshold is 0.03 jobs/second. If the threshold is
exceeded, submission of new jobs is throttled until jobs begin succeeding, such that the failure rate is less than
the threshold. This attribute implements black hole throttling, such that a site at which jobs are sent only to fail
(a black hole) receives fewer jobs.

JobFailureTest An expression evaluated for each job that finishes, to determine whether it was a failure. The default
value if no expression is defined assumes all jobs are successful. Routed jobs that are removed are considered
to be failures. An example expression to treat all jobs running for less than 30 minutes as failures is target.
RemoteWallClockTime < 1800. A more flexible expression might reference a property or expression of the
job that specifies a failure condition specific to the type of job.

6.4. The HTCondor Job Router 547

HTCondor Manual, Release 10.0.9

SendIDTokens A string expression that lists the names of the IDTOKENS to add to the input file transfer
list of the routed job. The string should list one or more of the IDTOKEN names specified by the
JOB_ROUTER_CREATE_IDTOKEN_NAMES configuration variable. if SendIDTokens is not specified, then the
value of the JobRouter configuration variable JOB_ROUTER_SEND_ROUTE_IDTOKENS will be used.

UseSharedX509UserProxy A boolean expression that when True causes the value of SharedX509UserProxy to be
the X.509 user proxy for the routed job. Note that if the condor_job_router daemon is running as root, the copy
of this file that is given to the job will have its ownership set to that of the user running the job. This requires
the trust of the user. It is therefore recommended to avoid this mechanism when possible. Instead, require users
to submit jobs with X509UserProxy set in the submit description file. If this feature is needed, use the boolean
expression to only allow specific values of target.Owner to use this shared proxy file. The shared proxy file
should be owned by the condor user. Currently, to use a shared proxy, the job must also turn on sandboxing by
having the attribute JobShouldBeSandboxed.

SharedX509UserProxy A string representing file containing the X.509 user proxy for the routed job.

JobShouldBeSandboxed A boolean expression that when True causes the created copy of the job to be sandboxed.
A copy of the input files will be placed in the condor_schedd daemon’s spool area for the target job, and when
the job runs, the output will be staged back into the spool area. Once all of the output has been successfully
staged back, it will be copied again, this time from the spool area of the sandboxed job back to the original job’s
output locations. By default, sandboxing is turned off. Only to turn it on if using a shared X.509 user proxy or
if direct staging of remote output files back to the final output locations is not desired.

EditJobInPlace A boolean expression that, when True, causes the original job to be transformed in place rather
than creating a new transformed version (a routed copy) of the job. In this mode, the Job Router Hook
<Keyword>_HOOK_TRANSLATE_JOB and transformation rules in the routing table are applied during the job
transformation. The routing table attribute GridResource is ignored, and there is no default transformation of
the job from a vanilla job to a grid universe job as there is otherwise. Once transformed, the job is still a candidate
for matching routing rules, so it is up to the routing logic to control whether the job may be transformed multiple
times or not. For example, to transform the job only once, an attribute could be set in the job ClassAd to prevent
it from matching the same routing rule in the future. To transform the job multiple times with limited frequency,
a timestamp could be inserted into the job ClassAd marking the time of the last transformation, and the routing
entry could require that this timestamp either be undefined or older than some limit.

An universe name or integer value specifying the desired universe for the routed copy of the job. The default value is
9, which is the grid universe.

SET <ATTR> Sets the value of <ATTR> in the routed copy’s job ClassAd to the specified value. An example of an
attribute that might be set is PeriodicRemove. For example, if the routed job goes on hold or stays idle for too
long, remove it and return the original copy of the job to a normal state.

DEFAULT <ATTR> Sets the value of <ATTR> if the value is currently missing or undefined. This is equivalent to

if ! defined MY.<Attr>
SET <Attr> <value>

endif

548 Chapter 6. Grid Computing

HTCondor Manual, Release 10.0.9

EVALSET <ATTR> Defines an expression. The expression is evaluated, and the resulting value sets the value of the
routed copy’s job ClassAd attribute <ATTR>. Use this when the attribute must not be an expression or when
information available only to the condor_job_router is needed to determine the value.

EVALMACRO <var> Defines an expression. The expression is evaluated, and the resulting value is store in the tempo-
rary variable <var>. $(var) can the be used in later statements in this route or in a later transform that is part of
this route. This is often use to evaluate complex expressions that can later be used in if statements in the route.

COPY <ATTR> Copies the value of <ATTR> from the original attribute name to a new attribute name in the routed copy.
Useful to save the value of an expression that you intend to change as part of the route so that the value prior to
routing is still visible in the job ClassAd.

COPY /<regex>/ Copies all attributes that match the regular expression <regex> to new attribute names.

RENAME <ATTR> Renames the attribute <ATTR> to a new attribute name. This is the equivalent of a COPY statement
followed by a DELETE statement.

RENAME /<regex>/ Renames all attributes that match the regular expression <regex> to new attribute names.

DELETE <ATTR> Deletes <ATTR> from the routed copy of the job ClassAd.

DELETE /<regex>/ Deletes all attributes that match the regular expression <regex> from the routed copy of the job.

6.4.5 Deprecated router configuration

Prior to version 8.9.7 the condor_job_router used a list of ClassAds to configure the routes. This form of configuration
is still supported. It will be converted at load time to the new syntax.

A good place to learn about the syntax of ClassAds is the Informal Language Description in the C++ ClassAds tu-
torial: http://htcondor.org/classad/c++tut.html. Two essential differences distinguish the ClassAd syntax used by the
condor_job_router from the syntax used in most other areas of HTCondor. In the router configuration, each ClassAd
is surrounded by square brackets. And each assignment statement ends with a semicolon. Newlines are ignored by the
parser. Thus When the ClassAd is embedded in an HTCondor configuration file, it may appear all on a single line,
but the readability is often improved by inserting line continuation characters after each assignment statement. This is
done in the examples. Unfortunately, this makes the insertion of comments into the configuration file awkward, because
of the interaction between comments and line continuation characters in configuration files. An alternative is to use
C-style comments (/* ...*/). Another alternative is to read in the routing table entries from a separate file, rather
than embedding them in the HTCondor configuration file.

Note that, as of version 8.5.6, the configuration language supports multi-line values, as shown in the example below
(see the Multi-Line Values section for more details).

As of version 8.8.7, the order in which routes are considered can be configured by specifying
JOB_ROUTER_ROUTE_NAMES. Prior to that version the order in which routes were considered could not be
specified and so routes were normally given mutually exclusive requirements.

These settings become the default settings for all routes
because they are merged with each route before the route is applied
JOB_ROUTER_DEFAULTS @=jrd
[

(continues on next page)

6.4. The HTCondor Job Router 549

http://htcondor.org/classad/c++tut.html

HTCondor Manual, Release 10.0.9

(continued from previous page)

requirements=target.WantJobRouter is True;
MaxIdleJobs = 10;
MaxJobs = 200;

/* now modify routed job attributes */
/* remove routed job if it goes on hold or stays idle for over 6 hours */
set_PeriodicRemove = JobStatus == 5 ||

(JobStatus == 1 && (time() - QDate) > 3600*6);
delete_WantJobRouter = true;
set_requirements = true;

]
@jrd

This could be made an attribute of the job, rather than being hard-coded
ROUTED_JOB_MAX_TIME = 1440

Now we define each of the routes to send jobs on
JOB_ROUTER_ENTRIES @=jre
[GridResource = "batch slurm";
name = "Site_1";

]
[GridResource = "arc site2.edu";
name = "Site_2";
set_ArcRte = "ENV/PROXY";

]
[GridResource = "condor submit.site3.edu cm.site3.edu";
name = "Site_3";
set_remote_jobuniverse = 5;

]
@jre

Optionally define the order that routes should be considered
uncomment this line to declare the order
#JOB_ROUTER_ROUTE_NAMES = Site_1 Site_2 Site_3

6.4.6 Deprecated Routing Table Entry ClassAd Attributes

In the deprecated condor_job_router configuration, each route is the result of merging the JOB_ROUTER_DEFAULTS
ClassAd with one of the JOB_ROUTER_ENTRIES ClassAds, with attributes specified in JOB_ROUTER_ENTRIES
overriding those specified in JOB_ROUTER_DEFAULTS.

Name An optional identifier that will be used in log messages concerning this route. If no name is specified, the default
used will be the value of GridResource. The condor_job_router distinguishes routes and advertises statistics
based on this attribute’s value.

TargetUniverse An integer value specifying the desired universe for the routed copy of the job. The default value
is 9, which is the grid universe.

550 Chapter 6. Grid Computing

HTCondor Manual, Release 10.0.9

OverrideRoutingEntry A boolean value that when True, indicates that this entry in the routing table replaces any
previous entry in the table with the same name. When False, it indicates that if there is a previous entry by the
same name, the previous entry should be retained and this entry should be ignored. The default value is True.

Set_<ATTR> Sets the value of <ATTR> in the routed copy’s job ClassAd to the specified value. An example of an
attribute that might be set is PeriodicRemove. For example, if the routed job goes on hold or stays idle for too
long, remove it and return the original copy of the job to a normal state.

Eval_Set_<ATTR> Defines an expression. The expression is evaluated, and the resulting value sets the value of the
routed copy’s job ClassAd attribute <ATTR>. Use this attribute to set a custom or local value, especially for
modifying an attribute which may have been already specified in a default routing table.

Copy_<ATTR> Defined with the name of a routed copy ClassAd attribute. Copies the value of <ATTR> from the original
job ClassAd into the specified attribute named of the routed copy. Useful to save the value of an expression, before
replacing it with something else that references the original expression.

Delete_<ATTR> Deletes <ATTR> from the routed copy ClassAd. A value assigned to this attribute in the routing table
entry is ignored.

6.4. The HTCondor Job Router 551

HTCondor Manual, Release 10.0.9

552 Chapter 6. Grid Computing

CHAPTER

SEVEN

CLOUD COMPUTING

Although HTCondor has long supported accessing cloud resources as though they were part of the Grid, the differences
between clouds and the Grid have made it difficult to convert access into utility; a job in the Grid universe starts a virtual
machine, rather than the user’s executable.

We offer two solutions to this problem. The first, a tool called condor_annex, helps users or administrators extend an
existing HTCondor pool with cloud resources. The second is an easy way to create an entire HTCondor pool from
scratch on the cloud, using our Google Cloud Marketplace Entry.

The rest of this chapter is concerned with using the condor_annex tool to add nodes to an existing HTCondor pool; it
includes instructions on how to create a single-node HTCondor installation as a normal user so that you can expand it
with cloud resources. It also discusses how to manually construct a HTCondor in the Cloud using condor_annex.

7.1 Introduction

To be clear, our concern throughout this chapter is with commercial services which rent computational resources over
the Internet at short notice and charge in small increments (by the minute or the hour). Currently, the condor_annex
tool supports only AWS. AWS can start booting a new virtual machine as quickly as a few seconds after the request;
barring hardware failure, you will be able to continue renting that VM until you stop paying the hourly charge. The
other cloud services are broadly similar.

If you already have access to the Grid, you may wonder why you would want to begin cloud computing. The cloud
services offer two major advantages over the Grid: first, cloud resources are typically available more quickly and in
greater quantity than from the Grid; and second, because cloud resources are virtual machines, they are considerably
more customizable than Grid resources. The major disadvantages are, of course, cost and complexity (although we
hope that condor_annex reduces the latter).

We illustrate these advantages with what we anticipate will be the most common uses for condor_annex.

7.1.1 Use Case: Deadlines

With the ability to acquire computational resources in seconds or minutes and retain them for days or weeks, it becomes
possible to rapidly adjust the size - and cost - of an HTCondor pool. Giving this ability to the end-user avoids the
problems of deciding who will pay for expanding the pool and when to do so. We anticipate that the usual cause for
doing so will be deadlines; the end-user has the best knowledge of their own deadlines and how much, in monetary
terms, it’s worth to complete their work by that deadline.

553

HTCondor Manual, Release 10.0.9

7.1.2 Use Case: Capabilities

Cloud services may offer (virtual) hardware in configurations unavailable in the local pool, or in quantities that it
would be prohibitively expensive to provide on an on-going basis. Examples (from 2017) may include GPU-based
computation, or computations requiring a terabyte of main memory. A cloud service may also offer fast and cloud-local
storage for shared data, which may have substantial performance benefits for some workflows. Some cloud providers
(for example, AWS) have pre-populated this storage with common public datasets, to further ease adoption.

By using cloud resources, an HTCondor pool administrator may also experiment with or temporarily offer different
software and configurations. For example, a pool may be configured with a maximum job runtime, perhaps to reduce
the latency of fair-share adjustments or to protect against hung jobs. Adding cloud resources which permit longer-
running jobs may be the least-disruptive way to accomodate a user whose jobs need more time.

7.1.3 Use Case: Capacities

It may be possible for an HTCondor administrator to lower the cost of their pool by increasing utilization and meeting
peak demand with cloud computing.

7.1.4 Use Case: Experimental Convenience

Although you can experiment with many different HTCondor configurations using condor_annex and HTCondor run-
ning as a normal user, some configurations may require elevated privileges. In other situations, you may not be to
create an unprivileged HTCondor pool on a machine because that would violate the acceptable-use policies, or because
you can’t change the firewall, or because you’d use too much bandwidth. In those cases, you can instead “seed” the
cloud with a single-node HTCondor installation and expand it using condor_annex. See HTCondor in the Cloud for
instructions.

7.2 HTCondor Annex User’s Guide

A user of condor_annex may be a regular job submitter, or she may be an HTCondor pool administrator. This guide
will cover basic condor_annex usage first, followed by advanced usage that may be of less interest to the submitter.
Users interested in customizing condor_annex should consult the HTCondor Annex Customization Guide.

7.2.1 Considerations and Limitations

When you run condor_annex, you are adding (virtual) machines to an HTCondor pool. As a submitter, you proba-
bly don’t have permission to add machines to the HTCondor pool you’re already using; generally speaking, security
concerns will forbid this. If you’re a pool administrator, you can of course add machines to your pool as you see fit.
By default, however, condor_annex instances will only start jobs submitted by the user who started the annex, so pool
administrators using condor_annex on their users’ behalf will probably want to use the -owners option or -no-owner
flag; see the condor_annex man page. Once the new machines join the pool, they will run jobs as normal.

Submitters, however, will have to set up their own personal HTCondor pool, so that condor_annex has a pool to join,
and then work with their pool administrator if they want to move their existing jobs to their new pool. Otherwise, jobs
will have to be manually divided (removed from one and resubmitted to the other) between the pools. For instructions
on creating a personal HTCondor pool, preparing an AWS account for use by condor_annex, and then configuring
condor_annex to use that account, see the Using condor_annex for the First Time section.

Starting in v8.7.1, condor_annex will check for inbound access to the collector (usually port 9618) before starting an
annex (it does not support other network topologies). When checking connectivity from AWS, the IP(s) used by the

554 Chapter 7. Cloud Computing

HTCondor Manual, Release 10.0.9

AWS Lambda function implementing this check may not be in the same range(s) as those used by AWS instance; please
consult AWS’s list of all their IP2 when configuring your firewall.

Starting in v8.7.2, condor_annex requires that the AWS secret (private) key file be owned by the submitting user and
not readable by anyone else. This helps to ensure proper attribution.

7.2.2 Basic Usage

This section assumes you’re logged into a Linux machine an that you’ve already configured condor_annex. If you
haven’t, see the Using condor_annex for the First Time section.

All the terminal commands (shown in a box without a title) and file edits (shown in a box with an emphasized filename
for a title) in this section take place on the Linux machine. In this section, we follow the common convention that the
commands you type are preceded by by ‘$’ to distinguish them from any expected output; don’t copy that part of each
of the following lines. (Lines which end in a ‘\’ continue on the following line; be sure to copy both lines. Don’t copy
the ‘\’ itself.)

What You’ll Need to Know

To create a HTCondor annex with on-demand instances, you’ll need to know two things:

1. A name for it. “MyFirstAnnex” is a fine name for your first annex.

2. How many instances you want. For your first annex, when you’re checking to make sure things work, you may
only want one instance.

7.2.3 Start an Annex

Entering the following command will start an annex named “MyFirstAnnex” with one instance. condor_annex will
print out what it’s going to do, and then ask you if that’s OK. You must type ‘yes’ (and hit enter) at the prompt to start
an annex; if you do not, condor_annex will print out instructions about how to change whatever you may not like about
what it said it was going to do, and then exit.

$ condor_annex -count 1 -annex-name MyFirstAnnex
Will request 1 m4.large on-demand instance for 0.83 hours. Each instance will
terminate after being idle for 0.25 hours.
Is that OK? (Type 'yes' or 'no'): yes
Starting annex...
Annex started. Its identity with the cloud provider is
'TestAnnex0_f2923fd1-3cad-47f3-8e19-fff9988ddacf'. It will take about three
minutes for the new machines to join the pool.

You won’t need to know the annex’s identity with the cloud provider unless something goes wrong.

Before starting the annex, condor_annex (v8.7.1 and later) will check to make sure that the instances will be able to
contact your pool. Contact the Linux machine’s administrator if condor_annex reports a problem with this step.

2 https://ip-ranges.amazonaws.com/ip-ranges.json

7.2. HTCondor Annex User’s Guide 555

https://ip-ranges.amazonaws.com/ip-ranges.json

HTCondor Manual, Release 10.0.9

Instance Types

Each instance type provides a different number (and/or type) of CPU cores, amount of RAM, local storage, and the
like. We recommend starting with ‘m4.large’, which has 2 CPU cores and 8 GiB of RAM, but you can see the
complete list of instance types at the following URL:
https://aws.amazon.com/ec2/instance-types/
You can specify an instance type with the -aws-on-demand-instance-type flag.

Leases

By default, condor_annex arranges for your annex’s instances to be terminated after 0.83 hours (50 minutes) have
passed. Once it’s in place, this lease doesn’t depend on the Linux machine, but it’s only checked every five minutes, so
give your deadlines a lot of cushion to make you don’t get charged for an extra hour. The lease is intended to help you
conserve money by preventing the annex instances from accidentally running forever. You can specify a lease duration
(in decimal hours) with the -duration flag.

If you need to adjust the lease for a particular annex, you may do so by specifying an annex name and a duration, but not
a count. When you do so, the new duration is set starting at the current time. For example, if you’d like “MyFirstAnnex”
to expire eight hours from now:

$ condor_annex -annex-name MyFirstAnnex -duration 8
Lease updated.

Idle Time

By default, condor_annex will configure your annex’s instances to terminate themselves after being idle for 0.25 hours
(fifteen minutes). This is intended to help you conserve money in case of problems or an extended shortage of work. As
noted in the example output above, you can specify a max idle time (in decimal hours) with the -idle flag. condor_annex
considers an instance idle if it’s unclaimed (see condor_startd Policy Configuration for a definition), so it won’t get
tricked by jobs with long quiescent periods.

Tagging your Annex’s Instances

By default, condor_annex adds a tag, htcondor:AnnexName, to each instance in the annex; its value is the annex’s
name (as entered on the command line). You may add additional tags via the command-line option -tag, which must
be followed by a tag name and a value for that tag (as separate arguments). You may specify any number of tags (up to
the maximum supported by the cloud provider) by adding additional -tag options to the command line.

Starting Multiple Annexes

You may have up to fifty (or fewer, depending what else you’re doing with your AWS account) differently-named
annexes running at the same time. Running condor_annex again with the same annex name before stopping that annex
will both add instances to it and change its duration. Only instances which start up after an invocation of condor_annex
will respect that invocation’s max idle time. That may include instances still starting up from your previous (first)
invocation of condor_annex, so be sure your instances have all joined the pool before running condor_annex again
with the same annex name if you’re changing the max idle time. Each invocation of condor_annex requests a certain
number of instances of a given type; you may specify the instance type, the count, or both with each invocation, but
doing so does not change the instance type or count of any previous request.

556 Chapter 7. Cloud Computing

https://aws.amazon.com/ec2/instance-types/

HTCondor Manual, Release 10.0.9

7.2.4 Monitor your Annex

You can find out if an instance has successfully joined the pool in the following way:

$ condor_annex status
Name OpSys Arch State Activity Load

slot1@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Benchmarking 0.0
slot2@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.0

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 2 0 0 2 0 0 0 0
Total 2 0 0 2 0 0 0 0

This example shows that the annex instance you requested has joined your pool. (The default annex image configures
one static slot for each CPU it finds on start-up.)

You may instead use condor_status:

$ condor_status -annex MyFirstAnnex
slot1@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767
slot2@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain
X86_64/LINUX 2 0 0 2 0 0 0 0
Total 2 0 0 2 0 0 0 0

You can also get a report about the instances which have not joined your pool:

$ condor_annex -annex MyFirstAnnex -status
STATE COUNT
pending 1
TOTAL 1
Instances not in the pool, grouped by state:
pending i-06928b26786dc7e6e

Monitoring Multiple Annexes

The following command reports on all annex instance which have joined the pool, regardless of which annex they’re
from:

$ condor_status -annex
slot1@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767
slot2@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767
slot1@ip-111-48-85-13.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767
slot2@ip-111-48-85-13.ec2.internal LINUX X86_64 Unclaimed Idle 0.640 3767

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain
X86_64/LINUX 4 0 0 4 0 0 0 0
Total 4 0 0 4 0 0 0 0

The following command reports about instance which have not joined the pool, regardless of which annex they’re from:

7.2. HTCondor Annex User’s Guide 557

HTCondor Manual, Release 10.0.9

$ condor_annex -status
NAME TOTAL running
NamelessTestA 2 2
NamelessTestB 3 3
NamelessTestC 1 1

NAME STATUS INSTANCES...
NamelessTestA running i-075af9ccb40efb162 i-0bc5e90066ed62dd8
NamelessTestB running i-02e69e85197f249c2 i-0385f59f482ae6a2e
i-06191feb755963edd
NamelessTestC running i-09da89d40cde1f212

The ellipsis in the last column (INSTANCES. . .) is to indicate that it’s a very wide column and may wrap (as it has in
the example), not that it has been truncated.

The following command combines these two reports:

$ condor_annex status
Name OpSys Arch State Activity Load

slot1@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Benchmarking 0.0
slot2@ip-172-31-48-84.ec2.internal LINUX X86_64 Unclaimed Idle 0.0

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 2 0 0 2 0 0 0 0
Total 2 0 0 2 0 0 0 0

Instance ID not in Annex Status Reason (if known)
i-075af9ccb40efb162 NamelessTestA running -
i-0bc5e90066ed62dd8 NamelessTestA running -
i-02e69e85197f249c2 NamelessTestB running -
i-0385f59f482ae6a2e NamelessTestB running -
i-06191feb755963edd NamelessTestB running -
i-09da89d40cde1f212 NamelessTestC running -

7.2.5 Run a Job

Starting in v8.7.1, the default behaviour for an annex instance is to run only jobs submitted by the user who ran the
condor_annex command. If you’d like to allow other users to run jobs, list them (separated by commas; don’t forget to
include yourself) as arguments to the -owner flag when you start the instance. If you’re creating an annex for general
use, use the -no-owner flag to run jobs from anyone.

Also starting in v8.7.1, the default behaviour for an annex instance is to run only jobs which have the MayUseAWS
attribute set (to true). To submit a job with MayUseAWS set to true, add +MayUseAWS = TRUE to the submit file
somewhere before the queue command. To allow an existing job to run in the annex, use condor_q_edit. For instance,
if you’d like cluster 1234 to run on AWS:

$ condor_qedit 1234 "MayUseAWS = TRUE"
Set attribute "MayUseAWS" for 21 matching jobs.

558 Chapter 7. Cloud Computing

HTCondor Manual, Release 10.0.9

7.2.6 Stop an Annex

The following command shuts HTCondor off on each instance in the annex; if you’re using the default annex image, do-
ing so causes each instance to shut itself down. HTCondor does not provide a direct method terminating condor_annex
instances.

$ condor_off -annex MyFirstAnnex
Sent "Kill-Daemon" command for "master" to master ip-172-31-48-84.ec2.internal

Stopping Multiple Annexes

The following command turns off all annex instances in your pool, regardless of which annex they’re from:

$ condor_off -annex
Sent "Kill-Daemon" command for "master" to master ip-172-31-48-84.ec2.internal
Sent "Kill-Daemon" command for "master" to master ip-111-48-85-13.ec2.internal

7.2.7 Using Different or Multiple AWS Regions

It sometimes advantageous to use multiple AWS regions, or convenient to use an AWS region other than the default,
which is us-east-1. To change the default, set the configuration macro ANNEX_DEFAULT_AWS_REGION to
the new default. (If you used the condor_annex automatic setup, you can edit the user_config file in .condor
directory in your home directory; this file uses the normal HTCondor configuration file syntax. (See Ordered Eval-
uation to Set the Configuration.) Once you do this, you’ll have to re-do the setup, as setup is region-specific.

If you’d like to use multiple AWS regions, you can specify which reason to use on the command line with the -aws-
region flag. Each region may have zero or more annexes active simultaneously.

7.2.8 Advanced Usage

The previous section covered using what AWS calls “on-demand” instances. (An “instance” is “a single occurrence of
something,” in this case, a virtual machine. The intent is to distinguish between the active process that’s pretending to
be a real piece of hardware - the “instance” - and the template it used to start it up, which may also be called a virtual
machine.) An on-demand instance has a price fixed by AWS; once acquired, AWS will let you keep it running as long
as you continue to pay for it.

In constrast, a “Spot” instance has a price determined by an (automated) auction; when you request a “Spot” instance,
you specify the most (per hour) you’re willing to pay for that instance. If you get an instance, however, you pay only
what the spot price is for that instance; in effect, AWS determines the spot price by lowering it until they run out of
instances to rent. AWS advertises savings of up to 90% over on-demand instances.

There are two drawbacks to this cheaper type of instance: first, you may have to wait (indefinitely) for instances to
become available at your preferred price-point; the second is that your instances may be taken away from you before
you’re done with them because somebody else will pay more for them. (You won’t be charged for the hour in which
AWS kicks you off an instance, but you will still owe them for all of that instance’s previous hours.) Both drawbacks
can be mitigated (but not eliminated) by bidding the on-demand price for an instance; of course, this also minimizes
your savings.

Determining an appropriate bidding strategy is outside the purview of this manual.

7.2. HTCondor Annex User’s Guide 559

HTCondor Manual, Release 10.0.9

Using AWS Spot Fleet

condor_annex supports Spot instances via an AWS technology called “Spot Fleet”. Normally, when you request in-
stances, you request a specific type of instance (the default on-demand instance is, for instance, ‘m4.large’.) However,
in many cases, you don’t care too much about how many cores an intance has - HTCondor will automatically advertise
the right number and schedule jobs appropriately, so why would you? In such cases - or in other cases where your
jobs will run acceptably on more than one type of instance - you can make a Spot Fleet request which says something
like “give me a thousand cores as cheaply as possible”, and specify that an ‘m4.large’ instance has two cores, while
‘m4.xlarge’ has four, and so on. (The interface actually allows you to assign arbitrary values - like HTCondor slot
weights - to each instance type1, but the default value is core count.) AWS will then divide the current price for each
instance type by its core count and request spot instances at the cheapest per-core rate until the number of cores (not
the number of instances!) has reached a thousand, or that instance type is exhausted, at which point it will request the
next-cheapest instance type.

(At present, a Spot Fleet only chooses the cheapest price within each AWS region; you would have to start a Spot Fleet
in each AWS region you were willing to use to make sure you got the cheapest possible price. For fault tolerance, each
AWS region is split into independent zones, but each zone has its own price. Spot Fleet takes care of that detail for
you.)

In order to create an annex via a Spot Fleet, you’ll need a file containing a JSON blob which describes the Spot Fleet
request you’d like to make. (It’s too complicated for a reasonable command-line interface.) The AWS web console can
be used to create such a file; the button to download that file is (currently) in the upper-right corner of the last page
before you submit the Spot Fleet request; it is labeled ‘JSON config’. You may need to create an IAM role the first time
you make a Spot Fleet request; please do so before running condor_annex.

• You must select the instance role profile used by your on-demand instances for condor_annex to work. This
value will have been stored in the configuration macro ANNEX_DEFAULT_ODI_INSTANCE_PROFILE_ARN by the
setup procedure.

• You must select a security group which allows inbound access on HTCondor’s port (9618) for condor_annex to
work. You may use the value stored in the configuration macro ANNEX_DEFAULT_ODI_SECURITY_GROUP_IDS
by the setup procedure; this security group also allows inbound SSH access.

• If you wish to be able to SSH to your instances, you must select an SSH key pair (for which you have the
corresponding private key); this is not required for condor_ssh_to_job. You may use the value stored in the
configuration macro ANNEX_DEFAULT_ODI_KEY_NAME by the setup procedure.

Specify the JSON configuration file using -aws-spot-fleet-config-file, or set the configuration macro AN-
NEX_DEFAULT_SFR_CONFIG_FILE to the full path of the file you just downloaded, if you’d like it to become
your default configuration for Spot annexes. Be aware that condor_annex does not alter the validity period if one is set
in the Spot Fleet configuration file. You should remove the references to ‘ValidFrom’ and ‘ValidTo’ in the JSON file
to avoid confusing surprises later.

Additionally, be aware that condor_annex uses the Spot Fleet API in its “request” mode, which means that an annex
created with Spot Fleet has the same semantics with respect to replacement as it would otherwise: if an instance
terminates for any reason, including AWS taking it away to give to someone else, it is not replaced.

You must specify the number of cores (total instance weight; see above) using -slots. You may also specify -aws-
spot-fleet, if you wish; doing so may make this condor_annex invocation more self-documenting. You may use other
options as normal, excepting those which begin with -aws-on-demand, which indicates an option specific to on-demand
instances.

1 Strictly speaking, to each “launch specification”; see the explanation below, in the section AWS Instance User Data.

560 Chapter 7. Cloud Computing

HTCondor Manual, Release 10.0.9

Custom HTCondor Configuration

When you specify a custom configuration, you specify the full path to a configuration directory which will be copied
to the instance. The customizations performed by condor_annex will be applied to a temporary copy of this directory
before it is uploaded to the instance. Those customizations consist of creating two files: password_file.pl (named
that way to ensure that it isn’t ever accidentally treated as configuration), and 00ec2-dynamic.config. The former is
a password file for use by the pool password security method, which if configured, will be used by condor_annex
automatically. The latter is an HTCondor configuration file; it is named so as to sort first and make it easier to over-ride
with whatever configuration you see fit.

AWS Instance User Data

HTCondor doesn’t interfere with this in any way, so if you’d like to set an instance’s user data, you may do so. However,
as of v8.7.2, the -user-data options don’t work for on-demand instances (the default type). If you’d like to specify user
data for your Spot Fleet -driven annex, you may do so in four different ways: on the command-line or from a file, and
for all launch specifications or for only those launch specifications which don’t already include user data. These two
choices correspond to the absence or presence of a trailing -file and the absence or presence of -default immediately
preceding -user-data.

A “launch specification,” in this context, means one of the virtual machine templates you told Spot Fleet would be an
acceptable way to accomodate your resource request. This usually corresponds one-to-one with instance types, but this
is not required.

Expert Mode

The condor_annex manual page lists the “expert mode” options.

Four of the “expert mode” options set the URLs used to access AWS services, not including the CloudFormation URL
needed by the -setup flag. You may change the CloudFormation URL by changing the HTCondor configuration macro
ANNEX_DEFAULT_CF_URL , or by supplying the URL as the third parameter after the -setup flag. If you change
any of the URLs, you may need to change all of the URLs - Lambda functions and CloudWatch events in one region
don’t work with instances in another region.

You may also temporarily specify a different AWS account by using the access (-aws-access-key-file) and secret key
(-aws-secret-key-file) options. Regular users may have an accounting reason to do this.

The options labeled “developers only” control implementation details and may change without warning; they are prob-
ably best left unused unless you’re a developer.

7.3 Using condor_annex for the First Time

This guide assumes that you already have an AWS account, as well as a log-in account on a Linux machine with a
public address and a system administrator who’s willing to open a port for you. All the terminal commands (shown in
a box) and file edits (show in a box whose first line begins with a # and names a file) take place on the Linux machine.
You can perform the web-based steps from wherever is convenient, although it will save you some copying if you run
the browser on the Linux machine.

If your Linux machine will be an EC2 instance, read Using Instance Credentials first; by taking some care in how you
start the instance, you can save yourself some drudgery.

Before using condor_annex for the first time, you’ll have to do three things:

1. install a personal HTCondor

2. prepare your AWS account

7.3. Using condor_annex for the First Time 561

HTCondor Manual, Release 10.0.9

3. configure condor_annex

Instructions for each follow.

7.3.1 Install a Personal HTCondor

We recommend that you install a personal HTCondor to make use of condor_annex; it’s simpler to configure that way.
Follow the Hand-Installation of HTCondor on a Single Machine with User Privileges instructions. Make sure you
install HTCondor version 8.7.8 or later.

Once you have a working personal HTCondor installation, continue with the additional setup instructions below, that
are specific to using condor_annex.

In the following instructions, it is assumed that the local installation has been done in the folder ~/
condor-8.7.8. Change this path depending on your HTCondor version and how you followed the in-
stallation instructions.

Configure Public Interface

The default personal HTCondor uses the “loopback” interface, which basically just means it won’t talk to anyone other
than itself. For condor_annex to work, your personal HTCondor needs to use the Linux machine’s public interface. In
most cases, that’s as simple as adding the following lines:

~/condor-8.7.8/local/condor_config.local

NETWORK_INTERFACE = *
CONDOR_HOST = $(FULL_HOSTNAME)

Restart HTCondor to force the changes to take effect:

$ condor_restart
Sent "Restart" command to local master

To verify that this change worked, repeat the steps under the Install a Personal HTCondor section. Then proceed onto
the next section.

Configure a Pool Password

In this section, you’ll configure your personal HTCondor to use a pool password. This is a simple but effective method
of securing HTCondor’s communications to AWS.

Add the following lines:

~/condor-8.7.8/local/condor_config.local

SEC_PASSWORD_FILE = $(LOCAL_DIR)/condor_pool_password

SEC_DAEMON_INTEGRITY = REQUIRED
SEC_DAEMON_AUTHENTICATION = REQUIRED
SEC_DAEMON_AUTHENTICATION_METHODS = PASSWORD
SEC_NEGOTIATOR_INTEGRITY = REQUIRED
SEC_NEGOTIATOR_AUTHENTICATION = REQUIRED
SEC_NEGOTIATOR_AUTHENTICATION_METHODS = PASSWORD

(continues on next page)

562 Chapter 7. Cloud Computing

HTCondor Manual, Release 10.0.9

(continued from previous page)

SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD
ALLOW_DAEMON = condor_pool@*

You also need to run the following command, which prompts you to enter a password:

$ condor_store_cred -c add -f `condor_config_val SEC_PASSWORD_FILE`
Enter password:

Enter a password.

Tell HTCondor about the Open Port

By default, HTCondor will use port 9618. If the Linux machine doesn’t already have HTCondor installed, and the
admin is willing to open that port, then you don’t have to do anything. Otherwise, you’ll need to add a line like the
following, replacing ‘9618’ with whatever port the administrator opened for you.

~/condor-8.7.8/local/condor_config.local

COLLECTOR_HOST = $(FULL_HOSTNAME):9618

Activate the New Configuration

Force HTCondor to read the new configuration by restarting it:

$ condor_restart

7.3.2 Prepare your AWS account

Since v8.7.1, the condor_annex tool has included a -setup command which will prepare your AWS account.

Using Instance Credentials

If you will not be running condor_annex on an EC2 instance, skip to Obtaining an Access Key.

When you start an instance on EC21, you can grant it some of your AWS privileges, for instance, for starting instances.
This (usually) means that any user logged into the instance can, for instance, start instances (as you). A given collection
of privileges is called an “instance profile”; a full description of them is outside the scope of this document. If, however,
you’ll be the only person who can log into the instance you’re creating and on which you will be running condor_annex,
it may be simpler to start an instance with your privileges than to deal with Obtaining an Access Key.

You will need a privileged instance profile; if you don’t already have one, you will only need to create it once. When
launching an instance with the EC2 console, step 3 (labelled ‘Configure Instance Details’) includes an entry for ‘IAM
role’; the AWS web interface creates the corresponding instance profile for you automatically. If you’ve already created
a privileged role, select it here and carry on launching your instance as usual. If you haven’t:

1. Follow the ‘Create new IAM role’ link.

2. Click the ‘Create Role’ button.
1 You may assign an intance profile to an EC2 instance when you launch it, or at any subsequent time, through the AWS web console (or other

interfaces with which you may be familiar). If you start the instance using HTCondor’s EC2 universe, you may specify the IAM instance profile with
the ec2_iam_profile_name or ec2_iam_profile_arn submit commands.

7.3. Using condor_annex for the First Time 563

https://console.aws.amazon.com/ec2/

HTCondor Manual, Release 10.0.9

3. Select ‘EC2’ under “the service that will use this role”.

4. Click the ‘Next: Permissions’ button.

5. Select ‘Administrator Access’ and click the ‘Next: Tags’ button.

6. Click the ‘Next: Review’ button.

7. Enter a role name; ‘HTCondorAnnexRole’ is fine.

8. Click the ‘Create role’ button.

When you switch back to the previous tab, you may need to click the circular arrow (refresh) icon before you can select
the role name you entered in the second-to-last step.

If you’d like step-by-step instructions for creating a HTCondor-in-the-Cloud, see HTCondor in the Cloud.

You can skip to Configure condor_annex once you’ve completed these steps.

Obtaining an Access Key

In order to use AWS, condor_annex needs a pair of security tokens (like a user name and password). Like a user name,
the “access key” is (more or less) public information; the corresponding “secret key” is like a password and must be kept
a secret. To help keep both halves secret, condor_annex (and HTCondor) are never told these keys directly; instead,
you tell HTCondor which file to look in to find each one.

Create those two files now; we’ll tell you how to fill them in shortly. By convention, these files exist in your ~/.condor
directory, which is where the -setup command will store the rest of the data it needs.

$ mkdir ~/.condor
$ cd ~/.condor
$ touch publicKeyFile privateKeyFile
$ chmod 600 publicKeyFile privateKeyFile

The last command ensures that only you can read or write to those files.

To donwload a new pair of security tokens for condor_annex to use, go to the IAM console at the following URL; log
in if you need to:

https://console.aws.amazon.com/iam/home?region=us-east-1#/users

The following instructions assume you are logged in as a user with the privilege to create new users. (The ‘root’ user
for any account has this privilege; other accounts may as well.)

1. Click the “Add User” button.

2. Enter name in the User name box; “annex-user” is a fine choice.

3. Click the check box labelled “Programmatic access”.

4. Click the button labelled “Next: Permissions”.

5. Select “Attach existing policies directly”.

6. Type “AdministratorAccess” in the box labelled “Filter”.

7. Click the check box on the single line that will appear below (labelled “AdministratorAccess”).

8. Click the “Next: review” button (you may need to scroll down).

9. Click the “Create user” button.

10. From the line labelled “annex-user”, copy the value in the column labelled “Access key ID” to the file publicK-
eyFile.

564 Chapter 7. Cloud Computing

https://console.aws.amazon.com/iam/home?region=us-east-1#/users

HTCondor Manual, Release 10.0.9

11. On the line labelled “annex-user”, click the “Show” link in the column labelled “Secret access key”; copy the
revealed value to the file privateKeyFile.

12. Hit the “Close” button.

The ‘annex-user’ now has full privileges to your account.

7.3.3 Configure condor_annex

The following command will setup your AWS account. It will create a number of persistent components, none of which
will cost you anything to keep around. These components can take quite some time to create; condor_annex checks
each for completion every ten seconds and prints an additional dot (past the first three) when it does so, to let you know
that everything’s still working.

$ condor_annex -setup
Creating configuration bucket (this takes less than a minute)....... complete.
Creating Lambda functions (this takes about a minute)........ complete.
Creating instance profile (this takes about two minutes)................... complete.
Creating security group (this takes less than a minute)..... complete.
Setup successful.

Checking the Setup

You can verify at this point (or any later time) that the setup procedure completed successfully by running the following
command.

$ condor_annex -check-setup
Checking for configuration bucket... OK.
Checking for Lambda functions... OK.
Checking for instance profile... OK.
Checking for security group... OK.

You’re ready to run condor_annex!

Undoing the Setup Command

There is not as yet a way to undo the setup command automatically, but it won’t cost you anything extra to leave your
account setup for condor_annex indefinitely. If, however, you want to be tidy, you may delete the components setup
created by going to the CloudFormation console at the following URL and deleting the entries whose names begin with
‘HTCondorAnnex-‘:

https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks?filter=active

The setup procedure also creates an SSH key pair which may be useful for debugging; the private key was stored in
~/.condor/HTCondorAnnex-KeyPair.pem. To remove the corresponding public key from your AWS account, go to the
key pair console at the following URL and delete the ‘HTCondorAnnex-KeyPair’ key:

https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#KeyPairs:sort=keyName

7.3. Using condor_annex for the First Time 565

https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks?filter=active
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#KeyPairs:sort=keyName

HTCondor Manual, Release 10.0.9

7.4 HTCondor Annex Customization Guide

Aside from the configuration macros (see the HTCondor Annex Configuration section), the major way to ustomize
condor_annex is my customizing the default disk image. Because the implementation of condor_annex varies from
service to service, and that implementation determines the constraints on the disk image, the this section is divided by
service.

7.4.1 Amazon Web Services

Requirements for an Annex-compatible AMI are driven by how condor_annex securely transports HTCondor config-
uration and security tokens to the instances; we will discuss that implementation briefly, to help you understand the
requirements, even though it will hopefully never matter to you.

Resource Requests

For on-demand or Spot instances, we begin by making a single resource request whose client token is the annex name
concatenated with an underscore and then a newly-generated GUID. This construction allows us to terminate on-demand
instances belonging to a particular annex (by its name), as well as discover the annex name from inside an instance.

An on-demand instance may obtain its instance ID directly from the AWS metadata server, and then ask another AWS
API for that instance ID’s client token. Since GUIDs do not contain underscores, we can be certain that anything to the
left of the last underscore is the annex’s name.

An instance started by a Spot Fleet has a client token generated by the Spot Fleet. Instead of performing a direct lookup,
a Spot Fleet instance must therefore determine which Spot Fleet started it, and then obtain that Spot Fleet’s client token.
A Spot Fleet will tag an instance with the Spot Fleet’s identity after the instance starts up. This usually only takes a
few minutes, but the default image waits for up to 50 minutes, since you’re already paying for the first hour anyway.

Secure Transport

At this point, the instance knows its annex’s name. This allows the instance to construct the name of the tarball it should
download (config-AnnexName.tar.gz), but does not tell it from where a file with that name should be downloaded.

(Because the user data associated with resource request is not secure, and because we want to leave the user data
available for its normal usage, we can’t just encode the tarball or its location in the user data.)

The instance determines from which S3 bucket to download by asking the metadata server which role the instance
is playing. (An instance without a role is unable to make use of any AWS services without acquiring valid AWS
tokens through some other method.) The instance role created by the setup procedure includes permission to read files
matching the pattern config-*.tar.gz from a particular private S3 bucket. If the instance finds permissions matching
that pattern, it assumes that the corresponding S3 bucket is the one from which it should download, and does so; if
successful, it untars the file in /etc/condor/config.d.

In v8.7.1, the script executing these steps is named 49ec2-instance.sh, and is called during configuration when
HTCondor first starts up.

In v8.7.2, the script executing these steps is named condor-annex-ec2, and is called during system start-up.

The HTCondor configuration and security tokens are at this point protected on the instance’s disk by the usual filesys-
tem permissions. To prevent HTCondor jobs from using the instance’s permissions to do anything, but in particular
download their own copy of the security tokens, the last thing the script does is use the Linux kernel firewall to forbid
any non-root process from accessing the metadata server.

566 Chapter 7. Cloud Computing

HTCondor Manual, Release 10.0.9

Image Requirements

Thus, to work with condor_annex, an AWS AMI must:

• Fetch the HTCondor configuration and security tokens from S3;

• configure HTCondor to turn off after it’s been idle for too long;

• and turn off the instance when the HTCondor master daemon exits.

The second item could be construed as optional, but if left unimplemented, will disable the -idle command-line option.

The default disk image implements the above as follows:

• with a configuration script (/etc/condor/49ec2-instance.sh);

• with a single configuration item (STARTD_NOCLAIM_SHUTDOWN);

• with a configuration item (DEFAULT_MASTER_SHUTDOWN_SCRIPT) and the corresponding script
(/etc/condor/master_shutdown.sh), which just turns around and runs shutdown -h now.

We also strongly recommend that every condor_annex disk image:

• Advertise, in the master and startd, the instance ID.

• Use the instance’s public IP, by setting TCP_FORWARDING_HOST .

• Turn on communications integrity and encryption.

• Encrypt the run directories.

• Restrict access to the EC2 meta-data server to root.

The default disk image is configured to do all of this.

Instance Roles

To explain the last point immediately above, EC2 stores (temporary) credentials for the role, if any, associated with
an instance on that instance’s meta-data server, which may be accessed via HTTP at a well-known address (currently
169.254.169.254). Unless otherwise configured, any process in the instance can access the meta-data server and
thereby make use of the instance’s credentials.

Until version 8.9.0, there was no HTCondor-based reason to run an EC2 instance with an instance role. Starting in 8.9.0,
however, HTCondor gained the ability to use the instance role’s credentials to run EC2 universe jobs and condor_annex
commands. This has several advantages over copying credentials into the instance: it may be more convenient, and if
you’re the only user of the instance, it’s more secure, because the instance’s credentials expire when the instance does.

However, wanting to allow (other) users to run jobs on or submit jobs to your instance may not mean you want them
to able to act with the instance’s privileges (e.g., starting more instances on your account). Although securing your
instances ultimately remains your responsibility, the default images we provide for condor_annex, and the condor-
annex-ec2 package, both use the kernel-level firewall to prevent access to the metadata server by any process not owned
by root. Because this firewall rule is added during the boot sequence, it will be in place before HTCondor can start any
user jobs, and should therefore be effective in preventing access to the instance’s credentials by normal users or their
jobs.

7.4. HTCondor Annex Customization Guide 567

HTCondor Manual, Release 10.0.9

7.5 HTCondor Annex Configuration

While the configuration macros in this section may be set by the HTCondor administrator, they are intended for the
user-specific HTCondor configuration file (usually ~/.condor/user_config). Although we document every macro,
we expect that users will generally only want to change a few of them, listed in the User Settings section; the entries
required in by condor_annex in other sections will be generated by its setup procedure.

Subsequent sections deal with logging (Logging), are for expert users (Expert Settings), or for HTCondor developers
(Developer Settings).

7.5.1 User Settings

ANNEX_DEFAULT_AWS_REGION The default region when using AWS. Defaults to ‘us-east-1’.

ANNEX_DEFAULT_LEASE_DURATION The duration of an annex if not specified on the command-line; specified in
seconds. Defaults to 50 minutes.

ANNEX_DEFAULT_UNCLAIMED_TIMEOUT How long an annex instances should stay idle before shutting down; speci-
fied in seconds. Defaults to 15 minutes.

ANNEX_DEFAULT_ODI_KEY_NAME The name of the SSH key pair condor_annex should use by default. No default.

ANNEX_DEFAULT_ODI_INSTANCE_TYPE The AWS instance type to use for on-demand instances if not specified. No
default, but the condor_annex setup procedure sets this to ‘m4.large’.

ANNEX_DEFAULT_ODI_IMAGE_ID The AWS AMI to use for on-demand instance if not specified. No default, but the
condor_annex setup procedure sets this to ‘ami-35b13223’.

ANNEX_DEFAULT_SFR_CONFIG_FILE The JSON configuration file use by condor_annex when creating a Spot-based
annex. No default.

7.5.2 Logging

By default, running condor_annex creates three logs: the condor_annex log, the annex GAHP log, and the annex audit
log. The default location for these logs is the same directory as the user-specific HTCondor configuration file (usually
~/.condor/user_config). condor_annex sets the LOG macro to this directory when reading its configuration.

The condor_annex log is a daemon-style log. It is configured as if condor_annex were a daemon with subsystem type
ANNEX; see Daemon Logging Configuration File Entries for details.

condor_annex uses special helper programs, called GAHPs, to interact with the different cloud services. These pro-
grams do their own logging, writing to the annex GAHP log. The annex GAHP log is configured as if it were a daemon,
but with subsystem type ANNEX_GAHP; see Daemon Logging Configuration File Entries for details.

The annex audit log records two lines for each invocation of condor_annex: the command as issued and the results
as returned. The location of the audit log is set by ANNEX_AUDIT_LOG , which is the AUDIT-level log for the ANNEX
subsystem; see <SUBSYS>_<LEVEL>_LOG (in Daemon Logging Configuration File Entries) for details. Because annex
creation commands typically make extensive use of values set in configuration, condor_annex will write the configu-
ration it used for annex creation commands into the audit log if ANNEX_DEBUG includes D_AUDIT:2.

568 Chapter 7. Cloud Computing

HTCondor Manual, Release 10.0.9

7.5.3 Expert Settings

ANNEX_DEFAULT_EC2_URL The AWS EC2 endpoint that condor_annex should use. Defaults to ‘https://ec2.us-east-1.
amazonaws.com’.

ANNEX_DEFAULT_CWE_URL The AWS CloudWatch Events endpoint that condor_annex should use. Defaults to ‘https:
//events.us-east-1.amazonaws.com’.

ANNEX_DEFAULT_LAMBDA_URL The AWS Lambda endpoint that condor_annex should use. Defaults to ‘https:
//lambda.us-east-1.amazonaws.com’.

ANNEX_DEFAULT_S3_URL The AWS S3 endpoint that condor_annex should use. Defaults to ‘https://s3.amazonaws.
com’.

ANNEX_DEFAULT_CF_URL The AWS CloudFormation endpoint that condor_annex should use. Defaults to ‘https:
//cloudformation.us-east-1.amazonaws.com’.

ANNEX_DEFAULT_ACCESS_KEY_FILE The full path to the AWS access key file condor_annex should use. No default.
If “FROM INSTANCE”, condor_annex will assume it’s running on an EC2 instance and try to use that instance’s
credentials.

ANNEX_DEFAULT_SECRET_KEY_FILE The full path to the AWS secret key file condor_annex should use. No default.
If “FROM INSTANCE”, condor_annex will assume it’s running on an EC2 instance and try to use that instance’s
credentials.

ANNEX_DEFAULT_S3_BUCKET A private S3 bucket that the ANNEX_DEFAULT_ACCESS_KEY_FILE and
ANNEX_DEFAULT_SECRET_KEY_FILE may write to. No default.

ANNEX_DEFAULT_ODI_SECURITY_GROUP_IDS The default security group for on-demand annexes. Must permit in-
bound HTCondor (port 9618).

7.5.4 Developer Settings

ANNEX_DEFAULT_CONNECTIVITY_FUNCTION_ARN The name (or ARN) of the Lambda function on AWS which con-
dor_annex should use to check if the configured collector can be contacted from AWS.

ANNEX_DEFAULT_ODI_INSTANCE_PROFILE_ARN The ARN of the instance profile condor_annex should use. No
default.

ANNEX_DEFAULT_ODI_LEASE_FUNCTION_ARN The Lambda function which implements the lease (duration) for on-
demand instances. No default.

ANNEX_DEFAULT_SFR_LEASE_FUNCTION_ARN The Lambda function which implements the lease (duration) for Spot
instances. No default.

7.6 HTCondor in the Cloud

Although any HTCondor pool for which each node was running on a cloud resource could fairly be described as a
“HTCondor in the Cloud”, in this section we concern ourselves with creating such pools using condor_annex. The basic
idea is start only a single instance manually – the “seed” node – which constitutes all of the HTCondor infrastructure
required to run both condor_annex and jobs.

7.6. HTCondor in the Cloud 569

https://ec2.us-east-1.amazonaws.com
https://ec2.us-east-1.amazonaws.com
https://events.us-east-1.amazonaws.com
https://events.us-east-1.amazonaws.com
https://lambda.us-east-1.amazonaws.com
https://lambda.us-east-1.amazonaws.com
https://s3.amazonaws.com
https://s3.amazonaws.com
https://cloudformation.us-east-1.amazonaws.com
https://cloudformation.us-east-1.amazonaws.com

HTCondor Manual, Release 10.0.9

7.6.1 The HTCondor in the Cloud Seed

A seed node hosts the HTCondor pool infrastructure (the parts that aren’t execute nodes). While HTCondor will try to
reconnect to running jobs if the instance hosting the schedd shuts down, you would need to take additional precautions –
making sure the seed node is automatically restarted, that it comes back quickly (faster than the job reconnect timeout),
and that it comes back with the same IP address(es), among others – to minimize the amount of work-in-progress lost.
We therefore recommend against using an interruptible instance for the seed node.

7.6.2 Security

Your cloud provider may allow you grant an instance privileges (e.g., the privilege of starting new instances). This can
be more convenient (because you don’t have to manually copy credentials into the instance), but may be risky if you
allow others to log into the instance (possibly allowing them to take advantage of the instance’s privileges). Conversely,
copying credentials into the instance makes it easy to forget to remove them before creating an image of that instance
(if you do).

7.6.3 Making a HTCondor in the Cloud

The general instructions are simple:

1. Start an instance from a seed image. Grant it privileges if you want. (See above).

2. If you did not grant the instance privileges, copy your credentials to the instance.

3. Run condor_annex.

AWS-Specific Instructions

The following instructions create a HTCondor-in-the-Cloud using the default seed image.

1. Go to the EC2 console.

2. Click the ‘Launch Instance’ button.

3. Click on ‘Community AMIs’.

4. Search for Condor-in-the-Cloud Seed. (The AMI ID is ami-00eeb25291cfad66f.) Click the ‘Select’
button.

5. Choose an instance type. (Select m5.large if you have no preference.)

6. Click the ‘Next: Configure Instance Details’ button.

7. For ‘IAM Role’, select the role you created in Using Instance Credentials, or follow those instructions now.

8. Click ‘6. Configure Security Group’. This creates a firewall rule to allow you to log into your instance.

9. Click the ‘Review and Launch’ button.

10. Click the ‘Launch’ button.

11. Select an existing key pair if you have one; you will need the corresponding private key file to log in to your
instance. If you don’t have one, select ‘Create a new key pair’ and enter a name; ‘HTCondor Annex’ is fine.
Click ‘Download key pair’. Save the file some place you can access easily but others can’t; you’ll need it later.

12. Click through, then click the button labelled ‘View Instances’.

13. The IPv4 address of your seed instance will be display. Use SSH to connect to that address as the ‘ec2-user’ with
the key pair from two steps ago.

570 Chapter 7. Cloud Computing

https://console.aws.amazon.com/ec2/?region=us-east-1

HTCondor Manual, Release 10.0.9

To grow your new HTCondor-in-the-Cloud from this seed, follow the instructions for using condor_annex for the first
time, starting with Configure condor_annex. You can than proceed to Start an Annex.

7.6.4 Creating a Seed

A seed image is simply an image with:

• HTCondor installed

• HTCondor configured to:

– be a central manager

– be a submit node

– allow condor_annex can add nodes

• a small script to set TCP_FORWARDING_HOST to the instance’s public IP adress when the instance starts up.

More-detailed instructions for constructing a seed node on AWS are available. A RHEL 7.6 image built according to
those instructions is available as public AMI ami-00eeb25291cfad66f.

7.7 Google Cloud Marketplace Entry

A solution for provisioning a pool using HTCondor 8.8 was made available on the Google Cloud Marketplace. It has
been deprecated and will be removed at a future date.

7.8 Google Cloud HPC Toolkit

The Cloud HPC Toolkit is an Open Source solution for provisioning HPC and HTC solutions on Google Cloud Platform
(GCP). Please consult the following resources for using the Toolkit to provision HTCondor on GCP:

• Cloud HPC Toolkit HTCondor Tutorial

• Cloud HPC Toolkit source code

7.7. Google Cloud Marketplace Entry 571

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=CondorInTheCloudSeedConstruction
https://goo.gle/hpc-toolkit-docs
https://cloud.google.com
https://cloud.google.com
https://github.com/GoogleCloudPlatform/hpc-toolkit/tree/main/docs/tutorials#htcondor-tutorial
https://goo.gle/hpc-toolkit

HTCondor Manual, Release 10.0.9

572 Chapter 7. Cloud Computing

CHAPTER

EIGHT

APPLICATION PROGRAMMING INTERFACES (APIS)

There are several ways of interacting with the HTCondor system. Depending on your application and resources, the
interfaces to HTCondor listed below may be useful for your installation. Generally speaking, to submit jobs from a
program or web service, or to monitor HTCondor, the python bindings are the easiest approach. Chirp provides a
convenient way for a running job to update information about itself to its job ad, or to remotely read or write files from
the executing job on the worker node to/from the submitting machine.

If you have developed an interface to HTCondor, please consider sharing it with the HTCondor community.

8.1 Python Bindings

The HTCondor Python bindings expose a Pythonic interface to the HTCondor client libraries. They utilize the same
C++ libraries as HTCondor itself, meaning they have nearly the same behavior as the command line tools.

Installing the Bindings Instructions on installing the HTCondor Python bindings.

HTCondor Python Bindings Tutorials Learn how to use the HTCondor Python bindings.

classad API Reference Documentation for classad .

htcondor API Reference Documentation for htcondor.

htcondor.htchirp API Reference Documentation for htcondor.htchirp.

htcondor.dags API Reference Documentation for htcondor.dags.

htcondor.personal API Reference Documentation for htcondor.personal.

8.1.1 Installing the Bindings

The HTCondor Python bindings are available from a variety of sources, depending on what platform you are on and
what tool you want to use to do the installation.

573

HTCondor Manual, Release 10.0.9

Linux System Packages

Availability: RHEL; CentOS; Debian; Ubuntu

The bindings are available as a package in various Linux system package repositories. The packages will automatically
be installed if you install HTCondor itself from our repositories. This method will let you use the Python bindings in
your system Python installation.

Windows Installer

Availability: Windows

The bindings are packaged in the Windows installer. Download the .msi for the version of your choice from the
table here and run it. After installation, the bindings packages will be in lib\python in your install directory (e.g.,
C:\condor\lib\python). Add this directory to your PYTHONPATH environment variable to use the bindings.

PyPI

Availability: Linux

The bindings are available on PyPI. To install from PyPI using pip, run

python -m pip install htcondor

Conda

Availability: Linux

The bindings are available on conda-forge. To install using conda, run

conda install -c conda-forge python-htcondor

8.1.2 HTCondor Python Bindings Tutorials

These tutorials are also available as a series of runnable Jupyter notebooks via Binder:

If Binder is not working for some reason, you can also try running them using the instructions in the GitHub repository.

The HTCondor Python bindings provide a powerful mechanism to interact with HTCondor from a Python program.
They utilize the same C++ libraries as HTCondor itself, meaning they have nearly the same behavior as the command
line tools.

In these tutorials you will learn the basics of the Python bindings and how to use them. They are broken down into a
few major sections:

• Introductory Topics, quick overviews of the major features of the bindings.

• Advanced Topics, in-depth examinations of the nooks and crannies of the system.

574 Chapter 8. Application Programming Interfaces (APIs)

https://htcondor.org/downloads/htcondor
https://htcondor.org/downloads/htcondor
https://htcondor.org/downloads/htcondor
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://pypi.org/project/htcondor/
https://pypi.org/project/htcondor/
https://anaconda.org/conda-forge/htcondor
https://anaconda.org/conda-forge/htcondor
https://anaconda.org/conda-forge/python-htcondor
https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/index.ipynb
https://github.com/htcondor/htcondor-python-bindings-tutorials

HTCondor Manual, Release 10.0.9

Introductory Tutorials

These tutorials cover the basics of the Python bindings and how to use them through a quick overview of the major
components.

1. Submitting and Managing Jobs - How to submit and manage HTCondor jobs from Python.

2. ClassAds Introduction - The essentials of the ClassAd language.

3. HTCondor Introduction - How to interact with the individual HTCondor daemons.

Advanced Tutorials

The advanced tutorials are in-depth looks at specific pieces of the Python bindings. Each is meant to be stand-alone
and should only require knowledge from the introductory tutorials.

1. Advanced Job Submission and Management - More details on submitting and managing jobs from Python.

2. Advanced Schedd Interaction - Performing transactions in the schedd and querying history.

3. Interacting with Daemons - Generic commands that work with any HTCondor daemon.

4. Scalable Job Tracking - Techniques for keeping close track of many jobs without overloading the schedd.

5. DAG Creation and Submission - Using htcondor.dags to create and submit a DAG.

6. Personal Pools - Using htcondor.personal to create and manage a “personal” HTCondor pool.

Submitting and Managing Jobs

Launch this tutorial in a Jupyter Notebook on Binder:

What is HTCondor?

An HTCondor pool provides a way for you (as a user) to submit units of work, called jobs, to be executed on a distributed
network of computing resources. HTCondor provides tools to monitor your jobs as they run, and make certain kinds
of changes to them after submission, which we call “managing” jobs.

In this tutorial, we will learn how to submit and manage jobs from Python. We will see how to submit jobs with various
toy executables, how to ask HTCondor for information about them, and how to tell HTCondor to do things with them.
All of these things are possible from the command line as well, using tools like condor_submit, condor_qedit, and
condor_hold. However, working from Python instead of the command line gives us access to the full power of Python
to do things like generate jobs programmatically based on user input, pass information consistently from submission
to management, or even expose an HTCondor pool to a web application.

We start by importing the HTCondor Python bindings modules, which provide the functions we will need to talk to
HTCondor.

[1]: import htcondor # for submitting jobs, querying HTCondor daemons, etc.
import classad # for interacting with ClassAds, HTCondor's internal data format

8.1. Python Bindings 575

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Submitting-and-Managing-Jobs.ipynb

HTCondor Manual, Release 10.0.9

Submitting a Simple Job

To submit a job, we must first describe it. A submit description is held in a Submit object. Submit objects consist of
key-value pairs, and generally behave like Python dictionaries. If you’re familiar with HTCondor’s submit file syntax,
you should think of each line in the submit file as a single key-value pair in the Submit object.

Let’s start by writing a Submit object that describes a job that executes the hostname command on an execute node,
which prints out the “name” of the node. Since hostname prints its results to standard output (stdout), we will capture
stdout and bring it back to the submit machine so we can see the name.

[2]: hostname_job = htcondor.Submit({
"executable": "/bin/hostname", # the program to run on the execute node
"output": "hostname.out", # anything the job prints to standard output will␣

→˓end up in this file
"error": "hostname.err", # anything the job prints to standard error will end␣

→˓up in this file
"log": "hostname.log", # this file will contain a record of what happened␣

→˓to the job
"request_cpus": "1", # how many CPU cores we want
"request_memory": "128MB", # how much memory we want
"request_disk": "128MB", # how much disk space we want

})

print(hostname_job)

executable = /bin/hostname
output = hostname.out
error = hostname.err
log = hostname.log
request_cpus = 1
request_memory = 128MB
request_disk = 128MB

The available descriptors are documented in the `condor_submit manual page <https://htcondor.readthedocs.io/en/
latest/man-pages/condor_submit.html>`__. The keys of the Python dictionary you pass to htcondor.Submit should
be the same as for the submit descriptors, and the values should be strings containing exactly what would go on the
right-hand side.

Note that we gave the Submit object several relative filepaths. These paths are relative to the directory containing this
Jupyter notebook (or, more generally, the current working directory). When we run the job, you should see those files
appear in the file browser on the left as HTCondor creates them.

Now that we have a job description, let’s submit a job. The htcondor.Schedd.submit method returns a
SubmitResult object that contains information about the job, such as its ClusterId.

[3]: schedd = htcondor.Schedd() # get the Python representation of the␣
→˓scheduler
submit_result = schedd.submit(hostname_job) # submit the job
print(submit_result.cluster()) # print the job's ClusterId

13

The job’s ClusterId uniquely identifies this submission. Later in this module, we will use it to ask the HTCondor
scheduler for information about our jobs.

576 Chapter 8. Application Programming Interfaces (APIs)

https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html
https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html

HTCondor Manual, Release 10.0.9

For now, our job will hopefully have finished running. You should be able to see the files in the file browser on the left.
Try opening one of them and seeing what’s inside.

We can also look at the output from inside Python:

[4]: import os
import time

output_path = "hostname.out"

this is a crude way to wait for the job to finish
see the Advanced tutorial "Scalable Job Tracking" for better methods!
while not os.path.exists(output_path):

print("Output file doesn't exist yet; sleeping for one second")
time.sleep(1)

with open(output_path, mode = "r") as f:
print(f.read())

2ca25178243f

If you got some text, it worked!

If the file never shows up, it means your job didn’t run. You might try looking at the log or error files specified in
the submit description to see if there is any useful information in them about why the job failed.

Submitting Multiple Jobs

By default, each submit will submit a single job. A more common use case is to submit many jobs at once, often
sharing some base submit description. Let’s write a new submit description which runs sleep.

When we have multiple jobs in a single cluster, each job will be identified not just by its ClusterId but also by a
ProcID. We can use the ProcID to separate the output and error files for each individual job. Anything that looks like
$(...) in a submit description is a macro, a placeholder which will be “expanded” later by HTCondor into a real
value for that particular job. The ProcID expands to a series of incrementing integers, starting at 0. So the first job in
a cluster will have ProcID 0, the next will have ProcID 1, etc.

[5]: sleep_job = htcondor.Submit({
"executable": "/bin/sleep",
"arguments": "10s", # sleep for 10 seconds
"output": "sleep-$(ProcId).out", # output and error for each job, using the

→˓$(ProcId) macro
"error": "sleep-$(ProcId).err",
"log": "sleep.log", # we still send all of the HTCondor logs for every␣

→˓job to the same file (not split up!)
"request_cpus": "1",
"request_memory": "128MB",
"request_disk": "128MB",

})

print(sleep_job)

executable = /bin/sleep
arguments = 10s

(continues on next page)

8.1. Python Bindings 577

HTCondor Manual, Release 10.0.9

(continued from previous page)

output = sleep-$(ProcId).out
error = sleep-$(ProcId).err
log = sleep.log
request_cpus = 1
request_memory = 128MB
request_disk = 128MB

We will submit 10 of these jobs. All we need to change from our previous submit call is to add the count keyword
argument.

[6]: schedd = htcondor.Schedd()
submit_result = schedd.submit(sleep_job, count=10) # submit 10 jobs

print(submit_result.cluster())

14

Now that we have a bunch of jobs in flight, we might want to check how they’re doing. We can ask the HTCondor
scheduler about jobs by using its query method. We give it a constraint, which tells it which jobs to look for, and a
projection, which tells it what information to return.

[7]: schedd.query(
constraint=f"ClusterId == {submit_result.cluster()}",
projection=["ClusterId", "ProcId", "Out"],

)

[7]: [[ClusterId = 14; ProcId = 0; Out = "sleep-0.out"; ServerTime = 1631798183],
[ClusterId = 14; ProcId = 1; Out = "sleep-1.out"; ServerTime = 1631798183],
[ClusterId = 14; ProcId = 2; Out = "sleep-2.out"; ServerTime = 1631798183],
[ClusterId = 14; ProcId = 3; Out = "sleep-3.out"; ServerTime = 1631798183],
[ClusterId = 14; ProcId = 4; Out = "sleep-4.out"; ServerTime = 1631798183],
[ClusterId = 14; ProcId = 5; Out = "sleep-5.out"; ServerTime = 1631798183],
[ClusterId = 14; ProcId = 6; Out = "sleep-6.out"; ServerTime = 1631798183],
[ClusterId = 14; ProcId = 7; Out = "sleep-7.out"; ServerTime = 1631798183],
[ClusterId = 14; ProcId = 8; Out = "sleep-8.out"; ServerTime = 1631798183],
[ClusterId = 14; ProcId = 9; Out = "sleep-9.out"; ServerTime = 1631798183]]

There are a few things to notice here: - Depending on how long it took you to run the cell, you may only get a few of
your 10 jobs in the query. Jobs that have finished leave the queue, and will no longer show up in queries. To see those
jobs, you must use the history method instead, which behaves like query, but only looks at jobs that have left the
queue. - The results may not have come back in ProcID-sorted order. If you want to guarantee the order of the results,
you must do so yourself. - Attributes are often renamed between the submit description and the actual job description
in the queue. See the manual for a description of the job attribute names. - The objects returned by the query are
instances of ClassAd. ClassAds are the common data exchange format used by HTCondor. In Python, they mostly
behave like dictionaries.

578 Chapter 8. Application Programming Interfaces (APIs)

https://htcondor.readthedocs.io/en/latest/classad-attributes/job-classad-attributes.html

HTCondor Manual, Release 10.0.9

Using Itemdata to Vary Over Parameters

By varying some part of the submit description using the ProcID, we can change how each individual job behaves.
Perhaps it will use a different input file, or a different argument. However, we often want more flexibility than that.
Perhaps our input files are named after different cities, or by timestamp, or some other naming scheme that already
exists.

To use such information in the submit description, we need to use itemdata. Itemdata lets us pass arbitrary extra
information when we queue, which we can reference with macros inside the submit description. This lets use the full
power of Python to generate the submit descriptions for our jobs.

Let’s mock this situation out by generating some files with randomly-chosen names. We’ll also switch to using
pathlib.Path, Python’s more modern file path manipulation library.

[8]: from pathlib import Path
import random
import string
import shutil

def random_string(length):
"""Produce a random lowercase ASCII string with the given length."""
return "".join(random.choices(string.ascii_lowercase, k = length))

make a directory to hold the input files, clearing away any existing directory
input_dir = Path.cwd() / "inputs"
shutil.rmtree(input_dir, ignore_errors = True)
input_dir.mkdir()

make 5 input files
for idx in range(5):

rs = random_string(5)
input_file = input_dir / "{}.txt".format(rs)
input_file.write_text("Hello from job {}".format(rs))

Now we’ll get a list of all the files we just created in the input directory. This is precisely the kind of situation where
Python affords us a great deal of flexibility over a submit file: we can use Python instead of the HTCondor submit
language to generate and inspect the information we’re going to put into the submit description.

[9]: input_files = list(input_dir.glob("*.txt"))

for path in input_files:
print(path)

/home/jovyan/tutorials/inputs/juvsl.txt
/home/jovyan/tutorials/inputs/lyitt.txt
/home/jovyan/tutorials/inputs/pnzjh.txt
/home/jovyan/tutorials/inputs/qyeet.txt
/home/jovyan/tutorials/inputs/uhmiu.txt

Now we’ll make our submit description. Our goal is just to print out the text held in each file, which we can do using
cat.

We will tell HTCondor to transfer the input file to the execute location by including it in transfer_input_files.
We also need to call cat on the right file via arguments. Keep in mind that HTCondor will move the files in
transfer_input_files directly to the scratch directory on the execute machine, so instead of the full path, we
just need the file’s “name”, the last component of its path. pathlib will make it easy to extract this information.

8.1. Python Bindings 579

HTCondor Manual, Release 10.0.9

[10]: cat_job = htcondor.Submit({
"executable": "/bin/cat",
"arguments": "$(input_file_name)", # we will pass in the value for this␣

→˓macro via itemdata
"transfer_input_files": "$(input_file)", # we also need HTCondor to move the file␣

→˓to the execute node
"should_transfer_files": "yes", # force HTCondor to transfer files even␣

→˓though we're running entirely inside a container (and it normally wouldn't need to)
"output": "cat-$(ProcId).out",
"error": "cat-$(ProcId).err",
"log": "cat.log",
"request_cpus": "1",
"request_memory": "128MB",
"request_disk": "128MB",

})

print(cat_job)

executable = /bin/cat
arguments = $(input_file_name)
transfer_input_files = $(input_file)
should_transfer_files = yes
output = cat-$(ProcId).out
error = cat-$(ProcId).err
log = cat.log
request_cpus = 1
request_memory = 128MB
request_disk = 128MB

The itemdata should be passed as a list of dictionaries, where the keys are the macro names to replace in the submit
description. In our case, the keys are input_file and input_file_name, so should have a list of 10 dictionaries,
each with two entries. HTCondor expects the input file list to be a comma-separated list of POSIX-style paths, so we
explicitly convert our Path to a POSIX string.

[11]: itemdata = [{"input_file": path.as_posix(), "input_file_name": path.name} for path in␣
→˓input_files]

for item in itemdata:
print(item)

{'input_file': '/home/jovyan/tutorials/inputs/juvsl.txt', 'input_file_name': 'juvsl.txt'}
{'input_file': '/home/jovyan/tutorials/inputs/lyitt.txt', 'input_file_name': 'lyitt.txt'}
{'input_file': '/home/jovyan/tutorials/inputs/pnzjh.txt', 'input_file_name': 'pnzjh.txt'}
{'input_file': '/home/jovyan/tutorials/inputs/qyeet.txt', 'input_file_name': 'qyeet.txt'}
{'input_file': '/home/jovyan/tutorials/inputs/uhmiu.txt', 'input_file_name': 'uhmiu.txt'}

Now we’ll submit the jobs, adding the itemdata parameter to the submit call:

[12]: schedd = htcondor.Schedd()
submit_result = schedd.submit(cat_job, itemdata = iter(itemdata)) # submit one job for␣
→˓each item in the itemdata

print(submit_result.cluster())

580 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

15

Let’s do a query to make sure we got the itemdata right (these jobs run fast, so you might need to re-run the jobs if your
first run has already left the queue):

[13]: schedd.query(
constraint=f"ClusterId == {submit_result.cluster()}",
projection=["ClusterId", "ProcId", "Out", "Args", "TransferInput"],

)

[13]: [[Args = "juvsl.txt"; ClusterId = 15; ProcId = 0; Out = "cat-0.out"; TransferInput = "/
→˓home/jovyan/tutorials/inputs/juvsl.txt"; ServerTime = 1631798183],
[Args = "lyitt.txt"; ClusterId = 15; ProcId = 1; Out = "cat-1.out"; TransferInput = "/
→˓home/jovyan/tutorials/inputs/lyitt.txt"; ServerTime = 1631798183],
[Args = "pnzjh.txt"; ClusterId = 15; ProcId = 2; Out = "cat-2.out"; TransferInput = "/
→˓home/jovyan/tutorials/inputs/pnzjh.txt"; ServerTime = 1631798183],
[Args = "qyeet.txt"; ClusterId = 15; ProcId = 3; Out = "cat-3.out"; TransferInput = "/
→˓home/jovyan/tutorials/inputs/qyeet.txt"; ServerTime = 1631798183],
[Args = "uhmiu.txt"; ClusterId = 15; ProcId = 4; Out = "cat-4.out"; TransferInput = "/
→˓home/jovyan/tutorials/inputs/uhmiu.txt"; ServerTime = 1631798183]]

And let’s take a look at all the output:

[14]: # again, this is very crude - see the advanced tutorials!
while not len(list(Path.cwd().glob("cat-*.out"))) == len(itemdata):

print("Not all output files exist yet; sleeping for one second")
time.sleep(1)

for output_file in Path.cwd().glob("cat-*.out"):
print(output_file, "->", output_file.read_text())

/home/jovyan/tutorials/cat-0.out -> Hello from job ilmzj
/home/jovyan/tutorials/cat-1.out -> Hello from job lddhl
/home/jovyan/tutorials/cat-2.out -> Hello from job nsxcj
/home/jovyan/tutorials/cat-3.out -> Hello from job rycnn
/home/jovyan/tutorials/cat-4.out -> Hello from job veamy

Managing Jobs

Once a job is in queue, the scheduler will try its best to execute it to completion. There are several cases where you
may want to interrupt the normal flow of jobs. Perhaps the results are no longer needed; perhaps the job needs to be
edited to correct a submission error. These actions fall under the purview of job management.

There are two Schedd methods dedicated to job management:

• edit(): Change an attribute for a set of jobs.

• act(): Change the state of a job (remove it from the queue, hold it, suspend it, etc.).

The act method takes an argument from the JobAction enum. Commonly-used values include:

• Hold: put a job on hold, vacating a running job if necessary. A job will stay in the hold state until told otherwise.

• Release: Release a job from the hold state, returning it to Idle.

• Remove: Remove a job from the queue. If it is running, it will stop running. This requires the execute node to
acknowledge it has successfully vacated the job, so Remove may not be instantaneous.

8.1. Python Bindings 581

HTCondor Manual, Release 10.0.9

• Vacate: Cause a running job to be killed on the remote resource and return to the Idle state. With Vacate, jobs
may be given significant time to cleanly shut down.

To play with this, let’s bring back our sleep submit description, but increase the sleep time significantly so that we have
time to interact with the jobs.

[15]: long_sleep_job = htcondor.Submit({
"executable": "/bin/sleep",
"arguments": "10m", # sleep for 10 minutes
"output": "sleep-$(ProcId).out",
"error": "sleep-$(ProcId).err",
"log": "sleep.log",
"request_cpus": "1",
"request_memory": "128MB",
"request_disk": "128MB",

})

print(long_sleep_job)

executable = /bin/sleep
arguments = 10m
output = sleep-$(ProcId).out
error = sleep-$(ProcId).err
log = sleep.log
request_cpus = 1
request_memory = 128MB
request_disk = 128MB

[16]: schedd = htcondor.Schedd()
submit_result = schedd.submit(long_sleep_job, count=5)

As an experiment, let’s set an arbitrary attribute on the jobs and check that it worked. When we’re really working, we
could do things like change the amount of memory a job has requested by editing its RequestMemory attribute. The
job attributes that are built-in to HTCondor are described here, but your site may specify additional, custom attributes
as well.

[17]: # sets attribute foo to the string "bar" for all of our jobs
note the nested quotes around bar! The outer "" make it a Python string; the inner ""␣
→˓make it a ClassAd string.
schedd.edit(f"ClusterId == {submit_result.cluster()}", "foo", "\"bar\"")

do a query to check the value of attribute foo
schedd.query(

constraint=f"ClusterId == {submit_result.cluster()}",
projection=["ClusterId", "ProcId", "JobStatus", "foo"],

)

[17]: [[ClusterId = 16; ProcId = 0; foo = "bar"; JobStatus = 1; ServerTime = 1631798184],
[ClusterId = 16; ProcId = 1; foo = "bar"; JobStatus = 1; ServerTime = 1631798184],
[ClusterId = 16; ProcId = 2; foo = "bar"; JobStatus = 1; ServerTime = 1631798184],
[ClusterId = 16; ProcId = 3; foo = "bar"; JobStatus = 1; ServerTime = 1631798184],
[ClusterId = 16; ProcId = 4; foo = "bar"; JobStatus = 1; ServerTime = 1631798184]]

Although the job status appears to be an attribute, we cannot edit it directly. As mentioned above, we must instead
act on the job. Let’s hold the first two jobs so that they stop running, but leave the others going.

582 Chapter 8. Application Programming Interfaces (APIs)

https://htcondor.readthedocs.io/en/latest/classad-attributes/job-classad-attributes.html

HTCondor Manual, Release 10.0.9

[18]: # hold the first two jobs
schedd.act(htcondor.JobAction.Hold, f"ClusterId == {submit_result.
→˓cluster()} && ProcID <= 1")

check the status of the jobs
ads = schedd.query(

constraint=f"ClusterId == {submit_result.cluster()}",
projection=["ClusterId", "ProcId", "JobStatus"],

)

for ad in ads:
the ClassAd objects returned by the query act like dictionaries, so we can extract␣

→˓individual values out of them using []
print(f"ProcID = {ad['ProcID']} has JobStatus = {ad['JobStatus']}")

ProcID = 0 has JobStatus = 5
ProcID = 1 has JobStatus = 5
ProcID = 2 has JobStatus = 1
ProcID = 3 has JobStatus = 1
ProcID = 4 has JobStatus = 1

The various job statuses are represented by numbers. 1 means Idle, 2 means Running, and 5 means Held. If you see
JobStatus = 5 above for ProcID = 0 and ProcID = 1, then we succeeded!

The opposite of JobAction.Hold is JobAction.Release. Let’s release those jobs and let them go back to Idle.

[19]: schedd.act(htcondor.JobAction.Release, f"ClusterId == {submit_result.cluster()}")

ads = schedd.query(
constraint=f"ClusterId == {submit_result.cluster()}",
projection=["ClusterId", "ProcId", "JobStatus"],

)

for ad in ads:
the ClassAd objects returned by the query act like dictionaries, so we can extract␣

→˓individual values out of them using []
print(f"ProcID = {ad['ProcID']} has JobStatus = {ad['JobStatus']}")

ProcID = 0 has JobStatus = 1
ProcID = 1 has JobStatus = 1
ProcID = 2 has JobStatus = 1
ProcID = 3 has JobStatus = 1
ProcID = 4 has JobStatus = 1

Note that we simply released all the jobs in the cluster. Releasing a job that is not held doesn’t do anything, so we don’t
have to be extremely careful.

Finally, let’s clean up after ourselves:

[20]: schedd.act(htcondor.JobAction.Remove, f"ClusterId == {submit_result.cluster()}")

[20]: [TotalJobAds = 0; TotalPermissionDenied = 0; TotalAlreadyDone = 0; TotalNotFound = 0;␣
→˓TotalSuccess = 5; TotalChangedAds = 1; TotalBadStatus = 0; TotalError = 0]

8.1. Python Bindings 583

HTCondor Manual, Release 10.0.9

Exercises

Now let’s practice what we’ve learned.

• In each exercise, you will be given a piece of code and a test that does not yet pass.

• The exercises are vaguely in order of increasing difficulty.

• Modify the code, or add new code to it, to pass the test. Do whatever it takes!

• You can run the test by running the block it is in.

• Feel free to look at the test for clues as to how to modify the code.

• Many of the exercises can be solved either by using Python to generate inputs, or by using advanced features of
the ClassAd language. Either way is valid!

• Don’t modify the test. That’s cheating!

Exercise 1: Incrementing Sleeps

Submit five jobs which sleep for 5, 6, 7, 8, and 9 seconds, respectively.

[21]: # MODIFY OR ADD TO THIS BLOCK...

incrementing_sleep = htcondor.Submit({
"executable": "/bin/sleep",
"arguments": "1",
"output": "ex1-$(ProcId).out",
"error": "ex1-$(ProcId).err",
"log": "ex1.log",
"request_cpus": "1",
"request_memory": "128MB",
"request_disk": "128MB",

})

schedd = htcondor.Schedd()
submit_result = schedd.submit(incrementing_sleep)

[22]: # ... TO MAKE THIS TEST PASS

expected = [str(i) for i in range(5, 10)]
print("Expected ", expected)

ads = schedd.query(f"ClusterId == {submit_result.cluster()}", projection = ["Args"])
arguments = sorted(ad["Args"] for ad in ads)
print("Got ", arguments)

assert arguments == expected, "Arguments were not what we expected!"
print("The test passed. Good job!")

Expected ['5', '6', '7', '8', '9']
Got ['1']

AssertionError Traceback (most recent call last)

(continues on next page)

584 Chapter 8. Application Programming Interfaces (APIs)

https://htcondor.readthedocs.io/en/latest/classads/classad-mechanism.html#htcondor-s-classad-mechanism

HTCondor Manual, Release 10.0.9

(continued from previous page)

/tmp/ipykernel_454/3067880786.py in <module>
8 print("Got ", arguments)
9

---> 10 assert arguments == expected, "Arguments were not what we expected!"
11 print("The test passed. Good job!")

AssertionError: Arguments were not what we expected!

Exercise 2: Echo to Target

Run a job that makes the text Echo to Target appear in a file named ex3.txt.

[23]: # MODIFY OR ADD TO THIS BLOCK...

echo = htcondor.Submit({
"request_cpus": "1",
"request_memory": "128MB",
"request_disk": "128MB",

})

schedd = htcondor.Schedd()
submit_result = schedd.submit(echo)

HTCondorInternalError Traceback (most recent call last)
/tmp/ipykernel_454/2917236442.py in <module>

8
9 schedd = htcondor.Schedd()

---> 10 submit_result = schedd.submit(echo)

/opt/conda/lib/python3.9/site-packages/htcondor/_lock.py in wrapper(*args, **kwargs)
67 acquired = LOCK.acquire()
68

---> 69 rv = func(*args, **kwargs)
70
71 # if the function returned a context manager,

HTCondorInternalError: No 'executable' parameter was provided

[24]: # ... TO MAKE THIS TEST PASS

does_file_exist = os.path.exists("ex3.txt")
assert does_file_exist, "ex3.txt does not exist!"

expected = "Echo to Target"
print("Expected ", expected)

contents = open("ex3.txt", mode = "r").read().strip()
print("Got ", contents)

assert expected in contents, "Contents were not what we expected!"
(continues on next page)

8.1. Python Bindings 585

HTCondor Manual, Release 10.0.9

(continued from previous page)

print("The test passed. Good job!")

AssertionError Traceback (most recent call last)
/tmp/ipykernel_454/1707749984.py in <module>

2
3 does_file_exist = os.path.exists("ex3.txt")

----> 4 assert does_file_exist, "ex3.txt does not exist!"
5
6 expected = "Echo to Target"

AssertionError: ex3.txt does not exist!

Exercise 3: Holding Odds

Hold all of the odd-numbered jobs in this large cluster.

• Note that the test block removes all of the jobs you own when it runs, to prevent these long-running jobs from
corrupting other tests!

[25]: # MODIFY OR ADD TO THIS BLOCK...

long_sleep = htcondor.Submit({
"executable": "/bin/sleep",
"arguments": "10m",
"output": "ex2-$(ProcId).out",
"error": "ex2-$(ProcId).err",
"log": "ex2.log",
"request_cpus": "1",
"request_memory": "128MB",
"request_disk": "128MB",

})

schedd = htcondor.Schedd()
submit_result = schedd.submit(long_sleep, count=100)

[26]: # ... TO MAKE THIS TEST PASS

import getpass

try:
ads = schedd.query(f"ClusterId == {submit_result.cluster()}", projection = ["ProcID",

→˓ "JobStatus"])
proc_to_status = {int(ad["ProcID"]): ad["JobStatus"] for ad in sorted(ads, key =␣

→˓lambda ad: ad["ProcID"])}

for proc, status in proc_to_status.items():
print("Proc {} has status {}".format(proc, status))

assert len(proc_to_status) == 100,␣
→˓"Wrong number of jobs (perhaps you need to resubmit them?)."

(continues on next page)

586 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

(continued from previous page)

assert all(status == 5 for proc, status in proc_to_status.items() if proc % 2 != 0),␣
→˓"Not all odd jobs were held."
assert all(status != 5 for proc, status in proc_to_status.items() if proc % 2 == 0),␣

→˓"An even job was held."

print("The test passed. Good job!")
finally:

schedd.act(htcondor.JobAction.Remove, f'Owner=="{getpass.getuser()}"')

Proc 0 has status 1
Proc 1 has status 1
Proc 2 has status 1
Proc 3 has status 1
Proc 4 has status 1
Proc 5 has status 1
Proc 6 has status 1
Proc 7 has status 1
Proc 8 has status 1
Proc 9 has status 1
Proc 10 has status 1
Proc 11 has status 1
Proc 12 has status 1
Proc 13 has status 1
Proc 14 has status 1
Proc 15 has status 1
Proc 16 has status 1
Proc 17 has status 1
Proc 18 has status 1
Proc 19 has status 1
Proc 20 has status 1
Proc 21 has status 1
Proc 22 has status 1
Proc 23 has status 1
Proc 24 has status 1
Proc 25 has status 1
Proc 26 has status 1
Proc 27 has status 1
Proc 28 has status 1
Proc 29 has status 1
Proc 30 has status 1
Proc 31 has status 1
Proc 32 has status 1
Proc 33 has status 1
Proc 34 has status 1
Proc 35 has status 1
Proc 36 has status 1
Proc 37 has status 1
Proc 38 has status 1
Proc 39 has status 1
Proc 40 has status 1
Proc 41 has status 1
Proc 42 has status 1

(continues on next page)

8.1. Python Bindings 587

HTCondor Manual, Release 10.0.9

(continued from previous page)

Proc 43 has status 1
Proc 44 has status 1
Proc 45 has status 1
Proc 46 has status 1
Proc 47 has status 1
Proc 48 has status 1
Proc 49 has status 1
Proc 50 has status 1
Proc 51 has status 1
Proc 52 has status 1
Proc 53 has status 1
Proc 54 has status 1
Proc 55 has status 1
Proc 56 has status 1
Proc 57 has status 1
Proc 58 has status 1
Proc 59 has status 1
Proc 60 has status 1
Proc 61 has status 1
Proc 62 has status 1
Proc 63 has status 1
Proc 64 has status 1
Proc 65 has status 1
Proc 66 has status 1
Proc 67 has status 1
Proc 68 has status 1
Proc 69 has status 1
Proc 70 has status 1
Proc 71 has status 1
Proc 72 has status 1
Proc 73 has status 1
Proc 74 has status 1
Proc 75 has status 1
Proc 76 has status 1
Proc 77 has status 1
Proc 78 has status 1
Proc 79 has status 1
Proc 80 has status 1
Proc 81 has status 1
Proc 82 has status 1
Proc 83 has status 1
Proc 84 has status 1
Proc 85 has status 1
Proc 86 has status 1
Proc 87 has status 1
Proc 88 has status 1
Proc 89 has status 1
Proc 90 has status 1
Proc 91 has status 1
Proc 92 has status 1
Proc 93 has status 1
Proc 94 has status 1

(continues on next page)

588 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

(continued from previous page)

Proc 95 has status 1
Proc 96 has status 1
Proc 97 has status 1
Proc 98 has status 1
Proc 99 has status 1

AssertionError Traceback (most recent call last)
/tmp/ipykernel_454/4042351238.py in <module>

11
12 assert len(proc_to_status) == 100, "Wrong number of jobs (perhaps you need␣

→˓to resubmit them?)."
---> 13 assert all(status == 5 for proc, status in proc_to_status.items() if proc %␣
→˓2 != 0), "Not all odd jobs were held."

14 assert all(status != 5 for proc, status in proc_to_status.items() if proc %␣
→˓2 == 0), "An even job was held."

15

AssertionError: Not all odd jobs were held.

ClassAds Introduction

Launch this tutorial in a Jupyter Notebook on Binder:

In this tutorial, we will learn the basics of the ClassAd language, the policy and data exchange language that under-
pins all of HTCondor. ClassAds are fundamental in the HTCondor ecosystem, so understanding them will be good
preparation for future tutorials.

The Python implementation of the ClassAd language is in the classad module:

[1]: import classad

Expressions

The ClassAd language is built around values and expressions. If you know Python, both concepts are familiar. Examples
of familiar values include: - Integers (1, 2, 3), - Floating point numbers (3.145, -1e-6) - Booleans (true and false).

Examples of expressions are: - Attribute references: foo - Boolean expressions: a && b - Arithmetic expressions:
123 + c - Function calls: ifThenElse(foo == 123, 3.14, 5.2)

Expressions can be evaluated to values. Unlike many programming languages, expressions are lazily-evaluated: they
are kept in memory as expressions until a value is explicitly requested. ClassAds holding expressions to be evaluated
later are how many internal parts of HTCondor, like job requirements, are expressed.

Expressions are represented in Python with ExprTree objects. The desired ClassAd expression is passed as a string
to the constructor:

[2]: arith_expr = classad.ExprTree("1 + 4")
print(f"ClassAd arithemetic expression: {arith_expr} (of type {type(arith_expr)})")

ClassAd arithemetic expression: 1 + 4 (of type <class 'classad.classad.ExprTree'>)

Expressions can be evaluated on-demand:

8.1. Python Bindings 589

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/ClassAds-Introduction.ipynb
https://htcondor.org/classad/classad.html

HTCondor Manual, Release 10.0.9

[3]: print(arith_expr.eval())

5

Here’s an expression that includes a ClassAd function:

[4]: function_expr = classad.ExprTree("ifThenElse(4 > 6, 123, 456)")
print(f"Function expression: {function_expr}")

value = function_expr.eval()
print(f"Corresponding value: {value} (of type {type(value)})")

Function expression: ifThenElse(4 > 6,123,456)
Corresponding value: 456 (of type <class 'int'>)

Notice that, when possible, we convert ClassAd values to Python values. Hence, the result of evaluating the expression
above is the Python int 456.

There are two important values in the ClassAd language that have no direct equivalent in Python: Undefined and
Error.

Undefined occurs when a reference occurs to an attribute that is not defined; it is analogous to a NameError exception
in Python (but there is no concept of an exception in ClassAds). For example, evaluating an unset attribute produces
Undefined:

[5]: print(classad.ExprTree("foo").eval())

Undefined

Error occurs primarily when an expression combines two different types or when a function call occurs with the
incorrect arguments. Note that even in this case, no Python exception is raised!

[6]: print(classad.ExprTree('5 + "bar"').eval())
print(classad.ExprTree('ifThenElse(1, 2, 3, 4, 5)').eval())

Error
Error

ClassAds

The concept that makes the ClassAd language special is, of course, the ClassAd!

The ClassAd is analogous to a Python or JSON dictionary. Unlike a dictionary, which is a set of unique key-value pairs,
the ClassAd object is a set of key-expression pairs. The expressions in the ad can contain attribute references to other
keys in the ad, which will be followed when evaluated.

There are two common ways to represent ClassAds in text. The “new ClassAd” format:

[
a = 1;
b = "foo";
c = b

]

And the “old ClassAd” format:

590 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

a = 1
b = "foo"
c = b

Despite the “new” and “old” monikers, “new” is over a decade old. HTCondor command line tools utilize the “old”
representation. The Python bindings default to “new”.

A ClassAd object may be initialized via a string in either of the above representation. As a ClassAd is so similar to a
Python dictionary, they may also be constructed from a dictionary.

Let’s construct some ClassAds!

[7]: ad1 = classad.ClassAd("""
[
a = 1;
b = "foo";
c = b;
d = a + 4;

]""")
print(ad1)

[
a = 1;
b = "foo";
c = b;
d = a + 4

]

We can construct the same ClassAd from a dictionary:

[8]: ad_from_dict = classad.ClassAd(
{

"a": 1,
"b": "foo",
"c": classad.ExprTree("b"),
"d": classad.ExprTree("a + 4"),

})
print(ad_from_dict)

[
d = a + 4;
c = b;
b = "foo";
a = 1

]

ClassAds are quite similar to dictionaries; in Python, the ClassAd object behaves similarly to a dictionary and has
similar convenience methods:

[9]: print(ad1["a"])
print(ad1["not_here"])

1

8.1. Python Bindings 591

HTCondor Manual, Release 10.0.9

KeyError Traceback (most recent call last)
/tmp/ipykernel_116/3690994919.py in <module>

1 print(ad1["a"])
----> 2 print(ad1["not_here"])

KeyError: 'not_here'

[10]: print(ad1.get("not_here", 5))

5

[11]: ad1.update({"e": 8, "f": True})
print(ad1)

[
f = true;
e = 8;
a = 1;
b = "foo";
c = b;
d = a + 4

]

Remember our example of an Undefined attribute above? We now can evaluate references within the context of the
ad:

[12]: print(ad1.eval("d"))

5

Note that an expression is still not evaluated until requested, even if it is invalid:

[13]: ad1["g"] = classad.ExprTree("b + 5")
print(ad1["g"])
print(type(ad1["g"]))
print(ad1.eval("g"))

b + 5
<class 'classad.classad.ExprTree'>
Error

Onto HTCondor!

ClassAds and expressions are core concepts in interacting with HTCondor. Internally, machines and jobs are repre-
sented as ClassAds; expressions are used to filter objects and to define policy.

There’s much more to learn in ClassAds! For now, you have enough background to continue to the next tutorial -
HTCondor Introduction.

592 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

HTCondor Introduction

Launch this tutorial in a Jupyter Notebook on Binder:

Let’s start interacting with the HTCondor daemons!

We’ll cover the basics of two daemons, the Collector and the Schedd:

• The Collector maintains an inventory of all the pieces of the HTCondor pool. For example, each machine that
can run jobs will advertise a ClassAd describing its resources and state. In this module, we’ll learn the basics of
querying the collector for information and displaying results.

• The Schedd maintains a queue of jobs and is responsible for managing their execution. We’ll learn the basics of
querying the schedd.

There are several other daemons - particularly, the Startd and the Negotiator - that the Python bindings can interact
with. We’ll cover those in the advanced modules.

If you are running these tutorials in the provided Docker container or on Binder, a local HTCondor pool has been started
in the background for you to interact with.

To get start, let’s import the htcondor modules.

[1]: import htcondor
import classad

Collector

We’ll start with the Collector, which gathers descriptions of the states of all the daemons in your HTCondor pool. The
collector provides both service discovery and monitoring for these daemons.

Let’s try to find the Schedd information for your HTCondor pool. First, we’ll create a Collector object, then use the
locate method:

[2]: coll = htcondor.Collector() # create the object representing the collector
schedd_ad = coll.locate(htcondor.DaemonTypes.Schedd) # locate the default schedd

print(schedd_ad)

[
CondorPlatform = "$CondorPlatform: X86_64-CentOS_5.11 $";
CondorVersion = "$CondorVersion: 9.1.3 Aug 19 2021 BuildID: UW_Python_Wheel_

→˓Build $";
Machine = "abae0fbbde81";
MyType = "Scheduler";
Name = "jovyan@abae0fbbde81";
MyAddress = "<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=abae0fbbde81&noUDP&

→˓sock=schedd_19_eccb>"
]

The locate method takes a type of daemon and (optionally) a name, returning a ClassAd that describes how to contact
the daemon.

A few interesting points about the above example: - Because we didn’t provide the collector with a constructor, we used
the default collector in the container’s configuration file. If we wanted to instead query a non-default collector, we could
have done htcondor.Collector("collector.example.com"). - We used the DaemonTypes enumeration to pick

8.1. Python Bindings 593

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/HTCondor-Introduction.ipynb

HTCondor Manual, Release 10.0.9

the kind of daemon to return. - If there were multiple schedds in the pool, the locate query would have failed. In such
a case, we need to provide an explicit name to the method. E.g., coll.locate(htcondor.DaemonTypes.Schedd,
"schedd.example.com"). - The MyAddress field in the ad is the actual address information. You may be surprised
that this is not simply a hostname:port; to help manage addressing in the today’s complicated Internet (full of NATs,
private networks, and firewalls), a more flexible structure was needed. HTCondor developers sometimes refer to this
as the sinful string; here, sinful is a play on a Unix data structure, not a moral judgement.

The locate method often returns only enough data to contact a remote daemon. Typically, a ClassAd records sig-
nificantly more attributes. For example, if we wanted to query for a few specific attributes, we would use the query
method instead:

[3]: coll.query(htcondor.AdTypes.Schedd, projection=["Name", "MyAddress",␣
→˓"DaemonCoreDutyCycle"])

[3]: [[DaemonCoreDutyCycle = 1.486565213627500E-02; Name = "jovyan@abae0fbbde81"; MyAddress␣
→˓= "<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=abae0fbbde81&noUDP&sock=schedd_19_eccb>
→˓"]]

Here, query takes an AdType (slightly more generic than the DaemonTypes, as many kinds of ads are in the collector)
and several optional arguments, then returns a list of ClassAds.

We used the projection keyword argument; this indicates what attributes you want returned. The collector may
automatically insert additional attributes (here, only MyType); if an ad is missing a requested attribute, it is simply not
set in the returned ClassAd object. If no projection is specified, then all attributes are returned.

WARNING: when possible, utilize the projection to limit the data returned. Some ads may have hundreds of attributes,
making returning the entire ad an expensive operation.

The projection filters the returned keys; to filter out unwanted ads, utilize the constraint option. Let’s do the same
query again, but specify our hostname explicitly:

[4]: import socket # We'll use this to automatically fill in our hostname

name = classad.quote(f"jovyan@{socket.getfqdn()}")
coll.query(

htcondor.AdTypes.Schedd,
constraint=f"Name =?= {name}",
projection=["Name", "MyAddress", "DaemonCoreDutyCycle"],

)

[4]: [[DaemonCoreDutyCycle = 1.486565213627500E-02; Name = "jovyan@abae0fbbde81"; MyAddress␣
→˓= "<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=abae0fbbde81&noUDP&sock=schedd_19_eccb>
→˓"]]

Notes: - constraint accepts either an ExprTree or string object; the latter is automatically parsed as an expression.
- We used the classad.quote function to properly quote the hostname string. In this example, we’re relatively certain
the hostname won’t contain quotes. However, it is good practice to use the quote function to avoid possible SQL-
injection-type attacks. Consider what would happen if the host’s FQDN contained spaces and doublequotes, such as
foo.example.com" || true!

594 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

Schedd

Let’s try our hand at querying the schedd!

First, we’ll need a schedd object. You may either create one out of the ad returned by locate above or use the default
in the configuration file:

[5]: schedd = htcondor.Schedd(schedd_ad)
print(schedd)

<htcondor.htcondor.Schedd object at 0x7f36ee8158b0>

Unfortunately, as there are no jobs in our personal HTCondor pool, querying the schedd will be boring. Let’s submit
a few jobs (note the API used below will be covered by the next module; it’s OK if you don’t understand it now):

[6]: sub = htcondor.Submit(
executable = "/bin/sleep",
arguments = "5m",

)
schedd.submit(sub, count=10)

[6]: <htcondor.htcondor.SubmitResult at 0x7f36ec0aab30>

We should now have 10 jobs in queue, each of which should take 5 minutes to complete.

Let’s query for the jobs, paying attention to the jobs’ ID and status:

[7]: for job in schedd.xquery(projection=['ClusterId', 'ProcId', 'JobStatus']):
print(repr(job))

[ServerTime = 1631798120; JobStatus = 1; ProcId = 3; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 4; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 5; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 6; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 7; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 8; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 9; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 2; ProcId = 0; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 1; ClusterId = 12]
[ServerTime = 1631798120; JobStatus = 1; ProcId = 2; ClusterId = 12]

The JobStatus is an integer; the integers map into the following states: - 1: Idle (I) - 2: Running (R) - 3: Removed
(X) - 4: Completed (C) - 5: Held (H) - 6: Transferring Output - 7: Suspended

Depending on how quickly you executed the above cell, you might see all jobs idle (JobStatus = 1) or some jobs
running (JobStatus = 2) above.

As with the Collector’s query method, we can also filter out jobs using xquery:

[8]: for ad in schedd.xquery(constraint = 'ProcId >= 5', projection=['ProcId']):
print(ad.get('ProcId'))

5
6
7
8
9

8.1. Python Bindings 595

HTCondor Manual, Release 10.0.9

Astute readers may notice that the Schedd object has both xquery and query methods. The difference between them
is primarily how memory is managed: - query returns a list of ClassAds, meaning all objects are held in memory at
once. This utilizes more memory, but the results are immediately available. - xquery returns an iterator that produces
ClassAds. This only requires one ClassAd to be in memory at once.

Finally, let’s clean up after ourselves (this will remove all of the jobs you own from the queue).

[9]: import getpass

schedd.act(htcondor.JobAction.Remove, f'Owner == "{getpass.getuser()}"')

[9]: [TotalJobAds = 0; TotalPermissionDenied = 0; TotalAlreadyDone = 0; TotalNotFound = 0;␣
→˓TotalSuccess = 10; TotalChangedAds = 1; TotalBadStatus = 0; TotalError = 0]

On Job Submission

Congratulations! You can now perform simple queries against the collector for worker and submit hosts, as well as
simple job queries against the submit host!

It is now time to move on to advanced job submission and management.

Advanced Job Submission and Management

Launch this tutorial in a Jupyter Notebook on Binder:

The two most common HTCondor command line tools are condor_q and condor_submit. In the previous module, we
learned about the xquery() method that corresponds to condor_q. Here, we will learn the Python binding equivalent
of condor_submit in greater detail.

We start by importing the relevant modules:

[1]: import htcondor

Submitting Jobs

We will submit jobs utilizing the dedicated Submit object.

Submit objects consist of key-value pairs. Unlike ClassAds, the values do not have an inherent type (such as strings,
integers, or booleans); they are evaluated with macro expansion at submit time. Where reasonable, they behave like
Python dictionaries:

[2]: sub = htcondor.Submit({"foo": "1", "bar": "2", "baz": "$(foo)"})
print(sub)

foo = 1
bar = 2
baz = $(foo)

[3]: sub["qux"] = 3
print(sub)

596 Chapter 8. Application Programming Interfaces (APIs)

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Advanced-Job-Submission-And-Management.ipynb

HTCondor Manual, Release 10.0.9

foo = 1
bar = 2
baz = $(foo)
qux = 3

[4]: print(sub.expand("baz"))

1

The available attributes and their semantics are documented in the condor_submit manual, sowe won’t repeat them
here. A minimal realistic submit object may look like the following:

[5]: sub = htcondor.Submit({
"executable": "/bin/sleep",
"arguments": "5m"

})

To go from a submit object to job in a schedd, one must use the submit method of a htcondor.Schedd:

[6]: schedd = htcondor.Schedd() # create a schedd object connected to the local␣
→˓schedd
submit_result = schedd.submit(sub) # queue one job
print(submit_result.cluster()) # print the job's ClusterId

1

By default, each invocation of submit will submit a single job. A more common use case is to submit many jobs at
once - often identical. Suppose we don’t want to submit a single “sleep” job, but 10; instead of writing a for-loop
around the submit method, we can use the count argument:

[7]: submit_result = schedd.submit(sub, count=10)

print(submit_result.cluster())

2

We can now query for those jobs in the queue:

[8]: schedd.query(
constraint='ClusterId =?= {}'.format(submit_result.cluster()),
projection=["ClusterId", "ProcId", "JobStatus", "EnteredCurrentStatus"],

)

[8]: [[ClusterId = 2; ProcId = 0; EnteredCurrentStatus = 1631798050; JobStatus = 1;␣
→˓ServerTime = 1631798050],
[ClusterId = 2; ProcId = 1; EnteredCurrentStatus = 1631798050; JobStatus = 1;␣
→˓ServerTime = 1631798050],
[ClusterId = 2; ProcId = 2; EnteredCurrentStatus = 1631798050; JobStatus = 1;␣
→˓ServerTime = 1631798050],
[ClusterId = 2; ProcId = 3; EnteredCurrentStatus = 1631798050; JobStatus = 1;␣
→˓ServerTime = 1631798050],
[ClusterId = 2; ProcId = 4; EnteredCurrentStatus = 1631798050; JobStatus = 1;␣
→˓ServerTime = 1631798050],
[ClusterId = 2; ProcId = 5; EnteredCurrentStatus = 1631798050; JobStatus = 1;␣
→˓ServerTime = 1631798050],

(continues on next page)

8.1. Python Bindings 597

https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html

HTCondor Manual, Release 10.0.9

(continued from previous page)

[ClusterId = 2; ProcId = 6; EnteredCurrentStatus = 1631798050; JobStatus = 1;␣
→˓ServerTime = 1631798050],
[ClusterId = 2; ProcId = 7; EnteredCurrentStatus = 1631798050; JobStatus = 1;␣
→˓ServerTime = 1631798050],
[ClusterId = 2; ProcId = 8; EnteredCurrentStatus = 1631798050; JobStatus = 1;␣
→˓ServerTime = 1631798050],
[ClusterId = 2; ProcId = 9; EnteredCurrentStatus = 1631798050; JobStatus = 1;␣
→˓ServerTime = 1631798050]]

It’s not entirely useful to submit many identical jobs – but rather each one needs to vary slightly based on its ID (the
“process ID”) within the job cluster. For this, the Submit object in Python behaves similarly to submit files: references
within the submit command are evaluated as macros at submit time.

For example, suppose we want the argument to sleep to vary based on the process ID:

[9]: sub = htcondor.Submit({"executable": "/bin/sleep", "arguments": "$(Process)s"})

Here, the $(Process) string will be substituted with the process ID at submit time.

[10]: submit_result = schedd.submit(sub, count=10)

print(submit_result.cluster())

schedd.query(
constraint='ClusterId=?={}'.format(submit_result.cluster()),
projection=["ClusterId", "ProcId", "JobStatus", "Args"],

)

3

[10]: [[Args = "0s"; ClusterId = 3; ProcId = 0; JobStatus = 1; ServerTime = 1631798050],
[Args = "1s"; ClusterId = 3; ProcId = 1; JobStatus = 1; ServerTime = 1631798050],
[Args = "2s"; ClusterId = 3; ProcId = 2; JobStatus = 1; ServerTime = 1631798050],
[Args = "3s"; ClusterId = 3; ProcId = 3; JobStatus = 1; ServerTime = 1631798050],
[Args = "4s"; ClusterId = 3; ProcId = 4; JobStatus = 1; ServerTime = 1631798050],
[Args = "5s"; ClusterId = 3; ProcId = 5; JobStatus = 1; ServerTime = 1631798050],
[Args = "6s"; ClusterId = 3; ProcId = 6; JobStatus = 1; ServerTime = 1631798050],
[Args = "7s"; ClusterId = 3; ProcId = 7; JobStatus = 1; ServerTime = 1631798050],
[Args = "8s"; ClusterId = 3; ProcId = 8; JobStatus = 1; ServerTime = 1631798050],
[Args = "9s"; ClusterId = 3; ProcId = 9; JobStatus = 1; ServerTime = 1631798050]]

The macro evaluation behavior (and the various usable tricks and techniques) are identical between the python bindings
and the condor_submit executable.

Managing Jobs

Once a job is in queue, the schedd will try its best to execute it to completion. There are several cases where a user may
want to interrupt the normal flow of jobs. Perhaps the results are no longer needed; perhaps the job needs to be edited
to correct a submission error. These actions fall under the purview of job management.

There are two Schedd methods dedicated to job management:

• edit(): Change an attribute for a set of jobs to a given expression. If invoked within a transaction, multiple
calls to edit are visible atomically.

598 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

– The set of jobs to change can be given as a ClassAd expression. If no jobs match the filter, then an exception
is thrown.

• act(): Change the state of a job to a given state (remove, hold, suspend, etc).

Both methods take a job specification: either a ClassAd expression (such as Owner =?= "janedoe") or a list of
job IDs (such as ["1.1", "2.2", "2.3"]). The act method takes an argument from the JobAction enum. The
commonly-used values are:

• Hold: put a job on hold, vacating a running job if necessary. A job will stay in the hold state until explicitly
acted upon by the admin or owner.

• Release: Release a job from the hold state, returning it to Idle.

• Remove: Remove a job from the Schedd’s queue, cleaning it up first on the remote host (if running). This requires
the remote host to acknowledge it has successfully vacated the job, meaning Remove may not be instantaneous.

• Vacate: Cause a running job to be killed on the remote resource and return to idle state. With Vacate, jobs
may be given significant time to cleanly shut down.

Here’s an example of job management in action:

[11]: submit_result = schedd.submit(sub, count=5) # queues 5 copies of this job
schedd.edit([f"{submit_result.cluster()}.{idx}" for idx in range(2)], "foo", '"bar"') #␣
→˓sets attribute foo to the string "bar" for the first two jobs

for ad in schedd.xquery(
constraint=f"ClusterId == {submit_result.cluster()}",
projection=["ProcId", "JobStatus", "foo"],

):
print(repr(ad))

[ServerTime = 1631798050; ProcId = 0; JobStatus = 1; foo = "bar"]
[ServerTime = 1631798050; ProcId = 1; JobStatus = 1; foo = "bar"]
[ServerTime = 1631798050; ProcId = 2; JobStatus = 1]
[ServerTime = 1631798050; ProcId = 3; JobStatus = 1]
[ServerTime = 1631798050; ProcId = 4; JobStatus = 1]

[12]: schedd.act(htcondor.JobAction.Hold, f"ClusterId == {submit_result.
→˓cluster()} && ProcId >= 2")

for ad in schedd.xquery(
constraint=f"ClusterId == {submit_result.cluster()}",
projection=["ProcId", "JobStatus", "foo"],

):
print(repr(ad))

[ServerTime = 1631798050; ProcId = 0; JobStatus = 1; foo = "bar"]
[ServerTime = 1631798050; ProcId = 1; JobStatus = 1; foo = "bar"]
[ServerTime = 1631798051; ProcId = 2; JobStatus = 5]
[ServerTime = 1631798051; ProcId = 3; JobStatus = 5]
[ServerTime = 1631798051; ProcId = 4; JobStatus = 5]

Finally, let’s clean up after ourselves (this will remove all of the jobs you own from the queue).

[13]: import getpass

schedd.act(htcondor.JobAction.Remove, f'Owner == "{getpass.getuser()}"')

8.1. Python Bindings 599

HTCondor Manual, Release 10.0.9

[13]: [TotalJobAds = 26; TotalPermissionDenied = 0; TotalAlreadyDone = 0; TotalNotFound = 0;␣
→˓TotalSuccess = 26; TotalChangedAds = 1; TotalBadStatus = 0; TotalError = 0]

That’s It!

You’ve made it through the very basics of the Python bindings. While there are many other features the Python
module has to offer, we have covered enough to replace the command line tools of condor_q, condor_submit,
condor_status, condor_rm and others.

Advanced Schedd Interaction

Launch this tutorial in a Jupyter Notebook on Binder:

The introductory tutorial only scratches the surface of what the Python bindings can do with the condor_schedd; this
module focuses on covering a wider range of functionality:

• Job and history querying.

• Advanced job submission.

• Python-based negotiation with the Schedd.

As usual, we start by importing the relevant modules:

[1]: import htcondor
import classad

Job and History Querying

In HTCondor Introduction, we covered the Schedd.xquery method and its two most important keywords:

• requirements: Filters the jobs the schedd should return.

• projection: Filters the attributes returned for each job.

For those familiar with SQL queries, requirements performs the equivalent as the WHERE clause while projection
performs the equivalent of the column listing in SELECT.

There are two other keywords worth mentioning:

• limit: Limits the number of returned ads; equivalent to SQL’s LIMIT.

• opts: Additional flags to send to the schedd to alter query behavior. The only flag currently defined is
QueryOpts.AutoCluster; this groups the returned results by the current set of “auto-cluster” attributes used
by the pool. It’s analogous to GROUP BY in SQL, except the columns used for grouping are controlled by the
schedd.

To illustrate these additional keywords, let’s first submit a few jobs:

[2]: schedd = htcondor.Schedd()
sub = htcondor.Submit({

"executable": "/bin/sleep",
"arguments": "5m",
"hold": "True",

})
(continues on next page)

600 Chapter 8. Application Programming Interfaces (APIs)

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Advanced-Schedd-Interactions.ipynb

HTCondor Manual, Release 10.0.9

(continued from previous page)

submit_result = schedd.submit(sub, count=10)
print(submit_result.cluster())

5

Note: In this example, we used the hold submit command to indicate that the jobs should start out in the
condor_schedd in the Hold state; this is used simply to prevent the jobs from running to completion while you
are running the tutorial.

We now have 10 jobs running under cluster_id; they should all be identical:

[3]: print(len(schedd.query(projection=["ProcID"], constraint=f"ClusterId=={submit_result.
→˓cluster()}")))

10

The sum(1 for _ in ...) syntax is a simple way to count the number of items produced by an iterator without
buffering all the objects in memory.

Querying many Schedds

On larger pools, it’s common to write Python scripts that interact with not one but many schedds. For example, if you
want to implement a “global query” (equivalent to condor_q -g; concatenates all jobs in all schedds), it might be
tempting to write code like this:

[4]: jobs = []
for schedd_ad in htcondor.Collector().locateAll(htcondor.DaemonTypes.Schedd):

schedd = htcondor.Schedd(schedd_ad)
jobs += schedd.xquery()

print(len(jobs))

10

This is sub-optimal for two reasons:

• xquery is not given any projection, meaning it will pull all attributes for all jobs - much more data than is needed
for simply counting jobs.

• The querying across all schedds is serialized: we may wait for painfully long on one or two “bad apples.”

We can instead begin the query for all schedds simultaneously, then read the responses as they are sent back. First, we
start all the queries without reading responses:

[5]: queries = []
coll_query = htcondor.Collector().locateAll(htcondor.DaemonTypes.Schedd)
for schedd_ad in coll_query:

schedd_obj = htcondor.Schedd(schedd_ad)
queries.append(schedd_obj.xquery())

The iterators will yield the matching jobs; to return the autoclusters instead of jobs, use the AutoCluster option
(schedd_obj.xquery(opts=htcondor.QueryOpts.AutoCluster)). One auto-cluster ad is returned for each set
of jobs that have identical values for all significant attributes. A sample auto-cluster looks like:

[
RequestDisk = DiskUsage;

(continues on next page)

8.1. Python Bindings 601

HTCondor Manual, Release 10.0.9

(continued from previous page)

Rank = 0.0;
FileSystemDomain = "hcc-briantest7.unl.edu";
MemoryUsage = ((ResidentSetSize + 1023) / 1024);
ImageSize = 1000;
JobUniverse = 5;
DiskUsage = 1000;
JobCount = 1;
Requirements = (TARGET.Arch == "X86_64") && (TARGET.OpSys == "LINUX") && (TARGET.
→˓Disk >= RequestDisk) && (TARGET.Memory >= RequestMemory) && ((TARGET.
→˓HasFileTransfer) || (TARGET.FileSystemDomain == MY.FileSystemDomain));
RequestMemory = ifthenelse(MemoryUsage isnt undefined,MemoryUsage,(ImageSize + 1023) /
→˓ 1024);
ResidentSetSize = 0;
ServerTime = 1483758177;
AutoClusterId = 2
]

We use the poll function, which will return when a query has available results:

[6]: job_counts = {}
for query in htcondor.poll(queries):

schedd_name = query.tag()
job_counts.setdefault(schedd_name, 0)
count = len(query.nextAdsNonBlocking())
job_counts[schedd_name] += count
print("Got {} results from {}.".format(count, schedd_name))

print(job_counts)

Got 10 results from jovyan@abae0fbbde81.
{'jovyan@abae0fbbde81': 10}

The QueryIterator.tag method is used to identify which query is returned; the tag defaults to the Schedd’s name
but can be manually set through the tag keyword argument to Schedd.xquery.

History Queries

After a job has finished in the Schedd, it moves from the queue to the history file. The history can be queried (locally
or remotely) with the Schedd.history method:

[7]: schedd = htcondor.Schedd()
for ad in schedd.history(

constraint='true',
projection=['ProcId', 'ClusterId', 'JobStatus'],
match=2, # limit to 2 returned results

):
print(ad)

[
JobStatus = 3;
ProcId = 0;
ClusterId = 1

(continues on next page)

602 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

(continued from previous page)

]

[
JobStatus = 3;
ProcId = 9;
ClusterId = 3

]

[]:

Interacting With Daemons

Launch this tutorial in a Jupyter Notebook on Binder:

In this module, we’ll look at how the HTCondor Python bindings can be used to interact with running daemons.

As usual, we start by importing the relevant modules:

[1]: import htcondor

Configuration

The HTCondor configuration is exposed to Python in two ways:

• The local process’s configuration is available in the module-level param object.

• A remote daemon’s configuration may be queried using a RemoteParam

The param object emulates a Python dictionary:

[2]: print(htcondor.param["SCHEDD_LOG"]) # prints the schedd's current log file
print(htcondor.param.get("TOOL_LOG")) # print None, since TOOL_LOG isn't set by default

/home/jovyan/.condor/local/log/SchedLog
None

[3]: htcondor.param["TOOL_LOG"] = "/tmp/log" # sets TOOL_LOG to /tmp/log
print(htcondor.param["TOOL_LOG"]) # prints /tmp/log, as set above

/tmp/log

Note that assignments to param will persist only in memory; if we use reload_config to re-read the configuration
files from disk, our change to TOOL_LOG disappears:

[4]: print(htcondor.param.get("TOOL_LOG"))
htcondor.reload_config()
print(htcondor.param.get("TOOL_LOG"))

/tmp/log
None

In HTCondor, a configuration prefix may indicate that a setting is specific to that daemon. By default, the Python
binding’s prefix is TOOL. If you would like to use the configuration of a different daemon, utilize the set_subsystem
function:

8.1. Python Bindings 603

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Interacting-With-Daemons.ipynb

HTCondor Manual, Release 10.0.9

[5]: htcondor.param["TEST_FOO"] = "foo" # sets the default value of TEST_FOO to foo
htcondor.param["SCHEDD.TEST_FOO"] = "bar" # the schedd has a special setting for TEST_
→˓FOO

[6]: print(htcondor.param['TEST_FOO']) # default access; should be 'foo'

foo

[7]: htcondor.set_subsystem('SCHEDD') # changes the running process to identify as a␣
→˓schedd and sets subsytem to be trusted with root privileges.
print(htcondor.param['TEST_FOO']) # since we now identify as a schedd, should use␣
→˓the special setting of 'bar'

bar

Between param, reload_config, and set_subsystem, we can explore the configuration of the local host.

Remote Configuration

What happens if we want to test the configuration of a remote daemon? For that, we can use the RemoteParam class.

The object is first initialized from the output of the Collector.locate method:

[8]: master_ad = htcondor.Collector().locate(htcondor.DaemonTypes.Master)
print(master_ad['MyAddress'])
master_param = htcondor.RemoteParam(master_ad)

<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=abae0fbbde81&noUDP&sock=master_19_eccb>

Once we have the master_param object, we can treat it like a local dictionary to access the remote daemon’s config-
uration.

NOTE that the htcondor.param object attempts to infer type information for configuration values from the compile-
time metadata while the RemoteParam object does not:

[9]: print(repr(master_param['UPDATE_INTERVAL'])) # returns a string
print(repr(htcondor.param['UPDATE_INTERVAL'])) # returns an integer

'5'
5

In fact, we can even set the daemon’s configuration using the RemoteParam object. . . if we have permission. By
default, this is disabled for security reasons:

[10]: master_param['UPDATE_INTERVAL'] = '500'

HTCondorReplyError Traceback (most recent call last)
/tmp/ipykernel_252/743935840.py in <module>
----> 1 master_param['UPDATE_INTERVAL'] = '500'

/opt/conda/lib/python3.9/site-packages/htcondor/_lock.py in wrapper(*args, **kwargs)
67 acquired = LOCK.acquire()
68

---> 69 rv = func(*args, **kwargs)
(continues on next page)

604 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

(continued from previous page)

70
71 # if the function returned a context manager,

HTCondorReplyError: Failed to set remote daemon parameter.

Logging Subsystem

The logging subsystem is available to the Python bindings; this is often useful for debugging network connection issues
between the client and server.

NOTE Jupyter notebooks discard output from library code; hence, you will not see the results of enable_debug
below.

[11]: htcondor.set_subsystem("TOOL")
htcondor.param['TOOL_DEBUG'] = 'D_FULLDEBUG'
htcondor.param['TOOL_LOG'] = '/tmp/log'
htcondor.enable_log() # Send logs to the log file (/tmp/foo)
htcondor.enable_debug() # Send logs to stderr; this is ignored by the web notebook.
print(open("/tmp/log").read()) # Print the log's contents.

Sending Daemon Commands

An administrator can send administrative commands directly to the remote daemon. This is useful if you’d like a certain
daemon restarted, drained, or reconfigured.

Because we have a personal HTCondor instance, we are the administrator - and we can test this out!

To send a command, use the top-level send_command function, provide a daemon location, and provide a specific
command from the DaemonCommands enumeration. For example, we can reconfigure:

[12]: print(master_ad['MyAddress'])

htcondor.send_command(master_ad, htcondor.DaemonCommands.Reconfig)

<172.17.0.2:9618?addrs=172.17.0.2-9618&alias=abae0fbbde81&noUDP&sock=master_19_eccb>

09/16/21 13:15:27 SharedPortClient: sent connection request to <172.17.0.2:9618> for␣
→˓shared port id master_19_eccb

[13]: import time

time.sleep(1)

log_lines = open(htcondor.param['MASTER_LOG']).readlines()
print(log_lines[-4:])

['09/16/21 13:15:27 Sent SIGHUP to NEGOTIATOR (pid 23)\n', '09/16/21 13:15:27 Sent␣
→˓SIGHUP to SCHEDD (pid 24)\n', '09/16/21 13:15:27 Sent SIGHUP to SHARED_PORT (pid 21)\n
→˓', '09/16/21 13:15:27 Sent SIGHUP to STARTD (pid 27)\n']

We can also instruct the master to shut down a specific daemon:

8.1. Python Bindings 605

HTCondor Manual, Release 10.0.9

[14]: htcondor.send_command(master_ad, htcondor.DaemonCommands.DaemonOff, "SCHEDD")

time.sleep(1)

log_lines = open(htcondor.param['MASTER_LOG']).readlines()
print(log_lines[-1])

09/16/21 13:15:28 SharedPortClient: sent connection request to <172.17.0.2:9618> for␣
→˓shared port id master_19_eccb
09/16/21 13:15:28 Can't open directory "/etc/condor/passwords.d" as PRIV_ROOT, errno: 13␣
→˓(Permission denied)
09/16/21 13:15:28 Can't open directory "/etc/condor/passwords.d" as PRIV_ROOT, errno: 13␣
→˓(Permission denied)

09/16/21 13:15:28 The SCHEDD (pid 24) exited with status 0

Or even turn off the whole HTCondor instance:

[15]: htcondor.send_command(master_ad, htcondor.DaemonCommands.OffFast)

time.sleep(10)

log_lines = open(htcondor.param['MASTER_LOG']).readlines()
print(log_lines[-1])

09/16/21 13:15:29 SharedPortClient: sent connection request to <172.17.0.2:9618> for␣
→˓shared port id master_19_eccb

09/16/21 13:15:30 **** condor_master (condor_MASTER) pid 19 EXITING WITH STATUS 0

Let’s turn HTCondor back on for future tutorials:

[16]: import os
os.system("condor_master")
time.sleep(10) # give condor a few seconds to get started

Scalable Job Tracking

Launch this tutorial in a Jupyter Notebook on Binder:

The Python bindings provide two scalable mechanisms for tracking jobs:

• Poll-based tracking: The Schedd can be periodically polled through the use of Schedd.xquery to get job status
information.

• Event-based tracking: Using the job’s user log, Python can see all job events and keep an in-memory represen-
tation of the job status.

Both poll- and event-based tracking have their strengths and weaknesses; the intrepid user can even combine both
methodologies to have extremely reliable, low-latency job status tracking.

In this module, we outline the important design considerations behind each approach and walk through examples.

606 Chapter 8. Application Programming Interfaces (APIs)

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Scalable-Job-Tracking.ipynb

HTCondor Manual, Release 10.0.9

Poll-based Tracking

Poll-based tracking involves periodically querying the schedd(s) for jobs of interest. We have covered the technical
aspects of querying the Schedd in prior tutorials. Beside the technical means of polling, important aspects to consider
are how often the poll should be performed and how much data should be retrieved.

Note: When Schedd.xquery is used, the query will cause the schedd to fork up to SCHEDD_QUERY_WORKERS simulta-
neous workers. Beyond that point, queries will be handled in a non-blocking manner inside the main condor_schedd
process. Thus, the memory used by many concurrent queries can be reduced by decreasing SCHEDD_QUERY_WORKERS.

A job tracking system should not query the Schedd more than once a minute. Aim to minimize the data returned from
the query through the use of the projection; minimize the number of jobs returned by using a query constraint. Better
yet, use the AutoCluster flag to have Schedd.xquery return a list of job summaries instead of individual jobs.

Advantages:

• A single entity can poll all condor_schedd instances in a pool; using htcondor.poll, multiple Schedds can
be queried simultaneously.

• The tracking is resilient to bugs or crashes. All tracked state is replaced at the next polling cycle.

Disadvantages:

• The amount of work to do is a function of the number of jobs in the schedd; may scale poorly once more than
100,000 simultaneous jobs are tracked.

• Each job state transition is not seen; only snapshots of the queue in time.

• If a job disappears from the Schedd, it may be difficult to determine why (Did it finish? Was it removed?)

• Only useful for tracking jobs at the minute-level granularity.

Event-based Tracking

Each job in the Schedd can specify the UserLog attribute; the Schedd will atomically append a machine-parseable
event to the specified file for every state transition the job goes through. By keeping track of the events in the logs, we
can build an in-memory representation of the job queue state.

Advantages:

• No interaction with the condor_schedd process is needed to read the event logs; the job tracking effectively
places no burden on the Schedd.

• In most cases, the Schedd writes to the log synchronously after the event occurs. Hence, the latency of receiving
an update can be sub-second.

• The job tracking scales as a function of the event rate, not the total number of jobs.

• Each job state is seen, even after the job has left the queue.

Disadvantages:

• Only the local condor_schedd can be tracked; there is no mechanism to receive the event log remotely.

• Log files must be processed from the beginning, with no rotations or truncations possible. Large files can take a
large amount of CPU time to process.

• If every job writes to a separate log file, the job tracking software may have to keep an enormous number of open
file descriptors. If every job writes to the same log file, the log file may grow to many gigabytes.

• If the job tracking software misses an event (or an unknown bug causes the condor_schedd to fail to write the
event), then the job tracker may believe a job incorrectly is stuck in the wrong state.

8.1. Python Bindings 607

HTCondor Manual, Release 10.0.9

At a technical level, event tracking is implemented with the htcondor.JobEventLog class.

>>> jel = htcondor.JobEventLog("/tmp/job_one.log")
>>> for event in jel.events(stop_after=0):
... print event

The return value of JobEventLog.events() is an iterator over htcondor.JobEvent objects. The example above does
not block.

DAG Creation and Submission

Launch this tutorial in a Jupyter Notebook on Binder:

In this tutorial, we will learn how to use htcondor.dags to create and submit an HTCondor DAGMan workflow. Our
goal will be to create an image of the Mandelbrot set. This is a perfect problem for high-throughput computing because
each point in the image can be calculated completely independently of any other point, so we are free to divide the
image creation up into patches, each created by a single HTCondor job. DAGMan will enter the picture to coordinate
stitching the image patches we create back into a single image.

Making a Mandelbrot set image locally

We’ll use goatbrot (https://github.com/beejjorgensen/goatbrot) to make the image. goatbrot can be run from the
command line, and takes a series of options to specify which part of the Mandelbrot set to draw, as well as the properties
of the image itself.

goatbrot options: - -i 1000 The number of iterations. - -c 0,0 The center point of the image region. - -w 3 The
width of the image region. - -s 1000,1000 The pixel dimensions of the image. - -o test.ppm The name of the
output file to generate.

We can run a shell command from Jupyter by prefixing it with a !:

[1]: ! ./goatbrot -i 10 -c 0,0 -w 3 -s 500,500 -o test.ppm
! convert test.ppm test.png

Complex image:
Center: 0 + 0i
Width: 3

Height: 3
Upper Left: -1.5 + 1.5i
Lower Right: 1.5 + -1.5i

Output image:
Filename: test.ppm

Width, Height: 500, 500
Theme: beej

Antialiased: no

Mandelbrot:
Max Iterations: 10

Continuous: no

Goatbrot:
Multithreading: not supported in this build

(continues on next page)

608 Chapter 8. Application Programming Interfaces (APIs)

https://htcondor.readthedocs.io/en/latest/apis/python-bindings/api/htcondor.html#htcondor.JobEventLog
https://htcondor.readthedocs.io/en/latest/apis/python-bindings/api/htcondor.html#htcondor.JobEvent
https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/DAG-Creation-And-Submission.ipynb
https://github.com/beejjorgensen/goatbrot

HTCondor Manual, Release 10.0.9

(continued from previous page)

Completed: 100.0%

Let’s take a look at the test image. It won’t be very good, because we didn’t run for very many iterations. We’ll use
HTCondor to produce a better image!

[2]: from IPython.display import Image

Image('test.png')

[2]:

What is the workflow?

We can parallelize this calculation by drawing rectangular sub-regions of the full region (“tiles”) we want and stitching
them together into a single image using montage. Let’s draw this out as a graph, showing how data (image patches)
will flow through the system. (Don’t worry about this code, unless you want to know how to make dot diagrams in
Python!)

[3]: from graphviz import Digraph
import itertools

(continues on next page)

8.1. Python Bindings 609

HTCondor Manual, Release 10.0.9

(continued from previous page)

num_tiles_per_side = 2

dot = Digraph()

dot.node('montage')
for x, y in itertools.product(range(num_tiles_per_side), repeat = 2):

n = f'tile_{x}-{y}'
dot.node(n)
dot.edge(n, 'montage')

dot

[3]:

Since we can chop the image up however we’d like, we have as many tiles per side as we’d like (try changing
num_tiles_per_side above). The “shape” of the DAG is the same: there is a “layer” of goatbrot jobs that calcu-
late tiles, which all feed into montage. Now that we know the structure of the problem, we can start describing it to
HTCondor.

Describing goatbrot as an HTCondor job

We describe a job using a Submit object. It corresponds to the submit file used by the command line tools. It mostly
behaves like a standard Python dictionary, where the keys and values correspond to submit descriptors.

[4]: import htcondor

tile_description = htcondor.Submit(
executable = 'goatbrot', # the program we want to run
arguments =␣

→˓'-i 10000 -c $(x),$(y) -w $(w) -s 500,500 -o tile_$(tile_x)-$(tile_y).ppm', # the␣
→˓arguments to pass to the executable

log = 'mandelbrot.log', # the HTCondor job event log
output = 'goatbrot.out.$(tile_x)_$(tile_y)', # stdout from the job goes here
error = 'goatbrot.err.$(tile_x)_$(tile_y)', # stderr from the job goes here
request_cpus = '1', # resource requests; we don't need much per job for this␣

→˓problem
request_memory = '128MB',
request_disk = '1GB',

)

print(tile_description)

executable = goatbrot
arguments = -i 10000 -c $(x),$(y) -w $(w) -s 500,500 -o tile_$(tile_x)-$(tile_y).ppm
log = mandelbrot.log
output = goatbrot.out.$(tile_x)_$(tile_y)
error = goatbrot.err.$(tile_x)_$(tile_y)
request_cpus = 1
request_memory = 128MB
request_disk = 1GB

Notice the heavy use of macros like $(x) to specify the tile. Those aren’t built-in submit macros; instead, we will plan

610 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

on passing their values in through vars. Vars will let us customize each individual job in the tile layer by filling in
those macros individually. Each job will recieve a dictionary of macro values; our next goal is to make a list of those
dictionaries.

We will do this using a function that takes the number of tiles per side as an argument. As mentioned above, the
structure of the DAG is the same no matter how “wide” the tile layer is. This is why we define a function to produce
the tile vars instead of just calculating them once: we can vary the width of the DAG by passing different arguments
to make_tile_vars. More customizations could be applied to make different images (for example, you could make it
possible to set the center point of the image).

[5]: def make_tile_vars(num_tiles_per_side, width = 3):
width_per_tile = width / num_tiles_per_side

centers = [
width_per_tile * (n + 0.5 - (num_tiles_per_side / 2))
for n in range(num_tiles_per_side)

]

vars = []
for (tile_y, y), (tile_x, x) in itertools.product(enumerate(centers), repeat = 2):

var = dict(
w = width_per_tile,
x = x,
y = -y, # image coordinates vs. Cartesian coordinates
tile_x = str(tile_x).rjust(5, '0'),
tile_y = str(tile_y).rjust(5, '0'),

)

vars.append(var)

return vars

[6]: tile_vars = make_tile_vars(2)
for var in tile_vars:

print(var)

{'w': 1.5, 'x': -0.75, 'y': 0.75, 'tile_x': '00000', 'tile_y': '00000'}
{'w': 1.5, 'x': 0.75, 'y': 0.75, 'tile_x': '00001', 'tile_y': '00000'}
{'w': 1.5, 'x': -0.75, 'y': -0.75, 'tile_x': '00000', 'tile_y': '00001'}
{'w': 1.5, 'x': 0.75, 'y': -0.75, 'tile_x': '00001', 'tile_y': '00001'}

If we want to increase the number of tiles per side, we just pass in a larger number. Because the tile_description
is parameterized in terms of these variables, it will work the same way no matter what we pass in as vars.

[7]: tile_vars = make_tile_vars(4)
for var in tile_vars:

print(var)

{'w': 0.75, 'x': -1.125, 'y': 1.125, 'tile_x': '00000', 'tile_y': '00000'}
{'w': 0.75, 'x': -0.375, 'y': 1.125, 'tile_x': '00001', 'tile_y': '00000'}
{'w': 0.75, 'x': 0.375, 'y': 1.125, 'tile_x': '00002', 'tile_y': '00000'}
{'w': 0.75, 'x': 1.125, 'y': 1.125, 'tile_x': '00003', 'tile_y': '00000'}
{'w': 0.75, 'x': -1.125, 'y': 0.375, 'tile_x': '00000', 'tile_y': '00001'}
{'w': 0.75, 'x': -0.375, 'y': 0.375, 'tile_x': '00001', 'tile_y': '00001'}
{'w': 0.75, 'x': 0.375, 'y': 0.375, 'tile_x': '00002', 'tile_y': '00001'}

(continues on next page)

8.1. Python Bindings 611

HTCondor Manual, Release 10.0.9

(continued from previous page)

{'w': 0.75, 'x': 1.125, 'y': 0.375, 'tile_x': '00003', 'tile_y': '00001'}
{'w': 0.75, 'x': -1.125, 'y': -0.375, 'tile_x': '00000', 'tile_y': '00002'}
{'w': 0.75, 'x': -0.375, 'y': -0.375, 'tile_x': '00001', 'tile_y': '00002'}
{'w': 0.75, 'x': 0.375, 'y': -0.375, 'tile_x': '00002', 'tile_y': '00002'}
{'w': 0.75, 'x': 1.125, 'y': -0.375, 'tile_x': '00003', 'tile_y': '00002'}
{'w': 0.75, 'x': -1.125, 'y': -1.125, 'tile_x': '00000', 'tile_y': '00003'}
{'w': 0.75, 'x': -0.375, 'y': -1.125, 'tile_x': '00001', 'tile_y': '00003'}
{'w': 0.75, 'x': 0.375, 'y': -1.125, 'tile_x': '00002', 'tile_y': '00003'}
{'w': 0.75, 'x': 1.125, 'y': -1.125, 'tile_x': '00003', 'tile_y': '00003'}

Describing montage as an HTCondor job

Now we can write the montage job description. The problem is that the arguments and input files depend on how many
tiles we have, which we don’t know ahead-of-time. We’ll take the brute-force approach of just writing a function that
takes the tile vars we made in the previous section and using them to build the montage job description.

Not that some of the work of building up the submit description is done in Python. This is a major advantage of
communicating with HTCondor via Python: you can do the hard work in Python instead of in submit language!

One area for possible improvement here is to remove the duplication of the format of the input file names, which is
repeated here from when it was first used in the goatbrot submit object. When building a larger, more complicated
workflow, it is important to reduce duplication of information to make it easier to modify the workflow in the future.

[8]: def make_montage_description(tile_vars):
num_tiles_per_side = int(len(tile_vars) ** .5)

input_files = [f'tile_{d["tile_x"]}-{d["tile_y"]}.ppm' for d in tile_vars]

return htcondor.Submit(
executable = '/usr/bin/montage',
arguments = f'{" ".join(input_files)} -mode Concatenate -tile {num_tiles_per_

→˓side}x{num_tiles_per_side} mandelbrot.png',
transfer_input_files = ', '.join(input_files),
log = 'mandelbrot.log',
output = 'montage.out',
error = 'montage.err',
request_cpus = '1',
request_memory = '128MB',
request_disk = '1GB',

)

[9]: montage_description = make_montage_description(make_tile_vars(2))

print(montage_description)

executable = /usr/bin/montage
arguments = tile_00000-00000.ppm tile_00001-00000.ppm tile_00000-00001.ppm tile_00001-
→˓00001.ppm -mode Concatenate -tile 2x2 mandelbrot.png
transfer_input_files = tile_00000-00000.ppm, tile_00001-00000.ppm, tile_00000-00001.ppm,␣
→˓tile_00001-00001.ppm
log = mandelbrot.log
output = montage.out

(continues on next page)

612 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

(continued from previous page)

error = montage.err
request_cpus = 1
request_memory = 128MB
request_disk = 1GB

Describing the DAG using htcondor.dags

Now that we have the job descriptions, all we have to do is use htcondor.dags to tell DAGMan about the dependencies
between them. htcondor.dags is a subpackage of the HTCondor Python bindings that lets you write DAG descriptions
using a higher-level language than raw DAG description file syntax. Incidentally, it also lets you use Python to drive
the creation process, increasing your flexibility.

Important Concept: the code from dag = dags.DAG() onwards only defines the topology (or structure) of the
DAG. The tile layer can be flexibly grown or shrunk by adjusting the tile_vars without changing the topology,
and this can be clearly expressed in the code. The tile_vars are driving the creation of the DAG. Try changing
num_tiles_per_side to some other value!

[10]: from htcondor import dags

num_tiles_per_side = 2

create the tile vars early, since we need to pass them to multiple places later
tile_vars = make_tile_vars(num_tiles_per_side)

dag = dags.DAG()

create the tile layer, passing in the submit description for a tile job and the tile␣
→˓vars
tile_layer = dag.layer(

name = 'tile',
submit_description = tile_description,
vars = tile_vars,

)

create the montage "layer" (it only has one job in it, so no need for vars)
note that the submit description is created "on the fly"!
montage_layer = tile_layer.child_layer(

name = 'montage',
submit_description = make_montage_description(tile_vars),

)

We can get a textual description of the DAG structure by calling the describe method:

[11]: print(dag.describe())

Type Name # Nodes # Children Parents
Layer tile 4 1
Layer montage 1 0 tile[ManyToMany]

8.1. Python Bindings 613

HTCondor Manual, Release 10.0.9

Write the DAG to disk

We still need to write the DAG to disk to get DAGMan to work with it. We also need to move some files around so that
the jobs know where to find them.

[12]: from pathlib import Path
import shutil

dag_dir = (Path.cwd() / 'mandelbrot-dag').absolute()

blow away any old files
shutil.rmtree(dag_dir, ignore_errors = True)

make the magic happen!
dag_file = dags.write_dag(dag, dag_dir)

the submit files are expecting goatbrot to be next to them, so copy it into the dag␣
→˓directory
shutil.copy2('goatbrot', dag_dir)

print(f'DAG directory: {dag_dir}')
print(f'DAG description file: {dag_file}')

DAG directory: /home/jovyan/tutorials/mandelbrot-dag
DAG description file: /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag

Submit the DAG via the Python bindings

Now that we have written out the DAG description file, we can submit it for execution using the standard Python
bindings submit mechanism. The Submit class has a static method which can read a DAG description and generate a
corresponding Submit object:

[13]: dag_submit = htcondor.Submit.from_dag(str(dag_file), {'force': 1})

print(dag_submit)

universe = scheduler
executable = /usr/bin/condor_dagman
getenv = True
output = /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.lib.out
error = /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.lib.err
log = /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.dagman.log
remove_kill_sig = SIGUSR1
MY.OtherJobRemoveRequirements = "DAGManJobId =?= $(cluster)"
on_exit_remove = (ExitSignal =?= 11 || (ExitCode =!= UNDEFINED && ExitCode >=0 &&␣
→˓ExitCode <= 2))
arguments = "-p 0 -f -l . -Lockfile /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.
→˓lock -AutoRescue 1 -DoRescueFrom 0 -Dag /home/jovyan/tutorials/mandelbrot-dag/dagfile.
→˓dag -Suppress_notification -CsdVersion $CondorVersion:' '9.1.3' 'Aug' '19' '2021'
→˓'BuildID:' 'UW_Python_Wheel_Build' '$ -Dagman /usr/bin/condor_dagman"
environment = _CONDOR_MAX_DAGMAN_LOG=0;_CONDOR_DAGMAN_LOG=/home/jovyan/tutorials/
→˓mandelbrot-dag/dagfile.dag.dagman.out

614 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

Now we can enter the DAG directory and submit the DAGMan job, which will execute the graph:

[14]: import os
os.chdir(dag_dir)

schedd = htcondor.Schedd()
with schedd.transaction() as txn:

cluster_id = dag_submit.queue(txn)

print(f"DAGMan job cluster is {cluster_id}")

os.chdir('..')

DAGMan job cluster is 6

Let’s wait for the DAGMan job to complete by reading it’s event log:

[15]: dag_job_log = f"{dag_file}.dagman.log"
print(f"DAG job log file is {dag_job_log}")

DAG job log file is /home/jovyan/tutorials/mandelbrot-dag/dagfile.dag.dagman.log

[16]: # read events from the log, waiting forever for the next event
dagman_job_events = htcondor.JobEventLog(str(dag_job_log)).events(None)

this event stream only contains the events for the DAGMan job itself, not the jobs it␣
→˓submits
for event in dagman_job_events:

print(event)

stop waiting when we see the terminate event
if event.type is htcondor.JobEventType.JOB_TERMINATED and event.cluster == cluster_

→˓id:
break

000 (006.000.000) 2021-09-16 13:14:29 Job submitted from host: <172.17.0.2:9618?
→˓addrs=172.17.0.2-9618&alias=abae0fbbde81&noUDP&sock=schedd_19_eccb>

001 (006.000.000) 2021-09-16 13:14:32 Job executing on host: <172.17.0.2:9618?addrs=172.
→˓17.0.2-9618&alias=abae0fbbde81&noUDP&sock=schedd_19_eccb>

005 (006.000.000) 2021-09-16 13:15:10 Job terminated.
(1) Normal termination (return value 0)

Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

0 - Run Bytes Sent By Job
0 - Run Bytes Received By Job
0 - Total Bytes Sent By Job
0 - Total Bytes Received By Job

Let’s look at the final image!

8.1. Python Bindings 615

HTCondor Manual, Release 10.0.9

[17]: Image(dag_dir / "mandelbrot.png")

[17]:

[]:

616 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

Personal Pools

Launch this tutorial in a Jupyter Notebook on Binder:

A Personal HTCondor Pool is an HTCondor Pool that has a single owner, who is: - The pool’s administrator. - The
only submitter who is allowed to submit jobs to the pool. - The owner of all resources managed by the pool.

The HTCondor Python bindings provide a submodule, htcondor.personal, which allows you to manage personal
pools from Python. Personal pools are useful for: - Utilizing local computational resources (i.e., all of the cores on a lab
server). - Created an isolated testing/development environment for HTCondor workflows. - Serving as an entrypoint
to other computational resources, like annexes or flocked pools (not yet implemented).

We can start a personal pool by instantiating a PersonalPool. This object represents the personal pool and lets us
manage its “lifecycle”: start up and shut down. We can also use the PersonalPool to interact with the HTCondor
pool once it has been started up.

Each Personal Pool must have a unique “local directory”, corresponding to the HTCondor configuration parameter
LOCAL_DIR. For this tutorial, we’ll put it in the current working directory so that it’s easy to find.

Advanced users can configure the personal pool using the PersonalPool constructor. See the documen-
tation for details on the available options.

[1]: import htcondor
from htcondor.personal import PersonalPool
from pathlib import Path

[2]: pool = PersonalPool(local_dir = Path.cwd() / "personal-condor")
pool

[2]: PersonalPool(local_dir=./personal-condor, state=INITIALIZED)

To tell the personal pool to start running, call the start() method:

[3]: pool.start()

[3]: PersonalPool(local_dir=./personal-condor, state=READY)

start() doesn’t return until the personal pool is READY, which means that it can accept commands (e.g., job submis-
sion).

Schedd and Collector objects for the personal pool are available as properties on the PersonalPool:

[4]: pool.schedd

[4]: <htcondor.htcondor.Schedd at 0x7f2c08111ea0>

[5]: pool.collector

[5]: <htcondor.htcondor.Collector at 0x7f2c08197400>

For example, we can submit jobs using pool.schedd:

[6]: sub = htcondor.Submit(
executable = "/bin/sleep",
arguments = "$(ProcID)s",

)

schedd = pool.schedd
(continues on next page)

8.1. Python Bindings 617

https://mybinder.org/v2/gh/htcondor/htcondor-python-bindings-tutorials/master?urlpath=lab/tree/Personal-Pools.ipynb

HTCondor Manual, Release 10.0.9

(continued from previous page)

submit_result = schedd.submit(sub, count=10)

print(f"ClusterID is {submit_result.cluster()}")

ClusterID is 2

And we can query for the state of those jobs:

[7]: for ad in pool.schedd.query(
constraint = f"ClusterID == {submit_result.cluster()}",
projection = ["ClusterID", "ProcID", "JobStatus"]

):
print(repr(ad))

[ClusterID = 2; ProcID = 0; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 1; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 2; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 3; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 4; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 5; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 6; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 7; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 8; JobStatus = 1; ServerTime = 1631798161]
[ClusterID = 2; ProcID = 9; JobStatus = 1; ServerTime = 1631798161]

We can use the collector to query the state of pool:

[8]: # get 3 random ads from the daemons in the pool
for ad in pool.collector.query()[:3]:

print(ad)

[
UpdateSequenceNumber = 1;
TargetType = "none";
AuthenticationMethod = "FAMILY";
Name = "jovyan@abae0fbbde81";
AccountingGroup = "<none>";
WeightedUnchargedTime = 0.0;
DaemonStartTime = 1631798156;
WeightedResourcesUsed = 2.000000000000000E+00;
LastHeardFrom = 1631798160;
Priority = 5.000000000000000E+02;
LastUpdate = 1631798160;
SubmitterLimit = 2.000000000000000E+00;
MyType = "Accounting";
PriorityFactor = 1.000000000000000E+03;
IsAccountingGroup = false;
Ceiling = -1;
ResourcesUsed = 1;
DaemonLastReconfigTime = 1631798156;
AuthenticatedIdentity = "condor@family";
NegotiatorName = "jovyan@abae0fbbde81";
UnchargedTime = 0;

(continues on next page)

618 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

(continued from previous page)

SubmitterShare = 1.000000000000000E+00
]

[
AuthenticatedIdentity = "condor@family";
EffectiveQuota = 0.0;
GroupSortKey = 0.0;
ResourcesUsed = 1;
PriorityFactor = 1.000000000000000E+03;
NegotiatorName = "jovyan@abae0fbbde81";
Name = "<none>";
AccumulatedUsage = 0.0;
ConfigQuota = 0.0;
LastHeardFrom = 1631798160;
SubtreeQuota = 0.0;
DaemonStartTime = 1631798156;
LastUsageTime = 0;
SurplusPolicy = "byquota";
TargetType = "none";
AuthenticationMethod = "FAMILY";
LastUpdate = 1631798160;
WeightedAccumulatedUsage = 0.0;
Priority = 5.000000000000000E+02;
MyType = "Accounting";
IsAccountingGroup = true;
BeginUsageTime = 0;
AccountingGroup = "<none>";
UpdateSequenceNumber = 3;
DaemonLastReconfigTime = 1631798156;
WeightedResourcesUsed = 2.000000000000000E+00;
Requested = 0.0

]

[
CCBReconnects = 0;
MachineAdsPeak = 0;
DetectedCpus = 2;
UpdatesInitial_Accouting = 1;
CurrentJobsRunningLinda = 0;
StatsLifetime = 1;
MaxJobsRunningAll = 0;
CondorPlatform = "$CondorPlatform: X86_64-Ubuntu_20.04 $";
MaxJobsRunningJava = 0;
MaxJobsRunningGrid = 0;
MaxJobsRunningPVMD = 0;
RecentUpdatesLostMax = 0;
UpdatesLost = 0;
RecentUpdatesLostRatio = 0.0;
MonitorSelfRegisteredSocketCount = 2;
UpdatesTotal_Collector = 1;
MonitorSelfTime = 1631798156;
RecentUpdatesTotal_Collector = 1;

(continues on next page)

8.1. Python Bindings 619

HTCondor Manual, Release 10.0.9

(continued from previous page)

CondorAdmin = "root@abae0fbbde81";
MaxJobsRunningLinda = 0;
CurrentJobsRunningPVM = 0;
UpdatesLost_Collector = 0;
CCBRequests = 0;
CurrentJobsRunningPipe = 0;
RecentUpdatesLost_Negotiator = 0;
RecentUpdatesTotal = 3;
RecentCCBRequestsFailed = 0;
MaxJobsRunningVM = 0;
CCBEndpointsConnected = 0;
UpdatesLost_Accouting = 0;
CurrentJobsRunningScheduler = 0;
CurrentJobsRunningVanilla = 0;
IdleJobs = 0;
RecentUpdatesInitial_Accouting = 1;
PendingQueriesPeak = 0;
RecentUpdatesLost_Accouting = 0;
ActiveQueryWorkersPeak = 2;
MonitorSelfAge = 1;
MonitorSelfCPUUsage = 1.800000000000000E+01;
PendingQueries = 0;
ActiveQueryWorkers = 0;
DetectedMemory = 1988;
CurrentJobsRunningMPI = 0;
UpdateInterval = 21600;
CurrentJobsRunningPVMD = 0;
DroppedQueries = 0;
RecentCCBRequestsSucceeded = 0;
CCBEndpointsConnectedPeak = 0;
StatsLastUpdateTime = 1631798157;
CondorVersion = "$CondorVersion: 8.9.11 Dec 29 2020 BuildID: Debian-8.9.11-1.2␣

→˓PackageID: 8.9.11-1.2 Debian-8.9.11-1.2 $";
MaxJobsRunningPipe = 0;
CurrentJobsRunningParallel = 0;
CCBEndpointsRegisteredPeak = 0;
UpdatesInitial_Collector = 1;
RecentDaemonCoreDutyCycle = 3.488135394901704E-02;
SubmitterAdsPeak = 0;
RecentUpdatesTotal_Accouting = 1;
DaemonCoreDutyCycle = 3.488135394901704E-02;
UpdatesTotal_Accouting = 1;
MaxJobsRunningParallel = 0;
UpdatesTotal = 3;
RecentStatsLifetime = 1;
MonitorSelfSecuritySessions = 2;
CCBEndpointsRegistered = 0;
LastHeardFrom = 1631798157;
ForkQueriesFromCOLLECTOR = 2;
HostsTotal = 0;
CurrentJobsRunningJava = 0;
RecentUpdatesTotal_Negotiator = 1;

(continues on next page)

620 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

(continued from previous page)

RecentForkQueriesFromCOLLECTOR = 2;
CurrentJobsRunningAll = 0;
RecentCCBRequestsNotFound = 0;
Name = "My Pool - 127.0.0.1@abae0fbbde81";
HostsOwner = 0;
TargetType = "";
CCBRequestsNotFound = 0;
CurrentJobsRunningStandard = 0;
SubmitterAds = 0;
UpdatesLost_Negotiator = 0;
MonitorSelfResidentSetSize = 11084;
CCBRequestsSucceeded = 0;
RecentUpdatesLost_Collector = 0;
RecentUpdatesInitial_Collector = 1;
RecentUpdatesLost = 0;
RecentCCBRequests = 0;
UpdatesTotal_Negotiator = 1;
UpdatesInitial_Negotiator = 1;
RecentDroppedQueries = 0;
CurrentJobsRunningUnknown = 0;
RecentUpdatesInitial_Negotiator = 1;
HostsUnclaimed = 0;
MachineAds = 0;
RecentCCBReconnects = 0;
UpdatesLostMax = 0;
CollectorIpAddr = "<172.17.0.2:46143?addrs=172.17.0.2-46143&alias=abae0fbbde81&

→˓noUDP&sock=collector>";
UpdatesInitial = 3;
HostsClaimed = 0;
MaxJobsRunningLocal = 0;
AddressV1 = "{[p=\"primary\"; a=\"172.17.0.2\"; port=46143; n=\"Internet\";␣

→˓alias=\"abae0fbbde81\"; spid=\"collector\"; noUDP=true;], [p=\"IPv4\"; a=\"172.17.0.
→˓2\"; port=46143; n=\"Internet\"; alias=\"abae0fbbde81\"; spid=\"collector\";␣
→˓noUDP=true;]}";

MaxJobsRunningUnknown = 0;
MyAddress = "<172.17.0.2:46143?addrs=172.17.0.2-46143&alias=abae0fbbde81&noUDP&

→˓sock=collector>";
Machine = "abae0fbbde81";
CurrentJobsRunningGrid = 0;
RunningJobs = 0;
MyType = "Collector";
MaxJobsRunningMPI = 0;
MaxJobsRunningScheduler = 0;
MyCurrentTime = 1631798156;
RecentUpdatesInitial = 3;
UpdatesLostRatio = 0.0;
MaxJobsRunningVanilla = 0;
CurrentJobsRunningLocal = 0;
CCBRequestsFailed = 0;
CurrentJobsRunningVM = 0;
MaxJobsRunningStandard = 0;
MonitorSelfImageSize = 16224;

(continues on next page)

8.1. Python Bindings 621

HTCondor Manual, Release 10.0.9

(continued from previous page)

MaxJobsRunningPVM = 0
]

When you’re done using the personal pool, you can stop() it:

[9]: pool.stop()

[9]: PersonalPool(local_dir=./personal-condor, state=STOPPED)

stop(), like start() will not return until the personal pool has actually stopped running. The personal pool will
also automatically be stopped if the PersonalPool object is garbage-collected, or when the Python interpreter stops
running.

To prevent the pool from being automatically stopped in these situations, call the detach() method. The
corresponding attach() method can be used to “re-connect” to a detached personal pool.

When working with a personal pool in a script, you may want to use it as a context manager. This pool will automatically
start and stop at the beginning and end of the context:

[10]: with PersonalPool(local_dir = Path.cwd() / "another-personal-condor") as pool: # note:␣
→˓no need to call start()

print(pool.get_config_val("LOCAL_DIR"))

/home/jovyan/tutorials/another-personal-condor

[]:

8.1.3 classad API Reference

This page is an exhaustive reference of the API exposed by the classad module. It is not meant to be a tutorial for
new users but rather a helpful guide for those who already understand the basic usage of the module.

ClassAd Representation

ClassAds are individually represented by the ClassAd class. Their attribute are key-value pairs, as in a standard Python
dictionary. The keys are strings, and the values may be either Python primitives corresponding to ClassAd data types
(string, bool, etc.) or ExprTree objects, which correspond to un-evaluated ClassAd expressions.

class classad.ClassAd(input)
The ClassAd object is the Python representation of a ClassAd. Where possible, ClassAd attempts to mimic a
Python dict. When attributes are referenced, they are converted to Python values if possible; otherwise, they
are represented by a ExprTree object.

New ClassAd objects can be initialized via a string (which is parsed as an ad) or a dictionary-like object con-
taining attribute-value pairs.

The ClassAd object is iterable (returning the attributes) and implements the dictionary protocol. The items,
keys, values, get, setdefault, and update methods have the same semantics as a dictionary.

Note: Where possible, we recommend using the dedicated parsing functions (parseOne(), parseNext(), or
parseAds()) instead of using the constructor.

Parameters input (str or dict) – A string or dictionary which will be interpreted as a classad.

622 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

HTCondor Manual, Release 10.0.9

eval(attr)→ object :
Evaluate an attribute to a Python object. The result will not be an ExprTree but rather an built-in type
such as a string, integer, boolean, etc.

Parameters attr (str) – Attribute to evaluate.

Returns The Python object corresponding to the evaluated ClassAd attribute

Raises ValueError – if unable to evaluate the object.

lookup(attr)→ ExprTree :
Look up the ExprTree object associated with attribute.

No attempt will be made to convert to a Python object.

Parameters attr (str) – Attribute to evaluate.

Returns The ExprTree object referenced by attr.

printOld()→ str :
Serialize the ClassAd in the old ClassAd format.

Returns The ‘old ClassAd’ representation of the ad.

Return type str

printJson(arg1)→ str :
Serialize the ClassAd as a string in JSON format.

Returns The JSON representation of the ad.

Return type str

flatten(expr)→ object :
Given ExprTree object expression, perform a partial evaluation. All the attributes in expression and defined
in this ad are evaluated and expanded. Any constant expressions, such as 1 + 2, are evaluated; undefined
attributes are not evaluated.

Parameters expr (ExprTree) – The expression to evaluate in the context of this ad.

Returns The partially-evaluated expression.

Return type ExprTree

matches(ad)→ bool :
Lookup the Requirements attribute of given ad return True if the Requirements evaluate to True in
our context.

Parameters ad (ClassAd) – ClassAd whose Requirements we will evaluate.

Returns True if we satisfy ad’s requirements; False otherwise.

Return type bool

symmetricMatch(ad)→ bool :
Check for two-way matching between given ad and ourselves.

Equivalent to self.matches(ad) and ad.matches(self).

Parameters ad (ClassAd) – ClassAd to check for matching.

Returns True if both ads’ requirements are satisfied.

Return type bool

8.1. Python Bindings 623

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

HTCondor Manual, Release 10.0.9

externalRefs(expr)→ list :
Returns a Python list of external references found in expr.

An external reference is any attribute in the expression which is not defined by the ClassAd object.

Parameters expr (ExprTree) – Expression to examine.

Returns A list of external attribute references.

Return type list[str]

internalRefs(expr)→ list :
Returns a Python list of internal references found in expr.

An internal reference is any attribute in the expression which is defined by the ClassAd object.

Parameters expr (ExprTree) – Expression to examine.

Returns A list of internal attribute references.

Return type list[str]

__eq__(arg1, arg2)→ bool :
One ClassAd is equivalent to another if they have the same number of attributes, and each attribute is the
sameAs() the other.

__ne__(arg1, arg2)→ bool :
The opposite of __eq__().

class classad.ExprTree(expr)
The ExprTree class represents an expression in the ClassAd language.

The ExprTree constructor takes an ExprTree, or a string, which it will attempt to parse into a ClassAd expression.
str(expr) will turn the ExprTree back into its string representation. int, float, and bool behave similarly,
evaluating as necessary.

As with typical ClassAd semantics, lazy-evaluation is used. So, the expression 'foo' + 1 does not produce an
error until it is evaluated with a call to bool() or the ExprTree.eval() method.

Note: The Python operators for ExprTree have been overloaded so, if e1 and e2 are ExprTree objects, then
e1 + e2 is also an ExprTree object. However, Python short-circuit evaluation semantics for e1 && e2 cause
e1 to be evaluated. In order to get the ‘logical and’ of the two expressions without evaluating, use e1.and_(e2).
Similarly, e1.or_(e2) results in the ‘logical or’.

and_(expr)→ ExprTree :
Return a new expression, formed by self && expr.

Parameters expr (ExprTree) – Right-hand-side expression to ‘and’

Returns A new expression, defined to be self && expr.

Return type ExprTree

or_(expr)→ ExprTree :
Return a new expression, formed by self || expr.

Parameters expr (ExprTree) – Right-hand-side expression to ‘or’

Returns A new expression, defined to be self || expr.

Return type ExprTree

is_(expr)→ ExprTree :
Logical comparison using the ‘meta-equals’ operator.

624 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 10.0.9

Parameters expr (ExprTree) – Right-hand-side expression to =?= operator.

Returns A new expression, formed by self =?= expr.

Return type ExprTree

isnt_(expr)→ ExprTree :
Logical comparison using the ‘meta-not-equals’ operator.

Parameters expr (ExprTree) – Right-hand-side expression to =!= operator.

Returns A new expression, formed by self =!= expr.

Return type ExprTree

sameAs(expr)→ bool :
Returns True if given ExprTree is same as this one.

Parameters expr (ExprTree) – Expression to compare against.

Returns True if and only if expr is equivalent to this object.

Return type bool

eval(scope)→ object :
Evaluate the expression and return as a ClassAd value, typically a Python object.

Warning: If scope is passed and is not the ClassAd this ExprTree might belong to, this method is
not thread-safe.

Parameters scope (ClassAd) – Optionally, the ClassAd context in which to evaluate. Unnec-
essary if the ExprTree comes from its own ClassAd , in which case it will be evaluated in
the scope of that ad, or if the ExprTree can be evaluated without a context.

If passed, scope must be a classad.ClassAd .

Returns The evaluated expression as a Python object.

simplify(scope, target)→ ExprTree :
Evaluate the expression and return as a ExprTree.

Warning: If scope is passed and is not the ClassAd this ExprTree might belong to, this method is
not thread-safe.

Warning: It is erroneous for scope to be a temporary; the lifetime of the returned object may depend
on the lifetime of the scope object.

Parameters

• scope (ClassAd) – Optionally, the ClassAd context in which to evaluate. Unnecessary
if the ExprTree comes from its own ClassAd , in which case it will be evaluated in the
scope of that ad, or if the ExprTree can be evaluated without a context.

If passed, scope must be a classad.ClassAd .

• target (ClassAd) – Optionally, the ClassAd TARGET ad.

If passed, target must be a classAd.ClassAd.

8.1. Python Bindings 625

https://docs.python.org/3/library/functions.html#bool

HTCondor Manual, Release 10.0.9

Returns The evaluated expression as an ExprTree.

class classad.Value
An enumeration of the two special ClassAd values Undefined and Error.

The values of the enumeration are:

Undefined

Error

Parsing and Creating ClassAds

classad provides a variety of utility functions that can help you construct ClassAd expressions and parse string rep-
resentations of ClassAds.

classad.parseAds(input, parser=classad.classad.Parser.Auto)→ object :
Parse the input as a series of ClassAds.

Parameters

• input (str or file) – Serialized ClassAd input; may be a file-like object.

• parser (Parser) – Controls behavior of the ClassAd parser.

Returns An iterator that produces ClassAd .

classad.parseNext(input, parser=classad.classad.Parser.Auto)→ object :
Parse the next ClassAd in the input string. Advances the input to point after the consumed ClassAd.

Parameters

• input (str or file) – Serialized ClassAd input; may be a file-like object.

• parser (Parser) – Controls behavior of the ClassAd parser.

Returns An iterator that produces ClassAd .

classad.parseOne(input, parser=classad.classad.Parser.Auto)→ ClassAd :
Parse the entire input into a single ClassAd object.

In the presence of multiple ClassAds or blank lines in the input, continue to merge ClassAds together until the
entire input is consumed.

Parameters

• input (str or file) – Serialized ClassAd input; may be a file-like object.

• parser (Parser) – Controls behavior of the ClassAd parser.

Returns Corresponding ClassAd object.

Return type ClassAd

classad.quote(input)→ str :
Converts the Python string into a ClassAd string literal; this handles all the quoting rules for the ClassAd language.
For example:

>>> classad.quote('hello'world')
''hello\\'world''

This allows one to safely handle user-provided strings to build expressions. For example:

626 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 10.0.9

>>> classad.ExprTree('Foo =?= %s' % classad.quote('hello'world'))
Foo is 'hello\'world'

Parameters input (str) – Input string to quote.

Returns The corresponding string literal as a Python string.

Return type str

classad.unquote(input)→ str :
Converts a ClassAd string literal, formatted as a string, back into a Python string. This handles all the quoting
rules for the ClassAd language.

Parameters input (str) – Input string to unquote.

Returns The corresponding Python string for a string literal.

Return type str

classad.Attribute(name)→ ExprTree :
Given an attribute name, construct an ExprTree object which is a reference to that attribute.

Note: This may be used to build ClassAd expressions easily from python. For example, the ClassAd expression
foo == 1 can be constructed by the Python code Attribute('foo') == 1.

Parameters name (str) – Name of attribute to reference.

Returns Corresponding expression consisting of an attribute reference.

Return type ExprTree

classad.Function()
Given function name name, and zero-or-more arguments, construct an ExprTree which is a function call ex-
pression. The function is not evaluated.

For example, the ClassAd expression strcat('hello ', 'world') can be constructed by the Python expres-
sion Function('strcat', 'hello ', 'world').

Returns Corresponding expression consisting of a function call.

Return type ExprTree

classad.Literal(obj)→ ExprTree :
Convert a given Python object to a ClassAd literal.

Python strings, floats, integers, and booleans have equivalent literals in the ClassAd language.

Parameters obj – Python object to convert to an expression.

Returns Corresponding expression consising of a literal.

Return type ExprTree

classad.lastError()→ str :
Return the string representation of the last error to occur in the ClassAd library.

As the ClassAd language has no concept of an exception, this is the only mechanism to receive detailed error
messages from functions.

8.1. Python Bindings 627

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 10.0.9

classad.register(function, name=None)→ None :
Given the Python function, register it as a function in the ClassAd language. This allows the invocation of the
Python function from within a ClassAd evaluation context.

Parameters

• function – A callable object to register with the ClassAd runtime.

• name (str) – Provides an alternate name for the function within the ClassAd library. The
default, None, indicates to use the built-in function name.

classad.registerLibrary(arg1)→ None :
Given a file system path, attempt to load it as a shared library of ClassAd functions. See the upstream documenta-
tion for configuration variable CLASSAD_USER_LIBS for more information about loadable libraries for ClassAd
functions.

Parameters path (str) – The library to load.

Parser Control

The behavior of parseAds(), parseNext(), and parseOne() can be controlled by giving them different values of
the Parser enumeration.

class classad.Parser
An enumeration that controls the behavior of the ClassAd parser. The values of the enumeration are. . .

Auto
The parser should automatically determine the ClassAd representation.

Old
The parser should only accept the old ClassAd format.

New
The parser should only accept the new ClassAd format.

Utility Functions

classad.version()→ str :
Return the version of the linked ClassAd library.

Exceptions

For backwards-compatibility, the exceptions in this module inherit from the built-in exceptions raised in earlier (pre-
v8.9.9) versions.

class classad.ClassAdException
Never raised. The parent class of all exceptions raised by this module.

class classad.ClassAdEnumError
Raised when a value must be in an enumeration, but isn’t.

class classad.ClassAdEvaluationError
Raised when the ClassAd library fails to evaluate an expression.

class classad.ClassAdInternalError
Raised when the ClassAd library encounters an internal error.

class classad.ClassAdOSError
Raised instead of OSError for backwards compatibility.

628 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#OSError

HTCondor Manual, Release 10.0.9

class classad.ClassAdParseError
Raised when the ClassAd library fails to parse a (putative) ClassAd.

class classad.ClassAdTypeError
Raised instead of TypeError for backwards compatibility.

class classad.ClassAdValueError
Raised instead of ValueError for backwards compatibility.

Deprecated Functions

The functions in this section are deprecated; new code should not use them and existing code should be rewritten to
use their replacements.

classad.parse(input)→ ClassAd :

Warning: This function is deprecated.

Parse input, in the new ClassAd format, into a ClassAd object.

Parameters input (str or file) – A string-like object or a file pointer.

Returns Corresponding ClassAd object.

Return type ClassAd

classad.parseOld(input)→ ClassAd :

Warning: This function is deprecated.

Parse input, in the old ClassAd format, into a ClassAd object.

Parameters input (str or file) – A string-like object or a file pointer.

Returns Corresponding ClassAd object.

Return type ClassAd

8.1.4 htcondor API Reference

This page is an exhaustive reference of the API exposed by the htcondor module. It is not meant to be a tutorial for
new users but rather a helpful guide for those who already understand the basic usage of the module.

8.1. Python Bindings 629

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 10.0.9

Interacting with Collectors

class htcondor.Collector(pool)
Client object for a remote condor_collector. The Collector can be used to:

• Locate a daemon.

• Query the condor_collector for one or more specific ClassAds.

• Advertise a new ad to the condor_collector.

Parameters pool (str or list[str]) – A host:port pair specified for the remote collector (or
a list of pairs for HA setups). If omitted, the value of configuration parameter COLLECTOR_HOST
is used.

locate(daemon_type, name)→ object :
Query the condor_collector for a particular daemon.

Parameters

• daemon_type (DaemonTypes) – The type of daemon to locate.

• name (str) – The name of daemon to locate. If not specified, it searches for the local
daemon.

Returns a minimal ClassAd of the requested daemon, sufficient only to contact the daemon;
typically, this limits to the MyAddress attribute.

Return type ClassAd

locateAll(daemon_type)→ object :
Query the condor_collector daemon for all ClassAds of a particular type. Returns a list of matching Clas-
sAds.

Parameters daemon_type (DaemonTypes) – The type of daemon to locate.

Returns Matching ClassAds

Return type list[ClassAd]

query(ad_type=htcondor.htcondor.AdTypes.Any, constraint='', projection=[], statistics='')→ object :
Query the contents of a condor_collector daemon. Returns a list of ClassAds that match the constraint
parameter.

Parameters

• ad_type (AdTypes) – The type of ClassAd to return. If not specified, the type will be
ANY_AD.

• constraint (str or ExprTree) – A constraint for the collector query; only ads matching
this constraint are returned. If not specified, all matching ads of the given type are returned.

• projection (list[str]) – A list of attributes to use for the projection. Only these at-
tributes, plus a few server-managed, are returned in each ClassAd .

• statistics (list[str]) – Statistics attributes to include, if they exist for the specified
daemon.

Returns A list of matching ads.

Return type list[ClassAd]

630 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 10.0.9

directQuery(daemon_type, name='', projection=[], statistics='')→ object :
Query the specified daemon directly for a ClassAd, instead of using the ClassAd from the condor_collector
daemon. Requires the client library to first locate the daemon in the collector, then querying the remote
daemon.

Parameters

• daemon_type (DaemonTypes) – Specifies the type of the remote daemon to query.

• name (str) – Specifies the daemon’s name. If not specified, the local daemon is used.

• projection (list[str]) – is a list of attributes requested, to obtain only a subset of the
attributes from the daemon’s ClassAd .

• statistics (str) – Statistics attributes to include, if they exist for the specified daemon.

Returns The ad of the specified daemon.

Return type ClassAd

advertise(ad_list, command='UPDATE_AD_GENERIC', use_tcp=True)→ None :
Advertise a list of ClassAds into the condor_collector.

Parameters

• ad_list (list[ClassAds]) – ClassAds to advertise.

• command (str) – An advertise command for the remote condor_collector. It defaults to
UPDATE_AD_GENERIC. Other commands, such as UPDATE_STARTD_AD, may require dif-
ferent authorization levels with the remote daemon.

• use_tcp (bool) – When set to True, updates are sent via TCP. Defaults to True.

class htcondor.DaemonTypes
An enumeration of different types of daemons available to HTCondor.

The values of the enumeration are:

None

Any
Any type of daemon; useful when specifying queries where all matching daemons should be returned.

Master
Ads representing the condor_master.

Schedd
Ads representing the condor_schedd.

Startd
Ads representing the resources on a worker node.

Collector
Ads representing the condor_collector.

Negotiator
Ads representing the condor_negotiator.

HAD
Ads representing the high-availability daemons (condor_had).

Generic
All other ads that are not categorized as above.

Credd

8.1. Python Bindings 631

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

HTCondor Manual, Release 10.0.9

class htcondor.AdTypes
A list of different types of ads that may be kept in the condor_collector.

The values of the enumeration are:

None

Any
Type representing any matching ad. Useful for queries that match everything in the collector.

Generic
Generic ads, associated with no particular daemon.

Startd
Startd ads, produced by the condor_startd daemon. Represents the available slots managed by the startd.

StartdPrivate
The “private” ads, containing the claim IDs associated with a particular slot. These require additional
authorization to read as the claim ID may be used to run jobs on the slot.

Schedd
Schedd ads, produced by the condor_schedd daemon.

Master
Master ads, produced by the condor_master daemon.

Collector
Ads from the condor_collector daemon.

Negotiator
Negotiator ads, produced by the condor_negotiator daemon.

Submitter
Ads describing the submitters with available jobs to run; produced by the condor_schedd and read by the
condor_negotiator to determine which users need a new negotiation cycle.

Grid
Ads associated with the grid universe.

HAD
Ads produced by the condor_had.

License
License ads. These do not appear to be used by any modern HTCondor daemon.

Credd

Defrag

Accounting

Interacting with Schedulers

class htcondor.Schedd(location_ad)
Client object for a condor_schedd.

Parameters location_ad (ClassAd or DaemonLocation) – An Ad describing the location of the
remote condor_schedd daemon, as returned by the Collector.locate() method, or a tuple
of type DaemonLocation as returned by Schedd.location(). If the parameter is omitted, the
local condor_schedd daemon is used.

632 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

transaction(flags=0, continue_txn=False)→ Transaction :
Start a transaction with the condor_schedd.

Starting a new transaction while one is ongoing is an error unless the continue_txn flag is set.

Parameters

• flags (TransactionFlags) – Flags controlling the behavior of the transaction, default-
ing to 0.

• continue_txn (bool) – Set to True if you would like this transaction to extend any pre-
existing transaction; defaults to False. If this is not set, starting a transaction inside a
pre-existing transaction will cause an exception to be thrown.

Returns A transaction context manager object.

query(constraint='true', projection=[], callback=None, limit=- 1,
opts=htcondor.htcondor.QueryOpts.Default)→ object :

Query the condor_schedd daemon for job ads.

Warning: This returns a list of ClassAd objects, meaning all results must be held in memory simul-
taneously. This may be memory-intensive for queries that return many and/or large jobs ads. If you are
retrieving many large ads, consider using xquery() instead to reduce memory requirements.

Parameters

• constraint (str or ExprTree) – A query constraint. Only jobs matching this constraint
will be returned. Defaults to 'true', which means all jobs will be returned.

• projection (list[str]) – Attributes that will be returned for each job in the query. At
least the attributes in this list will be returned, but additional ones may be returned as well.
An empty list (the default) returns all attributes.

• callback – A callable object; if provided, it will be invoked for each ClassAd. The return
value (if not None) will be added to the returned list instead of the ad.

• limit (int) – The maximum number of ads to return; the default (-1) is to return all ads.

• opts (QueryOpts.) – Additional flags for the query; these may affect the behavior of the
condor_schedd.

Returns ClassAds representing the matching jobs.

Return type list[ClassAd]

xquery(constraint='true', projection=[], limit=- 1, opts=htcondor.htcondor.QueryOpts.Default,
name=None)→ QueryIterator :

Query the condor_schedd daemon for job ads.

Warning: This returns an iterator of ClassAd objects, which means you may not need to hold all
of the ads returned by the query in memory simultaneously. However, this method holds a connection
open to the schedd, and a fork of the schedd will remain active, until you finish iterating. If you are not
retrieving many large ads, consider using query() instead to reduce load on the schedd.

Parameters

• constraint (str or ExprTree) – A query constraint. Only jobs matching this constraint
will be returned. Defaults to 'true', which means all jobs will be returned.

8.1. Python Bindings 633

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 10.0.9

• projection (list[str]) – Attributes that will be returned for each job in the query. At
least the attributes in this list will be returned, but additional ones may be returned as well.
An empty list (the default) returns all attributes.

• limit (int) – A limit on the number of matches to return. The default (-1) indicates all
matching jobs should be returned.

• opts (QueryOpts) – Additional flags for the query, from QueryOpts.

• name (str) – A tag name for the returned query iterator. This string will always be returned
from the QueryIterator.tag()method of the returned iterator. The default value is the
condor_schedd’s name. This tag is useful to identify different queries when using the
poll() function.

Returns An iterator for the matching job ads

Return type QueryIterator

act(action, job_spec, reason=None)→ object :
Change status of job(s) in the condor_schedd daemon. The return value is a ClassAd object describing the
number of jobs changed.

This will throw an exception if no jobs are matched by the constraint.

Parameters

• action (JobAction) – The action to perform; must be of the enum JobAction.

• job_spec (list[str] or str) – The job specification. It can either be a list of job IDs,
or an ExprTree or string specifying a constraint. Only jobs matching this description will
be acted upon.

• reason (str) – The reason for the action. If omitted, the reason will be “Python-initiated
action”.

edit(job_spec, attr, value, flags=0)→ EditResult :
Edit one or more jobs in the queue.

This will throw an exception if no jobs are matched by the job_spec constraint.

Parameters

• job_spec (list[str] or str) – The job specification. It can either be a list of job IDs
or a string specifying a constraint. Only jobs matching this description will be acted upon.

• attr (str) – The name of the attribute to edit.

• value (str or ExprTree) – The new value of the attribute. It should be a string, which
will be converted to a ClassAd expression, or an ExprTree object. Be mindful of quoting
issues; to set the value to the string foo, one would set the value to ''foo''

• flags (TransactionFlags) – Flags controlling the behavior of the transaction, default-
ing to 0.

Returns An EditResult containing the number of jobs that were edited.

Return type EditResult

history(constraint, projection, match=- 1, since=None)→ HistoryIterator :
Fetch history records from the condor_schedd daemon.

Parameters

• constraint (str or ExprTree) – A query constraint. Only jobs matching this constraint
will be returned. None will return all jobs.

634 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 10.0.9

• projection (list[str]) – Attributes that will be returned for each job in the query. At
least the attributes in this list will be returned, but additional ones may be returned as well.
An empty list returns all attributes.

• match (int) – A limit on the number of jobs to include; the default (-1) indicates to return
all matching jobs. The schedd may return fewer than match jobs because of its setting of
HISTORY_HELPER_MAX_HISTORY (default 10,000).

• since (int, str, or ExprTree) – A cluster ID, job ID, or expression. If a cluster ID (passed as
an int) or job ID (passed a str in the format {clusterID}.{procID}), only jobs recorded
in the history file after (and not including) the matching ID will be returned. If an expression
(passed as a str or ExprTree), jobs will be returned, most-recently-recorded first, until the
expression becomes true; the job making the expression become true will not be returned.
Thus, 1038 and clusterID == 1038 return the same set of jobs.

Returns All matching ads in the Schedd history, with attributes according to the projection
keyword.

Return type HistoryIterator

submit(description, count=1, spool=False, ad_results=None, itemdata=None)→ object :
Submit one or more jobs to the condor_schedd daemon.

This method requires the invoker to provide a Submit object that describes the jobs to submit. The return
value will be a SubmitResult that contains the cluster ID and ClassAd of the submitted jobs.

For backward compatibility, this method will also accept a ClassAd that describes a single job to submit,
but use of this form of is deprecated. Use submit_raw to submit raw job ClassAds. If the deprecated form
is used the return value will be the cluster ID, and ad_results will optionally be the actual job ClassAds that
were submitted.

Parameters

• description (Submit (or deprecated ClassAd)) – The Submit description or ClassAd
describing the job cluster.

• count (int) – The number of jobs to submit to the job cluster. Defaults to 1.

• spool (bool) – If True, jobs will be submitted in a spooling hold mode so that input files
can be spooled to a remote condor_schedd daemon before starting the jobs. This parameter
is necessary for jobs submitted to a remote condor_schedd that use HTCondor file transfer.
When True, job will be left in the HOLD state until the spool() method is called.

• ad_results (list[ClassAd]) – deprecated. If set to a list and a raw job ClassAd is passed
as the first argument, the list object will contain the job ads that were submitted.

Returns a SubmitResult, containing the cluster ID, cluster ClassAd and range of Job ids of the
submitted job(s). If using the deprecated first argument, the return value will be an int and
ad_results may contain submitted jobs ClassAds.

Return type SubmitResult or int

submitMany(cluster_ad, proc_ads, spool=False, ad_results=None)→ int :
Submit multiple jobs to the condor_schedd daemon, possibly including several distinct processes.

Parameters

• cluster_ad (ClassAd) – The base ad for the new job cluster; this is the same format as
in the submit() method.

• proc_ads (list) – A list of 2-tuples; each tuple has the format of (proc_ad, count).
For each list entry, this will result in count jobs being submitted inheriting from both
cluster_ad and proc_ad.

8.1. Python Bindings 635

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

HTCondor Manual, Release 10.0.9

• spool (bool) – If True, the client inserts the necessary attributes into the job for it to have
the input files spooled to a remote condor_schedd daemon. This parameter is necessary
for jobs submitted to a remote condor_schedd that use HTCondor file transfer. When True,
job will be left in the HOLD state until the spool() method is called.

• ad_results (list[ClassAd]) – If set to a list, the list object will contain the job ads result-
ing from the job submission.

Returns The newly created cluster ID.

Return type int

spool(ad_list)→ None :
Spools the files specified in a list of job ClassAds to the condor_schedd.

Parameters ad_list (list[ClassAds]) – A list of job descriptions; typically, this is the list re-
turned by the jobs() method on the submit result object.

Raises RuntimeError – if there are any errors.

retrieve(arg1, arg2)→ None :
Retrieve the output sandbox from one or more jobs.

Parameters job_spec (str or list[ClassAd]) – An expression matching the list of job output
sandboxes to retrieve.

refreshGSIProxy(cluster, proc, proxy_filename, lifetime)→ int :
Refresh the GSI proxy of a job; the job’s proxy will be replaced the contents of the provided
proxy_filename.

Note: Depending on the lifetime of the proxy in proxy_filename, the resulting lifetime may be shorter
than the desired lifetime.

Parameters

• cluster (int) – Cluster ID of the job to alter.

• proc (int) – Process ID of the job to alter.

• proxy_filename (str) – The name of the file containing the new proxy for the job.

• lifetime (int) – Indicates the desired lifetime (in seconds) of the delegated proxy. A
value of 0 specifies to not shorten the proxy lifetime. A value of -1 specifies to use the
value of configuration variable DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME.

reschedule()→ None :
Send reschedule command to the schedd.

export_jobs(job_spec, export_dir, new_spool_dir)→ object :
Export one or more job clusters from the queue to put those jobs into the externally managed state.

Parameters

• job_spec (list[str] or str or ExprTree) – The job specification. It can either be
a list of job IDs or a string specifying a constraint. Only jobs matching this description will
be acted upon.

• export_dir (str) – The path to the directory that exported jobs will be written into.

• new_spool_dir (str) – The path to the base directory that exported jobs will use as IWD
while they are exported

636 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 10.0.9

Returns A ClassAd containing information about the export operation.

Return type ClassAd

import_exported_job_results(import_dir)→ object :
Import results from previously exported jobs, and take those jobs back out of the externally managed state.

Parameters import_dir (str) – The path to the modified form of a previously-exported direc-
tory.

Returns A ClassAd containing information about the import operation.

Return type ClassAd

unexport_jobs(job_spec)→ object :
Unexport one or more job clusters that were previously exported from the queue.

Parameters job_spec (list[str] or str or ExprTree) – The job specification. It can ei-
ther be a list of job IDs or a string specifying a constraint. Only jobs matching this description
will be acted upon.

Returns A ClassAd containing information about the unexport operation.

Return type ClassAd

class htcondor.JobAction
An enumeration describing the actions that may be performed on a job in queue.

The values of the enumeration are:

Hold
Put a job on hold, vacating a running job if necessary. A job will stay in the hold state until explicitly acted
upon by the admin or owner.

Release
Release a job from the hold state, returning it to Idle.

Suspend
Suspend the processes of a running job (on Unix platforms, this triggers a SIGSTOP). The job’s processes
stay in memory but no longer get scheduled on the CPU.

Continue
Continue a suspended jobs (on Unix, SIGCONT). The processes in a previously suspended job will be sched-
uled to get CPU time again.

Remove
Remove a job from the Schedd’s queue, cleaning it up first on the remote host (if running). This requires the
remote host to acknowledge it has successfully vacated the job, meaning Remove may not be instantaneous.

RemoveX
Immediately remove a job from the schedd queue, even if it means the job is left running on the remote
resource.

Vacate
Cause a running job to be killed on the remote resource and return to idle state. With Vacate, jobs may be
given significant time to cleanly shut down.

VacateFast
Vacate a running job as quickly as possible, without providing time for the job to cleanly terminate.

class htcondor.TransactionFlags
Enumerated flags affecting the characteristics of a transaction.

The values of the enumeration are:

8.1. Python Bindings 637

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 10.0.9

NonDurable
Non-durable transactions are changes that may be lost when the condor_schedd crashes. NonDurable is
used for performance, as it eliminates extra fsync() calls.

SetDirty
This marks the changed ClassAds as dirty, causing an update notification to be sent to the condor_shadow
and the condor_gridmanager, if they are managing the job.

ShouldLog
Causes any changes to the job queue to be logged in the relevant job event log.

class htcondor.QueryOpts
Enumerated flags sent to the condor_schedd during a query to alter its behavior.

The values of the enumeration are:

Default
Queries should use default behaviors, and return jobs for all users.

AutoCluster
Instead of returning job ads, return an ad per auto-cluster.

GroupBy
Instead of returning job ads, return an ad for each unique combination of values for the attributes in the
projection. Similar to AutoCluster, but using the projection as the significant attributes for auto-clustering.

DefaultMyJobsOnly
Queries should use all default behaviors, and return jobs only for the current user.

SummaryOnly
Instead of returning job ads, return only the final summary ad.

IncludeClusterAd
Query should return raw cluster ads as well as job ads if the cluster ads match the query constraint.

class htcondor.BlockingMode
An enumeration that controls the behavior of query iterators once they are out of data.

The values of the enumeration are:

Blocking
Sets the iterator to block until more data is available.

NonBlocking
Sets the iterator to return immediately if additional data is not available.

class htcondor.HistoryIterator
An iterator over ads in the history produced by Schedd.history().

class htcondor.QueryIterator
An iterator class for managing results of the Schedd.query() and Schedd.xquery() methods.

nextAdsNonBlocking()→ list :
Retrieve as many ads are available to the iterator object.

If no ads are available, returns an empty list. Does not throw an exception if no ads are available or the
iterator is finished.

Returns Zero-or-more job ads.

Return type list[ClassAd]

638 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

tag()→ str :
Retrieve the tag associated with this iterator; when using the poll() method, this is useful to distinguish
multiple iterators.

Returns The query’s tag.

done()→ bool :

Returns True if the iterator is finished; False otherwise.

Return type bool

watch()→ int :
Returns an inotify-based file descriptor; if this descriptor is given to a select() instance, select will
indicate this file descriptor is ready to read whenever there are more jobs ready on the iterator.

If inotify is not available on this platform, this will return -1.

Returns A file descriptor associated with this query.

Return type int

htcondor.poll(queries, timeout_ms=20000)→ BulkQueryIterator :
Wait on the results of multiple query iterators.

This function returns an iterator which yields the next ready query iterator. The returned iterator stops when all
results have been consumed for all iterators.

Parameters active_queries (list[QueryIterator]) – Query iterators as returned by xquery().

Returns An iterator producing the ready QueryIterator.

Return type BulkQueryIterator

class htcondor.BulkQueryIterator
Returned by poll(), this iterator produces a sequence of QueryIterator objects that have ads ready to be read
in a non-blocking manner.

Once there are no additional available iterators, poll() must be called again.

class htcondor.JobStatus(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

An enumeration of HTCondor job status values.

IDLE

RUNNING

REMOVED

COMPLETED

HELD

TRANSFERRING_OUTPUT

SUSPENDED

8.1. Python Bindings 639

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 10.0.9

Submitting Jobs

class htcondor.Submit
An object representing a job submit description. It uses the same submit language as condor_submit.

The submit description contains key = value pairs and implements the python dictionary protocol, including
the get, setdefault, update, keys, items, and values methods.

object __init__(tuple args, dict kwds) :

param input Submit descriptors as key = value pairs in a dictionary, or as keyword ar-
guments, or as a string containing the text of a submit file. For example, these calls all
produce identical submit descriptions:

from_file = htcondor.Submit(
"""
executable = /bin/sleep
arguments = 5s
My.CustomAttribute = "foobar"
"""

)

we need to quote the string "foobar" correctly
from_dict = htcondor.Submit({

"executable": "/bin/sleep",
"arguments": "5s",
"My.CustomAttribute": classad.quote("foobar"),

})

the **{} is a trick to get a keyword argument that contains a .
from_kwargs = htcondor.Submit(

executable = "/bin/sleep",
arguments = "5s",
**{

"My.CustomAttribute": classad.quote("foobar"),
}

)

If a string is used, it may include a single condor_submit QUEUE statement. The argu-
ments to the QUEUE statement will be stored in the QArgs member of this class and used
when Submit.queue() or Submit.queue_with_itemdata() are called. If omitted,
the submit description is initially empty.

type input dict or str

queue(txn, count=0, ad_results=None)→ int :
Submit the current object to a remote queue.

Parameters

• txn (Transaction) – An active transaction object (see Schedd.transaction()).

• count (int) – The number of jobs to create (defaults to 0). If not specified, or a value
of 0 is given the QArgs member of this class is used to determine the number of procs to
submit. If no QArgs were specified, one job is submitted.

• ad_results – A list to receive the ClassAd resulting from this submit. As with Schedd.
submit(), this is often used to later spool the input files.

640 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 10.0.9

Returns The ClusterID of the submitted job(s).

Return type int

Raises RuntimeError – if the submission fails.

queue_with_itemdata(txn, count=1, itemdata=None, spool=False)→ SubmitResult :
Submit the current object to a remote queue.

Parameters

• txn (Transaction) – An active transaction object (see Schedd.transaction()).

• count (int) – A queue count for each item from the iterator, defaults to 1.

• from – an iterator of strings or dictionaries containing the itemdata for each job as in queue
in or queue from.

• spool (bool) – Modify the job ClassAds to indicate that it should wait for input before
starting. defaults to false.

Returns a SubmitResult, containing the cluster ID, cluster ClassAd and range of Job ids Cluster
ID of the submitted job(s).

Return type SubmitResult

Raises RuntimeError – if the submission fails.

expand(attr)→ str :
Expand all macros for the given attribute.

Parameters attr (str) – The name of the relevant attribute.

Returns The value of the given attribute; all macros are expanded.

Return type str

jobs(count=0, itemdata=None, clusterid=1, procid=0, qdate=0, owner='')→ SubmitJobsIterator :
Turn the current object into a sequence of simulated job ClassAds

Parameters

• count (int) – the queue count for each item in the from list, defaults to 1

• from – a iterator of strings or dictionaries containing the itemdata for each job e.g. ‘queue
in’ or ‘queue from’

• clusterid (int) – the value to use for ClusterId when making job ads, defaults to 1

• procid (int) – the initial value for ProcId when making job ads, defaults to 0

• qdate (str) – a UNIX timestamp value for the QDATE attribute of the jobs, 0 means use
the current time.

• owner (str) – a string value for the Owner attribute of the job

Returns An iterator for the resulting job ads.

Raises RuntimeError – if valid job ads cannot be made

procs(count=0, itemdata=None, clusterid=1, procid=0, qdate=0, owner='')→ SubmitJobsIterator :
Turn the current object into a sequence of simulated job proc ClassAds. The first ClassAd will be the cluster
ad plus a ProcId attribute

Parameters

• count (int) – the queue count for each item in the from list, defaults to 1

8.1. Python Bindings 641

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 10.0.9

• from – a iterator of strings or dictionaries containing the foreach data e.g. ‘queue in’ or
‘queue from’

• clusterid (int) – the value to use for ClusterId when making job ads, defaults to 1

• procid (int) – the initial value for ProcId when making job ads, defaults to 0

• qdate (str) – a UNIX timestamp value for the QDATE attribute of the jobs, 0 means use
the current time.

• owner (str) – a string value for the Owner attribute of the job

Returns An iterator for the resulting job ads.

Raises RuntimeError – if valid job ads cannot be made

itemdata(qargs='')→ QueueItemsIterator :
Create an iterator over itemdata derived from a queue statement.

For example itemdata("matching *.dat") would return an iterator of filenames that end in .dat from
the current directory. This is the same iterator used by condor_submit when processing QUEUE statements.

Parameters queue (str) – a submit queue statement, or the arguments to a submit queue state-
ment.

Returns An iterator for the resulting items

getQArgs()→ str :
Returns arguments specified in the QUEUE statement passed to the constructor. These are the arguments that
will be used by the Submit.queue() and Submit.queue_with_itemdata() methods if not overridden
by arguments to those methods.

setQArgs(args)→ None :
Sets the arguments to be used by subsequent calls to the Submit.queue() and Submit.
queue_with_itemdata() methods if not overridden by arguments to those methods.

Parameters args (str) – The arguments to pass to the QUEUE statement.

static from_dag(filename, options={})→ Submit :
Constructs a new Submit that could be used to submit the DAG described by the file found at filename.

This static method essentially does the first half of the work that condor_submit_dag does: it produces
the submit description for the DAGMan job that will execute the DAG. However, in addition to writing
this submit description to disk, it also produces a Submit object with the same information that can be
submitted via the normal Python bindings submit machinery.

Parameters

• filename (str) – The path to the DAG description file.

• options (dict) – Additional arguments to condor_submit_dag. Supports dagman
(str), force (bool), schedd-daemon-ad-file (str), schedd-address-file (str),
AlwaysRunPost (bool), maxidle (int), maxjobs (int), MaxPre (int), MaxPost (int),
UseDagDir (bool), debug (int), outfile_dir (str), config (str), batch-name (str),
AutoRescue (bool), DoRescueFrom (int), AllowVersionMismatch (bool), do_recurse
(bool), update_submit (bool), import_env (bool), DumpRescue (bool), valgrind
(bool), priority (int), suppress_notification (bool), DoRecov (bool)

Returns A Submit description for the DAG described in filename

Return type Submit

642 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

HTCondor Manual, Release 10.0.9

setSubmitMethod(method_value=- 1, allow_reserved_values=False)→ None :
Sets the Job Ad attribute JobSubmitMethod to passed over number. method_value is recommended to
be set to a value of 100 or greater to avoid confusion to pre-set values. Negative numbers will result in
JobSubmitMethod to not be defined in the Job Ad. If wanted, any number can be set by passing True
to allow_reserved_values. This allows any positive number to be set to JobSubmitMethod. This
includes all reserved numbers. Note~ Setting of JobSubmitMethod must occur before job is submitted to
Schedd.

Parameters

• method_value (int) – Value set to JobSubmitMethod.

• allow_reserved_values (bool) – Boolean that allows any number to be set to
JobSubmitMethod.

getSubmitMethod()→ int :

Returns JobSubmitMethod attribute value. See table or use condor_q -help Submit for values.

Return type int

class htcondor.QueueItemsIterator
An iterator over itemdata produced by Submit.itemdata().

class htcondor.SubmitResult

cluster()→ int :

Returns the ClusterID of the submitted jobs.

Return type int

clusterad()→ ClassAd :

Returns the cluster Ad of the submitted jobs.

Return type classad.ClassAd

first_proc()→ int :

Returns the first ProcID of the submitted jobs.

Return type int

num_procs()→ int :

Returns the number of submitted jobs.

Return type int

8.1. Python Bindings 643

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 10.0.9

Interacting with Negotiators

class htcondor.Negotiator(ad)
This class provides a query interface to the condor_negotiator. It primarily allows one to query and set various
parameters in the fair-share accounting.

Parameters location_ad (ClassAd or DaemonLocation) – A ClassAd or DaemonLocation de-
scribing the condor_negotiator location and version. If omitted, the default pool negotiator is
assumed.

deleteUser(user)→ None :
Delete all records of a user from the Negotiator’s fair-share accounting.

Parameters user (str) – A fully-qualified user name (USER@DOMAIN).

getPriorities(rollup)→ list :
Retrieve the pool accounting information, one per entry. Returns a list of accounting ClassAds.

Parameters rollup (bool) – Set to True if accounting information, as applied to hierarchical
group quotas, should be summed for groups and subgroups.

Returns A list of accounting ads, one per entity.

Return type list[ClassAd]

getResourceUsage(user)→ list :
Get the resources (slots) used by a specified user.

Parameters user (str) – A fully-qualified user name (USER@DOMAIN).

Returns List of ads describing the resources (slots) in use.

Return type list[ClassAd]

resetAllUsage()→ None :
Reset all usage accounting. All known user records in the negotiator are deleted.

resetUsage(user)→ None :
Reset all usage accounting of the specified user.

Parameters user (str) – A fully-qualified user name (USER@DOMAIN).

setBeginUsage(user, value)→ None :
Manually set the time that a user begins using the pool.

Parameters

• user (str) – A fully-qualified user name (USER@DOMAIN).

• value (int) – The Unix timestamp of initial usage.

setCeiling(user, ceiling)→ None :
Set the submitter ceiling of a specified user.

Parameters

• user (str) – A fully-qualified user name (USER@DOMAIN).

• ceiling (float) – The ceiling t be set for the submitter; must be greater-than or equal-to
-1.0.

setLastUsage(user, value)→ None :
Manually set the time that a user last used the pool.

Parameters

644 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

HTCondor Manual, Release 10.0.9

• user (str) – A fully-qualified user name (USER@DOMAIN).

• value (int) – The Unix timestamp of last usage.

setFactor(user, factor)→ None :
Set the priority factor of a specified user.

Parameters

• user (str) – A fully-qualified user name (USER@DOMAIN).

• factor (float) – The priority factor to be set for the user; must be greater-than or equal-to
1.0.

setPriority(user, prio)→ None :
Set the real priority of a specified user.

Parameters

• user (str) – A fully-qualified user name (USER@DOMAIN).

• prio (float) – The priority to be set for the user; must be greater-than 0.0.

setUsage(user, usage)→ None :
Set the accumulated usage of a specified user.

Parameters

• user (str) – A fully-qualified user name (USER@DOMAIN).

• usage (float) – The usage, in hours, to be set for the user.

Managing Starters and Claims

class htcondor.Startd(ad=None)
A class that represents a Startd.

Parameters locaton_ad – A ClassAd or DaemonLocation describing the the startd location and
version. If omitted, the local startd is assumed.

drainJobs(drain_type=0, on_completion=0, check_expr='true', start_expr='false', reason='by command')
→ str :

Begin draining jobs from the startd.

Parameters

• drain_type (DrainTypes) – How fast to drain the jobs. Defaults to DRAIN_GRACEFUL
if not specified.

• on_completion (int) – Whether the startd should start accepting jobs again once draining
is complete. Otherwise, it will remain in the drained state. Values are 0 for Nothing, 1 for
Resume, 2 for Exit, 3 for Restart. Defaults to 0.

• check_expr (str or ExprTree) – An expression string that must evaluate to true for all
slots for draining to begin. Defaults to 'true'.

• start_expr (str or ExprTree) – The expression that the startd should use while draining.

• reason (str) – A string describing the reason for draining. defaults to “by command”

Returns An opaque request ID that can be used to cancel draining via Startd.
cancelDrainJobs()

Return type str

8.1. Python Bindings 645

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 10.0.9

cancelDrainJobs(request_id='')→ None :
Cancel a draining request.

Parameters request_id (str) – Specifies a draining request to cancel. If not specified, all
draining requests for this startd are canceled.

class htcondor.DrainTypes
Draining policies that can be sent to a condor_startd.

The values of the enumeration are:

Fast

Graceful

Quick

class htcondor.VacateTypes
Vacate policies that can be sent to a condor_startd.

The values of the enumeration are:

Fast

Graceful

Security Management

class htcondor.Credd(ad=None)
A class for sending Credential commands to a Credd, Schedd or Master.

Parameters location_ad (ClassAd or DaemonLocation) – A ClassAd or DaemonLocation de-
scribing the Credd, Schedd or Master location. If omitted, the local schedd is assumed.

add_password(password, user='')→ None :
Store the password in the Credd for the current user (or for the given user).

Parameters

• password (str) – The password.

• user (str) – Which user to store the credential for (defaults to the current user).

delete_password(user='')→ None :
Delete the password in the Credd for the current user (or for the given user).

Parameters user (str) – Which user to store the credential for (defaults to the current user).

query_password(user='')→ bool :
Check to see if the current user (or the given user) has a password stored in the Credd.

Parameters user (str) – Which user to store the credential for (defaults to the current user).

Returns bool

add_user_cred(credtype, credential, user='')→ None :
Store a credential in the Credd for the current user (or for the given user).

Parameters

• credtype (CredTypes) – The type of credential to store.

• credential (bytes) – The credential to store.

• user (str) – Which user to store the credential for (defaults to the current user).

646 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 10.0.9

delete_user_cred(credtype, user='')→ None :
Delete a credential of the given credtype for the current user (or for the given user).

Parameters

• credtype (CredTypes) – The type of credential to delete.

• user (str) – Which user to store the credential for (defaults to the current user).

query_user_cred(credtype, user='')→ int :
Query whether the current user (or the given user) has a credential of the given type stored.

Parameters

• credtype (CredTypes) – The type of credential to query for.

• user (str) – Which user to store the credential for (defaults to the current user).

Returns The time that the user credential was last updated, or None if there is no credential

add_user_service_cred(credtype, credential, service, handle='', user='')→ None :
Store a credential in the Credd for the current user, or for the given user.

To specify multiple credential for the same service (e.g., you want to transfer files from two different ac-
counts that are on the same service), give each a unique handle.

Parameters

• credtype (CredTypes) – The type of credential to store.

• credential (bytes) – The credential to store.

• service (str) – The service name.

• handle (str) – Optional service handle (defaults to no handle).

• user (str) – Which user to store the credential for (defaults to the current user).

delete_user_service_cred(credtype, service, handle='', user='')→ None :
Delete a credential of the given credtype for service service for the current user (or for the given user).

Parameters

• credtype (CredTypes) – The type of credential to delete.

• service (str) – The service name.

• handle (str) – Optional service handle (defaults to no handle).

• user (str) – Which user to store the credential for (defaults to the current user).

query_user_service_cred(credtype, service, handle='', user='')→ CredStatus :
Query whether the current user (or the given user) has a credential of the given credtype stored.

Parameters

• credtype (CredTypes) – The type of credential to check storage for.

• service (str) – The service name.

• handle (str) – Optional service handle (defaults to no handle).

• user (str) – Which user to store the credential for (defaults to the current user).

Returns CredStatus

check_user_service_creds(credtype, services, user='')→ CredCheck :
Check to see if the current user (or the given user) has a given set of service credentials, and if any
credentials are missing, create a temporary URL that can be used to acquire the missing service credentials.

8.1. Python Bindings 647

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 10.0.9

Parameters

• credtype (CredTypes) – The type of credentials to check for.

• services (List[classad.ClassAd]) – The list of services that are needed.

• user (str) – Which user to store the credential for (defaults to the current user).

Returns CredCheck

class htcondor.CredTypes
The types of credentials that can be managed by a condor_credd.

The values of the enumeration are:

Password

Kerberos

OAuth

class htcondor.CredCheck

class htcondor.CredStatus

class htcondor.SecMan(arg1)
A class that represents the internal HTCondor security state.

If a security session becomes invalid, for example, because the remote daemon restarts, reuses the same port, and
the client continues to use the session, then all future commands will fail with strange connection errors. This is
the only mechanism to invalidate in-memory sessions.

The SecMan can also behave as a context manager; when created, the object can be used to set temporary security
configurations that only last during the lifetime of the security object.

invalidateAllSessions()→ None :
Invalidate all security sessions. Any future connections to a daemon will cause a new security session to
be created.

ping(ad, command='DC_NOP')→ ClassAd :
Perform a test authorization against a remote daemon for a given command.

Parameters

• ad (str or ClassAd) – The ClassAd of the daemon as returned by Collector.locate();
alternately, the sinful string can be given directly as the first parameter.

• command – The DaemonCore command to try; if not given, 'DC_NOP' will be used.

Returns An ad describing the results of the test security negotiation.

Return type ClassAd

getCommandString(command_int)→ str :
Return the string name corresponding to a given integer command.

Parameters command_int (int) – The integer command to get the string name of.

setConfig(key, value)→ None :
Set a temporary configuration variable; this will be kept for all security sessions in this thread for as long
as the SecMan object is alive.

Parameters

• key (str) – Configuration key to set.

• value (str) – Temporary value to set.

648 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 10.0.9

setPoolPassword(new_pass)→ None :
Set the pool password.

Parameters new_pass (str) – Updated pool password to use for new security negotiations.

setTag(tag)→ None :
Set the authentication context tag for the current thread.

All security sessions negotiated with the same tag will only be utilized when that tag is active.

For example, if thread A has a tag set to 'Joe' and thread B has a tag set to 'Jane', then all security
sessions negotiated for thread A will not be used for thread B.

Parameters tag (str) – New tag to set.

setToken(token)→ None :
Set the token used for auth.

Parameters token (Token) – The object representing the token contents

class htcondor.Token(contents)
A class representing a generated HTCondor authentication token.

Parameters contents (str) – The contents of the token.

write(tokenfile=None)→ None :
Write the contents of the token into the appropriate token directory on disk.

Parameters tokenfile – Filename inside the user token directory where the token will be writ-
ten.

class htcondor.TokenRequest(identity='', bounding_set=None, lifetime=- 1)
A class representing a request for a HTCondor authentication token.

Parameters

• identity (str) – Requested identity from the remote daemon (the empty string implies
condor user).

• bounding_set (list[str]) – A list of authorizations that the token is restricted to.

• lifetime (int) – Requested lifetime, in seconds, that the token will be valid for.

done()→ bool :
Check to see if the token request has completed.

Returns True if the request is complete; False otherwise. May throw an exception.

Return type bool

property request_id
The ID of the request at the remote daemon.

result(timeout=0)→ Token :
Return the result of the token request. Will block until the token request is approved or the timeout is hit (a
timeoute of 0, the default, indicates this method may block indefinitely).

Returns The token resulting from this request.

Return type Token

submit(ad=None)→ None :
Submit the token request to a remote daemon.

Parameters ad (ClassAd) – ClassAd describing the location of the remote daemon.

8.1. Python Bindings 649

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

HTCondor Manual, Release 10.0.9

Reading Job Events

The following is a complete example of submitting a job and waiting (forever) for it to finish. The next example
implements a time-out.

#!/usr/bin/env python3

import htcondor

Create a job description. It _must_ set `log` to create a job event log.
logFileName = "sleep.log"
submit = htcondor.Submit(

f"""
executable = /bin/sleep
transfer_executable = false
arguments = 5

log = {logFileName}
"""

)

Submit the job description, creating the job.
result = htcondor.Schedd().submit(submit, count=1)
clusterID = result.cluster()

Wait (forever) for the job to finish.
jel = htcondor.JobEventLog(logFileName)
for event in jel.events(stop_after=None):

HTCondor appends to job event logs by default, so if you run
this example more than once, there will be more than one job
in the log. Make sure we have the right one.
if event.cluster != clusterID or event.proc != 0:

continue

if event.type == htcondor.JobEventType.JOB_TERMINATED:
if(event["TerminatedNormally"]):

print(f"Job terminated normally with return value {event['ReturnValue']}.")
else:

print(f"Job terminated on signal {event['TerminatedBySignal']}.");
break

if event.type in { htcondor.JobEventType.JOB_ABORTED,
htcondor.JobEventType.JOB_HELD,
htcondor.JobEventType.CLUSTER_REMOVE }:

print("Job aborted, held, or removed.")
break

We expect to see the first three events in this list, and allow
don't consider the others to be terminal.
if event.type not in { htcondor.JobEventType.SUBMIT,

htcondor.JobEventType.EXECUTE,
htcondor.JobEventType.IMAGE_SIZE,
htcondor.JobEventType.JOB_EVICTED,

(continues on next page)

650 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

(continued from previous page)

htcondor.JobEventType.JOB_SUSPENDED,
htcondor.JobEventType.JOB_UNSUSPENDED }:

print(f"Unexpected job event: {event.type}!");
break

The following example includes a deadline for the job to finish. To make it quick to run the example, the deadline is only
ten seconds; real jobs will almost always take considerably longer. You can change arguments = 20 to arguments
= 5 to verify that this example correctly detects the job finishing. For the same reason, we check once a second to
see if the deadline has expired. In practice, you should check much less frequently, depending on how quickly your
script needs to react and how long you expect the job to last. In most cases, even once a minute is more frequent than
necessary or appropriate on shared resources; every five minutes is better.

#!/usr/bin/env python3

import time
import htcondor

Create a job description. It _must_ set `log` to create a job event log.
logFileName = "sleep.log"
submit = htcondor.Submit(

f"""
executable = /bin/sleep
transfer_executable = false
arguments = 20

log = {logFileName}
"""

)

Submit the job description, creating the job.
result = htcondor.Schedd().submit(submit, count=1)
clusterID = result.cluster()

def waitForJob(deadline):
jel = htcondor.JobEventLog(logFileName)
while time.time() < deadline:

In real code, this should be more like stop_after=300; see above.
for event in jel.events(stop_after=1):

HTCondor appends to job event logs by default, so if you run
this example more than once, there will be more than one job
in the log. Make sure we have the right one.
if event.cluster != clusterID or event.proc != 0:

continue
if event.type == htcondor.JobEventType.JOB_TERMINATED:

if(event["TerminatedNormally"]):
␣

→˓print(f"Job terminated normally with return value {event['ReturnValue']}.")
else:

print(f"Job terminated on signal {event['TerminatedBySignal']}.");
return True

if event.type in { htcondor.JobEventType.JOB_ABORTED,
htcondor.JobEventType.JOB_HELD,

(continues on next page)

8.1. Python Bindings 651

HTCondor Manual, Release 10.0.9

(continued from previous page)

htcondor.JobEventType.CLUSTER_REMOVE }:
print("Job aborted, held, or removed.")
return True

We expect to see the first three events in this list, and allow
don't consider the others to be terminal.
if event.type not in { htcondor.JobEventType.SUBMIT,

htcondor.JobEventType.EXECUTE,
htcondor.JobEventType.IMAGE_SIZE,
htcondor.JobEventType.JOB_EVICTED,
htcondor.JobEventType.JOB_SUSPENDED,
htcondor.JobEventType.JOB_UNSUSPENDED }:

print(f"Unexpected job event: {event.type}!");
return True

else:
print("Deadline expired.")
return False

Wait no more than 10 seconds for the job finish.
waitForJob(time.time() + 10);

Note that which job events are terminal, expected, or allowed may vary somewhat from job to job; for instance, it’s
possible to submit a job which releases itself from certain hold conditions.

class htcondor.JobEventLog(filename)
Reads user job event logs from filename.

By default, it waits for new events, but it may be used to poll for them:

import htcondor

jel = htcondor.JobEventLog("file.log")

Read all currently-available events without blocking.
for event in jel.events(stop_after=0):

print(event)

print("We found the the end of file")

A pickled JobEventLog resumes iterating over events where it left off if and only if, after being unpickled, the
job event log file is identical except for appended events.

Parameters filename (str) – A file containing a user job event log.

events(stop_after)→ object :
Return an iterator over JobEvent objects from the filename given in the constructor.

Parameters stop_after (int) – After how many seconds should the iterator stop waiting for
new events? If None (the default), wait forever. If 0, never wait.

close()→ None :
Closes any open underlying file. This object will no longer iterate.

class htcondor.JobEvent
Represents a single job event from the job event log. Use JobEventLog to get an iterator over the job events
from a file.

Because all events have type, cluster, proc, and timestamp, those are accessed via attributes (see below).

652 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 10.0.9

The rest of the information in the JobEvent can be accessed by key. JobEvent behaves like a read-only
Python dict, with get, keys, items, and values methods, and supports len and in (if "attribute" in
job_event, for example).

Attention: Although the attribute type is a JobEventType type, when acting as dictionary, a JobEvent
object returns types as if it were a ClassAd , so comparisons to enumerated values must use the == operator.
(No current event type has ExprTree values.)

type
The event type.

Return type JobEventType

cluster
The clusterid of the job the event is for.

Return type int

proc
The procid of the job the event is for.

Return type int

timestamp
The timestamp of the event.

Return type str

get(key, default=None)→ object :
As dict.get().

keys()→ list :
As dict.keys().

values()→ list :
As dict.values().

items()→ list :
As dict.items().

class htcondor.JobEventType
The type event of a user log event; corresponds to ULogEventNumber in the C++ source.

The values of the enumeration are:

SUBMIT

EXECUTE

EXECUTABLE_ERROR

CHECKPOINTED

JOB_EVICTED

JOB_TERMINATED

IMAGE_SIZE

SHADOW_EXCEPTION

GENERIC

JOB_ABORTED

8.1. Python Bindings 653

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict.get
https://docs.python.org/3/library/stdtypes.html#dict.keys
https://docs.python.org/3/library/stdtypes.html#dict.values
https://docs.python.org/3/library/stdtypes.html#dict.items

HTCondor Manual, Release 10.0.9

JOB_SUSPENDED

JOB_UNSUSPENDED

JOB_HELD

JOB_RELEASED

NODE_EXECUTE

NODE_TERMINATED

POST_SCRIPT_TERMINATED

GLOBUS_SUBMIT

GLOBUS_SUBMIT_FAILED

GLOBUS_RESOURCE_UP

GLOBUS_RESOURCE_DOWN

REMOTE_ERROR

JOB_DISCONNECTED

JOB_RECONNECTED

JOB_RECONNECT_FAILED

GRID_RESOURCE_UP

GRID_RESOURCE_DOWN

GRID_SUBMIT

JOB_AD_INFORMATION

JOB_STATUS_UNKNOWN

JOB_STATUS_KNOWN

JOB_STAGE_IN

JOB_STAGE_OUT

ATTRIBUTE_UPDATE

PRESKIP

CLUSTER_SUBMIT

CLUSTER_REMOVE

FACTORY_PAUSED

FACTORY_RESUMED

NONE

FILE_TRANSFER

RESERVE_SPACE

RELEASE_SPACE

FILE_COMPLETE

FILE_USED

FILE_REMOVED

654 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

class htcondor.FileTransferEventType
The event type for file transfer events; corresponds to FileTransferEventType in the C++ source.

The values of the enumeration are:

IN_QUEUED

IN_STARTED

IN_FINISHED

OUT_QUEUED

OUT_STARTED

OUT_FINISHED

HTCondor Configuration

htcondor.param = <htcondor.htcondor._Param object>
Provides dictionary-like access the HTCondor configuration.

An instance of _Param . Upon importing the htcondor module, the HTCondor configuration files are parsed
and populate this dictionary-like object.

htcondor.reload_config()→ None :
Reload the HTCondor configuration from disk.

class htcondor._Param
A dictionary-like object for the local HTCondor configuration; the keys and values of this object are the keys and
values of the HTCondor configuration.

The get, setdefault, update, keys, items, and values methods of this class have the same semantics as a
Python dictionary.

Writing to a _Param object will update the in-memory HTCondor configuration.

class htcondor.RemoteParam(ad)
The RemoteParam class provides a dictionary-like interface to the configuration of an HTCondor daemon. The
get, setdefault, update, keys, items, and valuesmethods of this class have the same semantics as a Python
dictionary.

Parameters ad (ClassAd) – An ad containing the location of the remote daemon.

refresh()→ None :
Rebuilds the dictionary based on the current configuration of the daemon.

htcondor.platform()→ str :
Returns the platform of HTCondor this module is running on.

htcondor.version()→ str :
Returns the version of HTCondor this module is linked against.

8.1. Python Bindings 655

HTCondor Manual, Release 10.0.9

HTCondor Logging

htcondor.enable_debug()→ None :
Enable debugging output from HTCondor, where output is sent to stderr. The logging level is controlled by
the TOOL_DEBUG parameter.

htcondor.enable_log()→ None :
Enable debugging output from HTCondor, where output is sent to a file. The log level is controlled by the
parameter TOOL_DEBUG, and the file used is controlled by TOOL_LOG.

htcondor.log(level, msg)→ None :
Log a message using the HTCondor logging subsystem.

Parameters

• level (LogLevel) – The log category and formatting indicator. Multiple LogLevel enum
attributes may be OR’d together.

• msg (str) – A message to log.

class htcondor.LogLevel
The log level attribute to use with log(). Note that HTCondor mixes both a class (debug, network, all) and the
header format (Timestamp, PID, NoHeader) within this enumeration.

The values of the enumeration are:

Always

Audit

Config

DaemonCore

Error

FullDebug

Hostname

Job

Machine

Network

NoHeader

PID

Priv

Protocol

Security

Status

SubSecond

Terse

Timestamp

Verbose

656 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 10.0.9

Esoteric Functionality

htcondor.send_command(ad, dc, target)→ None :
Send a command to an HTCondor daemon specified by a location ClassAd.

Parameters

• ad (ClassAd) – Specifies the location of the daemon (typically, found by using Collector.
locate()).

• dc (DaemonCommands) – A command type

• target (str) – An additional command to send to a daemon. Some commands require
additional arguments; for example, sending DaemonOff to a condor_master requires one to
specify which subsystem to turn off.

class htcondor.DaemonCommands
An enumeration of various state-changing commands that can be sent to a HTCondor daemon using
send_command().

The values of the enumeration are:

DaemonOn

DaemonOff

DaemonOffFast

DaemonOffPeaceful

DaemonsOn

DaemonsOff

DaemonsOffFast

DaemonsOffPeaceful

OffFast

OffForce

OffGraceful

OffPeaceful

Reconfig

Restart

RestartPeacful

SetForceShutdown

SetPeacefulShutdown

htcondor.send_alive([ad=None, pid=None, timeout=None)→ None :
Send a keep alive message to an HTCondor daemon.

This is used when the python process is run as a child daemon under the condor_master.

Parameters

• ad (ClassAd) – A ClassAd specifying the location of the daemon. This ad is typically
found by using Collector.locate().

• pid (int) – The process identifier for the keep alive. The default value of None uses the
value from os.getpid().

8.1. Python Bindings 657

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/os.html#os.getpid

HTCondor Manual, Release 10.0.9

• timeout (int) – The number of seconds that this keep alive is valid. If a new keep alive is
not received by the condor_master in time, then the process will be terminated. The default
value is controlled by configuration variable NOT_RESPONDING_TIMEOUT.

htcondor.set_subsystem(subsystem, type=htcondor.htcondor.SubsystemType(15))→ None :
Set the subsystem name for the object.

The subsystem is primarily used for the parsing of the HTCondor configuration file.

Parameters

• name (str) – The subsystem name.

• daemon_type (SubsystemType) – The HTCondor daemon type. The default value of Auto
infers the type from the name parameter.

class htcondor.SubsystemType
An enumeration of known subsystem names.

The values of the enumeration are:

Collector

Daemon

Dagman

GAHP

Job

Master

Negotiator

Schedd

Shadow

SharedPort

Startd

Starter

Submit

Tool

Exceptions

For backwards-compatibility, the exceptions in this module inherit from the built-in exceptions raised in earlier (pre-
v8.9.9) versions.

class htcondor.HTCondorException
Never raised. The parent class of all exceptions raised by this module.

class htcondor.HTCondorEnumError
Raised when a value must be in an enumeration, but isn’t.

class htcondor.HTCondorInternalError
Raised when HTCondor encounters an internal error.

class htcondor.HTCondorIOError
Raised instead of IOError for backwards compatibility.

658 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#IOError

HTCondor Manual, Release 10.0.9

class htcondor.HTCondorLocateError
Raised when HTCondor cannot locate a daemon.

class htcondor.HTCondorReplyError
Raised when HTCondor received an invalid reply from a daemon, or the daemon’s reply indicated that it encoun-
tered an error.

class htcondor.HTCondorTypeError
Raised instead of TypeError for backwards compatibility.

class htcondor.HTCondorValueError
Raised instead of ValueError for backwards compatibility.

Thread Safety

Most of the htcondor module is protected by a lock that prevents multiple threads from executing locked functions at
the same time. When two threads both want to call locked functions or methods, they will wait in line to execute them
one at a time (the ordering between threads is not guaranteed beyond “first come first serve”). Examples of locked
functions include: Schedd.query(), Submit.queue(), and Schedd.edit().

Threads that are not trying to execute locked htcondor functions will be allowed to proceed normally.

This locking may cause unexpected slowdowns when using htcondor from multiple threads simultaneously.

8.1.5 htcondor.htchirp API Reference

htcondor.htchirp is a Python Chirp client compatible with the condor_starter Chirp proxy server. It is intended for
use inside a running HTCondor job to access files on the submit machine or to query and modify job ClassAd attributes.
Files can be read, written, or removed. Job attributes can be read, and most attributes can be updated.

Jobs that use htcondor.htchirp module must have the attribute WantIOProxy set to true in the job ClassAd (My.
WantIOProxy = true in the submit description). htcondor.htchirp only works for jobs run in the vanilla, paralllel,
and java universes.

htcondor.htchirp provides two objects for interacting with the condor_starter Chirp proxy server, HTChirp and
condor_chirp().

We recommend using HTChirp as a context manager, which automatically handles openining and closing the connec-
tion to the condor_starter Chirp proxy server:

from htcondor.htchirp import HTChirp

with HTChirp() as chirp:
inside this block, the connection is open
i = chirp.get_job_attr("IterationNum")
chirp.set_job_attr("IterationNum") = i + 1

The connection may be manually opened and closed using HTChirp.connect() and HTChirp.disconnect().

condor_chirp() is a wrapper around HTChirp that takes a string containing a condor_chirp command (with argu-
ments) and returns the value from the relevant HTChirp method.

class htcondor.htchirp.HTChirp(host=None, port=None, auth=['cookie'], cookie=None, timeout=10)
Chirp client for HTCondor

A Chirp client compatible with the HTCondor Chirp implementation.

If the host and port of a Chirp server are not specified, you are assumed to be running in a HTCondor job with
$_CONDOR_CHIRP_CONFIG that contains the host, port, and cookie for connecting to the embedded chirp proxy.

8.1. Python Bindings 659

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

HTCondor Manual, Release 10.0.9

Parameters

• host – the hostname or ip of the Chirp server

• port – the port of the Chirp server

• auth – a list of authentication methods to try

• cookie – the cookie string, if trying cookie authentication

• timeout – socket timeout, in seconds

connect(auth_method=None)
Connect to and authenticate with the Chirp server

Parameters auth_method – If set, try the specific authentication method

is_connected()
Check if Chirp client is connected.

disconnect()
Close connection with the Chirp server

fetch(remote_file, local_file)
Copy a file from the submit machine to the execute machine.

Parameters

• remote_file – Path to file to be sent from the submit machine

• local_file – Path to file to be written to on the execute machine

Returns Bytes written

put(local_file, remote_file, flags='wct', mode=None)
Copy a file from the execute machine to the submit machine.

Specifying flags other than ‘wct’ (i.e. ‘create or truncate file’) when putting large files is not recommended
as the entire file must be read into memory.

To put individual bytes into a file on the submit machine instead of an entire file, see the write() method.

Parameters

• local_file – Path to file to be sent from the execute machine

• remote_file – Path to file to be written to on the submit machine

• flags – File open modes (one or more of ‘rwatcx’) [default: ‘wct’]

• mode – Permission mode to set [default: 0777]

Returns Size of written file

remove(remote_file)
Remove a file from the submit machine.

Parameters remote_file – Path to file on the submit machine

get_job_attr(job_attribute)
Get the value of a job ClassAd attribute.

Parameters job_attribute – The job attribute to query

Returns The value of the job attribute as a string

set_job_attr(job_attribute, attribute_value)
Set the value of a job ClassAd attribute.

660 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

Parameters

• job_attribute – The job attribute to set

• attribute_value – The job attribute’s new value

get_job_attr_delayed(job_attribute)
Get the value of a job ClassAd attribute from the local Starter.

This may differ from the value in the Schedd.

Parameters job_attribute – The job attribute to query

Returns The value of the job attribute as a string

set_job_attr_delayed(job_attribute, attribute_value)
Set the value of a job ClassAd attribute.

This variant of set_job_attr will not push the update immediately, but rather as a non-durable update during
the next communication between starter and shadow.

Parameters

• job_attribute – The job attribute to set

• attribute_value – The job attribute’s new value

ulog(text)
Log a generic string to the job log.

Parameters text – String to log

phase(phasestring)
Tell HTCondor that the job is changing phases.

Parameters phasestring – New phase

read(remote_path, length, offset=None, stride_length=None, stride_skip=None)
Read up to ‘length’ bytes from a file on the remote machine.

Optionally, start at an offset and/or retrieve data in strides.

Parameters

• remote_path – Path to file

• length – Number of bytes to read

• offset – Number of bytes to offset from beginning of file

• stride_length – Number of bytes to read per stride

• stride_skip – Number of bytes to skip per stride

Returns Data read from file

write(data, remote_path, flags='w', mode=None, length=None, offset=None, stride_length=None,
stride_skip=None)

Write bytes to a file on the remote matchine.

Optionally, specify the number of bytes to write, start at an offset, and/or write data in strides.

Parameters

• data – Bytes to write

• remote_path – Path to file

• flags – File open modes (one or more of ‘rwatcx’) [default: ‘w’]

8.1. Python Bindings 661

HTCondor Manual, Release 10.0.9

• mode – Permission mode to set [default: 0777]

• length – Number of bytes to write [default: len(data)]

• offset – Number of bytes to offset from beginning of file

• stride_length – Number of bytes to write per stride

• stride_skip – Number of bytes to skip per stride

Returns Number of bytes written

rename(old_path, new_path)
Rename (move) a file on the remote machine.

Parameters

• old_path – Path to file to be renamed

• new_path – Path to new file name

unlink(remote_file)
Delete a file on the remote machine.

Parameters remote_file – Path to file

rmdir(remote_path, recursive=False)
Delete a directory on the remote machine.

The directory must be empty unless recursive is set to True.

Parameters

• remote_path – Path to directory

• recursive – If set to True, recursively delete remote_path

rmall(remote_path)
Recursively delete an entire directory on the remote machine.

Parameters remote_path – Path to directory

mkdir(remote_path, mode=None)
Create a new directory on the remote machine.

Parameters

• remote_path – Path to new directory

• mode – Permission mode to set [default: 0777]

getfile(remote_file, local_file)
Retrieve an entire file efficiently from the remote machine.

Parameters

• remote_file – Path to file to be sent from remote machine

• local_file – Path to file to be written to on local machine

Returns Bytes written

putfile(local_file, remote_file, mode=None)
Store an entire file efficiently to the remote machine.

This method will create or overwrite the file on the remote machine. If you want to append to a file, use the
write() method.

Parameters

662 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

• local_file – Path to file to be sent from local machine

• remote_file – Path to file to be written to on remote machine

• mode – Permission mode to set [default: 0777]

Returns Size of written file

getdir(remote_path, stat_dict=False)
List a directory on the remote machine.

Parameters

• remote_path – Path to directory

• stat_dict – If set to True, return a dict of file metadata

Returns List of files, unless stat_dict is True

getlongdir(remote_path)
List a directory and all its file metadata on the remote machine.

Parameters remote_path – Path to directory

Returns A dict of file metadata

whoami()
Get the user’s current identity with respect to this server.

Returns The user’s identity

whoareyou(remote_host)
Get the server’s identity with respect to the remote host.

Parameters remote_host – Remote host

Returns The server’s identity

link(old_path, new_path, symbolic=False)
Create a link on the remote machine.

Parameters

• old_path – File path to link from on the remote machine

• new_path – File path to link to on the remote machine

• symbolic – If set to True, use a symbolic link

symlink(old_path, new_path)
Create a symbolic link on the remote machine.

Parameters

• old_path – File path to symlink from on the remote machine

• new_path – File path to symlink to on the remote machine

readlink(remote_path)
Read the contents of a symbolic link.

Parameters remote_path – File path on the remote machine

Returns Contents of the link

stat(remote_path)
Get metadata for file on the remote machine.

If remote_path is a symbolic link, examine its target.

8.1. Python Bindings 663

HTCondor Manual, Release 10.0.9

Parameters remote_path – Path to file

Returns Dict of file metadata

lstat(remote_path)
Get metadata for file on the remote machine.

If remote path is a symbolic link, examine the link.

Parameters remote_path – Path to file

Returns Dict of file metadata

statfs(remote_path)
Get metadata for a file system on the remote machine.

Parameters remote_path – Path to examine

Returns Dict of filesystem metadata

access(remote_path, mode_str)
Check access permissions.

Parameters

• remote_path – Path to examine

• mode_str – Mode to check (one or more of ‘frwx’)

Raises NotAuthorized – If any access mode is not authorized

chmod(remote_path, mode)
Change permission mode of a path on the remote machine.

Parameters

• remote_path – Path

• mode – Permission mode to set

chown(remote_path, uid, gid)
Change the UID and/or GID of a path on the remote machine.

If remote_path is a symbolic link, change its target.

Parameters

• remote_path – Path

• uid – UID

• gid – GID

lchown(remote_path, uid, gid)
Changes the ownership of a file or directory.

If the path is a symbolic link, change the link.

Parameters

• remote_path – Path

• uid – UID

• gid – GID

truncate(remote_path, length)
Truncates a file on the remote machine to a given number of bytes.

664 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

Parameters

• remote_path – Path to file

• length – Truncated length

utime(remote_path, actime, mtime)
Change the access and modification times of a file on the remote machine.

Parameters

• remote_path – Path to file

• actime – Access time, in seconds (Unix epoch)

• mtime – Modification time, in seconds (Unix epoch)

htcondor.htchirp.condor_chirp(chirp_args, return_exit_code=False)
Call HTChirp methods using condor_chirp-style commands

See https://htcondor.readthedocs.io/en/latest/man-pages/condor_chirp.html for a list of commands, or use a
Python interpreter to run htchirp.py --help.

Parameters

• chirp_args – List or string of arguments as would be passed to condor_chirp

• return_exit_code – If True, format and print return value in condor_chirp-style, and
return 0 (success) or 1 (failure) (defaults to False).

Returns Return value from the HTChirp method called, unless return_exit_code=True (see
above).

8.1.6 htcondor.dags API Reference

Attention: This is not documentation for DAGMan itself! If you run into DAGMan jargon that isn’t explained
here, see DAGMan Workflows.

Creating DAGs

class htcondor.dags.DAG(dagman_config=None, dagman_job_attributes=None, max_jobs_by_category=None,
dot_config=None, jobstate_log=None, node_status_file=None)

This object represents the entire DAGMan workflow, including both the execution graph and miscellaneous
configuration options.

It contains the individual NodeLayer and SubDAG that are the “logical” nodes in the graph, created by the
layer() and subdag() methods respectively.

Parameters

• dagman_config (Optional[Mapping[str, Any], None]) – A mapping of DAGMan con-
figuration options.

• dagman_job_attributes (Optional[Mapping[str, Any], None]) – A mapping that de-
scribes additional HTCondor JobAd attributes for the DAGMan job itself.

• max_jobs_by_category (Optional[Mapping[str, int], None]) – A mapping that de-
scribes the maximum number of jobs (values) that should be run simultaneously from each
category (keys).

8.1. Python Bindings 665

https://htcondor.readthedocs.io/en/latest/man-pages/condor_chirp.html
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

HTCondor Manual, Release 10.0.9

• dot_config (Optional[DotConfig, None]) – Configuration options for writing a DOT
file, as a DotConfig.

• jobstate_log (Optional[Path, None]) – The path to the jobstate log. If not given, the
jobstate log will not be written.

• node_status_file (Optional[NodeStatusFile, None]) – Configuration options for the
node status file, as a NodeStatusFile.

describe()
Return a tabular description of the DAG’s structure.

Return type str

property edges: Iterator[Tuple[Tuple[htcondor.dags.node.BaseNode,
htcondor.dags.node.BaseNode], htcondor.dags.edges.BaseEdge]]

Iterate over ((parent, child), edge) tuples, for every edge in the graph.

Return type Iterator[Tuple[Tuple[BaseNode, BaseNode], BaseEdge]]

final(**kwargs)
Create the FINAL node of the DAG. A DAG can only have one FINAL node; if you call this method mul-
tiple times, it will override any previous calls. To customize the FINAL node after creation, modify the
FinalNode instance that it returns.

Return type FinalNode

glob(pattern)
Return a Nodes of the nodes in the DAG whose names match the glob pattern.

Return type Nodes

layer(**kwargs)
Create a new NodeLayer in the graph with no parents or children. Keyword arguments are forwarded to
NodeLayer.

Return type NodeLayer

property leaves: htcondor.dags.node.Nodes
A Nodes of the nodes in the DAG that have no children.

Return type Nodes

property node_to_children: Dict[htcondor.dags.node.BaseNode,
htcondor.dags.node.Nodes]

Return a dictionary that maps each node to a Nodes containing its children. The Nodes will be empty if
the node has no children.

Return type Dict[BaseNode, Nodes]

property node_to_parents: Dict[htcondor.dags.node.BaseNode,
htcondor.dags.node.Nodes]

Return a dictionary that maps each node to a Nodes containing its parents. The Nodes will be empty if the
node has no parents.

Return type Dict[BaseNode, Nodes]

property nodes: htcondor.dags.node.Nodes
Iterate over all of the nodes in the DAG, in no particular order.

Return type Nodes

property roots: htcondor.dags.node.Nodes
A Nodes of the nodes in the DAG that have no parents.

666 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict

HTCondor Manual, Release 10.0.9

Return type Nodes

select(selector)
Return a Nodes of the nodes in the DAG that satisfy selector. selector should be a function which
takes a single BaseNode and returns True (will be included) or False (will not be included).

Return type Nodes

subdag(**kwargs)
Create a new SubDAG in the graph with no parents or children. Keyword arguments are forwarded to
SubDAG .

Return type SubDAG

walk(order=WalkOrder.DEPTH_FIRST)
Iterate over all of the nodes in the DAG, starting from the roots (i.e., the nodes with no parents), in either
depth-first or breadth-first order.

Sibling order is not specified, and may be different in different calls to this method.

Parameters order (WalkOrder) – Walk depth-first (children before siblings) or breadth-first
(siblings before children).

Return type Iterator[BaseNode]

walk_ancestors(node, order=WalkOrder.DEPTH_FIRST)
Iterate over all of the ancestors (i.e., parents, parents of parents, etc.) of some node, in either depth-first or
breadth-first order.

Sibling order is not specified, and may be different in different calls to this method.

Parameters

• node (BaseNode) – The node to begin walking from. It will not be included in the results.

• order (WalkOrder) – Walk depth-first (parents before siblings) or breadth-first (siblings
before parents).

Return type Iterator[BaseNode]

walk_descendants(node, order=WalkOrder.DEPTH_FIRST)
Iterate over all of the descendants (i.e., children, children of children, etc.) of some node, in either depth-first
or breadth-first order.

Sibling order is not specified, and may be different in different calls to this method.

Parameters

• node (BaseNode) – The node to begin walking from. It will not be included in the results.

• order (WalkOrder) – Walk depth-first (children before siblings) or breadth-first (siblings
before children).

Return type Iterator[BaseNode]

class htcondor.dags.WalkOrder(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

An enumeration for keeping track of which order to walk through a graph. Depth-first means that parents/children
will be visited before siblings. Breadth-first means that siblings will be visited before parents/children.

BREADTH_FIRST = 'BREADTH'

DEPTH_FIRST = 'DEPTH'

8.1. Python Bindings 667

https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Iterator

HTCondor Manual, Release 10.0.9

Nodes and Node-likes

class htcondor.dags.BaseNode(dag, *, name, dir=None, noop=False, done=False, retries=None,
retry_unless_exit=None, pre=None, post=None, pre_skip_exit_code=None,
priority=0, category=None, abort=None)

This is the superclass for all node-like objects (things that can be the logical nodes in a DAG , like NodeLayer
and SubDAG).

Generally, you do not need to construct nodes yourself; instead, they are created by calling methods like DAG.
layer(), DAG.subdag(), BaseNode.child_layer(), and so forth. These methods automatically attach the
new node to the same DAG as the node you called the method on.

Parameters

• dag (DAG) – Which DAG to attach this node to.

• name (str) – The human-readable name of this node.

• dir (Optional[Path, None]) – The directory to submit from. If None, it will be the direc-
tory the DAG itself was submitted from.

• noop (Union[bool, Mapping[int, bool]]) – If this is True, this node will be skipped and
marked as completed, no matter what it says it does. For a NodeLayer, this can be dictionary
mapping individual underlying node indices to their desired value.

• done (Union[bool, Mapping[int, bool]]) – If this is True, this node will be considered
already completed. For a NodeLayer, this can be dictionary mapping individual underlying
node indices to their desired value.

• retries (Optional[int, None]) – The number of times to retry the node if it fails (defined
by retry_unless_exit).

• retry_unless_exit (Optional[int, None]) – If the node exits with this code, it will not
be retried.

• pre (Optional[Script, None]) – A Script to run before the node itself.

• post (Optional[Script, None]) – A Script to run after the node itself.

• pre_skip_exit_code (Optional[int, None]) – If the pre-script exits with this code, the
node will be skipped.

• priority (int) – The internal priority for DAGMan to run this node.

• category (Optional[str, None]) – Which CATEGORY this node belongs to.

• abort (Optional[DAGAbortCondition, None]) – A DAGAbortCondition which may
cause the entire DAG to stop if this node exits in a certain way.

add_children(*nodes, edge=None)
Makes all of the nodes children of this node.

Parameters

• nodes – The nodes to make children of this node.

• edge (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

Returns self – This method returns self.

Return type BaseNode

add_parents(*nodes, edge=None)
Makes all of the nodes parents of this node.

668 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None

HTCondor Manual, Release 10.0.9

Parameters

• nodes – The nodes to make parents of this node.

• edge (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

Returns self – This method returns self.

Return type BaseNode

child_layer(edge=None, **kwargs)
Create a new NodeLayer which is a child of this node.

Parameters

• edge (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the NodeLayer constructor.

Returns node_layer – The newly-created node layer.

Return type NodeLayer

child_subdag(edge=None, **kwargs)
Create a new SubDAG which is a child of this node.

Parameters

• edge (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the SubDAG constructor.

Returns subdag – The newly-created sub-DAG.

Return type SubDAG

property children: htcondor.dags.node.Nodes
Return a Nodes containing all of the children of this node.

Return type Nodes

parent_layer(edge=None, **kwargs)
Create a new NodeLayer which is a parent of this node.

Parameters

• edge (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the NodeLayer constructor.

Returns node_layer – The newly-created node layer.

Return type NodeLayer

parent_subdag(edge=None, **kwargs)
Create a new SubDAG which is a parent of this node.

Parameters

• edge (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the SubDAG constructor.

8.1. Python Bindings 669

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None

HTCondor Manual, Release 10.0.9

Returns subdag – The newly-created sub-DAG.

Return type SubDAG

property parents: htcondor.dags.node.Nodes
Return a Nodes containing all of the parents of this node.

Return type Nodes

remove_children(*nodes)
Makes sure that the nodes are not children of this node.

Parameters nodes – The nodes to remove edges from.

Returns self – This method returns self.

Return type BaseNode

remove_parents(*nodes)
Makes sure that the nodes are not parents of this node.

Parameters nodes – The nodes to remove edges from.

Returns self – This method returns self.

Return type BaseNode

walk_ancestors(order=WalkOrder.DEPTH_FIRST)
Walk over all of the ancestors of this node, in the given order.

Return type Iterator[BaseNode]

walk_descendants(order=WalkOrder.DEPTH_FIRST)
Walk over all of the descendants of this node, in the given order.

Return type Iterator[BaseNode]

class htcondor.dags.NodeLayer(dag, *, submit_description=None, vars=None, **kwargs)
Bases: htcondor.dags.node.BaseNode

Represents a “layer” of actual JOB nodes that share a submit description and edge relationships. Each underlying
actual node’s attributes may be customized using vars.

Parameters

• dag (DAG) – The DAG to connect this node to.

• submit_description (Union[Submit, None, Path]) – The HTCondor submit description
for this node. Can be either an htcondor.Submit object or a Path to an existing submit
file on disk.

• vars (Optional[Iterable[Dict[str, str]], None]) – The VARS for this logical node; one
actual node will be created for each dictionary in the vars.

• kwargs – Additional keyword arguments are passed to the BaseNode constructor.

class htcondor.dags.SubDAG(dag, *, dag_file, **kwargs)
Bases: htcondor.dags.node.BaseNode

Represents a SUBDAG in the graph.

See A DAG Within a DAG Is a SUBDAG for more information on sub-DAGs.

Parameters

• dag (DAG) – The DAG to connect this node to.

670 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

HTCondor Manual, Release 10.0.9

• dag_file (Path) – The pathlib.Path to where the sub-DAG’s DAG description file is (or
will be).

• kwargs – Additional keyword arguments are passed to the BaseNode constructor.

class htcondor.dags.FinalNode(dag, submit_description=None, **kwargs)
Bases: htcondor.dags.node.BaseNode

Represents the FINAL node in a DAG.

See PROVISIONER node for more information on the FINAL node.

Parameters

• dag (DAG) – The DAG to connect this node to.

• submit_description (Union[Submit, None, Path]) – The HTCondor submit description
for this node. Can be either an htcondor.Submit object or a Path to an existing submit
file on disk.

• kwargs – Additional keyword arguments are passed to the BaseNode constructor.

class htcondor.dags.Nodes(*nodes)
This class represents an arbitrary collection of BaseNode. In many cases, especially when manipulating the
structure of the graph, it can be used as a replacement for directly iterating over collections of nodes.

Parameters nodes (Union[BaseNode, Iterable[BaseNode]]) – The logical nodes that will be in
this Nodes.

add_children(*nodes, type=None)
Makes all of the nodes children of all of the nodes in this Nodes.

Parameters

• nodes – The nodes to make children of this Nodes.

• type (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

Returns self – This method returns self.

Return type Nodes

add_parents(*nodes, type=None)
Makes all of the nodes parents of all of the nodes in this Nodes.

Parameters

• nodes – The nodes to make parents of this Nodes.

• type (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

Returns self – This method returns self.

Return type Nodes

child_layer(type=None, **kwargs)
Create a new NodeLayer which is a child of all of the nodes in this Nodes.

Parameters

• type (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the NodeLayer constructor.

8.1. Python Bindings 671

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None

HTCondor Manual, Release 10.0.9

Returns node_layer – The newly-created node layer.

Return type NodeLayer

child_subdag(type=None, **kwargs)
Create a new SubDAG which is a child of all of the nodes in this Nodes.

Parameters

• type (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the SubDAG constructor.

Returns subdag – The newly-created sub-DAG.

Return type SubDAG

parent_layer(type=None, **kwargs)
Create a new NodeLayer which is a parent of all of the nodes in this Nodes.

Parameters

• type (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the NodeLayer constructor.

Returns node_layer – The newly-created node layer.

Return type NodeLayer

parent_subdag(type=None, **kwargs)
Create a new SubDAG which is a parent of all of the nodes in this Nodes.

Parameters

• type (Optional[BaseEdge, None]) – The type of edge to use; an instance of a concrete
subclass of BaseEdge. If None, a ManyToMany edge will be used.

• kwargs – Additional keyword arguments are passed to the SubDAG constructor.

Returns subdag – The newly-created sub-DAG.

Return type SubDAG

remove_children(*nodes)
Makes sure that the nodes are not children of all of the nodes in this Nodes.

Parameters nodes – The nodes to remove edges from.

Returns self – This method returns self.

Return type Nodes

remove_parents(*nodes)
Makes sure that the nodes are not parents of any of the nodes in this Nodes.

Parameters nodes – The nodes to remove edges from.

Returns self – This method returns self.

Return type Nodes

walk_ancestors(order=WalkOrder.DEPTH_FIRST)
Walk over all of the ancestors of all of the nodes in this Nodes, in the given order.

672 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None

HTCondor Manual, Release 10.0.9

walk_descendants(order=WalkOrder.DEPTH_FIRST)
Walk over all of the descendants of all of the nodes in this Nodes, in the given order.

Edges

class htcondor.dags.BaseEdge
An abstract class that represents the edge between two logical nodes in the DAG.

abstract get_edges(parent, child, join_factory)
This abstract method is used by the writer to figure out which nodes in the parent and child should be
connected by an actual DAGMan edge. It should yield (or simply return an iterable of) individual edge
specifications.

Each edge specification is a tuple containing two elements: the first is a group of parent node indices, the
second is a group of child node indices. Either (but not both) may be replaced by a special JoinNode object
provided by JoinFactory.get_join_node(). An instance of this class is passed into this function by
the writer; you should not create one yourself.

You may yield any number of edge specifications, but the more compact you can make the representation
(i.e., fewer edge specifications, each with fewer elements), the better. This is where join nodes are helpful:
they can turn “many-to-many” relationships into a significantly smaller number of actual edges (2𝑁 instead
of 𝑁2).

A SubDAG or a zero-vars NodeLayer both implicitly have a single node index, 0. See the source code of
ManyToMany for a simple pattern for dealing with this.

Parameters

• parent (BaseNode) – The parent, a concrete subclass of BaseNode.

• child (BaseNode) – The child, a concrete subclass of BaseNode.

• join_factory (JoinFactory) – An instance of JoinFactory that will be provided by
the writer.

Return type Iterable[Union[Tuple[Tuple[int], Tuple[int]], Tuple[Tuple[int],
JoinNode], Tuple[JoinNode, Tuple[int]]]]

class htcondor.dags.OneToOne
This edge connects two layers “linearly”: each underlying node in the child layer is a child of the corresponding
underlying node with the same index in the parent layer. The parent and child layers must have the same number
of underlying nodes.

class htcondor.dags.ManyToMany
This edge connects two layers “densely”: every node in the child layer is a child of every node in the parent layer.

class htcondor.dags.Grouper(parent_chunk_size=1, child_chunk_size=1)
This edge connects two layers in “chunks”. The nodes in each layer are divided into chunks based on their
respective chunk sizes (given in the constructor). Chunks are then connected like a OneToOne edge.

The number of chunks in each layer must be the same, and each layer must be evenly-divided into chunks (no
leftover underlying nodes).

When both chunk sizes are 1 this is identical to a OneToOne edge, and you should use that edge instead because
it produces a more compact representation.

Parameters

• parent_chunk_size (int) – The number of nodes in each chunk in the parent layer.

• child_chunk_size (int) – The number of nodes in each chunk in the child layer.

8.1. Python Bindings 673

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

HTCondor Manual, Release 10.0.9

class htcondor.dags.Slicer(parent_slice=slice(None, None, None), child_slice=slice(None, None, None))
This edge connects individual nodes in the layers, selected by slices. Each node from the parent layer that is in
the parent slice is joined, one-to-one, with the matching node from the child layer that is in the child slice.

Parameters

• parent_slice (slice) – The slice to use for the parent layer.

• child_slice (slice) – The slice to use for the child layer.

Node Configuration

class htcondor.dags.Script(executable, arguments=None, retry=False, retry_status=1, retry_delay=0)

Parameters

• executable (Union[str, Path]) – The path to the executable to run.

• arguments (Optional[List[str], None]) – The individual arguments to the executable.
Keep in mind that these are evaluated as soon as the Script is created!

• retry (bool) – True if the script can be retried on failure.

• retry_status (int) – If the script exits with this status, the script run will be considered
a failure for the purposes of retrying.

• retry_delay (int) – The number of seconds to wait after a script failure before retrying.

class htcondor.dags.DAGAbortCondition(node_exit_value, dag_return_value=None)
Represents the configuration of a node’s DAG abort condition.

See Stopping the Entire DAG for more information about DAG aborts.

Parameters

• node_exit_value (int) – If the underlying node exits with this value, the DAG will be
aborted.

• dag_return_value (Optional[int, None]) – If the DAG is aborted via this condition, it
will exit with this code, if given. If not given, it will exit with the same return value that the
node did.

Writing a DAG to Disk

htcondor.dags.write_dag(dag, dag_dir, dag_file_name='dagfile.dag', node_name_formatter=None)
Write out the given DAG to the given directory. This includes the DAG description file itself, as well as any
associated submit descriptions.

Parameters

• dag (DAG) – The DAG to write the description for.

• dag_dir (Path) – The directory to write the DAG files to.

• dag_file_name (Optional[str, None]) – The name of the DAG description file itself.

• node_name_formatter (Optional[NodeNameFormatter, None]) – The
NodeNameFormatter to use for generating underlying node names. If not provided,
the default is SimpleFormatter.

674 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None

HTCondor Manual, Release 10.0.9

Returns dag_file_path – The path to the DAG description file; can be passed to htcondor.Submit.
from_dag() if you convert it to a string, like Submit.from_dag(str(write_dag(...))).

Return type pathlib.Path

class htcondor.dags.NodeNameFormatter
An abstract base class that represents a certain way of formatting and parsing underlying node names.

abstract generate(layer_name, node_index)
This method should generate a single node name, given the name of the layer and the index of the underlying
node inside the layer.

Return type str

abstract parse(node_name)
This method should convert a single node name back into a layer name and underlying node index. Node
names must be invertible for rescue() to work.

Return type Tuple[str, int]

class htcondor.dags.SimpleFormatter(separator=':', index_format='{:d}', offset=0)
A no-frills NodeNameFormatter that produces underlying node names like LayerName-5.

DAG Configuration

class htcondor.dags.DotConfig(path, update=False, overwrite=True, include_file=None)
A DotConfig holds the configuration options for whether and how DAGMan will produce a DOT file represent-
ing its execution graph.

See Visualizing DAGs with dot for more information.

Parameters

• path (Path) – The path to write the DOT file to.

• update (bool) – If True, the DOT file will be updated as the DAG executes. If False, it
will be written once at startup.

• overwrite (bool) – If True, the DOT file will be updated in-place. If False, new DOT
files will be created next to the original.

• include_file (Optional[Path, None]) – Include the contents of the file at this path in the
DOT file.

class htcondor.dags.NodeStatusFile(path, update_time=None, always_update=False)
A NodeStatusFile holds the configuration options for whether and how DAGMan will write a file containing
node status information.

See Capturing the Status of Nodes in a File for more information.

Parameters

• path (Path) – The path to write the node status file to.

• update_time (Optional[int, None]) – The minimum interval to write new information
to the node status file.

• always_update (Optional[bool, None]) – Always update the node status file after the
update_time, even if there are no changes from the previous update.

8.1. Python Bindings 675

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

HTCondor Manual, Release 10.0.9

Rescue DAGs

htcondor.dags can read information from a DAGMan rescue file and apply it to your DAG as it is being constructed.

See The Rescue DAG for more information on Rescue DAGs.

htcondor.dags.rescue(dag, rescue_file, formatter=None)
Applies state recorded in a DAGMan rescue file to the dag. The dag will be modified in-place.

Warning: Running this function on a DAG replaces any existing DONE information on all of its nodes. Every
node will have a dictionary for its done attribute. If you want to edit this information manually, always run
this function first, then make the desired changes on top.

Warning: This function cannot detect changes in node names. If node names are different in the rescue file
compared to the DAG , this function will not behave as expected.

Parameters

• dag (DAG) – The DAG to apply the rescue state to.

• rescue_file (Path) – The file to get rescue state from. Use the find_rescue_file()
helper function to find the right rescue file.

• formatter (Optional[NodeNameFormatter, None]) – The node name formatter that was
used to write out the original DAG.

Return type None

htcondor.dags.find_rescue_file(dag_dir, dag_file_name='dagfile.dag')
Finds the latest rescue file in a DAG directory (just like DAGMan itself would).

Parameters

• dag_dir (Path) – The directory to search in.

• dag_file_name (str) – The base name of the DAG description file; the same name you
would pass to write_dag().

Returns rescue_file – The path to the latest rescue file found in the dag_dir.

Return type pathlib.Path

8.1.7 htcondor.personal API Reference

class htcondor.personal.PersonalPool(local_dir=None, config=None, raw_config=None, detach=False,
use_config=True)

A PersonalPool is responsible for managing the lifecycle of a personal HTCondor pool. It can be used to start
and stop a personal pool, and can also “attach” to an existing personal pool that is already running.

Parameters

• local_dir (Optional[Path, None]) – The local directory for the personal HTCondor pool.
All configuration and state for the personal pool will be stored in this directory.

• config (Mapping[str, str]) – HTCondor configuration parameters to inject, as a mapping
of key-value pairs.

676 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

HTCondor Manual, Release 10.0.9

• raw_config (Optional[str, None]) – Raw HTCondor configuration language to inject, as
a string.

• detach (bool) – If True, the personal HTCondor pool will not be shut down when this
object is destroyed (e.g., by stopping Python). Defaults to False.

• use_config (bool) – If True, the environment variable CONDOR_CONFIGwill be set during
initialization, such that this personal pool appears to be the local HTCondor pool for all
operations in this Python session, even ones that don’t go through the PersonalPool object.
The personal pool will also be initialized. Defaults to True.

classmethod attach(local_dir=None)
Make a new PersonalPool attached to an existing personal pool that is already running in local_dir.

Parameters local_dir (Optional[Path, None]) – The local directory for the existing personal
pool.

Returns self – This method returns self.

Return type PersonalPool

property collector
The htcondor.Collector for the personal pool’s collector.

detach()
Detach the personal pool (as in the constructor argument), and return self.

Return type PersonalPool

get_config_val(macro, default=None)
Get the value of a configuration macro. The value will be “evaluated”, meaning that other configuration
macros or functions inside it will be expanded.

Parameters

• macro (str) – The configuration macro to look up the value for.

• default (Optional[str, None]) – If not None, and the config macro has no value, return
this instead. If None, a KeyError will be raised instead.

Returns value – The evaluated value of the configuration macro.

Return type str

initialize(overwrite_config=True)
Initialize the personal pool by creating its local directory and writing out configuration files.

The contents of the local directory (except for the configuration file if overwrite_config=True) will not
be overridden.

Parameters overwrite_config – If True, the existing configuration file will be overwritten
with the configuration set up in the constructor. If False and there is an existing configuration
file, an exception will be raised. Defaults to True.

Returns self – This method returns self.

Return type PersonalPool

run_command(args, stdout=- 1, stderr=- 1, universal_newlines=True, **kwargs)
Execute a command in a subprocess against this personal pool, using subprocess.run() with good de-
faults for executing HTCondor commands. All of the keyword arguments of this function are passed directly
to subprocess.run().

Parameters

8.1. Python Bindings 677

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/subprocess.html#subprocess.run
https://docs.python.org/3/library/subprocess.html#subprocess.run

HTCondor Manual, Release 10.0.9

• args (List[str]) – The command to run, and its arguments, as a list of strings.

• kwargs – All keyword arguments (including stdout, stderr, and
universal_newlines) are passed to subprocess.run().

Returns completed_process

Return type subprocess.CompletedProcess

property schedd
The htcondor.Schedd for the personal pool’s schedd.

start()
Start the personal condor (bringing it to the READY state from either UNINITIALIZED or INITIALIZED).

Returns self – This method returns self.

Return type PersonalPool

property state
The current PersonalPoolState of the personal pool.

stop()
Stop the personal condor, bringing it from the READY state to STOPPED.

Returns self – This method returns self.

Return type PersonalPool

use_config()
Returns a SetCondorConfig context manager that sets CONDOR_CONFIG to point to the configuration file
for this personal pool.

who()
Return the result of condor_who -quick, as a classad.ClassAd . If condor_who -quick fails, or the
output can’t be parsed into a sensible who ad, this method returns an empty ad.

Return type ClassAd

class htcondor.personal.PersonalPoolState(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Bases: str, enum.Enum

An enumeration of the possible states that a PersonalPool can be in.

UNINITIALIZED = 'UNINITIALIZED'

INITIALIZED = 'INITIALIZED'

STARTING = 'STARTING'

READY = 'READY'

STOPPING = 'STOPPING'

STOPPED = 'STOPPED'

class htcondor.personal.SetCondorConfig(config_file)
A context manager. Inside the block, the Condor config file is the one given to the constructor. After the block,
it is reset to whatever it was before the block was entered.

Parameters config_file (Path) – The path to an HTCondor configuration file.

678 Chapter 8. Application Programming Interfaces (APIs)

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/subprocess.html#subprocess.run
https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/pathlib.html#pathlib.Path

HTCondor Manual, Release 10.0.9

8.2 Chirp

Chirp is a wire protocol and API that supports communication between a running job and a Chirp server. The HTCondor
system provides a Chirp server running in the condor_starter that allows a job to

1. perform file I/O to and from the submit machine

2. update an attribute in its own job ClassAd

3. append the job event log file

This service is off by default; it may be enabled by placing in the submit description file:

+WantIOProxy = True

This places the needed attribute into the job ClassAd.

The Chirp protocol is fully documented at http://ccl.cse.nd.edu/software/chirp/.

To provide easier access to this wire protocol, the condor_chirp command line tool is shipped with HTCondor. This
tool provides full access to the Chirp commands.

8.3 The HTCondor User and Job Log Reader API

HTCondor has the ability to log an HTCondor job’s significant events during its lifetime. This is enabled in the job’s
submit description file with the Log command.

This section describes the API defined by the C++ ReadUserLog class, which provides a programming interface for
applications to read and parse events, polling for events, and saving and restoring reader state.

8.3.1 Constants and Enumerated Types

The following define enumerated types useful to the API.

• ULogEventOutcome (defined in condor_event.h):

– ULOG_OK: Event is valid

– ULOG_NO_EVENT: No event occurred (like EOF)

– ULOG_RD_ERROR: Error reading log file

– ULOG_MISSED_EVENT: Missed event

– ULOG_UNK_ERROR: Unknown Error

• ReadUserLog::FileStatus

– LOG_STATUS_ERROR: An error was encountered

– LOG_STATUS_NOCHANGE: No change in file size

– LOG_STATUS_GROWN: File has grown

– LOG_STATUS_SHRUNK: File has shrunk

8.2. Chirp 679

http://ccl.cse.nd.edu/software/chirp/

HTCondor Manual, Release 10.0.9

8.3.2 Constructors and Destructors

All ReadUserLog constructors invoke one of the initialize() methods. Since C++ constructors cannot return
errors, an application using any but the default constructor should call isIinitialized() to verify that the object
initialized correctly, and for example, had permissions to open required files.

Note that because the constructors cannot return status information, most of these constructors will be eliminated in
the future. All constructors, except for the default constructor with no parameters, will be removed. The application
will need to call the appropriate initialize() method.

• ReadUserLog::ReadUserLog(bool isEventLog) Synopsis: Constructor default Returns: None Constructor pa-
rameters:

– bool isEventLog (Optional with default = false) If true, the ReadUserLog object is initialized to read
the schedd-wide event log. NOTE: If isEventLog is true, the initialization may silently fail, so the value
of ReadUserLog::isInitialized should be checked to verify that the initialization was successful. NOTE:
The isEventLog parameter will be removed in the future.

• ReadUserLog::ReadUserLog(FILE *fp, bool is_xml, bool enable_close
Synopsis: Constructor of a limited functionality reader: no rotation handling, no locking
Returns: None
Constructor parameters:

– FILE * fp File pointer to the previously opened log file to read.

– bool is_xml If true, the file is treated as XML; otherwise, it will be read as an old style file.

– bool enable_close (Optional with default = false) If true, the reader will open the file read-only.

NOTE: The ReadUserLog::isInitialized method should be invoked to verify that this constructor was initialized
successfully.
NOTE: This constructor will be removed in the future.

• ReadUserLog::ReadUserLog(const char *filename, bool read_only)
Synopsis: Constructor to read a specific log file
Returns: None
Constructor parameters:

– const char * filename Path to the log file to read

– bool read_only (Optional with default = false) If true, the reader will open the file read-only and
disable locking.

NOTE: This constructor will be removed in the future.

• ReadUserLog::ReadUserLog(const FileState &state, bool read_only)
Synopsis: Constructor to continue from a persisted reader state
Returns: None
Constructor parameters:

– const FileState & state Reference to the persisted state to restore from

– bool read_only (Optional with default = false) If true, the reader will open the file read-only and
disable locking.

680 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

NOTE: The ReadUserLog::isInitialized method should be invoked to verify that this constructor was initialized
successfully.
NOTE: This constructor will be removed in the future.

• ReadUserLog::~ReadUserLog(void) Synopsis: Destructor Returns: None Destructor parameters:

– None.

8.3.3 Initializers

These methods are used to perform the initialization of the ReadUserLog objects. These initializers are used by all
constructors that do real work. Applications should never use those constructors, should use the default constructor,
and should instead use one of these initializer methods.

All of these functions will return false if there are problems such as being unable to open the log file, or true if
successful.

• bool ReadUserLog::initialize(void) Synopsis: Initialize to read the EventLog file. NOTE: This method will
likely be eliminated in the future, and this functionality will be moved to a new ReadEventLog class. Returns:
bool; true: success, false: failed Method parameters:

– None.

• bool ReadUserLog::initialize(const char *filename, bool handle_rotation, bool check_for_rotated, bool
read_only) Synopsis: Initialize to read a specific log file. Returns: bool; true: success, false: failed Method
parameters:

– const char * filename Path to the log file to read

– bool handle_rotation (Optional with default = false) If true, enable the reader to handle rotating log
files, which is only useful for global user logs

– bool check_for_rotated (Optional with default = false) If true, try to open the rotated files (with
file names appended with .old or .1, .2, . . .) first.

– bool read_only (Optional with default = false) If true, the reader will open the file read-only and
disable locking.

• bool ReadUserLog::initialize(const char *filename, int max_rotation, bool check_for_rotated, bool read_only)
Synopsis: Initialize to read a specific log file. Returns: bool; true: success, false: failed Method parame-
ters:

– const char * filename Path to the log file to read

– int max_rotation Limits what previously rotated files will be considered by the number given in the file
name suffix. A value of 0 disables looking for rotated files. A value of 1 limits the rotated file to be that
with the file name suffix of .old. As only event logs are rotated, this parameter is only useful for event
logs.

– bool check_for_rotated (Optional with default = false) If true, try to open the rotated files (with
file names appended with .old or .1, .2, . . .) first.

– bool read_only (Optional with default = false) If true, the reader will open the file read-only and
disable locking.

• bool ReadUserLog::initialize(const FileState &state, bool read_only) Synopsis: Initialize to continue from a
persisted reader state. Returns: bool; true: success, false: failed Method parameters:

– const FileState & state Reference to the persisted state to restore from

8.3. The HTCondor User and Job Log Reader API 681

HTCondor Manual, Release 10.0.9

– bool read_only (Optional with default = false) If true, the reader will open the file read-only and
disable locking.

• bool ReadUserLog::initialize(const FileState &state, int max_rotation, bool read_only) Synopsis: Initialize to
continue from a persisted reader state and set the rotation parameters. Returns: bool; true: success, false:
failed Method parameters:

– const FileState & state Reference to the persisted state to restore from

– int max_rotation Limits what previously rotated files will be considered by the number given in the file
name suffix. A value of 0 disables looking for rotated files. A value of 1 limits the rotated file to be that
with the file name suffix of .old. As only event logs are rotated, this parameter is only useful for event
logs.

– bool read_only (Optional with default = false) If true, the reader will open the file read-only and
disable locking.

8.3.4 Primary Methods

• ULogEventOutcome ReadUserLog::readEvent(ULogEvent *& event) Synopsis: Read the next event from the
log file. Returns: ULogEventOutcome; Outcome of the log read attempt. ULogEventOutcome is an enumer-
ated type. Method parameters:

– ULogEvent *& event Pointer to an ULogEvent that is allocated by this call to ReadUserLog::readEvent.
If no event is allocated, this pointer is set to NULL. Otherwise the event needs to be delete()ed by the
application.

• bool ReadUserLog::synchronize(void) Synopsis: Synchronize the log file if the last event read was an error.
This safe guard function should be called if there is some error reading an event, but there are events after it in
the file. It will skip over the bad event, meaning it will read up to and including the event separator, so that the
rest of the events can be read. Returns: bool; true: success, false: failed Method parameters:

– None.

8.3.5 Accessors

• ReadUserLog::FileStatus ReadUserLog::CheckFileStatus(void) Synopsis: Check the status of the file, and
whether it has grown, shrunk, etc. Returns: ReadUserLog::FileStatus; the status of the log file, an enumer-
ated type. Method parameters:

– None.

• ReadUserLog::FileStatus ReadUserLog::CheckFileStatus(bool &is_empty) Synopsis: Check the status of
the file, and whether it has grown, shrunk, etc. Returns: ReadUserLog::FileStatus; the status of the log
file, an enumerated type. Method parameters:

– bool & is_empty Set to true if the file is empty, false otherwise.

682 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

8.3.6 Methods for saving and restoring persistent reader state

The ReadUserLog::FileState structure is used to save and restore the state of the ReadUserLog state for persistence.
The application should always use InitFileState() to initialize this structure.

All of these methods take a reference to a state buffer as their only parameter.

All of these methods return true upon success.

8.3.7 Save state to persistent storage

To save the state, do something like this:

ReadUserLog reader;
ReadUserLog::FileState statebuf;

status = ReadUserLog::InitFileState(statebuf);

status = reader.GetFileState(statebuf);
write(fd, statebuf.buf, statebuf.size);
...
status = reader.GetFileState(statebuf);
write(fd, statebuf.buf, statebuf.size);
...

status = UninitFileState(statebuf);

8.3.8 Restore state from persistent storage

To restore the state, do something like this:

ReadUserLog::FileState statebuf;
status = ReadUserLog::InitFileState(statebuf);

read(fd, statebuf.buf, statebuf.size);

ReadUserLog reader;
status = reader.initialize(statebuf);

status = UninitFileState(statebuf);
....

8.3.9 API Reference

• static bool ReadUserLog::InitFileState(ReadUserLog::FileState &state) Synopsis: Initialize a file state buffer
Returns: bool; true if successful, false otherwise Method parameters:

– ReadUserLog::FileState & state The file state buffer to initialize.

• static boolReadUserLog::UninitFileState(ReadUserLog::FileState &state) Synopsis: Clean up a file state buffer
and free allocated memory Returns: bool; true if successful, false otherwise Method parameters:

– ReadUserLog::FileState & state The file state buffer to un-initialize.

8.3. The HTCondor User and Job Log Reader API 683

HTCondor Manual, Release 10.0.9

• boolReadUserLog::GetFileState(ReadUserLog::FileState &state) const Synopsis: Get the current state to per-
sist it or save it off to disk Returns: bool; true if successful, false otherwise Method parameters:

– ReadUserLog::FileState & state The file state buffer to read the state into.

• bool ReadUserLog::SetFileState(const ReadUserLog::FileState &state) Synopsis: Use this method to set the
current state, after restoring it. NOTE: The state buffer is NOT automatically updated; a call MUST be made to
the GetFileState() method each time before persisting the buffer to disk, or however else is chosen to persist its
contents. Returns: bool; true if successful, false otherwise Method parameters:

– const ReadUserLog::FileState & state The file state buffer to restore from.

8.3.10 Access to the persistent state data

If the application needs access to the data elements in a persistent state, it should instantiate a
ReadUserLogStateAccess object.

• Constructors / Destructors

– ReadUserLogStateAccess::ReadUserLogStateAccess(const ReadUserLog::FileState &state) Synopsis:
Constructor default Returns: None Constructor parameters:

∗ const ReadUserLog::FileState & state Reference to the persistent state data to initialize from.

– ReadUserLogStateAccess::~ReadUserLogStateAccess(void) Synopsis: Destructor Returns: None De-
structor parameters:

∗ None.

• Accessor Methods

– bool ReadUserLogStateAccess::isInitialized(void) const Synopsis: Checks if the buffer initialized Re-
turns: bool; true if successfully initialized, false otherwise Method parameters:

∗ None.

– bool ReadUserLogStateAccess::isValid(void) const Synopsis: Checks if the buffer is valid for use by
ReadUserLog::initialize() Returns: bool; true if successful, false otherwise Method parameters:

∗ None.

– bool ReadUserLogStateAccess::getFileOffset(unsigned long &pos) const Synopsis: Get position within
individual file. NOTE: Can return an error if the result is too large to be stored in a long. Returns: bool;
true if successful, false otherwise Method parameters:

∗ unsigned long & pos Byte position within the current log file

– bool ReadUserLogStateAccess::getFileEventNum(unsigned long &num) const Synopsis: Get event
number in individual file. NOTE: Can return an error if the result is too large to be stored in a long.
Returns: bool; true if successful, false otherwise Method parameters:

∗ unsigned long & num Event number of the current event in the current log file

– bool ReadUserLogStateAccess::getLogPosition(unsigned long &pos) const Synopsis: Position of the
start of the current file in overall log. NOTE: Can return an error if the result is too large to be stored in a
long. Returns: bool; true if successful, false otherwise Method parameters:

∗ unsigned long & pos Byte offset of the start of the current file in the overall logical log stream.

– bool ReadUserLogStateAccess::getEventNumber(unsigned long &num) const Synopsis: Get the event
number of the first event in the current file NOTE: Can return an error if the result is too large to be stored
in a long. Returns: bool; true if successful, false otherwise Method parameters:

684 Chapter 8. Application Programming Interfaces (APIs)

HTCondor Manual, Release 10.0.9

∗ unsigned long & num This is the absolute event number of the first event in the current file in the
overall logical log stream.

– bool ReadUserLogStateAccess::getUniqId(char *buf, int size) const Synopsis: Get the unique ID of the
associated state file. Returns: bool; true if successful, false otherwise Method parameters:

∗ char *buf Buffer to fill with the unique ID of the current file.

∗ int size Size in bytes of buf. This is to prevent ReadUserLogStateAccess::getUniqId from writing
past the end of buf.

– bool ReadUserLogStateAccess::getSequenceNumber(int &seqno) const Synopsis: Get the sequence
number of the associated state file. Returns: bool; true if successful, false otherwise Method pa-
rameters:

∗ int & seqno Sequence number of the current file

• Comparison Methods

– bool ReadUserLogStateAccess::getFileOffsetDiff(const ReadUserLogStateAccess &other, unsigned long
&pos) const Synopsis: Get the position difference of two states given by this and other. NOTE: Can
return an error if the result is too large to be stored in a long. Returns: bool; true if successful, false
otherwise Method parameters:

∗ const ReadUserLogStateAccess & other Reference to the state to compare to.

∗ long & diff Difference in the positions

– bool ReadUserLogStateAccess::getFileEventNumDiff(const ReadUserLogStateAccess &other, long &diff)
const Synopsis: Get event number in individual file. NOTE: Can return an error if the result is too large
to be stored in a long. Returns: bool; true if successful, false otherwise Method parameters:

∗ const ReadUserLogStateAccess & other Reference to the state to compare to.

∗ long & diff Event number of the current event in the current log file

– bool ReadUserLogStateAccess::getLogPosition(const ReadUserLogStateAccess &other, long &diff)
const Synopsis: Get the position difference of two states given by this and other. NOTE: Can re-
turn an error if the result is too large to be stored in a long. Returns: bool; true if successful, false
otherwise Method parameters:

∗ const ReadUserLogStateAccess & other Reference to the state to compare to.

∗ long & diff Difference between the byte offset of the start of the current file in the overall logical
log stream and that of other.

– bool ReadUserLogStateAccess::getEventNumber(const ReadUserLogStateAccess &other, long &diff)
const Synopsis: Get the difference between the event number of the first event in two state buffers (this -
other). NOTE: Can return an error if the result is too large to be stored in a long. Returns: bool; true if
successful, false otherwise Method parameters:

∗ const ReadUserLogStateAccess & other Reference to the state to compare to.

∗ long & diff Difference between the absolute event number of the first event in the current file in the
overall logical log stream and that of other.

8.3. The HTCondor User and Job Log Reader API 685

HTCondor Manual, Release 10.0.9

8.3.11 Future persistence API

The ReadUserLog::FileState will likely be replaced with a new C++ ReadUserLog::NewFileState, or a simi-
larly named class that will self initialize.

Additionally, the functionality of ReadUserLogStateAccess will be integrated into this class.

8.4 The Command Line Interface

While the usual HTCondor command line tools are often not thought of as an API, they are frequently the best choice for
a programmatic interface to the system. They are the most complete, tested and debugged way to work with the system.
The major down side to running the tools is that spawning an executable may be relatively slow; many applications
do not need an extreme level of performance, making use of the command line tools acceptable. Even some of the
HTCondor tools themselves work this way. For example, when condor_dagman needs to submit a job, it invokes the
condor_submit program, just as an interactive user would.

686 Chapter 8. Application Programming Interfaces (APIs)

CHAPTER

NINE

PLATFORM-SPECIFIC INFORMATION

The HTCondor Team strives to make HTCondor work the same way across all supported platforms. However, because
HTCondor is a very low-level system which interacts closely with the internals of the operating systems on which
it runs, this goal is not always possible to achieve. The following sections provide detailed information about using
HTCondor on different computing platforms and operating systems.

9.1 Linux

This section provides information specific to the Linux port of HTCondor.

HTCondor is sensitive to changes in the following elements of the system:

• The kernel version

• The version of the GNU C library (glibc)

The HTCondor Team provides support for the distributions of Linux which are most popular amoung our users. Red
Hat, Debian and their derivatives are currenty the most popular Linux distributions in our space, and we provide native
packages of HTCondor for these flavors.

9.2 Microsoft Windows

Windows is a strategic platform for HTCondor, and therefore we have been working toward a complete port to Windows.
Our goal is to make HTCondor every bit as capable on Windows as it is on Unix – or even more capable.

Porting HTCondor from Unix to Windows is a formidable task, because many components of HTCondor must interact
closely with the underlying operating system.

This section contains additional information specific to running HTCondor on Windows. In order to effectively use
HTCondor, first read the Overview chapter and the Users’ Manual. If administrating or customizing the policy and set
up of HTCondor, also read the Administrators’ Manual chapter. After reading these chapters, review the information
in this chapter for important information and differences when using and administrating HTCondor on Windows. For
information on installing HTCondor for Windows, see Windows (as Administrator).

687

HTCondor Manual, Release 10.0.9

9.2.1 Limitations under Windows

In general, this release for Windows works the same as the release of HTCondor for Unix. However, the following
items are not supported in this version:

• The standard job universe is not present. This means transparent process checkpoint/migration and remote system
calls are not supported.

• grid universe jobs may not be submitted from a Windows platform, unless the grid type is condor.

• Accessing files via a network share that requires a Kerberos ticket (such as AFS) is not yet supported.

9.2.2 Supported Features under Windows

Except for those items listed above, most everything works the same way in HTCondor as it does in the Unix release.
This release is based on the HTCondor Version 10.0.9 source tree, and thus the feature set is the same as HTCondor
Version 10.0.9 for Unix. For instance, all of the following work in HTCondor:

• The ability to submit, run, and manage queues of jobs running on a cluster of Windows machines.

• All tools such as condor_q, condor_status, condor_userprio, are included.

• The ability to customize job policy using ClassAds. The machine ClassAds contain all the information included
in the Unix version, including current load average, RAM and virtual memory sizes, integer and floating-point
performance, keyboard/mouse idle time, etc. Likewise, job ClassAds contain a full complement of information,
including system dependent entries such as dynamic updates of the job’s image size and CPU usage.

• Everything necessary to run an HTCondor central manager on Windows.

• Security mechanisms.

• HTCondor for Windows can run jobs at a lower operating system priority level. Jobs can be suspended, soft-killed
by using a WM_CLOSE message, or hard-killed automatically based upon policy expressions. For example,
HTCondor can automatically suspend a job whenever keyboard/mouse or non-HTCondor created CPU activity
is detected, and continue the job after the machine has been idle for a specified amount of time.

• HTCondor correctly manages jobs which create multiple processes. For instance, if an HTCondor job spawns
multiple processes and HTCondor needs to kill the job, all processes created by the job will be terminated.

• In addition to interactive tools, users and administrators can receive information from HTCondor by e-mail
(standard SMTP) and/or by log files.

• HTCondor includes a friendly GUI installation and set up program, which can perform a full install or deinstall
of HTCondor. Information specified by the user in the set up program is stored in the system registry. The set
up program can update a current installation with a new release using a minimal amount of effort.

• HTCondor can give a job access to the running user’s Registry hive.

688 Chapter 9. Platform-Specific Information

HTCondor Manual, Release 10.0.9

9.2.3 Secure Password Storage

In order for HTCondor to operate properly, it must at times be able to act on behalf of users who submit jobs. This is
required on submit machines, so that HTCondor can access a job’s input files, create and access the job’s output files,
and write to the job’s log file from within the appropriate security context. On Unix systems, arbitrarily changing what
user HTCondor performs its actions as is easily done when HTCondor is started with root privileges. On Windows,
however, performing an action as a particular user or on behalf of a particular user requires knowledge of that user’s
password, even when running at the maximum privilege level. HTCondor provides secure password storage through
the use of the condor_store_cred tool. Passwords managed by HTCondor are encrypted and stored in a secure location
within the Windows registry. When HTCondor needs to perform an action as or on behalf of a particular user, it uses
the securely stored password to do so. This implies that a password is stored for every user that will submit jobs from
the Windows submit machine.

A further feature permits HTCondor to execute the job itself under the security context of its submitting user, specifying
the run_as_owner command in the job’s submit description file. With this feature, it is necessary to configure and
run a centralized condor_credd daemon to manage the secure password storage. This makes each user’s password
available, via an encrypted connection to the condor_credd, to any execute machine that may need it.

By default, the secure password store for a submit machine when no condor_credd is running is managed by the
condor_schedd. This approach works in environments where the user’s password is only needed on the submit machine.

9.2.4 Executing Jobs as the Submitting User

By default, HTCondor executes jobs on Windows using dedicated run accounts that have minimal access rights and
privileges, and which are recreated for each new job. As an alternative, HTCondor can be configured to allow users to
run jobs using their Windows login accounts. This may be useful if jobs need access to files on a network share, or to
other resources that are not available to the low-privilege run account.

This feature requires use of a condor_credd daemon for secure password storage and retrieval. With the condor_credd
daemon running, the user’s password must be stored, using the condor_store_cred tool. Then, a user that wants a job
to run using their own account places into the job’s submit description file

run_as_owner = True

9.2.5 The condor_credd Daemon

The condor_credd daemon manages secure password storage. A single running instance of the condor_credd within
an HTCondor pool is necessary in order to provide the feature described in Executing Jobs as the Submitting User,
where a job runs as the submitting user, instead of as a temporary user that has strictly limited access capabilities.

It is first necessary to select the single machine on which to run the condor_credd. Often, the machine acting as the
pool’s central manager is a good choice. An important restriction, however, is that the condor_credd host must be a
machine running Windows.

All configuration settings necessary to enable the condor_credd are contained in the example file
etc\condor_config.local.credd from the HTCondor distribution. Copy these settings into a local configuration
file for the machine that will run the condor_credd. Run condor_restart for these new settings to take effect, then
verify (via Task Manager) that a condor_credd process is running.

A second set of configuration variables specify security for the communication among HTCondor daemons. These
variables must be set for all machines in the pool. The following example settings are in the comments contained in

9.2. Microsoft Windows 689

HTCondor Manual, Release 10.0.9

the etc\condor_config.local.credd example file. These sample settings rely on the PASSWORD method for authentica-
tion among daemons, including communication with the condor_credd daemon. The LOCAL_CREDD variable must be
customized to point to the machine hosting the condor_credd and the ALLOW_CONFIG variable will be customized, if
needed, to refer to an administrative account that exists on all HTCondor nodes.

CREDD_HOST = credd.cs.wisc.edu
CREDD_CACHE_LOCALLY = True

STARTER_ALLOW_RUNAS_OWNER = True

ALLOW_CONFIG = Administrator@*
SEC_CLIENT_AUTHENTICATION_METHODS = NTSSPI, PASSWORD
SEC_CONFIG_NEGOTIATION = REQUIRED
SEC_CONFIG_AUTHENTICATION = REQUIRED
SEC_CONFIG_ENCRYPTION = REQUIRED
SEC_CONFIG_INTEGRITY = REQUIRED

The example above can be modified to meet the needs of your pool, providing the following conditions are met:

1. The requesting client must use an authenticated connection

2. The requesting client must have an encrypted connection

3. The requesting client must be authorized for DAEMON level access.

Using a pool password on Windows

In order for PASSWORD authenticated communication to work, a pool password must be chosen and distributed. The
chosen pool password must be stored identically for each machine. The pool password first should be stored on the
condor_credd host, then on the other machines in the pool.

To store the pool password on a Windows machine, run

$ condor_store_cred add -c

when logged in with the administrative account on that machine, and enter the password when prompted. If the ad-
ministrative account is shared across all machines, that is if it is a domain account or has the same password on all
machines, logging in separately to each machine in the pool can be avoided. Instead, the pool password can be securely
pushed out for each Windows machine using a command of the form

$ condor_store_cred add -c -n exec01.cs.wisc.edu

Once the pool password is distributed, but before submitting jobs, all machines must reevaluate their configuration, so
execute

$ condor_reconfig -all

from the central manager. This will cause each execute machine to test its ability to authenticate with the condor_credd.
To see whether this test worked for each machine in the pool, run the command

$ condor_status -f "%s\t" Name -f "%s\n" ifThenElse(isUndefined(LocalCredd),\"UNDEF\",
→˓LocalCredd)

Any rows in the output with the UNDEF string indicate machines where secure communication is not working properly.
Verify that the pool password is stored correctly on these machines.

Regardless of how Condor’s authentication is configured, the pool password can always be set locally by running the

690 Chapter 9. Platform-Specific Information

HTCondor Manual, Release 10.0.9

$ condor_store_cred add -c

command as the local SYSTEM account. Third party tools such as PsExec can be used to accomplish this. When
condor_store_cred is run as the local SYSTEM account, it bypasses the network authentication and writes the pool
password to the registry itself. This allows the other condor daemons (also running under the SYSTEM account) to
access the pool password when authenticating against the pool’s collector. In case the pool is remote and no initial
communication can be established due to strong security, the pool password may have to be set using the above method
and following command:

$ condor_store_cred -u condor_pool@poolhost add

9.2.6 Executing Jobs with the User’s Profile Loaded

HTCondor can be configured when using dedicated run accounts, to load the account’s profile. A user’s profile includes
a set of personal directories and a registry hive loaded under HKEY_CURRENT_USER.

This may be useful if the job requires direct access to the user’s registry entries. It also may be useful when the job re-
quires an application, and the application requires registry access. This feature is always enabled on the condor_startd,
but it is limited to the dedicated run account. For security reasons, the profile is cleaned before a subsequent job which
uses the dedicated run account begins. This ensures that malicious jobs cannot discover what any previous job has
done, nor sabotage the registry for future jobs. It also ensures the next job has a fresh registry hive.

A job that is to run with a profile uses the load_profile command in the job’s submit description file:

load_profile = True

This feature is currently not compatible with run_as_owner , and will be ignored if both are specified.

9.2.7 Using Windows Scripts as Job Executables

HTCondor has added support for scripting jobs on Windows. Previously, HTCondor jobs on Windows were limited to
executables or batch files. With this new support, HTCondor determines how to interpret the script using the file name’s
extension. Without a file name extension, the file will be treated as it has been in the past: as a Windows executable.

This feature may not require any modifications to HTCondor’s configuration. An example that does not require admin-
istrative intervention are Perl scripts using ActivePerl.

Windows Scripting Host scripts do require configuration to work correctly. The configuration variables set values to be
used in registry look up, which results in a command that invokes the correct interpreter, with the correct command line
arguments for the specific scripting language. In Microsoft nomenclature, verbs are actions that can be taken upon a
given a file. The familiar examples of Open, Print, and Edit, can be found on the context menu when a user right clicks
on a file. The command lines to be used for each of these verbs are stored in the registry under the HKEY_CLASSES_ROOT
hive. In general, a registry look up uses the form:

HKEY_CLASSES_ROOT\<FileType>\Shell\<OpenVerb>\Command

Within this specification, <FileType> is the name of a file type (and therefore a scripting language), and is obtained
from the file name extension. <OpenVerb> identifies the verb, and is obtained from the HTCondor configuration.

The HTCondor configuration sets the selection of a verb, to aid in the registry look up. The file name extension sets
the name of the HTCondor configuration variable. This variable name is of the form:

9.2. Microsoft Windows 691

HTCondor Manual, Release 10.0.9

OPEN_VERB_FOR_<EXT>_FILES

<EXT> represents the file name extension. The following configuration example uses the Open2 verb for a Windows
Scripting Host registry look up for several scripting languages:

OPEN_VERB_FOR_JS_FILES = Open2
OPEN_VERB_FOR_VBS_FILES = Open2
OPEN_VERB_FOR_VBE_FILES = Open2
OPEN_VERB_FOR_JSE_FILES = Open2
OPEN_VERB_FOR_WSF_FILES = Open2
OPEN_VERB_FOR_WSH_FILES = Open2

In this example, HTCondor specifies the Open2 verb, instead of the default Open verb, for a script with the file name
extension of wsh. The Windows Scripting Host ‘s Open2 verb allows standard input, standard output, and standard
error to be redirected as needed for HTCondor jobs.

A common difficulty is encountered when a script interpreter requires access to the user’s registry. Note that the user’s
registry is different than the root registry. If not given access to the user’s registry, some scripts, such as Windows
Scripting Host scripts, will fail. The failure error message appears as:

CScript Error: Loading your settings failed. (Access is denied.)

The fix for this error is to give explicit access to the submitting user’s registry hive. This can be accomplished with the
addition of the load_profile command in the job’s submit description file:

load_profile = True

With this command, there should be no registry access errors. This command should also work for other interpreters.
Note that not all interpreters will require access. For example, ActivePerl does not by default require access to the user’s
registry hive.

9.2.8 How HTCondor for Windows Starts and Stops a Job

This section provides some details on how HTCondor starts and stops jobs. This discussion is geared for the HTCondor
administrator or advanced user who is already familiar with the material in the Administrator’s Manual and wishes to
know detailed information on what HTCondor does when starting and stopping jobs.

When HTCondor is about to start a job, the condor_startd on the execute machine spawns a condor_starter process.
The condor_starter then creates:

1. a run account on the machine with a login name of condor-slot<X>, where <X> is the slot number of the con-
dor_starter. This account is added to group Users by default. The default group may be changed by setting
configuration variable DYNAMIC_RUN_ACCOUNT_LOCAL_GROUP . This step is skipped if the job is to be run using
the submitting user’s account, as specified in Executing Jobs as the Submitting User.

2. a new temporary working directory for the job on the execute machine. This directory is named dir_XXX, where
XXX is the process ID of the condor_starter. The directory is created in the $(EXECUTE) directory, as specified
in HTCondor’s configuration file. HTCondor then grants write permission to this directory for the user account
newly created for the job.

3. a new, non-visible Window Station and Desktop for the job. Permissions are set so that only the account that will
run the job has access rights to this Desktop. Any windows created by this job are not seen by anyone; the job is
run in the background. Setting USE_VISIBLE_DESKTOP to True will allow the job to access the default desktop
instead of a newly created one.

692 Chapter 9. Platform-Specific Information

HTCondor Manual, Release 10.0.9

Next, the condor_starter daemon contacts the condor_shadow daemon, which is running on the submitting machine,
and the condor_starter pulls over the job’s executable and input files. These files are placed into the temporary working
directory for the job. After all files have been received, the condor_starter spawns the user’s executable. Its current
working directory set to the temporary working directory.

While the job is running, the condor_starter closely monitors the CPU usage and image size of all processes started by
the job. Every 20 minutes the condor_starter sends this information, along with the total size of all files contained in
the job’s temporary working directory, to the condor_shadow. The condor_shadow then inserts this information into
the job’s ClassAd so that policy and scheduling expressions can make use of this dynamic information.

If the job exits of its own accord (that is, the job completes), the condor_starter first terminates any processes started
by the job which could still be around if the job did not clean up after itself. The condor_starter examines the job’s
temporary working directory for any files which have been created or modified and sends these files back to the con-
dor_shadow running on the submit machine. The condor_shadow places these files into the initialdir specified in
the submit description file; if no initialdir was specified, the files go into the directory where the user invoked con-
dor_submit. Once all the output files are safely transferred back, the job is removed from the queue. If, however, the
condor_startd forcibly kills the job before all output files could be transferred, the job is not removed from the queue
but instead switches back to the Idle state.

If the condor_startd decides to vacate a job prematurely, the condor_starter sends a WM_CLOSE message to the job.
If the job spawned multiple child processes, the WM_CLOSE message is only sent to the parent process. This is the
one started by the condor_starter. The WM_CLOSE message is the preferred way to terminate a process on Windows,
since this method allows the job to clean up and free any resources it may have allocated. When the job exits, the
condor_starter cleans up any processes left behind. At this point, if when_to_transfer_output is set to ON_EXIT (the
default) in the job’s submit description file, the job switches states, from Running to Idle, and no files are transferred
back. If when_to_transfer_output is set to ON_EXIT_OR_EVICT, then files in the job’s temporary working directory
which were changed or modified are first sent back to the submitting machine. If exactly which files to transfer is
specified with transfer_output_files , then this modifies the files transferred and can affect the state of the job if the
specified files do not exist. On an eviction, the condor_shadow places these intermediate files into a subdirectory
created in the $(SPOOL) directory on the submitting machine. The job is then switched back to the Idle state until
HTCondor finds a different machine on which to run. When the job is started again, HTCondor places into the job’s
temporary working directory the executable and input files as before, plus any files stored in the submit machine’s
$(SPOOL) directory for that job.

Note: A Windows console process can intercept a WM_CLOSE message via the Win32 SetConsoleCtrlHan-
dler() function, if it needs to do special cleanup work at vacate time; a WM_CLOSE message generates a
CTRL_CLOSE_EVENT. See SetConsoleCtrlHandler() in the Win32 documentation for more info.

Note: The default handler in Windows for a WM_CLOSE message is for the process to exit. Of course, the job could
be coded to ignore it and not exit, but eventually the condor_startd will become impatient and hard-kill the job, if that
is the policy desired by the administrator.

Finally, after the job has left and any files transferred back, the condor_starter deletes the temporary working directory,
the temporary account if one was created, the Window Station and the Desktop before exiting. If the condor_starter
should terminate abnormally, the condor_startd attempts the clean up. If for some reason the condor_startd should
disappear as well (that is, if the entire machine was power-cycled hard), the condor_startd will clean up when HTCondor
is restarted.

9.2. Microsoft Windows 693

HTCondor Manual, Release 10.0.9

9.2.9 Security Considerations in HTCondor for Windows

On the execute machine (by default), the user job is run using the access token of an account dynamically created by
HTCondor which has bare-bones access rights and privileges. For instance, if your machines are configured so that
only Administrators have write access to C:\WINNT, then certainly no HTCondor job run on that machine would be
able to write anything there. The only files the job should be able to access on the execute machine are files accessible
by the Users and Everyone groups, and files in the job’s temporary working directory. Of course, if the job is configured
to run using the account of the submitting user (as described in Executing Jobs as the Submitting User), it will be able
to do anything that the user is able to do on the execute machine it runs on.

On the submit machine, HTCondor impersonates the submitting user, therefore the File Transfer mechanism has the
same access rights as the submitting user. For example, say only Administrators can write to C:\WINNT on the submit
machine, and a user gives the following to condor_submit :

executable = mytrojan.exe
initialdir = c:\winnt
output = explorer.exe
queue

Unless that user is in group Administrators, HTCondor will not permit explorer.exe to be overwritten.

If for some reason the submitting user’s account disappears between the time condor_submit was run and when the job
runs, HTCondor is not able to check and see if the now-defunct submitting user has read/write access to a given file. In
this case, HTCondor will ensure that group “Everyone” has read or write access to any file the job subsequently tries
to read or write. This is in consideration for some network setups, where the user account only exists for as long as the
user is logged in.

HTCondor also provides protection to the job queue. It would be bad if the integrity of the job queue is compromised,
because a malicious user could remove other user’s jobs or even change what executable a user’s job will run. To guard
against this, in HTCondor’s default configuration all connections to the condor_schedd (the process which manages the
job queue on a given machine) are authenticated using Windows’ eSSPI security layer. The user is then authenticated
using the same challenge-response protocol that Windows uses to authenticate users to Windows file servers. Once
authenticated, the only users allowed to edit job entry in the queue are:

1. the user who originally submitted that job (i.e. HTCondor allows users to remove or edit their own jobs)

2. users listed in the condor_config file parameter QUEUE_SUPER_USERS. In the default configuration, only the
“SYSTEM” (LocalSystem) account is listed here.

WARNING: Do not remove “SYSTEM” from QUEUE_SUPER_USERS, or HTCondor itself will not be able to access the
job queue when needed. If the LocalSystem account on your machine is compromised, you have all sorts of problems!

To protect the actual job queue files themselves, the HTCondor installation program will automatically set permissions
on the entire HTCondor release directory so that only Administrators have write access.

Finally, HTCondor has all the security mechanisms present in the full-blown version of HTCondor. See the Authoriza-
tion section for complete information on how to allow/deny access to HTCondor.

694 Chapter 9. Platform-Specific Information

HTCondor Manual, Release 10.0.9

9.2.10 Network files and HTCondor

HTCondor can work well with a network file server. The recommended approach to having jobs access files on network
shares is to configure jobs to run using the security context of the submitting user (see Executing Jobs as the Submitting
User). If this is done, the job will be able to access resources on the network in the same way as the user can when
logged in interactively.

In some environments, running jobs as their submitting users is not a feasible option. This section outlines some
possible alternatives. The heart of the difficulty in this case is that on the execute machine, HTCondor creates a
temporary user that will run the job. The file server has never heard of this user before.

Choose one of these methods to make it work:

• METHOD A: access the file server as a different user via a net use command with a login and password

• METHOD B: access the file server as guest

• METHOD C: access the file server with a “NULL” descriptor

• METHOD D: create and have HTCondor use a special account

All of these methods have advantages and disadvantages.

Here are the methods in more detail:

METHOD A - access the file server as a different user via a net use command with a login and password

Example: you want to copy a file off of a server before running it. . . .

@echo off
net use \\myserver\someshare MYPASSWORD /USER:MYLOGIN
copy \\myserver\someshare\my-program.exe
my-program.exe

The idea here is to simply authenticate to the file server with a different login than the temporary HTCondor login.
This is easy with the “net use” command as shown above. Of course, the obvious disadvantage is this user’s password
is stored and transferred as clear text.

METHOD B - access the file server as guest

Example: you want to copy a file off of a server before running it as GUEST

@echo off
net use \\myserver\someshare
copy \\myserver\someshare\my-program.exe
my-program.exe

In this example, you’d contact the server MYSERVER as the HTCondor temporary user. However, if you have the
GUEST account enabled on MYSERVER, you will be authenticated to the server as user “GUEST”. If your file
permissions (ACLs) are setup so that either user GUEST (or group EVERYONE) has access the share “someshare”
and the directories/files that live there, you can use this method. The downside of this method is you need to enable
the GUEST account on your file server. WARNING: This should be done *with extreme caution* and only if your file
server is well protected behind a firewall that blocks SMB traffic.

METHOD C - access the file server with a “NULL” descriptor

One more option is to use NULL Security Descriptors. In this way, you can specify which shares are accessible by
NULL Descriptor by adding them to your registry. You can then use the batch file wrapper like:

net use z: \\myserver\someshare /USER:""
z:\my-program.exe

9.2. Microsoft Windows 695

HTCondor Manual, Release 10.0.9

so long as ‘someshare’ is in the list of allowed NULL session shares. To edit this list, run regedit.exe and navigate to
the key:

HKEY_LOCAL_MACHINE\
SYSTEM\
CurrentControlSet\
Services\
LanmanServer\
Parameters\
NullSessionShares

and edit it. Unfortunately it is a binary value, so you’ll then need to type in the hex ASCII codes to spell out your share.
Each share is separated by a null (0x00) and the last in the list is terminated with two nulls.

Although a little more difficult to set up, this method of sharing is a relatively safe way to have one quasi-public share
without opening the whole guest account. You can control specifically which shares can be accessed or not via the
registry value mentioned above.

METHOD D - create and have HTCondor use a special account

Create a permanent account (called condor-guest in this description) under which HTCondor will run jobs. On all
Windows machines, and on the file server, create the condor-guest account.

On the network file server, give the condor-guest user permissions to access files needed to run HTCondor jobs.

Securely store the password of the condor-guest user in the Windows registry using condor_store_cred on all Windows
machines.

Tell HTCondor to use the condor-guest user as the owner of jobs, when required. Details for this are in the Security
section.

9.2.11 Interoperability between HTCondor for Unix and HTCondor for Windows

Unix machines and Windows machines running HTCondor can happily co-exist in the same HTCondor pool without
any problems. Jobs submitted on Windows can run on Windows or Unix, and jobs submitted on Unix can run on Unix
or Windows. Without any specification using the Requirements command in the submit description file, the default
behavior will be to require the execute machine to be of the same architecture and operating system as the submit
machine.

There is absolutely no need to run more than one HTCondor central manager, even if there are both Unix and Windows
machines in the pool. The HTCondor central manager itself can run on either Unix or Windows; there is no advantage
to choosing one over the other.

9.2.12 Some differences between HTCondor for Unix -vs- HTCondor for Windows

• On Unix, we recommend the creation of a condor account when installing HTCondor. On Windows, this is not
necessary, as HTCondor is designed to run as a system service as user LocalSystem.

• On Unix, HTCondor finds the condor_config main configuration file by looking in ~condor, in /etc, or via an
environment variable. On Windows, the location of condor_config file is determined via the registry key
HKEY_LOCAL_MACHINE/Software/Condor. Override this value by setting an environment variable named
CONDOR_CONFIG.

• On Unix, in the vanilla universe at job vacate time, HTCondor sends the job a softkill signal defined in the submit
description file, which defaults to SIGTERM. On Windows, HTCondor sends a WM_CLOSE message to the job
at vacate time.

696 Chapter 9. Platform-Specific Information

HTCondor Manual, Release 10.0.9

• On Unix, if one of the HTCondor daemons has a fault, a core file will be created in the $(Log) directory. On
Windows, a core file will also be created, but instead of a memory dump of the process, it will be a very short
ASCII text file which describes what fault occurred and where it happened. This information can be used by the
HTCondor developers to fix the problem.

9.3 Macintosh OS X

This section provides information specific to the Macintosh OS X port of HTCondor. The Macintosh port of HTCondor
is more accurately a port of HTCondor to Darwin, the BSD layer of OS X. It is not well-integrated into the Macintosh
environment beyond that.

HTCondor on the Macintosh has a few shortcomings:

• Users connected to the Macintosh via ssh are not noticed for console activity.

• The memory size of threaded programs is reported incorrectly.

• No Macintosh-based installer is provided.

• The example start up scripts do not follow Macintosh conventions.

9.3. Macintosh OS X 697

HTCondor Manual, Release 10.0.9

698 Chapter 9. Platform-Specific Information

CHAPTER

TEN

FREQUENTLY ASKED QUESTIONS (FAQ)

There are many Frequently Asked Questions maintained on the HTCondor web page, at http://htcondor-wiki.cs.wisc.
edu/index.cgi/wiki and on the configuration how-to and recipes page at https://htcondor-wiki.cs.wisc.edu/index.cgi/
wiki?p=HowToAdminRecipes

Supported platforms are listed in the Availability section. There is also Platform-Specific Information available..

699

http://htcondor-wiki.cs.wisc.edu/index.cgi/wiki
http://htcondor-wiki.cs.wisc.edu/index.cgi/wiki
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes

HTCondor Manual, Release 10.0.9

700 Chapter 10. Frequently Asked Questions (FAQ)

CHAPTER

ELEVEN

VERSION HISTORY AND RELEASE NOTES

11.1 Introduction to HTCondor Versions

This chapter provides descriptions of what features have been added or bugs fixed for each release of HTCondor.
The first section describes the HTCondor version numbering scheme, what the numbers mean, and what the different
releases are. The rest of the sections each describe the specific releases.

11.1.1 HTCondor Version Number Scheme

We changed the version numbering scheme after the 9.1.3 release: what would have been the next 9.1.x release is
now the 9.2.0 release. We made this change to give us additional flexibility in releasing small updates to address
specific issues without disturbing the normal development of HTCondor. The version number will still retain the
MAJOR.MINOR.PATCH form with slightly different meanings. We have borrowed ideas from Semantic Versioning.

• The MAJOR number increments for each new Long Term Support (LTS) release. A new LTS release may have
backward-incompatible changes and may require updates to configuration files. If the current LTS release is
9.0.6, the next one will be 10.0.0. A new LTS release is expected every twelve to eighteen months.

• The MINOR number increments each feature release. This number stays at 0 for LTS releases. If the current
feature release is 9.2.0, the next one will be 9.3.0. A new feature release is expected every one to two months.

• The PATCH number increments when we have targeted fixes. For the LTS releases, a patch release is expected
every one to two months and may occur more frequently if a serious problem is discovered. For the feature
releases, the frequency of patch releases depends on the demand for quick updates.

Types of Releases

• An LTS release is numbered X.0.0, and is a new long-term support release. The previous LTS release is supported
for six months after a new LTS version is released. The final feature release undergoes a stabilization effort where
the software is run through multiple code quality tools (such as Valgrind) to assure the best possible LTS release.
The MAJOR.0.0 version is not released until the stabilization effort is complete. Paid support contracts are only
available for the LTS release.

• An LTS patch release is numbered X.0.Z, and is an update to the LTS major release. The patches are reviewed
to ensure correctness and compatibility with the LTS release. These releases contain bug fixes and security
updates and are released when a major issue is identified, or just before the next feature release. These releases
go through our entire testing process. Large code changes are not permitted in the LTS release. Enhancements are
not implemented in the LTS release unless there is minimal impact with a major benefit. Ports to new platforms
will appear in the LTS release. The HTCondor team guarantees that patches to the LTS release are compatible.

• A feature release is numbered X.Y.0 and includes one or more new features. The software goes through our
entire testing process. We use these releases in production at the Center for High Throughput Computing. These

701

https://semver.org/

HTCondor Manual, Release 10.0.9

releases contain all the patches from the LTS release and all the patches from the to the feature releases. The
HTCondor development team guarantees protocol compatibility between the feature releases and the LTS release.
However, changes in behavior may be observed, and adjustments to configuration may be required when new
features are implemented.

• A feature patch release is numbered X.Y.Z and contains targeted patches to address a specific issue with a
feature release. specific issue with a feature release. If there is a specific need to be addressed before 9.3.0 is
tested and ready, we would issue a 9.2.1 patch release. These releases have undergone code review and light
testing. These patch releases are cumulative.

Repositories

These releases will be served out of three repositories.

• The LTS release and its patches (X.0.Z) are in the existing Stable channel.

• The feature releases (X.Y.0) are in the existing Current channel.

• A new Updates channel will contain quick patch releases (X.Y.Z).

Recommendations

If you are new to HTCondor or require maximum stability in your environment, use an LTS release. Updates to the
latest LTS release should be seamless. A new LTS release will appear every twelve to eighteen months with clear
directions on issues to address when upgrading to the new LTS release.

If you want to take advantage of the latest features, use the feature releases. This is an opportunity see our development
directions early, and have some influence on the features being implemented. It is what we use in our production
environment.

If you want to run the very latest release, also enable the updates repository to get the targeted fixes. However, these
fixes may come frequently, and you may wish to pick and choose which updates to install.

11.2 Upgrading from an 9.0 LTS version to an 10.0 LTS version of HT-
Condor

Upgrading from a 9.0 LTS version of HTCondor to a 10.0 LTS version will bring new features introduced in the 9.x
versions of HTCondor. These new features include the following (note that this list contains only the most significant
changes; a full list of changes can be found in the version history: Version 9 Feature Releases):

• Users can prevent runaway jobs by specifying an allowed duration. (HTCONDOR-820) (HTCONDOR-794)

• Able to extend submit command and create job submit template. (HTCONDOR-802) (HTCONDOR-1231)

• Initial implementation of the htcondor <noun> <verb> command line interface. (HTCONDOR-252)
(HTCONDOR-793) (HTCONDOR-929) (HTCONDOR-1149)

• Initial implementation of Job Sets in the htcondor CLI tool

• Users can supply a container image without concern for which container runtime will be used on the execution
point. (HTCONDOR-850)

• Add the ability to select a particular model of GPU when the execution points have heterogeneous GPU cards
installed or cards that support nVidia MIG (HTCONDOR-953)

702 Chapter 11. Version History and Release Notes

../version-history/development-release-series-91.html
https://opensciencegrid.atlassian.net/browse/HTCONDOR-820
https://opensciencegrid.atlassian.net/browse/HTCONDOR-794
https://opensciencegrid.atlassian.net/browse/HTCONDOR-802
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1231
https://opensciencegrid.atlassian.net/browse/HTCONDOR-252
https://opensciencegrid.atlassian.net/browse/HTCONDOR-793
https://opensciencegrid.atlassian.net/browse/HTCONDOR-929
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1149
https://opensciencegrid.atlassian.net/browse/HTCONDOR-850
https://opensciencegrid.atlassian.net/browse/HTCONDOR-953

HTCondor Manual, Release 10.0.9

• File transfer error messages are now returned and clearly indicate where the error occurred (HTCONDOR-1134)

• GSI Authentication method has been removed (X.509 proxies are still handled by HTCondor) (HTCONDOR-
697)

• HTCondor now utilizes ARC-CE’s REST interface (HTCONDOR-138) (HTCONDOR-697) (HTCONDOR-932)

• Support for ARM and PowerPC for Enterprise Linux 8 (HTCONDOR-1150)

• For IDTOKENS, signing key is not required on every execution point (HTCONDOR-638)

• Trust on first use ability for SSL connections (HTCONDOR-501)

• Improvements against replay attacks (HTCONDOR-287) (HTCONDOR-1054)

Upgrading from a 9.0 LTS version of HTCondor to a 10.0 LTS version will also introduce changes that administrators
and users of sites running from an older HTCondor version should be aware of when planning an upgrade. Here is a
list of items that administrators should be aware of.

• The default for TRUST_DOMAIN, which is used by with IDTOKEN authentication, has been changed to
$(UID_DOMAIN). (HTCONDOR-1381)

If you have already created IDTOKENs for use in your pool:

1. Log in as root on a machine with an IDTOKEN.

2. Run condor_token_list and retrieve the value of the iss field.

3. Set the HTCondor configuration TRUST_DOMAIN to that value on each machine which should accept ID-
TOKENs;

4. Restart HTCondor on those machines.

• Jobs that use a Requirements expression to try and match to specific a GPU should be changed to use the new
require_gpus submit command or jobs will simply not match. If your machines have only a single type of
GPU, you may be able to modify the machine configuration to allow users to delay having to make this change.
This is a consequence of the fact that multiple GPUs of different types in a single machine is now supported.
Attributes such as CUDACapability will no longer be advertised because it is not reasonable to assume that all
GPUs will have a single value for this property. Instead the properties of each GPU will be advertised individually
in a format that allows a job to request it run on a specific GPU or type of GPU. See Jobs That Require GPUs
for more information on about the require_gpus submit command. (HTCONDOR-953)

• We have updated to using the PCRE2 regular expression library. This library is more strict with interpreting
regular expression. If the regular expressions are properly constructed, the will be no difference in interpretation.
However, some administrators have reported that expressions in their condor mapfile were rejected because they
wanted to match the - character in a character class and the - was not the last character specified in the character
class. In addition, on Enterprise Linux 7, having a hyphen (-) in the last position after a POSIX character set (such
as [:space:]) in a character class was flagged as an invalid range, even though it should have been accepted.
(HTCONDOR-1087)

• The semantics of undefined user job policy expressions has changed. A policy whose expression evaluates to
undefined is now uniformly ignored, instead of either putting the job on hold or treated as false. (HTCONDOR-
442)

11.2. Upgrading from an 9.0 LTS version to an 10.0 LTS version of HTCondor 703

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1134
https://opensciencegrid.atlassian.net/browse/HTCONDOR-697
https://opensciencegrid.atlassian.net/browse/HTCONDOR-697
https://opensciencegrid.atlassian.net/browse/HTCONDOR-138
https://opensciencegrid.atlassian.net/browse/HTCONDOR-697
https://opensciencegrid.atlassian.net/browse/HTCONDOR-932
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1150
https://opensciencegrid.atlassian.net/browse/HTCONDOR-638
https://opensciencegrid.atlassian.net/browse/HTCONDOR-501
https://opensciencegrid.atlassian.net/browse/HTCONDOR-287
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1054
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1381
https://opensciencegrid.atlassian.net/browse/HTCONDOR-953
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1087
https://opensciencegrid.atlassian.net/browse/HTCONDOR-442
https://opensciencegrid.atlassian.net/browse/HTCONDOR-442

HTCondor Manual, Release 10.0.9

11.3 Version 10.0 LTS Releases

These are Long Term Support (LTS) versions of HTCondor. As usual, only bug fixes (and potentially, ports to new
platforms) will be provided in future 10.0.y versions. New features will be added in the 10.x.y feature versions.

The details of each version are described below.

11.3.1 Version 10.0.9

Release Notes:

• HTCondor version 10.0.9 released on September 28, 2023.

New Features:

• Updated condor_upgrade_check script to check and warn about known incompatibilities introduced in the fea-
ture series for HTCondor V10 that can cause issues when upgrading to a newer version (i.e. HTCondor V23).
(HTCONDOR-1960)

Bugs Fixed:

• Fixed htcondor.htchirp to find its configuration at _CONDOR_CHIRP_CONFIG instead of at _CON-
DOR_SCRATCH_DIR/.chirp.config. (HTCONDOR-2012)

• Fixed a bug that prevented deletion of stored user passwords with condor_store_cred on Windows.
(HTCONDOR-1998)

• Fixed misaligned pointers issue for the PowerPC architecture in the configuration system. (HTCONDOR-2001)

11.3.2 Version 10.0.8

Release Notes:

• HTCondor version 10.0.8 released on September 14, 2023.

New Features:

• None.

Bugs Fixed:

• Removed cgroup v1 blkio controller support – this prevents a kernel panic in some EL8 kernels. (HTCONDOR-
1985)

• Fixed a bug in DAGMan where service nodes that finish before the DAGs end would result in DAGMan crashing
due to an assertion failure. (HTCONDOR-1909)

• When the file transfer queue is growing too big, HTCondor sends email to the administrator. Prior versions of
HTCondor would send an arbitrarily large number of emails. Now HTCondor will only send one email per day.
(HTCONDOR-1937)

• Fixed a bug where condor_adstash would not import the OpenSearch library properly. (HTCONDOR-1965)

• Fixed a bug that broke the version check for older versions of the Elasticsearch Python library. (HTCONDOR-
1964)

• Fixed a bug in condor_adstash that caused a “unexpected keyword argument” error to occur when new attributes
needed to be added to the index and when using version 8.0.0 or newer of the Elasticsearch Python library.
(HTCONDOR-1930)

704 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1960
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2012
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1998
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2001
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1985
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1985
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1909
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1937
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1965
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1964
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1964
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1930

HTCondor Manual, Release 10.0.9

• Fixed a bug with parallel universe that would result in the condor_startd rejecting start attempts from the con-
dor_schedd and causing the condor_schedd to crash. (HTCONDOR-1952)

• Preen now preserves all files in the spool directory matching *OfflineLog* so that central managers with multiple
active collectors can have offline ads. (HTCONDOR-1933)

• Fixed a bug that could cause condor_config_val to crash when there were no configuration files. (HTCONDOR-
1954)

11.3.3 Version 10.0.7

Release Notes:

• HTCondor version 10.0.7 released on July 25, 2023.

New Features:

• Improved daemon logging for IDTOKENS authentication to make useful messages more prominent.
(HTCONDOR-1776)

• The -summary option of condor_config_val now works with a remote configuration query when the daemon
being queried is version 10.0.7 or later. It behaves like -dump when the daemon is older. (HTCONDOR-1879)

Bugs Fixed:

• Fixed bug where condor cron jobs put on hold by the condor_shadow or condor_starter would never start running
again and stay IDLE when released from the HELD state. (HTCONDOR-1869)

• Remove limit on certificate chain length in SSL authentication. (HTCONDOR-1904)

• Print detailed error message when condor_remote_cluster fails to fetch a URL. (HTCONDOR-1884)

• Fixed a bug that caused condor_preen to crash if configuration parameter PREEN_COREFILE_MAX_SIZE was set
to a value larger than 2 gigabytes. (HTCONDOR-1908)

• Fixed a bug where if the $(SPOOL) directory was on a separate file system condor_preen would delete the special
lost+found directory. (HTCONDOR-1906)

• If the collector is storing offline ads via COLLECTOR_PERSISTENT_AD_LOG the condor_preen tool will no
longer delete that file (HTCONDOR-1874)

• Fixed a bug when creating the default value for where a secondary daemon such as COLLECTOR01 would not be
considered a DC daemon if the primary daemon was not in . (HTCONDOR-1900)

11.3.4 Version 10.0.6

Release Notes:

• HTCondor version 10.0.6 released on June 22, 2023.

New Features:

• Added configuration parameter , which controls whether the client checks the environment variable
X509_USER_PROXY for the location of a credential to use during SSL authentication with a daemon.
(HTCONDOR-1841)

• During SSL authentication, when the client uses a proxy certificate, the server now uses the End Entity certifi-
cate’s subject as the authenticated identity to map, instead of the proxy certificate’s subject. (HTCONDOR-1866)

Bugs Fixed:

11.3. Version 10.0 LTS Releases 705

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1952
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1933
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1954
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1954
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1776
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1879
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1869
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1904
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1884
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1908
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1906
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1874
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1900
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1841
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1866

HTCondor Manual, Release 10.0.9

• Fixed a bug in the python bindings where some attributes were omitted from accounting ads queried from the
condor_negotiator. (HTCONDOR-1780)

• Fixed a bug in the python bindings where an incorrect version was being reported. (HTCONDOR-1813)

• The classad functions anycompare, allcompare, sum, min, max, avg and join no longer treat a single unde-
fined input as forcing the result to be undefined. sum, min, max, avg and join will skip over undefined inputs,
while anycompare and allcompare will compare them correctly. (HTCONDOR-1799)

• The submit commands remote_initialdir, transfer_input, transfer_output, and transfer_error now work
properly when submitting a batch grid universe job to a remote system via ssh. (HTCONDOR-1560)

• Fixed bug in condor_pool_job_report script that broke the script and outputted error messages about invalid
constraint expressions due internal use of condor_history specifying a file to read with -f flag instead of full
-file. (HTCONDOR-1812)

• Fixed a bug where the condor_startd would sometimes not remove docker images that had been left behind when
a condor_starter exited abruptly. (HTCONDOR-1814)

• condor_store_cred and condor_credmon_vault now reuses existing Vault tokens when down scoping access
tokens. (HTCONDOR-1527)

• Fixed a missing library import in condor_credmon_vault. (HTCONDOR-1527)

• When started on a systemd system, HTCondor will now wait for the SSSD service to start. Previously it only
waited for ypbind. (HTCONDOR-1829)

11.3.5 Version 10.0.5

Release Notes:

• HTCondor version 10.0.5 released on June 9, 2023.

• Renamed the upgrade9to10checks.py script to condor_upgrade_check to match standard HTCSS naming
scheme. (HTCONDOR-1828)

New Features:

• None.

Bugs Fixed:

• Fix spurious warning from condor_upgrade_check for regular expressions that contain a space.
(HTCONDOR-1840)

• condor_upgrade_check no longer attempts to check for problems for an HTCondor pool when requesting
checks for an HTCondor-CE. (HTCONDOR-1840)

11.3.6 Version 10.0.4

Release Notes:

• HTCondor version 10.0.4 released on May 30, 2023.

• Ubuntu 18.04 (Bionic Beaver) is no longer supported, since its end of life is April 30th, 2023.

• Preliminary support for Ubuntu 20.04 (Focal Fossa) on PowerPC (ppc64le). (HTCONDOR-1668)

New Features:

706 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1780
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1813
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1799
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1560
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1812
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1814
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1527
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1527
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1829
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1828
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1840
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1840
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1668

HTCondor Manual, Release 10.0.9

• Added new script called upgrade9to10checks.py to help administrators check for known issues that exist and
changes needed for an HTCondor system when upgrading from V9 to V10. This script checks for three well
known breaking changes: changing of the default value for , changing to using PCRE2 for regular expression
matching, and changes to how users request GPUs. (HTCONDOR-1658)

• Added configuration parameter , which allows the client to present an X.509 proxy certificate during SSL au-
thentication with a daemon. (HTCONDOR-1781)

• Added CONFIG_ROOT configuration variable that is set to the directory of the main configuration file before the
configuration files are read. (HTCONDOR-1733)

• Ensure that the SciTokens library can create its cache of token issuer credentials. (HTCONDOR-1757)

Bugs Fixed:

• Fixed a bug where certain errors during file transfer could result in file-transfer processes not being cleaned up.
This would manifest as jobs completing successfully, including final file transfer, but ending up without one of
their output files (the one the error occurred during). (HTCONDOR-1687)

• Fixed a bug where the condor_schedd falsely believed there were too many jobs in the queue and rejected new
job submissions based on MAX_JOBS_SUBMITTED. (HTCONDOR-1688)

• Fix a bug where SSL authentication would fail when using a daemon’s private network address when
PRIVATE_NETWORK_NAME was configured. (HTCONDOR-1713)

• Fixed a bug that could cause a daemon or tool to crash when attempting SSL or SCITOKENS authentication.
(HTCONDOR-1756)

• Fixed a bug where the HTCondor-CE would fail to handle any of its jobs after a restart. (HTCONDOR-1755)

• Fixed a bug where Job Ad Information events weren’t always written when using the Job Router. (HTCONDOR-
1642)

• Fixed a bug where the submit event wasn’t written to the job event log if the job ad didn’t contain a
CondorVersion attribute. (HTCONDOR-1643)

• Fixed a bug where a condor_schedd was denied authorization to send reschedule command to a con-
dor_negotiator with the IDToken authorization levels recommended in the documentation for setting up a condor
pool. (HTCONDOR-1615)

• condor_remote_cluster now works correctly when the hardware architecture of the remote machine isn’t x86_64.
(HTCONDOR-1670)

• Fixed condor_c-gahp and condor_job_router to submit jobs in the same way as condor_submit. (HTCONDOR-
1695)

• Fixed a bug introduced in HTCondor 10.0.3 that caused remote submission of batch grid universe jobs via ssh
to fail when attempting to do file transfer. (HTCONDOR-1747)

• When writing a remove event in JSON, the ToE.When field is now seconds since the (Unix) epoch, like all other
events. (HTCONDOR-1763)

• Fixed a bug where DAGMan job submission would fail when not using direct submission due to setting a custom
job ClassAd attribute with the + syntax in a VARS command that doesn’t append the variables i.e. VARS NodeA
PREPEND +customAttr="value" (HTCONDOR-1771)

• The ce-audit collector plug-in should no longer crash. (HTCONDOR-1774)

11.3. Version 10.0 LTS Releases 707

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1658
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1781
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1733
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1757
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1687
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1688
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1713
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1756
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1755
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1642
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1642
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1643
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1615
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1670
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1695
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1695
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1747
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1763
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1771
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1774

HTCondor Manual, Release 10.0.9

11.3.7 Version 10.0.3

Release Notes:

• HTCondor version 10.0.3 released on April 6, 2023.

• If you set and use / to mark the beginning and end of a regular expression, the character sequence \\ in the
mapfile now passes a single \ to the regular expression engine. This allows you to pass the sequence \/ to the
regular expression engine (put \\\/ in the map file), which was not previously possible. If the macro above is
set and you have a \\ in your map file, you will need to replace it with \\\\. (HTCONDOR-1573)

• For condor_annex users: Amazon Web Services is deprecating the Node.js 12.x runtime. If you ran the con-
dor_annex setup command with a previous version of HTCondor, you’ll need to update your setup. Go to the
AWS CloudFormation console and look for the stack named HTCondorAnnex-LambdaFunctions. (You may
have to switch regions.) Click on that stack’s radio button, hit the delete button in the table header, and confirm.
Wait for the delete to finish. Then run condor_annex -aws-region region-name-N -setup for the region.
Repeat for each region of interest. (HTCONDOR-1627).

New Features:

• Allow remote submission of batch grid universe jobs via ssh to work with sites that were configured with the
old bosco_cluster tool. (HTCONDOR-1632)

Bugs Fixed:

• Fixed two problems with GPU metrics. First, fixed a bug where reconfiguring a condor_startd caused GPU
metrics to stop being reported. Second, fixed a bug where GPU (core) utilization could be wildly over-reported.
(HTCONDOR-1660)

• Fix bug, introduced in HTCondor version 10.0.2, that prevented new installations of HTCondor from working
on Debian or Ubuntu. (HTCONDOR-1689)

• Fixed bug where a condor_dagman node with RETRY capabilities would instantly restart that node every time it
saw a job proc failure. This would result in nodes with multi-proc jobs to resubmit the entire node multiple times
causing internal issues for DAGMan. (HTCONDOR-1607)

• Fixed a rare bug in the late materialization code that could cause a condor_schedd crash. (HTCONDOR-1581)

• Fixed bug where the condor_shadow would crash during job removal. (HTCONDOR-1585)

• Fixed a bug where two condor_schedd daemons in a High Availability configuration could be active at the same
time. (HTCONDOR-1590)

• Improved the HTCondor’s systemd configuration to not start HTCondor until the system attempts (and mostly
likely succeeds) to mount remote filesystems. (HTCONDOR-1594)

• Fixed a bug where the condor_master of a glidein submitted to SLURM via HTCondor-CE would try to talk to
the condor_gridmanager of the HTCondor-CE. (HTCONDOR-1604)

• Fixed a bug in the condor_schedd that could result in the TotalSubmitProcs attribute of a late material-
ization job being set to a value smaller than the correct value shortly after the condor_schedd was restarted.
(HTCONDOR-1603)

• If a job’s requested credentials are not available when the job is about to start, the job is now placed on hold.
(HTCONDOR-1600)

• Fixed a bug that would cause the condor_schedd to hang if an invalid condor cron argument was submitted
(HTCONDOR-1624)

• Fixed a bug where cron jobs put on hold due to invalid time specifications would be unable to be removed from
the job queue with tools. (HTCONDOR-1629)

708 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1573
https://console.aws.amazon.com/cloudformation/
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1627
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1632
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1660
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1689
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1607
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1581
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1585
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1590
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1594
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1604
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1603
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1600
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1624
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1629

HTCondor Manual, Release 10.0.9

• Fixed how the condor_gridmanager handles failed ARC CE jobs. Before, it would endlessly re-query the status
of jobs that failed during submission to the LRMS behind ARC CE. If ARC CE reports a job as FAILED because
the job exited with a non-zero exit code, the condor_gridmanager now treats it as completed. (HTCONDOR-
1583)

• Fixed a bug where values specified with arc_rte in the job’s submit description weren’t properly sent to the ARC
CE service. (HTCONDOR-1648)

• Fixed a bug that can cause a daemon to crash during SciTokens authentication if the configuration parameter
SCITOKENS_SERVER_AUDIENCE isn’t set. (HTCONDOR-1652)

11.3.8 Version 10.0.2

Release Notes:

• HTCondor version 10.0.2 released on March 2, 2023.

• HTCondor Python wheel is now available for Python 3.11 on PyPI. (HTCONDOR-1586)

• The macOS tarball is now being built on macOS 11. (HTCONDOR-1610)

New Features:

• Added configuration option called to allow a transfer output remap to create directories in allowed places if they
do not exist at transfer output time. (HTCONDOR-1480)

• Improved scalability of condor_schedd when running more than 1,000 jobs from the same user. (HTCONDOR-
1549)

• condor_ssh_to_job should now work in glidein and other environments where the job or HTCondor is running
as a Unix user id that doesn’t have an entry in the /etc/passwd database. (HTCONDOR-1543)

• VM universe jobs are now configured to pass through the host CPU model to the VM. This change enables VMs
with newer kernels (such as Enterprise Linux 9) to operate in VM Universe. (HTCONDOR-1559)

• The condor_remote_cluster command was updated to fetch the Alma Linux tarballs for Enterprise Linux 8 and
9. (HTCONDOR-1562)

Bugs Fixed:

• In the python bindings, the attribute ServerTime is now included in job ads returned by Schedd.query() to
support Fifemon. (HTCONDOR-1531)

• Fixed issue when HTCondor could not be installed on Ubuntu 18.04 (Bionic Beaver). (HTCONDOR-1548)

• Attempting to use a file-transfer plug-in that doesn’t exist is no longer silently ignored. This could happen due to
different bug, also fixed, where plug-ins specified only in transfer_output_remaps were not automatically
added to a job’s requirements. (HTCONDOR-1501)

• Fixed a bug where condor_now could not use the resources freed by evicting a job if its procID was 1.
(HTCONDOR-1519)

• Fixed a bug that caused the condor_startd to exit when thinpool provisioned filesystems were enabled.
(HTCONDOR-1524)

• Fixed a bug causing a Python warning when installing on Ubuntu 22.04. (HTCONDOR-1534)

• Fixed a bug where the condor_history tool would crash when doing a remote query with a constraint expression
or specified job IDs. (HTCONDOR-1564)

11.3. Version 10.0 LTS Releases 709

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1583
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1583
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1648
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1652
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1586
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1610
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1480
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1549
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1549
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1543
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1559
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1562
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1531
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1548
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1501
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1519
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1524
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1534
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1564

HTCondor Manual, Release 10.0.9

11.3.9 Version 10.0.1

Release Notes:

• HTCondor version 10.0.1 released on January 5, 2023.

New Features:

• Add support for Ubuntu 22.04 LTS (Jammy Jellyfish). (HTCONDOR-1304)

• HTCondor now includes a file transfer plugin that support stash:// and osdf:// URLs. (HTCONDOR-1332)

• The Windows installer now uses the localized name of the Users group so that it can be installed on non-English
Windows platforms. (HTCONDOR-1474)

• OpenCL jobs can now run inside a Singularity container launched by HTCondor if the OpenCL drivers are
present on the host in directory /etc/OpenCL/vendors. (HTCONDOR-1410)

• The CompletionDate attribute of jobs is now undefined until such time as the job completes previously it was
0. (HTCONDOR-1393)

Bugs Fixed:

• Fixed a bug where Debian, Ubuntu and other Linux platforms with swap accounting disabled in the kernel would
never put a job on hold if it exceeded RequestMemory and MEMORY_LIMIT_POLICY was set to hard or soft.
(HTCONDOR-1466)

• Fixed a bug where using the -forcex option with condor_rm on a scheduler universe job could cause a con-
dor_schedd crash. (HTCONDOR-1472)

• Fixed bugs in the container universe that prevented apptainer-only systems from running container universe jobs
with Docker repository style images. (HTCONDOR-1412)

• Docker universe and container universe job that use the docker runtime now detect when the Unix uid or gid has
the high bit set, which docker does not support. (HTCONDOR-1421)

• Grid universe batch works again on Debian and Ubuntu. Since 9.5.0, some required files had been missing.
(HTCONDOR-1475)

• Fixed bug in the curl plugin where it would crash on Enterprise Linux 8 systems when using a file:// url type.
(HTCONDOR-1426)

• Fixed bug in where the multi-file curl plugin would fail to timeout due lack of upload or download progress if a
large amount of bytes where transferred at some point. (HTCONDOR-1403)

• Fixed bug where the multi-file curl plugin would fail to receive a SciToken if it was in raw format rather than
json. (HTCONDOR-1447)

• Fixed a bug that prevented the starter from properly mounting thinpool provisioned ephemeral scratch directories.
(HTCONDOR-1419)

• Fixed a bug where SSL authentication with the condor_collector could fail when the provided hostname is not
a DNS CNAME. (HTCONDOR-1443)

• Fixed a Vault credmon bug where tokens were being refreshed too often. (HTCONDOR-1017)

• Fixed a Vault credmon bug where the CA certificates used were not based on the HTCondor configuration.
(HTCONDOR-1179)

• Fixed the condor_gridmanager to recognize when it has the final data for an ARC job in the FAILED status with
newer versions of ARC CE. Before, the condor_gridmanager would leave the job marked as RUNNING and
retry querying the ARC CE server endlessly. (HTCONDOR-1448)

• Fixed AES encryption failures on macOS Ventura. (HTCONDOR-1458)

710 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1304
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1332
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1474
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1410
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1393
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1466
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1472
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1412
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1421
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1475
file://
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1426
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1403
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1447
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1419
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1443
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1017
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1179
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1448
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1458

HTCondor Manual, Release 10.0.9

• Fixed a bug that would cause tools that have the -printformat argument to segfault when the format file
contained a FIELDPREFIX, FIELDSUFFIX, RECORDPREFIX or RECORDSUFFIX. (HTCONDOR-1464)

• Fixed a bug in the RENAME command of the transform language that could result in a crash of the condor_schedd
or condor_job_router. (HTCONDOR-1486)

• For tarball installations, the condor_configure script now configures HTCondor to use user based security.
(HTCONDOR-1461)

11.3.10 Version 10.0.0

Release Notes:

• HTCondor version 10.0.0 released on November 10, 2022.

New Features:

• The default for TRUST_DOMAIN, which is used by with IDTOKEN authentication has been changed to
$(UID_DOMAIN). If you have already created IDTOKENs for use in your pool, you should configure
TRUST_DOMAIN to the issuer value of a valid token. (HTCONDOR-1381)

• The condor_transform_ads tool now has a -jobtransforms argument that reads transforms from the con-
figuration. This provides a convenient way to test the JOB_TRANSFORM_<NAME> configuration variables.
(HTCONDOR-1312)

• Added new automatic configuration variable DETECTED_CPUS_LIMIT which gets set to the minimum of
DETECTED_CPUS from the configuration and OMP_NUM_THREADS and SLURM_CPU_ON_NODES from the envi-
ronment. (HTCONDOR-1307)

Bugs Fixed:

• Fixed a bug where if a job created a symbolic link to a file, the contents of that file would be counted in the job’s
DiskUsage. Previously, symbolic links to directories were (correctly) ignored, but not symbolic links to files.
(HTCONDOR-1354)

• Fixed a bug where if SINGULARITY_TARGET_DIR is set, condor_ssh_to job would start the interactive shell
in the root directory of the job, not in the current working directory of the job. (HTCONDOR-1406)

• Suppressed a Singularity or Apptainer warning that would appear in a job’s stderr file, warning about the inability
to set the HOME environment variable if the job or the system explicitly tried to set it. (HTCONDOR-1386)

• Fixed a bug where on certain Linux kernels, the ProcLog would be filled with thousands of errors of the form
“Internal cgroup error when retrieving iowait statistics”. This error was harmless, but filled the ProcLog with
noise. (HTCONDOR-1385)

• Fixed bug where certain submit file variables like accounting_group and accounting_group_user couldn’t
be declared specifically for DAGMan jobs because DAGMan would always write over the variables at job sub-
mission time. (HTCONDOR-1277)

• Fixed a bug where SciTokens authentication wasn’t available on macOS and Python wheels distributions.
(HTCONDOR-1328)

• Fixed job submission to newer ARC CE releases. (HTCONDOR-1327)

• Fixed a bug where a pre-created security session may not be used when connecting to a daemon over IPv6. The
peers would do a full round of authentication and authorization, which may fail. This primarily happened with
both peers had PREFER_IPV4 set to False. (HTCONDOR-1341)

• The condor_negotiator no longer sends the admin capability attribute of machine ads to the condor_schedd.
(HTCONDOR-1349)

11.3. Version 10.0 LTS Releases 711

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1464
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1486
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1461
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1381
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1312
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1307
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1354
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1406
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1386
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1385
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1277
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1328
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1327
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1341
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1349

HTCondor Manual, Release 10.0.9

• Fixed a bug in DAGMan where Node jobs that could not write to their UserLog would cause the DAG to get
stuck indefinitely while waiting for pending Nodes. (HTCONDOR-1305)

• Fixed a bug where s3:// URLs host or bucket names shorter than 14 characters caused the shadow to dump
core. (HTCONDOR-1378)

• Fixed a bug in the hibernation code that caused HTCondor to ignore the active Suspend-To-Disk option.
(HTCONDOR-1357)

• Fixed a bug where some administrator client tools did not properly use the remote administrator capability (con-
figuration parameter SEC_ENABLE_REMOTE_ADMINISTRATION). (HTCONDOR-1371)

• When a JOB_TRANSFORM_* transform changes an attribute at submit time in a late materialization factory, it no
longer marks that attribute as fixed for all jobs. This change makes it possible for a transform to modify rather
than simply replacing an attribute that that the user wishes to vary per job. (HTCONDOR-1369)

• Fixed bug where Collector, Negotiator, and Schedd core files that are naturally large would be deleted by
condor_preen because the file sizes exceeded the max file size. (HTCONDOR-1377)

• Fixed a bug that could cause a daemon or tool to crash when connecting to a daemon using a security session.
This particularly affected the condor_schedd. (HTCONDOR-1372)

• Fixed a bug that could cause digits to be truncated reading resource usage information from the job event log
via the Python or C++ APIs for reading event logs. Note this only happens for very large values of requested or
allocated disk, memory. (HTCONDOR-1263)

• Fixed a bug where GPUs that were marked as OFFLINE in the Startd would still be available for matchmaking
in the AvailableGPUs attribute. (HTCONDOR-1397)

• The executables within the tarball distribution now use RPATH to find shared libraries. Formerly, RUNPATH was
used and tarballs became susceptible to failures when independently compiled HTCondor libraries were present
in the LD_LIBRARY_PATH. (HTCONDOR-1405)

11.4 Version 9 Feature Releases

We release new features in these releases of HTCondor. The details of each version are described below.

11.4.1 Version 9.12.0

Release Notes:

• HTCondor version 9.12.0 released on October 5, 2022.

• This version includes all the updates from Version 9.0.17.

New Features:

• SSL authentication can be automatically configured in the condor_collector, providing a mechanism to more
easily bootstrap secure authentication within the pool. Tools will allow users to setup trust with the generated
CA similarly to how SSH enables trust on first use of a remote host. (HTCONDOR-501)

• Added submit templates. These are configured using new configuration variables and . (HTCONDOR-1231)

• Added extended submit help which can be defined in the condor_schedd using the new configuration variable
and displayed by condor_submit using the new -capabilities argument. (HTCONDOR-1238)

• Added new DAG job ClassAd attributes DAG_JobsSubmitted, DAG_JobsIdle, DAG_JobsHeld,
DAG_JobsRunning, and DAG_JobsCompleted to better record information about job processes through-
out all nodes within the DAG. (HTCONDOR-1216)

712 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1305
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1378
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1357
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1371
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1369
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1377
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1372
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1263
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1397
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1405
https://opensciencegrid.atlassian.net/browse/HTCONDOR-501
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1231
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1238
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1216

HTCondor Manual, Release 10.0.9

• Added new slot attribute Microarch on x86_64 Linux, which advertises the x86_64 micro-architecture, like
x86_64-v3 (HTCONDOR-1252)

• Added -drain and other draining options to condor_off and condor_restart. This allows a command to be sent
to the condor_master to drain the condor_startd and then shutdown or restart all of the HTCondor daemons.
(HTCONDOR-1151)

• Docker universe now supports an administrator-set knob , which allows the administrator of a worker node to set
the –shm-size option to docker run. (HTCONDOR-1282)

• Refactored condor_adstash to speed up future development of new ClassAd sources and stash targets. Addi-
tionally, Elasticsearch 8.x Python library is now supported, mappings JSON file now shows up in $(LOG) by
default, and checkpoint files are written atomically. --es_argnames have been renamed to --se_argnames in
anticipation of supporting additional search engines. (HTCONDOR-1288)

• Added --interface jsonfile option to condor_adstash, which skips Elasticsearch and instead writes ads to
JSON files in the working directory. (HTCONDOR-1264)

• Added --interface opensearch option to condor_adstash, which will push ads to a properly configured
OpenSearch search engine. (HTCONDOR-1289)

• HAD daemons now default to using SHA-256 checksums rather than MD5 checksums for replication, so they
will be unable to replicate with HTCondor daemons that are older than version 8.8.13. see for more information.
(HTCONDOR-1234)

• When the knob is set to the non-default value of false, and the starter runs a container job, we no longer create
the helper Unix domain sockets required for condor_ssh_to_job to work. (HTCONDOR-1244)

Bugs Fixed:

• Fixed a bug that might cause a job to restart with a “disconnected starter” error if the job was running in a
container, and there was an error handling condor_ssh_to_job. (HTCONDOR-1245)

• Fixed a memory leak in the condor_schedd triggered by spooling sandboxes to the condor_schedd.
(HTCONDOR-1233)

• HTCondor’s security library no longer tries to resolve the provided hostname to a fully-qualified canonical name
when authenticating with SSL, matching the behavior of curl. Services using a DNS CNAME no longer need
to implement workarounds in the host certificate to support the prior behavior. The old behavior can be restored
by setting new configuration parameter USE_COLLECTOR_HOST_CNAME to False. (HTCONDOR-692)

• Fixed bug where a DAGMan job would write a warning for not using the keywords JOB and RETRY in node
submit file to the .dagman.out file. (HTCONDOR-1273)

11.4.2 Version 9.11.2

Release Notes:

• HTCondor version 9.11.2 released on September 13, 2022.

New Features:

• None.

Bugs Fixed:

• Fixed a bug where would, in effect, cause the startd to restart rather than HTCondor to shut down. (HTCONDOR-
1315)

11.4. Version 9 Feature Releases 713

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1252
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1151
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1282
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1288
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1264
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1289
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1234
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1244
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1245
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1233
https://opensciencegrid.atlassian.net/browse/HTCONDOR-692
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1273
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1315
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1315

HTCondor Manual, Release 10.0.9

11.4.3 Version 9.11.1

Release Notes:

• HTCondor version 9.11.1 released on September 6, 2022.

New Features:

• Improved HoldReason and HoldReasonCode job attributes in the event of File Transfer errors. Previously if
there was a problem with File Transfer, the job can go on hold with hold reason code DownloadFileError (12)
or UploadFileError (13). Unfortunately, this did not distinguish if the error happened while transferring the
job’s input or output sandbox, which is what most people wanted to know. Thus hold reason code 12 and 13 have
been re-purposed to be TransferOutputError and TransferInputError respectively, telling users the error
occurred either while transferring the job input or output/checkpoint sandbox. (HTCONDOR-1134)

Bugs Fixed:

• None.

11.4.4 Version 9.11.0

Release Notes:

• HTCondor version 9.11.0 released on August 25, 2022.

• This version includes all the updates from Version 9.0.16.

• Removed support for the WriteUserLog class from libcondorapi.a. This class was difficult to use correctly, and
to our knowledge it is not currently in use. Programmer who need to read the condor event log are recommended
to do so from the HTCondor python bindings. (HTCONDOR-1163)

New Features:

• The format of GPU attributes in the Machine ClassAd has been modified to support the new require_gpus
submit command. Added -nested and -not-nested options to condor_gpu_discovery and updated man page
to document them and to expand the documentation of the -simulate argument. Nested output is now the default
for GPU discovery. Added examples of new condor_startd configuration that is possible when the -nested
option is used for discovery. (HTCONDOR-711)

• Added configuration templates PREEMPT_IF_DISK_EXCEEDED and HOLD_IF_DISK_EXCEEDED (HTCONDOR-
1173)

• The ADVERTISE_MASTER, ADVERTISE_SCHEDD, and ADVERTISE_STARTD authorization levels now also provide
READ level authorization. (HTCONDOR-1164)

• Using condor_hold to put jobs on hold now overrides other hold conditions. Jobs already held for other reasons
will be updated (i.e. HoldReason and HoldReasonCode changed). The jobs will remain held with the updated
hold reason until released with condor_release. The periodic release job policy expressions are now ignored for
these jobs. (HTCONDOR-740)

• If a job that is a Unix script with a #! interpreter fails to run because the interpreter doesn’t exist, a clearer error
message is written to the job log and in the job’s HoldReason attribute. (HTCONDOR-1198)

• Added a new submit option container_target_dir that allows Singularity jobs to specify the target directory
(HTCONDOR-1171)

• When an arc grid universe job has both a token and an X.509 proxy, now only the token is used for authentication
with the ARC CE server. The proxy is still delegated for use by the job. (HTCONDOR-1194)

• The default value for SCHEDD_ASSUME_NEGOTIATOR_GONE has been changed from 20 minutes to a practically
infinite value. This is to prevent surprises when the condor_schedd starts running vanilla universe jobs even
when the admin has intentionally stopped the negotiator. (HTCONDOR-1185)

714 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1134
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1163
https://opensciencegrid.atlassian.net/browse/HTCONDOR-711
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1173
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1173
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1164
https://opensciencegrid.atlassian.net/browse/HTCONDOR-740
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1198
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1171
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1194
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1185

HTCondor Manual, Release 10.0.9

• DAGMan VARS lines are now able to specify PREPEND or APPEND to allow passed variables to be set at the
beginning or end of a DAG job’s submit description. Any VARS without these options will have behavior derived
from DAGMAN_DEFAULT_APPEND_VARS configuration variable. Which defaults to PREPEND. (HTCONDOR-
1080)

• A new knob, SCHEDD_SEND_RESCHEDULE has been added. When set to false, the condor_schedd never tries to
send a reschedule command to the negotiator. The default is true. Set this to false in the HTCondor-CE and other
systems that have no negotiator. (HTCONDOR-1192)

• The blahp now reports the number of CPUs allocated to the job when that data is provided by Slurm.
(HTCONDOR-1207)

• The htcondor CLI tool now outputs natural language status messages for the job and jobset subcommands.
(HTCONDOR-1149)

Bugs Fixed:

• Fixed bug where specifying more than 2TB of RESERVED_DISK would cause HTCondor to instead pretend that
available disk space was larger, rather than smaller. (HTCONDOR-1228)

• Fixed two bugs which could occur when resuming from a checkpoint with preserve_relative_paths set.
Both involved the checkpoint transfer list including a file at a relative path which was itself listed in the input
transfer list. The job would either go on hold (if the relative path included more than one directory) or silently
fail to transfer files from that relative path that weren’t in the checkpoint (otherwise). (HTCONDOR-1218)

• Fixed a bug where arc grid universe jobs would remain in idle status indefinitely when delegation of the job’s
X.509 proxy certificate failed. Now, the jobs go to held status. (HTCONDOR-1194)

• Fixed a problem when condor_submit -i would sometimes fail trying to start an interactive docker universe job
(HTCONDOR-1210)

• Fixed the ClassAd shared library extension mechanism. An earlier development series broke the ability for
users to add custom ClassAd functions as documented in Extending ClassAds with User-written Functions.
(HTCONDOR-1196)

11.4.5 Version 9.10.1

Release Notes:

• HTCondor version 9.10.1 released on July 18, 2022.

New Features:

• None.

Bugs Fixed:

• Fixed inflated values for job attribute ActivationSetupDuration if the job checkpoints. (HTCONDOR-1190)

11.4.6 Version 9.10.0

Release Notes:

• HTCondor version 9.10.0 released on July 14, 2022.

• This version includes all the updates from Version 9.0.14.

• On macOS, updated to LibreSSL 2.8.3 and removed support for VOMS. (HTCONDOR-1129)

11.4. Version 9 Feature Releases 715

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1080
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1080
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1192
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1207
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1149
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1228
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1218
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1194
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1210
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1196
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1190
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1129

HTCondor Manual, Release 10.0.9

• On macOS, the Python bindings are now built against the version of Python 3 included in the Command
Line Tools for Xcode package. Previously, they were built against Python 3.8 as distributed from the website
python.org. (HTCONDOR-1154)

• The default value of configuration parameter USE_VOMS_ATTRIBUTES has been changed to False.
(HTCONDOR-1161)

New Features:

• Added support for running on Linux systems that ship with openssl version 3 (HTCONDOR-1148)

• condor_submit now has support for submitting jobsets. Jobsets are still a technology preview and still not ready
for general use. (HTCONDOR-1063)

• DAGman VARS lines are now able to specify PREPEND or APPEND to allow passed variables to be initalized
before or after DAG jobs are submitted. Any VARS without these options will have behavior derived from
DAGMAN_DEFAULT_APPEND_VARS configuration variable. (HTCONDOR-1080)

• The remote administration capability in daemon ads sent to the condor_collector (configuration pa-
rameter SEC_ENABLE_REMOTE_ADMINISTRATION) is now enabled be default. Client tools that issue
ADMINISTRATOR-level commands now try to use this capability if it’s available. (HTCONDOR-1122)

• For arc grid universe jobs, SciTokens can now be used for authentication with the ARC CE server.
(HTCONDOR-1061)

• Preliminary support for ARM (aarch64) and Power PC (ppc64le) CPU architectures on Alma Linux 8 and equiv-
alent platforms. (HTCONDOR-1150)

• Added support for running on Linux systems that ship with OpenSSL version 3. (HTCONDOR-1148)

• condor_submit now has support for submitting jobsets. Jobsets are still a technology preview and still not ready
for general use. (HTCONDOR-1063)

• All regular expressions in configuration and in the ClassAd regexp function now use the pcre2 10.39 library.
(http://www.pcre.org). We believe that this will break no existing regular expressions. (HTCONDOR-1087)

• If “singularity” is really the “apptainer” runtime, HTCondor now sets environment variables to be passed to the
job appropriately, which prevents apptainer from displaying ugly warnings about how this won’t work in the
future. (HTCONDOR-1137)

• The condor_schedd now adds the ServerTime attribute to the job ads of a query only if the client (i.e. condor_q)
requests it. (HTCONDOR-1125)

Bugs Fixed:

• Fixed the TransferInputStats nested attributes SizeBytesLastRun and SizeBytesTotal values from
overflowing and becoming negative when transferring files greater than two gigabytes via plugin. (HTCONDOR-
1103)

• Fixed a bug preventing preserve_relative_paths from working with lots (tens of thousands) of files.
(HTCONDOR-993)

• Fixed several minor bugs in how the condor_shadow and condor_starter handle network disruptions and jobs
that have no lease. (HTCONDOR-960)

• The condor-blahp RPM now requires the matching condor RPM version. (HTCONDOR-1074)

716 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1154
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1161
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1148
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1063
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1080
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1122
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1061
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1150
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1148
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1063
http://www.pcre.org
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1087
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1137
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1125
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1103
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1103
https://opensciencegrid.atlassian.net/browse/HTCONDOR-993
https://opensciencegrid.atlassian.net/browse/HTCONDOR-960
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1074

HTCondor Manual, Release 10.0.9

11.4.7 Version 9.9.1

Release Notes:

• HTCondor version 9.9.1 released on June 14, 2022.

New Features:

• None.

Bugs Fixed:

• Fixed bug introduced in 9.9.0 when forwarding slot ads from one condor_collector to another. As a result, the
condor_negotiator was unable to match any jobs to the slots. (HTCONDOR-1157)

11.4.8 Version 9.9.0

Release Notes:

• HTCondor version 9.9.0 released on May 31, 2022.

• This version includes all the updates from Version 9.0.13.

New Features:

• Daemons can optionally send a security capability when they advertise themselves to the condor_collector. Au-
thorized administrator tools can retrieve this capability from the condor_collector, which allows them to send
administrative commands to the daemons. This allows the authentication and authorization of administrators of
a whole pool to be centralized at the condor_collector. (HTCONDOR-638)

• Elliptic-curve Diffie-Hellman (ECDH) Key Exchange is now used to generate session keys for network commu-
nication. (HTCONDOR-283)

• Added replay protection for authenticated network communication. (HTCONDOR-287) (HTCONDOR-1054)

• Improved notification between network peers when a cached security session is not recognized. (HTCONDOR-
1057)

• Fix issue where DAGMan direct submission failed when using Kerberos. (HTCONDOR-1060)

• Added a Job Ad attribute called JobSubmitMethod to record what tool a user used to submit job(s) to HTCondor.
(HTCONDOR-996)

• Singularity jobs can now pull images from docker style repositories. (HTCONDOR-1059)

• The OWNER authorization level has been removed. Commands that used to require this level now require
ADMINISTRATOR authorization. (HTCONDOR-1023)

• Python bindings on Windows have been updated to Python 3.9. Bindings for Python 2.7 will no longer be
available. If you are building HTCondor for Windows yourself, Visual Studio 2022 and Python 3.8, 3.9 and 3.10
are now supported by the build. (HTCONDOR-1008)

• Job duration policy hold message now displays the time exceeded in ‘dd+hh:mm:ss’ format rather than just
seconds. (HTCONDOR-1062)

• Improved the algorithm in the condor_schedd to speed up the scheduling of jobs when reusing claims.
(HTCONDOR-1056)

• Changed the result returned by evaluating a nested ClassAd a with no attribute named missing to return unde-
fined when evaluating a["missing"]. This matches the a.missing syntax. (HTCONDOR-1065)

• Added support for a global CM which only schedules fair-share between condor_schedd s, with each con-
dor_schedd owning a local CM for fair-share between users. (HTCONDOR-1003)

11.4. Version 9 Feature Releases 717

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1157
https://opensciencegrid.atlassian.net/browse/HTCONDOR-638
https://opensciencegrid.atlassian.net/browse/HTCONDOR-283
https://opensciencegrid.atlassian.net/browse/HTCONDOR-287
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1054
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1057
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1057
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1060
https://opensciencegrid.atlassian.net/browse/HTCONDOR-996
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1059
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1023
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1008
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1062
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1056
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1065
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1003

HTCondor Manual, Release 10.0.9

• In the configuration for daemon logs, D_FULLDEBUG no longer modifies the verbosity of other message categories.
For instance D_FULLDEBUG D_SECURITYwill now select debug messages and D_SECURITY:1messages. In pre-
vious versions it would select debug messages and also modify D_SECURITY to select D_SECURITY:2 messages.
The manual has been updated to explain the use of verbosity modifiers in . (HTCONDOR-1090)

Bugs Fixed:

• Fixed a bug in the dedicated scheduler when using partitionable slots that would cause the condor_schedd to
assert. (HTCONDOR-1042)

• Fix a rare bug where the starter will fail to start a job, and the job will immediately transition back to the idle
state to be run elsewhere. (HTCONDOR-1040)

11.4.9 Version 9.8.1

Release Notes:

• HTCondor version 9.8.1 released on April 25, 2022.

New Features:

• None.

Bugs Fixed:

• Fix problem that can cause HTCondor to not start up when the network configuration is complex. Long host-
names, multiple CCB addresses, having both IPv4 and IPv6 addresses, and long private network names all
contribute to complexity. (HTCONDOR-1070)

11.4.10 Version 9.8.0

Release Notes:

• HTCondor version 9.8.0 released on April 21, 2022.

• This version includes all the updates from Version 9.0.12.

New Features:

• Added the ability to do matchmaking and targeted resource binding of GPUs into dynamic slots while con-
straining on the properties of the GPUs. This new behavior is enabled by using the -nested option of con-
dor_gpu_discovery, along with the new require_gpus keyword of condor_submit. With this change HTCon-
dor can now support heterogeneous GPUs in a single partitionable slot, and allow a job to require to be assigned
with a specific GPU when creating a dynamic slot. (HTCONDOR-953)

• Added ClassAd functions countMatches and evalInEachContext. These functions are used to support
matchmaking of heterogeneous custom resources such as GPUs. (HTCONDOR-977)

• Added the Reverse GAHP, which allows condor_remote_cluster to work with remote clusters that don’t allow
SSH keys or require Multi-Factor Authentication for all SSH connections. (HTCONDOR-1007)

• If an administrator configures additional custom docker networks on a worker node and would like jobs to be able
to opt into use them, the startd knob DOCKER_NETWORKS has been added to allow additional custom networks to
be added to the docker_network_type submit command. (HTCONDOR-995)

• Added the -key command-line option to condor_token_request, which allows users to ask HTCondor to use
a particular signing key when creating the IDTOKEN. Added the corresponding configuration macro, , which
defaults to the default key (POOL). (HTCONDOR-1024)

• Added basic tools for submitting and monitoring DAGMan workflows to our new htcondor CLI tool.
(HTCONDOR-929)

718 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1090
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1042
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1040
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1070
https://opensciencegrid.atlassian.net/browse/HTCONDOR-953
https://opensciencegrid.atlassian.net/browse/HTCONDOR-977
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1007
https://opensciencegrid.atlassian.net/browse/HTCONDOR-995
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1024
https://opensciencegrid.atlassian.net/browse/HTCONDOR-929

HTCondor Manual, Release 10.0.9

• The ClassAd sum, avg, min and max functions now promote boolean values in the list being operated on to
integers rather than to error. (HTCONDOR-970)

Bugs Fixed:

• Fix for condor_gpu_discovery crash when run on Linux for Power (ppc64le) architecture. (HTCONDOR-967)

11.4.11 Version 9.7.1

Release Notes:

• HTCondor version 9.7.1 released on April 5, 2022.

New Features:

• None.

Bugs Fixed:

• Fixed bug introduced in HTCondor v9.7.0 where job may go on hold without setting a HoldReason and/or
HoldReasonCode and HoldReasonSubCode attributes in the job ClassAd. In particular, this could happen
when file transfer using a file transfer plugin failed. (HTCONDOR-1035)

11.4.12 Version 9.7.0

Release Notes:

• HTCondor version 9.7.0 released on March 15, 2022.

• This version includes all the updates from Version 9.0.11.

New Features:

• Added list type configuration for periodic job policy configuration. Added SYSTEM_PERIODIC_HOLD_NAMES,
SYSTEM_PERIODIC_RELEASE_NAMES and SYSTEM_PERIODIC_REMOVE_NAMES which each define a list of con-
figuration variables to be evaluated for periodic job policy. (HTCONDOR-905)

• Container universe now supports running Singularity jobs where the command executable is hardcoded in to the
runfile. We call this running the container as the job. (HTCONDOR-966)

• In most situations, jobs in COMPLETED or REMOVED status will no longer transition to HELD status. Be-
fore, these jobs could transition to HELD status due to job policy expressions, the condor_rm tool, or errors
encountered by the condor_shadow or condor_starter. Grid universe jobs may still transition to HELD status if
the condor_gridmanager can not clean up job-related resources on remote systems. (HTCONDOR-873)

• Improved performance of the condor_schedd during negotiation. (HTCONDOR-961)

• For arc grid universe jobs, environment variables specified in the job ad are now included in the ADL job
description given to the ARC CE REST service. Also, added new submit command arc_application, which
can be used to add additional elements under the <Application> element of the ADL job description given to
the ARC CE REST service. (HTCONDOR-932)

• Reduce the size of the Singularity test executable by not linking in libraries it doesn’t need. (HTCONDOR-927)

• DAGMan now manages job submission by writing jobs directly to the condor_schedd, instead of forking a
condor_submit process. This behavior is controlled by the DAGMAN_USE_DIRECT_SUBMIT configuration knob,
which defaults to True. (HTCONDOR-619)

• If a job specifies output_destination, the output and error logs, if requested, will now be transferred to their
respective requested names, instead of _condor_stdout or _condor_stderr. (HTCONDOR-955)

11.4. Version 9 Feature Releases 719

https://opensciencegrid.atlassian.net/browse/HTCONDOR-970
https://opensciencegrid.atlassian.net/browse/HTCONDOR-967
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1035
https://opensciencegrid.atlassian.net/browse/HTCONDOR-905
https://opensciencegrid.atlassian.net/browse/HTCONDOR-966
https://opensciencegrid.atlassian.net/browse/HTCONDOR-873
https://opensciencegrid.atlassian.net/browse/HTCONDOR-961
https://opensciencegrid.atlassian.net/browse/HTCONDOR-932
https://opensciencegrid.atlassian.net/browse/HTCONDOR-927
https://opensciencegrid.atlassian.net/browse/HTCONDOR-619
https://opensciencegrid.atlassian.net/browse/HTCONDOR-955

HTCondor Manual, Release 10.0.9

• condor_qedit and the Python bindings no longer request that job ad changes be forwarded to an active con-
dor_shadow or condor_gridmanager. If forwarding ad changes is desired (say to affect job policy evaluation),
condor_qedit has a new -forward option. The Python methods Schedd.edit() and Schedd.edit_multiple() now
have an optional flags argument of type TransactionFlags. (HTCONDOR-963)

• Added more statistics about file transfers in the job ClassAd. (HTCONDOR-822)

Bugs Fixed:

• When the blahp submits a job to HTCondor, it no longer requests email notification about job errors.
(HTCONDOR-895)

• Fixed a very rare bug in the timing subsystem that would prevent any daemon from appearing in the collector,
and periodic expressions to be run less frequently than they should. (HTCONDOR-934)

• The view server can now handle very long Accounting Group names (HTCONDOR-913)

• Fixed some bugs where allowed_execute_duration and allowed_job_duration would be evaluated at
the wrong points in a job’s lifetime. (HTCONDOR-922)

• Fixed several bugs in file transfer where unexpected failures by file transfer plugins would not get handled cor-
rectly, resulting in empty Hold Reason messages and meaningless Hold Reason Subcodes reported in the job’s
ClassAd. (HTCONDOR-842)

11.4.13 Version 9.6.0

Release Notes:

• HTCondor version 9.6.0 released on March 15, 2022.

New Features:

• None.

Bugs Fixed:

• Security Items: This release of HTCondor fixes security-related bugs described at

– http://htcondor.org/security/vulnerabilities/HTCONDOR-2022-0001.

– http://htcondor.org/security/vulnerabilities/HTCONDOR-2022-0002.

– http://htcondor.org/security/vulnerabilities/HTCONDOR-2022-0003.

(HTCONDOR-724) (HTCONDOR-730) (HTCONDOR-985)

11.4.14 Version 9.5.4

Release Notes:

• HTCondor version 9.5.4 released on February 8, 2022.

New Features:

• Improved the ability of the Access Point to detect the disappearance of an Execution Point that is running a job.
Specifically, the ability of the condor_shadow to detect a problem with the condor_starter. (HTCONDOR-954)

Bugs Fixed:

• HTCondor no longer assumes that PID 1 is always visible. Instead, it checks to see if /proc was mounted with
the hidepid option of 1 or less, and only checks for PID 1 if it was. (HTCONDOR-944)

720 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-963
https://opensciencegrid.atlassian.net/browse/HTCONDOR-822
https://opensciencegrid.atlassian.net/browse/HTCONDOR-895
https://opensciencegrid.atlassian.net/browse/HTCONDOR-934
https://opensciencegrid.atlassian.net/browse/HTCONDOR-913
https://opensciencegrid.atlassian.net/browse/HTCONDOR-922
https://opensciencegrid.atlassian.net/browse/HTCONDOR-842
http://htcondor.org/security/vulnerabilities/HTCONDOR-2022-0001
http://htcondor.org/security/vulnerabilities/HTCONDOR-2022-0002
http://htcondor.org/security/vulnerabilities/HTCONDOR-2022-0003
https://opensciencegrid.atlassian.net/browse/HTCONDOR-724
https://opensciencegrid.atlassian.net/browse/HTCONDOR-730
https://opensciencegrid.atlassian.net/browse/HTCONDOR-985
https://opensciencegrid.atlassian.net/browse/HTCONDOR-954
https://opensciencegrid.atlassian.net/browse/HTCONDOR-944

HTCondor Manual, Release 10.0.9

11.4.15 Version 9.5.3

Release Notes:

• HTCondor version 9.5.3 released on February 1, 2021.

New Features:

• Added new configuration option, . Added new configuration option, , which if set causes HTCondor to exit if
was set but HTCondor could not obtain one. is ignored if is set, which is the default. (HTCONDOR-925)

Bugs Fixed:

• Fixed a bug that caused any daemon to crash when it was configured to report to more than one collector, and
any of the collectors’ names could not be resolved by DNS. (HTCONDOR-952)

• Fixed a bug introduced earlier in this series where in very rare cases, a condor_schedd would not appear in the
collector when it started up, but would appear an hour later. (HTCONDOR-931)

11.4.16 Version 9.5.2

Release Notes:

• HTCondor version 9.5.2 released on January 25, 2021.

New Features:

• None.

Bugs Fixed:

• Fixed a bug where the condor_shadow could run indefinitely when it failed to contact the condor_startd in an
attempt to kill the job. This problem could become visible to the user in several different ways, such as a job
appearing to not go on hold when periodic_hold becomes true. (HTCONDOR-933)

• Fix problem where condor_ssh_to_job may fail to connect to a job running under an HTCondor tarball instal-
lation (glidein) built from an RPM based platform. (HTCONDOR-942)

• Fixed a bug in the file transfer mechanism where URL transfers caused subsequent failures to report incorrect
error messages. (HTCONDOR-915)

11.4.17 Version 9.5.1

Release Notes:

• HTCondor version 9.5.1 released on January 18, 2022.

New Features:

• None.

Bugs Fixed:

• HTCondor now properly creates directories when transferring a directory tree out of SPOOL while preserving
relative paths. This bug would manifest after a self-checkpointing job created a file in a new subdirectory of a
directory in its checkpoint: when the job was rescheduled and had to download its checkpoint, it would go on
hold. (HTCONDOR-923)

11.4. Version 9 Feature Releases 721

https://opensciencegrid.atlassian.net/browse/HTCONDOR-925
https://opensciencegrid.atlassian.net/browse/HTCONDOR-952
https://opensciencegrid.atlassian.net/browse/HTCONDOR-931
https://opensciencegrid.atlassian.net/browse/HTCONDOR-933
https://opensciencegrid.atlassian.net/browse/HTCONDOR-942
https://opensciencegrid.atlassian.net/browse/HTCONDOR-915
https://opensciencegrid.atlassian.net/browse/HTCONDOR-923

HTCondor Manual, Release 10.0.9

11.4.18 Version 9.5.0

Release Notes:

• HTCondor version 9.5.0 released on January 13, 2022.

• This version includes all the updates from Version 9.0.9.

New Features:

• Added new Container Universe that allows users to describe container images that can be run in Singularity or
Docker or other container runtimes. (HTCONDOR-850)

• Docker universe jobs can now self-checkpoint by setting checkpoint_exit_code in submit files. (HTCONDOR-
841)

• Docker universe now works with jobs that don’t transfer any files. (HTCONDOR-867)

• The blahp is now included in the HTCondor Linux native packages. (HTCONDOR-838)

• The tool bosco_cluster is being renamed to condor_remote_cluster. The tool can still be used via the old name,
but that will stop working in a future release. (HTCONDOR-733)

• condor_adstash can parse and push ClassAds from a file to Elasticsearch by using the --ad_file PATH option.
(HTCONDOR-779)

Bugs Fixed:

• Fixed a bug where if the submit file set a checkpoint_exit_code, and the administrator enabled Singularity support
on the execute node, the job would go on hold at checkpoint time. (HTCONDOR-837)

11.4.19 Version 9.4.1

Release Notes:

• HTCondor version 9.4.1 released on December 21, 2021.

New Features:

• Added activation metrics (ActivationDuration, ActivationExecutionDuration,
ActivationSetupDuration, and ActivationTeardownDuration). (HTCONDOR-861)

Bugs Fixed:

• Fix a bug where the error number could be cleared before being reported when a file transfer plugin fails.
(HTCONDOR-889)

11.4.20 Version 9.4.0

Release Notes:

• HTCondor version 9.4.0 released on December 2, 2021.

• This version includes all the updates from Version 9.0.8.

New Features:

• Submission and basic management (list, status, and removal) of Job Sets added to the htcondor CLI tool.
(HTCONDOR-793)

• A new configuration variable EXTENDED_SUBMIT_COMMANDS can now be used to extend the submit language by
configuration in the condor_schedd. (HTCONDOR-802)

722 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-850
https://opensciencegrid.atlassian.net/browse/HTCONDOR-841
https://opensciencegrid.atlassian.net/browse/HTCONDOR-841
https://opensciencegrid.atlassian.net/browse/HTCONDOR-867
https://opensciencegrid.atlassian.net/browse/HTCONDOR-838
https://opensciencegrid.atlassian.net/browse/HTCONDOR-733
https://opensciencegrid.atlassian.net/browse/HTCONDOR-779
https://opensciencegrid.atlassian.net/browse/HTCONDOR-837
https://opensciencegrid.atlassian.net/browse/HTCONDOR-861
https://opensciencegrid.atlassian.net/browse/HTCONDOR-889
https://opensciencegrid.atlassian.net/browse/HTCONDOR-793
https://opensciencegrid.atlassian.net/browse/HTCONDOR-802

HTCondor Manual, Release 10.0.9

• In a HAD configuration, the negotiator is now more robust when trying to update to collectors that may have
failed. It will no longer block and timeout for an extended period of time should this happen. (HTCONDOR-816)

• SINGULARITY_EXTRA_ARGUMENTS can now be a ClassAd expression, so that the extra arguments can
depend on the job. (HTCONDOR-570)

• The Environment command in a condor submit file can now contain the string $$(CondorScratchDir), which will
get expanded to the value of the scratch directory on the execute node. This is useful, for example, when trans-
ferring software packages to the job’s scratch dir, when those packages need an environment variable pointing
to the root of their install. (HTCONDOR-805)

• The classad_eval tool now supports evaluating ClassAd expressions in the context of a match. To specify the
target ad, use the new -target-file command-line option. You may also specify the context ad with -my-file,
a synonym for -file. The classad_eval tool also now supports the -debug and -help flags. (HTCONDOR-
707)

• Added a configuration parameter HISTORY_CONTAINS_JOB_ENVIRONMENT which defaults to true. When
false, the job’s environment attribute is not saved in the history file. For some sites, this can substantially reduce
the size of the history file, and allow the history to contain many more jobs before rotation. (HTCONDOR-497)

• Added an attribute to the job ClassAd LastRemoteWallClockTime. It holds the wall clock time of the most
recent completed job execution. (HTCONDOR-751)

• JOB_TRANSFORM_* and SUBMIT_REQUIREMENT_* operations in the condor_schedd are now applied to late ma-
terialization job factories at submit time. (HTCONDOR-756)

• Added option --rgahp-nologin to remote_gahp, which removes the -l option normally given to bash when
starting a remote blahpd or condor_ft-gahp. (HTCONDOR-734)

• Herefile support was added to configuration templates, and the template use FEATURE :
AssignAccountingGroup was converted to from the old transform syntax to the the native transform
syntax which requires that support. (HTCONDOR-796)

• The GPU monitor will no longer run if use feature:GPUs is enabled but GPU discovery did not detect any
GPUs. This mechanism is available for other startd cron jobs; see . (HTCONDOR-667)

• Added a new feature where a user can export some of their jobs from the condor_schedd in the form of a job-
queue file intended to be used by a new temporary condor_schedd. After the temporary condor_schedd runs
the jobs, the results can be imported back to the original condor_schedd. This is experimental code that is not
suitable for production use. (HTCONDOR-179)

• When running remote_gahp interactively to start a remote condor_ftp-gahp instance, the user no longer has to
set a fake CONDOR_INHERIT environment variable. (HTCONDOR-819)

Bugs Fixed:

• Fixed a bug that prevented the condor_procd (and thus all of condor) from starting when running under QEMU
emulation. Condor can now build and run under QEMU ARM emulation with this fix. (HTCONDOR-761)

• Fixed several unlikely bugs when parsing the time strings in ClassAds (HTCONDOR-814)

• Fixed a bug when computing the identity of a job’s X.509 credential that isn’t a proxy. (HTCONDOR-800)

• Fixed a bug that prevented file transfer from working properly on Unix systems when the job created a file to be
transferred back to the submit machine containing a backslash in it. (HTCONDOR-747)

• Fixed some bugs which could cause the counts of transferred files reported in the job ad to be inaccurate.
(HTCONDOR-813)

11.4. Version 9 Feature Releases 723

https://opensciencegrid.atlassian.net/browse/HTCONDOR-816
https://opensciencegrid.atlassian.net/browse/HTCONDOR-570
https://opensciencegrid.atlassian.net/browse/HTCONDOR-805
https://opensciencegrid.atlassian.net/browse/HTCONDOR-707
https://opensciencegrid.atlassian.net/browse/HTCONDOR-707
https://opensciencegrid.atlassian.net/browse/HTCONDOR-497
https://opensciencegrid.atlassian.net/browse/HTCONDOR-751
https://opensciencegrid.atlassian.net/browse/HTCONDOR-756
https://opensciencegrid.atlassian.net/browse/HTCONDOR-734
https://opensciencegrid.atlassian.net/browse/HTCONDOR-796
https://opensciencegrid.atlassian.net/browse/HTCONDOR-667
https://opensciencegrid.atlassian.net/browse/HTCONDOR-179
https://opensciencegrid.atlassian.net/browse/HTCONDOR-819
https://opensciencegrid.atlassian.net/browse/HTCONDOR-761
https://opensciencegrid.atlassian.net/browse/HTCONDOR-814
https://opensciencegrid.atlassian.net/browse/HTCONDOR-800
https://opensciencegrid.atlassian.net/browse/HTCONDOR-747
https://opensciencegrid.atlassian.net/browse/HTCONDOR-813

HTCondor Manual, Release 10.0.9

11.4.21 Version 9.3.2

• HTCondor version 9.3.2 released on November 30, 2021.

New Features:

• Added new submit command allowed_execute_duration, which limits how long a job can run – not includ-
ing file transfer – expressed in seconds. If a job exceeds this limit, it is placed on hold. (HTCONDOR-820)

Bugs Fixed:

• A problem where HTCondor would not create a directory on the execute node before trying to transfer a file
into it should no longer occur. (This would cause the job which triggered this problem to go on hold.) One way
to trigger this problem was by setting preserve_relative_paths and specifying the same directory in both
transfer_input_files and transfer_checkpoint_files. (HTCONDOR-809)

11.4.22 Version 9.3.1

Release Notes:

• HTCondor version 9.3.1 released on November 9, 2021.

New Features:

• Added new submit command allowed_job_duration, which limits how long a job can run, expressed in
seconds. If a job exceeds this limit, it is placed on hold. (HTCONDOR-794)

Bugs Fixed:

• None.

11.4.23 Version 9.3.0

Release Notes:

• HTCondor version 9.3.0 released on November 3, 2021.

• This version includes all the updates from Version 9.0.7.

• As we transition from identity based authentication and authorization (X.509 certificates) to capability based
authorization (bearer tokens), we have removed Globus GSI support from this release. (HTCONDOR-697)

• Submission to ARC CE via the GridFTP interface (grid universe type nordugrid) is no longer supported. Sub-
mission to ARC CE’s REST interface can be done using the arc type in the grid universe. (HTCONDOR-697)

New Features:

• HTCondor will now, if configured, put some common cloud-related attributes in the slot ads. Check the manual
for details. (HTCONDOR-616)

• Revamped machine ad attribute OpSys* and configuration parameter OPSYS* values for macOS. The OS name
is now macOS and the version number no longer ignores the initial 10. or 11. of the actual OS version. For
example, for macOS 10.15.4, the value of machine attribute OpSysLongName is now "macOS 10.15" instead
of "MacOSX 15.4". (HTCONDOR-627)

• Added an example template for a custom file transfer plugin, which can be used to build new plugins.
(HTCONDOR-728)

• Added a new generic knob for setting the slot user for all slots. Configure ‘’NOBODY_SLOT_USER`` for all
slots, instead of configuring a SLOT<N>_USER for each slot. (HTCONDOR-720)

724 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-820
https://opensciencegrid.atlassian.net/browse/HTCONDOR-809
https://opensciencegrid.atlassian.net/browse/HTCONDOR-794
https://opensciencegrid.atlassian.net/browse/HTCONDOR-697
https://opensciencegrid.atlassian.net/browse/HTCONDOR-697
https://opensciencegrid.atlassian.net/browse/HTCONDOR-616
https://opensciencegrid.atlassian.net/browse/HTCONDOR-627
https://opensciencegrid.atlassian.net/browse/HTCONDOR-728
https://opensciencegrid.atlassian.net/browse/HTCONDOR-720

HTCondor Manual, Release 10.0.9

• Improved and simplified how HTCondor locates the blahp software. Configuration parameter GLITE_LOCATION
has been replaced by BLAHPD_LOCATION. (HTCONDOR-713)

• Added new attributes to the job ClassAd which records the number of files transferred between the con-
dor_shadow and condor_starter only during the last run of the job. (HTCONDOR-741)

• When declining to put a job on hold due to the temporary scratch directory disappearing, verify that the directory
is expected to exist and require that the job not be local universe. (HTCONDOR-680)

Bugs Fixed:

• None.

11.4.24 Version 9.2.0

Release Notes:

• HTCondor version 9.2.0 released on September 23, 2021.

• This version includes all the updates from Version 9.0.6.

New Features:

• Added a SERVICE node type to condor_dagman: a special node which runs in parallel to a DAG for the duration of
its workflow. This can be used to run tasks that monitor or report on a DAG workflow without directly impacting
it. (HTCONDOR-437)

• Added new configuration parameter NEGOTIATOR_MIN_INTERVAL, which sets the minimum amount of the time
between the start of one negotiation cycle and the next. (HTCONDOR-606)

• The condor_userprio tool now accepts one or more username arguments and will report priority and usage for
only those users (HTCONDOR-559)

• Added a new -yes command-line argument to the condor_annex, allowing it to request EC2 instances without
manual user confirmation. (HTCONDOR-443)

Bugs Fixed:

• HTCondor no longer crashes on start-up if COLLECTOR_HOST is set to a string with a colon and a port number,
but no host part. (HTCONDOR-602)

• Changed the default value of configuration parameter MAIL to /usr/bin/mail on Linux. This location is valid on
all of our supported Linux platforms, unlike the previous default value of /bin/mail. (HTCONDOR-581)

• Removed unnecessary limit on history ad polling and fixed some configuration parameter checks in con-
dor_adstash. (HTCONDOR-629)

11.4.25 Version 9.1.6

Release Notes:

• HTCondor version 9.1.6 limited release on September 14, 2021.

New Features:

• None.

Bugs Fixed:

• Fixed a bug that prevented Singularity jobs from running when the Singularity binary emitted many warning
messages to stderr. (HTCONDOR-698)

11.4. Version 9 Feature Releases 725

https://opensciencegrid.atlassian.net/browse/HTCONDOR-713
https://opensciencegrid.atlassian.net/browse/HTCONDOR-741
https://opensciencegrid.atlassian.net/browse/HTCONDOR-680
https://opensciencegrid.atlassian.net/browse/HTCONDOR-437
https://opensciencegrid.atlassian.net/browse/HTCONDOR-606
https://opensciencegrid.atlassian.net/browse/HTCONDOR-559
https://opensciencegrid.atlassian.net/browse/HTCONDOR-443
https://opensciencegrid.atlassian.net/browse/HTCONDOR-602
https://opensciencegrid.atlassian.net/browse/HTCONDOR-581
https://opensciencegrid.atlassian.net/browse/HTCONDOR-629
https://opensciencegrid.atlassian.net/browse/HTCONDOR-698

HTCondor Manual, Release 10.0.9

11.4.26 Version 9.1.5

Release Notes:

• HTCondor version 9.1.5 limited release on September 8, 2021.

New Features:

• The number of files transferred between the condor_shadow and condor_starter is now recorded in the job ad
with the new attributes. (HTCONDOR-679)

Bugs Fixed:

• None.

11.4.27 Version 9.1.4

Release Notes:

• HTCondor version 9.1.4 limited release on August 31, 2021.

New Features:

• Jobs are no longer put on hold if a failure occurs due to the scratch execute directory unexpectedly disappearing.
Instead, the jobs will return to idle status to be re-run. (HTCONDOR-664)

Bugs Fixed:

• Fixed a problem introduced in HTCondor version 9.1.3 where X.509 proxy delegation to older versions of HT-
Condor would fail. (HTCONDOR-674)

11.4.28 Version 9.1.3

Release Notes:

• HTCondor version 9.1.3 released on August 19, 2021.

• This version includes all the updates from Version 9.0.5.

• Globus GSI is no longer needed for X.509 proxy delegation

• GSI is no longer in the list of default authentication methods. To use GSI, you must enable it by setting one
or more of the SEC_<access-level>_AUTHENTICATION_METHODS configuration parameters. (HTCONDOR-
518)

New Features:

• The semantics of undefined user job policy expressions has changed. A policy whose expression evaluates to
undefined is now uniformly ignored, instead of either putting the job on hold or treated as false. (HTCONDOR-
442)

• Added two new attributes to the job ClassAd, NumHolds and NumHoldsByReason, that are used to provide
historical information about how often this job went on hold and why. Details on all job ClassAd attributes,
including these two new attributes, can be found in section: Job ClassAd Attributes (HTCONDOR-554)

• The “ToE tag” entry in the job event log now includes the exit code or signal number, if and as appropriate.
(HTCONDOR-429)

• Docker universe jobs are now run under the built-in docker init process, which means that zombie pro-
cesses are automatically reaped. This can be turned off with the knob DOCKER_RUN_UNDER_INIT = false
(HTCONDOR-462)

726 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-679
https://opensciencegrid.atlassian.net/browse/HTCONDOR-664
https://opensciencegrid.atlassian.net/browse/HTCONDOR-674
https://opensciencegrid.atlassian.net/browse/HTCONDOR-518
https://opensciencegrid.atlassian.net/browse/HTCONDOR-518
https://opensciencegrid.atlassian.net/browse/HTCONDOR-442
https://opensciencegrid.atlassian.net/browse/HTCONDOR-442
https://opensciencegrid.atlassian.net/browse/HTCONDOR-554
https://opensciencegrid.atlassian.net/browse/HTCONDOR-429
https://opensciencegrid.atlassian.net/browse/HTCONDOR-462

HTCondor Manual, Release 10.0.9

• Many services support the “S3” protocol. To reduce confusion, we’ve added new aliases for the submit-file com-
mands aws_access_key_id_file and aws_secret_access_key_file: s3_access_key_id_file and
s3_secret_access_key_file. We also added support for gs://-style Google Cloud Storage URLs, with
the corresponding gs_access_key_id_file and gs_secret_access_key_file aliases. This support, and
the aliases, use Google Cloud Storage’s “interoperability” API. The HMAC access key ID and secret keys may
be obtained from the Google Cloud web console’s “Cloud Storage” section, the “Settings” menu item, under the
“interoperability” tab. (HTCONDOR-453)

• Add new submit command batch_extra_submit_args for grid universe jobs of type batch. This lets the user
supply arbitrary command-line arguments to the submit command of the target batch system. These are supplied
in addition to the command line arguments derived from other attributes of the job ClassAd. (HTCONDOR-526)

• When GSI authentication is configured or used, a warning is now printed to daemon logs and the stderr of
tools. These warnings can be suppressed by setting configuration parameters WARN_ON_GSI_CONFIGURATION
and WARN_ON_GSI_USAGE to False. (HTCONDOR-517)

• Introduced a new command-line tool, htcondor (see man page) for managing HTCondor jobs and resources.
This tool also includes new capabilities for running HTCondor jobs on Slurm machines which are temporarily
acquired to act as HTCondor execution points. (HTCONDOR-252)

Bugs Fixed:

• Fixed a bug where jobs cannot start on Linux if the execute directory is placed under /tmp or /var/tmp. The
problem is this breaks the default MOUNT_UNDER_SCRATCH option. As a result, if the administrator lo-
cated EXECUTE under tmp, HTCondor can no longer make a private /tmp or /var/tmp directory for the job.
(HTCONDOR-484)

11.4.29 Version 9.1.2

Release Notes:

• HTCondor version 9.1.2 released on July 29, 2021.

New Features:

• None.

Bugs Fixed:

• Security Items: This release of HTCondor fixes security-related bugs described at

– http://htcondor.org/security/vulnerabilities/HTCONDOR-2021-0003.

– http://htcondor.org/security/vulnerabilities/HTCONDOR-2021-0004.

(HTCONDOR-509) (HTCONDOR-587)

11.4.30 Version 9.1.1

Release Notes:

• HTCondor version 9.1.1 released on July 27, 2021 and pulled two days later when an issue was found with a
patch.

New Features:

• None.

Bugs Fixed:

11.4. Version 9 Feature Releases 727

https://opensciencegrid.atlassian.net/browse/HTCONDOR-453
https://opensciencegrid.atlassian.net/browse/HTCONDOR-526
https://opensciencegrid.atlassian.net/browse/HTCONDOR-517
https://opensciencegrid.atlassian.net/browse/HTCONDOR-252
https://opensciencegrid.atlassian.net/browse/HTCONDOR-484
http://htcondor.org/security/vulnerabilities/HTCONDOR-2021-0003
http://htcondor.org/security/vulnerabilities/HTCONDOR-2021-0004
https://opensciencegrid.atlassian.net/browse/HTCONDOR-509
https://opensciencegrid.atlassian.net/browse/HTCONDOR-587

HTCondor Manual, Release 10.0.9

11.4.31 Version 9.1.0

Release Notes:

• HTCondor version 9.1.0 released on May 20, 2021.

• This version includes all the updates from Version 9.0.1.

• The condor_convert_history command was removed. (HTCONDOR-392)

New Features:

• Added support for submission to the ARC CE REST interface via the new grid universe type arc. (HTCONDOR-
138)

• Added a new option in DAGMan to put failed jobs on hold and keep them in the queue when is True. For some
types of transient failures, this allows users to fix whatever caused their job to fail and then release it, allowing
the DAG execution to continue. (HTCONDOR-245)

• gdb and strace now work in Docker Universe jobs. (HTCONDOR-349)

• The condor_startd on platforms that support Docker now runs a simple Docker container at startup to ver-
ify that docker universe completely works. This can be disabled with the knob DOCKER_PERFORM_TEST
(HTCONDOR-325)

• On Linux machines with performance counter support, vanilla universe jobs now report the number of machine
instructions executed (HTCONDOR-390)

Bugs Fixed:

• None.

11.5 Version 9.0 LTS Releases

These are Long Term Support (LTS) releases of HTCondor. As usual, only bug fixes (and potentially, ports to new
platforms) will be provided in future 9.0.y releases. New features will be added in the 9.x.y feature releases.

The details of each version are described below.

11.5.1 Version 9.0.20

Release Notes:

• HTCondor version 9.0.20 not yet released.

New Features:

• Added configuration parameter , which allows other authentication methods to be attemped if a client’s SSL
certificate can’t be mapped in the daemon’s map file. (HTCONDOR-2145)

Bugs Fixed:

• None.

728 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-392
https://opensciencegrid.atlassian.net/browse/HTCONDOR-138
https://opensciencegrid.atlassian.net/browse/HTCONDOR-138
https://opensciencegrid.atlassian.net/browse/HTCONDOR-245
https://opensciencegrid.atlassian.net/browse/HTCONDOR-349
https://opensciencegrid.atlassian.net/browse/HTCONDOR-325
https://opensciencegrid.atlassian.net/browse/HTCONDOR-390
https://opensciencegrid.atlassian.net/browse/HTCONDOR-2145

HTCondor Manual, Release 10.0.9

11.5.2 Version 9.0.19

Release Notes:

• HTCondor version 9.0.19 released on June 30, 2022.

New Features:

• None.

Bugs Fixed:

• Remove limit on certificate chain length in SSL authentication. (HTCONDOR-1904)

11.5.3 Version 9.0.18

Release Notes:

• HTCondor version 9.0.18 released on June 22, 2022.

New Features:

• Added configuration parameter , which allows the client to present an X.509 proxy certificate during SSL au-
thentication with a daemon. (HTCONDOR-1781) (HTCONDOR-1866)

• Added configuration parameter , which controls whether the client checks the environment variable
X509_USER_PROXY for the location of a credential to use during SSL authentication with a daemon.
(HTCONDOR-1841)

• Added new script called condor_upgrade_check to help administrators check for known issues that exist and
changes needed for an HTCondor system when upgrading from V9 to V10. This script checks for three well
known breaking changes: changing of the default value for , changing to using PCRE2 for regular expression
matching, and changes to how users request GPUs. (HTCONDOR-1658)

Bugs Fixed:

• None.

11.5.4 Version 9.0.17

Release Notes:

• HTCondor version 9.0.17 released on September 29, 2022.

New Features:

• Increased the length of the password generated for Windows default slot user accounts from 14 characters to 32
characters, and added some code to ensure that complexity measures that look at character set and not length
will still be satisfied. (HTCONDOR-1232)

• Added -debug option to condor_drain tool. (HTCONDOR-1236)

• Removed support from the condor_startd for querying keyboard and mouse idle time, on legacy x86 Linux
machines that used an 8042 keyboard controller. This caused significant performance degradation in the con-
dor_startd on machines with many CPUs. (HTCONDOR-1297)

Bugs Fixed:

• Fixed a bug that would cause the condor_schedd to leak file descriptors, eventually run out, and crash, when
unable to launch the scheduler universe job for any reason. (HTCONDOR-1261)

11.5. Version 9.0 LTS Releases 729

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1904
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1781
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1866
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1841
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1658
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1232
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1236
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1297
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1261

HTCondor Manual, Release 10.0.9

• When a failure occurs with a grid universe job of type batch, the local job is now always put on hold, instead of
the remote job being canceled and automatically resubmitted. (HTCONDOR-1226)

• Job attribute GridJobId is no longer altered for batch grid universe jobs when the job enters Removed status.
(HTCONDOR-1224)

• Fixed a bug where forwarding a refreshed X.509 proxy for a batch grid universe job would fail. (HTCONDOR-
1222)

• Fixed a bug where DAGMan would fail when the keyword DONE was added to the JOB line in a DAG input
file. (HTCONDOR-1267)

• Fixed a bug where the FS and MUNGE authentication methods would treat local user accounts with very large
UID values (greater than 2^31) as the condor user. (HTCONDOR-1229)

• Fixed a bug with the condor_credmon_oauth where scope and audience claims were dropped from OAuth refresh
tokens on their first renewal. (HTCONDOR-1270)

• Added the appropriate Python cryptography package as a dependency to the condor-credmon-oauth RPM pack-
age. (HTCONDOR-1279)

• Fixed bugs with creation of a job manifest; see the manifest job submit command in the condor_submit man
page. (HTCONDOR-1350)

• If “Singularity” is really the “Apptainer” runtime, HTCondor now sets environment variables to be passed to
the job appropriately, which prevents Apptainer from displaying ugly warnings about how this won’t work in the
future. (HTCONDOR-1137)

11.5.5 Version 9.0.16

Release Notes:

• HTCondor version 9.0.16 released on August 16, 2022.

New Features:

• Singularity jobs now mount /tmp and /var/tmp under the scratch directory, not in tmpfs. (HTCONDOR-1193)

Bugs Fixed:

• Fixed a bug where if the submit file set checkpoint_exit_code, and the administrator enabled Singularity
support on the execute node, the job would go on hold at checkpoint time. (HTCONDOR-837)

• Fixed a bug where the condor_gridmanager would delete the job’s X.509 proxy file when it meant to delete a
temporary copy of the proxy file. (HTCONDOR-1223)

• Fixed a file descriptor leak when using SciTokens for authentication. (HTCONDOR-1188)

• Fixed a bug on Windows that caused a misleading error message about the SharedPortEndpoint when a daemon
exits. (HTCONDOR-1178)

• Fixed a bug where the condor_check_config tool raised an UnboundLocalError due to an undefined variable.
(HTCONDOR-1186)

• Fixed a bug in condor_gpu_discovery which would cause the tool to crash when OpenCL devices were detected
and GPU_DEVICE_ORDINAL was set in the environment. (HTCONDOR-1191)

• Fix a bug that could cause daemons to crash if their log rotates during shutdown. (HTCONDOR-1200)

• Fixed a bug where the condor_starter would wait forever for a reconnect from the condor_shadow if a network
failure occurred during cleanup after the job completed. (HTCONDOR-1213)

• The condor-credmon-oath package now properly pulls in python3-mod_wsgi on Enterprise Linux 8.
(HTCONDOR-1217)

730 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1226
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1224
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1222
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1222
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1267
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1229
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1270
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1279
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1350
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1137
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1193
https://opensciencegrid.atlassian.net/browse/HTCONDOR-837
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1223
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1188
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1178
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1186
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1191
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1200
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1213
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1217

HTCondor Manual, Release 10.0.9

11.5.6 Version 9.0.15

Release Notes:

• HTCondor version 9.0.15 released on July 21, 2022.

New Features:

• For batch grid universe jobs, report resources provisioned by the batch scheduler when available. (HTCONDOR-
1199)

Bugs Fixed:

• None.

11.5.7 Version 9.0.14

Release Notes:

• HTCondor version 9.0.14 released on July 12, 2022.

New Features:

• Made SciTokens mapping failures more prominent in the daemon logs. (HTCONDOR-1072)

• The manual page, usage and logging of the condor_set_shutdown tool has been improved to clarify what this
tool does and how to use it. (HTCONDOR-1102)

Bugs Fixed:

• Fixed a bug where if a job’s output and error were directed to the same file, no other output files would be
transferred. (HTCONDOR-1101)

• Ensure that the matching set of Python bindings is installed when HTCondor is upgraded on RPM based plat-
forms. (HTCONDOR-1127)

• Fixed a bug that caused $(OPSYSANDVER) to expand to nothing in a JOB_TRANSFORM. (HTCONDOR-1121)

• Fixed a bug in the Python bindings that prevented context managed htcondor.SecMan sessions from working.
(HTCONDOR-924)

• Fixed a bug where RemoteUserCpu and RemoteSysCpu attributes are occasionally set to 0 for successfully
completed jobs. (HTCONDOR-1162)

• Make condor-externals package dependency less strict to ease transition between CHTC and OSG RPM
repositories. (HTCONDOR-1177)

11.5.8 Version 9.0.13

Release Notes:

• HTCondor version 9.0.13 released on May 26, 2022.

New Features:

• If the configuration macro [SCHEDD|STARTD]_CRON_LOG_NON_ZERO_EXIT is set to true, the corresponding
daemon will write the cron job’s non-zero exit code to the log, followed by the cron job’s output. (HTCONDOR-
971)

• condor_config_val will now print an @=end/@end pair rather than simply = when printing multi-line configura-
tion values for -dump, -summary, and -verbose mode output. (HTCONDOR-1032)

11.5. Version 9.0 LTS Releases 731

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1199
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1199
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1072
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1102
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1101
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1127
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1121
https://opensciencegrid.atlassian.net/browse/HTCONDOR-924
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1162
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1177
https://opensciencegrid.atlassian.net/browse/HTCONDOR-971
https://opensciencegrid.atlassian.net/browse/HTCONDOR-971
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1032

HTCondor Manual, Release 10.0.9

• Add a SEC_CREDENTIAL_STORECRED_OPTS variable to condor_vault_storer to enable sending additional op-
tions to every condor_store_cred command. (HTCONDOR-1091)

• Recognize the new format of vault tokens, beginning with hvs. in addition to the old format beginning with s.
. (HTCONDOR-1091)

Bugs Fixed:

• The condor_run tool now reports job submit errors and warnings to the terminal rather than writing them into a
log file. (HTCONDOR-1002)

• Fixed a bug where Kerberos Authentication would fail for DAGMan. (HTCONDOR-1060)

• Fix problem that can cause HTCondor to not start up when the network configuration is complex. Long host-
names, multiple CCB addresses, having both IPv4 and IPv6 addresses, and long private network names all
contribute to complexity. (HTCONDOR-1070)

• Updated the Windows build of HTCondor to use SSL 1.1.1m. (HTCONDOR-840)

11.5.9 Version 9.0.12

Release Notes:

• HTCondor version 9.0.12 released on April 19, 2022.

New Features:

• None.

Bugs Fixed:

• Fixed a bug in the parallel universe that caused the condor_schedd to crash with partitionable slots.
(HTCONDOR-986)

• Fixed a bug that could cause a daemon to erase its security session to its family of daemon processes and subse-
quently crash when trying to connect to one of those daemons. (HTCONDOR-937)

• Fixed a bug that prevented the High-Availability Daemon (HAD) from working when user-based security is
enabled. (HTCONDOR-891)

• In a HAD configuration, the negotiator is now more robust when trying to update to collectors that may have
failed. It will no longer block and timeout for an extended period of time should this happen. (HTCONDOR-816)

• The Job Router no longer sets an incorrect User job attribute when routing a job between two condor_schedd s
with different values for configuration parameter UID_DOMAIN. (HTCONDOR-1005)

• Fixed a bug in the condor_startd drain command in the Python bindings that prevented it from working with
zero arguments. (HTCONDOR-936)

• Fixed a bug that prevented administrators from setting certain rare custom Linux parameters in the
linux_kernel_tuning_script. (HTCONDOR-990)

• DAGMan now publishes its status (total number of nodes, nodes done, nodes failed, etc.) to the job ad immedi-
ately at startup. (HTCONDOR-968)

• Fixed a bug where a credential file with an underscore in its filename could not be used by the curl plugin when
doing HTTPS transfers with a bearer token. It can now be accessed by replacing “_” with “.” in the URL scheme.
(HTCONDOR-1011)

• Fixed several unlikely bugs when parsing the time strings in ClassAds. (HTCONDOR-998)

• condor_version now reports the build ID on Debian and Ubuntu platforms. (HTCONDOR-749)

732 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1091
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1091
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1002
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1060
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1070
https://opensciencegrid.atlassian.net/browse/HTCONDOR-840
https://opensciencegrid.atlassian.net/browse/HTCONDOR-986
https://opensciencegrid.atlassian.net/browse/HTCONDOR-937
https://opensciencegrid.atlassian.net/browse/HTCONDOR-891
https://opensciencegrid.atlassian.net/browse/HTCONDOR-816
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1005
https://opensciencegrid.atlassian.net/browse/HTCONDOR-936
https://opensciencegrid.atlassian.net/browse/HTCONDOR-990
https://opensciencegrid.atlassian.net/browse/HTCONDOR-968
https://opensciencegrid.atlassian.net/browse/HTCONDOR-1011
https://opensciencegrid.atlassian.net/browse/HTCONDOR-998
https://opensciencegrid.atlassian.net/browse/HTCONDOR-749

HTCondor Manual, Release 10.0.9

11.5.10 Version 9.0.11

Release Notes:

• HTCondor version 9.0.11 released on March 15, 2022.

New Features:

• The condor_job_router can now create an IDTOKEN and send it them along with a routed job for use by the
job. This is controlled by a new configuration variable JOB_ROUTER_CREATE_IDTOKEN_NAMES and a new route
option SendIDTokens. (HTCONDOR-735)

Bugs Fixed:

• HTCondor will now properly transfer checkpoints if stream_output or stream_error is set and output or
error, respectively, is not an absolute path. (HTCONDOR-736)

• A problem where HTCondor would not create a directory on the execute node before trying to transfer a file
into it should no longer occur. (This would cause the job which triggered this problem to go on hold.) One way
to trigger this problem was by setting preserve_relative_paths and specifying the same directory in both
transfer_input_files and transfer_checkpoint_files. (HTCONDOR-857)

• The condor_annex tool no longer duplicates the first tag if given multiple -tag options on the command line.
You can now set longer user data on the command-line. (HTCONDOR-910)

• Fixed a bug in the condor_job_router that could result in routes and transforms substituting a default configura-
tion value rather than the value from the configuration files when a route or transform was applied (HTCONDOR-
902)

• For batch grid universe jobs, a small default memory value is no longer generated when request_memory is
not specified in the submit file. This restores the behavior in versions 9.0.1 and prior. (HTCONDOR-904)

• Fixed a bug in the FileTransfer mechanism where URL transfers caused subsequent failures to report incorrect
error messages. (HTCONDOR-915)

• Fixed a bug in the condor_dagman parser which caused SUBMIT-DESCRIPTION statements to return an error
even after parsing correctly. (HTCONDOR-928)

• Fix problem where condor_ssh_to_job may fail to connect to a job running under an HTCondor tarball instal-
lation (glidein) built from an RPM based platform. (HTCONDOR-942)

• The Python bindings no longer segfault when the htcondor.Submit constructor is passed a dictionary with an
entry whose value is None. (HTCONDOR-950)

11.5.11 Version 9.0.10

Release Notes:

• HTCondor version 9.0.10 released on March 15, 2022.

New Features:

• None.

Bugs Fixed:

• Security Items: This release of HTCondor fixes security-related bugs described at

– http://htcondor.org/security/vulnerabilities/HTCONDOR-2022-0001.

– http://htcondor.org/security/vulnerabilities/HTCONDOR-2022-0002.

– http://htcondor.org/security/vulnerabilities/HTCONDOR-2022-0003.

11.5. Version 9.0 LTS Releases 733

https://opensciencegrid.atlassian.net/browse/HTCONDOR-735
https://opensciencegrid.atlassian.net/browse/HTCONDOR-736
https://opensciencegrid.atlassian.net/browse/HTCONDOR-857
https://opensciencegrid.atlassian.net/browse/HTCONDOR-910
https://opensciencegrid.atlassian.net/browse/HTCONDOR-902
https://opensciencegrid.atlassian.net/browse/HTCONDOR-902
https://opensciencegrid.atlassian.net/browse/HTCONDOR-904
https://opensciencegrid.atlassian.net/browse/HTCONDOR-915
https://opensciencegrid.atlassian.net/browse/HTCONDOR-928
https://opensciencegrid.atlassian.net/browse/HTCONDOR-942
https://opensciencegrid.atlassian.net/browse/HTCONDOR-950
http://htcondor.org/security/vulnerabilities/HTCONDOR-2022-0001
http://htcondor.org/security/vulnerabilities/HTCONDOR-2022-0002
http://htcondor.org/security/vulnerabilities/HTCONDOR-2022-0003

HTCondor Manual, Release 10.0.9

(HTCONDOR-724) (HTCONDOR-730) (HTCONDOR-985)

11.5.12 Version 9.0.9

Release Notes:

• HTCondor version 9.0.9 released on January 13, 2022.

• Since CentOS 8 has been retired, we now build for Enterprise Linux 8 on Rocky Linux 8. (HTCONDOR-911)

• Debian 11 (bullseye) has been added as a supported platform. (HTCONDOR-94)

New Features:

• The OAUTH credmon is packaged for the Enterprise Linux 8 platform. (HTCONDOR-825)

Bugs Fixed:

• When a grid universe job of type condor fails on the remote system, the local job is now put on hold, instead of
automatically resubmitted. (HTCONDOR-871)

• Fixed a bug where a running parallel universe job would go to idle status when the job policy indicated it should
be held. (HTCONDOR-869)

• Fixed a bug running jobs in a Singularity container where the environment variables added by HTCondor
could include incorrect pathnames to the location of the job’s scratch directory. This occurred when setting
the SINGULARITY_TARGET_DIR configuration option. (HTCONDOR-885)

• Fixed a bug where the condor_job_router could crash while trying to report an invalid router configuration when
C-style comments were used before an old syntax route ClassAd. As a result of this fix the job router now treats
C-style comments as a indication that the route is old syntax. (HTCONDOR-864)

• Fixed a bug where binary bytes were trying to be written via an ASCII file handler in condor_credmon_oauth
when using Python 3. (HTCONDOR-633)

• Fixed a bug in condor_top where two daemon ClassAds were assumed to be the same if some specific attributes
were missing from the latest ClassAd. Also condor_top now exits early if no stats are provided by the queried
daemon. (HTCONDOR-880)

• Fixed a bug where the user job log could be written in the wrong directory when a spooled job’s output was
retrieved with condor_transfer_data. (HTCONDOR-886)

• Fixed a bug in condor_adstash where setting a list of condor_startds to query in the configuration lead to no
condor_startds being queried. (HTCONDOR-888)

11.5.13 Version 9.0.8

Release Notes:

• HTCondor version 9.0.8 released on December 2, 2021.

New Features:

• None.

Bugs Fixed:

• Fixed a bug where very large values of ImageSize and other job attributes that have _RAW equivalents would
get rounded incorrectly, and end up negative. (HTCONDOR-780)

734 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-724
https://opensciencegrid.atlassian.net/browse/HTCONDOR-730
https://opensciencegrid.atlassian.net/browse/HTCONDOR-985
https://opensciencegrid.atlassian.net/browse/HTCONDOR-911
https://opensciencegrid.atlassian.net/browse/HTCONDOR-94
https://opensciencegrid.atlassian.net/browse/HTCONDOR-825
https://opensciencegrid.atlassian.net/browse/HTCONDOR-871
https://opensciencegrid.atlassian.net/browse/HTCONDOR-869
https://opensciencegrid.atlassian.net/browse/HTCONDOR-885
https://opensciencegrid.atlassian.net/browse/HTCONDOR-864
https://opensciencegrid.atlassian.net/browse/HTCONDOR-633
https://opensciencegrid.atlassian.net/browse/HTCONDOR-880
https://opensciencegrid.atlassian.net/browse/HTCONDOR-886
https://opensciencegrid.atlassian.net/browse/HTCONDOR-888
https://opensciencegrid.atlassian.net/browse/HTCONDOR-780

HTCondor Manual, Release 10.0.9

• Fixed a bug with the handling of MAX_JOBS_PER_OWNER in the condor_schedd where it was treated as a per-
factory limit rather than as a per-owner limit for jobs submitted with the max_idle or max_materialize submit
keyword. (HTCONDOR-755)

• Fixed a bug in how the condor_schedd selects a new job to run on a dynamic slot after the previous job completes.
The condor_schedd could choose a job that requested more disk space than the slot provided, resulting in the
condor_startd refusing to start the job. (HTCONDOR-798)

• Fixed daemon log message that could allow unintended processes to use the condor_shared_port service.
(HTCONDOR-725)

• Fixed a bug in the ClassAds function substr() that could cause a crash if the offset argument was out of
range. (HTCONDOR-823)

• Fixed bugs in the Kerberos authentication code that cause a crash on macOS and can leak memory.
(HTCONDOR-200)

• Fixed a bug where if condor_schedd fails to claim a condor_startd, the job matched to that condor_startd
won’t be rematched for up to 20 minutes. (HTCONDOR-769)

11.5.14 Version 9.0.7

Release Notes:

• HTCondor version 9.0.7 released on November 2, 2021.

New Features:

• The configuration parameter SEC_TOKEN_BLACKLIST_EXPR has been renamed to
SEC_TOKEN_REVOCATION_EXPR. The old name is still recognized if the new one isn’t set. (HTCONDOR-744)

Bugs Fixed:

• condor_watch_q no longer has a limit on the number of job event log files it can watch. (HTCONDOR-658)

• Fix a bug in condor_watch_q which would cause it to fail when run on older kernels. (HTCONDOR-745)

• Fixed a bug where condor_gpu_discovery could segfault on some older versions of the nVidia libraries. This
would result in GPUs not being detected. The bug was introduced in HTCondor 9.0.6 and is known to occur
with CUDA run time 10.1. (HTCONDOR-760)

• Fixed a bug that could crash the condor_startd when claiming a slot with p-slot preemption. (HTCONDOR-737)

• Fixed a bug where the NumJobStarts and JobCurrentStartExecutingDate job ad attributes weren’t updated
if the job began executing while the condor_shadow and condor_starter were disconnected. (HTCONDOR-752)

• Ensure the HTCondor uses version 0.6.2 or later SciTokens library so that WLCG tokens can be read.
(HTCONDOR-801)

11.5.15 Version 9.0.6

Release Notes:

• HTCondor version 9.0.6 released on September 23, 2021.

New Features:

• Added a new option -log-steps to condor_job_router_info. When used with the -route-jobs option, this
option will log each step of the route transforms as they are applied. (HTCONDOR-578)

11.5. Version 9.0 LTS Releases 735

https://opensciencegrid.atlassian.net/browse/HTCONDOR-755
https://opensciencegrid.atlassian.net/browse/HTCONDOR-798
https://opensciencegrid.atlassian.net/browse/HTCONDOR-725
https://opensciencegrid.atlassian.net/browse/HTCONDOR-823
https://opensciencegrid.atlassian.net/browse/HTCONDOR-200
https://opensciencegrid.atlassian.net/browse/HTCONDOR-769
https://opensciencegrid.atlassian.net/browse/HTCONDOR-744
https://opensciencegrid.atlassian.net/browse/HTCONDOR-658
https://opensciencegrid.atlassian.net/browse/HTCONDOR-745
https://opensciencegrid.atlassian.net/browse/HTCONDOR-760
https://opensciencegrid.atlassian.net/browse/HTCONDOR-737
https://opensciencegrid.atlassian.net/browse/HTCONDOR-752
https://opensciencegrid.atlassian.net/browse/HTCONDOR-801
https://opensciencegrid.atlassian.net/browse/HTCONDOR-578

HTCondor Manual, Release 10.0.9

• The stdin passed to condor_job_router hooks of type _TRANSLATE_JOB will now be passed information on the
route in a format that is the same as what was passed in 8.8 LTS releases. It will always be a ClassAd, and include
the route Name as an attribute. (HTCONDOR-646)

• Added configuration parameter AUTH_SSL_REQUIRE_CLIENT_CERTIFICATE, a boolean value which defaults to
False. If set to True, then clients that authenticate to a daemon using SSL must present a valid SSL credential.
(HTCONDOR-236)

• The location of database files for the condor_schedd and the condor_negotiator can now be configured directly by
using the configuration variables JOB_QUEUE_LOG and ACCOUNTANT_DATABASE_FILE respectively. Formerly
you could control the directory of the negotiator database by configuring SPOOL but not otherwise, and the
configuration variable JOB_QUEUE_LOG existed but was not visible. (HTCONDOR-601)

• The condor_watch_q command now refuses to watch the queue if doing so would require using more kernel
resources (“inotify watches”) than allowed. This limit can be increased by your system administrator, and we
expect to remove this limitation in a future version of the tool. (HTCONDOR-676)

Bugs Fixed:

• The CUDA_VISIBLE_DEVICES environment variable may now contain CUDA<n> and GPU-<uuid> formatted
values, in addition to integer values. (HTCONDOR-669)

• Updated condor_gpu_discovery to be compatible with version 470 of nVidia’s drivers. (HTCONDOR-620)

• If run with only the CUDA runtime library available, condor_gpu_discovery and condor_gpu_utilization no
longer crash. (HTCONDOR-668)

• Fixed a bug in condor_gpu_discovery that could result in no output or a segmentation fault when the -opencl
argument was used. (HTCONDOR-729)

• Fixed a bug that prevented Singularity jobs from running when the Singularity binary emitted many warning
messages to stderr. (HTCONDOR-698)

• The Windows MSI installer has been updated so that it no longer reports that a script failed during installation
on the latest version of Windows 10. This update also changes the permissions of the configuration files created
by the installer so the installing user has edit access and all users have read access. (HTCONDOR-684)

• Fixed a bug that prevented condor_ssh_to_job from working to a personal or non-rootly condor. (HTCONDOR-
485)

• The bosco_cluster tool now clears out old installation files when the –add option is used to update an existing
installation. (HTCONDOR-577)

• Fixed a bug that could cause the condor_had daemon to fail at startup when the local machine has multiple IP
addresses. This bug is particularly likely to happen if PREFER_IPV4 is set to False. (HTCONDOR-625)

• For the machine ad attributes OpSys* and configuration parameters OPSYS*, treat macOS 11.X as if it were
macOS 10.16.X. This represents the major version numbers in a consistent, if somewhat inaccurate manner.
(HTCONDOR-626)

• Fixed a bug that ignored the setting of per-Accounting Group GROUP_AUTOREGROUP from working. Global
autoregroup worked correctly. (HTCONDOR-632)

• A self-checkpointing job’s output and error logs will no longer be interrupted by eviction if the job specifies
transfer_checkpoint_files; HTCondor now automatically considers them part of the checkpoint the way
it automatically considers them part of the output. (HTCONDOR-656)

• HTCondor now transfers the standard output and error logs when when_to_transfer_output is ON_SUCCESS
and transfer_output_files is empty. (HTCONDOR-673)

• Fixed a bug that could cause the starter to crash after transferring files under certain rare circumstances. This
also corrected a problem which may have been causing the number of bytes transferred to be undercounted.
(HTCONDOR-722)

736 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-646
https://opensciencegrid.atlassian.net/browse/HTCONDOR-236
https://opensciencegrid.atlassian.net/browse/HTCONDOR-601
https://opensciencegrid.atlassian.net/browse/HTCONDOR-676
https://opensciencegrid.atlassian.net/browse/HTCONDOR-669
https://opensciencegrid.atlassian.net/browse/HTCONDOR-620
https://opensciencegrid.atlassian.net/browse/HTCONDOR-668
https://opensciencegrid.atlassian.net/browse/HTCONDOR-729
https://opensciencegrid.atlassian.net/browse/HTCONDOR-698
https://opensciencegrid.atlassian.net/browse/HTCONDOR-684
https://opensciencegrid.atlassian.net/browse/HTCONDOR-485
https://opensciencegrid.atlassian.net/browse/HTCONDOR-485
https://opensciencegrid.atlassian.net/browse/HTCONDOR-577
https://opensciencegrid.atlassian.net/browse/HTCONDOR-625
https://opensciencegrid.atlassian.net/browse/HTCONDOR-626
https://opensciencegrid.atlassian.net/browse/HTCONDOR-632
https://opensciencegrid.atlassian.net/browse/HTCONDOR-656
https://opensciencegrid.atlassian.net/browse/HTCONDOR-673
https://opensciencegrid.atlassian.net/browse/HTCONDOR-722

HTCondor Manual, Release 10.0.9

11.5.16 Version 9.0.5

Release Notes:

• HTCondor version 9.0.5 released on August 18, 2021.

New Features:

• If the SCITOKENS authentication method succeeds (that is, the client presented a valid SciToken) but the user-
mapping fails, HTCondor will try the next authentication method in the list instead of failing. (HTCONDOR-589)

• The bosco_cluster command now creates backup files when the --override option is used. (HTCONDOR-591)

• Improved the detection of Red Hat Enterprise Linux based distributions. Previously, only CentOS was recog-
nized. Now, other distributions such as Scientific Linux and Rocky should be recognized. (HTCONDOR-
609)

• The condor-boinc package is no longer required to be installed with HTCondor, thus making condor-boinc
optional. (HTCONDOR-644)

Bugs Fixed:

• Fixed a bug on the Windows platform where condor_submit would crash rarely after successfully submitting
a job. This caused problems for programs that look at the return status of condor_submit, including con-
dor_dagman (HTCONDOR-579)

• The job attribute ExitCode is no longer missing from the job ad after OxExitHold triggers. (HTCONDOR-599)

• Fixed a bug where running condor_who as a non-root user on a Unix system would print a confusing warning to
stderr about running as non-root. (HTCONDOR-590)

• Fixed a bug where condor_gpu_discoverywould not report any GPUs if any MIG-enabled GPU on the system
were configured in certain ways. Fixed a bug which could cause condor_gpu_discovery’s output to become
unparseable after certain errors. (HTCONDOR-476)

• HTCondor no longer ignores files in a job’s spool directory if they happen to share a name with an entry
in transfer_input_files. This allows jobs to specify the same file in transfer_input_files and in
transfer_checkpoint_files, and still resume properly after a checkpoint. (HTCONDOR-583)

• Fixed a bug where jobs running on Linux machines with cgroups enabled would not count files created in
/dev/shm in the MemoryUsage attribute. (HTCONDOR-586)

• Fixed a bug in the condor_now tool, where the condor_schedd would not use an existing security session to run
the selected job on the claimed resources. This could often lead to the job being unable to start. (HTCONDOR-
603)

11.5.17 Version 9.0.4

Release Notes:

• HTCondor version 9.0.4 released on July 29, 2021.

New Features:

• None.

Bugs Fixed:

• Security Items: This release of HTCondor fixes security-related bugs described at

– http://htcondor.org/security/vulnerabilities/HTCONDOR-2021-0003.

– http://htcondor.org/security/vulnerabilities/HTCONDOR-2021-0004.

11.5. Version 9.0 LTS Releases 737

https://opensciencegrid.atlassian.net/browse/HTCONDOR-589
https://opensciencegrid.atlassian.net/browse/HTCONDOR-591
https://opensciencegrid.atlassian.net/browse/HTCONDOR-609
https://opensciencegrid.atlassian.net/browse/HTCONDOR-609
https://opensciencegrid.atlassian.net/browse/HTCONDOR-644
https://opensciencegrid.atlassian.net/browse/HTCONDOR-579
https://opensciencegrid.atlassian.net/browse/HTCONDOR-599
https://opensciencegrid.atlassian.net/browse/HTCONDOR-590
https://opensciencegrid.atlassian.net/browse/HTCONDOR-476
https://opensciencegrid.atlassian.net/browse/HTCONDOR-583
https://opensciencegrid.atlassian.net/browse/HTCONDOR-586
https://opensciencegrid.atlassian.net/browse/HTCONDOR-603
https://opensciencegrid.atlassian.net/browse/HTCONDOR-603
http://htcondor.org/security/vulnerabilities/HTCONDOR-2021-0003
http://htcondor.org/security/vulnerabilities/HTCONDOR-2021-0004

HTCondor Manual, Release 10.0.9

(HTCONDOR-509) (HTCONDOR-587)

11.5.18 Version 9.0.3

Release Notes:

• HTCondor version 9.0.3 released on July 27, 2021 and pulled two days later when an issue was found with a
patch.

New Features:

• None.

Bugs Fixed:

• None.

11.5.19 Version 9.0.2

Release Notes:

• HTCondor version 9.0.2 released on July 8, 2021.

• Removed support for GRAM grid jobs. (HTCONDOR-561)

New Features:

• HTCondor can now be configured to only use FIPS 140-2 approved security functions by using the new config-
uration template: use security:FIPS. (HTCONDOR-319)

• Added new command-line flag to condor_gpu_discovery, -divide, which functions like -repeat, except
that it divides the GPU attribute GlobalMemoryMb by the number of repeats (and adds the GPU attribute
DeviceMemoryMb, which is the undivided total). To enable this new behavior, modify GPU_DISCOVERY_EXTRA
appropriately. (HTCONDOR-454)

• The maximum line length for STARTD_CRON and SCHEDD_CRON job output has been extended from 8k bytes to
64k bytes. (HTCONDOR-498)

• Added two new commands to condor_submit - use_scitokens and scitokens_file. (HTCONDOR-508)

• Reduced condor_shadow memory usage by 40% or more on machines with many (more than 64) cores.
This allows a correspondingly greater number of shadows and thus jobs to run on these submit machines.
(HTCONDOR-540)

• Added support for using an authenticated SMTP relay on port 587 to condor_mail.exe on Windows.
(HTCONDOR-303)

• The condor_job_router_info tool will now show info for a rootly JobRouter even when the tool is not running as
root. This change affects the way jobs are matched when using the -match or -route options. (HTCONDOR-
525)

• condor_gpu_discovery now recognizes Capability 8.6 devices and reports the correct number of cores per Com-
pute Unit. (HTCONDOR-544)

• Added command line option --copy-ssh-key to bosco_cluster. When set to no, this option prevents
bosco_cluster from installing an ssh key on the remote system, and assume passwordless ssh is already pos-
sible. (HTCONDOR-270)

• Update to be able to link in scitokens-cpp library directly, rather than always using dlopen(). This allows SciTo-
kens to be used with the conda-forge build of HTCondor. (HTCONDOR-541)

Bugs Fixed:

738 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-509
https://opensciencegrid.atlassian.net/browse/HTCONDOR-587
https://opensciencegrid.atlassian.net/browse/HTCONDOR-561
https://opensciencegrid.atlassian.net/browse/HTCONDOR-319
https://opensciencegrid.atlassian.net/browse/HTCONDOR-454
https://opensciencegrid.atlassian.net/browse/HTCONDOR-498
https://opensciencegrid.atlassian.net/browse/HTCONDOR-508
https://opensciencegrid.atlassian.net/browse/HTCONDOR-540
https://opensciencegrid.atlassian.net/browse/HTCONDOR-303
https://opensciencegrid.atlassian.net/browse/HTCONDOR-525
https://opensciencegrid.atlassian.net/browse/HTCONDOR-525
https://opensciencegrid.atlassian.net/browse/HTCONDOR-544
https://opensciencegrid.atlassian.net/browse/HTCONDOR-270
https://opensciencegrid.atlassian.net/browse/HTCONDOR-541

HTCondor Manual, Release 10.0.9

• When a Singularity container is started, and the test is run before the job, and the test fails, the job is now put
back to idle instead of held. (HTCONDOR-539)

• Fixed Munge authentication, which was broken starting with HTCondor 8.9.9. (HTCONDOR-378)

• Fixed a bug in the Windows MSI installer where installation would only succeed at the default location of C:\
Condor. (HTCONDOR-543)

• Fixed a bug that prevented docker universe jobs from running on machines whose hostnames were longer than
about 60 characters. (HTCONDOR-473)

• Fixed a bug that prevented bosco_cluster from detecting the remote host’s platform when it is running Scientific
Linux 7. (HTCONDOR-503)

• Fixed a bug that caused the query-krb and delete-krb options of condor_store_cred to fail. This bug also
affected the Python bindings query_user_cred and delete_user_cred methods (HTCONDOR-533)

• Attribute GridJobId is no longer removed from the job ad of grid-type batch jobs when the job enters
Completed or Removed status. (HTCONDOR-534)

• Fixed a bug that could prevent HTCondor from noticing new events in job event logs, if those logs were being
written from one machine and read from another via AFS. (HTCONDOR-463)

• Using expressions for values in the ads of grid universe jobs of type batch now works correctly. (HTCONDOR-
507)

• Fixed a bug that prevented a personal condor from running in a private user namespace. (HTCONDOR-550)

• Fixed a bug in the condor_who program that caused it to hang on Linux systems, especially those running AFS
or other shared filesystems. (HTCONDOR-530) (HTCONDOR-573)

• Fixed a bug that cause the condor_master to hang for up to two minutes when shutting down, if it was configured
to be a personal condor. (HTCONDOR-548)

• When a grid universe job of type nordugrid fails on the remote system, the local job is now put on hold, instead
of automatically resubmitted. (HTCONDOR-535)

• Fixed a bug that caused SSL authentication to crash on rare occasions. (HTCONDOR-428)

• Added the missing Ceiling attribute to negotiator user priorities in the Python bindings. (HTCONDOR-560)

• Fixed a bug in DAGMan where SUBMIT-DESCRIPTION statements were incorrectly logging duplicate descrip-
tion warnings. (HTCONDOR-511)

• Add the libltdl library to the HTCondor tarball. This library was inadvertently omitted when streamlining the
build process in version 8.9.12. (HTCONDOR-576)

11.5.20 Version 9.0.1

Release Notes:

• HTCondor version 9.0.1 released on May 17, 2021.

• The installer for Windows will now replace the condor_config file even on an update. You must use
condor_config.local or a configuration directory to customize the configuration if you wish to preserve
configuration changes across updates.

Known Issues:

• There is a known issue with the installer for Windows where it does not honor the Administrator Access list set
in the MSI permissions dialog on a fresh install. Instead it will always set the Administrator access to the default
value.

• MUNGE security is temporarily broken.

11.5. Version 9.0 LTS Releases 739

https://opensciencegrid.atlassian.net/browse/HTCONDOR-539
https://opensciencegrid.atlassian.net/browse/HTCONDOR-378
https://opensciencegrid.atlassian.net/browse/HTCONDOR-543
https://opensciencegrid.atlassian.net/browse/HTCONDOR-473
https://opensciencegrid.atlassian.net/browse/HTCONDOR-503
https://opensciencegrid.atlassian.net/browse/HTCONDOR-533
https://opensciencegrid.atlassian.net/browse/HTCONDOR-534
https://opensciencegrid.atlassian.net/browse/HTCONDOR-463
https://opensciencegrid.atlassian.net/browse/HTCONDOR-507
https://opensciencegrid.atlassian.net/browse/HTCONDOR-507
https://opensciencegrid.atlassian.net/browse/HTCONDOR-550
https://opensciencegrid.atlassian.net/browse/HTCONDOR-530
https://opensciencegrid.atlassian.net/browse/HTCONDOR-573
https://opensciencegrid.atlassian.net/browse/HTCONDOR-548
https://opensciencegrid.atlassian.net/browse/HTCONDOR-535
https://opensciencegrid.atlassian.net/browse/HTCONDOR-428
https://opensciencegrid.atlassian.net/browse/HTCONDOR-560
https://opensciencegrid.atlassian.net/browse/HTCONDOR-511
https://opensciencegrid.atlassian.net/browse/HTCONDOR-576

HTCondor Manual, Release 10.0.9

New Features:

• The Windows MSI installer now sets up user-based authentication and creates an IDTOKEN for local adminis-
tration. (HTCONDOR-407)

• When the AssignAccountingGroup configuration template is in effect and a user submits a job with a requested
accounting group that they are not permitted to use, the submit will be rejected with an error message. This
configuration template has a new optional second argument that can be used to quietly ignore the requested
accounting group instead. (HTCONDOR-426)

• Added the OpenBLAS environment variable OPENBLAS_NUM_THREADS to the list of environment variables ex-
ported by the condor_starter per these recommendations. (HTCONDOR-444)

• HTCondor now parses /usr/share/condor/config.d/ for configuration before /etc/condor/config.d,
so that packagers have a convenient place to adjust the HTCondor configuration. (HTCONDOR-45)

• Added a boolean option LOCAL_CREDMON_TOKEN_USE_JSON for the local issuer condor_credmon_oauth that is
used to decide whether or not the bare token string in a generated access token file is wrapped in JSON. Default
is LOCAL_CREDMON_TOKEN_USE_JSON = true (wrap token in JSON). (HTCONDOR-367)

Bugs Fixed:

• Fixed a bug where sending an updated proxy to an execute node could cause the condor_starter to segfault when
AES encryption was enabled (which is the default). (HTCONDOR-456) (HTCONDOR-490)

• Fixed a bug with jobs that require running on a different machine after a failure by referring to MachineAttrX
attributes in their requirements expression. (HTCONDOR-434)

• Fixed a bug in the way AutoClusterAttrs was calculated that could cause matchmaking to ignore attributes
changed by job_machine_attrs. (HTCONDOR-414)

• Fixed a bug in the implementation of the submit commands max_retries and success_exit_code which
would cause jobs which exited on a signal to go on hold (instead of exiting or being retried). (HTCONDOR-430)

• Fixed a memory leak in the job router, usually triggered when job policy expressions cause removal of the job.
(HTCONDOR-408)

• Fixed some bugs that caused bosco_cluster --add to fail. Allow remote_gahp to work with
older Bosco installations via the --rgahp-script option. Fixed security authorization failure be-
tween condor_gridmanager and condor_ft-gahp. (HTCONDOR-433) (HTCONDOR-438) (HTCONDOR-451)
(HTCONDOR-452) (HTCONDOR-487)

• Fixed a bug in condor_submit when a SEC_CREDENTIAL_PRODUCER was configured that could result in con-
dor_submit reporting that the Queue statement of a submit file was missing or invalid. (HTCONDOR-427)

• Fixed a bug in the local issuer condor_credmon_oauth where SciTokens version 2.0 tokens were being generated
without an “aud” claim. The “aud” claim is now set to LOCAL_ISSUER_TOKEN_AUDIENCE. The “ver” claim can
be changed from the default of “scitokens:2.0” by setting LOCAL_ISSUER_TOKEN_VERSION. (HTCONDOR-445)

• Fixed several bugs that could result in the condor_token_ tools aborting with a c++ runtime error on newer
versions of Linux. (HTCONDOR-449)

740 Chapter 11. Version History and Release Notes

https://opensciencegrid.atlassian.net/browse/HTCONDOR-407
https://opensciencegrid.atlassian.net/browse/HTCONDOR-426
https://github.com/xianyi/OpenBLAS/wiki/faq#how-can-i-use-openblas-in-multi-threaded-applications
https://opensciencegrid.atlassian.net/browse/HTCONDOR-444
https://opensciencegrid.atlassian.net/browse/HTCONDOR-45
https://opensciencegrid.atlassian.net/browse/HTCONDOR-367
https://opensciencegrid.atlassian.net/browse/HTCONDOR-456
https://opensciencegrid.atlassian.net/browse/HTCONDOR-490
https://opensciencegrid.atlassian.net/browse/HTCONDOR-434
https://opensciencegrid.atlassian.net/browse/HTCONDOR-414
https://opensciencegrid.atlassian.net/browse/HTCONDOR-430
https://opensciencegrid.atlassian.net/browse/HTCONDOR-408
https://opensciencegrid.atlassian.net/browse/HTCONDOR-433
https://opensciencegrid.atlassian.net/browse/HTCONDOR-438
https://opensciencegrid.atlassian.net/browse/HTCONDOR-451
https://opensciencegrid.atlassian.net/browse/HTCONDOR-452
https://opensciencegrid.atlassian.net/browse/HTCONDOR-487
https://opensciencegrid.atlassian.net/browse/HTCONDOR-427
https://opensciencegrid.atlassian.net/browse/HTCONDOR-445
https://opensciencegrid.atlassian.net/browse/HTCONDOR-449

HTCondor Manual, Release 10.0.9

11.5.21 Version 9.0.0

Release Notes:

• HTCondor version 9.0.0 released on April 14, 2021.

• The installer for Windows platforms was not ready for 9.0.0. Windows support will appear in 9.0.1.

• Removed support for CREAM and Unicore grid jobs, glexec privilege separation, DRMAA, and condor_cod.

Known Issues:

• MUNGE security is temporarily broken.

• The bosco_cluster command is temporarily broken.

New Features:

• A new tool condor_check_config can be used after an upgrade when you had a working condor configuration
before the upgrade. It will report configuration values that should be changed. In this version the tool for a few
things related to the change to a more secure configuration by default. (HTCONDOR-384)

• The condor_gpu_discovery tool now defaults to using -short-uuid form for GPU ids on machines where the
CUDA driver library has support for them. A new option -by-index has been added to select index-based GPU
ids. (HTCONDOR-145)

Bugs Fixed:

• Fixed a bug introduced in 8.9.12 where the condor_job_router inside a CE would crash when evaluating periodic
expressions (HTCONDOR-402)

11.5. Version 9.0 LTS Releases 741

https://opensciencegrid.atlassian.net/browse/HTCONDOR-384
https://opensciencegrid.atlassian.net/browse/HTCONDOR-145
https://opensciencegrid.atlassian.net/browse/HTCONDOR-402

HTCondor Manual, Release 10.0.9

742 Chapter 11. Version History and Release Notes

CHAPTER

TWELVE

COMMAND REFERENCE MANUAL (MAN PAGES)

12.1 classad_eval

Evaluate the given ClassAd expression(s) in the context of the given ClassAd attributes, and prints the result in ClassAd
format.

12.1.1 Synopsis

classad_eval -help

classad_eval [-[ad]-file <file-name>] [-target-file <file-name>] <ad | assignment | expression | -quiet>+

12.1.2 Description

classad_eval is designed to help you understand and debug ClassAd expressions. You can supply a ClassAd on the
command-line, or via a file, as context for evaluating the expression. You may also construct a ClassAd one argument
at a time, with assignments.

By default, clasad_eval will print the ClassAd context used to evaluate the expression before printing the result of
the first expression, and for every expression with a new ClassAd thereafter. You may suppress this behavior with the
-quiet flag, which replaces an ad, assignment, or expression, and quiets every expression after it on the command
line.

Attributes specified on the command line, including those specified as part of a complete ad, replace attributes in the
context ad, which starts empty. You can’t remove attributes from the context ad, but you can set them to undefined.

Options, flags, and arguments may be freely intermixed, and take effect in order.

Note that classad_eval uses the new ClassAd syntax: ClassAds specified in a file must be surrounded by square
brackets and attribute-value pairs must be separated by semicolons. For compability with condor_q -long:new
and condor_status -long:new, classad_eval will use only the first ClassAd if passed a ClassAd list of them.

743

HTCondor Manual, Release 10.0.9

12.1.3 Examples

Almost every ad, assignment, or expression will require you to single quote them. There are some exceptions; for
instance, the following two commands are equivalent:

$ classad_eval 'a = 2' 'a * 2'
$ classad_eval a=2 a*2

You can specify attributes for the context ad in three ways:

$ classad_eval '[a = 2; b = 2]' 'a + b'
$ classad_eval 'a = 2; b = 2' 'a + b'
$ classad_eval 'a = 2' 'b = 2' 'a + b'

You need not supply an empty ad for expressions that don’t reference attributes:

$ classad_eval 'strcat("foo", "bar")'

If you want to evaluate an expression in the context of the job ad, first store the job ad in a file:

$ condor_q -l:new 1227.2 > job.ad
$ classad_eval -quiet -file job.ad 'JobUniverse'

You can extract a machine ad in a similar way:

$ condor_status -l:new slot1@exec-17 > machine.ad
$ classad_eval -quiet -file machine.ad 'Rank'

You may evaluate an expression in order to check a match by using the -target-file option:

$ condor_q -l:new 1227.2 > job.ad
$ condor_status -l:new exec-17 > machine.ad
$ classad_eval -quiet -my-file job.ad -target-ad machine.ad 'MY.requirements'␣
→˓'TARGET.requirements'

Assignments (including whole ClassAds) are all merged into the context ad:

$ classad_eval 'x = y' 'x' 'y = 7' 'x' '[x = 6; z = "foo";]' 'x'
[x = y]
undefined
[y = 7; x = y]
7
[z = "foo"; x = 6; y = 7]
6

You can suppress printing the context ad partway through:

$ classad_eval 'x = y' 'x' -quiet 'y = 7' 'x' '[x = 6; z = "foo";]' 'x'
[x = y]
undefined
7
6

744 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.1.4 Exit Status

Returns 0 on success.

12.1.5 Author

Center for High Throughput Computing, University of Wisconsin-Madison

12.1.6 Copyright

Copyright © 1990-2019 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

12.2 ClassAds

The ClassAd language consists of two parts: structured data (called “ClassAds”), and expressions.

HTCondor uses ClassAds to describe various things, primarily machines and jobs; it uses expressions as constraints
for querying ClassAds, and for defining what it means for two ClassAds to match each other.

12.2.1 Data Syntax

A ClassAd is a list of attribute-value pairs, separated by newlines. Values may be booleans, integers, reals, strings,
dictionaries, lists, or the special values UNDEFINED and ERROR. Dictionaries are marked by square brackets and
lists by braces; dictionaries separate elements with semicolons, and lists separate elements with commas.

attribute_name = "attribute-value"
pi = 3.141
count = 3
list = { "red", "green", "blue" }
dictionary = [type = "complex"; real = 7.75; imaginary = -3]
structured_attr = [hostnames = { "submit-1", "submit", "submit1" };

ip = "127.0.0.1"; port = "9618"]

For the list of ClassAd attributes generated by HTCondor, see https://htcondor.readthedocs.io/en/latest/
classad-attributes/index.html.

12.2.2 Expression Syntax

An expression consists of literals (from the data syntax) and attribute references composed with operators and functions.
The value of a ClassAd attribute may be an expression.

MY.count < 10 && regexp(".*example.*", attribute_name)

12.2. ClassAds 745

https://htcondor.readthedocs.io/en/latest/classad-attributes/index.html
https://htcondor.readthedocs.io/en/latest/classad-attributes/index.html

HTCondor Manual, Release 10.0.9

Attribute References

An attribute reference always includes an attribute name. In HTCondor, when determining if two ClassAds match,
an expression may specify which ad’s value is used by prefixing it with MY. or TARGET.. Attribute references are
case-insensitive.

MY.count
TARGET.machine

An element of a dictionary is referenced by using the subscript operator ([]) with an expression that evaluates to a
string or with a dot (.), as follows:

MY.structured_attr.hostnames
MY.structured_attr["hostnames"]

Note that the following references the attribute named by the attribute hostnames, not the attribute named hostnames:

MY.structured_attr[hostnames]

List elements are referenced by an expression that evaluates to an integer, where the first element in the list is num-
bered 0. For example, if colors = { [x = "1"], [x = "2", y = "3"] }, then MY.structure_attr.
colors[0] results in [x = "1"].

UNDEFINED and ERROR

The ClassAd language includes two special values, UNDEFINED and ERROR. An attribute may be set to either explic-
itly, but these values typically result from referring to an attribute that doesn’t exist, or asking for something impossible:

undefined_reference = MY.undefined_attribute
explicitly_undefined = UNDEFINED
one_error_value = "three" * 7
another_error_value = 1.3 / 0

Most expressions that refer to values that are UNDEFINED will evaluate to UNDEFINED. The same applies to ERROR.

Operators

The operators *, /, + and - operate arithmetically, on integers and reals.

The comparison operators ==, !=, <=, <, >= and > operate on booleans, integers, reals and strings. String comparison
is case-insensitive. Comparing a string and a non-string value results in ERROR.

The special comparison operator =?= is like == except in the following two ways: it is case-sensitive when comparing
strings; and, when comparing values to UNDEFINED, results in FALSE instead of UNDEFINED. (If comparing
UNDEFINED to itself, the operator =?= results in TRUE).

The special comparison operator =!= is the negation of =?=.

The logical operators && and || operate on integers and reals; non-zero is true, and zero is false.

The ternary operator x ? y : z operates on expressions.

The default operator x ?: z returns x if x is defined and z otherwise.

The IS and ISNT operators are synonyms for =?= and =!=.

746 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

Functions

Function name are case-insensitive. Unless otherwise noted, if any of a function’s arguments are UNDEFINED or
ERROR, so is the result. If an argument’s type is noted, the function will return ERROR unless the argument has that
type.

integer INT(expr) If expr is numeric, return the closest integer. If expr evaluates to a string, attempt to convert the
string to an integer. Return ERROR if the string is not an integer, or if expr is neither numeric nor a string.

boolean MEMBER(expr, list l) Returns TRUE if expr is equal, as defined by the operator ==, to any member of the
list l, or FALSE if it isn’t.

boolean REGEXP(string pattern, string target[, string options]) Return TRUE if the PCRE regular expression
pattern matches target, or FALSE if it doesn’t. Return ERROR if pattern is a not a valid regular expression.
If specified, options is a PCRE option string (one or more of f, i, s, m, and g). See the Specification section for
details.

list SPLIT(string s[, string tokens]) Separate s by whitespace or comma, or instead by any of the characters in
tokens, if specified, and return the result as a list of strings.

boolean STRINGLISTIMEMBER(string s, string list[, string tokens]) Equivalent to MEMBER(*s*, SPLIT(
list, *tokens*)).

string SUBSTR(string s, integer offset[, integer length]) Returns the substring of s from offset to the end of the
string, or instead for length characters, if specified. The first character in s is at position 0. If offset is negative,
the substring begins offset characters before the end of the string. If length is negative, the substring ends that
many characters before the end of the string. If the substring contains no characters, return the empty string.
Thus, the following two calls both return the string “78”:

substr("0123456789", 7, 2)
substr("0123456789", -3, -1)

All ClassAd functions are defined in the references below.

Reserved Words

The words UNDEFINED, ERROR, IS, ISNT, TRUE, FALSE, MY, TARGET, and PARENT may not be used as attribute names.

12.2.3 Testing ClassAd Expressions

Use classad_eval to test ClassAd expressions. For instance, if you want to test to see if a regular expression matches
some fixed string, you could check in the following way (on Linux or Mac; the quoting rules are different on Windows):

$ classad_eval 'regexp(".*tr.*", "string")'
[]
true

This prints out the ClassAd used as context in the evaluation (in this case, there wasn’t one, so it’s the empty ad) and
the result.

12.2. ClassAds 747

HTCondor Manual, Release 10.0.9

12.2.4 Examples

These examples assume a Linux shell environment and a working HTCondor pool.

Selecting a Slot based on Job ID

If job 288.7 is running:

$ condor_status -const 'JobId == "288.7"'

Selecting Jobs based on Execute Machine

If jobs are running on the machine example-execute-node:

$ condor_q -all -const 'regexp("@example-execute-node$", RemoteHost)'

String Manipulation

In this example, an administrator has just added twelve new hosts to the pool – compute-296 to compute-307 – and
wants to see if they’ve started running jobs yet.

$ condor_status -const␣
→˓'296 <= int(substr(Machine, 8)) && int(substr(Machine, 8)) <= 307'

You could also write this as follows:

$ condor_status -const␣
→˓'296 <= int(split(Machine, "-")[1]) && int(split(Machine, "-")[1]) <= 307'

Selecting Machines with a Particular File-Transfer Plugin

If you’re considering using the gdrive file-transfer plugin, and you’d like to see which machines have it, select from the
slot ads based on the corresponding attribute, but only print out the machine name, and then throw away the duplicates:

$ condor_status -af Machine \
-const 'StringListIMember("gdrive", HasFileTransferPluginMethods)' \
| uniq

You could instead use a constraint to ignore dynamic slots for a report on the resources available to run jobs which
require the gdrive plugin. Note that you can also use expressions when formatting the output. In this case, it’s just to
make the output prettier.

$ condor_status -af Machine CPUs Memory Disk \
'(GPUs =!= undefined && GPUs >= 1) ? CUDACapability : "[no GPUs]"' \
-const␣

→˓'SlotType =!= "Dynamic" && StringListIMember("gdrive", HasFileTransferPluginMethods)'

748 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.2.5 Specification

For use in HTCondor, including a complete list of functions, see https://htcondor.readthedocs.io/en/latest/classads/
classad-mechanism.html.

For the language specification, see https://research.cs.wisc.edu/htcondor/classad/refman/.

12.2.6 Author

Center for High Throughput Computing, University of Wisconsin-Madison

12.2.7 Copyright

Copyright © 1990-2019 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

12.3 condor_adstash

Gather schedd and/or startd job history ClassAds and push them via a search engine or file interface.

12.3.1 Synopsis

condor_adstash [–help]

condor_adstash [–process_name NAME] [–standalone] [–sample_interval SECONDS] [–checkpoint_file PATH]
[–log_file PATH] [–log_level LEVEL] [–threads THREADS] [–interface {null,elasticsearch,jsonfile}] [–collectors
COLLECTORS] [–schedds SCHEDDS] [–startds STARTDS] [–schedd_history] [–startd_history] [–ad_file PATH]
[–schedd_history_max_ads NUM_ADS] [–startd_history_max_ads NUM_ADS] [–schedd_history_timeout SEC-
ONDS] [–startd_history_timeout SECONDS] [–se_host HOST[:PORT]] [–se_url_prefix PREFIX] [–se_username
USERNAME] [–se_use_https] [–se_timeout SECONDS] [–se_bunch_size NUM_DOCS] [–es_index_name IN-
DEX_NAME] [–se_no_log_mappings] [–se_ca_certs PATH] [–json_dir PATH]

12.3.2 Description

condor_adstash is a tool that assists in monitoring usage by gathering job ClassAds (typically from condor_schedd
and/or condor_startd history queries) and pushing the ClassAds as documents to some target (typically Elasticsearch).

Unless run in --standalone mode, condor_adstash expects to be invoked as a daemon by a condor_master, i.e.
condor_adstash should be invoked in standalone mode when run on the command-line. Whether invoked by con-
dor_master or run standalone, condor_adstash gets its configuration, in increasing priority, from the HTCondor con-
figuration macros beginning with ADSTASH_ (when --process_name is not provided), then environment variables,
and finally command-line options.

condor_adstash must be able to write its --checkpoint_file to a persistent location so that duplicate job ClassAds
are not fetched from the daemons’ histories in consecutive polls.

A named Elasticsearch index will be created if it doesn’t exist, and may be modified if new fields (corresponding to
ClassAd attribute names) need to be added. It is up to the administrator of the Elasticsearch instance to install rollover
policies (e.g. ILM) on the named index and/or to set up the index as an alias.

12.3. condor_adstash 749

https://htcondor.readthedocs.io/en/latest/classads/classad-mechanism.html
https://htcondor.readthedocs.io/en/latest/classads/classad-mechanism.html
https://research.cs.wisc.edu/htcondor/classad/refman/

HTCondor Manual, Release 10.0.9

12.3.3 Options

-h, –help Display the help message and exit.

–process_name PREFIX Give condor_adstash a different name for looking up HTCondor configuration
and environment variable values (see examples).

–standalone Run condor_adstash in standalone mode (runs once, does not attempt to contact con-
dor_master)

–sample_interval SECONDS Number of seconds between polling the list(s) of daemons (ignored in stan-
dalone mode)

–checkpoint_file PATH Location of checkpoint file (will be created if missing)

–log_file PATH Location of log file

–log_level LEVEL Log level (uses Python logging library levels: CRITI-
CAL/ERROR/WARNING/INFO/DEBUG)

–threads THREADS Number of parallel threads to use when polling for job ClassAds and when pushing
documents to Elasticsearch

–interface {null,elasticsearch,opensearch,jsonfile} Push ads via the chosen interface

12.3.4 ClassAd source options

–schedd_history Poll and push condor_schedd job histories

–startd_history Poll and push condor_startd job histories

–ad_file PATH Load Job ClassAds from a file instead of querying daemons (Ignores –schedd_history and
–startd_history.)

12.3.5 Options for HTCondor daemon (Schedd, Startd, etc.) history sources

–collectors COLLECTORS Comma-separated list of condor_collector addresses to contact to locate con-
dor_schedd and condor_startd daemons

–schedds SCHEDDS Comma-separated list of condor_schedd names to poll job histories from

–startds STARTDS Comma-separated list of condor_startd machines to poll job histories from

–schedd_history_max_ads NUM_ADS Abort after reading NUM_ADS from a condor_schedd

–startd_history_max_ads NUM_ADS Abort after reading NUM_ADS from a condor_startd

–schedd_history_timeout SECONDS Abort if reading from a condor_schedd takes more than this many
seconds

–startd_history_timeout SECONDS Abort if reading from a condor_startd takes more than this many
seconds

750 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.3.6 Search engine (Elasticsearch, OpenSearch, etc.) interface options

–se_host HOST[:PORT] Search engine host:port

–se_url_prefix PREFIX Search engine URL prefix

–se_username USERNAME Search engine username

–se_use_https Use HTTPS when connecting to search engine

–se_timeout SECONDS Max time to wait for search engine queries

–se_bunch_size NUM_DOCS Group ads in bunches of this size to send to search engine

–se_index_name INDEX_NAME Push ads to this search engine index or alias

–se_no_log_mappings Don’t write a JSON file with mappings to the log directory

–se_ca_certs PATH Path to root certificate authority file (will use certifi’s CA if not set)

12.3.7 JSON file interface options

–json_dir PATH Directory to store JSON files, which are named by timestamp

12.3.8 Examples

Running condor_adstash in standalone mode on the command-line will result in condor_adstash reading its configu-
ration from the current HTCondor configuration:

$ condor_adstash --standalone

By default, condor_adstash looks for HTCondor configuration variables with names are prefixed with ADSTASH_, e.g.
ADSTASH_READ_SCHEDDS = *. These values can be overridden on the command-line:

$ condor_adstash --standalone --schedds=myschedd.localdomain

condor_adstash configuration variables can be also be named using custom prefixes, with the prefix passed in
using --process_name=PREFIX. For example, if the HTCondor configuration contained FOO_SCHEDD_HISTORY
= False and FOO_STARTD_HISTORY = True, condor_adstash can be invoked to read these instead of
ADSTASH_SCHEDD_HISTORY and ADSTASH_STARTD_HISTORY:

$ condor_adstash --standalone --process_name=FOO

Providing a PREFIX to --process_name that does not match any HTCondor configuration variables will cause con-
dor_adstash to fallback to a default set of configuration values, which may be useful in debugging.

The configuration values that condor_adstash reads from the current HTCondor configuration can be previewed by
printing the help message. The values will be listed as the default values for each command-line option:

$ condor_adstash --help
$ condor_adstash --process_name=FOO --help

12.3. condor_adstash 751

HTCondor Manual, Release 10.0.9

12.4 condor_advertise

Send a ClassAd to the condor_collector daemon

12.4.1 Synopsis

condor_advertise [-help | -version]

condor_advertise [-pool centralmanagerhostname[:portname]] [-debug] [-tcp] [-udp] [-multiple] [update-
command [classad-filename]]

12.4.2 Description

condor_advertise sends one or more ClassAds to the condor_collector daemon on the central manager machine. The
optional argument update-command says what daemon type’s ClassAd is to be updated; if it is absent, it assumed to
be the update command corresponding to the type of the (first) ClassAd. The optional argument classad-filename is
the file from which the ClassAd(s) should be read. If classad-filename is omitted or is the dash character (‘-‘), then the
ClassAd(s) are read from standard input. You must specify update-command if you do not want to read from standard
input.

When -multiple is specified, multiple ClassAds may be published. Publishing many ClassAds in a single invocation
of condor_advertise is more efficient than invoking condor_advertise once per ClassAd. The ClassAds are expected
to be separated by one or more blank lines. When -multiple is not specified, blank lines are ignored (for backward
compatibility). It is best not to rely on blank lines being ignored, as this may change in the future.

The update-command may be one of the following strings:

UPDATE_STARTD_AD UPDATE_SCHEDD_AD UPDATE_MASTER_AD UP-
DATE_GATEWAY_AD UPDATE_CKPT_SRVR_AD UPDATE_NEGOTIATOR_AD
UPDATE_HAD_AD UPDATE_AD_GENERIC UPDATE_SUBMITTOR_AD UP-
DATE_COLLECTOR_AD UPDATE_LICENSE_AD UPDATE_STORAGE_AD

condor_advertise can also be used to invalidate and delete ClassAds currently held by the condor_collector daemon.
In this case the update-command will be one of the following strings:

INVALIDATE_STARTD_ADS INVALIDATE_SCHEDD_ADS INVALIDATE_MASTER_ADS
INVALIDATE_GATEWAY_ADS INVALIDATE_CKPT_SRVR_ADS INVALI-
DATE_NEGOTIATOR_ADS INVALIDATE_HAD_ADS INVALIDATE_ADS_GENERIC INVAL-
IDATE_SUBMITTOR_ADS INVALIDATE_COLLECTOR_ADS INVALIDATE_LICENSE_ADS
INVALIDATE_STORAGE_ADS

For any of these INVALIDATE commands, the ClassAd in the required file will look like the following:

MyType = "Query"
TargetType = "Machine"
Name = "condor.example.com"
Requirements = Name == "condor.example.com"

The definition for MyType is always Query. TargetType is set to the MyType of the ad to be deleted. This MyType
is DaemonMaster for the condor_master ClassAd, Machine for the condor_startd ClassAd, Scheduler for the con-
dor_schedd ClassAd, and Negotiator for the condor_negotiator ClassAd.

Requirements is an expression evaluated within the context of ads of TargetType. When Requirements evaluates
to True, the matching ad is invalidated. A full example is given below.

752 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.4.3 Options

-help Display usage information

-version Display version information

-debug Print debugging information as the command executes.

-multiple Send more than one ClassAd, where the boundary between ClassAds is one or more blank lines.

-pool centralmanagerhostname[:portname] Specify a pool by giving the central manager’s host name
and an optional port number. The default is the COLLECTOR_HOST specified in the configuration file.

-tcp Use TCP for communication. Used by default if UPDATE_COLLECTOR_WITH_TCP is true.

-udp Use UDP for communication.

12.4.4 General Remarks

The job and machine ClassAds are regularly updated. Therefore, the result of condor_advertise is likely to be over-
written in a very short time. It is unlikely that either HTCondor users (those who submit jobs) or administrators will
ever have a use for this command. If it is desired to update or set a ClassAd attribute, the condor_config_val command
is the proper command to use.

Attributes are defined in Appendix A of the HTCondor manual.

For those administrators who do need condor_advertise, the following attributes may be included:

DaemonStartTime UpdateSequenceNumber

If both of the above are included, the condor_collector will automatically include the following attributes:

UpdatesTotal UpdatesLost UpdatesSequenced UpdatesHistory

Affected by COLLECTOR_DAEMON_HISTORY_SIZE .

12.4.5 Examples

Assume that a machine called condor.example.com is turned off, yet its condor_startd ClassAd does not expire for an-
other 20 minutes. To avoid this machine being matched, an administrator chooses to delete the machine’s condor_startd
ClassAd. Create a file (called remove_file in this example) with the three required attributes:

MyType = "Query"
TargetType = "Machine"
Name = "condor.example.com"
Requirements = Name == "condor.example.com"

This file is used with the command:

$ condor_advertise INVALIDATE_STARTD_ADS remove_file

12.4. condor_advertise 753

HTCondor Manual, Release 10.0.9

12.4.6 Exit Status

condor_advertise will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure. Success means that all ClassAds were successfully sent to all condor_collector daemons. When there are
multiple ClassAds or multiple condor_collector daemons, it is possible that some but not all publications succeed; in
this case, the exit status is 1, indicating failure.

12.5 condor_annex

Add cloud resources to the pool.

12.5.1 Synopsis

condor_annex -help

condor_annex [-aws-region <region>] -setup [FROM INSTANCE|[/full/path/to/access/key/file
[/full/path/to/secret/key/file]]]

condor_annex [-aws-on-demand] -annex-name <name of the annex> -count <integer number of instances> [-aws-
on-demand-*] [common options]

condor_annex [-aws-spot-fleet] -annex-name <name of the annex> -slots <integer weight> [-aws-spot-fleet-*]
[common options]

condor_annex -annex-name <name of the annex> -duration hours

condor_annex [-annex-name <name of the annex>] -status [-classad]

condor_annex -check-setup

condor_annex <condor_annex options> status <condor_status options>

12.5.2 Description

condor_annex adds clouds resources to the pool. (“The pool” is determined in the usual manner for HTCondor daemons
and tools.) This version supports only Amazon Web Services (‘AWS’). To add “on-demand” instances, use the third
form listed above; to add “spot” instances, use the fourth. For an explanation of terms, consult either the HTCondor
manual in the Cloud Computing chapter or the AWS documentation.

Using condor_annex with AWS requires a one-time setup procedure performed by invoking condor_annex with the
-setup flag (the second form listed above). You may check if this procedure has been performed with the -check-setup
flag (the seventh form listed above). If you use the setup flag on an instance whose role gives it sufficient privileges, you
may, instead of specifying your API keys, pass FROM INSTANCE to -setup to ask condor_annex to use the instance’s
role credentials.

To reset the lease on an existing annex, invoke condor_annex with only the -annex-name option and -duration flag
(the fifth form listed above).

To determine which of the instances previously requested for a particular annex are not currently in the pool, invoke
condor_annex with the -status flag and the -annex-name option (the sixth form listed above). The output of this
command is intended to be human-readable; specifying the -classad flag will produce the same information in ClassAd
format. If you omit -annex-name, information for all annexes will be returned.

Starting in 8.7.3, you may instead invoke condor_annex with status as a command argument (the eighth form listed
above). This will cause condor_annex to use condor_status to present annex instance data. Arguments and options
on the command line after status will be passed unmodified to condor_status, but not all arguments and options will

754 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

behave as expected. (See below.) condor_annex will construct an ad for each annex instance and pass that information
to condor_status; condor_status will (unless you specify otherwise using its command line) query the collector for
more information about the instances. Information from the collector will be presented as usual; instances which did
not have ads in the collector will be presented last, in their own table. These instances can not be presented in the usual
way because the annex instance ads generated by condor_annex do not (and can not) have the same information in
them as ads generated by a condor_startd running in the instance. See the condor_status manual page for details about
the “merge” mode of condor_status used by this command argument. Note that both condor_annex and condor_status
have -annex-name options; if you’re interested in a particular annex, put this flag on the command line before the
status command argument to avoid confusing results.

Common options are listed first, followed by options specific to AWS, followed by options specific to AWS’ on-demand
instances, followed by options specific to AWS’ spot instances, followed by options intended for use by experts.

12.5.3 Options

-help Print a usage reminder.

-setup [/full/path/to/access/key/file/full/path/to/secret/key/file] Do the first-time setup.

-duration hours Set the maximum lease duration in decimal hours. After this amount of time, all in-
stances will terminated, regardless of their idleness. Defaults to 50 minutes.

-idle hours Set the maximum idle duration in decimal hours. An instance idle for longer than this duration
will terminate itself. Defaults to 15 minutes.

-yes Start the annex automatically without a yes/no confirmation prompt.

-tag name value Add a tag named name with value value to each instance in the requested annex. Only
works at annex creation. This option may be specified more than once.

-config-dir /full/path/to/directory Copy the contents of /full/path/to/directory to each instance’s configu-
ration directory.

-owner owner[, owner]* Configure the annex so that only owner may start jobs there. By default, con-
figure the annex so that only the user running condor_annex may start jobs there.

-no-owner Configure the annex so that anyone in the pool may use the annex.

-aws-region region Specify the region in which to create the annex.

-aws-user-data user-data Set the instance user data to user-data.

-aws-user-data-file /full/path/to/file Set the instance user data to the contents of the file /full/path/to/file.

-aws-default-user-data user-data Set the instance user data to user-data, if it’s not already set. Only
applies to spot fleet requests.

-aws-default-user-data-file /full/path/to/file Set the instance user data to the contents of the file
/full/path/to/file, if it’s not already set. Only applies to spot fleet requests.

-aws-on-demand-instance-type instance-type This annex will requests instances of type instance-type.
The default for v8.7.1 is ‘m4.large’.

-aws-on-demand-ami-id ami-id This annex will start instances of the AMI ami-id. The default for v8.7.1
is ‘ami-35b13223’, a GPU-compatible Amazon Linux image with HTCondor pre-installed.

-aws-on-demand-security-group-ids group-id[,group-id] This annex will start instances with the listed
security group IDs. The default is the security group created by -setup.

-aws-on-demand-key-name key-name This annex will start instances with the key pair named key-name.
The default is the key pair created by -setup.

12.5. condor_annex 755

HTCondor Manual, Release 10.0.9

-aws-spot-fleet-config-file /full/path/to/file Use the JSON blob in /full/path/to/file for the spot fleet re-
quest.

-aws-access-key-file /full/path/to/access-key-file Experts only.

-aws-secret-key-file /full/path/to/secret-key-file Experts only.

-aws-ec2-url https://ec2.<region>.amazonaws.com Experts only.

-aws-events-url https://events.<region>.amazonaws.com Experts only.

-aws-lambda-url https://lambda.<region>.amazonaws.com Experts only.

-aws-s3-url https://s3.<region>.amazonaws.com Experts only.

-aws-spot-fleet-lease-function-arn sfr-lease-function-arn Developers only.

-aws-on-demand-lease-function-arn odi-lease-function-arn Developers only.

-aws-on-demand-instance-profile-arn instance-profile-arn Developers only.

12.5.4 General Remarks

Currently, only AWS is supported. The AMI configured by setup runs HTCondor v8.6.10 on Amazon Linux 2016.09,
and the default instance type is “m4.large”. The default AMI has the appropriate drivers for AWS’ GPU instance types.

12.5.5 Examples

To start an on-demand annex named ‘MyFirstAnnex’ with one core, using the default AMI and instance type, run

$ condor_annex -count 1 -annex-name MyFirstAnnex

You will be asked to confirm that the defaults are what you want.

As of 2017-04-17, the following example will cost a minimum of $90.

To start an on-demand annex with 100 GPUs that job owners ‘big’ and ‘little’ may use (be sure to include yourself!),
run

$ condor_annex -count 100 -annex-name MySecondAnnex \
-aws-on-demand-instance-type p2.xlarge -owner "big, little"

12.5.6 Exit Status

condor_annex will exit with a status value of 0 (zero) on success.

12.6 condor_check_password

Examine HTCondor key files, looking for keys that prior version of HTCondor will not fully read.

756 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.6.1 Synopsis

condor_check_password <-h | –help>

condor_check_password [–truncate] [key]

12.6.2 Description

Versions of HTCondor before 8.9.12 contained contained a bug in the code used to read the pool password (hence the
name of the tool): in some cases the read would be truncated before end of the file. Because the same code is used to
read IDTOKENS signing keys, this bug affects the IDTOKENS authorization method, as well.

There was no backwards-compatible fix: versions 8.9.12 and later may read the same file differently than earlier ver-
sions, meaning that tokens issued before 8.9.12 may not be recognized by later versions.

This tool detects key files which will not be fully read by earlier versions of HTCondor. IDTOKENS generated by such
a key will not be accepted by later versions (which read the whole key file). If you choose to truncate these files on
disk, later version of HTCondor will read only the same bits as earlier versions, allowing them to accept tokens issued
by earlier versions, at the cost of weakening your pool’s resistance to brute-force attacks.

By default, this tool checks all the key files that will be found by the current HTCondor configuration; you may specify
a specific key or keys to check, instead.

12.6.3 Options

-h, –help Print a usage reminder.

–truncate When a potentially insecure key is encountered, truncate it to match the behavior prior to ver-
sion 8.9.12.

12.6.4 Exit Status

Exits with code 0 if there were no signing keys to check or if all of the checked keys were OK. Exits with code 1 if at
least one checked key was not OK. Exits non-zero if a problem was encountered along the way.

12.7 condor_check_userlogs

Check job event log files for errors

12.7.1 Synopsis

condor_check_userlogs UserLogFile1 [UserLogFile2 . . .UserLogFileN]

12.7. condor_check_userlogs 757

HTCondor Manual, Release 10.0.9

12.7.2 Description

condor_check_userlogs is a program for checking a job event log or a set of job event logs for errors. Output includes
an indication that no errors were found within a log file, or a list of errors such as an execute or terminate event without
a corresponding submit event, or multiple terminated events for the same job.

condor_check_userlogs is especially useful for debugging condor_dagman problems. If condor_dagman reports an
error it is often useful to run condor_check_userlogs on the relevant log files.

12.7.3 Exit Status

condor_check_userlogs will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

12.8 condor_chirp

Access files or job ClassAd from an executing job

12.8.1 Synopsis

condor_chirp <Chirp-Command>

12.8.2 Description

condor_chirp is not intended for use as a command-line tool. It is most often invoked by an HTCondor job, while
the job is executing. It accesses files or job ClassAd attributes on the submit machine. Files can be read, written or
removed. Job attributes can be read, and most attributes can be updated.

When invoked by an HTCondor job, the command-line arguments describe the operation to be performed. Each of
these arguments is described below within the section on Chirp Commands. Descriptions using the terms local and
remote are given from the point of view of the executing job.

If the input file name for put or write is a dash, condor_chirp uses standard input as the source. If the output file name
for fetch is a dash, condor_chirp writes to standard output instead of a local file.

Jobs that use condor_chirp must have the attribute WantIOProxy set to True in the job ClassAd. To do this, place

+WantIOProxy = true

in the submit description file of the job.

condor_chirp only works for jobs run in the vanilla, parallel and java universes.

758 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.8.3 Chirp Commands

fetch RemoteFileName LocalFileName Copy the RemoteFileName from the submit machine to the exe-
cute machine, naming it LocalFileName.

put [-mode mode] [-perm UnixPerm] LocalFileName RemoteFileName Copy the LocalFileName
from the execute machine to the submit machine, naming it RemoteFileName. The optional -perm
UnixPerm argument describes the file access permissions in a Unix format; 660 is an example Unix
format.

The optional -mode mode argument is one or more of the following characters describing the Re-
moteFileName file: w, open for writing; a, force all writes to append; t, truncate before use; c, create
the file, if it does not exist; x, fail if c is given and the file already exists.

remove RemoteFileName Remove the RemoteFileName file from the submit machine.

get_job_attr JobAttributeName Prints the named job ClassAd attribute to standard output.

set_job_attr JobAttributeName AttributeValue Sets the named job ClassAd attribute with the given at-
tribute value.

get_job_attr_delayed JobAttributeName Prints the named job ClassAd attribute to standard output, po-
tentially reading the cached value from a recent set_job_attr_delayed.

set_job_attr_delayed JobAttributeName AttributeValue Sets the named job ClassAd attribute with the
given attribute value, but does not immediately synchronize the value with the submit side. It can
take 15 minutes before the synchronization occurs. This has much less overhead than the non delayed
version. With this option, jobs do not need ClassAd attribute WantIOProxy set. With this option,
job attribute names are restricted to begin with the case sensitive substring Chirp.

ulog Message Appends Message to the job event log.

read [-offset offset] [-stride length skip] RemoteFileName Length Read Length bytes from RemoteFile-
Name. Optionally, implement a stride by starting the read at offset and reading length bytes with a
stride of skip bytes.

write [-offset offset] [-stride length skip] RemoteFileName LocalFileName [numbytes] Write the con-
tents of LocalFileName to RemoteFileName. Optionally, start writing to the remote file at offset and
write length bytes with a stride of skip bytes. If the optional numbytes follows LocalFileName, then
the write will halt after numbytes input bytes have been written. Otherwise, the entire contents of
LocalFileName will be written.

rmdir [-r] RemotePath Delete the directory specified by RemotePath. If the optional -r is specified,
recursively delete the entire directory.

getdir [-l] RemotePath List the contents of the directory specified by RemotePath. If -l is specified, list
all metadata as well.

whoami Get the user’s current identity.

whoareyou RemoteHost Get the identity of RemoteHost.

link [-s] OldRemotePath NewRemotePath Create a hard link from OldRemotePath to NewRemotePath.
If the optional -s is specified, create a symbolic link instead.

readlink RemoteFileName Read the contents of the file defined by the symbolic link RemoteFileName.

stat RemotePath Get metadata for RemotePath. Examines the target, if it is a symbolic link.

lstat RemotePath Get metadata for RemotePath. Examines the file, if it is a symbolic link.

statfs RemotePath Get file system metadata for RemotePath.

12.8. condor_chirp 759

HTCondor Manual, Release 10.0.9

access RemotePath Mode Check access permissions for RemotePath. Mode is one or more of the charac-
ters r, w, x, or f, representing read, write, execute, and existence, respectively.

chmod RemotePath UnixPerm Change the permissions of RemotePath to UnixPerm. UnixPerm describes
the file access permissions in a Unix format; 660 is an example Unix format.

chown RemotePath UID GID Change the ownership of RemotePath to UID and GID. Changes the target
of RemotePath, if it is a symbolic link.

lchown RemotePath UID GID Change the ownership of RemotePath to UID and GID. Changes the link,
if RemotePath is a symbolic link.

truncate RemoteFileName Length Truncates RemoteFileName to Length bytes.

utime RemotePath AccessTime ModifyTime Change the access to AccessTime and modification time to
ModifyTime of RemotePath.

12.8.4 Examples

To copy a file from the submit machine to the execute machine while the user job is running, run

$ condor_chirp fetch remotefile localfile

To print to standard output the value of the Requirements expression from within a running job, run

$ condor_chirp get_job_attr Requirements

Note that the remote (submit-side) directory path is relative to the submit directory, and the local (execute-side) directory
is relative to the current directory of the running program.

To append the word “foo” to a file called RemoteFile on the submit machine, run

$ echo foo | condor_chirp put -mode wa - RemoteFile

To append the message “Hello World” to the job event log, run

$ condor_chirp ulog "Hello World"

12.8.5 Exit Status

condor_chirp will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.9 condor_configure

Configure or install HTCondor

760 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.9.1 Synopsis

condor_configure or condor_install [–help] [–usage]

condor_configure or condor_install [–install[=<path/to/release>]] [–install-dir=<path>] [–prefix=<path>]
[–local-dir=<path>] [–make-personal-condor] [–bosco] [–type = < submit, execute, manager >] [–central-
manager = < hostname>] [–owner = < ownername >] [–maybe-daemon-owner] [–install-log = < file >]
[–overwrite] [–ignore-missing-libs] [–force] [–no-env-scripts] [–env-scripts-dir = < directory >] [–backup]
[–credd] [–verbose]

12.9.2 Description

condor_configure and condor_install refer to a single script that installs and/or configures HTCondor on Unix machines.
As the names imply, condor_install is intended to perform a HTCondor installation, and condor_configure is intended
to configure (or reconfigure) an existing installation. Both will run with Perl 5.6.0 or more recent versions.

condor_configure (and condor_install) are designed to be run more than one time where required. It can install HT-
Condor when invoked with a correct configuration via

$ condor_install

or

$ condor_configure --install

or, it can change the configuration files when invoked via

$ condor_configure

Note that changes in the configuration files do not result in changes while HTCondor is running. To effect changes while
HTCondor is running, it is necessary to further use the condor_reconfig or condor_restart command. condor_reconfig
is required where the currently executing daemons need to be informed of configuration changes. condor_restart is
required where the options –make-personal-condor or –type are used, since these affect which daemons are running.

Running condor_configure or condor_install with no options results in a usage screen being printed. The –help option
can be used to display a full help screen.

Within the options given below, the phrase release directories is the list of directories that are released with HTCondor.
This list includes: bin, etc, examples, include, lib, libexec, man, sbin, sql and src.

12.9.3 Options

-help Print help screen and exit

-usage Print short usage and exit

-install[=<path/to/release>] Perform installation, assuming that the current working directory contains
the release directory, if the optional =<path/to/release> is not specified. Without further options,
the configuration is that of a Personal HTCondor, a complete one-machine pool. If used as an upgrade
within an existing installation directory, existing configuration files and local directory are preserved.
This is the default behavior of condor_install.

-install-dir=<path> Specifies the path where HTCondor should be installed or the path where it already
is installed. The default is the current working directory.

-prefix=<path> This is an alias for -install-dir.

12.9. condor_configure 761

HTCondor Manual, Release 10.0.9

-local-dir=<path> Specifies the location of the local directory, which is the directory that generally con-
tains the local (machine-specific) configuration file as well as the directories where HTCondor dae-
mons write their run-time information (spool, log, execute). This location is indicated by the
LOCAL_DIR variable in the configuration file. When installing (that is, if -install is specified), con-
dor_configure will properly create the local directory in the location specified. If none is specified,
the default value is given by the evaluation of $(RELEASE_DIR)/local.$(HOSTNAME).

During subsequent invocations of condor_configure (that is, without the -install option), if the -local-
dir option is specified, the new directory will be created and the log, spool and execute directories
will be moved there from their current location.

-make-personal-condor Installs and configures for Personal HTCondor, a fully-functional, one-machine
pool.

-bosco Installs and configures Bosco, a personal HTCondor that submits jobs to remote batch systems.

-type= < submit, execute, manager > One or more of the types may be listed. This determines the roles
that a machine may play in a pool. In general, any machine can be a submit and/or execute machine,
and there is one central manager per pool. In the case of a Personal HTCondor, the machine fulfills
all three of these roles.

-central-manager=<hostname> Instructs the current HTCondor installation to use the specified machine
as the central manager. This modifies the configuration variable COLLECTOR_HOST to point to the
given host name. The central manager machine’s HTCondor configuration needs to be independently
configured to act as a manager using the option -type=manager.

-owner=<ownername> Set configuration such that HTCondor daemons will be executed as the given
owner. This modifies the ownership on the log, spool and execute directories and sets the
CONDOR_IDS value in the configuration file, to ensure that HTCondor daemons start up as the speci-
fied effective user. The section on security within the HTCondor manual discusses UIDs in HTCon-
dor. This is only applicable when condor_configure is run by root. If not run as root, the owner is
the user running the condor_configure command.

-maybe-daemon-owner If -owner is not specified and no appropriate user can be found to run Condor,
then this option will allow the daemon user to be selected. This option is rarely needed by users but
can be useful for scripts that invoke condor_configure to install Condor.

-install-log=<file> Save information about the installation in the specified file. This is normally only
needed when condor_configure is called by a higher-level script, not when invoked by a person.

-overwrite Always overwrite the contents of the sbin directory in the installation directory. By default,
condor_install will not install if it finds an existing sbin directory with HTCondor programs in it.
In this case, condor_install will exit with an error message. Specify -overwrite or -backup to tell
condor_install what to do.

This prevents condor_install from moving an sbin directory out of the way that it should not move.
This is particularly useful when trying to install HTCondor in a location used by other things (/usr,
/usr/local, etc.) For example: condor_install -prefix=/usr will not move /usr/sbin out of the
way unless you specify the -backup option.

The -backup behavior is used to prevent condor_install from overwriting running daemons - Unix
semantics will keep the existing binaries running, even if they have been moved to a new directory.

-backup Always backup the sbin directory in the installation directory. By default, condor_install will
not install if it finds an existing sbin directory with HTCondor programs in it. In this case, con-
dor_install with exit with an error message. You must specify -overwrite or -backup to tell con-
dor_install what to do.

This prevents condor_install from moving an sbin directory out of the way that it should not move.
This is particularly useful if you’re trying to install HTCondor in a location used by other things (/

762 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

usr, /usr/local, etc.) For example: condor_install -prefix=/usr will not move /usr/sbin out of
the way unless you specify the -backup option.

The -backup behavior is used to prevent condor_install from overwriting running daemons - Unix
semantics will keep the existing binaries running, even if they have been moved to a new directory.

-ignore-missing-libs Ignore missing shared libraries that are detected by condor_install. By default, con-
dor_install will detect missing shared libraries such as libstdc++.so.5 on Linux; it will print mes-
sages and exit if missing libraries are detected. The -ignore-missing-libs will cause condor_install
to not exit, and to proceed with the installation if missing libraries are detected.

-force This is equivalent to enabling both the -overwrite and -ignore-missing-libs command line options.

-no-env-scripts By default, condor_configure writes simple sh and csh shell scripts which can be sourced
by their respective shells to set the user’s PATH and CONDOR_CONFIG environment variables. This
option prevents condor_configure from generating these scripts.

-env-scripts-dir=<directory> By default, the simple sh and csh shell scripts (see -no-env-scripts for
details) are created in the root directory of the HTCondor installation. This option causes con-
dor_configure to generate these scripts in the specified directory.

-credd Configure the the condor_credd daemon (credential manager daemon).

-verbose Print information about changes to configuration variables as they occur.

12.9.4 Exit Status

condor_configure will exit with a status value of 0 (zero) upon success, and it will exit with a nonzero value upon
failure.

12.9.5 Examples

Install HTCondor on the machine (machine1@cs.wisc.edu) to be the pool’s central manager. On machine1, within the
directory that contains the unzipped HTCondor distribution directories:

$ condor_install --type=submit,execute,manager

This will allow the machine to submit and execute HTCondor jobs, in addition to being the central manager of the pool.

To change the configuration such that machine2@cs.wisc.edu is an execute-only machine (that is, a dedicated
computing node) within a pool with central manager on machine1@cs.wisc.edu, issue the command on that ma-
chine2@cs.wisc.edu from within the directory where HTCondor is installed:

$ condor_configure --central-manager=machine1@cs.wisc.edu --type=execute

To change the location of the LOCAL_DIR directory in the configuration file, do (from the directory where HTCondor
is installed):

$ condor_configure --local-dir=/path/to/new/local/directory

This will move the log,spool,execute directories to /path/to/new/local/directory from the current local di-
rectory.

12.9. condor_configure 763

mailto:machine1@cs.wisc.edu
mailto:machine2@cs.wisc.edu
mailto:machine1@cs.wisc.edu
mailto:machine2@cs.wisc.edu
mailto:machine2@cs.wisc.edu

HTCondor Manual, Release 10.0.9

12.10 condor_config_val

Query or set a given HTCondor configuration variable

12.10.1 Synopsis

condor_config_val <help option>

condor_config_val [<location options>] <edit option>

condor_config_val [<location options>] [<view options>] vars

condor_config_val use category [:template_name] [-expand]

12.10.2 Description

condor_config_val can be used to quickly see what the current HTCondor configuration is on any given machine. Given
a space separated set of configuration variables with the vars argument, condor_config_val will report what each of
these variables is currently set to. If a given variable is not defined, condor_config_val will halt on that variable, and
report that it is not defined. By default, condor_config_val looks in the local machine’s configuration files in order to
evaluate the variables. Variables and values may instead be queried from a daemon specified using a location option.

Raw output of condor_config_val displays the string used to define the configuration variable. This is what is on
the right hand side of the equals sign (=) in a configuration file for a variable. The default output is an expanded one.
Expanded output recursively replaces any macros within the raw definition of a variable with the macro’s raw definition.

Each daemon remembers settings made by a successful invocation of condor_config_val. The configuration file is not
modified.

condor_config_val can be used to persistently set or unset configuration variables for a specific daemon on a given
machine using a -set or -unset edit option. Persistent settings remain when the daemon is restarted. Configuration
variables for a specific daemon on a given machine may be set or unset for the time period that the daemon continues
to run using a -rset or -runset edit option. These runtime settings will override persistent settings until the daemon is
restarted. Any changes made will not take effect until condor_reconfig is invoked.

In general, modifying a host’s configuration with condor_config_val requires the CONFIG access level, which is dis-
abled on all hosts by default. Administrators have more fine-grained control over which access levels can modify which
settings. See the Security section for more details on security settings. Further, security considerations require proper
settings of configuration variables SETTABLE_ATTRS_<PERMISSION-LEVEL> (see DaemonCore Configuration File
Entries), ENABLE_PERSISTENT_CONFIG (see DaemonCore Configuration File Entries) and ALLOW... (see Daemon-
Core Configuration File Entries) in order to use condor_config_val to change any configuration variable.

It is generally wise to test a new configuration on a single machine to ensure that no syntax or other errors in the
configuration have been made before the reconfiguration of many machines. Having bad syntax or invalid configuration
settings is a fatal error for HTCondor daemons, and they will exit. It is far better to discover such a problem on a single
machine than to cause all the HTCondor daemons in the pool to exit. condor_config_val can help with this type of
testing.

764 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.10.3 Options

-help (help option) Print usage information and exit.

-version (help option) Print the HTCondor version information and exit.

-set “var = value” (edit option) Sets one or more persistent configuration file variables. The new value
remains if the daemon is restarted. One or more variables can be set; the syntax requires double
quote marks to identify the pairing of variable name to value, and to permit spaces.

-unset var (edit option) Each of the persistent configuration variables listed reverts to its previous value.

-rset “var = value” (edit option) Sets one or more configuration file variables. The new value remains as
long as the daemon continues running. One or more variables can be set; the syntax requires double
quote marks to identify the pairing of variable name to value, and to permit spaces.

-runset var (edit option) Each of the configuration variables listed reverts to its previous value as long as
the daemon continues running.

-summary[:detected] (view option) For all configuration variables that differ from default value, print out
the name and value. The values are grouped by the file that last set the variable, and in the order that
they were set in that file. If the detected option is added, then variables such as $(OPSYSANDVER)
that are detected at runtime are included in the ouput.

-dump (view option) For all configuration variables that match vars, display the variables and their values.
If no vars are listed, then display all configuration variables and their values. The values will be raw
unless -expand, -default, or -evaluate are used.

-default (view option) Default values are displayed.

-expand (view option) Expanded values are displayed. This is the default unless -dump is used.

-raw (view option) Raw values are displayed.

-verbose (view option) Display configuration file name and line number where the variable is set, along
with the raw, expanded, and default values of the variable.

-debug[:<opts>] (view option) Send output to stderr, overriding a set value of TOOL_DEBUG.

-evaluate (view option) Applied only when a location option specifies a daemon. The value of the re-
quested parameter will be evaluated with respect to the ClassAd of that daemon.

-used (view option) Applied only when a location option specifies a daemon. Modifies which variables
are displayed to only those used by the specified daemon.

-unused (view option) Applied only when a location option specifies a daemon. Modifies which variables
are displayed to only those not used by the specified daemon.

-config (view option) Applied only when the configuration is read from files (the default), and not when
applied to a specific daemon. Display the current configuration file that set the variable.

-writeconfig[:upgrade] filename (view option) For the configuration read from files (the default), write
to file filename all configuration variables. Values that are the same as internal, compile-time defaults
will be preceded by the comment character. If the :upgrade o ption is specified, then values that are
the same as the internal, compile-time defaults are omitted. Variables are in the same order as the
they were read from the original configuration files.

-macro[:path] (view option) Macro expand the text in vars as the configuration language would. You can
use expansion functions such as $F(<var>). If the :path o ption is specified, treat the result as a
path and return the canonical form.

12.10. condor_config_val 765

HTCondor Manual, Release 10.0.9

-mixedcase (view option) Applied only when the configuration is read from files (the default), and not
when applied to a specific daemon. Print variable names with the same letter case used in the vari-
able’s definition.

-local-name <name> (view option) Applied only when the configuration is read from files (the default),
and not when applied to a specific daemon. Inspect the values of attributes that use local names,
which is useful to distinguish which daemon when there is more than one of the particular daemon
running.

-subsystem <daemon> (view option) Applied only when the configuration is read from files (the default),
and not when applied to a specific daemon. Specifies the subsystem or daemon name to query, with
a default value of the TOOL subsystem.

-address <ip:port> (location option) Connect to the given IP address and port number.

-pool centralmanagerhostname[:portnumber] (location option) Use the given central manager and an
optional port number to find daemons.

-name <machine_name> (location option) Query the specified machine’s condor_master daemon for its
configuration. Does not function together with any of the options: -dump, -config, or -verbose.

-master | -schedd | -startd | -collector | -negotiator (location option) The specific daemon to query.

use category [:set name] [-expand] Display information about configuration templates (see Configura-
tion Templates). Specifying only a category will list the template_names available for that category.
Specifying a category and a template_name will display the definition of that configuration tem-
plate. Adding the -expand option will display the expanded definition (with macro substitutions).
(-expand has no effect if a template_name is not specified.) Note that there is no dash before use and
that spaces are not allowed next to the colon character separating category and template_name.

12.10.4 Exit Status

condor_config_val will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.10.5 Examples

Here is a set of examples to show a sequence of operations using condor_config_val. To request the condor_schedd
daemon on host perdita to display the value of the MAX_JOBS_RUNNING configuration variable:

$ condor_config_val -name perdita -schedd MAX_JOBS_RUNNING
500

To request the condor_schedd daemon on host perdita to set the value of the MAX_JOBS_RUNNING configuration variable
to the value 10.

$ condor_config_val -name perdita -schedd -set "MAX_JOBS_RUNNING = 10"
Successfully set configuration "MAX_JOBS_RUNNING = 10" on
schedd perdita.cs.wisc.edu <128.105.73.32:52067>.

A command that will implement the change just set in the previous example.

$ condor_reconfig -schedd perdita
Sent "Reconfig" command to schedd perdita.cs.wisc.edu

A re-check of the configuration variable reflects the change implemented:

766 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

$ condor_config_val -name perdita -schedd MAX_JOBS_RUNNING
10

To set the configuration variable MAX_JOBS_RUNNING back to what it was before the command to set it to 10:

$ condor_config_val -name perdita -schedd -unset MAX_JOBS_RUNNING
Successfully unset configuration "MAX_JOBS_RUNNING" on
schedd perdita.cs.wisc.edu <128.105.73.32:52067>.

A command that will implement the change just set in the previous example.

$ condor_reconfig -schedd perdita
Sent "Reconfig" command to schedd perdita.cs.wisc.edu

A re-check of the configuration variable reflects that variable has gone back to is value before initial set of the variable:

$ condor_config_val -name perdita -schedd MAX_JOBS_RUNNING
500

Getting a list of template_names for the role configuration template category:

$ condor_config_val use role
use ROLE accepts
CentralManager
Execute
Personal
Submit

Getting the definition of role:personal configuration template:

$ condor_config_val use role:personal
use ROLE:Personal is

CONDOR_HOST=127.0.0.1
COLLECTOR_HOST=$(CONDOR_HOST):0
DAEMON_LIST=MASTER COLLECTOR NEGOTIATOR STARTD SCHEDD
RunBenchmarks=0

12.11 condor_continue

continue suspended jobs from the HTCondor queue

12.11.1 Synopsis

condor_continue [-help | -version]

condor_continue [-debug] [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] **

12.11. condor_continue 767

HTCondor Manual, Release 10.0.9

12.11.2 Description

condor_continue continues one or more suspended jobs from the HTCondor job queue. If the -name option is specified,
the named condor_schedd is targeted for processing. Otherwise, the local condor_schedd is targeted. The job(s) to be
continued are identified by one of the job identifiers, as described below. For any given job, only the owner of the job
or one of the queue super users (defined by the QUEUE_SUPER_USERS macro) can continue the job.

12.11.3 Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-name scheddname Send the command to a machine identified by scheddname

-addr “<a.b.c.d:port>” Send the command to a machine located at “<a.b.c.d:port>”

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

cluster Continue all jobs in the specified cluster

cluster.process Continue the specific job in the cluster

user Continue jobs belonging to specified user

-constraint expression Continue all jobs which match the job ClassAd expression constraint

-all Continue all the jobs in the queue

12.11.4 Exit Status

condor_continue will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.11.5 Examples

To continue all jobs except for a specific user:

$ condor_continue -constraint 'Owner =!= "foo"'

12.12 condor_dagman

meta scheduler of the jobs submitted as the nodes of a DAG or DAGs

768 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.12.1 Synopsis

condor_dagman -f -t -l . -help

condor_dagman -version

condor_dagman -f -l . -csdversion version_string [-debug level] [-maxidle numberOfProcs] [-maxjobs num-
berOfJobs] [-maxpre NumberOfPreScripts] [-maxpost NumberOfPostScripts] [-noeventchecks] [-allowlogerror] [-
usedagdir] -lockfile filename [-waitfordebug] [-autorescue 0|1] [-dorescuefrom number] [-allowversionmismatch
] [-DumpRescue] [-verbose] [-force] [-notification value] [-suppress_notification] [-dont_suppress_notification
] [-dagman DagmanExecutable] [-outfile_dir directory] [-update_submit] [-import_env] [-priority number] [-
dont_use_default_node_log] [-DontAlwaysRunPost] [-AlwaysRunPost] [-DoRecovery] -dag dag_file [-dag
dag_file_2 . . . -dag dag_file_n]

12.12.2 Description

condor_dagman is a meta scheduler for the HTCondor jobs within a DAG (directed acyclic graph) (or multiple DAGs).
In typical usage, a submitter of jobs that are organized into a DAG submits the DAG using condor_submit_dag. con-
dor_submit_dag does error checking on aspects of the DAG and then submits condor_dagman as an HTCondor job.
condor_dagman uses log files to coordinate the further submission of the jobs within the DAG.

All command line arguments to the DaemonCore library functions work for condor_dagman. When invoked from the
command line, condor_dagman requires the arguments -f -l . to appear first on the command line, to be processed by
DaemonCore. The csdversion must also be specified; at start up, condor_dagman checks for a version mismatch with
the condor_submit_dag version in this argument. The -t argument must also be present for the -help option, such that
output is sent to the terminal.

Arguments to condor_dagman are either automatically set by condor_submit_dag or they are specified as command-
line arguments to condor_submit_dag and passed on to condor_dagman. The method by which the arguments are set
is given in their description below.

condor_dagman can run multiple, independent DAGs. This is done by specifying multiple -dag a rguments. Pass
multiple DAG input files as command-line arguments to condor_submit_dag.

Debugging output may be obtained by using the -debug level option. Level values and what they produce is described
as

• level = 0; never produce output, except for usage info

• level = 1; very quiet, output severe errors

• level = 2; normal output, errors and warnings

• level = 3; output errors, as well as all warnings

• level = 4; internal debugging output

• level = 5; internal debugging output; outer loop debugging

• level = 6; internal debugging output; inner loop debugging; output DAG input file lines as they are parsed

• level = 7; internal debugging output; rarely used; output DAG input file lines as they are parsed

12.12. condor_dagman 769

HTCondor Manual, Release 10.0.9

12.12.3 Options

-help Display usage information and exit.

-version Display version information and exit.

-debug level An integer level of debugging output. level is an integer, with values of 0-7 inclusive, where
7 is the most verbose output. This command-line option to condor_submit_dag is passed to con-
dor_dagman or defaults to the value 3.

-maxidle NumberOfProcs Sets the maximum number of idle procs allowed before condor_dagman stops
submitting more node jobs. Note that for this argument, each individual proc within a cluster counts
as a towards the limit, which is inconsistent with -maxjobs . Once idle procs start to run, con-
dor_dagman will resume submitting jobs once the number of idle procs falls below the specified
limit. NumberOfProcs is a non-negative integer. If this option is omitted, the number of idle procs is
limited by the configuration variable DAGMAN_MAX_JOBS_IDLE (see Configuration File Entries for
DAGMan), which defaults to 1000. To disable this limit, set NumberOfProcs to 0. Note that submit
description files that queue multiple procs can cause the NumberOfProcs limit to be exceeded. Set-
ting queue 5000 in the submit description file, where -maxidle is set to 250 will result in a cluster
of 5000 new procs being submitted to the condor_schedd, not 250. In this case, condor_dagman will
resume submitting jobs when the number of idle procs falls below 250.

-maxjobs NumberOfClusters Sets the maximum number of clusters within the DAG that will be sub-
mitted to HTCondor at one time. Note that for this argument, each cluster counts as one job,
no matter how many individual procs are in the cluster. NumberOfClusters is a non-negative in-
teger. If this option is omitted, the number of clusters is limited by the configuration variable
DAGMAN_MAX_JOBS_SUBMITTED (see Configuration File Entries for DAGMan), which defaults to
0 (unlimited).

-maxpre NumberOfPreScripts Sets the maximum number of PRE scripts within the DAG that may be
running at one time. NumberOfPreScripts is a non-negative integer. If this option is omitted, the
number of PRE scripts is limited by the configuration variable DAGMAN_MAX_PRE_SCRIPTS (see
Configuration File Entries for DAGMan), which defaults to 20.

-maxpost NumberOfPostScripts Sets the maximum number of POST scripts within the DAG that may
be running at one time. NumberOfPostScripts is a non-negative integer. If this option is omitted, the
number of POST scripts is limited by the configuration variable DAGMAN_MAX_POST_SCRIPTS (see
Configuration File Entries for DAGMan), which defaults to 20.

-noeventchecks This argument is no longer used; it is now ignored. Its functionality is now implemented
by the DAGMAN_ALLOW_EVENTS configuration variable.

-allowlogerror As of verson 8.5.5 this argument is no longer supported, and setting it will generate a
warning.

-usedagdir This optional argument causes condor_dagman to run each specified DAG as if the directory
containing that DAG file was the current working directory. This option is most useful when running
multiple DAGs in a single condor_dagman.

-lockfile filename Names the file created and used as a lock file. The lock file prevents execution of two of
the same DAG, as defined by a DAG input file. A default lock file ending with the suffix .dag.lock
is passed to condor_dagman by condor_submit_dag.

-waitfordebug This optional argument causes condor_dagman to wait at startup until someone attaches
to the process with a debugger and sets the wait_for_debug variable in main_init() to false.

-autorescue 0|1 Whether to automatically run the newest rescue DAG for the given DAG file, if one exists
(0 = false, 1 = true).

770 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

-dorescuefrom number Forces condor_dagman to run the specified rescue DAG number for the given
DAG. A value of 0 is the same as not specifying this option. Specifying a nonexistent rescue DAG
is a fatal error.

-allowversionmismatch This optional argument causes condor_dagman to allow a version mismatch be-
tween condor_dagman itself and the .condor.sub file produced by condor_submit_dag (or, in other
words, between condor_submit_dag and condor_dagman). WARNING! This option should be used
only if absolutely necessary. Allowing version mismatches can cause subtle problems when running
DAGs. (Note that, starting with version 7.4.0, condor_dagman no longer requires an exact version
match between itself and the .condor.sub file. Instead, a “minimum compatible version” is defined,
and any .condor.sub file of that version or newer is accepted.)

-DumpRescue This optional argument causes condor_dagman to immediately dump a Rescue DAG and
then exit, as opposed to actually running the DAG. This feature is mainly intended for testing. The
Rescue DAG file is produced whether or not there are parse errors reading the original DAG input
file. The name of the file differs if there was a parse error.

-verbose (This argument is included only to be passed to condor_submit_dag if lazy submit file generation
is used for nested DAGs.) Cause condor_submit_dag to give verbose error messages.

-force (This argument is included only to be passed to condor_submit_dag if lazy submit file generation
is used for nested DAGs.) Require condor_submit_dag to overwrite the files that it produces, if the
files already exist. Note that dagman.out will be appended to, not overwritten. If new-style rescue
DAG mode is in effect, and any new-style rescue DAGs exist, the -force flag will cause them to be
renamed, and the original DAG will be run. If old-style rescue DAG mode is in effect, any existing
old-style rescue DAGs will be deleted, and the original DAG will be run. See the HTCondor manual
section on Rescue DAGs for more information.

-notification value This argument is only included to be passed to condor_submit_dag if lazy submit file
generation is used for nested DAGs. Sets the e-mail notification for DAGMan itself. This information
will be used within the HTCondor submit description file for DAGMan. This file is produced by
condor_submit_dag. The notification option is described in the condor_submit manual page.

-suppress_notification Causes jobs submitted by condor_dagman to not send email notifica-
tion for events. The same effect can be achieved by setting the configuration variable
DAGMAN_SUPPRESS_NOTIFICATION to True. This command line option is independent of the -
notification command line option, which controls notification for the condor_dagman job itself.
This flag is generally superfluous, as DAGMAN_SUPPRESS_NOTIFICATION defaults to True.

-dont_suppress_notification Causes jobs submitted by condor_dagman to defer to content within the
submit description file when deciding to send email notification for events. The same effect can
be achieved by setting the configuration variable DAGMAN_SUPPRESS_NOTIFICATION to False.
This command line flag is independent of the -notification command line option, which con-
trols notification for the condor_dagman job itself. If both -dont_suppress_notification and -
suppress_notification are specified within the same command line, the last argument is used.

-dagman DagmanExecutable (This argument is included only to be passed to condor_submit_dag if
lazy submit file generation is used for nested DAGs.) Allows the specification of an alternate con-
dor_dagman executable to be used instead of the one found in the user’s path. This must be a fully
qualified path.

-outfile_dir directory (This argument is included only to be passed to condor_submit_dag if lazy sub-
mit file generation is used for nested DAGs.) Specifies the directory in which the .dagman.out file
will be written. The directory may be specified relative to the current working directory as con-
dor_submit_dag is executed, or specified with an absolute path. Without this option, the .dagman.
out file is placed in the same directory as the first DAG input file listed on the command line.

-update_submit (This argument is included only to be passed to condor_submit_dag if lazy submit file
generation is used for nested DAGs.) This optional argument causes an existing .condor.sub file

12.12. condor_dagman 771

HTCondor Manual, Release 10.0.9

to not be treated as an error; rather, the .condor.sub file will be overwritten, but the existing values
of -maxjobs, -maxidle, -maxpre, and -maxpost will be preserved.

-import_env (This argument is included only to be passed to condor_submit_dag if lazy submit file gen-
eration is used for nested DAGs.) This optional argument causes condor_submit_dag to import the
current environment into the environment command of the .condor.sub file it generates.

-priority number Sets the minimum job priority of node jobs submitted and running under this con-
dor_dagman job.

-dont_use_default_node_log This option is disabled as of HTCondor version 8.3.1. Tells con-
dor_dagman to use the file specified by the job ClassAd attribute UserLog to monitor job status.
If this command line argument is used, then the job event log file cannot be defined with a macro.

-DontAlwaysRunPost This option causes condor_dagman to not run the POST script of a node if the
PRE script fails. (This was the default behavior prior to HTCondor version 7.7.2, and is again the
default behavior from version 8.5.4 onwards.)

-AlwaysRunPost This option causes condor_dagman to always run the POST script of a node, even if the
PRE script fails. (This was the default behavior for HTCondor version 7.7.2 through version 8.5.3.)

-DoRecovery Causes condor_dagman to start in recovery mode. This means that it reads the relevant job
user log(s) and catches up to the given DAG’s previous state before submitting any new jobs.

-dag filename filename is the name of the DAG input file that is set as an argument to condor_submit_dag,
and passed to condor_dagman.

12.12.4 Exit Status

condor_dagman will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.12.5 Examples

condor_dagman is normally not run directly, but submitted as an HTCondor job by running condor_submit_dag. See
the condor_submit_dag manual page for examples.

12.13 condor_drain

Control draining of an execute machine

12.13.1 Synopsis

condor_drain [-help]

condor_drain [-debug] [-pool pool-name] [-graceful | -quick | -fast] [-reason reason-text] [-resume-on-completion
| -restart-on-completion | -exit-on-completion] [-check expr] [-start expr] machine-name

condor_drain [-debug] [-pool pool-name] -cancel [-request-id id] machine-name

772 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.13.2 Description

condor_drain is an administrative command used to control the draining of all slots on an execute machine. When a
machine is draining, it will not accept any new jobs unless the -start expression specifies otherwise. Which machine
to drain is specified by the argument machine-name, and will be the same as the machine ClassAd attribute Machine.

How currently running jobs are treated depends on the draining schedule that is chosen with a command-line option:

-graceful Initiate a graceful eviction of the job. This means all promises that have been made to the job
are honored, including MaxJobRetirementTime. The eviction of jobs is coordinated to reduce idle
time. This means that if one slot has a job with a long retirement time and the other slots have jobs
with shorter retirement times, the effective retirement time for all of the jobs is the longer one. If no
draining schedule is specified, -graceful is chosen by default.

-quick MaxJobRetirementTime is not honored. Eviction of jobs is immediately initiated. Jobs are
given time to shut down and produce checkpoints, according to the usual policy, that is, given by
MachineMaxVacateTime.

-fast Jobs are immediately hard-killed, with no chance to gracefully shut down or produce a checkpoint.

If you specify -graceful, you may also specify -start. On a gracefully-draining machine, some jobs may finish retiring
before others. By default, the resources used by the newly-retired jobs do not become available for use by other jobs
until the machine exits the draining state (see below). The -start expression you supply replaces the draining machine’s
normal START expression for the duration of the draining state, potentially making those resources available. See the
condor_startd Policy Configuration section for more information.

Once draining is complete, the machine will enter the Drained/Idle state. To resume normal operation (negotiation) at
that time or any previous time during draining, the -cancel option may be used. The -resume-on-completion option
results in automatic resumption of normal operation once draining has completed, and may be used when initiating
draining. This is useful for forcing a machine with a partitionable slots to join all of the resources back together into
one machine, facilitating de-fragmentation and whole machine negotiation.

12.13.3 Options

-help Display brief usage information and exit.

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-pool pool-name Specify an alternate HTCondor pool, if the default one is not desired.

-graceful (the default) Honor the maximum vacate and retirement time policy.

-quick Honor the maximum vacate time, but not the retirement time policy.

-fast Honor neither the maximum vacate time policy nor the retirement time policy.

-reason reason-text Set the drain reason to reason-text. While the condor_startd is draining it will ad-
vertise the given reason. If this option is not used the reason defaults to the name of the user that
started the drain.

-resume-on-completion When done draining, resume normal operation, such that potentially the whole
machine could be claimed.

-restart-on-completion When done draining, restart the condor_startd daemon so that configuration
changes will take effect.

-exit-on-completion When done draining, shut down the condor_startd daemon and tell the con-
dor_master not to restart it automatically.

-check expr Abort draining, if expr is not true for all slots to be drained.

12.13. condor_drain 773

HTCondor Manual, Release 10.0.9

-start expr The START expression to use while the machine is draining. You can’t reference the machine’s
existing START expression.

-cancel Cancel a prior draining request, to permit the condor_negotiator to use the machine again.

-request-id id Specify a specific draining request to cancel, where id is given by the
DrainingRequestId machine ClassAd attribute.

12.13.4 Exit Status

condor_drain will exit with a non-zero status value if it fails and zero status if it succeeds.

12.14 condor_evicted_files

Inspect the file(s) that HTCondor is holding on to as a result of a job being evicted when when_to_transfer_output
= ON_EXIT_OR_EVICT, or checkpointing when CheckpointExitCode is set.

12.14.1 Synopsis

condor_evicted_files [COMMAND] <clusterID>.<procID>[<clusterID.<procID>]*

12.14.2 Description

Print the directory or directories HTCondor is using to store files for the specified job or jobs. COMMAND may be
one of dir, list, or get:

• dir: Print the directory (for each job) in which the file(s) are stored.

• list: List the contents of the directory (for each job).

• get: Copy the contents of the directory to a subdirectory named after each job’s ID.

12.14.3 General Remarks

The tool presently has a number of limitations:

• It must be run the same machine as the job’s schedd.

• The schedd must NOT have ALTERNATE_JOB_SPOOL set

• You can’t name the destination directory for the get command.

• The tool can’t distinguish between an invalid job ID and a job for which HTCondor never held any files.

774 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.14.4 Exit Status

Returns 0 on success.

12.14.5 Author

Center for High Throughput Computing, University of Wisconsin-Madison

12.14.6 Copyright

Copyright © 1990-2019 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

12.15 condor_fetchlog

Retrieve a daemon’s log file that is located on another computer

12.15.1 Synopsis

condor_fetchlog [-help | -version]

condor_fetchlog [-pool centralmanagerhostname[:portnumber]] [-master | -startd | -schedd | -collector | -negotiator
| -kbdd] machine-name subsystem[.extension]

12.15.2 Description

condor_fetchlog contacts HTCondor running on the machine specified by machine-name, and asks it to return a log
file from that machine. Which log file is determined from the subsystem[.extension] argument. The log file is printed
to standard output. This command eliminates the need to remotely log in to a machine in order to retrieve a daemon’s
log file.

For security purposes of authentication and authorization, this command requires ADMINISTRATOR level of access.

The subsystem[.extension] argument is utilized to construct the log file’s name. Without an optional .extension, the
value of the configuration variable named subsystem _LOG defines the log file’s name. When specified, the .extension
is appended to this value.

The subsystem argument is any value $(SUBSYSTEM) that has a defined configuration variable of $(SUBSYSTEM)_LOG,
or any of

• NEGOTIATOR_MATCH

• HISTORY

• STARTD_HISTORY

A value for the optional .extension to the subsystem argument is typically one of the three strings:

1. .old

2. .slot<X>

3. .slot<X>.old

12.15. condor_fetchlog 775

HTCondor Manual, Release 10.0.9

Within these strings, <X> is substituted with the slot number.

A subsystem argument of STARTD_HISTORY fetches all condor_startd history by concatenating all instances of log files
resulting from rotation.

12.15.3 Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-master Send the command to the condor_master daemon (default)

-startd Send the command to the condor_startd daemon

-schedd Send the command to the condor_schedd daemon

-collector Send the command to the condor_collector daemon

-kbdd Send the command to the condor_kbdd daemon

12.15.4 Examples

To get the condor_negotiator daemon’s log from a host named head.example.com from within the current pool:

$ condor_fetchlog head.example.com NEGOTIATOR

To get the condor_startd daemon’s log from a host named execute.example.com from within the current pool:

$ condor_fetchlog execute.example.com STARTD

This command requested the condor_startd daemon’s log from the condor_master. If the condor_master has crashed
or is unresponsive, ask another daemon running on that computer to return the log. For example, ask the condor_startd
daemon to return the condor_master ‘s log:

$ condor_fetchlog -startd execute.example.com MASTER

12.15.5 Exit Status

condor_fetchlog will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.16 condor_findhost

find machine(s) in the pool that can be used with minimal impact on currently running HTCondor jobs and best meet
any specified constraints

776 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.16.1 Synopsis

condor_findhost [-help] [-m] [-n num] [-c c_expr] [-r r_expr] [-p centralmanagerhostname]

12.16.2 Description

condor_findhost searches an HTCondor pool of machines for the best machine or machines that will have the minimum
impact on running HTCondor jobs if the machine or machines are taken out of the pool. The search may be limited to
the machine or machines that match a set of constraints and rank expression.

condor_findhost returns a fully-qualified domain name for each machine. The search is limited (constrained) to a
specific set of machines using the -c option. The search can use the -r option for rank, the criterion used for selecting
a machine or machines from the constrained list.

12.16.3 Options

-help Display usage information and exit

-m Only search for entire machines. Slots within an entire machine are not considered.

-n num Find and list up to num machines that fulfill the specification. num is an integer greater than zero.

-c c_expr Constrain the search to only consider machines that result from the evaluation of c_expr. c_expr
is a ClassAd expression.

-r r_expr r_expr is the rank expression evaluated to use as a basis for machine selection. r_expr is a
ClassAd expression.

-p centralmanagerhostname Specify the pool to be searched by giving the central manager’s host name.
Without this option, the current pool is searched.

12.16.4 General Remarks

condor_findhost is used to locate a machine within a pool that can be taken out of the pool with the least disturbance
of the pool.

An administrator should set preemption requirements for the HTCondor pool. The expression

(Interactive =?= TRUE)

will let condor_findhost know that it can claim a machine even if HTCondor would not normally preempt a job running
on that machine.

12.16.5 Exit Status

The exit status of condor_findhost is zero on success. If not able to identify as many machines as requested, it returns
one more than the number of machines identified. For example, if 8 machines are requested, and condor_findhost only
locates 6, the exit status will be 7. If not able to locate any machines, or an error is encountered, condor_findhost will
return the value 1.

12.16. condor_findhost 777

HTCondor Manual, Release 10.0.9

12.16.6 Examples

To find and list four machines, preferring those with the highest mips (on Drystone benchmark) rating:

$ condor_findhost -n 4 -r "mips"

To find and list 24 machines, considering only those where the kflops attribute is not defined:

$ condor_findhost -n 24 -c "kflops=?=undefined"

12.17 condor_gather_info

Gather information about an HTCondor installation and a queued job

12.17.1 Synopsis

condor_gather_info [–jobid ClusterId.ProcId] [–scratch /path/to/directory]

12.17.2 Description

condor_gather_info is a Linux-only tool that will collect and output information about the machine it is run upon,
about the HTCondor installation local to the machine, and optionally about a specified HTCondor job. The information
gathered by this tool is most often used as a debugging aid for the developers of HTCondor.

Without the –jobid option, information about the local machine and its HTCondor installation is gathered and placed
into the file called condor-profile.txt, in the current working directory. The information gathered is under the
category of Identity.

With the –jobid option, additional information is gathered about the job given in the command line argument and
identified by its ClusterId and ProcId ClassAd attributes. The information includes both categories, Identity and
Job information. As the quantity of information can be extensive, this information is placed into a compressed tar file.
The file is placed into the current working directory, and it is named using the format

cgi-<username>-jid<ClusterId>.<ProcId>-<year>-<month>-<day>-<hour>_<minute>_<second>-<TZ>
→˓.tar.gz

All values within <> are substituted with current values. The building of this potentially large tar file can require a fair
amount of temporary space. If the –scratch option is specified, it identifies a directory in which to build the tar file. If
the –scratch option is not specified, then the directory will be /tmp/cgi-<PID>, where the process ID is that of the
condor_gather_info executable.

The information gathered by this tool:

1. Identity

• User name who generated the report

• Script location and machine name

• Date of report creation

• uname -a

• Contents of /etc/issue

• Contents of /etc/redhat-release

778 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

• Contents of /etc/debian_version

• Contents of $(LOG)/MasterLog

• Contents of $(LOG)/ShadowLog

• Contents of $(LOG)/SchedLog

• Output of ps -auxww -forest

• Output of df -h

• Output of iptables -L

• Output of ls 'condor_config_val LOG'

• Output of ldd 'condor_config_val SBIN'/condor_schedd

• Contents of /etc/hosts

• Contents of /etc/nsswitch.conf

• Output of ulimit -a

• Output of uptime

• Output of free

• Network interface configuration (ifconfig)

• HTCondor version

• Location of HTCondor configuration files

• HTCondor configuration variables

– All variables and values

– Definition locations for each configuration variable

2. Job Information

• Output of condor_q jobid

• Output of condor_q -l jobid

• Output of condor_q -analyze jobid

• Job event log, if it exists

– Only events pertaining to the job ID

• If condor_gather_info has the proper permissions, it runs condor_fetchlog on the machine where the job
most recently ran, and includes the contents of the logs from the condor_master, condor_startd, and con-
dor_starter.

12.17.3 Options

-jobid <ClusterId.ProcId> Data mine information about this HTCondor job from the local HTCondor
installation and condor_schedd.

-scratch /path/to/directory A path to temporary space needed when building the output tar file. Defaults
to /tmp/cgi-<PID>, where <PID> is replaced by the process ID of condor_gather_info.

12.17. condor_gather_info 779

HTCondor Manual, Release 10.0.9

12.17.4 Files

• condor-profile.txtThe Identity portion of the information gathered when condor_gather_info is run without
arguments.

• cgi-<username>-jid<cluster>.<proc>-<year>-<month>-<day>-<hour>_<minute>_<second>-<TZ>.
tar.gz The output file which contains all of the information produced by this tool.

12.17.5 Exit Status

condor_gather_info will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.18 condor_gpu_discovery

Output GPU-related ClassAd attributes

12.18.1 Synopsis

condor_gpu_discovery -help

condor_gpu_discovery [<options>]

12.18.2 Description

condor_gpu_discovery outputs ClassAd attributes corresponding to a host’s GPU capabilities. It can presently report
CUDA and OpenCL devices; which type(s) of device(s) it reports is determined by which libraries, if any, it can find
when it runs; this reflects what GPU jobs will find on that host when they run. (Note that some HTCondor configuration
settings may cause the environment to differ between jobs and the HTCondor daemons in ways that change library
discovery.)

If CUDA_VISIBLE_DEVICES or GPU_DEVICE_ORDINAL is set in the environment when condor_gpu_discovery is run,
it will report only devices present in the those lists.

This tool is not available for MAC OS platforms.

With no command line options, the single ClassAd attribute DetectedGPUs is printed. If the value is 0, no GPUs were
detected. If one or more GPUS were detected, the value is a string, presented as a comma and space separated list of
the GPUs discovered, where each is given a name further used as the prefix string in other attribute names. Where there
is more than one GPU of a particular type, the prefix string includes an GPU id value identifying the device; these can
be integer values that monotonically increase from 0 when the -by-index option is used or globally unique identfiers
when the -short-uuid or -uuid argument is used.

For example, a discovery of two GPUs with -by-index may output

DetectedGPUs="CUDA0, CUDA1"

Further command line options use "CUDA" either with or without one of the integer values 0 or 1 as the name of the
device properties ad for -nested properties, or as the prefix string in attribute names when -not-nested properties
are chosen.

For machines with more than one or two NVIDIA devices, it is recommended that you also use the -short-uuid or
-uuid option. The uuid value assigned by NVIDA to each GPU is unique, so using this option provides stable device

780 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

identifiers for your devices. The -short-uuid option uses only part of the uuid, but it is highly likely to still be unique
for devices on a single machine. As of HTCondor 9.0 -short-uuid is the default. When -short-uuid is used,
discovery of two GPUs may look like this

DetectedGPUs="GPU-ddc1c098, GPU-9dc7c6d6"

Any NVIDIA runtime library later than 9.0 will accept the above identifiers in the CUDA_VISIBLE_DEVICES environ-
ment variable.

If the NVML libary is available, and a multi-instance GPU (MIG) -capable device is present, has MIG enabled, and
has created compute instances for each MIG instance, condor_gpu_discovery will report those instance as distinct
devices. Their names will be in the long UUID form unless the -short-uuid option is used, because they can not be
enumerated via CUDA. MIG instances don’t have some of the properties reported by the -properties, -extra, and
-dynamic options; these properties will be omitted. If MIG is enabled on any GPU in the system, some properties
become unavailable for every GPU in the system; condor_gpu_discovery will report what it can.

12.18.3 Options

-help Print usage information and exit.

-properties In addition to the DetectedGPUs attribute, display some of the attributes of the GPUs.
Each of these attributes will be in a nested ClassAd (-nested) or have a prefix string at the begin-
ning of its name (-not-nested). The displayed CUDA attributes are Capability, DeviceName,
DriverVersion, ECCEnabled, GlobalMemoryMb, and RuntimeVersion. The displayed Open CL
attributes are DeviceName, ECCEnabled, OpenCLVersion, and GlobalMemoryMb.

-nested

Default. Display properties that are common to all GPUs in a Common nested ClassAd, and
properties that are not common to all in a nested ClassAd using the GPUid as the ClassAd
name. Use the -not-nested argument to disable nested ClassAds and return to the older
behavior of using a prefix string for individual property attributes.

-not-nested

Display properties that are common to all GPUs using a CUDA or OCL as the attribute pre-
fix, and properties that are not common to all using a GPUid prefix. Versions of con-
dor_gpu_discovery prior to 9.11.0 support only this mode.

-extra Display more attributes of the GPUs. Each of these attributes will be added to a nested property
ClassAd (-nested) or have a prefix string at the beginning of its name (-not-nested). The addi-
tional CUDA attributes are ClockMhz, ComputeUnits, and CoresPerCU. The additional Open CL
attributes are ClockMhz and ComputeUnits.

-dynamic Display attributes of NVIDIA devices that change values as the GPU is working. Each of
these attributes will be added to the the nested property ClassAd (-nested) or have a prefix string
at the beginning of its name (-not-nested). These are FanSpeedPct, BoardTempC, DieTempC,
EccErrorsSingleBit, and EccErrorsDoubleBit.

-mixed When displaying attribute values, assume that the machine has a heterogeneous set of GPUs, so
always include the integer value in the prefix string.

-device <N> Display properties only for GPU device <N>, where <N> is the integer value defined
for the prefix string. This option may be specified more than once; additional <N> are listed
along with the first. This option adds to the devices(s) specified by the environment variables
CUDA_VISIBLE_DEVICES and GPU_DEVICE_ORDINAL, if any.

12.18. condor_gpu_discovery 781

HTCondor Manual, Release 10.0.9

-tag string Set the resource tag portion of the intended machine ClassAd attribute
Detected<ResourceTag> to be string. If this option is not specified, the resource tag is
"GPUs", resulting in attribute name DetectedGPUs.

-prefix str When naming -not-nested attributes, use str as the prefix string. When this option is not
specified, the prefix string is either CUDA or OCL unless -uuid or -short-uuid is also used.

-by-index Use the prefix and device index as the device identifier.

-short-uuid Use the first 8 characters of the NVIDIA uuid as the device identifier. When this option is
used, devices will be shown as GPU-<xxxxxxxx> where <xxxxxxxx> is the first 8 hex digits of the
NVIDIA device uuid. Unlike device indices, the uuid of a device will not change of other devices
are taken offline or drained.

-uuid Use the full NVIDIA uuid as the device identifier rather than the device index.

-simulate:[D,N[,D2,. . .]] For testing purposes, assume that N devices of type D were detected, And N2
devices of type D2, etc. No discovery software is invoked. D can be a value from 0 to 6 which selects
a simulated a GPU from the following table.

Table 1: Simulated GPUs
DeviceName Capability GlobalMemo-

ryMB
0 GeForce GT 330 1.2 1024
1 GeForce GTX 480 2.0 1536
2 Tesla V100-PCIE-16GB 7.0 24220
3 TITAN RTX 7.5 24220
4 A100-SXM4-40GB 8.0 40536
5 NVIDIA A100-SXM4-40GB MIG 3g.20gb 8.0 20096
6 NVIDIA A100-SXM4-40GB MIG 1g.5gb 8.0 4864

-opencl Prefer detection via OpenCL rather than CUDA. Without this option, CUDA detection software
is invoked first, and no further Open CL software is invoked if CUDA devices are detected.

-cuda Do only CUDA detection.

-nvcuda For Windows platforms only, use a CUDA driver rather than the CUDA run time.

-config Output in the syntax of HTCondor configuration, instead of ClassAd language. An additional
attribute is produced NUM_DETECTED_GPUs which is set to the number of GPUs detected.

-repeat [N] Repeat listed GPUs N (default 2) times. This results in a list that looks like CUDA0, CUDA1,
CUDA0, CUDA1.

If used with -divide, the last one on the command-line wins, but you must specify 2 if you want it;
the default value only applies to the first flag.

-divide [N] Like -repeat, except also divide the attribute GlobalMemoryMb by N. This may help you
avoid overcommitting your GPU’s memory.

If used with -repeat, the last one on the command-line wins, but you must specify 2 if you want it;
the default value only applies to the first flag.

-packed When repeating GPUs, repeat each GPU N times, not the whole list. This results in a list that
looks like CUDA0, CUDA0, CUDA1, CUDA1.

-cron This option suppresses the DetectedGpus attribute so that the output is suitable for use with con-
dor_startd cron. Combine this option with the -dynamic option to periodically refresh the dynamic
Gpu information such as temperature. For example, to refresh GPU temperatures every 5 minutes

782 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

use FEATURE : StartdCronPeriodic(DYNGPUS, 5*60, $(LIBEXEC)/condor_gpu_
→˓discovery, -dynamic -cron)

-verbose For interactive use of the tool, output extra information to show detection while in progress.

-diagnostic Show diagnostic information, to aid in tool development.

12.18.4 Exit Status

condor_gpu_discovery will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.19 condor_history

View log of HTCondor jobs completed to date

12.19.1 Synopsis

condor_history [-help]

condor_history [-name name] [-pool centralmanagerhostname[:portnumber]] [-backwards] [-forwards] [-
constraint expr] [-file filename] [-local] [-startd] [-userlog filename] [-format formatString AttributeName] [-
autoformat[:jlhVr,tng] attr1 [attr2 . . .]] [-l | -long | -xml | -json | -jsonl] [-match | -limit number] [-attributes
attr1[,attr2. . .]] [-print-format file] [-wide] [-since time_or_jobid] [-completedsince time_expr] [-scanlimit num-
ber] [cluster | cluster.process | owner]

12.19.2 Description

condor_history displays a summary of all HTCondor jobs listed in the specified history files. If no history files are
specified with the -file option, the local history file as specified in HTCondor’s configuration file ($(SPOOL)/history by
default) is read. The default listing summarizes in reverse chronological order each job on a single line, and contains
the following items:

ID The cluster/process id of the job.

OWNER The owner of the job.

SUBMITTED The month, day, hour, and minute the job was submitted to the queue.

RUN_TIME Remote wall clock time accumulated by the job to date in days, hours, minutes, and seconds,
given as the job ClassAd attribute RemoteWallClockTime.

ST Completion status of the job (C = completed and X = removed).

COMPLETED The time the job was completed.

CMD The name of the executable.

If a job ID (in the form of cluster_id or cluster_id.proc_id) or an owner is provided, output will be restricted to jobs
with the specified IDs and/or submitted by the specified owner. The -constraint option can be used to display jobs that
satisfy a specified boolean expression.

12.19. condor_history 783

HTCondor Manual, Release 10.0.9

12.19.3 Options

-help Display usage information and exit.

-name name Query the named condor_schedd daemon. if used with -startd, query the named con-
dor_startd daemon

-pool centralmanagerhostname[:portnumber] Use the centralmanagerhostname as the central manager
to locate condor_schedd daemons. The default is the COLLECTOR_HOST, as specified in the config-
uration.

-backwards List jobs in reverse chronological order. The job most recently added to the history file is
first. This is the default ordering.

-forwards List jobs in chronological order. The job most recently added to the history file is last. At least
4 characters must be given to distinguish this option from the -file and -format options.

-constraint expr Display jobs that satisfy the expression.

-since jobid or expr Stop scanning when the given jobid is found or when the expression becomes true.

-completedsince time_expr Scan until the first job that completed on or before the given unix timestamp.
The argument can be any expression that evaluates to a unix timestamp. This option is equivalent to
-since ‘CompletionDate<=time_expr’.

-scanlimit Number Stop scanning when the given number of ads have been read.

-limit Number Limit the number of jobs displayed to Number. Same option as -match.

-match Number Limit the number of jobs displayed to Number. Same option as -limit.

-local Read from local history files even if there is a SCHEDD_HOST configured.

-startd Read from Startd history files rather than Schedd history files. If used with the -name option,
query is sent as a command to the given Startd which must be version 9.0 or later.

-file filename Use the specified file instead of the default history file.

-userlog filename Display jobs, with job information coming from a job event log, instead of from the
default history file. A job event log does not contain all of the job information, so some fields in the
normal output of condor_history will be blank.

-format formatString AttributeName Display jobs with a custom format. See the condor_q man page
-format option for details.

-autoformat[:jlhVr,tng] attr1 [attr2 . . .] or -af[:jlhVr,tng] attr1 [attr2 . . .] (output option) Display at-
tribute(s) or expression(s) formatted in a default way according to attribute types. This option takes
an arbitrary number of attribute names as arguments, and prints out their values, with a space be-
tween each value and a newline character after the last value. It is like the -format option without
format strings.

It is assumed that no attribute names begin with a dash character, so that the next word that begins
with dash is the start of the next option. The autoformat option may be followed by a colon character
and formatting qualifiers to deviate the output formatting from the default:

j print the job ID as the first field,

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print “raw”, or unevaluated values,

784 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The l and h characters may not be used
together.

-print-format file Read output formatting information from the given custom print format file. see Print
Formats for more information about custom print format files.

-l or -long Display job ClassAds in long format.

-attributes attrs Display only the given attributes when the -long o ption is used.

-xml Display job ClassAds in XML format. The XML format is fully defined in the reference manual,
obtained from the ClassAds web page, with a link at http://htcondor.org/classad/classad.html.

-json Display job ClassAds in JSON format.

-jsonl Display job ClassAds in JSON-Lines format: one job ad per line.

-wide[:number] Restrict output to the given column width. Default width is 80 columns, if -wide is used
without the optional number argument, the width of the output is not restricted.

12.19.4 Exit Status

condor_history will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.20 condor_hold

put jobs in the queue into the hold state

12.20.1 Synopsis

condor_hold [-help | -version]

condor_hold [-debug] [-reason reasonstring] [-subcode number] [-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”] cluster. . . | cluster.process. . . | user. . . | -constraint expression . . .

condor_hold [-debug] [-reason reasonstring] [-subcode number] [-pool centralmanagerhostname[:portnumber] |
-name scheddname] | [-addr “<a.b.c.d:port>”] -all

12.20. condor_hold 785

http://htcondor.org/classad/classad.html

HTCondor Manual, Release 10.0.9

12.20.2 Description

condor_hold places jobs from the HTCondor job queue in the hold state. If the -name option is specified, the named
condor_schedd is targeted for processing. Otherwise, the local condor_schedd is targeted. The jobs to be held are
identified by one or more job identifiers, as described below. For any given job, only the owner of the job or one of the
queue super users (defined by the QUEUE_SUPER_USERS macro) can place the job on hold.

A job in the hold state remains in the job queue, but the job will not run until released with condor_release.

A currently running job that is placed in the hold state by condor_hold is sent a hard kill signal.

12.20.3 Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-name scheddname Send the command to a machine identified by scheddname

-addr “<a.b.c.d:port>” Send the command to a machine located at “<a.b.c.d:port>”

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-reason reasonstring Sets the job ClassAd attribute HoldReason to the value given by reasonstring. rea-
sonstring will be delimited by double quote marks on the command line, if it contains space charac-
ters.

-subcode number Sets the job ClassAd attribute HoldReasonSubCode to the integer value given by num-
ber.

cluster Hold all jobs in the specified cluster

cluster.process Hold the specific job in the cluster

user Hold all jobs belonging to specified user

-constraint expression Hold all jobs which match the job ClassAd expression constraint (within quotation
marks). Note that quotation marks must be escaped with the backslash characters for most shells.

-all Hold all the jobs in the queue

12.20.4 See Also

condor_release

786 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.20.5 Examples

To place on hold all jobs (of the user that issued the condor_hold command) that are not currently running:

$ condor_hold -constraint "JobStatus!=2"

Multiple options within the same command cause the union of all jobs that meet either (or both) of the options to be
placed in the hold state. Therefore, the command

$ condor_hold Mary -constraint "JobStatus!=2"

places all of Mary’s queued jobs into the hold state, and the constraint holds all queued jobs not currently running.
It also sends a hard kill signal to any of Mary’s jobs that are currently running. Note that the jobs specified by the
constraint will also be Mary’s jobs, if it is Mary that issues this example condor_hold command.

12.20.6 Exit Status

condor_hold will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.21 condor_install

Configure or install HTCondor

12.21.1 Synopsis

condor_configure or condor_install [–help] [–usage]

condor_configure or condor_install [–install[=<path/to/release>]] [–install-dir=<path>] [–prefix=<path>]
[–local-dir=<path>] [–make-personal-condor] [–bosco] [–type = < submit, execute, manager >] [–central-
manager = < hostname>] [–owner = < ownername >] [–maybe-daemon-owner] [–install-log = < file >]
[–overwrite] [–ignore-missing-libs] [–force] [–no-env-scripts] [–env-scripts-dir = < directory >] [–backup]
[–credd] [–verbose]

12.21.2 Description

condor_configure and condor_install refer to a single script that installs and/or configures HTCondor on Unix machines.
As the names imply, condor_install is intended to perform a HTCondor installation, and condor_configure is intended
to configure (or reconfigure) an existing installation. Both will run with Perl 5.6.0 or more recent versions.

condor_configure (and condor_install) are designed to be run more than one time where required. It can install HT-
Condor when invoked with a correct configuration via

$ condor_install

or

$ condor_configure --install

or, it can change the configuration files when invoked via

$ condor_configure

12.21. condor_install 787

HTCondor Manual, Release 10.0.9

Note that changes in the configuration files do not result in changes while HTCondor is running. To effect changes while
HTCondor is running, it is necessary to further use the condor_reconfig or condor_restart command. condor_reconfig
is required where the currently executing daemons need to be informed of configuration changes. condor_restart is
required where the options –make-personal-condor or –type are used, since these affect which daemons are running.

Running condor_configure or condor_install with no options results in a usage screen being printed. The –help option
can be used to display a full help screen.

Within the options given below, the phrase release directories is the list of directories that are released with HTCondor.
This list includes: bin, etc, examples, include, lib, libexec, man, sbin, sql and src.

12.21.3 Options

-help Print help screen and exit

-usage Print short usage and exit

-install Perform installation, assuming that the current working directory contains the release directories.
Without further options, the configuration is that of a Personal HTCondor, a complete one-machine
pool. If used as an upgrade within an existing installation directory, existing configuration files and
local directory are preserved. This is the default behavior of condor_install.

-install-dir=<path> Specifies the path where HTCondor should be installed or the path where it already
is installed. The default is the current working directory.

-prefix=<path> This is an alias for -install-dir.

-local-dir=<path> Specifies the location of the local directory, which is the directory that generally con-
tains the local (machine-specific) configuration file as well as the directories where HTCondor dae-
mons write their run-time information (spool, log, execute). This location is indicated by the
LOCAL_DIR variable in the configuration file. When installing (that is, if -install is specified), con-
dor_configure will properly create the local directory in the location specified. If none is specified,
the default value is given by the evaluation of $(RELEASE_DIR)/local.$(HOSTNAME).

During subsequent invocations of condor_configure (that is, without the -install option), if the -local-
dir option is specified, the new directory will be created and the log, spool and execute directories
will be moved there from their current location.

-make-personal-condor Installs and configures for Personal HTCondor, a fully-functional, one-machine
pool.

-bosco Installs and configures Bosco, a personal HTCondor that submits jobs to remote batch systems.

-type= < submit, execute, manager > One or more of the types may be listed. This determines the roles
that a machine may play in a pool. In general, any machine can be a submit and/or execute machine,
and there is one central manager per pool. In the case of a Personal HTCondor, the machine fulfills
all three of these roles.

-central-manager=<hostname> Instructs the current HTCondor installation to use the specified machine
as the central manager. This modifies the configuration variable COLLECTOR_HOST to point to the
given host name. The central manager machine’s HTCondor configuration needs to be independently
configured to act as a manager using the option -type=manager.

-owner=<ownername> Set configuration such that HTCondor daemons will be executed as the given
owner. This modifies the ownership on the log, spool and execute directories and sets the
CONDOR_IDS value in the configuration file, to ensure that HTCondor daemons start up as the speci-
fied effective user. This is only applicable when condor_configure is run by root. If not run as root,
the owner is the user running the condor_configure command.

788 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

-maybe-daemon-owner If -owner is not specified and no appropriate user can be found to run Condor,
then this option will allow the daemon user to be selected. This option is rarely needed by users but
can be useful for scripts that invoke condor_configure to install Condor.

-install-log=<file> Save information about the installation in the specified file. This is normally only
needed when condor_configure is called by a higher-level script, not when invoked by a person.

-overwrite Always overwrite the contents of the sbin directory in the installation directory. By default,
condor_install will not install if it finds an existing sbin directory with HTCondor programs in it.
In this case, condor_install will exit with an error message. Specify -overwrite or -backup to tell
condor_install what to do.

This prevents condor_install from moving an sbin directory out of the way that it should not move.
This is particularly useful when trying to install HTCondor in a location used by other things (/usr,
/usr/local, etc.) For example: condor_install -prefix=/usr will not move /usr/sbin out of the
way unless you specify the -backup option.

The -backup behavior is used to prevent condor_install from overwriting running daemons - Unix
semantics will keep the existing binaries running, even if they have been moved to a new directory.

-backup Always backup the sbin directory in the installation directory. By default, condor_install will
not install if it finds an existing sbin directory with HTCondor programs in it. In this case, con-
dor_install with exit with an error message. You must specify -overwrite or -backup to tell con-
dor_install what to do.

This prevents condor_install from moving an sbin directory out of the way that it should not move.
This is particularly useful if you’re trying to install HTCondor in a location used by other things (/
usr, /usr/local, etc.) For example: condor_install -prefix=/usr will not move /usr/sbin out of
the way unless you specify the -backup option.

The -backup behavior is used to prevent condor_install from overwriting running daemons - Unix
semantics will keep the existing binaries running, even if they have been moved to a new directory.

-ignore-missing-libs Ignore missing shared libraries that are detected by condor_install. By default, con-
dor_install will detect missing shared libraries such as libstdc++.so.5 on Linux; it will print mes-
sages and exit if missing libraries are detected. The -ignore-missing-libs will cause condor_install
to not exit, and to proceed with the installation if missing libraries are detected.

-force This is equivalent to enabling both the -overwrite and -ignore-missing-libs command line options.

-no-env-scripts By default, condor_configure writes simple sh and csh shell scripts which can be sourced
by their respective shells to set the user’s PATH and CONDOR_CONFIG environment variables. This
option prevents condor_configure from generating these scripts.

-env-scripts-dir=<directory> By default, the simple sh and csh shell scripts (see -no-env-scripts for
details) are created in the root directory of the HTCondor installation. This option causes con-
dor_configure to generate these scripts in the specified directory.

-credd Configure the the condor_credd daemon (credential manager daemon).

-verbose Print information about changes to configuration variables as they occur.

12.21. condor_install 789

HTCondor Manual, Release 10.0.9

12.21.4 Exit Status

condor_configure will exit with a status value of 0 (zero) upon success, and it will exit with a nonzero value upon
failure.

12.21.5 Examples

Install HTCondor on the machine (machine1@cs.wisc.edu) to be the pool’s central manager. On machine1, within the
directory that contains the unzipped HTCondor distribution directories:

$ condor_install --type=submit,execute,manager

This will allow the machine to submit and execute HTCondor jobs, in addition to being the central manager of the pool.

To change the configuration such that machine2@cs.wisc.edu is an execute-only machine (that is, a dedicated
computing node) within a pool with central manager on machine1@cs.wisc.edu, issue the command on that ma-
chine2@cs.wisc.edu from within the directory where HTCondor is installed:

$ condor_configure --central-manager=machine1@cs.wisc.edu --type=execute

To change the location of the LOCAL_DIR directory in the configuration file, do (from the directory where HTCondor
is installed):

$ condor_configure --local-dir=/path/to/new/local/directory

This will move the log,spool,execute directories to /path/to/new/local/directory from the current local di-
rectory.

12.22 condor_job_router_info

Discover and display information related to job routing

12.22.1 Synopsis

condor_job_router_info [-help | -version]

condor_job_router_info -config

condor_job_router_info -match-jobs -jobads inputfile [-ignore-prior-routing]

condor_job_router_info -route-jobs outputfile -jobads inputfile [-ignore-prior-routing] [-log-steps]

12.22.2 Description

condor_job_router_info displays information about job routing. The information will be either the available, configured
routes or the routes for specified jobs. condor_job_router_info can also be used to simulate routing by supplying a job
classad in a file. This can be used to test the router configuration offline.

790 Chapter 12. Command Reference Manual (man pages)

mailto:machine1@cs.wisc.edu
mailto:machine2@cs.wisc.edu
mailto:machine1@cs.wisc.edu
mailto:machine2@cs.wisc.edu
mailto:machine2@cs.wisc.edu

HTCondor Manual, Release 10.0.9

12.22.3 Options

-help Display usage information and exit.

-version Display HTCondor version information and exit.

-config Display configured routes.

-match-jobs For each job listed in the file specified by the -jobads option, display the first route found.

-route-jobs filename For each job listed in the file specified by the -jobads option, apply the first route
found and print the routed jobs to the specified output file. if filename is - the routed jobs are printed
to stdout.

-log-steps When used with the -route-jobs option, print each transform step as the job transforms are
applied.

-ignore-prior-routing For each job, remove any existing routing ClassAd attributes, and set attribute
JobStatus to the Idle state before finding the first route.

-jobads filename Read job ClassAds from file filename. If filename is -, then read from stdin.

12.22.4 Exit Status

condor_job_router_info will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

12.23 condor_master

The master HTCondor Daemon

12.23.1 Synopsis

condor_master

12.23.2 Description

This daemon is responsible for keeping all the rest of the HTCondor daemons running on each machine in your pool.
It spawns the other daemons, and periodically checks to see if there are new binaries installed for any of them. If there
are, the condor_master will restart the affected daemons. In addition, if any daemon crashes, the condor_master will
send e-mail to the HTCondor Administrator of your pool and restart the daemon. The condor_master also supports
various administrative commands that let you start, stop or reconfigure daemons remotely. The condor_master will run
on every machine in your HTCondor pool, regardless of what functions each machine are performing. Additionally,
on Linux platforms, if you start the condor_master as root, it will tune (but never decrease) certain kernel parameters
important to HTCondor’s performance.

The DAEMON_LIST configuration macro is used by the condor_master to provide a per-machine list of daemons that
should be started and kept running. For daemons that are specified in the DC_DAEMON_LIST configuration macro, the
condor_master daemon will spawn them automatically appending a -f argument. For those listed in DAEMON_LIST,
but not in DC_DAEMON_LIST, there will be no -f argument.

The condor_master creates certain directories necessary for its proper functioning on start-up
if they don’t already exist, using the values of the configuration settings EXECUTE, LOCAL_DIR,
LOCAL_DISK_LOCK_DIR, LOCAL_UNIV_EXECUTE, LOCK, LOG, RUN, SEC_CREDENTIAL_DIRECTORY_KRB,

12.23. condor_master 791

HTCondor Manual, Release 10.0.9

SEC_CREDENTIAL_DIRECTORY_OAUTH, SEC_PASSWORD_DIRECTORY, SEC_TOKEN_SYSTEM_DIRECTORY, and
SPOOL.

12.23.3 Options

-n name Provides an alternate name for the condor_master to override that given by the MASTER_NAME
configuration variable.

12.24 condor_now

Start a job now.

12.24.1 Synopsis

condor_now -help

condor_now [-name] [-debug**] now-job vacate-job [vacate-job+]

12.24.2 Description

condor_now tries to run the now-job now. The vacate-job is immediately vacated; after it terminates, if the schedd still
has the claim to the vacated job’s slot - and it usually will - the schedd will immediately start the now-job on that slot.

If you specify multiple vacate-job s, each will be immediately vacated; after they all terminate, the schedd will try to
coalesce their slots into a single, larger, slot and then use that slot to run the now-job.

You must specify each job using both the cluster and proc IDs.

12.24.3 Options

-help Print a usage reminder.

-debug Print debugging output. Control the verbosity with the environment variables _CON-
DOR_TOOL_DEBUG, as usual.

-name ** Specify the scheduler(‘s name) and (optionally) the pool to find it in.

12.24.4 General Remarks

The now-job and the vacated-job must have the same owner; if you are not the queue super-user, you must own both
jobs. The jobs must be on the same schedd, and both jobs must be in the vanilla universe. The now-job must be idle
and the vacated-job must be running.

792 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.24.5 Examples

To begin running job 17.3 as soon as possible using job 4.2’s slot:

$ condor_now 17.3 4.2

To try to figure out why that doesn’t work for the ‘magic’ scheduler in the ‘gandalf’ pool, set the environment variable
_CONDOR_TOOL_DEBUG to ‘D_FULLDEBUG’ and then:

$ condor_now -debug -schedd magic -pool gandalf 17.3 4.2

12.24.6 Exit Status

condor_now will exit with a status value of 0 (zero) if the schedd accepts its request to vacate the vacate-job and start
the now-job in its place. It does not wait for the now-job to have started running.

12.25 condor_off

Shutdown HTCondor daemons

12.25.1 Synopsis

condor_off [-help | -version]

condor_off [-graceful | -fast | -peaceful | -force-graceful] [-annex name] [-debug] [-pool centralmanagerhost-
name[:portnumber]] [-name hostname | hostname | -addr “<a.b.c.d:port>” | “<a.b.c.d:port>” | -constraint expres-
sion | -all] [-daemon daemonname]

12.25.2 Description

condor_off shuts down a set of the HTCondor daemons running on a set of one or more machines. It does this cleanly
so that checkpointable jobs may gracefully exit with minimal loss of work.

The command condor_off without any arguments will shut down all daemons except condor_master, unless -annex
name is specified. The condor_master can then handle both local and remote requests to restart the other HTCondor
daemons if need be. To restart HTCondor running on a machine, see the condor_on command.

With the -daemon master option, condor_off will shut down all daemons including the condor_master. Specification
using the -daemon option will shut down only the specified daemon.

For security reasons of authentication and authorization, this command requires ADMINISTRATOR level of access.

12.25. condor_off 793

HTCondor Manual, Release 10.0.9

12.25.3 Options

-help Display usage information

-version Display version information

-graceful The default. If jobs are running, wait for up to the configured grace period for them to finish,
then exit

-fast Quickly shutdown daemons, immediately evicting any running jobs. A minimum of the first two
characters of this option must be specified, to distinguish it from the -force-graceful command.

-peaceful Wait indefinitely for jobs to finish

-force-graceful Force a graceful shutdown, even after issuing a -peaceful command. A minimum of the
first two characters of this option must be specified, to distinguish it from the -fast command.

-annex name Turn off master daemons in the specified annex. By default this will result in the corre-
sponding instances shutting down.

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-name hostname Send the command to a machine identified by hostname

hostname Send the command to a machine identified by hostname

-addr “<a.b.c.d:port>” Send the command to a machine’s master located at “<a.b.c.d:port>”

“<a.b.c.d:port>” Send the command to a machine located at “<a.b.c.d:port>”

-constraint expression Apply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

-daemon daemonname Send the command to the named daemon. Without this option, the command is
sent to the condor_master daemon.

12.25.4 Graceful vs. Peaceful vs Fast

A “fast” shutdown will cause the requested daemon to exit. Jobs running under a startd that is shutdown fast will be
evicted. Jobs running on a schedd that is shutdown fast will be left running for their job lease duration (default of 20
minutes). (That is, assuming the corresponding startd is not also being shut down). If that schedd restarts before the
job lease expires, it will reconnect to these running jobs and continue to run them, as long as the schedd and startd are
running.

A “graceful” shutdown of a schedd is functionally the same as a “fast” shutdown of a schedd.

A “graceful” shutdown of a startd that has jobs running under it causes the startd to wait for the jobs to exit of their
own accord, up to the MaxJobRetirementTime. After the MaxJobRetirementTime, the startd will evict any remaining
running jobs and exit.

A “peaceful” shutdown of a startd or schedd will cause that daemon to wait indefinitely for all existing jobs to exit
before shutting down. During this time, no new jobs will start.

794 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.25.5 Exit Status

condor_off will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.25.6 Examples

To shut down all daemons (other than condor_master) on the local host:

$ condor_off

To shut down only the condor_collector on three named machines:

$ condor_off cinnamon cloves vanilla -daemon collector

To shut down daemons within a pool of machines other than the local pool, use the -pool option. The argument is
the name of the central manager for the pool. Note that one or more machines within the pool must be specified as
the targets for the command. This command shuts down all daemons except the condor_master on the single machine
named cae17 within the pool of machines that has condor.cae.wisc.edu as its central manager:

$ condor_off -pool condor.cae.wisc.edu -name cae17

12.26 condor_on

Start up HTCondor daemons

12.26.1 Synopsis

condor_on [-help | -version]

condor_on [-debug] [-pool centralmanagerhostname[:portnumber]] [-name hostname | hostname | -addr
“<a.b.c.d:port>” | “<a.b.c.d:port>” | -constraint expression | -all] [-daemon daemonname]

12.26.2 Description

condor_on starts up a set of the HTCondor daemons on a set of machines. This command assumes that the con-
dor_master is already running on the machine. If this is not the case, condor_on will fail complaining that it cannot
find the address of the master. The command condor_on with no arguments or with the -daemon master option will
tell the condor_master to start up the HTCondor daemons specified in the configuration variable DAEMON_LIST. If a
daemon other than the condor_master is specified with the -daemon option, condor_on starts up only that daemon.

This command cannot be used to start up the condor_master daemon.

For security reasons of authentication and authorization, this command requires ADMINISTRATOR level of access.

12.26. condor_on 795

HTCondor Manual, Release 10.0.9

12.26.3 Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-name hostname Send the command to a machine identified by hostname

hostname Send the command to a machine identified by hostname

-addr “<a.b.c.d:port>” Send the command to a machine’s master located at “<a.b.c.d:port>”

“<a.b.c.d:port>” Send the command to a machine located at “<a.b.c.d:port>”

-constraint expression Apply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

-daemon daemonname Send the command to the named daemon. Without this option, the command is
sent to the condor_master daemon.

12.26.4 Exit Status

condor_on will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.26.5 Examples

To begin running all daemons (other than condor_master) given in the configuration variable DAEMON_LIST on the
local host:

$ condor_on

To start up only the condor_negotiator on two named machines:

$ condor_on robin cardinal -daemon negotiator

To start up only a daemon within a pool of machines other than the local pool, use the -pool option. The argument
is the name of the central manager for the pool. Note that one or more machines within the pool must be specified as
the targets for the command. This command starts up only the condor_schedd daemon on the single machine named
cae17 within the pool of machines that has condor.cae.wisc.edu as its central manager:

$ condor_on -pool condor.cae.wisc.edu -name cae17 -daemon schedd

796 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.27 condor_ping

Attempt a security negotiation to determine if it succeeds

12.27.1 Synopsis

condor_ping [-help | -version]

condor_ping [-debug] [-address <a.b.c.d:port>] [-pool host name] [-name daemon name] [-type subsystem] [-config
filename] [-quiet | -table | -verbose] token [token [. . .]]

12.27.2 Description

condor_ping attempts a security negotiation to discover whether the configuration is set such that the negotiation suc-
ceeds. The target of the negotiation is defined by one or a combination of the address, pool, name, or type options. If
no target is specified, the default target is the condor_schedd daemon on the local machine.

One or more token s may be listed, thereby specifying one or more authorization level to impersonate in security
negotiation. A token is the value ALL, an authorization level, a command name, or the integer value of a command.
The many command names and their associated integer values will more likely be used by experts, and they are defined
in the file condor_includes/condor_commands.h.

An authorization level may be one of the following strings. If ALL is listed, then negotiation is attempted for each of
these possible authorization levels. Note that OWNER is no longer used in HTCondor, but is kept here for use when
talking to older daemons (prior to 9.9.0).

READ WRITE ADMINISTRATOR SOAP CONFIG OWNER DAEMON NEGOTIATOR ADVER-
TISE_MASTER ADVERTISE_STARTD ADVERTISE_SCHEDD CLIENT

12.27.3 Options

-help Display usage information

-version Display version information

-debug Print extra debugging information as the command executes.

-config filename Attempt the negotiation based on the contents of the configuration file contents in file
filename.

-address <a.b.c.d:port> Target the given IP address with the negotiation attempt.

-pool hostname Target the given host with the negotiation attempt. May be combined with specifications
defined by name and type options.

-name daemonname Target the daemon given by daemonname with the negotiation attempt.

-type subsystem Target the daemon identified by subsystem, one of the values of the predefined
$(SUBSYSTEM) macro.

-quiet Set exit status only; no output displayed.

-table Output is displayed with one result per line, in a table format.

-verbose Display all available output.

12.27. condor_ping 797

HTCondor Manual, Release 10.0.9

12.27.4 Examples

The example Unix command

$ condor_ping -address "<127.0.0.1:9618>" -table READ WRITE DAEMON

places double quote marks around the sinful string to prevent the less than and the greater than characters from causing
redirect of input and output. The given IP address is targeted with 3 attempts to negotiate: one at the READ authorization
level, one at the WRITE authorization level, and one at the DAEMON authorization level.

12.27.5 Exit Status

condor_ping will exit with the status value of the negotiation it attempted, where 0 (zero) indicates success, and 1 (one)
indicates failure. If multiple security negotiations were attempted, the exit status will be the logical OR of all values.

12.28 condor_pool_job_report

generate report about all jobs that have run in the last 24 hours on all execute hosts

12.28.1 Synopsis

condor_pool_job_report

12.28.2 Description

condor_pool_job_report is a Linux-only tool that is designed to be run nightly using cron. It is intended to be run on the
central manager, or another machine that has administrative permissions, and is able to fetch the condor_startd history
logs from all of the condor_startd daemons in the pool. After fetching these logs, condor_pool_job_report then gen-
erates a report about job run times and mails it to administrators, as defined by configuration variable CONDOR_ADMIN
.

12.28.3 Exit Status

condor_pool_job_report will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

12.29 condor_power

send packet intended to wake a machine from a low power state

798 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.29.1 Synopsis

condor_power [-h]

condor_power [-d] [-i] [-m MACaddress] [-s subnet] [ClassAdFile]

12.29.2 Description

condor_power sends one UDP Wake on LAN (WOL) packet to a machine specified either by command line arguments
or by the contents of a machine ClassAd. The machine ClassAd may be in a file, where the file name specified by
the optional argument ClassAdFile is given on the command line. With no command line arguments to specify the
machine, and no file specified, condor_power quietly presumes that standard input is the file source which will specify
the machine ClassAd that includes the public IP address and subnet of the machine.

condor_power needs a complete specification of the machine to be successful. If a MAC address is provided on the
command line, but no subnet is given, then the default value for the subnet is used. If a subnet is provided on the
command line, but no MAC address is given, then condor_power falls back to taking its information in the form of
the machine ClassAd as provided in a file or on standard input. Note that this case implies that the command line
specification of the subnet is ignored.

condor_power relies on the router receiving the WOL packet to correctly broadcast the request. Since routers are often
configured to ignore requests to broadcast messages on a different subnet than the sender, the send of a WOL packet to
a machine on a different subnet may fail.

12.29.3 Options

-h Print usage information and exit.

-d Enable debugging messages.

-i Read a ClassAd that is piped in through standard input.

-m MACaddress Specify the MAC address in the standard format of six groups of two hexadecimal digits
separated by colons.

-s subnet Specify the subnet in the standard form of a mask for an IPv4 address. Without this option, a
global broadcast will be sent.

12.29.4 Exit Status

condor_power will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.30 condor_preen

remove extraneous files from HTCondor directories

12.30. condor_preen 799

HTCondor Manual, Release 10.0.9

12.30.1 Synopsis

condor_preen [-mail] [-remove] [-verbose] [-debug] [-log <filename>]

12.30.2 Description

condor_preen examines the directories belonging to HTCondor, and removes extraneous files and directories which
may be left over from HTCondor processes which terminated abnormally either due to internal errors or a system crash.
The directories checked are the LOG, EXECUTE, and SPOOL directories as defined in the HTCondor configuration files.
condor_preen is intended to be run as user root or user condor periodically as a backup method to ensure reasonable
file system cleanliness in the face of errors. This is done automatically by default by the condor_master daemon. It
may also be explicitly invoked on an as needed basis.

When condor_preen cleans the SPOOL directory, it always leaves behind the files specified in the configuration variables
VALID_SPOOL_FILES and SYSTEM_VALID_SPOOL_FILES , as given by the configuration. For the LOG directory, the
only files removed or reported are those listed within the configuration variable INVALID_LOG_FILES list. The reason
for this difference is that, in general, the files in the LOG directory ought to be left alone, with few exceptions. An
example of exceptions are core files. As there are new log files introduced regularly, it is less effort to specify those
that ought to be removed than those that are not to be removed.

12.30.3 Options

-mail Send mail to the user defined in the PREEN_ADMIN configuration variable, instead of writing to the
standard output.

-remove Remove the offending files and directories rather than reporting on them.

-verbose List all files or directories found in the Condor directories and considered for deletion, even
those which are not extraneous. This option also modifies the output produced by the -debug and
-log options

-debug Print extra debugging information to stderr as the command executes.

-log <filename> Write extra debugging information to <filename> as the command executes.

12.30.4 Exit Status

condor_preen will exit with a status value of 0 (zero) upon success, and it will exit with a non-zero value upon failure.
An exit status of 2 indicates that condor_preen attempted to send email about deleted files but was unable to. This
usually indicates an error in the configuration for sending email. An exit status of 1 indicates a general failure.

12.31 condor_prio

change priority of jobs in the HTCondor queue

800 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.31.1 Synopsis

condor_prio -p priority | +value | -value [-n schedd_name] [username | ClusterId]

12.31.2 Description

condor_prio changes the priority of one or more jobs in the HTCondor queue. If the job identification is given by clus-
ter.process, condor_prio attempts to change the priority of the single job with job ClassAd attributes ClusterId and
ProcId. If described by cluster, condor_prio attempts to change the priority of all processes with the given ClusterId
job ClassAd attribute. If username is specified, condor_prio attempts to change priority of all jobs belonging to that
user. For -a, condor_prio attempts to change priority of all jobs in the queue.

The user must set a new priority with the -p option, or specify a priority adjustment.

The priority of a job can be any integer, with higher numbers corresponding to greater priority. For adjustment of the
current priority, +value increases the priority by the amount given with value. -value decreases the priority by the
amount given with value.

Only the owner of a job or the super user can change the priority.

The priority changed by condor_prio is only used when comparing to the priority jobs owned by the same user and
submitted from the same machine.

12.31.3 Options

-a Change priority of all jobs in the queue

-n schedd_name Change priority of jobs queued at the specified condor_schedd in the local pool.

-pool pool_name -n schedd_name Change priority of jobs queued at the specified condor_schedd in the
specified pool.

12.31.4 Exit Status

condor_prio will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.32 condor_procd

Track and manage process families

12.32.1 Synopsis

condor_procd -h

condor_procd -A address-file [options]

12.32. condor_procd 801

HTCondor Manual, Release 10.0.9

12.32.2 Description

condor_procd tracks and manages process families on behalf of the HTCondor daemons. It may track families of PIDs
via relationships such as: direct parent/child, environment variables, UID, and supplementary group IDs. Management
of the PID families include

• registering new families or new members of existing families

• getting usage information

• signaling families for operations such as suspension, continuing, or killing the family

• getting a snapshot of the tree of families

In a regular HTCondor installation, this program is not intended to be used or executed by any human.

The required argument, -A address-file, is the path and file name of the address file which is the named pipe that clients
must use to speak with the condor_procd.

12.32.3 Options

-h Print out usage information and exit.

-D Wait for the debugger. Initially sleep 30 seconds before beginning normal function.

-C principal The principal is the UID of the owner of the named pipe that clients must use to speak to
the condor_procd.

-L log-file A file the condor_procd will use to write logging information.

-E When specified, another tool such as the procd_ctl tool must allocate the GID associated with a process.
When this option is not specified, the condor_procd will allocate the GID itself.

-P PID If not specified, the condor_procd will use the condor_procd ‘s parent, which may not be PID 1
on Unix, as the parent of the condor_procd and the root of the tracking family. When not specified,
if the condor_procd ‘s parent PID dies, the condor_procd exits. When specified, the condor_procd
will track this PID family in question and not also exit if the PID exits.

-S seconds The maximum number of seconds the condor_procd will wait between taking snapshots of
the tree of families. Different clients to the condor_procd can specify different snapshot times. The
quickest snapshot time is the one performed by the condor_procd. When this option is not specified,
a default value of 60 seconds is used.

-G min-gid max-gid If the -E option is not specified, then track process families using a self-allocated,
free GID out of the inclusive range specified by min-gid and max-gid. This means that if a new
process shows up using a previously known GID, the new process will automatically associate into
the process family assigned that GID. If the -E option is specified, then instead of self-allocating
the GID, the procd_ctl tool must be used to associate the GID with the PID root of the family. The
associated GID must still be in the range specified. This is a Linux-only feature.

-K windows-softkill-binary This is the path and executable name of the condor_softkill.exe binary. It is
used to send softkill signals to process families. This is a Windows-only feature.

802 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.32.4 Dealing with Short Reads

For unknown reasons, on Linux, attemps to read the list of PIDs from the /proc filesystem do not always return all of
the PIDs on the system. The condor_procd attempts to detect when this occurs, using two methods.

If the list of PIDs does not include PID 1, the condor_procd’s own PID, or the PID of the condor_procd’s parent (which
may be PID 1), then the list must be incomplete, and the condor_procd immediately retries the read.

Additionally, the condor_procd compares the number of PIDs it just read to the number of PIDs from the last time
it (successfully) checked. If the number is too much smaller, it immediately retries. The default threshold is 0.90,
meaning that if the current read has 90% or fewer of the last read’s PIDs, it’s considered invalid. In our testing, this
threshold was met by roughly 1 in 4000 reads, but successfully detected all real short reads. If you need to adjust the
threshold, you may do so by setting the environment variable _CONDOR_PROCAPI_RETRY_FRACTION. (In the
normal case, simply have it in the environment when the condor_master starts up.)

If a retried read is incomplete (according to either method), the condor_procd returns the results of the previous read.

12.32.5 General Remarks

This program may be used in a stand alone mode, independent of HTCondor, to track process families. The programs
procd_ctl and gidd_alloc are used with the condor_procd in stand alone mode to interact with the daemon and to
inquire about certain state of running processes on the machine, respectively.

12.32.6 Exit Status

condor_procd will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.33 condor_q

Display information about jobs in queue

12.33.1 Synopsis

condor_q [-help [Universe | State]]

condor_q [-debug] [general options] [restriction list] [output options] [analyze options]

12.33.2 Description

condor_q displays information about jobs in the HTCondor job queue. By default, condor_q queries the local job
queue, but this behavior may be modified by specifying one of the general options.

As of version 8.5.2, condor_q defaults to querying only the current user’s jobs. This default is overrid-
den when the restriction list has usernames and/or job ids, when the -submitter or -allusers arguments are
specified, or when the current user is a queue superuser. It can also be overridden by setting the CON-
DOR_Q_ONLY_MY_JOBS configuration macro to False.

As of version 8.5.6, condor_q defaults to batch-mode output (see -batch in the Options section below). The old
behavior can be obtained by specifying -nobatch on the command line. To change the default back to its pre-8.5.6
value, set the new configuration variable CONDOR_Q_DASH_BATCH_IS_DEFAULT to False.

12.33. condor_q 803

HTCondor Manual, Release 10.0.9

12.33.3 Batches of jobs

As of version 8.5.6, condor_q defaults to displaying information about batches of jobs, rather than individual jobs. The
intention is that this will be a more useful, and user-friendly, format for users with large numbers of jobs in the queue.
Ideally, users will specify meaningful batch names for their jobs, to make it easier to keep track of related jobs.

(For information about specifying batch names for your jobs, see the condor_submit and condor_submit_dag manual
pages.)

A batch of jobs is defined as follows:

• An entire workflow (a DAG or hierarchy of nested DAGs) (note that condor_dagman now specifies a default
batch name for all jobs in a given workflow)

• All jobs in a single cluster

• All jobs submitted by a single user that have the same executable specified in their submit file (unless submitted
with different batch names)

• All jobs submitted by a single user that have the same batch name specified in their submit file or on the con-
dor_submit or condor_submit_dag command line.

12.33.4 Output

There are many output options that modify the output generated by condor_q. The effects of these options, and the
meanings of the various output data, are described below.

Output options

If the -long option is specified, condor_q displays a long description of the queried jobs by printing the entire job
ClassAd for all jobs matching the restrictions, if any. Individual attributes of the job ClassAd can be displayed by means
of the -format option, which displays attributes with a printf(3) format, or with the -autoformat option. Multiple -
format options may be specified in the option list to display several attributes of the job.

For most output options (except as specified), the last line of condor_q output contains a summary of the queue: the
total number of jobs, and the number of jobs in the completed, removed, idle, running, held and suspended states.

If no output options are specified, condor_q now defaults to batch mode, and displays the following columns of infor-
mation, with one line of output per batch of jobs:

OWNER, BATCH_NAME, SUBMITTED, DONE, RUN, IDLE, [HOLD,] TOTAL, JOB_IDS

Note that the HOLD column is only shown if there are held jobs in the output or if there are no jobs in the output.

If the -nobatch option is specified, condor_q displays the following columns of information, with one line of output
per job:

ID, OWNER, SUBMITTED, RUN_TIME, ST, PRI, SIZE, CMD

If the -dag option is specified (in conjunction with -nobatch), condor_q displays the following columns of information,
with one line of output per job; the owner is shown only for top-level jobs, and for all other jobs (including sub-DAGs)
the node name is shown:

ID, OWNER/NODENAME, SUBMITTED, RUN_TIME, ST, PRI, SIZE, CMD

If the -run option is specified (in conjunction with -nobatch), condor_q displays the following columns of information,
with one line of output per running job:

804 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

ID, OWNER, SUBMITTED, RUN_TIME, HOST(S)

Also note that the -run option disables output of the totals line.

If the -grid option is specified, condor_q displays the following columns of information, with one line of output per
job:

ID, OWNER, STATUS, GRID->MANAGER, HOST, GRID_JOB_ID

If the -grid:ec2 option is specified, condor_q displays the following columns of information, with one line of output
per job:

ID, OWNER, STATUS, INSTANCE ID, CMD

If the -goodput option is specified, condor_q displays the following columns of information, with one line of output
per job:

ID, OWNER, SUBMITTED, RUN_TIME, GOODPUT, CPU_UTIL, Mb/s

If the -io option is specified, condor_q displays the following columns of information, with one line of output per job:

ID, OWNER, RUNS, ST, INPUT, OUTPUT, RATE, MISC

If the -cputime option is specified (in conjunction with -nobatch), condor_q displays the following columns of infor-
mation, with one line of output per job:

ID, OWNER, SUBMITTED, CPU_TIME, ST, PRI, SIZE, CMD

If the -hold option is specified, condor_q displays the following columns of information, with one line of output per
job:

ID, OWNER, HELD_SINCE, HOLD_REASON

If the -totals option is specified, condor_q displays only one line of output no matter how many jobs and batches of
jobs are in the queue. That line of output contains the total number of jobs, and the number of jobs in the completed,
removed, idle, running, held and suspended states.

Output data

The available output data are as follows:

ID (Non-batch mode only) The cluster/process id of the HTCondor job.

OWNER The owner of the job or batch of jobs.

OWNER/NODENAME (-dag only) The owner of a job or the DAG node name of the job.

BATCH_NAME (Batch mode only) The batch name of the job or batch of jobs.

SUBMITTED The month, day, hour, and minute the job was submitted to the queue.

DONE (Batch mode only) The number of job procs that are done, but still in the queue.

RUN (Batch mode only) The number of job procs that are running.

IDLE (Batch mode only) The number of job procs that are in the queue but idle.

HOLD (Batch mode only) The number of job procs that are in the queue but held.

12.33. condor_q 805

HTCondor Manual, Release 10.0.9

TOTAL (Batch mode only) The total number of job procs in the queue, unless the batch is a DAG, in
which case this is the total number of clusters in the queue. Note: for non-DAG batches, the TOTAL
column contains correct values only in version 8.5.7 and later.

JOB_IDS (Batch mode only) The range of job IDs belonging to the batch.

RUN_TIME (Non-batch mode only) Wall-clock time accumulated by the job to date in days, hours, min-
utes, and seconds.

ST (Non-batch mode only) Current status of the job, which varies somewhat according to the job universe
and the timing of updates. H = on hold, R = running, I = idle (waiting for a machine to execute on),
C = completed, X = removed, S = suspended (execution of a running job temporarily suspended on
execute node), < = transferring input (or queued to do so), and > = transferring output (or queued to
do so).

PRI (Non-batch mode only) User specified priority of the job, displayed as an integer, with higher numbers
corresponding to better priority.

SIZE (Non-batch mode only) The peak amount of memory in Mbytes consumed by the job; note this
value is only refreshed periodically. The actual value reported is taken from the job ClassAd attribute
MemoryUsage if this attribute is defined, and from job attribute ImageSize otherwise.

CMD (Non-batch mode only) The name of the executable. For EC2 jobs, this field is arbitrary.

HOST(S) (-run only) The host where the job is running.

STATUS (-grid only) The state that HTCondor believes the job is in. Possible values are grid-type spe-
cific, but include:

PENDING The job is waiting for resources to become available in order to run.

ACTIVE The job has received resources, and the application is executing.

FAILED The job terminated before completion because of an error, user-triggered cancel,
or system-triggered cancel.

DONE The job completed successfully.

SUSPENDED The job has been suspended. Resources which were allocated for this job
may have been released due to a scheduler-specific reason.

STAGE_IN The job manager is staging in files, in order to run the job.

STAGE_OUT The job manager is staging out files generated by the job.

UNKNOWN Unknown

GRID->MANAGER (-grid only) A guess at what remote batch system is running the job. It is a guess,
because HTCondor looks at the jobmanager contact string to attempt identification. If the value is
fork, the job is running on the remote host without a jobmanager. Values may also be condor, lsf, or
pbs.

HOST (-grid only) The host to which the job was submitted.

GRID_JOB_ID (-grid only) (More information needed here.)

INSTANCE ID (-grid:ec2 only) Usually EC2 instance ID; may be blank or the client token, depending
on job progress.

GOODPUT (-goodput only) The percentage of RUN_TIME for this job which has been saved in a check-
point. A low GOODPUT value indicates that the job is failing to checkpoint. If a job has not yet
attempted a checkpoint, this column contains [?????].

CPU_UTIL (-goodput only) The ratio of CPU_TIME to RUN_TIME for checkpointed work. A low
CPU_UTIL indicates that the job is not running efficiently, perhaps because it is I/O bound or because

806 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

the job requires more memory than available on the remote workstations. If the job has not (yet)
checkpointed, this column contains [??????].

Mb/s (-goodput only) The network usage of this job, in Megabits per second of run-time. READ The
total number of bytes the application has read from files and sockets. WRITE The total number of
bytes the application has written to files and sockets. SEEK The total number of seek operations the
application has performed on files. XPUT The effective throughput (average bytes read and written
per second) from the application’s point of view. BUFSIZE The maximum number of bytes to be
buffered per file. BLOCKSIZE The desired block size for large data transfers. These fields are
updated when a job produces a checkpoint or completes. If a job has not yet produced a checkpoint,
this information is not available.

INPUT (-io only) BytesRecvd.

OUTPUT (-io only) BytesSent.

RATE (-io only) BytesRecvd+BytesSent.

MISC (-io only) JobUniverse.

CPU_TIME (-cputime only) The remote CPU time accumulated by the job to date (which has been
stored in a checkpoint) in days, hours, minutes, and seconds. (If the job is currently running, time
accumulated during the current run is not shown. If the job has not produced a checkpoint, this
column contains 0+00:00:00.)

HELD_SINCE (-hold only) Month, day, hour and minute at which the job was held.

HOLD_REASON (-hold only) The hold reason for the job.

Analyze

The -analyze or -better-analyze options can be used to determine why certain jobs are not running by performing an
analysis on a per machine basis for each machine in the pool. The reasons can vary among failed constraints, insufficient
priority, resource owner preferences and prevention of preemption by the PREEMPTION_REQUIREMENTS expression. If
the analyze option -verbose is specified along with the -analyze option, the reason for failure is displayed on a per
machine basis. -better-analyze differs from -analyze in that it will do matchmaking analysis on jobs even if they are
currently running, or if the reason they are not running is not due to matchmaking. -better-analyze also produces
more thorough analysis of complex Requirements and shows the values of relevant job ClassAd attributes. When only
a single machine is being analyzed via -machine or -mconstraint, the values of relevant attributes of the machine
ClassAd are also displayed.

12.33.5 Restrictions

To restrict the display to jobs of interest, a list of zero or more restriction options may be supplied. Each restriction
may be one of:

• cluster.process, which matches jobs which belong to the specified cluster and have the specified process number;

• cluster (without a process), which matches all jobs belonging to the specified cluster;

• owner, which matches all jobs owned by the specified owner;

• -constraint expression, which matches all jobs that satisfy the specified ClassAd expression;

• -unmatchable expression, which matches all jobs that do not match any slot that would be considered by -
better-analyze ;

• -allusers, which overrides the default restriction of only matching jobs submitted by the current user.

12.33. condor_q 807

HTCondor Manual, Release 10.0.9

If cluster or cluster.process is specified, and the job matching that restriction is a condor_dagman job, information for
all jobs of that DAG is displayed in batch mode (in non-batch mode, only the condor_dagman job itself is displayed).

If no owner restrictions are present, the job matches the restriction list if it matches at least one restriction in the list.
If owner restrictions are present, the job matches the list if it matches one of the owner restrictions and at least one
non-owner restriction.

12.33.6 Options

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-batch (output option) Show a single line of progress information for a batch of jobs, where a batch is
defined as follows:

• An entire workflow (a DAG or hierarchy of nested DAGs)

• All jobs in a single cluster

• All jobs submitted by a single user that have the same executable specified in their submit file

• All jobs submitted by a single user that have the same batch name specified in their submit file
or on the condor_submit or condor_submit_dag command line.

Also change the output columns as noted above.

Note that, as of version 8.5.6, -batch is the default, unless the CONDOR_Q_DASH_BATCH_IS_DEFAULT
configuration variable is set to False.

-nobatch (output option) Show a line for each job (turn off the -batch option).

-global (general option) Queries all job queues in the pool.

-submitter submitter (general option) List jobs of a specific submitter in the entire pool, not just for a
single condor_schedd.

-name name (general option) Query only the job queue of the named condor_schedd daemon.

-pool centralmanagerhostname[:portnumber] (general option) Use the centralmanagerhostname as the
central manager to locate condor_schedd daemons. The default is the COLLECTOR_HOST, as specified
in the configuration.

-jobads file (general option) Display jobs from a list of ClassAds from a file, instead of the real ClassAds
from the condor_schedd daemon. This is most useful for debugging purposes. The ClassAds appear
as if condor_q -long is used with the header stripped out.

-userlog file (general option) Display jobs, with job information coming from a job event log, instead of
from the real ClassAds from the condor_schedd daemon. This is most useful for automated testing
of the status of jobs known to be in the given job event log, because it reduces the load on the
condor_schedd. A job event log does not contain all of the job information, so some fields in the
normal output of condor_q will be blank.

-factory (output option) Display information about late materialization job factories in the condor_shedd.

-autocluster (output option) Output condor_schedd daemon auto cluster information. For each auto clus-
ter, output the unique ID of the auto cluster along with the number of jobs in that auto cluster. This
option is intended to be used together with the -long option to output the ClassAds representing
auto clusters. The ClassAds can then be used to identify or classify the demand for sets of machine
resources, which will be useful in the on-demand creation of execute nodes for glidein services.

-cputime (output option) Instead of wall-clock allocation time (RUN_TIME), display remote CPU time
accumulated by the job to date in days, hours, minutes, and seconds. If the job is currently running,

808 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

time accumulated during the current run is not shown. Note that this option has no effect unless used
in conjunction with -nobatch.

-currentrun (output option) Normally, RUN_TIME contains all the time accumulated during the current
run plus all previous runs. If this option is specified, RUN_TIME only displays the time accumulated
so far on this current run.

-dag (output option) Display DAG node jobs under their DAGMan instance. Child nodes are listed using
indentation to show the structure of the DAG. Note that this option has no effect unless used in
conjunction with -nobatch.

-expert (output option) Display shorter error messages.

-grid (output option) Get information only about jobs submitted to grid resources.

-grid:ec2 (output option) Get information only about jobs submitted to grid resources and display it in a
format better-suited for EC2 than the default.

-goodput (output option) Display job goodput statistics.

-help [Universe | State] (output option) Print usage info, and, optionally, additionally print job universes
or job states.

-hold (output option) Get information about jobs in the hold state. Also displays the time the job was
placed into the hold state and the reason why the job was placed in the hold state.

-limit Number (output option) Limit the number of items output to Number.

-io (output option) Display job input/output summaries.

-long (output option) Display entire job ClassAds in long format (one attribute per line).

-idle (output option) Get information about idle jobs. Note that this option implies -nobatch.

-run (output option) Get information about running jobs. Note that this option implies -nobatch.

-stream-results (output option) Display results as jobs are fetched from the job queue rather than storing
results in memory until all jobs have been fetched. This can reduce memory consumption when
fetching large numbers of jobs, but if condor_q is paused while displaying results, this could result
in a timeout in communication with condor_schedd.

-totals (output option) Display only the totals.

-version (output option) Print the HTCondor version and exit.

-wide (output option) If this option is specified, and the command portion of the output would cause the
output to extend beyond 80 columns, display beyond the 80 columns.

-xml (output option) Display entire job ClassAds in XML format. The XML format is fully defined in the
reference manual, obtained from the ClassAds web page, with a link at http://htcondor.org/classad/
classad.html.

-json (output option) Display entire job ClassAds in JSON format.

-attributes Attr1[,Attr2 . . .] (output option) Explicitly list the attributes, by name in a comma separated
list, which should be displayed when using the -xml, -json or -long options. Limiting the number of
attributes increases the efficiency of the query.

-format fmt attr (output option) Display attribute or expression attr in format fmt. To display the attribute
or expression the format must contain a single printf(3)-style conversion specifier. Attributes
must be from the job ClassAd. Expressions are ClassAd expressions and may refer to attributes
in the job ClassAd. If the attribute is not present in a given ClassAd and cannot be parsed as an
expression, then the format option will be silently skipped. %r prints the unevaluated, or raw val-
ues. The conversion specifier must match the type of the attribute or expression. %s is suitable for

12.33. condor_q 809

http://htcondor.org/classad/classad.html
http://htcondor.org/classad/classad.html

HTCondor Manual, Release 10.0.9

strings such as Owner, %d for integers such as ClusterId, and %f for floating point numbers such
as RemoteWallClockTime. %v identifies the type of the attribute, and then prints the value in an
appropriate format. %V identifies the type of the attribute, and then prints the value in an appropriate
format as it would appear in the -long format. As an example, strings used with %V will have quote
marks. An incorrect format will result in undefined behavior. Do not use more than one conversion
specifier in a given format. More than one conversion specifier will result in undefined behavior. To
output multiple attributes repeat the -format option once for each desired attribute. Like printf(3)
style formats, one may include other text that will be reproduced directly. A format without any con-
version specifiers may be specified, but an attribute is still required. Include a backslash followed by
an ‘n’ to specify a line break.

-autoformat[:jlhVr,tng] attr1 [attr2 . . .] or -af[:jlhVr,tng] attr1 [attr2 . . .] (output option) Display at-
tribute(s) or expression(s) formatted in a default way according to attribute types. This option takes
an arbitrary number of attribute names as arguments, and prints out their values, with a space between
each value and a newline character after the last value. It is like the -format option without format
strings. This output option does not work in conjunction with any of the options -run, -currentrun,
-hold, -grid, -goodput, or -io.

It is assumed that no attribute names begin with a dash character, so that the next word that begins
with dash is the start of the next option. The autoformat option may be followed by a colon character
and formatting qualifiers to deviate the output formatting from the default:

j print the job ID as the first field,

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The l and h characters may not be used
together.

-print-format file Read output formatting information from the given custom print format file. see Print
Formats for more information about custom print format files.

-analyze[:<qual>] (analyze option) Perform a matchmaking analysis on why the requested jobs are not
running. First a simple analysis determines if the job is not running due to not being in a runnable
state. If the job is in a runnable state, then this option is equivalent to -better-analyze. <qual> is a
comma separated list containing one or more of

priority to consider user priority during the analysis

summary to show a one line summary for each job or machine

reverse to analyze machines, rather than jobs

810 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

-better-analyze[:<qual>] (analyze option) Perform a more detailed matchmaking analysis to determine
how many resources are available to run the requested jobs. This option is never meaningful for
Scheduler universe jobs and only meaningful for grid universe jobs doing matchmaking. When this
option is used in conjunction with the -unmatchable option, The output will be a list of job ids that
don’t match any of the available slots. <qual> is a comma separated list containing one or more of

priority to consider user priority during the analysis

summary to show a one line summary for each job or machine

reverse to analyze machines, rather than jobs

-machine name (analyze option) When doing matchmaking analysis, analyze only machine ClassAds that
have slot or machine names that match the given name.

-mconstraint expression (analyze option) When doing matchmaking analysis, match only machine Clas-
sAds which match the ClassAd expression constraint.

-slotads file (analyze option) When doing matchmaking analysis, use the machine ClassAds from the file
instead of the ones from the condor_collector daemon. This is most useful for debugging purposes.
The ClassAds appear as if condor_status -long is used.

-userprios file (analyze option) When doing matchmaking analysis with priority, read user priorities from
the file rather than the ones from the condor_negotiator daemon. This is most useful for debugging
purposes or to speed up analysis in situations where the condor_negotiator daemon is slow to respond
to condor_userprio requests. The file should be in the format produced by condor_userprio -long.

-nouserprios (analyze option) Do not consider user priority during the analysis.

-reverse-analyze (analyze option) Analyze machine requirements against jobs.

-verbose (analyze option) When doing analysis, show progress and include the names of specific machines
in the output.

12.33.7 General Remarks

The default output from condor_q is formatted to be human readable, not script readable. In an effort to make the
output fit within 80 characters, values in some fields might be truncated. Furthermore, the HTCondor Project can (and
does) change the formatting of this default output as we see fit. Therefore, any script that is attempting to parse data
from condor_q is strongly encouraged to use the -format option (described above, examples given below).

Although -analyze provides a very good first approximation, the analyzer cannot diagnose all possible situations,
because the analysis is based on instantaneous and local information. Therefore, there are some situations such as
when several submitters are contending for resources, or if the pool is rapidly changing state which cannot be accurately
diagnosed.

It is possible to to hold jobs that are in the X state. To avoid this it is best to construct a -constraint expression that
option contains JobStatus != 3 if the user wishes to avoid this condition.

12.33. condor_q 811

HTCondor Manual, Release 10.0.9

12.33.8 Examples

The -format option provides a way to specify both the job attributes and formatting of those attributes. There must
be only one conversion specification per -format option. As an example, to list only Jane Doe’s jobs in the queue,
choosing to print and format only the owner of the job, the command line arguments for the job, and the process ID of
the job:

$ condor_q -submitter jdoe -format "%s" Owner -format " %s " Args -format␣
→˓" ProcId = %d\n" ProcId
jdoe 16386 2800 ProcId = 0
jdoe 16386 3000 ProcId = 1
jdoe 16386 3200 ProcId = 2
jdoe 16386 3400 ProcId = 3
jdoe 16386 3600 ProcId = 4
jdoe 16386 4200 ProcId = 7

To display only the JobID’s of Jane Doe’s jobs you can use the following.

$ condor_q -submitter jdoe -format "%d." ClusterId -format "%d\n" ProcId
27.0
27.1
27.2
27.3
27.4
27.7

An example that shows the analysis in summary format:

$ condor_q -analyze:summary

-- Submitter: submit-1.chtc.wisc.edu : <192.168.100.43:9618?sock=11794_95bb_3> :
submit-1.chtc.wisc.edu
Analyzing matches for 5979 slots

Autocluster Matches Machine Running Serving
JobId Members/Idle Reqmnts Rejects Job Users Job Other User Avail Owner
---------- ------------ -------- ------------ ---------- ---------- ----- -----
25764522.0 7/0 5910 820 7/10 5046 34 smith
25764682.0 9/0 2172 603 9/9 1531 29 smith
25765082.0 18/0 2172 603 18/9 1531 29 smith
25765900.0 1/0 2172 603 1/9 1531 29 smith

An example that shows summary information by machine:

$ condor_q -ana:sum,rev

-- Submitter: s-1.chtc.wisc.edu : <192.168.100.43:9618?sock=11794_95bb_3> : s-1.chtc.
→˓wisc.edu
Analyzing matches for 2885 jobs

Slot Slot's Req Job's Req Both
Name Type Matches Job Matches Slot Match %
------------------------ ---- ------------ ------------ ----------
slot1@INFO.wisc.edu Stat 2729 0 0.00
slot2@INFO.wisc.edu Stat 2729 0 0.00
slot1@aci-001.chtc.wisc.edu Part 0 2793 0.00

(continues on next page)

812 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

(continued from previous page)

slot1_1@a-001.chtc.wisc.edu Dyn 2644 2792 91.37
slot1_2@a-001.chtc.wisc.edu Dyn 2623 2601 85.10
slot1_3@a-001.chtc.wisc.edu Dyn 2644 2632 85.82
slot1_4@a-001.chtc.wisc.edu Dyn 2644 2792 91.37
slot1@a-002.chtc.wisc.edu Part 0 2633 0.00
slot1_10@a-002.chtc.wisc.edu Den 2623 2601 85.10

An example with two independent DAGs in the queue:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:35169?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
wenger DAG: 3696 2/12 11:55 _ 10 _ 10 3698.0 ... 3707.0
wenger DAG: 3697 2/12 11:55 1 1 1 10 3709.0 ... 3710.0

14 jobs; 0 completed, 0 removed, 1 idle, 13 running, 0 held, 0 suspended

Note that the “13 running” in the last line is two more than the total of the RUN column, because the two condor_dagman
jobs themselves are counted in the last line but not the RUN column.

Also note that the “completed” value in the last line does not correspond to the total of the DONE column, because the
“completed” value in the last line only counts jobs that are completed but still in the queue, whereas the DONE column
counts jobs that are no longer in the queue.

Here’s an example with a held job, illustrating the addition of the HOLD column to the output:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS
wenger CMD: /bin/slee 9/13 16:25 _ 3 _ 1 4 599.0 ...

4 jobs; 0 completed, 0 removed, 0 idle, 3 running, 1 held, 0 suspended

Here are some examples with a nested-DAG workflow in the queue, which is one of the most complicated cases. The
workflow consists of a top-level DAG with nodes NodeA and NodeB, each with two two-proc clusters; and a sub-DAG
SubZ with nodes NodeSA and NodeSB, each with two two-proc clusters.

First of all, non-batch mode with all of the node jobs in the queue:

$ condor_q -nobatch

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
591.0 wenger 9/13 16:05 0+00:00:13 R 0 2.4 condor_dagman -p 0
592.0 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 60
592.1 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 300
593.0 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 60
593.1 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 300
594.0 wenger 9/13 16:05 0+00:00:07 R 0 2.4 condor_dagman -p 0
595.0 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 60
595.1 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 300
596.0 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 60

(continues on next page)

12.33. condor_q 813

HTCondor Manual, Release 10.0.9

(continued from previous page)

596.1 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 300

10 jobs; 0 completed, 0 removed, 0 idle, 10 running, 0 held, 0 suspended

Now non-batch mode with the -dag option (unfortunately, condor_q doesn’t do a good job of grouping procs in the
same cluster together):

$ condor_q -nobatch -dag

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
591.0 wenger 9/13 16:05 0+00:00:27 R 0 2.4 condor_dagman -
592.0 |-NodeA 9/13 16:05 0+00:00:21 R 0 0.0 sleep 60
593.0 |-NodeB 9/13 16:05 0+00:00:21 R 0 0.0 sleep 60
594.0 |-SubZ 9/13 16:05 0+00:00:21 R 0 2.4 condor_dagman -
595.0 |-NodeSA 9/13 16:05 0+00:00:15 R 0 0.0 sleep 60
596.0 |-NodeSB 9/13 16:05 0+00:00:15 R 0 0.0 sleep 60
592.1 |-NodeA 9/13 16:05 0+00:00:21 R 0 0.0 sleep 300
593.1 |-NodeB 9/13 16:05 0+00:00:21 R 0 0.0 sleep 300
595.1 |-NodeSA 9/13 16:05 0+00:00:15 R 0 0.0 sleep 300
596.1 |-NodeSB 9/13 16:05 0+00:00:15 R 0 0.0 sleep 300

10 jobs; 0 completed, 0 removed, 0 idle, 10 running, 0 held, 0 suspended

Now, finally, the non-batch (default) mode:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
wenger ex1.dag+591 9/13 16:05 _ 8 _ 5 592.0 ... 596.1

10 jobs; 0 completed, 0 removed, 0 idle, 10 running, 0 held, 0 suspended

There are several things about this output that may be slightly confusing:

• The TOTAL column is less than the RUN column. This is because, for DAG node jobs, their contribution to the
TOTAL column is the number of clusters, not the number of procs (but their contribution to the RUN column
is the number of procs). So the four DAG nodes (8 procs) contribute 4, and the sub-DAG contributes 1, to the
TOTAL column. (But, somewhat confusingly, the sub-DAG job is not counted in the RUN column.)

• The sum of the RUN and IDLE columns (8) is less than the 10 jobs listed in the totals line at the bottom. This is
because the top-level DAG and sub-DAG jobs are not counted in the RUN column, but they are counted in the
totals line.

Now here is non-batch mode after proc 0 of each node job has finished:

$ condor_q -nobatch

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
591.0 wenger 9/13 16:05 0+00:01:19 R 0 2.4 condor_dagman -p 0
592.1 wenger 9/13 16:05 0+00:01:13 R 0 0.0 sleep 300
593.1 wenger 9/13 16:05 0+00:01:13 R 0 0.0 sleep 300

(continues on next page)

814 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

(continued from previous page)

594.0 wenger 9/13 16:05 0+00:01:13 R 0 2.4 condor_dagman -p 0
595.1 wenger 9/13 16:05 0+00:01:07 R 0 0.0 sleep 300
596.1 wenger 9/13 16:05 0+00:01:07 R 0 0.0 sleep 300

6 jobs; 0 completed, 0 removed, 0 idle, 6 running, 0 held, 0 suspended

The same state also with the -dag option:

$ condor_q -nobatch -dag

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
591.0 wenger 9/13 16:05 0+00:01:30 R 0 2.4 condor_dagman -
592.1 |-NodeA 9/13 16:05 0+00:01:24 R 0 0.0 sleep 300
593.1 |-NodeB 9/13 16:05 0+00:01:24 R 0 0.0 sleep 300
594.0 |-SubZ 9/13 16:05 0+00:01:24 R 0 2.4 condor_dagman -
595.1 |-NodeSA 9/13 16:05 0+00:01:18 R 0 0.0 sleep 300
596.1 |-NodeSB 9/13 16:05 0+00:01:18 R 0 0.0 sleep 300

6 jobs; 0 completed, 0 removed, 0 idle, 6 running, 0 held, 0 suspended

And, finally, that state in batch (default) mode:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9619?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
wenger ex1.dag+591 9/13 16:05 _ 4 _ 5 592.1 ... 596.1

6 jobs; 0 completed, 0 removed, 0 idle, 6 running, 0 held, 0 suspended

12.33.9 Exit Status

condor_q will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.34 condor_qedit

modify job attributes

12.34.1 Synopsis

condor_qedit [-debug] [-n schedd-name] [-pool pool-name] [-forward] {cluster | cluster.proc | owner | -constraint
constraint} edit-list

12.34. condor_qedit 815

HTCondor Manual, Release 10.0.9

12.34.2 Description

condor_qedit modifies job ClassAd attributes of queued HTCondor jobs. The jobs are specified either by cluster
number, job ID, owner, or by a ClassAd constraint expression. The edit-list can take one of 3 forms

• attribute-name attribute-value . . . This is the older form, which behaves the same as the format below.

• attribute-name=attribute-value . . . The attribute-value may be any ClassAd expression. String expressions
must be surrounded by double quotes. Multiple attribute value pairs may be listed on the same command
line.

• -edits[:auto|long|xml|json|new] file-name The file indicated by file-name is read as a classad of the given for-
mat. If no format is specified or auto is specified the format will be detected. if file-name is - standard
input will be read.

To ensure security and correctness, condor_qedit will not allow modification of the following ClassAd attributes:

• Owner

• ClusterId

• ProcId

• MyType

• TargetType

• JobStatus

Since JobStatus may not be changed with condor_qedit, use condor_hold to place a job in the hold state, and use
condor_release to release a held job, instead of attempting to modify JobStatus directly.

If a job is currently running, modified attributes for that job will not affect the job until it restarts. As an example, for
PeriodicRemove to affect when a currently running job will be removed from the queue, that job must first be evicted
from a machine and returned to the queue. The same is true for other periodic expressions, such as PeriodicHold
and PeriodicRelease.

condor_qedit validates both attribute names and attribute values, checking for correct ClassAd syntax. An error mes-
sage is printed, and no attribute is set or changed if any name or value is invalid.

12.34.3 Options

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-n schedd-name Modify job attributes in the queue of the specified schedd

-pool pool-name Modify job attributes in the queue of the schedd specified in the specified pool

-forward Forward modifications to shadow/gridmanager

816 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.34.4 Examples

$ condor_qedit -name north.cs.wisc.edu -pool condor.cs.wisc.edu 249.0 answer 42
Set attribute "answer".
$ condor_qedit -name perdita 1849.0 In '"myinput"'
Set attribute "In".
% condor_qedit jbasney OnExitRemove=FALSE
Set attribute "OnExitRemove".
% condor_qedit -constraint 'JobUniverse == 1'␣
→˓'Requirements=(Arch == "INTEL") && (OpSys == "SOLARIS26") && (Disk >= ExecutableSize) && (VirtualMemory >= ImageSize)'
Set attribute "Requirements".

12.34.5 General Remarks

A job’s ClassAd attributes may be viewed with

$ condor_q -long

12.34.6 Exit Status

condor_qedit will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.35 condor_qsub

Queue jobs that use PBS/SGE-style submission

12.35.1 Synopsis

condor_qsub [–version]

condor_qsub [Specific options] [Directory options] [Environmental options] [File options] [Notification options
] [Resource options] [Status options] [Submission options] commandfile

12.35.2 Description

condor_qsub submits an HTCondor job. This job is specified in a PBS/Torque style or an SGE style. condor_qsub
permits the submission of dependent jobs without the need to specify the full dependency graph at submission time.
Doing things this way is neither as efficient as HTCondor’s DAGMan, nor as functional as SGE’s qsub or qalter.
condor_qsub serves as a minimal translator to be able to use software originally written to interact with PBS, Torque,
and SGE in an HTCondor pool.

condor_qsub attempts to behave like qsub. Less than half of the qsub functionality is implemented. Option descriptions
describe the differences between the behavior of qsub and condor_qsub. qsub options not listed here are not supported.
Some concepts present in PBS and SGE do not apply to HTCondor, and so these options are not implemented.

For a full listing of qsub options, please see

POSIX : http://pubs.opengroup.org/onlinepubs/9699919799/utilities/qsub.html

SGE : http://gridscheduler.sourceforge.net/htmlman/htmlman1/qsub.html

12.35. condor_qsub 817

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/qsub.html
http://gridscheduler.sourceforge.net/htmlman/htmlman1/qsub.html

HTCondor Manual, Release 10.0.9

PBS/Torque : http://docs.adaptivecomputing.com/torque/4-1-3/Content/topics/commands/qsub.htm

condor_qsub accepts either command line options or the single file, commandfile, that contains all of the commands.

condor_qsub does the opposite of job submission within the grid universe batch grid type, which takes HTCondor
jobs submitted with HTCondor syntax and submits them to PBS, SGE, or LSF.

12.35.3 Options

-a date_time (Submission option) Specify a deferred execution date and time. The PBS/Torque syntax of
date_time is a string in the form [[[[CC]YY]MM]DD]hhmm[.SS]. The portions of this string which
are optional are CC, YY, MM, DD, and SS. For SGE, MM and DD are not optional. For PBS, MM
and DD are optional. condor_qsub follows the PBS style.

-A account_string (Status option) Uses group accounting where the string account_string is the account-
ing group associated with this job. Unlike SGE, there is no default group of "sge".

-b y|n (Submission option) Using the SGE definition of its -b option, a value of y causes condor_qsub to
not parse the file for additional condor_qsub commands. The default value is n. If the command line
argument -f filename is also specified, it negates a value of y.

-condor-keep-files (Specific option) Directs HTCondor to not remove temporary files generated by con-
dor_qsub, such as HTCondor submit files and sentinel jobs. These temporary files may be important
for debugging.

-cwd (Directory option) Specifies the initial directory in which the job will run to be the current directory
from which the job was submitted. This sets initialdir for condor_submit.

-d path or -wd path (Directory option) Specifies the initial directory in which the job will run to be path.
This sets initialdir for condor_submit.

-e filename (File option) Specifies the condor_submit command error , the file where stderr is written.
If not specified, set to the default name of `` <commandfile>.e<ClusterId>``, where <commandfile>
is the condor_qsub argument, and `` <ClusterId>`` is the job attribute ClusterId assigned for the
job.

-f qsub_file (Specific option) Parse qsub_file to search for and set additional condor_submit commands.
Within the file, commands will appear as #PBS or #SGE. condor_qsub will parse the batch file listed
as qsub_file.

-h (Status option) Placed submitted job directly into the hold state.

-help (Specific option) Print usage information and exit.

-hold_jid <jid> (Status option) Submits a job in the hold state. This job is released only when a previously
submitted job, identified by its cluster ID as <jid>, exits successfully. Successful completion is
defined as not exiting with exit code 100. In implementation, there are three jobs that define this
SGE feature. The first job is the previously submitted job. The second job is the newly submitted
one that is waiting for the first to finish successfully. The third job is what SGE calls a sentinel job;
this is an HTCondor local universe job that watches the history for the first job’s exit code. This
third job will exit once it has seen the exit code and, for a successful termination of the first job, run
condor_release on the second job. If the first job is an array job, the second job will only be released
after all individual jobs of the first job have completed.

-i [hostname:]filename (File option) Specifies the condor_submit command input , the file from which
stdin is read.

-j characters (File option) Acceptable characters for this option are e, o, and n. The only sequence that
is relevant is eo; it specifies that both standard output and standard error are to be sent to the same
file. The file will be the one specified by the -o option, if both the -o and -e options exist. The file

818 Chapter 12. Command Reference Manual (man pages)

http://docs.adaptivecomputing.com/torque/4-1-3/Content/topics/commands/qsub.htm

HTCondor Manual, Release 10.0.9

will be the one specified by the -e option, if only the -e option is provided. If neither the -o nor the
-e options are provided, the file will be the default used for the -o option.

-l resource_spec (Resource option) Specifies requirements for the job, such as the amount
of RAM and the number of CPUs. Only PBS-style resource requests are sup-
ported. resource_spec is a comma separated list of key/value pairs. Each pair
is of the form resource_name=value. resource_name and value may be
+————————–+————————–+————————–+ | resource_name |
value | Description | +————————–+————————–+————————–+
| arch | string | Sets Arch machine | | | | attribute. Enclose in | | | | double quotes. |
+————————–+————————–+————————–+ | file | size | Disk
space requested. | +————————–+————————–+————————–+
| host | string | Host machine on which | | | | the job must run. |
+————————–+————————–+————————–+ | mem | size | Amount of
memory | | | | requested. | +————————–+————————–+————————–+
| nodes | {<node_count> | <hostn | Number and/or properties | | |
ame>} [:ppn=<ppn>] [:gpu | of nodes to be used. For | | | s=<gpu>] [:
<property> [: | examples, please see | | | <property>] ...] [+ ...] |
http://docs.adaptivecom | | | | puting.com/torque/4-1-3/ | | | | Content/topics/2-jobs/re | | | |
questingRes.htm#qsub | +————————–+————————–+————————–+
| opsys | string | Sets OpSys machine | | | | attribute. Enclose in | | | | double quotes. |
+————————–+————————–+————————–+ | procs | integer | Num-
ber of CPUs | | | | requested. | +————————–+————————–+————————–+

A size value is an integer specified in bytes, following the PBS/Torque default. Append Kb, Mb, Gb,
or Tb to specify the value in powers of two quantities greater than bytes.

-m a|e|n (Notification option) Identify when HTCondor sends notification e-mail. If a, send e-mail when
the job terminates abnormally. If e, send e-mail when the job terminates. If n, never send e-mail.

-M e-mail_address (Notification option) Sets the destination address for HTCondor e-mail.

-o filename (File option) Specifies the condor_submit command output , the file where stdout is written.
If not specified, set to the default name of `` <commandfile>.o<ClusterId>``, where <commandfile>
is the condor_qsub argument, and `` <ClusterId>`` is the job attribute ClusterId assigned for the
job.

-p integer (Status option) Sets the priority submit command for the job, with 0 being the default. Jobs
with higher numerical priority will run before jobs with lower numerical priority.

-print (Specific option) Send to stdout the contents of the HTCondor submit description file that con-
dor_qsub generates.

-r y|n (Status option) The default value of y implements the default HTCondor policy of assuming that
jobs that do not complete are placed back in the queue to be run again. When n, job submission is
restricted to only running the job if the job ClassAd attribute NumJobStarts is currently 0. This
identifies the job as not re-runnable, limiting it to start once.

-S shell (Submission option) Specifies the path and executable name of a shell. Alters the HTCondor
submit description file produced, such that the executable becomes a wrapper script. Within the
submit description file will be executable = <shell> and arguments = <commandfile>.

-t start [-stop:step] (Submission option) Queues a set of nearly identical jobs. The SGE-style syntax is
supported. start, stop, and step are all integers. start is the starting index of the jobs, stop is the
ending index (inclusive) of the jobs, and step is the step size through the indices. Note that using
more than one processor or node in a job will not work with this option.

-test (Specific option) With the intention of testing a potential job submission, parse files and commands
to generate error output. Produces, but then removes the HTCondor submit description file. Never

12.35. condor_qsub 819

ht||||tp://docs.adaptivecomput||||ing.com/torque/4-1-3/Con||||tent/topics/2-jobs/reque||||stingRes.htm#qsub
ht||||tp://docs.adaptivecomput||||ing.com/torque/4-1-3/Con||||tent/topics/2-jobs/reque||||stingRes.htm#qsub

HTCondor Manual, Release 10.0.9

submits the job, even if no errors are encountered.

-v variable list (Environmental option) Used to set the submit command environment for the job. vari-
able list is as that defined for the submit command. Note that the syntax needed is specialized to deal
with quote marks and white space characters.

-V (Environmental option) Sets getenv = True in the submit description file.

-W attr_name=attr_value[,attr_name=attr_value. . .] (File option) PBS/Torque supports a number of at-
tributes. However, condor_qsub only supports the names stagein and stageout for attr_name. The
format of attr_value for stagein and stageout is local_file@hostname:remote_file[,...] and
we strip it to remote_file[,...]. HTCondor’s file transfer mechanism is then used if needed.

-version (Specific option) Print version information for the condor_qsub program and exit. Note that
condor_qsub has its own version numbers which are separate from those of HTCondor.

12.35.4 Exit Status

condor_qsub will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure
to submit a job.

12.36 condor_reconfig

Reconfigure HTCondor daemons

12.36.1 Synopsis

condor_reconfig [-help | -version]

condor_reconfig [-debug] [-pool centralmanagerhostname[:portnumber]] [-name hostname | hostname | -addr
“<a.b.c.d:port>” | “<a.b.c.d:port>” | -constraint expression | -all] [-daemon daemonname]

12.36.2 Description

condor_reconfig reconfigures all of the HTCondor daemons in accordance with the current status of the HTCondor
configuration file(s). Once reconfiguration is complete, the daemons will behave according to the policies stated in
the configuration file(s). The main exception is with the DAEMON_LIST variable, which will only be updated if the
condor_restart command is used. Other configuration variables that can only be changed if the HTCondor daemons
are restarted are listed in the HTCondor manual in the section on configuration. In general, condor_reconfig should be
used when making changes to the configuration files, since it is faster and more efficient than restarting the daemons.

The command condor_reconfig with no arguments or with the -daemon master option will cause the reconfiguration
of the condor_master daemon and all the child processes of the condor_master.

For security reasons of authentication and authorization, this command requires ADMINISTRATOR level of access.

820 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.36.3 Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-name hostname Send the command to a machine identified by hostname

hostname Send the command to a machine identified by hostname

-addr “<a.b.c.d:port>” Send the command to a machine’s master located at “<a.b.c.d:port>”

“<a.b.c.d:port>” Send the command to a machine located at “<a.b.c.d:port>”

-constraint expression Apply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

-daemon daemonname Send the command to the named daemon. Without this option, the command is
sent to the condor_master daemon.

12.36.4 Exit Status

condor_reconfig will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.36.5 Examples

To reconfigure the condor_master and all its children on the local host:

$ condor_reconfig

To reconfigure only the condor_startd on a named machine:

$ condor_reconfig -name bluejay -daemon startd

To reconfigure a machine within a pool other than the local pool, use the -pool option. The argument is the name
of the central manager for the pool. Note that one or more machines within the pool must be specified as the targets
for the command. This command reconfigures the single machine named cae17 within the pool of machines that has
condor.cae.wisc.edu as its central manager:

$ condor_reconfig -pool condor.cae.wisc.edu -name cae17

12.36. condor_reconfig 821

HTCondor Manual, Release 10.0.9

12.37 condor_release

release held jobs in the HTCondor queue

12.37.1 Synopsis

condor_release [-help | -version]

condor_release [-debug] [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] cluster. . . | cluster.process. . . | user. . . | -constraint expression . . .

condor_release [-debug] [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] -all

12.37.2 Description

condor_release releases jobs from the HTCondor job queue that were previously placed in hold state. If the -name op-
tion is specified, the named condor_schedd is targeted for processing. Otherwise, the local condor_schedd is targeted.
The jobs to be released are identified by one or more job identifiers, as described below. For any given job, only the
owner of the job or one of the queue super users (defined by the QUEUE_SUPER_USERS macro) can release the job.

12.37.3 Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-name scheddname Send the command to a machine identified by scheddname

-addr “<a.b.c.d:port>” Send the command to a machine located at “<a.b.c.d:port>”

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

cluster Release all jobs in the specified cluster

cluster.process Release the specific job in the cluster

user Release jobs belonging to specified user

-constraint expression Release all jobs which match the job ClassAd expression constraint

-all Release all the jobs in the queue

822 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.37.4 See Also

condor_hold

12.37.5 Examples

To release all of the jobs of a user named Mary:

$ condor_release Mary

12.37.6 Exit Status

condor_release will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.38 condor_remote_cluster

Manage and configure the clusters to be accessed.

12.38.1 Synopsis

condor_remote_cluster [-h || –help]

condor_remote_cluster [-l || –list] [-a || –add <host> [schedd]] [-r || –remove <host>] [-s || –status <host>] [-t ||
–test <host>]

12.38.2 Description

condor_remote_cluster is part of a feature for accessing high throughput computing resources from a local desktop
using only an SSH connection.

condor_remote_cluster enables management and configuration of the access point of the remote computing resource.
After initial setup, jobs can be submitted to the local job queue, which are then forwarded to the remote system.

A <host> is of the form user@fqdn.example.com.

12.38.3 Options

-help Print usage information and exit.

-list List all installed clusters.

-remove <host> Remove an already installed cluster, where the cluster is identified by <host>.

-add <host> [scheduler] Install and add a cluster defined by <host>. The optional scheduler specifies
the scheduler on the cluster. Valid values are pbs, lsf, condor, sge or slurm. If not given, the
default will be pbs.

-status <host> Query and print the status of an already installed cluster, where the cluster is identified by
<host>.

-test <host> Attempt to submit a test job to an already installed cluster, where the cluster is identified by
<host>.

12.38. condor_remote_cluster 823

HTCondor Manual, Release 10.0.9

12.39 condor_reschedule

Update scheduling information to the central manager

12.39.1 Synopsis

condor_reschedule [-help | -version]

condor_reschedule [-debug] [-pool centralmanagerhostname[:portnumber]] [-name hostname | hostname | -addr
“<a.b.c.d:port>” | “<a.b.c.d:port>” | -constraint expression | -all]

12.39.2 Description

condor_reschedule updates the information about a set of machines’ resources and jobs to the central manager. This
command is used to force an update before viewing the current status of a machine. Viewing the status of a machine
is done with the condor_status command. condor_reschedule also starts a new negotiation cycle between resource
owners and resource providers on the central managers, so that jobs can be matched with machines right away. This
can be useful in situations where the time between negotiation cycles is somewhat long, and an administrator wants to
see if a job in the queue will get matched without waiting for the next negotiation cycle.

A new negotiation cycle cannot occur more frequently than every 20 seconds. Requests for new negotiation cycle
within that 20 second window will be deferred until 20 seconds have passed since that last cycle.

12.39.3 Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-name hostname Send the command to a machine identified by hostname

hostname Send the command to a machine identified by hostname

-addr “<a.b.c.d:port>” Send the command to a machine’s master located at “<a.b.c.d:port>”

“<a.b.c.d:port>” Send the command to a machine located at “<a.b.c.d:port>”

-constraint expression Apply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

824 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.39.4 Exit Status

condor_reschedule will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.39.5 Examples

To update the information on three named machines:

$ condor_reschedule robin cardinal bluejay

To reschedule on a machine within a pool other than the local pool, use the -pool option. The argument is the name
of the central manager for the pool. Note that one or more machines within the pool must be specified as the targets
for the command. This command reschedules the single machine named cae17 within the pool of machines that has
condor.cae.wisc.edu as its central manager:

$ condor_reschedule -pool condor.cae.wisc.edu -name cae17

12.40 condor_restart

Restart a set of HTCondor daemons

12.40.1 Synopsis

condor_restart [-help | -version]

condor_restart [-debug] [-graceful | -fast | -peaceful] [-pool centralmanagerhostname[:portnumber]] [-name host-
name | hostname | -addr “<a.b.c.d:port>” | “<a.b.c.d:port>” | -constraint expression | -all] [-daemon daemonname]

12.40.2 Description

condor_restart restarts a set of HTCondor daemons on a set of machines. The daemons will be put into a consistent
state, killed, and then invoked anew.

If, for example, the condor_master needs to be restarted again with a fresh state, this is the command that should be
used to do so. If the DAEMON_LIST variable in the configuration file has been changed, this command is used to restart
the condor_master in order to see this change. The condor_reconfigure command cannot be used in the case where the
DAEMON_LIST expression changes.

The command condor_restart with no arguments or with the -daemon master option will safely shut down all running
jobs and all submitted jobs from the machine(s) being restarted, then shut down all the child daemons of the con-
dor_master, and then restart the condor_master. This, in turn, will allow the condor_master to start up other daemons
as specified in the DAEMON_LIST configuration file entry.

For security reasons of authentication and authorization, this command requires ADMINISTRATOR level of access.

12.40. condor_restart 825

HTCondor Manual, Release 10.0.9

12.40.3 Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-graceful Gracefully shutdown daemons (the default) before restarting them

-fast Quickly shutdown daemons before restarting them

-peaceful Wait indefinitely for jobs to finish before shutting down daemons, prior to restarting them

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-name hostname Send the command to a machine identified by hostname

hostname Send the command to a machine identified by hostname

-addr “<a.b.c.d:port>” Send the command to a machine’s master located at “<a.b.c.d:port>”

“<a.b.c.d:port>” Send the command to a machine located at “<a.b.c.d:port>”

-constraint expression Apply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

-daemon daemonname Send the command to the named daemon. Without this option, the command is
sent to the condor_master daemon.

12.40.4 Exit Status

condor_restart will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.40.5 Examples

To restart the condor_master and all its children on the local host:

$ condor_restart

To restart only the condor_startd on a named machine:

$ condor_restart -name bluejay -daemon startd

To restart a machine within a pool other than the local pool, use the -pool option. The argument is the name of the central
manager for the pool. Note that one or more machines within the pool must be specified as the targets for the command.
This command restarts the single machine named cae17 within the pool of machines that has condor.cae.wisc.edu as
its central manager:

$ condor_restart -pool condor.cae.wisc.edu -name cae17

826 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.41 condor_rm

remove jobs from the HTCondor queue

12.41.1 Synopsis

condor_rm [-help | -version]

condor_rm [-debug] [-forcex] [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] cluster. . . | cluster.process. . . | user. . . | -constraint expression . . .

condor_rm [-debug] [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] -all

12.41.2 Description

condor_rm removes one or more jobs from the HTCondor job queue. If the -name option is specified, the named
condor_schedd is targeted for processing. Otherwise, the local condor_schedd is targeted. The jobs to be removed are
identified by one or more job identifiers, as described below. For any given job, only the owner of the job or one of the
queue super users (defined by the QUEUE_SUPER_USERS macro) can remove the job.

When removing a grid job, the job may remain in the “X” state for a very long time. This is normal, as HTCondor
is attempting to communicate with the remote scheduling system, ensuring that the job has been properly cleaned up.
If it takes too long, or in rare circumstances is never removed, the job may be forced to leave the job queue by using
the -forcex option. This forcibly removes jobs that are in the “X” state without attempting to finish any clean up at the
remote scheduler.

12.41.3 Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-name scheddname Send the command to a machine identified by scheddname

-addr “<a.b.c.d:port>” Send the command to a machine located at “<a.b.c.d:port>”

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-forcex Force the immediate local removal of jobs in the ‘X’ state (only affects jobs already being removed)

cluster Remove all jobs in the specified cluster

cluster.process Remove the specific job in the cluster

user Remove jobs belonging to specified user

-constraint expression Remove all jobs which match the job ClassAd expression constraint

-all Remove all the jobs in the queue

12.41. condor_rm 827

HTCondor Manual, Release 10.0.9

12.41.4 General Remarks

Use the -forcex argument with caution, as it will remove jobs from the local queue immediately, but can orphan parts
of the job that are running remotely and have not yet been stopped or removed.

12.41.5 Examples

For a user to remove all their jobs that are not currently running:

$ condor_rm -constraint 'JobStatus =!= 2'

12.41.6 Exit Status

condor_rm will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.42 condor_rmdir

Windows-only no-fail deletion of directories

12.42.1 Synopsis

condor_rmdir [/HELP | /?]

condor_rmdir @filename

condor_rmdir [/VERBOSE] [/DIAGNOSTIC] [/PATH:<path>] [/S] [/C] [/Q] [/NODEL] directory

12.42.2 Description

condor_rmdir can delete a specified directory, and will not fail if the directory contains files that have ACLs that deny
the SYSTEM process delete access, unlike the built-in Windows rmdir command.

The directory to be removed together with other command line arguments may be specified within a file named filename,
prefixing this argument with an @ character.

The condor_rmdir.exe executable is is intended to be used by HTCondor with the /S /C options, which cause it to
recurse into subdirectories and continue on errors.

12.42.3 Options

/HELP Print usage information.

/? Print usage information.

/VERBOSE Print detailed output.

/DIAGNOSTIC Print out the internal flow of control information.

/PATH:<path> Remove the directory given by <path>.

/S Include subdirectories in those removed.

/C Continue even if access is denied.

828 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

/Q Print error output only.

/NODEL Do not remove directories. ACLs may still be changed.

12.42.4 Exit Status

condor_rmdir will exit with a status value of 0 (zero) upon success, and it will exit with the standard HRESULT error
code upon failure.

12.43 condor_router_history

Display the history for routed jobs

12.43.1 Synopsis

condor_router_history [–h]

condor_router_history [–show_records] [–show_iwd] [–age days] [–days days] [–start “YYYY-MM-DD HH:MM”]

12.43.2 Description

condor_router_history summarizes statistics for routed jobs over the previous 24 hours. With no command line options,
statistics for run time, number of jobs completed, and number of jobs aborted are listed per route (site).

12.43.3 Options

-h Display usage information and exit.

-show_records Displays individual records in addition to the summary.

-show_iwd Include working directory in displayed records.

-age days Set the ending time of the summary to be days days ago.

-days days Set the number of days to summarize.

-start “YYYY-MM-DD HH:MM” Set the start time of the summary.

12.43.4 Exit Status

condor_router_history will exit with a status of 0 (zero) upon success, and non-zero otherwise.

12.43. condor_router_history 829

HTCondor Manual, Release 10.0.9

12.44 condor_router_q

Display information about routed jobs in the queue

12.44.1 Synopsis

condor_router_q [-S] [-R] [-I] [-H] [-route name] [-idle] [-held] [-constraint X] [condor_q options]

12.44.2 Description

condor_router_q displays information about jobs managed by the condor_job_router that are in the HTCondor job
queue. The functionality of this tool is that of condor_q, with additional options specialized for routed jobs. Therefore,
any of the options for condor_q may also be used with condor_router_q.

12.44.3 Options

-S Summarize the state of the jobs on each route.

-R Summarize the running jobs on each route.

-I Summarize the idle jobs on each route.

-H Summarize the held jobs on each route.

-route name Display only the jobs on the route identified by name.

-idle Display only the idle jobs.

-held Display only the held jobs.

-constraint X Display only the jobs matching constraint X.

12.44.4 Exit Status

condor_router_q will exit with a status of 0 (zero) upon success, and non-zero otherwise.

12.45 condor_router_rm

Remove jobs being managed by the HTCondor Job Router

12.45.1 Synopsis

condor_router_rm [router_rm options] [condor_rm options]

830 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.45.2 Description

condor_router_rm is a script that provides additional features above those offered by condor_rm, for removing jobs
being managed by the HTCondor Job Router.

The options that may be supplied to condor_router_rm belong to two groups:

• router_rm options provide the additional features

• condor_rm options are those options already offered by condor_rm. See the condor_rm manual page for spec-
ification of these options.

12.45.3 Options

-constraint X (router_rm option) Remove jobs matching the constraint specified by X

-held (router_rm option) Remove only jobs in the hold state

-idle (router_rm option) Remove only idle jobs

-route name (router_rm option) Remove only jobs on specified route

12.45.4 Exit Status

condor_router_rm will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.46 condor_run

Submit a shell command-line as an HTCondor job

12.46.1 Synopsis

condor_run [-u universe] [-a submitcmd] “shell command”

12.46.2 Description

condor_run bundles a shell command line into an HTCondor job and submits the job. The condor_run command waits
for the HTCondor job to complete, writes the job’s output to the terminal, and exits with the exit status of the HTCondor
job. No output appears until the job completes.

Enclose the shell command line in double quote marks, so it may be passed to condor_run without modification.
condor_run will not read input from the terminal while the job executes. If the shell command line requires input,
redirect the input from a file, as illustrated by the example

$ condor_run "myprog < input.data"

condor_run jobs rely on a shared file system for access to any necessary input files. The current working directory of
the job must be accessible to the machine within the HTCondor pool where the job runs.

Specialized environment variables may be used to specify requirements for the machine where the job may run.

CONDOR_ARCH Specifies the architecture of the required platform. Values will be the same as the
Arch machine ClassAd attribute.

12.46. condor_run 831

HTCondor Manual, Release 10.0.9

CONDOR_OPSYS Specifies the operating system of the required platform. Values will be the same as
the OpSys machine ClassAd attribute.

CONDOR_REQUIREMENTS Specifies any additional requirements for the HTCondor job. It is rec-
ommended that the value defined for CONDOR_REQUIREMENTS be enclosed in parenthesis.

When one or more of these environment variables is specified, the job is submitted with:

Requirements = $CONDOR_REQUIREMENTS && Arch == $CONDOR_ARCH && OpSys == $CONDOR_OPSYS

Without these environment variables, the job receives the default requirements expression, which requests a machine
of the same platform as the machine on which condor_run is executed.

All environment variables set when condor_run is executed will be included in the environment of the HTCondor job.

condor_run removes the HTCondor job from the queue and deletes its temporary files, if condor_run is killed before
the HTCondor job completes.

12.46.3 Options

-u universe Submit the job under the specified universe. The default is vanilla. While any universe may
be specified, only the vanilla, scheduler, and local universes result in a submit description file that
may work properly.

-a submitcmd Add the specified submit command to the implied submit description file for the job. To
include spaces within submitcmd, enclose the submit command in double quote marks. And, to
include double quote marks within submitcmd, enclose the submit command in single quote marks.

12.46.4 Examples

condor_run may be used to compile an executable on a different platform. As an example, first set the environment
variables for the required platform:

$ export CONDOR_ARCH="SUN4u"
$ export CONDOR_OPSYS="SOLARIS28"

Then, use condor_run to submit the compilation as in the following two examples.

$ condor_run "f77 -O -o myprog myprog.f"

or

$ condor_run "make"

12.46.5 Files

condor_run creates the following temporary files in the user’s working directory. The placeholder <pid> is replaced
by the process id of condor_run.

.condor_run.<pid> A shell script containing the shell command line.

.condor_submit.<pid> The submit description file for the job.

.condor_log.<pid> The HTCondor job’s log file; it is monitored by condor_run, to determine when the job exits.

.condor_out.<pid> The output of the HTCondor job before it is output to the terminal.

832 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

.condor_error.<pid> Any error messages for the HTCondor job before they are output to the terminal.

condor_run removes these files when the job completes. However, if condor_run fails, it is possible that these files
will remain in the user’s working directory, and the HTCondor job may remain in the queue.

12.46.6 General Remarks

condor_run is intended for submitting simple shell command lines to HTCondor. It does not provide the full function-
ality of condor_submit. Therefore, some condor_submit errors and system failures may not be handled correctly.

All processes specified within the single shell command line will be executed on the single machine matched with the
job. HTCondor will not distribute multiple processes of a command line pipe across multiple machines.

condor_run will use the shell specified in the SHELL environment variable, if one exists. Otherwise, it will use /bin/sh
to execute the shell command-line.

By default, condor_run expects Perl to be installed in /usr/bin/perl. If Perl is installed in another path, ask the
Condor administrator to edit the path in the condor_run script, or explicitly call Perl from the command line:

$ perl path-to-condor/bin/condor_run "shell-cmd"

12.46.7 Exit Status

condor_run exits with a status value of 0 (zero) upon complete success. The exit status of condor_run will be non-zero
upon failure. The exit status in the case of a single error due to a system call will be the error number (errno) of the
failed call.

12.47 condor_set_shutdown

Set a program to execute upon condor_master shut down

12.47.1 Synopsis

condor_set_shutdown [-help | -version]

condor_set_shutdown -exec programname [-debug] [-pool centralmanagerhostname[:portnumber]] [-name host-
name | hostname | -addr “<a.b.c.d:port>” | “<a.b.c.d:port>” | -constraint expression | -all]

12.47.2 Description

condor_set_shutdown sets a program (typically a script) to execute when the condor_master daemon shuts down. The
-exec programname argument is required, and specifies the program to run. The string programname must match
the string that defines Name in the configuration variable MASTER_SHUTDOWN_<Name> in the condor_master daemon’s
configuration. If it does not match, the condor_master will log an error and ignore the request.

For security reasons of authentication and authorization, this command requires ADMINISTRATOR level of access.

12.47. condor_set_shutdown 833

HTCondor Manual, Release 10.0.9

12.47.3 Options

-help Display usage information

-version Display version information

-exec name Select the program the master should exec the next time it shuts down. The master will run the
program configured as MASTER_SHUTDOWN_<name> from the configuration of the condor_master.

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-name hostname Send the command to a machine identified by hostname

hostname Send the command to a machine identified by hostname

-addr “<a.b.c.d:port>” Send the command to a machine’s master located at “<a.b.c.d:port>”

“<a.b.c.d:port>” Send the command to a machine located at “<a.b.c.d:port>”

-constraint expression Apply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

12.47.4 Exit Status

condor_set_shutdown will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.47.5 Examples

To have all condor_master daemons run the program /bin/reboot upon shut down, configure the condor_master to
contain a definition similar to:

MASTER_SHUTDOWN_REBOOT = /sbin/reboot

where REBOOT is an invented name for this program that the condor_master will execute. On the command line, run

$ condor_set_shutdown -exec reboot -all
$ condor_off -graceful -all

where the string reboot matches the invented name.

12.48 condor_sos

Issue a command that will be serviced with a higher priority

834 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.48.1 Synopsis

condor_sos [-help | -version]

condor_sos [-debug] [-timeoutmult value] condor_command

12.48.2 Description

condor_sos sends the condor_command in such a way that the command is serviced ahead of other waiting commands.
It appears to have a higher priority than other waiting commands.

condor_sos is intended to give administrators a way to query the condor_schedd and condor_collector daemons when
they are under such a heavy load that they are not responsive.

There must be a special command port configured, in order for a command to be serviced with priority. The con-
dor_schedd and condor_collector always have the special command port. Other daemons require configuration by
setting configuration variable <SUBSYS>_SUPER_ADDRESS_FILE.

12.48.3 Options

-help Display usage information

-version Display version information

-debug Print extra debugging information as the command executes.

-timeoutmult value Multiply any timeouts set for the command by the integer value.

12.48.4 Examples

The example command

$ condor_sos -timeoutmult 5 condor_hold -all

causes the condor_hold -all command to be handled by the condor_schedd with priority over any other commands
that the condor_schedd has waiting to be serviced. It also extends any set timeouts by a factor of 5.

12.48.5 Exit Status

condor_sos will exit with the value 1 on error and with the exit value of the invoked command when the command is
successfully invoked.

12.49 condor_ssh_start

12.49. condor_ssh_start 835

HTCondor Manual, Release 10.0.9

12.49.1 Synopsis

condor_ssh_start

12.49.2 Description

condor_ssh_start is part of a system for accessing high throughput computing resources from a local desktop.

This command is not meant to be executed on the command line by users.

12.50 condor_ssh_to_job

create an ssh session to a running job

12.50.1 Synopsis

condor_ssh_to_job [-help]

condor_ssh_to_job [-debug] [-name schedd-name] [-pool pool-name] [-ssh ssh-command] [-keygen-options ssh-
keygen-options] [-shells shell1,shell2,. . .] [-auto-retry] [-remove-on-interrupt] cluster | cluster.process | clus-
ter.process.node [remote-command]

12.50.2 Description

condor_ssh_to_job creates an ssh session to a running job. The job is specified with the argument. If only the job
cluster id is given, then the job process id defaults to the value 0.

condor_ssh_to_job is available in Unix HTCondor distributions, and works with two kinds of jobs: those in the vanilla,
vm, java, local, or parallel universes, and those jobs in the grid universe which use EC2 resources. It will not work
with other grid universe jobs.

For jobs in the vanilla, vm, java, local, or parallel universes, the user must be the owner of the job or must be a queue
super user, and both the condor_schedd and condor_starter daemons must allow condor_ssh_to_job access. If no
remote-command is specified, an interactive shell is created. An alternate ssh program such as sftp may be specified,
using the -ssh option, for uploading and downloading files.

The remote command or shell runs with the same user id as the running job, and it is initialized with the same working di-
rectory. The environment is initialized to be the same as that of the job, plus any changes made by the shell setup scripts
and any environment variables passed by the ssh client. In addition, the environment variable _CONDOR_JOB_PIDS is
defined. It is a space-separated list of PIDs associated with the job. At a minimum, the list will contain the PID of the
process started when the job was launched, and it will be the first item in the list. It may contain additional PIDs of
other processes that the job has created.

The ssh session and all processes it creates are treated by HTCondor as though they are processes belonging to the job.
If the slot is preempted or suspended, the ssh session is killed or suspended along with the job. If the job exits before
the ssh session finishes, the slot remains in the Claimed Busy state and is treated as though not all job processes have
exited until all ssh sessions are closed. Multiple ssh sessions may be created to the same job at the same time. Resource
consumption of the sshd process and all processes spawned by it are monitored by the condor_starter as though these
processes belong to the job, so any policies such as PREEMPT that enforce a limit on resource consumption also take
into account resources consumed by the ssh session.

836 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

condor_ssh_to_job stores ssh keys in temporary files within a newly created and uniquely named directory. The newly
created directory will be within the directory defined by the environment variable TMPDIR. When the ssh session is
finished, this directory and the ssh keys contained within it are removed.

See the HTCondor administrator’s manual section on configuration for details of the configuration variables related to
condor_ssh_to_job.

An ssh session works by first authenticating and authorizing a secure connection between condor_ssh_to_job and the
condor_starter daemon, using HTCondor protocols. The condor_starter generates an ssh key pair and sends it securely
to condor_ssh_to_job. Then the condor_starter spawns sshd in inetd mode with its stdin and stdout attached to the TCP
connection from condor_ssh_to_job. condor_ssh_to_job acts as a proxy for the ssh client to communicate with sshd,
using the existing connection authorized by HTCondor. At no point is sshd listening on the network for connections
or running with any privileges other than that of the user identity running the job. If CCB is being used to enable
connectivity to the execute node from outside of a firewall or private network, condor_ssh_to_job is able to make use
of CCB in order to form the ssh connection.

The login shell of the user id running the job is used to run the requested command, sshd subsystem, or interactive
shell. This is hard-coded behavior in OpenSSH and cannot be overridden by configuration. This means that con-
dor_ssh_to_job access is effectively disabled if the login shell disables access, as in the example programs /bin/true
and /sbin/nologin.

condor_ssh_to_job is intended to work with OpenSSH as installed in typical environments. It does not work on Win-
dows platforms. If the ssh programs are installed in non-standard locations, then the paths to these programs will need
to be customized within the HTCondor configuration. Versions of ssh other than OpenSSH may work, but they will
likely require additional configuration of command-line arguments, changes to the sshd configuration template file, and
possibly modification of the $(LIBEXEC)/condor_ssh_to_job_sshd_setup script used by the condor_starter to set up
sshd.

For jobs in the grid universe which use EC2 resources, a request that HTCondor have the EC2 service create a new key
pair for the job by specifying ec2_keypair_file causes condor_ssh_to_job to attempt to connect to the corresponding
instance via ssh. This attempts invokes ssh directly, bypassing the HTCondor networking layer. It supplies ssh with
the public DNS name of the instance and the name of the file with the new key pair’s private key. For the connection
to succeed, the instance must have started an ssh server, and its security group(s) must allow connections on port
22. Conventionally, images will allow logins using the key pair on a single specific account. Because ssh defaults to
logging in as the current user, the -l <username> option or its equivalent for other versions of ssh will be needed as
part of the remote-command argument. Although the -X option does not apply to EC2 jobs, adding -X or -Y to the
remote-command argument can duplicate the effect.

12.50.3 Options

-help Display brief usage information and exit.

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-name schedd-name Specify an alternate condor_schedd, if the default (local) one is not desired.

-pool pool-name Specify an alternate HTCondor pool, if the default one is not desired. Does not apply
to EC2 jobs.

-ssh ssh-command Specify an alternate ssh program to run in place of ssh, for example sftp or scp. Addi-
tional arguments are specified as ssh-command. Since the arguments are delimited by spaces, place
double quote marks around the whole command, to prevent the shell from splitting it into multiple
arguments to condor_ssh_to_job. If any arguments must contain spaces, enclose them within single
quotes. Does not apply to EC2 jobs.

-keygen-options ssh-keygen-options Specify additional arguments to the ssh_keygen program, for creat-
ing the ssh key that is used for the duration of the session. For example, a different number of bits

12.50. condor_ssh_to_job 837

HTCondor Manual, Release 10.0.9

could be used, or a different key type than the default. Does not apply to EC2 jobs.

-shells shell1,shell2,. . . Specify a comma-separated list of shells to attempt to launch. If the first shell
does not exist on the remote machine, then the following ones in the list will be tried. If none of the
specified shells can be found, /bin/sh is used by default. If this option is not specified, it defaults to
the environment variable SHELL from within the condor_ssh_to_job environment. Does not apply to
EC2 jobs.

-auto-retry Specifies that if the job is not yet running, condor_ssh_to_job should keep trying periodically
until it succeeds or encounters some other error.

-remove-on-interrupt If specified, attempt to remove the job from the queue if condor_ssh_to_job is
interrupted via a CTRL-c or otherwise terminated abnormally.

-X Enable X11 forwarding. Does not apply to EC2 jobs.

-x Disable X11 forwarding.

12.50.4 Examples

$ condor_ssh_to_job 32.0
Welcome to slot2@tonic.cs.wisc.edu!
Your condor job is running with pid(s) 65881.
$ gdb -p 65881
(gdb) where
...
$ logout
Connection to condor-job.tonic.cs.wisc.edu closed.

To upload or download files interactively with sftp:

$ condor_ssh_to_job -ssh sftp 32.0
Connecting to condor-job.tonic.cs.wisc.edu...
sftp> ls
...
sftp> get outputfile.dat

This example shows downloading a file from the job with scp. The string “remote” is used in place of a host name in
this example. It is not necessary to insert the correct remote host name, or even a valid one, because the connection to
the job is created automatically. Therefore, the placeholder string “remote” is perfectly fine.

$ condor_ssh_to_job -ssh scp 32 remote:outputfile.dat .

This example uses condor_ssh_to_job to accomplish the task of running rsync to synchronize a local file with a remote
file in the job’s working directory. Job id 32.0 is used in place of a host name in this example. This causes rsync to
insert the expected job id in the arguments to condor_ssh_to_job.

$ rsync -v -e "condor_ssh_to_job" 32.0:outputfile.dat .

Note that condor_ssh_to_job was added to HTCondor in version 7.3. If one uses condor_ssh_to_job to connect to a
job on an execute machine running a version of HTCondor older than the 7.3 series, the command will fail with the
error message

Failed to send CREATE_JOB_OWNER_SEC_SESSION to starter

838 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.50.5 Exit Status

condor_ssh_to_job will exit with a non-zero status value if it fails to set up an ssh session. If it succeeds, it will exit
with the status value of the remote command or shell.

12.51 condor_ssl_fingerprint

list the fingerprint of X.509 certificates for use with SSL authentication

12.51.1 Synopsis

condor_ssl_fingerprint [FILE]

12.51.2 Description

condor_ssl_fingerprint parses provided file for X.509 certificcates and prints prints them to stdout. If no file is
provided, then it defaults to printing out the user’s known_hosts file (typically, in ~/.condor/known_hosts).

If a single PEM-formatted X.509 certificate is found, then its fingerprint is printed.

The X.509 fingerprints can be used to verify the authenticity of an SSL authentication with a remote daemon.

12.51.3 Examples

To print the fingerprint of a host certificate

$ condor_token_list
Header: {"alg":"HS256","kid":"POOL"} Payload: {"exp":1565576872,"iat":1565543872,"iss":
→˓"htcondor.cs.wisc.edu","scope":"condor:\/DAEMON","sub":"k8sworker@wisc.edu"} File: /
→˓home/bucky/.condor/tokens.d/token1
Header: {"alg":"HS256","kid":"POOL"} Payload: {"iat":1572414350,"iss":"htcondor.cs.wisc.
→˓edu","scope":"condor:\/WRITE","sub":"bucky@wisc.edu"} File: /home/bucky/.condor/tokens.
→˓d/token2

12.51.4 Exit Status

condor_token_list will exit with a non-zero status value if it fails to read the token directory, tokens are improperly
formatted, or if it experiences some other error. Otherwise, it will exit 0.

12.51.5 See also

condor_token_create(1), condor_token_fetch(1), condor_token_request(1)

12.51. condor_ssl_fingerprint 839

HTCondor Manual, Release 10.0.9

12.51.6 Author

Center for High Throughput Computing, University of Wisconsin-Madison

12.51.7 Copyright

Copyright © 1990-2019 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

12.52 condor_stats

Display historical information about the HTCondor pool

12.52.1 Synopsis

condor_stats [-f filename] [-orgformat] [-pool centralmanagerhostname[:portnumber]] [time-range] query-type

12.52.2 Description

condor_stats displays historic information about an HTCondor pool. Based on the type of information requested, a
query is sent to the condor_collector daemon, and the information received is displayed using the standard output. If
the -f option is used, the information will be written to a file instead of to standard output. The -pool option can be
used to get information from other pools, instead of from the local (default) pool. The condor_stats tool is used to
query resource information (single or by platform), submitter and user information. If a time range is not specified, the
default query provides information for the previous 24 hours. Otherwise, information can be retrieved for other time
ranges such as the last specified number of hours, last week, last month, or a specified date range.

The information is displayed in columns separated by tabs. The first column always represents the time, as a percentage
of the range of the query. Thus the first entry will have a value close to 0.0, while the last will be close to 100.0. If the
-orgformat option is used, the time is displayed as number of seconds since the Unix epoch. The information in the
remainder of the columns depends on the query type.

Note that logging of pool history must be enabled in the condor_collector daemon, otherwise no information will be
available.

One query type is required. If multiple queries are specified, only the last one takes effect.

12.52.3 Time Range Options

-lastday Get information for the last day.

-lastweek Get information for the last week.

-lastmonth Get information for the last month.

-lasthours n Get information for the n last hours.

-from m d y Get information for the time since the beginning of the specified date. A start date prior to
the Unix epoch causes condor_stats to print its usage information and quit.

-to m d y Get information for the time up to the beginning of the specified date, instead of up to now. A
finish date in the future causes condor_stats to print its usage information and quit.

840 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.52.4 Query Type Arguments

The query types that do not list all of a category require further specification as given by an argument.

-resourcequery hostname A single resource query provides information about a single machine. The
information also includes the keyboard idle time (in seconds), the load average, and the machine
state.

-resourcelist A query of a single list of resources to provide a list of all the machines for which the
condor_collector daemon has historic information within the query’s time range.

-resgroupquery arch/opsys | “Total” A query of a specified group to provide information about a group
of machines based on their platform (operating system and architecture). The architecture is defined
by the machine ClassAd Arch, and the operating system is defined by the machine ClassAd OpSys.
The string “Total” ask for information about all platforms.

The columns displayed are the number of machines that are unclaimed, matched, claimed, preempt-
ing, owner, shutdown, delete, backfill, and drained state.

-resgrouplist Queries for a list of all the group names for which the condor_collector has historic infor-
mation within the query’s time range.

-userquery email_address/submit_machine Query for a specific submitter on a specific machine. The
information displayed includes the number of running jobs and the number of idle jobs. An example
argument appears as

-userquery jondoe@sample.com/onemachine.sample.com

-userlist Queries for the list of all submitters for which the condor_collector daemon has historic infor-
mation within the query’s time range.

-usergroupquery email_address | “Total” Query for all jobs submitted by the specific user, regardless of
the machine they were submitted from, or all jobs. The information displayed includes the number
of running jobs and the number of idle jobs.

-usergrouplist Queries for the list of all users for which the condor_collector has historic information
within the query’s time range.

12.52.5 Options

-f filename Write the information to a file instead of the standard output.

-pool centralmanagerhostname[:portnumber] Contact the specified central manager instead of the local
one.

-orgformat Display the information in an alternate format for timing, which presents timestamps since
the Unix epoch. This argument only affects the display of resoursequery, resgroupquery, userquery,
and usergroupquery.

12.52. condor_stats 841

HTCondor Manual, Release 10.0.9

12.52.6 Exit Status

condor_stats will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.53 condor_status

Display status of the HTCondor pool

12.53.1 Synopsis

condor_status [-debug] [help options] [query options] [display options] [custom options] [name . . .]

12.53.2 Description

condor_status is a versatile tool that may be used to monitor and query the HTCondor pool. The condor_status tool
can be used to query resource information, submitter information, and daemon master information. The specific query
sent and the resulting information display is controlled by the query options supplied. Queries and display formats can
also be customized.

The options that may be supplied to condor_status belong to five groups:

• Help options provide information about the condor_status tool.

• Query options control the content and presentation of status information.

• Display options control the display of the queried information.

• Custom options allow the user to customize query and display information.

• Host options specify specific machines to be queried

At any time, only one help option, one query option and one display option may be specified. Any number of custom
options and host options may be specified.

12.53.3 Options

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-help (Help option) Display usage information.

-diagnose (Help option) Print out ClassAd query without performing the query.

-absent (Query option) Query for and display only absent resources.

-ads filename (Query option) Read the set of ClassAds in the file specified by filename, instead of querying
the condor_collector.

-annex name (Query option) Query for and display only resources in the named annex.

-any (Query option) Query all ClassAds and display their type, target type, and name.

-avail (Query option) Query condor_startd ClassAds and identify resources which are available.

-claimed (Query option) Query condor_startd ClassAds and print information about claimed resources.

-cod (Query option) Display only machine ClassAds that have COD claims. Information displayed in-
cludes the claim ID, the owner of the claim, and the state of the COD claim.

842 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

-collector (Query option) Query condor_collector ClassAds and display attributes.

-defrag (Query option) Query condor_defrag ClassAds.

-direct hostname (Query option) Go directly to the given host name to get the ClassAds to display. By
default, returns the condor_startd ClassAd. If -schedd is also given, return the condor_schedd Clas-
sAd on that host.

-grid (Query option) Query grid resource ClassAds.

-java (Query option) Display only Java-capable resources.

-license (Query option) Display license attributes.

-master (Query option) Query condor_master ClassAds and display daemon master attributes.

-negotiator (Query option) Query condor_negotiator ClassAds and display attributes.

-pool centralmanagerhostname[:portnumber] (Query option) Query the specified central manager using
an optional port number. condor_status queries the machine specified by the configuration variable
COLLECTOR_HOST by default.

-run (Query option) Display information about machines currently running jobs.

-schedd (Query option) Query condor_schedd ClassAds and display attributes.

-server (Query option) Query condor_startd ClassAds and display resource attributes.

-startd (Query option) Query condor_startd ClassAds.

-state (Query option) Query condor_startd ClassAds and display resource state information.

-statistics WhichStatistics (Query option) Can only be used if the -direct option has been specified. Iden-
tifies which Statistics attributes to include in the ClassAd. WhichStatistics is specified using the same
syntax as defined for STATISTICS_TO_PUBLISH. A definition is in the HTCondor Administrator’s
manual section on configuration (HTCondor-wide Configuration File Entries).

-storage (Query option) Display attributes of machines with network storage resources.

-submitters (Query option) Query ClassAds sent by submitters and display important submitter attributes.

-subsystem type (Query option) If type is one of collector, negotiator, master, schedd, or startd, then
behavior is the same as the query option without the -subsystem option. For example, -subsystem
collector is the same as -collector. A value of type of CkptServer, Machine, DaemonMaster, or
Scheduler targets that type of ClassAd.

-vm (Query option) Query condor_startd ClassAds, and display only VM-enabled machines. Information
displayed includes the machine name, the virtual machine software version, the state of machine, the
virtual machine memory, and the type of networking.

-offline (Query option) Query condor_startd ClassAds, and display, for each machine with at least one
offline universe, which universes are offline for it.

-attributes Attr1[,Attr2 . . .] (Display option) Explicitly list the attributes in a comma separated list which
should be displayed when using the -xml, -json or -long options. Limiting the number of attributes
increases the efficiency of the query.

-expert (Display option) Display shortened error messages.

-long (Display option) Display entire ClassAds. Implies that totals will not be displayed.

-limit num (Query option) At most num results should be displayed.

-sort expr (Display option) Change the display order to be based on ascending values of an evaluated
expression given by expr. Evaluated expressions of a string type are in a case insensitive alpha-
betical order. If multiple -sort arguments appear on the command line, the primary sort will be

12.53. condor_status 843

HTCondor Manual, Release 10.0.9

on the leftmost one within the command line, and it is numbered 0. A secondary sort will be
based on the second expression, and it is numbered 1. For informational or debugging purposes,
the ClassAd output to be displayed will appear as if the ClassAd had two additional attributes.
CondorStatusSortKeyExpr<N> is the expression, where <N> is replaced by the number of the
sort. CondorStatusSortKey<N> gives the result of evaluating the sort expression that is numbered
<N>.

-total (Display option) Display totals only.

-xml (Display option) Display entire ClassAds, in XML format. The XML format is fully defined in the
reference manual, obtained from the ClassAds web page, with a link at http://htcondor.org/classad/
classad.html.

-json (Display option) Display entire ClassAds in JSON format.

-constraint const (Custom option) Add constraint expression.

-compact (Custom option) Show compact form, with a single line per machine using information from
the partitionable slot. Some information will be incorrect if the machine has static slots.

-format fmt attr (Custom option) Display attribute or expression attr in format fmt. To display the at-
tribute or expression the format must contain a single printf(3)-style conversion specifier. At-
tributes must be from the resource ClassAd. Expressions are ClassAd expressions and may refer to
attributes in the resource ClassAd. If the attribute is not present in a given ClassAd and cannot be
parsed as an expression, then the format option will be silently skipped. %r prints the unevaluated, or
raw values. The conversion specifier must match the type of the attribute or expression. %s is suitable
for strings such as Name, %d for integers such as LastHeardFrom, and %f for floating point numbers
such as LoadAvg. %v identifies the type of the attribute, and then prints the value in an appropriate
format. %V identifies the type of the attribute, and then prints the value in an appropriate format as
it would appear in the -long format. As an example, strings used with %V will have quote marks.
An incorrect format will result in undefined behavior. Do not use more than one conversion specifier
in a given format. More than one conversion specifier will result in undefined behavior. To output
multiple attributes repeat the -format option once for each desired attribute. Like printf(3)-style
formats, one may include other text that will be reproduced directly. A format without any conversion
specifiers may be specified, but an attribute is still required. Include a backslash followed by an ‘n’
to specify a line break.

-autoformat[:lhVr,tng] attr1 [attr2 . . .] or -af[:lhVr,tng] attr1 [attr2 . . .] (Output option) Display at-
tribute(s) or expression(s) formatted in a default way according to attribute types. This option takes
an arbitrary number of attribute names as arguments, and prints out their values, with a space be-
tween each value and a newline character after the last value. It is like the -format option without
format strings. This output option does not work in conjunction with the -run option.

It is assumed that no attribute names begin with a dash character, so that the next word that begins
with dash is the start of the next option. The autoformat option may be followed by a colon character
and formatting qualifiers to deviate the output formatting from the default:

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

844 Chapter 12. Command Reference Manual (man pages)

http://htcondor.org/classad/classad.html
http://htcondor.org/classad/classad.html

HTCondor Manual, Release 10.0.9

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The l and h characters may not be used
together.

-print-format file Read output formatting information from the given custom print format file. see Print
Formats for more information about custom print format files.

-target filename (Custom option) Where evaluation requires a target ClassAd to evaluate against, file
filename contains the target ClassAd.

-merge filename (Custom option) Ads will be read from filename, which may be - to indicate standard in,
and compared to the ads selected by the query specified by the remainder of the command line. Ads
will be considered the same if their sort keys match; sort keys may be specified with [-sort <key>].
This option will cause up to three tables to print, in the following order, depending on where a given
ad appeared: first, the ads which appeared in the query but not in filename; second, the ads which
appeared in both the query and in filename; third, the ads which appeared in filename but not in the
query.

By default, banners will label each table. If -xml is also given, the same banners will separate three
valid XML documents, one for each table. If -json is also given, a single JSON object will be
produced, with the usual JSON output for each table labeled as an element in the object.

The -annex option changes this default so that the banners are not printed and the tables are formatted
differently. In this case, the ads in filename are expected to have different contents from the ads in
the query, so many others will behave strangely.

12.53.4 General Remarks

• The default output from condor_status is formatted to be human readable, not script readable. In an effort to
make the output fit within 80 characters, values in some fields might be truncated. Furthermore, the HTCondor
Project can (and does) change the formatting of this default output as we see fit. Therefore, any script that is
attempting to parse data from condor_status is strongly encouraged to use the -format option (described above).

• The information obtained from condor_startd and condor_schedd daemons may sometimes appear to be in-
consistent. This is normal since condor_startd and condor_schedd daemons update the HTCondor manager at
different rates, and since there is a delay as information propagates through the network and the system.

• Note that the ActivityTime in the Idle state is not the amount of time that the machine has been idle. See
the section on condor_startd states in the Administrator’s Manual for more information (Starting Up, Shutting
Down, Reconfiguring, and Restarting HTCondor).

• When using condor_status on a pool with SMP machines, you can either provide the host name, in which case
you will get back information about all slots that are represented on that host, or you can list specific slots by
name. See the examples below for details.

• If you specify host names, without domains, HTCondor will automatically try to resolve those host names into
fully qualified host names for you. This also works when specifying specific nodes of an SMP machine. In this
case, everything after the “@” sign is treated as a host name and that is what is resolved.

• You can use the -direct option in conjunction with almost any other set of options. However, at this time, not all
daemons will respond to direct queries for its ad(s). The condor_startd will respond to requests for Startd ads.
The condor_schedd will respond to requests for Schedd and Submitter ads. So the only options currently not
supported with -direct are -master and -collector. Most other options use startd ads for their information, so
they work seamlessly with -direct. The only other restriction on -direct is that you may only use 1 -direct option
at a time. If you want to query information directly from multiple hosts, you must run condor_status multiple
times.

12.53. condor_status 845

HTCondor Manual, Release 10.0.9

• Unless you use the local host name with -direct, condor_status will still have to contact a collector to find the
address where the specified daemon is listening. So, using a -pool option in conjunction with -direct just tells
condor_status which collector to query to find the address of the daemon you want. The information actually
displayed will still be retrieved directly from the daemon you specified as the argument to -direct. Do not use
-direct to query the Collector ad, just use -pool and -collector.

12.53.5 Examples

Example 1 To view information from all nodes of an SMP machine, use only the host name. For example, if you had a
4-CPU machine, named vulture.cs.wisc.edu, you might see

$ condor_status vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@vulture.cs.w LINUX INTEL Claimed Busy 1.050 512 0+01:47:42
slot2@vulture.cs.w LINUX INTEL Claimed Busy 1.000 512 0+01:48:19
slot3@vulture.cs.w LINUX INTEL Unclaimed Idle 0.070 512 1+11:05:32
slot4@vulture.cs.w LINUX INTEL Unclaimed Idle 0.000 512 1+11:05:34

Total Owner Claimed Unclaimed Matched Preempting Backfill

INTEL/LINUX 4 0 2 2 0 0 0

Total 4 0 2 2 0 0 0

Example 2 To view information from a specific nodes of an SMP machine, specify the node directly. You do this by
providing the name of the slot. This has the form slot#@hostname. For example:

$ condor_status slot3@vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot3@vulture.cs.w LINUX INTEL Unclaimed Idle 0.070 512 1+11:10:32

Total Owner Claimed Unclaimed Matched Preempting Backfill

INTEL/LINUX 1 0 0 1 0 0 0

Total 1 0 0 1 0 0 0

Example 3 The -compact option gives a one line summary of each machine using information from the partitionable
slot. If the normal output is this

$ condor_status vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@vulture.cs.w LINUX X86_64 Unclaimed Idle 0.000 679 1+03:18:58
slot1_1@vulture.cs LINUX X86_64 Claimed Busy 1.160 1152 0+03:21:02
slot1_2@vulture.cs LINUX X86_64 Claimed Busy 1.150 2560 0+10:20:50
slot1_3@vulture.cs LINUX X86_64 Claimed Busy 1.160 2816 0+01:32:08
slot1_4@vulture.cs LINUX X86_64 Claimed Busy 0.000 5081 0+00:00:00

(continues on next page)

846 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

(continued from previous page)

Machines Owner Claimed Unclaimed Matched Preempting Drain

X86_64/LINUX 5 0 4 1 0 0 0

Total 5 0 4 1 0 0 0

For the same machine in the same state the -compact option will show this

$ condor_status -compact vulture

Machine Platform Slots Cpus Gpus TotalGb FreCpu FreeGb CpuLoad ST Jobs/
→˓Min MaxSlotGb

vulture.cs.wisc.ed x64/CentOS7 4 8 2 12 0 .66 .98 Cb .
→˓25 4.96

Machines Owner Claimed Unclaimed Matched Preempting Drain

X86_64/CentOS7 4 0 4 1 0 0 0

Total 4 0 4 1 0 0 0

The Slots column shows that 4 slots have been carved out of the partitionable slot, leaving 0 cpus and .66 Gigabytes
of memory free. Static slots will not be counted in the Slots column.

The ST column shows the consensus state of the dynamic slots using a two character code. The first character is the
State, the second is the activity. If there is not a consensus for either the state or activity, then # will be shown. The
example shows Cb for Claimed/Busy since all of the dynamic slots are in that state. If one of the dynamic slots were
Idle, then C# would be shown.

The Jobs/Min shows the recent job start rate for the machine. A large number here is normal for a machine that just
came online, but if this number stays above 1 for more than a minute, that can be an indication of a machine is acting
as a black hole for jobs, starting them quickly and then failing them just as quickly.

The MaxSlotGb column shows the memory allocated to the largest slot in Gigabytes, If the memory allocated for the
largest slot cannot be determined, * will be displayed. Static slots are not counted in the MaxSlotGb column.

Constraint option examples

The Unix command to use the constraint option to see all machines with the OpSys of "LINUX":

$ condor_status -constraint OpSys==\"LINUX\"

Note that quotation marks must be escaped with the backslash characters for most shells.

The Windows command to do the same thing:

> condor_status -constraint " OpSys==""LINUX"" "

Note that quotation marks are used to delimit the single argument which is the expression, and the quotation marks that
identify the string must be escaped by using a set of two double quote marks without any intervening spaces.

To see all machines that are currently in the Idle state, the Unix command is

$ condor_status -constraint State==\"Idle\"

12.53. condor_status 847

HTCondor Manual, Release 10.0.9

To see all machines that are bench marked to have a MIPS rating of more than 750, the Unix command is

$ condor_status -constraint 'Mips>750'

-cod option example

The -cod option displays the status of COD claims within a given HTCondor pool.

Name ID ClaimState TimeInState RemoteUser JobId Keyword
astro.cs.wi COD1 Idle 0+00:00:04 wright
chopin.cs.w COD1 Running 0+00:02:05 wright 3.0 fractgen
chopin.cs.w COD2 Suspended 0+00:10:21 wright 4.0 fractgen

Total Idle Running Suspended Vacating Killing
INTEL/LINUX 3 1 1 1 0 0

Total 3 1 1 1 0 0

-format option example To display the name and memory attributes of each job ClassAd in a format that is easily
parsable by other tools:

$ condor_status -format "%s " Name -format "%d\n" Memory

To do the same with the autoformat option, run

$ condor_status -autoformat Name Memory

12.53.6 Exit Status

condor_status will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.54 condor_store_cred

securely stash a credential

12.54.1 Synopsis

condor_store_cred -h

condor_store_cred action [options]

12.54.2 Description

condor_store_cred stores credentials in a secure manner. There are three actions, each of which can optionally be
followed by a hyphen and one of three types.

The actions are:

add[-type] Add credential to secure storage

delete[-type] Remove credential from secure storage

query[-type] Check if a credential has been stored

848 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

The types are:

-pwd Credential is a password (default)

-krb Credential is a Kerberos/AFS token

-oauth Credential is Scitoken or Oauth2 token

Credentials are stashed in a persistent manner; they are maintained across system reboots. When adding a credential,
if there is already a credential stashed, the old credential will be overwritten by the new one.

There are two separate uses of the password actions of condor_store_cred:

1. A shared pool password is needed in order to implement the PASSWORD authentication method. con-
dor_store_cred using the -c option deals with the password for the implied condor_pool@$(UID_DOMAIN)
user name.

On a Unix machine, condor_store_cred add[-pwd] with the -f option is used to set the pool password, as needed
when used with the PASSWORD authentication method. The pool password is placed in a file specified by the
SEC_PASSWORD_FILE configuration variable.

2. In order to submit a job from a Windows platform machine, or to execute a job on a Windows platform machine
utilizing the run_as_owner functionality, condor_store_cred add[-pwd] stores the password of a user/domain
pair securely in the Windows registry. Using this stored password, HTCondor may act on behalf of the submitting
user to access files, such as writing output or log files. HTCondor is able to run jobs with the user ID of the
submitting user. The password is stored in the same manner as the system does when setting or changing account
passwords.

Unless the -p argument is used with the add or add-pwd action, the user is prompted to enter the password twice for
confirmation, and characters are not echoed.

The add-krb and add-oauth actions must be used with the -i argument to specify a filename to read from.

The -oauth actions require a -s service name argument. The -S and -A options may be used with add-oauth to add scopes
and/or audience to the credentials or with query-oauth to make sure that the scopes or audience match the previously
stored credentials. If either -S or -A are used then the credentials must be in JSON format.

12.54.3 Options

-h Displays a brief summary of command options.

-c [-pwd] actions refer to the pool password, as used in the PASSWORD authentication method.

-f filename For Unix machines only, generates a pool password file named filename that may be used with
the PASSWORD authentication method.

-i filename Read credential from filename. If filename is -, read from stdin. Required for add-krb and
add-oauth.

-s service The Oauth2 service. Required for all -oauth actions.

-H handle Specify a handle for the given OAuth2 service.

-S scopes Optional comma-separated list of scopes to request for add-oauth action. If used with the query-
oauth action, makes sure that the same scopes were requested in the original credential. Requires
credentials to be in JSON format.

-A audience Optional audience to request for add-oauth action. If used with the query-oauth action,
makes sure that the same audience was requested in the original credential. Requires credentials to
be in JSON format.

-n machinename Apply the command on the given machine.

12.54. condor_store_cred 849

HTCondor Manual, Release 10.0.9

-p password Stores password, rather than prompting the user to enter a password.

-u username Specify the user name.

12.54.4 Exit Status

condor_store_cred will exit with a status value of 0 (zero) upon success. If the query-oauth action finds a credential
but the scopes or audience don’t match, condor_store_cred will exit with a status value 2 (two). Otherwise, it will exit
with the value 1 (one) upon failure.

12.55 condor_submit

Queue jobs for execution under HTCondor

12.55.1 Synopsis

condor_submit [-terse] [-verbose] [-unused] [-file submit_file] [-name schedd_name] [-remote schedd_name]
[-addr <ip:port>] [-pool pool_name] [-disable] [-password passphrase] [-debug] [-append command . . .][-
batch-name batch_name] [-spool] [-dump filename] [-interactive] [-factory] [-allow-crlf-script] [-dry-run
] [-maxjobs number-of-jobs] [-single-cluster] [<submit-variable>=<value>] [submit description file] [-queue
queue_arguments]

12.55.2 Description

condor_submit is the program for submitting jobs for execution under HTCondor. condor_submit requires one or more
submit description commands to direct the queuing of jobs. These commands may come from a file, standard input, the
command line, or from some combination of these. One submit description may contain specifications for the queuing
of many HTCondor jobs at once. A single invocation of condor_submit may cause one or more clusters. A cluster is a
set of jobs specified in the submit description between queue commands for which the executable is not changed. It is
advantageous to submit multiple jobs as a single cluster because:

• Much less memory is used by the scheduler to hold the same number of jobs.

• Only one copy of the checkpoint file is needed to represent all jobs in a cluster until they begin execution.

• There is much less overhead involved for HTCondor to start the next job in a cluster than for HTCondor to start
a new cluster. This can make a big difference when submitting lots of short jobs.

Multiple clusters may be specified within a single submit description. Each cluster must specify a single executable.

The job ClassAd attribute ClusterId identifies a cluster.

The submit description file argument is the path and file name of the submit description file. If this optional argument
is the dash character (-), then the commands are taken from standard input. If - is specified for the submit description
file, -verbose is implied; this can be overridden by specifying -terse.

If no submit discription file argument is given, and no -queue argument is given, commands are taken automatically
from standard input.

Note that submission of jobs from a Windows machine requires a stashed password to allow HTCondor to impersonate
the user submitting the job. To stash a password, use the condor_store_cred command. See the manual page for details.

For lengthy lines within the submit description file, the backslash (\) is a line continuation character. Placing the
backslash at the end of a line causes the current line’s command to be continued with the next line of the file. Submit
description files may contain comments. A comment is any line beginning with a pound character (#).

850 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.55.3 Options

-terse Terse output - display JobId ranges only.

-verbose Verbose output - display the created job ClassAd

-unused As a default, causes no warnings to be issued about user-defined macros not being used
within the submit description file. The meaning reverses (toggles) when the configuration variable
WARN_ON_UNUSED_SUBMIT_FILE_MACROS is set to the non default value of False. Printing the
warnings can help identify spelling errors of submit description file commands. The warnings are
sent to stderr.

-file submit_file Use submit_file as the submit discription file. This is equivalent to providing submit_file
as an argument without the preceeding -file.

-name schedd_name Submit to the specified condor_schedd. Use this option to submit to a con-
dor_schedd other than the default local one. schedd_name is the value of the Name ClassAd attribute
on the machine where the condor_schedd daemon runs.

-remote schedd_name Submit to the specified condor_schedd, spooling all required input files over the
network connection. schedd_name is the value of the Name ClassAd attribute on the machine where
the condor_schedd daemon runs. This option is equivalent to using both -name and -spool.

-addr <ip:port> Submit to the condor_schedd at the IP address and port given by the sinful string argu-
ment <ip:port>.

-pool pool_name Look in the specified pool for the condor_schedd to submit to. This option is used with
-name or -remote.

-disable Disable file permission checks when submitting a job for read permissions on all input files, such
as those defined by commands input and transfer_input_files , as well as write permission to output
files, such as a log file defined by log and output files defined with output or transfer_output_files
.

-debug Cause debugging information to be sent to stderr, based on the value of the configuration vari-
able TOOL_DEBUG.

-append command Augment the commands in the submit description file with the given command. This
command will be considered to immediately precede the queue command within the submit descrip-
tion file, and come after all other previous commands. If the command specifies a queue command,
as in the example

condor_submit mysubmitfile -append "queue input in A, B, C"

then the entire -append command line option and its arguments are converted to

condor_submit mysubmitfile -queue input in A, B, C

The submit description file is not modified. Multiple commands are specified by using the -append
option multiple times. Each new command is given in a separate -append option. Commands with
spaces in them will need to be enclosed in double quote marks.

-batch-name batch_name Set the batch name for this submit. The batch name is displayed by condor_q
-batch. It is intended for use by users to give meaningful names to their jobs and to influence how
condor_q groups jobs for display. Use of this argument takes precedence over a batch name specified
in the submit description file itself.

-spool Spool all required input files, job event log, and proxy over the connection to the condor_schedd.
After submission, modify local copies of the files without affecting your jobs. Any output files for
completed jobs need to be retrieved with condor_transfer_data.

-dump filename Sends all ClassAds to the specified file, instead of to the condor_schedd.

12.55. condor_submit 851

HTCondor Manual, Release 10.0.9

-interactive Indicates that the user wants to run an interactive shell on an execute machine in the pool.
This is equivalent to creating a submit description file of a vanilla universe sleep job, and then running
condor_ssh_to_job by hand. Without any additional arguments, condor_submit with the -interactive
flag creates a dummy vanilla universe job that sleeps, submits it to the local scheduler, waits for the
job to run, and then launches condor_ssh_to_job to run a shell. If the user would like to run the
shell on a machine that matches a particular requirements expression, the submit description file is
specified, and it will contain the expression. Note that all policy expressions specified in the submit
description file are honored, but any executable or universe commands are overwritten to be sleep
and vanilla. The job ClassAd attribute InteractiveJob is set to True to identify interactive jobs
for condor_startd policy usage.

-factory Sends all of the jobs as a late materialization job factory. A job factory consists of a single
cluster classad and a digest containing the submit commands necessary to describe the differences
between jobs. If the Queue statment has itemdata, then the itemdata will be sent. Using this option
is equivalent to using the max_materialize submit command.

-allow-crlf-script Changes the check for an invalid line ending on the executable script’s #! line from an
ERROR to a WARNING. The #! line will be ignored by Windows, so it won’t matter if it is invalid;
but Unix and Linux will not run a script that has a Windows/DOS line ending on the first line of the
script. So condor_submit will not allow such a script to be submitted as the job’s executable unless
this option is supplied.

-dry-run file Parse the submit description file, sending the resulting job ClassAd to the file given by file,
but do not submit the job(s). This permits observation of the job specification, and it facilitates
debugging the submit description file contents. If file is -, the output is written to stdout.

-maxjobs number-of-jobs If the total number of jobs specified by the submit description file is more than
the integer value given by number-of-jobs, then no jobs are submitted for execution and an error
message is generated. A 0 or negative value for the number-of-jobs causes no limit to be imposed.

-single-cluster If the jobs specified by the submit description file causes more than a single cluster value
to be assigned, then no jobs are submitted for execution and an error message is generated.

<submit-variable>=<value> Defines a submit command or submit variable with a value, and parses it
as if it was placed at the beginning of the submit description file. The submit description file is not
changed. To correctly parse the condor_submit command line, this option must be specified without
white space characters before and after the equals sign (=), or the entire option must be surrounded
by double quote marks.

-queue queue_arguments A command line specification of how many jobs to queue, which is only per-
mitted if the submit description file does not have a queue command. The queue_arguments are the
same as may be within a submit description file. The parsing of the queue_arguments finishes at the
end of the line or when a dash character (-) is encountered. Therefore, its best placement within the
command line will be at the end of the command line.

On a Unix command line, the shell expands file globs before parsing occurs.

12.55.4 Submit Description File Commands

Note: more information on submitting HTCondor jobs can be found here: Submitting a Job.

As of version 8.5.6, the condor_submit language supports multi-line values in commands. The syntax is the same as
the configuration language (see more details here: Multi-Line Values).

Each submit description file describes one or more clusters of jobs to be placed in the HTCondor execution pool.
All jobs in a cluster must share the same executable, but they may have different input and output files, and different

852 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

program arguments. The submit description file is generally the last command-line argument to condor_submit. If the
submit description file argument is omitted, condor_submit will read the submit description from standard input.

The submit description file must contain at least one executable command and at least one queue command. All of the
other commands have default actions.

Note that a submit file that contains more than one executable command will produce multiple clusters when
submitted. This is not generally recommended, and is not allowed for submit files that are run as DAG node jobs
by condor_dagman.

The commands which can appear in the submit description file are numerous. They are listed here in alphabetical order
by category.

BASIC COMMANDS

arguments = <argument_list> List of arguments to be supplied to the executable as part of the command
line.

In the java universe, the first argument must be the name of the class containing main.

There are two permissible formats for specifying arguments, identified as the old syntax and the new
syntax. The old syntax supports white space characters within arguments only in special circum-
stances; when used, the command line arguments are represented in the job ClassAd attribute Args.
The new syntax supports uniform quoting of white space characters within arguments; when used,
the command line arguments are represented in the job ClassAd attribute Arguments.

Old Syntax

In the old syntax, individual command line arguments are delimited (separated) by space characters.
To allow a double quote mark in an argument, it is escaped with a backslash; that is, the two character
sequence \” becomes a single double quote mark within an argument.

Further interpretation of the argument string differs depending on the operating system. On Win-
dows, the entire argument string is passed verbatim (other than the backslash in front of double quote
marks) to the Windows application. Most Windows applications will allow spaces within an argu-
ment value by surrounding the argument with double quotes marks. In all other cases, there is no
further interpretation of the arguments.

Example:

arguments = one \"two\" 'three'

Produces in Unix vanilla universe:

argument 1: one
argument 2: "two"
argument 3: 'three'

New Syntax

Here are the rules for using the new syntax:

1. The entire string representing the command line arguments is surrounded by double quote marks.
This permits the white space characters of spaces and tabs to potentially be embedded within
a single argument. Putting the double quote mark within the arguments is accomplished by
escaping it with another double quote mark.

2. The white space characters of spaces or tabs delimit arguments.

12.55. condor_submit 853

HTCondor Manual, Release 10.0.9

3. To embed white space characters of spaces or tabs within a single argument, surround the entire
argument with single quote marks.

4. To insert a literal single quote mark, escape it within an argument already delimited by single
quote marks by adding another single quote mark.

Example:

arguments = "3 simple arguments"

Produces:

argument 1: 3
argument 2: simple
argument 3: arguments

Another example:

arguments = "one 'two with spaces' 3"

Produces:

argument 1: one
argument 2: two with spaces
argument 3: 3

And yet another example:

arguments = "one ""two"" 'spacey ''quoted'' argument'"

Produces:

argument 1: one
argument 2: "two"
argument 3: spacey 'quoted' argument

Notice that in the new syntax, the backslash has no special meaning. This is for the convenience of
Windows users.

environment = <parameter_list> List of environment variables.

There are two different formats for specifying the environment variables: the old format and the new
format. The old format is retained for backward-compatibility. It suffers from a platform-dependent
syntax and the inability to insert some special characters into the environment.

The new syntax for specifying environment values:

1. Put double quote marks around the entire argument string. This distinguishes the new syntax
from the old. The old syntax does not have double quote marks around it. Any literal double
quote marks within the string must be escaped by repeating the double quote mark.

2. Each environment entry has the form

<name>=<value>

3. Use white space (space or tab characters) to separate environment entries.

854 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

4. To put any white space in an environment entry, surround the space and as much of the sur-
rounding entry as desired with single quote marks.

5. To insert a literal single quote mark, repeat the single quote mark anywhere inside of a section
surrounded by single quote marks.

Example:

environment = "one=1 two=""2"" three='spacey ''quoted'' value'"

Produces the following environment entries:

one=1
two="2"
three=spacey 'quoted' value

Under the old syntax, there are no double quote marks surrounding the environment specification.
Each environment entry remains of the form

<name>=<value>

Under Unix, list multiple environment entries by separating them with a semicolon (;). Under Win-
dows, separate multiple entries with a vertical bar (|). There is no way to insert a literal semicolon
under Unix or a literal vertical bar under Windows. Note that spaces are accepted, but rarely de-
sired, characters within parameter names and values, because they are treated as literal characters,
not separators or ignored white space. Place spaces within the parameter list only if required.

A Unix example:

environment = one=1;two=2;three="quotes have no 'special' meaning"

This produces the following:

one=1
two=2
three="quotes have no 'special' meaning"

If the environment is set with the environment command and getenv is also set, values specified
with environment override values in the submitter’s environment (regardless of the order of the
environment and getenv commands).

error = <pathname> A path and file name used by HTCondor to capture any error messages the program
would normally write to the screen (that is, this file becomes stderr). A path is given with respect
to the file system of the machine on which the job is submitted. The file is written (by the job)
in the remote scratch directory of the machine where the job is executed. When the job exits, the
resulting file is transferred back to the machine where the job was submitted, and the path is utilized
for file placement. If not specified, the default value of /dev/null is used for submission to a Unix
machine. If not specified, error messages are ignored for submission to a Windows machine. More
than one job should not use the same error file, since this will cause one job to overwrite the errors
of another. If HTCondor detects that the error and output files for a job are the same, it will run the
job such that the output and error data is merged.

executable = <pathname> An optional path and a required file name of the executable file for this job
cluster. Only one executable command within a submit description file is guaranteed to work prop-
erly. More than one often works.

12.55. condor_submit 855

HTCondor Manual, Release 10.0.9

If no path or a relative path is used, then the executable file is presumed to be relative to the current
working directory of the user as the condor_submit command is issued.

getenv = <<matchlist> | True | False> If getenv is set to True, then condor_submit will copy all of the
user’s current shell environment variables at the time of job submission into the job ClassAd. The
job will therefore execute with the same set of environment variables that the user had at submit time.
Defaults to False. A wholesale import of the user’s environment is very likely to lead to problems
executing the job on a remote machine unless there is a shared file system for users’ home directories
between the submit machine and execute machine. So rather than setting getenv to True, it is much
better to set it to a list of environment variables to import.

Matchlist is a comma, semicolon or space separated list of environment variable names and name
patterns that match or reject names. Matchlist members are matched case-insensitively to each name
in the environment and those that match are imported. Matchlist members can contain * as wildcard
character which matches anything at that postion. Members can have two * characters if one of them
is at the end. Members can be prefixed with ! to force a matching environment variable to not be
imported. The order of members in the Matchlist has no effect on the result. getenv = true is
equivalent to getenv = *

Prior to HTCondor 8.9.7 getenv allows only True or False as values.

Examples:

import everything except PATH and INCLUDE (also path, include and other␣
→˓case-variants)
getenv = !PATH, !INCLUDE

import everything with CUDA in the name
getenv = *cuda*

Import every environment variable that starts with P or Q, except PATH
getenv = !path, P*, Q*

If the environment is set with the environment command and getenv is also set, values specified
with environment override values in the submitter’s environment (regardless of the order of the
environment and getenv commands).

input = <pathname> HTCondor assumes that its jobs are long-running, and that the user will not wait
at the terminal for their completion. Because of this, the standard files which normally access the
terminal, (stdin, stdout, and stderr), must refer to files. Thus, the file name specified with
input should contain any keyboard input the program requires (that is, this file becomes stdin). A
path is given with respect to the file system of the machine on which the job is submitted. The file is
transferred before execution to the remote scratch directory of the machine where the job is executed.
If not specified, the default value of /dev/null is used for submission to a Unix machine. If not
specified, input is ignored for submission to a Windows machine.

Note that this command does not refer to the command-line arguments of the program. The
command-line arguments are specified by the arguments command.

log = <pathname> Use log to specify a file name where HTCondor will write a log file of what is hap-
pening with this job cluster, called a job event log. For example, HTCondor will place a log entry
into this file when and where the job begins running, when the job produces a checkpoint, or moves
(migrates) to another machine, and when the job completes. Most users find specifying a log file to

856 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

be handy; its use is recommended. If no log entry is specified, HTCondor does not create a log for
this cluster. If a relative path is specified, it is relative to the current working directory as the job is
submitted or the directory specified by submit command initialdir on the submit machine.

log_xml = <True | False> If log_xml is True, then the job event log file will be written in ClassAd XML.
If not specified, XML is not used. Note that the file is an XML fragment; it is missing the file header
and footer. Do not mix XML and non-XML within a single file. If multiple jobs write to a single job
event log file, ensure that all of the jobs specify this option in the same way.

notification = <Always | Complete | Error | Never> Owners of HTCondor jobs are notified by e-mail
when certain events occur. If defined by Always, the owner will be notified whenever the job produces
a checkpoint, as well as when the job completes. If defined by Complete, the owner will be notified
when the job terminates. If defined by Error, the owner will only be notified if the job terminates
abnormally, (as defined by JobSuccessExitCode, if defined) or if the job is placed on hold because
of a failure, and not by user request. If defined by Never (the default), the owner will not receive
e-mail, regardless to what happens to the job. The HTCondor User’s manual documents statistics
included in the e-mail.

notify_user = <email-address> Used to specify the e-mail address to use when HTCondor sends e-mail
about a job. If not specified, HTCondor defaults to using the e-mail address defined by

job-owner@UID_DOMAIN

where the configuration variable UID_DOMAIN is specified by the HTCondor site administrator. If
UID_DOMAIN has not been specified, HTCondor sends the e-mail to:

job-owner@submit-machine-name

output = <pathname> The output file captures any information the program would ordinarily write to
the screen (that is, this file becomes stdout). A path is given with respect to the file system of the
machine on which the job is submitted. The file is written (by the job) in the remote scratch directory
of the machine where the job is executed. When the job exits, the resulting file is transferred back to
the machine where the job was submitted, and the path is utilized for file placement. If not specified,
the default value of /dev/null is used for submission to a Unix machine. If not specified, output
is ignored for submission to a Windows machine. Multiple jobs should not use the same output file,
since this will cause one job to overwrite the output of another. If HTCondor detects that the error
and output files for a job are the same, it will run the job such that the output and error data is merged.

Note that if a program explicitly opens and writes to a file, that file should not be specified as the
output file.

priority = <integer> An HTCondor job priority can be any integer, with 0 being the default. Jobs with
higher numerical priority will run before jobs with lower numerical priority. Note that this priority
is on a per user basis. One user with many jobs may use this command to order his/her own jobs,
and this will have no effect on whether or not these jobs will run ahead of another user’s jobs.

Note that the priority setting in an HTCondor submit file will be overridden by condor_dagman if
the submit file is used for a node in a DAG, and the priority of the node within the DAG is non-zero
(see Advanced Features of DAGMan for more details).

12.55. condor_submit 857

HTCondor Manual, Release 10.0.9

queue [<int expr>] Places zero or more copies of the job into the HTCondor queue.

queue [<int expr>] [<varname>] in [slice] <list of items> Places zero or more copies of the job in the
queue based on items in a <list of items>

queue [<int expr>] [<varname>] matching [files | dirs] [slice] <list of items with file globbing>]
Places zero or more copies of the job in the queue based on files that match a <list of items with file
globbing>

queue [<int expr>] [<list of varnames>] from [slice] <file name> | <list of items>] Places zero or
more copies of the job in the queue based on lines from the submit file or from <file name>

The optional argument <int expr> specifies how many times to repeat the job submission for a given
set of arguments. It may be an integer or an expression that evaluates to an integer, and it defaults to
1. All but the first form of this command are various ways of specifying a list of items. When these
forms are used <int expr> jobs will be queued for each item in the list. The in, matching and from
keyword indicates how the list will be specified.

• in The list of items is an explicit comma and/or space separated <list of items>. If the <list of
items> begins with an open paren, and the close paren is not on the same line as the open, then
the list continues until a line that begins with a close paren is read from the submit file.

• matching Each item in the <list of items with file globbing> will be matched against the names
of files and directories relative to the current directory, the set of matching names is the resulting
list of items.

– files Only filenames will matched.

– dirs Only directory names will be matched.

• from <file name> | <list of items> Each line from <file name> or <list of items> is a single
item, this allows for multiple variables to be set for each item. Lines from <file name> or <list
of items> will be split on comma and/or space until there are values for each of the variables
specified in <list of varnames>. The last variable will contain the remainder of the line. When
the <list of items> form is used, the list continues until the first line that begins with a close
paren, and lines beginning with pound sign (‘#’) will be skipped. When using the <file name>
form, if the <file name> ends with |, then it will be executed as a script whatever the script writes
to stdout will be the list of items.

The optional argument <varname> or <list of varnames> is the name or names of of variables that
will be set to the value of the current item when queuing the job. If no <varname> is specified the
variable ITEM will be used. Leading and trailing whitespace be trimmed. The optional argument
<slice> is a python style slice selecting only some of the items in the list of items. Negative step
values are not supported.

A submit file may contain more than one queue statement, and if desired, any commands may be
placed between subsequent queue commands, such as new input , output , error , initialdir , or
arguments commands. This is handy when submitting multiple runs into one cluster with one submit
description file.

universe = <vanilla | scheduler | local | grid | java | vm | parallel | docker> Specifies which HTCon-
dor universe to use when running this job. The HTCondor universe specifies an HTCondor execution
environment.

The vanilla universe is the default (except where the configuration variable DEFAULT_UNIVERSE
defines it otherwise), and is an execution environment for jobs which do not use HTCondor’s mech-

858 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

anisms for taking checkpoints; these are ones that have not been linked with the HTCondor libraries.
Use the vanilla universe to submit shell scripts to HTCondor.

The scheduler universe is for a job that is to run on the machine where the job is submitted. This
universe is intended for a job that acts as a metascheduler and will not be preempted.

The local universe is for a job that is to run on the machine where the job is submitted. This universe
runs the job immediately and will not preempt the job.

The grid universe forwards the job to an external job management system. Further specification of
the grid universe is done with the grid_resource command.

The java universe is for programs written to the Java Virtual Machine.

The vm universe facilitates the execution of a virtual machine.

The parallel universe is for parallel jobs (e.g. MPI) that require multiple machines in order to run.

The docker universe runs a docker container as an HTCondor job.

max_materialize = <limit> Submit jobs as a late materialization factory and instruct the condor_schedd
to keep the given number of jobs materialized. Use this option to reduce the load on the con-
dor_schedd when submitting a large number of jobs. The limit can be an expression but it must
evaluate to a constant at submit time. A limit less than 1 will be treated as unlimited. The con-
dor_schedd can be configured to have a materialization limit as well, the lower of the two limits will
be used. (see Submitting Lots of Jobs for more details).

max_idle = <limit> Submit jobs as a late materialization factory and instruct the condor_schedd to keep
the given number of non-running jobs materialized. Use this option to reduce the load on the con-
dor_schedd when submitting a large number of jobs. The limit may be an expression but it must
evaluate to a constant at submit time. Jobs in the Held state are considered to be Idle for this limit.
A limit of less than 1 will prevent jobs from being materialized although the factory will still be
submitted to the condor_schedd. (see Submitting Lots of Jobs for more details).

COMMANDS FOR MATCHMAKING

rank = <ClassAd Float Expression> A ClassAd Floating-Point expression that states how to rank ma-
chines which have already met the requirements expression. Essentially, rank expresses preference.
A higher numeric value equals better rank. HTCondor will give the job the machine with the highest
rank. For example,

request_memory = max({60, Target.TotalSlotMemory})
rank = Memory

asks HTCondor to find all available machines with more than 60 megabytes of memory and give to the
job the machine with the most amount of memory. The HTCondor User’s Manual contains complete
information on the syntax and available attributes that can be used in the ClassAd expression.

request_cpus = <num-cpus> A requested number of CPUs (cores). If not specified, the number re-
quested will be 1. If specified, the expression

&& (RequestCpus <= Target.Cpus)

12.55. condor_submit 859

HTCondor Manual, Release 10.0.9

is appended to the requirements expression for the job.

For pools that enable dynamic condor_startd provisioning, specifies the minimum number of CPUs
requested for this job, resulting in a dynamic slot being created with this many cores.

request_disk = <quantity> The requested amount of disk space in KiB requested for this job. If not
specified, it will be set to the job ClassAd attribute DiskUsage. The expression

&& (RequestDisk <= Target.Disk)

is appended to the requirements expression for the job.

For pools that enable dynamic condor_startd provisioning, a dynamic slot will be created with at
least this much disk space.

Characters may be appended to a numerical value to indicate units. K or KB indicates KiB, 210 num-
bers of bytes. M or MB indicates MiB, 220 numbers of bytes. G or GB indicates GiB, 230 numbers of
bytes. T or TB indicates TiB, 240 numbers of bytes.

request_gpus = <num-gpus> A requested number of GPUs. If not specified, no GPUs will be requested.
If specified and require_gpus is not also specified, the expression

&& (Target.GPUs >= RequestGPUs)

is appended to the requirements expression for the job.

For pools that enable dynamic condor_startd provisioning, specifies the minimum number of GPUs
requested for this job, resulting in a dynamic slot being created with this many GPUs.

require_gpus = <constraint-expression> A constraint on the properties of GPUs when used with a non-
zero request_gpus value. If not specified, no constraint on GPUs will be added to the job. If
specified and request_gpus is non-zero, the expression

&& (countMatches(MY.RequireGPUs, TARGET.AvailableGPUs) >= RequestGPUs)

is appended to the requirements expression for the job. This expression cannot be evaluated by
HTCondor prior to version 9.8.0. A warning to this will effect will be printed when condor_submit
detects this condition.

For pools that enable dynamic condor_startd provisioning and are at least version 9.8.0, the constraint
will be tested against the properties of AvailbleGPUs and only those that match will be assigned to
the dynamic slot.

request_memory = <quantity> The required amount of memory in MiB that this job needs to avoid ex-
cessive swapping. If not specified and the submit command vm_memory is specified, then the value
specified for vm_memory defines request_memory . If neither request_memory nor vm_memory
is specified, the value is set by the configuration variable JOB_DEFAULT_REQUESTMEMORY . The ac-
tual amount of memory used by a job is represented by the job ClassAd attribute MemoryUsage.

For pools that enable dynamic condor_startd provisioning, a dynamic slot will be created with at
least this much RAM.

The expression

860 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

&& (RequestMemory <= Target.Memory)

is appended to the requirements expression for the job.

Characters may be appended to a numerical value to indicate units. K or KB indicates KiB, 210 num-
bers of bytes. M or MB indicates MiB, 220 numbers of bytes. G or GB indicates GiB, 230 numbers of
bytes. T or TB indicates TiB, 240 numbers of bytes.

request_<name> = <quantity> The required amount of the custom machine resource identified by
<name> that this job needs. The custom machine resource is defined in the machine’s configura-
tion. Machines that have available GPUs will define <name> to be GPUs. <name> must be at least
two characters, and must not begin with _. If <name> is either Cpu or Gpu a warning will be printed
since these are common typos.

cuda_version = <version> The version of the CUDA runtime, if any, used or required by this job, speci-
fied as <major>.<minor> (for example, 9.1). If the minor version number is zero, you may specify
only the major version number. A single version number of 1000 or higher is assumed to be the
integer-coded version number (major * 1000 + (minor % 100)).

This does not arrange for the CUDA runtime to be present, only for the job to run on a machine whose
driver supports the specified version.

requirements = <ClassAd Boolean Expression> The requirements command is a boolean ClassAd ex-
pression which uses C-like operators. In order for any job in this cluster to run on a given machine,
this requirements expression must evaluate to true on the given machine.

For scheduler and local universe jobs, the requirements expression is evaluated against the
Scheduler ClassAd which represents the the condor_schedd daemon running on the submit ma-
chine, rather than a remote machine. Like all commands in the submit description file, if multiple
requirements commands are present, all but the last one are ignored. By default, condor_submit
appends the following clauses to the requirements expression:

1. Arch and OpSys are set equal to the Arch and OpSys of the submit machine. In other words:
unless you request otherwise, HTCondor will give your job machines with the same architecture
and operating system version as the machine running condor_submit.

2. Cpus >= RequestCpus, if the job ClassAd attribute RequestCpus is defined.

3. Disk >= RequestDisk, if the job ClassAd attribute RequestDisk is defined. Otherwise, Disk
>= DiskUsage is appended to the requirements. The DiskUsage attribute is initialized to the
size of the executable plus the size of any files specified in a transfer_input_files command.
It exists to ensure there is enough disk space on the target machine for HTCondor to copy over
both the executable and needed input files. The DiskUsage attribute represents the maximum
amount of total disk space required by the job in kilobytes. HTCondor automatically updates
the DiskUsage attribute approximately every 20 minutes while the job runs with the amount of
space being used by the job on the execute machine.

4. Memory >= RequestMemory, if the job ClassAd attribute RequestMemory is defined.

5. If Universe is set to Vanilla, FileSystemDomain is set equal to the submit machine’s FileSystem-
Domain.

View the requirements of a job which has already been submitted (along with everything else about
the job ClassAd) with the command condor_q -l; see the command reference for condor_q. Also,

12.55. condor_submit 861

HTCondor Manual, Release 10.0.9

see the HTCondor Users Manual for complete information on the syntax and available attributes that
can be used in the ClassAd expression.

FILE TRANSFER COMMANDS

dont_encrypt_input_files = < file1,file2,file. . . > A comma and/or space separated list of input files that
are not to be network encrypted when transferred with the file transfer mechanism. Specification of
files in this manner overrides configuration that would use encryption. Each input file must also be
in the list given by transfer_input_files . When a path to an input file or directory is specified, this
specifies the path to the file on the submit side. A single wild card character (*) may be used in each
file name.

dont_encrypt_output_files = < file1,file2,file. . . > A comma and/or space separated list of output files
that are not to be network encrypted when transferred back with the file transfer mechanism. Speci-
fication of files in this manner overrides configuration that would use encryption. The output file(s)
must also either be in the list given by transfer_output_files or be discovered and to be transferred
back with the file transfer mechanism. When a path to an output file or directory is specified, this
specifies the path to the file on the execute side. A single wild card character (*) may be used in each
file name.

encrypt_execute_directory = <True | False> Defaults to False. If set to True, HTCondor will encrypt
the contents of the remote scratch directory of the machine where the job is executed. This encryption
is transparent to the job itself, but ensures that files left behind on the local disk of the execute
machine, perhaps due to a system crash, will remain private. In addition, condor_submit will append
to the job’s requirements expression

&& (TARGET.HasEncryptExecuteDirectory)

to ensure the job is matched to a machine that is capable of encrypting the contents of the execute
directory. This support is limited to Windows platforms that use the NTFS file system and Linux
platforms with the ecryptfs-utils package installed.

encrypt_input_files = < file1,file2,file. . . > A comma and/or space separated list of input files that are to
be network encrypted when transferred with the file transfer mechanism. Specification of files in this
manner overrides configuration that would not use encryption. Each input file must also be in the list
given by transfer_input_files . When a path to an input file or directory is specified, this specifies
the path to the file on the submit side. A single wild card character (*) may be used in each file name.
The method of encryption utilized will be as agreed upon in security negotiation; if that negotiation
failed, then the file transfer mechanism must also fail for files to be network encrypted.

encrypt_output_files = < file1,file2,file. . . > A comma and/or space separated list of output files that are
to be network encrypted when transferred back with the file transfer mechanism. Specification of
files in this manner overrides configuration that would not use encryption. The output file(s) must
also either be in the list given by transfer_output_files or be discovered and to be transferred back
with the file transfer mechanism. When a path to an output file or directory is specified, this specifies
the path to the file on the execute side. A single wild card character (*) may be used in each file name.
The method of encryption utilized will be as agreed upon in security negotiation; if that negotiation
failed, then the file transfer mechanism must also fail for files to be network encrypted.

862 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

erase_output_and_error_on_restart If false, and when_to_transfer_output is
ON_EXIT_OR_EVICT, HTCondor will append to the output and error logs rather than erase
(truncate) them when the job restarts.

max_transfer_input_mb = <ClassAd Integer Expression> This integer expression specifies the maxi-
mum allowed total size in MiB of the input files that are transferred for a job. This expression does
not apply to grid universe or files transferred via file transfer plug-ins. The expression may refer to
attributes of the job. The special value -1 indicates no limit. If not defined, the value set by configura-
tion variable MAX_TRANSFER_INPUT_MB is used. If the observed size of all input files at submit time
is larger than the limit, the job will be immediately placed on hold with a HoldReasonCode value of
32. If the job passes this initial test, but the size of the input files increases or the limit decreases so
that the limit is violated, the job will be placed on hold at the time when the file transfer is attempted.

max_transfer_output_mb = <ClassAd Integer Expression> This integer expression specifies the max-
imum allowed total size in MiB of the output files that are transferred for a job. This expression does
not apply to grid universe or files transferred via file transfer plug-ins. The expression may refer to
attributes of the job. The special value -1 indicates no limit. If not set, the value set by configu-
ration variable MAX_TRANSFER_OUTPUT_MB is used. If the total size of the job’s output files to be
transferred is larger than the limit, the job will be placed on hold with a HoldReasonCode value of
33. The output will be transferred up to the point when the limit is hit, so some files may be fully
transferred, some partially, and some not at all.

output_destination = <destination-URL> When present, defines a URL that specifies both a plug-in
and a destination for the transfer of the entire output sandbox or a subset of output files as specified
by the submit command transfer_output_files . The plug-in does the transfer of files, and no files
are sent back to the submit machine. The HTCondor Administrator’s manual has full details.

should_transfer_files = <YES | NO | IF_NEEDED > The should_transfer_files setting is used to de-
fine if HTCondor should transfer files to and from the remote machine where the job runs. The file
transfer mechanism is used to run jobs on machines which do not have a shared file system with the
submit machine. should_transfer_files equal to YES will cause HTCondor to always transfer files
for the job. NO disables HTCondor’s file transfer mechanism. IF_NEEDED will not transfer files
for the job if it is matched with a resource in the same FileSystemDomain as the submit machine
(and therefore, on a machine with the same shared file system). If the job is matched with a remote
resource in a different FileSystemDomain, HTCondor will transfer the necessary files.

For more information about this and other settings related to transferring files, see the HTCondor
User’s manual section on the file transfer mechanism.

Note that should_transfer_files is not supported for jobs submitted to the grid universe.

skip_filechecks = <True | False> When True, file permission checks for the submitted job are disabled.
When False, file permissions are checked; this is the behavior when this command is not present in
the submit description file. File permissions are checked for read permissions on all input files, such
as those defined by commands input and transfer_input_files , and for write permission to output
files, such as a log file defined by log and output files defined with output or transfer_output_files
.

12.55. condor_submit 863

HTCondor Manual, Release 10.0.9

stream_error = <True | False> If True, then stderr is streamed back to the machine from which the
job was submitted. If False, stderr is stored locally and transferred back when the job completes.
This command is ignored if the job ClassAd attribute TransferErr is False. The default value
is False. This command must be used in conjunction with error , otherwise stderr will sent to
/dev/null on Unix machines and ignored on Windows machines.

stream_input = <True | False> If True, then stdin is streamed from the machine on which the job was
submitted. The default value is False. The command is only relevant for jobs submitted to the
vanilla or java universes, and it is ignored by the grid universe. This command must be used in
conjunction with input , otherwise stdin will be /dev/null on Unix machines and ignored on
Windows machines.

stream_output = <True | False> If True, then stdout is streamed back to the machine from which the
job was submitted. If False, stdout is stored locally and transferred back when the job completes.
This command is ignored if the job ClassAd attribute TransferOut is False. The default value is
False. This command must be used in conjunction with output , otherwise stdout will sent to
/dev/null on Unix machines and ignored on Windows machines.

transfer_executable = <True | False> This command is applicable to jobs submitted to the grid and
vanilla universes. If transfer_executable is set to False, then HTCondor looks for the executable on
the remote machine, and does not transfer the executable over. This is useful for an already pre-staged
executable; HTCondor behaves more like rsh. The default value is True.

transfer_input_files = < file1,file2,file. . . > A comma-delimited list of all the files and directories to be
transferred into the working directory for the job, before the job is started. By default, the file specified
in the executable command and any file specified in the input command (for example, stdin) are
transferred.

When a path to an input file or directory is specified, this specifies the path to the file on the sub-
mit side. The file is placed in the job’s temporary scratch directory on the execute side, and it is
named using the base name of the original path. For example, /path/to/input_file becomes
input_file in the job’s scratch directory.

A directory may be specified by appending the forward slash character (/) as a trailing path separator.
This syntax is used for both Windows and Linux submit hosts. A directory example using a trailing
path separator is input_data/. When a directory is specified with the trailing path separator, the
contents of the directory are transferred, but the directory itself is not transferred. It is as if each of
the items within the directory were listed in the transfer list. When there is no trailing path separa-
tor, the directory is transferred, its contents are transferred, and these contents are placed inside the
transferred directory.

For grid universe jobs other than HTCondor-C, the transfer of directories is not currently supported.

Symbolic links to files are transferred as the files they point to. Transfer of symbolic links to direc-
tories is not currently supported.

For vanilla and vm universe jobs only, a file may be specified by giving a URL, instead of a file name.
The implementation for URL transfers requires both configuration and available plug-in.

If you have a plugin which handles https:// URLs (and HTCondor ships with one enabled), HT-
Condor supports pre-signing S3 URLs. This allows you to specify S3 URLs for this command, for
transfer_output_remaps, and for output_destination. By pre-signing the URLs on the sub-
mit node, HTCondor avoids transferring your S3 credentials to the execute node. You must specify

864 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

aws_access_key_id_file and aws_secret_access_key_file; you may specify aws_region,
if necessary; see below. To use the S3 service provided by AWS, use S3 URLs of the following forms:

For older buckets that aren't region-specific.
s3://<bucket>/<key>

For newer, region-specific buckets.
s3://<bucket>.s3.<region>.amazonaws.com/<key>

To use other S3 services, where <host> must contain a .:

s3://<host>/<key>

If necessary
aws_region = <region>

You may specify the corresponding access key ID and secret access key with
s3_access_key_id_file and s3_secret_access_key_file if you prefer (which may
reduce confusion, if you’re not using AWS).

If you must access S3 using temporary credentials, you may specify the temporary credentials us-
ing aws_access_key_id_file and aws_secret_access_key_file for the files containing the
corresponding temporary token, and +EC2SessionToken for the file containing the session token.

Temporary credentials have a limited lifetime. If you are using S3 only to download input files, the
job must start before the credentials expire. If you are using S3 to upload output files, the job must
finish before the credentials expire. HTCondor does not know when the credentials will expire; if
they do so before they are needed, file transfer will fail.

HTCondor does not presently support transferring entire buckets or directories from S3.

HTCondor supports Google Cloud Storage URLs – gs:// – via Google’s “interoperability” API.
You may specify gs:// URLs as if they were s3:// URLs, and they work the same way. You may
specify the corresponding access key ID and secret access key with gs_access_key_id_file and
gs_secret_access_key_file if you prefer (which may reduce confusion).

Note that (at present), you may not provide more than one set of credentials for s3:// or gs:// file
transfer; this implies that all such URLs download from or upload to the same service.

transfer_output_files = < file1,file2,file. . . > This command forms an explicit list of output files and di-
rectories to be transferred back from the temporary working directory on the execute machine to the
submit machine. If there are multiple files, they must be delimited with commas. Setting trans-
fer_output_files to the empty string (“”) means that no files are to be transferred.

For HTCondor-C jobs and all other non-grid universe jobs, if transfer_output_files is not specified,
HTCondor will automatically transfer back all files in the job’s temporary working directory which
have been modified or created by the job. Subdirectories are not scanned for output, so if output from
subdirectories is desired, the output list must be explicitly specified. For grid universe jobs other
than HTCondor-C, desired output files must also be explicitly listed. Another reason to explicitly list
output files is for a job that creates many files, and the user wants only a subset transferred back.

For grid universe jobs other than with grid type condor, to have files other than standard output
and standard error transferred from the execute machine back to the submit machine, do use trans-
fer_output_files, listing all files to be transferred. These files are found on the execute machine in
the working directory of the job.

12.55. condor_submit 865

HTCondor Manual, Release 10.0.9

When a path to an output file or directory is specified, it specifies the path to the file on the execute
side. As a destination on the submit side, the file is placed in the job’s initial working directory, and it
is named using the base name of the original path. For example, path/to/output_file becomes
output_file in the job’s initial working directory. The name and path of the file that is written on
the submit side may be modified by using transfer_output_remaps . Note that this remap function
only works with files but not with directories.

A directory may be specified using a trailing path separator. An example of a trailing path separa-
tor is the slash character on Unix platforms; a directory example using a trailing path separator is
input_data/. When a directory is specified with a trailing path separator, the contents of the di-
rectory are transferred, but the directory itself is not transferred. It is as if each of the items within
the directory were listed in the transfer list. When there is no trailing path separator, the directory is
transferred, its contents are transferred, and these contents are placed inside the transferred directory.

For grid universe jobs other than HTCondor-C, the transfer of directories is not currently supported.

Symbolic links to files are transferred as the files they point to. Transfer of symbolic links to direc-
tories is not currently supported.

transfer_checkpoint_files = < file1,file2,file3. . . > If present, this command defines the list of files
and/or directories which constitute the job’s checkpoint. When the job successfully checkpoints
– see checkpoint_exit_code – these files will be transferred to the submit node’s spool.

If this command is absent, the output is transferred instead.

If no files or directories are specified, nothing will be transferred. This is generally not useful.

The list is interpreted like transfer_output_files, but there is no corresponding remaps com-
mand.

preserve_relative_paths = < True | False > For vanilla and Docker -universe jobs (and others that use
the shadow), this command modifies the behavior of the file transfer commands. When set to true,
the destination for an entry that is a relative path in a file transfer list becomes its relative path, not
its basename. For example, input_data/b (and its contents, if it is a directory) will be transferred
to input_data/b, not b. This applies to the input, output, and checkpoint lists.

Trailing slashes are ignored when preserve_relative_paths is set.

transfer_output_remaps = < ” name = newname ; name2 = newname2 . . . “> This specifies the
name (and optionally path) to use when downloading output files from the completed job. Normally,
output files are transferred back to the initial working directory with the same name they had in the
execution directory. This gives you the option to save them with a different path or name. If you
specify a relative path, the final path will be relative to the job’s initial working directory.

name describes an output file name produced by your job, and newname describes the file name it
should be downloaded to. Multiple remaps can be specified by separating each with a semicolon. If
you wish to remap file names that contain equals signs or semicolons, these special characters may
be escaped with a backslash. You cannot specify directories to be remapped.

Note that whether an output file is transferred is controlled by transfer_output_files. Listing a file
in transfer_output_remaps is not sufficient to cause it to be transferred.

transfer_plugins = < tag=plugin ; tag2,tag3=plugin2 . . . > Specifies the file transfer plugins (see En-
abling the Transfer of Files Specified by a URL) that should be transferred along with the input files

866 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

prior to invoking file transfer plugins for files specified in transfer_input_files. tag should be a URL
prefix that is used in transfer_input_files, and plugin is the path to a file transfer plugin that will
handle that type of URL transfer.

when_to_transfer_output = < ON_EXIT | ON_EXIT_OR_EVICT | ON_SUCCESS > Setting
when_to_transfer_output to ON_EXIT will cause HTCondor to transfer the job’s output files
back to the submitting machine when the job completes (exits on its own). If a job is evicted and
started again, the subsequent execution will start with only the executable and input files in the
scratch directory sandbox. If transfer_output_files is not set, HTCondor considers all new
files in the sandbox’s top-level directory to be the output; subdirectories and their contents will not
be transferred.

Setting when_to_transfer_output to ON_EXIT_OR_EVICT will cause HTCondor to transfer the
job’s output files when the job completes (exits on its own) and when the job is evicted. When
the job is evicted, HTCondor will transfer the output files to a temporary directory on the submit
node (determined by the SPOOL configuration variable). When the job restarts, these files will be
transferred instead of the input files. If transfer_output_files is not set, HTCondor considers
all files in the sandbox’s top-level directory to be the output; subdirectories and their contents will
not be transferred.

Setting when_to_transfer_output to ON_SUCCESSwill cause HTCondor to transfer the job’s out-
put files when the job completes succesfully. Success is defined by the success_exit_code com-
mand, which must be set, even if the successful value is the default 0. If transfer_output_files
is not set, HTCondor considers all new files in the sandbox’s top-level directory to be the output;
subdirectories and their contents will not be transferred.

In all three cases, the job will go on hold if transfer_output_files specifies a file which does
not exist at transfer time.

aws_access_key_id_file, s3_access_key_id_file One of these commands is required if you specify an s3:
// URL; they specify the file containing the access key ID (and only the access key ID) used to
pre-sign the URLs. Use only one.

aws_secret_access_key_file, s3_secret_access_key_file One of these commands is required if you spec-
ify an s3:// URL; they specify the file containing the secret access key (and only the secret access
key) used to pre-sign the URLs. Use only one.

aws_region Optional if you specify an S3 URL (and ignored otherwise), this command specifies the
region to use if one is not specified in the URL.

gs_access_key_id_file Required if you specify a gs:// URLs, ths command specifies the file containing
the access key ID (and only the access key ID) used to pre-sign the URLs.

gs_secret_access_key_file Required if you specify a gs:// URLs, this command specifies the file con-
taining the secret access key (and only the secret access key) used to pre-sign the URLs.

POLICY COMMANDS

12.55. condor_submit 867

HTCondor Manual, Release 10.0.9

allowed_execute_duration = <integer> The longest time for which a job may be executing. Jobs which
exceed this duration will go on hold. This time does not include file-transfer time. Jobs which self-
checkpoint have this long to write out each checkpoint.

This attribute is intended to help minimize the time wasted by jobs which may erroneously run forever.

allowed_job_duration = <integer> The longest time for which a job may continuously be in the running
state. Jobs which exceed this duration will go on hold. Exiting the running state resets the job duration
used by this command.

This command is intended to help minimize the time wasted by jobs which may erroneously run
forever.

max_retries = <integer> The maximum number of retries allowed for this job (must be non-negative). If
the job fails (does not exit with the success_exit_code exit code) it will be retried up to max_retries
times (unless retries are ceased because of the retry_until command). If max_retries is not defined,
and either retry_until or success_exit_code is, the value of DEFAULT_JOB_MAX_RETRIES will be
used for the maximum number of retries.

The combination of the max_retries, retry_until, and success_exit_code commands causes an
appropriate OnExitRemove expression to be automatically generated. If retry command(s) and
on_exit_remove are both defined, the OnExitRemove expression will be generated by OR’ing the
expression specified in OnExitRemove and the expression generated by the retry commands.

retry_until <Integer | ClassAd Boolean Expression> An integer value or boolean expression that pre-
vents further retries from taking place, even if max_retries have not been exhausted. If retry_until
is an integer, the job exiting with that exit code will cause retries to cease. If retry_until is a ClassAd
expression, the expression evaluating to True will cause retries to cease. For example, if you only
want to retry exit codes 17, 34, and 81:

max_retries = 5
retry_until = !member(ExitCode, {17, 34, 81})

success_exit_code = <integer> The exit code that is considered successful for this job. Defaults to 0 if
not defined.

Note: non-zero values of success_exit_code should generally not be used for DAG node jobs, unless
when_to_transfer_output is set to ON_SUCCESS in order to avoid failed jobs going on hold.

At the present time, condor_dagman does not take into account the value of success_exit_code. This
means that, if success_exit_code is set to a non-zero value, condor_dagman will consider the job
failed when it actually succeeds. For single-proc DAG node jobs, this can be overcome by using
a POST script that takes into account the value of success_exit_code (although this is not recom-
mended). For multi-proc DAG node jobs, there is currently no way to overcome this limitation.

checkpoint_exit_code = <integer> The exit code which indicates that the executable has exited after suc-
cessfully taking a checkpoint. The checkpoint will transferred and the executable restarted. See
Self-Checkpointing Applications for details.

868 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

hold = <True | False> If hold is set to True, then the submitted job will be placed into the Hold state.
Jobs in the Hold state will not run until released by condor_release. Defaults to False.

keep_claim_idle = <integer> An integer number of seconds that a job requests the condor_schedd to
wait before releasing its claim after the job exits or after the job is removed.

The process by which the condor_schedd claims a condor_startd is somewhat time-consuming. To
amortize this cost, the condor_schedd tries to reuse claims to run subsequent jobs, after a job using
a claim is done. However, it can only do this if there is an idle job in the queue at the moment the
previous job completes. Sometimes, and especially for the node jobs when using DAGMan, there is
a subsequent job about to be submitted, but it has not yet arrived in the queue when the previous job
completes. As a result, the condor_schedd releases the claim, and the next job must wait an entire
negotiation cycle to start. When this submit command is defined with a non-negative integer, when
the job exits, the condor_schedd tries as usual to reuse the claim. If it cannot, instead of releasing the
claim, the condor_schedd keeps the claim until either the number of seconds given as a parameter,
or a new job which matches that claim arrives, whichever comes first. The condor_startd in question
will remain in the Claimed/Idle state, and the original job will be “charged” (in terms of priority) for
the time in this state.

leave_in_queue = <ClassAd Boolean Expression> When the ClassAd Expression evaluates to True,
the job is not removed from the queue upon completion. This allows the user of a remotely spooled
job to retrieve output files in cases where HTCondor would have removed them as part of the cleanup
associated with completion. The job will only exit the queue once it has been marked for removal (via
condor_rm, for example) and the leave_in_queue expression has become False. leave_in_queue
defaults to False.

As an example, if the job is to be removed once the output is retrieved with condor_transfer_data,
then use

leave_in_queue = (JobStatus == 4) && ((StageOutFinish =?= UNDEFINED) ||\
(StageOutFinish == 0))

next_job_start_delay = <ClassAd Boolean Expression> This expression specifies the number of sec-
onds to delay after starting up this job before the next job is started. The maximum allowed delay is
specified by the HTCondor configuration variable MAX_NEXT_JOB_START_DELAY , which defaults
to 10 minutes. This command does not apply to scheduler or local universe jobs.

This command has been historically used to implement a form of job start throttling from the job
submitter’s perspective. It was effective for the case of multiple job submission where the transfer
of extremely large input data sets to the execute machine caused machine performance to suffer.
This command is no longer useful, as throttling should be accomplished through configuration of the
condor_schedd daemon.

on_exit_hold = <ClassAd Boolean Expression> The ClassAd expression is checked when the job exits,
and if True, places the job into the Hold state. If False (the default value when not defined), then
nothing happens and the on_exit_remove expression is checked to determine if that needs to be
applied.

For example: Suppose a job is known to run for a minimum of an hour. If the job exits after less than
an hour, the job should be placed on hold and an e-mail notification sent, instead of being allowed to
leave the queue.

12.55. condor_submit 869

HTCondor Manual, Release 10.0.9

on_exit_hold = (time() - JobStartDate) < (60 * $(MINUTE))

This expression places the job on hold if it exits for any reason before running for an hour. An e-mail
will be sent to the user explaining that the job was placed on hold because this expression became
True.

periodic_* expressions take precedence over on_exit_* expressions, and *_hold expressions
take precedence over a *_remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd expression. This expression is
available for the vanilla, java, parallel, grid, local and scheduler universes.

on_exit_hold_reason = <ClassAd String Expression> When the job is placed on hold due to the
on_exit_hold expression becoming True, this expression is evaluated to set the value of HoldReason
in the job ClassAd. If this expression is UNDEFINED or produces an empty or invalid string, a default
description is used.

on_exit_hold_subcode = <ClassAd Integer Expression> When the job is placed on hold due to
the on_exit_hold expression becoming True, this expression is evaluated to set the value of
HoldReasonSubCode in the job ClassAd. The default subcode is 0. The HoldReasonCode will
be set to 3, which indicates that the job went on hold due to a job policy expression.

on_exit_remove = <ClassAd Boolean Expression> The ClassAd expression is checked when the job ex-
its, and if True (the default value when undefined), then it allows the job to leave the queue normally.
If False, then the job is placed back into the Idle state. If the user job runs under the vanilla universe,
then the job restarts from the beginning.

For example, suppose a job occasionally segfaults, but chances are that the job will finish successfully
if the job is run again with the same data. The on_exit_remove expression can cause the job to run
again with the following command. Assume that the signal identifier for the segmentation fault is 11
on the platform where the job will be running.

on_exit_remove = (ExitBySignal == False) || (ExitSignal != 11)

This expression lets the job leave the queue if the job was not killed by a signal or if it was killed by
a signal other than 11, representing segmentation fault in this example. So, if the exited due to signal
11, it will stay in the job queue. In any other case of the job exiting, the job will leave the queue as
it normally would have done.

As another example, if the job should only leave the queue if it exited on its own with status 0, this
on_exit_remove expression works well:

on_exit_remove = (ExitBySignal == False) && (ExitCode == 0)

If the job was killed by a signal or exited with a non-zero exit status, HTCondor would leave the job
in the queue to run again.

periodic_* expressions take precedence over on_exit_* expressions, and *_hold expressions
take precedence over a *_remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd expression.

870 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

periodic_hold = <ClassAd Boolean Expression> This expression is checked periodically when the job
is not in the Held state. If it becomes True, the job will be placed on hold. If unspecified, the default
value is False.

periodic_* expressions take precedence over on_exit_* expressions, and *_hold expressions
take precedence over a *_remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd expression. Note that, by
default, this expression is only checked once every 60 seconds. The period of these evaluations
can be adjusted by setting the PERIODIC_EXPR_INTERVAL, MAX_PERIODIC_EXPR_INTERVAL, and
PERIODIC_EXPR_TIMESLICE configuration macros.

periodic_hold_reason = <ClassAd String Expression> When the job is placed on hold due to the peri-
odic_hold expression becoming True, this expression is evaluated to set the value of HoldReason
in the job ClassAd. If this expression is UNDEFINED or produces an empty or invalid string, a default
description is used.

periodic_hold_subcode = <ClassAd Integer Expression> When the job is placed on hold due to
the periodic_hold expression becoming true, this expression is evaluated to set the value of
HoldReasonSubCode in the job ClassAd. The default subcode is 0. The HoldReasonCode will
be set to 3, which indicates that the job went on hold due to a job policy expression.

periodic_release = <ClassAd Boolean Expression> This expression is checked periodically when the
job is in the Held state. If the expression becomes True, the job will be released. If the job was held
via condor_hold (i.e. HoldReasonCode is 1), then this expression is ignored.

Only job ClassAd attributes will be defined for use by this ClassAd expression. Note that, by
default, this expression is only checked once every 60 seconds. The period of these evaluations
can be adjusted by setting the PERIODIC_EXPR_INTERVAL, MAX_PERIODIC_EXPR_INTERVAL, and
PERIODIC_EXPR_TIMESLICE configuration macros.

periodic_remove = <ClassAd Boolean Expression> This expression is checked periodically. If it be-
comes True, the job is removed from the queue. If unspecified, the default value is False.

See the Examples section of this manual page for an example of a periodic_remove expression.

periodic_* expressions take precedence over on_exit_* expressions, and *_hold expressions
take precedence over a *_remove expressions. So, the periodic_remove expression takes prece-
dent over the on_exit_remove expression, if the two describe conflicting actions.

Only job ClassAd attributes will be defined for use by this ClassAd expression. Note that, by
default, this expression is only checked once every 60 seconds. The period of these evaluations
can be adjusted by setting the PERIODIC_EXPR_INTERVAL, MAX_PERIODIC_EXPR_INTERVAL, and
PERIODIC_EXPR_TIMESLICE configuration macros.

COMMANDS FOR THE GRID

arc_application = <XML-string> For grid universe jobs of type arc, provides additional XML attributes
under the <Application> section of the ARC ADL job description which are not covered by regular
submit description file parameters.

12.55. condor_submit 871

HTCondor Manual, Release 10.0.9

arc_resources = <XML-string> For grid universe jobs of type arc, provides additional XML attributes
under the <Resources> section of the ARC ADL job description which are not covered by regular
submit description file parameters.

arc_rte = < rte1 option,rte2 > For grid universe jobs of type arc, provides a list of Runtime Environment
names that the job requires on the ARC system. The list is comma-delimited. If a Runtime Environ-
ment name supports options, those can be provided after the name, separated by spaces. Runtime
Environment names are defined by the ARC server.

azure_admin_key = <pathname> For grid type azure jobs, specifies the path and file name of a file that
contains an SSH public key. This key can be used to log into the administrator account of the instance
via SSH.

azure_admin_username = <account name> For grid type azure jobs, specifies the name of an admin-
istrator account to be created in the instance. This account can be logged into via SSH.

azure_auth_file = <pathname> For grid type azure jobs, specifies a path and file name of the autho-
rization file that grants permission for HTCondor to use the Azure account. If it’s not defined, then
HTCondor will attempt to use the default credentials of the Azure CLI tools.

azure_image = <image id> For grid type azure jobs, identifies the disk image to be used for the boot
disk of the instance. This image must already be registered within Azure.

azure_location = <image id> For grid type azure jobs, identifies the location within Azure where the
instance should be run. As an example, one current location is centralus.

azure_size = <machine type> For grid type azure jobs, the hardware configuration that the virtual ma-
chine instance is to run on.

batch_extra_submit_args = <command-line arguments> Used for batch grid universe jobs. Specifies
additional command-line arguments to be given to the target batch system’s job submission com-
mand.

batch_project = <projectname> Used for batch grid universe jobs. Specifies the name of the
PBS/LSF/SGE/SLURM project, account, or allocation that should be charged for the resources used
by the job.

batch_queue = <queuename> Used for batch grid universe jobs. Specifies the name of the
PBS/LSF/SGE/SLURM job queue into which the job should be submitted. If not specified, the de-
fault queue is used. For a multi-cluster SLURM configuration, which cluster to use can be specified
by supplying the name after an @ symbol. For example, to submit a job to the debug queue on cluster
foo, you would use the value debug@foo.

872 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

batch_runtime = <seconds> Used for batch grid universe jobs. Specifies a limit in seconds on the exe-
cution time of the job. This limit is enforced by the PBS/LSF/SGE/SLURM scheduler.

cloud_label_names = <name0,name1,name. . .> For grid type gce jobs, specifies the case of tag names
that will be associated with the running instance. This is only necessary if a tag name case matters.
By default the list will be automatically generated.

cloud_label_<name> = <value> For grid type gce jobs, specifies a label and value to be associated with
the running instance. The label name will be lower-cased; use cloud_label_names to change the
case.

delegate_job_GSI_credentials_lifetime = <seconds> Specifies the maximum number of seconds for
which delegated proxies should be valid. The default behavior when this command is not speci-
fied is determined by the configuration variable DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME ,
which defaults to one day. A value of 0 indicates that the delegated proxy should be valid for as long
as allowed by the credential used to create the proxy. This setting currently only applies to proxies
delegated for non-grid jobs and for HTCondor-C jobs. This variable has no effect if the configuration
variable DELEGATE_JOB_GSI_CREDENTIALS is False, because in that case the job proxy is copied
rather than delegated.

ec2_access_key_id = <pathname> For grid type ec2 jobs, identifies the file containing the access key.

ec2_ami_id = <EC2 xMI ID> For grid type ec2 jobs, identifies the machine image. Services compatible
with the EC2 Query API may refer to these with abbreviations other than AMI, for example EMI is
valid for Eucalyptus.

ec2_availability_zone = <zone name> For grid type ec2 jobs, specifies the Availability Zone that the
instance should be run in. This command is optional, unless ec2_ebs_volumes is set. As an example,
one current zone is us-east-1b.

ec2_block_device_mapping = <block-device>:<kernel-device>,<block-device>:<kernel-device>, . . .
For grid type ec2 jobs, specifies the block device to kernel device mapping. This command is
optional.

ec2_ebs_volumes = <ebs name>:<device name>,<ebs name>:<device name>,. . . For grid type ec2
jobs, optionally specifies a list of Elastic Block Store (EBS) volumes to be made available to the
instance and the device names they should have in the instance.

ec2_elastic_ip = <elastic IP address> For grid type ec2 jobs, and optional specification of an Elastic IP
address that should be assigned to this instance.

ec2_iam_profile_arn = <IAM profile ARN> For grid type ec2 jobs, an Amazon Resource Name (ARN)
identifying which Identity and Access Management (IAM) (instance) profile to associate with the
instance.

12.55. condor_submit 873

HTCondor Manual, Release 10.0.9

ec2_iam_profile_name= <IAM profile name> For grid type ec2 jobs, a name identifying which Identity
and Access Management (IAM) (instance) profile to associate with the instance.

ec2_instance_type = <instance type> For grid type ec2 jobs, identifies the instance type. Different ser-
vices may offer different instance types, so no default value is set.

ec2_keypair = <ssh key-pair name> For grid type ec2 jobs, specifies the name of an SSH key-pair that
is already registered with the EC2 service. The associated private key can be used to ssh into the
virtual machine once it is running.

ec2_keypair_file = <pathname> For grid type ec2 jobs, specifies the complete path and file name of a
file into which HTCondor will write an SSH key for use with ec2 jobs. The key can be used to ssh
into the virtual machine once it is running. If ec2_keypair is specified for a job, ec2_keypair_file is
ignored.

ec2_parameter_names = ParameterName1, ParameterName2, . . . For grid type ec2 jobs, a space or
comma separated list of the names of additional parameters to pass when instantiating an instance.

ec2_parameter_<name> = <value> For grid type ec2 jobs, specifies the value for the correspondingly
named (instance instantiation) parameter. <name> is the parameter name specified in the submit
command ec2_parameter_names , but with any periods replaced by underscores.

ec2_secret_access_key = <pathname> For grid type ec2 jobs, specifies the path and file name containing
the secret access key.

ec2_security_groups = group1, group2, . . . For grid type ec2 jobs, defines the list of EC2 security
groups which should be associated with the job.

ec2_security_ids = id1, id2, . . . For grid type ec2 jobs, defines the list of EC2 security group IDs which
should be associated with the job.

ec2_spot_price = <bid> For grid type ec2 jobs, specifies the spot instance bid, which is the most that the
job submitter is willing to pay per hour to run this job.

ec2_tag_names = <name0,name1,name. . .> For grid type ec2 jobs, specifies the case of tag names that
will be associated with the running instance. This is only necessary if a tag name case matters. By
default the list will be automatically generated.

ec2_tag_<name> = <value> For grid type ec2 jobs, specifies a tag to be associated with the running
instance. The tag name will be lower-cased; use ec2_tag_names to change the case.

874 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

WantNameTag = <True | False> For grid type ec2 jobs, a job may request that its ‘name’ tag be (not) set
by HTCondor. If the job does not otherwise specify any tags, not setting its name tag will eliminate
a call by the EC2 GAHP, improving performance.

ec2_user_data = <data> For grid type ec2 jobs, provides a block of data that can be accessed by the
virtual machine. If both ec2_user_data and ec2_user_data_file are specified for a job, the two
blocks of data are concatenated, with the data from this ec2_user_data submit command occurring
first.

ec2_user_data_file = <pathname> For grid type ec2 jobs, specifies a path and file name whose contents
can be accessed by the virtual machine. If both ec2_user_data and ec2_user_data_file are specified
for a job, the two blocks of data are concatenated, with the data from that ec2_user_data submit
command occurring first.

ec2_vpc_ip = <a.b.c.d> For grid type ec2 jobs, that are part of a Virtual Private Cloud (VPC), an optional
specification of the IP address that this instance should have within the VPC.

ec2_vpc_subnet = <subnet specification string> For grid type ec2 jobs, an optional specification of the
Virtual Private Cloud (VPC) that this instance should be a part of.

gce_account = <account name> For grid type gce jobs, specifies the Google cloud services account to
use. If this submit command isn’t specified, then a random account from the authorization file given
by gce_auth_file will be used.

gce_auth_file = <pathname> For grid type gce jobs, specifies a path and file name of the authorization
file that grants permission for HTCondor to use the Google account. If this command is not specified,
then the default file of the Google command-line tools will be used.

gce_image = <image id> For grid type gce jobs, the identifier of the virtual machine image representing
the HTCondor job to be run. This virtual machine image must already be register with GCE and
reside in Google’s Cloud Storage service.

gce_json_file = <pathname> For grid type gce jobs, specifies the path and file name of a file that contains
JSON elements that should be added to the instance description submitted to the GCE service.

gce_machine_type = <machine type> For grid type gce jobs, the long form of the URL that describes
the machine configuration that the virtual machine instance is to run on.

gce_metadata = <name=value,. . . ,name=value> For grid type gce jobs, a comma separated list of name
and value pairs that define metadata for a virtual machine instance that is an HTCondor job.

12.55. condor_submit 875

HTCondor Manual, Release 10.0.9

gce_metadata_file = <pathname> For grid type gce jobs, specifies a path and file name of the file that
contains metadata for a virtual machine instance that is an HTCondor job. Within the file, each name
and value pair is on its own line; so, the pairs are separated by the newline character.

gce_preemptible = <True | False> For grid type gce jobs, specifies whether the virtual machine instance
should be preemptible. The default is for the instance to not be preemptible.

grid_resource = <grid-type-string> <grid-specific-parameter-list> For each grid-type-string value,
there are further type-specific values that must specified. This submit description file command
allows each to be given in a space-separated list. Allowable grid-type-string values are arc, azure,
batch, condor, ec2, and gce. The HTCondor manual chapter on Grid Computing details the variety
of grid types.

For a grid-type-string of batch, the single parameter is the name of the local batch system, and will
be one of pbs, lsf, slurm, or sge.

For a grid-type-string of condor, the first parameter is the name of the remote condor_schedd
daemon. The second parameter is the name of the pool to which the remote condor_schedd daemon
belongs.

For a grid-type-string of ec2, one additional parameter specifies the EC2 URL.

For a grid-type-string of arc, the single parameter is the name of the ARC resource to be used.

transfer_error = <True | False> For jobs submitted to the grid universe only. If True, then the error
output (from stderr) from the job is transferred from the remote machine back to the submit ma-
chine. The name of the file after transfer is given by the error command. If False, no transfer takes
place (from the remote machine to submit machine), and the name of the file is given by the error
command. The default value is True.

transfer_input = <True | False> For jobs submitted to the grid universe only. If True, then the job input
(stdin) is transferred from the machine where the job was submitted to the remote machine. The
name of the file that is transferred is given by the input command. If False, then the job’s input is
taken from a pre-staged file on the remote machine, and the name of the file is given by the input
command. The default value is True.

For transferring files other than stdin, see transfer_input_files .

transfer_output = <True | False> For jobs submitted to the grid universe only. If True, then the output
(from stdout) from the job is transferred from the remote machine back to the submit machine.
The name of the file after transfer is given by the output command. If False, no transfer takes
place (from the remote machine to submit machine), and the name of the file is given by the output
command. The default value is True.

For transferring files other than stdout, see transfer_output_files .

use_x509userproxy = <True | False> Set this command to True to indicate that the job requires an X.509
user proxy. If x509userproxy is set, then that file is used for the proxy. Otherwise, the proxy is looked
for in the standard locations. If x509userproxy is set or if the job is a grid universe job of grid type
arc, then the value of use_x509userproxy is forced to True. Defaults to False.

876 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

x509userproxy = <full-pathname> Used to override the default path name for X.509 user certificates.
The default location for X.509 proxies is the /tmp directory, which is generally a local file system.
Setting this value would allow HTCondor to access the proxy in a shared file system (for example,
AFS). HTCondor will use the proxy specified in the submit description file first. If nothing is specified
in the submit description file, it will use the environment variable X509_USER_PROXY. If that
variable is not present, it will search in the default location. Note that proxies are only valid for a
limited time. Condor_submit will not submit a job with an expired proxy, it will return an error.
Also, if the configuration parameter CRED_MIN_TIME_LEFT is set to some number of seconds,
and if the proxy will expire before that many seconds, condor_submit will also refuse to submit the
job. That is, if CRED_MIN_TIME_LEFT is set to 60, condor_submit will refuse to submit a job
whose proxy will expire 60 seconds from the time of submission.

x509userproxy is relevant when the universe is vanilla, or when the universe is grid and the type
of grid system is one of condor, or arc. Defining a value causes the proxy to be delegated to the
execute machine. Further, VOMS attributes defined in the proxy will appear in the job ClassAd.

use_scitokens = <True | False | Auto> Set this command to True to indicate that the job requires a sc-
itoken. If scitokens_file is set, then that file is used for the scitoken filename. Otherwise, the the
scitoken filename is looked for in the BEARER_TOKEN_FILE environment variable. If scitokens_file
is set then the value of use_scitokens defaults to True. If the filename is not defined in on one of
these two places, then condor_submit will fail with an error message. Set this command to Auto to
indicate that the job will use a scitoken if scitokens_file or the BEARER_TOKEN_FILE environment
variable is set, but it will not be an error if no file is specified.

scitokens_file = <full-pathname> Used to set the path to the file containing the scitoken that the job
needs, or to override the path to the scitoken contained in the BEARER_TOKEN_FILE environment
variable.

COMMANDS FOR PARALLEL, JAVA, and SCHEDULER UNIVERSES

hold_kill_sig = <signal-number> For the scheduler universe only, signal-number is the signal delivered
to the job when the job is put on hold with condor_hold. signal-number may be either the platform-
specific name or value of the signal. If this command is not present, the value of kill_sig is used.

jar_files = <file_list> Specifies a list of additional JAR files to include when using the Java universe. JAR
files will be transferred along with the executable and automatically added to the classpath.

java_vm_args = <argument_list> Specifies a list of additional arguments to the Java VM itself, When
HTCondor runs the Java program, these are the arguments that go before the class name. This can be
used to set VM-specific arguments like stack size, garbage-collector arguments and initial property
values.

machine_count = <max> For the parallel universe, a single value (max) is required. It is neither a max-
imum or minimum, but the number of machines to be dedicated toward running the job.

remove_kill_sig = <signal-number> For the scheduler universe only, signal-number is the signal deliv-
ered to the job when the job is removed with condor_rm. signal-number may be either the platform-
specific name or value of the signal. This example shows it both ways for a Linux signal:

12.55. condor_submit 877

HTCondor Manual, Release 10.0.9

remove_kill_sig = SIGUSR1
remove_kill_sig = 10

If this command is not present, the value of kill_sig is used.

COMMANDS FOR THE VM UNIVERSE

vm_disk = file1:device1:permission1, file2:device2:permission2:format2, . . . A list of comma sepa-
rated disk files. Each disk file is specified by 4 colon separated fields. The first field is the path
and file name of the disk file. The second field specifies the device. The third field specifies permis-
sions, and the optional fourth field specifies the image format. If a disk file will be transferred by
HTCondor, then the first field should just be the simple file name (no path information).

An example that specifies two disk files:

vm_disk = /myxen/diskfile.img:sda1:w,/myxen/swap.img:sda2:w

vm_checkpoint = <True | False> A boolean value specifying whether or not to take checkpoints. If not
specified, the default value is False. In the current implementation, setting both vm_checkpoint
and vm_networking to True does not yet work in all cases. Networking cannot be used if a vm
universe job uses a checkpoint in order to continue execution after migration to another machine.

vm_macaddr = <MACAddr> Defines that MAC address that the virtual machine’s network interface
should have, in the standard format of six groups of two hexadecimal digits separated by colons.

vm_memory = <MBytes-of-memory> The amount of memory in MBytes that a vm universe job re-
quires.

vm_networking = <True | False> Specifies whether to use networking or not. In the current implemen-
tation, setting both vm_checkpoint and vm_networking to True does not yet work in all cases.
Networking cannot be used if a vm universe job uses a checkpoint in order to continue execution
after migration to another machine.

vm_networking_type = <nat | bridge > When vm_networking is True, this definition augments the
job’s requirements to match only machines with the specified networking. If not specified, then
either networking type matches.

vm_no_output_vm = <True | False> When True, prevents HTCondor from transferring output files
back to the machine from which the vm universe job was submitted. If not specified, the default
value is False.

vm_type = <xen | kvm> Specifies the underlying virtual machine software that this job expects.

878 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

xen_initrd = <image-file> When xen_kernel gives a file name for the kernel image to use, this optional
command may specify a path to a ramdisk (initrd) image file. If the image file will be transferred
by HTCondor, then the value should just be the simple file name (no path information).

xen_kernel = <included | path-to-kernel> A value of included specifies that the kernel is included in
the disk file. If not one of these values, then the value is a path and file name of the kernel to be used.
If a kernel file will be transferred by HTCondor, then the value should just be the simple file name
(no path information).

xen_kernel_params = <string> A string that is appended to the Xen kernel command line.

xen_root = <string> A string that is appended to the Xen kernel command line to specify the root device.
This string is required when xen_kernel gives a path to a kernel. Omission for this required case
results in an error message during submission.

COMMANDS FOR THE DOCKER UNIVERSE

docker_image = < image-name > Defines the name of the Docker image that is the basis for the docker
container.

docker_network_type = < host | none | custom_admin_defined_value> If docker_network_type is set
to the string host, then the job is run using the host’s network. If docker_network_type is set to the
string none, then the job is run with no network. If this is not set, each job gets a private network
interface. Some administrators may define site specific docker networks on a given worker node.
When this is the case, additional values may be valid here.

container_service_names = <service-name>[, <service-name>]* A string- or comma- separated list of
service names. Each service-name must have a corresponding <service-name>_container_port
command specifying a port number (an integer from 0 to 65535). HTCondor will ask Docker to for-
ward from a host port to the specified port inside the container. When Docker has done so, HTCondor
will add an attribute to the job ad for each service, <service-name>HostPort, which contains the
port number on the host forwarding to the corresponding service.

COMMANDS FOR THE CONTAINER UNIVERSE

container_image = < image-name > Defines the name of the container image. Can be a singularity .sif
file, a singularity exploded directory, or a path to an image in a docker style repository

container_target_dir = < path-to-directory-inside-container > Defines the working directory of the
job inside the container. Will be mapped to the scratch directory on the worker node.

ADVANCED COMMANDS

accounting_group = <accounting-group-name> Causes jobs to negotiate under the given accounting
group. This value is advertised in the job ClassAd as AcctGroup. The HTCondor Administrator’s
manual contains more information about accounting groups.

12.55. condor_submit 879

HTCondor Manual, Release 10.0.9

accounting_group_user = <accounting-group-user-name> Sets the name associated with this job to be
used for resource usage accounting purposes, such as computation of fair-share priority and reporting
via condor_userprio. If not set, defaults to the value of the job ClassAd attribute User. This value
is advertised in the job ClassAd as AcctGroupUser.

concurrency_limits = <string-list> A list of resources that this job needs. The resources are presumed
to have concurrency limits placed upon them, thereby limiting the number of concurrent jobs in
execution which need the named resource. Commas and space characters delimit the items in the list.
Each item in the list is a string that identifies the limit, or it is a ClassAd expression that evaluates to a
string, and it is evaluated in the context of machine ClassAd being considered as a match. Each item
in the list also may specify a numerical value identifying the integer number of resources required
for the job. The syntax follows the resource name by a colon character (:) and the numerical value.
Details on concurrency limits are in the HTCondor Administrator’s manual.

concurrency_limits_expr = <ClassAd String Expression> A ClassAd expression that represents the
list of resources that this job needs after evaluation. The ClassAd expression may specify machine
ClassAd attributes that are evaluated against a matched machine. After evaluation, the list sets con-
currency_limits.

copy_to_spool = <True | False> If copy_to_spool is True, then condor_submit copies the executable to
the local spool directory before running it on a remote host. As copying can be quite time consuming
and unnecessary, the default value is False for all job universes. When False, condor_submit does
not copy the executable to a local spool directory.

coresize = <size> Should the user’s program abort and produce a core file, coresize specifies the maxi-
mum size in bytes of the core file which the user wishes to keep. If coresize is not specified in the
command file, the system’s user resource limit coredumpsize is used (note that coredumpsize is
not an HTCondor parameter - it is an operating system parameter that can be viewed with the limit
or ulimit command on Unix and in the Registry on Windows). A value of -1 results in no limits
being applied to the core file size. If HTCondor is running as root, a coresize setting greater than the
system coredumpsize limit will override the system setting; if HTCondor is not running as root,
the system coredumpsize limit will override coresize.

cron_day_of_month = <Cron-evaluated Day> The set of days of the month for which a deferral time
applies. The HTCondor User’s manual section on Time Scheduling for Job Execution has further
details.

cron_day_of_week = <Cron-evaluated Day> The set of days of the week for which a deferral time ap-
plies. The HTCondor User’s manual section on Time Scheduling for Job Execution has further de-
tails.

cron_hour = <Cron-evaluated Hour> The set of hours of the day for which a deferral time applies. The
HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

880 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

cron_minute = <Cron-evaluated Minute> The set of minutes within an hour for which a deferral time
applies. The HTCondor User’s manual section on Time Scheduling for Job Execution has further
details.

cron_month = <Cron-evaluated Month> The set of months within a year for which a deferral time ap-
plies. The HTCondor User’s manual section on Time Scheduling for Job Execution has further de-
tails.

cron_prep_time = <ClassAd Integer Expression> Analogous to deferral_prep_time . The number of
seconds prior to a job’s deferral time that the job may be matched and sent to an execution machine.

cron_window = <ClassAd Integer Expression> Analogous to the submit command deferral_window
. It allows cron jobs that miss their deferral time to begin execution.

The HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

dagman_log = <pathname> DAGMan inserts this command to specify an event log that it watches to
maintain the state of the DAG. If the log command is not specified in the submit file, DAGMan uses
the log command to specify the event log.

deferral_prep_time = <ClassAd Integer Expression> The number of seconds prior to a job’s deferral
time that the job may be matched and sent to an execution machine.

The HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

deferral_time = <ClassAd Integer Expression> Allows a job to specify the time at which its execution
is to begin, instead of beginning execution as soon as it arrives at the execution machine. The deferral
time is an expression that evaluates to a Unix Epoch timestamp (the number of seconds elapsed since
00:00:00 on January 1, 1970, Coordinated Universal Time). Deferral time is evaluated with respect
to the execution machine. This option delays the start of execution, but not the matching and claiming
of a machine for the job. If the job is not available and ready to begin execution at the deferral time,
it has missed its deferral time. A job that misses its deferral time will be put on hold in the queue.

The HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

Due to implementation details, a deferral time may not be used for scheduler universe jobs.

deferral_window = <ClassAd Integer Expression> The deferral window is used in conjunction with the
deferral_time command to allow jobs that miss their deferral time to begin execution.

The HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

description = <string> A string that sets the value of the job ClassAd attribute JobDescription. When
set, tools which display the executable such as condor_q will instead use this string.

email_attributes = <list-of-job-ad-attributes> A comma-separated list of attributes from the job Clas-
sAd. These attributes and their values will be included in the e-mail notification of job completion.

12.55. condor_submit 881

HTCondor Manual, Release 10.0.9

image_size = <size> Advice to HTCondor specifying the maximum virtual image size to which the job
will grow during its execution. HTCondor will then execute the job only on machines which have
enough resources, (such as virtual memory), to support executing the job. If not specified, HTCondor
will automatically make a (reasonably accurate) estimate about the job’s size and adjust this estimate
as the program runs. If specified and underestimated, the job may crash due to the inability to acquire
more address space; for example, if malloc() fails. If the image size is overestimated, HTCondor
may have difficulty finding machines which have the required resources. size is specified in KiB. For
example, for an image size of 8 MiB, size should be 8000.

initialdir = <directory-path> Used to give jobs a directory with respect to file input and output. Also
provides a directory (on the machine from which the job is submitted) for the job event log, when a
full path is not specified.

For vanilla universe jobs where there is a shared file system, it is the current working directory on
the machine where the job is executed.

For vanilla or grid universe jobs where file transfer mechanisms are utilized (there is not a shared
file system), it is the directory on the machine from which the job is submitted where the input files
come from, and where the job’s output files go to.

For scheduler universe jobs, it is the directory on the machine from which the job is submitted where
the job runs; the current working directory for file input and output with respect to relative path
names.

Note that the path to the executable is not relative to initialdir ; if it is a relative path, it is relative to
the directory in which the condor_submit command is run.

job_ad_information_attrs = <attribute-list> A comma-separated list of job ClassAd attribute names.
The named attributes and their values are written to the job event log whenever any event
is being written to the log. This implements the same thing as the configuration variable
EVENT_LOG_INFORMATION_ATTRS (see the Daemon Logging Configuration File Entries page), but
it applies to the job event log, instead of the system event log.

batch_name = <batch_name> Set the batch name for this submit. The batch name is displayed by con-
dor_q -batch. It is intended for use by users to give meaningful names to their jobs and to influence
how condor_q groups jobs for display. This value in a submit file can be overridden by specifying
the -batch-name argument on the condor_submit command line.

job_lease_duration = <number-of-seconds> For vanilla, parallel, VM, and java universe jobs only, the
duration in seconds of a job lease. The default value is 2,400, or forty minutes. If a job lease is not
desired, the value can be explicitly set to 0 to disable the job lease semantics. The value can also be
a ClassAd expression that evaluates to an integer. The HTCondor User’s manual section on Special
Environment Considerations has further details.

job_machine_attrs = <attr1, attr2, . . . > A comma and/or space separated list of machine attribute
names that should be recorded in the job ClassAd in addition to the ones specified by the con-
dor_schedd daemon’s system configuration variable SYSTEM_JOB_MACHINE_ATTRS . When there
are multiple run attempts, history of machine attributes from previous run attempts may be kept.
The number of run attempts to store may be extended beyond the system-specified history length by

882 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

using the submit file command job_machine_attrs_history_length . A machine attribute named X
will be inserted into the job ClassAd as an attribute named MachineAttrX0. The previous value of
this attribute will be named MachineAttrX1, the previous to that will be named MachineAttrX2,
and so on, up to the specified history length. A history of length 1 means that only MachineAttrX0
will be recorded. The value recorded in the job ClassAd is the evaluation of the machine attribute
in the context of the job ClassAd when the condor_schedd daemon initiates the start up of the job.
If the evaluation results in an Undefined or Error result, the value recorded in the job ad will be
Undefined or Error, respectively.

want_graceful_removal = <boolean expression> If true, this job will be given a chance to shut down
cleanly when removed. The job will be given as much time as the administrator of the execute
resource allows, which may be none. The default is false. For details, see the configuration setting
GRACEFULLY_REMOVE_JOBS.

kill_sig = <signal-number> When HTCondor needs to kick a job off of a machine, it will send the job
the signal specified by signal-number . signal-number needs to be an integer which represents a
valid signal on the execution machine. The default value is SIGTERM, which is the standard way to
terminate a program in Unix.

kill_sig_timeout = <seconds> This submit command should no longer be used as of HTCondor version
7.7.3; use job_max_vacate_time instead. If job_max_vacate_time is not defined, this defines the
number of seconds that HTCondor should wait following the sending of the kill signal defined by
kill_sig and forcibly killing the job. The actual amount of time between sending the signal and
forcibly killing the job is the smallest of this value and the configuration variable KILLING_TIMEOUT
, as defined on the execute machine.

load_profile = <True | False> When True, loads the account profile of the dedicated run account for
Windows jobs. May not be used with run_as_owner .

match_list_length = <integer value> Defaults to the value zero (0). When match_list_length is defined
with an integer value greater than zero (0), attributes are inserted into the job ClassAd. The maximum
number of attributes defined is given by the integer value. The job ClassAds introduced are given as

LastMatchName0 = "most-recent-Name"
LastMatchName1 = "next-most-recent-Name"

The value for each introduced ClassAd is given by the value of the Name attribute from the machine
ClassAd of a previous execution (match). As a job is matched, the definitions for these attributes will
roll, with LastMatchName1 becoming LastMatchName2, LastMatchName0 becoming LastMatch-
Name1, and LastMatchName0 being set by the most recent value of the Name attribute.

An intended use of these job attributes is in the requirements expression. The requirements can allow
a job to prefer a match with either the same or a different resource than a previous match.

job_max_vacate_time = <integer expression> An integer-valued expression (in seconds) that may be
used to adjust the time given to an evicted job for gracefully shutting down. If the job’s setting is
less than the machine’s, the job’s is used. If the job’s setting is larger than the machine’s, the result
depends on whether the job has any excess retirement time. If the job has more retirement time left

12.55. condor_submit 883

HTCondor Manual, Release 10.0.9

than the machine’s max vacate time setting, then retirement time will be converted into vacating time,
up to the amount requested by the job.

Setting this expression does not affect the job’s resource requirements or preferences. For a job to
only run on a machine with a minimum MachineMaxVacateTime, or to preferentially run on such
machines, explicitly specify this in the requirements and/or rank expressions.

manifest = <True | False> For vanilla and Docker -universe jobs (and others that use the shadow), speci-
fies if HTCondor (the starter) should produce a “manifest”, which is directory containing three files:
the list of files and directories at the top level of the sandbox when file transfer in completes (in), the
same when file transfer out begins (out), and a dump of the environment set for the job (env).

This feature is not presently available for Windows.

manifest_dir = <directory name> For vanilla and Docker -universe jobs (and others that use the
shadow), specifies the directory in which to record the manifest. Specifying this enables the cre-
ation of a manifest. By default, the manifest directory is named <cluster>_<proc>_manifest, to
avoid conflicts.

This feature is not presently available for Windows.

max_job_retirement_time = <integer expression> An integer-valued expression (in seconds) that does
nothing unless the machine that runs the job has been configured to provide retirement time. Retire-
ment time is a grace period given to a job to finish when a resource claim is about to be preempted.
The default behavior in many cases is to take as much retirement time as the machine offers, so this
command will rarely appear in a submit description file.

When a resource claim is to be preempted, this expression in the submit file specifies the maximum
run time of the job (in seconds, since the job started). This expression has no effect, if it is greater
than the maximum retirement time provided by the machine policy. If the resource claim is not
preempted, this expression and the machine retirement policy are irrelevant. If the resource claim
is preempted the job will be allowed to run until the retirement time expires, at which point it is
hard-killed. The job will be soft-killed when it is getting close to the end of retirement in order to
give it time to gracefully shut down. The amount of lead-time for soft-killing is determined by the
maximum vacating time granted to the job.

Any jobs running with nice_user priority have a default max_job_retirement_time of 0, so no
retirement time is utilized by default. In all other cases, no default value is provided, so the maximum
amount of retirement time is utilized by default.

Setting this expression does not affect the job’s resource requirements or preferences. For a job to
only run on a machine with a minimum MaxJobRetirementTime, or to preferentially run on such
machines, explicitly specify this in the requirements and/or rank expressions.

nice_user = <True | False> Normally, when a machine becomes available to HTCondor, HTCondor de-
cides which job to run based upon user and job priorities. Setting nice_user equal to True tells
HTCondor not to use your regular user priority, but that this job should have last priority among
all users and all jobs. So jobs submitted in this fashion run only on machines which no other non-
nice_user job wants - a true bottom-feeder job! This is very handy if a user has some jobs they wish
to run, but do not wish to use resources that could instead be used to run other people’s HTCondor
jobs. Jobs submitted in this fashion have an accounting group. The accounting group is configurable
by setting NICE_USER_ACCOUNTING_GROUP_NAME which defaults to nice-user The default value
is False.

884 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

noop_job = <ClassAd Boolean Expression> When this boolean expression is True, the job is immedi-
ately removed from the queue, and HTCondor makes no attempt at running the job. The log file for
the job will show a job submitted event and a job terminated event, along with an exit code of 0,
unless the user specifies a different signal or exit code.

noop_job_exit_code = <return value> When noop_job is in the submit description file and evaluates
to True, this command allows the job to specify the return value as shown in the job’s log file job
terminated event. If not specified, the job will show as having terminated with status 0. This overrides
any value specified with noop_job_exit_signal .

noop_job_exit_signal = <signal number> When noop_job is in the submit description file and evalu-
ates to True, this command allows the job to specify the signal number that the job’s log event will
show the job having terminated with.

remote_initialdir = <directory-path> The path specifies the directory in which the job is to be executed
on the remote machine.

rendezvousdir = <directory-path> Used to specify the shared file system directory to be used for file
system authentication when submitting to a remote scheduler. Should be a path to a preexisting
directory.

run_as_owner = <True | False> A boolean value that causes the job to be run under the login of the
submitter, if supported by the joint configuration of the submit and execute machines. On Unix plat-
forms, this defaults to True, and on Windows platforms, it defaults to False. May not be used with
load_profile . See the HTCondor manual Platform-Specific Information chapter for administrative
details on configuring Windows to support this option.

stack_size = <size in bytes> This command applies only to Linux platforms. An integer number of bytes,
representing the amount of stack space to be allocated for the job. This value replaces the default
allocation of stack space, which is unlimited in size.

submit_event_notes = <note> A string that is appended to the submit event in the job’s log file. For
DAGMan jobs, the string DAG Node: and the node’s name is automatically defined for sub-
mit_event_notes, causing the logged submit event to identify the DAG node job submitted.

use_oauth_services = <list of credential service names> A comma-separated list of crendential-
providing service names for which the job should be provided credentials for the job execution
environment. The credential service providers must be configured by the pool admin.

<credential_service_name>_oauth_permissions[_<handle>] = <scope> A string containing the
scope(s) that should be requested for the credential named <credential_service_name>[_<handle>],
where <handle> is optionally provided to differentiate between multiple credentials from the same
credential service provider.

12.55. condor_submit 885

HTCondor Manual, Release 10.0.9

<credential_service_name>_oauth_resource[_<handle>] = <resource> A string containing
the resource (or “audience”) that should be requested for the credential named <creden-
tial_service_name>[_<handle>], where <handle> is optionally provided to differentiate between
multiple credentials from the same credential service provider.

+<attribute> = <value> A line that begins with a ‘+’ (plus) character instructs condor_submit to insert
the given attribute into the job ClassAd with the given value. Note that setting an attribute should
not be used in place of one of the specific commands listed above. Often, the command name does
not directly correspond to an attribute name; furthermore, many submit commands result in actions
more complex than simply setting an attribute or attributes. See Job ClassAd Attributes for a list of
HTCondor job attributes.

MACROS AND COMMENTS

In addition to commands, the submit description file can contain macros and comments.

Macros Parameterless macros in the form of $(macro_name:default initial value) may be used
anywhere in HTCondor submit description files to provide textual substitution at submit time. Macros
can be defined by lines in the form of

<macro_name> = <string>

Two pre-defined macros are supplied by the submit description file parser. The $(Cluster)
or $(ClusterId) macro supplies the value of the ClusterId job ClassAd attribute, and the
$(Process) or $(ProcId) macro supplies the value of the ProcId job ClassAd attribute. These
macros are intended to aid in the specification of input/output files, arguments, etc., for clusters with
lots of jobs, and/or could be used to supply an HTCondor process with its own cluster and process
numbers on the command line.

The $(Node) macro is defined for parallel universe jobs, and is especially relevant for MPI applica-
tions. It is a unique value assigned for the duration of the job that essentially identifies the machine
(slot) on which a program is executing. Values assigned start at 0 and increase monotonically. The
values are assigned as the parallel job is about to start.

Recursive definition of macros is permitted. An example of a construction that works is the following:

foo = bar
foo = snap $(foo)

As a result, foo = snap bar.

Note that both left- and right- recursion works, so

foo = bar
foo = $(foo) snap

has as its result foo = bar snap.

The construction

foo = $(foo) bar

by itself will not work, as it does not have an initial base case. Mutually recursive constructions such
as:

B = bar
C = $(B)
B = $(C) boo

886 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

will not work, and will fill memory with expansions.

A default value may be specified, for use if the macro has no definition. Consider the example

D = $(E:24)

Where E is not defined within the submit description file, the default value 24 is used, resulting in

D = 24

This is of limited value, as the scope of macro substitution is the submit description file. Thus, either
the macro is or is not defined within the submit description file. If the macro is defined, then the
default value is useless. If the macro is not defined, then there is no point in using it in a submit
command.

To use the dollar sign character ($) as a literal, without macro expansion, use

$(DOLLAR)

In addition to the normal macro, there is also a special kind of macro called a substitution macro
that allows the substitution of a machine ClassAd attribute value defined on the resource machine
itself (gotten after a match to the machine has been made) into specific commands within the submit
description file. The substitution macro is of the form:

$$(attribute)

As this form of the substitution macro is only evaluated within the context of the machine ClassAd,
use of a scope resolution prefix TARGET. or MY. is not allowed.

A common use of this form of the substitution macro is for the heterogeneous submission of an
executable:

executable = povray.$$(OpSys).$$(Arch)

Values for the OpSys and Arch attributes are substituted at match time for any given resource. This
example allows HTCondor to automatically choose the correct executable for the matched machine.

An extension to the syntax of the substitution macro provides an alternative string to use if the ma-
chine attribute within the substitution macro is undefined. The syntax appears as:

$$(attribute:string_if_attribute_undefined)

An example using this extended syntax provides a path name to a required input file. Since the file
can be placed in different locations on different machines, the file’s path name is given as an argument
to the program.

arguments = $$(input_file_path:/usr/foo)

On the machine, if the attribute input_file_path is not defined, then the path /usr/foo is used
instead.

As a special case that only works within the submit file environement command, the string $$(Con-
dorScratchDir) is expanded to the value of the job’s scratch directory. This does not work for sched-
uler universe or grid universe jobs.

For example, to set PYTHONPATH to a subdirectory of the job scratch dir, one could set

12.55. condor_submit 887

HTCondor Manual, Release 10.0.9

environment = PYTHONPATH=$$(CondorScratchDir)/some/directory

A further extension to the syntax of the substitution macro allows the evaluation of a ClassAd ex-
pression to define the value. In this form, the expression may refer to machine attributes by prefacing
them with the TARGET. scope resolution prefix. To place a ClassAd expression into the substitution
macro, square brackets are added to delimit the expression. The syntax appears as:

$$([ClassAd expression])

An example of a job that uses this syntax may be one that wants to know how much memory it
can use. The application cannot detect this itself, as it would potentially use all of the memory on
a multi-slot machine. So the job determines the memory per slot, reducing it by 10% to account
for miscellaneous overhead, and passes this as a command line argument to the application. In the
submit description file will be

arguments = --memory $$([TARGET.Memory * 0.9])

To insert two dollar sign characters ($$) as literals into a ClassAd string, use

$$(DOLLARDOLLAR)

The environment macro, $ENV, allows the evaluation of an environment variable to be used in setting
a submit description file command. The syntax used is

$ENV(variable)

An example submit description file command that uses this functionality evaluates the submitter’s
home directory in order to set the path and file name of a log file:

log = $ENV(HOME)/jobs/logfile

The environment variable is evaluated when the submit description file is processed.

The $RANDOM_CHOICE macro allows a random choice to be made from a given list of parameters
at submission time. For an expression, if some randomness needs to be generated, the macro may
appear as

$RANDOM_CHOICE(0,1,2,3,4,5,6)

When evaluated, one of the parameters values will be chosen.

Comments Blank lines and lines beginning with a pound sign (‘#’) character are ignored by the submit
description file parser.

888 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.55.5 Submit Variables

While processing the queue command in a submit file or from the command line, condor_submit will set the values of
several automatic submit variables so that they can be referred to by statements in the submit file. With the exception
of Cluster and Process, if these variables are set by the submit file, they will not be modified during queue processing.

ClusterId Set to the integer value that the ClusterId attribute that the job ClassAd will have when the
job is submitted. All jobs in a single submit will normally have the same value for the ClusterId.
If the -dry-run argument is specified, The value will be 1.

Cluster Alternate name for the ClusterId submit variable. Before HTCondor version 8.4 this was the only
name.

ProcId Set to the integer value that the ProcId attribute of the job ClassAd will have when the job is
submitted. The value will start at 0 and increment by 1 for each job submitted.

Process Alternate name for the ProcId submit variable. Before HTCondor version 8.4 this was the only
name.

Node For parallel universes, set to the value #pArAlLeLnOdE# or #MpInOdE# depending on the parallel
universe type For other universes it is set to nothing.

Step Set to the step value as it varies from 0 to N-1 where N is the number provided on the queue argument.
This variable changes at the same rate as ProcId when it changes at all. For submit files that don’t
make use of the queue number option, Step will always be 0. For submit files that don’t make use of
any of the foreach options, Step and ProcId will always be the same.

ItemIndex Set to the index within the item list being processed by the various queue foreach options. For
submit files that don’t make use of any queue foreach list, ItemIndex will always be 0 For submit
files that make use of a slice to select only some items in a foreach list, ItemIndex will only be set to
selected values.

Row Alternate name for ItemIndex.

Item when a queue foreach option is used and no variable list is supplied, this variable will be set to the
value of the current item.

The automatic variables below are set before parsing the submit file, and will not vary during processing unless
the submit file itself sets them.

ARCH Set to the CPU architecture of the machine running condor_submit. The value will be the same
as the automatic configuration variable of the same name.

OPSYS Set to the name of the operating system on the machine running condor_submit. The value will
be the same as the automatic configuration variable of the same name.

OPSYSANDVER Set to the name and major version of the operating system on the machine running
condor_submit. The value will be the same as the automatic configuration variable of the same
name.

OPSYSMAJORVER Set to the major version of the operating system on the machine running con-
dor_submit. The value will be the same as the automatic configuration variable of the same name.

OPSYSVER Set to the version of the operating system on the machine running condor_submit. The value
will be the same as the automatic configuration variable of the same name.

SPOOL Set to the full path of the HTCondor spool directory. The value will be the same as the automatic
configuration variable of the same name.

IsLinux Set to true if the operating system of the machine running condor_submit is a Linux variant. Set
to false otherwise.

12.55. condor_submit 889

HTCondor Manual, Release 10.0.9

IsWindows Set to true if the operating system of the machine running condor_submit is a Microsoft
Windows variant. Set to false otherwise.

SUBMIT_FILE Set to the full pathname of the submit file being processed by condor_submit. If submit
statements are read from standard input, it is set to nothing.

SUBMIT_TIME Set to the unix timestamp of the current time when the job is submitted.

YEAR Set to the 4 digit year when the job is submitted.

MONTH Set to the 2 digit month when the job is submitted.

DAY Set to the 2 digit day when the job is submitted.

12.55.6 Exit Status

condor_submit will exit with a status value of 0 (zero) upon success, and a non-zero value upon failure.

12.55.7 Examples

• Submit Description File Example 1: This example queues three jobs for execution by HTCondor. The first will be
given command line arguments of 15 and 2000, and it will write its standard output to foo.out1. The second will
be given command line arguments of 30 and 2000, and it will write its standard output to foo.out2. Similarly
the third will have arguments of 45 and 6000, and it will use foo.out3 for its standard output. Standard error
output (if any) from all three programs will appear in foo.error.

####################
#
submit description file
Example 1: queuing multiple jobs with differing
command line arguments and output files.
#
####################

Executable = foo
Universe = vanilla

Arguments = 15 2000
Output = foo.out0
Error = foo.err0
Queue

Arguments = 30 2000
Output = foo.out1
Error = foo.err1
Queue

Arguments = 45 6000
Output = foo.out2
Error = foo.err2
Queue

Or you can get the same results as the above submit file by using a list of arguments with the Queue statement

890 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

####################
#
submit description file
Example 1b: queuing multiple jobs with differing
command line arguments and output files, alternate syntax
#
####################

Executable = foo
Universe = vanilla

generate different output and error filenames for each process
Output = foo.out$(Process)
Error = foo.err$(Process)

Queue Arguments From (
15 2000
30 2000
45 6000

)

• Submit Description File Example 2: This submit description file example queues 150 runs of program foo which
must have been compiled and linked for an Intel x86 processor running RHEL 3. HTCondor will not attempt to
run the processes on machines which have less than 32 Megabytes of physical memory, and it will run them on
machines which have at least 64 Megabytes, if such machines are available. Stdin, stdout, and stderr will refer to
in.0, out.0, and err.0 for the first run of this program (process 0). Stdin, stdout, and stderr will refer to in.1,
out.1, and err.1 for process 1, and so forth. A log file containing entries about where and when HTCondor
runs, takes checkpoints, and migrates processes in this cluster will be written into file foo.log.

####################
#
Example 2: Show off some fancy features including
use of pre-defined macros and logging.
#
####################

Executable = foo
Universe = vanilla
Requirements = OpSys == "LINUX" && Arch =="INTEL"
Rank = Memory >= 64
Request_Memory = 32 Mb
Image_Size = 28 Mb

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = foo.log
Queue 150

• Submit Description File Example 3: This example targets the /bin/sleep program to run only on a platform
running a RHEL 6 operating system. The example presumes that the pool contains machines running more than
one version of Linux, and this job needs the particular operating system to run correctly.

12.55. condor_submit 891

HTCondor Manual, Release 10.0.9

####################
#
Example 3: Run on a RedHat 6 machine
#
####################
Universe = vanilla
Executable = /bin/sleep
Arguments = 30
Requirements = (OpSysAndVer == "RedHat6")

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = sleep.log
Queue

• Command Line example: The following command uses the -append option to add two commands before the
job(s) is queued. A log file and an error log file are specified. The submit description file is unchanged.

$ condor_submit -a "log = out.log" -a "error = error.log" mysubmitfile

Note that each of the added commands is contained within quote marks because there are space characters within
the command.

• periodic_remove example: A job should be removed from the queue, if the total suspension time of the job is
more than half of the run time of the job.

Including the command

periodic_remove = CumulativeSuspensionTime >
((RemoteWallClockTime - CumulativeSuspensionTime) / 2.0)

in the submit description file causes this to happen.

12.55.8 General Remarks

• For security reasons, HTCondor will refuse to run any jobs submitted by user root (UID = 0) or by a user whose
default group is group wheel (GID = 0). Jobs submitted by user root or a user with a default group of wheel will
appear to sit forever in the queue in an idle state.

• All path names specified in the submit description file must be less than 256 characters in length, and command
line arguments must be less than 4096 characters in length; otherwise, condor_submit gives a warning message
but the jobs will not execute properly.

• Somewhat understandably, behavior gets bizarre if the user makes the mistake of requesting multiple HTCondor
jobs to write to the same file, and/or if the user alters any files that need to be accessed by an HTCondor job
which is still in the queue. For example, the compressing of data or output files before an HTCondor job has
completed is a common mistake.

892 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.55.9 See Also

HTCondor User Manual

12.56 condor_submit_dag

Manage and queue jobs within a specified DAG for execution on remote machines

12.56.1 Synopsis

condor_submit_dag [-help | -version]

condor_submit_dag [-no_submit] [-verbose] [-force] [-maxidle NumberOfProcs] [-maxjobs NumberOf-
Clusters] [-dagman DagmanExecutable] [-maxpre NumberOfPreScripts] [-maxpost NumberOfPostScripts] [-
notification value] [-noeventchecks] [-allowlogerror] [-r schedd_name] [-debug level] [-usedagdir] [-
outfile_dir directory] [-config ConfigFileName] [-insert_sub_file FileName] [-append Command] [-batch-name
batch_name] [-autorescue 0|1] [-dorescuefrom number] [-allowversionmismatch] [-no_recurse] [-do_recurse
] [-update_submit] [-import_env] [-DumpRescue] [-valgrind] [-DontAlwaysRunPost] [-AlwaysRunPost] [-
priority number] [-dont_use_default_node_log] [-schedd-daemon-ad-file FileName] [-schedd-address-file File-
Name] [-suppress_notification] [-dont_suppress_notification] [-DoRecovery] DAGInputFile1 [DAGInputFile2
. . .DAGInputFileN]

12.56.2 Description

condor_submit_dag is the program for submitting a DAG (directed acyclic graph) of jobs for execution under HTCon-
dor. The program enforces the job dependencies defined in one or more DAGInputFile s. Each DAGInputFile contains
commands to direct the submission of jobs implied by the nodes of a DAG to HTCondor. Extensive documentation is
in the HTCondor User Manual section on DAGMan.

Some options may be specified on the command line or in the configuration or in a node job’s submit description file.
Precedence is given to command line options or configuration over settings from a submit description file. An example
is e-mail notifications. When configuration variable DAGMAN_SUPPRESS_NOTIFICATION is its default value of True,
and a node job’s submit description file contains

notification = Complete

e-mail will not be sent upon completion, as the value of DAGMAN_SUPPRESS_NOTIFICATION is enforced.

12.56.3 Options

-help Display usage information and exit.

-version Display version information and exit.

-no_submit Produce the HTCondor submit description file for DAGMan, but do not submit DAGMan as
an HTCondor job.

-verbose Cause condor_submit_dag to give verbose error messages.

-force Require condor_submit_dag to overwrite the files that it produces, if the files already exist. Note
that dagman.out will be appended to, not overwritten. If new-style rescue DAG mode is in effect,
and any new-style rescue DAGs exist, the -force flag will cause them to be renamed, and the original

12.56. condor_submit_dag 893

HTCondor Manual, Release 10.0.9

DAG will be run. If old-style rescue DAG mode is in effect, any existing old-style rescue DAGs will
be deleted, and the original DAG will be run.

-maxidle NumberOfProcs Sets the maximum number of idle procs allowed before condor_dagman stops
submitting more node jobs. Note that for this argument, each individual proc within a cluster counts
as a towards the limit, which is inconsistent with -maxjobs . Once idle procs start to run, con-
dor_dagman will resume submitting jobs once the number of idle procs falls below the specified
limit. NumberOfProcs is a non-negative integer. If this option is omitted, the number of idle procs is
limited by the configuration variable DAGMAN_MAX_JOBS_IDLE (see Configuration File Entries for
DAGMan), which defaults to 1000. To disable this limit, set NumberOfProcs to 0. Note that submit
description files that queue multiple procs can cause the NumberOfProcs limit to be exceeded. Set-
ting queue 5000 in the submit description file, where -maxidle is set to 250 will result in a cluster
of 5000 new procs being submitted to the condor_schedd, not 250. In this case, condor_dagman will
resume submitting jobs when the number of idle procs falls below 250.

-maxjobs NumberOfClusters Sets the maximum number of clusters within the DAG that will be sub-
mitted to HTCondor at one time. Note that for this argument, each cluster counts as one job,
no matter how many individual procs are in the cluster. NumberOfClusters is a non-negative in-
teger. If this option is omitted, the number of clusters is limited by the configuration variable
DAGMAN_MAX_JOBS_SUBMITTED (see Configuration File Entries for DAGMan), which defaults to
0 (unlimited).

-dagman DagmanExecutable Allows the specification of an alternate condor_dagman executable to be
used instead of the one found in the user’s path. This must be a fully qualified path.

-maxpre NumberOfPreScripts Sets the maximum number of PRE scripts within the DAG that may be
running at one time. NumberOfPreScripts is a non-negative integer. If this option is omitted, the
number of PRE scripts is limited by the configuration variable DAGMAN_MAX_PRE_SCRIPTS (see
Configuration File Entries for DAGMan), which defaults to 20.

-maxpost NumberOfPostScripts Sets the maximum number of POST scripts within the DAG that may
be running at one time. NumberOfPostScripts is a non-negative integer. If this option is omitted, the
number of POST scripts is limited by the configuration variable DAGMAN_MAX_POST_SCRIPTS (see
Configuration File Entries for DAGMan), which defaults to 20.

-notification value Sets the e-mail notification for DAGMan itself. This information will be used within
the HTCondor submit description file for DAGMan. This file is produced by condor_submit_dag.
See the description of notification within condor_submit manual page for a specification of value.

-noeventchecks This argument is no longer used; it is now ignored. Its functionality is now implemented
by the DAGMAN_ALLOW_EVENTS configuration variable.

-allowlogerror As of verson 8.5.5 this argument is no longer supported, and setting it will generate a
warning.

-r schedd_name Submit condor_dagman to a remote machine, specifically the condor_schedd daemon on
that machine. The condor_dagman job will not run on the local condor_schedd (the submit machine),
but on the specified one. This is implemented using the -remote option to condor_submit. Note that
this option does not currently specify input files for condor_dagman, nor the individual nodes to be
taken along! It is assumed that any necessary files will be present on the remote computer, possibly
via a shared file system between the local computer and the remote computer. It is also necessary
that the user has appropriate permissions to submit a job to the remote machine; the permissions
are the same as those required to use condor_submit ‘s -remote option. If other options are desired,
including transfer of other input files, consider using the -no_submit option, modifying the resulting
submit file for specific needs, and then using condor_submit on that.

-debug level Passes the the level of debugging output desired to condor_dagman. level is an integer, with
values of 0-7 inclusive, where 7 is the most verbose output. See the condor_dagman manual page for
detailed descriptions of these values. If not specified, no -debug v alue is passed to condor_dagman.

894 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

-usedagdir This optional argument causes condor_dagman to run each specified DAG as if con-
dor_submit_dag had been run in the directory containing that DAG file. This option is most useful
when running multiple DAGs in a single condor_dagman. Note that the -usedagdir flag must not be
used when running an old-style Rescue DAG.

-outfile_dir directory Specifies the directory in which the .dagman.out file will be written. The direc-
tory may be specified relative to the current working directory as condor_submit_dag is executed,
or specified with an absolute path. Without this option, the .dagman.out file is placed in the same
directory as the first DAG input file listed on the command line.

-config ConfigFileName Specifies a configuration file to be used for this DAGMan run. Note that the
options specified in the configuration file apply to all DAGs if multiple DAGs are specified. Further
note that it is a fatal error if the configuration file specified by this option conflicts with a configuration
file specified in any of the DAG files, if they specify one.

-insert_sub_file FileName Specifies a file to insert into the .condor.sub file created by con-
dor_submit_dag. The specified file must contain only legal submit file commands. Only one
file can be inserted. (If both the DAGMAN_INSERT_SUB_FILE configuration variable and -
insert_sub_file are specified, -insert_sub_file overrides DAGMAN_INSERT_SUB_FILE.) The
specified file is inserted into the .condor.sub file before the Queue command and before any com-
mands specified with the -append option.

-append Command Specifies a command to append to the .condor.sub file created by con-
dor_submit_dag. The specified command is appended to the .condor.sub file immediately before
the Queue command. Multiple commands are specified by using the -append option multiple times.
Each new command is given in a separate -append option. Commands with spaces in them must
be enclosed in double quotes. Commands specified with the -append option are appended to the .
condor.sub file after commands inserted from a file specified by the -insert_sub_file option or the
DAGMAN_INSERT_SUB_FILE configuration variable, so the -append command(s) will override
commands from the inserted file if the commands conflict.

-batch-name batch_name Set the batch name for this DAG/workflow. The batch name is displayed by
condor_q -batch. It is intended for use by users to give meaningful names to their workflows and
to influence how condor_q groups jobs for display. As of version 8.5.5, the batch name set with
this argument is propagated to all node jobs of the given DAG (including sub-DAGs), overriding
any batch names set in the individual submit files. Note: set the batch name to ‘ ‘ (space) to avoid
overriding batch names specified in node job submit files. If no batch name is set, the batch name
defaults to DagFile +cluster (where DagFile is the primary DAG file of the top-level DAGMan, and
cluster is the HTCondor cluster of the top-level DAGMan); the default will override any lower-level
batch names.

-autorescue 0|1 Whether to automatically run the newest rescue DAG for the given DAG file, if one exists
(0 = false, 1 = true).

-dorescuefrom number Forces condor_dagman to run the specified rescue DAG number for the given
DAG. A value of 0 is the same as not specifying this option. Specifying a non-existent rescue DAG
is a fatal error.

-allowversionmismatch This optional argument causes condor_dagman to allow a version mismatch be-
tween condor_dagman itself and the .condor.sub file produced by condor_submit_dag (or, in other
words, between condor_submit_dag and condor_dagman). WARNING! This option should be used
only if absolutely necessary. Allowing version mismatches can cause subtle problems when running
DAGs. (Note that, starting with version 7.4.0, condor_dagman no longer requires an exact version
match between itself and the .condor.sub file. Instead, a “minimum compatible version” is defined,
and any .condor.sub file of that version or newer is accepted.)

-no_recurse This optional argument causes condor_submit_dag to not run itself recursively on nested
DAGs (this is now the default; this flag has been kept mainly for backwards compatibility).

12.56. condor_submit_dag 895

HTCondor Manual, Release 10.0.9

-do_recurse This optional argument causes condor_submit_dag to run itself recursively on nested DAGs.
The default is now that it does not run itself recursively; instead the .condor.sub files for nested
DAGs are generated “lazily” by condor_dagman itself. DAG nodes specified with the SUBDAG
EXTERNAL keyword or with submit file names ending in .condor.sub are considered nested
DAGs. The DAGMAN_GENERATE_SUBDAG_SUBMITS configuration variable may be relevant.

-update_submit This optional argument causes an existing .condor.sub file to not be treated as an error;
rather, the .condor.sub file will be overwritten, but the existing values of -maxjobs, -maxidle, -
maxpre, and -maxpost will be preserved.

-import_env This optional argument causes condor_submit_dag to import the current environment into
the environment command of the .condor.sub file it generates.

-DumpRescue This optional argument tells condor_dagman to immediately dump a rescue DAG and then
exit, as opposed to actually running the DAG. This feature is mainly intended for testing. The Rescue
DAG file is produced whether or not there are parse errors reading the original DAG input file. The
name of the file differs if there was a parse error.

-valgrind This optional argument causes the submit description file generated for the submission of con-
dor_dagman to be modified. The executable becomes valgrind run on condor_dagman, with a spe-
cific set of arguments intended for testing condor_dagman. Note that this argument is intended for
testing purposes only. Using the -valgrind option without the necessary valgrind software installed
will cause the DAG to fail. If the DAG does run, it will run much more slowly than usual.

-DontAlwaysRunPost This option causes the submit description file generated for the submission of con-
dor_dagman to be modified. It causes condor_dagman to not run the POST script of a node if the
PRE script fails. (This was the default behavior prior to HTCondor version 7.7.2, and is again the
default behavior from version 8.5.4 onwards.)

-AlwaysRunPost This option causes the submit description file generated for the submission of con-
dor_dagman to be modified. It causes condor_dagman to always run the POST script of a node,
even if the PRE script fails. (This was the default behavior for HTCondor version 7.7.2 through
version 8.5.3.)

-priority number Sets the minimum job priority of node jobs submitted and running under the con-
dor_dagman job submitted by this condor_submit_dag command.

-dont_use_default_node_log This option is disabled as of HTCondor version 8.3.1. This causes a
compatibility error if the HTCondor version number of the condor_schedd is 7.9.0 or older.
Tells condor_dagman to use the file specified by the job ClassAd attribute UserLog to monitor job
status. If this command line argument is used, then the job event log file cannot be defined with a
macro.

-schedd-daemon-ad-file FileName Specifies a full path to a daemon ad file dropped by a condor_schedd.
Therefore this allows submission to a specific scheduler if several are available without repeatedly
querying the condor_collector. The value for this argument defaults to the configuration attribute
SCHEDD_DAEMON_AD_FILE.

-schedd-address-file FileName Specifies a full path to an address file dropped by a condor_schedd.
Therefore this allows submission to a specific scheduler if several are available without repeatedly
querying the condor_collector. The value for this argument defaults to the configuration attribute
SCHEDD_ADDRESS_FILE.

-suppress_notification Causes jobs submitted by condor_dagman to not send email notifica-
tion for events. The same effect can be achieved by setting configuration variable
DAGMAN_SUPPRESS_NOTIFICATION to True. This command line option is independent of the -
notification command line option, which controls notification for the condor_dagman job itself.

-dont_suppress_notification Causes jobs submitted by condor_dagman to defer to content within the
submit description file when deciding to send email notification for events. The same effect can be

896 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

achieved by setting configuration variable DAGMAN_SUPPRESS_NOTIFICATION to False. This com-
mand line flag is independent of the -notification command line option, which controls notification
for the condor_dagman job itself. If both -dont_suppress_notification and -suppress_notification
are specified with the same command line, the last argument is used.

-DoRecovery Causes condor_dagman to start in recovery mode. (This means that it reads the relevant
job user log(s) and “catches up” to the given DAG’s previous state before submitting any new jobs.)

12.56.4 Exit Status

condor_submit_dag will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.56.5 Examples

To run a single DAG:

$ condor_submit_dag diamond.dag

To run a DAG when it has already been run and the output files exist:

$ condor_submit_dag -force diamond.dag

To run a DAG, limiting the number of idle node jobs in the DAG to a maximum of five:

$ condor_submit_dag -maxidle 5 diamond.dag

To run a DAG, limiting the number of concurrent PRE scripts to 10 and the number of concurrent POST scripts to five:

$ condor_submit_dag -maxpre 10 -maxpost 5 diamond.dag

To run two DAGs, each of which is set up to run in its own directory:

$ condor_submit_dag -usedagdir dag1/diamond1.dag dag2/diamond2.dag

12.57 condor_suspend

suspend jobs from the HTCondor queue

12.57.1 Synopsis

condor_suspend [-help | -version]

condor_suspend [-debug] [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] **

12.57. condor_suspend 897

HTCondor Manual, Release 10.0.9

12.57.2 Description

condor_suspend suspends one or more jobs from the HTCondor job queue. When a job is suspended, the match between
the condor_schedd and machine is not been broken, such that the claim is still valid. But, the job is not making any
progress and HTCondor is no longer generating a load on the machine. If the -name option is specified, the named
condor_schedd is targeted for processing. Otherwise, the local condor_schedd is targeted. The job(s) to be suspended
are identified by one of the job identifiers, as described below. For any given job, only the owner of the job or one of
the queue super users (defined by the QUEUE_SUPER_USERS macro) can suspend the job.

12.57.3 Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-name scheddname Send the command to a machine identified by scheddname

-addr “<a.b.c.d:port>” Send the command to a machine located at “<a.b.c.d:port>”

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

cluster Suspend all jobs in the specified cluster

cluster.process Suspend the specific job in the cluster

user Suspend jobs belonging to specified user

-constraint expression Suspend all jobs which match the job ClassAd expression constraint

-all Suspend all the jobs in the queue

12.57.4 Exit Status

condor_suspend will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.57.5 Examples

To suspend all jobs except for a specific user:

$ condor_suspend -constraint 'Owner =!= "foo"'

Run condor_continue to continue execution.

898 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.58 condor_tail

Display the last contents of a running job’s standard output or file

12.58.1 Synopsis

condor_tail [-help] | [-version]

condor_tail [-pool centralmanagerhostname[:portnumber]] [-name name] [-debug] [-maxbytes numbytes] [-auto-
retry] [-follow] [-no-stdout] [-stderr] job-ID [filename1] [filename2 . . .]

12.58.2 Description

condor_tail displays the last bytes of a file in the sandbox of a running job identified by the command line argument
job-ID. stdout is tailed by default. The number of bytes displayed is limited to 1024, unless changed by specifying
the -maxbytes option. This limit is applied for each individual tail of a file; for example, when following a file, the
limit is applied each subsequent time output is obtained.

If you specify filename, that name must be specifically listed in the job’s transfer_output_files.

12.58.3 Options

-help Display usage information and exit.

-version Display version information and exit.

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number.

-name name Query the condor_schedd daemon identified with name.

-debug Display extra debugging information.

-maxbytes numbytes Limits the maximum number of bytes transferred per tail access. If not specified,
the maximum number of bytes is 1024.

-auto-retry Retry the tail of the file(s) every 2 seconds, if the job is not yet running.

-follow Repetitively tail the file(s), until interrupted.

-no-stdout Do not tail stdout.

-stderr Tail stderr instead of stdout.

12.58.4 Exit Status

The exit status of condor_tail is zero on success.

12.58. condor_tail 899

HTCondor Manual, Release 10.0.9

12.59 condor_token_create

given a password file, create an authentication token for the IDTOKENS authentication method

12.59.1 Synopsis

condor_token_create -identity user@domain [-key keyid] [-authz authz . . .] [-lifetime value] [-token filename] [-
debug]

condor_token_create [-help]

12.59.2 Description

condor_token_create will read an HTCondor password file inside the SEC_PASSWORD_DIRECTORY (by default, this
is the pool password) and use it to create an authentication token. The authentication token may be subsequently used
by clients to authenticate against a remote HTCondor server. Tokens allow fine-grained authentication as individual
HTCondor users as opposed to pool password, where anything in possession of the pool password will authenticate as
the same user.

An identity must be specified for the token; this will be the client’s resulting identity at the remote HTCondor server.
If the -lifetime or (one or more) -authz options are specified, the token will contain additional restrictions that limit
what the client will be authorized to do. If an attacker is able to access the token, they will be able to authenticate with
the identity listed in the token (subject to the restrictions above).

If successful, the resulting token will be sent to stdout; by specifying the -token option, it will instead be written
to the user’s token directory. If written to SEC_TOKEN_SYSTEM_DIRECTORY (default /etc/condor/tokens.d),
then the token can be used for daemon-to-daemon authentication.

condor_token_create is only currently supported on Unix platforms.

12.59.3 Options

-authz authz Adds a restriction to the token so it is only valid to be used for a given authorization level
(such as READ, WRITE, DAEMON, ADVERTISE_STARTD). If multiple authorizations are needed, then
-authz must be specified multiple times. If -authz is not specified, no authorization restrictions are
added and authorization will be solely based on the token’s identity. NOTE that -authz cannot be
used to give an identity additional permissions at the remote host. If the server’s admin only permits
the user READ authorization, then specifying -authz WRITE in a token will not allow the user to
perform writes.

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-help Display brief usage information and exit.

-identity user@domain Set a specific client identity to be written into the token; a client will authenticate
as this identity with a remote server.

-key keyid Specify a key file to use under the directory specified by the SEC_PASSWORD_DIRECTORY
configuration variable. The key name must match a file in the password directory; the file’s contents
must be created with condor_store_cred and will be used to sign the resulting token. If -key is not
set, then the default pool password will be used.

900 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

-lifetime value Specify the lifetime, in seconds, for the token to be valid (the token validity will start when
the token is signed). After the lifetime expires, the token cannot be used for authentication. If not
specified, the token will contain no lifetime restrictions.

-token filename Specifies a filename, relative to the directory in the SEC_TOKEN_DIRECTORY config-
uration variable (for example, on Linux this defaults to ~/.condor/tokens.d), where the resulting
token is stored. If not specified, the token will be sent to stdout.

12.59.4 Examples

To create a token for jane@cs.wisc.edu with no additional restrictions:

$ condor_token_create -identity jane@cs.wisc.edu
eyJhbGciOiJIUzI1NiIsImtpZCI6Il....bnu3NoO9BGM

To create a token for worker-node@cs.wisc.edu that may advertise either a condor_startd or a condor_master:

$ condor_token_create -identity worker-node@cs.wisc.edu \
-authz ADVERTISE_STARTD \
-authz ADVERTISE_MASTER

eyJhbGciOiJIUzI1NiIsImtpZC.....8wkstyj_OnM0SHsOdw

To create a token for friend@cs.wisc.edu that is only valid for 10 minutes, and then to save it to ~/.condor/
tokens.d/friend:

$ condor_token_create -identity friend@cs.wisc.edu -lifetime 600 -token friend

If the administrator would like to create a specific key for signing tokens, token_key, distinct from the default pool
password, they would first use condor_store_cred to create the key:

$ openssl rand -base64 32 | condor_store_cred -f /etc/condor/passwords.d/token_key

Note, in this case, we created a random 32 character key using SSL instead of providing a human-friendly password.

Next, the administrator would run run condor_token_create:

$ condor_token_create -identity frida@cs.wisc.edu -key token_key
eyJhbGciOiJIUzI1NiIsImtpZCI6I.....eyJpYXQiOUzlN6QA

If the token_key file is deleted from the SEC_PASSWORD_DIRECTORY, then all of the tokens issued with that key
will be invalidated.

12.59.5 Exit Status

condor_token_create will exit with a non-zero status value if it fails to read the password file, sign the token, write the
output, or experiences some other error. Otherwise, it will exit 0.

12.59. condor_token_create 901

HTCondor Manual, Release 10.0.9

12.59.6 See also

condor_store_cred(1), condor_token_fetch(1), condor_token_request(1), condor_token_list(1)

12.59.7 Author

Center for High Throughput Computing, University of Wisconsin-Madison

12.59.8 Copyright

Copyright © 1990-2019 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

12.60 condor_token_fetch

obtain a token from a remote daemon for the IDTOKENS authentication method

12.60.1 Synopsis

condor_token_fetch [-authz authz . . .] [-lifetime value] [-pool pool_name] [-name hostname] [-type type] [-token
filename] [-key signing_key]

condor_token_fetch [-help]

12.60.2 Description

condor_token_fetch will attempt to fetch an authentication token from a remote daemon. If successful, the identity
embedded in the token will be the same as client’s identity at the remote daemon.

Authentication tokens are a useful mechanism to limit an identity’s authorization or to establish an alternate authenti-
cation method. For example, an administrator may utilize condor_token_fetch to create a token for a monitoring host
that is limited to only the READ authorization. A user may use condor_token_fetch while they are logged in to a submit
host then use the resulting token to submit remotely from their personal laptop.

If the -lifetime or (one or more) -authz options are specified, the token will contain additional restrictions that limit
what the client will be authorized to do.

By default, condor_token_fetch will query the local condor_schedd; by specifying a combination of -pool, -name, or
-type, the tool can request tokens in other pools, on other hosts, or different daemon types.

If successful, the resulting token will be sent to stdout; by specifying the -token option, it will instead be written to
the user’s token directory.

902 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.60.3 Options

-authz authz Adds a restriction to the token so it is only valid to be used for a given authorization level
(such as READ, WRITE, DAEMON, ADVERTISE_STARTD). If multiple authorizations are needed, then
-authz must be specified multiple times. If -authz is not specified, no authorization restrictions are
added and authorization will be solely based on the token’s identity. NOTE that -authz cannot be
used to give an identity additional permissions at the remote host. If the server’s admin only permits
the user READ authorization, then specifying -authz WRITE in a token will not allow the user to
perform writes.

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-help Display brief usage information and exit.

-lifetime value Specify the lifetime, in seconds, for the token to be valid (the token validity will start when
the token is signed). After the lifetime expires, the token cannot be used for authentication. If not
specified, the token will contain no lifetime restrictions.

-name hostname Request a token from the daemon named hostname in the pool. If not specified, the
locally-running daemons will be used.

-pool pool_name Request a token from a daemon in a non-default pool pool_name.

-token filename Specifies a filename, relative to the directory in the SEC_TOKEN_DIRECTORY config-
uration variable (defaulting to ~/.condor/tokens.d), where the resulting token is stored. If not
specified, the token will be sent to stdout.

-type type Request a token from a specific daemon type type. If not given, a condor_schedd is used.

-key signing_key Request a token signed by the signing key named signing_key. If not given, the dae-
mon’s default key will be used.

12.60.4 Examples

To obtain a token with a lifetime of 10 minutes from the default condor_schedd:

$ condor_token_fetch -lifetime 600
eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.eyJpYX...ii7lAfCA

To request a token from bird.cs.wisc.edu which is limited to READ and WRITE:

$ condor_token_fetch -name bird.cs.wisc.edu \
-authz READ -authz WRITE

eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.eyJpYX...lJTj54

To create a token from the collector in the htcondor.cs.wisc.edu pool and then to save it to ~/.condor/tokens.
d/friend:

$ condor_token_fetch -identity friend@cs.wisc.edu -lifetime 600 -token friend

12.60. condor_token_fetch 903

HTCondor Manual, Release 10.0.9

12.60.5 Exit Status

condor_token_fetch will exit with a non-zero status value if it fails to request or read the token. Otherwise, it will exit
0.

12.60.6 See also

condor_token_create(1), condor_token_request(1), condor_token_list(1)

12.60.7 Author

Center for High Throughput Computing, University of Wisconsin-Madison

12.60.8 Copyright

Copyright © 1990-2019 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

12.61 condor_token_list

list all available tokens for IDTOKENS auth

12.61.1 Synopsis

condor_token_list

condor_token_list -help

12.61.2 Description

condor_token_list parses the tokens available to the current user and prints them to stdout.

The tokens are stored in files in the directory referenced by SEC_TOKEN_DIRECTORY ; multiple tokens may be saved
in each file (one per line).

The output format is a list of the deserialized contents of each token, along with the file name containing the token, one
per line. It should not be considered machine readable and will be subject to change in future release of HTCondor.

12.61.3 Options

-help Display brief usage information and exit.

904 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.61.4 Examples

To list all tokens as the current user:

$ condor_token_list
Header: {"alg":"HS256","kid":"POOL"} Payload: {"exp":1565576872,"iat":1565543872,"iss":
→˓"htcondor.cs.wisc.edu","scope":"condor:\/DAEMON","sub":"k8sworker@wisc.edu"} File: /
→˓home/bucky/.condor/tokens.d/token1
Header: {"alg":"HS256","kid":"POOL"} Payload: {"iat":1572414350,"iss":"htcondor.cs.wisc.
→˓edu","scope":"condor:\/WRITE","sub":"bucky@wisc.edu"} File: /home/bucky/.condor/tokens.
→˓d/token2

12.61.5 Exit Status

condor_token_list will exit with a non-zero status value if it fails to read the token directory, tokens are improperly
formatted, or if it experiences some other error. Otherwise, it will exit 0.

12.61.6 See also

condor_token_create(1), condor_token_fetch(1), condor_token_request(1)

12.61.7 Author

Center for High Throughput Computing, University of Wisconsin-Madison

12.61.8 Copyright

Copyright © 1990-2019 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

12.62 condor_token_request

interactively request a token from a remote daemon for the IDTOKENS authentication method

12.62.1 Synopsis

condor_token_request [-identity user@domain] [-authz authz . . .] [-lifetime value] [-pool pool_name] [-name host-
name] [-type type] [-token filename]

condor_token_request [-help]

12.62. condor_token_request 905

HTCondor Manual, Release 10.0.9

12.62.2 Description

condor_token_request will request an authentication token from a remote daemon. Token requests must be approved by
the daemon’s administrator using condor_token_request_approve. Unlike condor_token_fetch, the user doesn’t need
an existing identity with the remote daemon when using condor_token_request (an anonymous method, such as SSL
without a client certificate will suffice).

If the request is successfully enqueued, the request ID will be printed to stderr; the administrator will need to know
the ID to approve the request. condor_token_request will wait until the request is approved, timing out after an hour.

The token request mechanism provides a powerful way to bootstrap authentication in a HTCondor pool - a remote user
can request an identity, verify the authenticity of the request out-of-band with the remote daemon’s administrator, and
then securely recieve their authentication token.

By default, condor_token_request will query the local condor_collector; by specifying a combination of -pool, -name,
or -type, the tool can request tokens in other pools, on other hosts, or different daemon types.

If successful, the resulting token will be sent to stdout; by specifying the -token option, it will instead be written to
the user’s token directory.

12.62.3 Options

-authz authz Adds a restriction to the token so it is only valid to be used for a given authorization level
(such as READ, WRITE, DAEMON, ADVERTISE_STARTD). If multiple authorizations are needed, then
-authz must be specified multiple times. If -authz is not specified, no authorization restrictions are
added and authorization will be solely based on the token’s identity. NOTE that -authz cannot be
used to give an identity additional permissions at the remote host. If the server’s admin only permits
the user READ authorization, then specifying -authz WRITE in a token will not allow the user to
perform writes.

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-help Display brief usage information and exit.

-identity user@domain Request a specific identity from the daemon; a client using the resulting token
will authenticate as this identity with a remote server. If not specified, the token will be issued for
the condor identity.

-lifetime value Specify the lifetime, in seconds, for the token to be valid (the token validity will start when
the token is signed). After the lifetime expires, the token cannot be used for authentication. If not
specified, the token will contain no lifetime restrictions.

-name hostname Request a token from the daemon named hostname in the pool. If not specified, the
locally-running daemons will be used.

-pool pool_name Request a token from a daemon in a non-default pool pool_name.

-token filename Specifies a filename, relative to the directory in the SEC_TOKEN_DIRECTORY config-
uration variable (defaulting to ~/.condor/tokens.d), where the resulting token is stored. If not
specified, the token will be sent to stdout.

-type type Request a token from a specific daemon type type. If not given, a condor_collector is used.

906 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.62.4 Examples

To obtain a token with a lifetime of 10 minutes from the default condor_collector (the token is not returned until the
daemon’s administrator takes action):

$ condor_token_request -lifetime 600
Token request enqueued. Ask an administrator to please approve request 6108900.
eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.eyJpYX...ii7lAfCA

To request a token from bird.cs.wisc.edu which is limited to READ and WRITE:

$ condor_token_request -name bird.cs.wisc.edu \
-identity bucky@cs.wisc.edu
-authz READ -authz WRITE

Token request enqueued. Ask an administrator to please approve request 2578154
eyJhbGciOiJIUzI1NiIsImtpZCI6IlBPT0wifQ.eyJpYX...lJTj54

To create a token from the collector in the htcondor.cs.wisc.edu pool and then to save it to ~/.condor/tokens.
d/friend:

$ condor_token_request -pool htcondor.cs.wisc.edu \
-identity friend@cs.wisc.edu \
-lifetime 600 -token friend

Token request enqueued. Ask an administrator to please approve request 2720841.

12.62.5 Exit Status

condor_token_request will exit with a non-zero status value if it fails to request or recieve the token. Otherwise, it will
exit 0.

12.62.6 See also

condor_token_create(1), condor_token_fetch(1), condor_token_request_approve(1),
condor_token_request_auto_approve(1), condor_token_list(1)

12.62.7 Author

Center for High Throughput Computing, University of Wisconsin-Madison

12.62.8 Copyright

Copyright © 1990-2019 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

12.62. condor_token_request 907

HTCondor Manual, Release 10.0.9

12.63 condor_token_request_approve

approve a token request at a remote daemon

12.63.1 Synopsis

condor_token_request_approve [-reqid val] [-pool pool_name] [-name hostname] [-type type] [-debug]

condor_token_request_approve [-help]

12.63.2 Description

condor_token_request_approve will approve an request for an authentication token queued at a remote daemon. Once
approved, the requester will be able to fetch a fully signed token from the daemon and use it to authenticate with the
IDTOKENS method.

NOTE that any user can request a very powerful token, even allowing them to be the HTCondor administrator; such
requests can only be approved by an administrator. Review token requests carefully to ensure you understand what
identity you are approving. The only safe way to approve a request is to have the request ID communicated out-of-band
and verify it matches the expected, request contents, ensuring the request’s authenticity.

By default, users can only approve requests for their own identity (that is, a user authenticating as bucky@cs.wisc.edu
can only approve token requests for the identity bucky@cs.wisc.edu). Users with ADMINISTRATOR authorization can
approve any request.

If you want to approve multiple requests at once, do not provide the -reqid flag; in that case, the utility will iterate
through all known requests.

By default, condor_token_request_approve will query the local condor_collector; by specifying a combination of -
pool, -name, or -type, the tool can request tokens in other pools, on other hosts, or different daemon types.

12.63.3 Options

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-help Display brief usage information and exit.

-name hostname Request a token from the daemon named hostname in the pool. If not specified, the
locally-running daemons will be used.

-pool pool_name Request a token from a daemon in a non-default pool pool_name.

-reqid val Provides the specific request ID to approve. Request IDs should be communicated out of band
to the administrator through a trusted channel.

-type type Request a token from a specific daemon type type. If not given, a condor_collector is used.

908 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.63.4 Examples

To approve the tokens at the default condor_collector, one-by-one:

$ condor_token_request_approve
RequestedIdentity = "bucky@cs.wisc.edu"
AuthenticatedIdentity = "anonymous@ssl"
PeerLocation = "10.0.0.42"
ClientId = "bird.cs.wisc.edu-516"
RequestId = "8414912"

To approve, please type 'yes'
yes
Request 8414912 approved successfully.

When a token is approved, the corresponding condor_token_request process will complete. Note the printed request
includes both the requested identity (which will be written into the issued token) and the authenticated identity of the
token requester. In this case, anonymous@ssl indicates the connection was established successfully over SSL but the
remote side is anonymous (did not contain a client SSL certificate).

12.63.5 Exit Status

condor_token_request_approve will exit with a non-zero status value if it fails to communicate with the remote daemon.
Otherwise, it will exit 0.

12.63.6 See also

condor_token_request(1), condor_token_fetch(1), condor_token_request_auto_approve(1)

12.63.7 Author

Center for High Throughput Computing, University of Wisconsin-Madison

12.63.8 Copyright

Copyright © 1990-2019 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

12.64 condor_token_request_auto_approve

generate a new rule to automatically approve token requests

12.64. condor_token_request_auto_approve 909

HTCondor Manual, Release 10.0.9

12.64.1 Synopsis

condor_token_request_auto_approve -netblock network -lifetime val [-pool pool_name] [-name hostname] [-type
type] [-debug]

condor_token_request_auto_approve [-help]

12.64.2 Description

condor_token_request_auto_approve will install a temporary auto-approval rule for token requests. Any token request
matching the auto-approval rule will be immediately approved instead of requiring administrator approval

Automatic request approval is intended to help administrators initially setup their cluster. To install a new rule, you
must specify both a network and a lifetime; requests are only approved if they come from that given source network,
are within the rule lifetime, are limited to ADVERTISE_SCHEDD or ADVERTISE_STARTD permissions, and are for the
condor identity. When a condor_startd or condor_schedd is started and cannot communicate with the collector, they
will automatically generate token requests that meet the last two conditions.

It is not safe to enable auto-approval when users have access to any of the involved hosts or networks.

To remove auto-approval rules, run condor_reconfig against the remote daemon.:

By default, condor_token_request_auto_approve will install rules at the local condor_collector; by specifying a com-
bination of -pool, -name, or -type, the tool can request tokens in other pools, on other hosts, or different daemon
types.

12.64.3 Options

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-help Display brief usage information and exit.

-lifetime value Specify the lifetime, in seconds, for the auto-request rule to be valid.

-name hostname Request a token from the daemon named hostname in the pool. If not specified, the
locally-running daemons will be used.

-netblock network A netblock of the form IP_ADDRESS / SUBNET_MASK specifying the source of
authorized requests. Examples may include 129.93.12.0/24 or 10.0.0.0/26.

-pool pool_name Request a token from a daemon in a non-default pool pool_name.

-type type Request a token from a specific daemon type type. If not given, a condor_collector is used.

12.64.4 Examples

To automatically approve token requests to the default condor_collector coming from the 10.0.0.0/26 subnet for the
next 10 minutes:

$ condor_token_request_auto_approve -lifetime 600 -netblock 10.0.0.0/26
Successfully installed auto-approval rule for netblock 10.0.0.0/26 with lifetime of 0.17␣
→˓hours
Remote daemon reports no un-approved requests pending.

910 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.64.5 Exit Status

condor_token_request_auto_approve will exit with a non-zero status value if it fails to communicate with the remote
daemon or has insufficient authorization. Otherwise, it will exit 0.

12.64.6 See also

condor_token_request(1), condor_token_request_approve(1)

12.64.7 Author

Center for High Throughput Computing, University of Wisconsin-Madison

12.64.8 Copyright

Copyright © 1990-2019 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

12.65 condor_token_request_list

list all token requests at a remote daemon

12.65.1 Synopsis

condor_token_request_list [-pool pool_name] [-name hostname] [-type type] [-json] [-debug]

condor_token_request_list [-help]

12.65.2 Description

condor_token_request_list will list all requests for tokens currently queued at a remote daemon. This allows the
administrator to review token requests; these requests may be subsequently approved with an invocation of con-
dor_token_request_approve.

An individual with ADMINISTRATOR authorization may see all queued token requests; otherwise, users can only see
token requests for their own identity.

By default, condor_token_request_list will query the local condor_collector; by specifying a combination of -pool,
-name, or -type, the tool can request tokens in other pools, on other hosts, or different daemon types.

12.65. condor_token_request_list 911

HTCondor Manual, Release 10.0.9

12.65.3 Options

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-help Display brief usage information and exit.

-name hostname Request a token from the daemon named hostname in the pool. If not specified, the
locally-running daemons will be used.

-pool pool_name Request a token from a daemon in a non-default pool pool_name.

-json Causes all pending requests to be printed as JSON objects.

-type type Request a token from a specific daemon type type. If not given, a condor_collector is used.

12.65.4 Examples

To list the tokens at the default condor_collector:

$ condor_token_request_list
RequestId = "4303687"
ClientId = "worker0000.wisc.edu-960"
PeerLocation = "10.0.4.13"
AuthenticatedIdentity = "anonymous@ssl"
RequestedIdentity = "condor@cs.wisc.edu"
LimitAuthorization = "ADVERTISE_STARTD"

RequestedIdentity = "bucky@cs.wisc.edu"
AuthenticatedIdentity = "bucky@cs.wisc.edu"
PeerLocation = "129.93.244.211"
ClientId = "desktop0001.wisc.edu-712"
RequestId = "4413973"

12.65.5 Exit Status

condor_token_request_list will exit with a non-zero status value if it fails to communicate with the remote daemon or
fails to authenticate. Otherwise, it will exit 0.

12.65.6 See also

condor_token_request(1), condor_token_request_approve(1), condor_token_list(1)

12.65.7 Author

Center for High Throughput Computing, University of Wisconsin-Madison

912 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.65.8 Copyright

Copyright © 1990-2019 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

12.66 condor_top

Display status and runtime statistics of a HTCondor daemon

12.66.1 Synopsis

condor_top [-h]

condor_top [-l] [-p centralmanagerhostname[:portname]] [-n name] [-d delay] [-c columnset] [-s sortcolumn]
[–attrs=<attr1,attr2,. . . >] [daemon options]

condor_top [-c columnset] [-s sortcolumn] [–attrs=<attr1,attr2,. . . >] [classad-filename classad-filename]

12.66.2 Description

condor_top displays the status (e.g. memory usage and duty cycle) of a HTCondor daemon and calculates and displays
runtime statistics for the daemon’s subprocesses.

When no arguments are specified, condor_top displays the status for the primary daemon based on the role of the current
machine by scanning the DAEMON_LIST configuration setting. If multiple daemons are listed, condor_top will monitor
one of (in decreasing priority): condor_schedd, condor_startd, condor_collector, condor_negotiator, condor_master.

If the condor_collector returns multiple ClassAds for the chosen daemon type, condor_top will display stats from the
first ClassAd returned. Results can be constrained by passing the NAME of a specific daemon with -n.

The default delay is STATISTICS_WINDOW_QUANTUM, which is 4 minutes (240 seconds) in a default HTCondor con-
figuration. Setting the delay smaller can be helpful for finding spikes of activity, but setting the delay too small will
lead to poor measurements of the duty cycle and of the runtime statistics.

condor_top can run in a top-like “live” mode by passing -l. The live mode is similar to the *nix top command, with
stats updating every delay seconds. Redirecting stdout will disable live mode even if -l is set. To exit condor_top while
in live mode, issue Ctrl-C.

condor_top can be passed two files containing ClassAds from the same HTCondor daemon, in which case the con-
dor_collector will not be queried but rather the statistics will be computed and displayed immediately from the two
ClassAds. Only -c, -s, and -attrs options are considered when passing ClassAds via files.

The following subprocess stat columns may be displayed (*default):

Item *Name of the subprocess

InstRt *Total runtime between the two ClassAds

InstAvg *Mean runtime per execution between the two ClassAds

TotalRt Total runtime since daemon start

TotAvg *Mean runtime per execution since daemon start

TotMax *Max runtime per execution since daemon start

TotMin Min runtime per execution since daemon start

12.66. condor_top 913

HTCondor Manual, Release 10.0.9

RtPctAvg *Percent of mean runtime per execution. The ratio of InstAvg to TotAvg, expressed as a per-
centage

RtPctMax Percent of max runtime per execution. The ratio of (InstAvg - TotMin) to (TotMax - TotMin),
expressed as a percentage

RtSigmas Standard deviations from mean runtime. The ratio of (InstAvg - TotAvg) to the standard devi-
ation in runtime per execution since daemon start

InstCt Executions between the two ClassAds

InstRate *Executions per second between the two ClassAds

TotalCt Total executions (counts) since daemon start

AvgRate *Mean count rate. Executions per second since daemon start

CtPctAvg Percent of mean count rate. The ratio of InstRate to AvgRate, expressed as a percentage.

12.66.3 Options

-h Displays the list of options.

-l Puts condor_top in to a live, continually updating mode.

-p centralmanagerhostname[:portname] Query the daemon via the specified central manager. If omit-
ted, the value of the configuration variable COLLECTOR_HOST is used.

-n name Query the daemon named name. If omitted, the value used will depend on the type of daemon
queried (see Daemon Options).

-d delay Specifies the delay between ClassAd updates, in integer seconds. If omitted, the value of the
configuration variable STATISTICS_WINDOW_QUANTUM is used.

-c columnset Display columnset set of columns. Valid columnset s are: default, runtime, count, all.

-s sortcolumn Sort table by sortcolumn. Defaults to InstRt.

-attrs=<attr1,attr2,. . . >

Comma-delimited list of additional ClassAd attributes to monitor.

Daemon Options

-collector Monitor condor_collector ClassAds. If -n is not set, the constraint “Machine ==
COLLECTOR_HOST” will be used.

-negotiator Monitor condor_negotiator ClassAds. If -n is not set, the constraint “Machine ==
COLLECTOR_HOST” will be used.

-master Monitor condor_master ClassAds. If -n is not set, the constraint “Machine ==
COLLECTOR_HOST” will be used.

-schedd Monitor condor_schedd ClassAds. If -n is not set, the constraint “Machine == FULL_HOSTNAME”
will be tried, otherwise the first condor_schedd ClassAd returned from the condor_collector will be
used.

-startd Monitor condor_startd ClassAds. If -n is not set, the constraint “Machine == FULL_HOSTNAME”
will be tried, otherwise the first condor_startd ClassAd returned from the condor_collector will be
used.

914 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.67 condor_transfer_data

transfer spooled data

12.67.1 Synopsis

condor_transfer_data [-help | -version]

condor_transfer_data [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] cluster. . . | cluster.process. . . | user. . . | -constraint expression . . .

condor_transfer_data [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr
“<a.b.c.d:port>”] -all

12.67.2 Description

condor_transfer_data causes HTCondor to transfer spooled data. It is meant to be used in conjunction with the -spool
option of condor_submit, as in

$ condor_submit -spool mysubmitfile

Submission of a job with the -spool option causes HTCondor to spool all input files, the job event log, and any proxy
across a connection to the machine where the condor_schedd daemon is running. After spooling these files, the machine
from which the job is submitted may disconnect from the network or modify its local copies of the spooled files.

When the job finishes, the job has JobStatus = 4, meaning that the job has completed. The output of the job is spooled,
and condor_transfer_data retrieves the output of the completed job.

12.67.3 Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name and an op-
tional port number

-name scheddname Send the command to a machine identified by scheddname

-addr “<a.b.c.d:port>” Send the command to a machine located at “<a.b.c.d:port>”

cluster Transfer spooled data belonging to the specified cluster

cluster.process Transfer spooled data belonging to a specific job in the cluster

user Transfer spooled data belonging to the specified user

-constraint expression Transfer spooled data for jobs which match the job ClassAd expression constraint

-all Transfer all spooled data

12.67. condor_transfer_data 915

HTCondor Manual, Release 10.0.9

12.67.4 Exit Status

condor_transfer_data will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.68 condor_transform_ads

Transform ClassAds according to specified rules, and output the transformed ClassAds.

12.68.1 Synopsis

condor_transform_ads [-help [rules]]

condor_transform_ads [-rules rules-file] [-jobtransforms name-list] [-in[:<form>] ** *infile*] [-out[:<form>[,
nosort]] ** outfile] [<key>=<value>] [-long] [-json] [-xml] [-verbose] [-terse] [-debug] [-unit-test] [-testing]
[-convertoldroutes] [infile1 . . . infileN]

Note that one or more transforms must be specified in the form of a rules file or a JOB_TRANSFORM_ name and at least
one input file must be specified. Transforms will be applied in the order they are given on the command line. If a rules
file has a TRANSFORM statement with arguments it must be the last rules file. If no output file is specified, output
will be written to stdout.

12.68.2 Description

condor_transform_ads reads ClassAds from a set of input files, transforms them according to rules defined in a rules
files or read from configuration, and outputs the resulting transformed ClassAds.

See the ClassAd Transforms section for a description of the transform language.

12.68.3 Options

-help [rules] Display usage information and exit. -help rules displays information about the available
transformation rules.

-rules rules-file Specifies the file containing definitions of the transformation rules.

-jobtransforms name-list A comma-separated list of more transform names. The transform rules will be
read from the configuration file JOB_TRANSFORM_<name> values.

-in[:<form>] infile Specifies an input file containing ClassAd(s) to be transformed. <form>, if specified,
is one of:

• long: traditional long form (default)

• xml: XML form

• json: JSON ClassAd form

• new: “new” ClassAd form without newlines

• auto: guess format by reading the input

If - is specified for infile, input is read from stdin.

916 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

-out[:<form>[, nosort] outfile Specifies an output file to receive the transformed ClassAd(s). <form>, if
specified, is one of:

• long: traditional long form (default)

• xml: XML form

• json: JSON ClassAd form

• new: “new” ClassAd form without newlines

• auto: use the same format as the first input

ClassAds are storted by attribute unless nosort is specified.

[<key>=<value>] Assign key/value pairs before rules file is parsed; can be used to pass arguments to
rules. (More detail needed here.)

-long Use long form for both input and output ClassAd(s). (This is the default.)

-json Use JSON form for both input and output ClassAd(s).

-xml Use XML form for both input and output ClassAd(s).

-verbose Verbose mode, echo to stderr the transform names as they are applied and individual transform
rules as they are executed.

-terse Disable the -verbose option.

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

12.68.4 Exit Status

condor_transform_ads will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.68.5 Examples

Here’s a simple example that transforms the given input ClassAds according to the given rules:

File: my_input
ResidentSetSize = 500
DiskUsage = 2500000
NumCkpts = 0
TransferrErr = false
Err = "/dev/null"

File: my_rules
EVALSET MemoryUsage (ResidentSetSize / 100)
EVALMACRO WantDisk = (DiskUsage * 2)
SET RequestDisk ($(WantDisk) / 1024)
RENAME NumCkpts NumCheckPoints
DELETE /(.+)Err/

(continues on next page)

12.68. condor_transform_ads 917

HTCondor Manual, Release 10.0.9

(continued from previous page)

Command:
condor_transform_ads -rules my_rules -in my_input

Output:
DiskUsage = 2500000
Err = "/dev/null"
MemoryUsage = 5
NumCheckPoints = 0
RequestDisk = (5000000 / 1024)
ResidentSetSize = 500

12.69 condor_update_machine_ad

update a machine ClassAd

12.69.1 Synopsis

condor_update_machine_ad [-help | -version]

condor_update_machine_ad [-pool centralmanagerhostname[:portnumber]] [-name startdname] path/to/update-ad

12.69.2 Description

condor_update_machine_ad modifies the specified condor_startd daemon’s machine ClassAd. The ClassAd in the file
given by path/to/update-ad represents the changed attributes. The changes persists until the condor_startd restarts.
If no file is specified on the command line, condor_update_machine_ad reads the update ClassAd from stdin.

Contents of the file or stdin must contain a complete ClassAd. Each line must be terminated by a newline character,
including the last line of the file. Lines are of the form

<attribute> = <value>

Changes to certain ClassAd attributes will cause the condor_startd to regenerate values for other ClassAd attributes.
An example of this is setting HasVM. This will cause OfflineUniverses, VMOfflineTime, and VMOfflineReason
to change.

12.69.3 Options

-help Display usage information and exit

-version Display the HTCondor version and exit

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-name startdname Send the command to a machine identified by startdname

918 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.69.4 General Remarks

This tool is intended for the use of system administrators when dealing with offline universes.

12.69.5 Examples

To re-enable matching with the VM universe jobs, place on stdin a complete ClassAd (including the ending newline
character) to change the value of ClassAd attribute HasVM:

$ echo "HasVM = True
" | condor_update_machine_ad

To prevent vm universe jobs from matching with the machine:

$ echo "HasVM = False
" | condor_update_machine_ad

To prevent vm universe jobs from matching with the machine and specify a reason:

$ echo "HasVM = False
VMOfflineReason = \"Cosmic rays.\"
" | condor_update_machine_ad

Note that the quotes around the reason are required by ClassAds, and they must be escaped because of the shell. Using
a file instead of stdin may be preferable in these situations, because neither quoting nor escape characters are needed.

12.69.6 Exit Status

condor_update_machine_ad will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

12.70 condor_updates_stats

Display output from condor_status

12.70.1 Synopsis

condor_updates_stats [–help | -h] | [–version]

condor_updates_stats [–long | -l] [–history=<min>-<max>] [–interval=<seconds>] [–notime] [–time]
[–summary | -s]

12.70. condor_updates_stats 919

HTCondor Manual, Release 10.0.9

12.70.2 Description

condor_updates_stats parses the output from condor_status, and it displays the information relating to update statistics
in a useful format. The statistics are displayed with the most recent update first; the most recent update is numbered
with the smallest value.

The number of historic points that represent updates is configurable on a per-source basis by configuration variable
COLLECTOR_DAEMON_HISTORY_SIZE .

12.70.3 Options

-help Display usage information and exit.

-h Same as -help.

-version Display HTCondor version information and exit.

-long All update statistics are displayed. Without this option, the statistics are condensed.

-l Same as -long.

-history=<min>-<max> Sets the range of update numbers that are printed. By default, the entire his-
tory is displayed. To limit the range, the minimum and/or maximum number may be specified. If
a minimum is not specified, values from 0 to the maximum are displayed. If the maximum is not
specified, all values after the minimum are displayed. When both minimum and maximum are spec-
ified, the range to be displayed includes the endpoints as well as all values in between. If no = sign
is given, command-line parsing fails, and usage information is displayed. If an = sign is given, with
no minimum or maximum values, the default of the entire history is displayed.

-interval=<seconds> The assumed update interval, in seconds. Assumed times for the the updates are
displayed, making the use of the -time option together with the -interval option redundant.

-notime Do not display assumed times for the the updates. If more than one of the options -notime and
-time are provided, the final one within the command line parsed determines the display.

-time Display assumed times for the the updates. If more than one of the options -notime and -time are
provided, the final one within the command line parsed determines the display.

-summary Display only summary information, not the entire history for each machine.

-s Same as -summary.

12.70.4 Exit Status

condor_updates_stats will exit with a status value of 0 (zero) upon success, and it will exit with a nonzero value upon
failure.

12.70.5 Examples

Assuming the default of 128 updates kept, and assuming that the update interval is 5 minutes, condor_updates_stats
displays:

$ condor_status -l host1 | condor_updates_stats --interval=300
(Reading from stdin)
*** Name/Machine = 'HOST1.cs.wisc.edu' MyType = 'Machine' ***
Type: Main

(continues on next page)

920 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

(continued from previous page)

Stats: Total=2277, Seq=2276, Lost=3 (0.13%)
0 @ Mon Feb 16 12:55:38 2004: Ok

...
28 @ Mon Feb 16 10:35:38 2004: Missed
29 @ Mon Feb 16 10:30:38 2004: Ok

...
127 @ Mon Feb 16 02:20:38 2004: Ok

Within this display, update numbered 27, which occurs later in time than the missed update numbered 28, is Ok. Each
change in state, in reverse time order, displays in this condensed version.

12.71 condor_urlfetch

fetch configuration given a URL

12.71.1 Synopsis

condor_urlfetch [-<daemon>] url local-url-cache-file

12.71.2 Description

Depending on the command line arguments, condor_urlfetch sends the result of a query from the url to both standard
output and to a file specified by local-url-cache-file, or it sends the contents of the file specified by local-url-cache-file
to standard output.

condor_urlfetch is intended to be used as the program to run when defining configuration, such as in the nonfunctional
example:

LOCAL_CONFIG_FILE = $(LIBEXEC)/condor_urlfetch -$(SUBSYSTEM) \
http://www.example.com/htcondor-baseconfig local.config |

The pipe character (|) at the end of this definition of the location of a configuration file changes the use of the definition.
It causes the command listed on the right hand side of this assignment statement to be invoked, and standard output
becomes the configuration. The value of $(SUBSYSTEM) becomes the daemon that caused this configuration to be
read. If $(SUBSYSTEM) evaluates to MASTER, then the URL query always occurs, and the result is sent to standard
output as well as written to the file specified by argument local-url-cache-file. When $(SUBSYSTEM) evaluates to a
daemon other than MASTER, then the URL query only occurs if the file specified by local-url-cache-file does not exist.
If the file specified by local-url-cache-file does exist, then the contents of this file is sent to standard output.

Note that if the configuration kept at the URL site changes, and reconfiguration is requested, the -<daemon> argument
needs to be -MASTER. This is the only way to guarantee that there will be a query of the changed URL contents, such
that they will make their way into the configuration.

12.71. condor_urlfetch 921

HTCondor Manual, Release 10.0.9

12.71.3 Options

-<daemon> The upper case name of the daemon issuing the request for the configuration output. If
-MASTER, then the URL query always occurs. If a daemon other than -MASTER, for example STARTD
or SCHEDD, then the URL query only occurs if the file defined by local-url-cache-file does not exist.

12.71.4 Exit Status

condor_urlfetch will exit with a status value of 0 (zero) upon success and non zero otherwise.

12.72 condor_userlog

Display and summarize job statistics from job log files.

12.72.1 Synopsis

condor_userlog [-help] [-total | -raw] [-debug] [-evict] [-j cluster | cluster.proc] [-all] [-hostname] logfile . . .

12.72.2 Description

condor_userlog parses the information in job log files and displays summaries for each workstation allocation and for
each job. See the condor_submit manual page for instructions for specifying that HTCondor write a log file for your
jobs.

If -total is not specified, condor_userlog will first display a record for each workstation allocation, which includes the
following information:

Job The cluster/process id of the HTCondor job.

Host The host where the job ran. By default, the host’s IP address is displayed. If -hostname is specified,
the host name will be displayed instead.

Start Time The time (month/day hour:minute) when the job began running on the host.

Evict Time The time (month/day hour:minute) when the job was evicted from the host.

Wall Time The time (days+hours:minutes) for which this workstation was allocated to the job.

Good Time The allocated time (days+hours:min) which contributed to the completion of this job. If
the job exited during the allocation, then this value will equal “Wall Time.” If the job performed a
checkpoint, then the value equals the work saved in the checkpoint during this allocation. If the job
did not exit or perform a checkpoint during this allocation, the value will be 0+00:00. This value
can be greater than 0 and less than “Wall Time” if the application completed a periodic checkpoint
during the allocation but failed to checkpoint when evicted.

CPU Usage The CPU time (days+hours:min) which contributed to the completion of this job.

condor_userlog will then display summary statistics per host:

Host/Job The IP address or host name for the host.

Wall Time The workstation time (days+hours:minutes) allocated by this host to the jobs specified in the
query. By default, all jobs in the log are included in the query.

Good Time The time (days+hours:minutes) allocated on this host which contributed to the completion of
the jobs specified in the query.

922 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

CPU Usage The CPU time (days+hours:minutes) obtained from this host which contributed to the com-
pletion of the jobs specified in the query.

Avg Alloc The average length of an allocation on this host (days+hours:minutes).

Avg Lost The average amount of work lost (days+hours:minutes) when a job was evicted from this host
without successfully performing a checkpoint.

Goodput This percentage is computed as Good Time divided by Wall Time.

Util. This percentage is computed as CPU Usage divided by Good Time.

condor_userlog will then display summary statistics per job:

Host/Job The cluster/process id of the HTCondor job.

Wall Time The total workstation time (days+hours:minutes) allocated to this job.

Good Time The total time (days+hours:minutes) allocated to this job which contributed to the job’s com-
pletion.

CPU Usage The total CPU time (days+hours:minutes) which contributed to this job’s completion.

Avg Alloc The average length of a workstation allocation obtained by this job in minutes
(days+hours:minutes).

Avg Lost The average amount of work lost (days+hours:minutes) when this job was evicted from a host
without successfully performing a checkpoint.

Goodput This percentage is computed as Good Time divided by Wall Time.

Util. This percentage is computed as CPU Usage divided by Good Time.

Finally, condor_userlog will display a summary for all hosts and jobs.

12.72.3 Options

-help Get a brief description of the supported options

-total Only display job totals

-raw Display raw data only

-debug Debug mode

-j Select a specific cluster or cluster.proc

-evict Select only allocations which ended due to eviction

-all Select all clusters and all allocations

-hostname Display host name instead of IP address

12.72. condor_userlog 923

HTCondor Manual, Release 10.0.9

12.72.4 General Remarks

Since the HTCondor job log file format does not contain a year field in the timestamp, all entries are assumed to occur
in the current year. Allocations which begin in one year and end in the next will be silently ignored.

12.72.5 Exit Status

condor_userlog will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.73 condor_userprio

Manage user priorities

12.73.1 Synopsis

condor_userprio -help

condor_userprio [-name negotiatorname] [-pool centralmanagerhostname[:portnumber]] [Edit option] | [Display
options [username]] [-inputfile filename]

12.73.2 Description

condor_userprio either modifies priority-related information or displays priority-related information. Displayed in-
formation comes from the accountant log, where the condor_negotiator daemon stores historical usage information
in the file at $(SPOOL)/Accountantnew.log. Which fields are displayed changes based on command line arguments.
condor_userprio with no arguments, lists the active users along with their priorities, in increasing priority order. The
-all option can be used to display more detailed information about each user, resulting in a rather wide display, and
includes the following columns:

Effective Priority The effective priority value of the user, which is used to calculate the user’s share when
allocating resources. A lower value means a higher priority, and the minimum value (highest priority)
is 0.5. The effective priority is calculated by multiplying the real priority by the priority factor.

Real Priority The value of the real priority of the user. This value follows the user’s resource usage.

Priority Factor The system administrator can set this value for each user, thus controlling a user’s effec-
tive priority relative to other users. This can be used to create different classes of users.

Res Used The number of resources currently used.

Accumulated Usage The accumulated number of resource-hours used by the user since the usage start
time.

Usage Start Time The time since when usage has been recorded for the user. This time is set when a user
job runs for the first time. It is reset to the present time when the usage for the user is reset.

Last Usage Time The most recent time a resource usage has been recorded for the user.

By default only users for whom usage was recorded in the last 24 hours, or whose priority is greater than the minimum
are listed.

The -pool option can be used to contact a different central manager than the local one (the default).

Options that do not begin with a - are treated as a username and results will restricted to users that match the given
name. More than one username can be specified.

924 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

For security purposes of authentication and authorization, specifying an Edit Option requires the ADMINISTRATOR
level of access.

12.73.3 Options

-help Display usage information and exit.

-name negotiatorname When querying ads from the condor_collector, only retrieve ads that came from
the negotiator with the given name.

-pool centralmanagerhostname[:portnumber] Contact the specified centralmanagerhostname with an
optional port number, instead of the local central manager. This can be used to check other pools.
NOTE: The host name (and optional port) specified refer to the host name (and port) of the con-
dor_negotiator to query for user priorities. This is slightly different than most HTCondor tools that
support a -pool option, and instead expect the host name (and port) of the condor_collector.

-inputfile filename Introduced for debugging purposes, read priority information from filename. The con-
tents of filename are expected to be the same as captured output from running a condor_userprio
-long command.

-delete username (Edit option) Remove the specified username from HTCondor’s accounting.

-resetall (Edit option) Reset the accumulated usage of all the users to zero.

-resetusage username (Edit option) Reset the accumulated usage of the user specified by username to
zero.

-setaccum username value (Edit option) Set the accumulated usage of the user specified by username to
the specified floating point value.

-setbegin username value (Edit option) Set the begin usage time of the user specified by username to the
specified value.

-setfactor username value (Edit option) Set the priority factor of the user specified by username to the
specified value.

-setlast username value (Edit option) Set the last usage time of the user specified by username to the
specified value.

-setprio username value (Edit option) Set the real priority of the user specified by username to the spec-
ified value.

-setceil username value (Edit option) Set the ceiling for the user specified by username to the specified
value. This value is the sum of the SlotWeight (See: SLOT_WEIGHT in condor_startd Configura-
tion File Macros) of all running jobs. By default, the slot weight of a running job is the number of
cores allocated to that job.

-activefrom month day year (Display option) Display information for users who have some recorded ac-
cumulated usage since the specified date.

-all (Display option) Display all available fields about each group or user.

-allusers (Display option) Display information for all the users who have some recorded accumulated
usage.

-negotiator (Display option) Force the query to come from the negotiator instead of the collector.

-autoformat[:jlhVr,tng] attr1 [attr2 . . .] or -af[:jlhVr,tng] attr1 [attr2 . . .] (Display option) Display at-
tribute(s) or expression(s) formatted in a default way according to attribute types. This option takes
an arbitrary number of attribute names as arguments, and prints out their values, with a space be-
tween each value and a newline character after the last value. It is like the -format option without
format strings.

12.73. condor_userprio 925

HTCondor Manual, Release 10.0.9

It is assumed that no attribute names begin with a dash character, so that the next word that begins
with dash is the start of the next option. The autoformat option may be followed by a colon character
and formatting qualifiers to deviate the output formatting from the default:

j print the job ID as the first field,

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The l and h characters may not be used
together.

-constraint <expr> (Display option) To be used in conjunction with the -long -modular or the -
autoformat options. Displays users and groups that match the <expr>.

-debug[:<opts>] (Display option) Without :<opts> specified, use configured debug level to send debug-
ging output to stderr. With :<opts> specified, these options are debug levels that override any
configured debug levels for this command’s execution to send debugging output to stderr.

-flat (Display option) Display information such that users within hierarchical groups are not listed with
their group.

-getreslist username (Display option) Display all the resources currently allocated to the user specified
by username.

-grouporder (Display option) Display submitter information with accounting group entries at the top of
the list, and in breadth-first order within the group hierarchy tree.

-grouprollup (Display option) For hierarchical groups, the display shows sums as computed for groups,
and these sums include sub groups.

-hierarchical (Display option) Display information such that users within hierarchical groups are listed
with their group.

-legacy (Display option) For use with the -long option, displays attribute names and values as a single
ClassAd.

-long (Display option) A verbose output which displays entire ClassAds.

-modular (Display option) Modifies the display when using the -long option, such that attribute names
and values are shown as distinct ClassAds.

-most (Display option) Display fields considered to be the most useful. This is the default set of fields
displayed.

-priority (Display option) Display fields with user priority information.

-quotas (Display option) Display fields relevant to hierarchical group quotas.

-usage (Display option) Display usage information for each group or user.

926 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.73.4 Examples

Example 1 Since the output varies due to command line arguments, here is an example of the default output for a pool
that does not use Hierarchical Group Quotas. This default output is the same as given with the -most Display option.

Last Priority Update: 1/19 13:14
Effective Priority Res Total Usage Time Since

User Name Priority Factor In Use (wghted-hrs) Last Usage
---------------------- ------------ --------- ------ ------------ ----------
www-cndr@cs.wisc.edu 0.56 1.00 0 591998.44 0+16:30
joey@cs.wisc.edu 1.00 1.00 1 990.15 <now>
suzy@cs.wisc.edu 1.53 1.00 0 261.78 0+09:31
leon@cs.wisc.edu 1.63 1.00 2 12597.82 <now>
raj@cs.wisc.edu 3.34 1.00 0 8049.48 0+01:39
jose@cs.wisc.edu 3.62 1.00 4 58137.63 <now>
betsy@cs.wisc.edu 13.47 1.00 0 1475.31 0+22:46
petra@cs.wisc.edu 266.02 500.00 1 288082.03 <now>
carmen@cs.wisc.edu 329.87 10.00 634 2685305.25 <now>
carlos@cs.wisc.edu 687.36 10.00 0 76555.13 0+14:31
ali@proj1.wisc.edu 5000.00 10000.00 0 1315.56 0+03:33
apu@nnland.edu 5000.00 10000.00 0 482.63 0+09:56
pop@proj1.wisc.edu 26688.11 10000.00 1 49560.88 <now>
franz@cs.wisc.edu 29352.06 500.00 109 600277.88 <now>
martha@nnland.edu 58030.94 10000.00 0 48212.79 0+12:32
izzi@nnland.edu 62106.40 10000.00 0 6569.75 0+02:26
marta@cs.wisc.edu 62577.84 500.00 29 193706.30 <now>
kris@proj1.wisc.edu 100597.94 10000.00 0 20814.24 0+04:26
boss@proj1.wisc.edu 318229.25 10000.00 3 324680.47 <now>
---------------------- ------------ --------- ------ ------------ ----------
Number of users: 19 784 4969073.00 0+23:59

Example 2 This is an example of the default output for a pool that uses hierarchical groups, and the groups accept
surplus. This leads to a very wide display.

$ condor_userprio -pool crane.cs.wisc.edu -allusers
Last Priority Update: 1/19 13:18
Group Config Use Effective Priority Res ␣
→˓Total Usage Time Since
User Name Quota Surplus Priority Factor In Use␣

→˓(wghted-hrs) Last Usage
------------------------------------ --------- ------- ------------ --------- ------ ----
→˓-------- ----------
<none> 0.00 yes 1.00 0 ␣
→˓ 6.78 9+03:52
johnsm@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 6.62 9+19:42
John.Smith@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.02 9+03:52
Sedge@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.05 13+03:03
Duck@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.02 31+00:28
other@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.04 16+03:42
(continues on next page)

12.73. condor_userprio 927

HTCondor Manual, Release 10.0.9

(continued from previous page)

Duck 2.00 no 1.00 0 ␣
→˓ 0.02 13+02:57
goose@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.02 13+02:57
Sedge 4.00 no 1.00 0 ␣
→˓ 0.17 9+03:07
johnsm@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.13 9+03:08
Half@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.02 31+00:02
John.Smith@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.05 9+03:07
other@crane.cs.wisc.edu 0.50 1.00 0 ␣

→˓ 0.01 28+19:34
------------------------------------ --------- ------- ------------ --------- ------ ----
→˓-------- ----------
Number of users: 10 ByQuota 0 ␣
→˓ 6.97

12.73.5 Exit Status

condor_userprio will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.74 condor_vacate

Vacate jobs that are running on the specified hosts

12.74.1 Synopsis

condor_vacate [-help | -version]

condor_vacate [-graceful | -fast] [-debug] [-pool centralmanagerhostname[:portnumber]] [-name hostname | host-
name | -addr “<a.b.c.d:port>” | “<a.b.c.d:port>” | -constraint expression | -all]

12.74.2 Description

condor_vacate causes HTCondor to checkpoint any running jobs on a set of machines and force the jobs to vacate the
machine. The job(s) remains in the submitting machine’s job queue.

Given the (default) -graceful option, jobs are killed and HTCondor restarts the job from the beginning somewhere else.
condor_vacate has no effect on a machine with no HTCondor job currently running.

There is generally no need for the user or administrator to explicitly run condor_vacate. HTCondor takes care of jobs
in this way automatically following the policies given in configuration files.

928 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.74.3 Options

-help Display usage information

-version Display version information

-graceful Inform the job to checkpoint, then soft-kill it.

-fast Hard-kill jobs instead of checkpointing them

-debug Causes debugging information to be sent to stderr, based on the value of the configuration
variable TOOL_DEBUG.

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-name hostname Send the command to a machine identified by hostname

hostname Send the command to a machine identified by hostname

-addr “<a.b.c.d:port>” Send the command to a machine’s master located at “<a.b.c.d:port>”

“<a.b.c.d:port>” Send the command to a machine located at “<a.b.c.d:port>”

-constraint expression Apply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

12.74.4 Exit Status

condor_vacate will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.74.5 Examples

To send a condor_vacate command to two named machines:

$ condor_vacate robin cardinal

To send the condor_vacate command to a machine within a pool of machines other than the local pool, use the -pool
option. The argument is the name of the central manager for the pool. Note that one or more machines within the pool
must be specified as the targets for the command. This command sends the command to a the single machine named
cae17 within the pool of machines that has condor.cae.wisc.edu as its central manager:

$ condor_vacate -pool condor.cae.wisc.edu -name cae17

12.75 condor_vacate_job

vacate jobs in the HTCondor queue from the hosts where they are running

12.75. condor_vacate_job 929

HTCondor Manual, Release 10.0.9

12.75.1 Synopsis

condor_vacate_job [-help | -version]

condor_vacate_job [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr “<a.b.c.d:port>”]
[-fast] cluster. . . | cluster.process. . . | user. . . | -constraint expression . . .

condor_vacate_job [-pool centralmanagerhostname[:portnumber] | -name scheddname] | [-addr “<a.b.c.d:port>”]
[-fast] -all

12.75.2 Description

condor_vacate_job finds one or more jobs from the HTCondor job queue and vacates them from the host(s) where they
are currently running. The jobs remain in the job queue and return to the idle state.

A running job running will be sent a soft kill signal (SIGTERM by default, or whatever is defined as the SoftKillSig
in the job ClassAd), and HTCondor will restart the job from the beginning somewhere else.

If the -fast option is used, the job(s) will be immediately killed.

If the -name option is specified, the named condor_schedd is targeted for processing. If the -addr option is used, the
condor_schedd at the given address is targeted for processing. Otherwise, the local condor_schedd is targeted. The
jobs to be vacated are identified by one or more job identifiers, as described below. For any given job, only the owner
of the job or one of the queue super users (defined by the QUEUE_SUPER_USERS macro) can vacate the job.

Using condor_vacate_job on jobs which are not currently running has no effect.

12.75.3 Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber] Specify a pool by giving the central manager’s host name
and an optional port number

-name scheddname Send the command to a machine identified by scheddname

-addr “<a.b.c.d:port>” Send the command to a machine located at “<a.b.c.d:port>”

cluster Vacate all jobs in the specified cluster

cluster.process Vacate the specific job in the cluster

user Vacate jobs belonging to specified user

-constraint expression Vacate all jobs which match the job ClassAd expression constraint

-all Vacate all the jobs in the queue

-fast Perform a fast vacate and hard kill the jobs

930 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.75.4 General Remarks

Do not confuse condor_vacate_job with condor_vacate. condor_vacate is given a list of hosts to vacate, regardless
of what jobs happen to be running on them. Only machine owners and administrators have permission to use con-
dor_vacate to evict jobs from a given host. condor_vacate_job is given a list of job to vacate, regardless of which
hosts they happen to be running on. Only the owner of the jobs or queue super users have permission to use con-
dor_vacate_job.

12.75.5 Examples

To vacate job 23.0:

$ condor_vacate_job 23.0

To vacate all jobs of a user named Mary:

$ condor_vacate_job mary

To vacate all vanilla universe jobs owned by Mary:

$ condor_vacate_job -constraint 'JobUniverse == 5 && Owner == "mary"'

Note that the entire constraint, including the quotation marks, must be enclosed in single quote marks for most shells.

12.75.6 Exit Status

condor_vacate_job will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

12.76 condor_version

print HTCondor version and platform information

12.76.1 Synopsis

condor_version [-help]

condor_version [-arch] [-opsys] [-syscall]

12.76.2 Description

With no arguments, condor_version prints the currently installed HTCondor version number and platform information.
The version number includes a build identification number, as well as the date built.

12.76. condor_version 931

HTCondor Manual, Release 10.0.9

12.76.3 Options

-help Print usage information

-arch Print this machine’s ClassAd value for Arch

-opsys Print this machine’s ClassAd value for OpSys

-syscall Get any requested version and/or platform information from the libcondorsyscall.a that this
HTCondor pool is configured to use, instead of using the values that are compiled into the tool itself.
This option may be used in combination with any other options to modify where the information is
coming from.

12.76.4 Exit Status

condor_version will exit with a status value of 0 (zero) upon success, and it should never exit with a failing value.

12.77 condor_wait

Wait for jobs to finish

12.77.1 Synopsis

condor_wait [-help | -version]

condor_wait [-debug] [-status] [-echo] [-wait seconds] [-num number-of-jobs] log-file [job ID]

12.77.2 Description

condor_wait watches a job event log file (created with the log command within a submit description file) and returns
when one or more jobs from the log have completed or aborted.

Because condor_wait expects to find at least one job submitted event in the log file, at least one job must have been
successfully submitted with condor_submit before condor_wait is executed.

condor_wait will wait forever for jobs to finish, unless a shorter wait time is specified.

12.77.3 Options

-help Display usage information

-version Display version information

-debug Show extra debugging information.

-status Show job start and terminate information.

-echo Print the events out to stdout.

-wait seconds Wait no more than the integer number of seconds. The default is unlimited time.

-num number-of-jobs Wait for the integer number-of-jobs jobs to end. The default is all jobs in the log
file.

log file The name of the log file to watch for information about the job.

932 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

job ID A specific job or set of jobs to watch. If the job ID is only the job ClassAd attribute ClusterId,
then condor_wait waits for all jobs with the given ClusterId. If the job ID is a pair of the job
ClassAd attributes, given by ClusterId.ProcId, then condor_wait waits for the specific job with
this job ID. If this option is not specified, all jobs that exist in the log file when condor_wait is
invoked will be watched.

12.77.4 General Remarks

condor_wait is an inexpensive way to test or wait for the completion of a job or a whole cluster, if you are trying to get
a process outside of HTCondor to synchronize with a job or set of jobs.

It can also be used to wait for the completion of a limited subset of jobs, via the -num option.

12.77.5 Examples

$ condor_wait logfile

This command waits for all jobs that exist in logfile to complete.

$ condor_wait logfile 40

This command waits for all jobs that exist in logfile with a job ClassAd attribute ClusterId of 40 to complete.

$ condor_wait -num 2 logfile

This command waits for any two jobs that exist in logfile to complete.

$ condor_wait logfile 40.1

This command waits for job 40.1 that exists in logfile to complete.

$ condor_wait -wait 3600 logfile 40.1

This waits for job 40.1 to complete by watching logfile, but it will not wait more than one hour (3600 seconds).

12.77.6 Exit Status

condor_wait exits with 0 if and only if the specified job or jobs have completed or aborted. condor_wait returns 1
if unrecoverable errors occur, such as a missing log file, if the job does not exist in the log file, or the user-specified
waiting time has expired.

12.78 condor_watch_q

Track the status of jobs over time.

12.78. condor_watch_q 933

HTCondor Manual, Release 10.0.9

12.78.1 Synopsis

condor_watch_q [-help]

condor_watch_q [general options] [display options] [behavior options] [tracking options]

12.78.2 Description

condor_watch_q is a tool for tracking the status of jobs over time without repeatedly querying the condor_schedd. It
does this by reading job event log files. These files may be specified directly (the -files option), or indirectly via a
single query to the condor_schedd when condor_watch_q starts up (options like -users or -clusters).

condor_watch_q provides a variety of options for output formatting, including: colorized output, tabular information,
progress bars, and text summaries. These display options are highly-customizable via command line options.

condor_watch_q also provides a minimal language for exiting when certain conditions are met by the tracked jobs.
For example, it can be configured to exit when all of the tracked jobs have terminated.

12.78.3 Examples

If no users, cluster ids, or event logs are given, condor_watch_q will default to tracking all of the current user’s jobs.
Thus, with no arguments,

condor_watch_q

will track all of your currently-active clusters.

To track jobs from a specific cluster, use the -clusters option, passing the cluster ID:

condor_watch_q -clusters 12345

To track jobs from a specific user, use the -users option, passing the user’s name the actual query will be the for the
Owner job ad attribute):

condor_watch_q -users jane

To track jobs from a specific event log file, use the -files option, passing the path to the event log:

condor_watch_q -users /home/jane/events.log

To track jobs from a specific batch, use the -batches option, passing the batch name:

condor_watch_q -batches BatchOfJobsFromTuesday

All of the above “tracking” options can be used together, and multiple values may be passed to each one. For example,
to track all of the jobs that are: owned by jane or jim, in cluster 12345, or in the event log /home/jill/events.log,
run

condor_watch_q -users jane jim -clusters 12345 -files /home/jill/events.log

By default, condor_watch_q will never exit on its own (unless it encounters an error or it is not tracking any jobs). You
can tell it to exit when certain conditions are met. For example, to exit with status 0 when all of the jobs it is tracking
are done or with status 1 when any job is held, you could run

934 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

condor_watch_q -exit all,done,0 -exit any,held,1

12.78.4 Options

General Options

-help Display the help message and exit.

-debug Causes debugging information to be sent to stderr.

Tracking Options

These options control which jobs condor_watch_q will track, and how it discovers them.

-users USER [USER . . .] Choose which users to track jobs for. All of the user’s jobs will be tracked.
One or more user names may be passed.

-clusters CLUSTER_ID [CLUSTER_ID . . .] Which cluster IDs to track jobs for. One or more cluster
ids may be passed.

-files FILE [FILE . . .] Which job event log files (i.e., the log file from condor_submit) to track jobs
from. One or more file paths may be passed.

-batches BATCH_NAME [BATCH_NAME . . .] Which job batch names to track jobs for. One or more
batch names may be passed.

-collector COLLECTOR Which collector to contact to find the schedd, if needed. Defaults to the local
collector.

-schedd SCHEDD Which schedd to contact for queries, if needed. Defaults to the local schedd.

Behavior Options

-exit GROUPER,JOB_STATUS[,EXIT_STATUS] Specify conditions under which condor_watch_q
should exit. GROUPER is one of all, any or none. JOB_STATUS is one of active, done, idle,
or held. The “active” status means “in the queue”, and includes jobs in the idle, running, and held
states. EXIT_STATUS may be any valid exit status integer. To specify multiple exit conditions, pass
this option multiple times. condor_watch_q will exit when any of the conditions are satisfied.

Display Options

These options control how condor_watch_q formats its output. Many of them are “toggles”: -x enables option “x”,
and -no-x disables it.

-groupby {batch, log, cluster} How to group jobs into rows for display in the table. Must be one of
batch (group by job batch name), log (group by event log file path), or cluster (group by cluster
ID). Defaults to batch.

-table/-no-table Enable/disable the table. Enabled by default.

-progress/-no-progress Enable/disable the progress bar. Enabled by default.

-row-progress/-no-row-progress Enable/disable the progress bar for each row. Enabled by default.

-summary/-no-summary Enable/disable the summary line. Enabled by default.

12.78. condor_watch_q 935

HTCondor Manual, Release 10.0.9

-summary-type {totals, percentages} Choose what to display on the summary line, totals (the number
of each jobs in each state), or percentages (the percentage of jobs in each state, of the total number
of tracked jobs) By default, show totals.

-updated-at/-no-updated-at Enable/disable the “updated at” line. Enabled by default.

-abbreviate/-no-abbreviate Enable/disable abbreviating path components to the shortest somewhat-
unique prefix. Disabled by default.

-color/-no-color Enable/disable colored output. Enabled by default if connected to a tty. Disabled on
Windows if colorama is not available (https://pypi.org/project/colorama/).

-refresh/-no-refresh Enable/disable refreshing output. If refreshing is disabled, output will be appended
instead. Enabled by default if connected to a tty.

12.78.5 Exit Status

Returns 0 when sent a SIGINT (keyboard interrupt).

Returns 0 if no jobs are found to track.

Returns 1 for fatal internal errors.

Can be configured via the -exit option to return any valid exit status when a certain condition is met.

12.78.6 Author

Center for High Throughput Computing, University of Wisconsin-Madison

12.78.7 Copyright

Copyright © 1990-2020 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

12.79 condor_who

Display information about owners of jobs and jobs running on an execute machine

12.79.1 Synopsis

condor_who [help options] [address options] [display options]

936 Chapter 12. Command Reference Manual (man pages)

https://pypi.org/project/colorama/

HTCondor Manual, Release 10.0.9

12.79.2 Description

condor_who queries and displays information about the user that owns the jobs running on a machine. It is intended to
be run on an execute machine.

The options that may be supplied to condor_who belong to three groups:

• Help options provide information about the condor_who tool.

• Address options allow destination specification for query.

• Display options control the formatting and which of the queried information to display.

At any time, only one help option and one address option may be specified. Any number of display options may be
specified.

condor_who obtains its information about jobs by talking to one or more condor_startd daemons. So, condor_who
must identify the command port of any condor_startd daemons. An address option provides this information. If no
address option is given on the command line, then condor_who searches using this ordering:

1. A defined value of the environment variable CONDOR_CONFIG specifies the directory where log and address files
are to be scanned for needed information.

2. With the aim of finding all condor_startd daemons, condor_who utilizes the same algorithm it would using the
-allpids option. The Linux ps or the Windows tasklist program obtains all PIDs. As Linux root or Windows
administrator, the Linux lsof or the Windows netstat identifies open sockets and from there the PIDs of listen
sockets. Correlating the two lists of PIDs results in identifying the command ports of all condor_startd daemons.

12.79.3 Options

-help (help option) Display usage information

-daemons (help option) Display information about the daemons running on the specified machine, in-
cluding the daemon’s PID, IP address and command port

-diagnostic (help option) Display extra information helpful for debugging

-verbose (help option) Display PIDs and addresses of daemons

-address hostaddress (address option) Identify the condor_startd host address to query

-allpids (address option) Query all local condor_startd daemons

-logdir directoryname (address option) Specifies the directory containing log and address files that con-
dor_who will scan to search for command ports of condor_start daemons to query

-pid PID (address option) Use the given PID to identify the condor_startd daemon to query

-long (display option) Display entire ClassAds

-wide (display option) Displays fields without truncating them in order to fit screen width

-format fmt attr (display option) Display attribute attr in format fmt. To display the attribute or expression
the format must contain a single printf(3)-style conversion specifier. Attributes must be from the
resource ClassAd. Expressions are ClassAd expressions and may refer to attributes in the resource
ClassAd. If the attribute is not present in a given ClassAd and cannot be parsed as an expression, then
the format option will be silently skipped. %r prints the unevaluated, or raw values. The conversion
specifier must match the type of the attribute or expression. %s is suitable for strings such as Name,
%d for integers such as LastHeardFrom, and %f for floating point numbers such as LoadAvg. %v
identifies the type of the attribute, and then prints the value in an appropriate format. %V identifies
the type of the attribute, and then prints the value in an appropriate format as it would appear in the
-long format. As an example, strings used with %V will have quote marks. An incorrect format

12.79. condor_who 937

HTCondor Manual, Release 10.0.9

will result in undefined behavior. Do not use more than one conversion specifier in a given format.
More than one conversion specifier will result in undefined behavior. To output multiple attributes
repeat the -format option once for each desired attribute. Like printf(3)-style formats, one may
include other text that will be reproduced directly. A format without any conversion specifiers may
be specified, but an attribute is still required. Include a backslash followed by an ‘n’ to specify a line
break.

-autoformat[:lhVr,tng] attr1 [attr2 . . .] or -af[:lhVr,tng] attr1 [attr2 . . .] (display option) Display at-
tribute(s) or expression(s) formatted in a default way according to attribute types. This option takes
an arbitrary number of attribute names as arguments, and prints out their values, with a space be-
tween each value and a newline character after the last value. It is like the -format option without
format strings.

It is assumed that no attribute names begin with a dash character, so that the next word that begins
with dash is the start of the next option. The autoformat option may be followed by a colon character
and formatting qualifiers to deviate the output formatting from the default:

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print “raw”, or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

Use -af:h to get tabular values with headings.

Use -af:lrng to get -long equivalent format.

The newline and comma characters may not be used together. The l and h characters may not be used
together.

12.79.4 Examples

Example 1 Sample output from the local machine, which is running a single HTCondor job. Note that the output of
the PROGRAM field will be truncated to fit the display, similar to the artificial truncation shown in this example output.

$ condor_who

OWNER CLIENT SLOT JOB RUNTIME PID PROGRAM
smith1@crane.cs.wisc.edu crane.cs.wisc.edu 2 320.0 0+00:00:08 7776 D:\scratch\condor\
→˓execut

Example 2 Verbose sample output.

$ condor_who -verbose

LOG directory "D:\scratch\condor\master\test/log"

Daemon PID Exit Addr Log, Log.Old
------ --- ---- ---- ---, -------

(continues on next page)

938 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

(continued from previous page)

Collector 6788 <128.105.136.32:7977> CollectorLog, CollectorLog.old
Credd 8148 <128.105.136.32:9620> CredLog, CredLog.old
Master 5976 <128.105.136.32:64980> MasterLog,
Match MatchLog, MatchLog.old
Negotiator 6600 NegotiatorLog, NegotiatorLog.old
Schedd 6336 <128.105.136.32:64985> SchedLog, SchedLog.old
Shadow ShadowLog,
Slot1 StarterLog.slot1,
Slot2 7272 <128.105.136.32:65026> StarterLog.slot2,
Slot3 StarterLog.slot3,
Slot4 StarterLog.slot4,
SoftKill SoftKillLog,
Startd 7416 <128.105.136.32:64984> StartLog, StartLog.old
Starter StarterLog,
TOOL TOOLLog,

OWNER CLIENT SLOT JOB RUNTIME PID PROGRAM
smith1@crane.cs.wisc.edu crane.cs.wisc.edu 2 320.0 0+00:01:28 7776 D:\scratch\condor\
→˓execut

12.79.5 Exit Status

condor_who will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.80 get_htcondor

Install and configure HTCondor on Linux machines.

12.80.1 Synopsis

get_htcondor <-h | –help>

get_htcondor [–[no-]dry-run] [–channel name] [–minicondor | [–central-manager | –submit | –execute] central-
manager-name] [–shared-filesystem-domain filesystem-domain-name]

get_htcondor –dist

12.80.2 Description

This tool installs and configure HTCondor on Linux machines. See https://htcondor.readthedocs.io/en/latest/
getting-htcondor for detailed instructions. This page is intended as a quick reference to its options; it also includes
a section about the reasons for the configurations it installs.

12.80. get_htcondor 939

https://htcondor.readthedocs.io/en/latest/getting-htcondor
https://htcondor.readthedocs.io/en/latest/getting-htcondor

HTCondor Manual, Release 10.0.9

12.80.3 Options

-help Print a usage reminder.

–dry-run Do not issue commands, only print them. [default]

–no-dry-run Issue all the commands needed to install HTCondor.

–channel name Specify channel name to install; name may be current, the most recent release with new
features [default] or stable, the most recent release with only bug-fixes

–dist Display the detected operating system and exit.

–minicondor Configure as a single-machine (“mini”) HTCondor. [default]

–central-manager central-manager-name

–submit central-manager-name

–execute central-manager-name

Configure this installation with the central manager, submit, or execute role.

–shared-filesystem-domain filesystem-domain-name

Configure this installation to assume that machines specifying the same filesystem-domain-
name share a filesystem.

12.80.4 Exit Status

On success, exits with code 0. Failures detected by get_htcondor will result in exit code 1. Other failures may have
other exit codes.

12.80.5 Installed Configuration

This tool may install four different configurations. We discuss the single-machine configuration first, and then the three
parts of the multi-machine configuration as a group. Our goal is to document the reasoning behind the details, because
the details can obscure that reasoning, and because the details will change as we continue to improve HTCondor.

As a general note, the configurations this tool installs make extensive use of metaknobs, lines in HTCondor
configuration files that look like use x : y. To determine exactly what configuration a metaknob sets, run
condor_config_val use x:y.

Single-Machine Installation

The single-machine installation performed by get_htcondor uses the minicondor package. (A “mini” HTCondor
is a single-machine HTCondor system installed with administrative privileges.) Because the different roles in the
HTCondor system are all on the same machine, we configure all network communications to occur over the loopback
device, where we don’t have to worry about eavesdropping or requiring encryption. We use the FS method, which
depends on the local filesytem, to identify which user is attempting to connect, and restrict access correspondingly.

The get_htcondor tool installs the standard minicondor package from the HTCondor repositories; see the file it creates,
/etc/condor/config.d/00-minicondor, for details.

940 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

Multi-Machine Installation

Because the three roles must communicate over the network to form a complete pool in this case„ security is a much
bigger concern; we therefore require authentication and encryption on every connection. Thankfully, almost all of the
network communication is daemon-to-daemon, so we don’t have to burden individual users with that aspect of security.
Instead, users submit jobs on the submit-role machine, using FS to authenticate. Users may also need to contact the
central manager (when running condor_status, for example), but they never need to write anything to it, so we’ve
configured authentication for read-only commands to be optional.

Daemon-to-daemon communication is authenticated with the IDTOKENS method. (If a user needs to submit jobs re-
motely, they can also use the IDTOKENS method, it’s just more work; see condor_token_fetch.) Each role installed
by this tool has a copy of the password, which is used to generate an IDTOKEN, which is used for all daemon-to-daemon
authentication; both the password and the IDTOKEN can only be read by privileged processes. An IDTOKEN can
only be validated by the holder of the corresponding password, so each daemon in the pool has to have both.

This tool installs the role-specific configuration in the files /etc/condor/config.d/01-central-manager.
config, /etc/condor/config.d/01-submit.config, and /etc/condor/config.d/01-execute.config;
consult them for details.

12.81 gidd_alloc

find a GID within the specified range which is not used by any process

12.81.1 Synopsis

gidd_alloc min-gid max-gid

12.81.2 Description

This program will scan the alive PIDs, looking for which GID is unused in the supplied, inclusive range specified by
the required arguments min-gid and max-gid. Upon finding one, it will add the GID to its own supplementary group
list, and then scan the PIDs again expecting to find only itself using the GID. If no collision has occurred, the program
exits, otherwise it retries.

12.81.3 General Remarks

This is a program only available for the Linux ports of HTCondor.

12.81.4 Exit Status

gidd_alloc will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

12.81. gidd_alloc 941

HTCondor Manual, Release 10.0.9

12.82 htcondor

Manage HTCondor jobs, job sets, and resources

12.82.1 Synopsis

htcondor [-h | –help] [-v | -q]

htcondor job [submit | status | resources] [–resource resource-type] [–runtime time-seconds] [–email email-address]
[–skip-history]

htcondor jobset submit description-file
htcondor jobset list [–allusers]
htcondor jobset [status | remove] job-set-name [–owner user-name] [–nobatch] [–skip-history]

htcondor dag submit dag-file
htcondor dag status dagman-job-id

12.82.2 Description

htcondor is a tool for managing HTCondor jobs, job sets, and resources.

For jobs, the –resource option allows you to run jobs on resources other than your local HTCondor pool. By specifying
either EC2 or Slurm here, the tool provisions resources for the time described by the –runtime option (in seconds)
and sends your HTCondor job to run on them. It assumes you have already completed the necessary setup tasks,
such as creating an account for Slurm submissions or making your AWS access keys available for EC2 submissions.
submissions.

12.82.3 Global Options

-h, –help Display the help message. Can also be specified after any subcommand to display the options
available for each subcommand.

-q Reduce verbosity of log messages.

-v Increase verbosity of log messages.

12.82.4 Job Options

–resource Resource type used to run this job. Currently supports Slurm and EC2. Assumes the necessary
setup is complete and security tokens available.

–runtime Amount of time in seconds to allocate resources. Used in conjunction with the –resource flag.

–email Email address to receive notification messages. Used in conjunction with the –resource flag.

–skip-history Passed to the status subcommand to skip checking history if job not found in the active job
queue.

942 Chapter 12. Command Reference Manual (man pages)

HTCondor Manual, Release 10.0.9

12.82.5 Job Set Options

–allusers Passed to the list subcommand to show job sets from all users rather than just the current user.

–nobatch Passed to the status subcommand to display the status of individual job clusters within a job set

–owner=USERNAME Passed to the status or remove subcommand to act on job sets submitted by the
specified user instead of the current user. Using this option to remove job sets requires superuser
permissions.

–skip-history Passed to the status subcommand to skip checking history if job clusters are not found in
the active job queue.

12.82.6 Exit Status

htcondor will exit with a non-zero status value if it fails and zero status if it succeeds.

12.83 procd_ctl

command line interface to the condor_procd

12.83.1 Synopsis

procd_ctl -h

procd_ctl -A address-file [command]

12.83.2 Description

This is a programmatic interface to the condor_procd daemon. It may be used to cause the condor_procd to do anything
that the condor_procd is capable of doing, such as tracking and managing process families.

This is a program only available for the Linux ports of HTCondor.

The -h option prints out usage information and exits. The address-file specification within the -A argument specifies
the path and file name of the address file which the named pipe clients must use to speak with the condor_procd.

One command is given to the condor_procd. The choices for the command are defined by the Options.

12.83.3 Options

TRACK_BY_ASSOCIATED_GID GID [PID] Use the specified GID to track the specified family
rooted at PID. If the optional PID is not specified, then the PID used is the one given or assumed by
condor_procd.

GET_USAGE [PID] Get the total usage information about the PID family at PID. If the optional PID is
not specified, then the PID used is the one given or assumed by condor_procd.

DUMP [PID] Print out information about both the root PID being watched and the tree of processes
under this root PID. If the optional PID is not specified, then the PID used is the one given or assumed
by condor_procd.

LIST [PID] With no PID given, print out information about all the watched processes. If the optional
PID is specified, print out information about the process specified by PID and all its child processes.

12.83. procd_ctl 943

HTCondor Manual, Release 10.0.9

SIGNAL_PROCESS signal [PID] Send the signal to the process specified by PID. If the optional PID
is not specified, then the PID used is the one given or assumed by condor_procd.

SUSPEND_FAMILY PID Suspend the process family rooted at PID.

CONTINUE_FAMILY PID Continue execution of the process family rooted at PID.

KILL_FAMILY PID Kill the process family rooted at PID.

UNREGISTER_FAMILY PID Stop tracking the process family rooted at PID.

SNAPSHOT Perform a snapshot of the tracked family tree.

QUIT Disconnect from the condor_procd and exit.

12.83.4 General Remarks

This program may be used in a standalone mode, independent of HTCondor, to track process families. The programs
procd_ctl and gidd_alloc are used with the condor_procd in standalone mode to interact with the daemon and inquire
about certain state of running processes on the machine, respectively.

12.83.5 Exit Status

procd_ctl will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

944 Chapter 12. Command Reference Manual (man pages)

CHAPTER

THIRTEEN

CLASSAD ATTRIBUTES

13.1 ClassAd Types

ClassAd attributes vary, depending on the entity producing the ClassAd. Therefore, each ClassAd has an attribute
named MyType, which describes the type of ClassAd. In addition, the condor_collector appends attributes to any
daemon’s ClassAd, whenever the condor_collector is queried. These additional attributes are listed in the unnum-
bered subsection labeled ClassAd Attributes Added by the condor_collector on the ClassAd Attributes Added by the
condor_collector page.

Here is a list of defined values for MyType, as well as a reference to a list attributes relevant to that type.

Accounting The condor_negotiator keeps persistent records for every submitter who has every submitted a job to the
pool, containing total usage and priority information. Attributes in the accounting ad are listed and described
in Accounting ClassAd Attributes The accounting ads for active users can be queried with the condor_userprio
command, or the accounting ads for all users, including historical ones can be queried with condor_userprio
-negotiator. Accounting ads hold information about total usage over the user’s HTCondor lifetime, but submitter
ads hold instantaneous information.

Collector Each condor_collector daemon describes its state. ClassAd attributes that appear in a Collector ClassAd
are listed and described in the unnumbered subsection labeled Collector ClassAd Attributes on the Collector
ClassAd Attributes page. These ads can be shown by running condor_status -collector.

DaemonMaster Each condor_master daemon describes its state. ClassAd attributes that appear in a DaemonMaster
ClassAd are listed and described in the unnumbered subsection labeled DaemonMaster ClassAd Attributes on
the DaemonMaster ClassAd Attributes. These ads can be shown by running condor_status -master.

Defrag Each condor_defrag daemon describes its state. ClassAd attributes that appear in a Defrag ClassAd are listed
and described in the unnumbered subsection labeled Defrag ClassAd Attributes on the Defrag ClassAd Attributes
page. This ad can be shown by running condor_status -defrag.

Grid The condor_gridmanager describes the state of each remote service to which it submits grid universe jobs.
ClassAd attributes that appear in a Grid ClassAd are listed and described in the unnumbered subsection labeled
Grid ClassAd Attributes on the Grid ClassAd Attributes page. These ad can be shown by running condor_status
-grid.

945

HTCondor Manual, Release 10.0.9

Job Each submitted job describes its state, for use by the condor_negotiator daemon in finding a machine upon which
to run the job. ClassAd attributes that appear in a job ClassAd are listed and described in the unnumbered
subsection labeled Job ClassAd Attributes on the Job ClassAd Attributes page. These ads can be shown by
running condor_q.

Machine Each machine in the pool (and hence, the condor_startd daemon running on that machine) describes its
state. ClassAd attributes that appear in a machine ClassAd are listed and described in the unnumbered subsection
labeled Machine ClassAd Attributes on the Machine ClassAd Attributes page. These ads can be shown by running
condor_status.

Negotiator Each condor_negotiator daemon describes its state. ClassAd attributes that appear in a Negotiator Clas-
sAd are listed and described in the unnumbered subsection labeled Negotiator ClassAd Attributes on the Nego-
tiator ClassAd Attributes page. This ad can be shown by running condor_status -negotiator.

Scheduler Each condor_schedd daemon describes its state. ClassAd attributes that appear in a Scheduler ClassAd
are listed and described in the unnumbered subsection labeled Scheduler ClassAd Attributes on the Scheduler
ClassAd Attributes page. These ads can be shown by running condor_status -scheduler.

Submitter Each submitter is described by a ClassAd. ClassAd attributes that appear in a Submitter ClassAd are listed
and described in the unnumbered subsection labeled Submitter ClassAd Attributes on the Submitter ClassAd
Attributes page. These ads can be shown run running condor_status -submitter.

In addition, statistics are published for each DaemonCore daemon. These attributes are listed and described in the un-
numbered subsection labeled DaemonCore Statistics Attributes on the :doc:/classad-attributes/daemon-core-statistics-
attributes` page.

13.2 Accounting ClassAd Attributes

The condor_negotiator keeps information about each submitter and group in accounting ads that are also sent to the
condor_collector. Th condor_userprio command queries and displays these ads. For example, to see the full set of
raw accounting ads, run the command:

$ condor_userprio -l

¶ If this record is for an accounting group with quota, the name of the group.

¶ The total number of seconds this submitter has used since they first arrived in the pool. Note this is not weighted
by cpu cores – an eight core job running for one hour has a usage of 3600, compare with WeightedAccumulate-
dUsage

¶ The Unix epoch time in seconds when this user claimed resources in the system. This is persistent and survives
reboots and HTCondor upgrades.

¶ If this record is for an accounting group with quota, the amount of quota statically configured.

¶ A boolean which is true if this record represents an accounting group

¶ The unix epoch time, in seconds, when this submitter last had claimed resources.

¶ The fully qualified name of the user or accounting group. It will be of the form name@submit.domain.

¶ The current effective priority of this user.

946 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ The priority factor of this user.

¶ The current number of slots claimed.

¶ When the negotiator computes the fair share of the pool that each user should get, assuming they have infinite jobs
and every job matches every slot, the SubmitterShare is the fraction of the pool this user should get. A floating
point number from 0 to 1.0.

¶ When the negotiator computes the fair share of the pool that each user should get, assuming they have infinite jobs
and every job matches every slot, the SubmitterLimit is the absolute number of cores this user should get.

¶ The total amount of core-seconds used by this user since they arrived in the system, assuming SLOT_WEIGHT =
CPUS

¶ A total number of requested cores across all running jobs from the submitter.

13.3 Job ClassAd Attributes

Both active HTCondor jobs (those in a condor_schedd) and historical jobs (those in the history file), are described by
classads. Active jobs can be queried and displayed with the condor_q command, and historical jobs are queried with
the condor_history command, as in the examples below. Note that not all job attributes are described here, some are
for internal HTCondor use, and are subject to change. Also, not all jobs contain all attributes.

$ condor_history -l username
$ condor_q -l

¶ Boolean set to true True if the ad is absent.

¶ The accounting group name, as set in the submit description file via the accounting_group command. This attribute
is only present if an accounting group was requested by the submission. See the User Priorities and Negotiation
section for more information about accounting groups.

¶ The user name associated with the accounting group. This attribute is only present if an accounting group was
requested by the submission.

¶ Formally, the length of time in seconds from when the shadow sends a claim activation to when the shadow receives
a claim deactivation.

Informally, this is how much time HTCondor’s fair-share mechanism will charge the job for, plus one round-trip
over the network.

This attribute may not be used in startd policy expressions and is not computed until complete.

¶ Formally, the length of time in seconds from when the shadow received notification that the job had been spawned
to when the shadow received notification that the spawned process has exited.

Informally, this is the duration limited by AllowedExecuteDuration.

This attribute may not be used in startd policy expressions and is not computed until complete.

¶ Formally, the length of time in seconds from when the shadow sends a claim activation to when the shadow it notified
that the job was spawned.

Informally, this is how long it took the starter to prepare to execute the job. That includes file transfer, so the
difference between this duration and the duration of input file transfer is (roughly) the execute-side overhead of
preparing to start the job.

This attribute may not be used in startd policy expressions and is not computed until complete.

13.3. Job ClassAd Attributes 947

HTCondor Manual, Release 10.0.9

¶ Formally, the length of time in seconds from when the shadow received notification that the spawned process exited
to when the shadow received a claim deactivation.

Informally, this is how long it took the starter to finish up after the job. That includes file transfer, so the difference
between this duration and the duration of output file transfer is (roughly) the execute-side overhead of handling
job termination.

This attribute may not be used in startd policy expressions and is not computed until complete.

¶ The longest time for which a job may be executing. Jobs which exceed this duration will go on hold. This time does
not include file-transfer time. Jobs which self-checkpoint have this long to write out each checkpoint.

This attribute is intended to help minimize the time wasted by jobs which may erroneously run forever.

¶ The longest time for which a job may continuously be in the running state. Jobs which exceed this duration will go
on hold. Exiting the running state resets the job duration measured by this attribute.

This attribute is intended to help minimize the time wasted by jobs which may erroneously run forever.

¶ String containing a comma-separated list of all the remote machines running a parallel or mpi universe job.

¶ A string representing the command line arguments passed to the job, when those arguments are specified using the
old syntax, as specified in the condor_submit section.

¶ A string representing the command line arguments passed to the job, when those arguments are specified using the
new syntax, as specified in the condor_submit section.

¶ A string recording the subject in the authentication token (IDTOKENS or SCITOKENS) used to submit the job.

¶ A string recording the issuer in the authentication token (IDTOKENS or SCITOKENS) used to submit the job.

¶ A string recording the groups in the authentication token (IDTOKENS or SCITOKENS) used to submit the job.

¶ A string recording the scopes in the authentication token (IDTOKENS or SCITOKENS) used to submit the job.

¶ A string recording the unique identifier of the authentication token (IDTOKENS or SCITOKENS) used to submit
the job.

¶ For batch grid universe jobs, additional command-line arguments to be given to the target batch system’s job sub-
mission command.

¶ For batch grid universe jobs, the name of the project/account/allocation that should be charged for the job’s resource
usage.

¶ For batch grid universe jobs, the name of the queue in the remote batch system.

¶ For batch grid universe jobs, a limit in seconds on the job’s execution time, enforced by the remote batch system.

¶ The integer number of KiB read from disk for this job.

¶ The integer number of disk blocks read for this job.

¶ The integer number of KiB written to disk for this job.

¶ The integer number of blocks written to disk for this job.

¶ String describing the architecture of the machine this job executed on at the time it last produced a checkpoint. If
the job has never produced a checkpoint, this attribute is undefined.

¶ String describing the operating system of the machine this job executed on at the time it last produced a checkpoint.
If the job has never produced a checkpoint, this attribute is undefined.

¶ Used for grid type gce jobs; a string taken from the definition of the submit description file command
cloud_label_names . Defines the set of labels associated with the GCE instance.

948 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ Integer cluster identifier for this job. A cluster is a group of jobs that were submitted together. Each job has its own
unique job identifier within the cluster, but shares a common cluster identifier. The value changes each time a
job or set of jobs are queued for execution under HTCondor.

¶ The path to and the file name of the job to be executed.

¶ The number of seconds of wall clock time that the job has been allocated a machine, excluding the time spent on run
attempts that were evicted without a checkpoint. Like RemoteWallClockTime, this includes time the job spent
in a suspended state, so the total committed wall time spent running is

CommittedTime - CommittedSuspensionTime

¶ This attribute is identical to CommittedTime except that the time is multiplied by the SlotWeight of the machine(s)
that ran the job. This relies on SlotWeight being listed in SYSTEM_JOB_MACHINE_ATTRS

¶ A running total of the number of seconds the job has spent in suspension during time in which the job was not evicted
without a checkpoint. This number is updated when the job is checkpointed and when it exits.

¶ The time when the job completed, or undefined if the job has not yet completed. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970). Note that older versions of HTCondor initialzed CompletionDate
to the integer 0, so job ads from older versions of HTCondor might have a 0 CompletionDate for jobs which
haven’t completed.

¶ A string list, delimited by commas and space characters. The items in the list identify named resources that the job
requires. The value can be a ClassAd expression which, when evaluated in the context of the job ClassAd and a
matching machine ClassAd, results in a string list.

¶ A string that describes the operating system version that the condor_submit command that submitted this job was
built for. Note this may be different that the operating system that is actually running.

¶ A string that describes the HTCondor version of the condor_submit command that created this job. Note this may
be different than the version of the HTCondor daemon that runs the job.

¶ For Container universe jobs, the string that names the container image to be run the job in.

¶ For Container universe jobs, a filename that becomes the working directory of the job. Mapped to the scratch
directory.

¶ This attribute is identical to RemoteWallClockTime except that the time is multiplied by the SlotWeight of the
machine(s) that ran the job. This relies on SlotWeight being listed in SYSTEM_JOB_MACHINE_ATTRS

¶ A running total of the number of seconds the job has spent in suspension for the life of the job.

¶ The total time, in seconds, that condor has spent transferring the input and output sandboxes for the life of the job.

¶ The number of hosts in the claimed state, due to this job.

¶ For a DAGMan node job only, the ClusterId job ClassAd attribute of the condor_dagman job which is the parent
of this node job. For nested DAGs, this attribute holds only the ClusterId of the job’s immediate parent.

¶ For a DAGMan node job only, a comma separated list of each JobName which is a parent node of this job’s node.
This attribute is passed through to the job via the condor_submit command line, if it does not exceed the line
length defined with _POSIX_ARG_MAX. For example, if a node job has two parents with JobName s B and C, the
condor_submit command line will contain

-append +DAGParentNodeNames="B,C"

13.3. Job ClassAd Attributes 949

HTCondor Manual, Release 10.0.9

¶ For a DAGMan node job only, gives the path to an event log used exclusively by DAGMan to monitor the state of the
DAG’s jobs. Events are written to this log file in addition to any log file specified in the job’s submit description
file.

¶ For a DAGMan node job only, a comma-separated list of the event codes that should be written to the log specified
by DAGManNodesLog, known as the auxiliary log. All events not specified in the DAGManNodesMask string are
not written to the auxiliary event log. The value of this attribute is determined by DAGMan, and it is passed to
the job via the condor_submit command line. By default, the following events are written to the auxiliary job
log:

• Submit, event code is 0

• Execute, event code is 1

• Executable error, event code is 2

• Job evicted, event code is 4

• Job terminated, event code is 5

• Shadow exception, event code is 7

• Job aborted, event code is 9

• Job suspended, event code is 10

• Job unsuspended, event code is 11

• Job held, event code is 12

• Job released, event code is 13

• Post script terminated, event code is 16

• Grid submit, event code is 27

If DAGManNodesLog is not defined, it has no effect. The value of DAGManNodesMask does not affect events
recorded in the job event log file referred to by UserLog.

¶ An integer representing the number of seconds before the jobs DeferralTime to which the job may be matched
with a machine.

¶ A Unix Epoch timestamp that represents the exact time HTCondor should attempt to begin executing the job.

¶ An integer representing the number of seconds after the jobs DeferralTime to allow the job to arrive at the execute
machine before automatically being evicted due to missing its DeferralTime.

¶ An integer that specifies the maximum number of seconds for which delegated proxies should be valid. The default
behavior is determined by the configuration setting DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME which de-
faults to one day. A value of 0 indicates that the delegated proxy should be valid for as long as allowed by the
credential used to create the proxy. This setting currently only applies to proxies delegated for non-grid jobs and
HTCondor-C jobs. This setting has no effect if the configuration setting DELEGATE_JOB_GSI_CREDENTIALS is
false, because in that case the job proxy is copied rather than delegated.

¶ Amount of disk space (KiB) in the HTCondor execute directory on the execute machine that this job has used. An
initial value may be set at the job’s request, placing into the job’s submit description file a setting such as

1 megabyte initial value
+DiskUsage = 1024

vm universe jobs will default to an initial value of the disk image size. If not initialized by the job, non-vm
universe jobs will default to an initial value of the sum of the job’s executable and all input files.

950 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ For Docker and Container universe jobs, a string that names the docker image to run inside the container.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command
ec2_access_key_id . Defines the path and file name of the file containing the EC2 Query API’s access key.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command ec2_ami_id .
Identifies the machine image of the instance.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command
ec2_block_device_mapping . Defines the map from block device names to kernel device names for the in-
stance.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command ec2_elastic_ip
. Specifies an Elastic IP address to associate with the instance.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command
ec2_iam_profile_arn . Specifies the IAM (instance) profile to associate with this instance.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command
ec2_iam_profile_name . Specifies the IAM (instance) profile to associate with this instance.

¶ Used for grid type ec2 jobs; a string set for the job once the instance starts running, as assigned by the EC2 service,
that represents the unique ID assigned to the instance by the EC2 service.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command
ec2_instance_type . Specifies a service-specific instance type.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command ec2_keypair
. Defines the key pair associated with the EC2 instance.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command
ec2_parameter_names . Contains a space or comma separated list of the names of additional parameters to
pass when instantiating an instance.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command ec2_spot_price
. Defines the maximum amount per hour a job submitter is willing to pay to run this job.

¶ Used for grid type ec2 jobs; identifies the spot request HTCondor made on behalf of this job.

¶ Used for grid type ec2 jobs; reports the reason for the most recent EC2-level state transition. Can be used to determine
if a spot request was terminated due to a rise in the spot price.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command ec2_tag_names
. Defines the set, and case, of tags associated with the EC2 instance.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command
ec2_keypair_file . Defines the path and file name of the file into which to write the SSH key used to access
the image, once it is running.

¶ Used for grid type ec2 jobs; a string set for the job once the instance starts running, as assigned by the EC2 service,
that represents the host name upon which the instance runs, such that the user can communicate with the running
instance.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command
ec2_secret_access_key . Defines that path and file name of the file containing the EC2 Query API’s secret
access key.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command
ec2_security_groups . Defines the list of EC2 security groups which should be associated with the job.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command
ec2_security_ids . Defines the list of EC2 security group IDs which should be associated with the job.

13.3. Job ClassAd Attributes 951

HTCondor Manual, Release 10.0.9

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command ec2_user_data
. Defines a block of data that can be accessed by the virtual machine.

¶ Used for grid type ec2 jobs; a string taken from the definition of the submit description file command
ec2_user_data_file . Specifies a path and file name of a file containing data that can be accessed by the vir-
tual machine.

¶ A string containing a comma-separated list of job ClassAd attributes. For each attribute name in the list, its value
will be included in the e-mail notification upon job completion.

¶ A boolean value taken from the submit description file command encrypt_execute_directory . It specifies if HT-
Condor should encrypt the remote scratch directory on the machine where the job executes.

¶ An integer containing the epoch time of when the job entered into its current status So for example, if the job is on
hold, the ClassAd expression

time() - EnteredCurrentStatus

will equal the number of seconds that the job has been on hold.

¶ A string representing the environment variables passed to the job, when those arguments are specified using the old
syntax, as specified in the condor_submit section.

¶ A string representing the environment variables passed to the job, when those arguments are specified using the new
syntax, as specified in the condor_submit section.

¶ A boolean. If missing or true, HTCondor will erase (truncate) the error and output logs when the job restarts. If this
attribute is false, and when_to_transfer_output is ON_EXIT_OR_EVICT, HTCondor will instead append to
those files.

¶ Size of the executable in KiB.

¶ An attribute that is True when a user job exits via a signal and False otherwise. For some grid universe jobs, how
the job exited is unavailable. In this case, ExitBySignal is set to False.

¶ When a user job exits by means other than a signal, this is the exit return code of the user job. For some grid universe
jobs, how the job exited is unavailable. In this case, ExitCode is set to 0.

¶ When a user job exits by means of an unhandled signal, this attribute takes on the numeric value of the signal. For
some grid universe jobs, how the job exited is unavailable. In this case, ExitSignal will be undefined.

¶ The way that HTCondor previously dealt with a job’s exit status. This attribute should no longer be used. It
is not always accurate in heterogeneous pools, or if the job exited with a signal. Instead, see the attributes:
ExitBySignal, ExitCode, and ExitSignal.

¶ Used for grid type gce jobs; a string taken from the definition of the submit description file command gce_auth_file
. Defines the path and file name of the file containing authorization credentials to use the GCE service.

¶ Used for grid type gce jobs; a string taken from the definition of the submit description file command gce_image .
Identifies the machine image of the instance.

¶ Used for grid type gce jobs; a string taken from the definition of the submit description file command gce_json_file
. Specifies the path and file name of a file containing a set of JSON object members that should be added to the
instance description submitted to the GCE service.

¶ Used for grid type gce jobs; a string taken from the definition of the submit description file command
gce_machine_type . Specifies the hardware profile that should be used for a GCE instance.

¶ Used for grid type gce jobs; a string taken from the definition of the submit description file command gce_metadata
. Defines a set of name/value pairs that can be accessed by the virtual machine.

952 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ Used for grid type gce jobs; a string taken from the definition of the submit description file command
gce_metadata_file . Specifies a path and file name of a file containing a set of name/value pairs that can be
accessed by the virtual machine.

¶ Used for grid type gce jobs; a boolean taken from the definition of the submit description file command
gce_preemptible . Specifies whether the virtual machine instance created in GCE should be preemptible.

¶ A string intended to be a unique job identifier within a pool. It currently contains the condor_schedd daemon
Name attribute, a job identifier composed of attributes ClusterId and ProcId separated by a period, and the
job’s submission time in seconds since 1970-01-01 00:00:00 UTC, separated by # characters. The value sub-
mit.example.com#152.3#1358363336 is an example. While HTCondor guaratees this string will be globally
unique, the contents are subject to change, and users should not parse out components of this string.

¶ A string containing the job’s status as reported by the remote job management system.

¶ A string defined by the right hand side of the the submit description file command grid_resource . It specifies the
target grid type, plus additional parameters specific to the grid type.

¶ Time at which the remote job management system became unavailable. Measured in the number of seconds since
the epoch (00:00:00 UTC, Jan 1, 1970).

¶ Currently only for scheduler and local universe jobs, a string containing a name of a signal to be sent to the job if
the job is put on hold.

¶ A string containing a human-readable message about why a job is on hold. This is the message that will be displayed
in response to the command condor_q -hold. It can be used to determine if a job should be released or not.

¶ An integer value that represents the reason that a job was put on hold. The below table defines all possible values
used by attributes HoldReasonCode, NumHoldsByReason, and HoldReasonSubCode.

Integer HoldReasonCode
[NumHoldsByReason Label]

Reason for Hold HoldReasonSubCode

1
[UserRequest]

The user put the job on hold with
condor_hold.

3
[JobPolicy]

The PERIODIC_HOLD expres-
sion evaluated to True. Or,
ON_EXIT_HOLD was true

User Specified

4
[CorruptedCredential]

The credentials for the job are in-
valid.

5
[JobPolicyUndefined]

A job policy expression evaluated
to Undefined.

6
[FailedToCreateProcess]

The condor_starter failed to start
the executable.

The Unix errno number.

continues on next page

13.3. Job ClassAd Attributes 953

HTCondor Manual, Release 10.0.9

Table 1 – continued from previous page

Integer HoldReasonCode
[NumHoldsByReason Label]

Reason for Hold HoldReasonSubCode

7
[UnableToOpenOutput]

The standard output file for the job
could not be opened.

The Unix errno number.

8
[UnableToOpenInput]

The standard input file for the job
could not be opened.

The Unix errno number.

9
[UnableToOpenOutputStream]

The standard output stream for the
job could not be opened.

The Unix errno number.

10
[UnableToOpenInputStream]

The standard input stream for the
job could not be opened.

The Unix errno number.

11
[InvalidTransferAck]

An internal HTCondor protocol
error was encountered when trans-
ferring files.

12
[TransferOutputError]

An error occurred while transfer-
ring job output files or checkpoint
files.

The Unix errno number.

13
[TransferInputError]

An error occurred while transfer-
ring job input files.

The Unix errno number.

14
[IwdError]

The initial working directory of
the job cannot be accessed.

The Unix errno number.

15
[SubmittedOnHold]

The user requested the job be sub-
mitted on hold.

16
[SpoolingInput]

Input files are being spooled.

17
[JobShadowMismatch]

A standard universe job is
not compatible with the con-
dor_shadow version available on
the submitting machine.

continues on next page

954 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

Table 1 – continued from previous page

Integer HoldReasonCode
[NumHoldsByReason Label]

Reason for Hold HoldReasonSubCode

18
[InvalidTransferGoAhead]

An internal HTCondor protocol
error was encountered when trans-
ferring files.

19
[HookPrepareJobFailure]

<Keyword>_HOOK_PREPARE_JOB
was defined but could not be exe-
cuted or returned failure.

20
[MissedDeferredExecutionTime]

The job missed its deferred exe-
cution time and therefore failed to
run.

21
[StartdHeldJob]

The job was put on hold because
WANT_HOLD in the machine policy
was true.

22
[UnableToInitUserLog]

Unable to initialize job event log.

23
[FailedToAccessUserAccount]

Failed to access user account.

24
[NoCompatibleShadow]

No compatible shadow.

25
[InvalidCronSettings]

Invalid cron settings.

26
[SystemPolicy]

SYSTEM_PERIODIC_HOLD evalu-
ated to true.

27
[SystemPolicyUndefined]

The system periodic job policy
evaluated to undefined.

32
[MaxTransferInputSizeExceeded]

The maximum total input file
transfer size was exceeded. (See
MAX_TRANSFER_INPUT_MB

continues on next page

13.3. Job ClassAd Attributes 955

HTCondor Manual, Release 10.0.9

Table 1 – continued from previous page

Integer HoldReasonCode
[NumHoldsByReason Label]

Reason for Hold HoldReasonSubCode

33

[MaxTransferOutputSizeExceeded]

The maximum total output file
transfer size was exceeded. (See
MAX_TRANSFER_OUTPUT_MB

34
[JobOutOfResources]

Memory usage exceeds a memory
limit.

35
[InvalidDockerImage]

Specified Docker image was in-
valid.

36
[FailedToCheckpoint]

Job failed when sent the check-
point signal it requested.

37
[EC2UserError]

User error in the EC2 universe:

Public key file not defined. 1
Private key file not defined. 2
Grid resource string missing EC2
service URL.

4

Failed to authenticate. 9
Can’t use existing SSH keypair
with the given server’s type.

10

You, or somebody like you, can-
celled this request.

20

38
[EC2InternalError]

Internal error in the EC2 universe:

Grid resource type not EC2. 3
Grid resource type not set. 5
Grid job ID is not for EC2. 7
Unexpected remote job status. 21

39
[EC2AdminError]

Adminstrator error in the EC2 uni-
verse:

EC2_GAHP not defined. 6
continues on next page

956 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

Table 1 – continued from previous page

Integer HoldReasonCode
[NumHoldsByReason Label]

Reason for Hold HoldReasonSubCode

40
[EC2ConnectionProblem]

Connection problem in the EC2
universe

. . .while creating an SSH keypair. 11

. . .while starting an on-demand
instance.

12

. . .while requesting a spot in-
stance.

17

41
[EC2ServerError]

Server error in the EC2 universe:

Abnormal instance termination
reason.

13

Unrecognized instance termina-
tion reason.

14

Resource was down for too long. 22

42
[EC2InstancePotentiallyLost]

Instance potentially lost due to an
error in the EC2 universe:

Connection error while terminat-
ing an instance.

15

Failed to terminate instance too
many times.

16

Connection error while terminat-
ing a spot request.

17

Failed to terminated a spot request
too many times.

18

Spot instance request purged be-
fore instance ID acquired.

19

43
[PreScriptFailed]

Pre script failed.

44
[PostScriptFailed]

Post script failed.

45
[SingularityTestFailed]

Test of singularity runtime failed
before launching a job

continues on next page

13.3. Job ClassAd Attributes 957

HTCondor Manual, Release 10.0.9

Table 1 – continued from previous page

Integer HoldReasonCode
[NumHoldsByReason Label]

Reason for Hold HoldReasonSubCode

46
[JobDurationExceeded]

The job’s allowed duration was ex-
ceeded.

47
[JobExecutionTimeExceeded]

The job’s allowed execution time
was exceeded.

¶ An integer value that represents further information to go along with the HoldReasonCode, for some values of
HoldReasonCode. See HoldReasonCode for a table of possible values.

¶ A string that uniquely identifies a set of job hooks, and added to the ClassAd once a job is fetched.

¶ Maximum observed memory image size (i.e. virtual memory) of the job in KiB. The initial value is equal to the
size of the executable for non-vm universe jobs, and 0 for vm universe jobs. When the job writes a checkpoint,
the ImageSize attribute is set to the size of the checkpoint file (since the checkpoint file contains the job’s
memory image). A vanilla universe job’s ImageSize is recomputed internally every 15 seconds. How quickly
this updated information becomes visible to condor_q is controlled by SHADOW_QUEUE_UPDATE_INTERVAL and
STARTER_UPDATE_INTERVAL.

Under Linux, ProportionalSetSize is a better indicator of memory usage for jobs with significant sharing
of memory between processes, because ImageSize is simply the sum of virtual memory sizes across all of the
processes in the job, which may count the same memory pages more than once.

¶ I/O wait time of the job recorded by the cgroup controller in seconds.

¶ A boolean expression that controls whether or not HTCondor attempts to flush a submit machine’s NFS cache, in
order to refresh an HTCondor job’s initial working directory. The value will be True, unless a job explicitly adds
this attribute, setting it to False.

¶ A comma-separated list of attribute names. The named attributes and their values are written in the job
event log whenever any event is being written to the log. This is the same as the configuration setting
EVENT_LOG_INFORMATION_ATTRS (see Daemon Logging Configuration File Entries) but it applies to the job
event log instead of the system event log.

¶ If a job is given a batch name with the -batch-name option to condor_submit, this string valued attribute will contain
the batch name.

¶ Time at which the job most recently finished transferring its input sandbox. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970)

¶ Time at which the job most recently finished transferring its output sandbox. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970)

¶ Time at which the job most recently began running. Measured in the number of seconds since the epoch (00:00:00
UTC, Jan 1, 1970).

¶ Time at which the job most recently finished transferring its input sandbox and began executing. Measured in the
number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970)

¶ Time at which the job most recently began transferring its input sandbox. Measured in the number of seconds since
the epoch (00:00:00 UTC, Jan 1, 1970)

958 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ Time at which the job most recently finished executing and began transferring its output sandbox. Measured in the
number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970)

¶ A string that may be defined for a job by setting description in the submit description file. When set, tools which
display the executable such as condor_q will instead use this string. For interactive jobs that do not have a submit
description file, this string will default to "Interactive job".

¶ Time at which the condor_shadow and condor_starter become disconnected. Set to Undefined when a succcessful
reconnect occurs. Measured in the number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

¶ The number of seconds set for a job lease, the amount of time that a job may continue running on a remote resource,
despite its submitting machine’s lack of response. See Job Leases for details on job leases.

¶ An integer expression that specifies the time in seconds requested by the job for being allowed to gracefully shut
down.

¶ An integer indicating what events should be emailed to the user. The integer values correspond to the user choices
for the submit command notification .

Value Notification Value
0 Never
1 Always
2 Complete
3 Error

¶ Integer priority for this job, set by condor_submit or condor_prio. The default value is 0. The higher the number,
the greater (better) the priority.

¶ This attribute is retained for backwards compatibility. It may go away in the future. It is equivalent to
NumShadowStarts for all universes except scheduler. For the scheduler universe, this attribute is equivalent
to NumJobStarts.

¶ Time at which the job first began running. Measured in the number of seconds since the epoch (00:00:00 UTC, Jan 1,
1970). Due to a long standing bug in the 8.6 series and earlier, the job classad that is internal to the condor_startd
and condor_starter sets this to the time that the job most recently began executing. This bug is scheduled to be
fixed in the 8.7 series.

¶ Integer which indicates the current status of the job.

Value Idle
1 Idle
2 Running
3 Removing
4 Completed
5 Held
6 Transferring Output
7 Suspended

¶ Integer which indicates how a job was submitted to HTCondor. Users can set a custom value for job via Python
Bindings API.

13.3. Job ClassAd Attributes 959

HTCondor Manual, Release 10.0.9

Value Method of Submission
Undefined Unknown
0 condor_submit
1 DAGMan-Direct
2 Python Bindings
3 htcondor job submit
4 htcondor dag submit
5 htcondor jobset submit
100+ Portal/User-set

JobUniverse Integer which indicates the job universe.

Value Universe
5 vanilla, docker
7 scheduler
8 MPI
9 grid
10 java
11 parallel
12 local
13 vm

¶ An integer value that represents the number of seconds that the condor_schedd will continue to keep a claim, in the
Claimed Idle state, after the job with this attribute defined completes, and there are no other jobs ready to run
from this user. This attribute may improve the performance of linear DAGs, in the case when a dependent job can
not be scheduled until its parent has completed. Extending the claim on the machine may permit the dependent
job to be scheduled with less delay than with waiting for the condor_negotiator to match with a new machine.

¶ The Unix signal number that the job wishes to be sent before being forcibly killed. It is relevant only for jobs running
on Unix machines.

¶ This attribute is replaced by the functionality in JobMaxVacateTime as of HTCondor version 7.7.3. The number
of seconds that the job requests the condor_starter wait after sending the signal defined as KillSig and before
forcibly removing the job. The actual amount of time will be the minimum of this value and the execute machine’s
configuration variable KILLING_TIMEOUT

¶ An integer containing the epoch time when the job was last successfully matched with a resource (gatekeeper) Ad.

¶ If, at any point in the past, this job failed to match with a resource ad, this attribute will contain a string with a
human-readable message about why the match failed.

¶ An integer containing the epoch time when HTCondor-G last tried to find a match for the job, but failed to do so.

¶ The name of the condor_collector of the pool in which a job ran via flocking in the most recent run attempt. This
attribute is not defined if the job did not run via flocking.

¶ Time at which the job last performed a successful suspension. Measured in the number of seconds since the epoch
(00:00:00 UTC, Jan 1, 1970).

¶ Time at which the job was last evicted from a remote workstation. Measured in the number of seconds since the
epoch (00:00:00 UTC, Jan 1, 1970).

¶ A boolean expression that defaults to False, causing the job to be removed from the queue upon completion. An
exception is if the job is submitted using condor_submit -spool. For this case, the default expression causes
the job to be kept in the queue for 10 days after completion.

960 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ Machine attribute of name <X> that is placed into this job ClassAd, as specified by the configuration variable
SYSTEM_JOB_MACHINE_ATTRS. With the potential for multiple run attempts, <N> represents an integer value
providing historical values of this machine attribute for multiple runs. The most recent run will have a value of
<N> equal to 0. The next most recent run will have a value of <N> equal to 1.

¶ The maximum number of hosts that this job would like to claim. As long as CurrentHosts is the same as MaxHosts,
no more hosts are negotiated for.

¶ Maximum time in seconds to let this job run uninterrupted before kicking it off when it is being preempted. This
can only decrease the amount of time from what the corresponding startd expression allows.

¶ This integer expression specifies the maximum allowed total size in Mbytes of the input files that are transferred
for a job. This expression does not apply to grid universe or files transferred via file transfer plug-ins. The
expression may refer to attributes of the job. The special value -1 indicates no limit. If not set, the system setting
MAX_TRANSFER_INPUT_MB is used. If the observed size of all input files at submit time is larger than the limit,
the job will be immediately placed on hold with a HoldReasonCode value of 32. If the job passes this initial
test, but the size of the input files increases or the limit decreases so that the limit is violated, the job will be
placed on hold at the time when the file transfer is attempted.

¶ This integer expression specifies the maximum allowed total size in Mbytes of the output files that are transferred
for a job. This expression does not apply to grid universe or files transferred via file transfer plug-ins. The
expression may refer to attributes of the job. The special value -1 indicates no limit. If not set, the system setting
MAX_TRANSFER_OUTPUT_MB is used. If the total size of the job’s output files to be transferred is larger than the
limit, the job will be placed on hold with a HoldReasonCode value of 33. The output will be transferred up to
the point when the limit is hit, so some files may be fully transferred, some partially, and some not at all.

¶ An integer expression in units of Mbytes that represents the peak memory usage for the job. Its purpose is to be
compared with the value defined by a job with the request_memory submit command, for purposes of policy
evaluation.

¶ The minimum number of hosts that must be in the claimed state for this job, before the job may enter the running
state.

¶ An integer number of seconds delay time after this job starts until the next job is started. The value is limited by the
configuration variable MAX_NEXT_JOB_START_DELAY

¶ Boolean value which when True indicates that this job is a nice job, raising its user priority value, thus causing it
to run on a machine only when no other HTCondor jobs want the machine.

¶ A boolean value only relevant to grid universe jobs, which when True tells HTCondor to simply abort (remove)
any problematic job, instead of putting the job on hold. It is the equivalent of doing condor_rm followed by
condor_rm -forcex any time the job would have otherwise gone on hold. If not explicitly set to True, the default
value will be False.

¶ A string that identifies the NT domain under which a job’s owner authenticates on a platform running Windows.

¶ A count of the number of checkpoints written by this job during its lifetime.

¶ An integer value that will increment every time a job is placed on hold. It may be undefined until the job has been
held at least once.

¶ The value of this attribute is a (nested) classad containing a count of how many times a job has been placed on hold
grouped by the reason the job went on hold. It may be undefined until the job has been held at least once. Each
attribute name in this classad is a NumHoldByReason label; see the table above under the documentation for job
attribute HoldReasonCode for a table of possible values. Each attribute value is an integer stating how many
times the job went on hold for that specific reason. An example:

13.3. Job ClassAd Attributes 961

HTCondor Manual, Release 10.0.9

NumHoldsByReason = [UserRequest = 2; JobPolicy = 110; UnableToOpenInput = 1]

¶ An integer, initialized to zero, that is incremented by the condor_shadow each time the job’s executable exits of
its own accord, with or without errors, and successfully completes file transfer (if requested). Jobs which have
done so normally enter the completed state; this attribute is therefore normally only of use when, for example,
on_exit_remove or on_exit_hold is set.

¶ An integer that is incremented by the condor_schedd each time the job is matched with a resource ad by the nego-
tiator.

¶ An integer count of the number of times a job successfully reconnected after being disconnected. This occurs
when the condor_shadow and condor_starter lose contact, for example because of transient network failures or
a condor_shadow or condor_schedd restart. This attribute is only defined for jobs that can reconnected: those
in the vanilla and java universes.

¶ An integer count of the number of times the job started executing.

¶ A count of the number of child processes that this job has.

¶ A count of the number of restarts from a checkpoint attempted by this job during its lifetime.

¶ An integer count of the number of times the condor_shadow daemon had a fatal error for a given job.

¶ An integer count of the number of times a condor_shadow daemon was started for a given job. This attribute is
not defined for scheduler universe jobs, since they do not have a condor_shadow daemon associated with them.
For local universe jobs, this attribute is defined, even though the process that manages the job is technically
a condor_starter rather than a condor_shadow. This keeps the management of the local universe and other
universes as similar as possible. Note that this attribute is incremented every time the job is matched, even
if the match is rejected by the execute machine; in other words, the value of this attribute may be greater
than the number of times the job actually ran.

¶ An integer that is incremented each time HTCondor-G places a job on hold due to some sort of error condition. This
counter is useful, since HTCondor-G will always place a job on hold when it gives up on some error condition.
Note that if the user places the job on hold using the condor_hold command, this attribute is not incremented.

¶ A string that defines a list of jobs. When the job with this attribute defined is removed, all other jobs defined by the
list are also removed. The string is an expression that defines a constraint equivalent to the one implied by the
command

$ condor_rm -constraint <constraint>

This attribute is used for jobs managed with condor_dagman to ensure that node jobs of the DAG are removed
when the condor_dagman job itself is removed. Note that the list of jobs defined by this attribute must not form
a cyclic removal of jobs, or the condor_schedd will go into an infinite loop when any of the jobs is removed.

¶ A URL, as defined by submit command output_destination.

¶ String describing the user who submitted this job.

¶ A string that is only relevant to parallel universe jobs. Without this attribute defined, the default policy applied to
parallel universe jobs is to consider the whole job completed when the first node exits, killing processes running
on all remaining nodes. If defined to the following strings, HTCondor’s behavior changes:

"WAIT_FOR_ALL" HTCondor will wait until every node in the parallel job has completed to consider
the job finished.

¶ Defines the command-line arguments for the post command using the old argument syntax, as specified in con-
dor_submit. If both PostArgs and PostArguments exists, the former is ignored.

962 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ Defines the command-line arguments for the post command using the new argument syntax, as specified in con-
dor_submit, excepting that double quotes must be escaped with a backslash instead of another double quote. If
both PostArgs and PostArguments exists, the former is ignored.

¶ A job in the vanilla, Docker, Java, or virtual machine universes may specify a command to run after the Executable
has exited, but before file transfer is started. Unlike a DAGMan POST script command, this command is run on
the execute machine; however, it is not run in the same environment as the Executable . Instead, its environment
is set by PostEnv or PostEnvironment. Like the DAGMan POST script command, this command is not run
in the same universe as the Executable ; in particular, this command is not run in a Docker container, nor in a
virtual machine, nor in Java. This command is also not run with any of vanilla universe’s features active, including
(but not limited to): cgroups, PID namespaces, bind mounts, CPU affinity, Singularity, or job wrappers. This
command is not automatically transferred with the job, so if you’re using file transfer, you must add it to the
transfer_input_files list.

If the specified command is in the job’s execute directory, or any sub-directory, you should not set
vm_no_output_vm , as that will delete all the files in the job’s execute directory before this command has a
chance to run. If you don’t want any output back from your VM universe job, but you do want to run a post
command, do not set vm_no_output_vm and instead delete the job’s execute directory in your post command.

¶ If SuccessPostExitCode or SuccessPostExitSignal were set, and the post command has run, this attribute
will true if the the post command exited on a signal and false if it did not. It is otherwise unset.

¶ If SuccessPostExitCode or SuccessPostExitSignal were set, the post command has run, and the post com-
mand did not exit on a signal, then this attribute will be set to the exit code. It is otherwise unset.

¶ If SuccessPostExitCode or SuccessPostExitSignal were set, the post command has run, and the post com-
mand exited on a signal, then this attribute will be set to that signal. It is otherwise unset.

¶ Defines the environment for the Postscript using the Old environment syntax. If both PostEnv and
PostEnvironment exist, the former is ignored.

¶ Defines the environment for the Postscript using the New environment syntax. If both PostEnv and
PostEnvironment exist, the former is ignored.

¶ Defines the command-line arguments for the pre command using the old argument syntax, as specified in con-
dor_submit. If both PreArgs and PreArguments exists, the former is ignored.

¶ Defines the command-line arguments for the pre command using the new argument syntax, as specified in con-
dor_submit, excepting that double quotes must be escape with a backslash instead of another double quote. If
both PreArgs and PreArguments exists, the former is ignored.

¶ A job in the vanilla, Docker, Java, or virtual machine universes may specify a command to run after file transfer (if
any) completes but before the Executable is started. Unlike a DAGMan PRE script command, this command
is run on the execute machine; however, it is not run in the same environment as the Executable . Instead, its
environment is set by PreEnv or PreEnvironment. Like the DAGMan POST script command, this command
is not run in the same universe as the Executable ; in particular, this command is not run in a Docker container,
nor in a virtual machine, nor in Java. This command is also not run with any of vanilla universe’s features active,
including (but not limited to): cgroups, PID namespaces, bind mounts, CPU affinity, Singularity, or job wrappers.
This command is not automatically transferred with the job, so if you’re using file transfer, you must add it to the
transfer_input_files list.

¶ If SuccessPreExitCode or SuccessPreExitSignal were set, and the pre command has run, this attribute will
true if the the pre command exited on a signal and false if it did not. It is otherwise unset.

¶ If SuccessPreExitCode or SuccessPreExitSignal were set, the pre command has run, and the pre command
did not exit on a signal, then this attribute will be set to the exit code. It is otherwise unset.

¶ If SuccessPreExitCode or SuccessPreExitSignal were set, the pre command has run, and the pre command
exited on a signal, then this attribute will be set to that signal. It is otherwise unset.

13.3. Job ClassAd Attributes 963

HTCondor Manual, Release 10.0.9

¶ Defines the environment for the prescript using the Old environment syntax. If both PreEnv and PreEnvironment
exist, the former is ignored.

¶ Defines the environment for the prescript using the New environment syntax. If both PreEnv and PreEnvironment
exist, the former is ignored.

¶ An integer value representing a user’s priority to affect of choice of jobs to run. A larger value gives higher priority.
When not explicitly set for a job, 0 is used for comparison purposes. This attribute, when set, is considered first:
before PreJobPrio2, before JobPrio, before PostJobPrio1, before PostJobPrio2, and before QDate.

¶ An integer value representing a user’s priority to affect of choice of jobs to run. A larger value gives higher priority.
When not explicitly set for a job, 0 is used for comparison purposes. This attribute, when set, is considered after
PreJobPrio1, but before JobPrio, before PostJobPrio1, before PostJobPrio2, and before QDate.

¶ An integer value representing a user’s priority to affect of choice of jobs to run. A larger value gives higher priority.
When not explicitly set for a job, 0 is used for comparison purposes. This attribute, when set, is considered after
PreJobPrio1, after PreJobPrio1, and after JobPrio, but before PostJobPrio2, and before QDate.

¶ An integer value representing a user’s priority to affect of choice of jobs to run. A larger value gives higher priority.
When not explicitly set for a job, 0 is used for comparison purposes. This attribute, when set, is considered after
PreJobPrio1, after PreJobPrio1, after JobPrio, and after PostJobPrio1, but before QDate.

¶ When True, the condor_starter will not prepend Iwd to Cmd, when Cmd is a relative path name and
TransferExecutable is False. The default value is False. This attribute is primarily of interest for users of
USER_JOB_WRAPPER for the purpose of allowing an executable’s location to be resolved by the user’s path in the
job wrapper.

¶ When True, entries in the file transfer lists that are relative paths will be transferred to the same relative path on the
destination machine (instead of the basename).

¶ Integer process identifier for this job. Within a cluster of many jobs, each job has the same ClusterId, but will have
a unique ProcId. Within a cluster, assignment of a ProcId value will start with the value 0. The job (process)
identifier described here is unrelated to operating system PIDs.

¶ On Linux execute machines with kernel version more recent than 2.6.27, this is the maximum observed proportional
set size (PSS) in KiB, summed across all processes in the job. If the execute machine does not support monitoring
of PSS or PSS has not yet been measured, this attribute will be undefined. PSS differs from ImageSize in how
memory shared between processes is accounted. The PSS for one process is the sum of that process’ memory
pages divided by the number of processes sharing each of the pages. ImageSize is the same, except there is no
division by the number of processes sharing the pages.

¶ Time at which the job was submitted to the job queue. Measured in the number of seconds since the epoch (00:00:00
UTC, Jan 1, 1970).

¶ . The integer number of KiB read from disk for this job over the previous time interval defined by configuration
variable STATISTICS_WINDOW_SECONDS.

¶ . The integer number of disk blocks read for this job over the previous time interval defined by configuration variable
STATISTICS_WINDOW_SECONDS.

¶ . The integer number of KiB written to disk for this job over the previous time interval defined by configuration
variable STATISTICS_WINDOW_SECONDS.

¶ . The integer number of blocks written to disk for this job over the previous time interval defined by configuration
variable STATISTICS_WINDOW_SECONDS.

¶ A string containing a human-readable message about why the job was released from hold.

¶ The path to the directory in which a job is to be executed on a remote machine.

¶ The name of the condor_collector of the pool in which a job is running via flocking. This attribute is not defined if
the job is not running via flocking.

964 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ The total number of seconds of system CPU time (the time spent at system calls) the job used on remote machines.
This does not count time spent on run attempts that were evicted without a checkpoint.

¶ The total number of seconds of system CPU time the job used on remote machines, summed over all execution
attempts.

¶ The total number of seconds of user CPU time the job used on remote machines. This does not count time spent on
run attempts that were evicted without a checkpoint. A job in the virtual machine universe will only report this
attribute if run on a KVM hypervisor.

¶ The total number of seconds of user CPU time the job used on remote machines, summed over all execution attempts.

¶ Cumulative number of seconds the job has been allocated a machine. This also includes time spent in suspension
(if any), so the total real time spent running is

RemoteWallClockTime - CumulativeSuspensionTime

Note that this number does not get reset to zero when a job is forced to migrate from one machine to another.
CommittedTime, on the other hand, is just like RemoteWallClockTime except it does get reset to 0 whenever
the job is evicted without a checkpoint.

¶ Number of seconds the job was allocated a machine for its most recent completed execution. This attribute is set
after the job exits or is evicted. It will be undefined until the first execution attempt completes or is terminated.
When a job has been allocated a machine and is still running, the value will be undefined or will be the value
from the previous execution attempt rather than the current one.

¶ Currently only for scheduler universe jobs, a string containing a name of a signal to be sent to the job if the job is
removed.

¶ The number of CPUs requested for this job. If dynamic condor_startd provisioning is enabled, it is the minimum
number of CPUs that are needed in the created dynamic slot.

¶ The amount of disk space in KiB requested for this job. If dynamic condor_startd provisioning is enabled, it is the
minimum amount of disk space needed in the created dynamic slot.

¶ The number of GPUs requested for this job. If dynamic condor_startd provisioning is enabled, it is the minimum
number of GPUs that are needed in the created dynamic slot.

¶ Constraint on the properites of GPUs requested for this job. If dynamic condor_startd provisioning is enabled, This
constraint will be tested against the property attributes of the AvailableGPUs attribute of the partitionable slot
when choosing which GPUs for the dynamic slot.

¶ A full path to the directory that the job requests the condor_starter use as an argument to chroot().

¶ The amount of memory space in MiB requested for this job. If dynamic condor_startd provisioning is enabled, it
is the minimum amount of memory needed in the created dynamic slot. If not set by the job, its definition is
specified by configuration variable JOB_DEFAULT_REQUESTMEMORY

Requirements A classad expression evaluated by the condor_negotiator, condor_schedd, and condor_startd in the
context of slot ad. If true, this job is eligible to run on that slot. If the job requirements does not mention the
(startd) attribute OPSYS, the schedd will append a clause to Requirements forcing the job to match the same
OPSYS as the submit machine. The schedd appends a simliar clause to match the ARCH. The schedd parameter
APPEND_REQUIREMENTS, will, if set, append that value to every job’s requirements expression.

¶ Maximum observed physical memory in use by the job in KiB while running.

¶ The path and filename containing a SciToken to use for a Condor-C job.

13.3. Job ClassAd Attributes 965

HTCondor Manual, Release 10.0.9

¶ Number of files and directories in the jobs’ Scratch directory. The value is updated periodically while the job is
running.

¶ This is the current time, in Unix epoch seconds. It is added by the condor_schedd to the job ads that it sends in reply
to a query (e.g. sent to condor_q). Since it it not present in the job ad in the condor_schedd, it should not be
used in any expressions that will be evaluated by the condor_schedd.

¶ Utilized for Linux jobs only, the number of bytes allocated for stack space for this job. This number of bytes replaces
the default allocation of 512 Mbytes.

¶ An attribute representing a Unix epoch time that is defined for a job that is spooled to a remote site using
condor_submit -spool or HTCondor-C and causes HTCondor to hold the output in the spool while the job
waits in the queue in the Completed state. This attribute is defined when retrieval of the output finishes.

¶ An attribute representing a Unix epoch time that is defined for a job that is spooled to a remote site using
condor_submit -spool or HTCondor-C and causes HTCondor to hold the output in the spool while the job
waits in the queue in the Completed state. This attribute is defined when retrieval of the output begins.

¶ An attribute utilized only for grid universe jobs. The default value is True. If True, and TransferErr is True,
then standard error is streamed back to the submit machine, instead of doing the transfer (as a whole) after the
job completes. If False, then standard error is transferred back to the submit machine (as a whole) after the job
completes. If TransferErr is False, then this job attribute is ignored.

¶ An attribute utilized only for grid universe jobs. The default value is True. If True, and TransferOut is True,
then job output is streamed back to the submit machine, instead of doing the transfer (as a whole) after the
job completes. If False, then job output is transferred back to the submit machine (as a whole) after the job
completes. If TransferOut is False, then this job attribute is ignored.

¶ A boolean attribute defined by the condor_negotiator when it makes a match. It will be True if the resource was
claimed via negotiation when the configuration variable GROUP_AUTOREGROUP was True. It will be False
otherwise.

¶ When HTCondor-C submits a job to a remote condor_schedd, it sets this attribute in the remote job ad to match the
GlobalJobId attribute of the original, local job.

¶ The accounting group name defined by the condor_negotiator when it makes a match.

¶ The accounting group name under which the resource negotiated when it was claimed, as set by the con-
dor_negotiator.

¶ Specifies if the executable exits with a signal after a successful self-checkpoint.

¶ Specifies the exit code, if any, with which the executable exits after a successful self-checkpoint.

¶ Specifies the signal, if any, by which the executable exits after a successful self-checkpoint.

¶ Specifies if a succesful pre command must exit with a signal.

¶ Specifies the code with which the pre command must exit to be considered successful. Pre commands which are
not successful cause the job to go on hold with ExitCode set to PreCmdExitCode. The exit status of a pre
command without one of SuccessPreExitCode or SuccessPreExitSignal defined is ignored.

¶ Specifies the signal on which the pre command must exit be considered successful. Pre commands which are not
successful cause the job to go on hold with ExitSignal set to PreCmdExitSignal. The exit status of a pre
command without one of SuccessPreExitCode or SuccessPreExitSignal defined is ignored.

¶ Specifies if a succesful post command must exit with a signal.

¶ Specifies the code with which the post command must exit to be considered successful. Post commands which are
not successful cause the job to go on hold with ExitCode set to PostCmdExitCode. The exit status of a post
command without one of SuccessPostExitCode or SuccessPostExitSignal defined is ignored.

966 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ Specifies the signal on which the post command must exit be considered successful. Post commands which are not
successful cause the job to go on hold with ExitSignal set to PostCmdExitSignal. The exit status of a post
command without one of SuccessPostExitCode or SuccessPostExitSignal defined is ignored.

¶ ToE stands for Ticket of Execution, and is itself a nested classad that describes how a job was terminated by the
execute machine. See the Managing a Job section for full details.

¶ A count of the number of times this job has been suspended during its lifetime.

¶ A string attribute containing a comma separated list of directories and/or files that should be transferred from the
execute machine to the submit machine’s spool when the job successfully checkpoints.

¶ A boolean expresion that controls whether the HTCondor should transfer the container image from the submit node
to the worker node.

¶ An attribute utilized only for grid universe jobs. The default value is True. If True, then the error output from the
job is transferred from the remote machine back to the submit machine. The name of the file after transfer is the
file referred to by job attribute Err. If False, no transfer takes place (remote to submit machine), and the name
of the file is the file referred to by job attribute Err.

¶ An attribute utilized only for grid universe jobs. The default value is True. If True, then the job executable is
transferred from the submit machine to the remote machine. The name of the file (on the submit machine) that
is transferred is given by the job attribute Cmd. If False, no transfer takes place, and the name of the file used
(on the remote machine) will be as given in the job attribute Cmd.

¶ An attribute utilized only for grid universe jobs. The default value is True. If True, then the job input is transferred
from the submit machine to the remote machine. The name of the file that is transferred is given by the job
attribute In. If False, then the job’s input is taken from a file on the remote machine (pre-staged), and the name
of the file is given by the job attribute In.

¶ A string attribute containing a comma separated list of directories, files and/or URLs that should be transferred from
the submit machine to the remote machine when input file transfer is enabled.

¶ When the job finished the most recent recent transfer of its input sandbox, measured in seconds from the epoch.
(00:00:00 UTC Jan 1, 1970).

¶ If the job’s most recent transfer of its input sandbox was queued, this attribute says when, measured in seconds from
the epoch (00:00:00 UTC Jan 1, 1970).

¶ : When the job actually started to transfer files, the most recent time it transferred its input sandbox, measured in
seconds from the epoch. This will be later than TransferInQueued (if set). (00:00:00 UTC Jan 1, 1970).

¶ The total size in Mbytes of input files to be transferred for the job. Files transferred via file transfer plug-ins are not
included. This attribute is automatically set by condor_submit; jobs submitted via other submission methods,
such as SOAP, may not define this attribute.

¶ An attribute utilized only for grid universe jobs. The default value is True. If True, then the output from the job is
transferred from the remote machine back to the submit machine. The name of the file after transfer is the file
referred to by job attribute Out. If False, no transfer takes place (remote to submit machine), and the name of
the file is the file referred to by job attribute Out.

¶ A string attribute containing a comma separated list of files and/or URLs that should be transferred from the remote
machine to the submit machine when output file transfer is enabled.

¶ When the job finished the most recent recent transfer of its output sandbox, measured in seconds from the epoch.
(00:00:00 UTC Jan 1, 1970).

¶ If the job’s most recent transfer of its output sandbox was queued, this attribute says when, measured in seconds
from the epoch (00:00:00 UTC Jan 1, 1970).

¶ When the job actually started to transfer files, the most recent time it transferred its output sandbox, measured in
seconds from the epoch. This will be later than TransferOutQueued (if set). (00:00:00 UTC Jan 1, 1970).

13.3. Job ClassAd Attributes 967

HTCondor Manual, Release 10.0.9

¶ A boolean value that indicates whether the job is currently transferring input files. The value is Undefined if the
job is not scheduled to run or has not yet attempted to start transferring input. When this value is True, to see
whether the transfer is active or queued, check TransferQueued.

¶ A boolean value that indicates whether the job is currently transferring output files. The value is Undefined if the
job is not scheduled to run or has not yet attempted to start transferring output. When this value is True, to see
whether the transfer is active or queued, check TransferQueued.

¶ A string value containing a semicolon separated list of file transfer plugins to be supplied by the job. Each entry in
this list will be of the form TAG1[,TAG2[,...]]=/path/to/plugin were TAG values are URL prefixes like
HTTP, and /path/to/plugin is the path that the transfer plugin is to be transferred from. The files mentioned
in this list will be transferred to the job sandbox before any file transfer plugins are invoked. A transfer plugin
supplied in this will way will be used even if the execute node has a file transfer plugin installed that handles that
URL prefix.

¶ A boolean value that indicates whether the job is currently waiting to transfer files because of limits placed by
MAX_CONCURRENT_DOWNLOADS or MAX_CONCURRENT_UPLOADS.

¶ The full path and file name on the submit machine of the log file of job events.

¶ A boolean that when true, tells HTCondor to run this job in container universe. Note that container universe jobs
are a “topping” above vanilla universe, and the JobUniverse attribute of container jobs will be 5 (vanilla)

¶ A boolean that when true, tells HTCondor to run this job in docker universe. Note that docker universe jobs are a
“topping” above vanilla universe, and the JobUniverse attribute of docker jobs will be 5 (vanilla)

¶ A boolean that, when True, specifies that when the executable exits as de-
scribed by SuccessCheckpointExitCode, SuccessCheckpointExitBySignal, and
SuccessCheckpointExitSignal, HTCondor should do (output) file transfer and immediately continue
the job in the same sandbox by restarting executable with the same arguments as the first time.

¶ A boolean expression that, when True, specifies that a graceful shutdown of the job should be done when the job is
removed or put on hold.

¶ An integer, extracted from the platform type of the machine upon which this job is submitted, representing a major
version number (currently 5 or 6) for a Windows operating system. This attribute only exists for jobs submitted
from Windows machines.

¶ An integer, extracted from the platform type of the machine upon which this job is submitted, representing a build
number for a Windows operating system. This attribute only exists for jobs submitted from Windows machines.

¶ An integer, extracted from the platform type of the machine upon which this job is submitted, representing a minor
version number (currently 0, 1, or 2) for a Windows operating system. This attribute only exists for jobs submitted
from Windows machines.

¶ The full path and file name of the file containing the X.509 user proxy.

¶ For a job with an X.509 proxy credential, this is the email address extracted from the proxy.

¶ For a job that defines the submit description file command x509userproxy , this is the time at which the indicated
X.509 proxy credential will expire, measured in the number of seconds since the epoch (00:00:00 UTC, Jan 1,
1970).

¶ For a vanilla or grid universe job that defines the submit description file command x509userproxy , this is the VOMS
Fully Qualified Attribute Name (FQAN) of the primary role of the credential. A credential may have multiple
roles defined, but by convention the one listed first is the primary role.

¶ For a vanilla or grid universe job that defines the submit description file command x509userproxy , this is a serialized
list of the DN and all FQAN. A comma is used as a separator, and any existing commas in the DN or FQAN are
replaced with the string ,. Likewise, any ampersands in the DN or FQAN are replaced with &.

968 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ For a vanilla or grid universe job that defines the submit description file command x509userproxy , this attribute
contains the Distinguished Name (DN) of the credential used to submit the job.

¶ For a vanilla or grid universe job that defines the submit description file command x509userproxy , this is the name
of the VOMS virtual organization (VO) that the user’s credential is part of.

The following job ClassAd attributes appear in the job ClassAd only for declared cron jobs. These represent various
allotted job start times that will be used to calculate the jobs DeferralTime. These attributes can be represented as
an integer, a list of integers, a range of integers, a step (intervals of a range), or an * for all allowed values. For more
information visit CronTab Scheduling.

¶ The minutes in an hour when the cron job is allowed to start running. Represented by the numerical values 0 to 59.

¶ The hours in the day when the cron job is allowed to start running. Represented by the numerical values 0 to 23.

¶ The days of the month when the cron job is allowed to start running. Represented by the numerical values 1 to 31.

¶ The months of the year when the cron job is allowed to start running. Represented by numerical values 1 to 12.

¶ The days of the week when the cron job is allowed to start running. Represented by numerical values 0 to 7. Both 0
and 7 represent Sunday.

The following job ClassAd attributes are relevant only for vm universe jobs.

¶ The MAC address of the virtual machine’s network interface, in the standard format of six groups of two hexadecimal
digits separated by colons. This attribute is currently limited to apply only to Xen virtual machines.

The following job ClassAd attributes appear in the job ClassAd only for the condor_dagman job submitted under
DAGMan. They represent status information for the DAG.

¶ The value 1 if the DAG is in recovery mode, and The value 0 otherwise.

¶ The number of DAG nodes that have finished successfully. This means that the entire node has finished, not only an
actual HTCondor job or jobs.

¶ The number of DAG nodes that have failed. This value includes all retries, if there are any.

¶ The number of DAG nodes for which a POST script is running or has been deferred because of a POST script throttle
setting.

¶ The number of DAG nodes for which a PRE script is running or has been deferred because of a PRE script throttle
setting.

¶ The number of DAG nodes for which the actual HTCondor job or jobs are queued. The queued jobs may be in any
state.

¶ The number of DAG nodes that are ready to run, but which have not yet started running.

¶ The total number of nodes in the DAG, including the FINAL node, if there is a FINAL node.

¶ The number of DAG nodes that are not ready to run. This is a node in which one or more of the parent nodes has
not yet finished.

¶ The overall status of the DAG, with the same values as the macro $DAG_STATUS used in DAGMan FINAL nodes.

0 OK
3 the DAG has been aborted by an ABORT-DAG-ON specification

The following job ClassAd attributes appear in the job ClassAd only for the condor_dagman job submitted under
DAGMan. They represent job process information about the DAG. These values will reset when a DAG is run via
rescue and be retained when a DAG is run via recovery mode.

¶ The total number of job processes submitted by all the nodes in the DAG.

13.3. Job ClassAd Attributes 969

HTCondor Manual, Release 10.0.9

¶ The number of job processes currently idle within the DAG.

¶ The number of job processes currently held within the DAG.

¶ The number of job processes currently executing within the DAG.

¶ The total number of job processes within the DAG that have successfully completed.

The following job ClassAd attributes do not appear in the job ClassAd as kept by the condor_schedd daemon. They
appear in the job ClassAd written to the job’s execute directory while the job is running.

¶ The number of Cpus allocated to the job. With statically-allocated slots, it is the number of Cpus allocated to the
slot. With dynamically-allocated slots, it is based upon the job attribute RequestCpus, but may be larger due to
the minimum given to a dynamic slot.

¶ CpusUsage (Note the plural Cpus) is a floating point value that represents the number of cpu cores fully used over
the lifetime of the job. A cpu-bound, single-threaded job will have a CpusUsage of 1.0. A job that is blocked on
I/O for half of its life and is cpu bound for the other have will have a CpusUsage of 0.5. A job that uses two cores
fully will have a CpusUsage of 2.0. Jobs with unexpectedly low CpusUsage may be showing lowered throughput
due to blocking on network or disk.

¶ The amount of disk space in KiB allocated to the job. With statically-allocated slots, it is the amount of disk space
allocated to the slot. With dynamically-allocated slots, it is based upon the job attribute RequestDisk, but may
be larger due to the minimum given to a dynamic slot.

¶ The amount of memory in MiB allocated to the job. With statically-allocated slots, it is the amount of memory space
allocated to the slot. With dynamically-allocated slots, it is based upon the job attribute RequestMemory, but
may be larger due to the minimum given to a dynamic slot.

¶ The amount of the custom resource identified by <Name> allocated to the job. For jobs using GPUs, <Name> will
be GPUs. With statically-allocated slots, it is the amount of the resource allocated to the slot. With dynamically-
allocated slots, it is based upon the job attribute Request<Name>, but may be larger due to the minimum given
to a dynamic slot.

13.4 Machine ClassAd Attributes

¶ Boolean which indicates if the slot accepted its current job while the machine was draining.

¶ String which describes HTCondor job activity on the machine. Can have one of the following values:

"Idle" There is no job activity

"Busy" A job is busy running

"Suspended" A job is currently suspended

"Vacating" A job is currently checkpointing

"Killing" A job is currently being killed

"Benchmarking" The startd is running benchmarks

"Retiring" Waiting for a job to finish or for the maximum retirement time to expire

¶ String with the architecture of the machine. Currently supported architectures have the following string definitions:

"INTEL" Intel x86 CPU (Pentium, Xeon, etc).

"X86_64" AMD/Intel 64-bit X86

970 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ On X86_64 Linux machines, this advertises the x86_64 microarchitecture, like x86_64-v2. See https://en.wikipedia.
org/wiki/X86-64#Microarchitecture_levels for details.

¶ The condor_startd has the capability to shut down or hibernate a machine when certain configurable criteria are
met. However, before the condor_startd can shut down a machine, the hardware itself must support hibernation,
as must the operating system. When the condor_startd initializes, it checks for this support. If the machine has
the ability to hibernate, then this boolean ClassAd attribute will be True. By default, it is False.

¶ The day of the week, where 0 = Sunday, 1 = Monday, . . . , and 6 = Saturday.

¶ The number of minutes passed since midnight.

¶ The load average contributed by HTCondor, either from remote jobs or running benchmarks.

¶ A string containing the HTCondor version number for the condor_startd daemon, the release date, and the build
identification number.

¶ The number of seconds since activity on the system console keyboard or console mouse has last been detected. The
value can be modified with SLOTS_CONNECTED_TO_CONSOLE as defined in the condor_startd Configuration File
Macros section.

¶ The number of CPUs (cores) in this slot. It is 1 for a single CPU slot, 2 for a dual CPU slot, etc. For a partitionable
slot, it is the remaining number of CPUs in the partitionable slot.

¶ On Linux machines, the Cpu family, as defined in the /proc/cpuinfo file.

¶ On Linux machines, the Cpu model number, as defined in the /proc/cpuinfo file.

¶ On Linux machines, the size of the L3 cache, in kbytes, as defined in the /proc/cpuinfo file.

¶ A float which represents this machine owner’s affinity for running the HTCondor job which it is currently hosting. If
not currently hosting an HTCondor job, CurrentRank is 0.0. When a machine is claimed, the attribute’s value
is computed by evaluating the machine’s Rank expression with respect to the current job’s ClassAd.

¶ Set by the value of configuration variable DETECTED_CORES

¶ Set by the value of configuration variable DETECTED_MEMORY. Specified in MiB.

¶ The amount of disk space on this machine available for the job in KiB (for example, 23000 = 23 MiB). Specifically,
this is the amount of disk space available in the directory specified in the HTCondor configuration files by the
EXECUTE macro, minus any space reserved with the RESERVED_DISK macro. For static slots, this value will be
the same as machine ClassAd attribute TotalSlotDisk. For partitionable slots, this value will be the quantity
of disk space remaining in the partitionable slot.

¶ This attribute is True when the slot is draining and undefined if not.

¶ This attribute contains a string that is the request id of the draining request that put this slot in a draining state. It is
undefined if the slot is not draining.

¶ The .NET framework versions currently installed on this computer. Default format is a comma delimited list. Current
definitions:

"1.1" for .Net Framework 1.1

"2.0" for .Net Framework 2.0

"3.0" for .Net Framework 3.0

"3.5" for .Net Framework 3.5

"4.0Client" for .Net Framework 4.0 Client install

"4.0Full" for .Net Framework 4.0 Full install

¶ For SMP machines that allow dynamic partitioning of a slot, this boolean value identifies that this dynamic slot may
be partitioned.

13.4. Machine ClassAd Attributes 971

https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels

HTCondor Manual, Release 10.0.9

¶ Time at which the machine entered the current Activity (see Activity entry above). On all platforms (including
NT), this is measured in the number of integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

¶ The job run time in cpu-seconds that would be lost if graceful draining were initiated at the time this ClassAd was
published. This calculation assumes that jobs will run for the full retirement time and then be evicted without
saving a checkpoint.

¶ The estimated time at which graceful draining of the machine could complete if it were initiated at the time this
ClassAd was published and there are no active claims. This is measured in the number of integer seconds since
the Unix epoch (00:00:00 UTC, Jan 1, 1970). This value is computed with the assumption that the machine
policy will not suspend jobs during draining while the machine is waiting for the job to use up its retirement
time. If suspension happens, the upper bound on how long draining could take is unlimited. To avoid suspension
during draining, the SUSPEND and CONTINUE expressions could be configured to pay attention to the Draining
attribute.

¶ The job run time in cpu-seconds that would be lost if quick or fast draining were initiated at the time this ClassAd
was published. This calculation assumes that all evicted jobs will not save a checkpoint.

¶ Time at which quick or fast draining of the machine could complete if it were initiated at the time this ClassAd was
published and there are no active claims. This is measured in the number of integer seconds since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶ A domain name configured by the HTCondor administrator which describes a cluster of machines which all access
the same, uniformly-mounted, networked file systems usually via NFS or AFS. This is useful for Vanilla universe
jobs which require remote file access.

¶ A boolean value set to True if the machine is capable of executing docker universe jobs.

¶ A boolean value set to True if the machine is capable of encrypting execute directories.

¶ A boolean value that when True identifies that the machine can use the file transfer mechanism.

¶ A string of comma-separated file transfer protocols that the machine can support. The value can be modified with
FILETRANSFER_PLUGINS as defined in condor_starter Configuration File Entries.

¶ A boolean value that when True identifies that the jobs on this machine can create user namespaces without root
privileges.

¶ A boolean value set to True if the machine being advertised supports the SSE 4.1 instructions, and Undefined
otherwise.

¶ A boolean value set to True if the machine being advertised supports the SSE 4.2 instructions, and Undefined
otherwise.

¶ A boolean value set to True if the machine being advertised supports the SSSE 3 instructions, and Undefined
otherwise.

¶ A boolean value set to True if the machine being advertised supports the avx instructions, and Undefined otherwise.

¶ A boolean value set to True if the machine being advertised supports the avx2 instructions, and Undefined other-
wise.

¶ A boolean value set to True if the machine being advertised support the avx512f (foundational) instructions.

¶ A boolean value set to True if the machine being advertised support the avx512dq instructions.

¶ A boolean value set to True if the machine being advertised support the avx512dnni instructions.

¶ A boolean value set to True if the machine being advertised supports transferring (checkpoint) files (to the submit
node) when the job successfully self-checkpoints.

¶ A boolean value set to True if the machine being advertised supports running jobs within Singularity containers.

972 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ If the configuration triggers the detection of virtual machine software, a boolean value reporting the success thereof;
otherwise undefined. May also become False if HTCondor determines that it can’t start a VM (even if the
appropriate software is detected).

¶ A boolean value that when True identifies that the machine has the capability to be woken into a fully powered and
running state by receiving a Wake On LAN (WOL) packet. This ability is a function of the operating system,
the network adapter in the machine (notably, wireless network adapters usually do not have this function), and
BIOS settings. When the condor_startd initializes, it tries to detect if the operating system and network adapter
both support waking from hibernation by receipt of a WOL packet. The default value is False.

¶ If the hardware and software have the capacity to be woken into a fully powered and running state by receiving a
Wake On LAN (WOL) packet, this feature can still be disabled via the BIOS or software. If BIOS or the operating
system have disabled this feature, the condor_startd sets this boolean attribute to False.

¶ The Average lifetime of all jobs, including transfer time. This is determined by measuring the lifetime of each
condor_starter that has exited. This attribute will be undefined until the first time a condor_starter has exited.

¶ attribute. This is also the the total number times a condor_starter has exited.

¶ The Maximum lifetime of all jobs, including transfer time. This is determined by measuring the lifetime of each
condor_starter s that has exited. This attribute will be undefined until the first time a condor_starter has exited.

¶ The Minimum lifetime of all jobs, including transfer time. This is determined by measuring the lifetime of each
condor_starter that has exited. This attribute will be undefined until the first time a condor_starter has exited.

¶ The Average lifetime of all jobs that have exited in the last 20 minutes, including transfer time. This is determined
by measuring the lifetime of each condor_starter that has exited in the last 20 minutes. This attribute will be
undefined if no condor_starter has exited in the last 20 minutes.

¶ The total number of jobs used to calulate the RecentJobBusyTimeAvg attribute. This is also the the total number
times a condor_starter has exited in the last 20 minutes.

¶ The Maximum lifetime of all jobs that have exited in the last 20 minutes, including transfer time. This is determined
by measuring the lifetime of each condor_starter s that has exited in the last 20 minutes. This attribute will be
undefined if no condor_starter has exited in the last 20 minutes.

¶ The Minimum lifetime of all jobs, including transfer time. This is determined by measuring the lifetime of each
condor_starter that has exited. This attribute will be undefined if no condor_starter has exited in the last 20
minutes.

¶ The Average lifetime time of all jobs, not including time spent transferring files. This attribute will be undefined
until the first time a job exits. Jobs that never start (because they fail to transfer input, for instance) will not be
included in the average.

¶ attribute. This is also the the total number times a job has exited. Jobs that never start (because input transfer fails,
for instance) are not included in the count.

¶ The lifetime of the longest lived job that has exited. This attribute will be undefined until the first time a job exits.

¶ The lifetime of the shortest lived job that has exited. This attribute will be undefined until the first time a job exits.

¶ The Average lifetime time of all jobs, not including time spent transferring files, that have exited in the last 20
minutes. This attribute will be undefined if no job has exited in the last 20 minutes.

¶ The total number of jobs used to calulate the RecentJobDurationAvg attribute. This is the total number of jobs
that began execution and have exited in the last 20 minutes.

¶ The lifetime of the longest lived job that has exited in the last 20 minutes. This attribute will be undefined if no job
has exited in the last 20 minutes.

¶ The lifetime of the shortest lived job that has exited in the last 20 minutes. This attribute will be undefined if no job
has exited in the last 20 minutes.

13.4. Machine ClassAd Attributes 973

HTCondor Manual, Release 10.0.9

¶ The total number of times a running job has been preempted on this machine.

¶ The total number of times a running job has been preempted on this machine due to the machine’s rank of jobs since
the condor_startd started running.

¶ The total number of jobs which have been started on this machine since the condor_startd started running.

¶ The total number of times a running job has been preempted on this machine based on a fair share allocation of the
pool since the condor_startd started running.

¶ An attribute defined if a vm universe job is running on this slot. Defined by the number of virtualized CPUs in the
virtual machine.

¶ The number of seconds since activity on any keyboard or mouse associated with this machine has last been detected.
Unlike ConsoleIdle, KeyboardIdle also takes activity on pseudo-terminals into account. Pseudo-terminals
have virtual keyboard activity from telnet and rlogin sessions. Note that KeyboardIdle will always be equal
to or less than ConsoleIdle. The value can be modified with SLOTS_CONNECTED_TO_KEYBOARD as defined in
the condor_startd Configuration File Macros section.

¶ Relative floating point performance as determined via a Linpack benchmark.

¶ Time when draining of this condor_startd was last initiated (e.g. due to condor_defrag or condor_drain).

¶ Time when draining of this condor_startd was last stopped (e.g. by being cancelled).

¶ Time when the HTCondor central manager last received a status update from this machine. Expressed as the number
of integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970). Note: This attribute is only inserted by
the central manager once it receives the ClassAd. It is not present in the condor_startd copy of the ClassAd.
Therefore, you could not use this attribute in defining condor_startd expressions (and you would not want to).

¶ A floating point number representing the current load average.

¶ A string with the machine’s fully qualified host name.

¶ An integer expression that specifies the time in seconds the machine will allow the job to gracefully shut down.

¶ When the condor_startd wants to kick the job off, a job which has run for less than this number of seconds will not be
hard-killed. The condor_startd will wait for the job to finish or to exceed this amount of time, whichever comes
sooner. If the job vacating policy grants the job X seconds of vacating time, a preempted job will be soft-killed
X seconds before the end of its retirement time, so that hard-killing of the job will not happen until the end of
the retirement time if the job does not finish shutting down before then. This is an expression evaluated in the
context of the job ClassAd, so it may refer to job attributes as well as machine attributes.

¶ The amount of RAM in MiB in this slot. For static slots, this value will be the same as in TotalSlotMemory. For
a partitionable slot, this value will be the quantity remaining in the partitionable slot.

¶ Relative integer performance as determined via a Dhrystone benchmark.

¶ The number of seconds that this daemon has been running.

¶ The fraction of recent CPU time utilized by this daemon.

¶ The amount of virtual memory consumed by this daemon in KiB.

¶ The current number of sockets registered by this daemon.

¶ The amount of resident memory used by this daemon in KiB.

¶ The number of open (cached) security sessions for this daemon.

¶ The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at which
this daemon last checked and set the attributes with names that begin with the string MonitorSelf.

974 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ String with the IP and port address of the condor_startd daemon which is publishing this machine ClassAd. When
using CCB, condor_shared_port, and/or an additional private network interface, that information will be in-
cluded here as well.

¶ The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at which
the condor_startd daemon last sent a ClassAd update to the condor_collector.

¶ The ClassAd type; always set to the literal string "Machine".

¶ The name of this resource; typically the same value as the Machine attribute, but could be customized by
the site administrator. On SMP machines, the condor_startd will divide the CPUs up into separate slots,
each with with a unique name. These names will be of the form “slot#@full.hostname”, for example,
“slot1@vulture.cs.wisc.edu”, which signifies slot number 1 from vulture.cs.wisc.edu.

¶ A string that lists specific instances of a user-defined machine resource, identified by name. Each instance is currently
unavailable for purposes of match making.

¶ A ClassAd list that specifies which job universes are presently offline, both as strings and as the corresponding job
universe number. Could be used the the startd to refuse to start jobs in offline universes:

START = OfflineUniverses is undefined || (! member(JobUniverse, OfflineUniverses))

May currently only contain "VM" and 13.

¶ String describing the operating system running on this machine. Currently supported operating systems have the
following string definitions:

"LINUX" for LINUX 2.0.x, LINUX 2.2.x, LINUX 2.4.x, LINUX 2.6.x, or LINUX 3.10.0 kernel
systems, as well as Scientific Linux, Ubuntu versions 14.04, and Debian 7.0 (wheezy) and 8.0
(jessie)

"OSX" for Darwin

"FREEBSD7" for FreeBSD 7

"FREEBSD8" for FreeBSD 8

"WINDOWS" for all versions of Windows

¶ A string indicating an operating system and a version number.

For Linux operating systems, it is the value of the OpSysName attribute concatenated with the string version of
the OpSysMajorVer attribute:

"RedHat5" for RedHat Linux version 5

"RedHat6" for RedHat Linux version 6

"RedHat7" for RedHat Linux version 7

"Fedora16" for Fedora Linux version 16

"Debian6" for Debian Linux version 6

"Debian7" for Debian Linux version 7

"Debian8" for Debian Linux version 8

"Debian9" for Debian Linux version 9

"Ubuntu14" for Ubuntu 14.04

"SL5" for Scientific Linux version 5

"SL6" for Scientific Linux version 6

"SLFermi5" for Fermi’s Scientific Linux version 5

13.4. Machine ClassAd Attributes 975

mailto:slot#@full.hostname
mailto:slot1@vulture.cs.wisc.edu

HTCondor Manual, Release 10.0.9

"SLFermi6" for Fermi’s Scientific Linux version 6

"SLCern5" for CERN’s Scientific Linux version 5

"SLCern6" for CERN’s Scientific Linux version 6

For MacOS operating systems, it is the value of the OpSysShortName attribute concatenated with the string
version of the OpSysVer attribute:

"MacOSX605" for MacOS version 10.6.5 (Snow Leopard)

"MacOSX703" for MacOS version 10.7.3 (Lion)

For BSD operating systems, it is the value of the OpSysName attribute concatenated with the string version of
the OpSysMajorVer attribute:

"FREEBSD7" for FreeBSD version 7

"FREEBSD8" for FreeBSD version 8

For Windows operating systems, it is the value of the OpSys attribute concatenated with the string version of the
OpSysMajorVer attribute:

"WINDOWS500" for Windows 2000

"WINDOWS501" for Windows XP

"WINDOWS502" for Windows Server 2003

"WINDOWS600" for Windows Vista

"WINDOWS601" for Windows 7

¶ A string that holds the long-standing values for the OpSys attribute. Currently supported operating systems have the
following string definitions:

"LINUX" for LINUX 2.0.x, LINUX 2.2.x, LINUX 2.4.x, LINUX 2.6.x, or LINUX 3.10.0 kernel
systems, as well as Scientific Linux, Ubuntu versions 14.04, and Debian 7 and 8

"OSX" for Darwin

"FREEBSD7" for FreeBSD version 7

"FREEBSD8" for FreeBSD version 8

"WINDOWS" for all versions of Windows

¶ A string giving a full description of the operating system. For Linux platforms, this is generally the string taken from
/etc/hosts, with extra characters stripped off Debian versions.

"Red Hat Enterprise Linux Server release 6.2 (Santiago)" for RedHat Linux version
6

"Red Hat Enterprise Linux Server release 7.0 (Maipo)" for RedHat Linux version 7.0

"Ubuntu 14.04.1 LTS" for Ubuntu 14.04 point release 1

"Debian GNU/Linux 8" for Debian 8.0 (jessie)

"Fedora release 16 (Verne)" for Fedora Linux version 16

"MacOSX 7.3" for MacOS version 10.7.3 (Lion)

"FreeBSD8.2-RELEASE-p3" for FreeBSD version 8

"Windows XP SP3" for Windows XP

"Windows 7 SP2" for Windows 7

976 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ An integer value representing the major version of the operating system.

5 for RedHat Linux version 5 and derived platforms such as Scientific Linux

6 for RedHat Linux version 6 and derived platforms such as Scientific Linux

7 for RedHat Linux version 7

14 for Ubuntu 14.04

7 for Debian 7

8 for Debian 8

16 for Fedora Linux version 16

6 for MacOS version 10.6.5 (Snow Leopard)

7 for MacOS version 10.7.3 (Lion)

7 for FreeBSD version 7

8 for FreeBSD version 8

501 for Windows XP

600 for Windows Vista

601 for Windows 7

¶ A string containing a terse description of the operating system.

"RedHat" for RedHat Linux version 6 and 7

"Fedora" for Fedora Linux version 16

"Ubuntu" for Ubuntu versions 14.04

"Debian" for Debian versions 7 and 8

"SnowLeopard" for MacOS version 10.6.5 (Snow Leopard)

"Lion" for MacOS version 10.7.3 (Lion)

"FREEBSD" for FreeBSD version 7 or 8

"WindowsXP" for Windows XP

"WindowsVista" for Windows Vista

"Windows7" for Windows 7

"SL" for Scientific Linux

"SLFermi" for Fermi’s Scientific Linux

"SLCern" for CERN’s Scientific Linux

¶ A string containing a short name for the operating system.

"RedHat" for RedHat Linux version 5, 6 or 7

"Fedora" for Fedora Linux version 16

"Debian" for Debian Linux version 6 or 7 or 8

"Ubuntu" for Ubuntu versions 14.04

"MacOSX" for MacOS version 10.6.5 (Snow Leopard) or for MacOS version 10.7.3 (Lion)

"FreeBSD" for FreeBSD version 7 or 8

13.4. Machine ClassAd Attributes 977

HTCondor Manual, Release 10.0.9

"XP" for Windows XP

"Vista" for Windows Vista

"7" for Windows 7

"SL" for Scientific Linux

"SLFermi" for Fermi’s Scientific Linux

"SLCern" for CERN’s Scientific Linux

¶ An integer value representing the operating system version number.

700 for RedHat Linux version 7.0

602 for RedHat Linux version 6.2

1600 for Fedora Linux version 16.0

1404 for Ubuntu 14.04

700 for Debian 7.0

800 for Debian 8.0

704 for FreeBSD version 7.4

802 for FreeBSD version 8.2

605 for MacOS version 10.6.5 (Snow Leopard)

703 for MacOS version 10.7.3 (Lion)

500 for Windows 2000

501 for Windows XP

502 for Windows Server 2003

600 for Windows Vista or Windows Server 2008

601 for Windows 7 or Windows Server 2008

¶ For SMP machines, a boolean value identifying that this slot may be partitioned.

¶ The total number of jobs which have been preempted from this machine in the last twenty minutes.

¶ The total number of times a running job has been preempted on this machine due to the machine’s rank of jobs in
the last twenty minutes.

¶ The total number of jobs which have been started on this machine in the last twenty minutes.

¶ The total number of times a running job has been preempted on this machine based on a fair share allocation of the
pool in the last twenty minutes.

¶ A boolean, which when evaluated within the context of the machine ClassAd and a job ClassAd, must evaluate to
TRUE before HTCondor will allow the job to use this machine.

¶ when the running job can be evicted. MaxJobRetirementTime is the expression of how much retirement time the
machine offers to new jobs, whereas RetirementTimeRemaining is the negotiated amount of time remaining
for the current running job. This may be less than the amount offered by the machine’s MaxJobRetirementTime
expression, because the job may ask for less.

¶ A string containing the version of Singularity available, if the machine being advertised supports running jobs within
a Singularity container (see HasSingularity).

¶ For SMP machines, the integer that identifies the slot. The value will be X for the slot with

978 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

name="slotX@full.hostname"

For non-SMP machines with one slot, the value will be 1.

¶ For SMP machines with partitionable slots, the partitionable slot will have this attribute set to "Partitionable",
and all dynamic slots will have this attribute set to "Dynamic".

¶ This specifies the weight of the slot when calculating usage, computing fair shares, and enforcing group quotas. For
example, claiming a slot with SlotWeight = 2 is equivalent to claiming two SlotWeight = 1 slots. See the
description of SlotWeight in condor_startd Configuration File Macros.

¶ String with the IP and port address of the condor_startd daemon which is publishing this machine ClassAd. When
using CCB, condor_shared_port, and/or an additional private network interface, that information will be in-
cluded here as well.

¶ String which publishes the machine’s HTCondor state. Can be:

"Owner" The machine owner is using the machine, and it is unavailable to HTCondor.

"Unclaimed" The machine is available to run HTCondor jobs, but a good match is either not avail-
able or not yet found.

"Matched" The HTCondor central manager has found a good match for this resource, but an HT-
Condor scheduler has not yet claimed it.

"Claimed" The machine is claimed by a remote condor_schedd and is probably running a job.

"Preempting" An HTCondor job is being preempted (possibly via checkpointing) in order to clear
the machine for either a higher priority job or because the machine owner wants the machine
back.

"Drained" This slot is not accepting jobs, because the machine is being drained.

¶ Describes what type of ClassAd to match with. Always set to the string literal "Job", because machine ClassAds
always want to be matched with jobs, and vice-versa.

¶ The load average contributed by HTCondor summed across all slots on the machine, either from remote jobs or
running benchmarks.

¶ The number of CPUs (cores) that are on the machine. This is in contrast with Cpus, which is the number of CPUs
in the slot.

¶ The quantity of disk space in KiB available across the machine (not the slot). For partitionable slots, where there is
one partitionable slot per machine, this value will be the same as machine ClassAd attribute TotalSlotDisk.

¶ A floating point number representing the current load average summed across all slots on the machine.

¶ The total job runtime in cpu-seconds that has been lost due to job evictions caused by draining since this con-
dor_startd began executing. In this calculation, it is assumed that jobs are evicted without checkpointing.

¶ The total machine-wide time in cpu-seconds that has not been used (i.e. not matched to a job submitter) due to
draining since this condor_startd began executing.

¶ The quantity of RAM in MiB available across the machine (not the slot). For partitionable slots, where there is one
partitionable slot per machine, this value will be the same as machine ClassAd attribute TotalSlotMemory.

¶ The number of CPUs (cores) in this slot. For static slots, this value will be the same as in Cpus.

¶ The quantity of disk space in KiB given to this slot. For static slots, this value will be the same as machine ClassAd
attribute Disk. For partitionable slots, where there is one partitionable slot per machine, this value will be the
same as machine ClassAd attribute TotalDisk.

13.4. Machine ClassAd Attributes 979

HTCondor Manual, Release 10.0.9

¶ The quantity of RAM in MiB given to this slot. For static slots, this value will be the same as machine ClassAd
attribute Memory. For partitionable slots, where there is one partitionable slot per machine, this value will be the
same as machine ClassAd attribute TotalMemory.

¶ A sum of the static slots, partitionable slots, and dynamic slots on the machine at the current time.

¶ The number of seconds that this machine (slot) has accumulated within the backfill busy state and activity pair since
the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶ The number of seconds that this machine (slot) has accumulated within the backfill idle state and activity pair since
the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶ The number of seconds that this machine (slot) has accumulated within the backfill killing state and activity pair
since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶ The number of seconds that this machine (slot) has accumulated within the claimed busy state and activity pair since
the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶ The number of seconds that this machine (slot) has accumulated within the claimed idle state and activity pair since
the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶ The number of seconds that this machine (slot) has accumulated within the claimed retiring state and activity pair
since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶ The number of seconds that this machine (slot) has accumulated within the claimed suspended state and activity pair
since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶ The number of seconds that this machine (slot) has accumulated within the matched idle state and activity pair since
the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶ The number of seconds that this machine (slot) has accumulated within the owner idle state and activity pair since
the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶ The number of seconds that this machine (slot) has accumulated within the preempting killing state and activity pair
since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶ The number of seconds that this machine (slot) has accumulated within the preempting vacating state and activity
pair since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶ The number of seconds that this machine (slot) has accumulated within the unclaimed benchmarking state and
activity pair since the condor_startd began executing. This attribute will only be defined if it has a value greater
than 0.

¶ The number of seconds that this machine (slot) has accumulated within the unclaimed idle state and activity pair
since the condor_startd began executing. This attribute will only be defined if it has a value greater than 0.

¶ file entries, and therefore all have the same logins.

¶ The amount of currently available virtual memory (swap space) expressed in KiB. On Linux platforms, it is the sum
of paging space and physical memory, which more accurately represents the virtual memory size of the machine.

¶ The maximum number of vm universe jobs that can be started on this machine. This maximum is set by the config-
uration variable VM_MAX_NUMBER.

¶ An attribute defined if a vm universe job is running on this slot. Defined by the amount of memory in use by the
virtual machine, given in Mbytes.

¶ Gives the amount of memory available for starting additional VM jobs on this machine, given in Mbytes. The
maximum value is set by the configuration variable VM_MEMORY.

¶ A boolean value indicating whether networking is allowed for virtual machines on this machine.

980 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ The type of virtual machine software that can run on this machine. The value is set by the configuration variable
VM_TYPE

¶ The reason the VM universe went offline (usually because a VM universe job failed to launch).

¶ The time that the VM universe went offline.

¶ An integer, extracted from the platform type, representing a build number for a Windows operating system. This
attribute only exists on Windows machines.

¶ An integer, extracted from the platform type, representing a major version number (currently 5 or 6) for a Windows
operating system. This attribute only exists on Windows machines.

¶ An integer, extracted from the platform type, representing a minor version number (currently 0, 1, or 2) for a Windows
operating system. This attribute only exists on Windows machines.

In addition, there are a few attributes that are automatically inserted into the machine ClassAd whenever a resource is
in the Claimed state:

¶ The host name of the machine that has claimed this resource

¶ A boolean attribute which is True if this resource was claimed via negotiation when the configuration variable
GROUP_AUTOREGROUP is True. It is False otherwise.

¶ The accounting group name corresponding to the submitter that claimed this resource.

¶ The accounting group name under which this resource negotiated when it was claimed. This attribute will fre-
quently be the same as attribute RemoteGroup, but it may differ in cases such as when configuration variable
GROUP_AUTOREGROUP is True, in which case it will have the name of the root group, identified as <none>.

¶ The name of the user who originally claimed this resource.

¶ The name of the user who is currently using this resource. In general, this will always be the same as the
RemoteOwner, but in some cases, a resource can be claimed by one entity that hands off the resource to an-
other entity which uses it. In that case, RemoteUser would hold the name of the entity currently using the
resource, while RemoteOwner would hold the name of the entity that claimed the resource.

¶ The name of the user who is preempting the job that is currently running on this resource.

¶ The name of the user who is preempting the job that is currently running on this resource. The relationship be-
tween PreemptingUser and PreemptingOwner is the same as the relationship between RemoteUser and
RemoteOwner.

¶ A float which represents this machine owner’s affinity for running the HTCondor job which is waiting for the current
job to finish or be preempted. If not currently hosting an HTCondor job, PreemptingRank is undefined. When
a machine is claimed and there is already a job running, the attribute’s value is computed by evaluating the
machine’s Rank expression with respect to the preempting job’s ClassAd.

¶ A running total of the amount of time (in seconds) that all jobs (under the same claim) ran (have spent in the
Claimed/Busy state).

¶ A running total of the amount of time (in seconds) that all jobs (under the same claim) have been suspended (in the
Claimed/Suspended state).

¶ A running total of the amount of time (in seconds) that a single job ran (has spent in the Claimed/Busy state).

¶ A running total of the amount of time (in seconds) that a single job has been suspended (in the Claimed/Suspended
state).

There are a few attributes that are only inserted into the machine ClassAd if a job is currently executing. If the resource
is claimed but no job are running, none of these attributes will be defined.

¶ The job’s identifier (for example, 152.3), as seen from condor_q on the submitting machine.

13.4. Machine ClassAd Attributes 981

HTCondor Manual, Release 10.0.9

¶ The time stamp in integer seconds of when the job began executing, since the Unix epoch (00:00:00 UTC, Jan 1,
1970). For idle machines, the value is UNDEFINED.

¶ If the job has performed a periodic checkpoint, this attribute will be defined and will hold the time stamp of when
the last periodic checkpoint was begun. If the job has yet to perform a periodic checkpoint, or cannot checkpoint
at all, the LastPeriodicCheckpoint attribute will not be defined.

There are a few attributes that are applicable to machines that are offline, that is, hibernating.

¶ The Unix epoch time when this offline ClassAd would have been matched to a job, if the machine were online.
In addition, the slot1 ClassAd of a multi-slot machine will have slot<X>_MachineLastMatchTime defined,
where <X> is replaced by the slot id of each of the slots with MachineLastMatchTime defined.

¶ A boolean value, that when True, indicates this machine is in an offline state in the condor_collector. Such ClassAds
are stored persistently, such that they will continue to exist after the condor_collector restarts.

¶ A boolean expression that specifies when a hibernating machine should be woken up, for example, by con-
dor_rooster.

For machines with user-defined or custom resource specifications, including GPUs, the following attributes will be in
the ClassAd for each slot. In the name of the attribute, <name> is substituted with the configured name given to the
resource.

¶ A space separated list that identifies which of these resources are currently assigned to slots.

¶ A space separated list that indicates which of these resources is unavailable for match making.

¶ An integer quantity of the total number of these resources.

For machines with custom resource specifications that include GPUs, the following attributes may be in the ClassAd for
each slot, depending on the value of configuration variable MACHINE_RESOURCE_INVENTORY_GPUs and what GPUs
are detected. In the name of the attribute, <name> is substituted with the prefix string assigned for the GPU.

¶ For NVIDIA devices, a dynamic attribute representing the temperature in Celsius of the board containing the GPU.

¶ The CUDA-defined capability for the GPU.

¶ For CUDA or Open CL devices, the integer clocking speed of the GPU in MHz.

¶ For CUDA or Open CL devices, the integer number of compute units per GPU.

¶ For CUDA devices, the integer number of cores per compute unit.

¶ For CUDA or Open CL devices, a string representing the manufacturer’s proprietary device name.

¶ For NVIDIA devices, a dynamic attribute representing the temperature in Celsius of the GPU die.

¶ For CUDA devices, a string representing the manufacturer’s driver version.

¶ For CUDA or Open CL devices, a boolean value representing whether error correction is enabled.

¶ For NVIDIA devices, a count of the number of double bit errors detected for this GPU.

¶ For NVIDIA devices, a count of the number of single bit errors detected for this GPU.

¶ For NVIDIA devices, a value between 0 and 100 (inclusive), used to represent the level of fan operation as percentage
of full fan speed.

¶ For CUDA or Open CL devices, the quantity of memory in Mbytes in this GPU.

¶ For Open CL devices, a string representing the manufacturer’s version number.

¶ For CUDA devices, a string representing the manufacturer’s version number.

The following attributes are advertised for a machine in which partitionable slot preemption is enabled.

982 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ A ClassAd list containing the values of the AccountingGroup attribute for each dynamic slot of the partitionable
slot.

¶ A ClassAd list containing the values of the Activity attribute for each dynamic slot of the partitionable slot.

¶ A ClassAd list containing the values of the Cpus attribute for each dynamic slot of the partitionable slot.

¶ A ClassAd list containing the values of the CurrentRank attribute for each dynamic slot of the partitionable slot.

¶ A ClassAd list containing the values of the EnteredCurrentState attribute for each dynamic slot of the partition-
able slot.

¶ A ClassAd list containing the values of the Memory attribute for each dynamic slot of the partitionable slot.

¶ A ClassAd list containing the values of the Name attribute for each dynamic slot of the partitionable slot.

¶ A ClassAd list containing the values of the RemoteOwner attribute for each dynamic slot of the partitionable slot.

¶ A ClassAd list containing the values of the RemoteUser attribute for each dynamic slot of the partitionable slot.

¶ A ClassAd list containing the values of the RetirementTimeRemaining attribute for each dynamic slot of the
partitionable slot.

¶ A ClassAd list containing the values of the State attribute for each dynamic slot of the partitionable slot.

¶ A boolean value set to True in both the partitionable and dynamic slots, when configuration variable
ADVERTISE_PSLOT_ROLLUP_INFORMATION is True, such that the condor_negotiator knows when partition-
able slot preemption is possible and can directly preempt a dynamic slot when appropriate.

The single attribute, CurrentTime, is defined by the ClassAd environment.

¶ Evaluates to the the number of integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

Common Cloud Attributes

The following attributes are advertised when use feature:CommonCloudAttributesGoogle or use feature:
CommonCloudAttributesAWS is enabled. All values are strings.

¶ Identifies the VM image. (“image” or “AMI ID”)

¶ Identifies the type of resource allocated. (“machine type” or “instance type”)

¶ Identifies the geographic area in which the instance is running.

¶ Identifies a specific (“availability”) zone within the region.

¶ Presently, either "Google" or "AWS".

¶ Presently, either "GCE" or "EC2".

¶ The instance’s identifier with its provider (on its platform).

¶ "True" if the instance, and "False" otherwise.

13.4. Machine ClassAd Attributes 983

HTCondor Manual, Release 10.0.9

13.5 DaemonMaster ClassAd Attributes

¶ A string containing the HTCondor version number, the release date, and the build identification number.

¶ The time that this daemon was started, represented as the number of second elapsed since the Unix epoch (00:00:00
UTC, Jan 1, 1970).

¶ The time that this daemon was configured, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶ A string with the machine’s fully qualified host name.

¶ String with the IP and port address of the condor_master daemon which is publishing this DaemonMaster ClassAd.

¶ The number of seconds that this daemon has been running.

¶ The fraction of recent CPU time utilized by this daemon.

¶ The amount of virtual memory consumed by this daemon in Kbytes.

¶ The current number of sockets registered by this daemon.

¶ The amount of resident memory used by this daemon in Kbytes.

¶ The number of open (cached) security sessions for this daemon.

¶ The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at which
this daemon last checked and set the attributes with names that begin with the string MonitorSelf.

¶ String with the IP and port address of the condor_master daemon which is publishing this ClassAd.

¶ The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at which
the condor_master daemon last sent a ClassAd update to the condor_collector.

¶ The name of this resource; typically the same value as the Machine attribute, but could be customized by
the site administrator. On SMP machines, the condor_startd will divide the CPUs up into separate slots,
each with with a unique name. These names will be of the form “slot#@full.hostname”, for example,
“slot1@vulture.cs.wisc.edu”, which signifies slot number 1 from vulture.cs.wisc.edu.

¶ Description is not yet written.

¶ The UID under which the condor_master is started.

¶ An integer, starting at zero, and incremented with each ClassAd update sent to the condor_collector. The con-
dor_collector uses this value to sequence the updates it receives.

13.6 Scheduler ClassAd Attributes

¶ A Statistics attribute defining the number of active autoclusters.

¶ The name of the main condor_collector which this condor_schedd daemon reports to, as copied from
COLLECTOR_HOST. If a condor_schedd flocks to other condor_collector daemons, this attribute still represents
the “home” condor_collector, so this value can be used to discover if a condor_schedd is currently flocking.

¶ A string containing the HTCondor version number, the release date, and the build identification number.

¶ A Statistics attribute defining the ratio of the time spent handling messages and events to the elapsed time for the
time period defined by StatsLifetime of this condor_schedd. A value near 0.0 indicates an idle daemon, while
a value near 1.0 indicates a daemon running at or above capacity.

984 Chapter 13. ClassAd Attributes

mailto:slot#@full.hostname
mailto:slot1@vulture.cs.wisc.edu

HTCondor Manual, Release 10.0.9

¶ The time that this daemon was started, represented as the number of second elapsed since the Unix epoch (00:00:00
UTC, Jan 1, 1970).

¶ The time that this daemon was configured, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶ The number of detected machine CPUs/cores.

¶ The amount of detected machine RAM in MBytes.

¶ This attribute contains the Unix epoch time when the job_queue.log file which stores the scheduler’s database was
first created.

¶ A Statistics attribute defining the sum of the all of the time jobs which did not complete successfully have spent
running over the lifetime of this condor_schedd.

¶ A Statistics attribute defining the sum of the all of the time jobs which did not complete successfully due to con-
dor_shadow exceptions have spent running over the lifetime of this condor_schedd.

¶ . A Statistics attribute defining the sum of the all of the time jobs have spent running in the time interval defined by
attribute StatsLifetime.

¶ . A Statistics attribute defining the sum of all the time jobs have spent waiting to start in the time interval defined by
attribute StatsLifetime.

¶ A Statistics attribute defining a histogram count of jobs that did not complete successfully, as classified
by time spent running, over the lifetime of this condor_schedd. Counts within the histogram are sepa-
rated by a comma and a space, where the time interval classification is defined in the ClassAd attribute
JobsRuntimesHistogramBuckets.

¶ A Statistics attribute defining a histogram count of jobs that did not complete successfully, as classified by image
size, over the lifetime of this condor_schedd. Counts within the histogram are separated by a comma and a space,
where the size classification is defined in the ClassAd attribute JobsSizesHistogramBuckets.

¶ A Statistics attribute defining the number of times jobs that have exited with a condor_shadow exit code of
JOB_CKPTED in the time interval defined by attribute StatsLifetime.

¶ A Statistics attribute defining the number of jobs successfully completed in the time interval defined by attribute
StatsLifetime.

¶ A Statistics attribute defining a histogram count of jobs that completed successfully as classified by time spent run-
ning, over the lifetime of this condor_schedd. Counts within the histogram are separated by a comma and a space,
where the time interval classification is defined in the ClassAd attribute JobsRuntimesHistogramBuckets.

¶ A Statistics attribute defining a histogram count of jobs that completed successfully as classified by image size, over
the lifetime of this condor_schedd. Counts within the histogram are separated by a comma and a space, where
the size classification is defined in the ClassAd attribute JobsSizesHistogramBuckets.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_COREDUMPED in the time interval defined by attribute StatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
DPRINTF_ERROR in the time interval defined by attribute StatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_EXEC_FAILED in the time interval defined by attribute StatsLifetime.

¶ A Statistics attribute defining the number of times that jobs that exited (successfully or not) in the time interval
defined by attribute StatsLifetime.

¶ A Statistics attribute defining the number of times jobs have exited with a condor_shadow exit code of
JOB_EXITED_AND_CLAIM_CLOSING in the time interval defined by attribute StatsLifetime.

13.6. Scheduler ClassAd Attributes 985

HTCondor Manual, Release 10.0.9

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_EXITED or with an exit code of JOB_EXITED_AND_CLAIM_CLOSING in the time interval defined by at-
tribute StatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_EXCEPTION or with an unknown status in the time interval defined by attribute StatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_KILLED in the time interval defined by attribute StatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_MISSED_DEFERRAL_TIME in the time interval defined by attribute StatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_NOT_STARTED in the time interval defined by attribute StatsLifetime.

¶ A Statistics attribute defining the number of condor_startd daemons the condor_schedd is currently attempting to
reconnect to, in order to recover a job that was running when the condor_schedd was restarted.

¶ A Statistics attribute defining a histogram count of condor_startd daemons that the condor_schedd could not re-
connect to in order to recover a job that was running when the condor_schedd was restarted, as classified by the
time the job spent running. Counts within the histogram are separated by a comma and a space, where the time
interval classification is defined in the ClassAd attribute JobsRuntimesHistogramBuckets.

¶ A Statistics attribute defining the number of condor_startd daemons the condor_schedd tried and failed to reconnect
to in order to recover a job that was running when the condor_schedd was restarted.

¶ A Statistics attribute defining the number of condor_startd daemons the condor_schedd attempted to reconnect to,
in order to recover a job that was running when the condor_schedd was restarted, but the attempt was interrupted,
for example, because the job was removed.

¶ A Statistics attribute defining the number of condor_startd daemons the condor_schedd could not attempt to recon-
nect to, in order to recover a job that was running when the condor_schedd was restarted, because the job lease
had already expired.

¶ A Statistics attribute defining the number of condor_startd daemons the condor_schedd has successfully reconnected
to, in order to recover a job that was running when the condor_schedd was restarted.

¶ A Statistics attribute representing the number of jobs currently running.

¶ A Statistics attribute defining a histogram count of jobs currently running, as classified by elapsed runtime. Counts
within the histogram are separated by a comma and a space, where the time interval classification is defined in
the ClassAd attribute JobsRuntimesHistogramBuckets.

¶ A Statistics attribute defining a histogram count of jobs currently running, as classified by image size. Counts within
the histogram are separated by a comma and a space, where the size classification is defined in the ClassAd
attribute JobsSizesHistogramBuckets.

¶ A Statistics attribute defining the predefined bucket boundaries for histogram statistics that classify run times. De-
fined as

JobsRuntimesHistogramBuckets = "30Sec, 1Min, 3Min, 10Min, 30Min, 1Hr, 3Hr,
6Hr, 12Hr, 1Day, 2Day, 4Day, 8Day, 16Day"

¶ A Statistics attribute defining the number of times that jobs have exited because there was not enough memory to
start the condor_shadow in the time interval defined by attribute StatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_SHOULD_HOLD in the time interval defined by attribute StatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_SHOULD_REMOVE in the time interval defined by attribute StatsLifetime.

986 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_SHOULD_REQUEUE in the time interval defined by attribute StatsLifetime.

¶ A Statistics attribute defining the predefined bucket boundaries for histogram statistics that classify image sizes.
Defined as

JobsSizesHistogramBuckets = "64Kb, 256Kb, 1Mb, 4Mb, 16Mb, 64Mb, 256Mb,
1Gb, 4Gb, 16Gb, 64Gb, 256Gb"

Note that these values imply powers of two in numbers of bytes.

¶ . A Statistics attribute defining the number of jobs started in the time interval defined by attribute StatsLifetime.

¶ . A Statistics attribute defining the number of jobs submitted in the time interval defined by attribute StatsLifetime.

¶ A string with the machine’s fully qualified host name.

¶ The same integer value as set by the evaluation of the configuration variable MAX_JOBS_RUNNING . See the definition
in the condor_schedd Configuration File Entries section.

¶ The number of seconds that this daemon has been running.

¶ The fraction of recent CPU time utilized by this daemon.

¶ The amount of virtual memory consumed by this daemon in Kbytes.

¶ The current number of sockets registered by this daemon.

¶ The amount of resident memory used by this daemon in Kbytes.

¶ The number of open (cached) security sessions for this daemon.

¶ The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at which
this daemon last checked and set the attributes with names that begin with the string MonitorSelf.

¶ String with the IP and port address of the condor_schedd daemon which is publishing this ClassAd.

¶ The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at which
the condor_schedd daemon last sent a ClassAd update to the condor_collector.

¶ The name of this resource; typically the same value as the Machine attribute, but could be customized by
the site administrator. On SMP machines, the condor_startd will divide the CPUs up into separate slots,
each with with a unique name. These names will be of the form “slot#@full.hostname”, for example,
“slot1@vulture.cs.wisc.edu”, which signifies slot number 1 from vulture.cs.wisc.edu.

¶ The number times a job requiring a condor_shadow daemon could have been started, but was not started because of
the values of configuration variables JOB_START_COUNT and JOB_START_DELAY

¶ The number of machines (condor_startd daemons) matched to this condor_schedd daemon, which this con-
dor_schedd knows about, but has not yet managed to claim.

¶ The integer number of distinct users with jobs in this condor_schedd ‘s queue.

¶ This is the public network address of this daemon.

¶ A Statistics attribute defining the ratio of the time spent handling messages and events to the elapsed time in the
previous time interval defined by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the sum of the all of the time that jobs which did not complete successfully have spent
running in the previous time interval defined by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the sum of the all of the time jobs which have exited in the previous time interval
defined by attribute RecentStatsLifetime spent running.

¶ A Statistics attribute defining the sum of all the time jobs which have exited in the previous time interval defined by
attribute RecentStatsLifetime had spent waiting to start.

13.6. Scheduler ClassAd Attributes 987

mailto:slot#@full.hostname
mailto:slot1@vulture.cs.wisc.edu

HTCondor Manual, Release 10.0.9

¶ A Statistics attribute defining a histogram count of jobs that did not complete successfully, as classified by time spent
running, in the previous time interval defined by attribute RecentStatsLifetime. Counts within the histogram
are separated by a comma and a space, where the time interval classification is defined in the ClassAd attribute
JobsRuntimesHistogramBuckets.

¶ A Statistics attribute defining a histogram count of jobs that did not complete successfully, as classified by im-
age size, in the previous time interval defined by attribute RecentStatsLifetime. Counts within the his-
togram are separated by a comma and a space, where the size classification is defined in the ClassAd attribute
JobsSizesHistogramBuckets.

¶ A Statistics attribute defining the number of times jobs that have exited with a condor_shadow exit code of
JOB_CKPTED in the previous time interval defined by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the number of jobs successfully completed in the previous time interval defined by
attribute RecentStatsLifetime.

¶ A Statistics attribute defining a histogram count of jobs that completed successfully, as classified by time spent
running, in the previous time interval defined by attribute RecentStatsLifetime. Counts within the histogram
are separated by a comma and a space, where the time interval classification is defined in the ClassAd attribute
JobsRuntimesHistogramBuckets.

¶ A Statistics attribute defining a histogram count of jobs that completed successfully, as classified by image size,
in the previous time interval defined by attribute RecentStatsLifetime. Counts within the histogram
are separated by a comma and a space, where the size classification is defined in the ClassAd attribute
JobsSizesHistogramBuckets.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_COREDUMPED in the previous time interval defined by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
DPRINTF_ERROR in the previous time interval defined by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_EXEC_FAILED in the previous time interval defined by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited normally in the previous time interval defined
by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_EXITED_AND_CLAIM_CLOSING in the previous time interval defined by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_EXITED or with an exit code of JOB_EXITED_AND_CLAIM_CLOSING in the previous time interval defined
by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit
code of JOB_EXCEPTION or with an unknown status in the previous time interval defined by attribute
RecentStatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_KILLED in the previous time interval defined by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_MISSED_DEFERRAL_TIME in the previous time interval defined by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_NOT_STARTED in the previous time interval defined by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited because there was not enough memory to
start the condor_shadow in the previous time interval defined by attribute RecentStatsLifetime.

988 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_SHOULD_HOLD in the previous time interval defined by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_SHOULD_REMOVE in the previous time interval defined by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the number of times that jobs have exited with a condor_shadow exit code of
JOB_SHOULD_REQUEUE in the previous time interval defined by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the number of jobs started in the previous time interval defined by attribute
RecentStatsLifetime.

¶ A Statistics attribute defining the number of jobs submitted in the previous time interval defined by attribute
RecentStatsLifetime.

¶ A Statistics attribute defining the number of times that condor_shadow daemons lost connection to their
condor_starter daemons and successfully reconnected in the previous time interval defined by attribute
RecentStatsLifetime. This statistic only appears in the Scheduler ClassAd if the level of verbosity set by
the configuration variable STATISTICS_TO_PUBLISH is set to 2 or higher.

¶ A Statistics attribute defining the number of times condor_shadow processes have been recycled for use with a new
job in the previous time interval defined by attribute RecentStatsLifetime. This statistic only appears in the
Scheduler ClassAd if the level of verbosity set by the configuration variable STATISTICS_TO_PUBLISH is set to
2 or higher.

¶ A Statistics attribute defining the number of condor_shadow daemons started in the previous time interval defined
by attribute RecentStatsLifetime.

¶ A Statistics attribute defining the time in seconds over which statistics values have been collected for attributes with
names that begin with Recent. This value starts at 0, and it may grow to a value as large as the value defined for
attribute RecentWindowMax.

¶ A Statistics attribute defining the time that attributes with names that begin with Recent were last updated,
represented as the number of seconds elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970). This
statistic only appears in the Scheduler ClassAd if the level of verbosity set by the configuration variable
STATISTICS_TO_PUBLISH is set to 2 or higher.

¶ A Statistics attribute defining the maximum time in seconds over which attributes with names that begin with Recent
are collected. The value is set by the configuration variable STATISTICS_WINDOW_SECONDS , which defaults to
1200 seconds (20 minutes). This statistic only appears in the Scheduler ClassAd if the level of verbosity set by
the configuration variable STATISTICS_TO_PUBLISH is set to 2 or higher.

¶ String with the IP and port address of the condor_schedd daemon which is publishing this Scheduler ClassAd.

¶ A Statistics attribute defining the number of times condor_shadow s lost connection to their condor_starter s and
successfully reconnected in the previous StatsLifetime seconds. This statistic only appears in the Scheduler
ClassAd if the level of verbosity set by the configuration variable STATISTICS_TO_PUBLISH is set to 2 or higher.

¶ A Statistics attribute defining the number of times condor_shadow processes have been recycled for use with a new
job in the previous StatsLifetime seconds. This statistic only appears in the Scheduler ClassAd if the level of
verbosity set by the configuration variable STATISTICS_TO_PUBLISH is set to 2 or higher.

¶ A Statistics attribute defining the number of condor_shadow daemons currently running that are owned by this
condor_schedd.

¶ A Statistics attribute defining the maximum number of condor_shadow daemons running at one time that were
owned by this condor_schedd over the lifetime of this condor_schedd.

¶ A Statistics attribute defining the number of condor_shadow daemons started in the previous time interval defined
by attribute StatsLifetime.

13.6. Scheduler ClassAd Attributes 989

HTCondor Manual, Release 10.0.9

¶ The same boolean value as set in the configuration variable START_LOCAL_UNIVERSE . See the definition in the
condor_schedd Configuration File Entries section.

¶ The same boolean value as set in the configuration variable START_SCHEDULER_UNIVERSE. See the definition in
the condor_schedd Configuration File Entries section.

¶ A Statistics attribute defining the time that statistics about jobs were last updated, represented as the number of
seconds elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970). This statistic only appears in the Scheduler
ClassAd if the level of verbosity set by the configuration variable STATISTICS_TO_PUBLISH is set to 2 or higher.

¶ A Statistics attribute defining the time in seconds over which statistics have been collected for attributes with names
that do not begin with Recent. This statistic only appears in the Scheduler ClassAd if the level of verbosity set
by the configuration variable STATISTICS_TO_PUBLISH is set to 2 or higher.

¶ The total number of jobs from this condor_schedd daemon that are currently flocked to other pools.

¶ The total number of jobs from this condor_schedd daemon that are currently on hold.

¶ The total number of jobs from this condor_schedd daemon that are currently idle, not including local or scheduler
universe jobs.

¶ The total number of all jobs (in all states) from this condor_schedd daemon.

¶ The total number of local universe jobs from this condor_schedd daemon that are currently idle.

¶ The total number of local universe jobs from this condor_schedd daemon that are currently running.

¶ The current number of all running jobs from this condor_schedd daemon that have remove requests.

¶ The total number of jobs from this condor_schedd daemon that are currently running, not including local or scheduler
universe jobs.

¶ The total number of scheduler universe jobs from this condor_schedd daemon that are currently idle.

¶ The total number of scheduler universe jobs from this condor_schedd daemon that are currently running.

¶ A ClassAd expression that provides the name of the transfer queue that the condor_schedd will be using for job file
transfer.

¶ The interval, in seconds, between publication of this condor_schedd ClassAd and the previous publication.

¶ An integer, starting at zero, and incremented with each ClassAd update sent to the condor_collector. The con-
dor_collector uses this value to sequence the updates it receives.

¶ Description is not yet written.

¶ causes the condor_negotiator daemon to send to this condor_schedd daemon a full machine ClassAd correspond-
ing to a matched job.

When using file transfer concurrency limits, the following additional I/O usage statistics are published. These includes
the sum and rate of bytes transferred as well as time spent reading and writing to files and to the network. These statistics
are reported for the sum of all users and may also be reported individually for recently active users by increasing
the verbosity level STATISTICS_TO_PUBLISH = TRANSFER:2. Each of the per-user statistics is prefixed by a user
name in the form Owner_<username>_FileTransferUploadBytes. In this case, the attribute represents activity
by the specified user. The published user name is actually the file transfer queue name, as defined by configuration
variable TRANSFER_QUEUE_USER_EXPR. This expression defaults to Owner_ followed by the name of the job owner.
The attributes that are rates have a suffix that specifies the time span of the exponential moving average. By default
the time spans that are published are 1m, 5m, 1h, and 1d. This can be changed by configuring configuration variable
TRANSFER_IO_REPORT_TIMESPANS. These attributes are only reported once a full time span has accumulated.

¶ The exponential moving average of the disk load that exceeds the upper limit set for the disk load throttle. Periods
of time in which there is no excess and no waiting transfers do not contribute to the average. This attribute is
published only if configuration variable FILE_TRANSFER_DISK_LOAD_THROTTLE is defined.

990 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ The desired upper limit for the disk load from file transfers, as configured by
FILE_TRANSFER_DISK_LOAD_THROTTLE. This attribute is published only if configuration variable
FILE_TRANSFER_DISK_LOAD_THROTTLE is defined.

¶ The current concurrency limit set by the disk load throttle. The limit is applied to the sum of uploads and downloads.
This attribute is published only if configuration variable FILE_TRANSFER_DISK_LOAD_THROTTLE is defined.

¶ The current concurrency limit set by the disk load throttle. The limit is applied to the sum of uploads and downloads.
This attribute is published only if configuration variable FILE_TRANSFER_DISK_LOAD_THROTTLE is defined.

¶ The lower limit for the disk load from file transfers, as configured by FILE_TRANSFER_DISK_LOAD_THROTTLE. This
attribute is published only if configuration variable FILE_TRANSFER_DISK_LOAD_THROTTLE is defined.

¶ The exponential moving average of the disk load that falls below the upper limit set for the disk load throttle. Periods
of time in which there is no excess and no waiting transfers do not contribute to the average. This attribute is
published only if configuration variable FILE_TRANSFER_DISK_LOAD_THROTTLE is defined.

¶ Total number of bytes downloaded as output from jobs since this condor_schedd was started. If
STATISTICS_TO_PUBLISH contains TRANSFER:2, for each active user, this attribute is also published prefixed by
the user name, with the name Owner_<username>_FileTransferDownloadBytes. The published user name
is actually the file transfer queue name, as defined by configuration variable TRANSFER_QUEUE_USER_EXPR

¶ Exponential moving average over the specified time span of the rate at which bytes have been downloaded as output
from jobs. The time spans that are published are configured by TRANSFER_IO_REPORT_TIMESPANS , which de-
faults to 1m, 5m, 1h, and 1d. When less than one full time span has accumulated, the attribute is not published. If
STATISTICS_TO_PUBLISH contains TRANSFER:2, for each active user, this attribute is also published prefixed by
the user name, with the name Owner_<username>_FileTransferDownloadBytesPerSecond_<timespan>.
The published user name is actually the file transfer queue name, as defined by configuration variable
TRANSFER_QUEUE_USER_EXPR

¶ Exponential moving average over the specified time span of the rate at which submit-side file transfer processes
have spent time reading from files to be transferred as input to jobs. One file transfer process spending
nearly all of its time reading files will generate a load close to 1.0. The time spans that are published are
configured by TRANSFER_IO_REPORT_TIMESPANS , which defaults to 1m, 5m, 1h, and 1d. When less than
one full time span has accumulated, the attribute is not published. If STATISTICS_TO_PUBLISH contains
TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferFileReadLoad_<timespan>. The published user name is actually the
file transfer queue name, as defined by configuration variable TRANSFER_QUEUE_USER_EXPR

¶ Total number of submit-side transfer process seconds spent reading from files to be transferred as in-
put to jobs since this condor_schedd was started. If STATISTICS_TO_PUBLISH contains TRANSFER:
2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferFileReadSeconds. The published user name is actually the file trans-
fer queue name, as defined by configuration variable TRANSFER_QUEUE_USER_EXPR

¶ Exponential moving average over the specified time span of the rate at which submit-side file transfer processes
have spent time writing to files transferred as output from jobs. One file transfer process spending nearly
all of its time writing to files will generate a load close to 1.0. The time spans that are published are con-
figured by TRANSFER_IO_REPORT_TIMESPANS , which defaults to 1m, 5m, 1h, and 1d. When less than
one full time span has accumulated, the attribute is not published. If STATISTICS_TO_PUBLISH contains
TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferFileWriteLoad_<timespan>. The published user name is actually the
file transfer queue name, as defined by configuration variable TRANSFER_QUEUE_USER_EXPR

¶ Total number of submit-side transfer process seconds spent writing to files transferred as output from
jobs since this condor_schedd was started. If STATISTICS_TO_PUBLISH contains TRANSFER:2,
for each active user, this attribute is also published prefixed by the user name, with the name

13.6. Scheduler ClassAd Attributes 991

HTCondor Manual, Release 10.0.9

Owner_<username>_FileTransferFileWriteSeconds. The published user name is actually the file transfer
queue name, as defined by configuration variable TRANSFER_QUEUE_USER_EXPR

¶ Exponential moving average over the specified time span of the rate at which submit-side file transfer processes
have spent time reading from the network when transferring output from jobs. One file transfer process spending
nearly all of its time reading from the network will generate a load close to 1.0. The reason a file transfer process
may spend a long time writing to the network could be a network bottleneck on the path between the submit and
execute machine. It could also be caused by slow reads from the disk on the execute side. The time spans that
are published are configured by TRANSFER_IO_REPORT_TIMESPANS , which defaults to 1m, 5m, 1h, and 1d.
When less than one full time span has accumulated, the attribute is not published. If STATISTICS_TO_PUBLISH
contains TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the
name Owner_<username>_FileTransferNetReadLoad_<timespan>. The published user name is actually
the file transfer queue name, as defined by configuration variable TRANSFER_QUEUE_USER_EXPR

¶ Total number of submit-side transfer process seconds spent reading from the network when transferring output
from jobs since this condor_schedd was started. The reason a file transfer process may spend a long time
writing to the network could be a network bottleneck on the path between the submit and execute machine.
It could also be caused by slow reads from the disk on the execute side. If STATISTICS_TO_PUBLISH con-
tains TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferNetReadSeconds. The published user name is actually the file transfer
queue name, as defined by configuration variable TRANSFER_QUEUE_USER_EXPR

¶ Exponential moving average over the specified time span of the rate at which submit-side file transfer processes
have spent time writing to the network when transferring input to jobs. One file transfer process spending nearly
all of its time writing to the network will generate a load close to 1.0. The reason a file transfer process may
spend a long time writing to the network could be a network bottleneck on the path between the submit and
execute machine. It could also be caused by slow writes to the disk on the execute side. The time spans that
are published are configured by TRANSFER_IO_REPORT_TIMESPANS , which defaults to 1m, 5m, 1h, and 1d.
When less than one full time span has accumulated, the attribute is not published. If STATISTICS_TO_PUBLISH
contains TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the
name Owner_<username>_FileTransferNetWriteLoad_<timespan>. The published user name is actually
the file transfer queue name, as defined by configuration variable TRANSFER_QUEUE_USER_EXPR

¶ Total number of submit-side transfer process seconds spent writing to the network when transferring input to
jobs since this condor_schedd was started. The reason a file transfer process may spend a long time writ-
ing to the network could be a network bottleneck on the path between the submit and execute machine. It
could also be caused by slow writes to the disk on the execute side. The time spans that are published are
configured by TRANSFER_IO_REPORT_TIMESPANS, which defaults to 1m, 5m, 1h, and 1d. When less than
one full time span has accumulated, the attribute is not published. If STATISTICS_TO_PUBLISH contains
TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferNetWriteSeconds. The published user name is actually the file transfer
queue name, as defined by configuration variable TRANSFER_QUEUE_USER_EXPR

¶ Total number of bytes uploaded as input to jobs since this condor_schedd was started. If STATISTICS_TO_PUBLISH
contains TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the
name Owner_<username>_FileTransferUploadBytes. The published user name is actually the file transfer
queue name, as defined by configuration variable TRANSFER_QUEUE_USER_EXPR

¶ Exponential moving average over the specified time span of the rate at which bytes have been uploaded as input to
jobs. The time spans that are published are configured by TRANSFER_IO_REPORT_TIMESPANS , which defaults
to 1m, 5m, 1h, and 1d. When less than one full time span has accumulated, the attribute is not published. If
STATISTICS_TO_PUBLISH contains TRANSFER:2, for each active user, this attribute is also published prefixed
by the user name, with the name Owner_<username>_FileTransferUploadBytesPerSecond_<timespan>.
The published user name is actually the file transfer queue name, as defined by configuration variable
TRANSFER_QUEUE_USER_EXPR

¶ Number of megabytes of output files waiting to be downloaded.

992 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ Number of megabytes of input files waiting to be uploaded.

¶ Number of jobs waiting to transfer output files.

¶ Number of jobs waiting to transfer input files.

13.7 Negotiator ClassAd Attributes

¶ A string containing the HTCondor version number, the release date, and the build identification number.

¶ The time that this daemon was started, represented as the number of second elapsed since the Unix epoch (00:00:00
UTC, Jan 1, 1970).

¶ The time that this daemon was configured, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶ The integer number of submitters the condor_negotiator attempted to negotiate with in the negotiation cycle. The
number <X> appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

¶ The number of slot ClassAds after filtering by NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT. This is the number of
slots actually considered for matching. The number <X> appended to the attribute name indicates how many
negotiation cycles ago this cycle happened.

¶ The number of seconds that it took to complete the negotiation cycle. The number <X> appended to the attribute
name indicates how many negotiation cycles ago this cycle happened.

¶ The time, represented as the number of seconds since the Unix epoch, at which the negotiation cycle ended. The
number <X> appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

¶ The number of successful matches that were made in the negotiation cycle. The number <X> appended to the attribute
name indicates how many negotiation cycles ago this cycle happened.

¶ The number of matched jobs divided by the duration of this cycle giving jobs per second. The number <X> appended
to the attribute name indicates how many negotiation cycles ago this cycle happened.

¶ The number of matched jobs divided by the period of this cycle giving jobs per second. The period is the time
elapsed between the end of the previous cycle and the end of this cycle, and so this rate includes the interval
between cycles. The number <X> appended to the attribute name indicates how many negotiation cycles ago this
cycle happened.

¶ The number of idle jobs considered for matchmaking. The number <X> appended to the attribute name indicates
how many negotiation cycles ago this cycle happened.

¶ The number of jobs requests returned from the schedulers for consideration. The number <X> appended to the
attribute name indicates how many negotiation cycles ago this cycle happened.

¶ The number of individual schedulers negotiated with during matchmaking. The number <X> appended to the at-
tribute name indicates how many negotiation cycles ago this cycle happened.

¶ The number of seconds elapsed between the end of the previous negotiation cycle and the end of this cycle. The
number <X> appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

¶ The duration, in seconds, of Phase 1 of the negotiation cycle: the process of getting submitter and machine ClassAds
from the condor_collector. The number <X> appended to the attribute name indicates how many negotiation
cycles ago this cycle happened.

13.7. Negotiator ClassAd Attributes 993

HTCondor Manual, Release 10.0.9

¶ The duration, in seconds, of Phase 2 of the negotiation cycle: the process of filtering slots and processing accounting
group configuration. The number <X> appended to the attribute name indicates how many negotiation cycles
ago this cycle happened.

¶ The duration, in seconds, of Phase 3 of the negotiation cycle: sorting submitters by priority. The number <X>
appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

¶ The duration, in seconds, of Phase 4 of the negotiation cycle: the process of matching slots to jobs in conjunction
with the schedulers. The number <X> appended to the attribute name indicates how many negotiation cycles ago
this cycle happened.

¶ The number of rejections that occurred in the negotiation cycle. The number <X> appended to the attribute name
indicates how many negotiation cycles ago this cycle happened.

¶ The number of iterations performed during the negotiation cycle. Each iteration includes the reallocation of re-
maining slots to accounting groups, as defined by the implementation of hierarchical group quotas, together
with the negotiation for those slots. The maximum number of iterations is limited by the configuration vari-
able GROUP_QUOTA_MAX_ALLOCATION_ROUNDS. The number <X> appended to the attribute name indicates how
many negotiation cycles ago this cycle happened.

¶ A string containing a space and comma-separated list of the names of all submitters who failed to negotiate in the
negotiation cycle. One possible cause of failure is a communication timeout. This list does not include sub-
mitters who ran out of time due to NEGOTIATOR_MAX_TIME_PER_SUBMITTER. Those are listed separately in
LastNegotiationCycleSubmittersOutOfTime<X>. The number <X> appended to the attribute name indi-
cates how many negotiation cycles ago this cycle happened.

¶ A string containing a space and comma separated list of the names of all submitters who ran out of time due to
NEGOTIATOR_MAX_TIME_PER_SUBMITTER in the negotiation cycle. The number <X> appended to the attribute
name indicates how many negotiation cycles ago this cycle happened.

¶ A string containing a space and comma separated list of names of submitters who encountered their fair-share slot
limit during the negotiation cycle. The number <X> appended to the attribute name indicates how many negoti-
ation cycles ago this cycle happened.

¶ The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at which
the negotiation cycle started. The number <X> appended to the attribute name indicates how many negotiation
cycles ago this cycle happened.

¶ The total number of slot ClassAds received by the condor_negotiator. The number <X> appended to the attribute
name indicates how many negotiation cycles ago this cycle happened.

¶ The number of slot ClassAds left after trimming currently claimed slots (when enabled). The number <X> appended
to the attribute name indicates how many negotiation cycles ago this cycle happened.

¶ A string with the machine’s fully qualified host name.

¶ String with the IP and port address of the condor_negotiator daemon which is publishing this ClassAd.

¶ The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at which
the condor_schedd daemon last sent a ClassAd update to the condor_collector.

¶ The name of this resource; typically the same value as the Machine attribute, but could be customized by the site
administrator. On SMP machines, the condor_startd will divide the CPUs up into separate slots, each with with
a unique name. These names will be of the form slot#@full.hostname, for example, slot1@vulture.cs.
wisc.edu, which signifies slot number 1 from vulture.cs.wisc.edu.

¶ String with the IP and port address of the condor_negotiator daemon which is publishing this Negotiator ClassAd.

994 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ Description is not yet written.

¶ An integer, starting at zero, and incremented with each ClassAd update sent to the condor_collector. The con-
dor_collector uses this value to sequence the updates it receives.

13.8 Submitter ClassAd Attributes

¶ A string containing the HTCondor version number, the release date, and the build identification number.

¶ The number of jobs from this submitter that are running in another pool.

¶ The number of jobs from this submitter that are in the hold state.

¶ The number of jobs from this submitter that are now idle. Scheduler and Local universe jobs are not included in this
count.

¶ The number of Local universe jobs from this submitter that are now idle.

¶ The number of Local universe jobs from this submitter that are running.

¶ The IP address associated with the condor_schedd daemon used by the submitter.

¶ The fully qualified name of the user or accounting group. It will be of the form name@submit.domain.

¶ The number of jobs from this submitter that are running now. Scheduler and Local universe jobs are not included in
this count.

¶ The IP address associated with the condor_schedd daemon used by the submitter. This attribute is obsolete Use
MyAddress instead.

¶ The fully qualified host name of the machine that the submitter submitted from. It will be of the form submit.
domain.

¶ The number of Scheduler universe jobs from this submitter that are now idle.

¶ The number of Scheduler universe jobs from this submitter that are running.

¶ The fully qualified host name of the central manager of the pool used by the submitter, if the job flocked to the local
pool. Or, it will be the empty string if submitter submitted from within the local pool.

¶ A total number of requested cores across all Idle jobs from the submitter, weighted by the slot weight. As an example,
if SLOT_WEIGHT = CPUS, and a job requests two CPUs, the weight of that job is two.

¶ A total number of requested cores across all Running jobs from the submitter.

13.9 Defrag ClassAd Attributes

¶ Fraction of time CPUs in the pool have spent on jobs that were killed during draining of the machine. This is
calculated in each polling interval by looking at TotalMachineDrainingBadput. Therefore, it treats evictions
of jobs that do and do not produce checkpoints the same. When the condor_startd restarts, its counters start over
from 0, so the average is only over the time since the daemons have been alive.

¶ Fraction of time CPUs in the pool have spent unclaimed by a user during draining of the machine. This is calculated in
each polling interval by looking at TotalMachineDrainingUnclaimedTime. When the condor_startd restarts,
its counters start over from 0, so the average is only over the time since the daemons have been alive.

13.8. Submitter ClassAd Attributes 995

HTCondor Manual, Release 10.0.9

¶ The time that this daemon was started, represented as the number of seconds elapsed since the Unix epoch (00:00:00
UTC, Jan 1, 1970).

¶ The time that this daemon was configured, represented as the number of seconds elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶ A count of the number of fully drained machines which have arrived during the run time of this condor_defrag
daemon.

¶ Total count of failed attempts to initiate draining during the lifetime of this condor_defrag daemon.

¶ Total count of successful attempts to initiate draining during the lifetime of this condor_defrag daemon.

¶ A string with the machine’s fully qualified host name.

¶ Number of machines that were observed to be draining in the last polling interval.

¶ Largest number of machines that were ever observed to be draining.

¶ The mean time in seconds between arrivals of fully drained machines.

¶ The number of seconds that this daemon has been running.

¶ The fraction of recent CPU time utilized by this daemon.

¶ The amount of virtual memory consumed by this daemon in KiB.

¶ The current number of sockets registered by this daemon.

¶ The amount of resident memory used by this daemon in KiB.

¶ The number of open (cached) security sessions for this daemon.

¶ The time, represented as the number of seconds elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at which
this daemon last checked and set the attributes with names that begin with the string MonitorSelf.

¶ String with the IP and port address of the condor_defrag daemon which is publishing this ClassAd.

¶ The time, represented as the number of seconds elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at which
the condor_defrag daemon last sent a ClassAd update to the condor_collector.

¶ The name of this daemon; typically the same value as the Machine attribute, but could be customized by the site
administrator via the configuration variable DEFRAG_NAME .

¶ A ClassAd list of ClassAds describing the last ten cancel commands sent by this daemon. Attributes include when,
as the number of seconds since the Unix epoch; and who, the Name of the slot being drained.

¶ Count of failed attempts to initiate draining during the past RecentStatsLifetime seconds.

¶ Count of successful attempts to initiate draining during the past RecentStatsLifetime seconds.

¶ A ClassAd list of ClassAds describing the last ten drain commands sent by this daemon. Attributes include when,
as the number of seconds since the Unix epoch; who, the Name of the slot being drained; and what, one of the
three strings graceful, quick, or fast.

¶ A Statistics attribute defining the time in seconds over which statistics values have been collected for attributes with
names that begin with Recent.

¶ An integer, starting at zero, and incremented with each ClassAd update sent to the condor_collector. The con-
dor_collector uses this value to sequence the updates it receives.

¶ Number of machines that were observed to be defragmented in the last polling interval.

¶ Largest number of machines that were ever observed to be simultaneously defragmented.

996 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

13.10 Grid ClassAd Attributes

¶ A Statistics attribute defining the time it takes for commands issued to the GAHP server to complete.

¶ A Statistics attribute defining the number of commands issued to the GAHP server that haven’t completed yet.

¶ A Statistics attribute defining the total number of commands that have been issued to the GAHP server.

¶ A Statistics attribute defining the number of commands the condor_gridmanager is refraining from issuing to the
GAHP server due to configuration parameter GRIDMANAGER_MAX_PENDING_REQUESTS.

¶ A Statistics attribute defining the number of commands issued to the GAHP server that didn’t complete within the
timeout period set by configuration parameter GRIDMANAGER_GAHP_RESPONSE_TIMEOUT.

¶ The process id of the GAHP server used to interact with the grid service.

¶ Time at which the grid service became unavailable. Measured in the number of seconds since the epoch (00:00:00
UTC, Jan 1, 1970).

¶ The number of idle jobs currently submitted to the grid service by this condor_gridmanager.

¶ The maximum number of jobs this condor_gridmanager will submit to the grid service at a time. This is controlled
by configuration parameter GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE.

¶ The number of jobs this condor_gridmanager is managing that are intended for the grid service.

¶ The number of jobs this condor_gridmanager currently has submitted to the grid resource.

¶ The number of jobs this condor_gridmanager has refrained from submitting to the grid resource due to JobLimit.

13.11 Collector ClassAd Attributes

¶ Current number of forked child processes handling queries.

¶ Peak number of forked child processes handling queries since collector startup or statistics reset.

¶ Total number of queries aborted since collector startup (or statistics reset) because
COLLECTOR_QUERY_WORKERS_PENDING exceeded, or exceeded, or client closed TCP socket while re-
quest was pending. This statistic is also available as RecentDroppedQueries which represents a count of
recently dropped queries that occured within a recent time window (default of 20 minutes).

¶ String with the IP and port address of the condor_collector daemon which is publishing this ClassAd.

¶ A string containing the HTCondor version number, the release date, and the build identification number.

¶ The current number of active forks of the Collector. The Windows version of the Collector does not fork and will
not have this statistic.

¶ An integer value representing the sum of all jobs running under all universes.

¶ An integer value representing the current number of jobs running under the universe which forms the attribute name.
For example

CurrentJobsRunningVanilla = 567

13.10. Grid ClassAd Attributes 997

HTCondor Manual, Release 10.0.9

identifies that the condor_collector counts 567 vanilla universe jobs currently running. <universe> is one of
Unknown, Vanilla, Scheduler, Java, Parallel, VM, or Local. There are other universes, but they are not
listed here, as they represent ones that are no longer used in Condor.

¶ The time that this daemon was started, represented as the number of second elapsed since the Unix epoch (00:00:00
UTC, Jan 1, 1970).

¶ The time that this daemon was configured, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970).

¶ Number of locate queries the Collector has handled without forking since it started.

¶ Total time spent handling locate queries without forking since the Collector started. This attribute also has minimum,
maximum, average and standard deviation statistics with Min, Max, Avg and Std suffixes respectively.

¶ Number of locate queries the Collector has handled by forking since it started. The Windows operating system does
not fork and will not have this statistic.

¶ Total time spent forking to handle locate queries since the Collector started. This attribute also has minimum,
maximum, average and standard deviation statistics with Min, Max, Avg and Std suffixes respectively. The
Windows operating system does not fork and will not have this statistic.

¶ Number of locate queries the Collector recieved since the Collector started that could not be handled immediately
because there were already too many forked child processes. The Windows operating system does not fork and
will not have this statistic.

¶ Total time spent queueing pending locate queries that could not be immediately handled by forking since the Collector
started. This attribute also has minimum, maximum, average and standard deviation statistics with Min, Max,
Avg and Std suffixes respectively. The Windows operating system does not fork and will not have this statistic.

¶ Number of queries that are not locate queries the Collector has handled without forking since it started.

¶ Total time spent handling queries that are not locate queries without forking since the Collector started. This attribute
also has minimum, maximum, average and standard deviation statistics with Min, Max, Avg and Std suffixes
respectively.

¶ Number of queries that are not locate queries the Collector has handled by forking since it started. The Windows
operating system does not fork and will not have this statistic.

¶ Total time spent forking to handle queries that are not locate queries since the Collector started. This attribute
also has minimum, maximum, average and standard deviation statistics with Min, Max, Avg and Std suffixes
respectively. The Windows operating system does not fork and will not have this statistic.

¶ Number of queries that are not locate queries the Collector recieved since the Collector started that could not be
handled immediately because there were already too many forked child processes. The Windows operating
system does not fork and will not have this statistic.

¶ Total time spent queueing pending non-locate queries that could not be immediately handled by forking since the
Collector started. This attribute also has minimum, maximum, average and standard deviation statistics with
Min, Max, Avg and Std suffixes respectively. The Windows operating system does not fork and will not have this
statistic.

¶ Description is not yet written.

¶ Description is not yet written.

¶ Description is not yet written.

¶ Description is not yet written.

¶ Description is not yet written.

¶ A string with the machine’s fully qualified host name.

998 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ An integer value representing the sum of all MaxJobsRunning<universe> values.

¶ An integer value representing largest number of currently running jobs ever seen under the universe which forms the
attribute name, over the life of this condor_collector process. For example

MaxJobsRunningVanilla = 401

identifies that the condor_collector saw 401 vanilla universe jobs currently running at one point in time, and
that was the largest number it had encountered. <universe> is one of Unknown, Vanilla, Scheduler, Java,
Parallel, VM, or Local. There are other universes, but they are not listed here, as they represent ones that are
no longer used in Condor.

¶ String with the IP and port address of the condor_collector daemon which is publishing this ClassAd.

¶ The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at which
the condor_schedd daemon last sent a ClassAd update to the condor_collector.

¶ The name of this resource; typically the same value as the Machine attribute, but could be customized by
the site administrator. On SMP machines, the condor_startd will divide the CPUs up into separate slots,
each with with a unique name. These names will be of the form “slot#@full.hostname”, for example,
“slot1@vulture.cs.wisc.edu”, which signifies slot number 1 from vulture.cs.wisc.edu.

¶ The maximum number of active forks of the Collector at any time since the Collector started. The Windows version
of the Collector does not fork and will not have this statistic.

¶ Number of queries pending that are waiting to fork.

¶ Peak number of queries pending that are waiting to fork since collector startup or statistics reset.

¶ Definition not yet written.

¶ The integer number of unique condor_startd daemon ClassAds counted at the most recent time the condor_collector
updated its own ClassAd.

¶ The largest integer number of unique condor_startd daemon ClassAds seen at any one time, since the con-
dor_collector began executing.

¶ The integer number of unique submitters counted at the most recent time the condor_collector updated its own
ClassAd.

¶ The largest integer number of unique submitters seen at any one time, since the condor_collector began executing.

¶ Description is not yet written.

¶ An integer that begins at 0, and increments by one each time the same ClassAd is again advertised.

¶ A Statistics attribute representing a count of unique ClassAds seen, over the lifetime of this condor_collector.
Counts per ClassAd are advertised in attributes named by ClassAd type as UpdatesInitial_<ClassAd-Name>.
<ClassAd-Name> is each of CkptSrvr, Collector, Defrag, Master, Schedd, Start, StartdPvt, and
Submittor.

¶ A Statistics attribute representing the count of updates lost, over the lifetime of this condor_collector. Counts
per ClassAd are advertised in attributes named by ClassAd type as UpdatesLost_<ClassAd-Name>.
<ClassAd-Name> is each of CkptSrvr, Collector, Defrag, Master, Schedd, Start, StartdPvt, and
Submittor.

¶ A Statistics attribute defining the largest number of updates lost at any point in time, over the lifetime of this con-
dor_collector. ClassAd sequence numbers are used to detect lost ClassAds.

¶ A Statistics attribute defining the floating point ratio of the total number of updates to the number of updates lost
over the lifetime of this condor_collector. ClassAd sequence numbers are used to detect lost ClassAds. A value
of 1 indicates that all ClassAds have been lost.

13.11. Collector ClassAd Attributes 999

mailto:slot#@full.hostname
mailto:slot1@vulture.cs.wisc.edu

HTCondor Manual, Release 10.0.9

¶ A Statistics attribute representing the count of the number of ClassAd updates received over the lifetime
of this condor_collector. Counts per ClassAd are advertised in attributes named by ClassAd type as
UpdatesTotal_<ClassAd-Name>. <ClassAd-Name> is each of CkptSrvr, Collector, Defrag, Master,
Schedd, Start, StartdPvt, and Submittor.

13.12 ClassAd Attributes Added by the condor_collector

¶ The authenticated name assigned by the condor_collector to the daemon that published the ClassAd.

¶ The authentication method used by the condor_collector to determine the AuthenticatedIdentity.

¶ The time inserted into a daemon’s ClassAd representing the time that this condor_collector last received a message
from the daemon. Time is represented as the number of second elapsed since the Unix epoch (00:00:00 UTC,
Jan 1, 1970). This attribute is added if COLLECTOR_DAEMON_STATS is True.

¶ A bitmap representing the status of the most recent updates received from the daemon. This attribute is only added
if is non-zero. See the condor_collector Configuration File Entries section for more information on this setting.
This attribute is added if COLLECTOR_DAEMON_STATS is True.

¶ An integer count of the number of updates from the daemon that the condor_collector can definitively determine
were lost since the condor_collector started running. This attribute is added if COLLECTOR_DAEMON_STATS is
True.

¶ An integer count of the number of updates received from the daemon, for which the condor_collector can tell
how many were or were not lost, since the condor_collector started running. This attribute is added if
COLLECTOR_DAEMON_STATS is True.

¶ An integer count started when the condor_collector started running, representing the sum of the number of updates
actually received from the daemon plus the number of updates that the condor_collector determined were lost.
This attribute is added if COLLECTOR_DAEMON_STATS is True.

13.13 DaemonCore Statistics Attributes

Every HTCondor daemon keeps a set of operational statistics, some of which are common to all daemons, others are
specific to the running of a particular daemon. In some cases, the statistics can reveal buggy or slow performance of
the HTCondor system. The following statistics are available for all daemons, and can be accessed directly with the
condor_status command with a direct query, such as

$ condor_status -direct somehostname.example.com -schedd -statistics DC:2 -l

¶ This attribute is the number of bytes in the incoming UDP receive queue for this daemon, if it has a UDP command
port. This attribute is polled once a minute by default, so may be out of date. The attribute DCUdpQueueDepth-
Peak records the peak depth since the daemon has started.

¶ This attribute is the count of debugging messages printed to the daemon’s debug log, such as the ScheddLog. There
is a moderate cost to writing these logging messages, if the debug level is very high for an active daemon, the
logging will slow performance. The corresponding attribute RecentDebugOuts is the count of the messages in
the last 20 minutes.

¶ This attribute is the number of messages received on a Unix pipe by this daemon since start time. The corresponding
attribute RecentPipeMessages is the count of message in the last 20 minutes.

1000 Chapter 13. ClassAd Attributes

HTCondor Manual, Release 10.0.9

¶ This attribute respresents the total number of wall clock seconds this daemon has spent processing pipe message
since start. The corresponding attribute RecentPipeRuntime is the total time in the last 20 minutes.

¶ This attribute represents the total number of wall clock seconds this daemon has spent completely idle, waiting to
process incoming requests or internal timers. The attribute DaemonCoreDutyCycle, which may be easier to write
policy around, is based off of this.

¶ This attribute respresents the total number of wall clock time seconds this daemon has spent processing signals since
start. The corresponding attribute RecentSignalRuntime is the total time in the last 20 minutes.

¶ This attribute is the number of signals, either Unix signals, or HTCondor simulated signals received by this daemon
since start time. The corresponding attribute RecentSignals is the number of signals in the last 20 minutes.

¶ This attribute respresents the total number of wall clock time seconds this daemon has spent processing socket
messages since start. The corresponding attribute RecentTimerRuntime is the total time in the last 20 minutes.

¶ This attribute is the number of messages received on socket by this daemon since start time. The corresponding
attribute RecentSockMessages is the count of message in the last 20 minutes.

¶ This attribute respresents the total number of wall clock time seconds this daemon has spent processing timers since
start. The corresponding attribute RecentTimerRuntime is the total time in the last 20 minutes.

¶ This attribute is the number of internal timers which have fired in this daemon during the most recent pass of the
event loop. The corresponding attribute TimersFiredPeak is the maximum number of timers fired in one pass of
the event loop since daemon start time.

13.13. DaemonCore Statistics Attributes 1001

HTCondor Manual, Release 10.0.9

1002 Chapter 13. ClassAd Attributes

CHAPTER

FOURTEEN

CODES AND OTHER NEEDED VALUES

14.1 condor_shadow Exit Codes

When a condor_shadow daemon exits, the condor_shadow exit code is recorded in the condor_schedd log, and it
identifies why the job exited. Prose in the log appears of the form

Shadow pid XXXXX for job XX.X exited with status YYY

where YYY is the exit code, or

Shadow pid XXXXX for job XX.X reports job exit reason 100.

where the exit code is the value 100. The following table lists these codes:

Value Error Name Description
4 JOB_EXCEPTION the job exited with an exception
44 DPRINTF_ERROR there was a fatal error with dprintf()
100 JOB_EXITED the job exited (not killed)
101 JOB_CKPTED the job did produce a checkpoint
102 JOB_KILLED the job was killed
103 JOB_COREDUMPED the job was killed and a core file was produced
105 JOB_NO_MEM not enough memory to start the condor_shadow
106 JOB_SHADOW_USAGEincorrect arguments to condor_shadow
107 JOB_NOT_CKPTED the job vacated without a checkpoint
107 JOB_SHOULD_REQUEUEsame number as JOB_NOT_CKPTED, to achieve the same behavior. This exit code

implies that we want the job to be put back in the job queue and run again.
108 JOB_NOT_STARTED can not connect to the condor_startd or request refused
109 JOB_BAD_STATUS job status != RUNNING on start up
110 JOB_EXEC_FAILED exec failed for some reason other than ENOMEM
111 JOB_NO_CKPT_FILE there is no checkpoint file (as it was lost)
112 JOB_SHOULD_HOLD the job should be put on hold
113 JOB_SHOULD_REMOVEthe job should be removed
114 JOB_MISSED_DEFERRAL_TIMEthe job goes on hold, because it did not run within the specified window of time
115 JOB_EXITED_AND_CLAIM_CLOSINGthe job exited (not killed) but the condor_startd is not accepting any more jobs on

this claim
116 JOB_RECONNECT_FAILEDthe condor_shadow was started in reconnect mode, and yet failed to reconnect to

the starter

1003

HTCondor Manual, Release 10.0.9

14.2 Job Event Log Codes

Table B.2 lists codes that appear as the first

These are all of the events that can show up in a job log file:

Event Number: 000
Event Name: Job submitted
Event Description: This event occurs when a user submits a job. It is the first event you will see for a job, and it
should only occur once.

Event Number: 001
Event Name: Job executing
Event Description: This shows up when a job is running. It might occur more than once.

Event Number: 002
Event Name: Error in executable
Event Description: The job could not be run because the executable was bad.

Event Number: 003
Event Name: Job was checkpointed
Event Description: The job’s complete state was written to a checkpoint file. This might happen without the job
being removed from a machine, because the checkpointing can happen periodically.

Event Number: 004
Event Name: Job evicted from machine
Event Description: A job was removed from a machine before it finished, usually for a policy reason. Perhaps an
interactive user has claimed the computer, or perhaps another job is higher priority.

Event Number: 005
Event Name: Job terminated
Event Description: The job has completed.

Event Number: 006
Event Name: Image size of job updated
Event Description: An informational event, to update the amount of memory that the job is using while running. It
does not reflect the state of the job.

Event Number: 007
Event Name: Shadow exception

1004 Chapter 14. Codes and Other Needed Values

HTCondor Manual, Release 10.0.9

Event Description: The condor_shadow, a program on the submit computer that watches over the job and performs
some services for the job, failed for some catastrophic reason. The job will leave the machine and go back into the
queue.

Event Number: 008
Event Name: Generic log event
Event Description: Not used.

Event Number: 009
Event Name: Job aborted
Event Description: The user canceled the job.

Event Number: 010
Event Name: Job was suspended
Event Description: The job is still on the computer, but it is no longer executing. This is usually for a policy reason,
such as an interactive user using the computer.

Event Number: 011
Event Name: Job was unsuspended
Event Description: The job has resumed execution, after being suspended earlier.

Event Number: 012
Event Name: Job was held
Event Description: The job has transitioned to the hold state. This might happen if the user applies the condor_hold
command to the job.

Event Number: 013
Event Name: Job was released
Event Description: The job was in the hold state and is to be re-run.

Event Number: 014
Event Name: Parallel node executed
Event Description: A parallel universe program is running on a node.

Event Number: 015
Event Name: Parallel node terminated
Event Description: A parallel universe program has completed on a node.

Event Number: 016
Event Name: POST script terminated
Event Description: A node in a DAGMan work flow has a script that should be run after a job. The script is run on
the submit host. This event signals that the post script has completed.

14.2. Job Event Log Codes 1005

HTCondor Manual, Release 10.0.9

Event Number: 021
Event Name: Remote error
Event Description: The condor_starter (which monitors the job on the execution machine) has failed.

Event Number: 022
Event Name: Remote system call socket lost
Event Description: The condor_shadow and condor_starter (which communicate while the job runs) have lost
contact.

Event Number: 023
Event Name: Remote system call socket reestablished
Event Description: The condor_shadow and condor_starter (which communicate while the job runs) have been able
to resume contact before the job lease expired.

Event Number: 024
Event Name: Remote system call reconnect failure
Event Description: The condor_shadow and condor_starter (which communicate while the job runs) were unable to
resume contact before the job lease expired.

Event Number: 025
Event Name: Grid Resource Back Up
Event Description: A grid resource that was previously unavailable is now available.

Event Number: 026
Event Name: Detected Down Grid Resource
Event Description: The grid resource that a job is to run on is unavailable.

Event Number: 027
Event Name: Job submitted to grid resource
Event Description: A job has been submitted, and is under the auspices of the grid resource.

Event Number: 028
Event Name: Job ad information event triggered.
Event Description: Extra job ClassAd attributes are noted. This event is written as a supplement to other events
when the configuration parameter EVENT_LOG_JOB_AD_INFORMATION_ATTRS is set.

Event Number: 029
Event Name: The job’s remote status is unknown
Event Description: No updates of the job’s remote status have been received for 15 minutes.

Event Number: 030
Event Name: The job’s remote status is known again

1006 Chapter 14. Codes and Other Needed Values

HTCondor Manual, Release 10.0.9

Event Description: An update has been received for a job whose remote status was previous logged as unknown.

Event Number: 031
Event Name: Job stage in
Event Description: A grid universe job is doing the stage in of input files.

Event Number: 032
Event Name: Job stage out
Event Description: A grid universe job is doing the stage out of output files.

Event Number: 033
Event Name: Job ClassAd attribute update
Event Description: A Job ClassAd attribute is changed due to action by the condor_schedd daemon. This includes
changes by condor_prio.

Event Number: 034
Event Name: Pre Skip event
Event Description: For DAGMan, this event is logged if a PRE SCRIPT exits with the defined PRE_SKIP value in
the DAG input file. This makes it possible for DAGMan to do recovery in a workflow that has such an event, as it
would otherwise not have any event for the DAGMan node to which the script belongs, and in recovery, DAGMan’s
internal tables would become corrupted.

Event Number: 035
Event Name: Cluster Submit
Event Description: This event occurs when a user submits a cluster with multiple procs.

Event Number: 036
Event Name: Cluster Remove
Event Description: This event occurs after all the jobs in a multi-proc cluster have completed, or when the cluster is
removed (by condor_rm).

Event Number: 037
Event Name: Factory Paused
Event Description: This event occurs when job materialization for a cluster has been paused.

Event Number: 038
Event Name: Factory Resumed
Event Description: This event occurs when job materialization for a cluster has been resumed

Event Number: 039
Event Name: None

14.2. Job Event Log Codes 1007

HTCondor Manual, Release 10.0.9

Event Description: This event should never occur in a log but may be returned by log reading code in certain
situations (e.g., timing out while waiting for a new event to appear in the log).

Event Number: 040
Event Name: File Transfer
Event Description: This event occurs when a file transfer event occurs: transfer queued, transfer started, or transfer
finished, for both the input and output sandboxes.

Table B.2: Event Codes in a Job Event Log

001 EXECUTE Execute
002 EXECUTABLE_ERROR Executable error
003 CHECKPOINTED Checkpointed
004 JOB_EVICTED Job evicted
005 JOB_TERMINATED Job terminated
006 IMAGE_SIZE Image size
007 SHADOW_EXCEPTION Shadow exception
009 JOB_ABORTED Job aborted
010 JOB_SUSPENDED Job suspended
011 JOB_UNSUSPENDED Job unsuspended
012 JOB_HELD Job held
013 JOB_RELEASED Job released
014 NODE_EXECUTE Node execute
015 NODE_TERMINATED Node terminated
016 POST_SCRIPT_TERMINATED Post script terminated
021 REMOTE_ERROR Remote error
022 JOB_DISCONNECTED Job disconnected
023 JOB_RECONNECTED Job reconnected
024 JOB_RECONNECT_FAILED Job reconnect failed
025 GRID_RESOURCE_UP Grid resource up
026 GRID_RESOURCE_DOWN Grid resource down
027 GRID_SUBMIT Grid submit
028 JOB_AD_INFORMATION Job ClassAd attribute values added to event log
029 JOB_STATUS_UNKNOWN Job status unknown
030 JOB_STATUS_KNOWN Job status known
031 JOB_STAGE_IN Grid job stage in
032 JOB_STAGE_OUT Grid job stage out
033 ATTRIBUTE_UPDATE Job ClassAd attribute update
034 PRESKIP DAGMan PRE_SKIP defined
035 CLUSTER_SUBMIT Cluster submitted
036 CLUSTER_REMOVE Cluster removed
037 FACTORY_PAUSED Factory paused
038 FACTORY_RESUMED Factory resumed
039 NONE No event could be returned
040 FILE_TRANSFER File transfer

1008 Chapter 14. Codes and Other Needed Values

HTCondor Manual, Release 10.0.9

14.3 Job Universe Numbers

Table B.3: Job Universe Numbers (job attribute JobUniverse)

Number Job Universe
1 Standard (no longer used)
2 Pipe (no longer used)
3 Linda (no longer used)
4 PVM (no longer used)
5 Vanilla
6 PVMD (no longer used)
7 Scheduler
8 MPI
9 Grid
10 Java
11 Parallel
12 Local
13 VM

14.4 DaemonCore Command Numbers

Table B.4: DaemonCore Commands

60000 DC_RAISESIGNAL
60001 DC_PROCESSEXIT
60002 DC_CONFIG_PERSIST
60003 DC_CONFIG_RUNTIME
60004 DC_RECONFIG
60005 DC_OFF_GRACEFUL
60006 DC_OFF_FAST
60007 DC_CONFIG_VAL
60008 DC_CHILDALIVE
60009 DC_SERVICEWAITPIDS
60010 DC_AUTHENTICATE
60011 DC_NOP
60012 DC_RECONFIG_FULL
60013 DC_FETCH_LOG
60014 DC_INVALIDATE_KEY
60015 DC_OFF_PEACEFUL
60016 DC_SET_PEACEFUL_SHUTDOWN
60017 DC_TIME_OFFSET
60018 DC_PURGE_LOG

14.3. Job Universe Numbers 1009

HTCondor Manual, Release 10.0.9

14.5 DaemonCore Daemon Exit Codes

Table B.5: DaemonCore Daemon Exit Codes

Exit Code Description
0 Normal exit of daemon
4 Daemon fatal internal error
44 Failure to write to daemon log
99 DAEMON_SHUTDOWN evaluated to True

1010 Chapter 14. Codes and Other Needed Values

CHAPTER

FIFTEEN

INDEX

1011

HTCondor Manual, Release 10.0.9

1012 Chapter 15. Index

CHAPTER

SIXTEEN

LICENSING AND COPYRIGHT

HTCondor is released under the Apache License, Version 2.0.

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

Copyright © 1990-2022 HTCondor Team, Center for High Throughput Computing, Computer Sciences Department,
University of Wisconsin-Madison, WI.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

For complete information and additional license notices see http://htcondor.org/license.html.

1013

http://www.apache.org/licenses/
http://www.apache.org/licenses/LICENSE-2.0
http://htcondor.org/license.html

HTCondor Manual, Release 10.0.9

1014 Chapter 16. Licensing and Copyright

PYTHON MODULE INDEX

c
classad (Unix, Windows, Mac OS X), 622

h
htcondor (Unix, Windows, Mac OS X), 629
htcondor.dags, 665
htcondor.htchirp, 659
htcondor.personal, 676

1015

HTCondor Manual, Release 10.0.9

1016 Python Module Index

INDEX

Symbols
$ENV macro

submit commands, 888
$RANDOM_CHOICE() function macro, 42, 197
$RANDOM_CHOICE() macro

submit commands, 888
_CONDOR_JOB_AD

environment variables, 74, 477
_CONDOR_JOB_AD environment variable, 74
_CONDOR_JOB_IWD

environment variables, 74
_CONDOR_JOB_IWD environment variable, 74
_CONDOR_MACHINE_AD

environment variables, 74, 477
_CONDOR_MACHINE_AD environment variable, 74
_CONDOR_SCRATCH_DIR

environment variables, 74
_CONDOR_SCRATCH_DIR environment variable, 74
_CONDOR_SLOT

environment variables, 74
_CONDOR_SLOT environment variable, 74
_CONDOR_WRAPPER_ERROR_FILE

environment variables, 74, 477
_CONDOR_WRAPPER_ERROR_FILE environment

variable, 74
_Param (class in htcondor), 655
__eq__() (classad.ClassAd method), 624
__ne__() (classad.ClassAd method), 624
<DaemonName>_ENVIRONMENT, 234
<Keyword>_HOOK_EVICT_CLAIM, 320
<Keyword>_HOOK_FETCH_WORK, 319
<Keyword>_HOOK_JOB_CLEANUP, 320
<Keyword>_HOOK_JOB_EXIT, 320
<Keyword>_HOOK_JOB_EXIT_TIMEOUT, 320
<Keyword>_HOOK_JOB_FINALIZE, 320
<Keyword>_HOOK_PREPARE_JOB, 320
<Keyword>_HOOK_REPLY_CLAIM, 320
<Keyword>_HOOK_REPLY_FETCH, 319
<Keyword>_HOOK_TRANSLATE_JOB, 320
<Keyword>_HOOK_UPDATE_JOB_INFO, 320
<NAME>_LIMIT, 287
<Name>Provisioned (Job ClassAd Attribute), 970

<OAuth2Service>_AUTHORIZATION_URL, 268
<OAuth2Service>_CLIENT_ID, 268
<OAuth2Service>_CLIENT_SECRET_FILE, 268
<OAuth2Service>_RETURN_URL_SUFFIX, 268
<OAuth2Service>_TOKEN_URL, 268
<SUBSYS>, 233
<SUBSYS>_ADDRESS_FILE, 224
<SUBSYS>_ADMIN_EMAIL, 210
<SUBSYS>_ARGS, 234
<SUBSYS>_ATTRS, 224
<SUBSYS>_CLASSAD_USER_MAP_NAMES, 216
<SUBSYS>_DAEMON_AD_FILE, 224
<SUBSYS>_DEBUG, 220
<SUBSYS>_LOCK, 218
<SUBSYS>_LOG, 217
<SUBSYS>_LOG_KEEP_OPEN, 218
<SUBSYS>_MAX_FILE_DESCRIPTORS, 228
<SUBSYS>_NOT_RESPONDING_TIMEOUT, 226
<SUBSYS>_SUPER_ADDRESS_FILE, 224
<SUBSYS>_TIMEOUT_MULTIPLIER, 230
<SUBSYS>_USERID, 234
<SUBSYS>_<LEVEL>_LOG, 222
<name>BoardTempC (Machine ClassAd Attribute), 982
<name>Capability (Machine ClassAd Attribute), 982
<name>ClockMhz (Machine ClassAd Attribute), 982
<name>ComputeUnits (Machine ClassAd Attribute), 982
<name>CoresPerCU (Machine ClassAd Attribute), 982
<name>DeviceName (Machine ClassAd Attribute), 982
<name>DieTempC (Machine ClassAd Attribute), 982
<name>DriverVersion (Machine ClassAd Attribute),

982
<name>ECCEnabled (Machine ClassAd Attribute), 982
<name>EccErrorsDoubleBit (Machine ClassAd At-

tribute), 982
<name>EccErrorsSingleBit (Machine ClassAd At-

tribute), 982
<name>FanSpeedPct (Machine ClassAd Attribute), 982
<name>GlobalMemoryMb (Machine ClassAd Attribute),

982
<name>OpenCLVersion (Machine ClassAd Attribute),

982
<name>RuntimeVersion (Machine ClassAd Attribute),

1017

HTCondor Manual, Release 10.0.9

982
<Keyword>_HOOK_EVICT_CLAIM, 431
<Keyword>_HOOK_FETCH_WORK, 320, 428–430, 433
<Keyword>_HOOK_JOB_CLEANUP, 437
<Keyword>_HOOK_JOB_EXIT, 432, 433
<Keyword>_HOOK_JOB_FINALIZE, 437
<Keyword>_HOOK_PREPARE_JOB, 431, 955
<Keyword>_HOOK_REPLY_FETCH, 430, 431
<Keyword>_HOOK_TRANSLATE_JOB, 436, 548
<Keyword>_HOOK_UPDATE_JOB_INFO, 431, 432, 436
<SUBSYS>_ATTRS, 224
<SUBSYS>_DEBUG, 440
<SUBSYS>_LOCK, 440
<SUBSYS>_LOG, 440
<SUBSYS>_LOG_KEEP_OPEN, 440
<none> group, 335

A
ABORT_ON_EXCEPTION, 213
ABORT-DAG-ON command

DAG input file, 93
aborting a DAG

DAGMan, 93
Absent (Job ClassAd Attribute), 947
absent ClassAd, 445

ClassAd, 445
absent ClassAds

pool management, 445
ABSENT_EXPIRE_ADS_AFTER, 282, 445
ABSENT_REQUIREMENTS, 282, 445
ABSENT_SUBMITTER_LIFETIME, 257
ABSENT_SUBMITTER_UPDATE_RATE, 257
absTime()

ClassAd functions, 505
AcceptedWhileDraining (Machine ClassAd Attribute),

970
access levels

security, 382
access() (htcondor.htchirp.HTChirp method), 664
ACCOUNTANT_DATABASE_FILE, 283
ACCOUNTANT_LOCAL_DOMAIN, 283
accounting

groups, 334
Accounting (ClassAd Types), 945
Accounting (htcondor.AdTypes attribute), 632
accounting groups, 338

DAGMan, 137
accounting_group

submit commands, 137, 335, 879, 947
accounting_group_user

submit commands, 137, 335, 880
AccountingGroup (Accounting ClassAd Attribute), 946
AcctGroup (Job ClassAd Attribute), 947
AcctGroupUser (Job ClassAd Attribute), 947

AccumulatedUsage (Accounting ClassAd Attribute), 946
acknowledgments

HTCondor, 21
act() (htcondor.Schedd method), 634
ActivationDuration (Job ClassAd Attribute), 947
ActivationExecutionDuration (Job ClassAd At-

tribute), 947
ActivationSetupDuration (Job ClassAd Attribute),

947
ActivationTeardownDuration (Job ClassAd At-

tribute), 948
ActiveQueryWorkers (Collector ClassAd Attribute),

997
ActiveQueryWorkersPeak (Collector ClassAd At-

tribute), 997
activities and state figure, 345
Activity (Machine ClassAd Attribute), 970
add_children() (htcondor.dags.BaseNode method),

668
add_children() (htcondor.dags.Nodes method), 671
add_parents() (htcondor.dags.BaseNode method), 668
add_parents() (htcondor.dags.Nodes method), 671
add_password() (htcondor.Credd method), 646
ADD_SIGNIFICANT_ATTRIBUTES, 265
add_user_cred() (htcondor.Credd method), 646
add_user_service_cred() (htcondor.Credd method),

647
ADD_WINDOWS_FIREWALL_EXCEPTION, 237
administrators manual, 491
adstash, 446
AdTypes (class in htcondor), 631
advertise() (htcondor.Collector method), 631
ADVERTISE_IPV4_FIRST, 216
ADVERTISE_PSLOT_ROLLUP_INFORMATION, 239
AFS

file system, 174, 455
AfterHours, 356
ALIVE_INTERVAL, 241, 258, 344
ALL_DEBUG, 222
ALL_NODES option

DAG input file, 123
allCompare()

ClassAd functions, 504
ALLOW, 223, 764
ALLOW..., 223
ALLOW_* macros, 402
ALLOW_ADMIN_COMMANDS, 237
ALLOW_ADMINISTRATOR, 400, 494
ALLOW_ADVERTISE_MASTER, 400
ALLOW_ADVERTISE_SCHEDD, 400
ALLOW_ADVERTISE_STARTD, 400
ALLOW_CLIENT, 383, 400
ALLOW_CONFIG, 400, 690
ALLOW_DAEMON, 400

1018 Index

HTCondor Manual, Release 10.0.9

ALLOW_NEGOTIATOR, 400
ALLOW_NEGOTIATOR_SCHEDD, 530
ALLOW_PSLOT_PREEMPTION, 286
ALLOW_READ, 400, 494
ALLOW_SCRIPTS_TO_RUN_AS_EXECUTABLES, 213
ALLOW_TRANSFER_REMAP_TO_MKDIR, 269
ALLOW_WRITE, 400, 494
allowed_execute_duration

submit commands, 867
allowed_job_duration

submit commands, 868
AllowedExecuteDuration (Job ClassAd Attribute), 948
AllowedJobDuration (Job ClassAd Attribute), 948
AllRemoteHosts (Job ClassAd Attribute), 948
ALTERNATE_JOB_SPOOL, 267
Always (htcondor.LogLevel attribute), 656
ALWAYS_REUSEADDR, 230
ALWAYS_VM_UNIV_USE_NOBODY, 312
Amazon EC2 Query API, 537
analysis

job, 67
and_() (classad.ExprTree method), 624
ANNEX_AUDIT_LOG, 568
ANNEX_DEFAULT_ACCESS_KEY_FILE, 569
ANNEX_DEFAULT_AWS_REGION, 559, 568
ANNEX_DEFAULT_CF_URL, 561, 569
ANNEX_DEFAULT_CONNECTIVITY_FUNCTION_ARN, 569
ANNEX_DEFAULT_CWE_URL, 569
ANNEX_DEFAULT_EC2_URL, 569
ANNEX_DEFAULT_LAMBDA_URL, 569
ANNEX_DEFAULT_LEASE_DURATION, 568
ANNEX_DEFAULT_ODI_IMAGE_ID, 568
ANNEX_DEFAULT_ODI_INSTANCE_PROFILE_ARN, 560,

569
ANNEX_DEFAULT_ODI_INSTANCE_TYPE, 568
ANNEX_DEFAULT_ODI_KEY_NAME, 568
ANNEX_DEFAULT_ODI_LEASE_FUNCTION_ARN, 569
ANNEX_DEFAULT_ODI_SECURITY_GROUP_IDS, 569
ANNEX_DEFAULT_S3_BUCKET, 569
ANNEX_DEFAULT_S3_URL, 569
ANNEX_DEFAULT_SECRET_KEY_FILE, 569
ANNEX_DEFAULT_SFR_CONFIG_FILE, 560, 568
ANNEX_DEFAULT_SFR_LEASE_FUNCTION_ARN, 569
ANNEX_DEFAULT_UNCLAIMED_TIMEOUT, 568
Any (htcondor.AdTypes attribute), 632
Any (htcondor.DaemonTypes attribute), 631
anyCompare()

ClassAd functions, 504
APPEND_PREF_VANILLA, 276
APPEND_RANK, 275
APPEND_RANK_VANILLA, 275
APPEND_REQ_VANILLA, 275
APPEND_REQUIREMENTES, 965
APPEND_REQUIREMENTS, 275

ARC CE, 534
arc_application

submit commands, 871
ARC_GAHP, 292
arc_resources

submit commands, 534, 871
arc_rte

submit commands, 872
ARCH, 200, 965
Arch (Machine ClassAd Attribute), 970
Args

optional attributes, 430
Args (Job ClassAd Attribute), 948
arguments

submit commands, 49, 55, 57, 85, 147, 151, 155,
317, 853, 856, 858

Arguments (Job ClassAd Attribute), 948
as a literal character in a submit

description file
$, 887

as literal characters in a submit
description file

$$, 888
ASSIGN_CPU_AFFINITY, 272
Assigned<name> (Machine ClassAd Attribute), 982
at a specific time

job execution, 169
at UW-Madison

policy, 356
attach() (htcondor.personal.PersonalPool class

method), 677
ATTR>

Job Router Routing Table ClassAd
attribute, 551

Job Router Routing Table command, 548, 549
Attribute() (in module classad), 627
ATTRIBUTE_UPDATE (htcondor.JobEventType attribute),

654
attributes

ClassAd, 141, 502
FetchWork, 429

Audit (htcondor.LogLevel attribute), 656
AUTH_SSL_ALLOW_CLIENT_PROXY, 309
AUTH_SSL_CLIENT_CADIR, 309, 388
AUTH_SSL_CLIENT_CAFILE, 308, 388
AUTH_SSL_CLIENT_CERTFILE, 309, 388
AUTH_SSL_CLIENT_KEYFILE, 309, 388
AUTH_SSL_REQUIRE_CLIENT_CERTIFICATE, 309, 388
AUTH_SSL_SERVER_CADIR, 309, 388
AUTH_SSL_SERVER_CAFILE, 308, 388
AUTH_SSL_SERVER_CERTFILE, 309, 388
AUTH_SSL_SERVER_KEYFILE, 309, 388
AUTH_SSL_USE_CLIENT_PROXY_ENV_VAR, 309
AuthenticatedIdentity (ClassAd Attribute), 1000

Index 1019

HTCondor Manual, Release 10.0.9

authentication, 386, 396
security, 386

authentication methods
ec2, 537

AuthenticationMethod (ClassAd Attribute), 1000
authorization

security, 400
AuthTokenGroups (Job ClassAd Attribute), 948
AuthTokenId (Job ClassAd Attribute), 948
AuthTokenIssuer (Job ClassAd Attribute), 948
AuthTokenScopes (Job ClassAd Attribute), 948
AuthTokenSubject (Job ClassAd Attribute), 948
Auto (classad.Parser attribute), 628
AUTO_INCLUDE_SHARED_PORT_IN_DAEMON_LIST, 228
AutoCluster (htcondor.QueryOpts attribute), 638
Autoclusters (Scheduler ClassAd Attribute), 984
automatic variables

submit description file, 37
available platforms, 21
avg()

ClassAd functions, 507
AvgDrainingBadput (Defrag ClassAd Attribute), 995
AvgDrainingUnclaimedTime (Defrag ClassAd At-

tribute), 995
aws_access_key_id_file

submit commands, 867
aws_region

submit commands, 867
aws_secret_access_key_file

submit commands, 867
Azure, 542
azure

grid type, 542
Azure grid jobs, 542
azure_admin_key

submit commands, 543, 872
azure_admin_username

submit commands, 543, 872
azure_auth_file

submit commands, 542, 872
AZURE_GAHP, 293
azure_image

submit commands, 542, 872
azure_location

submit commands, 543, 872
azure_size

submit commands, 543, 872

B
Backfill, 468

machine activity, 345
machine state, 341, 352

backfill state, 341, 352
BACKFILL_SYSTEM, 245, 469

BASE_CGROUP, 289, 475
based on user authorization

security, 400
BaseEdge (class in htcondor.dags), 673
BaseNode (class in htcondor.dags), 668
batch grid type, 535
batch ready

job, 32
batch system, 32
batch_extra_submit_args

submit commands, 872
BATCH_GAHP, 292
BATCH_GAHP_CHECK_STATUS_ATTEMPTS, 292
batch_name

submit commands, 882
batch_project

submit commands, 872
batch_queue

submit commands, 872
batch_runtime

submit commands, 872
BATCH_SYSTEM

environment variables, 75
BATCH_SYSTEM environment variable, 75
BatchExtraSubmitArgs (Job ClassAd Attribute), 948
BatchProject (Job ClassAd Attribute), 948
BatchQueue (Job ClassAd Attribute), 948
BatchRuntime (Job ClassAd Attribute), 948
BeginUsageTime (Accounting ClassAd Attribute), 946
Benchmarking

machine activity, 344
BENCHMARKS_<JobName>_ARGS, 322
BENCHMARKS_<JobName>_CWD, 322
BENCHMARKS_<JobName>_ENV, 322
BENCHMARKS_<JobName>_EXECUTABLE, 322
BENCHMARKS_<JobName>_JOB_LOAD, 322
BENCHMARKS_<JobName>_KILL, 322
BENCHMARKS_<JobName>_MODE, 323
BENCHMARKS_<JobName>_PERIOD, 324
BENCHMARKS_<JobName>_PREFIX, 324
BENCHMARKS_<JobName>_SLOTS, 325
BENCHMARKS_CONFIG_VAL, 321
BENCHMARKS_JOBLIST, 321
BENCHMARKS_MAX_JOB_LOAD, 321
BIN, 208
BIND_ALL_INTERFACES, 227, 418
BLAHPD_LOCATION, 292
Blocking (htcondor.BlockingMode attribute), 638
BlockingMode (class in htcondor), 638
BlockReadKbytes (Job ClassAd Attribute), 948
BlockReads (Job ClassAd Attribute), 948
BlockWriteKbytes (Job ClassAd Attribute), 948
BlockWrites (Job ClassAd Attribute), 948
BOINC Configuration in HTCondor

1020 Index

HTCondor Manual, Release 10.0.9

Backfill, 471
BOINC Installation

Backfill, 470
BOINC Overview

Backfill, 470
BOINC_Arguments, 471, 473
BOINC_Environment, 471
BOINC_Error, 471
BOINC_Executable, 470, 471, 473
BOINC_GAHP, 293
BOINC_InitialDir, 470, 471, 473
BOINC_Output, 471
BOINC_Owner, 470, 471, 473
BOINC_Universe, 471
bool()

ClassAd functions, 505
boolean MEMBER(expr, list l), 747
boolean REGEXP(string pattern, string

target[, string options]), 747
boolean STRINGLISTIMEMBER(string s, string

list[, string tokens]), 747
BOOTSTRAP_SSL_SERVER_TRUST, 309, 389
BREADTH_FIRST (htcondor.dags.WalkOrder attribute),

667
BulkQueryIterator (class in htcondor), 639
Busy

machine activity, 344
by group

accounting, 334
negotiation, 335
priority, 334

C
C_GAHP_CONTACT_SCHEDD_DELAY, 292
C_GAHP_DEBUG, 221
C_GAHP_LOG, 292, 532
C_GAHP_MAX_FILE_REQUESTS, 292
C_GAHP_WORKER_THREAD_LOG, 292
cache flush on submit machine

NFS, 175
cancelDrainJobs() (htcondor.Startd method), 645
CanHibernate (Machine ClassAd Attribute), 971
CATEGORY command

DAG input file, 100
CCB (HTCondor Connection Brokering), 420
CCB_ADDRESS, 227, 421, 422
CCB_HEARTBEAT_INTERVAL, 227
CCB_POLLING_INTERVAL, 227
CCB_POLLING_MAX_INTERVAL, 227
CCB_POLLING_TIMESLICE, 227
CCB_READ_BUFFER, 227
CCB_RECONNECT_FILE, 227
CCB_REQUIRED_TO_START, 227
CCB_SWEEP_INTERVAL, 227

CCB_TIMEOUT, 227
CCB_WRITE_BUFFER, 227
ceiling()

ClassAd functions, 506
central manager, 181

machine, 181
CERTIFICATE_MAPFILE, 310, 396
CERTIFICATE_MAPFILE_ASSUME_HASH_KEYS, 310, 396
cgroup based process tracking, 475
CGROUP_MEMORY_LIMIT_POLICY, 272, 477
changing the configuration

security, 408
check_user_service_creds() (htcondor.Credd

method), 647
checkpoint_exit_code

submit commands, 868
CHECKPOINTED (htcondor.JobEventType attribute), 653
checkpoints

vm universe, 158
child_layer() (htcondor.dags.BaseNode method), 669
child_layer() (htcondor.dags.Nodes method), 671
child_subdag() (htcondor.dags.BaseNode method),

669
child_subdag() (htcondor.dags.Nodes method), 672
ChildAccountingGroup (Machine ClassAd Attribute),

983
ChildActivity (Machine ClassAd Attribute), 983
ChildCpus (Machine ClassAd Attribute), 983
ChildCurrentRank (Machine ClassAd Attribute), 983
ChildEnteredCurrentState (Machine ClassAd At-

tribute), 983
ChildMemory (Machine ClassAd Attribute), 983
ChildName (Machine ClassAd Attribute), 983
ChildRemoteOwner (Machine ClassAd Attribute), 983
ChildRemoteUser (Machine ClassAd Attribute), 983
children (htcondor.dags.BaseNode property), 669
ChildRetirementTimeRemaining (Machine ClassAd

Attribute), 983
ChildState (Machine ClassAd Attribute), 983
Chirp, 149

API, 679
SDK, 149
Software Developers Kit, 149

Chirp API, 679
Chirp.jar

Chirp, 150
CHIRP_DELAYED_UPDATE_MAX_ATTRS, 274
CHIRP_DELAYED_UPDATE_PREFIX, 273
ChirpClient

Chirp, 149
ChirpInputStream

Chirp, 149
ChirpOutputStream

Chirp, 149

Index 1021

HTCondor Manual, Release 10.0.9

chmod() (htcondor.htchirp.HTChirp method), 664
chown() (htcondor.htchirp.HTChirp method), 664
CHOWN_JOB_SPOOL_FILES, 267
CkptArch (Job ClassAd Attribute), 948
CkptOpSys (Job ClassAd Attribute), 948
claim lease, 344
CLAIM_PARTITIONABLE_LEFTOVERS, 247
CLAIM_WORKLIFE, 241, 353
Claimed

machine state, 341, 349
claimed state, 341, 349
claimed, the claim lease

machine state, 344
ClassAd, 20, 21, 141, 499, 519
classad

module, 622
ClassAd (class in classad), 622
ClassAd attribute added by the

condor_collector, 1000
ClassAd functions, 502
classad_eval

HTCondor commands, 743
classad_eval command, 743
CLASSAD_LIFETIME, 278, 445
CLASSAD_LOG_STRICT_PARSING, 212
CLASSAD_USER_LIBS, 214, 519
CLASSAD_USER_MAPDATA_<name>, 216
CLASSAD_USER_MAPFILE_<name>, 216
CLASSAD_USER_PYTHON_LIB, 214
CLASSAD_USER_PYTHON_MODULES, 214
ClassAdEnumError (class in classad), 628
ClassAdEvaluationError (class in classad), 628
ClassAdException (class in classad), 628
ClassAdInternalError (class in classad), 628
ClassAdOSError (class in classad), 628
ClassAdParseError (class in classad), 628
ClassAdTypeError (class in classad), 629
ClassAdValueError (class in classad), 629
CLIENT_TIMEOUT, 278
ClientMachine (Machine ClassAd Attribute), 981
ClockDay (Machine ClassAd Attribute), 971
ClockMin (Machine ClassAd Attribute), 971
close() (htcondor.JobEventLog method), 652
cloud_label_name

submit commands, 873
cloud_label_names

submit commands, 873, 948
CloudImage (Machine ClassAd Attribute), 983
CloudInstanceID (Machine ClassAd Attribute), 983
CloudInterruptible (Machine ClassAd Attribute), 983
CloudLabelNames (Job ClassAd Attribute), 948
CloudPlatform (Machine ClassAd Attribute), 983
CloudProvider (Machine ClassAd Attribute), 983
CloudRegion (Machine ClassAd Attribute), 983

CloudVMType (Machine ClassAd Attribute), 983
CloudZone (Machine ClassAd Attribute), 983
cluster (htcondor.JobEvent attribute), 653
cluster identifier

job ID, 886
cluster() (htcondor.SubmitResult method), 643
CLUSTER_REMOVE (htcondor.JobEventType attribute),

654
CLUSTER_SUBMIT (htcondor.JobEventType attribute),

654
clusterad() (htcondor.SubmitResult method), 643
ClusterId

ClassAd job attribute, 886
ClusterId (Job ClassAd Attribute), 949
CM_IP_ADDR, 212
Cmd

required attributes, 429
Cmd (Job ClassAd Attribute), 949
Collector (class in htcondor), 630
Collector (ClassAd Types), 945
Collector (htcondor.AdTypes attribute), 632
Collector (htcondor.DaemonTypes attribute), 631
collector (htcondor.personal.PersonalPool property),

677
Collector (htcondor.SubsystemType attribute), 658
Collector attributes

ClassAd, 997
COLLECTOR_ADDRESS_FILE, 224, 415
COLLECTOR_BOOTSTRAP_SSL_CERTIFICATE, 309
COLLECTOR_CLASS_HISTORY_SIZE, 280
COLLECTOR_DAEMON_HISTORY_SIZE, 280, 753, 920
COLLECTOR_DAEMON_STATS, 279, 280
COLLECTOR_DEBUG, 281
COLLECTOR_FORWARD_CLAIMED_PRIVATE_ADS, 281
COLLECTOR_FORWARD_FILTERING, 281
COLLECTOR_FORWARD_INTERVAL, 281
COLLECTOR_FORWARD_PROJECTION, 281
COLLECTOR_FORWARD_WATCH_LIST, 281
COLLECTOR_HOST, 207, 415, 984
COLLECTOR_MAX_FILE_DESCRIPTORS, 230
COLLECTOR_NAME, 278
COLLECTOR_PERSISTENT_AD_LOG, 282, 317, 445
COLLECTOR_PORT, 207
COLLECTOR_QUERY_MAX_WORKTIME, 280
COLLECTOR_QUERY_WORKERS, 280
COLLECTOR_QUERY_WORKERS_PENDING, 280
COLLECTOR_QUERY_WORKERS_RESERVE_FOR_HIGH_PRIO,

280
COLLECTOR_REQUIREMENTS, 278
COLLECTOR_SOCKET_BUFSIZE, 279
COLLECTOR_STATS_SWEEP, 279
COLLECTOR_SUPER_ADDRESS_FILE, 224
COLLECTOR_TCP_SOCKET_BUFSIZE, 279
COLLECTOR_UPDATE_INTERVAL, 278

1022 Index

HTCondor Manual, Release 10.0.9

COLLECTOR_USES_SHARED_PORT, 228
CollectorHost (Scheduler ClassAd Attribute), 984
CollectorIpAddr (Collector ClassAd Attribute), 997
Command line

API, 686
command line arguments

daemoncore, 426
HTCondor daemon, 426

CommittedSlotTime (Job ClassAd Attribute), 949
CommittedSuspensionTime (Job ClassAd Attribute),

949
CommittedTime (Job ClassAd Attribute), 949
COMPLETED (htcondor.JobStatus attribute), 639
completion

job, 70
CompletionDate (Job ClassAd Attribute), 949
Composing workflows

DAG input file, 105
DAGMan, 105

COMPRESS_PERIODIC_CKPT, 269
COMPRESS_VACATE_CKPT, 269
concurrency limits, 478
CONCURRENCY_LIMIT_DEFAULT, 287, 478
CONCURRENCY_LIMIT_DEFAULT_<NAME>, 287
concurrency_limits

submit commands, 479, 880
concurrency_limits_expr

submit commands, 479, 880
ConcurrencyLimits (Job ClassAd Attribute), 949
CONDOR_ADMIN, 210, 798
condor_adstash, 446

HTCondor commands, 749
condor_advertise

HTCondor commands, 752
condor_advertise command, 752
condor_annex

HTCondor commands, 754
condor_annex command, 754
condor_annex configuration variables

configuration, 328
condor_check_password

HTCondor commands, 756
condor_check_password command, 756
condor_check_userlogs

HTCondor commands, 757
condor_check_userlogs command, 757
condor_chirp, 758

HTCondor commands, 758
condor_chirp() (in module htcondor.htchirp), 665
condor_ckpt_server daemon, 183
condor_collector, 422
condor_collector configuration variables

configuration, 278
condor_collector daemon, 182

condor_config_val
HTCondor commands, 764

condor_config_val command, 764
condor_configure

HTCondor commands, 760, 787
condor_configure command, 760, 787
condor_continue

HTCondor commands, 767
condor_continue command, 767
condor_credd configuration variables

configuration, 290
condor_credd daemon, 183, 290, 689
condor_dagman

HTCondor commands, 768
condor_dagman command, 768
condor_defrag configuration variables

configuration, 325
condor_defrag daemon, 183, 372
condor_drain

HTCondor commands, 772
condor_drain command, 772
condor_evicted_files

HTCondor commands, 774
condor_evicted_files command, 774
condor_fetchlog

HTCondor commands, 775
condor_fetchlog command, 775
condor_findhost

HTCondor commands, 776
condor_findhost command, 776
CONDOR_FSYNC, 214
CONDOR_GAHP, 292, 532
condor_gangliad configuration variables

configuration, 327
condor_gangliad daemon, 327, 442
condor_gather_info

HTCondor commands, 778
condor_gather_info command, 778
condor_gpu_discovery

HTCondor commands, 780
condor_gpu_discovery command, 780
condor_gridmanager configuration variables

configuration, 290
condor_had daemon, 183, 449
condor_hdfs daemon, 183
condor_history

HTCondor commands, 783
condor_history command, 783
condor_hold

HTCondor commands, 66, 785
condor_hold command, 785
CONDOR_HOST, 207
CONDOR_IDS, 210, 409, 429, 431

environment variables, 210, 211

Index 1023

HTCondor Manual, Release 10.0.9

CONDOR_IDS environment variable, 210, 211
condor_install

HTCondor commands, 760, 787
condor_install command, 760, 787
condor_job_router configuration variables

configuration, 293
condor_job_router daemon, 183, 543
condor_job_router_info

HTCondor commands, 790
condor_job_router_info command, 790
condor_kbdd daemon, 183, 463
condor_lease_manager configuration

variables
configuration, 296

condor_lease_manager daemon, 183
condor_master

HTCondor commands, 791
condor_master configuration variables

configuration, 233
condor_master daemon, 182, 791
condor_negotiator configuration variables

configuration, 282
condor_negotiator daemon, 182
condor_now

HTCondor commands, 792
condor_now ommand, 792
condor_off

HTCondor commands, 793
condor_off command, 793
condor_on

HTCondor commands, 795
condor_on command, 795
condor_ping

HTCondor commands, 797
condor_ping command, 797
condor_pool_job_report

HTCondor commands, 798
condor_pool_job_report command, 798
condor_power

HTCondor commands, 798
condor_power command, 798
condor_preen

HTCondor commands, 799
condor_preen command, 799
condor_preen configuration variables

configuration, 277
condor_prio

HTCondor commands, 67, 76, 800
condor_prio command, 800
condor_procd

HTCondor commands, 801
condor_procd command, 801
condor_procd daemon, 183
condor_q

HTCondor commands, 63, 67, 803
condor_q command, 803
CONDOR_Q_DASH_BATCH_IS_DEFAULT, 257
CONDOR_Q_ONLY_MY_JOBS, 257
CONDOR_Q_SHOW_OLD_SUMMARY, 257
CONDOR_Q_USE_V3_PROTOCOL, 257
condor_qedit

HTCondor commands, 815
condor_qedit command, 815
condor_qsub

HTCondor commands, 817
condor_qsub command, 817
condor_reconfig

HTCondor commands, 820
condor_reconfig command, 820
condor_release

HTCondor commands, 66, 822
condor_release command, 822
condor_remote_cluster

HTCondor commands, 823
condor_remote_cluster command, 823
condor_replication daemon, 183, 450
condor_reschedule

HTCondor commands, 824
condor_reschedule command, 824
condor_restart

HTCondor commands, 825
condor_restart command, 825
condor_rm

HTCondor commands, 33, 66, 827
condor_rm command, 827
condor_rmdir

HTCondor commands, 828
condor_rmdir command, 828
condor_rooster configuration variables

configuration, 317
condor_rooster daemon, 183, 489
condor_router_history, 829

Job Router commands, 829
condor_router_q, 830

Job Router commands, 830
condor_router_rm

HTCondor commands, 830
condor_router_rm command, 830
condor_run

HTCondor commands, 831
condor_run command, 831
condor_schedd configuration variables

configuration, 253
condor_schedd daemon, 182
condor_schedd policy

configuration, 374
condor_set_shutdown

HTCondor commands, 833

1024 Index

HTCondor Manual, Release 10.0.9

condor_set_shutdown command, 833
condor_shadow, 64

HTCondor daemon, 175
remote system call, 64, 175

condor_shadow configuration variables
configuration, 268

condor_shadow daemon, 182
condor_shared_port configuration variables

configuration, 318
condor_shared_port daemon, 183, 417
condor_sos

HTCondor commands, 834
condor_sos command, 834
CONDOR_SSH_KEYGEN, 156
condor_ssh_start

HTCondor commands, 835
condor_ssh_start command, 835
condor_ssh_to_job

HTCondor commands, 836
condor_ssh_to_job command, 836
condor_ssh_to_job configuration variables

configuration, 316
CONDOR_SSHD, 156
condor_ssl_fingerprint

HTCondor commands, 839
condor_ssl_fingerprint command, 839
condor_startd, 339
condor_startd configuration variables

configuration, 238
condor_startd daemon, 182
condor_startd policy

configuration, 338
condor_starter configuration variables

configuration, 270
condor_starter daemon, 182
condor_stats

HTCondor commands, 840
condor_stats command, 840
condor_status

HTCondor commands, 43, 64, 71, 141, 842
condor_status command, 842
condor_store_cred

HTCondor commands, 848
condor_store_cred command, 848
condor_submit

HTCondor commands, 32, 850
condor_submit command, 850
condor_submit configuration variables

configuration, 275
condor_submit variables, 889
condor_submit_dag

HTCondor commands, 893
condor_submit_dag command, 893
CONDOR_SUPPORT_EMAIL, 210

condor_suspend
HTCondor commands, 897

condor_suspend command, 897
condor_tail

HTCondor commands, 899
condor_tail command, 899
condor_token_create

HTCondor commands, 900
condor_token_create command, 900
condor_token_fetch

HTCondor commands, 902
condor_token_fetch command, 902
condor_token_list

HTCondor commands, 904
condor_token_list command, 904
condor_token_request

HTCondor commands, 905
condor_token_request command, 905
condor_token_request_approve

HTCondor commands, 908
condor_token_request_approve command, 908
condor_token_request_auto_approve

HTCondor commands, 909
condor_token_request_auto_approve command,

909
condor_token_request_list

HTCondor commands, 911
condor_token_request_list command, 911
condor_top

HTCondor commands, 913
condor_top command, 913
condor_transfer_data

HTCondor commands, 915
condor_transfer_data command, 915
condor_transferer daemon, 183, 450
condor_transform_ads

HTCondor commands, 916
condor_transform_ads command, 916
condor_update_machine_ad

HTCondor commands, 918
condor_update_machine_ad command, 918
condor_updates_stats

HTCondor commands, 919
condor_updates_stats command, 919
condor_urlfetch

HTCondor commands, 921
condor_urlfetch command, 921
condor_userlog

HTCondor commands, 922
condor_userlog command, 922
condor_userprio

HTCondor commands, 76, 924
condor_userprio command, 924
condor_vacate

Index 1025

HTCondor Manual, Release 10.0.9

HTCondor commands, 928
condor_vacate command, 928
condor_vacate_job

HTCondor commands, 929
condor_vacate_job command, 929
condor_version

HTCondor commands, 931
condor_version command, 931
CONDOR_VIEW_CLASSAD_TYPES, 281
CONDOR_VIEW_HOST, 207, 230, 447
condor_wait

HTCondor commands, 932
condor_wait command, 932
condor_watch_q

HTCondor commands, 933
condor_watch_q command, 933
condor_who

HTCondor commands, 936
condor_who command, 936
CondorLoadAvg

ClassAd machine attribute, 365
CondorLoadAvg (Machine ClassAd Attribute), 971
CondorPlatform (Job ClassAd Attribute), 949
CondorVersion (ClassAd Attribute), 984
CondorVersion (Collector ClassAd Attribute), 997
CondorVersion (Job ClassAd Attribute), 949
CondorVersion (Machine ClassAd Attribute), 971
CondorVersion (Negotiator ClassAd Attribute), 993
CondorVersion (Scheduler ClassAd Attribute), 984
CondorVersion (Submitter ClassAd Attribute), 995
Config (htcondor.LogLevel attribute), 656
CONFIG command

DAG input file, 101
CONFIG_ROOT, 201
ConfigQuota (Accounting ClassAd Attribute), 946
configuration

GPUs, 366
HTCondor-C, 531
HTCondorView, 465
multi-core machines, 360, 373
SMP machines, 360, 373
startd, 338

configuration change requiring a restart of
HTCondor, 198

configuration examples
security, 406

configuration specific to a DAG
DAGMan, 101

configuration: introduction, 186
configuration: macros, 207
configuration: templates, 201
configuration-intro

HTCondor, 186
configuration-macros

HTCondor, 207
configuration-templates

HTCondor, 201
conflicts

port usage, 417
CONNECT command

DAG input file, 118
connect() (htcondor.htchirp.HTChirp method), 660
connecting DAG splices

DAGMan, 118
CONSOLE_DEVICES, 241, 462
ConsoleIdle (Machine ClassAd Attribute), 971
consumption policy, 371
CONSUMPTION_<Resource>, 249
CONSUMPTION_POLICY, 249
contact information

HTCondor, 22
container

universe, 145, 163
container universe, 145, 163
container_image

submit commands, 879
container_service_names

submit commands, 879
CONTAINER_SHARED_FS, 277
container_target_dir

submit commands, 879
ContainerImage (Job ClassAd Attribute), 949
ContainerTargetDir (Job ClassAd Attribute), 949
contents of

submit description file, 33
CONTINUE, 239, 353
Continue (htcondor.JobAction attribute), 637
contributions

HTCondor, 21
Copy_ATTR>

Job Router Routing Table ClassAd
attribute, 551

copy_to_spool
submit commands, 880

copying current environment
environment variables, 856

CORE_FILE_NAME, 226
coresize

submit commands, 880
COUNT_HYPERTHREAD_CPUS, 200, 243
countMatches()

ClassAd functions, 510
CpuCacheSize (Machine ClassAd Attribute), 971
CpuFamily (Machine ClassAd Attribute), 971
CpuModel (Machine ClassAd Attribute), 971
Cpus (Machine ClassAd Attribute), 971
CpusProvisioned (Job ClassAd Attribute), 970
CpusUsage (Job ClassAd Attribute), 970

1026 Index

HTCondor Manual, Release 10.0.9

CREATE_CORE_FILES, 212, 213
CREATE_LOCKS_ON_LOCAL_DISK, 209, 219
CRED_MIN_TIME_LEFT, 277
CRED_SUPER_USERS, 290
CredCheck (class in htcondor), 648
Credd (class in htcondor), 646
Credd (htcondor.AdTypes attribute), 632
Credd (htcondor.DaemonTypes attribute), 631
CREDD_CACHE_LOCALLY, 290
CREDD_HOST, 290
CREDD_POLLING_TIMEOUT, 290
CREDMON_KRB, 290
CREDMON_OAUTH, 290
CREDMON_OAUTH_TOKEN_MINIMUM, 290
CREDMON_OAUTH_TOKEN_REFRESH, 290
CredStatus (class in htcondor), 648
CredTypes (class in htcondor), 648
cron_day_of_month

submit commands, 171, 880
cron_day_of_week

submit commands, 171, 880
cron_hour

submit commands, 171, 880
cron_minute

submit commands, 171, 880
cron_month

submit commands, 171, 881
cron_prep_time

submit commands, 172, 881
cron_window

submit commands, 173, 881
CronDayOfMonth (Job ClassAd Attribute), 969
CronDayOfWeek (Job ClassAd Attribute), 969
Crondor, 171
CronHour (Job ClassAd Attribute), 969
CronMinute (Job ClassAd Attribute), 969
CronMonth (Job ClassAd Attribute), 969
CronTab job scheduling, 171
cuda_version

submit commands, 861
CumulativeRemoteSysCpu (Job ClassAd Attribute), 965
CumulativeRemoteUserCpu (Job ClassAd Attribute),

965
CumulativeSlotTime (Job ClassAd Attribute), 949
CumulativeSuspensionTime (Job ClassAd Attribute),

949
CumulativeTransferTime (Job ClassAd Attribute), 949
CURB_MATCHMAKING, 255
current working directory, 413
CurrentForkWorkers (Collector ClassAd Attribute),

997
CurrentHosts (Job ClassAd Attribute), 949
CurrentJobsRunning (Collector ClassAd Attribute),

997

CurrentJobsRunningAll (Collector ClassAd At-
tribute), 997

CurrentRank (Machine ClassAd Attribute), 971
CurrentTime (Machine ClassAd Attribute), 983
Custom Print Formats (see Print Format), 521

D
D_COMMAND, 403
D_SECURITY, 403
Daemon (htcondor.SubsystemType attribute), 658
daemon ClassAd hook configuration variables

configuration, 321
Daemon ClassAd Hooks, 437

Hooks, 437
daemon logging configuration variables

configuration, 217
DAEMON_LIST, 228, 233, 418, 462, 791
DAEMON_SHUTDOWN, 225, 1010
DAEMON_SHUTDOWN_FAST, 225
DAEMON_SOCKET_DIR, 318, 441
DaemonCommands (class in htcondor), 657
daemoncore, 425, 427
DaemonCore (htcondor.LogLevel attribute), 656
DaemonCore configuration variables

configuration, 223
DaemonCore statistics attributes

ClassAd, 1000
DaemonCoreDutyCycle (Scheduler ClassAd Attribute),

984
DaemonLastReconfigTime (ClassAd Attribute), 984
DaemonLastReconfigTime (Collector ClassAd At-

tribute), 998
DaemonLastReconfigTime (Defrag ClassAd Attribute),

996
DaemonLastReconfigTime (Negotiator ClassAd At-

tribute), 993
DaemonLastReconfigTime (Scheduler ClassAd At-

tribute), 985
DaemonMaster (ClassAd Types), 945
DaemonMaster attributes

ClassAd, 984
DaemonOff (htcondor.DaemonCommands attribute), 657
DaemonOffFast (htcondor.DaemonCommands at-

tribute), 657
DaemonOffPeaceful (htcondor.DaemonCommands at-

tribute), 657
DaemonOn (htcondor.DaemonCommands attribute), 657
DaemonsOff (htcondor.DaemonCommands attribute),

657
DaemonsOffFast (htcondor.DaemonCommands at-

tribute), 657
DaemonsOffPeaceful (htcondor.DaemonCommands at-

tribute), 657
DaemonsOn (htcondor.DaemonCommands attribute), 657

Index 1027

HTCondor Manual, Release 10.0.9

DaemonStartTime (ClassAd Attribute), 984
DaemonStartTime (Collector ClassAd Attribute), 998
DaemonStartTime (Defrag ClassAd Attribute), 996
DaemonStartTime (Negotiator ClassAd Attribute), 993
DaemonStartTime (Scheduler ClassAd Attribute), 985
DaemonTypes (class in htcondor), 631
DAG (class in htcondor.dags), 665
DAG INCLUDE command

DAGMan, 103
DAG input file

DAGMan, 78
DAG monitoring

DAGMan, 90
DAG recovery

DAGMan, 127
DAG removal

DAGMan, 90
DAG status in a job ClassAd

DAGMan, 132
DAG submission

DAGMan, 87
DAG_InRecovery (Job ClassAd Attribute), 969
DAG_JobsCompleted (Job ClassAd Attribute), 970
DAG_JobsHeld (Job ClassAd Attribute), 970
DAG_JobsIdle (Job ClassAd Attribute), 970
DAG_JobsRunning (Job ClassAd Attribute), 970
DAG_JobsSubmitted (Job ClassAd Attribute), 969
DAG_NodesDone (Job ClassAd Attribute), 969
DAG_NodesFailed (Job ClassAd Attribute), 969
DAG_NodesPostrun (Job ClassAd Attribute), 969
DAG_NodesPrerun (Job ClassAd Attribute), 969
DAG_NodesQueued (Job ClassAd Attribute), 969
DAG_NodesReady (Job ClassAd Attribute), 969
DAG_NodesTotal (Job ClassAd Attribute), 969
DAG_NodesUnready (Job ClassAd Attribute), 969
DAG_Status (Job ClassAd Attribute), 969
DAGAbortCondition (class in htcondor.dags), 674
DAGMan, 77, 138
Dagman (htcondor.SubsystemType attribute), 658
DAGMan configuration variables

configuration, 297
DAGMan configuration: debug output, 304
DAGMan configuration: general, 297
DAGMan configuration: HTCondor attributes,

305
DAGMan configuration: log files, 302
DAGMan configuration: priority, node

semantics, 299
DAGMan configuration: rescue/retry, 301
DAGMan configuration: submission/removal,

300
DAGMan configuration: throttling, 299
DAGMAN_ABORT_DUPLICATES, 298
DAGMAN_ABORT_ON_SCARY_SUBMIT, 301

DAGMAN_ALLOW_ANY_NODE_NAME_CHARACTERS, 303
DAGMAN_ALLOW_EVENTS, 303
DAGMAN_ALWAYS_RUN_POST, 299
DAGMAN_ALWAYS_USE_NODE_LOG, 303, 442
DAGMAN_AUTO_RESCUE, 301
DAGMAN_CONDOR_RM_EXE, 301
DAGMAN_CONDOR_SUBMIT_EXE, 301
DAGMAN_CONFIG_FILE, 297
DAGMAN_COPY_TO_SPOOL, 305
DAGMAN_DEBUG, 304
DAGMAN_DEBUG_CACHE_ENABLE, 304
DAGMAN_DEBUG_CACHE_SIZE, 304
DAGMAN_DEFAULT_APPEND_VARS, 298
DAGMAN_DEFAULT_NODE_LOG, 302, 303, 442
DAGMAN_DEFAULT_PRIORITY, 299
DAGMAN_GENERATE_SUBDAG_SUBMITS, 300
DAGMAN_HOLD_CLAIM_TIME, 102, 300
DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION, 303
DAGMAN_INSERT_SUB_FILE, 305
dagman_log

submit commands, 881
DAGMAN_LOG_ON_NFS_IS_ERROR, 303
DAGMAN_MAX_JOB_HOLDS, 300
DAGMAN_MAX_JOBS_IDLE, 88, 299, 300, 770, 894
DAGMAN_MAX_JOBS_SUBMITTED, 88, 299, 770, 894
DAGMAN_MAX_POST_SCRIPTS, 88, 299, 770, 894
DAGMAN_MAX_PRE_SCRIPTS, 88, 299, 770, 894
DAGMAN_MAX_RESCUE_NUM, 125, 301
DAGMAN_MAX_SUBMIT_ATTEMPTS, 300
DAGMAN_MAX_SUBMITS_PER_INTERVAL, 300
DAGMAN_MUNGE_NODE_NAMES, 103, 301
DAGMAN_OLD_RESCUE, 302
DAGMAN_ON_EXIT_REMOVE, 305
DAGMAN_PENDING_REPORT_INTERVAL, 304, 442
DAGMAN_PROHIBIT_MULTI_JOBS, 300
DAGMAN_PUT_FAILED_JOBS_ON_HOLD, 298
DAGMAN_REMOVE_JOBS_AFTER_LIMIT_CHANGE, 299
DAGMAN_REMOVE_NODE_JOBS, 300
DAGMAN_RESET_RETRIES_UPON_RESCUE, 126, 301
DAGMAN_RETRY_NODE_FIRST, 299, 302
DAGMAN_RETRY_SUBMIT_FIRST, 302
DAGMAN_STARTUP_CYCLE_DETECT, 122, 298
DAGMAN_SUBMIT_DELAY, 300
DAGMAN_SUBMIT_DEPTH_FIRST, 299
DAGMAN_SUPPRESS_JOB_LOGS, 301
DAGMAN_SUPPRESS_NOTIFICATION, 301, 771, 893, 896,

897
DAGMAN_USE_DIRECT_SUBMIT, 298
DAGMAN_USE_JOIN_NODES, 298
DAGMAN_USE_OLD_DAG_READER, 298
DAGMAN_USE_SHARED_PORT, 298
DAGMAN_USE_STRICT, 126, 297
DAGMAN_USER_LOG_SCAN_INTERVAL, 129, 300
DAGMAN_VERBOSITY, 304, 442

1028 Index

HTCondor Manual, Release 10.0.9

DAGMAN_WRITE_PARTIAL_RESCUE, 126, 127, 301
DAGManJobId (Job ClassAd Attribute), 949
DAGManNodesLog (Job ClassAd Attribute), 950
DAGManNodesMask (Job ClassAd Attribute), 950
DAGParentNodeNames

ClassAd job attribute, 85
DAGParentNodeNames (Job ClassAd Attribute), 949
DAGs within DAGs

DAGMan, 105
DATA command

DAG input file, 80
DC_DAEMON_LIST, 233
DCUdpQueueDepth (ClassAd Attribute), 1000
DEAD_COLLECTOR_MAX_AVOIDANCE_TIME, 213
debug()

ClassAd functions, 510
DEBUG_TIME_FORMAT, 219
DebugOuts (ClassAd Attribute), 1000
dedicated

scheduling, 151
dedicated scheduling, 465
DEDICATED_EXECUTE_ACCOUNT_REGEXP, 232, 412, 474
DEDICATED_SCHEDULER_USE_FIFO, 263
DEDICATED_SCHEDULER_WAIT_FOR_SPOOLER, 263
DedicatedScheduler, 243, 466
Default (htcondor.QueryOpts attribute), 638
default policy

HTCondor, 354
default with HTCondor

policy, 354
DEFAULT_DOMAIN_NAME, 212, 420
DEFAULT_DRAINING_START_EXPR, 238
DEFAULT_IO_BUFFER_BLOCK_SIZE, 276
DEFAULT_IO_BUFFER_SIZE, 276
DEFAULT_JOB_MAX_RETRIES, 275
DEFAULT_MASTER_SHUTDOWN_SCRIPT, 235, 567
DEFAULT_PRIO_FACTOR, 283, 329
DEFAULT_RANK, 276
DEFAULT_RANK_VANILLA, 276
DEFAULT_UNIVERSE, 275, 858
DEFAULT_USERLOG_FORMAT_OPTIONS, 223
DefaultMyJobsOnly (htcondor.QueryOpts attribute),

638
deferral_prep_time

submit commands, 170–172, 881
deferral_time

submit commands, 169, 170, 881
deferral_window

submit commands, 170, 173, 881
DeferralPrepTime

ClassAd job attribute, 170
DeferralPrepTime (Job ClassAd Attribute), 950
DeferralTime

ClassAd job attribute, 169

DeferralTime (Job ClassAd Attribute), 950
DeferralWindow

ClassAd job attribute, 170
DeferralWindow (Job ClassAd Attribute), 950
defined for a DAGMan node job

job ID, 83
Defining HTCondor policy

Backfill, 469
Defrag (ClassAd Types), 945
Defrag (htcondor.AdTypes attribute), 632
Defrag attributes

ClassAd, 995
DEFRAG_CANCEL_REQUIREMENTS, 326
DEFRAG_DRAINING_MACHINES_PER_HOUR, 325
DEFRAG_DRAINING_START_EXPR, 325, 373
DEFRAG_INTERVAL, 325, 326
DEFRAG_LOG, 327
DEFRAG_MAX_CONCURRENT_DRAINING, 326
DEFRAG_MAX_WHOLE_MACHINES, 326
DEFRAG_NAME, 325, 996
DEFRAG_RANK, 326
DEFRAG_REQUIREMENTS, 325
DEFRAG_SCHEDULE, 326
DEFRAG_STATE_FILE, 327
DEFRAG_UPDATE_INTERVAL, 326
DEFRAG_WHOLE_MACHINE_EXPR, 326
DELEGATE_FULL_JOB_GSI_CREDENTIALS, 306
DELEGATE_JOB_GSI_CREDENTIALS, 306, 873, 950
DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME, 269,

306, 873, 950
delegate_job_GSI_credentials_lifetime

submit commands, 306, 873
DELEGATE_JOB_GSI_CREDENTIALS_REFRESH, 269, 306
DelegateJobGSICredentialsLifetime (Job ClassAd

Attribute), 950
Delete_ATTR>

Job Router Routing Table ClassAd
attribute, 551

delete_password() (htcondor.Credd method), 646
delete_user_cred() (htcondor.Credd method), 646
delete_user_service_cred() (htcondor.Credd

method), 647
deleteUser() (htcondor.Negotiator method), 644
DENY, 223
DENY_ADMINISTRATOR, 400
DENY_ADVERTISE_MASTER, 400
DENY_ADVERTISE_SCHEDD, 400
DENY_ADVERTISE_STARTD, 400
DENY_CLIENT, 400
DENY_CONFIG, 400
DENY_DAEMON, 400
DENY_NEGOTIATOR, 400
DENY_READ, 400
DENY_WRITE, 400

Index 1029

HTCondor Manual, Release 10.0.9

dependencies within
job, 77

DEPTH_FIRST (htcondor.dags.WalkOrder attribute), 667
describe() (htcondor.dags.DAG method), 666
describing dependencies

DAGMan, 80
description

submit commands, 881, 959
descriptions

daemon, 182
HTCondor daemon, 182

desktop/non-desktop
policy, 357
preemption, 357

detach() (htcondor.personal.PersonalPool method), 677
DETECTED_CORES, 200
DETECTED_CPUS, 200
DETECTED_CPUS_LIMIT, 200, 242
DETECTED_MEMORY, 200, 243, 971
DETECTED_PHYSICAL_CPUS, 200
DetectedCpus (Machine ClassAd Attribute), 971
DetectedCpus (Scheduler ClassAd Attribute), 985
DetectedMemory (Machine ClassAd Attribute), 971
DetectedMemory (Scheduler ClassAd Attribute), 985
DeviceGPUsAverageUsage

machine attribute, 445
DeviceGPUsMemoryPeakUsage

machine attribute, 446
difference between Rescue DAG and DAG

recovery
DAGMan, 127

dir, 296
directed acyclic graph (DAG), 77
Directed Acyclic Graph Manager (DAGMan), 77
directQuery() (htcondor.Collector method), 630
DISABLE_SETUID, 270
DISABLE_SWAP_FOR_JOB, 272
disabling and enabling

preemption, 358
disabling preemption

policy, 358
DISCARD_SESSION_KEYRING_ON_STARTUP, 238
disconnect() (htcondor.htchirp.HTChirp method), 660
DISCONNECTED_KEYBOARD_IDLE_BOOST, 246, 364
DISK, 211
Disk (Machine ClassAd Attribute), 971
DISK usage, 371
DiskProvisioned (Job ClassAd Attribute), 970
DiskUsage (Job ClassAd Attribute), 950
dividing resources in multi-core machines,

360
DOCKER, 252, 484
docker

networking, 162

universe, 145, 161, 483
Docker and Networking, 162
docker universe, 145, 161, 162
DOCKER_DROP_ALL_CAPABILITIES, 252, 484
DOCKER_EXTRA_ARGUMENTS, 252, 484
docker_image

submit commands, 161, 483, 879
DOCKER_IMAGE_CACHE_SIZE, 252, 484
docker_network_type

submit commands, 879
DOCKER_NETWORKS, 252
DOCKER_PERFORM_TEST, 252
DOCKER_RUN_UNDER_INIT, 252
DOCKER_SHM_SIZE, 252
DOCKER_VOLUME_DIR_xxx_MOUNT_IF, 483
DOCKER_VOLUMES, 252
DockerImage (Job ClassAd Attribute), 951
done() (htcondor.QueryIterator method), 639
done() (htcondor.TokenRequest method), 649
dont_encrypt_input_files

submit commands, 862
dont_encrypt_output_files

submit commands, 862
DOT command

DAG input file, 128
DOT_NET_VERSIONS, 250
DotConfig (class in htcondor.dags), 675
DotNetVersions (Machine ClassAd Attribute), 971
Drained

machine activity, 345
machine state, 341, 353

drained state, 341, 353
DrainedMachines (Defrag ClassAd Attribute), 996
DrainFailures (Defrag ClassAd Attribute), 996
Draining (Machine ClassAd Attribute), 971
DrainingRequestId (Machine ClassAd Attribute), 971
drainJobs() (htcondor.Startd method), 645
DrainSuccesses (Defrag ClassAd Attribute), 996
DrainTypes (class in htcondor), 646
DroppedQueries (Collector ClassAd Attribute), 997
dynamic, 368

slots, 368
dynamic slots, 368
DYNAMIC_RUN_ACCOUNT_LOCAL_GROUP, 274, 692
DynamicSlot (Machine ClassAd Attribute), 971

E
e-mail in DAGs

notification, 893
e-mail related to a job

notification, 857
ec2

grid type, 537
EC2 GAHP Statistics

1030 Index

HTCondor Manual, Release 10.0.9

NumDistinctRequests, 540
NumExpiredSignatures, 540
NumRequests, 540
NumRequestsExceedingLimit, 540

EC2 grid jobs, 537
ec2_access_key_id

submit commands, 537, 873, 951
ec2_ami_id

submit commands, 537, 873, 951
ec2_availability_zone

submit commands, 873
ec2_block_device_mapping

submit commands, 538, 873, 951
ec2_ebs_volumes

submit commands, 873
ec2_elastic_ip

submit commands, 873, 951
EC2_GAHP, 292
EC2_GAHP_RATE_LIMIT, 292
ec2_iam_profile_arn

submit commands, 538, 873, 951
ec2_iam_profile_name

submit commands, 538, 874, 951
ec2_instance_type

submit commands, 538, 874, 951
ec2_keypair

submit commands, 874, 951
ec2_keypair_file

submit commands, 538, 837, 874, 951
ec2_parameter_name

submit commands, 874
ec2_parameter_names

submit commands, 539, 874, 951
EC2_RESOURCE_TIMEOUT, 292, 539
ec2_secret_access_key

submit commands, 537, 874, 951
ec2_security_groups

submit commands, 538, 874, 951
ec2_security_ids

submit commands, 538, 874, 951
ec2_spot_price

submit commands, 539, 874, 951
ec2_tag_name

submit commands, 874
ec2_tag_names

submit commands, 874, 951
ec2_user_data

submit commands, 538, 875, 952
ec2_user_data_file

submit commands, 538, 875, 952
ec2_vpc_id

submit commands, 538
ec2_vpc_ip

submit commands, 875

ec2_vpc_subnet
submit commands, 538, 875

EC2AccessKeyId (Job ClassAd Attribute), 951
EC2AmiID (Job ClassAd Attribute), 951
EC2BlockDeviceMapping (Job ClassAd Attribute), 951
EC2ElasticIp (Job ClassAd Attribute), 951
EC2IamProfileArn (Job ClassAd Attribute), 951
EC2IamProfileName (Job ClassAd Attribute), 951
EC2InstanceName (Job ClassAd Attribute), 951
EC2InstanceType (Job ClassAd Attribute), 951
EC2KeyPair (Job ClassAd Attribute), 951
EC2KeyPairFile (Job ClassAd Attribute), 951
EC2ParameterNames (Job ClassAd Attribute), 951
EC2RemoteVirtualMachineName (Job ClassAd At-

tribute), 951
EC2SecretAccessKey (Job ClassAd Attribute), 951
EC2SecurityGroups (Job ClassAd Attribute), 951
EC2SecurityIDs (Job ClassAd Attribute), 951
EC2SpotPrice (Job ClassAd Attribute), 951
EC2SpotRequestID (Job ClassAd Attribute), 951
EC2StatusReasonCode (Job ClassAd Attribute), 951
EC2TagNames (Job ClassAd Attribute), 951
EC2UserData (Job ClassAd Attribute), 952
EC2UserDataFile (Job ClassAd Attribute), 952
ECRYPTFS_ADD_PASSPHRASE, 307
edges (htcondor.dags.DAG property), 666
edit() (htcondor.Schedd method), 634
editing a running DAG

DAGMan, 90
EditJobInPlace

Job Router Routing Table ClassAd
attribute, 548

effective
UID, 409

effective (EUP)
user priority, 329

effective user priority (EUP), 329
Elasticsearch, 446
email_attributes

submit commands, 881
EMAIL_DOMAIN, 212
EMAIL_SIGNATURE, 210
EmailAttributes (Job ClassAd Attribute), 952
ENABLE_BACKFILL, 245, 469
ENABLE_CHIRP, 273
ENABLE_CHIRP_DELAYED, 273
ENABLE_CHIRP_IO, 273
ENABLE_CHIRP_UPDATES, 273
ENABLE_CLASSAD_CACHING, 214
enable_debug() (in module htcondor), 656
ENABLE_DEPRECATION_WARNINGS, 277
ENABLE_HISTORY_ROTATION, 211, 441
ENABLE_HTTP_PUBLIC_FILES, 459
ENABLE_IPV4, 216, 423

Index 1031

HTCondor Manual, Release 10.0.9

ENABLE_IPV6, 216, 423
ENABLE_KERNEL_TUNING, 238
enable_log() (in module htcondor), 656
ENABLE_PERSISTENT_CONFIG, 224, 764
ENABLE_RUNTIME_CONFIG, 223
ENABLE_SSH_TO_JOB, 316
ENABLE_URL_TRANSFERS, 273
ENABLE_USERLOG_FSYNC, 219
ENABLE_USERLOG_LOCKING, 219
enabling preemption

policy, 358
ENCRYPT_EXECUTE_DIRECTORY, 307, 380
encrypt_execute_directory

submit commands, 307, 862, 952
ENCRYPT_EXECUTE_DIRECTORY_FILENAMES, 307
encrypt_input_files

submit commands, 862
encrypt_output_files

submit commands, 862
EncryptExecuteDirectory (Job ClassAd Attribute),

952
encryption

security, 397
ENFORCE_CPU_AFFINITY, 272
EnteredCurrentActivity (Machine ClassAd At-

tribute), 972
EnteredCurrentStatus (Job ClassAd Attribute), 952
entering a low power state

power management, 488
Env

optional attributes, 430
Env (Job ClassAd Attribute), 952
environment

submit commands, 74, 151, 820, 854, 855
Environment (Job ClassAd Attribute), 952
environment variables, 74
ENVIRONMENT_FOR_Assigned<name>, 248
ENVIRONMENT_VALUE_FOR_UnAssigned<name>, 248
envV1ToV2()

ClassAd functions, 511
erase_output_and_error_on_restart

submit commands, 862
EraseOutputAndErrorOnRestart (Job ClassAd At-

tribute), 952
Err

optional attributes, 430
error

submit commands, 56, 59, 68, 157, 818, 855, 858,
864, 876

Error (classad.Value attribute), 626
Error (htcondor.LogLevel attribute), 656
Error and warning configuration syntax, 194
Error and warning syntax

configuration, 194

eval()
ClassAd functions, 359, 502

eval() (classad.ClassAd method), 623
eval() (classad.ExprTree method), 625
Eval_Set_ATTR>

Job Router Routing Table ClassAd
attribute, 551

evalInEachContext()
ClassAd functions, 510

evaluation order
configuration file, 187

event codes for jobs
log files, 1004

event log file
job, 69

Event Log Reader API, 679
EVENT_LOG, 222, 441
EVENT_LOG_COUNT_EVENTS, 223
EVENT_LOG_FORMAT_OPTIONS, 223
EVENT_LOG_FSYNC, 222, 441
EVENT_LOG_JOB_AD_INFORMATION_ATTRS, 223, 441,

1006
EVENT_LOG_LOCKING, 223, 441
EVENT_LOG_MAX_ROTATIONS, 222, 441
EVENT_LOG_MAX_SIZE, 222, 441
EVENT_LOG_ROTATION_LOCK, 222, 441
EVENT_LOG_USE_XML, 223, 441
events() (htcondor.JobEventLog method), 652
Evict a claim

Fetch Hooks, 431
EVICT_BACKFILL, 246, 354, 469
example

configuration, 340
example submit description file

DAGMan, 85
examples

rank attribute, 44, 517
submit description file, 33, 35

EXEC_TRANSFER_ATTEMPTS, 270
Executable

submit commands, 963
executable

submit commands, 49, 53, 146, 147, 151, 155, 157,
161, 213, 537, 541, 542, 852, 855, 864

EXECUTABLE_ERROR (htcondor.JobEventType attribute),
653

ExecutableSize (Job ClassAd Attribute), 952
EXECUTE, 208, 209, 971
execute

machine, 181
EXECUTE (htcondor.JobEventType attribute), 653
execute machine, 181
EXECUTE_LOGIN_IS_DEDICATED, 232
execution environment, 73

1032 Index

HTCondor Manual, Release 10.0.9

ExitBySignal (Job ClassAd Attribute), 952
ExitCode (Job ClassAd Attribute), 952
ExitSignal (Job ClassAd Attribute), 952
ExitStatus (Job ClassAd Attribute), 952
expand() (htcondor.Submit method), 641
ExpectedMachineGracefulDrainingBadput (Ma-

chine ClassAd Attribute), 972
ExpectedMachineGracefulDrainingCompletion

(Machine ClassAd Attribute), 972
ExpectedMachineQuickDrainingBadput (Machine

ClassAd Attribute), 972
ExpectedMachineQuickDrainingCompletion (Ma-

chine ClassAd Attribute), 972
EXPIRE_INVALIDATED_ADS, 282, 445
export_jobs() (htcondor.Schedd method), 636
expression examples

ClassAd, 515
expression functions

ClassAd, 502
expression operators

ClassAd, 502, 514
expression syntax of Old ClassAds

ClassAd, 501
ExprTree (class in classad), 624
EXTENDED_SUBMIT_COMMANDS, 265
EXTENDED_SUBMIT_HELPFILE, 266
externalRefs() (classad.ClassAd method), 623

F
FACTORY_PAUSED (htcondor.JobEventType attribute),

654
FACTORY_RESUMED (htcondor.JobEventType attribute),

654
FailureRateThreshold

Job Router Routing Table ClassAd
attribute, 547

Fast (htcondor.DrainTypes attribute), 646
Fast (htcondor.VacateTypes attribute), 646
Fetch work

Fetch Hooks, 428
fetch() (htcondor.htchirp.HTChirp method), 660
FetchWorkDelay, 320, 428, 434

Job hooks, 434
file, 296
file paths in DAGs

DAGMan, 89
file transfer mechanism, 52
FILE_COMPLETE (htcondor.JobEventType attribute), 654
FILE_LOCK_VIA_MUTEX, 218, 440
FILE_REMOVED (htcondor.JobEventType attribute), 654
FILE_TRANSFER (htcondor.JobEventType attribute), 654
FILE_TRANSFER_DISK_LOAD_THROTTLE, 255, 991
FILE_TRANSFER_DISK_LOAD_THROTTLE_LONG_HORIZON,

256

FILE_TRANSFER_DISK_LOAD_THROTTLE_SHORT_HORIZON,
256

FILE_TRANSFER_DISK_LOAD_THROTTLE_WAIT_BETWEEN_INCREMENTS,
255

FILE_USED (htcondor.JobEventType attribute), 654
FILESYSTEM_DOMAIN, 200, 232
FileSystemDomain (Machine ClassAd Attribute), 972
FILETRANSFER_PLUGINS, 273, 972
FileTransferDiskThrottleExcess_<timespan>

(Scheduler ClassAd Attribute), 990
FileTransferDiskThrottleHigh (Scheduler ClassAd

Attribute), 991
FileTransferDiskThrottleLevel (Scheduler Clas-

sAd Attribute), 991
FileTransferDiskThrottleLow (Scheduler ClassAd

Attribute), 991
FileTransferDiskThrottleShortfall_<timespan>

(Scheduler ClassAd Attribute), 991
FileTransferDownloadBytes (Scheduler ClassAd At-

tribute), 991
FileTransferDownloadBytesPerSecond_<timespan>

(Scheduler ClassAd Attribute), 991
FileTransferEventType (class in htcondor), 654
FileTransferFileReadLoad_<timespan> (Scheduler

ClassAd Attribute), 991
FileTransferFileReadSeconds (Scheduler ClassAd

Attribute), 991
FileTransferFileWriteLoad_<timespan> (Sched-

uler ClassAd Attribute), 991
FileTransferFileWriteSeconds (Scheduler ClassAd

Attribute), 991
FileTransferNetReadLoad_<timespan> (Scheduler

ClassAd Attribute), 992
FileTransferNetReadSeconds (Scheduler ClassAd

Attribute), 992
FileTransferNetWriteLoad_<timespan> (Scheduler

ClassAd Attribute), 992
FileTransferNetWriteSeconds (Scheduler ClassAd

Attribute), 992
FileTransferUploadBytes (Scheduler ClassAd At-

tribute), 992
FileTransferUploadBytesPerSecond_<timespan>

(Scheduler ClassAd Attribute), 992
FINAL command

DAG input file, 122
FINAL node

DAGMan, 122
final() (htcondor.dags.DAG method), 666
FinalNode (class in htcondor.dags), 671
find_rescue_file() (in module htcondor.dags), 676
firewalls

port usage, 416
first_proc() (htcondor.SubmitResult method), 643
flatten() (classad.ClassAd method), 623

Index 1033

HTCondor Manual, Release 10.0.9

FLOCK_COLLECTOR_HOSTS, 260, 530
FLOCK_FROM, 530
FLOCK_INCREMENT, 260
FLOCK_NEGOTIATOR_HOSTS, 260, 530
FLOCK_TO, 530
FlockedJobs (Submitter ClassAd Attribute), 995
flocking, 530

HTCondor, 530
floor()

ClassAd functions, 505
for flocking

configuration, 530
for security

authorization, 400
for the docker universe

installation, 483
for the vm universe

installation, 481
formatTime()

ClassAd functions, 509
from_dag() (htcondor.Submit static method), 642
FS_REMOTE_DIR, 307, 395
ftl

vm universe, 160
FULL_HOSTNAME, 198
FullDebug (htcondor.LogLevel attribute), 656
function macros

configuration, 196
submit description file, 41

Function() (in module classad), 627

G
GAHP (Grid ASCII Helper Protocol), 532
GAHP (htcondor.SubsystemType attribute), 658
GAHP_DEBUG_HIDE_SENSITIVE_DATA, 292
GAHP_SSL_CADIR, 292, 540
GAHP_SSL_CAFILE, 292, 540
GahpCommandRuntime (Grid ClassAd Attribute), 997
GahpCommandsInFlight (Grid ClassAd Attribute), 997
GahpCommandsIssued (Grid ClassAd Attribute), 997
GahpCommandsQueued (Grid ClassAd Attribute), 997
GahpCommandsTimedOut (Grid ClassAd Attribute), 997
GahpPid (Grid ClassAd Attribute), 997
Ganglia monitoring, 442
GANGLIA_CONFIG, 327
GANGLIA_GMETRIC, 327, 328
GANGLIA_GSTAT_COMMAND, 327, 442
GANGLIA_LIB, 328
GANGLIA_LIB64_PATH, 328
GANGLIA_LIB_PATH, 328
GANGLIA_SEND_DATA_FOR_ALL_HOSTS, 328, 443
GANGLIA_VERBOSITY, 443
GANGLIAD_DEFAULT_CLUSTER, 328, 443
GANGLIAD_DEFAULT_IP, 328, 444

GANGLIAD_DEFAULT_MACHINE, 328, 444
GANGLIAD_INTERVAL, 327
GANGLIAD_LOG, 328
GANGLIAD_METRICS_CONFIG_DIR, 328, 443
GANGLIAD_PER_EXECUTE_NODE_METRICS, 327, 443
GANGLIAD_REQUIREMENTS, 327, 443
GANGLIAD_VERBOSITY, 327
gce

grid type, 541
GCE grid jobs, 541
gce_account

submit commands, 875
gce_auth_file

submit commands, 541, 875, 952
GCE_GAHP, 293
gce_image

submit commands, 541, 875, 952
gce_json_file

submit commands, 541, 875, 952
gce_machine_type

submit commands, 541, 875, 952
gce_metadata

submit commands, 541, 875, 952
gce_metadata_file

submit commands, 541, 875, 953
gce_preemptible

submit commands, 876, 953
GceAuthFile (Job ClassAd Attribute), 952
GceImage (Job ClassAd Attribute), 952
GceJsonFile (Job ClassAd Attribute), 952
GceMachineType (Job ClassAd Attribute), 952
GceMetadata (Job ClassAd Attribute), 952
GceMetadataFile (Job ClassAd Attribute), 953
GcePreemptible (Job ClassAd Attribute), 953
generate() (htcondor.dags.NodeNameFormatter

method), 675
Generic (htcondor.AdTypes attribute), 632
Generic (htcondor.DaemonTypes attribute), 631
GENERIC (htcondor.JobEventType attribute), 653
get() (htcondor.JobEvent method), 653
get_config_val() (htcondor.personal.PersonalPool

method), 677
get_edges() (htcondor.dags.BaseEdge method), 673
get_htcondor

HTCondor commands, 939
get_htcondor command, 939
get_job_attr() (htcondor.htchirp.HTChirp method),

660
get_job_attr_delayed() (htcondor.htchirp.HTChirp

method), 661
getCommandString() (htcondor.SecMan method), 648
getdir() (htcondor.htchirp.HTChirp method), 663
getenv

submit commands, 74, 855, 856

1034 Index

HTCondor Manual, Release 10.0.9

getfile() (htcondor.htchirp.HTChirp method), 662
getlongdir() (htcondor.htchirp.HTChirp method), 663
getPriorities() (htcondor.Negotiator method), 644
getQArgs() (htcondor.Submit method), 642
getResourceUsage() (htcondor.Negotiator method),

644
getSubmitMethod() (htcondor.Submit method), 643
gidd_alloc

HTCondor commands, 941
gidd_alloc command, 941
glob() (htcondor.dags.DAG method), 666
GlobalJobId (Job ClassAd Attribute), 953
GLOBUS_RESOURCE_DOWN (htcondor.JobEventType

attribute), 654
GLOBUS_RESOURCE_UP (htcondor.JobEventType at-

tribute), 654
GLOBUS_SUBMIT (htcondor.JobEventType attribute), 654
GLOBUS_SUBMIT_FAILED (htcondor.JobEventType

attribute), 654
Google Compute Engine, 541
GPU monitoring, 445
GPUsMemoryUsage

ClassAd job attribute, 71
GPUsUsage

ClassAd job attribute, 71
Graceful (htcondor.DrainTypes attribute), 646
Graceful (htcondor.VacateTypes attribute), 646
GRACEFULLY_REMOVE_JOBS, 262
green computing, 488, 491
Grid

universe, 143
grid

universe, 532
Grid (ClassAd Types), 945
Grid (htcondor.AdTypes attribute), 632
grid = 9

job ClassAd attribute definitions, 960
Grid attributes

ClassAd, 997
grid_resource

submit commands, 529, 532–535, 537, 541, 542,
859, 876, 953

GRID_RESOURCE_DOWN (htcondor.JobEventType at-
tribute), 654

GRID_RESOURCE_UP (htcondor.JobEventType attribute),
654

GRID_SUBMIT (htcondor.JobEventType attribute), 654
GridJobStatus (Job ClassAd Attribute), 953
GRIDMANAGER_CHECKPROXY_INTERVAL, 290
GRIDMANAGER_CONNECT_FAILURE_RETRY_COUNT, 292
GRIDMANAGER_CONTACT_SCHEDD_DELAY, 291
GRIDMANAGER_EMPTY_RESOURCE_DELAY, 291
GRIDMANAGER_GAHP_CALL_TIMEOUT, 292
GRIDMANAGER_GAHP_RESPONSE_TIMEOUT, 292

GRIDMANAGER_JOB_PROBE_INTERVAL, 291
GRIDMANAGER_JOB_PROBE_RATE, 291
GRIDMANAGER_LOG, 290
GRIDMANAGER_LOG_APPEND_SELECTION_EXPR, 291
GRIDMANAGER_MAX_PENDING_REQUESTS, 292
GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE,

291
GRIDMANAGER_MINIMUM_PROXY_TIME, 290
GRIDMANAGER_PROXY_REFRESH_TIME, 290
GRIDMANAGER_RESOURCE_PROBE_INTERVAL, 291, 539
GRIDMANAGER_SELECTION_EXPR, 291
GridResource

Job Router Routing Table ClassAd
attribute, 547

GridResource (Job ClassAd Attribute), 953
GridResourceUnavailableTime (Grid ClassAd At-

tribute), 997
GridResourceUnavailableTime (Job ClassAd At-

tribute), 953
group quotas, 338
GROUP_ACCEPT_SURPLUS, 288, 336
GROUP_ACCEPT_SURPLUS_<groupname>, 288
GROUP_AUTOREGROUP, 288, 966, 981
GROUP_AUTOREGROUP_<groupname>, 288
GROUP_DYNAMIC_MACH_CONSTRAINT, 285
GROUP_NAMES, 287
GROUP_PRIO_FACTOR_<groupname>, 287
GROUP_QUOTA_<groupname>, 287
GROUP_QUOTA_DYNAMIC_<groupname>, 287
GROUP_QUOTA_MAX_ALLOCATION_ROUNDS, 288, 994
GROUP_QUOTA_ROUND_ROBIN_RATE, 288
GROUP_SORT_EXPR, 288, 337
GroupBy (htcondor.QueryOpts attribute), 638
Grouper (class in htcondor.dags), 673
groupname, 336
gs_access_key_id_file

submit commands, 867
gs_secret_access_key_file

submit commands, 867

H
HA_<SUBSYS>_LOCK_HOLD_TIME, 314
HA_<SUBSYS>_LOCK_URL, 313
HA_<SUBSYS>_POLL_PERIOD, 314
HA_LOCK_HOLD_TIME, 313
HA_LOCK_URL, 313
HA_POLL_PERIOD, 314
HAD, 315
HAD (htcondor.AdTypes attribute), 632
HAD (htcondor.DaemonTypes attribute), 631
HAD_ARGS, 314
HAD_CONNECTION_TIMEOUT, 314
HAD_CONTROLLEE, 314
HAD_DEBUG, 315

Index 1035

HTCondor Manual, Release 10.0.9

HAD_FIPS_MODE, 315
HAD_LIST, 314
HAD_LOG, 315
HAD_UPDATE_INTERVAL, 315
HAD_USE_PRIMARY, 314
HAD_USE_REPLICATION, 315, 451
HANDLE_QUERY_IN_PROC_POLICY, 281
HandleLocate (Collector ClassAd Attribute), 998
HandleLocateForked (Collector ClassAd Attribute),

998
HandleLocateForkedRuntimeAvg (Collector ClassAd

Attribute), 998
HandleLocateMissedFork (Collector ClassAd At-

tribute), 998
HandleLocateMissedForkRuntimeAvg (Collector

ClassAd Attribute), 998
HandleLocateRuntimeAvg (Collector ClassAd At-

tribute), 998
HandleQuery (Collector ClassAd Attribute), 998
HandleQueryForked (Collector ClassAd Attribute), 998
HandleQueryForkedRuntimeAvg (Collector ClassAd

Attribute), 998
HandleQueryMissedFork (Collector ClassAd At-

tribute), 998
HandleQueryMissedForkRuntimeAvg (Collector Clas-

sAd Attribute), 998
HandleQueryRuntimeAvg (Collector ClassAd At-

tribute), 998
has_avx (Machine ClassAd Attribute), 972
has_avx2 (Machine ClassAd Attribute), 972
has_avx512dnni (Machine ClassAd Attribute), 972
has_avx512dq (Machine ClassAd Attribute), 972
has_avx512f (Machine ClassAd Attribute), 972
Has_sse4_1 (Machine ClassAd Attribute), 972
Has_sse4_2 (Machine ClassAd Attribute), 972
has_ssse3 (Machine ClassAd Attribute), 972
HasDocker

ClassAd machine attribute, 483
HasDocker (Machine ClassAd Attribute), 972
HasEncryptExecuteDirectory (Machine ClassAd At-

tribute), 972
HasFileTransfer (Machine ClassAd Attribute), 972
HasFileTransferPluginMethods (Machine ClassAd

Attribute), 972
HasSelfCheckpointTransfers (Machine ClassAd At-

tribute), 972
HasSingularity (Machine ClassAd Attribute), 972
HasUserNamespaces (Machine ClassAd Attribute), 972
HasVM (Machine ClassAd Attribute), 973
HELD (htcondor.JobStatus attribute), 639
HeldJobs (Submitter ClassAd Attribute), 995
heterogeneous submit

job, 176
HIBERNATE, 250, 488

HIBERNATE_CHECK_INTERVAL, 250, 488
HIBERNATION_OVERRIDE_WOL, 251
HIBERNATION_PLUGIN, 251
HIBERNATION_PLUGIN_ARGS, 251
hierarchical group quotas, 335
hierarchical quotas for a group

quotas, 335
High Availability, 447
high availability configuration variables

configuration, 313
High-Performance Computing (HPC), 19
High-Throughput Computing (HTC), 19
HIGHPORT, 229, 416
HISTORY, 211
history() (htcondor.Schedd method), 634
HISTORY_CONTAINS_JOB_ENVIRONMENT, 211
HISTORY_HELPER_MAX_CONCURRENCY, 212
HISTORY_HELPER_MAX_HISTORY, 212
HistoryIterator (class in htcondor), 638
hold

submit commands, 868
Hold (htcondor.JobAction attribute), 637
HOLD script

DAGMan, 81
HOLD_JOB_IF_CREDENTIAL_EXPIRES, 291
hold_kill_sig

submit commands, 877
HoldKillSig (Job ClassAd Attribute), 953
HoldReason (Job ClassAd Attribute), 953
HoldReasonCode (Job ClassAd Attribute), 953
HoldReasonSubCode (Job ClassAd Attribute), 958
HookKeyword (Job ClassAd Attribute), 958
Hooks, 427, 440
Hooks invoked by HTCondor

Job hooks, 428
HOST_ALIAS, 306
host-based

security, 404
HOSTNAME, 198
Hostname (htcondor.LogLevel attribute), 656
HostsClaimed (Collector ClassAd Attribute), 998
HostsOwner (Collector ClassAd Attribute), 998
HostsTotal (Collector ClassAd Attribute), 998
HostsUnclaimed (Collector ClassAd Attribute), 998
HPC (High-Performance Computing), 19
HTC (High-Throughput Computing), 19
HTChirp (class in htcondor.htchirp), 659
htcondor

HTCondor commands, 942
module, 629

htcondor command, 942
HTCondor GAHP, 532
HTCondor use of

argv[0], 179

1036 Index

HTCondor Manual, Release 10.0.9

htcondor.dags
module, 665

htcondor.htchirp
module, 659

htcondor.personal
module, 676

HTCondor-C, 531, 534
grid computing, 531

HTCondor-wide configuration variables
configuration, 207

HTCondorEnumError (class in htcondor), 658
HTCondorException (class in htcondor), 658
HTCondorInternalError (class in htcondor), 658
HTCondorIOError (class in htcondor), 658
HTCondorLocateError (class in htcondor), 658
HTCondorReplyError (class in htcondor), 659
HTCondorTypeError (class in htcondor), 659
HTCondorValueError (class in htcondor), 659
HTTP_PUBLIC_FILES_ADDRESS, 459
HTTP_PUBLIC_FILES_ROOT_DIR, 459
HTTP_PUBLIC_FILES_USER, 459

I
Idle

machine activity, 344
IDLE (htcondor.JobStatus attribute), 639
IdleJobs (Collector ClassAd Attribute), 998
IdleJobs (Grid ClassAd Attribute), 997
IdleJobs (Submitter ClassAd Attribute), 995
IF/ELSE configuration syntax, 194
IF/ELSE submit commands syntax, 39
IF/ELSE syntax

configuration, 194
submit commands, 39

ifThenElse()
ClassAd functions, 503

IGNORE_DNS_PROTOCOL_PREFERENCE, 216
IGNORE_LEAF_OOM, 217
IGNORE_NFS_LOCK_ERRORS, 233
IGNORE_TARGET_PROTOCOL_PREFERENCE, 216
image_size

submit commands, 882
IMAGE_SIZE (htcondor.JobEventType attribute), 653
ImageSize (Job ClassAd Attribute), 958
IMMUTABLE_JOB_ATTRS, 267
import_exported_job_results() (htcondor.Schedd

method), 637
In

optional attributes, 429
in configuration

$RANDOM_INTEGER(), 42, 197
in configuration file

macro, 188
in DAGs

email notification, 893
in HTCondor

security, 376
in machine allocation

priority, 328
in submit description file

$ENV, 888
$RANDOM_CHOICE(), 888
automatic variables, 37
environment variables, 888
macro, 886
substitution macro, 887

IN_FINISHED (htcondor.FileTransferEventType at-
tribute), 655

IN_HIGHPORT, 229, 416
IN_LOWPORT, 229, 416
IN_QUEUED (htcondor.FileTransferEventType attribute),

655
IN_STARTED (htcondor.FileTransferEventType attribute),

655
INCLUDE, 208
INCLUDE command

DAG input file, 103
include command, 192
INCLUDE configuration syntax, 192
INCLUDE syntax

configuration, 192
IncludeClusterAd (htcondor.QueryOpts attribute), 638
included

submit commands, 879
including commands from elsewhere

submit description file, 38
initialDir

submit commands, 59
initialdir

submit commands, 53, 55, 56, 135, 175, 413, 693,
818, 858, 882

initialize() (htcondor.personal.PersonalPool
method), 677

INITIALIZED (htcondor.personal.PersonalPoolState at-
tribute), 678

input
submit commands, 53, 56, 157, 276, 818, 851, 856,

858, 863, 864, 876
input file specified by URL

file transfer mechanism, 60, 456
input file(s) encryption

file transfer mechanism, 862
int()

ClassAd functions, 505
integer INT(expr), 747
integrity

security, 399
interaction with

Index 1037

HTCondor Manual, Release 10.0.9

AFS, 174
NFS, 175

interactive
job, 48

interactive jobs, 48
INTERACTIVE_SUBMIT_FILE, 49, 277
internalRefs() (classad.ClassAd method), 624
interval()

ClassAd functions, 510
INVALID_LOG_FILES, 277, 800
invalidateAllSessions() (htcondor.SecMan

method), 648
IOWait (Job ClassAd Attribute), 958
IP_ADDRESS, 199
IP_ADDRESS_IS_V6, 199
IPv4 port specification, 414

port usage, 414
IPV4_ADDRESS, 199
IPv6, 423, 424
IPV6_ADDRESS, 199
is_() (classad.ExprTree method), 624
is_connected() (htcondor.htchirp.HTChirp method),

660
IS_OWNER, 240, 347
isAbstime()

ClassAd functions, 504
IsAccountingGroup (Accounting ClassAd Attribute),

946
isBoolean()

ClassAd functions, 504
isClassad()

ClassAd functions, 504
isError()

ClassAd functions, 504
isInteger()

ClassAd functions, 504
isList()

ClassAd functions, 504
isnt_() (classad.ExprTree method), 625
isReal()

ClassAd functions, 504
isRelTime()

ClassAd functions, 504
isString()

ClassAd functions, 504
isUndefined()

ClassAd functions, 503
IsWakeAble (Machine ClassAd Attribute), 973
IsWakeEnabled (Machine ClassAd Attribute), 973
itemdata() (htcondor.Submit method), 642
items to be aware of

upgrading, 702
items() (htcondor.JobEvent method), 653
IWD

optional attributes, 429
IwdFlushNFSCache

ClassAd job attribute, 175
IwdFlushNFSCache (Job ClassAd Attribute), 958

J
jar_files

submit commands, 53, 147, 877
JarFiles

optional attributes, 430
JAVA, 250, 480
Java, 143, 145, 480

installation, 480
universe, 144

java
universe, 143

java = 11
job ClassAd attribute definitions, 960

Java example
Job hooks, 434

Java Virtual Machine, 143, 145, 480
JAVA5_HOOK_PREPARE_JOB, 434
JAVA_CLASSPATH_ARGUMENT, 250
JAVA_CLASSPATH_DEFAULT, 250
JAVA_CLASSPATH_SEPARATOR, 250
JAVA_EXTRA_ARGUMENTS, 250, 481
java_vm_args

submit commands, 481, 877
job

ClassAd, 141
Job (ClassAd Types), 945
Job (htcondor.LogLevel attribute), 656
Job (htcondor.SubsystemType attribute), 658
job ClassAd attribute

ClusterId, 886
DAGParentNodeNames, 85
GPUsMemoryUsage, 71
GPUsUsage, 71
JobLeaseDuration, 176
JobUniverse, 960

Job Cleanup
Job Router Hooks, 437

JOB command
DAG input file, 79

job deferral time, 169
job event codes and descriptions

log files, 69
job example

Java, 146
Job exit

Fetch Hooks, 432
Job Finalize

Job Router Hooks, 437
job hook configuration variables

1038 Index

HTCondor Manual, Release 10.0.9

configuration, 319
Job hooks, 428
job hooks that fetch work

Hooks, 428
job lease, 176
Job Log Reader API, 679
Job Router, 319, 436, 543
Job Router hooks

Hooks, 435
Job Sets, 138
job submission

HTCondor-C, 532
job transforms, 374
JOB_ABORTED (htcondor.JobEventType attribute), 653
JOB_AD_INFORMATION (htcondor.JobEventType at-

tribute), 654
job_ad_information_attrs

submit commands, 882
JOB_DEFAULT_LEASE_DURATION, 275
JOB_DEFAULT_NOTIFICATION, 275
JOB_DEFAULT_REQUESTCPUS, 275, 370
JOB_DEFAULT_REQUESTDISK, 275, 370
JOB_DEFAULT_REQUESTMEMORY, 275, 370, 860, 965
JOB_DISCONNECTED (htcondor.JobEventType attribute),

654
JOB_EVICTED (htcondor.JobEventType attribute), 653
JOB_EXECDIR_PERMISSIONS, 274
JOB_HELD (htcondor.JobEventType attribute), 654
JOB_INHERITS_STARTER_ENVIRONMENT, 272
JOB_IS_FINISHED_COUNT, 258
JOB_IS_FINISHED_INTERVAL, 258
job_lease_duration

submit commands, 176, 275, 882
job_machine_attrs

submit commands, 259, 882
job_machine_attrs_history_length

submit commands, 260, 882, 883
job_max_vacate_time

submit commands, 883
JOB_QUEUE_LOG, 218, 440
JOB_RECONNECT_FAILED (htcondor.JobEventType

attribute), 654
JOB_RECONNECTED (htcondor.JobEventType attribute),

654
JOB_RELEASED (htcondor.JobEventType attribute), 654
JOB_RENICE_INCREMENT, 270, 340
JOB_ROUTER_CREATE_IDTOKEN_<NAME>, 296
JOB_ROUTER_CREATE_IDTOKEN_NAMES, 295
JOB_ROUTER_DEFAULT_MAX_IDLE_JOBS_PER_ROUTE,

294
JOB_ROUTER_DEFAULT_MAX_JOBS_PER_ROUTE, 294
JOB_ROUTER_DEFAULTS, 293
JOB_ROUTER_ENTRIES, 293
JOB_ROUTER_ENTRIES_CMD, 294

JOB_ROUTER_ENTRIES_FILE, 294
JOB_ROUTER_ENTRIES_REFRESH, 294
JOB_ROUTER_HOOK_KEYWORD, 320
JOB_ROUTER_IDTOKEN_REFRESH, 296
JOB_ROUTER_LOCK, 294
JOB_ROUTER_MAX_JOBS, 294
JOB_ROUTER_NAME, 294
JOB_ROUTER_POLLING_PERIOD, 294, 436
JOB_ROUTER_POST_ROUTE_TRANSFORM_NAMES, 293
JOB_ROUTER_PRE_ROUTE_TRANSFORM_NAMES, 293
JOB_ROUTER_RELEASE_ON_HOLD, 295
JOB_ROUTER_ROUND_ROBIN_SELECTION, 295
JOB_ROUTER_ROUTE_<NAME>, 293
JOB_ROUTER_ROUTE_NAMES, 293
JOB_ROUTER_SCHEDD1_NAME, 295
JOB_ROUTER_SCHEDD1_POOL, 295
JOB_ROUTER_SCHEDD1_SPOOL, 295
JOB_ROUTER_SCHEDD2_NAME, 295
JOB_ROUTER_SCHEDD2_POOL, 295
JOB_ROUTER_SCHEDD2_SPOOL, 295
JOB_ROUTER_SEND_ROUTE_IDTOKENS, 296
JOB_ROUTER_SOURCE_JOB_CONSTRAINT, 294
JOB_ROUTER_TRANSFORM_<NAME>, 293
JOB_SPOOL_PERMISSIONS, 267
JOB_STAGE_IN (htcondor.JobEventType attribute), 654
JOB_STAGE_OUT (htcondor.JobEventType attribute), 654
JOB_START_COUNT, 257, 987
JOB_START_DELAY, 257, 987
JOB_STATUS_KNOWN (htcondor.JobEventType attribute),

654
JOB_STATUS_UNKNOWN (htcondor.JobEventType at-

tribute), 654
JOB_STOP_COUNT, 257
JOB_STOP_DELAY, 258
JOB_SUSPENDED (htcondor.JobEventType attribute), 653
JOB_TERMINATED (htcondor.JobEventType attribute),

653
JOB_TRANSFORM_<Name>, 267
JOB_TRANSFORM_NAMES, 266, 374
JOB_UNSUSPENDED (htcondor.JobEventType attribute),

654
JobAction (class in htcondor), 637
JobAdInformationAttrs (Job ClassAd Attribute), 958
JobBatchName (Job ClassAd Attribute), 958
JobBusyTimeAvg (Machine ClassAd Attribute), 973
JobBusyTimeCount (Machine ClassAd Attribute), 973
JobBusyTimeMax (Machine ClassAd Attribute), 973
JobBusyTimeMin (Machine ClassAd Attribute), 973
JobCurrentFinishTransferInputDate (Job ClassAd

Attribute), 958
JobCurrentFinishTransferOutputDate (Job Clas-

sAd Attribute), 958
JobCurrentStartDate (Job ClassAd Attribute), 958

Index 1039

HTCondor Manual, Release 10.0.9

JobCurrentStartExecutingDate (Job ClassAd At-
tribute), 958

JobCurrentStartTransferInputDate (Job ClassAd
Attribute), 958

JobCurrentStartTransferOutputDate (Job ClassAd
Attribute), 959

JobDescription (Job ClassAd Attribute), 959
JobDisconnectedDate (Job ClassAd Attribute), 959
JobDurationAvg (Machine ClassAd Attribute), 973
JobDurationCount (Machine ClassAd Attribute), 973
JobDurationMax (Machine ClassAd Attribute), 973
JobDurationMin (Machine ClassAd Attribute), 973
JobEvent (class in htcondor), 652
JobEventLog (class in htcondor), 652
JobEventType (class in htcondor), 653
JobFailureTest

Job Router Routing Table ClassAd
attribute, 547

JobId (Machine ClassAd Attribute), 981
JobLeaseDuration

ClassAd job attribute, 176
JobLeaseDuration (Job ClassAd Attribute), 959
JobLimit (Grid ClassAd Attribute), 997
JobMaxVacateTime (Job ClassAd Attribute), 959
JobNotification (Job ClassAd Attribute), 959
JobPreemptions (Machine ClassAd Attribute), 974
JobPrio (Job ClassAd Attribute), 959
JobQueueBirthdate (Scheduler ClassAd Attribute), 985
JobRankPreemptions (Machine ClassAd Attribute), 974
JobRunCount (Job ClassAd Attribute), 959
jobs() (htcondor.Submit method), 641
JobsAccumBadputTime (Scheduler ClassAd Attribute),

985
JobsAccumExceptionalBadputTime (Scheduler Clas-

sAd Attribute), 985
JobsAccumRunningTime (Scheduler ClassAd Attribute),

985
JobsAccumTimeToStart (Scheduler ClassAd Attribute),

985
JobsBadputRuntimes (Scheduler ClassAd Attribute),

985
JobsBadputSizes (Scheduler ClassAd Attribute), 985
JobsCheckpointed (Scheduler ClassAd Attribute), 985
JobsCompleted (Scheduler ClassAd Attribute), 985
JobsCompletedRuntimes (Scheduler ClassAd At-

tribute), 985
JobsCompletedSizes (Scheduler ClassAd Attribute),

985
JobsCoredumped (Scheduler ClassAd Attribute), 985
JobsDebugLogError (Scheduler ClassAd Attribute), 985
JobsExecFailed (Scheduler ClassAd Attribute), 985
JobsExited (Scheduler ClassAd Attribute), 985
JobsExitedAndClaimClosing (Scheduler ClassAd At-

tribute), 985

JobsExitedNormally (Scheduler ClassAd Attribute),
986

JobsExitException (Scheduler ClassAd Attribute), 986
JobShouldBeSandboxed

Job Router Routing Table ClassAd
attribute, 548

JobsKilled (Scheduler ClassAd Attribute), 986
JobsMissedDeferralTime (Scheduler ClassAd At-

tribute), 986
JobsNotStarted (Scheduler ClassAd Attribute), 986
JobsRestartReconnectsAttempting (Scheduler

ClassAd Attribute), 986
JobsRestartReconnectsBadput (Scheduler ClassAd

Attribute), 986
JobsRestartReconnectsFailed (Scheduler ClassAd

Attribute), 986
JobsRestartReconnectsInterrupted (Scheduler

ClassAd Attribute), 986
JobsRestartReconnectsLeaseExpired (Scheduler

ClassAd Attribute), 986
JobsRestartReconnectsSucceeded (Scheduler Clas-

sAd Attribute), 986
JobsRunning (Scheduler ClassAd Attribute), 986
JobsRunningRuntimes (Scheduler ClassAd Attribute),

986
JobsRunningSizes (Scheduler ClassAd Attribute), 986
JobsRuntimesHistogramBuckets (Scheduler ClassAd

Attribute), 986
JobsShadowNoMemory (Scheduler ClassAd Attribute),

986
JobsShouldHold (Scheduler ClassAd Attribute), 986
JobsShouldRemove (Scheduler ClassAd Attribute), 986
JobsShouldRequeue (Scheduler ClassAd Attribute), 987
JobsSizesHistogramBuckets (Scheduler ClassAd At-

tribute), 987
JobsStarted (Scheduler ClassAd Attribute), 987
JobsSubmitted (Scheduler ClassAd Attribute), 987
JobStart (Machine ClassAd Attribute), 982
JobStartDate (Job ClassAd Attribute), 959
JobStarts (Machine ClassAd Attribute), 974
jobstate.log file

DAGMan, 131
JOBSTATE_LOG command

DAG input file, 131
JobStatus (class in htcondor), 639
JobStatus (Job ClassAd Attribute), 959
JobSubmitMethod (Job ClassAd Attribute), 959
JobUniverse

ClassAd job attribute, 960
optional attributes, 429

JobUserPrioPreemptions (Machine ClassAd At-
tribute), 974

JobVM_VCPUS (Machine ClassAd Attribute), 974
join()

1040 Index

HTCondor Manual, Release 10.0.9

ClassAd functions, 507
JVM, 143, 145, 480

K
KBDD_BUMP_CHECK_AFTER_IDLE_TIME, 242
KBDD_BUMP_CHECK_SIZE, 242
keep_claim_idle

submit commands, 102, 869
KEEP_POOL_HISTORY, 279, 465
KeepClaimIdle (Job ClassAd Attribute), 960
Kerberos

authentication, 390
Kerberos (htcondor.CredTypes attribute), 648
Kerberos authentication, 390
Kerberos principal

authentication, 390
KERBEROS_CLIENT_KEYTAB, 311
KERBEROS_MAP_FILE, 390, 397
KERBEROS_SERVER_KEYTAB, 310
KERBEROS_SERVER_PRINCIPAL, 311, 390
KERBEROS_SERVER_SERVICE, 311, 390
KERBEROS_SERVER_USER, 311
KERNEL_TUNING_LOG, 238
KeyboardIdle (Machine ClassAd Attribute), 974
keys() (htcondor.JobEvent method), 653
keywords

Job hooks, 433
KFlops (Machine ClassAd Attribute), 974
kid, 296
KILL, 239–241, 353, 354
kill_sig

submit commands, 877, 878, 883
kill_sig_timeout

submit commands, 883
Killing

machine activity, 345
KILLING_TIMEOUT, 240, 351, 354, 883
KillSig

optional attributes, 430
KillSig (Job ClassAd Attribute), 960
KillSigTimeout (Job ClassAd Attribute), 960

L
large numbers of jobs

DAGMan, 133
LastDrainStartTime (Machine ClassAd Attribute), 974
LastDrainStopTime (Machine ClassAd Attribute), 974
lastError() (in module classad), 627
LastHeardFrom (ClassAd Attribute), 1000
LastHeardFrom (Machine ClassAd Attribute), 974
LastMatchTime (Job ClassAd Attribute), 960
LastNegotiationCycleActiveSubmitterCount (Ne-

gotiator ClassAd Attribute), 993

LastNegotiationCycleCandidateSlots (Negotiator
ClassAd Attribute), 993

LastNegotiationCycleDuration<X> (Negotiator
ClassAd Attribute), 993

LastNegotiationCycleEnd<X> (Negotiator ClassAd
Attribute), 993

LastNegotiationCycleMatches<X> (Negotiator Clas-
sAd Attribute), 993

LastNegotiationCycleMatchRate<X> (Negotiator
ClassAd Attribute), 993

LastNegotiationCycleMatchRateSustained<X>
(Negotiator ClassAd Attribute), 993

LastNegotiationCycleNumIdleJobs<X> (Negotiator
ClassAd Attribute), 993

LastNegotiationCycleNumJobsConsidered<X> (Ne-
gotiator ClassAd Attribute), 993

LastNegotiationCycleNumSchedulers<X> (Negotia-
tor ClassAd Attribute), 993

LastNegotiationCyclePeriod<X> (Negotiator Clas-
sAd Attribute), 993

LastNegotiationCyclePhase1Duration<X> (Nego-
tiator ClassAd Attribute), 993

LastNegotiationCyclePhase2Duration<X> (Nego-
tiator ClassAd Attribute), 994

LastNegotiationCyclePhase3Duration<X> (Nego-
tiator ClassAd Attribute), 994

LastNegotiationCyclePhase4Duration<X> (Nego-
tiator ClassAd Attribute), 994

LastNegotiationCycleRejections<X> (Negotiator
ClassAd Attribute), 994

LastNegotiationCycleSlotShareIter<X> (Negotia-
tor ClassAd Attribute), 994

LastNegotiationCycleSubmittersFailed<X> (Ne-
gotiator ClassAd Attribute), 994

LastNegotiationCycleSubmittersOutOfTime<X>
(Negotiator ClassAd Attribute), 994

LastNegotiationCycleSubmittersShareLimit<X>
(Negotiator ClassAd Attribute), 994

LastNegotiationCycleTime<X> (Negotiator ClassAd
Attribute), 994

LastNegotiationCycleTotalSlots<X> (Negotiator
ClassAd Attribute), 994

LastNegotiationCycleTrimmedSlots<X> (Negotia-
tor ClassAd Attribute), 994

LastPeriodicCheckpoint (Machine ClassAd At-
tribute), 982

LastRejMatchReason (Job ClassAd Attribute), 960
LastRejMatchTime (Job ClassAd Attribute), 960
LastRemotePool (Job ClassAd Attribute), 960
LastRemoteWallClockTime (Job ClassAd Attribute),

965
LastSuspensionTime (Job ClassAd Attribute), 960
LastUsageTime (Accounting ClassAd Attribute), 946
LastVacateTime (Job ClassAd Attribute), 960

Index 1041

HTCondor Manual, Release 10.0.9

late materialization, 49
lots of jobs, 49

layer() (htcondor.dags.DAG method), 666
lchown() (htcondor.htchirp.HTChirp method), 664
LeaseManager.CLASSAD_LOG, 297
LeaseManager.DEBUG_ADS, 297
LeaseManager.DEFAULT_MAX_LEASE_DURATION, 297
LeaseManager.GETADS_INTERVAL, 296
LeaseManager.MAX_LEASE_DURATION, 297
LeaseManager.MAX_TOTAL_LEASE_DURATION, 297
LeaseManager.PRUNE_INTERVAL, 297
LeaseManager.QUERY_ADTYPE, 297
LeaseManager.QUERY_CONSTRAINTS, 297
LeaseManager.UPDATE_INTERVAL, 296
leave_in_queue

submit commands, 869
LeaveJobInQueue (Job ClassAd Attribute), 960
leaves (htcondor.dags.DAG property), 666
leaving a low power state

power management, 489
LEGACY_ALLOW_SEMANTICS, 311
LIB, 208
LIBEXEC, 208
LIBVIRT_XML_SCRIPT, 312
LIBVIRT_XML_SCRIPT_ARGS, 313
License (htcondor.AdTypes attribute), 632
lifetime, 296
linda = 3 (no longer used)

job ClassAd attribute definitions, 960
link() (htcondor.htchirp.HTChirp method), 663
Linux

platform-specific information, 687
Linux platform details

power management, 490
LINUX_HIBERNATION_METHOD, 251
LINUX_KERNEL_TUNING_SCRIPT, 238
list SPLIT(string s[, string tokens]), 747
Literal() (in module classad), 627
load_profile

submit commands, 691, 692, 883, 885
LoadAvg

ClassAd machine attribute, 365
LoadAvg (Machine ClassAd Attribute), 974
loading account profile

Windows, 691
local

universe, 144
local = 12

job ClassAd attribute definitions, 960
local universe, 144
LOCAL_CONFIG_DIR, 187, 210
LOCAL_CONFIG_DIR_EXCLUDE_REGEXP, 210
LOCAL_CONFIG_FILE, 187, 192, 209, 461–463
LOCAL_CREDD, 690

LOCAL_DIR, 208
LOCAL_UNIV_EXECUTE, 253
LocalJobsIdle (Submitter ClassAd Attribute), 995
LocalJobsRunning (Submitter ClassAd Attribute), 995
locate() (htcondor.Collector method), 630
locateAll() (htcondor.Collector method), 630
location of files

installation, 4, 5, 493
LOCK, 211
LOCK_DEBUG_LOG_TO_APPEND, 218
LOCK_FILE_UPDATE_INTERVAL, 226
LOG, 208, 212, 242, 427, 568
Log

submit commands, 430, 679
log

submit commands, 68, 152, 276, 440, 851, 856,
863, 881

log() (in module htcondor), 656
LOG_ON_NFS_IS_ERROR, 277
LOG_TO_SYSLOG, 218, 440
log_xml

submit commands, 857
logging, 440, 442
LogLevel (class in htcondor), 656
LOGS_USE_TIMESTAMP, 219, 440
lookup() (classad.ClassAd method), 623
lost datagrams

UDP, 422
LOWPORT, 229, 416
lstat() (htcondor.htchirp.HTChirp method), 664

M
machine

ClassAd, 141
Machine (ClassAd Attribute), 984
Machine (ClassAd Types), 946
Machine (Collector ClassAd Attribute), 998
Machine (Defrag ClassAd Attribute), 996
Machine (htcondor.LogLevel attribute), 656
Machine (Machine ClassAd Attribute), 974
Machine (Negotiator ClassAd Attribute), 994
Machine (Scheduler ClassAd Attribute), 987
machine activity, 344
machine attributes

ClassAd, 970
machine ClassAd, 142
machine example

ClassAd, 142
machine state, 341
machine state and activities figure, 345
machine_count

submit commands, 151, 152, 877
MACHINE_RESOURCE_<name>, 247
MACHINE_RESOURCE_INVENTORY_<name>, 248

1042 Index

HTCondor Manual, Release 10.0.9

MACHINE_RESOURCE_INVENTORY_GPUs, 982
MACHINE_RESOURCE_NAMES, 247, 362
machine-readable event history

DAGMan, 131
MachineAttr<X><N> (Job ClassAd Attribute), 961
MachineLastMatchTime (Machine ClassAd Attribute),

982
MachineMaxVacateTime, 239–241, 351, 353
MachineMaxVacateTime (Machine ClassAd Attribute),

974
MachinesDraining (Defrag ClassAd Attribute), 996
MachinesDrainingPeak (Defrag ClassAd Attribute),

996
Macintosh OS X

platform-specific information, 697
macro definitions

configuration file, 188
macros

configuration file, 200
MAIL, 210, 462
MAIL_FROM, 211
mailing lists, 22

HTCondor, 22
manifest

submit commands, 884
manual install

Windows, 495
ManyToMany (class in htcondor.dags), 673
Master (htcondor.AdTypes attribute), 632
Master (htcondor.DaemonTypes attribute), 631
Master (htcondor.SubsystemType attribute), 658
MASTER_<name>_BACKOFF_CEILING, 236
MASTER_<name>_BACKOFF_CONSTANT, 236
MASTER_<name>_BACKOFF_FACTOR, 236
MASTER_<name>_RECOVER_FACTOR, 236
MASTER_<SUBSYS>_CONTROLLER, 314
MASTER_ADDRESS_FILE, 237
MASTER_ATTRS, 237
MASTER_BACKOFF_CEILING, 236
MASTER_BACKOFF_CONSTANT, 236
MASTER_BACKOFF_FACTOR, 236
MASTER_CHECK_NEW_EXEC_INTERVAL, 235
MASTER_DEBUG, 237
MASTER_HA_LIST, 313, 448
MASTER_HAD_BACKOFF_CONSTANT, 451
MASTER_INSTANCE_LOCK, 237
MASTER_NAME, 207, 237, 792
MASTER_NEW_BINARY_DELAY, 235
MASTER_NEW_BINARY_RESTART, 235
MASTER_RECOVER_FACTOR, 236
MASTER_SHUTDOWN_<Name>, 235
MASTER_UPDATE_INTERVAL, 235
MasterIpAddr (ClassAd Attribute), 984
match_list_length

submit commands, 883
MATCH_TIMEOUT, 342, 349, 353
Matched

machine state, 341, 349
matched state, 341, 349
matches() (classad.ClassAd method), 623
matchmaking, 20
max()

ClassAd functions, 507
MAX_<SUBSYS>_<LEVEL>_LOG, 222
MAX_<SUBSYS>_LOG, 218
MAX_<SUBSYS>_LOG, 218, 440
MAX_ACCEPTS_PER_CYCLE, 226
MAX_ACCOUNTANT_DATABASE_SIZE, 283
MAX_C_GAHP_LOG, 292
MAX_CLAIM_ALIVES_MISSED, 241, 258
MAX_CONCURRENT_DOWNLOADS, 255, 256, 968
MAX_CONCURRENT_UPLOADS, 255, 256, 968
MAX_DAGMAN_LOG, 304
MAX_DEFAULT_LOG, 218
MAX_EVENT_LOG, 222
MAX_FILE_DESCRIPTORS, 228, 421
MAX_HAD_LOG, 315
MAX_HISTORY_LOG, 211, 441
MAX_HISTORY_ROTATIONS, 211, 441
max_idle

submit commands, 859
MAX_JOB_MIRROR_UPDATE_LAG, 294
MAX_JOB_QUEUE_LOG_ROTATIONS, 212, 441
max_job_retirement_time

submit commands, 884
MAX_JOBS_PER_OWNER, 255
MAX_JOBS_PER_SUBMISSION, 255
MAX_JOBS_RUNNING, 64, 254, 416, 987
MAX_JOBS_SUBMITTED, 254
max_materialize

submit commands, 852, 859
MAX_NEXT_JOB_START_DELAY, 257, 869, 961
MAX_NUM_<SUBSYS>_LOG, 218
MAX_NUM_<SUBSYS>_LOG, 440
MAX_NUM_CPUS, 243
MAX_NUM_SCHEDD_AUDIT_LOG, 265, 441
MAX_NUM_SHARED_PORT_AUDIT_LOG, 319, 441
MAX_PENDING_STARTD_CONTACTS, 255
MAX_PERIODIC_EXPR_INTERVAL, 261
MAX_PROCD_LOG, 289
MAX_REAPS_PER_CYCLE, 226
MAX_REPLICATION_LOG, 315
max_retries

submit commands, 868
MAX_RUNNING_SCHEDULER_JOBS_PER_OWNER, 255
MAX_SCHEDD_AUDIT_LOG, 265, 441
MAX_SHADOW_EXCEPTIONS, 255
MAX_SHADOW_STATS_LOG, 269

Index 1043

HTCondor Manual, Release 10.0.9

MAX_SHARED_PORT_AUDIT_LOG, 319, 441
MAX_SLOT_TYPES, 247
MAX_STARTER_STATS_LOG, 274
MAX_TIME_SKIP, 225
MAX_TIMER_EVENTS_PER_CYCLE, 226
MAX_TRACKING_GID, 289, 475
MAX_TRANSFER_INPUT_MB, 256, 863, 955, 961
max_transfer_input_mb

submit commands, 863
MAX_TRANSFER_LIFETIME, 315
MAX_TRANSFER_OUTPUT_MB, 256, 863, 956, 961
max_transfer_output_mb

submit commands, 863
MAX_TRANSFER_QUEUE_AGE, 256
MAX_TRANSFERER_LOG, 316
MAX_UDP_MSGS_PER_CYCLE, 226
MAX_VM_GAHP_LOG, 312
MaxHosts (Job ClassAd Attribute), 961
MaxIdleJobs

Job Router Routing Table ClassAd
attribute, 547

MAXJOBRETIREMENTTIME, 238, 241, 286, 353
MaxJobRetirementTime (Job ClassAd Attribute), 961
MaxJobRetirementTime (Machine ClassAd Attribute),

974
MaxJobs

Job Router Routing Table ClassAd
attribute, 547

MAXJOBS command
DAG input file, 100

MaxJobsRunning (Collector ClassAd Attribute), 999
MaxJobsRunning (Scheduler ClassAd Attribute), 987
MaxJobsRunningAll (Collector ClassAd Attribute), 999
MaxTransferInputMB (Job ClassAd Attribute), 961
MaxTransferOutputMB (Job ClassAd Attribute), 961
MeanDrainedArrived (Defrag ClassAd Attribute), 996
member()

ClassAd functions, 504, 505
MEMORY, 243
Memory (Machine ClassAd Attribute), 974
MEMORY_USAGE_METRIC, 274
MEMORY_USAGE_METRIC_VM, 274
MemoryProvisioned (Job ClassAd Attribute), 970
MemoryUsage (Job ClassAd Attribute), 961
mergeEnvironment()

ClassAd functions, 511
Microarch (Machine ClassAd Attribute), 971
min()

ClassAd functions, 507
MIN_FLOCK_LEVEL, 260
MIN_TRACKING_GID, 289, 475
MinHosts (Job ClassAd Attribute), 961
Mips (Machine ClassAd Attribute), 974
mkdir() (htcondor.htchirp.HTChirp method), 662

MODIFY_REQUEST_EXPR_REQUESTCPUS, 249, 370
MODIFY_REQUEST_EXPR_REQUESTDISK, 249, 370
MODIFY_REQUEST_EXPR_REQUESTMEMORY, 249, 370
module

classad, 622
htcondor, 629
htcondor.dags, 665
htcondor.htchirp, 659
htcondor.personal, 676

monitoring
pool management, 442

monitoring GPUS, 445
monitoring pools, 442
MonitorSelfAge (ClassAd Attribute), 984
MonitorSelfAge (Defrag ClassAd Attribute), 996
MonitorSelfAge (Machine ClassAd Attribute), 974
MonitorSelfAge (Scheduler ClassAd Attribute), 987
MonitorSelfCPUUsage (ClassAd Attribute), 984
MonitorSelfCPUUsage (Defrag ClassAd Attribute), 996
MonitorSelfCPUUsage (Machine ClassAd Attribute),

974
MonitorSelfCPUUsage (Scheduler ClassAd Attribute),

987
MonitorSelfImageSize (ClassAd Attribute), 984
MonitorSelfImageSize (Defrag ClassAd Attribute),

996
MonitorSelfImageSize (Machine ClassAd Attribute),

974
MonitorSelfImageSize (Scheduler ClassAd Attribute),

987
MonitorSelfRegisteredSocketCount (ClassAd At-

tribute), 984
MonitorSelfRegisteredSocketCount (Defrag Clas-

sAd Attribute), 996
MonitorSelfRegisteredSocketCount (Machine

ClassAd Attribute), 974
MonitorSelfRegisteredSocketCount (Scheduler

ClassAd Attribute), 987
MonitorSelfResidentSetSize (ClassAd Attribute),

984
MonitorSelfResidentSetSize (Defrag ClassAd At-

tribute), 996
MonitorSelfResidentSetSize (Machine ClassAd At-

tribute), 974
MonitorSelfResidentSetSize (Scheduler ClassAd

Attribute), 987
MonitorSelfSecuritySessions (ClassAd Attribute),

984
MonitorSelfSecuritySessions (Defrag ClassAd At-

tribute), 996
MonitorSelfSecuritySessions (Machine ClassAd

Attribute), 974
MonitorSelfSecuritySessions (Scheduler ClassAd

Attribute), 987

1044 Index

HTCondor Manual, Release 10.0.9

MonitorSelfTime (ClassAd Attribute), 984
MonitorSelfTime (Defrag ClassAd Attribute), 996
MonitorSelfTime (Machine ClassAd Attribute), 974
MonitorSelfTime (Scheduler ClassAd Attribute), 987
MOUNT_PRIVATE_DEV_SHM, 245
MOUNT_UNDER_SCRATCH, 244
mpi = 8

job ClassAd attribute definitions, 960
MPI application, 151, 155
multi-core machines

configuration, 364
multiple

network interfaces, 418
multiple class files

Java, 147
multiple collectors

port usage, 417
multiple data sets

job, 20
multiple network interfaces, 418
MUST_MODIFY_REQUEST_EXPRS, 249
MY., ClassAd scope resolution prefix, 514
MyAddress (ClassAd Attribute), 984
MyAddress (Collector ClassAd Attribute), 999
MyAddress (Defrag ClassAd Attribute), 996
MyAddress (Machine ClassAd Attribute), 975
MyAddress (Negotiator ClassAd Attribute), 994
MyAddress (Scheduler ClassAd Attribute), 987
MyAddress (Submitter ClassAd Attribute), 995
MyCurrentTime (ClassAd Attribute), 984
MyCurrentTime (Collector ClassAd Attribute), 999
MyCurrentTime (Defrag ClassAd Attribute), 996
MyCurrentTime (Machine ClassAd Attribute), 975
MyCurrentTime (Negotiator ClassAd Attribute), 994
MyCurrentTime (Scheduler ClassAd Attribute), 987
MyType (Machine ClassAd Attribute), 975

N
N, 361, 363
Name, 375

Job Router Routing Table ClassAd
attribute, 550

name, 216, 247, 248, 362, 374
Name (Accounting ClassAd Attribute), 946
Name (ClassAd Attribute), 984
Name (Collector ClassAd Attribute), 999
Name (Defrag ClassAd Attribute), 996
Name (Machine ClassAd Attribute), 975
Name (Negotiator ClassAd Attribute), 994
Name (Scheduler ClassAd Attribute), 987
Name (Submitter ClassAd Attribute), 995
name>

submit commands, 363
NAMED_CHROOT, 272

NEGOTIATE_ALL_JOBS_IN_CLUSTER, 260, 333
negotiation, 332
negotiation algorithm

matchmaking, 332
NEGOTIATION_CYCLE_STATS_LENGTH, 283
Negotiator (class in htcondor), 644
Negotiator (ClassAd Types), 946
Negotiator (htcondor.AdTypes attribute), 632
Negotiator (htcondor.DaemonTypes attribute), 631
Negotiator (htcondor.SubsystemType attribute), 658
Negotiator attributes

ClassAd, 993
NEGOTIATOR_ADDRESS_FILE, 224, 414
NEGOTIATOR_ALLOW_QUOTA_OVERSUBSCRIPTION, 288,

335, 337
NEGOTIATOR_CONSIDER_EARLY_PREEMPTION, 241,

258, 286, 354
NEGOTIATOR_CONSIDER_PREEMPTION, 286
NEGOTIATOR_CYCLE_DELAY, 282
NEGOTIATOR_DEBUG, 285
NEGOTIATOR_DEPTH_FIRST, 286
NEGOTIATOR_DISCOUNT_SUSPENDED_RESOURCES, 283
NEGOTIATOR_HOST, 207
NEGOTIATOR_INFORM_STARTD, 283
NEGOTIATOR_INTERVAL, 282
NEGOTIATOR_JOB_CONSTRAINT, 285
NEGOTIATOR_MATCH_EXPRS, 286
NEGOTIATOR_MATCH_LOG, 222, 441
NEGOTIATOR_MATCHLIST_CACHING, 286
NEGOTIATOR_MAX_TIME_PER_CYCLE, 285
NEGOTIATOR_MAX_TIME_PER_PIESPIN, 285
NEGOTIATOR_MAX_TIME_PER_SCHEDD, 285
NEGOTIATOR_MAX_TIME_PER_SUBMITTER, 285, 994
NEGOTIATOR_MIN_INTERVAL, 282
NEGOTIATOR_NAME, 282
NEGOTIATOR_NUM_THREADS, 283
NEGOTIATOR_POST_JOB_RANK, 284
NEGOTIATOR_PRE_JOB_RANK, 284
NEGOTIATOR_READ_CONFIG_BEFORE_CYCLE, 287
NEGOTIATOR_RESOURCE_REQUEST_LIST_SIZE, 286
NEGOTIATOR_SLOT_CONSTRAINT, 285
NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT, 285, 993
NEGOTIATOR_SOCKET_CACHE_SIZE, 283
NEGOTIATOR_SUBMITTER_CONSTRAINT, 285
NEGOTIATOR_TIMEOUT, 282
NEGOTIATOR_TRIM_SHUTDOWN_THRESHOLD, 285
NEGOTIATOR_UPDATE_AFTER_CYCLE, 286
NEGOTIATOR_UPDATE_INTERVAL, 282
NEGOTIATOR_USE_NONBLOCKING_STARTD_CONTACT,

230
NEGOTIATOR_USE_SLOT_WEIGHTS, 288
NEGOTIATOR_USE_WEIGHTED_DEMAND, 288
negotiator-side resource consumption policy

partitionable slots, 371

Index 1045

HTCondor Manual, Release 10.0.9

NegotiatorIpAddr (Negotiator ClassAd Attribute), 994
network, 413
Network (htcondor.LogLevel attribute), 656
NETWORK_HOSTNAME, 228
NETWORK_INTERFACE, 228, 419, 423
NETWORK_MAX_PENDING_CONNECTS, 213
network-related configuration variables

configuration, 227
New (classad.Parser attribute), 628
next_job_start_delay

submit commands, 869
nextAdsNonBlocking() (htcondor.QueryIterator

method), 638
NextJobStartDelay (Job ClassAd Attribute), 961
NFS

file system, 175
nice job, 77

priority, 77
nice_user

submit commands, 330, 884
NICE_USER_ACCOUNTING_GROUP_NAME, 283
NICE_USER_PRIO_FACTOR, 283, 330
NiceUser (Job ClassAd Attribute), 961
NICs, 418
NO_DNS, 212, 424
NOBODY_SLOT_USER, 232
node job submit description file

DAGMan, 85
node priorities

DAGMan, 98
node status file

DAGMan, 129
NODE_EXECUTE (htcondor.JobEventType attribute), 654
NODE_STATUS_FILE command

DAG input file, 129
NODE_TERMINATED (htcondor.JobEventType attribute),

654
node_to_children (htcondor.dags.DAG property), 666
node_to_parents (htcondor.dags.DAG property), 666
NodeLayer (class in htcondor.dags), 670
NodeNameFormatter (class in htcondor.dags), 675
Nodes (class in htcondor.dags), 671
nodes (htcondor.dags.DAG property), 666
NodeStatusFile (class in htcondor.dags), 675
NoHeader (htcondor.LogLevel attribute), 656
NonBlocking (htcondor.BlockingMode attribute), 638
NONBLOCKING_COLLECTOR_UPDATE, 230
NonDurable (htcondor.TransactionFlags attribute), 637
None (htcondor.AdTypes attribute), 632
None (htcondor.DaemonTypes attribute), 631
NONE (htcondor.JobEventType attribute), 654
none> group

group accounting, 335
Nonessential (Job ClassAd Attribute), 961

nonstandard ports for central managers
port usage, 415

noop_job
submit commands, 885

noop_job_exit_code
submit commands, 885

noop_job_exit_signal
submit commands, 885

not running
job, 67

not running, on hold
job, 69

NOT_RESPONDING_TIMEOUT, 226
NOT_RESPONDING_WANT_CORE, 226
notification

submit commands, 70, 857, 894, 959
notify_user

submit commands, 857
NTDomain (Job ClassAd Attribute), 961
NUM_CLAIMS, 250
NUM_CPUS, 242, 249, 361
num_procs() (htcondor.SubmitResult method), 643
NUM_SLOTS, 249, 361
NUM_SLOTS_TYPE_<N>, 249
NumCkpts (Job ClassAd Attribute), 961
NumDistinctRequests

EC2 GAHP Statistics, 540
NumExpiredSignatures

EC2 GAHP Statistics, 540
NumHolds (Job ClassAd Attribute), 961
NumHoldsByReason (Job ClassAd Attribute), 961
NumJobCompletions (Job ClassAd Attribute), 962
NumJobMatches (Job ClassAd Attribute), 962
NumJobReconnects (Job ClassAd Attribute), 962
NumJobs (Grid ClassAd Attribute), 997
NumJobStarts (Job ClassAd Attribute), 962
NumJobStartsDelayed (Scheduler ClassAd Attribute),

987
NumPendingClaims (Scheduler ClassAd Attribute), 987
NumPids (Job ClassAd Attribute), 962
NumRequests

EC2 GAHP Statistics, 540
NumRequestsExceedingLimit

EC2 GAHP Statistics, 540
NumRestarts (Job ClassAd Attribute), 962
NumShadowExceptions (Job ClassAd Attribute), 962
NumShadowStarts (Job ClassAd Attribute), 962
NumSystemHolds (Job ClassAd Attribute), 962
NumUsers (Scheduler ClassAd Attribute), 987

O
OAuth (htcondor.CredTypes attribute), 648
OBITUARY_LOG_LENGTH, 235
of a job

1046 Index

HTCondor Manual, Release 10.0.9

deferral time, 169
priority, 67, 76

of a machine
activity, 344
state, 341

of a user
priority, 76

of central manager
High Availability, 449

of condor_shadow
exit codes, 1003

of DAG nodes
status, 129

of job queue
High Availability, 447

of job queue, with remote job submission
High Availability, 448

of jobs
cwd, 413

of machines
distributed ownership, 19

of machines, to implement a given policy
configuration, 338

of queued jobs
status, 64

of Unix netgroups
authorization, 402

offer
resource, 20

OffFast (htcondor.DaemonCommands attribute), 657
OffForce (htcondor.DaemonCommands attribute), 657
OffGraceful (htcondor.DaemonCommands attribute),

657
Offline (Machine ClassAd Attribute), 975, 982
offline ClassAd, 982
offline machine, 488
OFFLINE_EXPIRE_ADS_AFTER, 252, 490
OFFLINE_LOG, 252, 490
OFFLINE_MACHINE_RESOURCE_<name>, 247
Offline<name> (Machine ClassAd Attribute), 982
OfflineUniverses (Machine ClassAd Attribute), 975
OffPeaceful (htcondor.DaemonCommands attribute),

657
Old (classad.Parser attribute), 628
on a different architecture

running a job, 176
on resource usage

limits, 476
on resource usage with cgroup

limits, 477
on_exit_hold

submit commands, 869, 870
on_exit_hold_reason

submit commands, 870

on_exit_hold_subcode
submit commands, 870

on_exit_remove
submit commands, 171, 173, 870

OneToOne (class in htcondor.dags), 673
OPEN_VERB_FOR_<EXT>_FILES, 213
OPENMPI_EXCLUDE_NETWORK_INTERFACES, 156, 252
OPENMPI_INSTALL_PATH, 156, 252
OPSYS, 200, 965
OpSys (Machine ClassAd Attribute), 975
OPSYS_AND_VER, 200
OPSYS_VER, 200
OpSysAndVer (Machine ClassAd Attribute), 975
OpSysLegacy (Machine ClassAd Attribute), 976
OpSysLongName (Machine ClassAd Attribute), 976
OpSysMajorVer (Machine ClassAd Attribute), 977
OpSysName (Machine ClassAd Attribute), 977
OpSysShortName (Machine ClassAd Attribute), 977
OpSysVer (Machine ClassAd Attribute), 978
optimization of submit time

DAGMan, 102
Optional attributes

Defining Applications, 429
optional attributes

FetchWork, 429
or_() (classad.ExprTree method), 624
OtherJobRemoveRequirements (Job ClassAd At-

tribute), 962
Out

optional attributes, 430
OUT_FINISHED (htcondor.FileTransferEventType at-

tribute), 655
OUT_HIGHPORT, 230, 416
OUT_LOWPORT, 229, 416
OUT_QUEUED (htcondor.FileTransferEventType attribute),

655
OUT_STARTED (htcondor.FileTransferEventType at-

tribute), 655
output

submit commands, 34, 56, 59, 157, 276, 544, 819,
851, 857, 858, 863, 864, 876

output file(s) encryption
file transfer mechanism, 862

output file(s) specified by URL
file transfer mechanism, 60, 456, 863

output_destination
submit commands, 60, 456, 457, 863

OutputDestination (Job ClassAd Attribute), 962
OverrideRoutingEntry

Job Router Routing Table ClassAd
attribute, 550

Overview
Backfill, 469

overview, 19, 21

Index 1047

HTCondor Manual, Release 10.0.9

HTCondor, 19, 21
Owner

machine state, 341, 347
required attributes, 429

owner, 296
machine, 181
resource, 181

Owner (Job ClassAd Attribute), 962
owner state, 341, 347

P
parallel

universe, 143, 144
parallel = 10

job ClassAd attribute definitions, 960
parallel scheduling groups, 468
parallel universe, 144, 151, 156
ParallelSchedulingGroup, 263, 468
ParallelShutdownPolicy (Job ClassAd Attribute), 962
param (in module htcondor), 655
PARENT CHILD command

DAG input file, 80
parent_layer() (htcondor.dags.BaseNode method),

669
parent_layer() (htcondor.dags.Nodes method), 672
parent_subdag() (htcondor.dags.BaseNode method),

669
parent_subdag() (htcondor.dags.Nodes method), 672
parents (htcondor.dags.BaseNode property), 670
parse() (htcondor.dags.NodeNameFormatter method),

675
parse() (in module classad), 629
parseAds() (in module classad), 626
parseNext() (in module classad), 626
parseOld() (in module classad), 629
parseOne() (in module classad), 626
Parser (class in classad), 628
partitionable slot preemption, 369
partitionable slots, 368
PartitionableSlot (Machine ClassAd Attribute), 978
PASSWD_CACHE_REFRESH, 213
Password (htcondor.CredTypes attribute), 648
PeakForkWorkers (Collector ClassAd Attribute), 999
PendingQueries (Collector ClassAd Attribute), 999
PendingQueriesPeak (Collector ClassAd Attribute),

999
per job

PID namespaces, 474
per job PID namespaces

Linux kernel, 474
namespaces, 474

per job scratch fileystem, 371
PER_JOB_HISTORY_DIR, 263
PER_JOB_NAMESPACES, 274

periodic
job scheduling, 171

PERIODIC_CHECKPOINT, 239
PERIODIC_EXPR_INTERVAL, 261
PERIODIC_EXPR_TIMESLICE, 261
periodic_hold

submit commands, 870, 871
periodic_hold_reason

submit commands, 871
periodic_hold_subcode

submit commands, 871
PERIODIC_MEMORY_SYNC, 269
periodic_release

submit commands, 239, 262, 871
periodic_remove

submit commands, 239, 871
PERMISSION-LEVEL, 224
PERMISSION-LEVEL, 408, 409, 764
PERSISTENT_CONFIG_DIR, 224
PersonalPool (class in htcondor.personal), 676
PersonalPoolState (class in htcondor.personal), 678
phase() (htcondor.htchirp.HTChirp method), 661
PID, 200
PID (htcondor.LogLevel attribute), 656
pie slice, 334

scheduling, 334
pie spin, 334

scheduling, 334
PIN_IN command

DAG input file, 118
PIN_OUT command

DAG input file, 118
ping() (htcondor.SecMan method), 648
pipe = 2 (no longer used)

job ClassAd attribute definitions, 960
PIPE_BUFFER_MAX, 226
PipeMessages (ClassAd Attribute), 1000
PipeRuntime (ClassAd Attribute), 1001
platform() (in module htcondor), 655
platforms available

HTCondor, 21
platforms supported, 21
policy configuration

submit host, 374
poll() (in module htcondor), 639
POLLING_INTERVAL, 240, 349
pool

HTCondor, 181
pool monitoring, 442
pool of machines, 181
POOL_HISTORY_DIR, 279, 465
POOL_HISTORY_MAX_STORAGE, 279, 465
POOL_HISTORY_SAMPLING_INTERVAL, 279
port usage, 414

1048 Index

HTCondor Manual, Release 10.0.9

POST script
DAGMan, 81

POST_SCRIPT_TERMINATED (htcondor.JobEventType at-
tribute), 654

PostArgs (Job ClassAd Attribute), 962
PostArguments (Job ClassAd Attribute), 963
PostCmd (Job ClassAd Attribute), 963
PostCmdExitBySignal (Job ClassAd Attribute), 963
PostCmdExitCode (Job ClassAd Attribute), 963
PostCmdExitSignal (Job ClassAd Attribute), 963
PostEnv (Job ClassAd Attribute), 963
PostEnvironment (Job ClassAd Attribute), 963
PostJobPrio1 (Job ClassAd Attribute), 964
PostJobPrio2 (Job ClassAd Attribute), 964
potential risk running jobs as user nobody

UID, 411
potential security risk with jobs

user nobody, 411
pow()

ClassAd functions, 506
power management, 488, 491
PPID, 200
PRE and POST scripts

DAGMan, 81
PRE script

DAGMan, 81
PRE_SKIP command

DAG input file, 85
pre-defined macros

configuration, 198
configuration file, 198

PreArgs (Job ClassAd Attribute), 963
PreArguments (Job ClassAd Attribute), 963
PreCmd (Job ClassAd Attribute), 963
PreCmdExitBySignal (Job ClassAd Attribute), 963
PreCmdExitCode (Job ClassAd Attribute), 963
PreCmdExitSignal (Job ClassAd Attribute), 963
PREEMPT, 238, 353, 432
Preempting

machine state, 341, 351
preempting state, 341, 351
PreemptingOwner (Machine ClassAd Attribute), 981
PreemptingRank (Machine ClassAd Attribute), 981
PreemptingUser (Machine ClassAd Attribute), 981
PREEMPTION_RANK, 284
PREEMPTION_RANK_STABLE, 284, 331
PREEMPTION_REQUIREMENTS, 284, 286, 330, 807
PREEMPTION_REQUIREMENTS_STABLE, 284, 331
PREEN, 234
PREEN_ADMIN, 277, 800
PREEN_ARGS, 234
PREEN_INTERVAL, 234
PreEnv (Job ClassAd Attribute), 964
PreEnvironment (Job ClassAd Attribute), 964

PREFER_IPV4, 216, 423
PREFER_OUTBOUND_IPV4, 216
PreJobPrio1 (Job ClassAd Attribute), 964
PreJobPrio2 (Job ClassAd Attribute), 964
preparation

job, 32
Prepare job

Fetch Hooks, 431
preserve_relative_paths

submit commands, 866
PreserveRelativeExecutable (Job ClassAd At-

tribute), 964
PreserveRelativePaths (Job ClassAd Attribute), 964
PRESKIP (htcondor.JobEventType attribute), 654
Print Format, 521
Print Formats, 527
printJson() (classad.ClassAd method), 623
printOld() (classad.ClassAd method), 623
priority

job, 67, 76
matchmaking, 330
negotiation, 330
preemption, 76, 330
submit commands, 100, 819, 857
user, 76

Priority (Accounting ClassAd Attribute), 946
PRIORITY command

DAG input file, 98
PRIORITY_HALFLIFE, 77, 283, 329, 332
PriorityFactor (Accounting ClassAd Attribute), 947
Priv (htcondor.LogLevel attribute), 656
PRIVATE_NETWORK_INTERFACE, 229, 419
PRIVATE_NETWORK_NAME, 227, 228, 419
proc (htcondor.JobEvent attribute), 653
PROCD_ADDRESS, 289
procd_ctl

HTCondor commands, 943
procd_ctl command, 943
PROCD_LOG, 289
PROCD_MAX_SNAPSHOT_INTERVAL, 289
ProcId (Job ClassAd Attribute), 964
procs() (htcondor.Submit method), 641
ProportionalSetSizeKb (Job ClassAd Attribute), 964
PROTECTED_JOB_ATTRS, 267
Protocol (htcondor.LogLevel attribute), 656
PROVISIONER command

DAG input file, 120
PROVISIONER node

DAGMan, 120
pslot preemption, 369
PslotRollupInformation (Machine ClassAd At-

tribute), 983
public_input_files

submit commands, 59

Index 1049

HTCondor Manual, Release 10.0.9

PublicNetworkIpAddr (ClassAd Attribute), 984
PublicNetworkIpAddr (Negotiator ClassAd Attribute),

995
PublicNetworkIpAddr (Scheduler ClassAd Attribute),

987
PUBLISH_OBITUARIES, 235
put() (htcondor.htchirp.HTChirp method), 660
putfile() (htcondor.htchirp.HTChirp method), 662
pvm = 4 (no longer used)

job ClassAd attribute definitions, 960
pvmd = 6 (no longer used)

job ClassAd attribute definitions, 960

Q
Q_QUERY_TIMEOUT, 213
QDate (Job ClassAd Attribute), 964
quantize()

ClassAd functions, 506
query() (htcondor.Collector method), 630
query() (htcondor.Schedd method), 633
query_password() (htcondor.Credd method), 646
QUERY_TIMEOUT, 278
query_user_cred() (htcondor.Credd method), 647
query_user_service_cred() (htcondor.Credd

method), 647
QueryIterator (class in htcondor), 638
QueryOpts (class in htcondor), 638
queue

submit commands, 35, 43, 49, 151, 154, 305, 850,
858, 889

queue() (htcondor.Submit method), 640
QUEUE_ALL_USERS_TRUSTED, 259
QUEUE_CLEAN_INTERVAL, 259, 441
QUEUE_SUPER_USER_MAY_IMPERSONATE, 259, 295
QUEUE_SUPER_USERS, 259
queue_with_itemdata() (htcondor.Submit method),

641
QueueItemsIterator (class in htcondor), 643
Quick (htcondor.DrainTypes attribute), 646
quotas

groups, 335
quote() (in module classad), 626

R
random()

ClassAd functions, 506
RANK, 239, 354, 467
rank

ClassAd attribute, 43, 517
submit commands, 43, 44, 859

rank attribute, 43
rank examples

ClassAd attribute, 44
RANK_FACTOR, 467

read() (htcondor.htchirp.HTChirp method), 661
readlink() (htcondor.htchirp.HTChirp method), 663
ReadUserLog, 679
ReadUserLog class

API, 679
READY (htcondor.personal.PersonalPoolState attribute),

678
real

UID, 409
real (RUP)

user priority, 329
real user priority (RUP), 329
real()

ClassAd functions, 505
RealUid (ClassAd Attribute), 984
RecentBlockReadKbytes (Job ClassAd Attribute), 964
RecentBlockReads (Job ClassAd Attribute), 964
RecentBlockWriteKbytes (Job ClassAd Attribute), 964
RecentBlockWrites (Job ClassAd Attribute), 964
RecentCancelsList (Defrag ClassAd Attribute), 996
RecentDaemonCoreDutyCycle (Scheduler ClassAd At-

tribute), 987
RecentDrainFailures (Defrag ClassAd Attribute), 996
RecentDrainsList (Defrag ClassAd Attribute), 996
RecentDrainSuccesses (Defrag ClassAd Attribute),

996
RecentDroppedQueries (ClassAd Collector Attribute),

997
RecentJobBusyTimeAvg (Machine ClassAd Attribute),

973
RecentJobBusyTimeCount (Machine ClassAd At-

tribute), 973
RecentJobBusyTimeMax (Machine ClassAd Attribute),

973
RecentJobBusyTimeMin (Machine ClassAd Attribute),

973
RecentJobDurationAvg (Machine ClassAd Attribute),

973
RecentJobDurationCount (Machine ClassAd At-

tribute), 973
RecentJobDurationMax (Machine ClassAd Attribute),

973
RecentJobDurationMin (Machine ClassAd Attribute),

973
RecentJobPreemptions (Machine ClassAd Attribute),

978
RecentJobRankPreemptions (Machine ClassAd At-

tribute), 978
RecentJobsAccumBadputTime (Scheduler ClassAd At-

tribute), 987
RecentJobsAccumRunningTime (Scheduler ClassAd

Attribute), 987
RecentJobsAccumTimeToStart (Scheduler ClassAd

Attribute), 987

1050 Index

HTCondor Manual, Release 10.0.9

RecentJobsBadputRuntimes (Scheduler ClassAd At-
tribute), 988

RecentJobsBadputSizes (Scheduler ClassAd At-
tribute), 988

RecentJobsCheckpointed (Scheduler ClassAd At-
tribute), 988

RecentJobsCompleted (Scheduler ClassAd Attribute),
988

RecentJobsCompletedRuntimes (Scheduler ClassAd
Attribute), 988

RecentJobsCompletedSizes (Scheduler ClassAd At-
tribute), 988

RecentJobsCoredumped (Scheduler ClassAd Attribute),
988

RecentJobsDebugLogError (Scheduler ClassAd At-
tribute), 988

RecentJobsExecFailed (Scheduler ClassAd Attribute),
988

RecentJobsExited (Scheduler ClassAd Attribute), 988
RecentJobsExitedAndClaimClosing (Scheduler

ClassAd Attribute), 988
RecentJobsExitedNormally (Scheduler ClassAd At-

tribute), 988
RecentJobsExitException (Scheduler ClassAd At-

tribute), 988
RecentJobsKilled (Scheduler ClassAd Attribute), 988
RecentJobsMissedDeferralTime (Scheduler ClassAd

Attribute), 988
RecentJobsNotStarted (Scheduler ClassAd Attribute),

988
RecentJobsShadowNoMemory (Scheduler ClassAd At-

tribute), 988
RecentJobsShouldHold (Scheduler ClassAd Attribute),

989
RecentJobsShouldRemove (Scheduler ClassAd At-

tribute), 989
RecentJobsShouldRequeue (Scheduler ClassAd At-

tribute), 989
RecentJobsStarted (Scheduler ClassAd Attribute), 989
RecentJobsSubmitted (Scheduler ClassAd Attribute),

989
RecentJobStarts (Machine ClassAd Attribute), 978
RecentJobUserPrioPreemptions (Machine ClassAd

Attribute), 978
RecentShadowsReconnections (Scheduler ClassAd

Attribute), 989
RecentShadowsRecycled (Scheduler ClassAd At-

tribute), 989
RecentShadowsStarted (Scheduler ClassAd Attribute),

989
RecentStatsLifetime (Defrag ClassAd Attribute), 996
RecentStatsLifetime (Scheduler ClassAd Attribute),

989
RecentStatsTickTime (Scheduler ClassAd Attribute),

989
RecentWindowMax (Scheduler ClassAd Attribute), 989
Reconfig (htcondor.DaemonCommands attribute), 657
reconfiguration

pool management, 185
refresh() (htcondor.RemoteParam method), 655
refreshGSIProxy() (htcondor.Schedd method), 636
regexp()

ClassAd functions, 512
regexpMember()

ClassAd functions, 512
regexps()

ClassAd functions, 512
register() (in module classad), 627
registerLibrary() (in module classad), 628
Release (htcondor.JobAction attribute), 637
release notes

Windows, 688
RELEASE_DIR, 208, 462
RELEASE_SPACE (htcondor.JobEventType attribute), 654
ReleaseReason (Job ClassAd Attribute), 964
reload_config() (in module htcondor), 655
relTime()

ClassAd functions, 505
REMOTE_ERROR (htcondor.JobEventType attribute), 654
remote_initialdir

submit commands, 885
REMOTE_PRIO_FACTOR, 283, 330
RemoteAutoregroup

ClassAd attribute, ephemeral, 331
RemoteAutoregroup (Machine ClassAd Attribute), 981
RemoteGroup

ClassAd attribute, ephemeral, 331
RemoteGroup (Machine ClassAd Attribute), 981
RemoteGroupQuota

ClassAd attribute, ephemeral, 331
RemoteGroupResourcesInUse

ClassAd attribute, ephemeral, 331
RemoteIwd (Job ClassAd Attribute), 964
RemoteNegotiatingGroup

ClassAd attribute, ephemeral, 331
RemoteNegotiatingGroup (Machine ClassAd At-

tribute), 981
RemoteOwner (Machine ClassAd Attribute), 981
RemoteParam (class in htcondor), 655
RemotePool (Job ClassAd Attribute), 964
RemoteSysCpu (Job ClassAd Attribute), 965
RemoteUser (Machine ClassAd Attribute), 981
RemoteUserCpu (Job ClassAd Attribute), 965
RemoteUserPrio

ClassAd attribute, ephemeral, 331
RemoteUserResourcesInUse

ClassAd attribute, ephemeral, 331
RemoteWallClockTime (Job ClassAd Attribute), 965

Index 1051

HTCondor Manual, Release 10.0.9

Remove (htcondor.JobAction attribute), 637
remove() (htcondor.htchirp.HTChirp method), 660
remove_children() (htcondor.dags.BaseNode

method), 670
remove_children() (htcondor.dags.Nodes method),

672
remove_kill_sig

submit commands, 877
remove_parents() (htcondor.dags.BaseNode method),

670
remove_parents() (htcondor.dags.Nodes method), 672
REMOVE_SIGNIFICANT_ATTRIBUTES, 265
REMOVED (htcondor.JobStatus attribute), 639
RemoveKillSig (Job ClassAd Attribute), 965
RemoveX (htcondor.JobAction attribute), 637
rename() (htcondor.htchirp.HTChirp method), 662
rendezvousdir

submit commands, 885
replace()

ClassAd functions, 512
replaceall()

ClassAd functions, 512
REPLICATION, 315
REPLICATION_ARGS, 315
REPLICATION_DEBUG, 316
REPLICATION_INTERVAL, 315
REPLICATION_LIST, 315
REPLICATION_LOG, 316
Reply to fetched work

Fetch Hooks, 430
request

resource, 20
REQUEST_CLAIM_TIMEOUT, 258
request_cpus

submit commands, 156, 275, 859
request_disk

submit commands, 275, 860
Request_GPUS

submit commands, 48
request_GPUs

submit commands, 861
request_gpus

submit commands, 860
request_id (htcondor.TokenRequest property), 649
request_memory

submit commands, 275, 860, 961
request_name

submit commands, 861
RequestCpus

required attributes, 429
RequestCpus (Job ClassAd Attribute), 965
RequestDisk

required attributes, 429
RequestDisk (Job ClassAd Attribute), 965

RequestedChroot (Job ClassAd Attribute), 965
RequestGPUs (Job ClassAd Attribute), 965
requesting GPUs for a job

GPUs, 48, 861
requesting OAuth credentials for a job

OAuth, 46
RequestMemory

required attributes, 429
RequestMemory (Job ClassAd Attribute), 965
Require_GPUS

submit commands, 48
require_gpus

submit commands, 860
REQUIRE_LOCAL_CONFIG_FILE, 209
Required attributes

Defining Applications, 429
required attributes

FetchWork, 429
RequireGPUs (Job ClassAd Attribute), 965
Requirements, 253

Job Router Routing Table ClassAd
attribute, 547

submit commands, 68, 154, 696
requirements

ClassAd attribute, 43, 517
submit commands, 43, 152, 435, 852, 860–862

Requirements (Machine ClassAd Attribute), 978
requirements attribute, 43, 517
reschedule() (htcondor.Schedd method), 636
rescue DAG

DAGMan, 124
rescue() (in module htcondor.dags), 676
RESERVE_SPACE (htcondor.JobEventType attribute), 654
RESERVED_DISK, 211, 971
RESERVED_MEMORY, 243
RESERVED_SWAP, 211
resetAllUsage() (htcondor.Negotiator method), 644
resetUsage() (htcondor.Negotiator method), 644
ResidentSetSize (Job ClassAd Attribute), 965
resource allocation

HTCondor, 141
resource limits, 476

cgroups, 477
resource limits with cgroups, 477
ResourcesUsed (Accounting ClassAd Attribute), 947
Restart (htcondor.DaemonCommands attribute), 657
restarting HTCondor

pool management, 184
RestartPeacful (htcondor.DaemonCommands at-

tribute), 657
result() (htcondor.TokenRequest method), 649
RetirementTimeRemaining (Machine ClassAd At-

tribute), 978
Retiring

1052 Index

HTCondor Manual, Release 10.0.9

machine activity, 345
retrieve() (htcondor.Schedd method), 636
RETRY command

DAG input file, 92
retry_until

submit commands, 868
retrying failed nodes

DAGMan, 92
rmall() (htcondor.htchirp.HTChirp method), 662
rmdir() (htcondor.htchirp.HTChirp method), 662
ROOSTER_INTERVAL, 317
ROOSTER_MAX_UNHIBERNATE, 317
ROOSTER_UNHIBERNATE, 317
ROOSTER_UNHIBERNATE_RANK, 317
ROOSTER_WAKEUP_CMD, 317
roots (htcondor.dags.DAG property), 666
ROTATE_HISTORY_DAILY, 264, 441
ROTATE_HISTORY_MONTHLY, 264, 441
round()

ClassAd functions, 506
RUN, 208
run_as_owner

submit commands, 689, 691, 849, 883, 885
run_command() (htcondor.personal.PersonalPool

method), 677
RUN_FILETRANSFER_PLUGINS_WITH_ROOT, 273
RunAsOwner, 411
RUNBENCHMARKS, 243, 348, 353
RUNNING (htcondor.JobStatus attribute), 639
running as root, 175

daemon, 175
running jobs as user nobody

security, 411
running MPI applications

parallel universe, 155
running multiple programs, 34
RunningJobs (Collector ClassAd Attribute), 999
RunningJobs (Submitter ClassAd Attribute), 995

S
s3_access_key_id_file

submit commands, 867
s3_secret_access_key_file

submit commands, 867
sameAs() (classad.ExprTree method), 625
sample configuration

High Availability, 451
sample configuration using pool password

security, 392
sample configuration using pool password

for startd advertisement
security, 392

SBIN, 208
SCHED_UNIV_RENICE_INCREMENT, 258

Schedd (class in htcondor), 632
Schedd (htcondor.AdTypes attribute), 632
Schedd (htcondor.DaemonTypes attribute), 631
schedd (htcondor.personal.PersonalPool property), 678
Schedd (htcondor.SubsystemType attribute), 658
Schedd Cron, 427, 437
SCHEDD_ADDRESS_FILE, 260
SCHEDD_ASSUME_NEGOTIATOR_GONE, 262
SCHEDD_ATTRS, 260
SCHEDD_AUDIT_LOG, 265, 441
SCHEDD_BACKUP_SPOOL, 263, 441
SCHEDD_CLUSTER_INCREMENT_VALUE, 264
SCHEDD_CLUSTER_INITIAL_VALUE, 264
SCHEDD_CLUSTER_MAXIMUM_VALUE, 264
SCHEDD_COLLECT_STATS_BY_<Name>, 264
SCHEDD_COLLECT_STATS_FOR_<Name>, 264
SCHEDD_CRON_<JobName>_ARGS, 322
SCHEDD_CRON_<JobName>_CWD, 322
SCHEDD_CRON_<JobName>_ENV, 322
SCHEDD_CRON_<JobName>_EXECUTABLE, 322
SCHEDD_CRON_<JobName>_JOB_LOAD, 322
SCHEDD_CRON_<JobName>_KILL, 322
SCHEDD_CRON_<JobName>_MODE, 323
SCHEDD_CRON_<JobName>_PERIOD, 324
SCHEDD_CRON_<JobName>_PREFIX, 324
SCHEDD_CRON_<JobName>_RECONFIG, 324
SCHEDD_CRON_<JobName>_RECONFIG_RERUN, 324
SCHEDD_CRON_CONFIG_VAL, 321
SCHEDD_CRON_JOBLIST, 321
SCHEDD_CRON_LOG_NON_ZERO_EXIT, 322
SCHEDD_CRON_MAX_JOB_LOAD, 321
SCHEDD_DEBUG, 260
SCHEDD_ENABLE_SSH_TO_JOB, 316
SCHEDD_EXECUTE, 260
SCHEDD_EXPIRE_STATS_BY_<Name>, 264
SCHEDD_HOST, 207, 208
SCHEDD_INTERVAL, 174, 257
SCHEDD_INTERVAL_TIMESLICE, 257
SCHEDD_JOB_QUEUE_LOG_FLUSH_DELAY, 264
SCHEDD_LOCK, 260
SCHEDD_MIN_INTERVAL, 257
SCHEDD_NAME, 207, 237, 260, 448
SCHEDD_PREEMPTION_RANK, 263, 467
SCHEDD_PREEMPTION_REQUIREMENTS, 263, 467
SCHEDD_QUERY_WORKERS, 256
SCHEDD_RESTART_REPORT, 267
SCHEDD_ROUND_ATTR_<xxxx>, 262
SCHEDD_SEND_RESCHEDULE, 265
SCHEDD_SEND_VACATE_VIA_TCP, 264
SCHEDD_SUPER_ADDRESS_FILE, 224
SCHEDD_USE_SLOT_WEIGHT, 265
SCHEDD_USES_STARTD_FOR_LOCAL_UNIVERSE, 254
ScheddIpAddr (Scheduler ClassAd Attribute), 989
ScheddIpAddr (Submitter ClassAd Attribute), 995

Index 1053

HTCondor Manual, Release 10.0.9

ScheddName (Submitter ClassAd Attribute), 995
scheduler

universe, 144
Scheduler (ClassAd Types), 946
scheduler = 7

job ClassAd attribute definitions, 960
Scheduler attributes

ClassAd, 984
scheduler universe, 144
SchedulerJobsIdle (Submitter ClassAd Attribute), 995
SchedulerJobsRunning (Submitter ClassAd Attribute),

995
SCITOKENS_FILE, 311
scitokens_file

submit commands, 534, 877
ScitokensFile (Job ClassAd Attribute), 965
scope, 296
scope of evaluation, MY.

ClassAd, 514
scope of evaluation, TARGET.

ClassAd, 514
ScratchDirFileCount (Job ClassAd Attribute), 966
Script (class in htcondor.dags), 674
SCRIPT command

DAG input file, 81
SEC_*_AUTHENTICATION, 305
SEC_*_AUTHENTICATION_METHODS, 306
SEC_*_CRYPTO_METHODS, 306
SEC_*_ENCRYPTION, 305
SEC_*_INTEGRITY, 305
SEC_*_NEGOTIATION, 305
SEC_<access-level>_SESSION_DURATION, 306
SEC_<access-level>_SESSION_LEASE, 307
SEC_ADMINISTRATOR_AUTHENTICATION, 386
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS, 387
SEC_ADMINISTRATOR_CRYPTO_METHODS, 398
SEC_ADMINISTRATOR_ENCRYPTION, 397
SEC_ADMINISTRATOR_INTEGRITY, 399
SEC_ADVERTISE_MASTER_AUTHENTICATION, 386
SEC_ADVERTISE_MASTER_AUTHENTICATION_METHODS,

387
SEC_ADVERTISE_MASTER_CRYPTO_METHODS, 398
SEC_ADVERTISE_MASTER_ENCRYPTION, 397
SEC_ADVERTISE_MASTER_INTEGRITY, 399
SEC_ADVERTISE_SCHEDD_AUTHENTICATION, 386
SEC_ADVERTISE_SCHEDD_AUTHENTICATION_METHODS,

387
SEC_ADVERTISE_SCHEDD_CRYPTO_METHODS, 398
SEC_ADVERTISE_SCHEDD_ENCRYPTION, 397
SEC_ADVERTISE_SCHEDD_INTEGRITY, 399
SEC_ADVERTISE_STARTD_AUTHENTICATION, 386
SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS,

387
SEC_ADVERTISE_STARTD_CRYPTO_METHODS, 398

SEC_ADVERTISE_STARTD_ENCRYPTION, 397
SEC_ADVERTISE_STARTD_INTEGRITY, 399
SEC_CLIENT_AUTHENTICATION, 386
SEC_CLIENT_AUTHENTICATION_METHODS, 387
SEC_CLIENT_CRYPTO_METHODS, 398
SEC_CLIENT_ENCRYPTION, 397
SEC_CLIENT_INTEGRITY, 399
SEC_CONFIG_AUTHENTICATION, 386
SEC_CONFIG_AUTHENTICATION_METHODS, 387
SEC_CONFIG_CRYPTO_METHODS, 398
SEC_CONFIG_ENCRYPTION, 397
SEC_CONFIG_INTEGRITY, 399
SEC_CREDENTIAL_DIRECTORY_KRB, 311
SEC_CREDENTIAL_DIRECTORY_OAUTH, 311
SEC_CREDENTIAL_PRODUCER, 311
SEC_CREDENTIAL_STORER, 311
SEC_CREDENTIAL_SWEEP_DELAY, 311
SEC_DAEMON_AUTHENTICATION, 386
SEC_DAEMON_AUTHENTICATION_METHODS, 387
SEC_DAEMON_CRYPTO_METHODS, 398
SEC_DAEMON_ENCRYPTION, 397
SEC_DAEMON_INTEGRITY, 399
SEC_DEFAULT_AUTHENTICATION, 386
SEC_DEFAULT_AUTHENTICATION_METHODS, 387
SEC_DEFAULT_AUTHENTICATION_TIMEOUT, 308
SEC_DEFAULT_CRYPTO_METHODS, 398
SEC_DEFAULT_ENCRYPTION, 397
SEC_DEFAULT_INTEGRITY, 399
SEC_DEFAULT_SESSION_LEASE, 307
SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION,

310, 402
SEC_ENABLE_REMOTE_ADMINISTRATION, 310
SEC_INVALIDATE_SESSIONS_VIA_TCP, 307
SEC_NEGOTIATOR_AUTHENTICATION, 386
SEC_NEGOTIATOR_AUTHENTICATION_METHODS, 387
SEC_NEGOTIATOR_CRYPTO_METHODS, 398
SEC_NEGOTIATOR_ENCRYPTION, 397
SEC_NEGOTIATOR_INTEGRITY, 399
SEC_PASSWORD_DIRECTORY, 308
SEC_PASSWORD_FILE, 308, 391
SEC_READ_AUTHENTICATION, 386
SEC_READ_AUTHENTICATION_METHODS, 387
SEC_READ_CRYPTO_METHODS, 398
SEC_READ_ENCRYPTION, 397
SEC_READ_INTEGRITY, 399
SEC_SYSTEM_KNOWN_HOSTS, 310, 389
SEC_TCP_SESSION_DEADLINE, 307
SEC_TCP_SESSION_TIMEOUT, 307
SEC_TOKEN_DIRECTORY, 308
SEC_TOKEN_FETCH_ALLOWED_SIGNING_KEYS, 308
SEC_TOKEN_ISSUER_KEY, 308
SEC_TOKEN_POOL_SIGNING_KEY_FILE, 308
SEC_TOKEN_REQUEST_LIMITS, 308
SEC_TOKEN_REVOCATION_EXPR, 308

1054 Index

HTCondor Manual, Release 10.0.9

SEC_TOKEN_SYSTEM_DIRECTORY, 308
SEC_USE_FAMILY_SESSION, 310
SEC_WRITE_AUTHENTICATION, 386
SEC_WRITE_AUTHENTICATION_METHODS, 387
SEC_WRITE_CRYPTO_METHODS, 398
SEC_WRITE_ENCRYPTION, 397
SEC_WRITE_INTEGRITY, 399
SecMan (class in htcondor), 648
Security (htcondor.LogLevel attribute), 656
security configuration variables

configuration, 305
see Daemon ClassAd Hooks

Schedd Cron functionality, 437
Startd Cron functionality, 437

select() (htcondor.dags.DAG method), 667
SelectWaittime (ClassAd Attribute), 1001
Self-Checkpointing, 164
send_alive() (in module htcondor), 657
send_command() (in module htcondor), 657
SendIDTokens

Job Router Routing Table attribute, 548
sending updates

TCP, 422
SENDMAIL, 211
Server

HTCondorView, 464
ServerTime (Job ClassAd Attribute), 966
SERVICE command

DAG input file, 122
SERVICE node

DAGMan, 122
sessions, 404

security, 404
set up

docker universe, 483
set up for the docker universe

universe, 483
set up for the vm universe

universe, 481
SET_JOB_ATTR command

DAG input file, 102
set_job_attr() (htcondor.htchirp.HTChirp method),

660
set_job_attr_delayed() (htcondor.htchirp.HTChirp

method), 661
set_subsystem() (in module htcondor), 658
setBeginUsage() (htcondor.Negotiator method), 644
setCeiling() (htcondor.Negotiator method), 644
SetCondorConfig (class in htcondor.personal), 678
setConfig() (htcondor.SecMan method), 648
SetDirty (htcondor.TransactionFlags attribute), 638
setFactor() (htcondor.Negotiator method), 645
SetForceShutdown (htcondor.DaemonCommands at-

tribute), 657

setLastUsage() (htcondor.Negotiator method), 644
SetPeacefulShutdown (htcondor.DaemonCommands

attribute), 657
setPoolPassword() (htcondor.SecMan method), 648
setPriority() (htcondor.Negotiator method), 645
setQArgs() (htcondor.Submit method), 642
setSubmitMethod() (htcondor.Submit method), 642
SETTABLE_ATTRS_<PERMISSION-LEVEL>, 224
SETTABLE_ATTRS_ADMINISTRATOR, 408
SETTABLE_ATTRS_CONFIG, 202, 224, 408
SETTABLE_ATTRS_WRITE, 408
setTag() (htcondor.SecMan method), 649
setting ClassAd attributes in a DAG

DAGMan, 102
setting, for a job

environment variables, 854
setToken() (htcondor.SecMan method), 649
setUsage() (htcondor.Negotiator method), 645
SHADOW, 253
Shadow (htcondor.SubsystemType attribute), 658
SHADOW_CHECKPROXY_INTERVAL, 269, 306
SHADOW_DEBUG, 268
SHADOW_EXCEPTION (htcondor.JobEventType attribute),

653
SHADOW_JOB_CLEANUP_RETRY_DELAY, 269
SHADOW_LAZY_QUEUE_UPDATE, 268
SHADOW_LOCK, 268
SHADOW_MAX_JOB_CLEANUP_RETRIES, 269
SHADOW_QUEUE_UPDATE_INTERVAL, 268
SHADOW_RENICE_INCREMENT, 258
SHADOW_RUN_UNKNOWN_USER_JOBS, 269
SHADOW_SIZE_ESTIMATE, 211, 258
SHADOW_STATS_LOG, 221, 269
SHADOW_WORKLIFE, 268
ShadowsReconnections (Scheduler ClassAd Attribute),

989
ShadowsRecycled (Scheduler ClassAd Attribute), 989
ShadowsRunning (Scheduler ClassAd Attribute), 989
ShadowsRunningPeak (Scheduler ClassAd Attribute),

989
ShadowsStarted (Scheduler ClassAd Attribute), 989
shared file system configuration variables

configuration, 231
shared functionality in daemons

HTCondor, 425
SHARED_PORT, 228, 418
SHARED_PORT_ARGS, 319
SHARED_PORT_AUDIT_LOG, 318, 319, 441
SHARED_PORT_DAEMON_AD_FILE, 318
SHARED_PORT_DEFAULT_ID, 228
SHARED_PORT_MAX_WORKERS, 318
SHARED_PORT_PORT, 318
SharedPort (htcondor.SubsystemType attribute), 658
SharedX509UserProxy

Index 1055

HTCondor Manual, Release 10.0.9

Job Router Routing Table ClassAd
attribute, 548

SHELL, 833
should_transfer_files

submit commands, 52, 60, 155, 276, 863
ShouldLog (htcondor.TransactionFlags attribute), 638
SHUTDOWN_FAST_TIMEOUT, 235
SHUTDOWN_GRACEFUL_TIMEOUT, 224, 241
shutting down HTCondor

pool management, 184
SIGN_S3_URLS, 217
signal-number

submit commands, 877, 883
SignalRuntime (ClassAd Attribute), 1001
Signals (ClassAd Attribute), 1001
SIGNIFICANT_ATTRIBUTES, 265, 333
SimpleFormatter (class in htcondor.dags), 675
simplify() (classad.ExprTree method), 625
single submission of multiple, independent

DAGs
DAGMan, 103

SINGULARITY, 274
Singularity, 485

installation, 485
SINGULARITY_BIND_EXPR, 275
SINGULARITY_EXTRA_ARGUMENTS, 275
SINGULARITY_IGNORE_MISSING_BIND_TARGET, 275
SINGULARITY_IMAGE_EXPR, 274
SINGULARITY_JOB, 274
SINGULARITY_TARGET_DIR, 274
SingularityVersion (Machine ClassAd Attribute), 978
size()

ClassAd functions, 509
skip_filechecks

submit commands, 863
SKIP_WINDOWS_LOGON_NETWORK, 290
skipping node execution

DAGMan, 85
Slicer (class in htcondor.dags), 673
Slot_RemoteUserPrio

ClassAd attribute, ephemeral, 331
SLOT_TYPE_<N>, 247
SLOT_TYPE_<N>_PARTITIONABLE, 247
SLOT_TYPE_<N>_PARTITIONABLE, 368
SLOT_WEIGHT, 249, 372
SLOT<N>_CPU_AFFINITY, 273
SLOT<N>_EXECUTE, 209
SLOT<N>_JOB_HOOK_KEYWORD, 319
SLOT<N>_USER, 232
SLOT<N>_EXECUTE, 361
SLOT<N>_JOB_HOOK_KEYWORD, 433
SLOT<N>_USER, 412
SlotID (Machine ClassAd Attribute), 978
SLOTS_CONNECTED_TO_CONSOLE, 246, 364, 971

SLOTS_CONNECTED_TO_KEYBOARD, 246, 364, 974
SlotType (Machine ClassAd Attribute), 979
SlotWeight, 288
SlotWeight (Machine ClassAd Attribute), 979
SLOW_CKPT_SPEED, 269
SMP machines

configuration, 364
SMTP_SERVER, 211
SOCKET_LISTEN_BACKLOG, 226
SocketRuntime (ClassAd Attribute), 1001
SockMessages (ClassAd Attribute), 1001
SOFT_UID_DOMAIN, 232, 410
SPLICE command

DAG input file, 109
splicing DAGs

DAGMan, 109
split()

ClassAd functions, 509
splitSlotName()

ClassAd functions, 509
splitUserName()

ClassAd functions, 509
SPOOL, 208
spool() (htcondor.Schedd method), 636
SSH_TO_JOB_<SSH-CLIENT>_CMD, 316
SSH_TO_JOB_SSH_KEYGEN, 317
SSH_TO_JOB_SSH_KEYGEN_ARGS, 317
SSH_TO_JOB_SSHD, 316
SSH_TO_JOB_SSHD_ARGS, 317
SSH_TO_JOB_SSHD_CONFIG_TEMPLATE, 317
SSL

authentication, 388
SSL_SKIP_HOST_CHECK, 306, 309
stack_size

submit commands, 885
StackSize (Job ClassAd Attribute), 966
StageOutFinish (Job ClassAd Attribute), 966
StageOutStart (Job ClassAd Attribute), 966
standard = 1

job ClassAd attribute definitions, 960
START, 238, 246, 325, 339, 353, 373, 467
start() (htcondor.personal.PersonalPool method), 678
START_BACKFILL, 246, 348, 354, 469
START_DAEMONS, 235
START_LOCAL_UNIVERSE, 253, 990
START_MASTER, 235
START_SCHEDULER_UNIVERSE, 253, 990
Startd (class in htcondor), 645
Startd (htcondor.AdTypes attribute), 632
Startd (htcondor.DaemonTypes attribute), 631
Startd (htcondor.SubsystemType attribute), 658
Startd Cron, 427, 437
STARTD_AD_REEVAL_EXPR, 286
STARTD_ADDRESS_FILE, 242

1056 Index

HTCondor Manual, Release 10.0.9

STARTD_ATTRS, 242, 367, 468
STARTD_CLAIM_ID_FILE, 242
STARTD_CRON_<JobName>_ARGS, 322
STARTD_CRON_<JobName>_CONDITION, 322
STARTD_CRON_<JobName>_CWD, 322
STARTD_CRON_<JobName>_ENV, 322
STARTD_CRON_<JobName>_EXECUTABLE, 322
STARTD_CRON_<JobName>_JOB_LOAD, 322
STARTD_CRON_<JobName>_KILL, 322
STARTD_CRON_<JobName>_METRICS, 322
STARTD_CRON_<JobName>_MODE, 323
STARTD_CRON_<JobName>_PERIOD, 324
STARTD_CRON_<JobName>_PREFIX, 324
STARTD_CRON_<JobName>_RECONFIG, 324
STARTD_CRON_<JobName>_RECONFIG_RERUN, 324
STARTD_CRON_<JobName>_SLOTS, 325
STARTD_CRON_AUTOPUBLISH, 321
STARTD_CRON_CONFIG_VAL, 321
STARTD_CRON_JOBLIST, 321
STARTD_CRON_LOG_NON_ZERO_EXIT, 322
STARTD_CRON_MAX_JOB_LOAD, 321
STARTD_DEBUG, 242
STARTD_ENFORCE_DISK_LIMITS, 245
STARTD_ENFORCE_DISK_USAGE, 253
STARTD_HAS_BAD_UTMP, 241
STARTD_HISTORY, 240
STARTD_JOB_ATTRS, 242, 284
STARTD_JOB_HOOK_KEYWORD, 319, 433
STARTD_NAME, 243
STARTD_NOCLAIM_SHUTDOWN, 243, 567
STARTD_PARTITIONABLE_SLOT_ATTRS, 240
STARTD_PRINT_ADS_FILTER, 242
STARTD_PRINT_ADS_ON_SHUTDOWN, 242
STARTD_PUBLISH_DOTNET, 250
STARTD_PUBLISH_WINREG, 243
STARTD_RESOURCE_PREFIX, 246
STARTD_SENDS_ALIVES, 258
STARTD_SHOULD_WRITE_CLAIM_ID_FILE, 242
STARTD_SLOT_ATTRS, 246
STARTD_VM_ATTRS, 246
StartdAds (Collector ClassAd Attribute), 999
StartdAdsPeak (Collector ClassAd Attribute), 999
StartdIpAddr (Machine ClassAd Attribute), 979
StartdPrivate (htcondor.AdTypes attribute), 632
STARTER, 240
Starter (htcondor.SubsystemType attribute), 658
Starter pre and post scripts, 962
STARTER_ALLOW_RUNAS_OWNER, 232, 411, 412, 474
STARTER_DEBUG, 270
STARTER_INITIAL_UPDATE_INTERVAL, 431
STARTER_JOB_ENVIRONMENT, 272
STARTER_JOB_HOOK_KEYWORD, 433
STARTER_LOCAL, 253
STARTER_LOCAL_LOGGING, 270

STARTER_LOG_NAME_APPEND, 270
STARTER_NUM_THREADS_ENV_VARS, 270
STARTER_RLIMIT_AS, 274
STARTER_STATS_LOG, 221, 274
STARTER_UPDATE_INTERVAL, 270, 431
STARTER_UPDATE_INTERVAL_MAX, 271
STARTER_UPDATE_INTERVAL_TIMESLICE, 271
STARTER_UPLOAD_TIMEOUT, 272
StarterUserLog

optional attributes, 430
StarterUserLogUseXML

optional attributes, 430
STARTING (htcondor.personal.PersonalPoolState at-

tribute), 678
starting and stopping a job

Windows, 692
StartLocalUniverse (Scheduler ClassAd Attribute),

990
StartSchedulerUniverse (Scheduler ClassAd At-

tribute), 990
stat() (htcondor.htchirp.HTChirp method), 663
state

job, 64, 66, 959
state (htcondor.personal.PersonalPool property), 678
State (Machine ClassAd Attribute), 979
state and activities figure, 345
STATE_FILE, 315
statfs() (htcondor.htchirp.HTChirp method), 664
STATISTICS_TO_PUBLISH, 214, 327, 991, 992
STATISTICS_TO_PUBLISH_LIST, 215
STATISTICS_WINDOW_QUANTUM, 215
STATISTICS_WINDOW_QUANTUM_<collection>, 216
STATISTICS_WINDOW_SECONDS, 215, 989
STATISTICS_WINDOW_SECONDS_<collection>, 215
StatsLastUpdateTime (Scheduler ClassAd Attribute),

990
StatsLifetime (Scheduler ClassAd Attribute), 990
Status (htcondor.LogLevel attribute), 656
stop() (htcondor.personal.PersonalPool method), 678
STOPPED (htcondor.personal.PersonalPoolState at-

tribute), 678
STOPPING (htcondor.personal.PersonalPoolState at-

tribute), 678
strcat()

ClassAd functions, 507
strcmp()

ClassAd functions, 508
stream_error

submit commands, 863
stream_input

submit commands, 864
stream_output

submit commands, 864
StreamErr (Job ClassAd Attribute), 966

Index 1057

HTCondor Manual, Release 10.0.9

StreamOut (Job ClassAd Attribute), 966
stricmp()

ClassAd functions, 508
STRICT_CLASSAD_EVALUATION, 214, 501
string SUBSTR(string s, integer offset[,

integer length]), 747
string()

ClassAd functions, 505
stringList_regexpMember()

ClassAd functions, 513
stringListAvg()

ClassAd functions, 511
stringListIMember()

ClassAd functions, 512
stringListMax()

ClassAd functions, 511
stringListMember()

ClassAd functions, 511
stringListMin()

ClassAd functions, 511
stringListsIntersect()

ClassAd functions, 512
stringListSize()

ClassAd functions, 511
stringListSum()

ClassAd functions, 511
sub, 296
SubDAG (class in htcondor.dags), 670
SUBDAG command

DAG input file, 105
subdag() (htcondor.dags.DAG method), 667
subdividing slots

slots, 368
submission of jobs

shared file system, 45
submission of jobs without one

shared file system, 52
submission using a shared file system

job, 45
submission without a shared file system

job, 52
submit

machine, 182
Submit (class in htcondor), 640
SUBMIT (htcondor.JobEventType attribute), 653
Submit (htcondor.SubsystemType attribute), 658
submit commands, 852
submit commands specific to Xen

vm universe, 158
submit description

file, 33
submit description file, 33
submit machine, 182
submit requirements, 375

submit warnings, 376
submit() (htcondor.Schedd method), 635
submit() (htcondor.TokenRequest method), 649
SUBMIT_ALLOW_GETENV, 277
SUBMIT_ATTRS, 276, 412, 477
SUBMIT_DEFAULT_SHOULD_TRANSFER_FILES, 276
submit_event_notes

submit commands, 885
SUBMIT_GENERATE_CUSTOM_RESOURCE_REQUIREMENTS,

276
SUBMIT_MAX_PROCS_IN_CLUSTER, 277
SUBMIT_REQUIREMENT_<Name>, 267
SUBMIT_REQUIREMENT_<Name>_REASON, 267
SUBMIT_REQUIREMENT_<Name>_IS_WARNING, 376
SUBMIT_REQUIREMENT_<Name>_REASON, 375
SUBMIT_REQUIREMENT_NAMES, 267, 375
SUBMIT_SEND_RESCHEDULE, 276
SUBMIT_SKIP_FILECHECKS, 276
SUBMIT_TEMPLATE_<Name>, 266
SUBMIT_TEMPLATE_NAMES, 266
submitMany() (htcondor.Schedd method), 635
SubmitResult (class in htcondor), 643
SubmitsAllowed (Grid ClassAd Attribute), 997
SubmitsWanted (Grid ClassAd Attribute), 997
Submitter (ClassAd Types), 946
Submitter (htcondor.AdTypes attribute), 632
submitter attributes

ClassAd, 995
SubmitterAds (Collector ClassAd Attribute), 999
SubmitterAdsPeak (Collector ClassAd Attribute), 999
SubmitterAutoregroup

ClassAd attribute, ephemeral, 331
SubmitterAutoregroup (Job ClassAd Attribute), 966
SubmitterGlobalJobId (Job ClassAd Attribute), 966
SubmitterGroup

ClassAd attribute, ephemeral, 331
SubmitterGroup (Job ClassAd Attribute), 966
SubmitterGroupQuota

ClassAd attribute, ephemeral, 331
SubmitterGroupResourcesInUse

ClassAd attribute, ephemeral, 331
SubmitterLimit (Accounting ClassAd Attribute), 947
SubmitterNegotiatingGroup

ClassAd attribute, ephemeral, 331
SubmitterNegotiatingGroup (Job ClassAd Attribute),

966
SubmitterShare (Accounting ClassAd Attribute), 947
SubmitterTag (Submitter ClassAd Attribute), 995
SubmitterUserPrio

ClassAd attribute, ephemeral, 331
SubmitterUserResourcesInUse

ClassAd attribute, ephemeral, 331
submitting

job, 33

1058 Index

HTCondor Manual, Release 10.0.9

submitting a job to
heterogeneous pool, 176

submitting jobs to ARC CE
grid computing, 534

submitting jobs to Azure
grid computing, 542

submitting jobs to GCE
grid computing, 541

submitting jobs using the EC2 Query API
grid computing, 537

SubSecond (htcondor.LogLevel attribute), 656
substr()

ClassAd functions, 507
SUBSYSTEM, 199
subsystem names, 199

configuration file, 199
macro, 199

SubsystemType (class in htcondor), 658
success_exit_code

submit commands, 868
SuccessCheckpointExitBySignal (Job ClassAd At-

tribute), 966
SuccessCheckpointExitCode (Job ClassAd Attribute),

966
SuccessCheckpointExitSignal (Job ClassAd At-

tribute), 966
SuccessPostExitBySignal (Job ClassAd Attribute),

966
SuccessPostExitCode (Job ClassAd Attribute), 966
SuccessPostExitSignal (Job ClassAd Attribute), 967
SuccessPreExitBySignal (Job ClassAd Attribute), 966
SuccessPreExitCode (Job ClassAd Attribute), 966
SuccessPreExitSignal (Job ClassAd Attribute), 966
sum()

ClassAd functions, 507
SummaryOnly (htcondor.QueryOpts attribute), 638
supported platforms, 21
SUSPEND, 238, 353
Suspend (htcondor.JobAction attribute), 637
Suspended

machine activity, 345
SUSPENDED (htcondor.JobStatus attribute), 639
suspending a running DAG

DAGMan, 91
suspending jobs instead of evicting them

policy, 358
symlink() (htcondor.htchirp.HTChirp method), 663
symmetricMatch() (classad.ClassAd method), 623
SYSAPI_GET_LOADAVG, 213
SYSTEM_IMMUTABLE_JOB_ATTRS, 267
SYSTEM_JOB_MACHINE_ATTRS, 259, 260, 882, 949
SYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH, 259,

260
SYSTEM_PERIODIC_HOLD, 955

SYSTEM_PERIODIC_HOLD and
SYSTEM_PERIODIC_HOLD_<Name>, 261

SYSTEM_PERIODIC_HOLD_NAMES, 261
SYSTEM_PERIODIC_HOLD_REASON and

SYSTEM_PERIODIC_HOLD_<Name>_REASON,
261

SYSTEM_PERIODIC_HOLD_SUBCODE and
SYSTEM_PERIODIC_HOLD_<Name>_SUBCODE,
261

SYSTEM_PERIODIC_RELEASE and
SYSTEM_PERIODIC_RELEASE_<Name>, 262

SYSTEM_PERIODIC_RELEASE_NAMES, 262
SYSTEM_PERIODIC_REMOVE and

SYSTEM_PERIODIC_REMOVE_<Name>, 262
SYSTEM_PERIODIC_REMOVE_NAMES, 262
SYSTEM_PROTECTED_JOB_ATTRS, 267
SYSTEM_VALID_SPOOL_FILES, 277, 800

T
tag() (htcondor.QueryIterator method), 638
TARGET., ClassAd scope resolution prefix, 514
TargetType (Machine ClassAd Attribute), 979
TargetUniverse

Job Router Routing Table ClassAd
attribute, 550

TCP, 422
TCP_FORWARDING_HOST, 228, 229, 567
TCP_KEEPALIVE_INTERVAL, 216
TCP_UPDATE_COLLECTORS, 230, 423
TEMP_DIR, 209
termination, job, 69
Terse (htcondor.LogLevel attribute), 656
test job

policy, 356
THINPOOL_BACKING_FILE, 245
THINPOOL_HIDE_MOUNT, 245
THINPOOL_NAME, 245, 253
THINPOOL_VOLUME_GROUP_NAME, 245, 253
throttling

DAGMan, 88
throttling nodes by category

DAGMan, 100
TILDE, 199
time of day

policy, 356
time()

ClassAd functions, 509
TimerRuntime (ClassAd Attribute), 1001
TimersFired (ClassAd Attribute), 1001
timestamp (htcondor.JobEvent attribute), 653
Timestamp (htcondor.LogLevel attribute), 656
TMP_DIR, 209
to execute at a specific time

scheduling jobs, 169

Index 1059

HTCondor Manual, Release 10.0.9

to execute periodically
scheduling jobs, 171

to use GPUs
configuration, 366

ToE (Job ClassAd Attribute), 967
Token (class in htcondor), 649
TokenRequest (class in htcondor), 649
toLower()

ClassAd functions, 508
Tool (htcondor.SubsystemType attribute), 658
TOOL_DEBUG, 222
Total<name> (Machine ClassAd Attribute), 982
TotalClaimRunTime (Machine ClassAd Attribute), 981
TotalClaimSuspendTime (Machine ClassAd Attribute),

981
TotalCondorLoadAvg

ClassAd machine attribute, 365
TotalCondorLoadAvg (Machine ClassAd Attribute), 979
TotalCpus (Machine ClassAd Attribute), 979
TotalDisk (Machine ClassAd Attribute), 979
TotalFlockedJobs (Scheduler ClassAd Attribute), 990
TotalHeldJobs (Scheduler ClassAd Attribute), 990
TotalIdleJobs (Scheduler ClassAd Attribute), 990
TotalJobAds (Scheduler ClassAd Attribute), 990
TotalJobRunTime (Machine ClassAd Attribute), 981
TotalJobSuspendTime (Machine ClassAd Attribute),

981
TotalLoadAvg

ClassAd machine attribute, 365
TotalLoadAvg (Machine ClassAd Attribute), 979
TotalLocalJobsIdle (Scheduler ClassAd Attribute),

990
TotalLocalJobsRunning (Scheduler ClassAd At-

tribute), 990
TotalMachineDrainingBadput (Machine ClassAd At-

tribute), 979
TotalMachineDrainingUnclaimedTime (Machine

ClassAd Attribute), 979
TotalMemory (Machine ClassAd Attribute), 979
TotalRemovedJobs (Scheduler ClassAd Attribute), 990
TotalRunningJobs (Scheduler ClassAd Attribute), 990
TotalSchedulerJobsIdle (Scheduler ClassAd At-

tribute), 990
TotalSchedulerJobsRunning (Scheduler ClassAd At-

tribute), 990
TotalSlotCpus (Machine ClassAd Attribute), 979
TotalSlotDisk (Machine ClassAd Attribute), 979
TotalSlotMemory (Machine ClassAd Attribute), 980
TotalSlots (Machine ClassAd Attribute), 980
TotalSuspensions (Job ClassAd Attribute), 967
TotalTimeBackfillBusy (Machine ClassAd Attribute),

980
TotalTimeBackfillIdle (Machine ClassAd Attribute),

980

TotalTimeBackfillKilling (Machine ClassAd At-
tribute), 980

TotalTimeClaimedBusy (Machine ClassAd Attribute),
980

TotalTimeClaimedIdle (Machine ClassAd Attribute),
980

TotalTimeClaimedRetiring (Machine ClassAd At-
tribute), 980

TotalTimeClaimedSuspended (Machine ClassAd At-
tribute), 980

TotalTimeMatchedIdle (Machine ClassAd Attribute),
980

TotalTimeOwnerIdle (Machine ClassAd Attribute), 980
TotalTimePreemptingKilling (Machine ClassAd At-

tribute), 980
TotalTimePreemptingVacating (Machine ClassAd

Attribute), 980
TotalTimeUnclaimedBenchmarking (Machine Clas-

sAd Attribute), 980
TotalTimeUnclaimedIdle (Machine ClassAd At-

tribute), 980
TOUCH_LOG_INTERVAL, 219, 440
toUpper()

ClassAd functions, 508
transaction() (htcondor.Schedd method), 632
TransactionFlags (class in htcondor), 637
transfer_checkpoint_files

submit commands, 866
transfer_error

submit commands, 876
transfer_executable

submit commands, 49, 864
transfer_input

submit commands, 876
transfer_input_files

submit commands, 53, 55–57, 59, 60, 147, 155,
156, 158, 276, 456, 457, 851, 861–864, 876, 963

TRANSFER_IO_REPORT_INTERVAL, 256
TRANSFER_IO_REPORT_TIMESPANS, 256, 990–992
transfer_output

submit commands, 876
transfer_output_files

submit commands, 52–55, 276, 456, 544, 693, 851,
862, 863, 865, 876

transfer_output_remaps
submit commands, 55, 866

transfer_plugins
submit commands, 866

TRANSFER_QUEUE_USER_EXPR, 256, 990, 991
TransferCheckpoint (Job ClassAd Attribute), 967
TransferContainer (Job ClassAd Attribute), 967
TRANSFERER, 316
TRANSFERER_DEBUG, 316
TRANSFERER_LOG, 316

1060 Index

HTCondor Manual, Release 10.0.9

TransferErr (Job ClassAd Attribute), 967
TransferExecutable (Job ClassAd Attribute), 967
TransferIn (Job ClassAd Attribute), 967
TransferInFinished (Job ClassAd Attribute), 967
TransferInput (Job ClassAd Attribute), 967
TransferInputSizeMB (Job ClassAd Attribute), 967
TransferInQueued (Job ClassAd Attribute), 967
TransferInStarted (Job ClassAd Attribute), 967
TransferOut (Job ClassAd Attribute), 967
TransferOutFinished (Job ClassAd Attribute), 967
TransferOutput (Job ClassAd Attribute), 967
TransferOutQueued (Job ClassAd Attribute), 967
TransferOutStarted (Job ClassAd Attribute), 967
TransferPlugins (Job ClassAd Attribute), 968
TransferQueued (Job ClassAd Attribute), 968
TransferQueueMBWaitingToDownload (Scheduler

ClassAd Attribute), 992
TransferQueueMBWaitingToUpload (Scheduler Clas-

sAd Attribute), 993
TransferQueueNumWaitingToDownload (Scheduler

ClassAd Attribute), 993
TransferQueueNumWaitingToUpload (Scheduler

ClassAd Attribute), 993
TransferQueueUserExpr (Scheduler ClassAd At-

tribute), 990
transferring files, 52
TRANSFERRING_OUTPUT (htcondor.JobStatus attribute),

639
TransferringInput (Job ClassAd Attribute), 968
TransferringOutput (Job ClassAd Attribute), 968
transforms, 520, 521
transitions

activity, 345, 354
machine activity, 345, 354
machine state, 345, 354
state, 345, 354

transitions summary
activity, 353
machine activity, 353
machine state, 353
state, 353

Translate Job
Job Router Hooks, 436

TRUNC_<SUBSYS>_<LEVEL>_LOG_ON_OPEN, 222
TRUNC_<SUBSYS>_LOG_ON_OPEN, 218
TRUNC_<SUBSYS>_LOG_ON_OPEN, 222, 440
truncate() (htcondor.htchirp.HTChirp method), 664
TRUST_DOMAIN, 308
TRUST_DOMAIN_CAFILE, 309, 389
TRUST_DOMAIN_CAKEY, 309, 389
TRUST_LOCAL_UID_DOMAIN, 231
TRUST_UID_DOMAIN, 231
type (htcondor.JobEvent attribute), 653

U
UDP, 422
UDP_LOOPBACK_FRAGMENT_SIZE, 230
UDP_NETWORK_FRAGMENT_SIZE, 230
UID_DOMAIN, 200, 231, 410, 857
UidDomain (Machine ClassAd Attribute), 980
UIDs in HTCondor, 409
ulog() (htcondor.htchirp.HTChirp method), 661
UNAME_ARCH, 200
UNAME_OPSYS, 200
unattended install

installation, 493
unauthenticated, 397, 402
Unclaimed

machine activity, 344
machine state, 341, 348

unclaimed state, 341, 348
Undefined (classad.Value attribute), 626
under the dedicated scheduler

MPI application, 465
unexport_jobs() (htcondor.Schedd method), 637
UNHIBERNATE, 251, 317, 490
Unhibernate (Machine ClassAd Attribute), 982
unified map file

authentication, 396
security, 396

UNINITIALIZED (htcondor.personal.PersonalPoolState
attribute), 678

UNIVERSE
Job Router Routing Table command, 548

universe, 143
HTCondor, 143
job, 960
submit commands, 49, 135, 143, 529, 533, 852,

858, 990
Unix signals

daemoncore, 426
unlink() (htcondor.htchirp.HTChirp method), 662
unmapped, 397
unparse()

ClassAd functions, 503
unquote() (in module classad), 627
Update Job Info

Job Router Hooks, 436
Update job info

Fetch Hooks, 431
UPDATE_COLLECTOR_WITH_TCP, 230, 422
UPDATE_INTERVAL, 240, 321, 347, 445
UPDATE_OFFSET, 240
UPDATE_VIEW_COLLECTOR_WITH_TCP, 230, 423
UpdateInterval (Collector ClassAd Attribute), 999
UpdateInterval (Scheduler ClassAd Attribute), 990
UpdateSequenceNumber (ClassAd Attribute), 984

Index 1061

HTCondor Manual, Release 10.0.9

UpdateSequenceNumber (Collector ClassAd Attribute),
999

UpdateSequenceNumber (Defrag ClassAd Attribute),
996

UpdateSequenceNumber (Negotiator ClassAd At-
tribute), 995

UpdateSequenceNumber (Scheduler ClassAd Attribute),
990

UpdatesHistory
ClassAd attribute added by the

condor_collector, 280
UpdatesHistory (ClassAd Attribute), 1000
UpdatesInitial (Collector ClassAd Attribute), 999
UpdatesLost

ClassAd attribute added by the
condor_collector, 279

UpdatesLost (ClassAd Attribute), 1000
UpdatesLost (Collector ClassAd Attribute), 999
UpdatesLostMax (Collector ClassAd Attribute), 999
UpdatesLostRatio (Collector ClassAd Attribute), 999
UpdatesSequenced

ClassAd attribute added by the
condor_collector, 279

UpdatesSequenced (ClassAd Attribute), 1000
UpdatesTotal

ClassAd attribute added by the
condor_collector, 279

UpdatesTotal (ClassAd Attribute), 1000
UpdatesTotal (Collector ClassAd Attribute), 1000
URL file transfer, 60, 456
USE configuration syntax, 201
use in

job ID, 933
use in submit description file

RANDOM_CHOICE() macro, 888
USE syntax

configuration, 201
USE_CLONE_TO_CREATE_PROCESSES, 225
USE_COLLECTOR_HOST_CNAME, 306
use_config() (htcondor.personal.PersonalPool

method), 678
USE_GID_PROCESS_TRACKING, 289, 475
USE_NFS, 233
use_oauth_services

submit commands, 885
USE_PID_NAMESPACES, 274
USE_PROCD, 289, 475
USE_PROCESS_GROUPS, 238
USE_PSS, 274
USE_RESOURCE_REQUEST_COUNTS, 286
use_scitokens

submit commands, 877
USE_SHARED_PORT, 228, 318
USE_VISIBLE_DESKTOP, 272, 692

USE_VOMS_ATTRIBUTES, 306
use_x509userproxy

submit commands, 876
User Log Reader API, 679
user manual, 32, 179

HTCondor, 32, 179
user priority, 328
USER_CONFIG_FILE, 187, 210
USER_JOB_WRAPPER, 271, 476
userHome()

ClassAd functions, 513
UserLog (Job ClassAd Attribute), 968
USERLOG_FILE_CACHE_CLEAR_INTERVAL, 219
USERLOG_FILE_CACHE_MAX, 219
userMap()

ClassAd functions, 513
USERNAME, 200
UseSharedX509UserProxy

Job Router Routing Table ClassAd
attribute, 548

using a file system
authentication, 395

using a remote file system
authentication, 395

using JAR files
Java, 147

using packages
Java, 148

utilizing interactive jobs
policy, 360

utime() (htcondor.htchirp.HTChirp method), 665

V
vacate, 77

preemption, 77
Vacate (htcondor.JobAction attribute), 637
VacateFast (htcondor.JobAction attribute), 637
VacateTypes (class in htcondor), 646
Vacating

machine activity, 345
VALID_SPOOL_FILES, 277, 313, 448, 800
Value (class in classad), 626
values() (htcondor.JobEvent method), 653
vanilla

universe, 143
vanilla = 5, docker = 5

job ClassAd attribute definitions, 960
var>

Job Router Routing Table command, 549
VARS (macro for submit description file)

DAGMan, 93
VARS (use of special characters)

DAGMan, 96
VARS command

1062 Index

HTCondor Manual, Release 10.0.9

DAG input file, 93
Verbose (htcondor.LogLevel attribute), 656
version() (in module classad), 628
version() (in module htcondor), 655
version_in_range

ClassAd functions, 508
versioncmp()

ClassAd functions, 508
versionEQ()

ClassAd functions, 508
versionGE()

ClassAd functions, 508
versionGT()

ClassAd functions, 508
versionLE()

ClassAd functions, 508
versionLT()

ClassAd functions, 508
virtual machine configuration variables

configuration, 311
virtual machine universe, 157, 161
virtual machines, 481
VirtualMemory (Machine ClassAd Attribute), 980
VirtualMemory (Scheduler ClassAd Attribute), 990
visualizing DAGs

DAGMan, 128
vm

universe, 143, 144, 157
vm = 13

job ClassAd attribute definitions, 960
vm universe, 144, 157
VM_AvailNum (Machine ClassAd Attribute), 980
vm_checkpoint

submit commands, 239, 878
vm_disk

submit commands, 157, 158, 878
VM_GAHP_LOG, 311
VM_GAHP_REQ_TIMEOUT, 312
VM_GAHP_SERVER, 311
VM_Guest_Mem (Machine ClassAd Attribute), 980
vm_macaddr

submit commands, 158, 878
VM_MACAddr (Job ClassAd Attribute), 969
VM_MAX_NUMBER, 312, 980
VM_MEMORY, 312, 980
vm_memory

submit commands, 157, 158, 860, 878
VM_Memory (Machine ClassAd Attribute), 980
VM_NETWORKING, 312
vm_networking

submit commands, 158, 878
VM_Networking (Machine ClassAd Attribute), 980
VM_NETWORKING_BRIDGE_INTERFACE, 312
VM_NETWORKING_DEFAULT_TYPE, 312

VM_NETWORKING_TYPE, 312
vm_networking_type

submit commands, 157, 158, 878
vm_no_output_vm

submit commands, 878, 963
VM_RECHECK_INTERVAL, 312
VM_SOFT_SUSPEND, 312
VM_STATUS_INTERVAL, 312
VM_TYPE, 312, 481
vm_type

submit commands, 878
VM_Type (Machine ClassAd Attribute), 981
VM_UNIV_NOBODY_USER, 312
VMOfflineReason (Machine ClassAd Attribute), 981
VMOfflineTime (Machine ClassAd Attribute), 981

W
walk() (htcondor.dags.DAG method), 667
walk_ancestors() (htcondor.dags.BaseNode method),

670
walk_ancestors() (htcondor.dags.DAG method), 667
walk_ancestors() (htcondor.dags.Nodes method), 672
walk_descendants() (htcondor.dags.BaseNode

method), 670
walk_descendants() (htcondor.dags.DAG method),

667
walk_descendants() (htcondor.dags.Nodes method),

672
WalkOrder (class in htcondor.dags), 667
WALL_CLOCK_CKPT_INTERVAL, 259
want_graceful_removal

submit commands, 262, 883
WANT_HOLD, 239, 955
WANT_HOLD_REASON, 239
WANT_HOLD_SUBCODE, 239
WANT_SUSPEND, 240, 353
WANT_UDP_COMMAND_SOCKET, 213, 283
WANT_VACATE, 240, 241, 354
WantContainer (Job ClassAd Attribute), 968
WantDocker (Job ClassAd Attribute), 968
WantFTOnCheckpoint (Job ClassAd Attribute), 968
WantGracefulRemoval (Job ClassAd Attribute), 968
WantNameTag

submit commands, 874
WantResAd (Scheduler ClassAd Attribute), 990
WARN_ON_UNUSED_SUBMIT_FILE_MACROS, 276, 851
watch() (htcondor.QueryIterator method), 639
WeightedAccumulatedUsage (Accounting ClassAd At-

tribute), 947
WeightedIdleJobs (Submitter ClassAd Attribute), 995
WeightedResourcesUsed (Accounting ClassAd At-

tribute), 947
WeightedRunningJobs (Submitter ClassAd Attribute),

995

Index 1063

HTCondor Manual, Release 10.0.9

when_to_transfer_output
submit commands, 52, 60, 693, 867

who the job runs as
job, 411

who() (htcondor.personal.PersonalPool method), 678
whoami() (htcondor.htchirp.HTChirp method), 663
whoareyou() (htcondor.htchirp.HTChirp method), 663
WholeMachines (Defrag ClassAd Attribute), 996
WholeMachinesPeak (Defrag ClassAd Attribute), 996
WINDOWED_STAT_WIDTH, 257
Windows

authentication, 395
platform-specific information, 687, 697

Windows platform configuration variables
configuration, 325

Windows platform troubleshooting
power management, 490

WINDOWS_FIREWALL_FAILURE_RETRY, 238
WINDOWS_RMDIR, 325
WINDOWS_RMDIR_OPTIONS, 325
WindowsBuildNumber (Job ClassAd Attribute), 968
WindowsBuildNumber (Machine ClassAd Attribute), 981
WindowsMajorVersion (Job ClassAd Attribute), 968
WindowsMajorVersion (Machine ClassAd Attribute),

981
WindowsMinorVersion (Job ClassAd Attribute), 968
WindowsMinorVersion (Machine ClassAd Attribute),

981
with Ganglia

Monitoring, 442
workflow metrics

DAGMan, 136
WorkHours, 356
write() (htcondor.htchirp.HTChirp method), 661
write() (htcondor.Token method), 649
write_dag() (in module htcondor.dags), 674

X
x509userproxy

submit commands, 75, 534, 877, 968, 969
X509UserProxy (Job ClassAd Attribute), 968
X509UserProxyEmail (Job ClassAd Attribute), 968
X509UserProxyExpiration (Job ClassAd Attribute),

968
X509UserProxyFirstFQAN (Job ClassAd Attribute), 968
X509UserProxyFQAN (Job ClassAd Attribute), 968
X509UserProxySubject (Job ClassAd Attribute), 969
X509UserProxyVOName (Job ClassAd Attribute), 969
XEN_BOOTLOADER, 313
xen_initrd

submit commands, 878
xen_kernel

submit commands, 158, 879
xen_kernel_params

submit commands, 879
xen_root

submit commands, 158, 879
xquery() (htcondor.Schedd method), 633

1064 Index

	Getting HTCondor
	Windows (as Administrator)
	Quickstart Installation Instructions
	Setting Up a Whole Pool with Windows

	Linux (as root)
	Quickstart Installation Instructions
	Setting Up a Whole Pool

	Linux (from our repositories)
	RPM-based Distributions
	deb-based Distributions
	Debian 11
	Ubuntu 20.04, and 22.04

	Linux or macOS (as user)
	Download
	Install
	Configure
	Using HTCondor

	macOS (as root)
	The condor Service Account
	Download
	Install
	Start the Daemons
	Using HTCondor

	Docker Images
	Quickstart Instructions
	Setting Up a Whole Pool with Docker

	Administrative Quick Start Guide
	The Three Roles
	The Execute Role
	The Submit Role
	The Central Manager Role

	Assigning Roles to Machines
	Creating a Multi-Machine Pool using Windows or Containers

	Where to Go from Here
	What get_htcondor Does to Configure a Role

	Overview
	High-Throughput Computing (HTC) and its Requirements
	HTCondor’s Power
	Exceptional Features
	Availability
	Contributions and Acknowledgments
	Support, Downloads and Bug Reporting
	Downloads
	Support
	Mailing Lists
	Email Support

	Reporting Bugs
	Ticketing System

	Users’ Manual
	HTCondor Quick Start Guide
	A First HTCondor Job
	The science Job Example
	Expanding the science Job and the Organization of Files
	Where to Go from Here

	Welcome and Introduction to HTCondor
	Running a Job: the Steps To Take
	Submitting a Job
	Sample submit description files
	Submitting many similar jobs with one queue command
	Variables in the Submit Description File
	Including Submit Commands Defined Elsewhere
	Using Conditionals in the Submit Description File
	Function Macros in the Submit Description File
	About Requirements and Rank
	Rank Expression Examples

	Submitting Jobs Using a Shared File System
	Jobs That Require Credentials
	Jobs That Require GPUs
	Interactive Jobs
	Submitting Lots of Jobs
	Materialization log events
	Limitations
	Displaying the Factory
	Removing a Factory
	Editing a Factory

	Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism
	Specifying If and When to Transfer Files
	Specifying What Files to Transfer
	File Paths for File Transfer
	Dataflow Jobs
	Public Input Files
	Behavior for Error Cases
	File Transfer Using a URL
	Transferring files using the S3 protocol
	S3 Transfer Recipes

	Managing a Job
	Checking on the progress of jobs
	Peeking in on a running job’s output files
	Starting an interactive shell next to a running job on a remote machine
	Removing a job from the queue
	Placing a job on hold
	Changing the priority of jobs
	Why is the job not running?
	Job in the Hold State
	In the Job Event Log File
	Job Termination
	Job Completion
	Summary of all HTCondor users and their jobs

	Automatically managing a job
	Automatically rerunning a failed job
	Automatically removing a job in the queue
	Automatically placing a job on hold
	Automatically releasing a held job
	Holding a completed job

	Services for Running Jobs
	Environment Variables
	Extra Environment Variables HTCondor sets for Jobs
	Communicating with the Submit machine via Chirp
	When changes to a job made by chirp take effect
	Resource Limitations on a Running Job

	Priorities and Preemption
	Job Priority
	User priority
	Details About How HTCondor Jobs Vacate Machines

	DAGMan Workflows
	Describing Workflows with DAGMan
	Example: Diamond DAG
	JOB
	DATA
	PARENT … CHILD …
	SCRIPT
	PRE and POST scripts
	HOLD scripts
	DEFER retries
	Scripts as part of a DAG workflow
	Special script argument macros
	Examples that use PRE or POST scripts

	PRE_SKIP

	Node Job Submit File Contents
	Inline Submit Descriptions
	SUBMIT-DESCRIPTION command

	DAG Submission
	DAG Throttling

	File Paths in DAGs
	DAG Monitoring
	Editing a Running DAG
	Removing a DAG
	Suspending a Running DAG
	Advanced Features of DAGMan
	Retrying Failed Nodes
	Stopping the Entire DAG
	Variable Values Associated with Nodes
	Prepend or Append Variables to Node
	Multiple macroname definitions
	Special characters within VARS string definitions
	Using special macros within a definition
	Using VARS to define ClassAd attributes
	Setting Priorities for Nodes
	Effective node priorities
	Throttling Nodes by Category
	Configuration Specific to a DAG
	Setting ClassAd attributes in the DAG file
	Optimization of Submission Time
	Single Submission of Multiple, Independent DAGs
	INCLUDE
	Example: Using INCLUDE to simplify multiple similar workflows
	Composing workflows from multiple DAG files
	A DAG Within a DAG Is a SUBDAG
	DAG Splicing
	Splices and rescue DAGs
	DAG Splice Connections
	PROVISIONER node
	SERVICE node
	FINAL node
	The ALL_NODES option

	The Rescue DAG
	Rescue DAG Naming
	Backtracking to an Older Rescue DAG
	Special Cases
	Partial versus Full Rescue DAGs

	DAG Recovery
	Visualizing DAGs with dot
	Capturing the Status of Nodes in a File
	A Machine-Readable Event History, the jobstate.log File
	Status Information for the DAG in a ClassAd
	Managing Large Numbers of Jobs with DAGMan
	Workflow Metrics
	DAGMan and Accounting Groups

	Job Sets
	Submitting a job set
	Listing job sets
	Checking on the progress of job sets
	Removing a job set

	Matchmaking with ClassAds
	Inspecting Machine ClassAds with condor_status

	Choosing an HTCondor Universe
	Vanilla Universe
	Grid Universe
	Java Universe
	Scheduler Universe
	Local Universe
	Parallel Universe
	VM Universe
	Docker Universe
	Container Universe

	Java Applications
	A Simple Example Java Application
	Less Simple Java Specifications
	Chirp I/O

	Parallel Applications (Including MPI Applications)
	How Parallel Jobs Run
	Parallel Jobs and the Dedicated Scheduler
	Submission Examples
	Simplest Example
	Example with Operating System Requirements
	Differing Requirements for the Machines
	Requesting multiple cores per slot
	MPI Applications

	MPI Applications Within HTCondor’s Vanilla Universe

	Virtual Machine Applications
	The Submit Description File
	Xen-Specific Submit Commands

	Checkpoints
	Disk Images
	Xen and KVM

	Job Completion in the vm Universe
	Failures to Launch

	Docker Universe Applications
	Docker and Networking

	Container Universe Jobs
	Self-Checkpointing Applications
	How To Run Self-Checkpointing Jobs
	Requirements
	Using checkpoint_exit_code
	How Frequently to Checkpoint
	Debugging Self-Checkpointing Jobs
	Working Around the Assumptions
	Other Options
	Delayed Transfers
	Manual Transfers
	Early Checkpoint Exits

	Signals
	Periodic Signals
	Delayed Transfer with Signals

	Time Scheduling for Job Execution
	Job Deferral
	Deferred Execution Time
	Deferral Window
	Preparation Time
	Deferral Usage Examples
	Deferral Limitations

	CronTab Scheduling
	Semantics for CronTab Specification
	Preparation Time and Execution Window
	Scheduling
	Submit Commands Usage Examples
	Submit Commands Limitations

	Special Environment Considerations
	AFS
	NFS
	HTCondor Daemons That Do Not Run as root
	Job Leases
	Heterogeneous Submit: Execution on Differing Architectures
	Vanilla Universe Example for Execution on Differing Architectures
	Vanilla Universe Example for Execution on Differing Operating Systems

	Potential Problems
	Renaming of argv[0]

	Administrators’ Manual
	Introduction
	The Different Roles a Machine Can Play
	The HTCondor Daemons

	Starting Up, Shutting Down, Reconfiguring, and Restarting HTCondor
	Using HTCondor’s Remote Management Features

	Introduction to Configuration
	HTCondor Configuration Files
	Ordered Evaluation to Set the Configuration
	Configuration File Macros
	Comments and Line Continuations
	Multi-Line Values
	Executing a Program to Produce Configuration Macros
	Including Configuration from Elsewhere
	Reporting Errors and Warnings
	Conditionals in Configuration
	Function Macros in Configuration
	Macros That Will Require a Restart When Changed
	Pre-Defined Macros

	Configuration Templates
	Configuration Templates: Using Predefined Sets of Configuration
	Available Configuration Templates
	Configuration Template Transition Syntax
	Configuration Template Examples

	Configuration Macros
	HTCondor-wide Configuration File Entries
	Daemon Logging Configuration File Entries
	DaemonCore Configuration File Entries
	Network-Related Configuration File Entries
	Shared File System Configuration File Macros
	condor_master Configuration File Macros
	condor_startd Configuration File Macros
	condor_schedd Configuration File Entries
	condor_shadow Configuration File Entries
	condor_starter Configuration File Entries
	condor_submit Configuration File Entries
	condor_preen Configuration File Entries
	condor_collector Configuration File Entries
	condor_negotiator Configuration File Entries
	condor_procd Configuration File Macros
	condor_credd Configuration File Macros
	condor_gridmanager Configuration File Entries
	condor_job_router Configuration File Entries
	condor_lease_manager Configuration File Entries
	Configuration File Entries for DAGMan
	General
	Throttling
	Priority, node semantics
	Node job submission/removal
	Rescue/retry
	Log files
	Debug output
	HTCondor attributes

	Configuration File Entries Relating to Security
	Configuration File Entries Relating to Virtual Machines
	Configuration File Entries Relating to High Availability
	Configuration File Entries Relating to condor_ssh_to_job
	condor_rooster Configuration File Macros
	condor_shared_port Configuration File Macros
	Configuration File Entries Relating to Job Hooks
	Configuration File Entries Relating to Daemon ClassAd Hooks: Startd Cron and Schedd Cron
	Configuration File Entries Only for Windows Platforms
	condor_defrag Configuration File Macros
	condor_gangliad Configuration File Macros
	condor_annex Configuration File Macros

	User Priorities and Negotiation
	Real User Priority (RUP)
	Effective User Priority (EUP)
	Priorities in Negotiation and Preemption
	Priority Calculation
	Negotiation
	The Layperson’s Description of the Pie Spin and Pie Slice
	Group Accounting
	Accounting Groups with Hierarchical Group Quotas
	Setting Accounting Group automatically per user

	Policy Configuration for Execute Hosts and for Submit Hosts
	condor_startd Policy Configuration
	condor_startd Terminology
	The START Expression
	The RANK Expression
	Machine States
	The Claimed State and Leases
	Machine Activities
	State and Activity Transitions
	Owner State
	Unclaimed State
	Matched State
	Claimed State
	Preempting State
	Backfill State
	Drained State

	State/Activity Transition Expression Summary
	Examples of Policy Configuration
	Multi-Core Machine Terminology
	Dividing System Resources in Multi-core Machines
	Configuration Specific to Multi-core Machines
	Load Average for Multi-core Machines
	Debug Logging in the Multi-Core condor_startd Daemon
	Configuring GPUs
	Configuring STARTD_ATTRS on a per-slot basis
	Dynamic Provisioning: Partitionable and Dynamic Slots
	Defaults for Partitionable Slot Sizes
	Enforcing scratch disk usage with on-the-fly, HTCondor managed, per-job scratch filesystems.
	condor_negotiator-Side Resource Consumption Policies
	Defragmenting Dynamic Slots

	condor_schedd Policy Configuration
	Job Transforms
	Submit Requirements
	Submit Warnings

	Security
	Security Overview
	General Security Flow
	Highlights of New Features In Version 9.0.0
	Introducing: IDTOKENS
	Introducing: AES

	Types of Network Connections
	User-to-Daemon Connections (User Authentication)
	Authenticating using FS
	Authenticating using IDTOKENS

	Daemon-to-Daemon Connections (Daemon Authentication)

	Security Terms
	Quick Configuration of Security
	HTCondor’s Security Model
	Access Level Descriptions

	Security Negotiation
	Configuration
	Configuration for Security Methods

	Authentication
	SSL Authentication
	Bootstrapping SSL Authentication
	Kerberos Authentication
	Password Authentication
	Example Security Configuration Using Pool Password
	Example Using Pool Password for condor_startd Advertisement

	Token Authentication
	File System Authentication
	File System Remote Authentication
	Windows Authentication
	Ask MUNGE for Authentication
	Claim To Be Authentication
	Anonymous Authentication

	The Unified Map File for Authentication
	Encryption
	Integrity
	Authorization
	Example of Authorization Security Configuration
	Debugging Security Configuration

	FIPS
	Security Sessions
	Host-Based Security in HTCondor
	Examples of Security Configuration
	Changing the Security Configuration
	Using HTCondor w/ Firewalls, Private Networks, and NATs
	User Accounts in HTCondor on Unix Platforms
	Running HTCondor as Non-Root
	Who Jobs Run As
	Working Directories for Jobs

	Networking (includes sections on Port Usage and CCB)
	Port Usage in HTCondor
	IPv4 Port Specification
	Default Port Usage
	Using a Non Standard, Fixed Port for the condor_collector
	Using a Dynamically Assigned Port for the condor_collector
	Restricting Port Usage to Operate with Firewalls
	Multiple Collectors
	Port Conflicts

	Reducing Port Usage with the condor_shared_port Daemon
	Configuring HTCondor for Machines With Multiple Network Interfaces
	Using BIND_ALL_INTERFACES
	Central Manager with Two or More NICs
	A Client Machine with Multiple Interfaces

	HTCondor Connection Brokering (CCB)
	Example Configuration
	Security and CCB
	Troubleshooting CCB
	Scalability and CCB

	Using TCP to Send Updates to the condor_collector
	Running HTCondor on an IPv6 Network Stack
	IPv6 and Host-Based Security
	IPv6 Address Literals
	IPv6 without DNS

	DaemonCore
	DaemonCore and Unix signals
	DaemonCore and Command-line Arguments

	Hooks, Startd Cron and Schedd Cron
	Job Hooks That Fetch Work
	Work Fetching Hooks Invoked by HTCondor
	Keywords to Define Job Fetch Hooks in the HTCondor Configuration files
	Defining the FetchWorkDelay Expression
	Example Hook: Specifying the Executable at Execution Time

	Hooks for the Job Router
	Hooks Invoked for Job Routing

	Startd Cron and Schedd Cron Daemon ClassAd Hooks
	Overview
	Job output
	Configuration

	Logging in HTCondor
	Job and Daemon Logs
	DAGMan Logs

	Monitoring
	Ganglia
	Absent ClassAds
	GPUs
	Elasticsearch
	Configuring a Pool to Report to the HTCondorView Server

	The High Availability of Daemons
	High Availability of the Job Queue
	Working with Remote Job Submission

	High Availability of the Central Manager
	Interaction with Flocking
	Introduction
	Configuration
	Sample Configuration

	Setting Up for Special Environments
	Using HTCondor with AFS
	AFS and HTCondor for Administrators
	AFS and HTCondor for Users

	Enabling the Transfer of Files Specified by a URL
	Custom File Transfer Plugins
	Sending File Transfer Plugins With Your Job

	Enabling the Transfer of Public Input Files over HTTP
	Install a web service for public input files
	Configuration knobs for public input files
	Additional HTTP infrastructure for public input files

	Enabling the Fetching and Use of OAuth2 Credentials
	Using the native OAuth client and/or issuer
	Using Vault as the OAuth client

	Configuring HTCondor for Multiple Platforms
	Platform-Specific Configuration File Settings
	Other Uses for Platform-Specific Configuration Files

	The condor_kbdd
	The condor_kbdd on Windows Platforms
	The condor_kbdd on Linux Platforms

	Configuring The HTCondorView Server
	Configuring a Machine to be a HTCondorView Server

	HTCondor’s Dedicated Scheduling
	Selecting and Setting Up a Dedicated Scheduler
	Configuration Examples for Dedicated Resources
	Preemption with Dedicated Jobs
	Grouping Dedicated Nodes into Parallel Scheduling Groups

	Configuring HTCondor for Running Backfill Jobs
	Overview of Backfill jobs in HTCondor
	Defining the Backfill Policy
	Overview of the BOINC system
	Installing the BOINC client software
	Configuring the BOINC client under HTCondor
	BOINC on Windows

	Per Job PID Namespaces
	Group ID-Based Process Tracking
	Cgroup-Based Process Tracking
	Limiting Resource Usage with a User Job Wrapper
	Limiting Resource Usage Using Cgroups
	Concurrency Limits

	Java Support Installation
	Setting Up the VM and Docker Universes
	The VM Universe
	Xen-Specific and KVM-Specific Configuration
	When a vm Universe Job Fails to Start

	The Docker Universe

	Singularity Support
	Power Management
	Entering a Low Power State
	Returning From a Low Power State
	Keeping a ClassAd for a Hibernating Machine
	Linux Platform Details
	Windows Platform Details

	Windows Installer
	Detailed Installation Instructions Using the MSI Program
	Unattended Installation Procedure Using the MSI Installer
	Manual Installation of HTCondor on Windows

	Directories
	Directories used by More than One Role
	Directories use by the Submit Role
	Directories use by the Execute Role

	ClassAds
	HTCondor’s ClassAd Mechanism
	ClassAds: Old and New
	New ClassAd Attribute References

	ClassAd Syntax
	Composing Literals
	Attributes
	Expression Operators
	Predefined Functions

	ClassAd Evaluation Semantics
	Evaluating Literals
	Attribute References
	ClassAd Operators
	Expression Examples

	Old ClassAds in the HTCondor System
	Constraints and Preferences
	Querying with ClassAd Expressions

	Extending ClassAds with User-written Functions

	ClassAd Transforms
	General Concepts
	Transform Commands

	Print Formats
	Syntax
	Examples
	PRINTAS functions for condor_q
	PRINTAS functions for condor_status

	Grid Computing
	Introduction
	Connecting HTCondor Pools with Flocking
	Flocking Configuration
	Job Considerations

	The Grid Universe
	HTCondor-C, The condor Grid Type
	HTCondor-C Configuration
	HTCondor-C Job Submission
	HTCondor-C Jobs Between Differing Platforms

	The arc Grid Type
	The batch Grid Type (for SLURM, PBS, LSF, and SGE)
	Remote batch Job Submission via SSH
	Remote batch Job Submission via Reverse SSH

	The EC2 Grid Type
	EC2 Job Submission
	Termination of EC2 Jobs
	Using Spot Instances
	EC2 Advanced Usage
	EC2 Configuration Variables
	Communicating with an EC2 Service
	Secure Communication with an EC2 Service
	EC2 GAHP Statistics

	The GCE Grid Type
	GCE Job Submission
	GCE Configuration Variables

	The Azure Grid Type
	Azure Job Submission

	The HTCondor Job Router
	Routing Mechanism
	Job Submission with Job Routing Capability
	An Example Configuration
	Routing Table Entry Commands and Macro values
	Deprecated router configuration
	Deprecated Routing Table Entry ClassAd Attributes

	Cloud Computing
	Introduction
	Use Case: Deadlines
	Use Case: Capabilities
	Use Case: Capacities
	Use Case: Experimental Convenience

	HTCondor Annex User’s Guide
	Considerations and Limitations
	Basic Usage
	What You’ll Need to Know

	Start an Annex
	Instance Types
	Leases
	Idle Time
	Tagging your Annex’s Instances
	Starting Multiple Annexes

	Monitor your Annex
	Monitoring Multiple Annexes

	Run a Job
	Stop an Annex
	Stopping Multiple Annexes

	Using Different or Multiple AWS Regions
	Advanced Usage
	Using AWS Spot Fleet
	Custom HTCondor Configuration
	AWS Instance User Data
	Expert Mode

	Using condor_annex for the First Time
	Install a Personal HTCondor
	Configure Public Interface
	Configure a Pool Password
	Tell HTCondor about the Open Port
	Activate the New Configuration

	Prepare your AWS account
	Using Instance Credentials
	Obtaining an Access Key

	Configure condor_annex
	Checking the Setup
	Undoing the Setup Command

	HTCondor Annex Customization Guide
	Amazon Web Services
	Resource Requests
	Secure Transport
	Image Requirements
	Instance Roles

	HTCondor Annex Configuration
	User Settings
	Logging
	Expert Settings
	Developer Settings

	HTCondor in the Cloud
	The HTCondor in the Cloud Seed
	Security
	Making a HTCondor in the Cloud
	AWS-Specific Instructions

	Creating a Seed

	Google Cloud Marketplace Entry
	Google Cloud HPC Toolkit

	Application Programming Interfaces (APIs)
	Python Bindings
	Installing the Bindings
	Linux System Packages
	Windows Installer
	PyPI
	Conda

	HTCondor Python Bindings Tutorials
	Introductory Tutorials
	Advanced Tutorials
	Submitting and Managing Jobs
	What is HTCondor?
	Submitting a Simple Job
	Submitting Multiple Jobs
	Using Itemdata to Vary Over Parameters
	Managing Jobs
	Exercises
	Exercise 1: Incrementing Sleeps
	Exercise 2: Echo to Target
	Exercise 3: Holding Odds

	ClassAds Introduction
	Expressions
	ClassAds
	Onto HTCondor!

	HTCondor Introduction
	Collector
	Schedd
	On Job Submission

	Advanced Job Submission and Management
	Submitting Jobs
	Managing Jobs
	That’s It!

	Advanced Schedd Interaction
	Job and History Querying
	Querying many Schedds
	History Queries

	Interacting With Daemons
	Configuration
	Remote Configuration
	Logging Subsystem
	Sending Daemon Commands

	Scalable Job Tracking
	Poll-based Tracking
	Event-based Tracking

	DAG Creation and Submission
	Making a Mandelbrot set image locally
	What is the workflow?
	Describing goatbrot as an HTCondor job
	Describing montage as an HTCondor job
	Describing the DAG using htcondor.dags
	Write the DAG to disk
	Submit the DAG via the Python bindings

	Personal Pools

	classad API Reference
	ClassAd Representation
	Parsing and Creating ClassAds
	Parser Control
	Utility Functions
	Exceptions
	Deprecated Functions

	htcondor API Reference
	Interacting with Collectors
	Interacting with Schedulers
	Submitting Jobs
	Interacting with Negotiators
	Managing Starters and Claims
	Security Management
	Reading Job Events
	HTCondor Configuration
	HTCondor Logging
	Esoteric Functionality
	Exceptions
	Thread Safety

	htcondor.htchirp API Reference
	htcondor.dags API Reference
	Creating DAGs
	Nodes and Node-likes
	Edges
	Node Configuration
	Writing a DAG to Disk

	DAG Configuration
	Rescue DAGs

	htcondor.personal API Reference

	Chirp
	The HTCondor User and Job Log Reader API
	Constants and Enumerated Types
	Constructors and Destructors
	Initializers
	Primary Methods
	Accessors
	Methods for saving and restoring persistent reader state
	Save state to persistent storage
	Restore state from persistent storage
	API Reference
	Access to the persistent state data
	Future persistence API

	The Command Line Interface

	Platform-Specific Information
	Linux
	Microsoft Windows
	Limitations under Windows
	Supported Features under Windows
	Secure Password Storage
	Executing Jobs as the Submitting User
	The condor_credd Daemon
	Using a pool password on Windows

	Executing Jobs with the User’s Profile Loaded
	Using Windows Scripts as Job Executables
	How HTCondor for Windows Starts and Stops a Job
	Security Considerations in HTCondor for Windows
	Network files and HTCondor
	Interoperability between HTCondor for Unix and HTCondor for Windows
	Some differences between HTCondor for Unix -vs- HTCondor for Windows

	Macintosh OS X

	Frequently Asked Questions (FAQ)
	Version History and Release Notes
	Introduction to HTCondor Versions
	HTCondor Version Number Scheme
	Types of Releases
	Repositories
	Recommendations

	Upgrading from an 9.0 LTS version to an 10.0 LTS version of HTCondor
	Version 10.0 LTS Releases
	Version 10.0.9
	Version 10.0.8
	Version 10.0.7
	Version 10.0.6
	Version 10.0.5
	Version 10.0.4
	Version 10.0.3
	Version 10.0.2
	Version 10.0.1
	Version 10.0.0

	Version 9 Feature Releases
	Version 9.12.0
	Version 9.11.2
	Version 9.11.1
	Version 9.11.0
	Version 9.10.1
	Version 9.10.0
	Version 9.9.1
	Version 9.9.0
	Version 9.8.1
	Version 9.8.0
	Version 9.7.1
	Version 9.7.0
	Version 9.6.0
	Version 9.5.4
	Version 9.5.3
	Version 9.5.2
	Version 9.5.1
	Version 9.5.0
	Version 9.4.1
	Version 9.4.0
	Version 9.3.2
	Version 9.3.1
	Version 9.3.0
	Version 9.2.0
	Version 9.1.6
	Version 9.1.5
	Version 9.1.4
	Version 9.1.3
	Version 9.1.2
	Version 9.1.1
	Version 9.1.0

	Version 9.0 LTS Releases
	Version 9.0.20
	Version 9.0.19
	Version 9.0.18
	Version 9.0.17
	Version 9.0.16
	Version 9.0.15
	Version 9.0.14
	Version 9.0.13
	Version 9.0.12
	Version 9.0.11
	Version 9.0.10
	Version 9.0.9
	Version 9.0.8
	Version 9.0.7
	Version 9.0.6
	Version 9.0.5
	Version 9.0.4
	Version 9.0.3
	Version 9.0.2
	Version 9.0.1
	Version 9.0.0

	Command Reference Manual (man pages)
	classad_eval
	Synopsis
	Description
	Examples
	Exit Status
	Author
	Copyright

	ClassAds
	Data Syntax
	Expression Syntax
	Attribute References
	UNDEFINED and ERROR
	Operators
	Functions
	Reserved Words

	Testing ClassAd Expressions
	Examples
	Selecting a Slot based on Job ID
	Selecting Jobs based on Execute Machine
	String Manipulation
	Selecting Machines with a Particular File-Transfer Plugin

	Specification
	Author
	Copyright

	condor_adstash
	Synopsis
	Description
	Options
	ClassAd source options
	Options for HTCondor daemon (Schedd, Startd, etc.) history sources
	Search engine (Elasticsearch, OpenSearch, etc.) interface options
	JSON file interface options
	Examples

	condor_advertise
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_annex
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_check_password
	Synopsis
	Description
	Options
	Exit Status

	condor_check_userlogs
	Synopsis
	Description
	Exit Status

	condor_chirp
	Synopsis
	Description
	Chirp Commands
	Examples
	Exit Status

	condor_configure
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_config_val
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_continue
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_dagman
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_drain
	Synopsis
	Description
	Options
	Exit Status

	condor_evicted_files
	Synopsis
	Description
	General Remarks
	Exit Status
	Author
	Copyright

	condor_fetchlog
	Synopsis
	Description
	Options
	Examples
	Exit Status

	condor_findhost
	Synopsis
	Description
	Options
	General Remarks
	Exit Status
	Examples

	condor_gather_info
	Synopsis
	Description
	Options
	Files
	Exit Status

	condor_gpu_discovery
	Synopsis
	Description
	Options
	Exit Status

	condor_history
	Synopsis
	Description
	Options
	Exit Status

	condor_hold
	Synopsis
	Description
	Options
	See Also
	Examples
	Exit Status

	condor_install
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_job_router_info
	Synopsis
	Description
	Options
	Exit Status

	condor_master
	Synopsis
	Description
	Options

	condor_now
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_off
	Synopsis
	Description
	Options
	Graceful vs. Peaceful vs Fast
	Exit Status
	Examples

	condor_on
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_ping
	Synopsis
	Description
	Options
	Examples
	Exit Status

	condor_pool_job_report
	Synopsis
	Description
	Exit Status

	condor_power
	Synopsis
	Description
	Options
	Exit Status

	condor_preen
	Synopsis
	Description
	Options
	Exit Status

	condor_prio
	Synopsis
	Description
	Options
	Exit Status

	condor_procd
	Synopsis
	Description
	Options
	Dealing with Short Reads
	General Remarks
	Exit Status

	condor_q
	Synopsis
	Description
	Batches of jobs
	Output
	Output options
	Output data
	Analyze

	Restrictions
	Options
	General Remarks
	Examples
	Exit Status

	condor_qedit
	Synopsis
	Description
	Options
	Examples
	General Remarks
	Exit Status

	condor_qsub
	Synopsis
	Description
	Options
	Exit Status

	condor_reconfig
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_release
	Synopsis
	Description
	Options
	See Also
	Examples
	Exit Status

	condor_remote_cluster
	Synopsis
	Description
	Options

	condor_reschedule
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_restart
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_rm
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_rmdir
	Synopsis
	Description
	Options
	Exit Status

	condor_router_history
	Synopsis
	Description
	Options
	Exit Status

	condor_router_q
	Synopsis
	Description
	Options
	Exit Status

	condor_router_rm
	Synopsis
	Description
	Options
	Exit Status

	condor_run
	Synopsis
	Description
	Options
	Examples
	Files
	General Remarks
	Exit Status

	condor_set_shutdown
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_sos
	Synopsis
	Description
	Options
	Examples
	Exit Status

	condor_ssh_start
	Synopsis
	Description

	condor_ssh_to_job
	Synopsis
	Description
	Options
	Examples
	Exit Status

	condor_ssl_fingerprint
	Synopsis
	Description
	Examples
	Exit Status
	See also
	Author
	Copyright

	condor_stats
	Synopsis
	Description
	Time Range Options
	Query Type Arguments
	Options
	Exit Status

	condor_status
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_store_cred
	Synopsis
	Description
	Options
	Exit Status

	condor_submit
	Synopsis
	Description
	Options
	Submit Description File Commands
	Submit Variables
	Exit Status
	Examples
	General Remarks
	See Also

	condor_submit_dag
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_suspend
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_tail
	Synopsis
	Description
	Options
	Exit Status

	condor_token_create
	Synopsis
	Description
	Options
	Examples
	Exit Status
	See also
	Author
	Copyright

	condor_token_fetch
	Synopsis
	Description
	Options
	Examples
	Exit Status
	See also
	Author
	Copyright

	condor_token_list
	Synopsis
	Description
	Options
	Examples
	Exit Status
	See also
	Author
	Copyright

	condor_token_request
	Synopsis
	Description
	Options
	Examples
	Exit Status
	See also
	Author
	Copyright

	condor_token_request_approve
	Synopsis
	Description
	Options
	Examples
	Exit Status
	See also
	Author
	Copyright

	condor_token_request_auto_approve
	Synopsis
	Description
	Options
	Examples
	Exit Status
	See also
	Author
	Copyright

	condor_token_request_list
	Synopsis
	Description
	Options
	Examples
	Exit Status
	See also
	Author
	Copyright

	condor_top
	Synopsis
	Description
	Options

	condor_transfer_data
	Synopsis
	Description
	Options
	Exit Status

	condor_transform_ads
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_update_machine_ad
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_updates_stats
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_urlfetch
	Synopsis
	Description
	Options
	Exit Status

	condor_userlog
	Synopsis
	Description
	Options
	General Remarks
	Exit Status

	condor_userprio
	Synopsis
	Description
	Options
	Examples
	Exit Status

	condor_vacate
	Synopsis
	Description
	Options
	Exit Status
	Examples

	condor_vacate_job
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_version
	Synopsis
	Description
	Options
	Exit Status

	condor_wait
	Synopsis
	Description
	Options
	General Remarks
	Examples
	Exit Status

	condor_watch_q
	Synopsis
	Description
	Examples
	Options
	General Options
	Tracking Options
	Behavior Options
	Display Options

	Exit Status
	Author
	Copyright

	condor_who
	Synopsis
	Description
	Options
	Examples
	Exit Status

	get_htcondor
	Synopsis
	Description
	Options
	Exit Status
	Installed Configuration
	Single-Machine Installation
	Multi-Machine Installation

	gidd_alloc
	Synopsis
	Description
	General Remarks
	Exit Status

	htcondor
	Synopsis
	Description
	Global Options
	Job Options
	Job Set Options
	Exit Status

	procd_ctl
	Synopsis
	Description
	Options
	General Remarks
	Exit Status

	ClassAd Attributes
	ClassAd Types
	Accounting ClassAd Attributes
	Job ClassAd Attributes
	Machine ClassAd Attributes
	DaemonMaster ClassAd Attributes
	Scheduler ClassAd Attributes
	Negotiator ClassAd Attributes
	Submitter ClassAd Attributes
	Defrag ClassAd Attributes
	Grid ClassAd Attributes
	Collector ClassAd Attributes
	ClassAd Attributes Added by the condor_collector
	DaemonCore Statistics Attributes

	Codes and Other Needed Values
	condor_shadow Exit Codes
	Job Event Log Codes
	Job Universe Numbers
	DaemonCore Command Numbers
	DaemonCore Daemon Exit Codes

	Index
	Licensing and Copyright
	Python Module Index
	Index

